
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

AdvancED CSS

Joseph R. Lewis and Meitar Moscovitz

http://www.allitebooks.org

www.allitebooks.com

AdvancED CSS
Copyright © 2009 by Joseph R. Lewis and Meitar Moscovitz

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system, without the prior written permission

of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1932-3

ISBN-13 (electronic): 978-1-4302-1933-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, we
use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement

of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013.
Phone 1-800-SPRINGER, fax 201-348-4505, e-mail om, or visit .

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley, CA 94705.
Phone 510-549-5930, fax 510-549-5939, e-mail , or visit .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing web page at

.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the
preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to any loss or

damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is freely available to readers at in the Downloads section.

Credits

Lead Editors
Clay Andres and Douglas Pundick

Technical Reviewer
Paul Haine

Editorial Board
Clay Andres, Steve Anglin, Mark Beckner,

Ewan Buckingham, Tony Campbell, Gary Cornell,
Jonathan Gennick, Michelle Lowman,

Matthew Moodie, Jeffrey Pepper,
Frank Pohlmann, Ben Renow-Clarke,

Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager
Sofia Marchant

Copy Editor
Liz Welch

Associate Production Director
Kari Brooks-Copony

Production Editor
Elizabeth Berry

Compositor
Diana Van Winkle

Proofreader
Nancy Bell

Indexer
Becky Hornyak

Artist
Diana Van Winkle

Cover Image Designer
Bruce Tang

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

http://www.allitebooks.org

www.allitebooks.com

To Yingwen, Maxwell, Dylan, and the musicians
— Joseph R. Lewis

To Penn and Koll, for giving me glimpses of my own past;
and to all young people who don’t yet know how to get from

where they are to where they want to be
— Meitar Moscovitz

http://www.allitebooks.org

www.allitebooks.com

iv

CONTENTS AT A GLANCE

About the Authors . xv

About the Technical Reviewer . xvii

About the Cover Image Designer . xix

Acknowledgments . xxi

Layout Conventions . xxiii

PART ONE INTRODUCTION:
 DIGESTING THE WEB’S ALPHABET SOUP 1

Chapter 1 Markup Underpins CSS .3

Chapter 2 CSS Fundamentals for Advanced Use . 27

PART TWO ADVANCED CSS IN PRACTICE .87

Chapter 3 CSS-Generated Content . 89

Chapter 4 Optimizing for Print . 117

Chapter 5 Developing for Small Screens and the Mobile Web 149

Chapter 6 Managing and Organizing Style Sheets . 189

http://www.allitebooks.org

www.allitebooks.com

v

PART THREE CSS PATTERNS AND
 ADVANCED TECHNIQUES . 211

Chapter 7 Semantic Patterns for Styling
Common Design Components . 213

Chapter 8 Using a Style Sheet Library . 229

Chapter 9 Styling XML with CSS . 247

Chapter 10 Optimizing CSS for Performance . 275

PART FOUR THE FUTURE OF CSS . 291

Chapter 11 Exploring the Emergence of CSS3 . 293

Chapter 12 The Future of CSS and the Web . 333

Index . 343

http://www.allitebooks.org

www.allitebooks.com

vii

CONTENTS

About the Authors . xv

About the Technical Reviewer . xvii

About the Cover Image Designer . xix

Acknowledgments . xxi

Layout Conventions . xxiii

PART ONE INTRODUCTION:
 DIGESTING THE WEB’S ALPHABET SOUP 1

Chapter 1 Markup Underpins CSS .3

The linguistics of markup languages . 4
XML dialects: the many different flavors of content . 5

RSS and Atom: content syndication formats . 6
SVG: vector-based graphics in XML . 8

User agents: our eyes and ears in cyberspace . 12
Understanding users and their agents . 12
Why giving the user control is not giving up . 14

Abstracting content’s presentation with CSS . 15
The nature of output: grouping output with CSS media types . 15
Considerations for targeting media types . 18
Targeting screens . 18

The screen media type . 18
The projection media type . 19
The handheld media type . 20

The print media type . 21
Aural media . 21
Feature detection via CSS media queries . 22
One document, multiple faces . 23

Complementing semantics with CSS . 24
Summary . 24

http://www.allitebooks.org

www.allitebooks.com

CONTENTS

viii

Chapter 2 CSS Fundamentals for Advanced Use . 27

Origins of a style sheet and the CSS cascade . 28
User agent style sheets (default browser styles) . 28
User style sheets . 34

User style sheet support in web browsers . 35
Attributes and characteristics of author style sheets . 37

External and embedded style sheets . 37
Naming and specifying media and character encoding details 39

Inline styles . 40
Selectors: from simple to complex to surgical . 40

Simple selectors . 41
Type selectors . 42
Universal type selector . 44
Attribute selectors . 45
ID and class selectors . 46
Pseudo-classes . 48
Pseudo-elements . 52

Using combinators . 53
Descendant combinator . 55
Child combinator . 55
Adjacent sibling combinator . 56
General sibling combinator . 58

Property values and units . 58
Keywords and font names . 59
Numbers . 60

Lengths . 60
Percentages . 62
Time, frequencies, and angles . 62

Strings . 63
Functional notation . 63

URI references: the url() function . 64
Color functions: rgb(), rgba(), hsl(), and hsla() . 64
Generated content functions: attr() and counter() . 66
Basic math for computing lengths: the calc() function . 66

Visual rendering and formatting concepts . 66
CSS boxes and document flow . 67
CSS positioning schemes . 69

Static positioning . 69
Relative positioning . 70
Absolute positioning . 73
Fixed positioning . 75
Floated CSS boxes . 78

Stacking contexts . 79
CSS box models: content-box model vs. border-box model . 83

Summary . 85

http://www.allitebooks.org

www.allitebooks.com

CONTENTS

ix

PART TWO ADVANCED CSS IN PRACTICE .87

Chapter 3 CSS-Generated Content . 89

How generated content works . 90
Generating content :before or :after any element . 92
Exposing metadata through the CSS attr() function . 94
Replacing content with pseudo-content . 97

Limitations on styling CSS-generated content . 98
Understanding escape sequences in CSS strings . 99
Advanced list styling: marker boxes and numbering . 101

Using built-in marker box styles . 102
Replacing marker boxes with custom images . 103
Manipulating the marker box’s position . 104

Positioning marker boxes outside or inside normal document flow 104
Marker offsets and marker pseudo-elements . 105

Automatic numbering using CSS-generated counters . 105
Atypical numbering: counting backward, skipping numbers,
 counting with letters, and more . 106
Using multiple counters . 108

Numbering groups of elements and their siblings . 109
Displaying total counts . 111

Counter scope: exposing structure with nested counters . 112
Summary . 113

Chapter 4 Optimizing for Print . 117

Targeting a print style sheet . 118
Linking to print styles in HTML . 119
Targeting print styles using @media . 119
Targeting print styles using @import . 120

Printer style considerations . 121
Printing in color . 121
The tragedy of font color . 122
Units . 123
Images . 124

Advanced page selectors . 124
Inserting and avoiding page breaks . 125
Orphans and widows . 125
Establishing a page size with @page . 126
Setting @page margins with :left, :right, and :first pseudo-classes 126
Using margin at-rules . 127

Future of CSS print style sheets . 129
Example: styling a résumé . 129
Summary . 147

http://www.allitebooks.org

www.allitebooks.com

CONTENTS

x

Chapter 5 Developing for Small Screens and the Mobile Web 149

The arrival of the mobile Web . 150
The limitations and challenges of mobile web development . 151

Reduced and unpredictable screen sizes . 151
Varied interaction paradigms and usability implications . 152
Reduced technology options and limited technical capabilities . 153
Limited bandwidth and higher latency . 153
Competing, overlapping, and incompatible technologies . 154

A brief history of mobile web technology . 154
A brief overview of mobile browsers . 156

Opera Mobile and Opera Mini (Presto) . 156
Internet Explorer Mobile . 157
Blazer (NetFront) . 157
Openwave Mobile Browser . 158
Fennec (Gecko) . 158
Mobile Safari and Android (WebKit) . 159
Comparing browsers and displays . 160

Delivering mobile style . 162
The handheld media type . 163

Formatting a page for handheld media . 164
Establishing color and typography . 166

Designing for Mobile WebKit . 173
Why optimize for WebKit? . 173
Previewing WebKit pages . 174
Basic layout properties . 176

Setting the viewport . 176
Using media queries . 177

Styling links to be touch-friendly . 177
Using CSS selectors in JavaScript . 182
WebKit CSS transforms and transitions . 182

Summary . 186

Chapter 6 Managing and Organizing Style Sheets . 189

The need for organization . 190
What organization looks like . 190
Using CSS features as architecture . 191

Understanding specificity . 191
Applying multiple style sheets to a page . 191

The grand order of at-rules . 191
Classical inheritance schemes for style sheets . 192
Defining design relationships using selector groups . 192

Good coding principles . 193
Taking advantage of inheritance . 193
Organizing from broad to specific . 194
Avoid overusing arbitrary <div> elements, IDs, or classes . 196
Dividing style sheets into logical sections . 196
Dividing design principles into files . 197
Use the shortest URL that works . 197

http://www.allitebooks.org

CONTENTS

xi

Good code formatting conventions . 198
Alphabetize your declarations . 199
Consistency is your ally . 200

Techniques for intra-team communication . 201
CSS comments . 201

Comment headers . 202
Comment signposts . 204
CSSEdit . 204
TextMate . 205

Persistent, preferred, and alternate style sheets . 206
Styling for media . 207

CSS3 media queries . 207
Developing a mobile strategy . 209

Summary . 210

PART THREE CSS PATTERNS AND
ADVANCED TECHNIQUES . 211

Chapter 7 Semantic Patterns for Styling
Common Design Components . 213

Markup patterns and common authoring conventions . 214
The evolution of markup conventions . 214
Microformats: reusing markup patterns and adding semantics . 216
How microformats work . 216
RDFa: adding extensible vocabularies to semantic markup . 217
Opportunities and benefits of semantics for CSS developers . 219

Styling microformats with CSS . 220
Styling rel-tag links . 220
Styling an hCard . 221
Styling an hCalendar . 222

Styling RDFa with CSS . 224
Summary . 226

Chapter 8 Using a Style Sheet Library . 229

Leveling the playing field: “resetting CSS” . 230
Designing to the grid . 231

Tools for grid diagnostics . 236
CSS frameworks . 237

YUI CSS Foundation . 238
960 Grid System . 242
Blueprint CSS . 243

Summary . 245

CONTENTS

xii

Chapter 9 Styling XML with CSS . 247

Using XML for your markup . 247
Problems with POSH . 248
Freedom from HTML . 248
Oh yeah? Well, XML sucks! . 248
Double the style sheet fun . 249
CSS vs. XSL . 250

Styling a simple XML file . 250
Linking a style sheet . 250
Embedding a style sheet . 250

Putting the X back in eXtensible . 251
Extending XHTML through namespaces . 251
Styling namespaces . 252
Styling namespaces in Internet Explorer . 253

Painting SVGs . 253
SVG and CSS2 . 256
SVG-specific style . 257
Browser support for SVG . 259

Making an Atom feed more presentable . 259
An integrated example . 260
Summary . 273

Chapter 10 Optimizing CSS for Performance . 275

Why optimize? . 276
Optimize to increase speed . 276
Optimize to lower bandwidth usage and costs . 277

Optimization vs. organization . 277
Optimization techniques . 278

Optimizing with CSS shorthand, selector groups, and inheritance 279
Avoid universal selectors or lengthy descendant selectors . 280
Put CSS at the top . 281
Prefer <link> elements over @import rules . 281
Compressing, combining, and minifying style sheets . 282
Avoid CSS expressions and filters . 284
Reference external CSS instead of inline styles . 284
Use absolute or fixed positioning on animated elements . 284

Diagnostic tools for CSS performance . 284
The Firebug Net panel . 285
YSlow Firebug plug-in . 286
WebKit Web Inspector network timeline . 287
Reflow and repaint timers and visualizers . 287

Summary . 289

CONTENTS

xiii

PART FOUR THE FUTURE OF CSS . 291

Chapter 11 Exploring the Emergence of CSS3 . 293

When will it be done? . 294
Using CSS3 today . 294

Using vendor extensions and “beta” features . 294
Browser support . 294

Opera (Presto) . 295
Safari (WebKit) . 295
Firefox (Gecko) . 295
Internet Explorer (Trident) . 295

Using new CSS3 features . 296
CSS3 color units and opacity . 296
General sibling combinators . 299
CSS3 attribute matching selectors . 301
CSS3 pseudo-classes . 301

E:root . 301
E:nth-child(n) . 301
E:nth-of-type(n) . 304
E:nth-last-of-type(n) . 306
E:last-child . 307
E:first-of-type . 308
E:last-of-type . 309
E:only-child . 310
E:only-of-type . 311
E:empty . 312
E:target . 313
E:enabled, E:disabled, and E:checked . 314
E::selection . 317
E:not(s) . 318

Typographic effects and web fonts . 319
Word wrap . 319
Text shadow . 320
Web fonts . 322

Border and background effects . 323
Rounded corners . 324
Box shadow . 326
Multiple backgrounds . 327
Background image resizing . 328

Animations, transitions, and transforms . 328
Transitions . 329

Transforms . 329
Animation . 330

Summary . 330

CONTENTS

xiv

Chapter 12 The Future of CSS and the Web . 333

The bright future of the Web . 334
Expanding CSS in print . 334
Audible CSS . 335
HTML5 and CSS . 336

Influences, tensions, and competitors to CSS . 337
Keeping up-to-date = getting involved . 339

Participating in the W3C . 340
The Web Standards Project . 340
Exchanging ideas . 340

Summary . 341

Index . 343

xv

ABOUT THE AUTHORS

Joseph R. Lewis is chief web architect at Sandia National Laboratories, and is a recognized
expert in standards-based web development, information design, Semantic Web, and scientific
collaboration. In an earlier life, Joe was a professional musician. A graduate of the New England
Conservatory of Music in Boston, he has performed with orchestras and chamber ensembles in
major concert halls and music festivals across North America and Europe.

Meitar Moscovitz is a freelancer specializing in front-end web development. He has worked as
a technology professional in various roles for more than a decade at such companies as Apple
and Opsware (now HP), and he has developed web sites for clients including Oxygen Media,
Inc. and the Institute of Electrical and Electronics Engineers (IEEE). Meitar is also an outspoken
blogger and sexual rights advocate who writes and speaks about the intersection of technology
and sexuality.

A New York City native, Meitar spent a year in Sydney, Australia, and has recently returned to
the United States to live in San Francisco. Meitar volunteers his technical talents to nonprofit
organizations and other small groups, is an avid juggler, and has way too many profiles on social
networking sites.

xvii

ABOUT THE TECHNICAL REVIEWER

Paul Haine is a client-side developer currently working in London for the Guardian newspaper.
He is the author of HTML Mastery: Semantics, Standards, and Styling (friends of ED, 2006) and
runs a personal web site at .

xix

ABOUT THE COVER IMAGE DESIGNER

Bruce Tang is a freelance web designer, visual programmer,
and author from Hong Kong. His main creative interest is
generating stunning visual effects using Flash or Processing.

Bruce has been an avid Flash user since Flash 4, when he
began using Flash to create games, web sites, and other mul-
timedia content. After several years of ActionScripting, he
found himself increasingly drawn to visual programming and
computational art. He likes to integrate math and physics
into his work, simulating 3D and other real-life experiences
onscreen. His first Flash book was published in October 2005.
Bruce’s folio, featuring Flash and Processing pieces, can be
found at , and his blog at

.

The cover image uses a high-resolution Henon phase diagram
generated by Bruce with Processing, which he feels is an ideal
tool for such experiments. Henon is a strange attractor cre-
ated by iterating through some equations to calculate the
coordinates of millions of points. The points are then plotted
with an assigned color.

xn+1 = xn cos(a) - (yn - xn
p) sin(a)

yn+1 = xn sin(a) + (yn - xn
p) cos(a)

xxi

ACKNOWLEDGMENTS

My heartfelt thanks go out to my coauthor, Meitar Moscovitz, for his creativity, enthusiasm,
and passion for the subject matter of this book. Thanks to the folks at friends of ED for helping
produce this book and for putting up with our busy schedules and our picky behavior. Thanks
to Molly Holzschlag for being an inspiration to us all—we owe you so much. There is no way to
adequately thank my wife and children for putting up with the late nights and weekends, but
I’ll keep trying.

Joseph R. Lewis

It was my great pleasure to work with my coauthor, Joe Lewis, and I’d like to take this opportu-
nity to first and foremost thank him for working so well with me on this book.

I’m also happy to say that this book was a combined effort on the parts of many individu-
als beyond Joe and myself. The efforts of the committed people who work at friends of ED
and Apress publishers were exceptional, particularly our editorial staff: Clay Andres, for whole-
heartedly believing our book proposal sound and for doing his best to help us in writing the
highest-quality work we could despite the many challenges; Sofia Marchant, for her attention to
detail; Liz Welch for her careful copyediting; Elizabeth Berry for her prompt production work;
and Douglas Pundick for his thorough reviews. Thanks also and especially to Paul Haine, whose
astute technical comments found their way into the manuscript at many points.

For personal reasons, it was a particular sort of challenge for me to write this book when I
did. Therefore, I’d also like to acknowledge my many friends in New York City, Boston, and
Providence, including Sarah Rauschelbach, Eugenia Van Bremen, Jessica Wray, Maria Halmo,
Michael Gilbert, and—in particular—Sarah Cohen, Jennifer Salengar, and Zachary Bruner. I have
no doubt that this book would not have been possible without their generous hospitality over
the course of the many weeks I spent on their couches and in their guestrooms.

Finally, I’d also like to thank Emma Beth Gross for reminding me that I can safely be unhappy
when I forget it, and my family for their unique and unending support.

 Meitar Moscovitz

xxiii

LAYOUT CONVENTIONS

To keep this book as clear and easy to follow as possible, the following text conventions are
used throughout.

Important words or concepts are normally highlighted on the first appearance in
bold type.

Code is presented in .

New or changed code is normally presented in .

Pseudo-code and variable input are written in .

Menu commands are written in the form Menu Submenu Submenu.

Where we want to draw your attention to something, we’ve highlighted it like this:

Ahem, don’t say we didn’t warn you.

Sometimes code won’t fit on a single line in a book. Where this happens, we use an
arrow like this: .

www.allitebooks.com

Today’s Web is quickly evolving from a collection of linked documents to a collection
of things with relationships. Where we once only had the simplistic Hypertext Markup
Language (HTML) to distribute web content, today we have a plethora of formats that
include two different varieties of traditional web pages; HTML and XHTML; multiple syn-
dication formats such as RSS and Atom; and many others. Even the content of web pages
themselves—text, images, tables, charts and graphs, and movies—have multiple different
de facto standard formats like Flash, SVG, and various other dialects of proprietary XML.

Modern browsers use JavaScript techniques such as Ajax to transform themselves into
full-fledged application platforms. Thanks to the networked nature of web content, the
browser-as-application-platform model is pushing the boundaries of technological inno-
vation at an ever-increasing rate. Web developers have so many different technologies at
their disposal that it’s often difficult to discern the appropriate path you should take.

To get from today’s web of linked documents to tomorrow’s web of things with relation-
ships, web developers need a way to describe these things flexibly, and they need a way
to make each thing available in all the different ways it’s going to be accessed. Now that’s
a tall order.

INTRODUCTION: DIGESTING
THE WEB’S ALPHABET SOUP

Part 1

http://www.allitebooks.org

3

Chapter 1

They say that every journey begins with a single step. The journey we’re on began in 1965
at Brown University, where the idea of hypertext was born.1 Hypertext, or text in docu-
ments that enables nonlinear navigation (called hypertextual navigation), was eventually
encoded as a markup language named the Hypertext Markup Language (HTML).

As the Web evolved, HTML was stretched and strained as it tried to be everything to
everyone. Inside HTML documents there existed a mishmash of information, some-
times called “tag soup” by developers, which included display logic and code for user
interaction. Somewhere in the middle of all of that metadata you could also find some
content.

It didn’t take very long for people to realize that this approach wasn’t going to work
in the future because it was fundamentally limiting. Rather than try to deliver one
monolithic document to web browsers, it made a lot more sense to give browsers
the building blocks of the content itself and then let the browser handle putting it all
together. This principle is known as the separation of concerns.

1. More precisely, the idea of hypertext is generally credited to Vannevar Bush in 1945, when he
wrote about an electronic desk he called the “Memex.” For the most part, our personal com-
puters are modern-day manifestations of this device. It was in 1965 that Ted Nelson first coined
the term hypertext to describe this idea.

MARKUP UNDERPINS CSS

4

CHAPTER 1

This simple idea is so fundamental to understanding how the Web works that it behooves us to take
a closer look at the markup in documents upon which Cascading Style Sheets (CSS) acts. So let’s first
briefly examine the linguistics and semantics of markup languages.

The linguistics of markup languages
When you read the code of a markup language, you’re reading a real language in much the same way
as you are reading English when you read the words in this book.

As you know, when you view a web page you’re asking your web browser to fetch a document. This
document is just a text file that happens to be constructed in a special way. It’s constructed accord-
ing to the syntax and grammar of a particular markup language so that all the content it contains is
represented in a structured format.

It turns out that this structure has some remarkable similarities to human languages. Put simply, when
we construct sentences in human languages we often use a grammatical structure that begins with
a subject, followed by a verb, and that then ends with an object. For instance, in the sentence, “The
cow jumped over the moon,” the cow is the subject, jumped is the verb, and the moon is the object.

Markup languages also have rules of grammar. There are elements, each a building block or compo-
nent of the larger whole. An element can have certain properties that further specify its details. These
properties are often attributes, but they can also be the element’s own contents.2 Finally, an element
has a certain position within the document relative to all the other elements, giving it a hierarchical
context.

In the following HTML code, we can see an example of these three concepts:

You can think of the element as our subject. It has an attribute, , which describes
where the quoted paragraph came from, and you can think of it as our verb. The element, which
is the quote itself, can be considered our object. In English, this snippet of code might translate to
something like, “This quote cites the page at http://example.com/.”

There are already some noteworthy points to make about this simplistic example. For one thing, the
document is all about semantics, or the code’s meaning. (The important role that semantic markup
plays on the Web is discussed in more detail in Chapter 7.) For another, only semantic information
and actual content (in this case, text) are present in the example code. Nowhere do you see any
information about the way this content is to be displayed to the user, or what options the user has for
interacting with it.

2. Figuring out when to use which syntactical structures is a common question XML language developers have. In his
article on the Principles of XML Design, Uche Ogbuji clearly articulates when and why to use one structure, such as
elements, over another, such as attributes. The article can be found at

ml.

4

5

MARKUP UNDERPINS CSS

This lack of presentational and behavioral information is an example of the separation of concerns
principle at work. By delivering only the semantic content itself to the browser, you now have the
flexibility to mix this same content with whatever other presentation or behavior you wish to give it.
Lastly, of course, this example is written in XHTML, the markup language used to create traditional
web pages.

HTML’s semantics come from its history as a markup language originally intended to describe aca-
demic papers. It was derived from a subset of IBM’s Standard Generalized Markup Language (SGML),
which was used by large corporations and government organizations to encode complex industry
papers.3 This is why HTML has a relatively rich vocabulary for describing different kinds of textual
structures often found in written resources, such as lists (, , and) and computer output
(, ,), but has such a dearth of other kinds of vocabularies.

Thankfully, a modern variation of generic SGML exists today that allows anyone, including individual
developers like us, to create their own markup language with their own vocabulary. This technology is
known as XML, and it is arguably the technology on top of which tomorrow’s Web will be built.

XML dialects: the many different flavors of content
One of the Web’s challenges is describing many different sorts of content. With HTML’s limited seman-
tics, describing all the different kinds of content available online is clumsy at best, impossible at worst.
So, how is it done?

Early on, the World Wide Web Consortium (W3C), an organization that governs the publication of
industry-wide web technology standards, realized that in order to thrive, the Web needed the capabil-
ity to describe all kinds of content, both existing and yet to be created, in a way that could be easily
interoperable. In other words, if Joe invented something new and made it available online, it would be
ideal if he would do so in a way that Jane can access.

The solution the W3C developed is the Extensible Markup Language (XML). XML has two primary
characteristics that make it exceptionally well suited for the Web. First, it’s a generic document for-
mat that is designed to be both human and machine readable. This is accomplished by using a strict
subset of the familiar syntax and grammar that HTML uses, so it’s very easy for humans to learn and
for machines to parse. Second, the marked-up documents double as a data serialization mechanism,
allowing autonomous systems to easily exchange the data they contain among themselves.

What sets XML apart from the other standard document formats is that, much like SGML, it’s not really
any specific language at all, but rather a metalanguage. If someone or some system were to tell us that
they “can speak XML,” our first question would be, “What XML dialect do you speak?” This is because
every XML document is some distinct kind of XML, which may or may not be a widely known standard,
with its own vocabulary (set of valid elements) and semantics (things those elements mean).

As more disparate content emerged on the Web, various XML-based markup languages were devel-
oped to describe that content. The most famous of these is undoubtedly the Extensible Hypertext
Markup Language (XHTML), which is simply an application (XML jargon for “specific instance”) of
XML that copies all the semantics from the SGML-derived version of plain-old HTML and defines them

3. Perhaps the most famous document marked up in SGML is the Oxford English Dictionary, which remains encoded
in SGML to this day.

5

6

CHAPTER 1

using XML’s syntax. There isn’t any meaningful distinction between HTML and XHTML beyond those
restrictions imposed by the stricter XML syntax.

One of the other fundamental advantages of XML is its support for namespaces. An XML namespace
is simply a formalization of this “multiple dialects” idea. Specifically, a namespace, defined using the

 attribute on the root element of an XML document, identifies each XML dialect with a unique
string, thus enabling any XML-based markup language to mix and match the semantics of multiple
XML applications inside a single document. This is important because it provides a means for appli-
cation developers (including, theoretically, browser manufacturers) to design markup languages in
a modular fashion, according to the principles and ideals of the age-old “software tools” approach
that early UNIX systems took. Conceptually, this is not unlike a computerized version of the notion of
multi-lingual humans.

Each application of XML can itself be described with another form of XML document called a Document
Type Definition (DTD). DTD files are like dictionaries for markup languages; they define what elements
are valid, what properties those elements have, and rules for where those elements can appear in the
document. These documents are written by XML application developers, and most of their utility for
typical web developers is simply as the authoritative (if sometimes cryptic) reference for the particular
syntax of an XML application. Each XML document begins with a couple of lines of code that define
the version of XML it uses, called an XML prologue, and what DTD the file uses, called a document type
(or DOCTYPE) declaration.

Although CSS can be used in conjunction with a number of these user-facing technologies, the rest of
this book focuses on a few specific XML applications that are in widespread use today. Let’s now take
a whirlwind tour of some of the ones we’ll be styling with CSS in the remainder of this book.

RSS and Atom: content syndication formats
Possibly the most common XML-derived document format on the Web today that isn’t a traditional
XHTML web page are those formats used for syndicating content as “web feeds” or “news feeds.” The
two (reasonably equivalent) standards for this technology are RSS and Atom. These standards specify
an XML-based format for documents that summarize the content and freshness of other resources,
such as news articles, podcasts, or blog posts, on the Web.

Although there are several different versions of RSS, since they all have the same aim we will feature
the use of RSS 2.0 throughout this book. Atom is really a term that refers to both an XML document
format, called the Atom Syndication Format, and a lightweight HTTP protocol. When we use the term
Atom in this book, we mean the Atom Syndication Format unless mentioned otherwise.

Since both RSS and Atom were designed for describing other content, their vocabularies consist almost
entirely of element sets that describe document metadata. For example, each format has an element
for encoding the URI (web address) of a given resource. In RSS this is the element, and in Atom
it is the element. Likewise, both formats have an element to encode the title, description, and
other information about resources.

Both RSS and Atom feeds can appear as unstyled source code in browsers, though some browsers
feature native feed reading capabilities. When these features are made active, these browsers apply
some baked-in styles to the feed you load. For example, Figure 1-1 shows what Firefox makes of an
RSS feed when viewed over HTTP. In contrast, Figure 1-2 shows the same feed in the same browser
when accessed through the local filesystem.

7

MARKUP UNDERPINS CSS

Figure 1-1. Firefox 3 uses a combination of XSLT and CSS to give web feeds some style.

Figure 1-2. Firefox doesn’t apply its baked-in styling to RSS feeds accessed by way of the scheme.

8

CHAPTER 1

As you can see, the two screenshots look almost nothing alike. In Figure 1-1, Firefox displays the feed
data using a friendly user interface, whereas in Figure 1-2 the (mostly) raw source code is shown.
What’s most interesting for our purposes in Figure 1-2 is Firefox’s admission that, “This XML file does
not appear to have any style information associated with it.”

The style information Firefox is referring to is any XML prologue. Like
the XHTML element, an can be given a attribute whose value can be

. When this is so, Firefox will use the style information provided in the CSS file to change
the presentation of the feed. Although the specific linking mechanism differs, adding a style sheet to
a non-XHTML XML document is conceptually no different than doing so to a regular web page. Using
the prologue to add style sheets to XML documents like this is covered in more detail
in Chapter 9.4

Intrepid explorers may have noticed that Firefox’s style sheet used to style the feed in
Figure 1-1 has selectors that target HTML and not RSS elements. Indeed, if you use
Firebug4 to inspect the source of most RSS feeds on the Internet in Firefox 3, you’ll see
HTML and no RSS in sight. How can this be? Where did the HTML come from?

It turns out that in XML parlance a “style sheet” can actually mean two things. It
can mean a CSS file in the way we already know and love, but it can also mean
an Extensible Stylesheet Language Transformations (XSLT) file. These files are yet
another form of XML document that, given an original XML-formatted file, are used
to convert the markup from one kind of XML to another. Firefox uses an XSLT file to
turn RSS and Atom feeds into an XHTML file on-the- fly, so the CSS file used to style
this feed is linked to the result of the XSLT transformation (which is XHTML) instead
of to the original feed.

XSLT is beyond the scope of this book, but we heartily recommend that you take
a closer look at it if you suspect you’ll be doing any significant amount of XML docu-
ment processing.

SVG: vector-based graphics in XML
Vector graphics and 2D animation on the Web was popularized by Flash, a compiled binary format acquired
by Macromedia (which since has merged with Adobe) and marketed under the name “ShockWave Flash.”
However, since 2001 (well before Flash made it big), there has been an XML-based open standard for defin-
ing these kinds of graphics. This standard is known as Scalable Vector Graphics (SVG).

SVG’s history is an interesting one. Invented by Sun Microsystems and Adobe (which, ironically, now
owns Macromedia), SVG was (and still is) used extensively in the Adobe Illustrator graphics editing
application as a format to easily export and import vector graphics. In fact, the easiest way to make
an SVG document these days is to simply draw something in Adobe Illustrator and choose to save it in
SVG format from the Save As menu option.

4. Firebug is an excellent add-on for the Firefox web browser that gives users the ability to inspect and change the
document loaded by the browser. We think it is a must-have tool for any serious web developer.

9

MARKUP UNDERPINS CSS

Unfortunately for Adobe, Microsoft created a competing markup language for vector graphics called
the Vector Markup Language (VML) and implemented it in its Internet Explorer web browser. During
the years of the browser wars due to rise of Flash and no cross-browser implementation of a vector
graphics markup language, SVG fell by the wayside. SVG remained an unknown and untouched stan-
dard for a very long time.

Recently, however, thanks to renewed interest in web standards, there has been resurgence in native SVG
implementations among browsers. Mainstream browsers, including Firefox, Safari, and Opera, all natively
support a subset of the SVG specification to varying degrees today. In some cases, Adobe’s own SVG
plug-in adds even more support. Moreover, with the help of scripting and the hard work of JavaScript
library developers,5 it’s now possible to reliably use vector graphics in a cross-browser fashion.

Thanks to its extremely visual nature, SVG provides an ideal environment for examining CSS more
closely. Like all forms of XML, SVG documents begin with an XML prologue, followed by a DTD, fol-
lowed by a root element containing the entirety of the document’s content. This is the same pattern
used by XHTML documents,6 so it should be quite familiar. The only distinction is that in the case of
SVG the root element is instead of .

Therefore, an SVG document shell might look like the following code snippet:

Since SVG was designed to describe visual objects as opposed to textual objects, the vocabulary avail-
able to SVG developers differs quite radically from the one that is available in XHTML. For example,
in SVG, there are no or elements. Instead, to create text on the screen you use the
element, and to group elements together, the element.

Here’s an extremely basic example of what an SVG image that contains the text “Hello world!” in red
lettering would look like. All that is needed is to insert our element into the document markup
with the appropriate attributes, like this:

5. One such noteworthy developer is Dmitry Baranovskiy, whose hard work on the Raphaël JavaScript library
enables an SVG file to be translated to Microsoft’s VML on the fly, so that SVG-based imagery works in both
standards-compliant browsers and Internet Explorer.

6. In practice, most documents that use an XHTML DTD don’t include an XML prologue. This is because including
the prologue erroneously switches Internet Explorer into quirksmode (a standards-noncompliant mode). Further,
despite the presence of an XML prologue, all browsers will still treat XHTML files as though they were plain-old
HTML unless the web server that delivered it does so along with the appropriate header of

 instead of the default . See .

10

CHAPTER 1

This results in the image shown in Figure 1-3. The and attributes of the element define the ini-
tial position of the text in the image. The attribute uses CSS to make the element contents red.

Figure 1-3. A simple and minimally styled SVG
“Hello world!” example

Yes, you in the back with your hand raised. “Element attributes that define visual posi-
tioning? I thought that’s what CSS is for,” I hear you asking. Yes, that is what CSS is
for, but remember that SVG is a language to describe graphics. It could therefore be
argued that the positioning of the text is its metadata, and thus it makes sense to use
the markup language’s own semantics to define this. Moreover, as you’ll see in the
next chapter, CSS isn’t merely or necessarily a visual styling language anyway. In fact,
the attribute that defines the property in this example could be entirely
replaced by using the attribute as well.

So far, this is pretty straightforward. The interesting takeaway is in the way that CSS was used to color
the text red. Instead of using the property, we use the property. This is because SVG is
graphical, and so our semantics have changed radically from those used to develop in XHTML.

Here is another illustrative example. To make the text seem as though it is a sort of pill-shaped button,
you might use the following code:

11

MARKUP UNDERPINS CSS

The effect of this code is shown in Figure 1-4.

Figure 1-4. A rectangular shape, defined with
the element, is all that’s needed to
create a background.

However, even with these visual semantics, structure is still important. If this were an actual button on
a real interactive SVG chart, then both the text and the background could conceptually be treated as
one logical object. It’s for this reason that SVG defines the element for specifying groups of ele-
ments to be treated as a single object.

Like XHTML, all elements can have and attributes to identify them, so we can use such an
attribute to identify our example button. The grouped example looks no different on the screen, but
now looks like this in code:

As you can see, there are myriad formats of XML in common use today. Each XML application defines
semantics that relate to its purpose. By using XML namespaces, developers can import the semantics
of a XML application and use them within their own documents, creating endless possibilities for
describing content in incredibly rich ways.

All these possibilities will remain mere potential, however, if we can’t get these structured, semantic
documents into the hands of users. To do that, we need to understand how the software tools users
use to access our content work. These tools are called user agents, and for better or worse, they are
the gatekeepers between our users and our content.

www.allitebooks.com

12

CHAPTER 1

User agents: our eyes and ears in cyberspace
A user agent is nothing more than some entity that acts on behalf of users themselves.7 What this
means is that it’s important to understand these users as well as their user agents. User agents are the
tools we use to interact with the wealth of possibilities that exists on the Internet. They are like exten-
sions of ourselves. Indeed, they are (increasingly literally) our eyes and ears in cyberspace.

Understanding users and their agents
Web developers are already familiar with many common user agents: web browsers! We’re even noto-
rious for sometimes bemoaning the sheer number of them that already exist. Maybe we need to
reexamine why we do that.

There are many different kinds of users out there, each with potentially radically different needs.
Therefore, to understand why there are so many user agents in existence we need to understand what
the needs of all these different users are. This isn’t merely a theoretical exercise, either. The fact is that
figuring out a user’s needs helps us to present our content to that user in the best possible way.

Presenting content to users and, by extension, their user agents appropriately goes beyond the typi-
cal accessibility argument that asserts the importance of making your content available to everyone
(though we’ll certainly be making that argument, too). The principles behind understanding a user’s
needs are much more important than that.

You’ll recall that the Web poses two fundamental challenges. One challenge is that any given piece
of content, a single document, needs to be presented in multiple ways. This is the problem that CSS
was designed to solve. The other challenge is the inverse: many different kinds of content need to be
made available, each kind requiring a similar presentation. This is what XML (and its own accompany-
ing “style sheet” language, XSLT) was designed to solve. Therefore, combining the powerful capabilities
of CSS and XML is the path we should take to understanding, technically, how to solve this problem
and present content to users and their user agents.

Since a specific user agent is just a tool for a specific user, the form the user agent takes depends on
what the needs of the user are. In formal use case semantics, these users are called actors, and we can
describe their needs by determining the steps they must take to accomplish some goal. Similarly, in
each use case, a certain tool or tools used to accomplish these goals defines what the user agent is
in that particular scenario8.

A simple example of this is that when Joe goes online to read the latest technology news from
Slashdot, he uses a web browser to do this. Joe (our actor) is the user, his web browser (whichever one
he chooses to use) is the user agent, and reading the latest technology news is the goal. That’s a very
traditional interaction, and in such a scenario we can make some pretty safe assumptions about how
Joe, being a human and all, reads news.

7. This is purposefully a broad definition because we’re not just talking about web pages here, but rather all kinds of
technology. The principles are universal. There are, however, more exacting definitions available. For instance, the
W3C begins the HTML 4 specification with some formal definitions, including what a “user agent” is. See

ml.
8. In real use cases, technical jargon and specific tools like a web browser are omitted because such use cases are

used to define a system’s requirements, not its implementation. Nevertheless, the notion of an actor and an ac-
tor’s goals are helpful in understanding the mysterious “user” and this user’s software.

http://www.allitebooks.org

13

MARKUP UNDERPINS CSS

Now let’s envision a more outlandish scenario to challenge our understanding of the principle. Joe
needs to go shopping to refill his refrigerator and he prefers to buy the items he needs with the least
amount of required driving due to rising gas prices. This is why he owns the (fictional) Frigerator2000,
a network-capable refrigerator that keeps tabs on the inventory levels of nearby grocery stores and
supermarkets and helps Joe plan his route. This helps him avoid driving to a store where he won’t be
able to purchase the items he needs.

If this sounds too much like science fiction to you, think again. This is a different application of the
same principle used by feed readers, only instead of aggregating news articles from web sites we’re
aggregating inventory levels from grocery stores. All that would be required to make this a reality is an
XML format for describing a store’s inventory levels, a bit of embedded software, a network interface
card on a refrigerator, and some tech-savvy grocery stores to publish such content on the Internet.

In this scenario, however, our user agent is radically different from the traditional web browser. It’s
a refrigerator! Of course, there aren’t (yet) any such user agents out crawling the Web today, but there
are a lot of user agents that aren’t web browsers doing exactly that.

Search engines like Google, Yahoo!, and Ask.com are probably the most famous examples of users
that aren’t people. These companies all have automated programs, called spiders, which “crawl” the
Web indexing all the content they can find. Unlike humans and very much like our hypothetical
refrigerator-based user agent, these spiders can’t look at content with their eyes or listen to audio
with their ears, so their needs are very different from someone like Joe’s.

There are still other systems of various sorts that exist to let us interact with web sites and these, too,
can be considered user agents. For example, many web sites provide an API that exposes some func-
tionality as web services. Microsoft Word 2008 is an example of a desktop application that you can use
to create blog posts in blogging software such as WordPress and MovableType because both of these
blogging tools support the MetaWeblog API, an XML-RPC9 specification. In this case, Microsoft Word
can be considered a user agent.

As mentioned earlier, the many incarnations of news readers that exist are another form of user agent.
Many web browsers and email applications, such as Mozilla Thunderbird and Apple Mail, do this, too.10

Feed readers provide a particularly interesting way to examine the concept of user agents because
there are many popular feed reading web sites today, such as Bloglines.com and Google Reader. If
Joe opens his web browser and logs into his account at Bloglines, then Joe’s web browser is the user
agent and Joe is the user. However, when Joe reads the news feeds he’s subscribed to in Bloglines,
the Bloglines server goes to fetch the RSS- or Atom-formatted feed from the sourced site. What this
means is that from the point of view of the sourced site, Bloglines.com is the user, and the Bloglines
server process is the user agent.

Coming to this realization means that, as developers, we can understand user agents as an abstraction
for a particular actor’s goals as well as their capabilities. This is, of course, an intentionally vague defini-
tion because it’s technically impossible for you, as the developer, to predict the features or capabilities
present in any particular user agent. This is a challenge we’ll be talking about a lot in the remainder of
this book because it is one of the defining characteristics of the Web as a publishing medium.

9. XML-RPC is a term referring to the use of XML files describing method calls and data transmitted over HTTP, typi-
cally used by automated systems. It is thus a great example of a technology that takes advantage of XML’s data
serialization capabilities, and is often thought of as a precursor to today’s Ajax techniques.

10. It was in fact the much older email technology from which the term user agent originated; an email client pro-
gram is more technically called a mail user agent (MUA).

14

CHAPTER 1

Rather than this lack of clairvoyance being a problem, however, the constraint of not knowing who or
what will be accessing our published content is actually a good thing. It turns out that well-designed
markup is also markup that is blissfully ignorant of its user, because it is solely focused on describing
itself. You might even call it narcissistic.

Why giving the user control is not giving up
Talking about self-describing markup is just another way of talking about semantic markup. In this
paradigm, the content in the fetched document is strictly segregated from its ultimate presentation.
Nevertheless, the content must eventually be presented to the user somehow. If information for how
to do this isn’t provided by the markup, then where is it, and who decides what it is?

At first you’ll no doubt be tempted to say that this information is in the document’s style sheet and
that it is the document’s developer who decides what that is. As you’ll examine in detail in the next
chapter, this answer is only mostly correct. In every case, it is ultimately the user agent that determines
what styles (in which style sheets) get applied to the markup it fetches. Furthermore, many user agents
(especially modern web browsers) allow the users themselves to further modify the style rules that get
applied to content. In the end, you can only influence—not control—the final presentation.

Though surprising to some, this model actually makes perfect sense. Allowing the users ultimate con-
trol of the content’s presentation helps to ensure that you meet every possible need of each user. By
using CSS, content authors, publishers, and developers—that is, you—can provide author style sheets
that easily accommodate, say, 80 percent of the needs of 90 percent of the users. Even in the most
optimistic scenario, edge cases that you may not ever be aware of will still escape you no matter how
hard you try to accommodate everyone’s every need.11 Moreover, even if you had those kinds of
unlimited resources, you may not know how best to improve the situation for that user. Given this,
who better to determine the presentation of a given XML document that needs to be presented in
some very specific way than the users with that very specific need themselves?

A common real-life example of this situation might occur if Joe were colorblind. If he were and he
wanted to visit some news site where the links in the article pullouts were too similar a color to the
pullout’s background, he might not realize that those elements are actually links. Thankfully, because
Joe’s browser allows him to set up a web site with his own user style sheet, he can change the color
of these links to something that he can see more easily. If CSS were not designed with this in mind,
it would be impossible for Joe to personalize the presentation of this news site so that it would be
optimal for him.

To many designers coming from traditional industries such as print design, the fact that users can
change the presentation of their content is an alarming concept. Nevertheless, this isn’t just the way
the Web was made to work; this is the only way it could have worked. Philosophically, the Web is
a technology that puts control into the hands of users. Therefore, our charge as web designers is to
judge different people’s needs to be of equal importance, and we can’t do this if we treat every user
exactly the same way.12

11. As it happens, this is the same argument open source software proponents make about why such open source
software often succeeds in meeting the needs of more users than closed source, proprietary systems controlled
solely by a single company with (by definition) relatively limited resources.

12. This philosophy is embodied in the formal study of ethics, which is a compelling topic for us as CSS developers,
considering the vastness of the implications we describe here.

15

MARKUP UNDERPINS CSS

Abstracting content’s presentation with CSS
Up to this point, we’ve talked a lot about content, markup, and user agents. So how does CSS fit in?
CSS is the presentation layer for your content.

CSS leverages existing markup to create a presentation. It can also reuse the same elements to pres-
ent content in specialized ways depending on the type of user agent consuming it. CSS is not limited
to presenting content visually. Separating the presentation of content from the content itself opens
many doors. One of these is being able to restyle the same content later. Another is to simultaneously
create different presentations of the same content.

This is important because different user agents will interpret your CSS to render your content in
whatever way is appropriate for them. Since content may be conveyed by user agents to people or
other machines in a variety of ways, CSS abstracts the specific mechanisms, or “media,” by which
this occurs. This is how one piece of content, with the same underlying markup, can be rendered on
media, including the screen connected to your computer, the printer on your desk, your cell phone,
a text-to-speech screen reader, or in some other way.

CSS defines this abstraction based on the media being used, and provides a way to detect this. The
way to do so is with the CSS media type construct, so let’s start there. After that, we’ll briefly describe
an extension to this construct called CSS media queries.

The nature of output: grouping output with CSS media types
How a user agent renders content depends on the target media the content is destined for. CSS’s
purpose has always been to provide a way to describe the presentation of some content in a standard
way. Despite its goal of remaining implementation agnostic, however, CSS still needs to have some
notion of what the physical properties of the presentation medium are going to be.

To implement this, the CSS2.1 specification identifies ten characteristics of different interaction para-
digms that together form four media groups. These characteristics are things like whether a docu-
ment’s content must be broken up into discrete chunks (such as printed pages) or whether it can be
presented all at once, with no theoretical limit (such as inside a web browser’s viewport with scroll
bars). These two opposite characteristics are one of the media groups.

Each of the media types simply defines specific characteristics for each of the four media groups.
Various CSS properties are therefore coupled to a particular media type since not all properties can
be applied to all media types. For example, monochrome displays don’t always make full use of the

 property (although many try anyway). Similarly, purely visual user agents can’t make use of
the property, which is intended for aural presentation and is thus bound to the media types
that incorporate audio capabilities.

The nine media types defined by CSS2.1 are , , , , , ,
, , and . Table 1-1, taken from the CSS2.1 specification, shows the relationships between

media groups and media types.

16

CHAPTER 1

 Table 1-1. Relationships between Media Groups and Media Types

Media Type Continuous/
Paged

Visual/Audio/
Speech/Tactile

Grid/
Bitmap

Interactive/
Static

Continuous Tactile Grid Both

Paged Tactile Grid Static

Both Visual, audio, speech Both Both

Paged Visual Bitmap Static

Paged Visual Bitmap Interactive

Continuous Visual, audio Bitmap Both

Continuous Speech N/A Both

Continuous Visual Grid Both

Both Visual, audio Bitmap Both

In addition to the continuous/paged interaction paradigm, we have

A visual/audio/speech/tactile paradigm that broadly specifies which human senses are used to
consume content

A grid/bitmap paradigm that specifies two broad categories of display technology

An interactive/static paradigm that defines whether or not the output media is capable of
dynamically updating

It’s up to individual user agents to implement support for the capabilities assumed to be present by
a particular media group. Further, it’s up to individual implementations to recognize a particular media
type and apply its styles.

Briefly, the intent of each of the media types is as follows:

 is intended for your garden-variety computer screen, but certain newer web browsers
found in mobile devices such as the Apple iPhone use this media type as well. Most of the time,
it’s this media type people are referring to when they talk about web design.

 is intended for printers, or for print-to-file (that is, PDF, PostScript) output, and also
shows up in the print preview dialogs of most browsers. We discuss the print media type in
much greater detail in Chapter 4.

 is intended for cell phones, PDAs, smartphones, and other devices that would nor-
mally fit in your hand or pocket. These devices generally share a set of characteristics, such as
limited CPU and memory resources, constrained bandwidth, and reduced screen size, that
make targeting them with their own media type handy. Notable exceptions come in the form
of mobile versions of WebKit and more recent versions of Opera, which have elected to use
the media type instead.

 is intended for style sheets that describe text-to-speech output, and is most often
implemented by assistive technology such as screen reading software. In the current working
draft of the CSS3 specifications, this media type is being deprecated in favor of a new media
type called .

17

MARKUP UNDERPINS CSS

 is intended for Braille readers, currently the only form of tactile-feedback device CSS
has been developed for use with.

 is similar to as it’s intended for paged (as opposed to continuous) Braille
printers. This media type could theoretically be used to target Braille printers, although we
know of no user agents that implement this capability.

 is intended for overhead projection systems, usually considered for things like
presentations with slides. Like mobile devices, projection displays share a set of characteristics
that make them unique, such as a lower screen resolution and limited color depth. If styles
applying to this media type are specified, Opera switches from styles to
styles when entering its full-screen or kiosk mode.

 is intended for television displays. We have yet to see this actually implemented in a user
agent, although like and , television hardware is another kind of device
with unique display properties and it would be extremely useful if devices such as gaming con-
soles or smart TVs would adopt this.

 is intended for displays that use a fixed-pitch character grid, such as terminals and tele-
types. Like , we know of no user agents that support this media type, and its use is
growing increasingly anachronistic.

 is the default media type used when a media type is not specified, and any styles applied
for this media type also apply for every other media type.

Media types are specified using the attribute on a or element, or they may be
applied using CSS rules within style sheets themselves. Here’s an example using the ele-
ment to target a style sheet to all media types:

Here’s one targeting an embedded style sheet to the media type:

Using applies styles to many traditional visual displays:

The CSS rule also takes an optional media type parameter to import a style sheet for specific
target media, in this case:

18

CHAPTER 1

Considerations for targeting media types
When composing style sheets, most CSS developers still tend to think in terms of a few user agents
used within one medium: web browsers on a traditional computer desktop. However, as we’ve just
seen, CSS can be used in a much wider arena than is implied by this limited scope. Why limit your-
self at the outset of a project? With a little planning and attention, you can make a far more usable,
far-reaching, and successful web presence by considering possibilities for all media types from the
very start.

With the increasing influx of user agents in the market, it makes more sense to discuss
the rendering engines user agents use rather than discuss the end-user products spe-
cifically, since each engine’s ability to render markup and CSS are similar between the
products that use it. The four mainstream rendering engines in the wild today are

Trident, which is used in all versions of Internet Explorer

Gecko, used in products based on Mozilla’s code base (such as Firefox, Flock,
Camino, and other derivatives)

WebKit, which was originally developed as KHTML for the Konquerer web
browser on Linux and is now used in Safari and many Nokia smartphones,
among other products

Presto, developed and used by the Opera family of products

Therefore, in the remainder of this book, when we discuss a particular rendering
engine you can safely assume we’re talking about most of the user agents that use it.
Conversely, when we discuss a particular user agent you can safely assume that the
rendering behavior of the other browsers that use its rendering engine will be similar.

Targeting screens
The , , and media types are somewhat similar in that they are intended to
be presented visually using display technologies that emit light. The media type is typically
a smaller form factor of the version of a design, while the media type is usually—
but not necessarily—intended for slideshow-style formatting. Though similar, there are still distinct
differences among these media types, and examining them closely illustrates how the different media
groups that a media type refers to influence design decisions and possibilities.

The screen media type
One characteristic of the media type is that it is continuous, meaning that the content will flow
in an ongoing manner past the bottom of a given viewport. As a result of this behavior, it’s the width
of a layout that becomes the primary concern, and decisions as to how the site will be laid out in sce-
narios with different widths must be made. In contrast, you don’t have to pay as much attention to the
layout’s height, since the page can be as long as is required for the contents to fit vertically within it.

19

MARKUP UNDERPINS CSS

The widths of screens can vary greatly from one user to the next. Moreover, a web browser’s window
can typically be resized to whatever width the user wishes, so it’s best for your design to be as flexible
as possible with regard to the resolutions and browser widths that it can accommodate. One way to
accomplish this is with a variable-width, or “liquid,” layout that expands and contracts to fill whatever
space is made available. However, even if your design can be made flexible like this, it’s often neces-
sary for some elements (such as images) to maintain fixed-width dimensions, so certain judgments
must eventually be finalized.

As display resolutions evolve, different widths have been used as the basis for layout grids. Recently,
there’s been a tendency toward using base widths of 960 pixels, which works well considering that
most monitors out there today have display resolutions that are 1024 pixels wide and greater. This
width not only accommodates browser chrome such as scroll bars but also is divisible by 3, 4, 5, 6, 8,
10, 12, 15, and 16, allowing for a number of possibilities for implementing various narrower grid-based
layouts if needed.13

The projection media type
The media type is interesting in comparison to the media type because despite
being intended for similar display technologies, it is considered paged as opposed to continuous. In
other words, rather than having content continue to scroll endlessly past the bottom of the viewport,
you can specify that content be chopped up into discrete chunks that are each, ostensibly, as tall as
the projector’s resolution allows them to be. Then, to navigate through the document contents, you
page forward and backward between each chunk separately.

Of all the screen-related media types, is the least supported and least used. Opera is
the one browser that has some support for this media type with a feature called Opera Show. When
invoked by pressing Alt+F11, or by choosing View Full Screen from the menu, Opera Show will
expand the browser’s viewport to the full width of the display it’s running in. This is more than just
a “full screen” viewing mode, however, since with a simple CSS rule you can transform the continu-
ous blocks of your existing document into paged items, resulting in presentation-style slides similar to
what you’d see when using Microsoft PowerPoint or Apple Keynote:

With this CSS rule applied, every block element with the class will be rendered as a discrete
chunk (a “slide”) when viewed in Opera Show mode. Use your Page Down key to move forward in the
resulting slide deck, and use Page Up to move back a slide. This creates the opportunity to give you
an open, nonproprietary presentation tool that is easily portable and won’t lock up your data—a nice
feature we wish more browsers supported!14

13. Cameron Moll made the case for 960 pixels in a blog post titled “Optimal width for 1024px resolution?” published
at . Both the post itself and its comments are an interesting
read for anyone wondering how the community standardizes these seemingly arbitrary numbers.

14. Thankfully, Eric Meyer has created the Simple Standards-Based Slide Show System (S5), which reproduces and
even expands on the features of Opera Show for the rest of the standards-conscious browsers out there. S5 makes
a great foundation for building platform-independent presentations using the XHTML and CSS that you already
know. It can be found at .

20

CHAPTER 1

There are other possibilities in addition to presentation slides, too. Anything that works better on
screen when presented in separate parts that you incrementally expose as opposed to all at once that
you scroll through could make use of the media type. For instance, small form factor
displays such as ebook readers could simulate the experience of “turning pages” with this media type
while still taking advantage of interactive content and styling, which would not be possible if they used
the media type, which is considered static.

The handheld media type
In many ways the media type is the most amorphous of the screen-related media types. It
can be either continuous or paged; supports visual, audio, and speech interactions; can be based on
either grid or bitmap display technology; and can present either static or interactive content. In real-
ity, the media type is mostly used to design for the small screens that are found on mobile
devices, so its typical application to date has been to linearize and simplify a design’s styles.

The media type is also at the center of some heated arguments regarding media types in
general, since Safari on the Apple iPhone and the latest versions of Opera Mobile have begun to
ignore it in favor of the media type. Among other criticisms, Apple and Opera Software claim
that most style sheets don’t provide an adequate user experience for the capabilities of
their devices when compared to style sheets, and so they have introduced media queries as an
extension to media types, discussed later in this chapter. Nevertheless, using the media type
is still prevalent and useful on many other cell phones and PDAs.

In previous years, designing for mobile devices was considered a nice-to-have, an optional add-on if
time and expense permitted. This is no longer the case. Since mobile web use has begun to increase
rapidly in recent years, we devote an entire chapter of this book to CSS development in a mobile
context (see Chapter 5).

In his book Mobile as 7th of the Mass Media (2008, futuretext Ltd.), Tomi T. Ahonen
makes the case that mobile media is nothing to be ignored: 31 percent of consumer
spending in the music industry is spent on mobile purchases, while in the gaming
industry the number is 20 percent. It has been deduced that—as of this writing—
approximately one and a half billion Internet connections being generated from cell
phones and 63 percent of the global population have a potentially Internet-capable
cell phone. Over 60 countries around the world have cell phone penetration exceed-
ing 100 percent of the population—which means many people own not one but two
mobile devices. And finally, Nielsen in May 2008 reported that leading Internet sites
increased their usage by 13 percent over desktop-based traffic alone, and in certain
cases, such as for weather and entertainment, up to 20 percent. These are significant
trend indicators for mobile web growth, which will undoubtedly continue to increase
in the coming years.

21

MARKUP UNDERPINS CSS

The print media type
The media type is another familiar category of CSS work for most developers. This media type
is implemented by user agents that are capable of physically printing to paper or of outputting elec-
tronic equivalents in formats such as PDF or PostScript.

Printing documents presents a set of significantly different issues from the screen output we are
most commonly used to, since the paradigm of designing within a dynamic viewport is replaced by
the notion of a static page box representing the physical printable area of the paper. Due to the
static nature of printed media, designers lose many dynamic capabilities of CSS, such as the
pseudo-class, and need to consider alternative ways of displaying information to readers.

The reasons for printing web pages are usually readability (printing a long document to ease eye-
strain), portability (taking print copies to read during a commute), or utility (such as when printing
online forms that require physical signatures). Users rarely need portions of pages such as navigation
since you obviously can’t click a hyperlink on paper, so these should be excised. Additionally, supple-
mental information such as that commonly found in sidebars should also be removed. Much of these
transformation concerns can be solved with CSS declarations like and setting the main
content’s width to better fill the available space on the paper.

All the major modern web browsers support the media type, so it’s not only useful but also easy
to implement and test. We discuss print media in detail in Chapter 4.

Aural media
When you read the text on a web site, do you hear a masculine voice or a feminine voice in your mind?
Unbeknownst to many designers, the voice with which content is read aloud by text-to-speech-capable
user agents, specified by the property, is one of the many aural properties that CSS
offers you.

In fact, CSS offers a relatively rich set of auditory properties for a designer to use, including spatial
audio properties to specify the direction where sound is coming from using the and
properties, aural emphasis with the and properties, and even the reading speed using the

 property. Moreover, different elements can be given audio cues using the or
 properties so that particular chimes or other sounds can precede links, licensing information,

or an image’s alternative text. This is an audio equivalent of the way certain icons depict an element’s
meaning in visual presentations.

The most common aural user agents are screen readers, but these are merely one class of potential
implementations. As the name implies, screen readers literally need a screen from which to read
aloud and it doesn’t take a rocket scientist to figure out that requiring visually impaired people to
use a visual interface is not an optimal solution for them. People who cannot see have no real use for
a display that emits light, so devices that focus on other media such as sound make much more sense.
Here is where aural style sheets could theoretically shine.

22

CHAPTER 1

Of course, it’s entirely feasible that aural web browsers will find use in other markets as well, such as
in network-capable cars, home entertainment systems, and even in multimodal presentations of tradi-
tional web content.15 We frequently use the text-to-speech features of our operating systems to listen
to long blog posts and news articles while we do household chores, so it would be extremely useful
to gain more control over this presentational transformation. For example, longer pauses between
a headline and the subsequent text could be inserted to improve comprehension, since many head-
lines lack completing punctuation (like a period) and therefore run together too quickly when inter-
preted by most text-to-speech programs.

Browsers with aural CSS support are scarce. Opera with Voice (available only for Windows 2000 and
XP) has the fullest support for the specification. However, we can envision a day not too far into the
future when support will improve, opening up completely new possibilities that were once unimag-
ined. For instance, perhaps whole blogs could be automatically turned into audio netcasts with the
simple application of an RSS feed and an aural style sheet. Wouldn’t that be something?

Feature detection via CSS media queries
Although CSS’s notion of media types gives CSS developers some amount of control over which of
their styles are applied in which rendering contexts, they are still very broad. Believe it or not, today’s
web-capable devices are even more heterogeneous than those of yesteryear. New form factors and
new technologies have challenged some of the assumptions that the current CSS specifications have
made about media types, particularly the media type. CSS developers needed more precise
ways to determine a user agent’s capabilities.

This is precisely what media queries, introduced as part of the evolving CSS3 specification,16 addresses.
Media queries extend the notion of media types by defining a set of media features that user agents
can purport to have. The CSS developer provides a set of conditions as an expression, of which
a media type and one or more media features are a part. Here is an example of a media query you can
use today that pulls in an external style sheet only if the user agent supports the media type
and its physical screen is less than 481 pixels wide:

Conveniently enough, this describes the width of an Apple iPhone in landscape orientation, as well
as many of the other WebKit-based mobile devices on the market today. In the previous example,
the media feature being queried is th. Other queries might be directed at color depth or
capability, aspect ratio, and similar attributes. Here is another example, which links two style sheets for

. One is specifically for color printers while the other handles black and white printers:

15. These uses for aural web browsers were recognized by the W3C as early as 1999 and published as a technical
note that suggested additions to the CSS1 specification to support aural style properties for such browsers to
implement. See SS.

16. The media queries specification is a W3C Working Draft as of this writing, and can be found at
es.

23

MARKUP UNDERPINS CSS

Since color values sometimes look the same in black and white output, we now have a way to specifi-
cally set a higher contrast value on the black and white printers than the color ones. This way, the
printed text will be easier to read for users printing in grayscale, but we can still retain the desired
color range for users printing in full color.

As of this writing, the only major browsers supporting media queries are Safari 3, Konqueror 4, and
versions of Opera greater than 7. The widest use of media queries is in targeting styles for mobile
devices running Opera or WebKit-based browsers. As the CSS3 specification evolves and more imple-
mentations appear over time, we expect to see much wider adoption of media queries across the
gamut of media types.

One document, multiple faces
In the past, it was very common for web sites to redirect their users to one version of a document
or style sheet if they used certain web browsers and another way if they used others. This not only
proved difficult to accomplish, but extremely expensive to maintain as well. Growing frustration on
the part of web developers eventually led to the abandonment of these efforts in favor of advocat-
ing for web standards, where a single version of the code could be used across all user agents that
conformed to those standards.

Ironically, today it’s not uncommon for web sites to provide one version of their pages for online
viewing with a desktop-based web browser, a different page for printing, and yet another version
altogether for mobile device access. Once again, many use user agent detection schemes to try to
route traffic accordingly—an exercise in futility considering the transient nature of user agent strings
in HTTP headers. Many also place links and buttons on their pages that read “Print this page” or “View
using mobile access.”

As you would expect, all of this effort is largely unnecessary, redundant, and very costly to maintain.
This functionality can be replaced simply by using the constructs that already exist in CSS in order to
deliver the same underlying document to all the user agents. Moreover, doing so often increases the
usability of the site because the transformation from one format to the next is seamless and auto-
matic. There’s no longer any reason to force your users to painfully navigate through a desktop-based
design to find that “mobile access” link.

By leveraging the capabilities that CSS media types and media queries provide, content authors can
design style sheets that are used by user agents based on the user agent’s own environment. As we’ll
discuss in upcoming chapters, media queries are the recommended way to target styles for the Apple
iPhone and iPod Touch, and they work wonderfully for the wide variances in mobile devices for the
browsers that support them. For those that don’t, JavaScript can sometimes be used to approximate
these behaviors without resorting to user agent detection.17

17. A striking example of this can be found at Cameron Adams’s site; Adams, who wrote about resolution-dependent
layouts as early as 2004. His writings on the topic are available at

24

CHAPTER 1

Complementing semantics with CSS
CSS describes how elements are styled, but the semantics are defined in the markup itself. Nevertheless,
CSS is a great way to highlight the semantic meaning, to explore semantic nuances, and to provide
presentational confirmation of what an element is supposed to represent. For illustrative purposes,
let’s pretend to describe “Sarah” as a human being using CSS:

Of course, you cannot describe any concept, much less our friend Sarah, completely in CSS. Is her hair
color an integral part of her being, of her identity? Perhaps. In part, it’s up to the content author to
determine which pieces of their publication are content and which are presentation. The totality of
the experience is the structure and presentation. It’s sometimes tough to distinguish between what
should be one and what should be the other.

What we can do is use CSS to work in tandem with semantic markup to further enhance and illustrate
the meaning of our content. As much as possible, our CSS should strive to be self-documenting, clear,
meaningful, and supportive of the markup it is designed to represent.

Summary
In this chapter, we reviewed some of the basic principles and philosophies on which the World Wide
Web was built, so at first we talked about markup languages. You learned why the idea of document
semantics, popularized through hypertext, is at the core of most web technologies today. We showed
examples of RSS and SVG, markup languages that highlight two very different document formats that
are both based on Extensible Markup Language (XML).

The modularization that XML provides gives developers some important advantages over SGML-derived
HTML for writing markup semantically. Creating entire special-purpose markup languages (XML appli-
cations) to describe things like news feeds, vector graphics, and other kinds of content makes it
possible for the Web to house an entire information ecosystem that contains many different sorts of

25

MARKUP UNDERPINS CSS

things. XML namespaces allow multiple XML applications to use differing semantics within a single
XML document. When “multilingual” software tools see these additional XML dialects being used, they
can do more for users.

Since different users have different needs, how software tools (user agents) actually behave may
vary from one to the next, so developers need to recognize that they are limited to influencing—not
controlling—their content’s presentation. Thankfully, keeping ultimate control in the hands of users is
a constraint that actually helps keep published markup semantic, encouraging an appropriate separa-
tion of concerns between content and presentation.

In this chapter, you learned why adding CSS as a presentational layer atop the underlying markup is
valuable from a technical and semantic point of view. We discussed how CSS does this using its notion
of media types, taking a single piece of content and presenting it in many different ways. Finally, you
learned how this approach could increase the accessibility and the reusability (that is, repurposing) of
the content itself.

With these conceptual fundamentals firmly in mind, let’s next explore CSS itself in further detail. Just
how much influence do you have over a document’s presentation using CSS? As we’ll see in the next
chapters, you have much, much more than you might have previously thought.

27

Chapter 2

In the previous chapter, we discussed many of the foundational concepts on which
the Web as we know it today is built. Although some of that material is not directly
involved with the minutia of day-to-day web development, all of it contributes to your
awareness and skill when you are writing code. Similarly, it’s important to have a strong
understanding of certain foundations of CSS before you can build much on them.

We will therefore spend this chapter thoroughly exploring critically important aspects
of how CSS works, such as the influence of user and user agent style sheets, and
some of the more esoteric capabilities provided by CSS selectors and values. We will
also discuss the foundations of CSS’s visual rendering model, including the oft-over-
looked concept of document flow and how it relates to the CSS box model. Readers
with significant CSS development experience may find some of the material in this
chapter familiar, but should still come away with an enhanced understanding of the
intricacies of CSS-based design.

CSS FUNDAMENTALS FOR ADVANCED USE

28

CHAPTER 2

Origins of a style sheet and the CSS cascade
Like an army general, your success or failure as a CSS developer will depend on your ability to con-
sider many variables at once. Perhaps the most underappreciated variable in professional front-end
web development is the presence of other style sheets in addition to your own. These additional style
sheets are applied to your markup before your style sheet has a chance to affect it, so it behooves you
to be aware of how these other style sheets can help or hinder your own work.

Know your enemy and know yourself, and you cannot lose. —Sun Tzu, Art of War

User agent style sheets (default browser styles)
A user agent style sheet is a style sheet that is “baked into” the web browser your visitor is using.
Every user agent has such a default style sheet, and this style sheet is the very first one applied to your
markup. Being aware of it and how your own style sheets inherit from it means you’ll be able to much
more confidently create consistent-looking designs in a cross-browser fashion.

All CSS-capable user agents, such as web browsers, are actually required by the CSS specification to
assign initial values to the elements in a document that they render. In many cases these default styles
are literally coded as—you guessed it—a user agent’s own style sheet. However, whether or not an
actual CSS file exists, from the point of view of a CSS developer all conforming user agents behave as
though such a style sheet were in effect.

It turns out that this initial styling is extremely beneficial, since it’s the result of these default browser
styles you are seeing when you load a document that doesn’t have any CSS styling applied to it (a so-
called “unstyled page”). However, if you are unaware of a user agent’s style sheet or blatantly disregard
it, it can because a source of confusion or, worse, a source of bugs. To illustrate this point, let’s look at
the following basic markup example and how it would be rendered in a couple of web browsers:

28

29

CSS FUNDAMENTALS FOR ADVANCED USE

29

30

CHAPTER 2

This basic example covers a few of the elements that would commonly be encountered in a standard
web page. It begins with an element surrounding the title of the page, followed by a paragraph
of content that contains some , , and elements, providing links and emphasis to a
paragraph describing our subject. Following that, we see an element supporting an illustration
of our subject, a table, and an unordered list. A style sheet is conspicuously absent. Figure 2-1 shows
how this appears in Firefox, and Figure 2-2 shows the result in Safari.

Figure 2-1. The Firefox web browser contains a user agent style sheet
that defines its default browser styles, so even otherwise unstyled
pages contain a modicum of basic styling.

31

CSS FUNDAMENTALS FOR ADVANCED USE

Figure 2-2. The Safari web browser contains its own, different user
agent style sheet, again resulting in a plain but somewhat-styled and
readable page. Note the differences between the Firefox default
styles and the Safari version.

It is actually Firefox itself that’s applying the 14-pixel whitespace (in this case) around the
edge of the document (technically, the), that larger and bolder font size on the element,
that blue to the hyperlink’s anchor text and the blue around the hyperlinked image,
the underlines appearing on the hyperlink’s anchor text and elements, as well as the various
whitespace sprinkled about the rest of the page. As you can see, there are a number of styles already
applied to these pages, and we have yet to write a single CSS rule.1

1. The default style sheet for many user agents is typically not hard to find. Using current versions of the Firebug
add-on for Firefox, you can actually distinguish a user agent’s styling from other styles by enabling the Show User
Agent CSS option in the Style pane of the HTML tab.

32

CHAPTER 2

Unfortunately, not all user agent style sheets are the same, as a comparison of these Firefox and Safari
screenshots reveal. Vive la différence! Unlike in Firefox, there are no underlines for our ele-
ments in Safari, nor is there a blue outline on the hyperlinked image.

Thankfully, a user agent’s style sheet is not magical; it is just a regular style sheet that happens to be
first in line to be applied. That is, user agent style sheets always come first in the CSS cascade. This
means that, somewhere in Firefox’s user agent style sheet exists a CSS rule similar to the following one
that is responsible for creating that blue border around the hyperlinked image:

Of course, since this is just ordinary CSS, we can do a lot to remove all this inconsistency by adding a
little CSS of our own that would override what the browser’s default styles specify. Here’s an example
of one such style sheet that overrides the styles we saw applied in the earlier screenshots:

This single CSS rule overrides most of the default styles that the browser provides, by selecting all elements
(the in the selector, described later) inside the element. The result is shown in Figure 2-3.

By “zeroing out” the user agent’s default style sheet with one of your own, you give yourself a known,
more consistent point from which to begin styling elements.2 Although you may not often need to
completely zero out the default browser styles as this example does, you should always pay atten-
tion to what styles you have applied to a finished design and what styles the user agent itself has
applied. One of the more common mistakes caused by a failure to do this is forgetting to specify the

 element’s or because these are often initialized to and ,
respectively.

2. This is a technique popularized by Eric Meyer, who called it “resetting CSS,” and on which many CSS frameworks
later built. We’ll discuss resetting CSS in more detail when we discuss CSS frameworks later in this book.

33

CSS FUNDAMENTALS FOR ADVANCED USE

Figure 2-3. Our page with Firefox’s and Safari’s default browser
styles “zeroed out”

One more example, less dramatic but more common in everyday development, is the discrepancy in
list rendering. The whitespace used on , , and elements to indent them can be achieved
either through the element’s or properties. In order to ensure that list styling is con-
sistent, it thus behooves us to zero out, or “reset,” either s or s and use the other for
indentation to achieve more consistent rendering, which can be accomplished with CSS as simple as
the following rule:

Additionally, with this in mind, one of the first rules we tend to write in a style sheet is

This rule ensures that no matter what element in the viewport (that is, the part of the browser window
that renders content) is being given the default and/or in a user agent, it will always
be zeroed out for consistency. A and default text is specified for consistency
as well. It’s good practice to set both background and foreground colors in the same place, just so you
know you’re not going to end up with, say, unreadable white text on a white background by mistake.

34

CHAPTER 2

What we learn from all this is that the CSS developer must take into account default browser styles
and be aware that there are a number of issues like these that could be potential challenges. Making
discrepancies consistent such as in the previous examples will not only ensure a more consistent look,
but can also ease debugging later on.

User style sheets
As we alluded to earlier, CSS fundamentally gives control of a document’s presentation to the users of
the document, or the consumers of its information. One of the most powerful mechanisms it has for
doing this is the user style sheet. If you think of your markup as an API, then you can think of a user
style sheet as a theme or template file.

Like user agent style sheets, user style sheets are not magic. Essentially, a user style sheet is a set of
CSS rules created by a human visitor (a “user”) of your site. Users compose style sheets themselves for
a number of reasons, including usability and accessibility reasons as well as aesthetic preference. An
individual with vision impairment issues might want to set text in a particular way, and may therefore
specify a CSS rule that enlarges all the text on a page or prevents certain fonts from being used. Other
individuals may simply want to give their favorite web application a face-lift, and using user style
sheets, they can do that.3

A user style sheet will be applied immediately after the user agent style sheet is applied and immedi-
ately before any of your style sheets are. Once rules from these two sources are applied, the rules in
your style sheets are applied to the markup. Then, after that, one last round of processing applies any
so-called “important” declarations specified in user style sheets, overriding your rules.

Therefore, five stages of the CSS cascade exist that relate to the origin of a style sheet. In order of
precedence from least to greatest, they are

CSS declarations in the user agent style sheet

CSS declarations in user style sheets of normal importance

CSS declarations in author style sheets of normal importance

CSS declarations in author style sheets that are

CSS declarations in user style sheets that are

3. For a dramatic example of a user style sheet face-lift to Google Reader, be sure to check out Jon Hicks’s impressive
gReader Theme, which gives the web-based application the look and feel of a Mac OS X desktop application.
Jon’s gReader theme can be found at .

35

CSS FUNDAMENTALS FOR ADVANCED USE

User style sheet support in web browsers
Support for user style sheets was dismal for a long time, but today most browsers support user style
sheets, including Firefox, Internet Explorer 7, Safari, and Opera.

Opera has far and away the best native support for user style sheets, with an extensive feature set for
selecting, managing, and even combining user styles. To have a look at what is in Opera, pull down
the latest copy from and fire it up. Direct your attention to the View menu
and then the Styles submenu. You should see selections for switching between Author mode and User
mode—basically allowing the user to fully dispense with any author styles and work the site from their
own style sheet. You’ll also see a Manage Modes command, which brings up a rich dialog box for man-
aging many of the ways Opera will behave when using custom style sheets, and even how author styles
would be applied. This dialog box is also where you can set a file path to your own user style sheet.

Firefox disappoints here by not having a built-in interface to choose a user style sheet from its GUI.
Instead, you have to go in to your Firefox profile directory (wherever that might be on your system)
and look inside the chrome directory (that is, the directory that contains the Firefox browser chrome
source files, not to be confused with the new Chrome browser from Google) where you’ll find a file
called . Rename it to and you can then use it as your user
style sheet.

This is a real chore, so thankfully there is a better solution by way of an extension called Stylish
(). This extension does a wonderful job of letting the user cre-
ate and manage user style sheets on a per-site basis. Stylish puts an icon in the lower-right corner
of the browser’s status bar, which provides a menu to create global or site-specific styles right from
the browser GUI. The extension’s companion web site at has an extensive
repository of user-contributed user style sheets to explore, all of which import directly into the Stylish
extension.

Both Internet Explorer 7 and Safari contain simple built-in style sheet selectors in their preferences
windows. In IE7, this option can be found in Tools Internet Options General Accessibility. Then
in the resulting dialog box, select the check box to format pages using your own style sheet and click
the Browse button to locate a user style sheet CSS file.

In Safari, similar functionality can be found by navigating to Safari Preferences Advanced and
then using the Style sheet drop-down menu to select or browse for a user style sheet. There is also a
plug-in for Safari called SafariStand () that provides capability similar to
the Stylish extension for Firefox.

36

CHAPTER 2

What are the declarations?

CSS declarations can have one of two levels of importance—normal or important—which contributes to
the declaration’s overall specificity. Declarations are specified important by being flagged with the special
keyword at the end of the declaration, just before the closing semicolon.

These important declarations are given a higher precedence than declarations of normal importance, and
when used in user style sheets they will trump all conflicting declarations from other sources. Consider the
following example, where has a higher specificity than , and the result is that the para-
graph directed at the violas has no visual differentiation from the rest of the document:

However, it appears the conductor (who is not the author of this page) wants to print these notes and dis-
tribute them to the orchestra, but also wants to call the information for the violas out. To do this, they add
the keyword to the . rule.

Now, provided the viola section is not colorblind as well as deaf,4 they will see the note directed toward them
on the conductor’s page highlighted in red.

Although this can sometimes be a handy shortcut for raising the specificity of a particular declaration, it is
not often the best way to go in any circumstance. Having your style sheets polluted with a significant num-
ber of conflicting declarations can make debugging a style sheet a difficult proposition. As you
will learn later in this chapter, using a CSS selector’s implicit specificity is a far more flexible way to go.

4. It is usual and customary for orchestral musicians to continually poke fun at the viola section.

37

CSS FUNDAMENTALS FOR ADVANCED USE

Attributes and characteristics of author style sheets
As a CSS developer, you cannot modify a user agent’s baked-in style sheet, although you can override
them because a user agent’s style sheet is applied first in the CSS cascade. A visitor to your site may
supply their own user style sheet to complement or override the CSS rules you’ve created to imple-
ment the design of your site. Therefore, the style sheets you write as a front-end web developer, called
author style sheets, sit firmly within this middle ground.

It’s this middle ground, the author style sheets, which are our domain. This is what we typically think
of when we talk about CSS development, and indeed this middle ground is the majority of what the
rest of this book is about. These author styles could be styles placed inline with the HTML markup
as part of a attribute (inline styles), embedded within an HTML document as part of a
element (an embedded style sheet), or linked to in one or more external style sheets. Each of these
methods of applying CSS to page elements has its own characteristics.

External and embedded style sheets
An external style sheet is a separate CSS file paired with the document to be styled using one of two
mechanisms. The more familiar mechanism comes from HTML and is the element. A minimal
example might look like this:

The , , and attributes are all required. Since HTML’s element can pair a document
with more than just a style sheet, the attribute, which indicates a relationship between two things,
must contain the value (notice it is one keyword, not two separate words) to indicate
that it is being used specifically to pair a style sheet with the document in which the element
resides. For the purposes of CSS, the attribute must contain the single value . This indi-
cates that the linked style sheet is a CSS file. Finally, the attribute indicates the location of the
external style sheet by URI (hyperlink reference).

When linking CSS to XML documents that are not XHTML, however, we use a different construct. The
equivalent of the previous HTML example would look like this in an XML document that isn’t XHTML:

Notice that in the XML example, we use an XML processing instruction (tags that begin with and end
with) rather than an element, and that since the processing instruction is named ,
we don’t need a attribute. Later in Chapter 9 of this book we’ll discuss CSS in the context of non-
XHTML XML documents in more detail.

An embedded style sheet is placed within a element (itself placed within the document’s
 element) directly within a given document. As a result, this method is architecturally less

flexible than using external style sheets because it can only affect the one document. On the other
hand, embedded style sheets can be useful when developing prototypes, to avoid caching issues, or
to reduce HTTP overhead to optimize performance in some situations. In HTML, a typical embedded
style sheet might look like this:

38

CHAPTER 2

With embedded style sheets, the relationship of the content to the document is obvious, so there is
no need for a attribute.

Sometimes, you’ll see embedded style sheets in XHTML documents (and hopefully never
in HTML documents) begin and end with a funny sequence of characters like this:

What you see here is a sequence of HTML and CSS comments and a special instruction
for an XML parser. At the beginning of the embedded style sheet, the sequence is an
opening HTML comment (), an opening CSS comment (), a closing HTML com-
ment (), the opening XML instruction (), another opening CSS comment,
another opening HTML comment, and finally a closing CSS comment (). Then, at
the end of the embedded style sheet, there is another opening CSS comment, followed
by the closing XML instruction (), a closing CSS comment, and finally the closing
HTML comment opened earlier.

What a mouthful! So why is all this here? Well, briefly, jumping through this particular
sequence of comments protects both legacy user agents that don’t support XML and
the XML parser in those that do from the raw CSS inside the embedded style sheet. For
now, you need to be mindful that this is only a potential issue when you use XHTML,
and you can avoid it by using HTML. Later, when we discuss styling proper XML docu-
ments with CSS, we’ll examine the construct in more detail.

External style sheets and embedded style sheets have the same level of precedence in the CSS cas-
cade. It is the style sheets’ ordering that resolves conflicts between CSS declarations, with style sheets
declared earlier (closer to the opening tag) having less precedence than those style sheets
embedded or linked later (closer to the tag). It is a widespread misunderstanding that embed-
ded styles have a higher specificity than linked styles, and that any conflicts between CSS declarations
in your external style sheets and your embedded style sheets will be overridden by the embedded
ones, caused by the fact that many authors place embedded style sheets after externally linked ones
in their HTML sources.

39

CSS FUNDAMENTALS FOR ADVANCED USE

Naming and specifying media and character encoding details
In both the HTML and XML mechanisms are additional attributes we can use to specify the charac-
teristics of the linked style sheet in more detail. The other possible attributes are , , and

, and they are all optional. A more detailed example where we specify a number of additional
details about the external style sheet at may look like this:

Here, we’ve given this style sheet a more human-readable name using the attribute. This is both
more succinct and functional than, say, an HTML comment would be, since some browsers or browser
extensions display this name to the user. In much the same way as a user style sheet can create a
“theme” for a site for individual users, you’ve essentially created a named “theme” for all your site’s
visitors by titling your style sheet.

Since you can link more than one style sheet to the same document, you can now use this functional-
ity to create multiple themes for your site by supplying different values in the attribute. This
example, similar to the previous one, provides both the “Foo” theme along with an additional “Bar”
theme:

Now, in user agents that support the capability, users will have the option of choosing either the Foo
or Bar themes that you provide for viewing your site. This is accomplished by providing the supple-
mental keyword in the attribute and providing a of in a second
element. This opens up some interesting possibilities and further demonstrates the power of using
the same underlying markup with multiple different style sheets, so we’ll return to explore this CSS
functionality in more detail later in Chapter 6 of this book.

The value to the attribute indicates that the linked style sheet is for use only in that
rendering context. That is, it’s not intended for printers, nor for aural reproduction, and it may be
used for certain handheld devices.5 The attribute can have more than one value, so a single
style sheet can apply to more than one media type. An example is , which
might be used to link to a style sheet implementing a variable-width, so-called “liquid” layout.

Finally, the attribute specifies that the referenced CSS file is encoded in UTF-8. UTF is the
Unicode Transformation Format, and UTF-8 is the most common variant of Unicode on the Web.
Most user agents in HTML contexts don’t worry tremendously about issues of character encoding, but
character encoding becomes important when dealing with XML contexts. Therefore, we’ll discuss the
implications of the attribute as well as Unicode in CSS in more detail later in this book.

5. Handheld devices using WebKit such as Apple’s iPhone or smartphones running Google’s Android ignore the
 media type and instead use the media type. The specifics of CSS for mobile devices are discussed

in Chapter 5.

40

CHAPTER 2

Inline styles
Whereas both external and embedded style sheets define whole style sheets, inline styles, which appear
within the attribute of a given element, are only declarations. The declaration is applied to that
element possibly inherited by any its child elements. For instance, here is an inline style applied to a
paragraph element that italicizes the entire paragraph, including the child and elements:

The least flexible way to apply styles to a document, inline styles will have higher specificity than
declarations in either embedded or external style sheets. It is generally best to avoid the use of inline
styles whenever possible in production code, as they add unnecessary rigidity and nonsemantic clutter
to markup, bloat the code, and make it more difficult to read.

Nevertheless, due to their high specificity, inline styles are useful for occasional debugging purposes,
although using temporary declarations may provide another avenue for debugging. They
are also useful in some situations where presentational markup is unavoidable or required by imple-
mentation details. In these instances, inline styles can be calculated on the server and inserted into the
code of markup templates.

A common situation in which you might see inline styles used is in the creation of progress meters. A
PHP template might dynamically change where a progress bar should be filled to with code like this:

The PHP function in this example, , would return a number such as , which
would indicate completeness. A value of , on the other hand, could indicate that the process has yet
to begin, and other values in between could represent varying levels of progress. It’s used in two places
so that the progress is presented not only visually but also as textual content for accessibility reasons.
The other visual styling required to render the progress bar, such as its height, a border, and so forth,
would be applied in a CSS rule in an external style sheet that targets the class.

Selectors: from simple to complex to surgical
Although the syntax of CSS is very simple, a single style sheet can contain theoretically infinite pre-
sentational information. This information is organized into a sequence of statements, each of which
specifies one rule (sometimes also called a ruleset). A typical rule contains one declaration block,
itself a series of declarations (composed of property and value pairs) and a selector. One of the
keys to becoming a CSS surgeon, so to speak, is the intelligent and thoughtful use of CSS selectors.

41

CSS FUNDAMENTALS FOR ADVANCED USE

Selectors allow us a great deal of flexibility and efficiency in how we apply presentational style to
documents. Using selectors, you can target (or select) a single element or, with a selector group, a
group of elements to apply styles to. These selected elements are known as subjects of the selector.
CSS selectors are composed of two primary building blocks: simple selectors and combinators.

Simple selectors
CSS’s simple selectors are the fundamental units with which you build a selector in a rule.6 All CSS
rules must contain at least one explicit simple selector written by you, and often contain at least one
implicit simple selector (inserted by the browser’s CSS parser) as well. Further, there are many dif-
ferent kinds of simple selectors that CSS makes available to you, and each one allows you to target
elements in a slightly different way.

Multiple simple selectors can be grouped, or chained, together one after the other to create a
sequence of simple selectors. Each simple selector in the sequence adds its own filter to the set of
elements selected by the simple selector that came before it, adding specificity to the selector and
narrowing the set of possible elements the selector will target. Here are a few examples of valid CSS
selectors that are composed purely of simple selectors:

The first selector is a single simple selector that targets elements, and is called a type selector,
described in the next section. The second selector is a sequence of two simple selectors, the type
selector chained with the class selector , and therefore targets all elements with a class
name of . Finally, the third is a sequence of three simple selectors, chained with chained
with the attribute selector , so it selects all elements whose class name is and who
also have a attribute.

From these examples you can see how chaining simple selectors together provides increased specific-
ity and precision when targeting elements to style. You can also see that each kind of simple selec-
tor is slightly different in how it targets elements. Most important, note that creating a sequence of
simple selectors is distinct from creating a selector group. The following two CSS rules are therefore
not equivalent:

The second example will potentially apply to many more elements than the first example, since it is
a selector group composed of two individual simple selectors. It will target any element, and it
will also target any element with a class name of , regardless of whether that element is a .
Next, let’s take a tour of some of the basic as well as the lesser known simple selectors available to
you as a CSS developer.

6. Note that the definition of a simple selector is slightly altered from CSS2.1 to CSS3. We use the CSS3 terminology
because it is more precise. For details on the differences between the two specifications, see

.

42

CHAPTER 2

Type selectors
The most common simple selector is the type selector, which lets you specify CSS rules for a given
type of element in your document markup. To use it, simply indicate the name of the element (sans
the angle brackets) of the element you want to target. To target all elements, for instance, your
type selector is merely . To target all headlines in an HTML document, simply create a selector
group that contains each type of headline element: .

You can use type selectors for any markup language. If there is an element in the markup, it can be
targeted with a type selector. In some contexts such as XML and XHTML, where element names are
case sensitive, so too are CSS type selectors. Therefore, in an XML document, the following two type
selectors actually refer to two different types of elements:

You can do a lot with type selectors alone. In this next example, we have some very simple HTML
elements—a few elements, which are descendants of a single element, a couple of
elements, and a single . All of them are descendants of the element. Styles are applied to
each of these via CSS rules that make use of a single type selector.

43

CSS FUNDAMENTALS FOR ADVANCED USE

In our embedded style sheet, we have indicated that the element should use a nice sans-serif
font family and a light gray background color, and the overall font size will be reduced by 80 percent
of the browser default. The gets a soothing, ocean-blue hue in an italic typeface. The ele-
ment establishes a consistent model for how the left spacing will appear since we know that this will
be interpreted differently between browsers, and the accompanying elements will get circle
markers and italics. Finally, our elements will be treated with extra emphasis by giving the text
an underline and giving the background a gray color and a bit of padding so that the background box
looks a bit more comfortable around the content, as shown in Figure 2-4.

Figure 2-4. Even mere type selectors can be used to
great effect to add a little style to our element types.

44

CHAPTER 2

Universal type selector
We briefly saw this selector earlier when we were discussing user agent style sheets: the universal
type selector is an asterisk (). This selector targets all types of elements, as its name implies. When
used by itself, it applies the specified styling to every single element in the document.

Using the universal type selector is distinct from inheritance, where child elements inherit the values
of certain properties from their parent or ancestor elements, since in this case you explicitly apply
certain styles to each and every element. Let’s examine the same code that we used when examining
type selectors, but this time we’ll outline all of the elements with a one-pixel border using just one
rule that takes advantage of the universal type selector:

This one small CSS rule will place that border around every element in our page. Figure 2-5 shows that
all our elements are now outlined.

Figure 2-5. Using the universal type selector, we can
target every type of element regardless of their names.

45

CSS FUNDAMENTALS FOR ADVANCED USE

Since all CSS rules must be applied to elements in a document’s markup, every CSS rule must begin
with either a specific type selector or the universal type selector. If an explicit type or universal type
selector is omitted from the start of a CSS selector, then the user agent assumes the presence of the
universal type selector for the purpose of element selection. In other words, when you use a selector
such as , the browser interprets this as .

Attribute selectors
In many markup languages, a lot of information is codified as attributes with particular values. Such
information might appear as the URI of an image (), supplemental
information in a attribute (), or as the destination of a hyperlink (

). Using CSS’s attribute selectors, we have powerful
ways to target elements based on the attributes and attribute values they contain.

You delimit attribute selectors by placing an opening bracket () and a corresponding closing bracket
() on either side of an expression. In the simplest case, the expression is merely the name of the attri-
bute whose presence you’d like to target. For example, an attribute selector like would select
any elements that have a attribute, regardless of its value.

You can also target elements based on an attribute’s value using attribute selectors. If you spec-
ify , you’ll target the elements that have the attribute where that attribute’s value
is exactly . For instance, using the selector would target an element like

 but not , despite the fact that
both abbreviations have attributes.

Many attributes can contain more than one individual value. For instance, you can assign multiple
class names to a single element by separating each of the element’s class names with a space. Another
example is a situation wherein an attribute value contains human-readable text, which naturally con-
tains spaces. Using the attribute selector syntax, you can target elements that have a
attribute where at least one of the words in the attribute’s value is .

With the attribute selector, the word can’t be part of a longer word, so in this case it
can’t be “barcamp” or, say, “barbarella.” Typically, this is exactly the behavior that you want in the
real world. Another example could be , which would target

 but not .

A fourth and final kind of attribute selector defined by CSS2 is . This is less commonly
used, but can be helpful in internationalization contexts since it targets elements whose attributes
contain a hyphen-separated list of words and the first word is exactly . This sounds confusing at
first, so let’s take a look at an example.

The Chinese language code7 is . Since it has a number of dialects spoken in different countries
around the world, it can be suffixed with a hyphen and a country code. Often, however, these regional
variances are tertiary to your goal for styling purposes, so using an attribute selector like
is sufficient for targeting all of the following paragraph elements: (Chinese),

 (Chinese/China), (Chinese/Hong Kong), and
(Chinese/Taiwan).

7. A language code is simply a standard way of representing human languages with succinct strings. The international
community originally standardized language codes as the ISO 639 standard. As it is wont to do, Wikipedia has a
detailed and thorough explanation of language codes at .

46

CHAPTER 2

Since attribute selectors are a kind of simple selector, we can chain them in a single CSS rule to target
elements whose attributes match all of our criteria. For example, if we wanted to target elements
written in Chinese that had been cited from the Wikipedia article on The Art of War, we could use
an attribute selector chain such as

. Note that quotations around the attribute value’s portion of an attribute selector’s syntax are
optional, but could be used to improve readability for your fellow human beings.

In addition to these capabilities, CSS3 defines three new attribute selectors, called substring matching
attribute selectors, that give us ways to match substrings within attribute values. The
syntax will match elements with a attribute whose value begins with (such as

 but not in the earlier example).
The attribute selector syntax of will match elements with a attribute whose
value ends with , so this will again only match the double bass and not the bassoon. Finally, the

 attribute selector will match elements with a attribute in which any part of its
value contains the string , which will match both of the abbreviations for the bassoon and the
double bass.8

The substring matching attribute selectors work in many of the mainstream modern browsers today,
such as Safari 3, Chrome, Opera, and Firefox. Internet Explorer is, of course, the notable exception.

ID and class selectors
IDs and classes are two attributes that can be used to identify certain chunks of content as well as
group them together. Their importance to a document’s structure and semantics and to CSS gives
them special treatment that simplifies their selection model, making it unique. In XHTML and most
other markup languages, the ID attribute is named and the class attribute is named , but
the other markup languages are not required to stick to this convention.

Consider the following example XHTML document, which uses an attribute selector to target a specific
 element that has been given a unique ID:

8. Astute readers are likely to note that the syntax of these substring matching attribute selectors are based loosely
on traditional Perl Compatible Regular Expressions (PCRE)–compatible regular expression syntax.

47

CSS FUNDAMENTALS FOR ADVANCED USE

This CSS rule reads, “Select the element with an attribute whose value is exactly equal to
.” However, since we have an ID attribute, the rule targeting the paragraph here could be writ-

ten using CSS’s ID selector instead:

The octothorpe symbol () precedes the value of the ID attribute, and in this case it replaces all
that bracket- -equals-quote-conductor-quote-bracket stuff. This change reads subtly differently than
before since it now says, “Select the element with the identifier of .” The difference is
that you are no longer selecting the attribute explicitly, but rather whatever attribute happens to
be defined as that markup language’s ID attribute.

Since element IDs are required to be unique among all the elements in a document, the ID selector
also has higher specificity than attribute selectors. Moreover, for the same reason, you can make the
selector even simpler and write the rule without the leading type selector. This also makes our selec-
tor more compact and much more convenient to write:

The same pattern follows for classes, with the single syntactic difference that a class selector uses
the dot character () as its indicator instead of an octothorpe. Classes, in contrast to IDs, may appear
multiple times within a document (so they have a lower specificity). Whereas IDs explicitly identify a
single element, classes can be used to identify a “kind of” element.

For instance, in the following example we have a set of repeating semantic structures describing
conductors, with their name and the orchestra they conduct marked up as children of the
“kind of” elements. In our CSS, we specify that the class will outline each conductor’s block
with a gray border, a little padding inside the block, and a bit of margin below each one to separate
them. The beauty of this approach is that defining the style for the class is only necessary
once, yet each instance of our “kind of” elements receives the appropriate styling.

Additionally, since we can have as many classes in our markup as we like, we can use this construct to
also specify a class and apply bold type to it. We’ll also have an class and place the
orchestra’s name in italics. These additions are shown here:

48

CHAPTER 2

Pseudo-classes
Like attribute selectors, pseudo-classes are a way to target elements that have a particular character-
istic. You use a colon () to delimit the beginning of a pseudo-class selector. However, unlike the attri-
bute selectors we’ve just examined, the characteristics that pseudo-classes target are not necessarily
the element’s attribute and value pairs.

Pseudo-classes can, in fact, be used to target elements based on any sort of criteria. In some cases,
such criteria may even be independent of the document markup itself. The most well known pseudo-
classes are those that relate to the styling of links on a page, so let’s look at these first.

Hyperlinks: the :link and :visited pseudo-classes

The pseudo-class, unsurprisingly, targets any elements that are hyperlinks. In XHTML, that
means it targets any element that contains an attribute, but there’s actually some subtlety in
this as well. In particular, there is a distinction between anchor elements and hyperlinks.

First, note that elements in XHTML without an attribute are not targeted by the
pseudo-class because these anchor elements are not defined as links in the HTML family of languages.
Second, note that in many XML documents the pseudo-class may apply to elements other than

49

CSS FUNDAMENTALS FOR ADVANCED USE

the element because many document languages can create links using different element types.9

The key point is that the pseudo-class applies only to whatever combination of characteristics
defines a hyperlink in the elements of a particular markup language you are styling.

In practice, this means that for XHTML pages the following two CSS rules are equivalent (albeit with
slightly different specificities). The distinction is that if the same style sheet was later paired with a
different XML application that didn’t use elements to define links, the first selector would no lon-
ger target any elements while the second one would. The latter is therefore preferred for reasons of
reusability and portability.

The pseudo-class takes this concept one step further and targets hyperlinks that have been
visited. More precisely, the pseudo-class targets only the subset of elements that the
pseudo-class targets and that are in the visited state. What the “visited state” means is up to the user
agent to decide, although for web browsers it commonly means “links the user has previously clicked
on and are now in the local browser cache.”

These two pseudo-classes illustrate how a pseudo-class can target characteristics that can be any num-
ber of things, including element characteristics (links) and things other than the underlying document
structure itself (whether or not a link was previously clicked). Other pseudo-classes can be used to
target elements based on things like repetitive patterns within the document structure, what docu-
ment fragment the user navigated to, and even user interaction. Let’s look at user interaction next,
since these pseudo-classes are also commonly used for styling links.

User interaction: the :hover, :active, and :focus dynamic pseudo-classes

User agents that render “interactive” media types, which include traditional web browsers, can take
advantage of a few additional pseudo-classes. These pseudo-classes are collectively called the dynamic
pseudo-classes because they apply to elements the user has acted upon in some way. For most of the
Web’s existence, the only really interactive part of a web page was its hyperlinks, so that’s still where
you’ll still see the dynamic pseudo-classes used most often.

The dynamic pseudo-classes are relatively self-explanatory. The pseudo-class targets rendered
elements that that user’s cursor is hovering over. This dynamic effect is the cornerstone of all CSS-
based rollover techniques.

The pseudo-class targets elements that are currently “active,” a state that user agents may
interpret as they see fit. Common examples are the moment when a user clicks a hyperlink and has
not yet released the mouse button or when the user clicks a button on a form. Another way a user
might “activate” an element is by pressing the Return or Enter key on their keyboard while the ele-
ment has keyboard focus.

Speaking of keyboard focus, you can use the pseudo-class to target the element on a page that
has it. Sometimes it makes sense to group the styles you declare for the pseudo-class with the

9. A W3C recommendation called XLink defines a standard XML-based linking language that builds on the hyperlink
concept introduced by HTML. In particular, it defines a set of attributes that can be used generically within ele-
ments of other XML applications to give those elements hyperlink-like properties.

50

CHAPTER 2

 pseudo-class, too. Then there are other times—particularly when designing form interfaces—
when styling focused elements independently makes sense.

Since all of the dynamic pseudo-classes are ordinary simple selectors, they can be used on any ele-
ment you desire. Unfortunately, many older browsers do not apply some of these pseudo-classes to all
elements. Frustratingly, Internet Explorer 6 only applies the pseudo-class to elements.

Selecting elements containing text in a particular language: the :lang() pseudo-class

Earlier, we mentioned that the attribute selector could be used to select elements based
on their attribute’s value. More commonly, the pseudo-class is used for this purpose
since, like the pseudo-class, it targets elements of a particular human language regardless of the
technical mechanism used to identify it.10 It’s also the first CSS construct we’ve shown that uses a new
kind of syntax, called functional notation.

Functional notation gets its name from formal programming contexts, where function names are
traditionally followed by a pair of parentheses that contain the arguments the function is intended to
use. In CSS, functional notation is used when a specific number of arguments are required to construct
a valid selector. In the case of the pseudo-class, a language code (such as for English or

 for Chinese) must be specified; using the pseudo-class without specifying a language results in an
invalid CSS rule.

Using the earlier attribute selector example of Chinese excerpts from Sun Tzu’s The Art of War, the
following two selectors are equivalent when used in XHTML contexts, as both of them will apply to
elements whose contents are written in Chinese:

Thanks to the document language-specific abstraction that the pseudo-class provides, it’s
generally considered good practice to use it in favor of the explicit attribute selector when your intent
is to select human languages. You might use this in a generic user style sheet to highlight blocks of
content in languages you are trying to pick up, for example, in which case the highlighting effect will
work whether you’re reading an RSS feed or a web page or any other kind of document. However, if
your intent is to specifically target elements with a attribute, the first selector is preferred.

Selecting target elements via document fragment URIs: the :target pseudo-class

As mentioned earlier, individual elements within a document can be given a particular ID to uniquely
identify them. These elements can then be selected with the CSS ID selector. Earlier, we showed a
selector targeting a paragraph with an ID of , and it looked like this:

Conveniently, the octothorpe () is also the symbol used to specify URI fragments, or a particular
element within a document. Therefore, any element that you assign an ID can be accessed directly by
appending an octothorpe followed by that element’s ID value to the document’s URI.

10. It just so happens that in XHTML, the attribute is how human languages are declared; however, other
applications of XML may have their own mechanism for doing so.

51

CSS FUNDAMENTALS FOR ADVANCED USE

For example, if the previous code were excerpted from the page located at
, then to jump to the particular element with information about the conductor, the

address in your browser’s location bar would be . Not
surprisingly, the end of this URI looks very similar to your ID selector rule. Coincidence? We think not.

When you access a page via a URI with a fragment identifier like this, the element identified by the
fragment becomes known as the target element.11 An element that is the designated target of a
URI can be selected in a CSS rule using the pseudo-class. For instance, we could modify the
previous ID selector by chaining the pseudo-class to it so that it only targeted the
element when accessed via a link with a fragment identifier:

Being able to target elements in this way provides some interesting possibilities for user interaction.
In particular, the pseudo-class makes it possible for web designers to provide the user with
additional context after they follow a link. Sadly, neither Internet Explorer 6 nor 7 supports this CSS3
pseudo-class, even though other mainstream browsers, including Safari, Opera, and Firefox, all do.

Selecting the first or last element in a series using the :first-child or :last-child pseudo-classes

Using the or pseudo-classes, you can select the first or last occurrence of a
particular element in a series, which often warrant special styling. One common example is a navigation
list, where the first or last list item requires different surrounding whitespace or border widths. Without
these pseudo-classes, you might have relied on special class names like “first” or “last” in your markup.

For example, many navigation lists on the Web today are marked up with code similar to this:

Using the pseudo-class, you no longer need to use a class name, and using the
 pseudo-class, you no longer need to use a class name. Instead, a CSS selector such

as or just could be used. Here are some addi-
tional selector examples that use these pseudo-classes:

11. Perhaps it should also be noted that such a target element is distinct from the elements targeted by CSS selectors.

52

CHAPTER 2

It’s worth paying special attention to the fact that only the pseudo-class is defined as part of
CSS2.1, while the pseudo-class is technically only available as of CSS3. Thankfully, in practice,
many of the user agents that support the pseudo-class support the pseudo-
class as well. The exception is Internet Explorer 7, which only supports the pseudo-class.

More pseudo-classes

There are even more pseudo-classes to cover, but instead of an exhaustive explanation of them in
this chapter we’ll examine them in more detail in future chapters where their use is directly relevant.
In particular, take a look at Chapter 4 to examine the , , and pseudo-classes for
selecting left- or right-hand or cover pages in a printed context.

Pseudo-elements
Pseudo-elements are similar to pseudo-classes in that they extend the capabilities of CSS selectors so
styles can be applied to parts of a document with more precision. Unlike pseudo-classes, however,
pseudo-elements select fictional elements that don’t really exist in the markup. You can think of them
as abstractions to target smaller parts of a larger element that would be impossible to style in any
other way.

Be careful, four-eyes! There is a subtle but important distinction between the syntax
of CSS2 and CSS3’s pseudo-elements. In CSS2, pseudo-elements are written in exactly
the same way as pseudo-classes, with a single colon followed by the name of the
pseudo-class. Currently in CSS3, pseudo-elements are delimited by a double colon pre-
fix (instead of one). As of this writing, the CSS3 Selectors Module is at Last Call stage
on the way to standardization and is expected to be ratified with this difference intact.
As a CSS developer, you may use either the older single-colon syntax or the newer
double-colon syntax for the pseudo-elements present in CSS2.1, but you must use the
double-colon syntax for pseudo-elements defined by CSS3.

Selecting the first character in an inline box using the :first-letter pseudo-element

Traditional publishing scenarios often style the first character of a chapter in a book or an article in a
magazine differently from the others. Drop caps are one example of this. Unfortunately, there is no
way to select only the first letter in a paragraph using CSS selectors that solely rely on the document
tree created by the markup unless the document authors explicitly added structural hooks for such
styling ahead of time. Of course, coupling markup for the sake of presentation is the problem CSS was
invented to resolve.

Therefore, in much the same way that the pseudo-class obviates the need for an explicit
“first” class, CSS’s pseudo-element obviates the need for such structural markup
around the first character in a paragraph. In other words, using the pseudo-elements
lets you turn markup like this:

53

CSS FUNDAMENTALS FOR ADVANCED USE

into markup like this:

When conforming user agents encounter the following CSS, they will behave as though the
element in the first example exists in the second, even though it doesn’t:

Thanks to its typographic heritage and despite its name, the pseudo-element will also
select numerals if they are the first character in an inline box. Additionally, punctuation that precedes
the first letter or numeral, such as quotation marks, will be also be selected by the
pseudo-element.

Matching the first inline box inside a block box using the :first-line pseudo-element

The pseudo-element behaves just like the pseudo-element, but instead
of selecting only the first character, it selects the entire first line. If the browser window is resized or if
the dimensions of the targeted element change, the beginning and end of the pseudo-
element is updated on the fly. Therefore, there is no possible markup equivalent for the
pseudo-element like there is for the pseudo-element.

More pseudo-elements

There are two additional pseudo-elements worthy of note: the and pseudo-elements.
However, these pseudo-elements relate to CSS’s capability to render “pseudo-content” that doesn’t
actually exist in a page’s XHTML document structure. We cover this feature of CSS in greater detail in
Chapter 3.

Additionally, CSS3 adds a pseudo-element that targets any content currently selected
(or highlighted) by the user. As of this writing, the forthcoming CSS3 specification states that only a
restricted subset of CSS properties apply to the pseudo-element, of which only
and (except) are required. Unfortunately, Opera at versions 9.5 and
greater is the only browser as of this writing that supports the pseudo-element.

Using combinators
In much the same way as simple selectors can be chained to create sequences that increase a selec-
tor’s specificity and filter the selector’s subjects to a more precise set of elements, combinators can
be used to chain sequences of simple selectors together with a similar effect. When you combine
these sequences of simple selectors with combinators, you’re specifying that the subjects of the simple
selectors on the right-hand side of the combinator have a particular relationship to the subjects of the
simple selectors on the left-hand side. The kind of relationship specified is determined by the kind of
combinator that’s used to chain the two sequences together.

CSS2.1 defines three kinds of combinators, and CSS3 adds a fourth. In CSS2.1, the combinators avail-
able to you are descendant combinators, child combinators, and adjacent sibling combinators. CSS3
adds the general sibling combinator to the bunch. Each of these combinators is named for the rela-
tionship between the simple selectors that they specify.

54

CHAPTER 2

As we discussed in the previous chapter, documents encoded in markup languages have a hierarchical
structure known as the document tree (or DOM tree), wherein each element is “nested” within other
elements. This gives each element a hierarchical context relative to the other elements in the tree. This
is depicted in Figure 2-6, which shows a sample HTML document tree.

html

head

title

body

style link div

h1 ul p

a span

li

Figure 2-6. A chart depicting the hierarchical structure of HTML elements, known as the document tree, which
intentionally looks very much like a family tree

As you can see, the ultimate ancestor of all the elements in the document is the element,
which is said to be the root element. Within the element are two elements, and ,
which are said to be children of the element (their parent element), and are therefore siblings
of one another. These elements, in turn, each have additional child elements within them, each with
their own children, populating the document with further descendant elements. It’s these familiar—
and familial—relationships that combinators describe.

55

CSS FUNDAMENTALS FOR ADVANCED USE

Descendant combinator
The descendant combinator selects the elements targeted by the sequence of simple selectors on
its right that are descendants of the elements targeted by the sequence of simple selectors on its left.
Descendant combinators are written using any amount of whitespace (such as a space or tab charac-
ter) between two sequences of simple selectors. In the following example, any or element that
is nested within any element will get the gray treatment:

The first selector in the selector group would select the element in Figure 2-6 because it is
descended from a . The same is true of the element inside the unordered list, even though
it’s not a direct child of the like the element is, so the second selector in the selector group
also applies.

Just as you can chain any number of simple selectors into a sequence, so too can you chain any num-
ber of sequences of simple selectors with any number of combinators. This CSS rule has the same
selector subjects as the previous one, but by explicitly including the type selector we increase the
selector’s specificity:

One challenging and instructional exercise you can try is to style all of the elements in your design that
you currently select via ID and class selectors with descendant selectors instead. By constraining your
available styling hooks to a document’s hierarchical structure alone, you force yourself to think long
and hard about the structure of your markup. It also instantly exposes areas of structural ambiguity
that could possibly be candidates for refactoring.

Child combinator
The child combinator selects the subject on its right if that element is an immediate child (that is, not
a grandchild, great-grandchild, or other descendant) of the subject on its left. The child combinator
is denoted using a greater-than sign () and any optional amount of whitespace. Using the markup
structure we’ve shown in Figure 2-6, this means that the following two CSS rules will have the same
effect, since the element is both a descendant and the child of the element:

This makes sense since children are also descendants, of course. However, because they are a specific
kind of descendant, the child combinator’s precedence is greater than the descendant selector’s.
Therefore, if our CSS rules had instead conflicted, as shown next, it’s the CSS rule with the descendant
selector that would override the other, despite its source order:

Whitespace is optional in all combinators except the descendant combinator you just saw in the previ-
ous section, so the selectors , , and will all be interpreted in the same way. As a
word of caution, the child combinator will not function in versions of Microsoft Internet Explorer prior
to 7. While Internet Explorer 6’s market share continues to wane over time, be sure to consider your
audience and future usage trends when using the more advanced combinators. Other modern brows-
ers such as Safari, Firefox, and Opera will have no trouble with these combinators.

56

CHAPTER 2

Adjacent sibling combinator
The adjacent sibling combinator selects the subject on its right if that element is the sibling imme-
diately following the subject on its left. An adjacent sibling combinator is indicated by a plus sign ()
and like the child combinator, the same optional whitespace rules apply. For an illustrative example,
let’s say that the document tree we’ve shown in Figure 2-6 is an abbreviated representation of the
following XHTML code:

57

CSS FUNDAMENTALS FOR ADVANCED USE

This structure gives us a number of sibling elements (an , several , and a), all children of
the outermost element. Using the adjacent sibling selector, we can target the first element,
the two elements after it, or the final element. Each of these selectors are shown here:

Selecting siblings in this manner can be useful, as it provides a way to use a document’s source order
for styling hooks. It’s common, for instance, to use the first paragraph after a top-level heading as a
summary or introduction to a given piece. We can therefore use the adjacent sibling selector to pres-
ent this introductory first paragraph specially, as we do here:

In the first CSS rule, we use italics to make the first paragraph stand out. In addition to that, we further
chain the adjacent sibling combinator with a descendant combinator in the second CSS rule in order
to present the elements within the first paragraph in bold type; otherwise, the emphasis would
be missed with the default italic style. The results of these styles are shown in Figure 2-7.

Figure 2-7. Using the adjacent sibling selector, you
can present the leading paragraph after a heading
as a summary.

58

CHAPTER 2

General sibling combinator
The general sibling combinator, introduced in CSS3, is similar to the adjacent sibling combinator
in that it selects the subject on its right if that element is a sibling that follows the subject on its left.
However, whereas the adjacent sibling combinator requires that the subject on the right immediately
follow the subject on the left, the general sibling combinator doesn’t. The only requirement is that the
two elements are siblings of one another and the subject on the left precedes the one on the right.

This combinator is written using a tilde sign (). Using the same document structure used in the previ-
ous examples, this means you could use the general sibling selector to similar but not identical effect,
and you have a few more ways you could write the selectors. Instead of targeting only the first
element, you would target all of the elements:

Of particular illustrative interest is the last selector, , which in this instance behaves the same
way as does. Note, however, that neither the adjacent sibling combinator nor the general
sibling combinator allows you to construct a selector that targets the element, since that ele-
ment is the first child of the outermost . You could target it using any of the following selectors
instead:

These examples draw on much of the capability of CSS selectors you’ve learned about in this chapter.
Notice how any number of any combinators can be used in conjunction with one another to create
CSS rules that are ever more precise. In this way, CSS selectors provide extremely surgical accuracy
when targeting elements to style.

However, this flexibility also begs an obvious question: which selector is best in which situation?
Interestingly, there is no simple answer to this question because it often falls to the CSS developer to
judge each situation appropriately. That said, we’ll discuss this and similar issues in Chapter 6. In the
meantime, let’s continue exploring the fundamental concepts of CSS itself.

Property values and units
As you know, a single CSS declaration contains at most one property (although it may be a shorthand
property that expands to more than one simultaneously) and at least one value. Learning which values
can go with which properties is part of the process of becoming proficient in CSS. A value is composed
of tokens that represent an amount of some unit.

Although a single value can only be described using one kind of unit, values of different units may be
used together in the same declaration. Some units can be used in contexts where others cannot, such

59

CSS FUNDAMENTALS FOR ADVANCED USE

as temporal (time-based) units in aural style sheets. Moreover, using some units in certain situations
can actually cause undesirable, or unintended, consequences despite being perfectly legal.

Broadly speaking, CSS units can be classified either by the type of tokenization they employ (how they’re
written and what they reference) or their characteristics, such as whether they are computed relative to
some other value or used as specified. It’s both illustrative of CSS’s diverse capabilities as well as instruc-
tional to closely examine the different kinds of units that can be used in CSS declarations. These values
are, both literally and figuratively, what ultimately give your designs dimension and color.

Keywords and font names
Keywords are extremely prevalent in CSS. These are specific tokens that are known by the user
agent and always mean the same thing to that user agent. An example is . The
value in this declaration is a keyword12 that computes to a specific variation of typeface
italicization.

Another place where you’ll often see keywords used is in the property’s values, such as ,
, or . The CSS2.1 specification defines 17 color keywords (, , , ,

, , , , , , , , , , , , and),
although these keywords may not always compute to the exact same color in different user agents.
While not valid CSS2.1, all current major web browsers also support extended SVG color keywords
(such as), which are part of the CSS3 draft.

Although not technically a keyword, a font name is similar. To style text in a particular font, you use
a declaration such as to provide a comma-separated list of fonts to use. If
the first font isn’t available, each subsequent value in the list is attempted, defaulting to the standard
system font if none are. Some keywords, such as , , or , can be used to
generically refer to a particular class of fonts, allowing the user agent to automatically pick the first
one in the class that is available for its use.

CSS3 also returns support for so-called “web fonts” that was removed in CSS2.1. With it, you can
reference a downloadable font file as you might a background image and give it a name using the

 at-rule. Once you’ve defined it, you can then reference the font name in a
declaration to use it.

An at-rule is a CSS rule that begins with the symbol. These are used to include spe-
cial CSS instructions for a particular subject area or medium. Common uses include

 to import one style sheet into another, to define page-specific proper-
ties in print media, for rules directed at a specific media type, and
for importing and generating fonts. We discuss the use of many of the various at-
rules throughout this book, particularly when we discuss styling for print (Chapter 4),
mobile (Chapter 5), and font importing (Chapter 11).

Unlike the keywords for color, whose values can differ across implementations, some keywords are
like shorthand for a different kind of value. Examples of this can be seen in common declarations like

12. Incidentally, the property is also, technically, a keyword. Indeed, all property names are keywords to
a certain extent.

60

CHAPTER 2

. Here, the value actually references a number, specifically , which repre-
sents a precise amount of typeface bolding.

Numbers
There are many kinds of numbers in computing, and CSS is no exception. CSS defines several catego-
ries of number values composed of ordinary numbers versus non-negative numbers and numbers
with unit identifiers versus those without unit identifiers. A number can be either an integer like
or , or a real (that is, decimal) number like or . Ordinary numbers can be prefixed with either
a or a to indicate their sign, while non-negative numbers cannot.13

A unit identifier denotes what sort of measurement the number is intended to represent. Unit identi-
fiers reference different types of values, and certain unit identifiers can be used only in certain places.
CSS can represent units of lengths, percentages, angles, time, and frequencies.

Lengths
Units that represent length are the most common category of unit identifier. A length in CSS refers
to a horizontal or vertical measurement. Length units are used in values for properties like ,

, and the other CSS box model properties.

A length measurement can be one of two possible types: relative lengths or absolute lengths.
Relative length units specify measurements based on the computed value of some other length, while
absolute lengths reference exact dimensions of the output medium. As such, style sheets that use rela-
tive units can scale across different output mediums with more ease than can absolute units.

Relative length units

For all values in which you specify relative units, the user agent needs to arrive at an actual value
before the properties they are used in can be rendered. To perform this calculation, the user agent
takes the relative value and computes it against some reference value, typically either another ele-
ment’s computed length or some formula defined by the rendering engine itself.

In CSS2.1, there are three relative length units:

 The unit denotes lengths in terms of the element’s font size, or its parent’s font size when
an em is being used to compute the element’s own value. One em () is a typo-
graphic unit14 equal to a font’s point size. In other words, the width of one em is identical to
the width of an em dash (—) as drawn in whatever the current font and font size is.

 The unit denotes lengths in terms of the element’s font’s x-height, so termed because it is
often equal to the height of a lowercase letter “x.” One x-height () is more precisely equal
to the distance between a typeface’s baseline and its mean line. In many instances, this also
approximates half of an em ().

 The unit denotes lengths in terms of pixels on the viewing device. Although web designers
are accustomed to thinking of pixels as absolute units, they are actually defined relative to the

13. Actually, you can prefix a non-negative number with a but this is completely redundant as the number’s sign is
already known. Obviously, you can’t prefix a non-negative number with a .

14. In some typographic texts, an em is more formally known as a quad-width. Interestingly, typographers also refer to
a unit known as an en, which is defined as one-half of an em. However, CSS does not specify an unit.

61

CSS FUNDAMENTALS FOR ADVANCED USE

resolution of the device. In fact, the CSS specifications explicitly remark that user agents should
rescale pixel values if the device’s pixel density is dramatically different from typical monitor
resolutions.

Pixels are interesting beasts. The word itself is an abbreviation for “picture element.”
Traditionally, pixels are understood to be colored dots on a device’s display, called
device pixels. They are the physical mechanism by which the device creates an image
using a collection of pixels. CSS pixels, however, are not the same thing because differ-
ent devices have different pixel-to-space ratios and, moreover, various display systems
have variable screen resolutions.

Large kiosk-style displays may have a very low pixel to space ratio, while some of the
newer high-resolution mobile devices such as the iPhone have very tight pixel densi-
ties. This pixel density is measured in dots per inch (dpi). At some point, an assump-
tion about what one CSS pixel is going to represent must be made, because trying to
control device pixels directly is simply infeasible. Browsers and CSS parsers today all
assume a resolution of 96dpi by default. In other words, whatever the browser renders
as one inch across is the same as 96 pixels.

Certain browsers (Internet Explorer, we’re looking at you) incorrectly treat CSS pixel
units as fixed, absolute values. They are not resizable using built-in features to change
text sizes.

Though still a W3C Working Draft, the CSS3 Values and Units module is slated to add support for six
more:

 The unit denotes lengths in terms of a text layout grid, which is a common typographic
layout technique used in East Asian languages. The unit’s computed value depends on the
value of the property, but this property has yet to be fully formed. We don’t
anticipate units to be viable for quite some time.

 The unit functions similarly to the em unit, except that it always references the computed
value of the root element’s property instead of the current element’s
value. When used on the root element itself, one of these units () computes to the same
value as the keyword. Using units would be useful when inheritance issues make
sizing elements and text with units difficult.

 The unit denotes lengths as hundredths of the viewport’s width. One hundred units
() are equal to the current width of the viewport. This will allow designers to easily scale
lengths based on the width of the browser window.

 The unit denotes lengths as hundredths of the viewport’s height. One hundred units
() are equal to the current height of the viewport. Again, this provides a capability to
scale lengths based on the browser window’s current size.

 The unit denotes lengths as hundredths of the shortest viewport axis (either its height or its
width, whichever is smaller). If the viewport is wider than it is high, then one hundred units
() equal its height; otherwise they equal its width.

 The unit denotes lengths roughly in terms of the average width of the current typeface’s
characters. Like the unit, there are still unanswered questions that surround this unit, and its
use is not expected to be viable for some time.

62

CHAPTER 2

Absolute length units

There are five absolute length units (in both CSS2.1 and CSS3):

 The unit denotes lengths in terms of inches.

 The unit denotes lengths in terms of centimeters.

 The unit denotes lengths in terms of millimeters.

 The unit denotes lengths in terms of points. One point () is exactly 1/72 of an inch.

 The unit denotes lengths in terms of picas. One pica () is exactly 12 points ().

Using absolute units makes a lot of sense when you are designing for physical media, most notably
such as when you are using the media type. On the other hand, if you’re styling for screen
output, then relative units will typically serve you better than absolute ones. Being able to reformat
content for the specified output is a simple and powerful way to make your content more readable
and accessible. Although many user agents are capable of translating relative units into absolute sizes,
precision is more easily available to you when you use the native unit in the rendering media.

Percentages
Properties that allow percentage values always reference some other value, defined by the property
itself. Percentages are defined by CSS as any number followed by a percent sign (). They’re especially
useful when you want to denote values in a relative fashion without worrying about the specific mea-
suring unit being used.

For example, an element’s property can take a length value using any of the units described
earlier. Therefore, the following two CSS rules specify the same length:

If we add a child element to this example and we wish it to be three-fourths the width of its
parent, we could use any of the following three CSS rules to accomplish that. Only the one that uses
percentage values, however, won’t have to be changed if the CSS rule that defines the width of the

’s parent does:

Put another way, when you need to alter your design by changing the elements’ widths, using the
percentage value for the child means you only have to change the parent’s CSS rule. In complex
designs, taking advantage of opportunities to reduce your edit-per-change ratio like this can be a sig-
nificant factor in easing maintenance chores.

Time, frequencies, and angles
In aural media, there are some properties that accept units in terms of temporal lengths (time), frequen-
cies, and angles. Both times and frequencies are (sensibly) non-negative numbers. Times can be denoted
in either milliseconds, using the unit identifier, or full seconds, using the unit identifier. Frequencies
can be denoted either in hertz, using the unit identifier, or kilohertz, using the unit identifier.

63

CSS FUNDAMENTALS FOR ADVANCED USE

Angles are used in properties such as that define where the listener is in three-dimensional
space. Angle values can be defined in terms of degrees using the unit identifier, grads (1/400 of a
full circle, or 1/100 of a right angle) using the unit identifier, radians using the unit identifier,
and turns using the unit identifier. Negative angles are normalized to a 360º range such that, for
example, is equivalent to .

Strings
A string value is an arbitrary run of characters denoted by single or double quotation marks. We’ve
already seen string values inside of attribute selectors, but they are also used within property values.
The property, which produces CSS generated content, is one such example:

We discuss string values and how to escape characters within them (using string escape sequences) in
more detail Chapter 3.

Functional notation
In CSS, functional notation is used to specify values for a number of properties. If you have any expe-
rience with formal programming languages, you know that a function optionally takes arguments
(parameters) and returns values. To use an example from PHP, a call to a function like
returns a string from the function formatted using the argument , which (at the time of this
writing) ultimately evaluates to . PHP syntax is derived from the C programming language,
as is the syntax for CSS values that use functional notation.

Values in functional notation look similar: a term (function name) is followed by a pair of matched
parentheses, between which arguments may appear in a comma-separated list. The arguments them-
selves are dependent on the function being called.

Frequency units make it possible to write aural style sheets with bass and treble
control for things such as the speaker’s pitch. For instance, a declaration such as

 specifies the pitch for a typical human male voice (is a
bass sound, whereas is treble sound; typical female voices are around).
Time units allow aural style sheets to influence the rhythm of speech15 with properties
such as or . For instance, a dramatic pause before begin-
ning to quote a speech may be appropriate and could be specified in CSS with a rule
such as .

15. In linguistics, the rhythm, stress, and intonation of speech are collectively known as prosody.
CSS also provides many keyword values for properties that influence stress and intonation
as well as rhythm of speech.

64

CHAPTER 2

URI references: the url() function
The function takes one argument, which is—predictably—a URI.16 It is used in CSS rules such as

 or to reference the URI of another resource like an image or different CSS
file. The URI may be a relative, or absolute, path, or it may be a fully qualified URI. Relative URIs refer-
ence resources relative to the location of the CSS file itself, not the documents that they are linked to.
The argument value may be surrounded by quotes or left unquoted. Here are some examples:

If a URI value contains whitespace, parentheses, single quotes, or double quotes, those characters
should be appropriately escaped. This is done either by preceding them with a backslash () or by
using the correct URI-escape sequence. For instance, the following two URIs are equivalent:

Color functions: rgb(), rgba(), hsl(), and hsla()
Representing color in CSS2.1 can only be accomplished by mixing values of red, green, and blue
(RGB).17 The current draft of CSS3 adds the ability to do so using a combination of hue, saturation,
and lightness (HSL) as well. Both methods are widely understood by graphic designers and supported
by computer graphics applications.

RGB color values are expressed as a list of three integers or percentages. Integers can range from
 to , while percentages can be any decimal value from to 18 so a numerical value of

is equivalent to a percentage value of . Each value in the list represents the color channel for its
position. A declaration such as specifies as the red value, as the
green value, and as the blue, resulting in a sort of olive color.

Any visual element can also be made partially transparent with the use of the property. This
property accepts a non-negative number in the range of (completely transparent) to (completely
opaque). CSS3 introduces an function, where the “A” stands for the alpha (transparency) chan-
nel. This functions identically to , but accepts a fourth argument representing an value.
As such, the following two CSS rules are equivalent:

16. The function recognizes any valid IRI (that is, Internationalized Resource Identifier), not merely URLs.
Despite this, for legacy reasons, the function’s name is still and not .

17. This is true even for print media—color cannot be declared as a combination of cyan, magenta, yellow, and
black (CMYK) inks. It is up to the user agent to perform an appropriate translation from RGB to CMYK colors,
if necessary.

18. Technically, you can specify values outside of this range, but the user agent is expected clip them. In other words,
a specified value of is equivalent to , and a specified value of is equivalent to .

65

CSS FUNDAMENTALS FOR ADVANCED USE

Representing colors as RGB triples have certain limitations: they imply certain kinds of hardware (such
as CRT monitors), and they aren’t how humans natively perceive light. To address these concerns, the
latest drafts of the CSS3 Color Module add HSL values, which are considered to be more intuitive than
RGB values and easier to comprehend. Using the function, you can declare a color hue as an
angle on the color wheel and that color’s saturation and lightness as percentages.

A value of or in the first argument represents red, represents green, and represents
blue. Full color saturation would be denoted as a value of in the second argument, while a value
of would display a shade of gray. Finally, the third argument denotes the lightness (sometimes also
called luminosity) value; is white, black, and “normal.” Here are a few examples of the

 function:

There is also an function in the specification to allow for alpha transparency as a fourth
argument identical to the function. Since the CSS3 specification is still in the works and only
Gecko and WebKit currently support or values, you needn’t concern yourself with these
options too much. They are, however, something to keep an eye on and look forward to.

The property is also unique in accepting a special kind of notation to repre-
sent color values called hexadecimal notation.19 Hexadecimal values use hexadecimal
digits (through , which is base 16) and look like , called a hex triple. That
value is equivalent to the keyword and to .

Hex values are really just RGB values in disguise: the first pair of numbers indicate
the amount of red, the second pair indicate the amount of green, and the third the
amount of blue. For any hex color where the R, G, and B values are doubled, such as

, you can use a three-character shorthand: . Hex values are case insensi-
tive, so is the same as (or for that matter).

19. Actually, the property is unique for additional reasons than merely this one, but a full
discussion of the property is beyond the scope of this book. In CSS3, how colors are
defined is the topic for an entire module called CSS Color, and it is currently making its way
toward standardization as of this writing. The latest working draft of the CSS3 Color module
is available online at .

66

CHAPTER 2

Generated content functions: attr() and counter()
The and functions work in tandem with the property to return the value
of an element’s attribute or the counter named in its argument, respectively. In CSS2.1, both functions
return a string, although in the current draft of CSS3 the function will accept an optional sec-
ond argument that specifies the type of value to return.

This can often be used to extract additional content from your markup and make it visible as rendered
content. For example, given this HTML:

the following CSS declaration can render the value of the attribute:

Both the and functions are discussed at much greater length in Chapter 3.

Basic math for computing lengths: the calc() function
The function is part of the CSS3 draft, but is not yet implemented by any of the mainstream
browsers. Permitted anywhere length values are, it is intended to be a way to calculate length values
dynamically using basic math operators like addition (), subtraction (), division (), and multiplica-
tion (). This would enable expressions that mix relative length units to be specified, but have the
actual value of the expression substituted as the resulting value.

One situation where this capability would be useful is where elements have margins specified using
relative units but need width values specified by taking into account some amount of fixed units. For
instance, here’s a CSS rule that would (theoretically) make an element’s width exactly 25 pixels wider
than half of its parent’s width, and will also subtract the width of its margins, whatever that is at any
given time:

Note that grouping parentheses are likely to be allowed in expressions, and that the and
operators have lower precedence than the or operators. Again, we stress that this function is not
implemented in any mainstream browser. However, basic math like this has been a desirable feature
for quite some time, and we’re excited about the possibility of seeing it implemented one day.

Visual rendering and formatting concepts
When it comes to implementing visual designs in CSS, two intrinsic concepts are perhaps the most
often overlooked. These two concepts are document flow and the CSS box model, and the two are
very closely related. It’s these two fundamental concepts that make using CSS radically different than
using other tools. Therefore, these fundamentals of how CSS works deserve a closer look.

67

CSS FUNDAMENTALS FOR ADVANCED USE

CSS boxes and document flow
When any element is rendered visually, it occupies a rectangular region of visual space. These rect-
angles are referred to as CSS boxes. For instance, every visible element on a page creates an
invisible rectangle on the screen inside of which the content of that paragraph is displayed, or flows
into. All of a paragraph’s content, typically text, also render as CSS boxes, albeit boxes of a different
kind. The elements create what are known as block-level boxes, whereas the strings of text within
them create inline-level boxes. These two different kinds of CSS boxes flow onto the screen in very
different ways.

How CSS boxes flow when they are rendered is not determined by chance, but by a precise system
that a renderer (such as a web browser’s rendering engine) uses called document flow. Being aware
of how this system works—and how to manipulate it—is a core part of mastering CSS-based design.
Every element on a web page, every headline, every list item, every paragraph, and even every line
of text and each individual character within every line of text follows the rules of document flow to
determine where they end up on the screen.

Fundamentally, the rules are simple: block-level boxes always flow one on top of another, like bricks
in a vertical stack. In contrast, inline boxes flow one after the other horizontally, literally in the same
horizontal line as any neighboring inline elements. A user agent’s built-in style sheet determines what
elements create what kinds of CSS boxes.

For example, paragraphs are initially declared to be block-level boxes, so each time you define a new
 element (and thereby generate a new block-level CSS box), the browser places that paragraph

underneath any block-level boxes that came before it in the document flow. This is why two sibling
 elements always create two distinct chunks of text, one atop the other, by default. Other elements

that create block-level boxes are headlines, elements, and lists (not list items, but the list item’s
containing elements, , , and).

Runs of text, and indeed each individual character, or glyph, are rendered as inline boxes. If there’s
not enough horizontal space for an inline box to fit on one line, then the boxes get bumped down
to the next line. This is why English text inside of a paragraph begins at the paragraph’s top-left cor-
ner, flows horizontally across the width of the paragraph, and then ends at the bottom-right corner
(known as left-to-right, or “LTR” text flow).

Such runs of text that are inside block-level elements create anonymous inline boxes. They are
“anonymous” because a CSS selector can’t explicitly target them (without the help of pseudo-
elements). However, many elements that can be targeted create inline boxes by default, too. Some
examples of such elements are images, links, and emphasized text (the and elements,
for instance).

These rules, where paragraphs are laid out vertically and runs of text start at a content area’s top-left
corner and flow to their destination at the bottom-right corner is, of course, the normal direction in
which content flows when written in the English language. However, this is not the case for all lan-
guages. Hebrew is an example of a language that reverses the direction of flow so that it begins from
the top-right corner and ends at the bottom-left corner (known as right-to-left, or “RTL” text flow).
Arabic, Farsi, and Urdu are also written using right-to-left text flow. Chinese is an example of a lan-
guage that can be represented by writing ideographs in either direction, so it is said to be bidirectional
(or “BiDi” for short).

68

CHAPTER 2

It’s easy enough to see how document flow affects how certain glyphs are rendered. Based on the lan-
guage specified in the web page’s element, the web browser simply places the first character
at either the top-left or top-right corner of the paragraph and then places each successive character
it sees to the right or left of the one before it. Recall that the root elements in our web pages in this
chapter have begun like this:

Since you’ve defined that this web page is written in English by specifying the and
 attributes, the web browser will assume a normal flow for what is expected in English,

specifically a direction of left-to-right text. If you’re feeling experimental, go ahead and add the
attribute with a value of (short for right-to-left) to the element, and you’ll see that now
every headline and paragraph is right-aligned (instead of how it was previously left-aligned) and the
punctuation marks are all on the “wrong side” of the words.

CSS boxes interact with one another in particular ways. Inline boxes are always rendered inside a
block-level box, known as their containing block. If a CSS box’s containing block is sized at unchang-
ing dimensions and the box is too large to fit within it, then it will overflow (become visible outside
of) the container. However, this overflow doesn’t typically affect the visual positioning of any other
CSS boxes inside of different containing blocks, such as text in the next paragraph. The result, of
course, is overlapping text. In such a case, each of the two paragraphs’ individual inline boxes are said
to be in a different flow from the other.

As a designer, you influence the layout of a page by manipulating CSS boxes so that they fall into
the document flow the way you want them to, much like a game of Tetris. The value of an element’s

 property determines what kind of CSS box it will create. Here’s an example of what the
default CSS rules that web browsers use to make elements block-level and elements
inline-level might look like:

Of course, you can override these default styles and make any element generate any kind of box you
want—something that was flat-out impossible before the advent of CSS. For example, you could add a
CSS rule that makes elements generate block-level boxes instead of inline-level boxes, as shown
by the following CSS rule. Among other things, this obviates the need for explicit line breaks inside the
markup of documents that are used for the same effect.

Block-level boxes that have no specific declared extend as wide as they can while still fitting
within their containing block. Inline-level boxes, however, grow only as wide as they need to be to
make their content fit within them. Inline boxes are like shrink-wrap that surrounds whatever their
content is.

The property can also be given a plethora of other values, each of which relates to a specific
formatting context. The two most common formatting contexts are the ones we’ve just discussed,
block and inline, which provide the basis for the behaviors of the others. Another common kind of
CSS box that you’ve no doubt encountered is a list-item box. Not surprisingly, elements are
defined with a default CSS rule such as . We discuss list-item boxes in
detail in Chapter 3.

69

CSS FUNDAMENTALS FOR ADVANCED USE

A fourth formatting context is one for laying out tables. Of course, the element uses this
by default, perhaps initialized in a user agent’s default style sheet with a CSS rule such as

. Tables themselves behave like block-level elements, but unlike CSS
boxes, the contents of CSS boxes can behave like rows (using) or columns
(using).

The point here is that a CSS box is to a CSS developer as a paintbrush is to a fine artist; choosing
different brushes will create different effects on a canvas, and choosing which kind of CSS box to
render will similarly create different effects in your visual design. Learning to use each of them for
their intended purpose can dramatically improve your capabilities. If you “go with the flow,” your CSS
code will be more robust, less prone to browser bugs, and more optimized, all without any additional
efforts.

CSS positioning schemes
In addition to the property, other CSS properties also affect how a CSS box is rendered and
how it interacts with the rules of document flow. Two of these are (which accepts a value
that’s one of , , , or), and (which can have a value of either
or .) Together, these two properties render an element using one of three different positioning
schemes.

The first of these schemes is the normal document flow that we discussed in the previous section.
Another is absolute positioning, in which the absolutely positioned element (and all its descendant
elements) is removed from the normal document flow and put into its own context, as though it were
the only element being rendered. This makes it possible to position any chunk of content indepen-
dently from any other chunk, as each chunk is guaranteed not to influence the layout of the other—
each chunk is in its own flow.

The third positioning scheme is floated positioning, a sort of middle point between the normal flow
and absolute positioning. Floated boxes are “half removed” from the normal document flow, so that
they flow somewhat independently of block-level boxes but still affect the flow of inline-level boxes.
Let’s take a quick look at each of these by examining the and properties and their
possible values.

Static positioning
By default, all elements are positioned statically, and indeed is the initial value of the
property. In other words, an element that is “statically positioned,” or “not (specially) positioned,”
is simply in the normal document flow. Typically, you’ll use the value to restore a previously
positioned element back to the normal document flow.

Using the previous example of two sibling paragraphs, you can say that each is statically positioned
and therefore they flow as you would expect, one atop the other. Similarly, other block-level elements
such as the s in the following example are also statically positioned:

70

CHAPTER 2

Since elements are also block-level elements by default, these will also stack one atop the other
as you would expect them to when a declaration is not in effect. Therefore, lacking other
CSS rules, every element is initially positioned statically. This is equivalent to a default style sheet’s CSS
rule like this:

Relative positioning
Using relative positioning, you can change where an element’s CSS box is rendered without changing
the document flow or influencing the layout of other elements. Therefore, elements that are relatively
positioned are still in the “normal” document flow, and their neighbors behave as though they were
positioned statically, even though they’re not. An example will help to illustrate this, so let’s build on
our previous example and look at what relative positioning does.

In this document, you have three block-level elements that demarcate the contents of sections
of an orchestra. The violin section is first in the markup source, and so it is rendered at the top of
the document. The next is for the violas, and it renders underneath the violins, and the final

 element for the cellos similarly follows suit. Each of the elements is given and
 dimensions, a , and a to help them stand out for the sake of this

illustration.

71

CSS FUNDAMENTALS FOR ADVANCED USE

There are no surprises with all the elements statically positioned as they are here. Now let’s position the
middle (the violas) relatively using the CSS rule shown here. You can see the results in Figure 2-8.

Figure 2-8. Positioning the viola relatively
moves the element’s CSS box to a new location
but doesn’t affect the normal document flow.

As you can see, after you declare that the violas will use positioning, you use any of
the four box offset properties (, , , and) in conjunction with one another to
move the CSS box to its new place. This example uses a negative value () on the property
to move the CSS box “up” by the specified amount, but a positive value on the property (such
as) would have achieved the same result. The example also uses the property
with a positive percentage value to move the CSS box to the right. Relative positioning can therefore
be described as moving the display of a CSS box to a new location by a certain offset as calculated by
where it would have been displayed if the element were statically positioned.

72

CHAPTER 2

Two things are especially noteworthy here. First, notice that there are 20 extra pixels of blank space
below the viola . While the display of the relatively positioned has moved, the space it occu-
pies in the document flow has remained the same—the viola is still in the normal document flow,
but is relatively positioned within it. In other words, as far as this ’s siblings are concerned, it hasn’t
been moved at all, which is why its CSS box now overlaps the one that came before it and why there is
extra “blank” space beneath it.

Second, notice that if you resize the browser window and make it bigger, the will move farther
right, while resizing the browser window so that it is smaller will move it farther to the left. What
we have here is a situation where the browser automatically computes the appropriate offset
value by dividing the current viewport’s width by 4 (that is, by). If the browser viewport is exactly
400 pixels wide, then the offset value will be computed as .

Using relative units can lead to some interesting results, but when you use them it’s very important
to know what the unit is being calculated against. The reason references “one fourth of the view-
port’s width” in this example is because there is no explicit nearest positioned ancestor, and in such
a case the root element (that is, the browser viewport) is implicitly given that role. We can change
that, however, by adding another element and giving it a value other than . Now our
markup looks like this:

And our CSS looks like this:

73

CSS FUNDAMENTALS FOR ADVANCED USE

Now, the offset in the CSS rule targeting will always be calculated as because the
calculation is being performed against the of (earlier declared to always be

). By positioning the new wrapper , it has become the nearest positioned ancestor for the
violas . You can optionally move the wrapper around by declaring offsets for it as well, but that’s
not necessary for establishing a positioned ancestor like this.

Absolute positioning
A single rendered document must have at least one normal flow, but you can define any number of
additional ones by using the absolute positioning scheme. Doing so removes the absolutely positioned
element from the first flow and places it into an entirely new flow of its own. The CSS box of the abso-
lutely positioned element becomes the nearest positioned ancestor of that element’s descendants,
and the descendant elements’ CSS boxes all assume a normal flow within their containing block.

All CSS boxes are drawn on a theoretically infinitely sized canvas. A web browser’s viewport shows
you only a portion of the canvas at any one time (that’s why it’s called a viewport in the first place),
and provides you with scroll bars to position it over the area of the canvas you want to see. The size
of the canvas is determined by examining the dimensions of CSS boxes and the current size of the
viewport. If the viewport is taller than the height of the longest document flow, then the canvas
extends to the bottom of the viewport and no farther. If a document flow is taller than the height of
the viewport, then the canvas extends to the end of the tallest document flow.

The absolute positioning scheme takes effect when an element’s position property is given either
 or as its value. Let’s position the viola again, but this time you’ll use

positioning. The result of this change is shown in Figure 2-9.

As you can see, this simple change has produced a dramatically different visual result. The viola
has shifted so far up the screen that it’s being cropped at the top of the viewport. Moreover, there is
no longer any blank space between the s for the violins and cellos. Instead, they are touching
one another, as though they were statically positioned sibling elements in the source code.

74

CHAPTER 2

Figure 2-9. The viola now uses
positioning with the same and offsets
as before, but the visual result is markedly
different than the result of using
positioning.

By removing the viola from the normal document flow with positioning, the browser’s
rendering engine lays out the CSS boxes as though the viola section is a completely different visual
layer. You now have two flows: one that exists inside the element as normal, and one that
exists only within the viola , which no longer participates in the element’s flow. As hap-
pened before, since the viola doesn’t have a nearest positioned ancestor, its CSS box offsets are
calculated against its new containing block, which in this context is known as the initial containing
block (that is, the root CSS box).

It’s trivial to determine when an absolutely positioned box, sometimes more succinctly referred to as
an AP box, is being offset from the initial containing block. Using a CSS rule like the following will affix
the top-left corner of the viola to the top-left corner of the viewport:

This next CSS rule will affix the top-right corner of the violas to the top-right corner of the
viewport:

75

CSS FUNDAMENTALS FOR ADVANCED USE

Ultimately, however, absolutely positioned elements are rendered based on their location in a par-
ticular flow of content, which is not necessarily relative to the viewport. As before, if we explicitly
add a positioned ancestor element to our document, the CSS box of the nearest positioned ancestor
element will be the one from which all box offsets for the absolutely positioned box are calculated.
By appropriately structuring your document’s markup in this way, you can move CSS boxes around to
create arbitrarily complex visual layouts.

Fixed positioning
The other way to position an element with the absolute positioning scheme is to use position-
ing. Fixed positioning works in the same way as absolute positioning does except that the CSS box
offset is always calculated relative to the coordinates of the viewport, not the canvas. This subtle
distinction means that the fixed element will remain motionless as the canvas for continuous media is
moved underneath the viewport when you scroll. In paged media contexts where you have a page box
instead of a viewport, CSS boxes will be repeatedly rendered in the same place on every page.

In the following example, which includes numerous filler paragraphs in order to lengthen the normal
document flow beyond the height of our canvas, the violas is fixed in the center of the view-
port, as though it were a watermark. As all offset properties and CSS box sizes are calculated relative
to the viewport, we use percentage values to fill of the viewport with the contents of the ’s
CSS box and then center it by placing its top-left corner away from the top-left corner of the view-
port’s coordinate. Figure 2-10 shows the print preview result as rendered by Firefox 3.

Sadly, is not supported at all in Internet Explorer 6 and earlier. Additionally, the
WebKit rendering engine fails to treat each page box as individual viewport-like objects and instead
seems to treat all of the page boxes together as though they were a single, extremely tall one. This
results in positioned elements not being repeated, but rather stretched and broken across
page boxes. WebKit’s print preview rendering of the same code is shown in Figure 2-11, and the print
medium is discussed in further detail later in this book.

76

CHAPTER 2

Figure 2-10. Firefox’s Gecko rendering engine correctly repeats the
 position on each page of the printed output.

77

CSS FUNDAMENTALS FOR ADVANCED USE

Figure 2-11. Safari’s WebKit rendering engine incorrectly stretches
the position across all pages of the printed output.

78

CHAPTER 2

Floated CSS boxes
Any CSS box can be rendered using floated positioning by declaring the property with a
value other than . Floated boxes are always implicitly transformed to block-level boxes, even if

 is specified on their elements. Despite this, because they are pulled out of the nor-
mal document flow, they size themselves similarly to inline boxes, shrinking their width and height to
accommodate their contents unless explicit or dimensions are declared.

Floating a box moves it horizontally in the direction specified (either or) until its margin
edge reaches the content edge of its containing block. Floated boxes are unique because they affect
neighboring floated or inline CSS boxes, not other block-level boxes that aren’t also floating. In fact,
nonfloating block-level boxes behave as though the floated box doesn’t even exist.

In this example, the is floated to the left, its explicit and are removed, and
it’s given a different for illustrative purposes. The result of these CSS rules is shown in
Figure 2-12. As you can see, the dimensions of the floated have shrunk to fit around its
content, and moreover, the surrounding block-level elements have shifted upward and are now
touching one another. The only CSS box affected by the floated box is the inline box within the

, which has been pushed aside.

Figure 2-12. The floated is
removed from the normal document flow so
block-level boxes ignore it, but inline boxes are
still affected by its presence.

79

CSS FUNDAMENTALS FOR ADVANCED USE

Stacking contexts
We’re accustomed to thinking of web pages as a two-dimensional plane with an x- and a y-axis, but
rendering engines lay out CSS boxes in three dimensions. The canvas can therefore be thought of as
having an x-, y-, and z-axis. Depending on a web page’s direction of flow, the top-left corner of the
document flow (or the top-right corner in right-to-left flows) can be said to be at coordinate on
this imaginary graph of the canvas. The z-axis determines how near or far a particular CSS box is to
the viewer’s eyes. Each CSS box on a web page is positioned somewhere along the x-, y-, and z-axes
on this imaginary graph.

In CSS, this z-axis is called the stack level. CSS boxes with higher z-axis values are considered “closer”
to the viewer than CSS boxes with lower values so, for example, a box at coordinate is said to
be “behind” a box at coordinate . Figure 2-13 shows what such a graph might look like from a
web browser’s point of view.

z-axis

x-axis

y-axis
Closer to the
viewer’s eyes

0,0,0
0,0,1

0,0,2

Figure 2-13. A three-dimensional graph has an x-, y-, and z-axis. CSS boxes are
positioned somewhere along each of these three axes.

80

CHAPTER 2

Each CSS box generated within the content area of another CSS box is actually being stacked on top
of it, like a collage made with construction paper. As you continue nesting elements, you continue to
stack CSS boxes one on top of another in an endless (and often invisible) tower. Among other things,
it’s for this reason why any background applied to the element always appears to be behind
any other element on the web page and why the most deeply nested elements always appear to be in
front of all their parent elements.

Moreover, you can control where a CSS box is placed along this z-axis with CSS using the
property, which specifies a number that represents a point along this z-axis relative to the other CSS
boxes in the same containing block. In other words, one CSS box with a value of is only in
front of another CSS box with a value of if they are both rendered inside the same contain-
ing CSS box. If they are not, it is the relative values of their containers that determine which
element overlaps the other.

To illustrate this, let’s first reposition our orchestra’s three string s absolutely such that they
overlap one another. The results of the following CSS rules are shown in Figure 2-14.

With no properties declared explicitly, each element’s value is set to the initial
(default) value of . The effect is the same as setting each element’s value to the same
number since, when positioned absolutely like this, each box has the same containing block (the initial
containing block, in this case). We can see that each box is layered according to its source order. That
is, the is positioned “on top of” the previous elements that came before it in the
document markup.

Now, let’s change the stacking order of these CSS boxes so that the is behind the others.
This is achieved simply by giving it a negative value. The effect of this additional declaration
is shown in Figure 2-15.

81

CSS FUNDAMENTALS FOR ADVANCED USE

Figure 2-14. Each element is now absolutely posi-
tioned so that they overlap one another in predictable ways.

Figure 2-15. Adding declarations changes the
stacking order of CSS boxes within the same containing block
relative to one another.

82

CHAPTER 2

Another way to achieve this same effect could have been by giving positive values to the
other elements. It also doesn’t matter what these values are, as long as they are higher
than the one given to the other box. Here, we give the other elements a value of .

These CSS rules would position the element on top of both of the others, with the
 directly behind it. However, these values are relative to the others in the same containing

block—they’re not absolute coordinates. Therefore, if we once again added a wrapper element
to the element and gave it a higher value than the element (say,

), then the would once again overlap the , as before.

83

CSS FUNDAMENTALS FOR ADVANCED USE

As you can see, the property therefore allows you to define a sort of layering behavior that
mimics the common notion of layers prevalent in many computer graphics programs like Adobe
Photoshop. Indeed, for a time, many CSS-capable integrated development environments (IDEs), such
as earlier versions of Dreamweaver, referred to “layers” in their user interface.20 What they referred to
are typically absolutely positioned boxes with an explicit declaration. Dreamweaver CS3 now
refers to “AP Div” objects instead, and has menu options and controls that allow you rearrange them
using the property.

CSS box models: content-box model vs. border-box model
Design, and especially visual design, is all about relationships between different elements. A headline
only stands out as such because it’s bigger, or bolder, than the body text. The content sections in a
site’s sidebar are visually distinct because they have more whitespace around them than exists within
them.

In CSS, each element creates a box of a certain display type and each box has four distinct areas that
can be individually manipulated. From inner- to outermost areas, these are a content area, a padding
area, a border area, and a margin area. Each of these areas has four sides, which themselves can be
individually manipulated. You can use tools such as Firebug or the Web Developer Toolbar add-on for
Firefox, or the Web Inspector’s Metrics pane in Safari to see the dimensions of CSS boxes, as shown
in Figure 2-16.

Figure 2-16. The properties of a CSS box,
as shown in Safari’s Web Inspector. Similar
views are available from the Firebug add-on
for Firefox.

20. The notion of layers in a web page originally came from Netscape, which supported the proprietary
element.

84

CHAPTER 2

Currently in CSS2.1, a box’s dimensions are calculated by cumulatively adding the sizes of each side of
each area. In the example box shown in Figure 2-16, we have a CSS box that is a total of 204 pixels high
and 104 pixels wide. This is because the content area’s width is 200 pixels wide and 100 pixels high, and
the only other area sized with nonzero values is the border area, which is drawn with 2 pixels on all sides.
These values might have been set in a CSS rule such as the following:

Therefore, the total width of the rendered CSS box is 200 pixels of content area, plus 2 pixels of left
border area, plus 2 pixels of right border area, equaling 204 pixels of screen space. A similar calcula-
tion is performed to size the box’s height. A box sized in this way is said be sized using the content-
box model because of the way the content area’s dimensions are explicitly specified in the or

 declarations.

In CSS3, a new box-sizing algorithm has been introduced called the border-box model. Using this
algorithm, rather than adding to the rendered size of a CSS box when declaring non-content-area
lengths (such as or), the length of those areas are subtracted from the content area’s
dimensions. If the box shown by Figure 2-16 was sized using the border-box model, then the code to
achieve a width of the box at 204 pixels with the same border area as before, we’d have to use CSS
code that looks like this:

Notice that our and declarations have been changed so that they declare the total ren-
dered size of the box, instead of the size of the content area only. As the content-box model is the
default box sizing method for all standards-compliant user agents, we also have to explicitly tell the
renderer to use the border-box algorithm using the property.

Although only experimentally implemented in many mainstream web browsers like Firefox 3 and
Safari 3, the border-box model will be useful for elements that use relative units to size non-content
areas. For example, using border-box sizing, you can create two equal-width columns within a single
container, without additional markup that would otherwise be necessary.

85

CSS FUNDAMENTALS FOR ADVANCED USE

The previous CSS could be applied to simple markup such as this:

These two box models are entirely incompatible with each other, since different or
values are required to achieve similar results. Nevertheless, for legacy reasons, all current versions of
Internet Explorer use the border-box model instead of the standard content-box model to size all CSS
boxes when the browser is rendering page in quirksmode. Therefore, it’s important to ensure that
your page is being rendered in a standards-compliant mode. To do this, always use a valid DOCTYPE
at the top of your markup.

Summary
In this chapter, you’ve looked at a number of fundamental constructs for Cascading Style Sheets,
including a user agent’s initial styling, how to apply styles to elements, and how author and user style
sheets interact. You also explored CSS selectors in detail as well as the many different units CSS makes
available for your use. Finally, we discussed the intricacies of CSS’s visual rendering models by explor-
ing the critical aspects of document flow and CSS boxes, how the two interact with each other, and
how you can manipulate them to achieve your layout objectives.

You learned how the document flow can be altered using a combination of the , ,
and properties, and how combinations of CSS boxes in the three different positioning schemes
interact. You learned that the canvas on which CSS displays content is actually a three-dimensional
grid, and you saw how to use the property to stack CSS boxes in a particular order one on
top of the other. Finally, you saw how the two CSS box models, the traditional content-box model and
the newer border-box model, differed from each other, and where one might be preferable to use
over the other.

This is a comprehensive but not an exhaustive reference of the CSS specifications. It is instead a solid
foundation in the concepts that you will need to be intimately familiar with in order to take your CSS
skills to the next level. There is a lot to digest from this chapter, so rather than spending your time solely
rereading it, we encourage you to keep these discussions in mind as you author your next style sheet.

The conceptual frameworks introduced in the first part of this book are the foundations
on which a thorough understanding of CSS is laid. Document flow, the various position-
ing schemes and formatting concepts, and stacking contexts are what make it possible
for CSS rules to define the form of content so completely. Transforming a piece of con-
tent into multiple alternative presentations is at the core of most CSS development, even
if you’re ostensibly only working with a single design mock-up.

In this part of the book, we’re going to move further into the practical aspects of work-
ing with CSS and what it can do. Each chapter focuses on a different cross section of CSS
development that draws on numerous concepts from the previous part. Let’s dive right
in, beginning with exploring the specifics of CSS-generated content.

ADVANCED CSS IN PRACTICE

Part 2

89

Chapter 3

In addition to providing many means to present the content that already exists within
a document, CSS provides a mechanism for rendering additional content. This content
is called CSS-generated content, or pseudo-content, because it doesn’t actually exist as
part of the document structure. Instead, it exists in a sort of ghost state, rendered and
painted on screen (or in whatever other way is being presented) but not “physically”
there. In many instances, interaction with such content is therefore restricted so that it
can’t be selected by a cursor, accessed via scripting APIs, and so on.

In this chapter we’ll explore CSS-generated content in more detail and showcase
some of the ways it can be used to enhance presentation. It’s important to remem-
ber that CSS-generated content, despite its name, is still a presentational effect.
Therefore, we’ll also supply some guidelines for using CSS-generated content in ways
that adhere to development best practices such as progressive enhancement.

CSS-GENERATED CONTENT

90

CHAPTER 3

How generated content works
Whether or not you realize it, you’ve probably already used CSS-generated content in your day-to-day
web development tasks. In CSS2.1, there are two mechanisms you can use to generate content with
style sheets. The one you’re already familiar with from previous chapters in this book is the markers,
such as bullets and numbers, at the side of list items.

Thanks to their ubiquity, ordered (numbered) lists are a great example of where CSS-generated con-
tent is useful. In such lists, each item in the list is numbered according to its position relative to the
other items. The first one therefore has the numeral 1 next to it, the second has the numeral 2, and so
on. If we were marking up the notes in an ascending scale in such an HTML ordered list, the markup
would look like this:

The actual rendering of this list would predictably look something like this:

1. A

2. B

3. C

4. …

Interestingly, the numerals at the side of the notes are rendered as well. How is this happening,
since nowhere in the HTML are these numerals specified as content? The answer has two distinct
components.

First, CSS-generated content provides a means to render CSS boxes and attach them to CSS boxes created
by “real” content. As shown earlier, one way to generate these pseudo-content CSS boxes is to create list
items or—more precisely—to declare on an element (indeed, any element). Elements
with the value to the property automatically generate a marker box, one kind of CSS-
generated content. We’ll examine marker boxes in much more detail later in this chapter.

The other way to render CSS-generated content is to declare a value for the property in a
CSS rule that selects the or pseudo-elements. These pseudo-elements are abstracted
hooks that allow you to attach CSS boxes to any arbitrary element and then flow whatever content
you specified with the property into that newly generated box. This mechanism of generating
pseudo-content is discussed in the next section.

90

91

CSS-GENERATED CONTENT

91

The second piece of the puzzle to an ordered list’s automatic numbering is that CSS also provides a
simple mechanism for counting the occurrences of a particular thing (in this case, elements). The
count of these occurrences is saved in a counter, which is somewhat analogous to a simple variable.
Each time one of these counters is rendered using CSS, the counter value is retrieved and used to
number each of the individual instances being rendered.

The capability to render additional content not in the document itself and to number instances of
elements that are in the document tree provides authors with a number of conveniences beyond
additional styling hooks. For instance, let’s say we want to include sharp notes on our ordered list of
the musical scale. In that case, we need to add new list items in between the ones we currently have.
Our new markup will therefore look something like this:

Thankfully, we don’t have to worry about renumbering any of the elements ourselves, since the origi-
nal list was numbered with CSS in the first place. The new list is numbered correctly, too.

1. A

2. A sharp

3. B

4. B sharp

5. C

6. C sharp

7. …

As you’d expect, you can manipulate both aspects of this behavior through CSS properties. Let’s dive
in by generating some pseudo-content first, and then take a closer look at how CSS counters work
later in this chapter.

92

CHAPTER 3

Generating content :before or :after any element
Pseudo-content is generated with CSS by taking advantage of the or pseudo-elements.
These pseudo-elements, which can be applied to any element in a document, are effectively placehold-
ers where you can inject other content. The property determines what actual content gets
injected.

The simplest value you can give the property is a string. Unsurprisingly, the result of using a
string value is that the generated content is a line of text inside an inline CSS box. For example, if you
were feeling particularly poetic, you could prepend the phrase “Quoth the raven” in front of every
quoted paragraph in your document like this:

When you link this CSS with an HTML snippet such as this one:

the result is a CSS box tree that behaves as though the underlying HTML were changed to something
like this:

In particular, notice that the trailing space character in the property results in a trailing space
character in the generated content right before the (theoretical) tag. This is important for
inline CSS boxes when concatenating text strings. Also notice that the generated content results in a
CSS box that lives “inside” the element to which it is attached. This way, the generated content can
naturally inherit the CSS properties of its associated “real” content.

Conversely, using the pseudo-element as shown in the CSS that follows, the CSS box rendering
would change accordingly but the “real” HTML content can’t be altered.

To override a previous rule that renders CSS-generated content, you need to specify a value of to
the property instead of to the property. Technically, specifying does
prevent CSS-generated content from being displayed, but the content may still be generated and kept
in the user agent’s memory. Therefore, it is more explicit and possibly less resource-intensive to say

 in the context of pseudo-content. You can also use , which does the
same thing but takes slightly longer to type (and sounds somewhat strange).

93

CSS-GENERATED CONTENT

In addition to the value or simple strings, the content property can also accept a value.
When a value is used, the user agent determines the appropriate rendering based on the MIME
type1 of the referenced URI. In other words, if the value references an image, then the image is
rendered as though it were an element placed in the normal document flow. If the value
references an audio file, then screen readers will play the audio when they encounter the element to
which the generated content is attached. Some user agents can also render other files such as SVG or
PDF documents this way, inserting them directly in line with the rest of the flow of content.2

Here’s an example like the one earlier but instead of inserting a string of text, we’ll insert an image of
a raven:

Again, this has the basic effect of modifying the CSS box tree so that the resultant HTML would look
like this:

Using CSS-generated content functions most reliably on non-replaced elements (that is, elements that
have intrinsic layout dimensions). None of the major browsers save for Opera will apply CSS-generated
content to replaced elements such as images because the rendering engine needs to actively change
the element’s structure to do so. Additionally, as replaced elements reference external resources, they
rarely have children. Generating content on an , for example, forces the browser to render CSS
boxes that can be represented in markup like this:

Nevertheless, this works beautifully in Opera and isn’t technically in violation of the CSS2.1 specifica-
tion. However, the CSS specifications are unfortunately vague, offering little implementation guidance
on how generated content should function with regard to replaced elements. As a result, some of
the more compelling uses for generated content are still not cross-browser compatible, although it is
hoped that the CSS3 Generated and Replaced Content module will address these concerns.

1. A MIME type is the term used to catalog different kinds of data in a standard, conventional way so that they can
be attached to various forms of networked communications, originally email messages. For example, is
the MIME type for GIF images.

2. Most notably, this includes WebKit-based browsers such as all versions of Safari. Sadly, as of this writing, the
Mobile Safari derivative that runs on iPhones and iPod touch devices does not yet support SVG at all.

94

CHAPTER 3

Exposing metadata through the CSS attr() function
The function is similar to the function just shown, but instead of referring to another
resource it refers to the value of an attribute of the element to which the CSS-generated content
is attached. Using an value with the property can therefore expose some metadata
about the content to the user, since such metadata is often encoded in an element’s attributes. This
can be used to enhance visitors’ experience by providing contextual but possibly peripheral informa-
tion about the content they are viewing.

In fact, many user agents already do this with built-in features. For example, when you provide an ele-
ment with a attribute, web browsers will often reveal the contents of that attribute as a tooltip
whenever users hover their cursor over that element. Generating pseudo-content with the
function takes this idea one step further. Instead of relying on individual user agents to expose this
multilayered interaction in limited ways, you can proactively feature it and style the information as
you see fit.

Here’s one example to do exactly that. Along with providing a meaningful semantic value to
elements in their attributes, you could use their attributes to provide a caption.3 We’ll use
Opera to do this, as it’s the browser with the most support for CSS-generated content. If you had an

 element such as the one shown next, you could use its attribute to automatically gener-
ate its caption with no markup beyond the element’s required attributes:

The attribute in this element provides everything you need for a caption, so to render it
you could use the following CSS rule. The result is shown in Figure 3-1.

You use the function to the property to extract the attribute’s contents. The
 property is simply used to present the caption and the image their own lines, instead of in the

same inline box. Alternatively, you could place the image on top of the caption instead of beneath it
by injecting the generated content (the caption) the image instead of it.

3. Not only is providing both an attribute (itself required for validation) and a attribute sort of handy, it’s
also a best practice accessibility guideline. See Joe Clark’s book, Building Accessible Websites (New Riders Press,
2002), for a detailed explanation of the accessibility uses for the element’s and attributes, and
how they compare with each other.

95

CSS-GENERATED CONTENT

The attribute selector is used to ensure that only elements with attributes are
selected by the rule. If the element you select doesn’t have a attribute, the result of the call
to will be the empty string (i.e., it will be the same as). Alone, this isn’t problematic,
but when combined with the declaration, even an empty string value creates a line
break, which will result in some unintended vertical spacing.

Another interesting characteristic of the property is that you can supply it with multiple val-
ues and each of them will get injected one after the other, in the order you prescribe. So, for example,
using the image caption example earlier, you might want to not only provide the caption but also
explicitly name the image’s source in the caption itself. You could manually write out the source of the
image in the attribute, of course, but CSS offers this better way:

Figure 3-1. Extracting the contents of an element’s attribute renders as text

96

CHAPTER 3

This time, we provide three distinct values to the property. Once again, note the leading and
trailing single spaces within the quotation marks for the second (plain string) value. With this declara-
tion, your image captions will show the contents of the element’s attribute, followed by a
space, followed by the words “Image retrieved from” and then another space, and finally ending with
the address of the image file itself, as Figure 3-2 shows.

Figure 3-2. The function can be used any number of times in the
 property.

Another thing to note is that our selector hasn’t changed. That’s because the attribute is required on
 elements (for somewhat obvious reasons), so we can safely assume it’s always going to be there.

You may also attach CSS-generated content both and any single element, which
means that every real element in your markup has at least two (and sometimes up to three)
styling hooks for generated content. (is one, is another, and if the element is

, that gives us a third.) So, for example, if you wanted the caption above the image and the
image source below it, you could use the following CSS to do that:

97

CSS-GENERATED CONTENT

In this case, we use the attribute selector in every rule, even in the rule that uses ,
since that’s how we’ve determined that an image has a caption.

The key point is to realize that today you always have at least N 3 potential CSS boxes to style in
any document, where N is the number of real elements in your markup (unless these are replaced
elements, as noted earlier). Usually, thanks to the prevalence of lists, you actually have a little more
than that (although see our cautions on avoiding “list-itis” later in this chapter). You can’t attach
CSS-generated content to CSS-generated content, however, so you don’t get an infinite number of
potential CSS boxes to work with, although this capability is included in the current working draft of
the CSS3 Generated and Replaced Content module.4 That means that while the following two rules are
both valid CSS, the second one will never be used because it can’t possibly apply to anything in CSS2:

If you think you need to do something like this in a style sheet, you may not be making full use of the
document’s structure. Look at the markup around the element you want to style and see if there are
any other styling hooks available to you, such as other nearby elements. If you still can’t come up with
a way to achieve what you want, you probably have poorly structured markup that you might need
to rework.5

Additionally, though we hate to temper any sudden enthusiasm for the incredible potential of CSS-
generated content, there are some important styling restrictions that such pseudo-content adheres to.
Despite this, styling CSS-generated content can be an incredible boon to many, if not all, designs.

Replacing content with pseudo-content
A number of techniques are used in web development today that allow one element to be entirely
replaced with another. Typically, this is a presentational effect that lets web designers use images or
other media such as Flash movies in place of more limited options. Textual headings are frequent
candidates for such media replacement.

Although not widely supported today, the current working draft of CSS3’s Generated and Replaced
Content module provides this capability directly by building on the functionality provided by previous
levels of CSS-generated content. The familiar syntax merely uses the property and applies it
to a real element, that is, without the use of the or pseudo-classes.

4. It is proposed that nesting CSS-generated content function merely by chaining or pseudo-
elements to each other, as described at .

5. Speaking of reworking markup structure for better semantics and styling hooks, might we recommend Paul
Haine’s book, HTML Mastery (friends of ED, 2006).

98

CHAPTER 3

Replacing content in this way can also be used for easily creating low-fidelity alternatives to hi-fi
content, instead of the other way around, as we discuss further in Chapter 5. Sadly, as of this writing,
the only mainstream browser that the previous CSS rules work in is Opera 9.6. However, we hope
that since replacing content in addition to generating content is such a powerful mechanism for web
development other browsers will implement this capability sooner rather than later.

Limitations on styling CSS-generated content
As we mentioned earlier, pseudo-content doesn’t actually exist as part of the document structure.
Once it is generated by a CSS rule, however, it behaves in the same way “real” content would—but
only as far as CSS is concerned. This is an important caveat because it means that even after the con-
tent is rendered, it is still not accessible outside of CSS (such as by JavaScript) via the DOM. In other
words, CSS-generated content is kept very strictly segregated in the presentation layer of your page.

That said, since CSS-generated content is rendered with real CSS boxes, the generated box obeys most
of the rules you might expect. They inherit properties from the content to which they are attached as
though that content were their parent elements, they have the same interactions with their neighbor-
ing CSS boxes according to the rules of document flow, and so on.

One notable difference, however, is that CSS-generated content always remains positioned statically.
That is, CSS-generated content always has and the various values of the
property do not affect generated content as they would “real” content. The same is also true for the

 property. Sensibly, this is to ensure that CSS-generated content always renders near the content
to which it is attached. Due to this restriction, all the following CSS rules are effectively identical to the
image caption example in the previous section:

Another limitation of the and pseudo-elements is that regardless of their contents,
they can only generate a single CSS box. Practically, this means that there is no way to specify that,
for instance, the portion of the previous example’s declaration should be a block-level
box (with) while the rest of the property’s values should be inline. In other
words, any additional CSS properties you declare in a declaration block that targets CSS-generated
content applies to all the property’s values.

Finally, as hinted at earlier, in all mainstream browsers except for Opera, CSS-generated content will
not apply to any replaced elements (that is, elements whose layout dimensions are determined by
external resources). Such elements include elements, elements, and a number of

99

CSS-GENERATED CONTENT

form controls. Even in Opera, only some elements work this way, and they function because the
browser jumps through a number of rendering hoops. The CSS2.1 specification made no restrictions
regarding where generated content could be applied, but implementation proved difficult. As the
CSS3 specification is still not complete, browser makers are unlikely to enable CSS-generated content
on replaced elements in the near future.6

In most situations these limitations are not an issue because generated content should be kept suc-
cinct. If you’re trying to fit too much into pseudo-content, you might consider reevaluating whether
the pseudo-content you’re presenting is actually real content. If it is, you should provide the content
as part of the underlying document itself instead of declaring it in a style sheet.

Although using strings in the property is relatively simple and somewhat limited, there are
nevertheless some remarkably useful things you can do with them. For example, you can force text
into multiple lines much like you might have done with an HTML element. Since we’re inside
of CSS and not HTML, though, using an HTML line break won’t work. To understand why that is, let’s
examine CSS string values and escape sequences in detail.

Understanding escape sequences in CSS strings
Regardless of where they appear, string values in CSS behave in a similar way. The most important
thing to remember about them is that they are not HTML. This means, for instance, that inserting
literal angle brackets without escaping them as HTML entity references (and) is perfectly legal. In
other words, the rule

would result in a pseudo-element whose contents are the five characters (including spaces) and
not a broken HTML start tag. Similarly, this rule

results in a pseudo-element whose contents are the four characters and not an HTML-escaped less-
than glyph. This tells us that the and characters are not treated specially by CSS string parsers, even
though they are characters with special meaning in SGML-derived languages like HTML and XML.

Within CSS strings, the only character with any special meaning is the backslash (). This character
delimits the beginning of an escape sequence, a sequence of characters used to collectively represent
a different character, in much the same way as the ampersand () does in HTML code.

Escape sequences are useful because they allow style sheet authors to represent characters that would
normally be ignored or interpreted differently by traditional CSS parsing rules. The most obvious
example of this is representing a literal backslash in a CSS string. At first, you might think that the fol-
lowing CSS rule would produce a backslash at the start of every paragraph, but you’d be mistaken.

6. The issue with CSS-generated content with regard to replaced elements is in the difficulty of determining its dimen-
sions correctly when the element’s initial rendering depends on an external resource to begin with. A Mozilla Firefox
bug discusses this issue specifically and may prove interesting. It can be found at

.

100

CHAPTER 3

When a CSS parser reads the declaration in this rule, it thinks that the backslash is the start of an
escape sequence, and so it ignores it. Next, it encounters a straightened double quote and, since this
character is not a legal component in an escape sequence, it recognizes it as the end of the string
value and returns. The result is an empty string, sans backslash: .

To get the backslash to appear, we therefore need to escape it, or “undo” its special meaning. This is
simple enough. We merely prepend the backslash with another one, like this:

This time when a CSS parser reads the declaration in the rule, it finds the first backslash, switches into
its “escape sequence mode,” finds a literal backslash character as part of the string value it is parsing,
and then finds the end-of-value straightened quotation mark. The result is what we were originally
after, and the value that the CSS parser returns to the renderer is a single backslash: . Note that
CSS makes no distinction between single-quoted or double-quoted strings, so in either case two back-
slashes are needed in code to output one.

A similar situation exists if you wish to produce a literal double-quote within a double-quoted string.
Instead of writing you would write to tell the CSS parser to treat the
second quote as part of a value instead of the end-of-value delimiter. Alternatively, you could use
single quotes as the string delimiter ().

After the starting backslash, only hexadecimal digits (the numerals through and the English let-
ters through) are allowed to appear within an escape sequence. In such escape sequences, these
digits always reference Unicode code points7 regardless of the character set used in the style sheet
itself. As a result, it’s possible to uniformly represent characters in a style sheet that are not possible
to embed directly inside the style sheet itself. Accented characters (like the “é” in résumé or café) is
an example of one class of characters that would need to be escaped in a CSS string if the style sheet
were encoded in plain ASCII instead of, say, UTF-8.

One useful application for this is to embed line breaks into generated content. The Unicode code
point for the newline character is U+00000A. In a CSS string, this can be written as . In a
way similar to the way a hex triplet for values can be shortened, escape sequences can also be
shortened by dropping any leading zeros from the code point, so another way to write a newline is

. Here’s a CSS rule that separates the two words “Hello” and “world” with a newline, placing each
on their own line.

Something to be careful of when using escape sequences in CSS strings is ending the escape sequence
where you intend to. Observe what happens if our “Hello world” text changed to “Hello boy.”

Now, instead of a newline (code point), our escape sequence is a left-pointing double angle quota-
tion mark, or « (code point). Our generated content now reads “Hello«oy.” This happens because
the “B” in “boy” is interpreted as a hexadecimal digit. The escape sequence terminates at the next
character, the “O,” because that letter isn’t also such a digit.

7. Actually, all CSS string escape sequences are really references to Universal Character Set (ISO-10646) encoded
characters. However, for nearly all intents and purposes, these values are equivalent to Unicode code points.

101

CSS-GENERATED CONTENT

You can explicitly conclude an escape sequence in one of two ways. First, you can specify the sequence
in full using all six hexadecimal digits (including leading zeros, if there are any). Second, you can
append a space. The following two CSS rules are therefore equivalent:

Knowing this, we can now split our earlier image caption example across two lines just where we want
to. Pay close attention to the addition of the declaration. Since we’re generating
whitespace characters and in most situations all whitespace in HTML gets collapsed to a single space,
the declaration is needed to interpret the newline literally (as though all the generated
content were inside a element).

8

If you wish to be explicit about it, you can declare an rule at the very start of
your style sheet to give user agents a hint of what the character encoding of your style
sheet is. For instance, to declare UTF-8, use . If you do include an

 rule, it must be the very first thing in your style sheet, before any pream-
ble—even before comments or whitespace. If it’s not, the rule simply gets ignored.
Being explicit like this is often helpful when working with larger teams, but you should
be wary of relying on the mechanism too heavily. Like HTML
elements, some user agents ignore rules in style sheets in favor of the HTTP

 headers set by the server.8

Advanced list styling: marker boxes and numbering
The HTML language gives us three different basic structures to encode lists. These are an ordered list,
an unordered list, and a definition list (, , and , respectively). Of the three, the definition
list is the oddball; the children of both ordered and unordered lists must be the somewhat nonde-
script list item () element. The element, however, must not be the child of a definition list
and instead only definition terms () and definition descriptions () are permitted.

Each kind of HTML list element comes with some interesting default styles. Both and ele-
ments in definition lists create block-level CSS boxes. However, elements in ordered and unordered
lists typically create list-item CSS boxes. As briefly mentioned at the start of this chapter, these list-item

8. The CSS specifications actually specify that a server’s HTTP headers have precedence over any @charset declara-
tions in the style sheet itself. Additionally, they demand that a user agent that doesn’t recognize the character
encoding of a CSS style sheet ignore the entire file. Though rare, some combinations of user agents and server or
style sheet (mis)configurations can therefore cause confusing bugs during development that appear to drop CSS
rules. At the very least, it behooves front-end web developers to pay attention to how the server is delivering style
sheets to the end user’s device.

102

CHAPTER 3

boxes are special because as well as having the characteristics of a block-level CSS box, they have an
additional CSS box, known as a marker box, that is “attached” to one of its sides. Predictably, the marker
box is attached to the left side of the list-item box in an element with left-to-right document flow and is
attached to the right side in a right-to-left document flow.

Marker boxes have some unusual characteristics. First, because they are not physical structures—
indeed, they are a form of CSS-generated content—they can be used to great effect for stylistic
purposes. Second, because they are automatically generated, they provide a certain amount of auto-
mation for convenience’s sake. Take a simple ordered list, for example:

When rendered with a CSS-capable user agent, the first list item will probably have the number “1”
next to it and the second will have the number “2” next to it, perhaps like this:

1. I’m the first item.

2. I’m the second item.

Those numbers are nowhere to be found in the HTML source code, yet they appear in the correct
order anyway. Indeed, if we add a third item to the end of the list, we’ll likely see a “3.” Even better,
if we insert a new item before the end of the list, all the list items will automatically renumber them-
selves based on their new position relative to the other list items.

This turns out to be extremely useful, and we can do a number of things (no pun intended) to control
the way these lists get numbered. We’ll take a closer look at numbers in the next section on CSS-
generated counters. In the meantime, however, let’s take a closer look at those marker boxes that
these numbers are living in and explore what else we can do with them.

Using built-in marker box styles
Several default styles are available for marker boxes. To pick one, you use the prop-
erty. CSS2.1 defines 14 built-in list marker styles. These are all keyword values that fall into one of
three types: glyphs, numbering systems, or alphabetic systems.

The , , and values are the three types of glyph values, and using them gives you
), or squares (black square bullets such

as) as your marker box contents. For the most part, web browsers initialize an unordered list with
. Nesting one unordered list inside another is less consistent. In all cases,

though, unordered lists nested within other lists use either the or the value to the
 property.

Using one of the glyph marker styles, all the list items in a list will use that glyph. Both the numbering
and alphabetic marker styles that CSS2.1 specifies behave differently. With these, the specific glyph
used depends on the position of the individual list item relative to all the others. In other words, the
specific glyph increments with each new list item element added to the list.

103

CSS-GENERATED CONTENT

Of course, this is pretty intuitive since both numbering systems and alphabetic systems have a well-
known sequence. Three comes after two, which comes after one, and so on. The numbering systems
available in the CSS2.1 spec are , , , , ,
and . Sensibly, is often used as a default for ordered lists.

In addition to sequential numbering, you can also specify the following alphabetic systems:
(or its synonym,), (or its synonym,), or . In some
of the world’s languages, alphabetic systems also double as numbering systems. A prime example is
Hebrew, which uses the first letter of its alphabet () as both a letter and the symbol for the numeral
one. CSS3 is expected to add support for additional alphabetic systems, including as well as the
Japanese and syllabary.9

For lists of any significant length, the numbering system styles are preferred over the alphabetic ones
because CSS doesn’t define what happens to markers for which no subsequent letter is available.
For example, lists of 27 or more items using the alphabetic system might only display
markers for the first 26 elements, since the English alphabetic only contains 26 distinct glyphs. In the
majority of instances, lists that are longer than the alphabetic system used in their markers will revert
to the style at that point.

Naturally, any markup structure can be made to render as a list-item CSS box and thus can accept
any of the list styling properties. This becomes useful when you have a design that needs lots of back-
ground images but are running out of elements that you can attach those background images to. In
such tight situations, you can sometimes get away with transforming one or more block-level elements
to list-item elements and then replacing the built-in marker box style with one of your own, which is
discussed in the next section.

Here’s a trivial example that makes a series of paragraphs look like an unordered list:

Now each paragraph generates a block-level box as well as a marker box. It’s generally only useful to
do this when you intend to provide your own custom imagery to fill the marker box with using the

 property, since the counters in either the numbering or alphabetic systems will not
actually increment as they would with a real or element using the above CSS rule.

Replacing marker boxes with custom images
The property lets you choose your own image in place of the built-in marker box
styles using a value. Any valid URI is acceptable here. When this property is used and is not
declared to be , the value of is ignored.

9. Some of these systems were already present in earlier CSS specifications, but due to a dearth of real-world imple-
mentation support, they were removed in CSS2.1 to make the specification leaner. Recently, with additional focus on
the W3C’s internationalization efforts, these requirements are finding their way back into the proposals for future
CSS specifications. Nevertheless, some mainstream browsers do currently support marker styles such as .

104

CHAPTER 3

Traditionally, this is used to provide custom bullet images for lists in a gracefully degrading way. If
the custom image can’t be fetched, the value of (whether inherited or explicitly
declared) is used instead. Such CSS could look like this:

Another interesting use for custom marker boxes is as limited background images, as mentioned in
the previous section. Since marker boxes grow the size of their associated list-item CSS box, you can
use them to provide an additional styling hook for one side of a complex visual element’s background
image. Specifically, a marker box’s height is either the height of its associated list-item CSS box or the
height of its own content, whichever is greater.

Manipulating the marker box’s position
Like other CSS-generated content, markers are not quite as flexible as “real” elements. Sadly, the origi-
nal CSS2 specification actually provided more control over the styling of marker boxes than the later
CSS2.1 revision. Nevertheless, you can still influence where a marker box is rendered using a couple
different techniques.

Positioning marker boxes outside or inside normal document flow
A list-item’s marker box is unique among CSS-generated content because, by default, it renders out-
side of the CSS box it is attached to as opposed to inside it. This behavior has its heritage in traditional
typography, where (believe it or not) the bullets of lists were actually intended to sit in the margins of
pages and protrude out from the main body text.10 Nevertheless, if you’d like to present lists in your
page with the more contemporary typographic alignment, you can change this behavior using the

 property.

Using the property, you can control whether a list-item CSS box’s marker box
is rendered or the list-item CSS box itself. Specifying a value of (instead of the
default,) on tells marker boxes to mimic the behavior of other CSS-
generated content. More precisely, when the marker box is positioned inside the list item, the marker
box’s contents become part of the inline CSS box created by the list item’s contents themselves.

In code, you can see this by observing that the following two rules create an equivalent effect as one
another, but the first does so with list-item marker boxes while the second does so with pseudo-
content generated using the pseudo-element:

10. For an absolutely fascinating history of typography as well as an infinitely practical reference to it, we highly
encourage you to read The Elements of Typographic Style by Robert Bringhurst (Hartley & Marks Publishers, 2002).
Also see for ways in which you can apply Bringhurst’s lessons to the Web.

105

CSS-GENERATED CONTENT

Once the marker is positioned the list-item CSS box, it becomes part of the inline box in the
normal document flow. Interestingly, however, the pseudo-element still refers to the
first letter of the list-item’s contents and not the marker box, which means you can use it to precisely
position the marker at a horizontal offset from the start of the text. Here’s how you can position a bul-
let exactly 10 pixels away from the beginning of a list item’s text in all conforming browsers:

Marker offsets and marker pseudo-elements
Interestingly, CSS2 defined a property whose intent was to provide a more flexible
mechanism for specifying how far aside a marker box should be rendered relative from its list-item
CSS box, but this was later removed in CSS2.1 and as of this writing is slated for obso-
lescence in CSS3.

In the future, marker boxes will hopefully become more generically useful as CSS3 attempts to bring
some capabilities lost in CSS2.1 back. In the CSS3 List module, markers are subject to the traditional
CSS box model so they can be manipulated using s and the like. Further, you can target them
wherever they appear using the pseudo-element. Recall that all CSS3 pseudo-elements (such
as and) are prepended with a double semicolon, while CSS2.1’s syntax uses
single semicolons. Sadly, as of this writing, support for the pseudo-element (and many other
CSS3 pseudo-elements) is negligible.

Automatic numbering using CSS-generated counters
Since CSS2, the automatic numbering mechanism used to display sequential markers for list items has
been available for use by style sheet authors directly. One of the major advantages of exposing this
mechanism is that it gives developers the capability to automatically number any element or set of
elements that appear within their document markup, so we’re not limited to list items inside of lists.
Moreover, because the numbering system builds on all the fundamentals of CSS-generated content
we explored earlier in this chapter, designers have far greater stylistic control over the appearance of
these numbers.

A counter is merely a named reference to a set of elements to count. If you’re familiar with program-
ming, you can think of it like a kind of limited variable. Automatic numbering in CSS works by setting
various counter-related properties on different elements. The following three CSS rules, for example,
is one way to replace an ordered list’s default marker box numbering with your own implementation
to achieve an equivalent (although not identical) visual appearance.

106

CHAPTER 3

There’s nothing magical in these rules. There are only two new properties and one new value:
, , and , respectively. Together, these three pieces form the build-

ing blocks of CSS counters.

All CSS counters follow the same basic pattern: reset, increment, and render, in that order. The
 property initializes a new counter whose name is the value you specify. It also creates a counter

scope, which is simply the hierarchical context of the markup tree that this particular counter operates
within (in this case, that’s elements). A counter’s scope is discussed later in the section “Counter
scope: exposing structure with nested counters.” The property defines when and
by how much the counter should increment (or decrement). Finally, the function is used to
display the counter in the normal way all CSS-generated content is displayed.

In the previous example, we’ve initialized a new counter called , so that’s the identifier we’ll
use to reference the same counter in subsequent declarations. By default, initializes
counters to , but you can specify an integer for initialization by declaring it after the counter’s name.
The previous declaration is therefore really shorthand for .

After resetting the counter on elements, we select elements and apply the
 property to them. In English, these two rules read, “Number list items for each ordered list.”

Similar to , the property can also take an integer value after the
counter name to specify by how much the counter should be incremented, which defaults to . Again,
this means the declaration in the example is really shorthand for .

Finally, we can then display the value of the counter by generating pseudo-content the list
item and accessing the current value of the counter by passing its name to the function. By
default, a counter’s value is rendered as a number, but again, this can be changed by provid-
ing a second parameter to the function. This second parameter takes any of the supported
values you can give the property. Therefore, the above declaration is really short-
hand for .

Atypical numbering: counting backward, skipping numbers,
counting with letters, and more

By using different starting and increment values with the and prop-
erties, you can do some interesting things. These are quite illustrative, so here are some examples.

Initializing a counter to means that the first number displayed is a 1 because counters are incre-
mented before they are rendered. Here’s how to start numbering list items at the number 5:

107

CSS-GENERATED CONTENT

If your document is marked up in HTML4.01 Strict or XHTML, these CSS rules are the only way to start
an ordered list at an arbitrary value because the attribute for elements is deprecated.11

You can use the property to count in even (or odd) numbers only. For example,
to count using only positive even integers, you can use these CSS rules:

To do the same thing but starting with 1 and only counting odd numbers, use the following somewhat
counterintuitive values:

This works because the counter begins at negative one () and is then incremented by 2 to produce
a value of positive one (1). Further additions of 2 at each list item produce odd numbers only.

Given ten items, here’s how to count backward from 10 to 1, perhaps for a “top-ten” list:

And, given 26 items, here’s a CSS counter that displays all the letters of the English alphabet
backward:

11. There is some disagreement over whether the attribute is presentational, and as a result this deprecated
attribute, along with its relative (the attribute), may both be revived in the forthcoming HTML5 specification.

108

CHAPTER 3

Since CSS counters are completely decoupled from their display, we can count occurrences of one
kind of element and display the count somewhere else entirely. For example, these CSS rules will dis-
play the total number of quotations in an HTML document at the very bottom of the page:

Given the following example HTML page, the above CSS will count three quotations:

However, if we change the CSS so that the counter is displayed the
 instead of it, we’ll get a different result. Specifically, the counter will report that there

are 0 quotations on the page. This happens because at the start of the document the counter has not
encountered a or a element yet, so it has not been incremented beyond its initial
value of 0.

Using multiple counters
There is no limit to the number of counters you can use in a single page, or even in a single scope.
Using multiple counters is mostly a matter of referring to additional counters in the appropriate
places. However, due to CSS’s declarative nature, the syntax used for multiple counters may feel
strange at first blush.

To reset (initialize) multiple counters at the same time, do so in a single declaration.
The following example resets both and :

In contrast, this next example only resets while leaving untouched, which is almost
certainly not what was intended by the style sheet author. This is because the second
property overrides the first, as per normal CSS cascading rules:

109

CSS-GENERATED CONTENT

Numbering groups of elements and their siblings
Another way to think of CSS counters is that they let you expose information about an element’s
source order and its hierarchal context in a flexible way. You can reset and increment any number of
counters on the same elements, which lets you automatically number not only groups of elements but
also their sibling and child elements.

For instance, let’s assume you were given the script to a three-act play where the title of each act was
marked up in an element, each scene in elements, and each line in elements. Using CSS
counters, you can number each actor’s lines so that you can all refer to them easily. The CSS rules for
doing this might look like the following:

With this styling, the three act titles (elements) will be labeled “Act I,” “Act II”, or “Act III.” Each
scene (elements) will also be labeled appropriately; the first act in the first scene will be labeled
“Act I, Scene 1.” while the sixth scene in the third act will be labeled “Act III, Scene 6.” Finally, each of
the actors’ lines (elements) will have a three-digit reference number prepended to them so that
the line that begins with “[3-1-7]” will be the seventh line in the first scene of the third act.

It’s worth noting that, just like lists, since all of these numbers are automatically generated with CSS,
shuffling an actor’s lines around while editing the script will not require you to renumber anything
even though there isn’t a single list structure used in the markup. Moreover, the script is hierarchically
flat; all the elements it contains are siblings of one another. Using counters this way is therefore also a
powerful technique to avoid symptoms of “list-itis” that sometimes plague badly structured markup.

110

CHAPTER 3

“List-itis” is a term used to describe poorly structured markup that overuses lists to various ill effect.
One common cause of list-itis is an attempt to give large portions of a document numbered labels
without CSS counters. For example, the play script example just discussed could theoretically also
be marked up in a nested list like this:

Of course, this works, but it’s obviously an enormous amount of additional markup when com-
pared with the lean markup that doesn’t use the nested lists. Moreover, it’s not quite as stylistically
flexible as compared to the CSS counters example. On the other hand, the script for a play might
philosophically be an ordered list, since you have a set sequence of acts, scenes, and lines, right?

Well, the answer—as you might expect—is “it depends.” Theoretically, every piece of textual con-
tent is indeed sequential by virtue of the linearity of the medium. You read one sentence or para-
graph, then the next, and so on. Despite this, it still seems ridiculous to nest all paragraphs on your
pages inside of an ordered list even though it might be technically appropriate.

There is a balance to be struck here. Taking this too far down the road of creating lists results in
“list-itis.” I’ve seen some web designers get so excited about lists that every single element in their
pages become one list nested within others. Unfortunately, lists that span from the opening
tag to the closing tag are not actually that useful, and carry some of the same problems
that -based layouts did.

It’s important to be aware that the structural flow of “one to the next” is already implicitly defined
by the content’s source order, so using a list to make this implicit linearity explicit is wasted effort.
Second, and probably more important, forcing unnecessarily rigid structure like this makes it difficult
to reuse the same HTML code later. Rather than working with the content naturally, you now have to
fight against all the opposing style rules that you’ve defined for lists elsewhere in your CSS.

All that said, avoiding list-itis is very much a judgment call. Our example is extreme, but is actually
based on a real HTML mockup we received. Be mindful of the semantics of your content, and you
should easily be able to discern where one list should end and another one should begin.

111

CSS-GENERATED CONTENT

Displaying total counts
Since you can have multiple counters, and since anything that can be targeted with a CSS selector can
be counted with them, you can use CSS counters to supplement or, in some cases, completely replace
JavaScript-generated statistics. Here are a few CSS rules that count the total number of headings, para-
graphs, links, and quotations, in a blog post. Of the total number of links, the number of them that
are rel-tag microformats and the number that refer to other blog posts on the same site (assuming the
site uses a URI path that begins with for blog posts) are shown distinctly.

112

CHAPTER 3

Of special note in the previous code listing are the counters for the links: and
or . For the first link counter using the selector , we only need to
increment . However, for both subsequent link counters, we increment both the
counter and the second, more-specific counter.

If we fail to increment the counter at this more specific selector, then at the time the user
agent is ready to display the results, we’ll have an incorrect total for the counter because
our capability to increment the counters is directly tied to the markup. Further, due to this same limi-
tation, we can only display totals like this the content we’ve counted, not it. In other
words, CSS counters can only increment as the markup of a document is parsed.

Counter scope: exposing structure with nested counters
As mentioned earlier, when you initialize a counter with you also create a counter
scope of the same name. Setting on an element, for instance, means that an
additional instance of the counter you initialized is also initialized at every child element of the
first element. This facility makes it possible for CSS authors to create counters that can refer to
elements nested at any arbitrary depth without needing to know how deeply nested the document
markup will be ahead of time.

The function concatenates all counters in the named scope provided as the first param-
eter with a string provided as the second. An optional third parameter defines what numbering or
alphabetic system to use to style the counter with (again defaulting to). In this way, a single
counter can be used to expose an element’s hierarchical context.

A common use for the function is in creating outlines out of nested ordered lists. Only
two CSS rules using one counter, such as those that follow, are necessary to do this:

When this CSS is combined with the HTML that follows, the result is the rendering shown in
Figure 3-3:

113

CSS-GENERATED CONTENT

Summary
Using generated content gives CSS the capability to not only style content, but to actually use that
content as the basis for additional, supplementary content that can be similarly styled. As we dis-
cussed, generated content turns out to be something relatively low-level, as it is used by default in
the marker boxes of lists. Despite a frustrating lack of support in some areas, creative use of these
low-level capabilities makes using CSS-generated content a compelling addition to your CSS develop-
ment toolset.

Each element in your markup gives you at least an additional two CSS hooks that you can style by
taking advantage of the and pseudo-elements. For any element that you declare

 on, you gain an additional, if more limited, styling hook in the form of the
marker box. These three generated content CSS boxes can be filled with almost anything you like by
using the various values to the or properties.

The and functions, along with their various CSS properties, are a mechanism
for automatically numbering the occurrences of anything you can target with a CSS selector and then
displaying the results. You have a great deal of flexibility using counters, as you can use any of the

 property’s numbering or alphabetic systems to display the counter’s number. The
trickiest thing about counters is making sure you set on the appropriate element, but
this becomes easier with experience.

Using CSS-generated content to expose metadata such as element attribute values, source order, or
hierarchical context are techniques to provide visitors with valuable supplementary information in line
with the development principles of progressive enhancement. However, as we all know, with power
comes responsibility, so be certain to use CSS-generated content thoughtfully and in moderation or
for accentuating other facets of your desired presentation. A lot of what could be generated content

Figure 3-3. The function
uses the markup’s hierarchical struc-
ture to determine when and how to
increment each individual scope’s
counter.

114

CHAPTER 3

could also be actually in the markup, particularly if your project uses a decent content management
system and makes effective use of server-side template tools.

CSS-generated content can also be useful in a variety of arenas beyond traditional browser- and
screen-based environments. One notable area where such pseudo-content makes a lot of sense is
in the headers and footers of printed pages, for page numbering or for displaying metadata about a
printed page originally published online. Indeed, many capabilities that exist in CSS-generated content
originated from printed forms of publications (such as marker boxes), so you’ll next examine the
impressive capabilities that CSS gives you for styling printed media.

117

Chapter 4

As CSS developers, we spend most of our time writing styles for screen or continuous
media platforms. This is no surprise since the vast majority of content on the Web
is consumed via computer screens. Paged media, the kind of media where output is
articulated into specific distinct pages (such as printing to paper) doesn’t get nearly
as much love as its continuous media counterparts, but paged media is still quite
important for web developers to consider.

People print web pages less frequently than they browse sites on-screen, but when
they do take the action to print, it is usually for a specific reason where screen
output falls short. Perhaps some user is headed off to a meeting and wants to print
out and distribute a few copies of the latest press release from a competitor. Some
individuals have a habit of putting together some reading material for the evening
commute or for that long wait at the dentist. It could be an intended need, such as
printing a form that needs to be signed on paper and handed in. For whatever the
reason users choose to print pages, without the developer’s consideration for this
media, the result is usually inadequate at best, or completely overlooked at worst.

When printing to paper, users typically are interested in accessing the content of
the specific page in question. They aren’t likely interested in the navigation tools
and unrelated sidebar content, and they tend to get put off when articles print in
a narrow column in the center of a dozen sheets of what used to be a majestic,
carbon-sequestering tree. Now imagine that when your content-rich site becomes
wildly popular, articles are going to be printed from tens, hundreds, and possibly

OPTIMIZING FOR PRINT

118

CHAPTER 4

thousands of users worldwide on a regular basis. By reducing the amount of paper your content prints
on and maximizing the efficiency of the space used in your paper-based layout, you can help protect
the environment!

Sadly, through much trial and experience, you will find the average web browser’s print media to be
less rich and less precise than other methods of producing printed material. PDF files, for example,
provide a much more exacting method of delivering print output. When printing web pages, we will
find many limitations when it comes to things like color, layout precision, and line dimensions. There
is no way for the designer to predict what color or size sheet of paper their dear users have chosen to
insert into their printer’s paper feeder, although it is typically safe to assume white US Letter or A4.

When styling for print, it is important to remember what your users will experience and what special
constraints CSS developers are faced with. People can’t click on links printed to the physical page.
Printing to paper means a fixed page size that is opaque and easy to read, carry, and fold. Only so
many characters and images can fit on the printed page. In this chapter, we will examine the reason-
ing for optimizing for print output using Cascading Style Sheets (CSS). We will look at some of the
basic constructs in CSS that work in today’s browsers. Following that, we will examine considerations
that will arise when styling for print, cover a few of the advanced page selectors, and wrap up with a
working example to see how some of these techniques might be applied to a web page as it goes to
the printer.

Targeting a print style sheet
Historically, the solution to achieving printer harmony was to provide a button or link labeled something
along the lines of “Print this article,” which redirected the user to a completely separate web page for-
matted in a way that allowed the user to have a nicer print output than what the previous page was able
to provide. But this alternate version of the content is largely unnecessary. Every web browser already
has a print command that virtually all computer users are very comfortable with—File Print. This menu
command is consistent across all platforms, and even comes with its own native keyboard shortcut: +P
on the Mac, Ctrl+P on Windows and Linux.

CSS has a wonderful built-in construct to handle this sort of output media automatically, which will
take care of your reformatting needs. Therefore, asking users to learn your own custom way to print
a page effectively, rather than taking advantage of the established convention on their platform, is
not the best idea from either a usability or a technical perspective. Using CSS’s innate ability to target
print media will save you time and money, so put away the idea that you have to direct your users to
a separate version of your content for printing.

There are three methods we can use to target styles for print media. We can use the
property for the HTML tag, and we can use the or at-rules within a style sheet
with the print media type specified. Let’s take a look at an example for each.

118

119

OPTIMIZING FOR PRINT

At The Guardian (), a hybrid approach is used to solve
the problem of printing articles that speaks to a wide range of users. A print icon
appears next to the content, which takes the user to a print version of the page with
a separate URL. All this actually is, though, is the same piece of content with the print
style sheet swapped out to the media. This helps people see an approximation
of what they’re about to print without having to run it through the browser or sys-
tem’s print preview function. As an added benefit, many people prefer reading a print
version of such articles on screen, which presents far less distracting clutter around
the content of prime interest. Implementing both solutions is an effective strategy for
making your site content more accessible and user friendly from the print perspective.

Linking to print styles in HTML
To target a style sheet specifically for print, indicate the print media type:

. We might choose this method of linking if
we have flexibility in how the HTML is constructed, and using this method is easy to keep track of from
a developer’s perspective.

It is easy to use the HTML element for adding style sheets, especially in the case of adding
multiple style sheets. However, each byte you add linking style sheets is a byte that won’t be cached
as a shared asset when your pages load, and extra bandwidth will be incurred. When using multiple
style sheets, it might be better from a bandwidth perspective to use the and rules,
which are discussed next. At any rate, using the method is the only method we can use to
target specific style sheets using the conditional comments feature in the Internet Explorer line of web
browsers.

Targeting print styles using @media
Using constructions can be quite handy when you have a limited number of style sheets that
you can work with and can’t add more via the element, or when you otherwise might want to
have a single self-contained CSS file that has all the media types handled in one file. All rules
appear within an existing style sheet, and are followed by a set of curly braces (), which are used to
contain our print rules. For example:

119

120

CHAPTER 4

In this brief example we have specified within the block that the body element will use
a serif font family, which tends to be more readable on paper than the sans-serif font varieties. And
since hyperlinks no longer are clickable elements in the print media, it really no longer makes much
sense to have them visually separated from the content in any extreme way. So with that in mind,
we’ve removed the default underline and instead replaced it with a thin gray underline to hint at the
existence of a link back in the online version without creating a major distraction for the reader.

Targeting print styles using @import
Targeting print styles using is very similar to the prior example of using rules. The dif-
ference is that instead of embedding a particular set of media styles in a style sheet, you are linking to
a separate file. There are two ways to write the rule:

The wrapper is not necessary, but this can be very helpful to define things, especially when
searching around for file paths that need to be changed. The quotes should be used for valid XHTML
in an embedded style sheet, even though modern browsers seem not to care.

One of the wonderful things about using within CSS is that you can create a rich network of
CSS style sheets that are all linked from a master CSS file. This is particularly advantageous when deal-
ing with templating systems that are part of a locked-down content management system, where you
might only have access to a single style sheet to start with and no rights to edit the HTML. Or perhaps
the developer has a preference for keeping the HTML as lean as possible, and linking to only one style
sheet in the HTML can cut down several bytes’ worth of precious file size. Since CSS files are usually
cached as assets in the browser, placing as much of your code into cacheable resources outside the
HTML—which has to be downloaded each time as the user moves to each unvisited page—can help
speed things up a bit. This is useful in mobile and resource-constrained settings. In high-traffic web
sites where there might be a large cluster of servers and high-bandwidth dedicated network connec-
tions, a simple thing like reducing a couple of lines of the HTML template might add up to several
thousand dollars’ worth of savings in hardware and bandwidth requirements annually.

As with using multiple elements to bring in external style sheet assets, using multiple
rules can incur some overhead. This becomes especially apparent during the initial page loads for
new visitors, or in cases where caching has been disabled by the site authors or on the client side. For
higher-traffic web sites where bandwidth is a concern, it may be advisable to merge all linked and
imported style sheets into one file as part of a build system, and have the media types separated in

 rules.

The only web browser with remaining significant market share that has problems with as of
this writing is Internet Explorer 6. Versions of IE6 and lower ignore rules for which a media
type is specified. Thankfully, those numbers are falling in favor of better browsers such as IE7 and
Firefox, and given that IE8 is in beta also as of this writing and will likely be released by the time you
read this, IE6 is looking like less and less of a concern.

121

OPTIMIZING FOR PRINT

The rule construction was largely unsupported until the version 4 generation of web browsers,
and transitional browser generations between then and now have had varying degrees of support. These
variances have resulted in a number of interesting CSS filters and hacks used to show or hide certain
styles. While frustrating on many levels, such variances were the basis of techniques that worked to solve
additional deficiencies.

Now that we’ve looked at some of the basics with creating a print style sheet, let’s examine some
of the practical issues that we must consider when developing printer-friendly output. Issues such
as dealing with layout, page size, color, measurement units, and image resolution all have different
behaviors in print than what you might be used to with screen-based output.

Printer style considerations
Most of the time when composing a print style sheet, you’re going to reformat a page that exists on
screen such that it will print nicely on a white sheet of standard US Letter or A4 paper coming out of
someone’s inkjet or laser printer. Typically the first goal is to reduce wasted white space on the page
by removing unnecessary elements such as banners, advertising, and navigation, and widening the
content to the maximum printable width of the paper. The next design considerations might strive for
improving readability. Serif fonts are typically considered to be easier to read on paper, so you might
choose a good serif font family that is well suited for that purpose. Be sure to include a few similar
serif varieties in your preferred order, such as

Garamond looks great in print, but not everyone has that font installed on their system. In its absence,
the Georgia font is a common option included on Windows and Macintosh systems. Georgia is designed
especially to be a readable serif-based web font for screen output, but it looks good and is comfort-
able to read in print as well.

In this section, let’s look at the issues of color, units, and image resolution. As you will see, color han-
dling can be problematic, especially when dealing with typography. Units have different meanings in
the print media than in the screen media that you’re probably used to. And images can look grainy
and pixelated in print where they look fine on screen. We will present some strategies for helping ease
the burden of these issues.

Printing in color
Another critical point to consider is font color. Remember that you can’t be 100 percent sure what
type of paper your end users have stocked in their printers, but it is reasonable to assume that the
paper is going to be white letter or A4 the vast majority of the time. Also consider the fact that most
browsers by default are set to not print background images or colors. Think about that: this would
be an enormous use of expensive ink or toner, and can make for some soggy pages. Now if your
web page is on a dark background on screen and you have light-colored text, this is going to fail in
print. White text will be completely invisible, and pale colors applied to text will not be fun to read.
Furthermore, a large percentage of printers are going to be black and white only, and if colors are
important for contrasting shapes in print, then these items will likely appear washed out or indistin-
guishable in print.

122

CHAPTER 4

Color printers usually deliver their output in the CMYK color model. CMYK stands for Cyan, Magenta,
Yellow, Black, which refers to the four inks used in the standard printing process. Compare this with
RGB (Red, Green, Blue), which is the typical color space for computer screens. The color range for
CMYK is not as rich and vibrant as what you see on a good PC monitor, and often colors will vary
considerably from what you would have expected looking at the screen version. Going from screen
to print will typically mean all those RGB colors that are “out of gamut” will be matched to their
closest CMYK equivalents, which can yield some unexpected results. Savvy design programs such as
Adobe Photoshop have built-in features to distinguish the expected color output differences between
RGB and CMYK, which can help deal with these issues up front. To elaborate more on the Photoshop
example, you can force an image to be in the CMYK color space by choosing Image Mode CMYK
Color. This is a lossy process, meaning your RGB colors will be discarded in the conversion, and this
may not be what you want. Fortunately, there is a way to preview color conversion in Photoshop with-
out actually having to switch the color space. Choose View Proof Setup Working CMYK to establish
that we’re in CMYK proofing mode, and then use View Proof Colors (+Y on the Mac, Ctrl+Y on
Windows) to see the difference. Run the Proof Colors command again to toggle back to the normal
view. Usually differences won’t be too significant, but you will likely notice an overall loss of satura-
tion, and green hues tend to be affected more than the others.

The tragedy of font color
If you thought you had a reasonable amount of control over the color of your typography using
CSS, you thought wrong. One of the absolute flakiest, inconsistent issues you will ever encounter
in CSS is trying to get accurate color applied to your fonts. In all major browsers, certain color values
are modified if the browser deems them to be “too light for print,” and it
will render a color that it thinks will be better suited for your output on a
printed page.

Now the reason why the browser vendors have made this assumption is
fairly obvious: printing light text on what is almost always white paper
is largely unreadable, and it is sadly very rare that web authors will take the
time to style their pages for print using an alternate print style sheet (if they
ever style it for print at all). Furthermore, printing in pure black, devoid
of any complex color mixing, can make printing much faster, because the
printer doesn’t have to mix in any red, green, or blue ink and can focus
on getting the task done. But what is maddening to the designer trying
to achieve accurate color representation in print from their web pages is
that all of the major browsers assume that they are smarter than you, and
recolor the text based on their own inconsistent algorithms. If you wanted
a string of text to appear very light gray in Firefox, too bad. You are getting
black whether you like it or not. Let’s look at some of the problems you
might encounter.

In Safari 3 (see Figure 4-1), gray colors print fine up until .
After that point there will be a strange conversion to a light gray
shade, arguably the lightest gray you can get in text on Safari, between

 and . At , the text
color then jumps to black and as you ascend the values toward an expected
white color, Safari yields a progressive amount of additional lightness to the
text until it finally winds up at around , where it should

Figure 4-1. Clip from a
print test showing where
the break is between

and

123

OPTIMIZING FOR PRINT

be for all values. This problem also occurs in the red, green, and blue colorspaces. If we fix red
at , about halfway between the minimum value of and the maximum value of , we get a
dead zone between and . The same ratios happen starting at

 and at . Finally, Safari renders , ,
and inconsistently from their adjacent color values.

Gecko browsers such as Firefox (before version 3), Camino, and Flock print the entire gray space in
black. You cannot specify a light gray such as or anything else. It will always default
to pure black whether you like it or not. If you fix a color bucket at 0, you will get semi-accurate color
for the rest of the gamut, but the other color combinations will trend toward black text the lighter it
gets. The exception here is Firefox 3, which will print your color exactly as specified. As of this writ-
ing, Firefox 3 is the only browser we’ve tested that gets the color matching between screen and print
relatively correct.

Interestingly, the marker (the little bullet to the left of each list item) will display the correct color
value in print for Firefox and Safari, even though the text itself won’t match! So at least here you can
use the markers to see what the color was supposed to be…

In Opera 9, gray shades render accurately up until , and then higher values default
to black. In the points tested, the same conversion to black happens in various other colorspaces
at different points. For instance, color values higher than , ,

, , , and will stop rendering
their expected colors and just print black instead, thank you very much.

IE7 never gets any lighter than for grayscale, and the rest of the color spaces don’t
seem to allow anything lighter than a midrange hue equivalent in any given color range.

Since all the major browsers have made the assumption that you’ve neglected to pay appropriate
attention to your print output with regard to color and contrast, you have to live with that and deal
with some fairly tricky constraints. One argument is to give in and just go for all black text on all white
paper, and certainly there’s an argument for that in terms of readability and performance. But for that
argument we should all be designing white web pages with black text too and just toss out all our
assumptions about color theory, design, and inspiration. We know clearly that the primary function
and goal for printing a page is for reading purposes, but what if you wanted to do something else.
Something more artistic, perhaps? For truly accurate printing from the Web, you may want to stick
with PDF or similar output. But there’s still plenty we can do with print using plain-old HTML and CSS,
and it can be an interesting academic exercise to try to design within these constraints. Think of it as
a challenge that will make your professional world that much more interesting!

Units
As we mentioned earlier, certain CSS properties and units are more appropriate for print, or are even
only going to work in the print media alone. The units mentioned earlier include inches (), centi-
meters (), millimeters (), points (), and picas (). Twelve-point type is fairly readable in most
typefaces and is a good choice for your standard body text, although you can often go to 11-point
or 10-point for many situations. Points are a common unit of measurement, although if you’re using
12-point then why not just use 1 pica instead? One pica is equal to 12 points, and you get to shave a
byte off of your total file size. But for whatever size you go with, just remember that the more youth-
ful eyes that you may have may be quite a bit keener than an older counterpart—do the world a favor
and test your print output on your vision-challenged friends and colleagues.

124

CHAPTER 4

Images
Images in web pages typically look poor when printed. This is because of the low default resolution
of 72 dpi, and printers like things to be a bit more in the 300 dpi range and higher. Your photos may
not look as sharp in print as they do in the browser, so either we learn to accept this degradation or
we find ways to compensate.

To get around this issue, there is a simple solution. You can use a large image that is at, say, 72 dpi
and use CSS to shrink it down to a ratio that would result in a 300 dpi image in print. For instance,
take an image that is 180 240 pixels wide and looks good on screen in the placement you want for
the printed page. For this to work as a 300 dpi image, you would need your source image to be at
750 1000 pixels.

The obvious drawback here is bandwidth. An image at 750 1000 pixels is excessive, especially when
considering how fast your pages should load. It is probably a good idea to use such a technique con-
servatively and set expectations when doing so.

Advanced page selectors
When you design for paged media, such as designing for print, you have a number of additional CSS
constructs to help you out.

When working with printed media, your canvas changes from a browser viewport to something known
as a page box. The page box is more informally known as the “printable area” of a sheet of paper.
It’s here that printers will put ink, and therefore it’s here—and only here—that you can put and style
content.

Unlike the browser viewport, however, you can control certain elements of the page box using CSS.
To do so, you need to use a special at-rule selector to target the page box itself. This rule is the
rule.

What properties can you specify on the rule? For one, you can set page margins. These margin
values are applied to all pages as they are printed and are applied before any other styles are applied
to the normal styling of the page content. This example will set four centimeters of margin to the top,
left, right, and bottom aspects of all pages:

In the context of book printing, there exists the concept of having a left page and a right page that
face each other, together constituting a spread. This is commonly handled in word processors and
desktop publishing programs, and CSS includes constructs for handling these conditions as well. Using
the and pseudo-classes, you can specify different rules for pages that face each other:

125

OPTIMIZING FOR PRINT

Unfortunately, selectors are not very well supported at this time. The Opera web browser
handles selectors nicely, but as of this writing this feature of CSS is unsupported in all shipping
versions of Internet Explorer, Firefox (and related Gecko-based browsers), and Safari.

Inserting and avoiding page breaks
Another area where paged media differs from continuous media is in the fact that content must be
split across multiple items. With CSS, you can influence where these splits occur by making use of the

 properties.

For example, you typically don’t want to print headlines at the end of pages. Specify this in your print
style sheet like so:

The page break properties in the CSS 2.1 specification are , ,
and . Setting the value to avoid in all cases will instruct the user agent to not allow
a page break before, after, or within a given element, respectively.

Again here browser support is incomplete, although considerably better than the rules. Safari,
Opera, and Firefox and related Gecko browsers support the and
rules. Opera supports all of the page break rules fully. Internet Explorer supports
and for versions 5.5 and 6, but in IE7 this implementation has regressed and is flawed.
The Microsoft-recommended solution is to insert a conditional comment with a break tag immediately
after the element that is assigned :

This is a less-than-optimal hack that involves insertion of meaningless markup into your document.
However, it may prove handy in cases such as with enterprise deployments, where you must have to
resolve printing issues on corporate applications where IE7 is a dependency.

Orphans and widows
The concept of orphans and widows is based on the idea of having page breaks occur at the beginning
or end of a block. It is considered more readable and visually balanced if a page break occurs toward
the middle of a text block, and the idea here with defining page breaks using orphans and widows is
to avoid having one or two lines appear at the top or bottom of a page.

The property is used to define the number of lines on a page that are allowed to display
before a page break is inserted. For example, would mean that if a paragraph at
the end of a page were to show four or fewer lines before breaking to the next page, that paragraph

126

CHAPTER 4

should instead start at the beginning of the following page. In contrast, the property is used to
define the number of lines on the following page that would be allowed. The rule
would select any paragraph where four lines would appear on the following page, and then move that
paragraph unbroken to the top of said following page.

Support for and is weak at this time. At the time of this writing, only the Opera
browser handles these properties, and Firefox, Safari, and Internet Explorer 7 and lower will ignore
these rules. Internet Explorer 8 is expected to have support for orphans and widows, and the imple-
mentation exists in the current release candidate.

Establishing a page size with @page
Page sizes and orientation may be set using at-page rules. Page sizes are set using print units such as
centimeters or inches for the width and height dimensions, or a page size keyword may be used such
as or . This feature is supported in Opera and will be supported in IE8, but is not currently
handled in Safari or Firefox. To set a page size and orientation, use the property:

This rule will print to a legal sheet of paper (8.5 14 inches) and it will print in landscape mode, a com-
bination of properties that might be a good setting for printing data tables. To change this to specific
units instead of the page size keyword, we could write size .

The keyword means that the widest edge will be in the left-right aspect, while
means that the widest edge is presented top to bottom. These keywords are

: 297mm 420mm

: 210mm 297mm

: 148mm 210mm

: 250mm 353mm

: 176mm 250mm

: 11in 17in

: 8.5in 14in

: 8.5in 11in

Setting @page margins with :left, :right, and :first pseudo-classes
With the and pseudo-classes, you can assign different values to page margins on either
side of your printed pages. This can be especially useful in dealing with facing and double-sided pages,
where you might need extra margin for the signature. For these constructs, means the
page on the left, and means the page on the right.

127

OPTIMIZING FOR PRINT

Additionally, you can use the pseudo-class to have a different first page—a title page for
instance:

These rules will work together to figure out automatically how your margins should work based on
which one is on the left, which one is on the right, and which one comes first. Support for the
pseudo-class exists in Opera and IE8, and has not been implemented with IE7 and earlier, Firefox, or
Safari as of this writing.

Using margin at-rules
With the margin at-rules, you can specify content, including autogenerated content, that will appear in
the respective margin corners. The specification for such rules is still a working draft as of this writing
and these features haven’t made their way into any browsers, but this is an often-requested feature
and the prospect of being able to use it is exciting. The draft of the specification may be found at

 if you’d like to keep track.

The at-rules for margins are as follows:

128

CHAPTER 4

The top, right, left, and bottom boxes are distinct from their top-left-corner, top-right-corner, bottom-
left-corner, and bottom-right-corner counterparts. The corner boxes are reserved for the boxes that
have no adjacent content, while the top and bottom boxes would have content above or below. So
any rule such as or is really indicating which side of the top or right box that
content should appear—not the content of the corner boxes. Confused? Not surprised—Figure 4-2
should make it clearer.

top-left-
corner

top-right-
corner

top-left top-center top-right

left-top right-top

left-center right-center

left-bottom right-bottom

bottom-left-
corner

bottom-right-
corner

bottom-left bottom-center bottom-right

Figure 4-2. Location of margin box keywords. The white areas are margins; the gray area
is content and padding. Each keyword illustrates its default orientation with the text-align
and vertical-align properties.

129

OPTIMIZING FOR PRINT

With margin at-rules, it would be simple to add features such as author names, messages such as
“draft” or “classified,” a company logo, or generated content such as automatic page numbers across
all of the pages in a print job. How convenient would it be to be able to instruct your print jobs to do
something like the following?

In this example, we print a DoD logo in the upper-right corner; in the upper left, we have some nice
red bold text saying “Classified”; in the lower-right corner we have the document title; and in the
lower-right corner, we print the page number. This would certainly simplify printing things like official
government reports, corporate marketing documents, or lengthy research papers.

Future of CSS print style sheets
As of this writing, the future of CSS for print designs is extremely promising. In addition to many more
page box margin areas (four across the top and bottom and three across the left- and right-hand
sides), we will also see a plethora of new generated content. For example, we will be able to easily
generate dotted (.), solid (_), and spaced leaders; we will be given the ability to refer to named strings;
and more.

Like many other features of CSS, many print-related features that were originally present in the CSS2
specification were removed in the CSS2.1 revision for one reason or another. Some of these features,
such as named pages, may make it back into an official CSS Recommendation when CSS level 3 is
finalized.

Example: styling a résumé
To learn these and other techniques for creating print styles, let’s work through a live example. We’ll
use an example of a résumé for a classical cellist. We’ll start with a page that already looks great on
screen, and we’re going to make this one look spectacular in print as well. First, let’s take a look at the
full HTML representation of this page. It is a rather long example, but that is intentional since we’re
going to deal with various concepts that require us to fill more than a single printed page of content:

130

CHAPTER 4

131

OPTIMIZING FOR PRINT

132

CHAPTER 4

133

OPTIMIZING FOR PRINT

An experienced HTML coder might take a look at this example and notice that there appears to be a
large number of classes assigned—perhaps more classes than they were used to. This is intentional—
the classes represent embedded “microformats,” and in particular this markup follows the hResume
microformat design, which includes embedded instances of hCard and hCalendar. Don’t worry too
much about all those details now—we’ll learn more about that in a later chapter when we discuss the
Semantic Web in detail. For now, just appreciate that we have a rich Semantic Web structure to work
from, with plenty of hooks in the form of class attributes for us to build our styles from. We’ve prede-
signed a screen layout, and the page looks like Figure 4-3 in your typical modern, standards-compliant
web browser.

Figure 4-3. Our page as viewed in a browser

134

CHAPTER 4

If you examine our source code, you’ll see that the styles that rendered this page were brought in via
a link tag using a media type set to . That means that the styles we’ve applied here to screen will
apply to print as well. As is, printing this document will give you a somewhat less-than-optimal page
rendering, as shown in Figure 4-4.

Figure 4-4. Our page, printed as is

135

OPTIMIZING FOR PRINT

OK, we’ve seen worse. But there are definitely some opportunities for improvement here. For one, the
center column of content has extra-wide margins. In fact, the width of this center content is set to be
60 percent, so that means we might have an opportunity to improve the efficiency of our page real
estate use by up to 40 percent. Also remember in our screen design that the font color was white, but
somehow the color of the printed text here became black in our Gecko-based browser. This is good
considering the fact that the vast majority of standard printer paper is white, but we certainly didn’t
specify that. In Safari and Internet Explorer, the font color is set to gray, giving us a readable level of
contrast on the expected white background, while still paying homage to the fact that our font color
was white on screen. Most modern browsers will gauge the level of darkness on a font and make an
assumption as to how much darker the font needs to be to render in a readable contrast on white
paper. Nevertheless, our hyperlinks are still yellow and that doesn’t look so good on white.

Speaking of contrast—the background colors are not printed by default in most browsers, and the
same goes for background images. Some browsers allow for the preference to turn on background
printing, but it is not on by default and you should never assume it to be enabled. We’ve already seen
that the black background colors have been largely ignored along with our font color preference,
and the same level of disregard for our color specifications has been applied to the top banner back-
ground image as well.

Another annoyance is where the page breaks. In most browsers at the default setting, the break is
somewhere after the heading “Section Cello, Rock City Symphony” and the heading’s descriptive text.
It would be better to get the break in a spot where this content isn’t separated by a page. And while
we’re being nit-picky, those underlines on the hyperlinks are fairly useless in the print medium, as is
the entire existence of the primary navigation. We’d like to see better typography overall, and we
notice that IE renders our borders poorly. Is that enough complaining? Good. OK, then, let’s see if
we can doll this thing up a bit.

First of all, let’s separate our screen styles from our print styles. This can be done easily enough—here
we’ll simply change the media type of our style sheet to :

This means that only the devices identified by the user agent as screen devices will display styles from
this style sheet. Other style sheets will render the default styles as shown in Figure 4-5.

This is already a step in the right direction. We’ve already gotten rid of those extra-wide margins, and
the default serif font used in this browser is appropriate for printing. It already looks more like a typi-
cal printed page from a word processor, and we haven’t done a thing to it really. However, we now
notice that the portrait seems to be much larger than before, and we know we can do so much more
with the typography and layout. To get things moving, let’s embed a print style sheet into our markup
and build some print-specific styles. On line 8 of the markup, insert the following code:

136

CHAPTER 4

Figure 4-5. Our page as viewed in print without styles

Here we’ve embedded a print style sheet and established a rule to make all the text default to a
nice-looking serif font family. We know that serif fonts are regarded for their superior readability in
print, but we want to go with a font that was a little more attractive than the usual default Times New
Roman that most browsers default to. Garamond is a popular font that is not quite as popular or as
ubiquitous, but it can offer us that added element of style to our typography and it’s worth offering
it up to our users who have it. In the declaration, fonts are listed left to right in order of
preference. The leftmost item gets highest precedence, and the user agent will search this list of fonts
from left to right until a match for an installed font is found on the system. So in our
declaration, we specify Garamond first. If that isn’t available, we still like Times New Roman and Times
as backups. In case none of those are available, we defer to the browser’s serif font preference.

Figure 4-6 also shows that we have tightened up the font size a bit by reducing the default font size to
10 points, and added a line height value of 1.5 to make our text more readable on paper. Ten-point text
is a good standard for most computer-printed documents, although you could easily justify anywhere
between 9 point and 12 point for document copy. Wider line heights can help with legibility in paragraph
text, and also might add a touch of style to a document layout. The value of 1.5 can be read as “one
and a half lines.” The default line height is 1, so we’re increasing that default by 50 percent. To finish it
off, we assign an explicit color of , which will be applied to all text in our document. It’s a nice
dark shade of gray, almost black, that will be very readable on white paper. We know ahead of time that
Firefox and other Gecko-based browsers will probably render this text black anyway, but that’s fine since
we’ve chosen a fairly dark color. Now that we have our print style sheet started, let’s get rid of some
artifacts in our print output that we don’t need, starting with the hyperlinks and site navigation:

137

OPTIMIZING FOR PRINT

Figure 4-6. Our page with the site navigation removed and hyperlinks toned down

138

CHAPTER 4

The default underlines that most browsers give to hyperlinks are fairly useless in print—they detract
from the readability of our document by creating unnecessary visual cruft and distract our eyes with
something that we can’t really act on in paper. To remove the default underlines from our document,
we use . But at the same time we’ve decided to retain a bit of this informa-
tion—after all, it may be useful for the reader to know that there is a hyperlink there for reference
purposes, even if they cannot click on it on the printed page. So we are going to provide a lightening
of the color of the text to . Since we know that Gecko browsers will fail to render the lighter
gray text color, we also add back in a border at the bottom by using .
Why on earth would we readd the underline this way, you ask? Simple: the reason is that browsers will
honor the light gray underline specification, creating a subtle and less obtrusive visual differen-
tiation between it and the text above. If we left this up to the default
property, then we’d have uniform color between the text and the underline, which again would be
ignored by Gecko browsers.

Since we have preserved the idea of a hyperlink in our print-based styling, we could
consider taking this one step further. Using the CSS property and attribute
accessors, we can print the URL that lies embedded within our hyperlinks and bring
them out into the open. It makes most sense to have such links appear in the content
area and not bother with exposing the navigation element URLs or URLs found else-
where in the page layout, so let’s use descendant selectors to target just a couple of
areas where these URLs might be more informative:

An article by Eric Meyer that demonstrated this technique and several other similar
print-specific topics appeared in A List Apart back in back in 2002. Titled “CSS Design:
Going to Print” (), the article
is perhaps even more useful today now that many more user agents have implemented
better support for the CSS2 specification.

Some might argue that embedding the URL in printed media detracts from the read-
ability of the content of the document, while others will argue that having this infor-
mation available makes it possible for the reader to use the URL in other contexts
away from the printed page. Consider these issues and use whichever method makes
the most sense for your project goals.

It’s useless for your design purposes here to deliver site navigation on this page; it takes away from the
intended purpose of this content, and is a waste of space and paper. You can therefore remove
the site navigation from the print output by applying the declaration to the
block. The element and all of the contained children elements are completely
removed from the page output and document flow, allowing the more useful content to filter up
toward the top of the page.

It is important to note something about our line specification that we
used earlier. In particular, please direct your attention to the part. If you look at the line settings
for many word processors, graphic design tools, and desktop publishing programs, you will notice that

139

OPTIMIZING FOR PRINT

lines can be much thinner than 1 point. They are often set at values such as 0.75 point, 0.5 point, or
even thinner. This produces a nice, crisp line that can look more attractive in print. Unfortunately in
modern browsers, you really can’t get any thinner than 1 point for the property. Any value
less than 1 will be rounded up to 1 point. We can hope that this function will one day become more
powerful in browser implementations, but for now you should assume that 1 point or 1 pixel is going
to be as thin as you can get in print for lines. You can, however, use
instead. The keyword, while not very specific, will usually display a crisp, thin line in most of the
modern browsers.

Our next goal is to fix the display of the information box—the box that contains the photo, telephone
number, email address, and URL for our featured cellist. In print we can see that the photo appears
much larger compared to the screen version, and we’ve lost our floating to the right. Let’s keep the
float and reduce the size of the image to be more appropriate for the printed view, and apply a few
more stylistic enhancements to our printed résumé, the results of which are shown in Figure 4-7:

140

CHAPTER 4

Figure 4-7. Floating the information box to the right and applying some style

The first thing to point out is that, now that our style sheet is getting longer, we’ve decided to slightly
rearrange our CSS rules in a more logical order. We’ve chosen to adhere to a general order of specific-
ity, with least specific rules toward the top and most specific rules toward the bottom. Placing more
specific rules toward the bottom of our style sheet pairs well with the concept that rules appearing
early in the cascade order might be overridden by later-appearing rules that have conflicts, and this is
considered in many circles a best practice to follow. The only exception to this practice for this case is
our rule. This rule has a much higher specificity than the following rule, but
since it applies a special modification to the preceding and rules, we’ve chosen to keep it here
for readability’s sake.

The image in print is too large for the printed page. In fact, we notice that this portrait has been
reduced on screen as well, and that the source image weighs in at a native 300 pixels wide by
400 pixels tall. Since we know that this résumé will likely be printed on a sheet of US Letter or A4
paper, we can be reasonably sure about what image dimensions we want to have. Here we’ve specified

 and to our class, which is a good proportional value to the native pixel
dimensions of the photo.

To move our information box over to the right, we have applied a width of 3 inches to the element
and floated it to the right. Making this element 8 centimeters wide and centering the content within

141

OPTIMIZING FOR PRINT

using provides plenty of white space to differentiate it from the main part of the
document, and the 5 ems of margin on either side ensures that any text that might approach the edge
of the container provides a final amount of buffer.

To give our information box some typographic style, we set our definition terms () to display in
italics and our definitions themselves () to display in bold. Removing all of the margin and padding
from these elements ensures that we won’t run into any surprises with differences in the way various
browsers style these by default, and it will allow our centered content in the info box to have a proper
display without any unexpected indentations. We’ve also decided that the definition term “Photo” isn’t
needed since the definition for that item is fairly obvious, so we’ve removed it by using the

 pseudo selector: . This selects the first element that is a child element
of , and then all we need to do is set to remove it from the output.

What we have now is a fairly decent-looking printed page. This is much better than our original, and
our users (in this case potential employers for Ms. O’Reilly) will appreciate having the higher-quality
printed output. This would be fine as is, but there’s actually much more we can do. So let’s keep play-
ing around with this résumé to see what we can come up with. We’ll begin by styling those headings.

The headings currently print in the default serif font defined by our rule applied earlier
in the rule. But this cellist wants something a little more stylish for her résumé and would like
to see the headings in a more elegant typeface. But we know as CSS developers that finding a cursive
font that is cross platform is difficult to do. Our customer Ms. O’Reilly has agreed that some flexibility
with the headings is fine as long as it somehow looks pretty, so that frees us up to be a little creative
with our font family designation. With that in mind, let’s build a font family for the headings that will
be almost guaranteed to look different between various browsers, but will look stylish and interesting
either way. Let’s explore our options.

A font that is more common on Windows but not unknown on the Mac platform is Edwardian Script
ITC. This font is quite florid and full of loops and variations that make Edwardian Script ITC an excel-
lent choice for a stylish-looking heading. Monotype Corsiva is a more popular font found frequently
on Windows and occasionally on Mac, but it is not nearly as stylish as the previously mentioned selec-
tions. And if all else fails, we always have the keyword in CSS. Edwardian Script ITC seems like
a good choice for our primary font, so let’s start there. Our backup is going to be Monotype Corsiva,
and then we finish up with a cursive keyword to ensure something stylish gets picked. Edwardian
Script can appear small, so we have bumped up the font sizes for and elements to 32 points and
18 points, respectively, and removed any underlines from elements that happen to be a part of
any elements—it looks terrible in print.

We’d really like to write in our style sheet to keep our
experience blocks from printing on separate pages, but unfortunately this property is largely unsup-
ported in modern browsers aside from Opera. Let’s write it anyway and enjoy this behavior in at least
the one browser that supports it. Perhaps soon the other browsers will catch up. Here’s what we have
added so far, the results of which are shown in Figure 4-8:

142

CHAPTER 4

143

OPTIMIZING FOR PRINT

Figure 4-8. Cursive font family treatment for headings

It is too bad about not being as well supported as we’d like. But if we take a look
at our page, we can see that there might be an opportunity to insert a more manually placed page
break that should work in most settings. It looks weird to have the Education heading sitting there
at the bottom of the page and then the remaining content falling onto the next page. We can apply

 to the block, since we can see that in all our browsers tested
this block begins toward the end of page one, and try to get a better placement of our content onto
the two pages:

A word of caution on this: there is a fair amount of fudge factor here and we are giving up some
control on how this will print by inserting a manual page break in this specific spot, because we don’t
know if our user has resized their fonts on the other end. This is something to be careful with and
deserves some testing and thoughtful consideration before implementing.

144

CHAPTER 4

We’re almost done. Let’s add a little style to the summary points at the top, and see if we can fill out
the overall layout somehow. For the summary points we can simply italicize the font, which should
give us a nice bit of emphasis for this section. The targeted content has been assigned a class of sum-
mary already, but there’s a problem: the summary class is repeated elsewhere in the document, but
we only want to target this one instance of the summary class. That means we’re going to have to be
more specific. And we’re in luck: the instance of the summary class that we want is contained within
the class, so we can conveniently use a descendant selector to style the item we want:

 After looking at that for a minute, we can see that the text appears a bit too tightly packed in an italic
typeface for such a prominent part of the page. Let’s space it out a bit by using the
property:

Now we have a decent-looking summary at the top; our last step is to fill out the pages a bit. It looks
like there is enough room on our pages to increase the line height of our paragraph text a bit, which
might help with readability while we’re at it ,and provide an added touch of style to the output. So
let’s try using the property:

You can see the results in Figure 4-9.

This might be a good place to stop. We have clean, tidy-looking print output that is free of unneces-
sary junk from our screen view of the page, and we’ve applied some neat typography to make the
printed résumé look more elegant. Our client is happy and can start using her online résumé to mar-
ket her cello performance skills! The last step is to extract our style sheet from the HTML and place it
into an external file. Create a new file called in the same directory as our HTML file, copy
and paste our CSS code (everything in-between the <style> element), and then replace the <style>
element block with

Our final style sheet in is as follows:

145

OPTIMIZING FOR PRINT

146

CHAPTER 4

Figure 4-9. Page one of our final print design

147

OPTIMIZING FOR PRINT

Summary
Making print style sheets takes advantage of CSS’s innate ability to provide alternative presentations
of the same content, a concept whose benefits you should be familiar with from previous chapters. In
this chapter, you applied this knowledge to the print media by reformatting an existing design for the
screen so that it could be reproduced appropriately on paper. In addition, you learned how providing
a print style sheet gives your dear website visitors a better experience when they take your content
off-screen.

In composing your print style sheet, you first looked at the more common motivations and goals users
have for printing physical pages from web pages. Next, you analyzed particular areas of concern to aid
in your reformatting efforts, such as the content’s typography, the dimensions and properties of the
printing paper, and the existing content itself. By removing interactive navigation elements irrelevant
to the print medium such as hyperlinks, repositioning or completely removing tangential information
from sidebars, and changing the layout of the primary content area, you successfully leveraged the
existing screen styles for your new print ones.

However, you can do a lot more than merely create a “printer-friendly” version of your page. From
there, further optimizations can be employed, such as using a serif font for your written copy and
identifying where background images, font colors, and page breaks might cause issues for your design.
You can then deal with these problems so that the content they present is enhanced rather than
dulled-down.

You also learned how CSS deals with different sizes of paper by defining page boxes, analogous to the
browser’s window (or viewport). However, since most users will probably be printing on white A4 or
US Letter paper, many of CSS’s intricate page sizing and selection features are still struggling to find
support in modern web browsers. Further, you saw that many historical artifacts used for signaling
printable pages, such as custom-built “Print this page” buttons, are still in use today for slightly differ-
ent purposes.

Regardless of the content you have, it almost always makes sense to create a print style sheet for your
content. Having one available makes a big difference to your users, and the effort required to provide
an adequate baseline is so minimal you’d be remiss not to do so. Now, with significant experience
using CSS that targets multiple media types for a single chunk of content, let’s next turn our attention
to yet another popular form factor for web sites: mobile, ultra-portable handheld devices.

149

Chapter 5

As we’ve discussed earlier, the evolution of the World Wide Web has been extremely
chaotic when compared to other technologies. This Darwinian model has arguably
had both positive and negative effects. Developing for the desktop web browsing
experience was tumultuous at best for a long time, with user agent capabilities vary-
ing wildly. However, if you thought that was wild, then you’d better buckle your seat
belt because we’re about to take you on the rollercoaster ride that is mobile web
development, which has been described by experts as “the most hostile program-
ming environment ever devised.”1

Despite the countless limitations and challenges of mobile web development, we
remain excited and even optimistic about the possibilities. The best news of all is
that, thanks to the web standards we’ll discuss in this chapter, it’s possible to achieve
a decent baseline of functionality and appearance for your site on the vast majority
of current and future mobile devices. Moreover, if you embrace the same best prac-
tices we advocate throughout this book for the desktop’s platforms, your view of the
mobile market space will look like “one extra mile” rather than another marathon
effort.

1. This is a famous statement by Douglas Crockford, a world-renowned JavaScript expert and
senior front-end web development specialist at Yahoo!. He used to be well known for stating
that the desktop web browser was the most hostile programming environment on the
planet—that is, until the mobile browser was conceived.

DEVELOPING FOR SMALL SCREENS
AND THE MOBILE WEB

150

CHAPTER 5

In this chapter we’ll explore styling CSS for the rapidly growing mobile web medium. We’ll study some
of the possibilities and advantages of mobile web design, such as the growth opportunity and ubiquity of
the mobile web platform. You’ll learn about the limitations that you’ll be confronted with when tar-
geting mobile devices, such as issues with screen size, bandwidth, usability, and limited capabilities.
We’ll then look at how to build mobile style sheets, and we’ll get into some specifics with styling for
the highly popular Opera browser and WebKit-based browsers such as Safari for the iPhone.

The arrival of the mobile Web
Mobile devices are becoming more and more prevalent in the hands of consumers, and the capability
and usability of the mobile browser platform is making handheld web surfing increasingly common-
place. Leveraging the use of an embedded browser in stand-alone software and appliances is also
becoming a common practice among traditional application developers. In other words, your web
page might not be viewed from a classic web browser at all, but from any number of programs that
wrap themselves around a web browser, even—perhaps especially—a mobile one. Quite simply, all
web development does not exist for the desktop computer screen alone.

Despite being practiced for many years, support for mobile web browsing has arguably been little
more than a line item on the feature sets of many mobile handset vendors and content providers.
There really wasn’t significant attention paid to the overall user experience of browsing traditional
web content on the move from either content producers or hardware vendors. Naturally, lacking
a good user experience limited user adoption, and without customer demand, why bother improving
the situation?

All of this began to change with the development of more capable and usable web browsers specifically
designed for mobile use, which was rightfully seen as a huge market opportunity. Two early examples
are Opera Mobile and the Blazer browser, commonly found on Handspring (now Palm) Treo devices
to this day. These browsers were the first to offer a more usable and functional experience, but were
still bound by limitations in the hardware they were installed on and therefore rely on relatively painful
workarounds to transform content originally intended for desktop viewing to a mobile aspect.

It was unmistakably the release of Apple’s iPhone in summer 2007, with its innovative and refined touch
screen interface and its Mobile Safari browser, that proved to be the game-changing event. Rather
than invasively transform content to a mobile aspect, Mobile Safari offers an intuitive zoom-able inter-
face to provide a full implementation of the web browsing experience on a handheld device. This new
interface greatly reduced the barriers for mobile web use and access on Apple’s product.

In February 2008 Google reported to the Financial Times that they were seeing 50 times more search
queries coming from iPhone than from any other mobile handset at that time. While this snapshot sta-
tistic is not necessarily representative of the entire mobile Web, it is an auspicious metric considering
the iPhone had been out for only seven or eight months and constituted a tiny fraction of the mobile
handset hardware market at the time. Nevertheless, despite its limited market share, the iPhone’s
Mobile Safari browser was clearly already on its way to becoming the dominant player in the mobile
web market space.

What was the key to the mobile Web’s adoption on the iPhone? The answer is usability. So much
attention to detail was placed on the iPhone and its Mobile Safari web browser that users and devel-
opers alike were suddenly able to create and consume traditional web content with very little addi-
tional effort.

150

151

DEVELOPING FOR SMALL SCREENS AND THE MOBILE WEB

While this groundbreaking advancement is undoubtedly the direction mobile web browsing will take,
developers are still required to take some special measures to ensure their sites function and appear
appropriately on a mobile device. With the iPhone, Apple proved that a focus on optimizing for usabil-
ity in a mobile context was the critical factor in successfully bringing the mobile web to mainstream
adoption. Now it’s up to you, the web developer, to optimize your sites for that same mobile context
if you want to succeed in the mobile space.

The limitations and challenges of mobile web
development

Constraints can be seen as a limitation and a barrier, or they may be viewed as challenges and even
opportunities. Sometimes working within strict restrictions can inspire us to more creative, more
effective, and more efficient solutions than we would have otherwise settled for. Often, the major
challenge of mobile web development is related to the reduction in available screen real estate. You
have to creatively pack a lot of information into a tiny space, but there are also many other variables
you must consider and challenges you must overcome.

The reduced screen size on handheld devices has immense usability implications as well. The hetero-
geneous ecosystem of mobile hardware and software also implies varying levels of support for various
different technologies. You can no longer rely on the same assumptions you might have for desktop
web development. Even the very human-computer interaction models we are used to developing for
are sometimes completely different, since users rarely have access to input devices such as mice and
keyboards while on the go.

Therefore, let’s begin our exploration of the practicalities of mobile web development by acquaint-
ing ourselves with the various aspects of the medium, and their similarities and differences to web
development on the desktop. Get ready to throw all your ideas about “minimum screen sizes” out the
window right now, because they’re about to get a whole lot smaller.

Reduced and unpredictable screen sizes
The most obvious thing we must consider in developing CSS for mobile devices is that their screen
sizes are not only going to be much smaller than their desktop counterparts but will also vary wildly.
The resolutions available to you will probably be anywhere from less than 100 pixels square on some
mobile phones, to the 480 320 pixel resolution on an Apple iPhone or iPod touch, to an ASUS Eee PC
700 with an 800 480 display and beyond. Only one thing is certain: all of these are going to be signifi-
cantly smaller than what is often considered common computer screen resolutions.

When dealing with these constraints at either end of the spectrum, you have to be very creative and
very concise in displaying information. This means you not only have to be choosy with regard to
how you display something, but also to what you display in the first place. In many cases, choosing to
display one thing may mean that you no longer have space for something else without requiring some
kind of user interaction to switch between the two.

Since there’s so much less space “above the fold,” displaying the most important content first is critical.
Some browsers will actively transform your content, so your markup’s source order may take even more
precedence than your style sheets. Moreover, since bandwidth and CPU speed is also often severely
limited, this could mean that “above the fold” might simply be “the HTML that gets downloaded first.”

151

152

CHAPTER 5

Also due to the relative lack of screen real estate as compared with our large screen or even print
mediums, images and text will have different proportional considerations to the viewport and to each
other. You need to ensure that these elements remain accessible, legible, and attractive. In some cases,
elements will literally be cropped or resized in undesirable ways unless you explicitly give them an
altered appearance. Stretching and warping is not uncommon, nor is inaccurate zooming that forces
users to scroll back and forth horizontally to read paragraphs.

These guidelines also apply to entire layouts, not just individual elements. Since you may not be able
to accurately determine user agent capabilities ahead of time, it’s even more important to adopt
defensive programming techniques in a mobile project than a desktop one. Although we’ll examine
these specifics in more detail later, briefly this means you should be relying on capability detection
mechanisms like CSS3 media queries, flexibly specified dimensions such as liquid layouts, and other
similar dynamically adjustable techniques as much as possible.

Varied interaction paradigms and usability implications
Another major consideration for mobile web development is the hardware itself and the
human-computer interaction paradigms that it enables (or disables, as the case may be). When using
desktop web browsers, we can be fairly confident that most users will have a mouse and a keyboard,
and so our web sites and web applications make use of the continuous input provided by a cursor
for things like (rollover) effects. However, the same may not be true of mobile devices, since
a finger or stylus can often only send incremental inputs that emulate “clicks,” causing some ele-
ments like navigation menus to fail to expand. These can be absolutely critical usability or accessibility
problems!

In many ways, mobile device usability for the Web is still uncharted territory. Users may be navigating
selections with a trackwheel, trackball, joystick, arrow keys, or a toggle. They may be using a stylus as is
found on many Palm- and Windows-based devices. Alternatively, they may be using their finger (or fin-
gers) such as when using gestures on the iPhone and iPod touch. They may have a physical keyboard,
a virtual on-screen keyboard, or simply a numeric keypad.

Whatever they have on the device, that’s what they are stuck with. You must take into account the
size, position, and order of page controls to allow the widest range of users effective access to the
page, since many of these interaction paradigms are extremely limited or even completely linear (i.e.,
serial). You must also consider that for some devices part of the control apparatus, be it a stylus or
a user’s finger, may be obscuring part of the screen or require a different-sized parcel of screen real
estate to be useful, and again you must balance that requirement with the limited screen size you have
available in the first place.

Similar challenges exist for kiosks and embedded browser interfaces as well. Remember our fictional
Frigerator2000 example from Chapter 1: do you know whether it will have a virtual keyboard or even
come equipped with a touch screen? It might have these things, but low-end models may only have
arrow keys or a track ball to navigate with. Again, merely the unpredictability proves to be one of the
major challenges.

Kiosks are typically in public areas where the user has no interest in spending a significant amount of
time standing in front of the unit. In fact, simply standing can be a difficult ergonomic position to deal
with for some users, so anything you can do to make the experience less painful will be appreciated.
Buttons and text will need to be larger, higher contrast, and the user interface must be all that much

153

DEVELOPING FOR SMALL SCREENS AND THE MOBILE WEB

more intuitive to operate since you’ll be lucky to get someone’s attention for more than a minute in
the best of circumstances.

Reduced technology options and limited technical capabilities
Since mobile devices are by definition smaller and more portable than stationary ones, it’s more difficult
for manufacturers to build comparably powerful hardware. Not only are the CPUs inside mobile devices
slower (and cooler), but entire technologies may simply be unsupported for any number of reasons. For
you as a web developer, this means that, for example, you can kiss all your Flash content goodbye if
you’re developing for Mobile Safari, since the Flash Player can’t be installed on the iPhone OS.

However, as we know, not all devices are created equal, so Flash Lite can be found on some devices.
A similarly mixed story can be told of Java. Sun’s J2ME runs on some systems but not on others. Several
mobile web browsers give you rich JavaScript support, but JavaScript implementations also vary between
mobile browsers and have different levels of support for the ECMAScript standards.2

Even beyond all of that is the fact that scripts running reasonably well on a desktop computer might grind
to a halt when confronted by the limited CPU or memory resources on a mobile browser. Optimizing
the performance of your code therefore also becomes increasingly important in order to deliver the
same speedy experience to mobile users as you want desktop users to have. Many of the performance
optimizations you can get away with ignoring for desktop browsers are critical aspects of mobile web
development. This is doubly true for front-end performance optimizations, including CSS.

Ultimately, when developing web pages to work on the widest variety of mobile devices, you really
need to think in terms of the basics and use a progressive enhancement approach. You’ll have the
most success if you stick with standard XHTML, CSS, the fundamentals of the HTTP protocol (that is,
basic GET and POST form behaviors), and images—and that’s it. Things like Flash, Java, and to a large
extent even JavaScript should be considered extras, nice-to-haves, and if you intend to insert such
things into your pages you should plan for a graceful failover mechanism where the content or func-
tionality remains accessible.

Again, the good news here is that you can take just about the entire arsenal of desktop web devel-
opment best practices and apply them to a mobile context with few modifications to dramatically
improve your results. To put it another way, if you develop a good standards-based desktop web site,
then you’ll already have the foundations of a good mobile web site for free. That way, all you’ll need
to do is build on that solid foundation with an eye on handheld devices.

Limited bandwidth and higher latency
Another challenge of mobile web development is worthy of a mention even though it doesn’t relate
to web development specifically: limited network bandwidth and higher latency.3 While high-speed
wireless network availability continues to grow across the globe, it’s still far from ubiquitous world-
wide. The more advanced 3G cellular networks are normally found in more densely populated urban

2. JavaScript is more formally known as ECMAScript, and the different versions of JavaScript actually correspond
(more or less) to different levels of the ECMAScript standards, which is not unlike the situation with CSS. JavaScript
is just one implementation of ECMAScript, as is ActionScript (the scripting language used within Flash movies).

3. Latency refers to the amount of time it takes a single network packet to travel across a single hop. On some cellu-
lar networks, typical latency can be as bad as 5 seconds and a bloated web page can contain hundreds of packets,
if not more. We’ll let you do the math.

154

CHAPTER 5

areas and along the major traffic corridors that connect them, but slower networks fill up the rest of
the globe and they deliver data at speeds that are comparable to a mediocre dial-up connection.

To put it bluntly, it would be entirely appropriate for you to treat all of your mobile sites as though
every single visitor is stuck with a dial-up connection. Couple that with the limited technical capabili-
ties such as less CPU power and memory that we just discussed, and you can clearly see why mobile
web pages should be lean and free of complex markup or bloated images. This holds true even though
there is an ever-increasing number of mobile requests being made by handheld devices from Wi-Fi
networks, since for some kinds of content on some devices the limiting factor for performance may
not be network speeds.

With that said, in the majority of contexts, bandwidth may be one of your top considerations—
perhaps even the top consideration. Ruthless compression of your content is warranted: crunch your
graphics to the smallest size you can live with; code the leanest, presentation-free markup you can
muster; and optimize your front-end code by reducing the amount of extra line breaks and blank
spaces it has to further reduce download costs. We’ll also discuss numerous additional optimization
techniques in later chapters of this book.

Competing, overlapping, and incompatible technologies
One additional challenge that compounds the difficulty in dealing with having reduced technology
options is the fact that there are overlapping and incompatible technologies in use today. As the
so-called mobile Web is still in its infancy, both the technologies that it uses as well as the standards
that define these technologies are still undergoing major development efforts. Different makes and
models of smartphones, PDAs, and other handheld devices may support one underlying technology
but not another, or they may support multiple technologies to varying degrees.

Of course, there’s only so much you as a web developer can do about this. Nevertheless, it’s still useful
to understand what the overlaps and incompatibilities are, if only to limit the scope of your efforts to
the ones that make the most sense for you and your user base. To that end, we’ll take the opportunity
to briefly familiarize you with the thick and hearty soup of three-, four-, and five-letter (or more!)
acronyms that exist in the mobile browser market space that each compete for the attention of web
developers in the next section.

A brief history of mobile web technology
Recall that one of the challenges in developing for the mobile web is the overlapping and sometimes
incompatible technology in use. To a large extent, the disjunct nature of the mobile web technologies
up until this point has been due to the fact that mobile web browsing was often limited to the pro-
prietary walled gardens controlled by a subscriber’s mobile service provider. The user experience was
decent if you stuck with the default set of bookmarks shipped with your particular phone, but quickly
turned very poor if you ventured any further out into the Web. Therefore, most users were almost
guaranteed to be making minimal use of their mobile device’s web browser, there wasn’t a strong
community of independent web developers or content producers, and ultimately there weren’t acces-
sible or standardized technologies.

155

DEVELOPING FOR SMALL SCREENS AND THE MOBILE WEB

For a long time, the only feasible way to access web content on a mobile device required either
browser makers or content producers to do all the heavy lifting. Either web browsers had to make
invasive changes to desktop-oriented content (as some browsers such as Opera Software’s mobile
offerings still do), or content producers had to set up alternate, heavyweight, mobile-specific delivery
methods for their content. To date, neither of these solutions has proved widely successful.

In the late 1990s, the mobile phone industry formed a standards organization called the WAP Forum
and introduced the Wireless Application Protocol (WAP) standards, which included a full technol-
ogy stack. It was hyped as a web-like application protocol designed specifically for handheld devices.
Unfortunately, the nature of this technology severely limited access to the World Wide Web’s native
HTML content, requiring “the real Web” to be passed to the device via a sort of proxy server, known
as a WAP gateway. Instead of creating Web “pages,” developers wrote “card decks” in a distinct XML
dialect, the Wireless Markup Language (WML).

Around the same time, in 1998, the W3C published a note4 that described a subset of HTML for use
in “small information appliances” called Compact HTML (cHTML). Since cHTML’s primary developer,
NTT DOCOMO, was a Japanese handset manufacturer and service provider, its implementations also
borrowed some of WML’s internationalization features. Thanks to its compatibility with HTML, cHTML
was easier for developers to author but saw limited adoption in comparison with the WAP technolo-
gies because mobile web browser software had not matured at that point.

However, in 2000, Opera Software released Opera Mobile, a variant of their desktop web browser that
originally ran on the Psion Series 7 and the NetBook “mini-laptops,” and whose superior technology
support later helped it become the dominant mobile web browser to this day. In 2003, Opera Mobile
was ported to the Windows Mobile platform, and following that, the browser saw major advancement
very quickly. By November 2005 Opera Mobile was already at version 8.5 and supported additional
platforms, including the Symbian OS, as well as more features such as JavaScript and even the WAP
standards, with SVG support coming only six months later in April 2006.

Meanwhile, the W3C had recast HTML as XHTML, and in much the same way as cHTML had been
intended, they defined XHTML Basic as a subset of XHTML intended for resource-constrained web
browsers. Advances in mobile hardware had also been occurring and now many more mobile phones
had graphical displays. When the creators of cHTML and the WAP Forum wanted to build the next
generation of their mobile platforms, they were attracted to XHTML Basic because its implementation
also gave them CSS “for free.”

In June 2002, NTT DOCOMO (cHTML’s pioneer) and the WAP Forum led by Nokia merged and became
the Open Mobile Alliance. Together, they decided to build on XHTML Basic to improve interoperabil-
ity and resolve some of the criticisms of WAP and WML, which included frustrations with rendering
inconsistencies. They added some of the features that were available in cHTML and WML but were
lacking in XHTML Basic. The result was a new language that is a superset of XHTML Basic but a subset
of XHTML called XHTML-MP, or the XHTML Mobile Profile.

With the creation of XHTML-MP, the Open Mobile Alliance declared that WML was to be intended
for backward compatibility only. They deprecated WML 1.x and created a new XML namespace called
WML 2.0, which merely combines XHTML-MP with WML 1.x. Thankfully, this chaotic state of affairs
is finally set to transform into a more standardized model as the usability and popularity of mobile

4. The W3C note, titled “Compact HTML for Small Information Appliances,” is available online at
9/.

156

CHAPTER 5

devices increases while the capabilities of mobile browsers advance simultaneously. In the end, the
successful arrival of the mobile Web is a result of its “all of it, all together, all at once”5 convergence
toward web standards.

A brief overview of mobile browsers
There is a large cast of players in the mobile web browsing market. Versions of Opera are by far the
most commonly installed browser on mobile devices as of this writing, but it’s the WebKit engine
that’s getting the most press recently for setting the industry’s technology trends. Together, these two
players paint an overview of what mobile user agents look like, but there are plenty of additional ones
in this space that a developer should consider. Moreover, the distribution of market share is wildly
different in the mobile space than it is in the desktop world.

Opera Mobile and Opera Mini (Presto)
Opera Software, Inc., the company named after its suite of Opera web browsers and signature prod-
ucts, produced one of the earliest mobile web browsers still used today, Opera Mobile, released in the
first half 2000. Opera browsers are based on a proprietary rendering engine called Presto, which sol-
idly dominates the mobile browser market. Its two handheld variants, Opera Mobile and Opera Mini,
are collectively installed on millions of smartphones and PDAs worldwide, and one of these is likely to
be the default web browser on most popular devices sold today.

There is an important distinction for developers between Opera’s two handheld versions, Opera Mobile
and Opera Mini. Opera Mobile is a more fully featured browser suited for more capable smartphones
often running Windows Mobile or Symbian. It delivers richer web content than the Mini version in an
attempt to be more comparable to its desktop-based cousin in a stand-alone product.

Opera Mini, on the other hand, compresses data from requested sites by passing them through Opera’s
servers before downloading onto the phone.6 Additionally, one of Opera Mini’s two rendering modes
actively reformats CSS page layouts so that they fit into a single column. This is called CSSR (Color
Small Screen Rendering) and is always in effect, unless you specify a style sheet that applies to the

 media type (so we recommend that you do).

Opera on the desktop has one of the best levels of CSS support among all the main-
stream web browsers, and it includes excellent web development tools, such as the
Small Screen feature that we’ll look at in just a second. Versions of Opera are compat-
ible with Mac, Windows, Linux, FreeBSD, and a number of other operating systems as
well. Somewhat ironically, this makes Opera on the desktop a great choice for getting
started with mobile web design on a wide variety of platforms.

5. “All of it, all together, all at once” is a well-known quote by Mike Cohn, a recognized expert in agile software
development methodologies. This description, as well as its context, happens to suit the state of the mobile Web
very nicely.

6. It should perhaps be noted that this is true for SSL/TLS-secured pages as well as unencrypted pages. Therefore,
Opera Mini is considered an insecure user agent from the vantage point of many privacy- and security-conscious
users, who strongly prefer to install an alternative browser for the majority of their web surfing activities.

157

DEVELOPING FOR SMALL SCREENS AND THE MOBILE WEB

The Opera Mini web site provides a free and very handy
simulator of the browser that you can use to test your web
sites, shown in Figure 5-1. Browse to

with your desktop browser to load and run
the simulator. It is delivered as a Java applet, so be certain
you have enabled Java in your browser when you use it.

Internet Explorer Mobile
The mobile version of Internet Explorer Mobile, originally
called Pocket Internet Explorer (or PIE), is Microsoft’s mobile
equivalent of their Internet Explorer browser, which actually
was written from the ground up and is not based on the
Trident code base like its desktop version. Unsurprisingly,
Internet Explorer Mobile is found exclusively on Microsoft’s
mobile operating systems, Windows Mobile and Windows
CE. All of these devices will have IE Mobile installed by
default, although many vendors will install a mobile version
of Opera as well.

Like Opera Mini, IE Mobile will actively reformat most web
content so that it renders more linearly. Version 6 of IE
Mobile includes a feature that allows users to toggle viewing
sites as a mobile user or as a desktop user. The latter option
displays web pages as if a mobile style sheet were not
detected. IE Mobile is surprisingly versatile and even sup-
ports user style sheets, which you install via the Windows
Registry.7

Blazer (NetFront)
On many PDAs such as the Palm Treo family, the Sony
PlayStation Portable, and the Amazon Kindle to name
a few, you’re likely to find embedded browsers based on
the NetFront engine. Blazer, the default browser on PalmOS devices, is one of the most well-known
NetFront-based browsers. NetFront is technically an exceptionally capable engine that supports WAP
and WML, cHTML, and XHTML Mobile, as well as SVG and JavaScript.

Far from going extinct, newer versions of NetFront-based browsers are finding homes in networked
appliances and consumer electronics devices of many shapes and sizes. Recent releases of NetFront
have added support for RSS viewing and Ajax, among other features. It is especially popular in Japan,
where NTT DOCOMO uses it on smartphones sold as part of their i-mode service.

7. The IE Mobile blog is possibly the best place to get information about Internet Explorer Mobile. Their entry on
“Customizing IE Mobile with User Stylesheets” can be found at

.

 Figure 5-1. The Opera Mini simulator displaying
the Opera Mini home page with default settings

158

CHAPTER 5

Openwave Mobile Browser
Although much less pervasive today, the Openwave Mobile Browser once claimed over 60 percent
of the mobile web browser market share. It is also significant from a historical perspective because
Openwave, Inc., the company that created this browser, was heavily involved in the earliest mobile
web browsing initiatives. Among other things, the company was a founding member of the WAP
Forum, and was instrumental in pioneering both the Wireless Markup Language (WML) and its precur-
sor, the Handheld Device Markup Language (HDML).

Modern versions of the Openwave Mobile Browser support XHTML-MP, CSS, and cHTML in addition to
WML. You can get a full simulation environment for Windows that emulates the browser running on
a smartphone at .

Fennec (Gecko)
Gecko, the rendering engine underlying all variants of Mozilla’s web browser (including Firefox), has
the distinction of being the second most widely deployed desktop rendering engine behind Internet
Explorer’s Trident. Nevertheless, there is no competitive equivalent for mobile devices. To address this,
in 2008 the Mozilla Foundation launched Fennec,8 a project to port Firefox to a mobile aspect.

There are desktop versions of Fennec available for development and testing for Windows, Linux, and
Mac OS X systems.9 The UI of the browser is notably Spartan, as the screenshot of an alpha build
for Mac OS X shows in Figure 5-2. As of this writing, Fennec only ships on the Nokia N800 and N810,
devices that run Maemo, a Linux distribution purpose-built for Internet Tablets.10

 Figure 5-2. Upon first launching Fennec, its welcome screen indicates that most
controls are to the left or right of the viewport. Also noteworthy is that the
address bar serves double duty, displaying the page’s title.

8. You can get more details from the Fennec project page at .
9. Fennec is in the very early Alpha stages of development as of this writing. Nevertheless, if you’re curious, we

encourage you to download a copy for your platform at .
10. Internet Tablets are devices that can be described as halfway between an iPhone and a laptop. Nokia backs the

Maemo project itself and information about the project can be found at .

159

DEVELOPING FOR SMALL SCREENS AND THE MOBILE WEB

Firefox add-ons such as the Web Developer Toolbar by Chris Pederick can provide you
with useful mobile web development tools. Using Chris’s extension, you can select
CSS Display CSS by Media Type Handheld to view a site as styled with

 CSS rules, and you can use the Resize menu to preset many popular mobile dis-
play widths. You can also access these commands after installing the extension from
Firefox’s Tools Web Developer menu.

Mobile Safari and Android (WebKit)11

Although Opera dominates the mobile web browsing space in terms
of raw install base, Mobile Safari, the web browser found on iPhone
and iPod touch devices, is the mobile user agent that most web sites
are seeing the greatest amount of traffic from. The core of the Mobile
Safari browser is WebKit, which has been garnering a growing amount
of press and developer attention for some years now. WebKit origi-
nated as a fork of KHTML, an HTML rendering library intended for use
in Linux’s K Desktop Environment (KDE), and which was used for some
time in its Konquerer browser.

Among WebKit’s key benefits are its relatively small footprint and the
ease with which it can be embedded in other applications. This makes
it easy to customize, and—as an open source project12—its license is
relatively unencumbered. WebKit is used in the default web browser
on Nokia’s S60 as well as Google’s Android mobile platforms.

WebKit is also finding its way into an increasing number of desktop
browsers, which can provide approximations of the WebKit experi-
ence for development purposes. Among these are Safari for Mac OS
X and Windows,13 Google Chrome,14 and Konqueror.15 However, desk-
top browsers can’t always provide an adequate emulation of a mobile
device, so for a more exacting experience, Mac OS X users are encour-
aged to download the full iPhone SDK,16 which includes an iPhone
Simulator, and the Android SDK,17 which similarly provides an emula-
tor, shown in Figure 5-3.

11. The Web Developer Toolbar by Chris Pederick can be downloaded from Chris’s web site at
r/.

12. You can get daily builds of the latest development versions that the WebKit community produces by downloading
nightly builds at .

13. If you don’t already have Safari on your machine, you can download it at .
14. As of this writing, Google Chrome only runs on Windows. It is also available for free at

.
15. The Konquerer home page is at .
16. The iPhone SDK can be downloaded from .
17. The Android SDK can be downloaded from .

 Figure 5-3. A screenshot of the Google
Android emulator displaying the
Google Android homepage

160

CHAPTER 5

Developers and analysts alike are describing Mobile Safari as the future of the mobile Web, so it and
its engine are both software to pay close attention to. It’s very likely that WebKit-based mobile brows-
ers will continue to enjoy increases in market share over the coming months and years. Later in this
chapter, we’ll discuss Mobile Safari and some of its WebKit-specific features in greater detail.

Comparing browsers and displays
A mobile web browsing experience is affected by both hardware and software components. Although
what software will ship with what hardware is often well known, in many cases users have the ability
to install different browsers after making their purchase, or service providers selling these devices may
choose to install a different web browser themselves, creating many additional possible combinations
of user agents and devices. In Table 5-1, we compare screen resolutions and default browsers across
a sampling of mobile devices.

 Table 5-1. Screen Resolutions and Default Browsers

Make Model Resolution Default Browser Engine

Amazon Kindle 600 800 NetFront

Apple iPhone 480 320 WebKit

Apple iPod Touch 480 320 WebKit

BenQ M315 128 128 Opera

HTC G1 320 480 WebKit

Kyocera Mako S4000 128 160 Openwave

Motorola Hint QA30 320 240 Openwave

Motorola Krave ZN4 240 400 Openwave

Motorola KRZR K1 176 220 Opera

Motorola RAZR V3 176 220 Opera

Motorola ROKR E2 240 320 Opera

Motorola SLVR L7 176 220 Opera

Motorola V980 176 220 Opera

Motorola VE240 128 128 Openwave

Motorola ZINE ZN5 240 320 WebKit

Nokia 6300 240 320 Opera

Nokia 2605 Mirage 128 160 Openwave

Nokia N81 240 320 WebKit

Nokia N810 800 480 Gecko

Nokia N82 240 320 WebKit

Nokia N95 240 320 WebKit

Nokia N96 240 320 WebKit

161

DEVELOPING FOR SMALL SCREENS AND THE MOBILE WEB

Make Model Resolution Default Browser Engine

Palm Centro 320 320 NetFront

Palm Treo 680 320 320 NetFront

Palm Treo 750 240 240 Internet Explorer

Palm Treo 755p 320 320 NetFront

Palm Treo 800w 320 320 Internet Explorer

Palm Treo Pro 320 320 Internet Explorer

Palm Pre 320 480 WebKit

RIM BlackBerry Bold 480 360 BlackBerry Browser

RIM BlackBerry Pearl 240 320 BlackBerry Browser

RIM BlackBerry Storm 480 360 BlackBerry Browser

Samsung Behold T919 240 400 NetFront

Samsung BlackJack SGH-i607 240 320 Internet Explorer

Samsung Epix i907 320 320 Internet Explorer

Samsung Eternity SGH-A867 240 400 Openwave

Samsung Highnote M630 176 220 Polaris

Samsung Omina i910 240 400 Internet Explorer and Opera

Samsung Rant M540 176 220 Polaris

Samsung Rugby A837 176 220 NetFront

Samsung Saga i770 320 320 Internet Explorer and Opera

Samsung SPH-Z400 176 220 Obigo

Siemens SX66 240 320 Internet Explorer

Sonim XP3 128 160 Opera

Sony Ericsson C702a 240 320 NetFront

Sony Ericsson C905a 240 320 NetFront

Sony Ericsson TM506 240 320 NetFront

Sony Ericsson W595a 240 320 NetFront

Sony Ericsson W760 240 320 NetFront

Sony Ericsson X1 800 480 Internet Explorer and Opera

As you can see from the sampling in Table 5-1, screen sizes for mobile devices range from as small as
128 pixels square to as high as 600 800 pixels, with a great variety in between. Even if you consider
that most users rarely (if ever) upgrade their default web browser or install a new one after they’ve
acquired their device, this showcases relatively rough terrain for a developer to navigate. Nevertheless,
as we’ll discuss next, it can be done.

162

CHAPTER 5

Delivering mobile style
Earlier in this chapter we touched on the constraints we are faced with when developing for mobile
devices. These issues can make or break a mobile design, so be sure you’ve considered and tested for
them in your designs.

Bandwidth and processing capability is probably going to be an issue for mobile devices, so be sure
your code is as lean as possible. Use good markup practices: remove any presentational data from
your HTML, use descendant selectors and classes in the broadest terms, optimize your code, and be
ruthless about avoiding redundant rules and keeping your style sheets as succinct as possible.

Images may not always be available. When they are, they may be a huge bandwidth drain as well.
Keep them small and optimized, and use scalable methods (such as percentage widths) to insert your
graphics. Setting height and width values will help pre-arrange your slow-loading layout before all
the images have been downloaded as well. An image that is too wide will push your content out and
create those unsightly horizontal scroll bars. Be absolutely sure that your images have attributes
with concise and meaningful text in case the client does not support images, or use for
images that you’d like to hide from the mobile browsers. (Note: Even though we have set the image
to , the browser may still download the image a linked asset, incurring a bandwidth hit.
If you’re ruthlessly optimizing pages, you may wish to consider alternate schemes, such as program-
matic style sheet switching or sending mobile users to a separate URL. But for lightweight page designs
with well-crafted code and optimized images, this may not be as much of a concern.) You might even
intentionally decide to show attribute text instead of the image itself using CSS3’s capability to
replace real content with pseudo-content:

Things like frames and pop-up windows will not always work well on mobile. Avoid these constructs if
you can. JavaScript may not work as well, so be sure you have a graceful failover mechanism installed
for those fancy Ajax calls that you had baked into your site.

Color is likely to be less rich on the low-end and midrange phone devices, and the same is likely true
for older smartphones. Early smartphones such as the Handspring Treo 180 and the BlackBerry 6750
had monochrome screens. Be sure that you plan on high-contrast color choices to ensure readability
on the widest range of devices.

If designing specifically for handhelds, you will undoubtedly want to go for a single-column layout.
Most of the time the user is going to have the wider part of the screen in a vertical aspect when hold-
ing a mobile device, and of course the screen width is far narrower than what you’d encounter on the
desktop.

Forms are always going to be a bit tricky to handle on the user end. Entering text is more of a chal-
lenge on mobile devices than on desktop systems due to the limited text input and navigation capa-
bility, so do your form users a favor and make your forms simple. Use as few form fields as you can.
Preload data into select menus, check boxes, or radio buttons whenever possible. Make the form
elements fit the mobile interface, usually by increasing the height a bit and making text fields fit the
width of the device screen. Also, elements need to be conscious of height as well; too large
and it may be difficult to enter text into the interface if the page scrolls above or below the element.

163

DEVELOPING FOR SMALL SCREENS AND THE MOBILE WEB

Finally, readability is the main thing your users are after in most cases. Make sure your fonts are set
to be at a readable size and style for smaller screens. Many mobile browsers lack a lot of font resizing
options, so don’t make your type too small.

The handheld media type
The media type is the simplest way to target a style sheet for mobile (i.e., “handheld”)
devices. This can be done either via a element or via an rule. Recently Opera and
WebKit have led the charge for mobile browsers to default to instead of style sheets,
with Opera providing an option to choose for the media type over and WebKit going
so far as to ignore support for completely. But using the media type is still great
for targeting many of those other browsers out there and this will be our first working example for
this chapter. Here are some examples of the various ways to invoke the media type:

The link method:

Applying to an embedded style sheet:

Using to target handheld styles:

Using to import a mobile style sheet:

Of these various methods, the media type applied to the link element or to an embedded
style sheet tends to have the widest support.

164

CHAPTER 5

Formatting a page for handheld media
To practice some of these concepts, let’s work with our résumé example from the previous chapter. As
a reminder, Figure 5-4 shows what the page looks like on a desktop browser:

 Figure 5-4. Our résumé page in its original state as shown in a desktop web browser

Our goal is to reformat the résumé so that it looks reminiscent of our desktop design on mobile
screens, and so that the content is clear and accessible.

Let’s pick up from where we left off in the last chapter by adding an embedded style sheet, this time
with a media type of :

165

DEVELOPING FOR SMALL SCREENS AND THE MOBILE WEB

For our initial testing purposes, we’ll use the Opera desktop browser.
This will allow us to write code and quickly preview our mobile styles
from our computer, and it should work mostly the same on the operat-
ing system you are likely using. Before adding a handheld-specific style
sheet, Opera will attempt to do something interesting to a website: it
will attempt to reformat the page into a single-column and with a nar-
rower aspect. Adding a blank media style sheet will disable
that feature in Opera and instead render an unstyled HTML document.
In desktop version of Opera set to Small Screen mode, this would
appear as shown in Figure 5-5.

Admittedly, not a huge improvement, but it’s a start. The first thing we
notice is that our image is too large, so let’s fix that right away:

With this set of rules, we’ve made sure that our image fits within the space
of our device’s window by using the property set to . This
attempts to keep our image within the space of the viewport, but there’s
a problem. The element is pushing it out to the right, clipping
our image and generating a vertical scroll bar. This is easily resolved by
setting the margin and padding of the element to zero, and we set

 Figure 5-5. Initial rendering of our
(empty) style sheet

166

CHAPTER 5

it to both the margin and the padding to be on the safe side because we’re really not sure how vari-
ous user agents will handle this. Finally, we added a little italic style to the and bold to the to
give them definition. And now we can say that this layout adequately fits our screen and should work in
a variety of mobile browsers as is, and we can proceed with adding more cosmetic and functional ele-
ments to our style sheet. Figure 5-6 shows how it looks now in Opera’s Small Screen mode.

Right here it is important to note a concern about the image in our web
page. The image weighs in at 26 kilobytes, which may be considered
kind of large by wireless network standards, and the native size of the
image is 300 400 pixels, which is definitely overkill for all but the top
end smartphones. Images should be reduced to a realistic size on dedi-
cated mobile web sites and compressed as far as makes sense for your
design requirements. Since we are going to only repurpose our page
for mobile through CSS, let’s not worry about this now.

Establishing color and typography
Now that we have our boxes established, let’s fill in a few stylish items
on our page and start to make it look somewhat reminiscent of our
desktop browser version. First, the basics: we will apply some back-
ground and font colors and see the result in Figure 5-7:

 Figure 5-6. A preview of our initial
mobile styles, with an image that fits
and some styling on the definition list

167

DEVELOPING FOR SMALL SCREENS AND THE MOBILE WEB

Now we’re getting somewhere. With these few additions, this mobile
view is recognizable as being related to our desktop design. The back-
ground and font colors have been set to match the desktop version
using and A little padding
has been applied to our existing element—this sin-
gle column layout doesn’t have much need for a layout container
on the surface, but it does give us a consistent place to apply padding.
The next obvious things that need fixing are the hyperlinks to match the
desktop view, which is easily done with a few anchor rules:

Now that the links are taken care of, we need to work on the navigation
toolbar. For this, we’re going to go for a similar effect to our desktop
style sheet but make it work for mobile as best we can. To start with,
zero out any margin or padding that might be applied to the and

 elements, and set the to :

Then we’ll work on the rules to make nav buttons:

 Figure 5-7. Initial color styles

168

CHAPTER 5

Here we’ve set the anchor element display to block and floated the buttons to the left. The margin
and padding values are set to make the buttons appear proportional to the screen view, with the same
border and background styles and of course the removal of the default anchor underline by using

ne.

If you preview our page now, you’ll see that the nav bar elements that are floated now wrap to the left
of the heading that represents the name of the musician. This is an easy remedy:

The result of clearing the is shown in Figure 5-8.

 Figure 5-8. Establishing the mobile
nav buttons

The nav button text causes the last two buttons to definitely appear a bit wide, and it would be nice if
we could use “CV” instead of “Résumé” as a conveniently short abbreviation. We can fix that by using
some replaced content techniques (see the results in Figure 5-9):

169

DEVELOPING FOR SMALL SCREENS AND THE MOBILE WEB

 Figure 5-9. Condensed buttons using
content replacement

Not bad—we have the buttons fitting all on one line now in our arbitrarily sized window (230 pixels in
this screen capture). The next step is to add the banner background graphic. Let’s add it to the
element since we have some background color already applied there; Figure 5-10 shows the results:

 Figure 5-10. Background applied to
the nav bar

Here we’ve replaced with the background shorthand rule, applied the
image to give us that nice and warm-colored background, and moved the image up by using a value of

 pixels, which serves to make the bottom edge of the buttons line up with the background image’s
gradient effect.

170

CHAPTER 5

Since we are for the most part limited to designing single-column layouts for mobile web sites, we can
add some separation of the sections by implementing a border:

Here we’ve conveniently used the microformat classes for two existing semantic constructs,
() and (), and placed an orange dotted border beneath them. It is nice that we
can target these specific classes, which give us good placement for the borders rather than trying to
find the right combination of descendant selectors to get a similar effect. Leveraging the microformats
structure can be useful to CSS authors due to the added number of semantic hooks that exist in the
markup.

Now the rest is just nudging and tweaking things for polish. The headings can be styled to be slightly
more fancy. Since we don’t know what browsers will have in terms of fonts—it can be a complete
free-for-all—let’s just go with a keyword on the font family for elements, italicize , and make
sure that first (with the ID) isn’t too close to the nav bar:

This gets us almost to the finish line. Now let’s complete our design by styling the two summary list
items, and add a little increase in the line height for some of the text to make it more readable. First,
the summary, which is indented a little too far on the left side, and which looks too pronounced in
normal font style:

Better. And finally, some line height for readability:

This could also be applied to the since those look a little tight:

171

DEVELOPING FOR SMALL SCREENS AND THE MOBILE WEB

And for the final touch, you will notice the default dotted underlines that Opera places on our
elements. Let’s get rid of that—it is not much help in this example (the help text is a machine-formatted
date):

And that does it. Here’s our final style sheet and a view of our page in
Opera in Small Screen mode (see Figure 5-11 for the results):

 Figure 5-11. Final handheld styles

172

CHAPTER 5

173

DEVELOPING FOR SMALL SCREENS AND THE MOBILE WEB

To finish our operation, we need to extract our style sheet into an external file. Copy all the CSS code
in-between the elements to an external file named , delete the old
element and its content, and link to the new external style sheet:

There was a time in the past when detecting the user agent at the onset of a page
request and redirecting things as appropriate was considered a good idea (if it was
considered at all). This technique fell out of fashion with the onset of the web stan-
dards movement, and developers began to insist on serving one page to all devices.
However, with the diversification of so many devices, capabilities, and sizes in the
handset market, user agent detection may be a solution for certain situations.

Such a situation might be where you want to deliver truly optimized content to a spe-
cific handset category. It is a fact that when any browser hits a web page, they are
going to have to download all of the linked assets on that page whether or not they
are set to display, and this can be a drag on bandwidth. Additionally, you may want
to deliver custom content to a specific type of handset, such as touch-screen controls
to an iPhone or BlackBerry Storm, which might not be necessary on other devices that
use keypad controls or a stylus pointer.

While this technique is useful for redirecting traffic to an optimized version of the site,
there is a major drawback. User agent detection is tricky. The user agent strings have
little consistency between them and tend to change over time, meaning a developer
will continually have to return to the script to ensure that something isn’t getting left
out as the browsers and user agent strings evolve over time.

Designing for Mobile WebKit
WebKit is the basic rendering engine for a number of excellent web browser implementations in the
smartphone market, the most prominent of which is the Safari browser on iPhone and iPod Touch.
Google’s Android platform is another prominent WebKit browser implementation, and Nokia’s S60
browser also uses WebKit port for the Symbian platform on their handsets.

Why optimize for WebKit?
WebKit-enabled handsets do constitute a fraction of the current total mobile browser market share,
but this market share growth is outpacing the rest of the industry. According to AdMob’s Mobile
Metrics Report for November 2008, Apple’s iPhone had both the highest percentage of requests
for any single handset as well as the highest percentage of increased worldwide market share. The
second-fastest growing device was the iPod Touch, and the just-launched HTC G1, which runs Google’s
Android platform and a WebKit-based browser, has already garnered 7 percent of T-Mobile’s web
traffic and 2 percent of the global web traffic market. This is only the first phone to market on the
Android platform. Android is the OS component of the Open Handset Alliance, a consortium of
industry heavyweights banded together to pool their resources and create a next-generation open
mobile handset platform. These industry heavyweights include such companies as China Mobile, NTT

174

CHAPTER 5

DOCOMO, Sprint, T-Mobile, Vodaphone, Motorola, Samsung, Sony Ericsson, HTC, Toshiba, and of
course Google, just to name a few. These are no minor players—these are some of the biggest names
in the mobile market. Expect more and more providers and manufacturers over the coming years to
be producing Android-based phones, equipped with the accompanying WebKit-enabled browser.

In many respects, you could simply choose to ignore WebKit-enabled handsets. WebKit intentionally is
set to ignore the media type and deliver the media type by default. The idea behind
this is that WebKit is delivering “the whole, unfiltered Web,” without any compromises to the layout,
and that you would be able to leverage the zooming capabilities of their web browser to view columns
of text and images up close, and then zoom back out when they need to navigate to other parts of
the page. It is an ingenious little feat of usability in the way Safari works on the iPhone—you simply
need to double-tap on a block-level element to zoom in on exactly that element, or you can use the
two-finger pinch maneuver to zoom in and out of pages as desired. While other implementations
of WebKit may vary, this basic principle of being able to zoom in and out of content quickly is what
makes WebKit so useful for viewing full-scale web layouts.

But for the purposes of this discussion, let’s assume that your project requires an optimized view for
the iPhone and related WebKit-enabled handsets. You want your content to be readable and acces-
sible, and are willing to trade off a few features normally found on the full-scale version of your web
site.

Previewing WebKit pages
When testing on mobile devices, nothing beats having the real device in your hands to test things with.
However, owning one of each of the multitude of WebKit-enabled devices is not fiscally practical, save
for the most high-end production teams doing sophisticated web application development. For the
rest of us, some simulation of the mobile WebKit environment is going to be just fine.

To get started, the simplest way to preview your work may be to simply use the desktop version of
Safari. Safari is available for the Mac OS X and Windows operating systems, and checking your code
here will give you a decent approximation of how your site design will appear in the mobile version
of the browser. What is even better is that Safari has a built-in developer feature. In Safari prefer-
ences, click the Advanced tab and select the Show Develop Menu in Menu Bar check box, as shown
in Figure 5-12.

However, Safari isn’t going to be much help if you are going to be doing any kind of specialized
mobile style sheet delivery, and we will certainly be using media queries to accomplish this goal in
this example. To use Safari for previewing your work, you must set the style sheet you are working on
to use a media type of or , and then reduce the width of your browser accordingly as you
preview pages.

There are some iPhone simulators out there that will allow you to see what dedicated WebKit-optimized
sites will look like. However, as of this writing none of them are capable of either detecting user agent
strings or handling media queries, the latter of which will be required for our examples later on. They
won’t be much better than just using Safari itself, outside of the fact that at least they’ll represent the
screen size correctly.

175

DEVELOPING FOR SMALL SCREENS AND THE MOBILE WEB

 Figure 5-12. Check the Show Develop Menu in Menu Bar option to enable
developer features in Safari.

A better way is to install a software developer kit that contains
a desktop device simulator. If you’re running Mac OS X, the
recommended one to start with is the iPhone Developer SDK.
This is going to be a large download, which includes the entire
Xcode Developer Tools suite plus all the iPhone utilities, but the
tools that are included with the SDK are quite useful. What is
particularly useful is the iPhone Simulator application, which
includes a full version of Mobile Safari. This is the closest you
are going to get to running an iPhone without actually having
one. There are more goodies in the iPhone SDK for mobile web
development, but the iPhone Simulator will be a great place
to start. After installing the iPhone SDK on your Mac, look in

 for the iPhone Simulator application. Figure 5-13
shows how the résumé example looks in the simulator.

If you are not using Mac OS X, there are alternatives. The Google
Android SDK runs on Windows, Mac, and Linux, and is avail-
able at . This SDK includes
an Android simulator, including the Android version of WebKit.
Another advantage to running the Android SDK is that it is an
approximately 90MB download, which is compelling consider-
ing the iPhone SDK is a hefty 1.56GB. Both the iPhone SDK and
Android SDK will work fine for these examples.

 Figure 5-13. The résumé page as it renders
in the iPhone Simulator prior to WebKit CSS
treatment

176

CHAPTER 5

Basic layout properties
The screen of WebKit-enabled devices such as an iPhone or iPod touch is going to be much smaller
than desktop browsers, but for the most part WebKit on these devices will be comparable in terms of
capability. Mobile Safari on the iPhone and iPod Touch assumes by default a width of 980 pixels for
the web sites it visits. It then automatically converts this width to a scaled-down level that fits on the
devices’ actual 320-pixel-wide display. It does the same thing for the height, shrinking the assumed
1091-pixel-high web site into the physical 480-pixel-high rendering.

Setting the viewport
The iPhone and iPod Touch assume a 980-pixel-wide page and then try to crunch the view of the
resulting page into the 320-pixel-wide viewport of said device. This can result in some pretty tiny text.
It is resizable a bit if you tilt the unit 90 degrees, but this can be considered another user inconve-
nience and it doesn’t always do the trick.

This behavior is controllable via a special element that
you can place into iPhone-optimized pages. For instance, if your
web site is not 980 pixels wide but is instead 640 pixels wide,
use .

 is the default
that’s assumed if a element is
not found.

On the iPhone and iPod Touch, and likely on most other
WebKit-enabled devices, the user can scale the screen view to
zoom in on particular elements. This is a useful feature for sites
that aren’t already optimized for mobile, but perhaps you’ve
done the legwork to make your site as friendly as possible to the
WebKit users and zooming would just throw the layout off. In
these cases, use se:

.

“But wait,” the inner Standardista in you says, “this isn’t CSS! Isn’t
this just presentational cruft being added to our markup?” True;
establishing a viewport value via a metatag is not very flexible
and this would probably be cleaner in a style sheet, but regard-
less this is an important aspect of mobile WebKit design and we
have to leverage it if we want to benefit from this effect.

For our example, let’s fix the width of the viewport to our screen
layout . The layout was set to in our screen style
sheet, and we know that the iPhone assumes pages to be 980
pixels wide. So let’s shoot for setting the viewport to of the
980 pixels, which comes out to 588, reset the layout to

, and see where that gets us (check out Figure 5-14):
 Figure 5-14. Setting the viewport width

177

DEVELOPING FOR SMALL SCREENS AND THE MOBILE WEB

This by itself doesn’t look too bad. But by resetting the width of our layout using the
media type, we’ve broken our layout in the desktop browsers. We need to style the WebKit view sepa-
rately, and this will be accomplished using a CSS3 media query.

Using media queries
Media queries are part of the CSS3 specification, and are gaining wider support in the modern mobile
web browser scene. They provide more fine-grained control over what style sheets are served to what
types of browsers and devices, and the scope goes way beyond the mobile web browser world. Media
queries are recommended by Apple to apply style to Mobile Safari.

As mentioned earlier, WebKit and the latest versions of the Opera browser on mobile devices default
to show the media type. On Opera there is an option to switch the default back to , but
on WebKit it is locked down and is completely ignored. Using media queries is the recom-
mended CSS mechanism to direct style sheets toward WebKit, and it will get picked up by Opera in
the process.

So far, our small little change has yielded a layout that isn’t too bad as viewed in the iPhone Simulator,
but as mentioned earlier, we’ve broken the desktop view. Let’s fix that by introducing a media query:

This change adds some conditions to our media value, and may be read as “these styles are only for
screen media where the maximum device width is 480 pixels.” If you preview the page now in a desk-
top browser, you should see the same original design. And in a mobile version of WebKit, you should
see the optimized width of the page.

Styling links to be touch-friendly
WebKit is prevalent on the iPhone OS and Android OS devices, both of which feature touch screen
capability. But the finger, while far more convenient than toting a stylus or reaching for a mouse, is not
a very precise pointing device. We need to make our page controls friendly to our fingertips, and this
invariably means increasing the surface area of what is clickable.

178

CHAPTER 5

For navigation buttons, it works well to make buttons approximately 1 centimeter wide and at least
half a centimeter high. This creates a finger-selectable area that is pretty easy to target for most
people. However, don’t stop there if you feel like going larger. It is quite common to make navigation
buttons and similar controls 100 percent of the width of the viewport. Let’s see what we can do with
our page to make it more usable on WebKit for finger selection (see Figure 5-15):

We have enlarged the text size and made our buttons wide
enough to fill the width of the viewport. We had to zero out mar-
gin and padding on the body element to get rid of the browser
defaults and make our interface fit more neatly on the screen.
Now our buttons are easier to use with a fingertip, but we are
missing our nice banner background image and the page looks
a little plain now. As Figure 5-16 shows, we can bring that back,
and solve a usability issue at the same time, by adding the fol-
lowing code beneath the rule:

 Figure 5-15. Styling buttons to be more
touch-friendly

179

DEVELOPING FOR SMALL SCREENS AND THE MOBILE WEB

This nifty bit of code reuses some of our existing assets such as the
background nav bar image and repurposes the home button to be
a bit more descriptive. The attribute selector

 specifically selects our home link
so we can treat it with special care. Then rather than making some
new background image, we simply reuse the old banner
image, but this time we position it to the right. The reason we’re
using it right here is because the banner image had a bit of an
angle along the bottom edge, turning the shape into more of
a trapezoid than a rectangle. Using the wide part of the image, we
hide most of the taper, except for a tiny bit remaining on the left
side of our button. To remove that extra taper, reduce the font
size on from down to and it should look
perfect. (When more of the CSS3 spec is supported by WebKit in
the future, may also become useful for attaining
an optimal placement in conjunction with
for this background image without having to compromise on but-
ton size.)

The original button name of “Home” wasn’t terribly flattering to
this page. Now that the home button is the top visual element in
our layout, it doesn’t really help the site user orient them as to
where they are. Using the and pseudo-selectors,
we have placed a bit of extra content to the left and right of
the word “Home” to make the full string read “Natasha O’Reilly,
Baroque Cellist (Home).” The button now serves as a sort of mast-
head as well, and it remains a helpful beacon if the user wishes to
tap back to the home page.

The next item to tackle is the definition list that contains the
photo, email, and web address. The resolution of this section
looks a little small in this layout, although it might still work as
a floated element. Let’s improve the size of the image and the
text in this box:

 Figure 5-16. Styling the home button to also
function as the site banner

180

CHAPTER 5

The element could be a bit wider, so the width here has been increased to . Padding was
applied on the other screen style sheet, and we’ve zeroed that out here. The and elements
have also had their margins reset, which really only applies to WebKit’s default left margin placed on
the element. The text has been centered, and the font sized increased to . The ele-
ments that are children have been given some extra height to make them more tappable and
to provide some distinction, and an extra of padding has been added to the bottom of these
elements to further improve the usability and visual separation.

For the image, we set the width to and the height to , which is a proportional reduction
from the photo’s native 300 400 size. The image is set to , the top and bottom margins
are set to be , and the keyword is used on the left and right margins to center the image. The
border is set to a medium gray value of to finish the trimming, and we’re done with this floated
section.

If you look at the space after the navigation button where the body of the page begins, you’ll see the
heading is a little too close in proportion to the rest of the headings. Also, the hyperlinks embedded
within the copy look like they might be a little hard to execute with a finger tap and might be better
if there were more surface area. Let’s fix both of those problems:

The first rule selects all elements that are children of either paragraph elements or the element
with the ID of , and it sets half an em of padding above and below the link. This makes the
item a bit easier to hit with a fingertip. The next rule selects all children of the
and increases the line height to 2. This again will make our links easier to access with the finger, and
we’ve already provided a slightly larger surface area for tapping. Finally, we fixed the spacing problem
at the top of the page by giving it 1 em of padding on the element with the ID of me.

181

DEVELOPING FOR SMALL SCREENS AND THE MOBILE WEB

Another Mobile Safari–specific optimization is to ensure that, when you zoom by double-tapping
onto an element (which Mobile Safari interprets as “find the nearest replaced element as defined by
CSS and zoom so that this element’s entire width is displayed in the viewport”) is to use the vendor
extension called st. This property takes any value you can give
and adjusts the line height by that scale factor accordingly. This ensures that when you double-click to
zoom onto a paragraph that stretches pretty wide, for example, the text itself is scaled up an appropri-
ate amount so that it becomes readable. Therefore, you definitely want to ensure that you give this
property a relative unit value!

Two more ways to customize tap behavior on Mobile Safari on the iPhone and iPod touch are to use
 and or. The property can

use a value of to disable the bubble that appears when you tap and hold a link on iPhone OS.
The only allowable values are or (which is the default, and basically means “on”). The

 property takes a CSS3-style value and customizes the color and
transparency values of the highlight box that appears behind a link when you tap it (similar to the

pseudo-class, which applies to the anchor text itself rather than this iPhone-added background
box). To disable the background box entirely, use an value of , such as .

In this example, there is no reason to disable the callout bubble, but perhaps we might try styling that
highlight color a bit. Let’s make that background highlight a subdued shade of orange to match the
site design:

Now if you tap and hold on a link using WebKit on the iPhone OS, you will get an orange background
with an opacity of 0.2 (or 20 percent if that helps).

The iPhone and iPod touch browsers allow users to “bookmark” a web site by adding
it as an icon to the device’s home screen. Normally a simple “screenshot” of the web
page in the state it is in when this bookmark is added is used as the graphical icon to
represent that web application. However, you can specify a custom icon to use by plac-
ing a Tif image file called at the root of your site. If found, this
icon works much like a image in that it automatically becomes the icon
used for the device’s home screen when it is “added to home screen” by a user. You can
customize where this file is searched for by Mobile Safari with a element:

If you use the custom element, your Tif icon needs to be precomposed, that is,
look exactly like the finished product that will appear on the iPhone’s home screen,
rounded corners and all. On the other hand, if you use the canonical file location that
Apple will check automatically, make sure that the Tif icon you use does not include
the rounded corners or the shine—these effects are added by the iPhone OS itself for
consistency. For a nice, crisp image, use one that is 60 60 pixels.

182

CHAPTER 5

Using CSS selectors in JavaScript
It is worth mentioning here that Mobile Safari allows a couple of interesting selectors that will be very
useful to experienced CSS developers: and . These are both part
of the emerging CSS3 specification and allow us to intuitively use CSS selectors in JavaScript calls.

 will return the first match:

In this example, the first element containing an ID of either or will be returned. If
 comes before in the HTML document, then the returned value

from the call would be just the part.

 will return all matching elements as an array:

This would gather all the elements into an array variable called .

WebKit CSS transforms and transitions
The WebKit team has come up with a set of DHTML-like functions to allow developers to manipulate
objects on a page using transformations as the elements are rendered (such as skewing or rotating
an object), or even transitioning or animating the element over time, purely in CSS alone. These are
currently vendor additions, but Apple has pitched these extensions to the W3C as additional CSS3
modules and they became W3C Working Drafts as of March 2009. These functions are available to
use today in Mobile Safari, and are hardware-accelerated on the iPhone and iPod Touch, making such
transitions appear very fast and smooth on these devices.

To gain a little exposure to these new tools and get a flavor for the possibilities, let’s experiment with
some of these new constructs in our style sheet:

183

DEVELOPING FOR SMALL SCREENS AND THE MOBILE WEB

One of the easiest ways to develop iPhone-specific web sites is to use the Apple-provided
IDE as your development environment. Its preview pane is useful for testing how web applications built
for Mobile Safari will look and function. Typically, when using Dashcode, you’re better off getting your
user interface laid out first, since many UI changes that you make via the drag-and-drop interface
change code values underneath. If you make changes to the code itself in source view mode and then
make additional changes with the drag-and-drop interface, your manual code changes will likely be
overridden by the IDE.

You can make web applications run in full-screen mode! That’s right; you can completely remove the
Mobile Safari browser chrome from appearing when you launch a web app from the iPhone’s home
screen button. To do this, simply provide another special element like so:

If your users launch your application from the device home screen (instead of navigating to it directly
from the Safari application’s address bar), adding this line of HTML code will cause the application to
launch in “full screen mode”—that is, sans browser chrome! It should be noted that this “full screen”
behavior is only supported while the iPhone is in portrait (not landscape) orientation. You can also
query full-screen state with a JavaScript one-liner:

This code returns true if the web app is in "full screen" mode (i.e., if it was launched via the home screen).
Doing this does not remove the iPhone’s “status bar” however. However, you can customize the coloring
and style of the status bar with some built-in styles. Again, this is performed via a special element.
The default style that you see on the home screen is the equivalent of this HTML command:

Your other option for the status bar style is or .

You will notice that these are metatags with design elements baked in to the attributes. It is unfor-
tunate that these elements are implemented as presentational markup instead of CSS, but they still
could prove to be useful design tools in some instances. Use with caution.

Why is all this Mobile Safari stuff cool? Because you can use web-based content in native iPhone apps,
too. Therefore, if you only know HTML/CSS but you want to build a native iPhone app, the only thing you
need to do is create one large window and the rest of your app can be embedded in it. You
can even go so far as executing JavaScript from Cocoa applications as well as calling native Cocoa code
from JavaScript.

Mobile Safari adds an entire JavaScript-based gesture API called DOM Touch so that your web appli-
cations can detect one- and two-finger gestures like pinch and zoom. This topic is beyond the scope of
this book, but it’s useful to note and we encourage you to learn more about it.

18

18. To call native Cocoa code from your HTML, CSS, and JavaScript code, register a custom URI scheme and
construct a URI that the Cocoa code will catch, parse, and then execute. For example, calling a URI such as

 inside your will pass and
to , assuming that the application that has been registered to handle the scheme reacts
appropriately, perhaps using the native class methods available to all Cocoa applications.

184

CHAPTER 5

You can see the result of these code changes in Figure 5-17 and Figure 5-18.

Take a look at the rule first. The property has four values after it: ,
, , and . and are almost self-explanatory; they each perform skew

and rotate operations based on the degrees () value that you input. In this case, the will
skew the top edge to the right and the bottom edge to the left, and a positive 30 would have the
exact opposite effect. For , we chose a value of because it looked nice for the effect we
were going for, but try a value of and see what happens! The image will be upside down in the
initial state.

The value is similar to relative positioning. The first number is the horizontal axis offset,
and the second number is the vertical offset. A negative vertical offset will move the object higher,
while a positive number will move it lower. For the horizontal plane, positive numbers will move the
object to the right, and negative numbers to the left. Our example moves the object to the left 5 ems
and up 10 ems.

It’s also fairly simple to guess what does. The value can effectively be any number greater
than or equal to 0. Here we’ve set the scale value to , or about 50 percent larger than the original.

 Figure 5-17. The initial state of the iPhone
page with the info box and portrait faded,
skewed, and enlarged. Tap on the image to
activate the animation sequence.

 Figure 5-18. After tapping on the area where
the picture appears, the objects animate and
settle into the position shown.

185

DEVELOPING FOR SMALL SCREENS AND THE MOBILE WEB

The property gives us the ability to control shadows (such as the ubiquitous drop
shadow) on any box object. The first value of is the horizontal offset. In this case, the shadow is
being shifted 2 pixels to the right (a negative value would shift it the other direction.) The second
value is the vertical offset, and this value drops our shadow 10 pixels below the affected object. The
third value is the critical blur radius value. A value of 0 would yield a crisp line. In this case, we’ve set it
to 13 pixels, giving it a nice, soft blur. Finally, the last value is the color of our blur. We are able to use
the CSS3-style RGBA value, set it to black with all zeroes for the R, G, and B spots, and take advantage
of 0.5 for the alpha transparency spot to allow the shadow effect to blend in with the background
color better.

Up to now we’ve described the transformations in CSS that affect our object’s initial state. Now let’s
talk animation.

The value establishes timing for
the transition effect. In this case, we’ve set it to , or 2 sec-
onds. This works in conjunction with the

 property to describe how this animation will
flow. We have some default keyword values to play with such as

, in, and ut. Or we could define a custom
value using the format , and the
four values represented would be used to compute a cubic Bezier
curve. We’re going to take the easy route and use the keyword

in, which gives a nice acceleration and snap at the end of
the animation.

To trigger this animation, we are using . On the iPhone
and most other mobile devices that wield WebKit, there is no

. However, the event works to execute this control and
that’s how we’ll use it here. Within this rule we’ve simply reset the

, , , and values to their initial state.
You could choose to tweak it the other direction or any which
way you please, and we encourage you to experiment with these
values to see what happens. We also have set opacity back to 1,
and when the animation is triggered by a tap event, the whole
box will snap back into place after 2 seconds. Try it by tapping on
the image or anywhere within the border of the info box.

Speaking of borders, what would Web 2.0 be without rounded
corners? We’ve added them here using the
property. You can get even more specific than that. Try

 instead. Then add dif-
ferent border values to the other three corners. You can even add a
20 pixel rounded border to the bottom-left and bottom-right
corners of the Audio and Video button to finish off the design
(see Figure 5-19):

 Figure 5-19. Rounding the bottom corners of
the Audio and Video button

186

CHAPTER 5

The final step of course is to extract our embedded styles and place them properly into an external
style sheet. Copy everything in between the tags into a new file titled , add the
highlighted line shown in the next code example to your HTML, and delete the old style tags. Here’s
how the element should look now:

And there you have it. We’ve styled our site to be very friendly to the WebKit browsers, and we’ve
explored the future of CSS3. The WebKit platform is a growing market and worth paying attention to
as other browsers will surely follow over time.

Summary
Earlier in this chapter we touched on the constraints we are faced with when developing for mobile
devices. These issues can make or break a mobile design, so be sure you’ve considered and tested for
them in your designs.

Bandwidth and processing capability are perpetual limitations for mobile devices, so you must follow
good coding practices with the mobile set in mind. Use good markup practices: remove any presen-
tational data from your HTML, use descendant selectors and classes in the broadest terms, and keep
your code lightweight and optimized.

The mobile web is the fastest-growing area for web development. Since the release of the iPhone in
summer 2007, mobile web use has exploded across all platforms, as have the number of pages that
have begun to be optimized for handheld screens. Major web sites including Digg.com, Wikipedia, and
the New York Times have all launched major efforts to make their web content more accessible to the
handheld screen. As more and more people start to use mobile browsers to access your web content,
don’t miss the opportunity to make the adjustments to your site that may be necessary for keep-
ing your pages attractive and accessible on the small screen. A small amount of effort in the mobile
department can return large numbers of mobile users hungry for handheld-accessible web content.

189

Chapter 6

It is usual and customary for web authors to combine multiple style sheets that work
together to style a web page. We have several reasons for doing so. One style sheet
might be for typography, another for layout, and yet another for color. There may
be one style sheet specifically designed to handle print output, and one or more
possibly to deal with the explosion of mobile devices hitting the Web lately. Some of
these may be architected to work so that there are various forms of failover for user
agents that support this or that part of the CSS specifications. Applying multiple style
sheets to a web site is quite common, and in fact encouraged, and in this chapter
we will discuss various methodologies and techniques for putting your style sheets
together.

Our primary goal is to support the widest range of browsers as possible—every one
of the browsers would be perfect. A close second might be the maintainability of our
site’s CSS. Both of these goals can be served by an organized and functional set of
style sheets and organization practices that follow a plan.

MANAGING AND ORGANIZING STYLE SHEETS

190

CHAPTER 6

The need for organization
Sure, you could go and write that style sheet from scratch and dump everything all into one large file.
You know what you are doing, and the tendency is to write one style after another as you construct
your CSS from a design comp. But then what? How are you going to organize and manage your code
over the life cycle of your web site? Who will work on it in the future? How will your code grow over
time? How will your style sheets be handled by older browsers? By newer ones? By alternative media
such as cell phones and printers? Will your users have any preferential control over the style sheets
themselves?

If you’ve done any code development of any sort, then you know it is almost inevitable the code will
tend to expand in size over time. Putting aside code optimization techniques (which we will discuss
later), we know that we’ll find new features to add, new bugs to fix, and new (or old) browsers to code
around.

What organization looks like
Before we can be successful, we have to know what success is. An organized style sheet model is going
to have the following characteristics:

It is going to have a logical, hierarchical structure. Things will tend to be organized in a certain
way: from large-scale layout to minute detail, or from broad selections such as redefinitions of
HTML elements to nested descendant selectors for specific IDs, or ordered from low specificity
to high according to the rules of specificity and the cascade.

It is going to be a standardized pattern for organization and naming conventions that your
shop, and dare we say the greater community, is following or able to follow.

It allows for flexibility and is customized to make sense for the project you are working on.
Trying to shoehorn everything into a rigid framework is going to be more work than it is worth.
The best strategies are the ones that allow the greatest and easiest levels of customization.

The code itself is organized: line breaks, braces, whitespace, and indentations are consistent
throughout the entire set of style sheets. The code is easy to read. Helpful, concise comments
are placed throughout the style sheet outlining major areas of concern, and are not overly
detailed or verbose.

One document is being served by multiple style sheets. Instead of forking your site for mobile,
print, and IE, you have one site and one set of style sheets to handle the differences and serve
progressive enhancement depending on the client capabilities.

Like good markup, good style sheets are self-documenting. The selectors should use the semantic
structure of the markup it represents, without being too verbose or overly specific. Rules should
be organized in a way that makes sense, with like rules grouped together and ordered in a way that
makes sense for readability as well as for supporting the cascade and inheritance. It should be obvious
to any developer coming across your code to see how this style sheet is being applied to the given
site. This can be achieved through organization, good commenting, and good attention to the format-
ting of your code. Let’s look at a few things inherent in CSS such as specificity that will help you get
organized right away.

190

191

MANAGING AND ORGANIZING STYLE SHEETS

Using CSS features as architecture
Although it’s not often talked about explicitly, CSS code has two very different functions. On the one
hand, parts of style sheets are intended to be generic, while on the other hand, other parts define
extremely specific things about various design components. One of the most powerful organizational
techniques is to be able to extract the generic from the specific. This enables you to architect your CSS
code in ways that are more modular and more easily understood.

Understanding specificity
In our experience, CSS works best if code is organized generally from low specificity to high. This
makes it easier to override the more general selectors with more specific ones later on in our style
sheets. Placing high specificity rules before low ones will result in those later and lower rules just not
working if there’s any kind of conflict, and putting things in the proper order from low to high makes
it easier to add progressive fine-tuned enhancements to rules as they get more specific. Understand
how specificity works, and use specificity and the cascade to your advantage in organizing and opti-
mizing your CSS. See the upcoming section “Organizing from broad to specific” to dive further into
how specificity can work in the scheme of how your code is organized.

Applying multiple style sheets to a page
When you apply multiple style sheets to a page, think about how these style sheets work together.
You are likely going to want to start with a style sheet that covers any rules that would be common
throughout the various media types and conditions. Then you will want to add style sheets for specific
media types, and alternate style sheets below that. Finally, you will want to remember that any styles
in style sheets linked or imported below another style sheet with the same selectors or basic specificity
instructions will override earlier ones.

The grand order of at-rules
Use rules at the very top of your style sheets to define what character set your style sheet
is defined as. This will usually be ISO-8859-1 (Western European) or UTF-8 (Unicode), but might also
be some other character set such as the likes of Big-5 (Traditional Chinese), ISO-8859-2 (Central
European), or Windows-1252. It is especially important to indicate the character set being used in your
style sheet if there is a mismatch between it and the master HTML or XML file—if they’re different, the
style sheet may fail by having the style sheet be unrecognized by the browser and ignored. An
rule denoting the use of Unicode would look this at the top of your linked or imported style sheet:

As we mentioned in Chapter 2 and discussed further in Chapter 4, rules allow you to attach
multiple style sheets from within a style sheet itself. These rules may appear in embedded or linked
style sheets, and they must appear before any other rule in a style sheet, except for rules.

Imported style sheets may be assigned media types. Usually you will want to import style sheets in the
same way that you want to write CSS rules—from broad to specific. A style sheet with a media type of

 or no media type specified will probably be best placed at the top of your import listing before
any styles appearing later on.

191

192

CHAPTER 6

The rules are used in XML contexts to handle selecting namespaced elements that might
have a prefix, such as . The rules must appear after any and
rules. We discuss how to use in detail in Chapter 10.

The rules that we discussed in Chapter 2 are used to target sections of a style sheet to a set of
given media types and may appear anywhere within the content of a style sheet, after any of the items
that might appear above. Again, position these the same way you would treat linked and imported
style sheets, with general rules appearing before the more specific ones.

The construct is a new recommendation in CSS3. This lets you add your own font resources
to a page. Any declarations must appear before any rules that use the imported font.
Other than that condition, may appear anywhere within a style sheet.

The construct handles styling for the page box in printed media. The constructs will
contain rules for page margins and page breaks, and may appear anywhere in a style sheet after the
required at-rules. Since they are more specific in affecting only paged media, they will likely be best
presented further down in your rule hierarchy.

Classical inheritance schemes for style sheets
If you’re familiar with object-oriented programming, you’ll recognize the term “classical inheritance”
as a technique by which subclasses inherit methods and members from their parent classes. Thanks to
CSS’s natural cascade, CSS authors can learn a lot from the principles of object-oriented programming.
Managing multiple style sheets in a project is one such example.

One style sheet, let’s call it , is like the base class, which defines generic properties for
generic elements. Then, a second style sheet, let’s call it (which is still pretty generic),
extends the design with additional properties specific to the current theme. In this example,

 is like a subclass of .

Defining design relationships using selector groups
One of the most pressing issues in CSS-based development is how to write your declarations with the
lowest edit-per-change ratio. Design is entirely about relationships that one element has to other ele-
ments. Your CSS should encode these relationships as best as possible, such as by using selector groups.

For example, absolute positioning is a great opportunity to use selector groups to encode visual rela-
tionships. If all three of your columns in your three-column layout begin at exactly 150 pixels from the
top of their containing block, you should use a grouped CSS rule like this:

instead of three separate CSS rules like this:

193

MANAGING AND ORGANIZING STYLE SHEETS

Why? Beyond the fact that the first is less redundant, it also encodes the visual relationship of the
position between the three elements in the selector group. This is the real reason to group the ele-
ments in this example.

Good coding principles
Neatness counts. Seriously. You should get in the habit of keeping a clean house when it comes to
code. Have you ever tried to find a pen on your desk that you haven’t tidied up in the past six months?
What about that car registration renewal that you thought was due next week? Yes, you know who you
are out there . . . Well, think of that pen as a class in CSS, and think of that DMV renewal form as an
ID, and imagine you fresh on the job as the web designer for a major web operation. Your boss just
stormed in and said we need to change all pen classes to have red borders, and the DMV renewal box
needs to be moved to the right side of the page instead of the left. The style sheet is six printed pages
long and is such a mess that you have no idea where to begin because you took this job only a month
ago and haven’t looked at the site style sheet much since then.

Organized code to the rescue. Let’s look at some methods for improving our own lives and the lives of
others through cleaner and more organized CSS.

Taking advantage of inheritance
At this point it would be a good idea to point out the issue of inheritance. If you return to Chapter 2
and look at Figure 2-4 and its accompanying code example, you’ll see that the element was
set to reduce the font size to 80 percent of the default and to use a sans-serif font family. The styles

 and were assigned to the element and yet the entire document seems
to take on these values. This is extremely important because, along with the cascade, CSS inheritance
is equally effective at transferring errors and discrepancies “downstream” (to child nodes) as it is at
transferring correct CSS declarations.

In Figure 6-1, we can see how this has been rendered using a web browser. Interestingly, all of the
elements have this sans-serif font treatment, and while you may have to take our word for it regard-
ing the image rendering, the font sizes overall have been shrunk by the specified amount relative to
their user agent defaults. This is made more obvious by the following code example as rendered in
Figure 6-1:

194

CHAPTER 6

Figure 6-1. Preview of the code example showing how inheritance is
propagated through the display of the page

Let’s look at what happened here. The most obvious thing we can see is that all the paragraphs have
inherited the value from the rule, and they should because that is exactly what we had
told them to do. Normally, the value is not inherited, so to get this to happen we had to write

. In addition to that, we can see that the italic typeface was inherited. Some
properties are inherited from parent elements by default, while others are not. We did not specify

 in our paragraph rule, and yet italics appear here. The property is
one of those items inherited by default. Finally, we can see that the parent element was instructed to
have 12 pixels of padding. Since padding is not inherited by default, the paragraphs do not render the
parent’s padding.

Organizing from broad to specific
As we just discussed, a selector can override another rule if the specificity of the first rule’s selector is
higher. The more specific a selector is, the more difficult it is to override it. Furthermore, a rule appear-
ing later (further down) in a style sheet will override an earlier rule if both have the same specificity
value. Therefore, it is a good idea to put your more general rules toward the top of your style sheets,
and the more specific ones toward the bottom. This will make it easier to maintain your style sheets by

195

MANAGING AND ORGANIZING STYLE SHEETS

reducing the number of things that can override specificity unexpectedly—low specificity will tend to
be at the top and high specificity at the bottom, making it less likely that a high-specificity rule will be
causing you lots of confusion and trouble throughout later parts of your style sheet.

Organizing from low specificity to high specificity means, in the broadest terms, placing your simple
selector rules toward the top, class selectors toward the middle, and ID selectors toward the end of
your style sheets. However, it is also highly likely that one of the first things you will do in your style
sheet is to establish sections based on the structural, semantic ID elements that define the major sec-
tions of the markup, so within each section there might be its own hierarchical order of rules as well.
As usual, an example will help illustrate the concept:

196

CHAPTER 6

In this example, we started broad and moved toward specific. The broadest selector is the
element rule. , , and elements follow as they are descendants of the element.
These simple selectors are followed by a section defining broad classes that could exist anywhere in
the document. Following that, we have the selectors that define our document structure following the
IDs laid out in our HTML. Even these follow a broad to specific pattern, and are organized in the order
that the elements would appear in the HTML.

Avoid overusing arbitrary <div> elements, IDs, or classes
 “Classitis” and “divitis” are terms that are commonly used to describe a chronic inflammatory condi-
tion whereby your markup contains an overgrowth of unnecessary elements and class attributes.
Your document structure should be defined using some elegantly placed elements with a sparse but
effective use of IDs and a minimum of classes that will enable rich styling based on the semantics of
the document itself. Resist the urge to add extra elements or classes just because you think
it will make your style sheets work. Use descendant selectors whenever possible. This will typically
reduce the overall size of your code base, improve load times through reduced file sizes and cached
style sheets, make your markup far easier to read and manage, and turn you into a magician in the
eyes of your peers.

In fact, avoiding adding extra elements and classes completely can be very educational. If your
markup is well structured, then you can likely complete all of your design needs using the humble
descendant combinator. As support for CSS selectors that use structural context improves (such as

ld, and ld), the need for arbitrary styling hooks will become that much simpler.

Dividing style sheets into logical sections
Just as well-structured markup is considered easy to read and maintain, the same may be regarded for
well-structured style sheets. Different sections of a page can be organized into different sections of
a CSS file: page navigation rules go in one section, content rules go into another, the footer goes into
a third, and so forth. If it’s a blog or any kind of news site, there is likely a comments feature, and CSS
rules for the comments section will probably have their own styles. Your style sheets will be best struc-
tured if the organization more or less follows the semantics, structure, and flow of your markup.

There are of course some pros and cons to such a practice. In the “pro” corner, it is easy to find and
change properties that are within these sections on the page. If you’re trying to make a change in the
footer section of your web site, you would likely find the correct styles in the CSS file’s “footer” section.

On the other hand, it is harder to see and manage all styles that apply to a specific element that
happens to fall into more than one category. For example, elements may be styled differently
in the footer than they are in the content area or a section that might function as sidebar content.
Fortunately with some tools such as the Firebug extension for Firefox, Adobe’s Dreamweaver CS4,
dedicated CSS editing software such as TopStyle or CSSEdit, or a good code-oriented text editor such
as TextMate, such organizational issues can be simplified.

197

MANAGING AND ORGANIZING STYLE SHEETS

Dividing design principles into files
Dividing your CSS into separate files is where you organize your design methodology into distinct CSS
files or sections within one or more style sheet files as discussed in the previous section. For instance,
you have all your CSS positioning and layout declarations defined in a style sheet. Your
typography declarations, such as text color and size and font choices and so forth, go into

.

What are the pros and cons of this technique?

Placing styles into organized, hierarchical style sheets can be made to borrow from the classical inheri-
tance model of object-oriented programming, such that each style sheet is easy to extend or replace.
You create a plug-and-play architecture of style sheets that are each smaller chunks of a bigger design,
leading to greater modularity and theoretically less coupling between CSS rules.

On the other hand, this is a somewhat heavier-weight technique since each new style sheet brings
with it an additional HTTP request, causing optimization problems for large-scale sites. Additionally,
a single element’s properties are often scattered in multiple places, causing potential headaches for
the CSS’s maintainers, who sometimes need to hunt through many files to change an element’s many
properties. But is this really that bad? Once style sheets are downloaded, they are likely going to exist
in the browser’s cache, making subsequent page loads only responsible for downloading the markup,
not the shared style sheet assets; and again with using tools such as the Inspect Element feature in
the Firebug plug-in for Firefox, TextMate’s CSS Preview feature (Bundles CSS Preview), or the
Dreamweaver CSS Styles panel, it is easy to find out what styles might be affecting a given element.

Use the shortest URL that works
As we discussed in the earlier chapter about CSS values, URL references in style sheets are always rela-
tive to the style sheet itself, not the document that the style sheets reference. This means that you can
create more modular style sheets by using the shortest possible URL you can get away with.

Quoting from Douglas Bowman’s blog post at
ml: “By changing the image and CSS file references to relative URIs—

—and ensuring that all images always live on the same server in the same
relative location to the CSS files, we can avoid changing those references every time the Akamai image
and CSS paths change.”

Whenever you use a URL to point to another resource, should you use a relative URL (a path relative
to the source file, such as), an absolute one (relative to the server root, such as

), or a fully qualified URL (such as)? Variations of
URLs schemes are wildly inconsistent, and it is common to wonder which one is best to use. Here are
some examples to take into consideration:

Take a look at these examples and think about which one is shortest and most portable. The answer
might be the most obvious one. Probably the last example with the relative path, right? Shorter URLs

198

CHAPTER 6

are likely to be more versatile and they have the obvious optimization benefits, too. Every byte counts
when you’re compressing and optimizing files. There’s little reason to write a URL such as

 when will do. Ultimately in most cases, a relative path will be
the most versatile and briefest version of a path to use. If your domain name changes in the future
and you’ve used a fully qualified URL, you’ll end up with a broken link. If you’re linking to a remote
domain, then unless your own content will be published over multiple protocols (like HTTPS in addi-
tion to HTTP), you can even safely omit the scheme portion of a URL. Often server-side code can be
made to handle these complexities for you, but even in these contexts it may be worthwhile to pro-
gram the automated generation of a path to be relative.

Good code formatting conventions
Code formatting is important. Code authors should be careful to keep curly braces aligned and inden-
tations consistent, and use whitespace and line breaks consistently. This makes code far easier for you
and others to read, will make it easier to make batch changes across multiple properties or rules, and
provides a certain pleasing sense of aesthetic that your inner geek will learn to appreciate.

As they say on the WordPress project, “Code is Poetry.” And with that note in mind, go and look
at a few poems yourself. Try some e. e. cummings, a little William Butler Yeats, and maybe some
Charles Bukowski. Then look at a work or two by Shel Silverstein, or maybe some haiku. Look at the
typography—the way the words are spaced and laid out. Each poet has his or her style, whether they
follow convention or not, and this makes the poem more interesting and more readable. Each space
is as important as each letter. Treat your code with a similar level of reverence and you’ll be going in
the right direction.

So what does CSS convention look like? One of the most common formatting patterns is as follows:

The first line lists selectors on a single line, followed by a curly brace. The subsequent property/value
pairs are each on their own line and indented. The rule closes with a final curly brace on the last line,
with no indentation. This pattern is considered readable and is very common among developers in the
CSS community. Using this convention, it is common to see rules with only one property displayed on
a single line:

These two basic formatting rules can serve the majority of your code formatting needs. Each property
is on its own line, making it easy to pick out what things might have been changed using diff tools and
source code management systems. Figure 6-2 shows an example of a program called FileMerge, illus-
trating the differences between two files. Note the visual advantage of having new properties appear
each on their own line.

199

MANAGING AND ORGANIZING STYLE SHEETS

Figure 6-2. Keeping declarations on individual lines makes it easier for programs like FileMerge to show the dif-
ferences between two CSS files visually.

For many cases, leaving your code in a readable format will be a good strategy. However, in high-traffic
or mobile sites where bandwidth is an issue, you may wish to optimize your code to keep files as com-
pact as possible. We discuss optimizing CSS in Chapter 10.

Alphabetize your declarations
In many cases it may be helpful to alphabetize the list of CSS declarations within a given rule. Of
course, you would need to be careful not to mess up any cascade or inheritance issues with this prac-
tice, so use it as a guideline rather than a rule. At any rate, if you have a long list of declarations, it will
be easier to scan through the list if they are more or less ordered alphabetically. For instance, examine
the following rule:

200

CHAPTER 6

Compare this rule with the following one, which has been alphabetized:

Because the second rule has been alphabetized, it should be easier to pick out, say, the
rule, or any other choice, with a quick scan down the list in alphabetical order. One thing to notice is
that the declaration must appear lower than the declara-
tion; otherwise, you will probably come up with unexpected results.

Consistency is your ally
One of the most important things for organization is consistency. This is true when you author markup
and it is also true when you author CSS. Consistency in how you write rules and what patterns you use
to name and group elements gives you the ability to build on your own work.

For example, you can write CSS declarations one per line or all in one line. You can do the same thing
with selectors in a selector group. Here are two ways to write the same thing:

201

MANAGING AND ORGANIZING STYLE SHEETS

Is one rule (on the first line) better than the other (on the lines after it)? Not necessarily, but what is
important is that you use one pattern and stick with it. This not only makes it much more readable,
but it also gives you the ability to easily search through style sheets automatically.

Another example is in how you name classes and IDs. You can use these hooks to provide signposts to
yourself or other readers of your code about the purpose of the element. In our work, we typically use

 names for generic elements that are not project or site-specific. These include things like
 and , or . All sites tend to have these elements, and even if

they don’t, they are clearly not site-specific.

In contrast, we use dashed-names for elements that are site specific. So, for instance,
might be the name of a particular sale of a particular store or might be the ID for
the list item that marks up the company’s New Haven office.

Since computers were designed for it, the most reliable way to ensure consistency is to use a tool to
aid you. This can come in many forms, such as writing macros in your favorite text editor, but one of
the easiest is available at the Styleneat.com web site, which encodes some of these best practices into
an automated style sheet organizer that can safely reformat your CSS code.

These stylistic choices make little technical difference beyond the issues of keeping things in order
with inheritance and the cascade, but they can greatly improve the readability of your code when used
consistently and communicated to the rest of your team. Perhaps the most obvious way of communi-
cating these things to others is to keep your code well commented, which we discuss next.

Techniques for intra-team communication
It’s extremely rare for a web project to be implemented by a single developer. This means you’ll have
to routinely communicate with other developers on your team. More often than people would like to
admit, communication or the lack thereof between developers working together will make or break
a project. And even if it doesn’t make or break the project’s launch, it will absolutely make a huge
impact—for better or worse—on the organization of a code base.

These tips, while not technical, are nevertheless extremely important when you’re working with oth-
ers. Although you’re not required to use specifically these tips in your project, we encourage you to
come up with some method for communicating about code across team members.

CSS comments
CSS commenting is simple enough, but what to write? Good code should be self-documenting—easy
to read, organized, and semantically structured. And using CSS comments should fill in the blanks.
Adding a few succinct comments in key places where it might not be entirely obvious to the next
person working on your code will help extend the value of your CSS while making life easier for oth-
ers. Having a documentation strategy that includes structured and consistent use of comments in your
code will set up your project for success.

Comments begin with a slash/asterisk and end with an asterisk/slash—the same as is found in multiline
C++:

202

CHAPTER 6

The comment can appear on multiple lines as well. The line breaks and whitespace are ignored:

But clearly neither of those comment examples are of much use. Let’s look at some methods for cre-
ating useful comments in our CSS files.

Comment headers
Comment headers are a common documentation feature throughout all forms of code, and CSS is
no exception. Use comment headers at the top of CSS files to identify the author of a style sheet,
a summary of intent, source repository URLs, or whatever is relevant to the file or project. Here is an
example of an expanded comment header, to illustrate some of the possibilities. It should be noted
that using intelligent build systems and proper development tools, it’s possible to automate much of
this in larger projects:

203

MANAGING AND ORGANIZING STYLE SHEETS

This example covers several areas of interest for the project and makes it obvious up front at the top
of the file what it is for, where it should go, who has worked on it, and what sorts of things will be
expressed in the contents. Coming up with a consistent pattern for CSS comments is a good plan for
any development shop, be it a large group of in-house developers, an open source project, or just you
alone. This particular example leveraged the YAML () format to organize the com-
ment data, which works great because it is a structured and descriptive text pattern that is easy for
humans as well as machines to read. You don’t have to use YAML, but you will definitely benefit from
choosing some sort of structured pattern.

In the previous example, we outlined several important bits of information. The first section outlines
the project metadata—what project this is for, where the source code repository is, when it was cre-
ated, and of course the title of the project. It then goes on to describe the basics of the file—the file
name and where it goes in the project. These bits of information so far will be very helpful if some-
thing gets misplaced, or if you’re working and have a lot of files open at the same time and need to
keep track of which is which.

Next up we added some information about the developers—in this case your authors—and showed
when each of us last edited this file. Although it’s certainly possible for each developer to keep these
sorts of things up to date manually, it makes much more sense to let an automated tool handle this.
Such a tool could be a homegrown shell script, part of a build system, or even your version control
system. The takeaway is that such information can be added to your project automatically and could
be useful as part of reporting systems or in a pipeline for other kinds of postprocessing tools.

Finally, the file wraps up with some information about the contents of the file and a color scheme.
Having this basic information about the intent of the design and an overview of the file structure helps
other developers get oriented, and it also helps you up front establish an organization structure for your
code in this file. Describing how colors are used can save future developers (or yourself) the trouble of
having to sift through a lot of code just to find out what the proper color is that should be used in some
future CSS rule.

How you structure your CSS comment headers is up to you. You might choose a bit of basic infor-
mation, or you might be verbose about it and use a structured format such as found in the previous
example. Get into the habit of keeping comment headers present and up-to-date in your code, and
see if it helps you down the road.

204

CHAPTER 6

Comment signposts
In a long style sheet, it can be hard to find a particular point. Is the declaration you wanted at line
300 or line 600? It takes ages to search through the document manually. Moreover, if you’re new to
a project, you don’t even necessarily know what you’re searching for. This is where comment signposts
(also referred to as “flags” or “milestones”) can come in very useful.

A CSS comment signpost is simply a unique and easily searchable string of characters inside a CSS
comment that the team uses to demarcate the important sections of a style sheet. These sections are
arbitrary, of course. A developer can then use their text editor’s search feature to locate the signpost
comment, and then jump to each additional signpost after that. This way, becoming familiar with
a long style sheet becomes far less of a chore.

One common example of a signpost is a comment such as this:

In this example, the sequence can be searched for. If you know what point in the style sheet you
want to jump to, you can search for the sequence .

Some programs interpret specially formatted comment patterns as section signposts and allow the
developer to quickly find the given section through some feature of the software user interface. Let’s
look at some examples.

CSSEdit
CSSEdit () will create sections in between comments starting
with a comment and closing with an comment. The section will appear as a folder in the
left column, which can be expanded to show the styles contained within. The name of the section is
taken from the text that appears to the right of , as shown in Figure 6-3.

Figure 6-3. CSSEdit groups CSS rules in the left column between an and an
 comment.

205

MANAGING AND ORGANIZING STYLE SHEETS

TextMate
In TextMate, if you add a second asterisk to the comment opening (), the Symbol pop-up menu
will be populated with the text of your comments. Select Navigation Go to Symbol to bring up the
Symbol palette (Figure 6-4), or use the menu at the bottom right of a TextMate window status bar
(Figure 6-5). The comment text will appear with two asterisks on either side, as shown in the following
CSS code:

Figure 6-4. The TextMate symbol palette
showing how comments appear in the list

Figure 6.5. The TextMate status bar’s Symbol menu on the far right indicating the
highlighted Body comment

Using comment techniques such as these will help show exactly how your CSS files should be struc-
tured and organized, helping both you and your collaborators find what you need and keep things
tidy. Next, we discuss how linking style sheets affects code organization and functionality.

206

CHAPTER 6

Persistent, preferred, and alternate style sheets
Using the element to point to external CSS files, we can define style sheets as being persistent,
preferred, or alternate.

A persistent style sheet is one that holds common styles for a given media type. Some styles might be
persistent throughout your site in any given media type. Let’s say for every media type, we want the
legal disclaimer to be in italics. So you could write

This would be placed in an external style sheet; let’s call it , and link to that style sheet
like so:

By simply omitting the attribute, this style sheet is said to be persistent. If we add the
attribute, the style sheet becomes preferred:

The differences between persistent and preferred style sheets are subtle, but can be important from
an organizational standpoint. There is some impact with regard to how the style sheets are inter-
preted. A persistent style sheet is intended to be interpreted throughout a site regardless of prefer-
ence or grouping. Preferred style sheets, on the other hand, will be interpreted together if they share
a common attribute:

For this example, is interpreted throughout the site. The and
 style sheets are processed together when the Viola theme is selected. The
 and style sheets are processed together if the Bass theme is

selected. Style sheet switching is supported in Firefox and Opera browsers.1 In Firefox, you can select
a style sheet by using View Page Style, and in Opera the command is View Style.

1. Style sheet switching can be accomplished in other browsers by providing your own code to manage the functions
of switching the groups of active CSS files. A number of easily deployable JavaScript solutions already exist for this
purpose; perhaps the most well-known is published by A List Apart at

.

207

MANAGING AND ORGANIZING STYLE SHEETS

Styling for media
You have already seen media types in action in Chapters 4 and 5. Let’s dig a bit deeper into media
types and learn how CSS3 media queries come into play.

Using media types, you can further refine how styles are applied based on the type of expected out-
put. For instance, we will probably have a style sheet that defines how the page appears on a com-
puter screen. We might then have another style sheet to handle our printed pages and another for
handheld devices. Finally, we might want one style sheet to set some global precedents—containing
rules such as how the element should be rendered with an italic and slightly larger typeface
than the surrounding text for all media that can handle this case. Commonly we might see a suite of
linked style sheets that look somewhat like the following:

In this case, each media type will be affected by the first linked style— —because the
media type here is set to . In other words, printers will use styles from the global style sheet as
well as the print style sheet. Handheld devices (well, most of them anyway) will also check with the
global style sheet before adding handheld-specific styles from . The same pattern follows
for rendering on full-sized computer displays using the screen styles.

CSS3 media queries
We touched on the use of media queries in the last chapter on mobile web development. The good
news is that media queries are not limited in application simply to styling for mobile devices—there’s
a whole range of neat ways we can apply media queries to get around some of the sticky issues that
are involved with targeted media platforms.

Targeting a media type gives you some say as to how style might be applied based on the media in
question, but that’s it. It does not give you any say as to what additional environmental parameters
might be involved. If the styled content is going to be printed, is the printer capable of color, or is it
black and white? How are styles applied if the screen width is only 480 pixels wide? How about 640
pixels? Is the output orientation in landscape or portrait mode? With media queries, we can drill down
even deeper into these conditions and produce more finely tailored output.

A media query builds on the media type construction by adding some conditional statements. If the
statement is true, then the style sheet is evaluated; otherwise the style sheet is ignored. Media queries
may be added to a attribute of an HTML link element, or as part of a or an
statement.

208

CHAPTER 6

The W3C defines a media query as consisting of “a media type and zero or more expressions involving
media features.”2 Essentially we are building on the existing media type construction, so this should
look familiar. For example:

This example expands the traditional media type of and asks whether or not color is supported.
If it is, the style sheet is interpreted. If not, the style sheet is ignored. The key-
word is used to join the media type to a media query argument. Multiple arguments may be strung
together via the keyword:

Here the example targets for media output that supports color and is 12 inches
wide—your typical US Letter page. This example also introduces a new yet familiar construction:
a property type th) and a property value (). Several media features can be defined
in this way:

: The width of the targeted display. Includes variants and th.

: The height of the targeted display. Includes variants and ht.

: The width of the rendering surface, such as the screen or the paper. Includes
variants and th.

: The height of the rendering surface, such as the screen or the sheet of paper.
Includes variants and th.

: If the width of the viewport is wider than the height, the orientation value is
. Otherwise, the value is .

: A pair of numbers that together divide a viewport’s horizontal length by its
vertical length, such as or . Includes variants and

io.

: Same as io, but applied to the output device instead of the
viewport. Includes variants and io.

: The number of bits supported in the output’s color component. Includes the variants
 and or. Simply stating implies all color devices, and this is likely to be

your most commonly used value. Using would target
any handheld device that supported a minimum of two bits in the red, green, or blue
components.

: The number of colors supported. A property of
 would target a screen that supported 256 colors or less.

: Works similar to the feature, but in a grayscale space. Use
alone to specify any target relegated to black and white output. Includes and

 variants similar to , but applied to the singular grayscale space.

2. As of this writing, this description is sourced from the abstract in the CSS Media Queries Candidate Recommenda-
tion, available at 3/.

209

MANAGING AND ORGANIZING STYLE SHEETS

: Describes pixel density. For instance,
 would target print output with a minimum resolution capability of 150 dots per inch.

Includes variants and on.

: Used to describe scanning output of televisions. For instance,
 would select TVs supporting progressive scanning. is another

option.

: Used to determine between grid and bitmap output systems. Examples include teletype
devices for the deaf, or phones with a single line of fixed-width LED display (like we had in the
old days…).

Developing a mobile strategy
In the previous chapter, we went into some detail about developing CSS for the mobile Web, and we
mentioned how this was still new frontier for the web design world. There are many browsers, many
screen sizes, many platforms, and little consistency. How can we target the mobile world and still keep
our sanity as web professionals? What flavors of XHTML do we use? What CSS will work? What won’t
work? As Apple cofounder Steve Wozniak once said, “Never trust a computer you can’t throw out
a window.” If nothing else, at least mobile devices are easily pitched…

In most cases there should be an opportunity to construct lean and semantic XHTML that can be
repurposed with a variety of CSS techniques, so traditional XHTML is a fine choice for an all-purpose
web page targeting multiple media. More advanced and usable devices and browsers will get signifi-
cantly more use, and most all of these should support XHTML. All you really need to do is consider
your rendering strategy and then test markup compatibility to the best of your abilities.

Our strategy for developing CSS on the mobile Web can be broken down into two main parts: design
one style sheet for the handheld media type, and design another for media queries. This should cover
most of the medium- to high-capability handsets fairly well. The handheld style sheet will cover all
your traditional browsers on mobile handsets such as Opera and NetFront. You then design a style
sheet that covers the media query–enabled user agents, such as those based on WebKit. To go any
further, you’d need to use a script to sense which user agent and device is showing up at the door of
your web server and serve trimmed markup such as Wireless Markup Language (WML). Our goal is to
stick with our original markup and have it work on as many mobile devices as possible, and deliver
style sheets by the handheld media type method and the media query method.

Now we have a bit of a dilemma. Mobile WebKit browsers will ignore the media type and
instead look for media queries to add style sheets. Newer versions of Opera understand both but
default to and won’t show unless the user chooses the preference. The good news is,
if you have implemented a strategy of using a handheld style sheet and a media query style sheet for
the more advanced mobile devices, the Opera users will get one or the other. The user has made their
preference and as a standards-savvy developer it is a fine option to respect that decision, but if you
really wanted to alert the user that a more optimized view was available you might have something
like this in the HTML:

210

CHAPTER 6

And then add a bit of style in your handheld style sheet to hide this information from users viewing
the superior screen CSS:

But this sort of thing can be regarded as unnecessary cruft (see the discussion of “classitis” earlier) and
is arguably best left out of your code.

In short, as mobile devices continue to gain in popularity for the purpose of using the Web, you
should consider developing some kind of mobile strategy to start improving the availability of your
site’s content to the handheld device set. Put a stake in the ground, as these users are only going to
increase in number over time.

Summary
In this chapter you learned several strategies for organizing your code for maintainability and efficient
development. Keeping things organized will make life easier for you and for anyone else who comes
across your code. In fact, you should assume that someone else is going to work on your code or
examine it in some way, even if you are the only person you think is working on the given site. This is
because it is trivial for anyone viewing a web site to use the browser’s View Source command and look
at your code, download your style sheets, and pick them apart. To make it even more trivial, installing
things like the Web Developer Toolbar or Firebug on Firefox make picking apart your code a matter of
choosing a menu command. More important, in a professional situation, it is highly likely and probably
expected that you as a CSS developer will hand off your work to someone else at some point. You may
have already inherited code yourself—clean it up if you can. As we say at the beach: leave it cleaner
than when you arrived.

Good organization is greatly enhanced by good comment strategies. Keep your comments succinct—
use a comment header at the top of your code to set some basic bits of information regarding where
your CSS fits into your project. Use comments to indicate any CSS hacks you may left in there, as those
may become issues later on as new browsers appear on the market. Use comment signposts to make
your code more searchable and to work better with your code editors if they support such a feature.

This chapter covered the important issues of persistent, preferred, and alternate style sheets, and
described the mechanisms for how media types and CSS3’s media queries come into play, both from
a functionality standpoint as well as for organization’s sake. Using these constructs in tandem can
serve your organization strategy well.

In summary, a little planning will go a long way. Think of it as writing an essay, where you stub out the major
headings first and then fill in the content. Take some time up front to sketch out your CSS sections and files
at the beginning of your project, and use that outline to develop your organized and well-formed code.
Treat the formatting of your code like poetry, and strive for the most organized and clear way to express
your intentions in how you organize your rules and your selectors, and how you write your comments.

As you saw in the earlier chapters of this book, much of what CSS is capable of depends
heavily on organized and well-formed HTML or XML that’s largely self-describing by work-
ing in concert with the semantic structure of the markup. Starting out this way, the markup
itself functions as a sort of application programming interface (API) for other purposes.
One common purpose for such semantic markup is to ease transformations from one for-
mat to another or extract data from it, as microformats and RDFa can do today.

In much the same way, CSS itself can benefit from being equally “self-describing.” Writing
CSS that is not merely readable but meaningful creates additional patterns and improves
the reusability of CSS code whether the goal is to create rules for a set of web sites, user
style sheets, JavaScript widgets, or other resources. Style sheets written in this way are then
able to more freely move and mirror the semantic structures that they’re applied to.

In this part of the book, you’ll see how writing meaningful, reusable, modular style sheets
can result in better CSS as well as other content when combined with appropriately
semantic markup.

CSS PATTERNS AND ADVANCED TECHNIQUES

Part 3

213

Chapter 7

When developers talk about patterns, they are really talking about tasks, or things they
have to do often. In the case of a CSS developer, common tasks might be creating a
sidebar, styling a footer, skinning a navigation bar, or creating a mobile- or print-ready
layout from an existing design. In turn, each of these tasks can be broken up into
smaller chunks of work, where each chunk can be encoded into a particular CSS rule
or groups of rules. The goal of creating patterns is to make these rules generic enough
that they can be used with minimal modifications in more than one place.

Patterns can also be thought of as conventions, or—to use a linguistic phrase—
idioms. As they do in human languages, conventions help ease interoperability
among various components. When people talk about burning the midnight oil, we
know they’re not literally igniting a canister of fuel at midnight, but rather that they
are working hard late into the night. Since this is a well-known phrase, communica-
tion between people usually runs smoothly. However, if some people weren’t familiar
with that phrase, then an explanation would be needed. Thus, being familiar with the
idioms of a particular language helps you interface with its native speakers.

This phenomenon holds true for markup and CSS code as well. In this chapter, we’ll
introduce you to two major ways you can add semantics and functionality to your
markup: microformats, and RDFa. Next, we’ll show you how you can use CSS to style
markup that uses these techniques effectively, as well as explain how taking advantage
of these markup techniques makes your CSS easier to write and reuse much more logi-
cally. Finally, we’ll show you how to take what you’ve learned about code reuse in the

SEMANTIC PATTERNS FOR STYLING
COMMON DESIGN COMPONENTS

214

CHAPTER 7

form of patterns in your markup and CSS and use it to make everyday tasks like styling various common
interface elements a breeze regardless of what project you’re working on now or in the future.

Markup patterns and common authoring conventions
Not surprisingly, being able to create CSS patterns depends on already having specific patterns in your
markup. Thankfully, patterns are a naturally occurring phenomenon. This happens for a number of
reasons; due to the simplicity of HTML and CSS, much of today’s web content is created by people
copying and pasting code that already exists and then modifying it to suit their needs; web sites with
similar needs often have similar implementations. While much variation exists, there begins to emerge
a semantic structure to your garden-variety HTML document.

Both of these evolved from the simplest of HTML patterns, so before all that, let’s start at the
beginning.

The evolution of markup conventions
HTML is a relatively simple language. It has a limited number of elements that represent function
(that is, structure), and it used to have a number of elements that depicted form. As you know, the
elements depicting form were deprecated and replaced with CSS. What was left were the structural
elements, and while the needs of web developers evolved, the language itself stagnated for years.

The most recent incarnation of the HTML language is HTML 4.01, and it includes several “semantically
meaningless” structural elements that are routinely overloaded with semantics in particular ways by
developers today. For example, consider a fragment of HTML such as the following:

This is a common pattern that’s almost second nature to many web authors today. It describes a docu-
ment’s major sections by providing structural differentiation between the content components in the
document. This particular structure, with a “main” area, a “header,” and a “sidebar” is so familiar, in
fact, that you could even call it an HTML idiom.

214

215

SEMANTIC PATTERNS FOR STYLING COMMON DESIGN COMPONENTS

215

These conventions are also noteworthy for how they’ve influenced HTML5, which is the version of HTML
currently under development as of this writing. In this next major version of HTML, we have full-fledged
elements like and . In other words, where authors commonly used markup such as

, using HTML5 we will be able to more simply do things like this:

This is no coincidence; the authors of the HTML5 specification purposefully used common authoring
patterns to make decisions about what elements to add or remove from the language, and why. Such
convention and consistency is thus an integral part of the evolution of web technology.

Markup patterns can be spread across entire document structures, such as the header-and-section
pattern just shown (we call these “wide” patterns), or as small as single attribute and value pairs (“nar-
row” patterns). Here’s another pattern that’s even narrower, affecting an individual component on a
page, a navigation list in this case:

This pattern—a element containing a single element, which itself contains s with
elements within them—is also a familiar HTML idiom to many developers. What’s more, it’s actu-
ally composed of several nested subpatterns, each level of nesting narrower than its ancestor’s. For
example, note that one of the list items has a value of . This class name could indicate
that the item in the list is the one the user is currently browsing.

The existence of these patterns allows you to create the simple but powerful rules that can apply to
large numbers of documents at once. Indeed, some of the most powerful patterns are composed of
the most humble parts. HTML5’s addition of a element, for instance, is likely to improve
CSS because it means that more developers will more consistently use that element for demarcating
the structural pieces of their documents, making style sheets that style such “sections” reusable across
more published content.

216

CHAPTER 7

Microformats: reusing markup patterns and adding semantics
The power in reusing existing design patterns and the reuse of conventions into attribute names like
this is a central focus for the microformats community. By analyzing common use cases and breaking
them down into constituent parts, markup patterns are developed for conveying different semantic
meaning. These can be even nested inside one another, and when evolved to a particular degree are
ultimately able to suggest the structure of a document based on its content.

Microformats are a community-driven effort to analyze and encode common HTML authoring conven-
tions into specifications of patterns of element, attribute, and attribute values that add semantics and
functionality to your markup. These patterns are widely adopted because they are simple and power-
ful; elemental microformats are atomic semantic building blocks from which compound microformats
are built. In turn, compound microformats can be grouped, nested inside other microformats formats,
or seamlessly integrated with custom markup without losing either the semantic fidelity acquired by
using the microformat or—more to our purposes in this chapter—the styling potential.

In fact, this powerful framework of patterns-inside-patterns offers an incredibly rich array of styling
hooks, and its implicit structural support makes CSS more readable, too.

How microformats work
The attribute holds special meaning to CSS; it’s one mechanism by which you can target markup
elements with your CSS selectors.

Limitations to regular web development imposed by using microformats are worth mentioning. The
fact is that microformats make use of core HTML properties in a way that the designers of the lan-
guage never envisioned. This means that while microformats can provide unmatched benefits, they
have some drawbacks and limitations that you may run into when you work with them.

The most obvious limitation is that, since many microformats rely heavily on class attribute values, you
need to be cautious that the class names you choose to use do not clash with class names that are
used in microformats on your pages. If such a clash occurs, you may find your CSS rules applying to
elements you didn’t intend, which can cause layout issues or other design problems. Thankfully, these
issues are relatively easy to spot with a good inspector tool such as Firebug.

With recent surges in the adoption of semantic markup techniques like microformats, developers are
running into naming collisions more and more frequently. Some developers are of the opinion that
microformat values should be given “pseudo-namespaces” to avoid such class name collisions.1 Of
course, one easy way to work around the problem is to give your own class names a prefix or suffix,
a technique heavily promoted as a best practice in JavaScript development already. This can be cum-
bersome, but at least this practice is effective and would help keep your custom classes distinct from
commonly used vocabularies.

For example, one property of the hCard microformat is declared with a attribute value of .
There are lots of situations where such a class name could be used, both on elements and on
others, such as in the following example fragment:

1. Jens Meiert wrote more about this interesting topic on a blog post published at
.

217

SEMANTIC PATTERNS FOR STYLING COMMON DESIGN COMPONENTS

This is where descendant selectors and specificity really come in handy. Simply using a selec-
tor may target too many subjects, so if you know that all of your hCard’s photographs use an
(and not, say, an) element, it’s safer to use as your selector. An even better selec-
tor would take advantage of the hierarchical HTML structure, and could therefore look like

.

There are already some projects that are making use of these ideas on a large scale. The Oomph
Microformats Toolkit2 is a recent example, providing plug-and-play style sheets that attach themselves
to microformatted content in your pages. Well before that in 2006, however, Jon Hicks was one of the
first to provide a downloadable user style sheet that visibly highlighted microformats on web pages3

and in the same year, John Allsopp demonstrated how designers could make use of CSS in conjunction
with hCard microformats4 for simple, logical styling. More recently, these ideas have also been used to
style XFN and rel-license links.5

Despite their benefits, since microformats rely on embedding specific patterns inside of ordinary
markup, they have some severe limitations: they can accomplish only what the markup itself will per-
mit, they have few mechanisms for extensibility, and they can impinge upon other uses of the same
markup (or class names). Due in part to these dangers, microformats can take a long time to mature
and build functionality on top of. The microformats community is strictly focused on creating building
blocks in markup that solves the most generic problems with the most broadly applicable solutions—
the so-called 80 percent of the challenge with 20 percent of the complexity.

A full discussion of microformats is beyond the scope of this book, but thankfully there are some
excellent resources available for you to learn more. As microformats are a semantic technique as well
as a solid engineering practice, we strongly encourage you to pick up a copy of John Allsopp’s book
Microformats: Empowering Your Markup for Web 2.0.6

RDFa: adding extensible vocabularies to semantic markup
Since microformats typically don’t try to solve specific cases for niche fields, RDFa picks up where
microformats leave off by adding an open-ended mechanism for extending the semantics of markup
without limitations from the host markup language itself. In other words, RDFa is a simple and, more

2. The Oomph Microformats Toolkit actually provides additional tools and widgets that work with microformats. You
can learn more about the CSS portions of the toolkit at .

3. Jon Hicks’s user style sheet can be downloaded from
.

4. John Allsopp’s article was published at .
5. Christopher Schmitt shows several additional illustrative examples on an Opera Developer Community blog post at

.
6. John Allsopp’s book (friends of ED, 2007) also has a useful free companion web site available at

.

218

CHAPTER 7

important, language-agnostic way of giving documents the means to be self-describing. RDFa uses a
set of attributes (hence the trailing “a”) that can be attached to any element whose values reference
other elements in the same or other documents.

Recall from our discussion of the linguistics of markup languages in Chapter 1 that markup languages
contain rudimentary but powerful grammars in three major forms: which elements are being used,
which attributes and attribute values those elements have, and the hierarchical context of elements in
relation to one another. The ability to nest one element within another creates implicit relationships
between different elements, but is structurally limiting. If elements are required to be nested to refer-
ence one another, neither the document itself nor the rest of the Web can be flexibly structured.

RDFa adds a fourth grammatical form by allowing one element, via an attribute and value pair, to ref-
erence any other element anywhere else on the Web by way of its unique web address or URI. Rather
than referring to a document, now the reference actually refers to an object—a person, idea, place,
event, book, or some other thing. The attribute used to do this is the attribute. For example,
given a transcript of a speech we can now explicitly refer to and describe it without requiring that the
two pieces of markup be structurally attached to one another.

By giving this speech an explicit attribute and unique value, we then use this value in a different
element’s attribute:

Here, we’ve described the speech as being created by Bob Smith. RDFa gets its name from the fact
that it borrows a concept from the W3C’s Resource Description Framework (RDF) called a triple, itself
merely a way of describing two objects (two “things”) with a relationship to one another. In the prior
example, the quoted speech is one object (the subject), Bob Smith is the other (the predicate), and
the fact that Bob wrote the speech (that is, he is the creator) is the relationship. The only magic here
is that the meaning of a “creator” has already been defined by a vocabulary we’re referring to as “dc”
(short for Dublin Core7).

In addition to the attributes already present in XHTML that RDFa makes use of such as and ,
RDFa adds the following attributes:

7. The Dublin Core Metadata Initiative is an open industry collaboration that attempts to provide standardized and
general metadata vocabularies useful for describing documents on the Web. Learn more at

.

219

SEMANTIC PATTERNS FOR STYLING COMMON DESIGN COMPONENTS

: Specifies a URI (or CURIE, simply a more compact URI) that references a particular
term in a given vocabulary; the marked-up content is then known to be that “thing.” For
instance, while blogging about this book, we might mark up its title like this:

.

: Optionally provides an explicit reference to a second object that the current element
describes.

: Optionally used with the attribute to provide an explicit, machine-readable
interpretation of the content of an element. For example, an element such as

 reads to humans as “May
17, 2009” but reads as to machines.

: Optional CURIE that specifies the data type of text specified for use with the prop-
erty attribute (for example, string or integer, useful for ensuring data integrity for machine
processing).

: Optional CURIE value that declares a new data item.

: A URI or CURIE, which expresses the resource of a relationship.

It’s this flexibility with the RDF triple and the extensible, highly specific capabilities that RDFa brings
to markup languages that distinguishes it and makes it infinitely more scalable than the microformats
initiative. Some might consider these two technologies in competition, but really they are not; both
are simply differing approaches to solving the same challenge of having a more semantic and under-
standable markup framework on the Web. Some crossover exists, but both microformats and RDFa
can coexist within the same markup.8

Although not new, RDFa is seeing greater adoption very recently than ever before. Notably, several
of the redesigned web sites of the US government now sprinkle RDFa in their Creative Commons–
licensed copyright statements.9

Opportunities and benefits of semantics for CSS developers
Whether semantic markup is in the form of microformats, RDFa, or some other construction, it is
guaranteed to have some specific benefits for CSS developers. Patterns make it easier for multiple
people working on the same code to work together, because they each have a sort of reference to
follow in their work. Furthermore, when patterns become well known within a team or a community,
the code itself becomes easier to grok for newer team members or contributors in the wider com-
munity (in the case of an open source project). Additionally, as we saw in the previous chapter, having
consistency in your code increases reuse and optimization opportunities.

Another benefit of semantic markup is the fact that additional meaning exists in the content itself,
and you can expose this extra meaning to end users with visual signals and cues. When your markup is
smart enough to understand that a particular block is about a person, a visual symbol such as an icon
or avatar can more easily be placed next to that block of text.

8. Toby Inkster provides a great example of mixing complex markup that uses both an hCard microformat and vari-
ous aspects of RDFa at .

9. David Peterson was one of the earliest people to notice and publicize this on a blog post at
.

220

CHAPTER 7

In other words, when it comes to semantics, you should be thinking in terms of things, or objects. To
do this, you must have a fair amount of familiarity with the content you have. Are you marking up a
speech? The “thing” is the speech; it has properties you should describe in the markup you use, such
as the date and time the speech was delivered, the name of the orator, a reference to the source
where you got it, and so forth.

Encoding semantics naturally leads to creating patterns because there are, for instance, many speeches
being given around the world and many of them share the same sorts of properties. Such patterns
build on one another; the orator of the speech is a person, and if you’ve already got CSS rules that
apply to “markup that describes people,” this can be plugged into the details of the speech to high-
light the orator. So it’s not the semantics per se that you leverage with CSS, but rather the semantic
patterns that emerge within one another like building blocks.

These building block patterns can be evident on a single page (often on “archive” or other sorts of
pages that list collections of things), across a whole site, or—most interestingly—across the entire
Web. With web-wide patterns, CSS becomes even more powerful. As it turns out, such patterns are
appearing more frequently, and what’s more, CSS that takes advantage of them is also appearing.
Next, let’s examine how you can write this sort of CSS yourself.

Styling microformats with CSS
Most microformats overload the use of the class attribute in order to imbue the markup with the
necessary semantics to produce functional applications. However, not all microformats use the
attribute, and other microformats use a combination of attributes and elements in sequence (known
as patterns). In theory, styling microformats with CSS shouldn’t be too hard, since CSS 2.1 gives us all
the mechanisms we need to do so in the form of its attribute selectors.

Unfortunately, not all mainstream browsers today support the attribute selector syntaxes, and as a
result this throws a monkey wrench into the straightforwardness of styling microformats that don’t use
the attribute. However, simple solutions—relying on additional site-specific structural markup
patterns, or adding your own class names into the mix for the purposes of explicit CSS hooks—can be
used to great effect to work around the problems in these cases.

Styling rel-tag links
A tag is a short, descriptive word or phrase that provides a moniker to describe piece of content. By
using the attribute inside a link, you can more fully describe the kind of content that the link
points to. When the attribute has a value of , the markup indicates that the destination of the
link is a page about a particular subject. For example, here’s a rel-tag link pointing to a page that lists
blog posts about CSS:

In this markup, the entirety of the microformat is the pattern of using the attribute with a value
of , no more and no less.

Ordinarily, this should be as easy as

221

SEMANTIC PATTERNS FOR STYLING COMMON DESIGN COMPONENTS

Unfortunately, this attribute selector syntax doesn’t always work. Instead, we recommend you use an
easily recognizable class name, perhaps, say, ? So, with your own class attribute here, we use
this HTML, which is still a valid rel-tag microformat:

with this CSS:

This will group both selectors with the same declarations, and voilà: mostly painless backward compat-
ibility ahoy.

Styling an hCard
An hCard is modeled after the ISO’s vCard standard for electronic business cards. This microformat is
used for encoding contact information for people or places. This is a compound microformat that can
make use of several elemental microformats, such as adr for encoding addresses and geo for encod-
ing latitude and longitude coordinates. However, these are optional and so an hCard can be incredibly
simple. Here’s a simple paragraph that mentions Tim Berners-Lee, the director of the W3C:

This is simple enough, but this information could be encoded in a machine-readable hCard microfor-
mat with nary much effort at all. hCards rely on nested HTML structures, the outermost element of
which contains the class name . In the simplest case, an hCard need only contain one additional
element, with a class name of (standing for “formatted name”). A full, but simple, hCard microfor-
mat thus looks like

Since the attributes (in this case, class names) are what encode the semantics, the HTML itself can be
altered. We can turn Tim Berners-Lee’s name into a link to his homepage at the W3C:

222

CHAPTER 7

With homepage information, it now becomes trivial to encode this into the hCard itself:

The simple addition of the class to the link signifies that the value of this link’s attribute
should be used as the web address on this particular hCard. Also note that we’ve still got more infor-
mation in this paragraph that describes Tim Berners-Lee. We can add this to the hCard as well:

When you style microformats with nested HTML structures, it’s safest to use descendant selectors in
order to increase readability and decrease the chance for collisions in common class names. Therefore,
for hCards, all your selectors should start with .

One way to think about this is to read CSS selectors as though they were English. In the first selector,
we are saying, “Style all tags within an hCard…” whereas in the second selector we are saying, “Style
all tags…” Naturally, CSS’s specificity rules let us create two distinct looks for rel-tag microformats that
exist inside or outside of hCards:

Using descendant selectors in this way is arguably the single most powerful technique for creating
plug-and-play style sheets. As you develop styles for markup patterns that are building blocks such as
these microformats, it behooves you to start with specific selectors over more general ones instead
of the typical CSS workflow that favors generality and inheritance over specifics. This way, you can be
assured that your styles will only apply to the appropriate parts, or components, on the page.

Styling an hCalendar
An hCalendar microformat is another compound microformat that encodes information about
events, such as the time and date they occur, where they take place, what they’re about, and so forth.
hCalendars are composed of a number of elemental microformats just like hCards, including adr for
addresses, and can even contain hCards for describing attendees, contact information, and organizers.
In its simplest form, an hCalendar event only needs to contain a start time and a summary, so it can
also remain pretty simple. Here’s a note about an upcoming “unconference” (a conference-like but ad
hoc and informal gathering of like-minded folk):

223

SEMANTIC PATTERNS FOR STYLING COMMON DESIGN COMPONENTS

Turning this into an hCalendar is just as straightforward as it was for an hCard. We merely mark the
date and the topic with appropriate markup:

As before, we still have plenty of additional information we could add here. For instance, let’s turn the
BarCamp text into a link to the BarCamp homepage. By doing this and adding the class, the
value becomes the web address of the event:

Of course, we also have a bunch more information about the event that may be plain for you to see
but that a computer can’t quite make out nearly as easily. We know that John Smith has helped orga-
nized the event, and that Jane and Joe Doe will both be in attendance. We can mark this information
up as well:

224

CHAPTER 7

As you can see, we’ve used hCards to encode the names of the people organizing and attending the
event, although we didn’t have to. This single block of HTML markup now has four distinct micro-
formats inside it (actually, five, if you count the datetime design pattern being used in the
element).

As before, the CSS selectors for styling such a microformat should mirror the markup’s structure. You
can also use the element itself to create visual differentiation in how to display such embedded event
information. For example, you might want to display a list of events as square blocks, and you can
accomplish this by floating them all. Events embedded as part of plain, inline text might be differently
styled such that the date itself is called out with an icon. You can even be specific to the point of
matching particular dates.

Styling RDFa with CSS
As the “a” in RDFa stands for attributes, you can instantly see the direction with which your CSS selec-
tors need to be written to style this code. Beyond the styling hooks that the RDFa attributes add to
your document themselves, the values in these attributes are also structured in such a way as to make
it possible to use CSS to target certain elements.

For instance, say you wanted to style all Dublin Core metadata in a particular way. Since RDFa is an
extension to XHTML, and XHTML is itself an application of XML, you start by supplying a localized
namespace for the Dublin Core properties. To make RDFa distillers happy, you need to use a modi-
fied as well as add a few additional attributes to the root and elements of your
document.

225

SEMANTIC PATTERNS FOR STYLING COMMON DESIGN COMPONENTS

In this code snippet, we’ve used the XHTML+RDFa document type declaration, and added the appro-
priate vocabulary profile to the head element. The part of this code that’s relevant to the Dublin Core
metadata we’re going to style is in the attribute:

We’ll discuss XML namespaces in more detail in Chapter 9, but for now it’s important to recognize
certain pieces of this attribute and value pair. We have the attribute itself, , followed by a colon
(), followed by a CURIE prefix. In this case, that prefix is . However, the document author defines
what the prefix will be. In other words, we could also have used code like this:

That’s perfectly valid as well, although in practice many people tend to use the more compact
prefix.

Now that we have access to the Dublin Core vocabulary in our document, we can use it in the values
of the RDFa code we’re going to add to our document. Take some HTML describing web browsers,
for example:

What we have, obviously, is a list of web browsers and their manufacturers. The manufacturing com-
panies are marked up with the RDFa attribute, and these attribute values are using the
Dublin Core vocabulary to denote that they are the creators of the particular browsers.

The styling hook we can use here is the RDFa itself, and we can do so in several ways. If we want to
style any of the Dublin Core metadata, we can use this:

In this selector, we use the CURIE prefix we defined earlier, , followed by a colon as part of an attri-
bute matching CSS selector. However, if we’re developing CSS and don’t necessarily know what the
CURIE prefix will be, in many situations we can also do something like this:

Here, we’ve just reversed the attribute matching selector so it matches a CURIE reference (the part
after the colon) instead of the CURIE prefix. In both examples, the colon is included in the CSS selec-
tor in order to more precisely match CURIE values, and not just plain string values.

226

CHAPTER 7

Although a reference only needs to be unique inside a particular vocabulary, and there may be some
overlap of functionality in some vocabularies, in practice few documents make use of overlapping
vocabularies so CURIE references are usually safe styling hooks. In documents with an abundance of
CURIE references, using descendant, type, and longer chains of other simple selectors to increase the
specificity of a rule’s subjects is a natural way to create ever more precise CSS.

Summary
On today’s Web, having a solid structure for your data is essential. As the Web evolved, patterns
of structured markup emerged and became ubiquitous among many web pages. This consistency
enabled developers to more easily share and manipulate the data being published. To encourage this
consistency even further, future revisions to core web technologies such as HTML5 are embedding the
patterns that have emerged naturally into the language of the Web itself.

Microformats and RDFa are similar evolutions that embed semantics into the highly structured markup
of well-formed data. Both of them offer numerous styling hooks that allow you to expose the mean-
ing of the content they describe. Microformats give you particular classes and nested element pat-
terns, whereas RDFa gives you particular attributes and a structure for those attributes’ values called
CURIEs. By writing CSS in a specific-to-general way instead of the usual general-to-specific method,
you can make style sheets that style blocks of structured markup as components, like specific people
or events.

Lots of the discussion in this chapter focused on concepts of reuse in markup and how you can lever-
age these markup patterns employed by the wider development community in your CSS. However,
there are also patterns that are specific to the visual aspects of CSS without as much reliance on the
markup underpinning it. In the next chapter, we’ll explore these other CSS patterns in more detail, and
examine how the evolution of such patterns ultimately resulted in CSS frameworks.

229

Chapter 8

In any journey where you go from novice to master, there comes a point where
you’ve amassed enough knowledge and experience with the craft that you reach
your own limitations. This is when you need to look beyond what you can do yourself
and take stock of tools that can help you be more effective. If you were a carpenter,
this is when you’d pick up an electric drill instead of using a manual screwdriver.

Throughout this book, you’ve thoroughly explored much of what can be accom-
plished using CSS you’ve written from scratch. In this chapter, we’ll introduce you
to the utility of using style sheet libraries and CSS frameworks built by others. You’ll
learn why style sheet libraries and frameworks are useful, and how they make solving
particular tasks easier. You’ll also learn how to compile your own style sheet library.

At first, libraries may sometimes appear as though they are silver bullets. Reality is,
of course, far murkier, so we’ll also discuss some of the drawbacks of using predevel-
oped frameworks since using such frameworks necessarily places constraints on your
flexibility as a developer. Different frameworks are more useful for different tasks, so
we’ll also provide an overview of several of the most popular CSS frameworks, as well
as highlighting their strengths and weaknesses.

Before we dive too deeply into the popular libraries used in development today, it’s
important to remind ourselves of why these frameworks came into being in the first
place. For that, let’s briefly refocus our attention on the challenges at hand rather
than the potential solution libraries and frameworks aim to provide. We’ll begin with
the importance of leveling the playing field.

USING A STYLE SHEET LIBRARY

230

CHAPTER 8

Leveling the playing field: “resetting CSS”
You’ll recall from earlier in this book that the initial presentation given to documents in a web browser
is actually sourced from the user agent’s own baked-in style sheet. This default style sheet is what
typically gives unordered list items a bullet, makes the sizes of headlines different, and changes the
boldness or italicization of emphasized text. These initial CSS rules can be useful, but can also prove
to be complications if you’re unaware of them and how they interact with the CSS rules that you write
yourself.

One nuisance is that these baked-in CSS rules are also subtly and frustratingly inconsistent across
browsers. Since these initial CSS rules are inherited via the CSS cascade to your own style sheets, the
inconsistencies present across various user agents means that your own style sheets need to deal with
all the different default cases. As you can imagine, that’s a lot of work. Thankfully, once a particular
case is made consistent, the rules needed to accomplish that can be encoded in a style sheet and
reused again on other pages or web sites, which is precisely what reset CSS style sheets do.

Resetting CSS nullifies the complications default browser styles bring with them by explicitly overrid-
ing all possible values to the same known defaults for every browser. As you know, the nature of CSS
is such that the resultant output is an amalgamation of many input sources; declarations in a browser
style sheet, a user style sheet, and your own multiple style sheets are all weighted against one another
to produce a final result. Furthermore, thanks to inheritance, the effects of more general rules will
trickle down into the deepest parts of your design, which means that if browser-level inconsistencies
exist, they are propagated through much of your design. By adding your own style sheet that overrode
the user agent’s style sheet, you are assured a level playing field for your own, subsequent work.

Almost every CSS framework comes with a “CSS reset,” and indeed, the earliest frameworks in wide-
spread use were composed of only CSS reset libraries, since this was the most obvious shared task all
designers faced on all projects. Generic selectors are used so that future styles may override these
resetting rules. But why go through all the effort to “undress” your default presentation when you’re
just going to dress it up differently again?

One reason is because removing default styles makes you think more critically about the author styles
you’ll add later on. If you can avoid becoming accustomed to seeing boldfaced font when you add
a element, you’ll more likely remember that there needs to be a good reason why you’re
marking up a particular chunk of text using a element in the first place. Put another way,
removing these initial visual cues can help you separate presentation from structure in your own mind
as you work.

Although CSS resets can be used independently of a full-fledged framework, it can quickly become
tedious to consistently reapply many of the more ubiquitous rules. Thankfully, again these rules can
also be encoded in style sheets and reused many times over. Even better, not only can ubiquitous
presentational styles be encoded in CSS, but so too can best practices regarding every aspect of visual
presentation. In this sense, a style sheet library becomes much more like an actual brick-and-mortar
library, housing the accumulated knowledge of thousands upon thousands of developers who have
already previously struggled with and overcome the challenges you might face in your day-to-day
development work.

Taking advantage of this awesome resource is another major reason to use CSS frameworks. For
the inexperienced developer, they can serve as a useful guide for how to accomplish tasks in both
technical and design challenges more effectively. It therefore comes as little surprise to us that the

230

231

USING A STYLE SHEET LIBRARY

resurgence of grid-based design, which is a century-old typographical and layout concept, occurred
simultaneously with the rise and development of CSS frameworks.

Before we dive too deeply into the technical aspects of CSS frameworks, let’s first examine one of the
best practice methodologies that such frameworks help enforce.

Designing to the grid
Grid-based design has its roots in twentieth-century graphic design. The primary concept behind the
practice, “the grid,” is to define page layout based on the size and ratios of the destination medium. In
the 1900s, this medium was most commonly a piece of paper, and so early schools of thought applied
grid-based design largely through typographic works.

Today, applying grid-based design concepts to web page layout has become popular and numerous
frameworks have appeared to help implement the possibilities of grid-based web design. The frame-
works are all tools that help simplify the mathematics behind finding the ratios of available space
and how to divvy it up proportionally based on its surrounding dimensions. For instance, a page with
a length-to-width ratio of 3:4 would be divided into a series of sections that are each based on the
same 3:4 ratios. For a sheet of US Letter paper, the ratio would be 17:22 (or approximately 1:1.2941),
so each of the grid divisions would be in some way based on this 17:22 ratio.

A grid is constructed by creating a sort of frame pattern for a given layout space, such as a sheet of
paper or a computer screen. It doesn’t matter so much how the grid is laid out for now, as long as
there is some concept around the algorithm of ratios defined. Let’s walk through an example of how
we might construct a grid, just so that we can explore the concepts behind grid design. Using our
earlier math with a 3:4 sheet of paper, we can create an initial grid with four rectangles of equal pro-
portions to the page itself (Figure 8-1).

Figure 8-1. Adding rectangles to a 3:4
sheet of paper

231

232

CHAPTER 8

These four rectangles are of equal size, and they share four corners that meet at the exact center of
the page. This is the beginning of a symmetric treatment for our grid. Now we should be aware that
there are two lines we might use to connect the diagonals on our sheet of paper (Figure 8-2).

Figure 8-2. Diagonal lines on the paper
also meet in the exact center of the page.

The next thing we might do is to add a rectangle, again in a 3:4 ratio, that connects with our diagonals
(Figure 8-3).

Figure 8-3. Inserting a rectangle that is
dependent on the diagonals

233

USING A STYLE SHEET LIBRARY

Now just fill in the other three similar sections with similar rectangles (Figure 8-4).

Figure 8-4. Filling out rectangles depen-
dent on the diagonals

Next, we can add a rectangle in the center of the page, using a little artistic license (Figure 8-5).

Figure 8-5. Adding a central rectangle

234

CHAPTER 8

We can now fill out the space created by this rectangle by inserting proportional rectangles off the
corners and extending them to the edge of the page (Figure 8-6).

Figure 8-6. Filling out rectangles to the corners

We can now add more rectangles to create space for a margin and a central gutter (Figure 8-7). Keep
in mind every one of these rectangles is using a 3:4 size ratio.

Figure 8-7. Adding margins and gutter to
the grid layout

235

USING A STYLE SHEET LIBRARY

We can then add these graphic elements in arbitrary ways to our grid, snapping the elements to our
lines we’ve created. The framework keeps things looking proportional and organized, even balanced,
even though you won’t see the grid in the final iteration (Figure 8-8).

Figure 8-8. Adding content to our grid

This is of course a simplistic and watered-down idea of grid design, and we don’t get into the finer
nuances of the grid such as golden ratios or what constitutes a balanced page layout, but this discus-
sion should give you a flavor for what grid design is all about.

The rigidity of attempting to fit design elements into some predefined grid system may seem con-
strictive and uncreative, but such grid design isn’t actually arbitrary at all. Grid frameworks provide
a subconscious sense of symmetry, and might be thought of as being analogous to the notes of a scale
in music. The 12 notes in western harmonic theory provide an effective framework for the vast major-
ity of music that we listen to, and for good reason: they tend to sound pleasant to our ears—at least
more so than pitches with completely random frequencies would. This is because they themselves
are based on the same proportional ratios. Two notes of an octave may be expressed as having a fre-
quency ratio of 2:1 while a fifth has a ratio of 3:2.

Proportional values like these, whether auditory such as in the case of music or visual such as in the
case of grid-based design, provide a certain aesthetic pleasure to the human brain. Our brains are built
to sense the harmonies implied by these constructions, recognizing proportional values like balanced
visual design and the fundamentals of music as aesthetically pleasing. Incorporating grid-based design
into your work lets you align, manipulate, and stress those harmonic balances to greatly appreciative
effects and simply result in better work.

236

CHAPTER 8

Naturally, screen-based media is completely different from media in printed form, mostly because it’s
difficult to predetermine the conditions of the screen environment. You have many possibilities of
screen resolutions, dot pitches, browser viewport sizes, color depths, available fonts, user preferences,
and so on, to deal with in web design. As the screen environment is different, so too are the rules for
grid layouts different here. As you may have guessed by now, you’re going to be better off making
use of relative units when dealing with the variables and unpredictability associated with screen-based
media, and indeed, this is exactly what most frameworks are built to do.

Tools for grid diagnostics
There are plenty of tools that you can use to in your work that help with understanding and visual-
izing the grid. These tools can be used stand-alone, without the use of a framework, and they range
from low-tech background images you can easily make yourself to high-tech widgets that provide
JavaScript-powered overlays on your web pages.

Perhaps the simplest and most natural tool for a CSS developer to use is a background image with
visible lines at the points of your grid. This can be a single, large background image attached to the
body element during development, or it can be a smaller repeatable chunk of the grid that you can
tile using the and properties, such as Andy Budd’s Layout Grid Bookmarklet tool.1

Either way, the result is that you’ll be able to see actual grid lines on your page, much like Photoshop’s
“show grid” display.

Another grid visualizing tool is the TypoGridder,2 which also works by overlaying a grid back-
ground image using the property. Instead of visualizing a layout grid, however, its intent
is to show you the typographic grid, as shown in Figure 8-9. It displays where the text of your page
should align to the typographic grid’s baseline, mean line, and other points. Other tools include
online grid calculators to help you determine appropriate grid ratios, such as Grid Designer3 and
the CSS Grid Calculator.4

There are even grid-based design tools built to complement specific frameworks. Naturally, those
tools require you to be familiar with the framework they supplement. Let’s take the opportunity to
begin our examination of some of CSS frameworks available to you today.

1. The Layout Grid Bookmarklet tool can be found at
.

2. TypoGridder can be found at .
3. The second version of the Grid Designer tool can be found at .
4. The CSS Grid Calculator can be found at .

237

USING A STYLE SHEET LIBRARY

Figure 8-9. The TypoGridder web site eating its own dog food; the red lines are a tiled background image
that reveals the typographic grid.

CSS frameworks
Like other computing frameworks, CSS frameworks aim to ease the development of web pages by
providing reusable functionality in a modular way and with a flexible baseline. Some frameworks
contain multiple library files, each with a specific purpose. For example, typographic CSS declarations
might be in one style sheet while reset rules might be in another. This modularity lets you as the devel-
oper pick and choose the parts of a framework you want to use.

Although each CSS framework works slightly differently, they all guide you to a certain set of best
practices and, because the CSS needed to implement these best practices are encoded in the library
file itself, all a developer needs to do is understand how to interface with the library. This abstrac-
tion can reduce the amount of development time you might need to spend to overcome a particular
hurdle, but it can also make you feel like you’re working with the library instead of working with CSS.
Indeed, much of the time when you work with CSS frameworks you rarely need to edit CSS code,
focusing instead on HTML patterns that the pre-coded CSS will just pick up all on its own.

Nevertheless, many developers like to use CSS frameworks because they can be used to simplify your
own efforts to manage and organize your CSS code. They can “hide” chunks of code, such as layout
declarations, in their own library files. This allows the CSS you write to focus purely on “skinning” the
content (adding colors, backgrounds, and so forth).

238

CHAPTER 8

Another argument in favor of frameworks is that the very nature of a framework means a certain
kind of reusability—as long as you play along with the rules of the framework, of course. Whether
this comes in the form of microformat-like patterns of HTML, attribute names, or other styling
hooks, the framework’s conventions create a well-known baseline that can make it easier to work in
development teams. Other people familiar with the framework you’re using will be more likely to grok
your code than if you used your own code with your own unique class names or other conventions.

Perhaps the biggest benefit to using a framework isn’t that your resulting production code will use
the framework itself, but rather that the development effort you put into the design will be faster.
Remember that you can always swap out a framework’s own, potentially nonsemantic class names
and other hooks with your own code later on. This is especially true if you’ve been building your
own library of CSS code along the way. That said, CSS frameworks are fully functional, reliable, and
production-ready libraries that many sites use on production servers every day.

CSS frameworks also place certain constraints upon developers, and different frameworks impose
different sets of constraints. There isn’t a silver bullet in the form of a CSS framework for every prob-
lem. Moreover, many problems can be solved in many different ways. The result is a kaleidoscope
of problem-and-solution, cat-and-mouse situations; you can use one library to solve more than one
problem, and some libraries may be better at solving problems than others will be.

Although there are some general principles that we’ll cover here, the best way to know whether a cer-
tain framework will work for your design is to try it and see. Creating prototypes like this are not only
extremely fast to construct with frameworks, they are often extremely useful for many additional rea-
sons anyway. As long as you don’t marry yourself to prototype code and don’t worry about spending
too much time correcting trivial details at the early stages of prototype development, you can often
produce multiple prototypes for a single project and approach the project’s challenges from multiple
angles.

When you are working with CSS frameworks written by others, do not edit their code directly but
rather import it and then use selector specificity to override aspects you don’t like. This is like dealing
with vendor code in a programming context; you don’t want to be modifying a vendor library because
if the library ever changes it becomes painful to make sure all of your modifications are applied in the
same way.

YUI CSS Foundation
The YUI CSS Foundation, created and provided to CSS developers for free by Yahoo!, is a modu-
lar library composed of four different style sheets that build on one another. The complete library
includes the following components:

Reset CSS (): This component provides a clean
foundation for “leveling the playing field” by overriding the built-in browser styles.

Fonts CSS (: This component provides typographi-
cal control and consistency. Lots of research went into m-based typographic sizing. It’s recom-
mend that you use percentages that map to eventual pixel renderings. These are very precise
sizes that evaluate to specific pixel sizes: evaluates to 16 pixels. The YUI CSS Cheatsheet5

is almost a necessity here.

5. A printable YUI CSS Foundation Cheatsheet is available at .

239

USING A STYLE SHEET LIBRARY

Grids CSS (): This is the primary layout component
of the framework. It allows you to build structures and define a layout for the overall design
using markup patterns. The layouts are all based on units internally, while the inner grid
divisions are based on percentage lengths.

Base CSS (; optional): This is a standard helper file
for consistency across elements. It puts back what Reset CSS takes away, but this isn’t recom-
mended for use in production code because you’d be removing the browser default only to
add it again. Not only is this somewhat wasteful, but you may also need to then override these
Base CSS rules yet again in your own code. For instance, elements can be tabs and bullets,
so why not provide the CSS you want? Say what you mean, and be explicit—it’s good coding
style!

Most of the functionality in the YUI CSS Foundation that you often interact with is in the com-
ponent because it provides page-level width and centering easily, as well as letting you create nested
grids that allow you to arbitrarily create multicolumn layouts. You interact with the file by writing
microformat-like HTML patterns, not by writing your own overriding CSS.6

YUI Grids CSS offers four common templates out of the box, selectable by assigning a particular ID
value on the outermost element of your page: 750px centered (), 950px centered (),
974px centered (), or 100 percent fluid (). It is also possible to customize them, although
that’s not often required. Yahoo! strongly recommends sticking with these standards.

Page widths are actually defined behind-the-scenes using units, which lets the page scale when
users scale their text sizes. If for some reason you don’t want this behavior, YUI CSS makes it easy to
lock the layout’s width using a CSS override in your own style sheets:

Grids CSS provides six basic templates that accommodate specific IAB advertising sizes. You set the
template at the root node, the ; this gives YUI source-order independence so that the nar-
rower column can be either first or second without changing the layout—it’ll still work.

Grids CSS templates make use of a “block” in the sense that each region of the page is grouped with
a particular YUI class: (for block). If you want to create two main regions, a sidebar and a main
column perhaps, you need two such YUI blocks:

6. As it happens, this is a common interaction paradigm CSS frameworks use and is one of the most frequently cited
criticisms for using CSS frameworks in the first place.

240

CHAPTER 8

Then you identify which block is the block for the “main column” with a wrapper :

Finally, you choose which s CSS template you want to use:

You can then subdivide these YUI block regions by using another microformat-like markup pattern. To
do this, you use “grid holders” g) and “grid units” u), which equally divide a block region
in half:

241

USING A STYLE SHEET LIBRARY

If you want to have uneven distributions of space within a grid holder or if you want an uneven
number of columns within a single grid holder, different grid holders are available to you. These are
applied using the same microformat-like pattern as ordinary grid holders, but with a different class
name. Grid holders with a class of give you three columns that equally share the available
space, while through give you alternate distributions of space using a two-unit grid.
The former gives you and , while the latter gives you ¼ and ¾.

All grids are based on percentages, so they subdivide the available space. This lets you stack and nest
grid units and grid holders pretty much to your heart’s content—but there are limits. Deeply nested
and odd distributions of space are atypical in the vast majority of designs, but if you run into them you
may need to provide your own CSS overrides to adjust some of the deeply nested YUI CSS.

There’s also a handy tool called the YUI Grid Builder7 that can help you get started using YUI Grids CSS.
Using the YUI Grid Builder, you can graphically design a grid-based page layout and then retrieve the
necessary HTML via copy-and-paste. The YUI Grid Builder exposes most of the functionality from Grids
CSS, including setting a custom page width and choosing different-sized rows, as shown in Figure 8-10,
but it won’t let you graphically nest grids within grids.

Figure 8-10. The YUI Grids Builder is a graphical tool that lets you easily create a page layout using the
YUI Grids CSS framework. Once you create it, you can click the Show Code button to copy and paste
the resulting HTML and CSS code into your editor.

7. The YUI Grid Builder can be found at .

242

CHAPTER 8

Criticisms of YUI are that it’s very “divitis”-heavy, that is, it uses wrapping elements relatively
frequently that may feel “bloated” to some developers. On the other hand, the YUI CSS Foundation
has been praised for the way it keeps itself self-contained; its CSS hooks (class and ID names) use
a “pseudo-namespace” (a prefix) of so as to avoid conflicts. For more information on the YUI CSS
Foundation, Nate Koechley’s YUI Theatre talk is very helpful.8

960 Grid System
The 960 Grid System CSS framework9 is based entirely on grid layouts and as long as your design is
intended to be laid onto a grid may prove to be another helpful tool. However, one of the potential
drawbacks to using the 960 Grid System is that the resulting page design will be very rigid. Due to the
limited nature of the framework—which gives you only a certain number of columns and a set of spe-
cific widths for each of these columns—changing these defined sizes can cause problems for designs
that need to be wider than the allowed size.

Although 960-pixel-wide designs are considered standard for many web sites today, the future is
still undetermined and wider sizes may prove more useful. Our hope is that the community of 960
Grid System users will update the framework to accommodate these changes in the future, but even
beyond that there are still plenty of circumstances today when a strict 960-pixel width is suboptimal.

A great example of sites that may not want to use a 960-pixel-wide design are web applications that
require dynamic resizing (think GMail). Interaction-heavy designs, compared to content-heavy designs,
may not be happy with the strict widths imposed by the 960.gs framework. Another example is the
many new devices that require a lower screen resolution, such as handheld and other mobile devices.
Even desktop browsers that make use of much wider designs may not actually want to do so. The
notion of keeping several browser windows open to do multitasking with may not be quite as passé as
many people seem to think.

Once you write code that uses a framework, it can become very difficult to break free of the con-
straints imposed by the framework. Such is the case for the 960 Grid System, which creates page
layouts that are a maximum of 960 pixels wide (hence the name). If you want to make a page design
that’s wider than this but that still uses the 960 Grid System, you’ll find that you’ll put a lot of extra
work into changing your code to accommodate this, and the extra effort can become tiresome when
a framework is ostensibly intended to reduce the amount of up-front work you need to do.

Furthermore, in reality design changes can come in from a variety of sources at a variety of times.
Although we like to believe that a design is conceived, coded, and then launched, this is rarely the
case in reality. In fact, a design is much like a code—it comes out in versions and sweeping changes
are rarely self-contained within one or two versions. Design, much like code, changes iteratively, and
so you may find yourself in a situation where your design utilizes only “half” of a framework. This is
tricky, because it’s the point at which your code is the most susceptible to breakage on two fronts:
your customizations and interference from the framework.

8. Nate Koechley’s YUI Theatre talk can be seen at .
9. The home page for the 960 Grid System CSS framework is at .

243

USING A STYLE SHEET LIBRARY

Another issue specifically with the 960 Grid System is that since it relies heavily on exactingly sized
elements, adding your own padding or margins to the layout elements themselves breaks your
pixel-perfect grid. The tempting solution to this is to explicitly override the width of the grid element,
but this turns out to be dreadful for maintainability; now you have to deal with maintaining the width
of a single element in two places in your code, which is precarious at best. Instead, you’re much better
off thinking about how you can restructure your markup to give yourself an extra box and give the
padding or margins, leaving the elements that the 960 Grid System relies on alone.

Blueprint CSS
The Blueprint CSS framework10 takes a similar approach to the YUI CSS Foundation framework.
Blueprint CSS is composed of a set of style sheets that work together to provide a foundational layer
for a grid-based design. The framework provides 24 columns to use, which is more than most (more
than 960.gs’s 12 at least).

The Blueprint CSS framework is a little different from some other frameworks in that it bills itself not
merely as a prototyping or rapid application development (RAD) tool, but also as a foundation or
“blueprint” (hence the name) for building production-quality releases and other tools to work with
CSS on top of. The Blueprint CSS wiki lists a number of these tools,11 which include code generators,
WYSIWYG layout editors, and more.

Another distinction is that the Blueprint CSS framework comes equipped with a style sheet intended
for print, which saves you some work on that front, too. All of these distinctions combined make
Blueprint CSS feel a lot more like a design methodology suite whereas many of the other systems feel
more like tools in a toolset. Each model has their pros and cons and which you choose can be largely
a matter of style.

Like other frameworks, the Blueprint CSS framework offers a quick way to create grid-based layouts
using certain markup patterns. In this case, we use an outermost element with a class (not an
ID) of to hold the grid regions:

10. The Blueprint CSS framework’s home page is at .
11. The Blueprint CSS wiki page at

links to tools built on top of the framework.

244

CHAPTER 8

By default, this will provide an invisible grid within the container element that spans 950 pixels wide,
equally divided among those 24 columns. The grid’s “columns” can be thought of as “snap-to” guides,
since they are not real columns themselves but behave more like rows. Each invisible grid column
spans 30 pixels wide with a 10-pixel margin between columns, giving you an easy way to create real
columns of particular widths by declaring how many grid columns wide the real column should be.

For instance, in the following example we create a two-column page where each column’s width is
equally divided within the available 950-pixel total container width. To do this, we give each
element to a class of (12 is half of the available 24 columns), and then add an additional class
value of to the final column:

Columns can be nested, further subdividing the available space within each one. This is accomplished in
exactly the same way as before. Let’s further subdivide the left column into three narrower columns:

Note that the new columns are given classes so that they add up to the available space in the
larger column. In this way, you can quickly create consistent, cross-browser layouts that always snap
to a grid dimensions.

245

USING A STYLE SHEET LIBRARY

Summary
We began this chapter by discussing the challenge of a browser’s default style sheet and how to level
the playing field when writing cross-browser compatible code. As this was a common challenge for
web developers, libraries called “CSS resets” were developed that encoded the knowledge of how to
do this inside a single reusable style sheet. This practice of creating modular, pluggable style sheets
should sound familiar to you by now because it applies the knowledge you gained from previous
chapters on an ever-widening scale.

Next, we looked at some of the other benefits of CSS frameworks, and you saw how they could be
used to more quickly get up to speed with a project. You learned about grid-based design and the
fundamental mathematics behind the proportions and spatial ratios embedded into the most popular
CSS libraries. You also learned about grid-based design in terms of typography and saw a number of
tools that could help you while developing.

CSS frameworks provide a lot of bang for your buck, so to speak, because they let you take advantage
of the work of other developers. You saw how some of the more popular CSS frameworks actually
worked. Most of them come with a CSS reset file, and then progressively build on the consistent
foundation they provide to enable more complex functionality. The YUI CSS Foundation framework
is an example of a modular framework from which you can elect to use one, some, or all of its parts.
Blueprint CSS is another popular framework that comes with several components, including a print
style sheet. The jQuery UI CSS Framework takes modularity to the component level, providing a CSS
library with which you can easily style widgets and other individual blocks of content.

So far, we’ve been exploring CSS in the context of HTML pages. However, as you’ll recall from the first
chapter, CSS can be used in many more places than simple web pages. In the next chapter, we’ll break
free from the constraints of HTML and learn how to use CSS effectively in conjunction with true XML
documents.

247

Chapter 9

Throughout this book, we’ve explored both markup and CSS and how to develop
patterns to leverage one from the other. We also discussed the various forms that
your projects might take, such as traditional on-screen display, print, and mobile
media. However, in all this time we’ve not yet explored the versatility and extensibil-
ity that we alluded to as being possible with XML in the beginning of this book.

In this chapter, you’ll break free of styling HTML and spread your wings to include
other forms of content, such as Atom feeds, SVG images, and your own custom XML
applications. You’ll see that many mainstream browsers support non-HTML-based
web content very nicely, and you’ll learn how to deal with some of the remaining
browser quirks that styling client-side XML produces.

Using XML for your markup
HTML and XHTML are commonly used throughout the Web for marking up web
pages. XML is not nearly as common for this use, but the good news is that it is for
the most part supported by all major modern browsers. If you wish to dabble in XML
or rebel against the HTML establishment, you can go right ahead.

CSS can be used to style much more than HTML or XHTML. If you are willing to adhere
to the stricter rules of XML and aren’t afraid of defining your own markup, XML may be
a viable alternative for marking up your site. Or you may have reasons for styling existing
XML sources: a data report in XML format, an SVG image, or an existing RSS feed are all

STYLING XML WITH CSS

248

CHAPTER 9

candidates for XML sources that might be improved with a little CSS. Using CSS with XML can be liberating
compared to dealing with HTML’s constraints, but there are pros and cons with either approach.

Problems with POSH
Plain Old Semantic HTML (POSH) is a wonderful construct for the Web. It has proven time and time
again to be a simple and effective format for delivering vast quantities of information over the Internet
in a lightweight and easy-to-understand format. But there are some shortcomings. For one, HTML only
tells us the format of a document—it does not tell us much about the content itself. Another problem
is the legacy baggage that comes with HTML—all those browser bugs, and those varying opinions as
to how elements are handled.

XHTML was intended to be a reformulation of HTML into XML, a path forward to advance the capa-
bility of web authors by providing the tools and extensibility of XML in an HTML framework. It was
a great idea in theory—if only browsers would have played along.

Freedom from HTML
Casting aside the shackles of HTML can be liberating. Styling XML will free you from the default
browser styles and implied meanings that come with HTML. You can make your own rules—define
your own set of tags and attributes that more closely match the need in question. And then if you
do choose XML, you have the full power of the Turing-complete XSL suite of technologies at your
disposal too.

In HTML, web browsers treat certain elements in certain ways in all cases, and there’s little you can do
to get around that. For one, the element is going to be the part of the document that appears
in the viewport. Everything else going into the viewport is going to be a child of the element.
On the other hand, none of what is placed in the section of your HTML can be styled. (Not that
you’d likely need to—but say you wanted to extract attributes from meta elements using and
have them show up somewhere?) Nor can the overall element be styled (except for specifying
the behavior of its children that might appear at and below).

Oh yeah? Well, XML sucks!
That isn’t to say XML is without its own failings. Sometimes being too perfect is a burden in and of
itself.

XML documents optionally begin with an XML prolog. The prolog may consist of two parts: the XML
declaration and the document type definition (DTD). The DTD is very common in HTML and XHTML
contexts. But with the XML declaration, it’s not so common. It is this declaration that causes Internet
Explorer 6 to trip and use quirksmode instead of standards mode rendering. The XML declaration
looks like this:

In conjunction with a DTD it might look like this:

248

249

STYLING XML WITH CSS

Another IE6 bug is the fact that web servers are supposed to serve XHTML using a special MIME type—
specifically, . If a page is served using this MIME type, IE will try to download
the page as a text file instead of rendering it. For this reason, XHTML is often simply served as

. This works great for user agents that don’t yet support the MIME type. But serving pages as
 limits the benefit of having all this great XML at our fingertips. Browsers will continue to

treat your well-formed and validating XHTML as plain-old HTML. It is nice-looking HTML, but it’s not
being honored with the full power of the XML juggernaut. In other words, XSL isn’t going to work. No
XPath for you. (On the plus side, IE will not throw up its arms and give up when one tiny mistake in
your markup creeps through.)

According to the spec es),
you’re supposed to serve XHTML as XML to those browsers that declare their support
for it and as text to those that don’t. So although the W3C also says that the

 MIME type isn’t suitable for XHTML, they don’t explicitly forbid its usage, due to
legacy user agents. As of this writing, XHTML 1.1 is the only version of XHTML that the
W3C insists should be served as XML.

Another problem: XML is supposed to be fussy, but most browsers are far more forgiving than XML
allows and let XHTML get away with crimes against XML by rendering pages that should have failed.
This harkens back to the wild and wooly days of the early Web, when rules were few and it was still
a free-for-all. Standards are a double-edged sword; they were created to end the problems associated
with ensuring sites were functional in the popular browsers, but fussy XML parsing means a browser
should fail to render a page if the XML is not valid. One of the things that let HTML flourish so fast
and wide was the fact that it was forgiving: HTML authors could make mistakes and it wasn’t the end
of the world. Their pages would still work. Imagine if XML was the norm and the world tried to adopt
it back in those early days—we’d have a much more pristine, and much smaller World Wide Web than
we have today. Take that for what you will.

Search engines for the most part have been trained to pay particular attention to the structures and
conventions of HTML semantics. With XML, you are potentially casting aside all this good Google-juice
in favor of your ideals. That is not to say that XML won’t get indexed, but certain tags such as and

 have particular meaning when search engines are indexing your site.

Double the style sheet fun
There are not one but two types of style sheets in XML. We have our familiar and traditional CSS,
which is going to work mostly the same as you would expect it to work in an XHTML context, and then
we have the Extensible Style Sheet Language (XSL), which gives web authors a great deal of power in
how XML documents are interpreted.

XSL is actually a suite of technologies, which includes Extensible Style Sheet Language Transformations
(XSLT), XPath, and XSL Formatting Objects (XSL-FO). The XSL-FO component is sometimes itself
referred to as XSL, but for the purposes of this book let’s keep things separate for clarity: XSL will be
used for the general context, and XSL-FO will be used for the specific component it refers to.

249

250

CHAPTER 9

CSS vs. XSL
So which to use—CSS or XSL? That all depends on the complexity of what you want to accomplish. For
most cases, CSS will probably be fine, and is going to be the likely candidate for styling your project.
If you need to do significant filtering or rearranging of your XML, then XSL might be the way to go.
Heck, you can probably justify using both in many contexts—transforming an XML document into the
correct format before applying a little CSS might be just what the doctor ordered.

In choosing between CSS and XSL, consider the Rule of Least Power. This rule states that when design-
ing computer systems, you are often faced with a choice between using a more or less powerful lan-
guage for publishing information, for expressing constraints, or for solving some problem. This finding
explores trade-offs involving the choice of language to reusability of information. The Rule of Least
Power suggests choosing the least powerful language suitable for a given purpose.

Styling a simple XML file
Custom XML applications may appear in all sorts of contexts. Perhaps you’ve exported a load of data
from some application and want to make it more readable through a style sheet. Or perhaps you’ve
created your own markup scheme and are putting it to use for a web project. In any case, the rules for
CSS in XML are largely similar to the HTML world, but with a few minor caveats, which we’ll explain as
we go through the remainder of this chapter.

Linking a style sheet
Linking style sheets to XML documents should look very familiar to you. This operation is largely the
same whether you’re linking a CSS style sheet or an XSL style sheet.

The difference here is that the opening bracket must begin with and the element
must close with a . The rest of it is similar to what you will find in HTML.

Embedding a style sheet
Currently there is no generic mechanism for embedding CSS in XML documents; a

 has to be defined in the given application’s DTD or schema. XHTML and SVG are examples of
XML applications that do have provisions for embedding CSS in a element.

There is a small difference in how you embed CSS between HTML and XML documents that you must
be aware of: you must escape the contents of a style sheet element—the CSS rules—as unparsed
character data (CDATA). The reason for this is so that any and characters that might be used in the
style sheets are not interpreted as markup.

251

STYLING XML WITH CSS

The thing to remember about embedding CSS in an XML document is that you have to be sure that
the element is supported. Without support for already defined, the style sheet con-
tent will not make sense.

Using external style sheets is the preferred method for applying style to XML. If your style sheet will
contain the characters , , , or -, you will definitely want to use an external style sheet, and
embedded style sheets in XML still lack formal specification. Use the linking method when-
ever possible.

Putting the X back in eXtensible
Consider XHTML for a moment. The first word in that acronym is “extensible.” What does that mean?
You know XHTML like the back of your hand I bet, but have you ever extended it? How do you go
about extending this markup language?

It is important to remember that XHTML is, by definition, an application of XML itself, and despite the
problems mentioned earlier there is a good argument for allowing XHTML to be processed as an XML
document. Even if it is being interpreted as , a lot of this stuff will still work from a CSS/
display standpoint. You are not limited to those tired old s and tags. Try a little
(a Dublin Core title element) or (a MathML mathematical operator) on for size and see how
it fits into your XHTML document.

Extending XHTML through namespaces
XHTML is an application of XML, and is defined as such through its namespace and a DTD. In practice,
the namespace is usually implied, but technically you should really define the namespace like this:

The namespace here is defined without a prefix. This means all of the elements in this document are
going to appear as you would expect to see them in a standard HTML document. No surprises here.
But how would it look if we added a second namespace? There can be only one default namespace,
so any other namespaces added to our document are going to require prefixes:

252

CHAPTER 9

We now have a hybrid piece of markup, with the default namespace being XHTML and the namespace
prefixed with pointing to some custom XML definition based on violas.

Namespaces may be easily and arbitrarily added to XML documents, including XHTML. Each will
require a unique prefix (with one being allowed no prefix as “the default namespace”), and the
property should have a unique URL placed in quotes. The URL itself is arbitrary—it can be any URL as
long as it is treated as unique for the given document.

Styling namespaces
Styling XML namespaces is a bit different than what you would probably expect. Your intuition likely is
telling you that simply writing the selector as it appears as a namespace would be good enough:

What do you think might be wrong with that rule? If you guessed that the colon character sepa-
rating and is the culprit, you’d be on the right track. Colons in selectors are for indicat-
ing pseudo-selectors. There is no pseudo-selector, nor is that what we want to imply here.
Something else needs to be done.

To handle namespaces in CSS, you must first declare a namespace in your style sheet, and then you
need to write selectors using the pipe character () to separate namespaces and selectors. Namespaces
are declared using :

In this example, is the prefix that will be used throughout your style sheet for any rules using the
namespace. The URL serves as a unique identifier—it can be any URL, although some organizations
(such as the W3C or Dublin Core) recommend specific URLs. If you’re defining a custom DTD, you might
post that somewhere and use it as your URL choice. The important thing is that this URL be unique for
the style sheet in question. All rules must come after any and rules, and
before the rest of the rules in the style sheet in which they appear. This is important—if the order is
incorrect, your browsers may ignore the namespace rule and your styles won’t work as expected.

Now that this preliminary business is taken care of, it is time to create a CSS rule. A rule for our
 element would look something like this:

253

STYLING XML WITH CSS

The pipe character serves to separate the namespace prefix from the element in CSS. The rest of the
rule may proceed as expected.

Styling namespaces in Internet Explorer
What would a killer web standards technique be without a corresponding IE failure? Rest assured, styl-
ing XML namespaces is no different.

Early on in the life of the XML specification, namespaces had yet to have a CSS construct defined
that would handle them. Failing solid guidance in the specification and anxious to get things moving,
Microsoft implemented namespaces in style sheets using the backslash character to escape the colon:

With this pattern, you won’t need to declare a for the IE set. In fact, isn’t even
supported in any version of Internet Explorer, and that includes IE8. Plan on using conditional com-
ments to link to a dedicated style sheet for any IE-specific code:

To achieve the widest level of compatibility with current browsers when styling XML with namespaces, as
well as to future-proof your work, you should first set your styles using the standards-based
and pattern. Then add your IE-specific styles using the conditional comment pattern
as indicated earlier. As of this writing, support is still not planned for any future updates to
IE8, but if IE9 rolls around with support for the correct implementation as defined in the specification,
then your style sheets should continue to work.

Painting SVGs
Scalable vector graphics (SVG) is an open and standards-based way of describing two-dimensional
images in XML. As of this writing, SVG 1.1 () and SVG Tiny 1.2 (targeted
at mobile devices;) are the current W3C recommendations. Since
SVG is simply a non–binary-text-based file format written in XML, it is possible to create and edit
images manually using nothing but a text editor, and it is easy to generate and manipulate images pro-
grammatically using server-side programming languages like PHP or Ruby, or using desktop software
programs such as Adobe Illustrator or Inkscape.

An interesting feature of SVG that sets it apart from several other file formats is the fact that it sup-
ports text and is itself a text-based format. This gives SVG the capability of providing easily searchable
information baked right into the file format in a way that search engines are already fundamentally
capable of and good at. Couple SVG with the idea of combining XML applications in one document
(such as, say, an XHTML document) and you have an interesting opportunity for a more semantic and
meaningful Web.

Realistically it may not be terribly practical to hand-code finely detailed SVG images. But since SVG is
just XML for the most part, it is highly conducive to programmatic manipulation and even modifica-
tion by hand through its styling constructs. For example, if you wanted to modify a map of the United

254

CHAPTER 9

States to highlight the state of California, it would be easy for you to open the file in a text editor;
find, say, the ID that the original developer used to define the state; and give the state
a nice golden background color with a blue border with a bit of style property modification. Another
example would be in producing statistical graphics generated from server-side code—you could gen-
erate rich and meaningful statistical charts from real-time data simply by programmatically modifying
the variables in the SVG file.

SVG supports the styling of its markup using CSS. While SVG itself is a purely presentational language
with its own constructs built in for drawing and manipulating graphics, CSS may be used with it as
a styling mechanism, which opens the door for a number of interesting applications. Consider the fact
that there is a vector-based image format that you can color and manipulate using a language you
already know: CSS. Does that sound like something fun to play with? You betcha!

For this example, let’s look at something simple—a three-bar flag. It is commonly used throughout the
world as perhaps the most widely used layout for a national flag, and it is easy to write in SVG. For our
XML, use the following:

And for the flag design, let’s use Ireland as the example:

The result of this simple example is a nice approximation of the flag of the Emerald Isle. With a few
changes, we can move a little farther south toward the mainland and try for France:

255

STYLING XML WITH CSS

Vive la differénce! With a couple of switches, we can make our flag French, Irish, Italian, or whatever
other country uses this layout by simply swapping out a few color values. You could even provide
for a more versatile example by using descendant selectors. With the following example, Ireland and
France are handled gracefully and all you would need to do is swap out the value of the ID in the
parent element:

And the CSS for our Irish flag would be

Just change the value in your XML from to and back as needed. See if you can add
styles for Italy to your style sheet! Hint: would be green, and would be red.

The SVG specification does include a definition for a element. So if you needed to have
a self-contained single file for your image, you could do so. In this case, the previous example would
look like this:

256

CHAPTER 9

With this code, the image may be treated as a single file. This will be important if you want your SVGs
to be easily ported or referenced as other image file formats can be, such as JPEG or PNG. For this
reason, unlike most other styled markup, it is likely that most SVG files you encounter will probably be
styled with embedded instead of external style sheets.

SVG and CSS2
Many of the SVG styles are unique to its specification. However, a subset of the CSS2 spec is available
in SVG, which includes the following properties and at-rules:

257

STYLING XML WITH CSS

The property as applied in CSS requires some special consideration. We will discuss how color
works as part of the SVG-specific styling properties in the next section. The and proper-
ties are only applied to the outermost element. Child elements of the element will ignore
any or property values. As you might notice from the preceding list, the majority of the
CSS properties here are typography related, as are many of the other things you might expect to be
available in CSS such as , , or, and properties. In SVG, you need
other constructs to style those elements, but fortunately things will look largely similar to what you’re
used to in the CSS world.

SVG-specific style
Since the CSS specification itself is inadequate to handle the complexities and specific requirements of
styling images, SVG includes a number of style extensions. We have already seen some use of the
property in our earlier examples.

SVG style property/value pairs may be presented directly within the content of the markup as attri-
butes. At the same time, SVG style properties may be treated as part of style sheets in the same way
CSS works.

Here are some more property options to help you code your next work of art, along with a brief
description of the intent of each property’s function:

: A text property that specifies alignment with respect to its parent
element.

: Repositions the baseline of text relative to its parent element, usually result-
ing in a subscript or superscript effect.

: Points a URI to another SVG graphic to be used as a clipping path. This can be an
ID reference (such as) if the SVG is embedded within the same
document.

: Takes one of three values: , , or (default). Without getting
too deep into the details, imagine two concentric circles, with a applied to the out-
ermost circle. With , both circles would be filled. With , the inner circle would
not be filled, resulting in an annulus.

258

CHAPTER 9

: Specifies which color space interpolation should occur in, with ,
 (default), and as possible values.

: Similar to but applied to filter effects.

: Defines a color profile description. Can be used like an at-rule
le) or as a property.

: Tells the user agent to optimize speed or quality using the or
 property.

: In typography, used to determine the baseline of the script with the domi-
nant run. Values could be alphabetic for Western contexts, mathematical for math formulas, and
ideographic for the East Asian scripts Chinese, Japanese, Korean, and Vietnamese .

: Describes how backgrounds are accumulated, using the property or
, or an x/y offset value.

: Paints the interior of a given element.

: Sets the opacity of the fill color.

: Similar to le, using or (default) to set the fill behavior.

: Can set a URL to point to a filter that would be applied to an object.

: Indicates a color value to use to flood a filter subregion.

: Sets an opacity value to flood a filter subregion.

: Controls glyph orientation when the inline-progression-direction
(set by de) is vertical relative to the reference orientation.

: Controls glyph orientation when the inline-progression-direction
(set by de) is horizontal relative to the reference orientation.

: Tells the user agent to optimize speed or quality using the or
 property. (See ng.)

: Adjusts length between glyphs.

: Defines a color for light sources that can be applied against SVG’s
 and elements.

: Shorthand property for nd, rt, and id.

: Defines a marker or an arrow at the end of a path.

: Defines markers at all vertices except for the beginning and end markers.

: Defines a marker or an arrow at the beginning of a path.

: References a element to implement a path used for generating a mask effect.

: Sets the opacity of an object, using decimal values from (fully transparent) to
(fully opaque). A value of would be 50 percent opacity.

: Controls under what circumstances an object can become the target of
pointer events.

: Tells the user agent to optimize speed or quality using the or
 property.

: Sets a color to use at a gradient stop.

: Sets an opacity used at a gradient stop.

259

STYLING XML WITH CSS

: Describes the stroke effect applied to an object.

: Sets pattern of dashes and gaps in a stroke.

: Sets how far into a stroke the dash pattern will begin.

: Sets the shape used at the end of open subpaths, using the values ,
, and .

: Sets the shape of corners, using the values , , and .

: Sets a limit on the ratio of the miter length to th.

: Sets the opacity of the stroke.

: Sets the width of a stroke.

: Aligns text to a specified point, using the values , , and .

: Tells the user agent to optimize speed or quality using the or
 property.

: Determines which direction text flows; left to right, right to left, and/or top to
bottom.

Browser support for SVG
SVG enjoys at least partial native support in modern versions of Gecko-based browsers such as Firefox,
WebKit-based browsers such as Safari, and the Opera line of browsers since version 8. As you probably
guessed, there are no versions of Microsoft Internet Explorer, including version 8, that support SVG.

Fortunately for the IE users, there are excellent plug-ins that provide support for SVG. The Adobe SVG
plug-in was under active development up until January 1, 2009, when active development was dis-
continued. The Adobe plug-in is still available for download from the Adobe web site. However, their
motivations for discontinuing support included the fact that better options existed in the marketplace
and that most browser vendors (save for the one big one) already feature native support for SVG. For
IE users and developers who would like to recommend a plug-in, we suggest the excellent RENESIS
Player, available from examotion at .

Making an Atom feed more presentable
The Atom Syndication Format is an XML application created to standardize web feeds, and is an alter-
native to RSS (although the two are largely similar). It is a proposed standard published under the
Internet Engineering Task Force (IETF) as RFC 4287. RSS and Atom feeds are highly popular features
of the modern Web, providing an XML-formatted feed of regularly updated content that may be sub-
scribed to by feed reader software or consumed by software applications. Here is an example of what
an Atom feed might look like:

260

CHAPTER 9

An integrated example
Let’s look at a step-by-step examination of a single XML document founded on some custom markup.
For our example, we’ll use an XML document that describes a list of classical music composers, includ-
ing information about the composer’s dates of birth and death, what period they are categorized with
(such as Baroque, Classical, Romantic), and some representative works. We’ll use this markup to apply
some CSS styles to make it more interesting and readable. The code here is truncated due to space
constraints, but the full example may be found in the chapter 9 folder of the source code downloads.
Here’s the code we’ll start with:

261

STYLING XML WITH CSS

262

CHAPTER 9

The raw and unstyled XML appears as a document tree in many user agents, such as Gecko-based
browsers like Camino, as shown in Figure 9-1.

Figure 9-1. Unstyled XML displayed as a document tree

Try viewing this in a few browsers to get a feel for what raw, unstyled XML looks like. Firefox and
Internet Explorer will render the previous code as a document tree, while Safari and Opera will render
a clump of unformatted, inline text. Now let’s add a style sheet. Create a file called in
the same directory as the previous XML file. Insert the following line on line 2 of the XML file:

Now check your browsers again; what do you see? All browsers should now be rendering that amor-
phous clump of text we saw earlier in Safari and Opera. Nothing really special has happened here, but
you will note something of at least minor importance: all of our elements appear exactly the same.
There is no variance in font sizing. There are no block elements—only inline. It is simply a shapeless
stew of content.

263

STYLING XML WITH CSS

The first step is to add some definition. Let’s start by taking at the natural organization of our XML
file. There are some high-level nodes in this file called , and they group the information for
each composer that we have listed. This grouping is in fact defined and enforced by the referenced
DTD file that is included. So the first thing we could do is to make that a block-level element in

:

This sets each composer block to be rendered on its own line in the browser, as shown in Figure 9-2.

Figure 9-2. Displaying the element as blocks

Instantly our example makes more sense. Each composer begins on its own new line. However, with
the wrapping that likely is occurring in your browser, it still might be a little confusing. Let’s add some
margin and borders too:

264

CHAPTER 9

These changes are reflected in Figure 9-3.

Figure 9-3. Adding a little visual separation to the block elements

Now things are becoming clearer. Let’s further equalize the display of our information with a bit of
work on the overall layout by establishing some margins and contrast on the viewport:

265

STYLING XML WITH CSS

These changes will provide some contrast and immediate visual layout benefits, as shown in
Figure 9-4.

Figure 9-4. Establishing margins and contrast in the viewport

Now we’ve put our layout into clear and digestible bits of information. The outermost XML ele-
ment works like our and elements in traditional HTML contexts, giving us
a hook from which to apply global styles. Since the outermost element can set certain global proper-
ties in CSS that will be inherited, adding a and here makes sense. It is inter-
esting to note here for a moment the difference between HTML and XML with respect to the
element. It is the element that is visible to the viewport, and anything contained in the
is invisible. With stock XML formats, the outermost element is the default content for the viewport
and hiding anything from it must be done manually.

Now that the large blocks of information make sense, we need to sort out the details of each com-
poser in our list. Let’s add a few more block-level elements and some typography to style things to be
more organized:

266

CHAPTER 9

With just a few typographic changes, the content becomes instantly clearer on the page, as shown in
Figure 9-5.

Figure 9-5. More block treatment of the content and addition of list styles

At this point, our information is displayed fairly well considering the meaning of the markup. We first
added block-level treatment to the and elements, and set the element to
display as a em. How often do you get to do that? In XML, it is often that you will have list-like

267

STYLING XML WITH CSS

child elements, and using the value for the property becomes entirely appropriate
for this need. If you want to see something interesting, try changing the property
value to instead of em, and then reload your page in Safari or Opera. You now have
ordered lists! This is a handy tool to have around when styling long chunks of XML data, but unfortu-
nately your mileage may vary when it comes to browser support.

Now what would really help is some indication of what some of the data types are. First, the numbers
that appear directly below the names are the birth and death dates for each composer. But these are
formatted poorly at best, and for someone unfamiliar with music history this might be completely
meaningless. Let’s see what we can do with generated content:

268

CHAPTER 9

We now have content that is more properly labeled and readable, as you can see in Figure 9-6.

Figure 9-6. Using generated content to make the data more readable

Now we’ve used the pseudo-class and the content property to generate some meaningful
labels to some of our markup. The dates are now labeled a bit better, with b. appearing before the
birth year and - d. appearing if and when a year of death is indicated, directly preceding this date. We
added a label of Favorite Works before the list of pieces. And finally, we wrap things up with a bit of
margin on the bottom of the element to create a little more visual distinction on the page.
The rest is detail and polish at this point.

Really what this thing needs is some images to liven up the page and associate more of a visual identity
with each composer. There is no equivalent to the element in our XML document, but that’s
OK—we won’t need it. We can use background images attached to the elements by lever-
aging their unique properties:

269

STYLING XML WITH CSS

As Figure 9-7 illustrates, pictures really help the display of our page and give it a more personal
character.

Figure 9-7. Adding portraits of our composers

It’s looking good! We reduced the overall width to since the extra padding was pushing our lay-
out out a bit, and we positioned our background images to the right of each box with some padding
applied to keep the content out of the way. Now with a couple of typographical tweaks we can prob-
ably wrap up this project. To these indicated rules, add the items in bold:

270

CHAPTER 9

Our final touches to our style sheet will show up as shown in Figure 9-8.

Figure 9-8. The final styling for our composers XML file

271

STYLING XML WITH CSS

With those additions, we’ve finished up making a raw XML file turn into a rather attractive and read-
able page, which was our goal for this project. For the name of the composer, which includes the

 and values, we styled it to be more of a heading-like object with a stylistic
sans-serif font, slightly larger, and in a lighter shade. For the element, we have to
transform it to lower case, since some of the values have capitalization that doesn’t look right in the
final output. Here is our final style sheet in its entirety:

272

CHAPTER 9

273

STYLING XML WITH CSS

Summary
XML is a largely untapped realm when it comes to applying CSS, making it an interesting area for
exploration. More often an XSL transformation is applied and the document is made to produce good
ol’ HTML before applying any CSS, or the document is fully handled using XSL-FO. However, following
the principles of using the Rule of Least Power that we discussed earlier, CSS may very well be a fine
choice for a large number of jobs. It is a skill you’re already familiar with by now, and it may warrant
consideration should you ever be presented with the task of having to put some polish and shine on
a piece of XML.

With good support for basic XML styling using CSS among most of the major browsers today, styling
XML using CSS is certainly worthy of consideration for your projects. Use CSS to style your XML docu-
ments whenever possible, and use the simpler CSS option over the more complex process of XSL for
styling your documents, if the former will suit the needs of the project.

275

Chapter 10

There are many aspects to consider in appraising how well a tool accomplished the
goal it was designed for. A web site is, in its base form, just such a tool. In previous
chapters, we’ve discussed how web sites perform in accomplishing their goals in
terms of technical capability (what CSS can do). In this chapter, we’ll switch gears and
discuss performance in terms of how efficiently and speedily CSS can do the things
you want to do with it.

Indeed, performance is an important part of every web site and CSS developers are
not excluded. There are many things to consider with regard to optimizing CSS for
performance, including the number of style sheets you use, how you include them in
your code, and even the specific rules they contain. To master CSS optimization, you
need to think about your code from a web browser’s point of view, not a human’s.

Thankfully, optimization is one aspect of CSS development that is relatively
browser-agnostic, since most CSS-capable user agents function in basically the same
way. From a performance standpoint, each user agent has the same basic resources
to consider: CPU speed and network connection speed.

OPTIMIZING CSS FOR PERFORMANCE

276

CHAPTER 10

Why optimize?
To be usable, web sites must be fast—very fast. Although optimizations are not typically considered
part of the initial development process, optimizing your code and tuning it for performance is a big
part of what defines professional-quality work. To separate the wheat from the chaff, so to speak,
optimizations are a requirement because it is the optimization process that propels an implementation
to the next level.

Optimize to increase speed
Visitors like pages that load quickly and work well. Studies have shown that web site users most often
prefer sites that are (or at least appear to be) faster over sites that allow them to customize their
experience.1 In essence, a web site that doesn’t respond quickly to your input is sometimes worse than
not having a web site at all. Therefore, it behooves you as a professional developer to ensure that
every aspect of your code is as optimized as can be, and CSS code is no exception to this rule.

An increase in web site response speed has also been shown to increase sales for e-commerce sites.
Speed is so important because the maximum amount of time users can wait in order to remain focused
on steps between a task is 10 seconds.2 Despite broadband connections becoming more common, other
factors such as low-power mobile devices and ever more demanding technical challenges are always
pushing the envelope of what we can accomplish, and how quickly we can do so.

Even today, many web users have limited connections to the Internet, and a typical 500KB page can
take up to a minute and 10 seconds to download for these users. If this lag time happens in the middle
of multipage form purchase, then you have a serious usability problem. Moreover, Jens Meiert esti-
mates that the typical web page increases in size by 20KB per year,3 so producing code optimized for
speed actually provides cumulative gains to performance over time.

A snappier user experience is a more usable and a higher-quality experience. A faster user experience
has some pretty obvious benefits, but they all amount to an improvement in the way your quality is
perceived by users. Speeding up your web site will make you look better to your visitors because the
speed at which your pages display affects the perceived quality, reliability, and credibility of your prod-
uct or service. In fact, a lack of speed is the most common complaint among web surfers because user
satisfaction is directly proportionate to web site response time.

1. Articles about web site optimization as a broader topic than purely CSS are plentiful, and one of the best resourc-
es is WebSiteOptimization.com, which publishes their results of a study researching the relative importance of
interface design features at s/. In this study,
speed was shown to be the most important factor of an interface’s design.

2. This human-computer interaction principle has remained the same for about 30 years, as Jakob Nielsen reports in
the findings of one of his many usability studies. You can check out this one at

.
3. Jens Meiert’s blog post discussing interface load times discusses increasing page bloat over the years:

s/.

276

277

OPTIMIZING CSS FOR PERFORMANCE

Optimize to lower bandwidth usage and costs
Each CSS rule needs to be transferred over the wire to the browser before it can be used, unless it is
already cached locally.4 There is some cost both in terms of speed and in terms of physical resources
such as electricity when this happens. How many actual bytes of data are sent over the wire can be
reduced without degrading the final result in a number of ways.

One obvious way to do this is to make use of shorthand CSS properties when they make sense (for
example, when they consist of fewer characters to type). Another is to compress the style sheet with
GZip and decompress it on the client side. Both of these techniques shrink the physical payload that
needs to be communicated from server to client. Not only does this use less bandwidth, it can speed
up the transfer itself, which in turn contributes to an overall speed boost.

Moreover, reducing bandwidth usage can also save money for both content producer and consumer.
In many parts of the world, bandwidth is still capped or throttled to avoid overuse, and despite claims
of “unlimited” bandwidth by major Internet service providers, bandwidth is still a limited resource.
Further, the increase of mobile use puts additional importance on bandwidth optimization as cellular
networks charge a per-megabyte fee for bandwidth use. Users who visit a bloated site may receive not
only a poor experience, but also a frighteningly high telephone bill.

Optimization vs. organization
Some of the optimization tips in this chapter go against the grain of the organization tips in Chapter
6. Sometimes, organization for humans, such as code formatting conventions and whitespace indenta-
tion, is less than ideally optimized code. It’s important to strike a balance between broad-scale orga-
nization in an architectural sense so that the code is something you and your fellow humans can work
with, and targeted optimizations in a technical sense so the code is optimally performant.

Indeed, even some features of CSS itself are not beneficial from a technical optimization standpoint.
In particular, the statement is a notorious culprit, as the more imports you have, the more
HTTP requests you’re making, which can slow things down. However, as discussed previously, the

 rule is useful for creating modular sets of style sheet files that are easier for people to work
with, or more logically organized in a file system on disk. To get the best of both worlds, many sites
use specific, possibly automated build steps that take a collection of source files (of which CSS is just
one kind in a web site) and put them together in a particular, distributable way, akin to a compilation
step in traditional software development. The details of how to create such build systems are beyond
the scope of this book, but there are a number of useful tools, regardless of whether you create
a build system, that should become a familiar part of your optimization repertoire.

4. Actually, caching is one of the best things you can do to mitigate download costs, and is sadly underutilized. To
learn more about caching, which is beyond the scope of this book, be sure to read Mark Nottingham’s Caching
Tutorial at .

277

278

CHAPTER 10

There’s also been some great research into CSS selector optimization and performance done by Steve
Souders5 and others. Largely, the conclusion this research has reached is that optimizing CSS selectors
gives you only a very small performance boost, and that the effort required to do so is not a good
place to spend your time. This brings up what is perhaps the most important point regarding optimiza-
tion: there is always more that can be done, but many things that can be done often shouldn’t be.

When you think of optimizing code, there are a number of factors you need to consider beyond
simple performance tests. These factors include many of the things we’ve already discussed, such as
code readability, maintainability, organization, effectiveness, and reusability. Micro-optimizations like
CSS selectors can easily slip into doing more harm than good for your web site when such work is
taken out of the context of a sterile speed test. In other words, know what’s vital, know what’s trivial,
and measure whether a change of your code is “good” or not by factoring in all aspects of the change,
not just performance. Such optimizations are only “good” if the net benefit is positive—something
you need to decide for yourself.

Optimization techniques
In this section, we’ll look at a number of web site optimization techniques. Some of these are ways to
make your CSS more performant, and others are ways to use CSS to improve other potential optimiza-
tion bottlenecks.

There are a number of things that you can do to quickly and easily make the CSS you write speedier
in web browsers today. In any optimization effort, these are the things you want to tackle first because
they will give you the most reward for the least amount of effort. They are also good things to keep in
mind for new projects; if you write new code with these fruits already harvested, you’ll find optimiza-
tion concerns are further down the road.

When optimizing CSS code for performance, you have two main challenges. First is getting the CSS
to load in the browser as quickly as possible by reducing download times and style sheet size. Second
is ensuring that the CSS itself helps efficient rendering. The second concern is one that screen-based
media is especially susceptible to, as browser windows on the desktop are highly dynamic objects;
changing the size of the browser viewport causes something called a reflow and possibly also
a repaint. Reflows and repaints are costly from a performance standpoint because they require that
certain elements be rendered again.6 A reflow is triggered whenever the browser needs to reevaluate
the layout of an element,7 while a repaint is triggered whenever the browser needs to reevaluate the
visual appearance of an element (but not its layout).

When appraising CSS optimizations, consider which of these optimization goals you are working
toward. If you are trying to achieve faster download times, it is not unwise to be willing to rework
a block of code that renders quickly but is larger than it might otherwise need to be.

5. Steve wrote a very interesting blog post on the subject available at
s/.

6. Nicole Sullivan has a fantastic blog post discussing reflows and repaints specifically in the context of CSS at

w/.
7. Mozilla documentation about reflows is particularly explanatory, and can be found at

.

279

OPTIMIZING CSS FOR PERFORMANCE

Optimizing with CSS shorthand, selector groups, and inheritance
Perhaps the most obvious optimization technique is simply to write less CSS code. The CSS language
offers a number of ways to declare rules that are operationally equivalent but syntactically different.
Taking full advantage of these turns out to be a good thing not only for organizing your CSS in logical
chunks, but also for optimizing it since it also often results in physically shorter, and thus often also
simpler, style sheets.

The simplest example is the use of CSS shorthand, which can be used to define a number of distinct
properties using just one. The property is an excellent example of this, as it expands to 12
related properties: th, le, or, th,

le, or, and so on. Some graphical CSS editors will produce code
like this:

This is a dramatic situation, but many similar examples are prevalent in style sheets that haven’t been
optimized or have not been written by hand. In this case, the multiple repetitive declarations in the
previous declaration block can be shortened to simply one declaration using the shorthand
property:

CSS shorthand can be exceptionally useful for shortening style sheets, but it shouldn’t be thought of
solely as an optimization technique. Using CSS shorthand properties can sometimes be operationally
different than using the precise property. It’s also not the only tool in the drawer of its type.

Another common and very simple optimization is to eliminate repetitive declarations by combining
them into a single new block with a selector group. For example, many style sheets declare fonts
explicitly for many different portions of a web page along with other declarations, like this:

280

CHAPTER 10

We can collate all the declarations into a new single block, like this:

Like shorthand, this isn’t solely an optimization technique but it can be used that way. Organizationally
speaking, it groups related design choices by encoding them in a single place. Creating logical group-
ings in this way helps maintain organizational consistency because it reduces the number of different
edits required to make a single logical change.

A third best practice that keeps the size of CSS code down is making the most of inheritance. Given
the earlier example with font choices, we can presume that the majority of the web page is to be
typeset using Helvetica. In such a case, it makes more sense to allow inheritance to define the general
case because that results in a shorter style sheet:

Then, defining the exceptions adds negligible weight to your code:

Avoid universal selectors or lengthy descendant selectors
When crafting CSS selectors, use brevity whenever possible. However, don’t sacrifice precision in order
to do so, because being precise is just as important to the browser as being brief is.

Using the universal or “star” selector () can slow down some browsers’ performance. While the effect
may not be noticeable to all users, be mindful that such a selector will apply the same declarations
to every single element in your markup. The more markup you have, the longer it’ll take the CPU to
process all that information and style it. Ultimately, some or all of this effort may even be for naught
if other declarations override major portions of these styles later on. This is yet another reason why
taking advantage of inheritance for more generally applicable rules saves time both for you as the
developer and for the user.

A similar issue exists when using lengthy descendant selectors. For instance, a selector such as
 degrades performance and increases down-

load times unnecessarily if a simpler selector like would have sufficed. In situa-
tions where more precision is necessary—perhaps because there are many author elements on the
page as opposed to just one and so you’re using a class selector () instead of an ID selector
()—it’s still important to keep the selector brief. Use only the parts of the document hierarchy
that are relevant:

281

OPTIMIZING CSS FOR PERFORMANCE

Lengthy descendant selectors usually appear because each additional simple selector added to the
chain of simple selectors gives the rule more specificity in the cascade. To override the red text in
the previous example code, you might write a new rule such as

Although it’s not a common technique today primarily due to a lack of support by Internet Explorer
6, the child combinator () can also be used to keep descendant selectors short. Instead of adding
to the growing chain of simple selectors, consider replacing the descendant combinator with a child
combinator instead:

Using the child combinator not only reduces selector length, but also limits the scope of the selector’s
subjects, which reduces processing time. That is, rather than asking the browser to find all elements
descended from another element, you’re only asking the browser to find that element’s children, thus
avoiding the need to access or address quite as many elements.

Put CSS at the top
As we noted earlier, sometimes performance is as much about perception as it is about technical
measurement. One of the best ways to improve the perception of performance is to place your style
sheets early in the element of your HTML document. This enables browsers to display what-
ever content they get as early as possible, complete with visual styling.

Providing this quick, early visual feedback to a user effectively transforms the HTML page itself into
a load progress indicator. This also follows the principle of progressive enhancement by applying it to
how the page renders. Progressive rendering may not reduce the total render time of the entire page,
but it can significantly improve the user experience by creating a situation in which discrete chunks of
the page, such as the header and other content above the fold, are rendered earlier in comparison to
how they might have rendered otherwise.

Putting CSS at the top of your page also helps reduce the occurrence of a flash of unstyled content or,
worse, simply a blank white screen upon first page load. The former may appear if the HTML content of
your pages completes loading significantly ahead of the styles. The latter may appear if some part of the
page load causes the rendering thread in the browser to block, such as downloading scripts might.

Prefer <link> elements over @import rules
Using elements to reference style sheets almost always results in a faster page load time than
using statements will. This happens because CSS referenced using elements are more
reliably downloaded in parallel by web browsers today, whereas style sheets that are imported using

 are requested by the browser sequentially. Using requires an additional round-trip
to the server because the browser has to first fetch the CSS, then parse it and fetch the rest. Further,
Internet Explorer behaves undesirably when style sheets are included using and JavaScripts
are also present; it fetches the scripts before completing to fetch the style sheets, regardless of the
order or style sheet references are placed in the document’s .8

8. This is demonstrated in one of Steve Souders’ blog posts on the topic at
t/.

282

CHAPTER 10

Since rules can cause such performance headaches, a common solution to this is to merge all
imported style sheets into one file that gets delivered to the browser in one go. There are a number
of ways to do this, but in all cases, doing so dynamically allows you to remain architecturally modular
with CSS files without adversely affecting performance. Often, concatenating multiple CSS files can be
easily automated, so you might even consider merging every one of your style sheets, not just your
imported ones, as we discuss in the next section.

Compressing, combining, and minifying style sheets
Another way to optimize CSS is to compress it in a number of ways. The objective here is to reduce
a style sheet’s file size so that the user downloads the CSS as quickly as possible and so that the file
can be read by software quicker. Unfortunately, in this context the term compressing is ambiguous
because it can refer both to the raw CSS code as well as to the HTTP transfer that needs to occur. The
former is more precisely referred to as minimizing and the latter as “GZipping.”

CSS minimizers are like strainers that remove extraneous whitespace, comments, and other unneces-
sary data bytes (such as a trailing semicolon at the end of a declaration block from a style sheet file).
An automated build system is a great place for a CSS minimizer. Yahoo! created a minification tool
called YUI Compressor for this purpose.9 Using Compressor, you can quickly and easily minify your
CSS code one style sheet at a time, or you can use it as part of an automation pipeline that can create
a single, minimized CSS file out of any CSS files you give it. Here is a simple shell loop to do just that:

This loop first searches for all the files in the current directory that end in and sends the result-
ing list of file names through to the YUI Compressor. The output from the compressor is then con-
catenated into a single file—in this case, ss. Combining multiple style sheets is a further
optimization in the same vein. However, note that minification tools like the YUI Compressor don’t
actually parse CSS, so if you do combine all your style sheets into a single file you should strip out any

 declarations before you do the minification. Also, if the CSS files are scattered in multiple
directories and reference resources such as background images in relative paths, concatenation may
result in 404 errors. To work around this, simply use server-relative URIs to reference other resources
from your CSS code.

An array of other, similar minification tools exist as well. The CSS Formatter and Optimiser10

is a web-based tool that does for individual style sheets a lot of what the YUI Compressor does.
Minification of CSS code can turn readable code into an extreme eyesore. The good news is that just
as minification can be automated, so too can expansion.11

9. Actually, the YUI Compressor was originally created to minify JavaScript. However, recent versions do a great job
of minifying CSS as well.

10. The CSS Formatter and Optimiser also has options for organizing CSS code, such as sorting properties alphabeti-
cally within declaration blocks. You can find it at .

11. An online tool called Styleneat, accessible at , can un-minify CSS and return it to a read-
able state.

283

OPTIMIZING CSS FOR PERFORMANCE

Another area where you can get some transfer savings is in the case where CSS rules are targeted for
a particular media. Rather than using an entirely separate style sheet, you may consider using a
block. This is especially useful in situations where few other media CSS rules are needed, or on sites
where you expect the user to switch from one media to another often, such as in the case of cooking
blogs where recipes are very often printed. Since it’s just another CSS rule, the block itself can
also be minimized and concatenated with the rest of the style sheets.

However, for each addition to the CSS code itself, you require that these additional bytes be down-
loaded. At some point, you need to balance the size of a single file with how likely it is to be used. In
the case of alternate style sheets for a mobile version of a web site, you probably want to avoid using
a block or combining the mobile rules with the rest of the styles because only one set of rules
are likely to be used. This is why we recommend that you use the element and create multiple
style sheets to modularize the CSS itself.

By using HTTP compression—a capability built into both web servers and web browsers that uses
a compression algorithm such as GZip for transferring resources transparently—you can also mitigate
the amount of code users need to download. GZipping style sheets usually involves configuring the web
server you use to automatically compress CSS files on the fly, although you can also create server-side
scripts in languages such as PHP to do this for you if other options aren’t available. Since CSS is plain
text, it compresses in this fashion very effectively (typically anywhere from 60 percent to 80 percent),
although since well-written CSS is often very short, the optimization benefits of using HTTP compres-
sion on style sheets are not often pursued except by extremely large-scale installations.

For the Apache web server, two modules can be used to accomplish HTTP compression: mod_gzip12

and mod_deflate.13 Both modules function by examining the HTTP headers sent to the server by the
user agent. If these headers include the header and specify an encoding that the
server knows how to provide (most commonly,), then Apache will invoke one of these modules
to work its magic.

Both options require that the server be precompiled with the module’s presence. If it’s not, and you
have access to your own web server, you can compile the source code yourself as either a dynamic or
static module. Once available, setting up the module merely involves editing a few configuration lines.
For mod_gzip, here’s a sample configuration that will handle CSS files:

If you’re using mod_deflate, then here’s a simple minimum configuration you can use:

Another option for taking advantage of HTTP compression is using a server-side scripting language.14

These options are typically a bit messier because they require more code and create additional indirec-
tion. However, they may be more portable or even required in your particular hosting environment.

12. mod_gzip is an open source project hosted by SourceForge at p/.
13. Ample documentation on mod_deflate exists on the Apache web site at

.
14. Mike Papageorge maintains a fantastic overview of HTTP compression methods specifically for CSS on his blog

post at od.

284

CHAPTER 10

Avoid CSS expressions and filters
CSS expressions offer developers a way to dynamically script style rules within style sheets and are
a feature of Internet Explorer. As they are nonstandard, other browsers will ignore their declarations,
so they are usually harmless (although they will prevent your style sheet from validating). Sometimes
they are useful for working around limitations or bugs in Internet Explorer’s support for CSS. However,
they are a double-edged sword because they are also incredibly resource intensive.

Much of the time, it is better to avoid CSS expressions altogether. When you can’t, it’s important
to keep in mind that the expressions you write may get evaluated by Internet Explorer many more
times than expected. This is because every UI change, including moving the mouse around the page,
causes Internet Explorer to reevaluate the expression, eating up processor cycles. It’s far better to use
JavaScript as part of a script than to use a CSS expression in this case.

Filters create a similar situation. They are useful for providing interface enhancements such as opacity
in Internet Explorer, but block rendering and should ultimately simply be avoided in favor of gracefully
degrading fallbacks.

As Internet Explorer improves, another issue is that future versions offer support for both the stan-
dard and nonstandard methods of using CSS. In IE7, in particular, the alpha channel that provides PNG
images with a measure of opacity can be used much like it can in other browsers, making obsolete
some uses of its proprietary opacity filters. However, the filters are still there and so you may need to
find yourself using a CSS hack to hide the rule from IE7 and IE8 while still showing it to earlier
versions of the browser.

Reference external CSS instead of inline styles
To avoid reflows and repaints, you should write CSS for the resultant design and then reference it all at
once when changing dynamically, rather than adding it all at once. Encapsulating the design in a single
class name also brings you closer to “object-oriented” CSS.

Use absolute or fixed positioning on animated elements
Since absolute and fixed positioning create new document flows, CSS boxes positioned using those
schemes do not affect the layout of nearby elements. Animations, which often change layout dimen-
sions of elements, are guaranteed to cause both reflows and repaints, so isolating their effects within an
absolute or fixed position document flow limits the scope of the DOM to which the reflow applies.

Diagnostic tools for CSS performance
Performance optimizations require exact measurements and lots of testing. Optimizations like these are
much more of a science than an art. To effectively optimize CSS code, you need to measure the before
and after states of the changes you make. To this end, you’ll find it incredibly helpful to use some if not
all of the tools we’ll discuss in this section. Also, we recommend using a version control system to main-
tain multiple different versions of your code and compare the variations between them.15

15. If you’ve never used a version control system before, we recommend that you give a try. Its simple and offline
administration makes it ideally suited for front-end developers and web designers, since it requires no special
server or system administration skills to use. A good beginning tutorial is Git for Designers, available at

.

285

OPTIMIZING CSS FOR PERFORMANCE

The Firebug Net panel
Among the most useful tools for web developers is, of course, Firebug. This Firefox extension includes
a Net panel that draws waterfall speed graphs of how quickly resources are requested and down-
loaded by the browser. As you can see in Figure 10-1, the Firebug Net panel shows you the amount
of time each resource took to download in milliseconds as well as a waterfall chart of when it began.
This can let you see blocks and help you to parallelize the downloading of resources referenced on
your page.

Figure 10-1. The Firebug Net panel provides copious information relating to the downloading and rendering
time, parellelism, and other details of web pages.

286

CHAPTER 10

YSlow Firebug plug-in
YSlow (see Figure 10-2) is specifically a speed testing plug-in for Firebug. It uses Yahoo!’s front-end
engineering guidelines16 as a means to evaluate a page’s performance. It also shows you download
time estimates with both primed and empty caches.

 Figure 10-2. The YSlow plug-in for Firebug analyzes page performance across a number of facets and provides an
in-browser interface for viewing and printing the results of its tests.

16. Yahoo!’s front-end engineering guidelines are published on the Yahoo! Developer Network at
.

287

OPTIMIZING CSS FOR PERFORMANCE

WebKit Web Inspector network timeline
Safari 3 and later provides an option called Show the Develop Menu. Enabling this option also pro-
vides access to the WebKit Web Inspector, a window that exposes the HTML, CSS, and JavaScript
code behind a web page. One of the visible panes in the Web Inspector is the network timeline (see
Figure 10-3), which provides a waterfall chart of load times of all the resources on a page, broken
down by type (HTML page, images, style sheets, scripts, and so on).

 Figure 10-3. WebKit’s Web Inspector (available as part of the Safari web browser) offers a network timeline that
lets you examine all the resources from a page and view when and how quickly they were downloaded.

Reflow and repaint timers and visualizers
As reflows and repaints are so important to optimizing the efficiency of CSS, a number of timers
and visualizers have been created very recently that can help you measure the effects of changes to
your style sheets. As of this writing, some of these tools only function in the latest nightly builds of
browsers.

288

CHAPTER 10

One such tool is a cross-browser bookmarklet that times reflows on pages called Reflowr.17 Run inter-
actively as shown in Figure 10-4, this tool gives you a number of buttons that time changes in a par-
ticular area of rendering.

 Figure 10-4. Reflowr’s interactive mode gives you buttons to run its individual tests, times them, and then dis-
plays a result measured in milliseconds (ms).

Another similar tool is John Resig’s repaint tracker for Mozilla Firefox.18 It uses a new developer fea-
ture of Mozilla’s most recent Firefox 3.1 nightly build19 that allows JavaScript to detect paint events
triggered by the browser itself.

17. You can download the Reflowr bookmarklet from .
18. You can learn more about and download John Resig’s repaint tracker at

s/.
19. The Firefox nightly builds can be downloaded from

k/.

289

OPTIMIZING CSS FOR PERFORMANCE

Summary
Web site optimization is a big topic and optimizing CSS code is only one aspect of it. Nevertheless,
optimizing CSS code itself is an important aspect of implementing projects. Moreover, CSS techniques
can be useful in optimizing other areas of a web site’s performance because the capabilities that style
sheets offer often streamline the process of getting something done.

Optimized CSS code is fundamentally well-architected code. Do not try to optimize CSS that isn’t first
written in a logical, consistent, and well-organized manner. Doing the initial legwork of ensuring your
style sheets make sense is a prerequisite to creating highly optimized style sheets, and techniques such
as CSS shorthand properties, selector groups, and inheritance are all built-in features of the language
that provide both power and eloquence—the goals of optimization in the first place.

Next, be certain to target as much low-hanging fruit as you can, because these easy-to-do things will
net you the majority of the performance gains that will result from your efforts. They include things
like simply putting CSS code near the top of the element, using elements over
statements when possible, and avoiding CSS expressions and filters.

With Ajax becoming an ever more commonplace occurrence, CSS is also being used dynamically after
the initial page load. This brings new optimization challenges because reflows and repaints become an
increasing concern, which can be costly in terms of CPU cycles with complicated page layouts. Some
ways to mitigate the effects of reflows is to position elements that will be animated in their own docu-
ment flow using or positioning. Similarly, repaints should be handled in an all-at-once
fashion by encapsulating the desired visual result with CSS that is already written in an external style
sheet and switching a class name once, rather than writing out individual CSS rule changes one at
a time in your JavaScript.

There are also a number of tools, some still very new as of this writing, that are available to you to
measure CSS performance. They include tools for measuring download speed as well as reflow and
repaint events. These are areas where CSS is still developing quickly and in which we expect advance-
ments from CSS3 will begin to play a major role. As we’ll see in the next chapter, capabilities like
animations and simple transformations, once the sole domain of JavaScript or SVG, are now being
integrated directly into CSS, and some browsers, notably Apple’s Safari, show promise of making such
effects hardware accelerated for even faster performance.

We have come far from the early, heady days of CSS 1.0 and the initial implementations
scattered about in browsers that attempted to support it. With the completion of CSS2.1
support in Internet Explorer 8, the major browsers now feature solid support for this ver-
sion of Cascading Style Sheets.

That is so 2009. Browsers are already experimenting with implementing features of the
emerging version of the specification, CSS3. Now let us look to the future of CSS and
take a peek at what’s in store in the coming months and years.

THE FUTURE OF CSS

Part 4

293

Chapter 11

Because of the scope and complexity of the CSS3 efforts, the specification has been
organized into multiple modules. Previous editions of the CSS specification were
written as single entities, but with so much more being added to CSS3 it made sense
to bring certain sections of the spec online as modules. That way, a spec could be
developed, ratified, and implemented more quickly than if everything had to be in
place in a single document. These modules are organized into specific topics such as
color, media queries, paged media, text, and multicolumn layout.

Additionally, the W3C categorizes CSS projects according to priority: high, medium,
or low. As of this writing, there are four publications classified as “high priority,”
27 classified as “medium priority,” and 19 classified as “low priority.” See

 for the latest list of publications.

In this chapter, we will focus on CSS3 modules that have made solid progress in their
publication development and have had experimental features implemented or sched-
uled to be implemented in at least one of the major web browsers. For the purposes
of this discussion, we consider “major” web browsers to be using one of the four
most widely used rendering engines: Trident-based browsers such as Internet Explorer,
Gecko-based browsers such as Firefox, WebKit-based browsers such as Safari, and
Presto-based browsers such as Opera.

EXPLORING THE EMERGENCE OF CSS3

294

CHAPTER 11

When will it be done?
The list of CSS3 modules is a moving target. The modules are continually in flux and more modules are
being added all the time. Just during the writing of this very chapter, four new modules were added
(as of March 20, 2009): CSS 2D Transforms Module ms),
CSS 3D Transforms Module ms), CSS Transitions Module
Level 3 ns), and CSS Animations Module Level 3

ns).

With that said, each module can have various levels of completion. Some may be classified as “can-
didate recommendations,” others as “working drafts,” and so on. The final status is called “recom-
mendation,” but in practical terms many of these features in the precursory drafts may already be
implemented in several browsers, while other components that make it all the way to final status may
be ignored by most or all of the browser market indefinitely.

Using CSS3 today
We have already touched on several CSS3 features throughout this book and illustrated where they
might be effective. For instance, in Chapter 4 we mentioned how CSS3 is set to transform everyday web
pages into a powerful print platform using . When we discussed mobile web design, we looked at
media queries for more fine-grained targeting of user agent environmental conditions, and took a stab
at working with box positioning features that haven’t even made it into the emerging specs yet.

Using vendor extensions and “beta” features
The convention with vendor extensions and features that aren’t fully baked yet is to include a dash at
the beginning of the rule. This dash immediately identifies rules that will be outside of the specifica-
tions, and will likely only work in one browser. Be prepared to write multiple lines for the same thing.
This is not necessarily a bad thing—it’s experimental territory and browser vendors will have different
ideas on how to implement a feature that is still in flux in the specification.

Browser support
This is an interesting time in the browser market. New advanced features are being added to brows-
ers all the time, and especially interesting for our purposes, that includes features borrowed from
the emerging CSS3 specification. After years of just trying to get to where we felt safe writing CSS2.1,
along come all these shiny new CSS3 toys that we can actually play with. What’s an easily distracted
web developer to do? That’s right—play along, experiment, and see what works.

Many of the new CSS3 features have already made their way into today’s web browsers. The fun thing
with all of this is that if something doesn’t work, your site likely won’t collapse in on itself. If a browser
doesn’t recognize a feature and you’ve architected your CSS accordingly, the site should still work.
Write your code to the principles of progressive enhancement and watch the cool kids flock to your
site with their shiny new browsers to see it in action!

294

295

EXPLORING THE EMERGENCE OF CSS3

Opera (Presto)
Opera is often the first to adopt many of the CSS3 specifications and can be a great place to start
experimenting with new CSS features. Opera is also the most widely deployed browser on mobile
handsets and can be useful when designing for modern mobile devices. The Opera browser is built on
Opera’s own Presto rendering engine, which also drives output for Nintendo’s DS and Wii browsers
and a few other specialized mobile browsers.

The bleeding-edge version of the Opera browser as of this writing is beta version 10, and this should
be at general release by the time you read this. Opera 10 includes numerous improvements to CSS3,
including string support for CSS3 selectors and most new declarations, but no support yet for certain
declarations such as transitions, transformations, and animations, us, or ow.

Safari (WebKit)
WebKit is the rendering engine behind Apple’s Safari browser, and is used as the rendering engine for
many other third-party web browsers such as OmniWeb and Google Chrome. Many mobile platforms
such as Google’s Android, Nokia’s S60, and of course the iPhone OS base their default web browsers
on WebKit. WebKit is often on the cutting edge for supporting CSS3 features, and what is especially
compelling about this platform is the large number of iPhone OS mobile users who can use these fea-
tures right away. (Whereas Opera is the most widely deployed browser on mobile, WebKit is the most
widely used.) When designing mobile sites, pay attention to this platform.

As of this writing, Safari 4.0 is the latest release. Safari 4 and current versions of WebKit include excel-
lent support for CSS3 selectors and declarations. WebKit is the only platform so far to have imple-
mented CSS3 transitions, transformations, and animations.

Firefox (Gecko)
Firefox and other up-to-date Gecko-based browsers have strong support for emerging CSS3 features.
And since Firefox is the second most widely used web browser platform after Internet Explorer, this
makes a good initial platform target for incorporating those new CSS3 features that you’d like to give
some attention to.

Firefox 3.5 is currently in beta and should be generally available by the time you read this. Firefox
and other browsers that use the latest versions of Gecko have strong support for CSS3 selectors and
declarations.

Internet Explorer (Trident)
Internet Explorer 7 greatly improves support for the CSS specs over its predecessors, but where you
really want to pay attention is IE8 and beyond. IE8 does make great strides toward better support for
CSS and has begun implementation of a few CSS3 features that you can use today.

Unfortunately, while the Internet Explorer browser still leads in terms of market share, it has had the
least support for the CSS3 features as of this writing. The goal of IE8 was to complete CSS2.1 support.
However, there are a couple of CSS3 features such as substring matching selectors that have made
their way in to the IE browser platform, and for some of the other features there are workarounds.

295

296

CHAPTER 11

Using new CSS3 features
Now that we’ve illustrated what you might be able to expect from browsers, let’s look at some of the
new features of CSS3 in practice. The principle for using any of these techniques is to understand that
it is probable that not all browsers will have implemented the given technique you wish to use, and
that these should be used for progressive enhancement and not for mission-critical design elements
until the browser market has for the most part universally implemented these features.

CSS3 color units and opacity
CSS3 adds several new ways to write color values. You can now write color values using HSL values
(similar to HSB for you Photoshop buffs) and add the idea of transparency via a new prop-
erty. Opacity can be further incorporated as alpha values in the HSLA and RGBA color declaration
constructs.

HSL is composed of three values: hue, saturation, and lightness. If you can imagine a color circle, the
hue value represents a degree on that circle—a value between 0 and 360. The specification defines
0 and 360 (which would be the same position on a circle) as equal to the color red. Saturation is
a percentage, with indicating full color and indicating gray. Lightness is also represented as
a percentage, with the normal value (consider this your default for most cases), fully washed
out to white, and completely black. To illustrate, a few examples are in order. The following code
demonstrates how some of these values would look in code, and Figure 11-1 shows what you can
expect when the code is rendered in a supporting browser:

297

EXPLORING THE EMERGENCE OF CSS3

Figure 11-1. Boxes using HSL color values

Try experimenting with your own HSL color values without relying on an editor and see if you can get
the hang of it. Try making a deep purple, a pale violet, or a nice shade of ocher. Many believe that the
HSL scheme is easier to work with because you have more intuitive control over the hue in one value
rather than having to mix three separate values. Also, you can control those saturation and lightness
values directly, which can be simpler to visualize than getting the balance right when mixing three
buckets of paint.

 is a stand-alone property for enabling some transparency when coloring an element. To get
some use out of , it helps to have text or an image underneath to illustrate the effect.
may have a value from to , where is fully opaque (think 100 percent) and is fully transparent.
A value of would mean 50 percent transparent. To illustrate this, let’s add the property
to our elements in the previous example. But simply changing the opacity of an element on
a white background isn’t going to give us the full picture here—visually all we’ll see is faded pastel ver-
sions of our original color bars. To show how the opacity change lets background items appear, we’ll
throw in a background image on the element, the output of which is shown in Figure 11-2:

298

CHAPTER 11

Figure 11-2. Transparency allows objects beneath to show through.

Internet Explorer browsers prior to version 8 in strict mode do not support the property,
but there is a workaround. Use alongside our declaration
to get the same effect in IE6 and IE7. IE8 still doesn’t support the property, and has replaced
their old proprietary filter with a new one:

. Think of the filter values for Internet Explorer as percentages, where 70 = 70
percent or 0.7, 40 = 40 percent or 0.4, 100 = 100 percent or 1, and so on.

 can further be incorporated into HSL and RGB color properties by adding a fourth value,
, to the rule. The y-supporting versions of HSL and RGB are known as HSLA and RGBA,

respectively. works in exactly the same way as the property, where is opaque and is
transparent, and levels in between will show transparency accordingly. Here is CSS code for the same
example illustrated in Figure 11-2, but with alternating HSLA and RGB values instead:

299

EXPLORING THE EMERGENCE OF CSS3

General sibling combinators
The General Sibling Combinator (GSC) is a mouthful of a name, but it does have some simple yet
powerful functionality. The GSC performs the function of selecting a specified element that is at the
same node level after another specified element appears in the order of your markup. The following
example and Figure 11-3 will help clarify:

300

CHAPTER 11

Figure 11-3. Using the GSC to differentiate between content after the first-level
heading and after the second-level heading

In this example, the markup contains a first-level heading followed by two paragraphs, and then
a second-level heading followed by two paragraphs. Finally, there is a paragraph contained within
a , nested at a nonadjacent level from the other paragraph elements in this document.

For the styling, we’ve created two GSCs: one for general siblings of the element, and one for
the general siblings of the element. For the siblings, we have set the font weight to bold.
For the siblings we have set the font style to italic, and in addition to that we have set the font
weight back to normal. We just wanted italics—not bold italics—so we had to reset this property. This
property is reset to normal because the property still would apply for the rest of the
document, as long as a paragraph element were at the same hierarchical level in the node tree as
the elements, including any elements occurring after the .

The great thing about using the GSC is that all of the major browsers now support it, including IE7 and
higher. If you can live without IE6 support, this is a CSS3 feature you may start implementing in your
web page designs right away.

301

EXPLORING THE EMERGENCE OF CSS3

CSS3 attribute matching selectors
Attribute matching selectors are a useful method for pinpointing specific elements based on their
attribute values, and CSS3 lets you take things a step further by allowing you to match substrings of
attribute values. You can match the beginning, end, or any substring within. The following is a list of
the new CSS3 attribute selectors (where “E” is an HTML or XML element or equivalent selector):

: Selects any attribute beginning with the string “bass”. Given a list of
standard orchestral instruments, “bassoon”, “bass clarinet”, “basset_clarinet”, “basset_horn”,
and “bass_drum” would be matches. Other instruments containing the string “bass”, such as
“contrabassoon” and “double_bass”, would be omitted.

: Selects any attribute ending with the string “bass”. Going back to our
list of orchestral instruments, “double_bass” would be a match and the rest would be
skipped.

: Selects any attribute beginning with the string “bass”. This time the
entire list of instruments from the first example containing the string “bass” would be
matches.

CSS3 pseudo-classes
CSS3 adds a lot of new pseudo-classes. These pseudo-classes were designed to further target the
nodes of an XML or HTML document tree with increased flexibility and precision. The names assigned
to these pseudo-selectors are more or less intuitive as to what the function is that they represent, so
they shouldn’t be too hard to learn, understand, and begin implementing in your own code.

CSS3 pseudo-classes have been implemented in major web browsers as of Safari 3.1, Firefox 3.5, IE8 in
standards mode, and even partial support in IE7 if you don’t need generated content. They are usable
today in your own designs.

E:root
selects the root element of a document. In your typical HTML cases, this will be the

element. For XML documents, this would be the outermost element node. In HTML contexts, this
pseudo-selector is nearly useless since you can be certain that is going to be the root. But in
XML it can be valuable for web developers to be able to select the root element with no prior knowl-
edge of the markup structure’s actual root element name.

E:nth-child(n)
 selects the “nth” child of the given element’s parent. The part is an expression

with a prototype of , in which the part defines the frequency of any repeating that may occur,
and the part is a modifier that indicates on which order of the nodes the counting begins. The
part or the part may each exist on their own, and the operator in between the two may be a plus
or minus symbol. The keywords and may be used as well.

302

CHAPTER 11

Got all that? Neither do we—but the premise is quite simple if you visualize it. Let’s look at some
examples and things will become clearer in the following code example and in Figure 11-4:

303

EXPLORING THE EMERGENCE OF CSS3

Figure 11-4. Various methods of using nth child pseudo-selectors

In this example, the first three nth-child declarations set three alternating background colors for
the elements. The first nth-child declaration is passed a value of 1), which
might be read in English as “select every third sibling paragraph, starting with the first one.” The next
one, 2), selects every third paragraph element starting with the second one, and

 does the same starting with the third one. The result is alternating background col-
ors. The same treatment might be applied to conveniently create zebra-striped table rows, for instance.

The next selector, 7), targets the seventh sibling paragraph. In this case, we are highlight-
ing the node with the string “Banjo” in the content (although why anyone would want to highlight
the banjo is beyond us). If the value of the argument is absent, the component is used to select
a node.

After that, the is next, and this selector illustrates the ability to use a key-
word instead of a set of numeric values as the argument. In this case, we set the text color for all
even-numbered nodes to white. An equivalent way to represent in our code would be ,
while is equivalent to . Finally, the selector is used to set every fifth
sibling in italics.

All this should illustrate the pattern. To recap, sets the repeating property, while modifies
where the repeats start or selects a single node. We will use this construct again in the next three
pseudo-selectors, so it is important to understand how this pattern works.

The pseudo-selector works just like the previous example in reverse, count-
ing back from the last child. To illustrate this, try replacing every instance of nth-child in the previous
example with nth-last-child and observe what happens:

304

CHAPTER 11

The elements become colorized in an order that begins from the last element (“Sitar”), the seventh
element from the last node containing the word “Mandolin” is highlighted in red, the selection of
even elements to be colored white begins from the last node, and the fifth and tenth nodes contain-
ing the strings “Theorbo” and “Viola” are italicized, as shown in Figure 11-5.

Figure 11-5. Demonstrating how :nth-last-child selects elements starting from the last node

E:nth-of-type(n)
This pseudo-selector works similar to ld, but only selects elements that are of the same type.
This can be particularly useful if you have images in a storyline and want to alternate floats left or
right, which is a common algorithm used when embedding multiple images in a story. Again, the fol-
lowing example will help clarify, which is illustrated in Figure 11-6:

305

EXPLORING THE EMERGENCE OF CSS3

306

CHAPTER 11

Figure 11-6. Demonstrating nth-of-type to float images in a story alternating from right to left

E:nth-last-of-type(n)
This pseudo-selector works like but counting from the last sibling instead of the
first. Using the previous XHTML example, try using this CSS instead:

307

EXPLORING THE EMERGENCE OF CSS3

These changes are reflected in Figure 11-7.

Figure 11-7. Showing :nth-last-of-type being used to target the last two image elements in the document

The rule selecting will select the second element from the last
one, floating the image to the left. The selects the last element.
Try changing the values here to see how things move about. This construct would be very useful for
conclusions, special treatment of lists, and so on where the ending needs some special emphasis or
style treatment.

E:last-child
This is the same as writing and is the corresponding pseudo-selector to
CSS2.1’s ld. It selects the last child of the element in question. To illustrate this, add italics
to the last paragraph of the preceding example:

308

CHAPTER 11

Now, the last paragraph will appear italicized, as shown in Figure 11-8.

Figure 11-8. The last paragraph of the previous code example now has itali-
cized text using the :last-child pseudo-selector.

E:first-of-type
This selector is a pseudonym for 1), and selects the first child of the indicated ele-
ment. Again using the previous HTML example, modify the CSS as shown:

This should result in a rendering similar to Figure 11-9.

309

EXPLORING THE EMERGENCE OF CSS3

Figure 11-9. Using p:first-of-type to select the first paragraph and convert
it to italics

E:last-of-type
The pseudo-selector targets the last sibling of the indicated element’s parent. The
following code will select the last element in the document and float it to the right, which is
illustrated in Figure 11-10:

310

CHAPTER 11

Figure 11-10. Using :last-of-type to float the last image in another direction

E:only-child
The pseudo-selector will target the indicated sibling elements when there is only one
child element and there are no more element children:

311

EXPLORING THE EMERGENCE OF CSS3

There is only one element under the hierarchy, so that is what will be
selected, which in this case emphasizes the word “Piano,” as shown in Figure 11-11.

Figure 11-11. Using the :only-child pseudo-selector to target the
only child of the <div id="keyboards"> element

E:only-of-type
The will select children of the parent element where there is only one of the given
element type:

312

CHAPTER 11

In this case, the words “Double Bass” are wrapped by a instead of a , so they become the
only element of their type within the sibling group, as shown in Figure 11-12.

Figure 11-12. Highlighting the unique element within a node
using :only-of-type

E:empty
 selects an empty node, where there are no child elements or even text content. This example

selects any empty paragraph elements and instructs the browser to show them as red boxes (as shown
in Figure 11-13), perhaps for the purpose of cleaning up any extraneous markup:

313

EXPLORING THE EMERGENCE OF CSS3

Figure 11-13. Using :empty to highlight elements with no content

E:target
The pseudo-class will select the target of referring URIs. This is especially useful to modify ID
elements on a given page after clicking on a link:

314

CHAPTER 11

Figure 11-14 illustrates what the user would see when the Strings link is clicked.

Figure 11-14. The string section is highlighted after clicking the
Strings link, thanks to the :target pseudo-selector.

E:enabled, E:disabled, and E:checked
The , , and pseudo-elements are used for form input elements such
as text fields, radio buttons, and any other form element that supports the property. As we
will see from the example, certain elements are not very conducive to styling in CSS using the current
array of modern browsers, and are often best left alone. This is especially true of browsers that use

315

EXPLORING THE EMERGENCE OF CSS3

native form elements such as the Mac OS X Aqua themed check box of browsers such as Safari. Here
to compensate we’ve implemented a property to illustrate support of the element in
Safari and other browsers that use Aqua for the check box and radio button elements:

316

CHAPTER 11

These form element treatments are illustrated in Figure 11-15.

Figure 11-15. Demonstrating the
:enabled, :disabled, and :checked
pseudo-selectors in a form

317

EXPLORING THE EMERGENCE OF CSS3

Remember to keep accessibility in mind when modifying the display of form elements. If you change
the selection color to a combination with low contrast to the nonselected text, it may be harder for
some users to see the edges of their selection.

E::selection
The pseudo-selector actively targets the text being selected, allowing the web author to
specify things like background colors and font colors for the selection:

Using the mouse to select some text in the paragraph will result in output similar to Figure 11-16.

Figure 11-16. Using ::selection to modify the text color and
background color of selected text

318

CHAPTER 11

E:not(s)
selects all elements except the one specified in the argument. This example, which is illus-

trated in Figure 11-17, selects all s that are not using to be italicized:

Figure 11-17. Using :not to exclude the keyboards <div> from
being italicized

319

EXPLORING THE EMERGENCE OF CSS3

Typographic effects and web fonts
CSS3 includes three modules for dealing with text-related styling. The first one, which will be the most
familiar, is the CSS Fonts module s/). This module includes, for the
most part, the familiar text-oriented CSS properties that you are already familiar with by now, such
as and ly. CSS Text t/) again should be mostly
familiar to you; this module deals with text-based attributes such as alignment, word wrapping, justi-
fication, letter spacing, and so on. CSS Web Fonts s/), on the
other hand, is for the most part completely new, and designed to cover a new set of functionalities
around the concept of being able to download more specialized fonts that might not necessarily exist
on the client. This frees us from the constraints of having to guess an array of possible acceptable
typefaces using the declaration. Let’s look at some of the more interesting typographic
features of CSS3: the new word wrap and text shadow properties, and the web fonts module.

Word wrap
In the normal text flow of an HTML block, words will invariably run up against the edge of the box that
contains them. At that point, the text has to do something—it gets clipped off, it flows past the box,
or it wraps to the next line. The property aims to tackle some of these issues by governing
how a long word gets broken, or not, when it is displayed within a box that is too narrow to contain all
of the characters on one line. As we see in the following example, will cause
long words to wrap within their containing element (where the default is to not break and have the
word extend past the box). This is illustrated in the following code example and in Figure 11-18:

320

CHAPTER 11

Figure 11-18. A list styled with word-wrap:break-word, fol-
lowed by a list styled with word-wrap:normal as rendered in
Firefox 3.5

In most Western scripts, hyphens are needed to properly break a word as is done in the first example.
However, this construct might be particularly useful in the context of handling the breaking or preser-
vation of long strings such as URLs or code examples where the hyphen is not typically used.

Text shadow
A number of cool and interesting effects may be applied to text using the property. This
property can take four values: a color value and three dimensional values. The dimensional values are,
in order, an X offset coordinate, a Y offset coordinate, and a blur radius. Sets of these shadow values
may be concatenated together to apply multiple shadows to the same element, which can create
some interesting effects, such as the ones that appear in Figure 11-19:

321

EXPLORING THE EMERGENCE OF CSS3

Figure 11-19. Using text-shadow on quotations in Safari 4

Here’s an exercise to try making your own text-shadow effects: make it so that three instances of the
text appear that are progressively each 5 pixels higher in their , values; 1 pixel higher in the blur
radius values; and 25 percent lighter in their color values. Using HSL color values might be particularly
useful for this need.

322

CHAPTER 11

Web fonts
The CSS3 Web Fonts module is often touted as the way that web authors can finally specify font
varieties that venture beyond the usual Verdana/Arial/Courier/Helvetica/Georgia/Times suspects, and
this is indeed the most widely anticipated feature. But there is a bit more to the web fonts module.
It includes descriptions about how to match a font (based on properties such as the x-height, serif
treatment, slant, and so on). It also includes a mechanism to generate fonts on the fly based on the
appearance and metrics of the requested font.

Before we go any further, we should mention a bit of history here: web fonts are not new to the
CSS3 spec. They were first proposed in CSS2, and have had varying degrees of support in some older
browsers. But today, with a reinvigorated CSS3 module and shiny new web browsers that support this
feature, it is now possible to use web fonts in a more or less interesting and reliable way. And hey, if
the browser doesn’t support your specified downloadable font choice, give them something nice to
look at in the anyway.

Web fonts are initiated by the at-rule. The rules set up a definition within
a style sheet for the name of a font, which can be used elsewhere in the style sheet as part of
a or shorthand rule. Such a rule might look like the following:

This in turn makes it possible for us to write “BiauKai” as part of another or font short-
hand rule later in the style sheet:

What happens behind the scenes here isn’t just a simple routine of looking on the client to see if the
BiauKai font exists. In this case the user agent should go one step further and download the font from
the URL indicated in the property within the rule, but only in cases where the speci-
fied font does not exist already on the client.

It is important to note right up front that most fonts are intellectual property under some form of
copyright and should be treated as such. Do not assume you can freely and legally distribute any old
font on your system as uploaded to a web server. Be sure to check the license carefully first. Public
domain fonts or licenses where distribution via embedded web fonts is explicitly granted are the way
to go. The Open Font Library () is one of many sites that caters to just
this need.

Using our previous markup example with the music quotes, let’s try out applying a web font to the
style sheet and see how that looks in Figure 11-20:

323

EXPLORING THE EMERGENCE OF CSS3

Figure 11-20. Using @font-face to import a specific font into the quota-
tions page, as shown in Safari 4

Here we’ve defined a font called “Ink Calligraphy” in the rule, linked it to a local source
file, and called it on the rule. How cool is that? Try finding some of your own fonts with open
licensing and experiment with this technique in your own pages.

Border and background effects
Box borders and backgrounds are fundamental concepts behind web page layout. We discuss box
properties in terms of padding, margin, and content as well as boxes and borders, but it is the borders
and backgrounds that we see as visual manifestations of the box itself. CSS3 includes several features
to ease and improve our ability to manipulate background and border properties.

324

CHAPTER 11

Rounded corners
Ninety-degree angles abound in the older generations of the Web. And then it became cool to break
that cycle and design using rounded corners. But before browsers supported anything remotely
resembling a rounded-corner CSS rule, web authors were forced to achieve this technique through
contrived hacking of inserting up to four correctly shaped images into the corner of the box in ques-
tion. This was no small feat since browsers and the CSS spec also lacked the ability to display more
than one background image at a time! Clearly there should be an easier way.

And so there is: using us, web authors can bend the borders of their box elements to
their will. As of this writing, all implementations of it (Mozilla, WebKit) use vendor extensions. Let’s
use those for now with the expectation that this will be sorted out sometime in the next decade, again
building on our previous markup example and just modifying the style sheet:

325

EXPLORING THE EMERGENCE OF CSS3

Figure 11-21 shows how these borders will now appear in a supporting browser.

Figure 11-21. Rounded corners in our music
quotes example

The things to pay attention to here in this example are the us, us,
and of course declarations. The two vendor-specific properties are required at this
point since the specification isn’t fully baked as of this writing, and the rule is included
with the expectation that this will be in the final specification.

Individual corners may be further targeted by using specific properties. This is where the browser
vendors begin to really show their differences. Try modifying the following code on the above
rule as shown:

326

CHAPTER 11

Now observe in Figure 11-22 how this changes the appearance of the quotation borders.

Figure 11-22. Targeting specific corners using
border-radius

Be sure to check the latest version of the specification and the current state of web browsers as things
unfold in the future. The details of this one in particular are sure to change.

Box shadow
The property declarations are constructed in a similar way as the properties
we saw earlier, using values for et, et, blur radius, and color. This can make for a nice
drop shadow effect on boxes such as images and pull-quote boxes. Again using the markup and style
sheet from the previous example, set the back to use a 20-pixel border radius on all the corners
and set a drop shadow using the highlighted code:

Figure 11-23 shows how these box shadows should appear.

327

EXPLORING THE EMERGENCE OF CSS3

Figure 11-23. Using box-shadow on the musical
quotes example

Multiple backgrounds
It has long been a desire of CSS developers to have the ability to place more than one background
image on an element. Enter multiple backgrounds and background resizing. The capability prior
to these features was limited to a single background image and the ability to position it vertically
and horizontally, and the option to tile the images (or not). This resulted in some creative solu-
tions to achieve complete coverage of a designer’s goals, but they often involved extra markup or
larger-than-necessary images.

For achieving multiple backgrounds in CSS3, the developer simply separates the standard background
shorthand value sets with commas. Try modifying the previous example by inserting the highlighted
code into the rule:

328

CHAPTER 11

This will result in having quote mark graphics in the upper-left and lower-right corners of the
elements, as shown in Figure 11-24.

Figure 11-24. Quote marks using multiple background images

Background image resizing
The other side of this background image coin is the ability to resize a background image. In olden
times, developers were stuck with the native pixel resolution of an image for display as a background
image in a given element. But with the ability to resize this image using the property,
you may now let an image fill the space of a given , or resize it to any number of ways depending
on your design requirements.

The property can accept percentage values, length units (such as or), and the
keywords , , and . The property works to automatically resize if, say, the width
was set to while preserving the aspect ratio of the image. The keyword scales an image
proportionally to fit inside an element, while the keyword proportionally scales an element to
completely cover the element.

In addition to the property, developers may use the property
to specify which box the background image is being positioned against using the value ox,

ox, or ox.

Animations, transitions, and transforms
We saw a few of these cutting-edge features when we were looking at styling for mobile Safari brows-
ers on devices such as the iPhone earlier in this book. These visual effect features were introduced as
proposed recommendations to the CSS3 specification in March 2009, and pose some really interest-
ing and easily implemented alternatives compared to prior methods such as JavaScript or Flash. Let’s
touch on some of these new features, keeping in mind that these are proposals and may change over
time.

329

EXPLORING THE EMERGENCE OF CSS3

Transitions
Transitions allow CSS properties to change from one value to another over a period of time. The
two key properties introduced to enable transitions are (used to define which
property is affected), (used to set the duration of the transition effect), and

 (used to set how the timing will accelerate, decelerate, or otherwise change during
the transition effect). These can be combined in a shorthand property called .

Try using the previous example and modifying the CSS as shown. This will create the effect of hav-
ing each element slowly disappear when you move the mouse over it. Currently Safari and
other browsers using current versions of WebKit are the only ones that will support this, using the

 prefix:

Now test it in Safari 4. Each should fade gradually as you move the mouse in front of it. If desired,
you might choose to write the previous transition statements using a single line of shorthand:

Transforms
Transforms allow you to perform things like size, rotation, and positioning changes. There is a 2D ver-
sion of the Transforms module, and another for 3D.

A 2D transform might be written like this (using the prefix if you would like to try this in
Safari):

330

CHAPTER 11

This transform takes an image and offsets it using the function 20 pixels to the right and
80 pixels down, uses the function to increase the size by 2.5 times the native size, and rotates
it clockwise 20 degrees with the function. This is a simple way to add much more capability
to your page layout using one simple property. Arguably the and functions could
be achieved by manipulation of other CSS properties such as with typical CSS positioning techniques
and the and properties. But does add a new and powerful feature, and it is very
convenient to keep all of them in one concise and well-organized construction.

Animation
Animation in CSS introduces the concept of keyframes. If you’ve done any animation work in, say,
Adobe Flash, then the concept of keyframes will be familiar to you. Animation is in fact similar to tran-
sitions, but they differ in that the animation effects are more specific about when and where things
happen and allow for greater flexibility and precise timing, while transitions pretty much just get you
from one state to the next. Animation has not yet been implemented in WebKit, but you can read
the specification at and keep an eye on some of the sites
mentioned in the chapter summary to find out when this might become available for tinkering.

Summary
In this chapter we looked at the emerging features of CSS3 and explored ways to experiment and
incorporate these tools into your own code. Many of the features discussed in this chapter are still
evolving, but they are quickly making their way into browsers in one form or another and are becom-
ing available for you to try out. We suggest you take advantage of them whenever you can—perhaps
to provide a little extra polish for your advanced browser users if you don’t have to worry too much
about legacy browser support.

Keep on top of the developments in CSS3 as they unfold by reading web sites that discuss such issues.
Great places to look for this information include (but are by no means limited to)

IEBlog:

Surfin’ Safari:

Opera Desktop Team:

The Mozilla Blog:

A List Apart:

CSS3.info:

W3C CSS home page:

When you write emerging CSS3 features that rely on vendor extensions into your production code and
release style sheets into the wild, it may be a good idea to give your best guess as to what the final
declaration might be and include that in your code as well. On the chance that it does become more
widely accepted, your designs will continue to work as new browsers adopt the feature.

333

Chapter 12

Throughout this book, you’ve been shown advanced concepts, up to the cutting edge
of CSS development. You are now well equipped with tools that you’ll be using for
years to come. But what will you build? How can you keep innovating? What other
sources might you look toward to find inspiration? In this chapter, we invite you to
imagine the future with us. From here on out, the Web is going to be whatever you
make it.

There is a remarkable amount of room in which to grow and develop new techniques
and technologies today and in the years to come. Remember that, in historical terms,
the Web is an exceptionally young medium. As of this writing, if you consider that Tim
Berners-Lee launched the World Wide Web by publishing his summary of the funda-
mental technologies to the newsgroup on August 6, 1991, the Web is
just over 17 years old. Television by comparison has been around for 80 years; the tele-
phone for over 130 years; the telegraph, since the early 1800s; and the printing press
emerged around the year 1450.

Considering these media, the Web is still in its infancy. Imagine where we’ll be ten
years from now, or even in a hundred years. In this chapter, as a way to tie up some
of the ideas we have learned in this book, we will briefly explore some of the things
that you might come to expect from CSS and the web development platform in the
future, and we ask you, the reader, to consider some of the questions posed here
and to think about where all this might be going next.

THE FUTURE OF CSS AND THE WEB

334

CHAPTER 12

The bright future of the Web
Even as you read this book, the CSS specifications are evolving. Whether or not you realize it, everyone
who works with these technologies plays a role in the development of the Web. Regardless of whether
you are writing specifications, implementing technologies in a browser, or using emerging CSS tech-
niques in your own web designs—as you should now be now well equipped to do after studying the
subjects within this book—you are blazing trails for things that will be used decades from now.

If you wish to make history, then make history by doing: push that envelope. We encourage you to see
what is possible, or at least what you can get away with during your daily grind. As you work, look for
opportunities to sprinkle CSS enhancements for modern browsers in your projects in spite of a lack of
support from older browsers (, , , and any of the standard properties
implemented only as with vendor-specific prefixes are great examples); this is how you push the Web
forward.

Expanding CSS in print
Although CSS currently predominates on computer screens of various shapes and sizes, print is still
the most widely deployed medium for human communication. Despite the predominance of gadgetry
that replaces print—such as the Amazon Kindle, smartphones with screens large enough to keep you
from going blind, and of course the “good old-fashioned computer screen”—print will be around
for some time to come. Print has some advantages compared to electronic media: it doesn’t require
electricity, it is comfortable to read, and it can be constructed with physical dimensions such as die
cutting, natural handmade paper, pop-ups, and other specialized ornamentation that transcend the
two-dimensional world of the computer screen. And in most cases, a nice, hardbound printed book
makes a much more meaningful gift than the intangible e-book equivalent.

Therefore, the biggest potential area where CSS usage will expand is very likely in the area of print,
especially as CSS3 begins to solve many of the shortcomings earlier CSS specifications had with regard
to flexibly addressing printable portions of paper that we discussed back in Chapter 4. It’s also possible
that support for CSS in areas such as Braille and aural content will see improvements in future applica-
tions, as CSS already contains a growing wealth of possibilities for those media types.

As you know, the possibility of easily repurposing a single body of content for multiple formats is an
extremely attractive proposition both for content producers and publishers alike. For instance, say
a symphony orchestra produced some promotional material and wanted to target it to four differ-
ent page layout scenarios: one for a CD booklet, one for a concert program, one for a promotional
page on their website, and one as a section for a printed annual yearbook containing a compilation
of works. With the right content in the right markup (either HTML or some form of XML), this is an
achievable task with today’s CSS implementations, and yet only one of the four options mentioned
involves a computer display as final distribution medium.

To do something like that today, you might spend a great deal of time developing a style sheet by
using the typical code-load-refresh methodology inside a web browser. However, we believe that as
the usefulness of CSS makes itself evident on the Web, we’ll see more applications that treat CSS for
printed and other media as first-class citizens. One such notable product today is PrinceXML, a CSS-
capable XML and HTML to PDF transformer.1 With good parsing clients for print like this appearing

1. PrinceXML (http://www.princexml.com/) is a product created by YesLogic Pty Ltd of Melbourne, Australia.

334

335

THE FUTURE OF CSS AND THE WEB

and support for the improvements in CSS3 for print media, CSS becomes a powerful print publishing
platform.

There’s also no technical reason why end users should need to learn how to write a markup language
or CSS themselves. Even today, desktop and online word processors alike such as Microsoft Word and
Google Docs are capable of producing files that combine some form of XML with an embedded style
sheet for presentation. These are essentially crude graphical user interfaces for working with CSS in
a particular context—text. Since we have CSS, we’re simply missing a similar graphical user interface
that generates CSS for its aural or other contexts.

XSL Formatting Objects (XSL-FO) is a markup language used most often for creating print document
formats. Might CSS replace current use of XSL-FO someday? We know CSS is great for print and CSS3
makes things that much better, so what can CSS do in place of XSL-FO for the publishing community,
and would that be easier or better? XSL-FO is an intermediary step between an XML document and
ultimately what is likely a print format such as PDF. If CSS were refined enough to the point that we
could achieve parity in print output between CSS and XSL-FO, then really XSL-FO becomes an unnec-
essary step.

How much of this print-on-demand stuff can we democratize? CSS is much more widely known by
developers than XSL-FO and sites like Lulu () let authors self-publish books.
Can we envision a situation in which these authors also provide Lulu with a CSS file to style their book,
rather than using PDFs? Would this be a benefit to web designers, Lulu, consumers, some of these, or
all three, and why?

Audible CSS
Yet another idea would be reformulating a blog into a podcast simply by using a speech media style
sheet. With today’s publishing platforms improving their support to output semantically rich pages
and with voice synthesis technologies improving, it may not be quite so far a leap to imagine a system
that can take this output and automatically speak it. In such a system, a CSS file might be used to
describe the ways that different parts of the text would be verbalized.

On the same note, imagine a system that can also work in the reverse way; taking an audio record-
ing or audio input and automatically transcribing it to a file that contains semantically rich markup.
Although it’s not quite this sophisticated yet, Google’s new “Google Voice” can automatically tran-
scribe aural messages to real text and can even email you the result. Could CSS be used more than to
give those transcriptions a bit of typographic style, perhaps doing so much for author customizations
as describing what “air quotes” sound like when particular individuals pause dramatically enough
when they use them in speech? Sure, this seems far-out today, and perhaps it won’t ultimately be pos-
sible for CSS to provide such a capability, but the influence of what CSS has accomplished is already
visible in numerous other systems and technologies related to semantic encoding.2

Ultimately, CSS is computer code for style. So what can be styled via a computer? Ask yourself this
question and you will likely find opportunities for future directions in CSS.

2. One notable example of this is RDF-EASE, which is a CSS-like language for describing the RDF vocabularies in
XML documents. Think RDFa, but inside of “semantic style sheets” instead of coupled to the markup itself. The
RDF-EASE draft specification, which is not an official draft by any means, is available at

.

335

336

CHAPTER 12

HTML5 and CSS
The last published recommendations for HTML were under the 4.01 version, adopted as of December
24, 1999. Subsequent markup efforts were then focused on the XML variants of HTML, such as
XHTML1, XHTML1.1, and current work going on for XHTML2.

Recently, a new effort originally started under a group called the Web Hypertext Application Technology
Working Group (WHATWG) decided to work on an upgrade to the HTML specification under the
guises that the XML parsing requirements of XHTML were too strict and poorly enforced, and that
the beauty of the success of the Web was the ease of use and forgivingness of good old HTML. Why
not improve on those aspects of it? From that effort, what is now HTML5 was born.

HTML5 comes in two flavors, one of the plain-old HTML variety, and one that is an XHTML-like ver-
sion that borrows XHTML’s self-closing tag syntax. The XHTML-compatible version aims to maintain
markup’s ability to be extended, which the HTML version also benefits from. Developing a version of
HTML5 that uses XML syntax in parallel with the more forgiving traditional HTML parsing rules contin-
ues to steer the future of markup toward well-formed, semantic structures. HTML5 has strong backing
from developers and technology vendors alike. Despite early fireworks, it has become a W3C project
and can already be used and validated against from the W3C’s markup validation service.

The new elements in HTML5 include the following (as of this writing):

Structural, block-level elements: , , , and

Block-level semantic elements: , , and

Inline semantic elements: , , , and

Multimedia elements: and

Interactive elements: , , ,

In addition to the new elements, new rules will apply. For instance, in HTML5 you can wrap an ele-
ment around an and additional elements after that. Here’s a block of markup that will be a single
link, with a little CSS to illustrate the point:

337

THE FUTURE OF CSS AND THE WEB

Yes, Virginia, this is legal markup in HTML5, and why not? We would like to link a bunch of elements
in an element. It will save developers time, and more easily generalizes what an HTML “anchor”
was intended to be in the first place. The anchor-wrapping example will also affect CSS: you’ll have the
ability to select new descendants of elements, including the and elements. For those of
us who have been coding HTML for a long time and were taught that inline elements such as the
were never allowed to have block-level elements within, this might seem unnatural at first. But there’s
no technical reason why the rules can’t be changed to make our lives as web developers a little easier,
and it makes perfect sense.

CSS remains the core styling language for HTML5, and HTML5 introduces a lot of new markup and
new rules into the mix. With that in mind, we now have a new suite of tags to style, complete with a
whole new world of opportunities for styling our web sites, and a new suite of potential browser bugs
to battle. How will CSS fit in with the HTML5 enhancements? How will CSS3—and even CSS4 when
that comes about one day—be affected by the core markup trends of the Web such as HTML5? What
opportunities do they present from the perspective of a CSS developer? These questions are open-
ended—ask yourself these from time to time as the specifications continue to evolve.

Influences, tensions, and competitors to CSS
One of the amazing things about the development of web technologies is that they were relatively
anarchic. Unlike the development of traditional GUI systems, which were created behind the closed
doors of academic institutions like Xerox’s PARC and later developed further by products such as
Apple’s original Macintosh, the Web evolved in an open and, for lack of a better term, amateurish
fashion. Although we can debate the benefits of one form of evolution over another, few argue that
the Web isn’t a platform for incredible innovation, proving that either evolutionary method can push
the development of such technologies in interesting and useful new directions.

As with all technologies, CSS is designed to solve a particular use case: separating the presentation of
content from the structure of the content itself and reforming it to new presentations easily. However,
CSS is not the only technology designed to solve this same use case. As we briefly mentioned in the
previous section, one notable competitor is XSL-FO, heavily used in the publishing industries for print
layouts.3

XSL-FO is a self-contained, unified, presentational markup language. This means that an XSL-FO docu-
ment does not require external style sheets, scripts, or other apparatus to work as expected, and it

3. A 2005 article published on XML.com by Michael Day and Håkon Wium Lie, one of the creators of CSS, compared
and contrasted XSL-FO with CSS when used for printing XML documents. Perhaps unsurprisingly, the article, which
can be found at , concluded that CSS is the simpler choice.

338

CHAPTER 12

is not considered semantically structured the way HTML or XHTML is. It is most often used to create
print documents and is specifically tailored for paged media. A typical workflow involving XSL-FO
would look something like this:

1. The XML document (such as DocBook, used in publishing contexts) is created.

2. The XML document is passed through an Extensible Style Sheet Transformation (XSLT) to con-
vert the XML into XSL-FO.

3. The XSL-FO is passed through an “FO Processor”—software intended to convert the presenta-
tional document to another (potentially binary) format. The usual output is some press-ready
format, such as PDF or PostScript.

XSL-FO contrasts with CSS in that it is a markup language, and all of the presentational data is con-
tained within element attributes. It is not semantic at all, nor is it modular. It is a transition format
between XML and some other format, and isn’t intended to be worked with by itself without some
sort of programmatic capabilities on either end of the process (such as XSLT and software to convert
to PDF).

The question—as we alluded to earlier—is at what point in the advancement of CSS does XSL-FO
become obsolete? With improvements in the specification around web fonts and print media, all
the components for a full-featured print styling mechanism are coming into place. All that remains
is a parser to convert your markup into a press-ready format such as PDF or PostScript. Printing your
markup directly from a CSS style sheet instead of doing all that XSL-FO transformation means one less
step in the process, and it leverages the opportunity to use external style sheets and skills that you
already know to write manually, if that is needed or desired.

Another open question among web technologists concerns the CSS selection model. In CSS3, the ways
in which elements can be targeted by CSS rules has been extracted into its own module called CSS3
Selectors.4 As you know, CSS’s notion of selectors originated in the first version of the specification,
first published in 1996. However, in 1999 the W3C standardized a similar technology intended to be
used to address parts of an XML document that provided much more granular control over which
parts of the document were selected. This technology is called the XML Path Language, or XPath.

Today, the earliest versions of XPath still give XPath authors greater specificity over which parts of an
XML document they wish to address than even the latest CSS3 Selectors draft. Many developers won-
der, then, if such a precise language exists already, why is the CSS3 Selectors draft not incorporating
more of it?

Some believe that XPath’s syntax is too complicated. A common selection such as “all elements”
is extremely intuitive using CSS (the selector is simply a) and in XPath it is not (to achieve the same
effect, the XPath expression you need to use is).

On the other hand, with new CSS constructions such as
, CSS Selectors can become frustratingly complex as well. What is an appropriate balance

between simplicity and power? This is a debate that rages on to this day.

4. As of this writing, the CSS3 Selectors module specification is still in Working Draft state and can be found at
.

339

THE FUTURE OF CSS AND THE WEB

Other parts of CSS are taking the opposite route; rather than developing their own syntax and capa-
bilities, they are taking on the behavior and terminology of other technologies. At the time of this
writing, the proposed CSS3 modules for CSS Animations and Transitions was accepted to the standards
track by the W3C. These modules (discussed in Chapter 11, with examples of these techniques pre-
sented in Chapter 5) incorporate SVG-like capabilities. More to the point, they are so similar that they
can be thought of as a CSS interface to SVG graphical capability. Of course, CSS can be applied to SVG
markup, so clearly there is some opportunity there for web authors to leverage their CSS skills in
SVG elements.

In this case, the ubiquity of CSS is helping to promote and standardize the capabilities developed by
other technologies. Since there are so many more knowledgeable CSS developers than there are SVG
developers, it makes sense to utilize your existing familiarity to push the envelope of what is techni-
cally possible.5

However, this path is not without its concerns. Although some would argue that creating more than
one way to do something is a good thing, others argue that creating too many different ways to
accomplish the same task fragments a standard and undermines its usefulness. Since many modern
browsers support SVG today, the question becomes why not promote its use as is?

A further question that comes up is related to the technicality of the implementation itself. SVG is, as
mentioned as early as Chapter 1 in this book, a “thing” that can be referenced and repurposed as a
form of content. It is ultimately a language that describes building blocks of visual things. When you
put the pieces together, you can create ever more complex graphical objects. On the other hand, CSS
requires the use of a different thing; by itself, a style sheet doesn’t do anything.

These examples are the product of nothing more magical than developers like you playing around
with the building blocks that we have today; such academic experimentation is the best thing you can
do to expand your skills. When you run into a problem, ask yourself if you can use an existing building
block—a CSS property or particular browser feature—to solve it, or if you need a new building block
altogether. If you do need to create something new, since you’ve now imagined what it might be, tell
other people what you need or, if you can, build it yourself.

Keeping up-to-date = getting involved
Since you’re reading this book, you’re likely interested in keeping your skills up-to-date. You are prob-
ably interested in being a better web developer, and it is arguable that you might want to display that
skill by being able to tackle whatever the latest trends and implementations have emerged in the web
browser market. These skills make you marketable.

One of the beautiful things about the World Wide Web and related Internet-based technological
marvels is that they are built on open standards and proven techniques that are created by global
networks of industry experts, enthusiasts, and journeymen. These people are computer scientists, web
developers, graphic designers, accessibility experts, networking professionals, students, interns, soft-
ware developers, and so on. In other words, people a lot like yourself!

5. John Allsopp argues this point eloquently in the comments on his post “Shiny Happy Buttons” at
.

340

CHAPTER 12

Web specifications such as CSS, HTML, XML, and others are all deliberated around some kind of orga-
nization, such as the World Wide Web Consortium (W3C), the Internet Engineering Task Force (IETF),
ECMA International, and others. They are debated in discussion forums, weblogs, and industry articles.
Want to join in the party? The good news is, for most aspects of these organizations, participation is
free. As designers and CSS coders, you are encouraged to participate. These specifications can all use
more end-user input.

Participating in the W3C
The CSS specification is a recommendation published by the W3C. While there is a core group of con-
tributors, the specifications are up for review and open to debate via a mailing list.

There are three ways that an individual can directly participate in the W3C specifications: by joining a
mailing list and participating in the dialogue, by joining as part of a parent organization such as your
company or school, or by becoming an invited expert. There is no mechanism for individual member-
ship in the W3C, but that is probably unnecessary for the average individual and participation in the
email discussion forums will usually suffice. To get on the CSS discussion, send an email to

 with the word in the subject line. For more information on the subject of
participating in the W3C discussion groups, please visit .

The Web Standards Project
The Web Standards Project () began in 1998 to take on social and
industry change in how web pages were coded and how browsers interpreted our code. Back then, the
problem was that web browser vendors, notably Netscape and Microsoft, were implementing propri-
etary features and interpreting code in ways that were different enough to often warrant the creation
of two or more code bases for any single given web page, site, or application. Needless to say, this
was nuts and made web developers crazy. It was primarily through the efforts of the Web Standards
Project that browser manufacturers eventually agreed to implement “standards mode.”

These efforts continue today. While most modern browsers do support web standards to some degree,
the levels of compliance vary greatly. Internet Explorer, even at version 8, with vastly improved sup-
port for CSS and other specifications, still has a great many issues when it comes to things like XML
support or CSS3. Furthermore, there is an ongoing effort to promote web standards in the tools that
build the Web. Tools from companies such as Adobe and Microsoft have an enormous impact on how
web pages are built with the tools they provide—notably Adobe Dreamweaver and Microsoft Visual
Studio. Check out the projects at the Web Standards Project; monitor the issues and trends. And if you
feel inspired, get involved!

Exchanging ideas
An excellent way to keep on top of this stuff is to pay attention to the weblogs, microblogs (such as
Twitter.com and Laconi.ca) and other information streams that have been known to disseminate these
tidbits of information as soon as they are available. Find some CSS gurus who keep their blogs up-to-
date with new and interesting CSS techniques, commentary on emerging specifications, and examples
of how to implement new CSS features in the latest web browsers.

341

THE FUTURE OF CSS AND THE WEB

Often when we are writing a blog post on something about CSS or other web technologies, we are
opening up the floor for comment. Here as well is a good opportunity to participate. Let’s say I write
something about how best to style for aural user agents. But it’s a first cut—a strawman—and there
are still some problems with how to handle some aspect of it. Perhaps you have an idea for the
answer. You post a comment, and the dialogue begins.

Even faster—or lazier as the case may be—might be the use of microblogging platforms such as
Twitter. Pose a question to the hive mind of the Internet and see what comes back. Use search features
(such as hashtags—perhaps for instance) to see what the community is wrestling with, what
people are chatting about, and what might be on the horizon.

Consider starting a weblog about your ideas on web development, or adding such content to an exist-
ing blog if you have one. If you don’t have a blog yet, they are easy to set up and free in most cases.
Even if you’re the only one reading it, there is a benefit: writing about the things you learn helps you
acquire knowledge, and keeping a blog can serve for many of us as a kind of knowledgebase for
ourselves and perhaps our colleagues as well. Writing things down helps you acquire and remember
these issues.

Summary
Today, CSS continues to obtain increasing traction. In addition to solidifying support for long-awaited
capabilities, this also means that brand-new capabilities are being developed all the time. These emerg-
ing capabilities are the newest, furthest edge of that envelope, and as such are a part of our collective
and continuing mission as web developers to boldly go where no browser has gone before.

In this chapter, we wanted to touch on some possibilities for future developments and trends in CSS
and what it means for the future of web. But the future is largely up to you—how you code your sites,
how you push the envelope and test the edges of what we are capable of. We hope that we have
pointed you in the right general direction and created some food for thought, and that you have new
ideas to explore.

The future is yours. The best way to face that future is with eyes and ears open, feet forward, boots
on, and ready to march bravely into the unknown.

343

:right pseudo-class, 52
:target pseudo-class, 50–51
:visited pseudo-class, 48–49
::selection pseudo-element, 53
<div> element, overusing arbitrary, 196
!important declarations, 36
<g> element, and SVG example, 11
<link> elements

@import rules compared to, 281–282
media attribute, 17

| (pipe character), 252
<rect> element, and SVG example, 10
<style> element, media attribute, 17
* (universal) selector, 280

A
about attribute, 218
absolute length units, 62
absolute positioning, 69, 73–75
abstracting presentation of content

media queries, 22–23
media types

aural, 21–22
handheld, 20, 163–174
overview of, 16
print, 21
projection, 19–20
screen, 18–19, 174
specifying, 17–18
targeting, 18

overview of, 15
accented characters, 100
:active pseudo-class, 49–50
adjacent sibling combinator, 56–57
Adobe

Illustrator, and SVG, 8
Photoshop, and color models, 122
SVG plug-in, 259

aesthetics, and proportional values, 235
:after pseudo-element, 53, 92–93
Ahonen, Tomi T., 20
all media type, 17

Symbols
960 Grid System, 242–243
@charset rule

applying multiple style sheets to a page, 191
declaring at start of style sheet, 101

@font-face at-rule (CSS3), 322–323
@font-face construct, and applying multiple style

sheets to a page, 192
@import rules

applying multiple style sheets to a page, 191
<link> element compared to, 281–282
and media type parameter, 17
performance concerns, 277
targeting print styles, 120–121

@media rules
{} (curly braces) and, 119
applying multiple style sheets to a page, 192
block, optimizing for performance, 283
CSS rule, 17
targeting print styles, ,119–120, 192

@namespace rules, 192, 252
@page rule

applying multiple style sheets to a page, 192
margins, setting, 126–127
properties, 124
size property, 126
support for, 125

\ (backslash), delimiting beginning of escape
sequence, 99

<body> element, HTML compared to XML, 265
> (child combinator), 55, 281
:active pseudo-class, 49–50
:after pseudo-element, 53, 92–93
:before pseudo-element, 53, 92–93
:first-child pseudo-class, 51–52
:first-letter pseudo-element, 52–53
:first-line pseudo-element, 53
:first pseudo-class, 52
:focus pseudo-class, 49–50
:hover pseudo-class, 49–50
:lang() pseudo-class, 50
:last-child pseudo-class, 51–52
:left pseudo-class, 52
:link pseudo-class, 48–49

INDEX

343

INDEX

344

Allsopp, John, Microformats: Empowering Your Markup for
Web 2.0, 217

alphabetic system styles, 103
alphabetizing declarations, 199–200
anchor elements, hyperlinks compared to, 48
Android browser, 159–160
angles, 62–63
animated elements, optimizing for performance, 284
animation (CSS3), 330
anonymous inline boxes, 67
AP boxes, 74
Apple iPhone, 20, 150
application, definition of, 5
applying multiple style sheets to a page, 191–192
architecture of CSS code, 191–193
at-rules

See also specific rules
applying multiple style sheets to a page and, 191–192
description of, 59
margins, 127–129

Atom Syndication Format, 6–8, 259–260
attr() function, 66, 94–97
attribute matching selectors (CSS3), 301
attributes

charset, 39
class, 11, 216
description of, 4
href, 37
id, 11
media, 39
RDFa and, 217–219
style, 10
title, 39

attribute selectors, 45–46
audible CSS, 335
aural media type, 16, 21–22
authoring conventions. See patterns
author style sheets

embedded, 37–38
external, 37–38
inline styles, 40
media and character encoding details, 39

azimuth property, 21

B
background color

applying to mobile web page, 166
setting with foreground color, 33

background-image property (CSS3), 328
background images with visible lines at points of grid, 236
background-size property (CSS3), 328

backslash (\), delimiting beginning of escape sequence,
99

baked-in CSS rules, and browsers, 230
bandwidth, and mobile web, 153–154
bandwidth usage, optimizing web sites to decrease, 277
Base CSS (YUI CSS Foundation), 239
:before pseudo-element, 53, 92–93
Berners-Lee, Tim, 333
Blazer browser, 150, 157
block-level boxes, 67
blocks

adding visual separation to, 263
containing, 68
displaying elements as, 263
margins and contrast, establishing in viewport, 264
typography for, 265

Blueprint CSS, 243–244
<body> element, HTML compared to XML, 265
border and background effects (CSS3)

box shadow, 326–327
image resizing, 328
multiple backgrounds, 327
overview of, 323
rounded corners, 324–326

border area of CSS box, 83
border-box model, 84
border property, 279
border-radius rule (CSS3), 324–326
borders for mobile web page, 169
boxes. See CSS boxes; marker boxes
box-shadow property (CSS3), 326–327
braille media type, 17
browsers

See also specific browsers
baked-in CSS rules and, 230
CSS3 and, 294–295
major, 293

Chrome, 295
Internet Explorer, 295, 298
Firefox, 295, 301, 320
Opera, 295, 330
Safari, 295, 301, 315, 321, 329

for mobile web
Android, 159–160
comparing displays, 160–161
Fennec, 158–159
Internet Explorer Mobile, 157
Mobile Safari, 159
Openwave Mobile Browser, 158
Opera Mobile and Opera Mini, 156

SVG and, 259
unstyled XML viewed in, 262

344

INDEX

345

C
calc() function, 66
canvas, and CSS boxes, 73, 79
CDATA (character data), unparsed, and XML, 250
chaining

attribute selectors, 46
simple selectors, 41, 53

character data (CDATA), unparsed, and XML, 250
character encoding details, naming and specifying, 39
characters, representing in style sheet, 100
charset attribute, 39
child combinator (>), 55, 281
children, description of, 54
cHTML (Compact HTML), 155
ch unit, 61
class attribute, 11, 216
class attribute selectors, 46–48
classes, naming conventions for, 201. See also pseudo-

classes
classical inheritance schemes for style sheets, 192
classitis, 196
cm unit, 62
CMYK color model, 122
code, optimizing, 278
coding principles

See also commenting code
alphabetize declarations, 199–200
avoid overuse of arbitrary <div> elements, IDs, or

classes, 196
consistency, 200–201
divide design principles into files, 197
divide style sheets into logical sections, 196
formatting conventions, 198–199
inheritance, taking advantage of, 193–194
organize from general to specific, 194–196
overview of, 193
use shortest URL that works, 197–198

color
background

applying to mobile web page, 166
setting with foreground color, 33

font color, 121–123, 135, 166
for handheld media type, 166–173

color functions, 64–65
color keywords, 59
color printing, 121–123
color property, 65
Color Small Screen Rendering (CSSR), 156
color values, writing in CSS3, 296–299
combinators

adjacent sibling, 56–57
child, 55, 281
descendant, 55

general sibling, 58, 229–300
overview of, 53–54

combining
multiple style sheets, 189
style sheets, 282

commenting code
CSSEdit, 204
headers, 202–203
overview of, 201–202
signposts, 204
TextMate, 205

communication. See intra-team communication tech-
niques

Compact HTML (cHTML), 155
competing technologies, and mobile web, 154
competitors to CSS, 337–339
complementing semantics with CSS, 24
components, styling common. See patterns
compressing style sheets, 282–283
Compressor (YUI), 282
concluding escape sequences, 101
consistency in coding, 200–201
containing blocks, 68
content

generated
attr() function, 94–97
:before or :after pseudo-elements, 92–93
content property and, 90
escape sequences in strings, 99–101
limitations on styling, 98–99
ordered lists and, 90–91
overview of, 89–90
replacing content with pseudo-content, 97–98
using to make data more readable, 267

repurposing for multiple formats, 334
content area of CSS box, 83
content attribute, 219
content-box model, 84
content functions, 66
content presentation

abstracting, 15
media queries, 22–23
media types

aural, 21–22
handheld, 20, 163–174
overview of, 16
print, 21
projection, 19–20
screen, 18–19, 174
specifying, 17–18
targeting, 18

in multiple formats, 23
putting control of in hands of users, 14
user agents and, 12–14

345

INDEX

346

content property
attr() function, 94–97
:before or :after pseudo-elements, 90–93

content syndication formats, 6–8
continuous media, 117
contrast, when printing, 135
control of presentation of content, putting in hands of

users, 14
conventions, 213. See also patterns
corners, rounded (CSS3), 324–326
costs, optimizing web sites to decrease, 277
counter() function, 66, 106
counter-increment property, 106
counter-reset property, 106
counters

atypical numbering with, 106–108
automatic numbering with, 105–106
description of, 91, 105
multiple, using

numbering groups of elements and siblings, 109–110
overview of, 108
total counts, displaying, 111–112

counter scope, 112–113
counters() function, 112
counting backward, 107
counting with letters, 107
creator, 218
CSS2

pseudo-elements in, 52
SVG styles and, 256–257

CSS3
border and background effects

box shadow, 326–327
image resizing, 328
multiple backgrounds, 327
overview of, 323
rounded corners, 324–326

browser support, 294–295
features

animation, 330
attribute matching selectors, 301
color units and opacity, 296–299
General Sibling Combinator, 299–300
overview of, 296, 328
transforms, 329–330
transitions, 329
typographic effects, 319–321
web fonts, 322–323

modules of
levels of completion, 294
overview, 293

overview of, 294
priority of projects of, 293

pseudo-classes
E:checked, 316–317
E:disabled, 316–317
E:empty, 312
E:enabled, 316–317
E:first-of-type, 308
E:last-child, 307–308
E:not(s), 318–319
E:nth-child(n), 301–303
E:nth-last-of-type(n), 307
E:only-child, 311
E:only-of-type, 311
E:root, 301
E:target, 314
overview of, 301

pseudo-elements in, 52
sources of information on, 330
vendor extensions, 294

CSS3 Generated and Replaced Content module, 97
CSS boxes

canvas and, 73, 79
content-box vs. border-box models, 83–85
overview of, 67–69
positioning schemes

absolute, 73–75
fixed, 75–78
floated, 78–79
overview of, 69
relative, 70–73
static, 69

stacking contexts, 79–83
CSS cascade

stages of, 34
user agent style sheets and, 32

CSSEdit, 204
CSS Formatter and Optimiser tool, 282
CSSR (Color Small Screen Rendering), 156
CSS selectors, using in JavaScript, 182–183
cue-after property, 21
cue-before property, 21
CURIE reference, 219, 225
curly braces ({}), and @media rules, 119
cursive keyword, 141

D
datatype attribute, 219
declarations

alphabetizing, 199–200
DOCTYPE, 6
elements of, 58–59
font-family, 136
!important, 36
white space, 101
XML, 248

346

INDEX

347

default media type, 17
default styles, removing, 230–231
default style sheets, 28–34
definition list, elements of, 101
descendant combinator, 55
descendant selectors, 222, 280–281
design principles, dividing into files, 197
design relationships, defining, 192–193
desktop device simulators, 175
device pixels, 61
displaying total counts, 111–112
display property, 68
displays of mobile browsers, comparing, 160–161
<div> element, overusing arbitrary, 196
divitis, 196
DOCTYPE (document type) declaration, 6
document flow, 67–69
document tree

combinators and, 54
unstyled XML displayed as, 262

Document Type Definition (DTD), 6
document type (DOCTYPE) declaration, 6
dots per inch (dpi), 61
Dublin Core metadata, styling, 224–226
dynamic pseudo-classes, 49

E
E:checked pseudo-class (CSS3), 316–317
E:disabled pseudo-class (CSS3), 316–317
E:empty pseudo-class (CSS3), 312
E:enabled pseudo-class (CSS3), 316–317
E:first-of-type pseudo-class (CSS3), 308
E:last-child pseudo-class (CSS3), 307–308
E:not(s) pseudo-class (CSS3), 318–319
E:nth-child(n) pseudo-class (CSS3), 301–303
E:nth-last-of-type(n) pseudo-class (CSS3), 307
E:only-child pseudo-class (CSS3), 311
E:only-of-type pseudo-class (CSS3), 311
E:root pseudo-class (CSS3), 301
E:target pseudo-class (CSS3), 314
Edwardian Script ITC font, 141
elements

See also pseudo-elements
anchor, hyperlinks compared to, 48
animated, optimizing for performance, 284
<body>, HTML compared to XML, 265
description of, 4
displaying as blocks, 263
<div>, overusing arbitrary, 196
<g>, 11
groups of, numbering, 109–110
<link>, 17, 281–282
parent, 54

<rect>, 10
root, 6, 9
<style>, 17

elevation property, 21
embedded style sheets, 37–38
embedding

line breaks in generated content, 100
style sheets in XML, 250–251
URLs in printed media, 138

embossed media type, 17
em unit, 60
escape sequences in strings, 99–101
examotion RENESIS Player, 259
exposing

metadata through attr() function, 94–97
structure with nested counters, 112–113

expressions, and optimizing for performance, 284
extensible, definition of, 251
Extensible Hypertext Markup Language. See XHTML
Extensible Markup Language. See XML
Extensible Stylesheet Language Transformations (XSLT), 8
Extensible Style Sheet Language (XSL), 249–250
extensible vocabularies, adding to semantic markup,

217–219
external style sheets, 37–38
ex unit, 60

F
feed readers, as user agents, 13
Fennec browser, 158–159
files, dividing design principles into, 197
fill property, and SVG example, 10
filters, and optimizing for performance, 284
Firebug

Net panel, 285
YSlow plug-in for, 286

Firefox browser (Mozilla)
basic markup example in, 30
CSS3 and, 295
font color in, 123
Gecko rendering engine, 18, 75, 158, 295
repaint tracker for, 288
RSS feeds

accessed through local filesystem, 8
viewed over HTTP, 6

support for user style sheets in, 35
user agent style sheets, 32
XSLT and, 8

:first-child pseudo-class, 51–52
:first-letter pseudo-element, 52–53
:first-line pseudo-element, 53
:first pseudo-class, 52
fixed positioning, 75–78

347

INDEX

348

flag design, changing color IDs in, 254–256
floated positioning, 69, 78–79
float property, 69
:focus pseudo-class, 49–50
font color, 121–123, 135
font color, applying to mobile web page, 166
@font-face at-rule (CSS3), 322–323
@font-face construct, and applying multiple style sheets

to a page, 192
font-family declaration, 136
font names, 59
fonts

printing and, 121, 136
for web, 59, 319

Fonts CSS (YUI CSS Foundation), 238
font size, and printing, 136
Fonts module (CSS3), 319
foreground color, setting with background color, 33
formatting conventions for code, 198–199
formatting page for handheld media type, 164–173
fragment identifier, 51
frameworks

960 Grid System, 242–243
advantages of, 237
Blueprint CSS, 243–244
constraints of, 238
CSS reset and, 230–231
grid-based design and, 231–236
grid diagnostics, tools for, 236
written by others, working with, 238
YUI CSS Foundation, 238–242

frequencies, 62–63
functional notation/functions

attr(), 66, 94–97
calc() function, 66
color functions, 64–65
content functions, 66
counter(), 66, 106
counters(), 112
description of, 50
hsla(), 64–65
hsl(), 64–65
rgba(), 64–65
rgb(), 64–65
overview of, 63
url() function, 64

G
gd unit, 61
Gecko browsers, and font color, 123
Gecko rendering engine, 18, 75, 158, 295
<g> element, and SVG example, 11
general sibling combinator, 58, 299–300

generated content
attr() function, 94–97
:before or :after pseudo-elements, 92–93
content property and, 90
escape sequences in strings, 99–101
limitations on styling, 98–99
ordered lists and, 90–91
overview of, 89–90
replacing content with pseudo-content, 97–98
using to make data more readable, 267

glyph marker styles, 102
glyphs, 67
Google Android SDK, 175
Google Voice, 335
grid-based design, 231–236
grid diagnostics, tools for, 236
Grids CSS (YUI CSS Foundation), 239–241
groups of elements, numbering, 109–110
The Guardian, 119
GZipping style sheets, 283

H
handheld media type

color and typography, establishing, 166–173
description of, 16, 20, 163
formatting page for, 164–166
WebKit and, 174

hardware, and mobile web, 152–153
hCalendar, styling, 222–224
hCard, styling, 221–222
headers, comment, 202–203
headings

improving on résumé, 141–143
for mobile web page, 170

“Hello world!” example in SVG, 9
hierarchical context, 4
history of mobile web technology, 154–156
home button, touch-friendly, 179
:hover pseudo-class, 49–50
href attribute (hyperlink reference), 37
hResume microformat design, 133
hsla() function, 64–65
hsl() function, 64–65
HSL values, writing color values using, 296–297
HTML (Hypertext Markup Language)

<body> element in, 265
evolution of markup conventions in, 214–215
extracting style sheet from, 144–147
freedom from, 248
linking to print styles in, 119
semantics of, 5
XML compared to, 248

HTML5, and CSS, 336–337

348

INDEX

349

hyperlink reference (href attribute), 37
hyperlinks

anchor elements compared to, 48
for mobile web page, 167

hypertext, definition of, 3
Hypertext Markup Language. See HTML

I
id attribute, and SVG example, 11
ID attribute selectors, 46–48
ideas, exchanging, 340–341
idioms, 213. See also patterns
IDs

naming conventions for, 201
overusing, 196

IE. See Internet Explorer
Illustrator (Adobe), and SVG, 8
image resolution, and printing, 124
images

adding to XML document, 268
replacing marker boxes with, 103

!important declarations, 36
@import rules

applying multiple style sheets to page and, 191
<link> element compared to, 281–282
and media type parameter, 17
speed and, 277
targeting print styles using, 120–121

influences on CSS, 337–339
information box, improving display of, 139–140
inheritance

classical, and style sheets, 192
taking advantage of when coding, 193–194
using to optimize performance, 280

initial containing blocks, 74
inline-level boxes, 67
inline styles, 40
inserting page breaks, 125
interaction paradigms, and mobile web, 152–153
Internet Explorer (IE)

CSS3 and, 295
font color in, 123
styling XML namespaces in, 253
SVG and, 259
Trident rendering engine, 18, 295

Internet Explorer 6, and XML declaration, 248
Internet Explorer 7, support for user style sheets in, 35
Internet Explorer Mobile, 157
intra-team communication techniques

CSS commenting
CSSEdit, 204
headers, 202–203
overview of, 201–202

signposts, 204
TextMate, 205

overview of, 201
in unit, 62
involved, getting, 339–341
iPhone (Apple), 20, 150
iPhone browser

bookmarking with, 181
building native iPhone application, 183
Dashcode.app IDE and, 183

iPhone Developer SDK, 175
iPhone Simulator application, 175
iPhone simulators, 174
iPod browser, bookmarking with, 181

J
JavaScript, using CSS selectors in, 182–183

K
keywords

color, 59
cursive, 141
font names and, 59
!important, 36
landscape, 126
overview of, 59
portrait, 126

L
landscape keyword, 126
:lang() pseudo-class, 50
:last-child pseudo-class, 51–52
latency, and mobile web, 153–154
layout properties, WebKit screen, 176–177
:left pseudo-class, 52
lengths

absolute length units, 62
overview of, 60
relative length units, 60–61

lengthy descendant selector, 280–281
letters, counting with, 107
line breaks, embedding in generated content, 100
line-height property, 144
linguistics of markup languages, 4–5
<link> elements

@import rules compared to, 281–282
media attribute, 17

linking
to print styles in HTML, 119
style sheets in XML, 250

:link pseudo-class, 48–49

349

INDEX

350

links
rel-tag, 220–221
styling to be touch-friendly, 177–181

list-item boxes, 68
list-itis, 110
list rendering, whitespace used in, 33
lists, ordered (numbered), 90–91
list-style-image property, 103
list-style-position property, 104–105
list-style-type property, 102
list styling

advanced, 101–102
built-in marker box styles, using, 102–103
marker boxes, changing position of, 104–105
replacing marker boxes with custom images, 103

logical sections, dividing style sheets into, 196
Lulu web site, 335

M
margin area of CSS box, 83
margin at-rules, 127–129
margin property, and list rendering, 33
margins, setting for printed page, 124–129
marker boxes

built-in marker box styles, 102–103
changing position of, 104–105
characteristics of, 102
replacing with custom images, 103

marker-offset property, 105
markup, using XML for

advantages of, 248
disadvantages of, 248–249
overview of, 247
style sheets in, 249–250

markup languages, linguistics and semantics of, 4–5. See
also specific markup languages

markup patterns
evolution of, 214–215
microformats

hCalendar, styling, 222–224
hCard, styling, 221–222
overview of, 216–217
rel-tag links, styling, 220–221
styling, 220

opportunities and benefits of, 219–220
overview of, 214
RDFa

overview of, 217–219
styling, 224–226

reusing and adding semantics, 216
media attribute, screen value, 39
@media block, and optimizing for performance, 283

@media CSS rule, 17
media encoding details, naming and specifying, 39
media groups, and media types, 15–16
media queries

feature detection via, 22–23
targeting media types and, 207–209
using, 177

@media rules, 119–120, 192
media types

all, 17
aural, 21–22
braille, 17
handheld, 20, 163–174
mobile strategy, developing, 209–210
overview of, 15–16
print, 21
projection, 19–20
screen, 18–19, 174
specifying, 17–18
styling for, 207–209
targeting, 18

metadata, exposing through attr() function, 94–97
Meyer, Eric, 138
microformats

class attribute, 216
overview of, 133, 216–217
styling

hCalendar, 222–224
hCard, 221–222
rel-tag links, 220–221

Microformats: Empowering Your Markup for Web 2.0
(Allsopp), 217

Microsoft. See also Internet Explorer
Vector Markup Language, 9
Word, as user agent, 13

MIME types, text/html, 249
minifying style sheets, 282
minimizers, 282
mm unit, 62
mobile media, 20
Mobile Safari browser

Apple iPhone and, 150
DOM Touch API and, 183
full-screen mode, changing to, 183
overview of, 159
Show Development Menu, 174

mobile strategy, developing, 209–210
mobile web

adoption on iPhone, 150–151
browsers

Android, 159–160
Blazer, 157
comparing displays, 160–161

350

INDEX

351

Fennec, 158–159
Internet Explorer Mobile, 157
Mobile Safari, 159
Openwave Mobile Browser, 158
Opera Mobile and Opera Mini, 156

history of, 154–156
limitations and challenges of development on

bandwidth and latency, 153–154
hardware, interaction, and usability, 152–153
screen sizes, 151–152
technology options and capabilities, 153–154

possibilities of, 149
style for

handheld media type, 163–173
overview of, 162–163

support for browsing on, 150
WebKit browsers

CSS selectors, using in JavaScript, 182–183
CSS transforms and transitions, 182, 185–186
designing for, 173–174
layout properties, 176–177
previewing pages, 174–175
styling links to be touch-friendly, 177–181

mod_deflate module, 283
mod_gzip module, 283
Mozilla Firefox. See Firefox browser
multiple backgrounds (CSS3), 327
multiple counters

numbering groups of elements and siblings, 109–110
overview of, 108
total counts, displaying, 111–112

multiple style sheets
applying to page, 191–192
combining, 189

music composer list
example, 260–269
final style sheet for, 271–273

N
@namespace rules, 192, 252
namespaces

extending XHTML through, 251–252
styling

in Internet Explorer, 253
in XHTML, 252–253

XML, 6
naming collisions, and microformats, 216
naming conventions, classes and IDs, 201
narrow patterns, 215
navigation buttons, touch-friendly, 178
navigation toolbar for mobile web page, 167–171
nested counters, exposing structure with, 112–113

news readers, as user agents, 13
normal document flow, 69
numbered lists, 90–91
numbering

atypical, using counters, 106–108
automatic, using counters, 105–106
groups of elements and siblings, 109–110

numbering system styles, 103
number values

lengths
absolute length units, 62
relative length units, 60–61

overview of, 60
percentages, 62
time, frequencies, and angles, 62–63

num-links counter, 112

O
Oomph Microformats Toolkit, 217
opacity property (CSS3), 297–299
Open Font Library, 322
Open Mobile Alliance, 155
Openwave Mobile Browser, 158
Opera browser

CSS3 and, 295
font color in, 123
Presto rendering engine, 18, 295
support for user style sheets in, 35

Opera Mini browser, 156
Opera Mobile browser

handheld media type and, 20
overview of, 150, 156
release of, 155

optimizing for performance
absolute or fixed positioning on animated elements,

using, 284
bandwidth usage and costs, decreasing, 277
combining style sheets, 282
compressing style sheets, 282–283
CSS shorthand and, 279
expressions, filters, and, 284
inheritance and, 280
lengthy descendant selector and, 280–281
<link> elements compared to @import rules, 281–282
minifying style sheets, 282
organization and, 277–278
overview of, 275–276
placement of style sheets, 281
referencing external CSS, 284
selector groups and, 279–280
speed, increasing, 276
techniques for, 278

351

INDEX

352

optimizing for performance (continued)
tools for

Firebug, 285
overview, 284
reflow and repaint timers and visualizers, 287
WebKit Web Inspector, 287
YSlow Firebug plug-in, 286

universal (*) selector and, 280
ordered lists, 90–91
organization of style sheets

See also architecture of CSS code; coding principles;
intra-team communication techniques

need for, 190
optimizing web sites for performance and, 277–278
successful model for, 190

origins of style sheets, 34
orphans property, 125–126
overflow, 68
overlapping technologies, and mobile web, 154
overriding default style sheets, 32
overusing arbitrary <div> elements, IDs, or classes, 196

P
padding area of CSS box, 83
padding property, and list rendering, 33
page box, 124
page breaks, 125
@page construct, and applying multiple style sheets to

page, 192
paged media, 117
page, formatting for handheld media type, 164–173
@page rule

margins, setting, 126–127
properties, 124
size property, 126
support for, 125

paper, 3:4 sheet of
central rectangle, adding to, 233
content, adding to, 235
diagonal lines on, 232
filling in rectangles dependent on diagonals, 233
filling out rectangles to corners, 234
inserting rectangle dependent on diagonals, 232
margins and gutter, adding to, 234
rectangles, adding to, 231

parent element, 54
participation

by exchanging ideas, 340–341
overview of, 339
in W3C discussion groups, 340
in Web Standards Project, 340

patterns
markup

evolution of, 214–215
microformats, 216–217
overview of, 214
RDFa, 217–219, 224–226
reusing and adding semantics, 216
styling microformats, 220–224

opportunities and benefits of, 219–220
overview of, 213

pc unit, 62
percentages, 62
performance. See optimizing for performance
persistent style sheets, 206
Photoshop (Adobe), and color models, 122
pipe character (|), 252
pitch property, 21
pixels, 61
placement of style sheets, and optimizing for perfor-

mance, 281
Plain Old Semantic HTML (POSH), 248
plug-ins, support for SVG, 259
portrait keyword, 126
positioning marker boxes outside or inside document

flow, 104–105
positioning on animated elements, and optimizing for

performance, 284
position property, 69
preferred style sheets, 206
presentation layer

CSS as, 15
CSS-generated content and, 98

presentation of content
abstracting, 15
media queries, 22–23
media types

aural, 21–22
handheld, 20
overview of, 16
print, 21
projection, 19–20
screen, 18–19
specifying, 17–18
targeting, 18

in multiple formats, 23
putting control of in hands of users, 14
user agents and, 12–14

Presto rendering engine, 18, 295
previewing WebKit pages, 174–175
PrinceXML, 334
print command, convention for, 118

352

INDEX

353

printer style
color handling, 121–122
font color, 122–123
image resolution, 124
overview of, 121
units, 123

print, expanding CSS in, 334–335
printing web pages

See also print style sheet
margins, setting, 126–129
orphans and widows, 125–126
overview of, 117–118
page box, 124
page breaks, 125
printer style

color handling, 121–122
font color, 122–123
image resolution, 124
overview of, 121
units, 123

size property, 126
print media type, 16, 21
print style sheets

future of, 129
résumé example, 129–146
targeting

@import rules, 120–121
@media rules, 119–120
linking to print styles in HTML, 119
overview of, 118

projection media type, 16, 17, 19–20
prolog, XML, 248
properties

for @page rule, 124
auditory, 21
border, 279
color, 65
content

attr() function, 94–97
:before or :after pseudo-elements, 90–93

counter-increment, 106
counter-reset, 106
CSS3

background-image, 328
box-shadow, 326–327
opacity, 297–299
text-shadow, 320–321
word-wrap, 319–320

of CSS box, 83
display, 68
elevation, 21
float, 69

layout, and WebKit screen, 176–177
line-height, 144
list rendering, 33
list-style-image, 103
list-style-position, 104–105
list-style-type, 102
marker-offset, 105
orphans, 125–126
overview of, 58–59
page-break, 125
position, 69
size, 126
border-radius, 185
box-shadow, 185
transform, 184
transition-duration, 185
transition-timing-function, 185
widows, 125–126
z-index, 80–83

property attribute, 219
property/value pairs, and SVG, 257–259
proportional values, and aesthetic pleasure, 235
pseudo-classes

:first-child and :last-child, 51–52
:hover, :active and :focus, 49–50
:lang(), 50
:left, :right and :first, 52
:link and :visited, 48–49
:target, 50–51

pseudo-classes (CSS3)
E:checked, 316–317
E:disabled, 316–317
E:empty, 312
E:enabled, 316–317
E:first-of-type, 308
E:last-child, 307–308
E:not(s), 318–319
E:nth-child(n), 301–303
E:nth-last-of-type(n), 307
E:only-child, 311
E:only-of-type, 311
E:root, 301
E:target, 314
overview of, 301

pseudo-content. See generated content
pseudo-elements

:before, :after, and ::selection, 53
:first-letter, 52–53
:first-line, 53

pt unit, 62
px unit, 60

353

INDEX

354

Q
querySelector(), 182
querySelectorAll(), 182

R
RDFa

overview of, 217–219
styling, 224–226

RDF (Resource Description Framework), 218
<rect> element, and SVG example, 10
referencing external CSS, 284
Reflowr cross-browser bookmarklet, 287
reflows, and performance, 278
relative length units, 60–61
relative positioning, 70–73
rel-tag links, styling, 220–221
removing

default styles, 230–231
site navigation from page, 138

rem unit, 61
rendering engines, 18. See also specific engines
RENESIS Player (examotion), 259
repaints, and performance, 278
repaint tracker for Mozilla Firefox, 288
replacing content with pseudo-content, 97–98
Reset CSS (YUI CSS Foundation), 238
resetting CSS, 230–231
Resig, John, 288
resource attribute, 219
Resource Description Framework (RDF), 218
résumé print style example, 129–147
reusing markup patterns and adding semantics, 216
rgba() function, 64–65
RGB color model, 122
rgb() function, 64–65
:right pseudo-class, 52
root element

Atom, 6
RSS, 6
SVG, 9

RSS, 6–8
Rule of Least Power, and choosing between CSS and XSL,

250
rules

See also at-rules; specific rules
baked-in CSS, and browsers, 230
border-radius (CSS3), 324–326
organizing from general to specific, 194–196

S
Safari browser

See also WebKit rendering engine
basic markup example in, 31
CSS3 and, 295
font color in, 122
Show the Develop Menu option, 287
support for user style sheets in, 35
user agent style sheets, 32

scalable vector graphics (SVGs)
browser support for, 259
CSS2 and, 256–257
description of, 8–11
painting, 253–256
style extensions, 257–259

screen media, 117
screen media type, 16, 18–19, 174
screen readers, as user agents, 21
screen sizes, and mobile web, 151–152
search engines, as users, 13
selection model, 338
::selection pseudo-element, 53
selector groups

defining design relationships using, 192–193
using to optimize performance, 279–280

selectors
combinators

adjacent sibling, 56–57
child, 55
descendant, 55
general sibling, 58, 299–300
overview of, 53–54

CSS3
attribute matching, 301
background-size, 328

descendant, and styling hCards, 222
lengthy descendant, 280–281
optimizing, 278
overview of, 40
simple

attribute selector, 45–46
class attribute selector, 46–48
ID attribute selector, 46– 48
overview of, 41
pseudo-classes, 48–52
pseudo-elements, 52–53
type selector, 42–44
universal type selector, 44–45

universal (*), 280
using in JavaScript, 182–183
writing using pipe character, 252

354

INDEX

355

self-documenting, style sheets as, 190
semantic markup, and user agents, 14
semantic patterns

markup
evolution of, 214–215
microformats, 216–217
overview of, 214
RDFa, 217–219, 224–226
reusing and adding semantics, 216
styling microformats, 220–224

opportunities and benefits of, 219–220
overview of, 213

semantics
complementing with CSS, 24
of HTML, 5
of markup languages, 4–5

separation of concerns principle, 3, 5
serif fonts, 121, 136
SGML (Standard Generalized Markup Language), 5
shorthand, using to optimize performance, 279
siblings, 54
signposts, comment, 204
simple selectors

attribute, 45–46
class attribute, 46–48
ID attribute, 46–48
overview of, 41
pseudo-classes

:first-child and :last-child, 51–52
:hover, :active and :focus, 49–50
:lang(), 50
:left, :right and :first, 52
:link and :visited, 48–49
:target, 50–51

pseudo-elements
:before, :after, and ::selection, 53
:first-letter, 52–53
:first-line, 53

type, 42–44
universal type, 44–45

site navigation, removing from page, 138
size property, 126
skipping numbers, 107
specificity, and organization of CSS code, 191
speech-rate property, 21
speed, optimizing web sites to increase, 276
spiders, 13
spread, printing, 124
stacking contexts, 79–83
Standard Generalized Markup Language (SGML), 5

static positioning, 69
stress property, 21
strings, escape sequences in, 99–101
string values, 63
structure, exposing with nested counters, 112–113
style attribute, and SVG example, 10
<style> element, media attribute, 17
style for mobile web

handheld media type, 163–173
overview of, 162–163

style sheet libraries
960 Grid System, 242–243
Blueprint CSS, 243–244
overview of, 229
YUI CSS Foundation, 238–242

style sheets
See also author style sheets; organization of style

sheets; print style sheets
characters, representing in, 100
classical inheritance and, 192
compressing, 282–283
declaring @charset rule at start of, 101
dividing into logical sections, 196
embedded, 37–38
embedding in XML, 250–251
extracting from HTML, 144–147
GZipping, 283
minifying, 282
multiple, 189, 191–192
origins of, 34
overriding default, 32
persistent, 206
placement of, and optimizing for performance, 28
preferred, 206
as self-documenting, 190
user, 34–36
user agent, 28–24
XML and, 249–250

styling common design components. See patterns
styling generated content, limitations on, 98–99
Stylish extension, 35
substring matching attribute selectors, 46
summary points, improving on résumé, 144
SVGs (scalable vector graphics)

browser support for, 259
CSS2 and, 256–257
description of, 8–11
painting, 253–256
style extensions, 257–259

355

INDEX

356

T
tap behavior, customizing, 181
targeting media types

aural, 21–22
handheld, 20
overview of, 18
print, 21
projection, 19–20
screen, 18–19

:target pseudo-class, 50–51
technology options and capabilities, and mobile web,

153–154
tensions, and CSS, 337–339
text/html MIME type, 249
TextMate, 205
Text module (CSS3), 319
text-shadow property (CSS3), 320–321
text-to-speech features of operating systems, 22
3:4 sheet of paper

central rectangle, adding to, 233
content, adding to, 235
diagonal lines on, 232
filling in rectangles dependent on diagonals, 233
filling out rectangles to corners, 234
inserting rectangle dependent on diagonals, 232
margins and gutter, adding to, 234
rectangles, adding to, 231

times, 62–63
title attribute, 39
tools

CSS Formatter and Optimiser, 282
grid diagnostic, 236
performance optimization

Firebug, 285
overview of, 284
reflow and repaint timers and visualizers, 287
WebKit Web Inspector, 287
YSlow Firebug plug-in, 286

YUI Compressor, 282
YUI Grids Builder, 241

total counts, displaying, 111–112
touch-friendly, styling links to be, 177–181
transforms

CSS3, 329–330
WebKit and, 182, 185–186

transitions
CSS3, 329
WebKit and, 182, 185–186

Trident rendering engine, 18, 295
triple, 218
tty media type, 17
tv media type, 17
typeof attribute, 219
type selectors, 42–44

typographic effects (CSS3)
text shadow, 320–321
word wrap, 319–320

typography for handheld media type, 166–173
TypoGridder tool, 236

U
Unicode code points, and escape sequences, 100
unit identifiers, 60
units

absolute length, 62
classification of, 58–59
for print, 123
relative length, 60–61

universal (*) selector, 280
universal type selectors, 44–45
unstyled pages, 28
unstyled XML displayed as document tree, 262
up-to-date, remaining, 339–341
URI fragments, 50
url() function, 64
URLs

embedding in printed media, 138
using shortest that works, 197–198

usability, and mobile web, 152–153
user agent detection, 173
user agents

description of, 12–14
detection features, limitations of, 23
inconsistencies across, 230
screen readers as, 21
semantic markup and, 14

user agent style sheets, 28–34
user style sheets, 34–36

V
values

functional notation and
calc() function, 66
color functions, 64–65
content functions, 66
overview of, 63
url() function, 64

numbers, 60–62
overview of, 58–59
percentages, 62
strings, 63
time, frequencies, and angles, 62–63

vector-based graphics, 8–11
Vector Markup Language (VML), 9
vendor extensions, 294
vh unit, 61

356

INDEX

357

viewing web pages
in browser, 133
in print without styles, 135
with site navigation removed and hyperlinks toned

down, 138
viewport

description of, 33
establishing margins and contrast in, 264
setting, 176–177

:visited pseudo-class, 48–49
visual rendering and formatting

CSS boxes and document flow, 67–69
CSS box models, 83–85
overview of, 66
positioning schemes

absolute, 73–75
fixed, 75–78
floated, 78–79
overview of, 69
relative, 70–73
static, 69

stacking contexts, 79–83
VML (Vector Markup Language), 9
vm unit, 61
voice-family property, 21
vw unit, 61

W
W3C discussion groups, participating in, 340
W3C (World Wide Web Consortium), 5
WAP (Wireless Application Protocol), 155
Web

future of
audible CSS, 335
expanding CSS in print, 334–335
HTML5, and CSS, 336–337

history of, 333
opportunities and, 334

web browsers
See also specific web browsers
aural, 21
overriding default style sheets of, 32
support for user style sheets in, 35–36
supporting web queries, 23
as user agents, 12

web fonts, 59, 319
Web Fonts module (CSS3), 319, 322–323
Web Hypertext Application Technology Working Group,

336
WebKit rendering engine

CSS selectors, using in JavaScript, 182–183
CSS transforms and transitions, 182, 185–186
designing for, 173–174

layout properties, 176–177
overview of, 18, 75, 159–160, 295
previewing pages, 174–175
styling links to be touch-friendly, 177–181
Web Inspector network timeline, 287

border-radius property, 185
box-shadow property, 185
transform property, 184
transition-duration property, 185
transition-timing-function property, 185
web pages

basic markup example
code, 28–30
with default styles zeroed out, 32
in Firefox, 30
in Safari, 31

printing
margins, setting, 126–129
orphans and widows, 125–126
overview of, 117–118
page box, 124
page breaks, 125
printer style, 121–124
size property, 126

viewing
in browser, 133
in print without styles, 135
with site navigation removed and hyperlinks toned

down, 138
web sites

for CSS3 developments, 330
Lulu, 335
optimizing for performance, 276–278

Web Standards Project, participating in, 340
whitespace in list rendering, 33
white space declaration, 101
wide patterns, 215
widows property, 125–126
Wireless Application Protocol (WAP), 155
Wireless Markup Language (WML), 155
Word (Microsoft), as user agent, 13
word-wrap property (CSS3), 319–320
World Wide Web, evolution of, 149
World Wide Web Consortium (W3C), 5
Wozniak, Steve, 209

X
x-axis of CSS box, 79
XHTML (Extensible Hypertext Markup Language)

extending through namespaces, 251–252
overview of, 5, 251
styling XML namespaces, 252–253

XHTML Basic, 155

357

INDEX

358

XML (Extensible Markup Language)
See also XHTML
<body> element in, 265
content syndication formats, 6–8
development of, 5
Document Type Definition and, 6
namespaces, 6
prologue, 6
rules for CSS in, 250–251
unstyled, displayed as document tree, 262
user agents, 12–14
using for markup

advantages of, 248
disadvantages of, 248–249
overview of, 247
style sheets in, 249–250

vector-based graphics, 8–11
XML document founded on custom markup

example of, 260–269, 273
final style sheet for, 271–273

xml-stylesheet prologue, 8

XPath, CSS3 Selectors compared to, 338
XSL (Extensible Style Sheet Language), 249–250
XSL Formatting Objects (XSL-FO)

CSS and, 335, 338
typical workflow, 337

XSLT (Extensible Stylesheet Language Transformations), 8

Y
y-axis of CSS box, 79
YSlow Firebug plug-in, 286
YUI Compressor, 282
YUI CSS Foundation, 238–242
YUI Grids Builder, 241

Z
z-axis of CSS box, 79
zeroing out default style sheets, 32
z-index property, 80–83

358

	1430219327
	Copyright
	CONTENTS AT A GLANCE
	CONTENTS
	ABOUT THE AUTHORS
	ABOUT THE TECHNICAL REVIEWER
	ABOUT THE COVER IMAGE DESIGNER
	ACKNOWLEDGMENTS
	LAYOUT CONVENTIONS
	Part 1 INTRODUCTION: DIGESTING THE WEB’S ALPHABET SOUP
	1 MARKUP UNDERPINS CSS
	2 CSS FUNDAMENTALS FOR ADVANCED USE

	Part 2 ADVANCED CSS IN PRACTICE
	3 CSS-GENERATED CONTENT
	4 OPTIMIZING FOR PRINT
	5 DEVELOPING FOR SMALL SCREENSAND THE MOBILE WEB
	6 MANAGING AND ORGANIZING STYLE SHEETS

	Part 3 CSS PATTERNS AND ADVANCED TECHNIQUES
	7 SEMANTIC PATTERNS FOR STYLINGCOMMON DESIGN COMPONENTS
	8 USING A STYLE SHEET LIBRARY
	9 STYLING XML WITH CSS
	10 OPTIMIZING CSS FOR PERFORMANCE

	Part 4 THE FUTURE OF CSS
	11 EXPLORING THE EMERGENCE OF CSS3
	12 THE FUTURE OF CSS AND THE WEB

	INDEX

