

	

Copyright
William	Collins

An	imprint	of	HarperCollinsPublishers

1	London	Bridge	Street

London	SE1	9GF

www.WilliamCollinsBooks.com

This	eBook	first	published	in	Great	Britain	by	William	Collins	in	2016

First	published	in	the	United	States	by	Henry	Holt	and	Company,	LLC	in	2016

Copyright	©	2016	by	Brian	Christian	and	Tom	Griffiths

Brian	Christian	and	Tom	Griffiths	assert	the	moral	right

to	be	identified	as	the	authors	of	this	work

A	catalogue	record	for	this	book	is

available	from	the	British	Library

All	rights	reserved	under	International	and	Pan-American	Copyright	Conventions.	By	payment	of	the
required	fees,	you	have	been	granted	the	non-exclusive,	non-transferable	right	to	access	and	read	the
text	of	this	e-book	on	screen.	No	part	of	this	text	may	be	reproduced,	transmitted,	down-loaded,
decompiled,	reverse	engineered,	or	stored	in	or	introduced	into	any	information	storage	and	retrieval
system,	in	any	form	or	by	any	means,	whether	electronic	or	mechanical,	now	known	or	hereinafter
invented,	without	the	express	written	permission	of	HarperCollins.

Source	ISBN:	9780008166090

Ebook	Edition	©	April	2016	ISBN:	9780007547982

Version:	2016-04-05

http://www.WilliamCollinsBooks.com

	

Dedication
For	our	families

	

Contents
Cover

Title	Page

Copyright

Dedication

Introduction

Algorithms	to	Live	By

1			Optimal	Stopping

When	to	Stop	Looking

2			Explore/Exploit

The	Latest	vs.	the	Greatest

3			Sorting

Making	Order

4			Caching

Forget	About	It

5			Scheduling

First	Things	First

6			Bayes’s	Rule

Predicting	the	Future

7			Overfitting

When	to	Think	Less

8			Relaxation

Let	It	Slide

9			Randomness

When	to	Leave	It	to	Chance

10			Networking

How	We	Connect

11			Game	Theory

The	Minds	of	Others

Conclusion

Computational	Kindness

Notes

Bibliography

Index

Acknowledgments

Also	by	Brian	Christian

About	the	Authors

About	the	Publisher

	

Introduction
Algorithms	to	Live	By
Imagine	you’re	searching	for	an	apartment	in	San	Francisco—arguably	the
most	harrowing	American	city	in	which	to	do	so.	The	booming	tech	sector
and	tight	zoning	laws	limiting	new	construction	have	conspired	to	make	the
city	just	as	expensive	as	New	York,	and	by	many	accounts	more	competitive.
New	listings	go	up	and	come	down	within	minutes,	open	houses	are	mobbed,
and	often	the	keys	end	up	in	the	hands	of	whoever	can	physically	foist	a
deposit	check	on	the	landlord	first.

Such	a	savage	market	leaves	little	room	for	the	kind	of	fact-finding	and
deliberation	that	is	theoretically	supposed	to	characterize	the	doings	of	the
rational	consumer.	Unlike,	say,	a	mall	patron	or	an	online	shopper,	who	can
compare	options	before	making	a	decision,	the	would-be	San	Franciscan	has
to	decide	instantly	either	way:	you	can	take	the	apartment	you	are	currently
looking	at,	forsaking	all	others,	or	you	can	walk	away,	never	to	return.

Let’s	assume	for	a	moment,	for	the	sake	of	simplicity,	that	you	care	only
about	maximizing	your	chance	of	getting	the	very	best	apartment	available.
Your	goal	is	reducing	the	twin,	Scylla-and-Charybdis	regrets	of	the	“one	that
got	away”	and	the	“stone	left	unturned”	to	the	absolute	minimum.	You	run
into	a	dilemma	right	off	the	bat:	How	are	you	to	know	that	an	apartment	is
indeed	the	best	unless	you	have	a	baseline	to	judge	it	by?	And	how	are	you	to
establish	that	baseline	unless	you	look	at	(and	lose)	a	number	of	apartments?
The	more	information	you	gather,	the	better	you’ll	know	the	right	opportunity
when	you	see	it—but	the	more	likely	you	are	to	have	already	passed	it	by.

So	what	do	you	do?	How	do	you	make	an	informed	decision	when	the
very	act	of	informing	it	jeopardizes	the	outcome?	It’s	a	cruel	situation,
bordering	on	paradox.

When	presented	with	this	kind	of	problem,	most	people	will	intuitively	say
something	to	the	effect	that	it	requires	some	sort	of	balance	between	looking
and	leaping—that	you	must	look	at	enough	apartments	to	establish	a	standard,
then	take	whatever	satisfies	the	standard	you’ve	established.	This	notion	of

balance	is,	in	fact,	precisely	correct.	What	most	people	don’t	say	with	any
certainty	is	what	that	balance	is.	Fortunately,	there’s	an	answer.

Thirty-seven	percent.

If	you	want	the	best	odds	of	getting	the	best	apartment,	spend	37%	of	your
apartment	hunt	(eleven	days,	if	you’ve	given	yourself	a	month	for	the	search)
noncommittally	exploring	options.	Leave	the	checkbook	at	home;	you’re	just
calibrating.	But	after	that	point,	be	prepared	to	immediately	commit—deposit
and	all—to	the	very	first	place	you	see	that	beats	whatever	you’ve	already
seen.	This	is	not	merely	an	intuitively	satisfying	compromise	between	looking
and	leaping.	It	is	the	provably	optimal	solution.

We	know	this	because	finding	an	apartment	belongs	to	a	class	of
mathematical	problems	known	as	“optimal	stopping”	problems.	The	37%	rule
defines	a	simple	series	of	steps—what	computer	scientists	call	an
“algorithm”—for	solving	these	problems.	And	as	it	turns	out,	apartment
hunting	is	just	one	of	the	ways	that	optimal	stopping	rears	its	head	in	daily
life.	Committing	to	or	forgoing	a	succession	of	options	is	a	structure	that
appears	in	life	again	and	again,	in	slightly	different	incarnations.	How	many
times	to	circle	the	block	before	pulling	into	a	parking	space?	How	far	to	push
your	luck	with	a	risky	business	venture	before	cashing	out?	How	long	to	hold
out	for	a	better	offer	on	that	house	or	car?

The	same	challenge	also	appears	in	an	even	more	fraught	setting:	dating.
Optimal	stopping	is	the	science	of	serial	monogamy.

Simple	algorithms	offer	solutions	not	only	to	an	apartment	hunt	but	to	all
such	situations	in	life	where	we	confront	the	question	of	optimal	stopping.
People	grapple	with	these	issues	every	day—although	surely	poets	have
spilled	more	ink	on	the	tribulations	of	courtship	than	of	parking—and	they	do
so	with,	in	some	cases,	considerable	anguish.	But	the	anguish	is	unnecessary.
Mathematically,	at	least,	these	are	solved	problems.

Every	harried	renter,	driver,	and	suitor	you	see	around	you	as	you	go
through	a	typical	week	is	essentially	reinventing	the	wheel.	They	don’t	need	a
therapist;	they	need	an	algorithm.	The	therapist	tells	them	to	find	the	right,
comfortable	balance	between	impulsivity	and	overthinking.

The	algorithm	tells	them	the	balance	is	thirty-seven	percent.

*			*			*

There	is	a	particular	set	of	problems	that	all	people	face,	problems	that	are	a
direct	result	of	the	fact	that	our	lives	are	carried	out	in	finite	space	and	time.
What	should	we	do,	and	leave	undone,	in	a	day	or	in	a	decade?	What	degree
of	mess	should	we	embrace—and	how	much	order	is	excessive?	What
balance	between	new	experiences	and	favored	ones	makes	for	the	most
fulfilling	life?

These	might	seem	like	problems	unique	to	humans;	they’re	not.	For	more
than	half	a	century,	computer	scientists	have	been	grappling	with,	and	in
many	cases	solving,	the	equivalents	of	these	everyday	dilemmas.	How	should
a	processor	allocate	its	“attention”	to	perform	all	that	the	user	asks	of	it,	with
the	minimum	overhead	and	in	the	least	amount	of	time?	When	should	it
switch	between	different	tasks,	and	how	many	tasks	should	it	take	on	in	the
first	place?	What	is	the	best	way	for	it	to	use	its	limited	memory	resources?
Should	it	collect	more	data,	or	take	an	action	based	on	the	data	it	already	has?
Seizing	the	day	might	be	a	challenge	for	humans,	but	computers	all	around	us
are	seizing	milliseconds	with	ease.	And	there’s	much	we	can	learn	from	how
they	do	it.

Talking	about	algorithms	for	human	lives	might	seem	like	an	odd
juxtaposition.	For	many	people,	the	word	“algorithm”	evokes	the	arcane	and
inscrutable	machinations	of	big	data,	big	government,	and	big	business:
increasingly	part	of	the	infrastructure	of	the	modern	world,	but	hardly	a
source	of	practical	wisdom	or	guidance	for	human	affairs.	But	an	algorithm	is
just	a	finite	sequence	of	steps	used	to	solve	a	problem,	and	algorithms	are
much	broader—and	older	by	far—than	the	computer.	Long	before	algorithms
were	ever	used	by	machines,	they	were	used	by	people.

The	word	“algorithm”	comes	from	the	name	of	Persian	mathematician	al-
Khwārizmī,	author	of	a	ninth-century	book	of	techniques	for	doing
mathematics	by	hand.	(His	book	was	called	al-Jabr	wa’l-Muqābala—and	the
“al-jabr”	of	the	title	in	turn	provides	the	source	of	our	word	“algebra.”)	The
earliest	known	mathematical	algorithms,	however,	predate	even	al-
Khwārizmī’s	work:	a	four-thousand-year-old	Sumerian	clay	tablet	found	near
Baghdad	describes	a	scheme	for	long	division.

But	algorithms	are	not	confined	to	mathematics	alone.	When	you	cook
bread	from	a	recipe,	you’re	following	an	algorithm.	When	you	knit	a	sweater
from	a	pattern,	you’re	following	an	algorithm.	When	you	put	a	sharp	edge	on

a	piece	of	flint	by	executing	a	precise	sequence	of	strikes	with	the	end	of	an
antler—a	key	step	in	making	fine	stone	tools—you’re	following	an	algorithm.
Algorithms	have	been	a	part	of	human	technology	ever	since	the	Stone	Age.

*			*			*

In	this	book,	we	explore	the	idea	of	human	algorithm	design—searching	for
better	solutions	to	the	challenges	people	encounter	every	day.	Applying	the
lens	of	computer	science	to	everyday	life	has	consequences	at	many	scales.
Most	immediately,	it	offers	us	practical,	concrete	suggestions	for	how	to	solve
specific	problems.	Optimal	stopping	tells	us	when	to	look	and	when	to	leap.
The	explore/exploit	tradeoff	tells	us	how	to	find	the	balance	between	trying
new	things	and	enjoying	our	favorites.	Sorting	theory	tells	us	how	(and
whether)	to	arrange	our	offices.	Caching	theory	tells	us	how	to	fill	our	closets.
Scheduling	theory	tells	us	how	to	fill	our	time.

At	the	next	level,	computer	science	gives	us	a	vocabulary	for
understanding	the	deeper	principles	at	play	in	each	of	these	domains.	As	Carl
Sagan	put	it,	“Science	is	a	way	of	thinking	much	more	than	it	is	a	body	of
knowledge.”	Even	in	cases	where	life	is	too	messy	for	us	to	expect	a	strict
numerical	analysis	or	a	ready	answer,	using	intuitions	and	concepts	honed	on
the	simpler	forms	of	these	problems	offers	us	a	way	to	understand	the	key
issues	and	make	progress.

Most	broadly,	looking	through	the	lens	of	computer	science	can	teach	us
about	the	nature	of	the	human	mind,	the	meaning	of	rationality,	and	the	oldest
question	of	all:	how	to	live.	Examining	cognition	as	a	means	of	solving	the
fundamentally	computational	problems	posed	by	our	environment	can	utterly
change	the	way	we	think	about	human	rationality.

The	notion	that	studying	the	inner	workings	of	computers	might	reveal
how	to	think	and	decide,	what	to	believe	and	how	to	behave,	might	strike
many	people	as	not	only	wildly	reductive,	but	in	fact	misguided.	Even	if
computer	science	did	have	things	to	say	about	how	to	think	and	how	to	act,
would	we	want	to	listen?	We	look	at	the	AIs	and	robots	of	science	fiction,	and
it	seems	like	theirs	is	not	a	life	any	of	us	would	want	to	live.

In	part,	that’s	because	when	we	think	about	computers,	we	think	about
coldly	mechanical,	deterministic	systems:	machines	applying	rigid	deductive
logic,	making	decisions	by	exhaustively	enumerating	the	options,	and
grinding	out	the	exact	right	answer	no	matter	how	long	and	hard	they	have	to

think.	Indeed,	the	person	who	first	imagined	computers	had	something
essentially	like	this	in	mind.	Alan	Turing	defined	the	very	notion	of
computation	by	an	analogy	to	a	human	mathematician	who	carefully	works
through	the	steps	of	a	lengthy	calculation,	yielding	an	unmistakably	right
answer.

So	it	might	come	as	a	surprise	that	this	is	not	what	modern	computers	are
actually	doing	when	they	face	a	difficult	problem.	Straightforward	arithmetic,
of	course,	isn’t	particularly	challenging	for	a	modern	computer.	Rather,	it’s
tasks	like	conversing	with	people,	fixing	a	corrupted	file,	or	winning	a	game
of	Go—problems	where	the	rules	aren’t	clear,	some	of	the	required
information	is	missing,	or	finding	exactly	the	right	answer	would	require
considering	an	astronomical	number	of	possibilities—that	now	pose	the
biggest	challenges	in	computer	science.	And	the	algorithms	that	researchers
have	developed	to	solve	the	hardest	classes	of	problems	have	moved
computers	away	from	an	extreme	reliance	on	exhaustive	calculation.	Instead,
tackling	real-world	tasks	requires	being	comfortable	with	chance,	trading	off
time	with	accuracy,	and	using	approximations.

As	computers	become	better	tuned	to	real-world	problems,	they	provide
not	only	algorithms	that	people	can	borrow	for	their	own	lives,	but	a	better
standard	against	which	to	compare	human	cognition	itself.	Over	the	past
decade	or	two,	behavioral	economics	has	told	a	very	particular	story	about
human	beings:	that	we	are	irrational	and	error-prone,	owing	in	large	part	to
the	buggy,	idiosyncratic	hardware	of	the	brain.	This	self-deprecating	story	has
become	increasingly	familiar,	but	certain	questions	remain	vexing.	Why	are
four-year-olds,	for	instance,	still	better	than	million-dollar	supercomputers	at
a	host	of	cognitive	tasks,	including	vision,	language,	and	causal	reasoning?

The	solutions	to	everyday	problems	that	come	from	computer	science	tell
a	different	story	about	the	human	mind.	Life	is	full	of	problems	that	are,	quite
simply,	hard.	And	the	mistakes	made	by	people	often	say	more	about	the
intrinsic	difficulties	of	the	problem	than	about	the	fallibility	of	human	brains.
Thinking	algorithmically	about	the	world,	learning	about	the	fundamental
structures	of	the	problems	we	face	and	about	the	properties	of	their	solutions,
can	help	us	see	how	good	we	actually	are,	and	better	understand	the	errors
that	we	make.

In	fact,	human	beings	turn	out	to	consistently	confront	some	of	the	hardest

cases	of	the	problems	studied	by	computer	scientists.	Often,	people	need	to
make	decisions	while	dealing	with	uncertainty,	time	constraints,	partial
information,	and	a	rapidly	changing	world.	In	some	of	those	cases,	even
cutting-edge	computer	science	has	not	yet	come	up	with	efficient,	always-
right	algorithms.	For	certain	situations	it	appears	that	such	algorithms	might
not	exist	at	all.

Even	where	perfect	algorithms	haven’t	been	found,	however,	the	battle
between	generations	of	computer	scientists	and	the	most	intractable	real-
world	problems	has	yielded	a	series	of	insights.	These	hard-won	precepts	are
at	odds	with	our	intuitions	about	rationality,	and	they	don’t	sound	anything
like	the	narrow	prescriptions	of	a	mathematician	trying	to	force	the	world	into
clean,	formal	lines.	They	say:	Don’t	always	consider	all	your	options.	Don’t
necessarily	go	for	the	outcome	that	seems	best	every	time.	Make	a	mess	on
occasion.	Travel	light.	Let	things	wait.	Trust	your	instincts	and	don’t	think	too
long.	Relax.	Toss	a	coin.	Forgive,	but	don’t	forget.	To	thine	own	self	be	true.

Living	by	the	wisdom	of	computer	science	doesn’t	sound	so	bad	after	all.
And	unlike	most	advice,	it’s	backed	up	by	proofs.

*			*			*

Just	as	designing	algorithms	for	computers	was	originally	a	subject	that	fell
into	the	cracks	between	disciplines—an	odd	hybrid	of	mathematics	and
engineering—so,	too,	designing	algorithms	for	humans	is	a	topic	that	doesn’t
have	a	natural	disciplinary	home.	Today,	algorithm	design	draws	not	only	on
computer	science,	math,	and	engineering	but	on	kindred	fields	like	statistics
and	operations	research.	And	as	we	consider	how	algorithms	designed	for
machines	might	relate	to	human	minds,	we	also	need	to	look	to	cognitive
science,	psychology,	economics,	and	beyond.

We,	your	authors,	are	familiar	with	this	interdisciplinary	territory.	Brian
studied	computer	science	and	philosophy	before	going	on	to	graduate	work	in
English	and	a	career	at	the	intersection	of	the	three.	Tom	studied	psychology
and	statistics	before	becoming	a	professor	at	UC	Berkeley,	where	he	spends
most	of	his	time	thinking	about	the	relationship	between	human	cognition	and
computation.	But	nobody	can	be	an	expert	in	all	of	the	fields	that	are	relevant
to	designing	better	algorithms	for	humans.	So	as	part	of	our	quest	for
algorithms	to	live	by,	we	talked	to	the	people	who	came	up	with	some	of	the
most	famous	algorithms	of	the	last	fifty	years.	And	we	asked	them,	some	of

the	smartest	people	in	the	world,	how	their	research	influenced	the	way	they
approached	their	own	lives—from	finding	their	spouses	to	sorting	their	socks.

The	next	pages	begin	our	journey	through	some	of	the	biggest	challenges
faced	by	computers	and	human	minds	alike:	how	to	manage	finite	space,
finite	time,	limited	attention,	unknown	unknowns,	incomplete	information,
and	an	unforeseeable	future;	how	to	do	so	with	grace	and	confidence;	and
how	to	do	so	in	a	community	with	others	who	are	all	simultaneously	trying	to
do	the	same.	We	will	learn	about	the	fundamental	mathematical	structure	of
these	challenges	and	about	how	computers	are	engineered—sometimes
counter	to	what	we	imagine—to	make	the	most	of	them.	And	we	will	learn
about	how	the	mind	works,	about	its	distinct	but	deeply	related	ways	of
tackling	the	same	set	of	issues	and	coping	with	the	same	constraints.
Ultimately,	what	we	can	gain	is	not	only	a	set	of	concrete	takeaways	for	the
problems	around	us,	not	only	a	new	way	to	see	the	elegant	structures	behind
even	the	hairiest	human	dilemmas,	not	only	a	recognition	of	the	travails	of
humans	and	computers	as	deeply	conjoined,	but	something	even	more
profound:	a	new	vocabulary	for	the	world	around	us,	and	a	chance	to	learn
something	truly	new	about	ourselves.

	

1			Optimal	Stopping
When	to	Stop	Looking
Though	all	Christians	start	a	wedding	invitation	by	solemnly	declaring
their	marriage	is	due	to	special	Divine	arrangement,	I,	as	a	philosopher,
would	like	to	talk	in	greater	detail	about	this	…

—JOHANNES	KEPLER

If	you	prefer	Mr.	Martin	to	every	other	person;	if	you	think	him	the	most
agreeable	man	you	have	ever	been	in	company	with,	why	should	you
hesitate?

—JANE	AUSTEN,	EMMA

It’s	such	a	common	phenomenon	that	college	guidance	counselors	even	have
a	slang	term	for	it:	the	“turkey	drop.”	High-school	sweethearts	come	home	for
Thanksgiving	of	their	freshman	year	of	college	and,	four	days	later,	return	to
campus	single.

An	angst-ridden	Brian	went	to	his	own	college	guidance	counselor	his
freshman	year.	His	high-school	girlfriend	had	gone	to	a	different	college
several	states	away,	and	they	struggled	with	the	distance.	They	also	struggled
with	a	stranger	and	more	philosophical	question:	how	good	a	relationship	did
they	have?	They	had	no	real	benchmark	of	other	relationships	by	which	to
judge	it.	Brian’s	counselor	recognized	theirs	as	a	classic	freshman-year
dilemma,	and	was	surprisingly	nonchalant	in	her	advice:	“Gather	data.”

The	nature	of	serial	monogamy,	writ	large,	is	that	its	practitioners	are
confronted	with	a	fundamental,	unavoidable	problem.	When	have	you	met
enough	people	to	know	who	your	best	match	is?	And	what	if	acquiring	the
data	costs	you	that	very	match?	It	seems	the	ultimate	Catch-22	of	the	heart.

As	we	have	seen,	this	Catch-22,	this	angsty	freshman	cri	de	coeur,	is	what
mathematicians	call	an	“optimal	stopping”	problem,	and	it	may	actually	have
an	answer:	37%.

Of	course,	it	all	depends	on	the	assumptions	you’re	willing	to	make	about
love.

The	Secretary	Problem

In	any	optimal	stopping	problem,	the	crucial	dilemma	is	not	which	option	to
pick,	but	how	many	options	to	even	consider.	These	problems	turn	out	to	have
implications	not	only	for	lovers	and	renters,	but	also	for	drivers,	homeowners,
burglars,	and	beyond.

The	37%	Rule*	derives	from	optimal	stopping’s	most	famous	puzzle,
which	has	come	to	be	known	as	the	“secretary	problem.”	Its	setup	is	much
like	the	apartment	hunter’s	dilemma	that	we	considered	earlier.	Imagine
you’re	interviewing	a	set	of	applicants	for	a	position	as	a	secretary,	and	your
goal	is	to	maximize	the	chance	of	hiring	the	single	best	applicant	in	the	pool.
While	you	have	no	idea	how	to	assign	scores	to	individual	applicants,	you	can
easily	judge	which	one	you	prefer.	(A	mathematician	might	say	you	have
access	only	to	the	ordinal	numbers—the	relative	ranks	of	the	applicants
compared	to	each	other—but	not	to	the	cardinal	numbers,	their	ratings	on
some	kind	of	general	scale.)	You	interview	the	applicants	in	random	order,
one	at	a	time.	You	can	decide	to	offer	the	job	to	an	applicant	at	any	point	and
they	are	guaranteed	to	accept,	terminating	the	search.	But	if	you	pass	over	an
applicant,	deciding	not	to	hire	them,	they	are	gone	forever.

The	secretary	problem	is	widely	considered	to	have	made	its	first
appearance	in	print—sans	explicit	mention	of	secretaries—in	the	February
1960	issue	of	Scientific	American,	as	one	of	several	puzzles	posed	in	Martin
Gardner’s	beloved	column	on	recreational	mathematics.	But	the	origins	of	the
problem	are	surprisingly	mysterious.	Our	own	initial	search	yielded	little	but
speculation,	before	turning	into	unexpectedly	physical	detective	work:	a	road
trip	down	to	the	archive	of	Gardner’s	papers	at	Stanford,	to	haul	out	boxes	of
his	midcentury	correspondence.	Reading	paper	correspondence	is	a	bit	like
eavesdropping	on	someone	who’s	on	the	phone:	you’re	only	hearing	one	side
of	the	exchange,	and	must	infer	the	other.	In	our	case,	we	only	had	the	replies
to	what	was	apparently	Gardner’s	own	search	for	the	problem’s	origins
fiftysome	years	ago.	The	more	we	read,	the	more	tangled	and	unclear	the
story	became.

Harvard	mathematician	Frederick	Mosteller	recalled	hearing	about	the
problem	in	1955	from	his	colleague	Andrew	Gleason,	who	had	heard	about	it
from	somebody	else.	Leo	Moser	wrote	from	the	University	of	Alberta	to	say
that	he	read	about	the	problem	in	“some	notes”	by	R.	E.	Gaskell	of	Boeing,

who	himself	credited	a	colleague.	Roger	Pinkham	of	Rutgers	wrote	that	he
first	heard	of	the	problem	in	1955	from	Duke	University	mathematician	J.
Shoenfield,	“and	I	believe	he	said	that	he	had	heard	the	problem	from
someone	at	Michigan.”

“Someone	at	Michigan”	was	almost	certainly	someone	named	Merrill
Flood.	Though	he	is	largely	unheard	of	outside	mathematics,	Flood’s
influence	on	computer	science	is	almost	impossible	to	avoid.	He’s	credited
with	popularizing	the	traveling	salesman	problem	(which	we	discuss	in	more
detail	in	chapter	8),	devising	the	prisoner’s	dilemma	(which	we	discuss	in
chapter	11),	and	even	with	possibly	coining	the	term	“software.”	It’s	Flood
who	made	the	first	known	discovery	of	the	37%	Rule,	in	1958,	and	he	claims
to	have	been	considering	the	problem	since	1949—but	he	himself	points	back
to	several	other	mathematicians.

Suffice	it	to	say	that	wherever	it	came	from,	the	secretary	problem	proved
to	be	a	near-perfect	mathematical	puzzle:	simple	to	explain,	devilish	to	solve,
succinct	in	its	answer,	and	intriguing	in	its	implications.	As	a	result,	it	moved
like	wildfire	through	the	mathematical	circles	of	the	1950s,	spreading	by
word	of	mouth,	and	thanks	to	Gardner’s	column	in	1960	came	to	grip	the
imagination	of	the	public	at	large.	By	the	1980s	the	problem	and	its	variations
had	produced	so	much	analysis	that	it	had	come	to	be	discussed	in	papers	as	a
subfield	unto	itself.

As	for	secretaries—it’s	charming	to	watch	each	culture	put	its	own
anthropological	spin	on	formal	systems.	We	think	of	chess,	for	instance,	as
medieval	European	in	its	imagery,	but	in	fact	its	origins	are	in	eighth-century
India;	it	was	heavy-handedly	“Europeanized”	in	the	fifteenth	century,	as	its
shahs	became	kings,	its	viziers	turned	to	queens,	and	its	elephants	became
bishops.	Likewise,	optimal	stopping	problems	have	had	a	number	of
incarnations,	each	reflecting	the	predominating	concerns	of	its	time.	In	the
nineteenth	century	such	problems	were	typified	by	baroque	lotteries	and	by
women	choosing	male	suitors;	in	the	early	twentieth	century	by	holidaying
motorists	searching	for	hotels	and	by	male	suitors	choosing	women;	and	in
the	paper-pushing,	male-dominated	mid-twentieth	century,	by	male	bosses
choosing	female	assistants.	The	first	explicit	mention	of	it	by	name	as	the
“secretary	problem”	appears	to	be	in	a	1964	paper,	and	somewhere	along	the
way	the	name	stuck.

Whence	37%?

In	your	search	for	a	secretary,	there	are	two	ways	you	can	fail:	stopping	early
and	stopping	late.	When	you	stop	too	early,	you	leave	the	best	applicant
undiscovered.	When	you	stop	too	late,	you	hold	out	for	a	better	applicant	who
doesn’t	exist.	The	optimal	strategy	will	clearly	require	finding	the	right
balance	between	the	two,	walking	the	tightrope	between	looking	too	much
and	not	enough.

If	your	aim	is	finding	the	very	best	applicant,	settling	for	nothing	less,	it’s
clear	that	as	you	go	through	the	interview	process	you	shouldn’t	even
consider	hiring	somebody	who	isn’t	the	best	you’ve	seen	so	far.	However,
simply	being	the	best	yet	isn’t	enough	for	an	offer;	the	very	first	applicant,	for
example,	will	of	course	be	the	best	yet	by	definition.	More	generally,	it	stands
to	reason	that	the	rate	at	which	we	encounter	“best	yet”	applicants	will	go
down	as	we	proceed	in	our	interviews.	For	instance,	the	second	applicant	has
a	50/50	chance	of	being	the	best	we’ve	yet	seen,	but	the	fifth	applicant	only
has	a	1-in-5	chance	of	being	the	best	so	far,	the	sixth	has	a	1-in-6	chance,	and
so	on.	As	a	result,	best-yet	applicants	will	become	steadily	more	impressive
as	the	search	continues	(by	definition,	again,	they’re	better	than	all	those	who
came	before)—but	they	will	also	become	more	and	more	infrequent.

Okay,	so	we	know	that	taking	the	first	best-yet	applicant	we	encounter
(a.k.a.	the	first	applicant,	period)	is	rash.	If	there	are	a	hundred	applicants,	it
also	seems	hasty	to	make	an	offer	to	the	next	one	who’s	best-yet,	just	because
she	was	better	than	the	first.	So	how	do	we	proceed?

Intuitively,	there	are	a	few	potential	strategies.	For	instance,	making	an
offer	the	third	time	an	applicant	trumps	everyone	seen	so	far—or	maybe	the
fourth	time.	Or	perhaps	taking	the	next	best-yet	applicant	to	come	along	after
a	long	“drought”—a	long	streak	of	poor	ones.

But	as	it	happens,	neither	of	these	relatively	sensible	strategies	comes	out
on	top.	Instead,	the	optimal	solution	takes	the	form	of	what	we’ll	call	the
Look-Then-Leap	Rule:	You	set	a	predetermined	amount	of	time	for
“looking”—that	is,	exploring	your	options,	gathering	data—in	which	you
categorically	don’t	choose	anyone,	no	matter	how	impressive.	After	that
point,	you	enter	the	“leap”	phase,	prepared	to	instantly	commit	to	anyone	who
outshines	the	best	applicant	you	saw	in	the	look	phase.

We	can	see	how	the	Look-Then-Leap	Rule	emerges	by	considering	how
the	secretary	problem	plays	out	in	the	smallest	applicant	pools.	With	just	one
applicant	the	problem	is	easy	to	solve—hire	her!	With	two	applicants,	you
have	a	50/50	chance	of	success	no	matter	what	you	do.	You	can	hire	the	first
applicant	(who’ll	turn	out	to	be	the	best	half	the	time),	or	dismiss	the	first	and
by	default	hire	the	second	(who	is	also	best	half	the	time).

Add	a	third	applicant,	and	all	of	a	sudden	things	get	interesting.	The	odds
if	we	hire	at	random	are	one-third,	or	33%.	With	two	applicants	we	could	do
no	better	than	chance;	with	three,	can	we?	It	turns	out	we	can,	and	it	all	comes
down	to	what	we	do	with	the	second	interviewee.	When	we	see	the	first
applicant,	we	have	no	information—she’ll	always	appear	to	be	the	best	yet.
When	we	see	the	third	applicant,	we	have	no	agency—we	have	to	make	an
offer	to	the	final	applicant,	since	we’ve	dismissed	the	others.	But	when	we	see
the	second	applicant,	we	have	a	little	bit	of	both:	we	know	whether	she’s
better	or	worse	than	the	first,	and	we	have	the	freedom	to	either	hire	or
dismiss	her.	What	happens	when	we	just	hire	her	if	she’s	better	than	the	first
applicant,	and	dismiss	her	if	she’s	not?	This	turns	out	to	be	the	best	possible
strategy	when	facing	three	applicants;	using	this	approach	it’s	possible,
surprisingly,	to	do	just	as	well	in	the	three-applicant	problem	as	with	two,
choosing	the	best	applicant	exactly	half	the	time.*

Enumerating	these	scenarios	for	four	applicants	tells	us	that	we	should	still
begin	to	leap	as	soon	as	the	second	applicant;	with	five	applicants	in	the	pool,
we	shouldn’t	leap	before	the	third.

As	the	applicant	pool	grows,	the	exact	place	to	draw	the	line	between
looking	and	leaping	settles	to	37%	of	the	pool,	yielding	the	37%	Rule:	look	at
the	first	37%	of	the	applicants,*	choosing	none,	then	be	ready	to	leap	for
anyone	better	than	all	those	you’ve	seen	so	far.

How	to	optimally	choose	a	secretary.

As	it	turns	out,	following	this	optimal	strategy	ultimately	gives	us	a	37%
chance	of	hiring	the	best	applicant;	it’s	one	of	the	problem’s	curious
mathematical	symmetries	that	the	strategy	itself	and	its	chance	of	success
work	out	to	the	very	same	number.	The	table	above	shows	the	optimal
strategy	for	the	secretary	problem	with	different	numbers	of	applicants,
demonstrating	how	the	chance	of	success—like	the	point	to	switch	from
looking	to	leaping—converges	on	37%	as	the	number	of	applicants	increases.

A	63%	failure	rate,	when	following	the	best	possible	strategy,	is	a	sobering
fact.	Even	when	we	act	optimally	in	the	secretary	problem,	we	will	still	fail
most	of	the	time—that	is,	we	won’t	end	up	with	the	single	best	applicant	in
the	pool.	This	is	bad	news	for	those	of	us	who	would	frame	romance	as	a
search	for	“the	one.”	But	here’s	the	silver	lining.	Intuition	would	suggest	that
our	chances	of	picking	the	single	best	applicant	should	steadily	decrease	as
the	applicant	pool	grows.	If	we	were	hiring	at	random,	for	instance,	then	in	a
pool	of	a	hundred	applicants	we’d	have	a	1%	chance	of	success,	and	in	a	pool
of	a	million	applicants	we’d	have	a	0.0001%	chance.	Yet	remarkably,	the
math	of	the	secretary	problem	doesn’t	change.	If	you’re	stopping	optimally,

your	chance	of	finding	the	single	best	applicant	in	a	pool	of	a	hundred	is	37%.
And	in	a	pool	of	a	million,	believe	it	or	not,	your	chance	is	still	37%.	Thus	the
bigger	the	applicant	pool	gets,	the	more	valuable	knowing	the	optimal
algorithm	becomes.	It’s	true	that	you’re	unlikely	to	find	the	needle	the
majority	of	the	time,	but	optimal	stopping	is	your	best	defense	against	the
haystack,	no	matter	how	large.

Lover’s	Leap

The	passion	between	the	sexes	has	appeared	in	every	age	to	be	so	nearly
the	same	that	it	may	always	be	considered,	in	algebraic	language,	as	a
given	quantity.

—THOMAS	MALTHUS

I	married	the	first	man	I	ever	kissed.	When	I	tell	this	to	my	children	they
just	about	throw	up.

—BARBARA	BUSH

Before	he	became	a	professor	of	operations	research	at	Carnegie	Mellon,
Michael	Trick	was	a	graduate	student,	looking	for	love.	“It	hit	me	that	the
problem	has	been	studied:	it	is	the	Secretary	Problem!	I	had	a	position	to	fill
[and]	a	series	of	applicants,	and	my	goal	was	to	pick	the	best	applicant	for	the
position.”	So	he	ran	the	numbers.	He	didn’t	know	how	many	women	he	could
expect	to	meet	in	his	lifetime,	but	there’s	a	certain	flexibility	in	the	37%	Rule:
it	can	be	applied	to	either	the	number	of	applicants	or	the	time	over	which	one
is	searching.	Assuming	that	his	search	would	run	from	ages	eighteen	to	forty,
the	37%	Rule	gave	age	26.1	years	as	the	point	at	which	to	switch	from
looking	to	leaping.	A	number	that,	as	it	happened,	was	exactly	Trick’s	age	at
the	time.	So	when	he	found	a	woman	who	was	a	better	match	than	all	those	he
had	dated	so	far,	he	knew	exactly	what	to	do.	He	leapt.	“I	didn’t	know	if	she
was	Perfect	(the	assumptions	of	the	model	don’t	allow	me	to	determine	that),
but	there	was	no	doubt	that	she	met	the	qualifications	for	this	step	of	the
algorithm.	So	I	proposed,”	he	writes.

“And	she	turned	me	down.”

Mathematicians	have	been	having	trouble	with	love	since	at	least	the
seventeenth	century.	The	legendary	astronomer	Johannes	Kepler	is	today
perhaps	best	remembered	for	discovering	that	planetary	orbits	are	elliptical
and	for	being	a	crucial	part	of	the	“Copernican	Revolution”	that	included

Galileo	and	Newton	and	upended	humanity’s	sense	of	its	place	in	the	heavens.
But	Kepler	had	terrestrial	concerns,	too.	After	the	death	of	his	first	wife	in
1611,	Kepler	embarked	on	a	long	and	arduous	quest	to	remarry,	ultimately
courting	a	total	of	eleven	women.	Of	the	first	four,	Kepler	liked	the	fourth	the
best	(“because	of	her	tall	build	and	athletic	body”)	but	did	not	cease	his
search.	“It	would	have	been	settled,”	Kepler	wrote,	“had	not	both	love	and
reason	forced	a	fifth	woman	on	me.	This	one	won	me	over	with	love,	humble
loyalty,	economy	of	household,	diligence,	and	the	love	she	gave	the
stepchildren.”

“However,”	he	wrote,	“I	continued.”

Kepler’s	friends	and	relations	went	on	making	introductions	for	him,	and
he	kept	on	looking,	but	halfheartedly.	His	thoughts	remained	with	number
five.	After	eleven	courtships	in	total,	he	decided	he	would	search	no	further.
“While	preparing	to	travel	to	Regensburg,	I	returned	to	the	fifth	woman,
declared	myself,	and	was	accepted.”	Kepler	and	Susanna	Reuttinger	were
wed	and	had	six	children	together,	along	with	the	children	from	Kepler’s	first
marriage.	Biographies	describe	the	rest	of	Kepler’s	domestic	life	as	a
particularly	peaceful	and	joyous	time.

Both	Kepler	and	Trick—in	opposite	ways—experienced	firsthand	some	of
the	ways	that	the	secretary	problem	oversimplifies	the	search	for	love.	In	the
classical	secretary	problem,	applicants	always	accept	the	position,	preventing
the	rejection	experienced	by	Trick.	And	they	cannot	be	“recalled”	once	passed
over,	contrary	to	the	strategy	followed	by	Kepler.

In	the	decades	since	the	secretary	problem	was	first	introduced,	a	wide
range	of	variants	on	the	scenario	have	been	studied,	with	strategies	for
optimal	stopping	worked	out	under	a	number	of	different	conditions.	The
possibility	of	rejection,	for	instance,	has	a	straightforward	mathematical
solution:	propose	early	and	often.	If	you	have,	say,	a	50/50	chance	of	being
rejected,	then	the	same	kind	of	mathematical	analysis	that	yielded	the	37%
Rule	says	you	should	start	making	offers	after	just	a	quarter	of	your	search.	If
turned	down,	keep	making	offers	to	every	best-yet	person	you	see	until
somebody	accepts.	With	such	a	strategy,	your	chance	of	overall	success—that
is,	proposing	and	being	accepted	by	the	best	applicant	in	the	pool—will	also
be	25%.	Not	such	terrible	odds,	perhaps,	for	a	scenario	that	combines	the
obstacle	of	rejection	with	the	general	difficulty	of	establishing	one’s	standards

in	the	first	place.

Kepler,	for	his	part,	decried	the	“restlessness	and	doubtfulness”	that
pushed	him	to	keep	on	searching.	“Was	there	no	other	way	for	my	uneasy
heart	to	be	content	with	its	fate,”	he	bemoaned	in	a	letter	to	a	confidante,
“than	by	realizing	the	impossibility	of	the	fulfillment	of	so	many	other
desires?”	Here,	again,	optimal	stopping	theory	provides	some	measure	of
consolation.	Rather	than	being	signs	of	moral	or	psychological	degeneracy,
restlessness	and	doubtfulness	actually	turn	out	to	be	part	of	the	best	strategy
for	scenarios	where	second	chances	are	possible.	If	you	can	recall	previous
applicants,	the	optimal	algorithm	puts	a	twist	on	the	familiar	Look-Then-Leap
Rule:	a	longer	noncommittal	period,	and	a	fallback	plan.

For	example,	assume	an	immediate	proposal	is	a	sure	thing	but	belated
proposals	are	rejected	half	the	time.	Then	the	math	says	you	should	keep
looking	noncommittally	until	you’ve	seen	61%	of	applicants,	and	then	only
leap	if	someone	in	the	remaining	39%	of	the	pool	proves	to	be	the	best	yet.	If
you’re	still	single	after	considering	all	the	possibilities—as	Kepler	was—then
go	back	to	the	best	one	that	got	away.	The	symmetry	between	strategy	and
outcome	holds	in	this	case	once	again,	with	your	chances	of	ending	up	with
the	best	applicant	under	this	second-chances-allowed	scenario	also	being
61%.

For	Kepler,	the	difference	between	reality	and	the	classical	secretary
problem	brought	with	it	a	happy	ending.	In	fact,	the	twist	on	the	classical
problem	worked	out	well	for	Trick,	too.	After	the	rejection,	he	completed	his
degree	and	took	a	job	in	Germany.	There,	he	“walked	into	a	bar,	fell	in	love
with	a	beautiful	woman,	moved	in	together	three	weeks	later,	[and]	invited
her	to	live	in	the	United	States	‘for	a	while.’”	She	agreed—and	six	years	later,
they	were	wed.

Knowing	a	Good	Thing	When	You	See	It:	Full	Information

The	first	set	of	variants	we	considered—rejection	and	recall—altered	the
classical	secretary	problem’s	assumptions	that	timely	proposals	are	always
accepted,	and	tardy	proposals,	never.	For	these	variants,	the	best	approach
remained	the	same	as	in	the	original:	look	noncommittally	for	a	time,	then	be
ready	to	leap.

But	there’s	an	even	more	fundamental	assumption	of	the	secretary

problem	that	we	might	call	into	question.	Namely,	in	the	secretary	problem
we	know	nothing	about	the	applicants	other	than	how	they	compare	to	one
another.	We	don’t	have	an	objective	or	preexisting	sense	of	what	makes	for	a
good	or	a	bad	applicant;	moreover,	when	we	compare	two	of	them,	we	know
which	of	the	two	is	better,	but	not	by	how	much.	It’s	this	fact	that	gives	rise	to
the	unavoidable	“look”	phase,	in	which	we	risk	passing	up	a	superb	early
applicant	while	we	calibrate	our	expectations	and	standards.	Mathematicians
refer	to	this	genre	of	optimal	stopping	problems	as	“no-information	games.”

This	setup	is	arguably	a	far	cry	from	most	searches	for	an	apartment,	a
partner,	or	even	a	secretary.	Imagine	instead	that	we	had	some	kind	of
objective	criterion—if	every	secretary,	for	instance,	had	taken	a	typing	exam
scored	by	percentile,	in	the	fashion	of	the	SAT	or	GRE	or	LSAT.	That	is,
every	applicant’s	score	will	tell	us	where	they	fall	among	all	the	typists	who
took	the	test:	a	51st-percentile	typist	is	just	above	average,	a	75th-percentile
typist	is	better	than	three	test	takers	out	of	four,	and	so	on.

Suppose	that	our	applicant	pool	is	representative	of	the	population	at	large
and	isn’t	skewed	or	self-selected	in	any	way.	Furthermore,	suppose	we	decide
that	typing	speed	is	the	only	thing	that	matters	about	our	applicants.	Then	we
have	what	mathematicians	call	“full	information,”	and	everything	changes.
“No	buildup	of	experience	is	needed	to	set	a	standard,”	as	the	seminal	1966
paper	on	the	problem	put	it,	“and	a	profitable	choice	can	sometimes	be	made
immediately.”	In	other	words,	if	a	95th-percentile	applicant	happens	to	be	the
first	one	we	evaluate,	we	know	it	instantly	and	can	confidently	hire	her	on	the
spot—that	is,	of	course,	assuming	we	don’t	think	there’s	a	96th-percentile
applicant	in	the	pool.

And	there’s	the	rub.	If	our	goal	is,	again,	to	get	the	single	best	person	for
the	job,	we	still	need	to	weigh	the	likelihood	that	there’s	a	stronger	applicant
out	there.	However,	the	fact	that	we	have	full	information	gives	us	everything
we	need	to	calculate	those	odds	directly.	The	chance	that	our	next	applicant	is
in	the	96th	percentile	or	higher	will	always	be	1	in	20,	for	instance.	Thus	the
decision	of	whether	to	stop	comes	down	entirely	to	how	many	applicants	we
have	left	to	see.	Full	information	means	that	we	don’t	need	to	look	before	we
leap.	We	can	instead	use	the	Threshold	Rule,	where	we	immediately	accept
an	applicant	if	she	is	above	a	certain	percentile.	We	don’t	need	to	look	at	an
initial	group	of	candidates	to	set	this	threshold—but	we	do,	however,	need	to
be	keenly	aware	of	how	much	looking	remains	available.

The	math	shows	that	when	there	are	a	lot	of	applicants	left	in	the	pool,	you
should	pass	up	even	a	very	good	applicant	in	the	hopes	of	finding	someone
still	better	than	that—but	as	your	options	dwindle,	you	should	be	prepared	to
hire	anyone	who’s	simply	better	than	average.	It’s	a	familiar,	if	not	exactly
inspiring,	message:	in	the	face	of	slim	pickings,	lower	your	standards.	It	also
makes	clear	the	converse:	with	more	fish	in	the	sea,	raise	them.	In	both	cases,
crucially,	the	math	tells	you	exactly	by	how	much.

The	easiest	way	to	understand	the	numbers	for	this	scenario	is	to	start	at
the	end	and	think	backward.	If	you’re	down	to	the	last	applicant,	of	course,
you	are	necessarily	forced	to	choose	her.	But	when	looking	at	the	next-to-last
applicant,	the	question	becomes:	is	she	above	the	50th	percentile?	If	yes,	then
hire	her;	if	not,	it’s	worth	rolling	the	dice	on	the	last	applicant	instead,	since
her	odds	of	being	above	the	50th	percentile	are	50/50	by	definition.	Likewise,
you	should	choose	the	third-to-last	applicant	if	she’s	above	the	69th
percentile,	the	fourth-to-last	applicant	if	she’s	above	the	78th,	and	so	on,
being	more	choosy	the	more	applicants	are	left.	No	matter	what,	never	hire
someone	who’s	below	average	unless	you’re	totally	out	of	options.	(And	since
you’re	still	interested	only	in	finding	the	very	best	person	in	the	applicant
pool,	never	hire	someone	who	isn’t	the	best	you’ve	seen	so	far.)

The	chance	of	ending	up	with	the	single	best	applicant	in	this	full-
information	version	of	the	secretary	problem	comes	to	58%—still	far	from	a
guarantee,	but	considerably	better	than	the	37%	success	rate	offered	by	the
37%	Rule	in	the	no-information	game.	If	you	have	all	the	facts,	you	can
succeed	more	often	than	not,	even	as	the	applicant	pool	grows	arbitrarily
large.

Optimal	stopping	thresholds	in	the	full-information	secretary	problem.

The	full-information	game	thus	offers	an	unexpected	and	somewhat
bizarre	takeaway.	Gold	digging	is	more	likely	to	succeed	than	a	quest	for	love.
If	you’re	evaluating	your	partners	based	on	any	kind	of	objective	criterion—
say,	their	income	percentile—then	you’ve	got	a	lot	more	information	at	your
disposal	than	if	you’re	after	a	nebulous	emotional	response	(“love”)	that
might	require	both	experience	and	comparison	to	calibrate.

Of	course,	there’s	no	reason	that	net	worth—or,	for	that	matter,	typing
speed—needs	to	be	the	thing	that	you’re	measuring.	Any	yardstick	that
provides	full	information	on	where	an	applicant	stands	relative	to	the
population	at	large	will	change	the	solution	from	the	Look-Then-Leap	Rule	to
the	Threshold	Rule	and	will	dramatically	boost	your	chances	of	finding	the
single	best	applicant	in	the	group.

There	are	many	more	variants	of	the	secretary	problem	that	modify	its
other	assumptions,	perhaps	bringing	it	more	in	line	with	the	real-world
challenges	of	finding	love	(or	a	secretary).	But	the	lessons	to	be	learned	from
optimal	stopping	aren’t	limited	to	dating	or	hiring.	In	fact,	trying	to	make	the
best	choice	when	options	only	present	themselves	one	by	one	is	also	the	basic
structure	of	selling	a	house,	parking	a	car,	and	quitting	when	you’re	ahead.
And	they’re	all,	to	some	degree	or	other,	solved	problems.

When	to	Sell

If	we	alter	two	more	aspects	of	the	classical	secretary	problem,	we	find
ourselves	catapulted	from	the	realm	of	dating	to	the	realm	of	real	estate.
Earlier	we	talked	about	the	process	of	renting	an	apartment	as	an	optimal
stopping	problem,	but	owning	a	home	has	no	shortage	of	optimal	stopping
either.

Imagine	selling	a	house,	for	instance.	After	consulting	with	several	real
estate	agents,	you	put	your	place	on	the	market;	a	new	coat	of	paint,	some
landscaping,	and	then	it’s	just	a	matter	of	waiting	for	the	offers	to	come	in.	As
each	offer	arrives,	you	typically	have	to	decide	whether	to	accept	it	or	turn	it
down.	But	turning	down	an	offer	comes	at	a	cost—another	week	(or	month)
of	mortgage	payments	while	you	wait	for	the	next	offer,	which	isn’t
guaranteed	to	be	any	better.

Selling	a	house	is	similar	to	the	full-information	game.	We	know	the
objective	dollar	value	of	the	offers,	telling	us	not	only	which	ones	are	better
than	which,	but	also	by	how	much.	What’s	more,	we	have	information	about
the	broader	state	of	the	market,	which	enables	us	to	at	least	roughly	predict
the	range	of	offers	to	expect.	(This	gives	us	the	same	“percentile”	information
about	each	offer	that	we	had	with	the	typing	exam	above.)	The	difference
here,	however,	is	that	our	goal	isn’t	actually	to	secure	the	single	best	offer—
it’s	to	make	the	most	money	through	the	process	overall.	Given	that	waiting
has	a	cost	measured	in	dollars,	a	good	offer	today	beats	a	slightly	better	one
several	months	from	now.

Having	this	information,	we	don’t	need	to	look	noncommittally	to	set	a
threshold.	Instead,	we	can	set	one	going	in,	ignore	everything	below	it,	and
take	the	first	option	to	exceed	it.	Granted,	if	we	have	a	limited	amount	of
savings	that	will	run	out	if	we	don’t	sell	by	a	certain	time,	or	if	we	expect	to
get	only	a	limited	number	of	offers	and	no	more	interest	thereafter,	then	we
should	lower	our	standards	as	such	limits	approach.	(There’s	a	reason	why
home	buyers	look	for	“motivated”	sellers.)	But	if	neither	concern	leads	us	to
believe	that	our	backs	are	against	the	wall,	then	we	can	simply	focus	on	a
cost-benefit	analysis	of	the	waiting	game.

Here	we’ll	analyze	one	of	the	simplest	cases:	where	we	know	for	certain
the	price	range	in	which	offers	will	come,	and	where	all	offers	within	that
range	are	equally	likely.	If	we	don’t	have	to	worry	about	the	offers	(or	our

savings)	running	out,	then	we	can	think	purely	in	terms	of	what	we	can	expect
to	gain	or	lose	by	waiting	for	a	better	deal.	If	we	decline	the	current	offer,	will
the	chance	of	a	better	one,	multiplied	by	how	much	better	we	expect	it	to	be,
more	than	compensate	for	the	cost	of	the	wait?	As	it	turns	out,	the	math	here
is	quite	clean,	giving	us	an	explicit	function	for	stopping	price	as	a	function	of
the	cost	of	waiting	for	an	offer.

This	particular	mathematical	result	doesn’t	care	whether	you’re	selling	a
mansion	worth	millions	or	a	ramshackle	shed.	The	only	thing	it	cares	about	is
the	difference	between	the	highest	and	lowest	offers	you’re	likely	to	receive.
By	plugging	in	some	concrete	figures,	we	can	see	how	this	algorithm	offers
us	a	considerable	amount	of	explicit	guidance.	For	instance,	let’s	say	the
range	of	offers	we’re	expecting	runs	from	$400,000	to	$500,000.	First,	if	the
cost	of	waiting	is	trivial,	we’re	able	to	be	almost	infinitely	choosy.	If	the	cost
of	getting	another	offer	is	only	a	dollar,	we’ll	maximize	our	earnings	by
waiting	for	someone	willing	to	offer	us	$499,552.79	and	not	a	dime	less.	If
waiting	costs	$2,000	an	offer,	we	should	hold	out	for	an	even	$480,000.	In	a
slow	market	where	waiting	costs	$10,000	an	offer,	we	should	take	anything
over	$455,279.	Finally,	if	waiting	costs	half	or	more	of	our	expected	range	of
offers—in	this	case,	$50,000—then	there’s	no	advantage	whatsoever	to
holding	out;	we’ll	do	best	by	taking	the	very	first	offer	that	comes	along	and
calling	it	done.	Beggars	can’t	be	choosers.

Optimal	stopping	thresholds	in	the	house-selling	problem.

The	critical	thing	to	note	in	this	problem	is	that	our	threshold	depends	only
on	the	cost	of	search.	Since	the	chances	of	the	next	offer	being	a	good	one—
and	the	cost	of	finding	out—never	change,	our	stopping	price	has	no	reason	to
ever	get	lower	as	the	search	goes	on,	regardless	of	our	luck.	We	set	it	once,
before	we	even	begin,	and	then	we	quite	simply	hold	fast.

The	University	of	Wisconsin–Madison’s	Laura	Albert	McLay,	an
optimization	expert,	recalls	turning	to	her	knowledge	of	optimal	stopping
problems	when	it	came	time	to	sell	her	own	house.	“The	first	offer	we	got	was
great,”	she	explains,	“but	it	had	this	huge	cost	because	they	wanted	us	to
move	out	a	month	before	we	were	ready.	There	was	another	competitive
offer	…	[but]	we	just	kind	of	held	out	until	we	got	the	right	one.”	For	many
sellers,	turning	down	a	good	offer	or	two	can	be	a	nerve-racking	proposition,
especially	if	the	ones	that	immediately	follow	are	no	better.	But	McLay	held
her	ground	and	stayed	cool.	“That	would	have	been	really,	really	hard,”	she
admits,	“if	I	didn’t	know	the	math	was	on	my	side.”

This	principle	applies	to	any	situation	where	you	get	a	series	of	offers	and
pay	a	cost	to	seek	or	wait	for	the	next.	As	a	consequence,	it’s	relevant	to	cases
that	go	far	beyond	selling	a	house.	For	example,	economists	have	used	this
algorithm	to	model	how	people	look	for	jobs,	where	it	handily	explains	the
otherwise	seemingly	paradoxical	fact	of	unemployed	workers	and	unfilled
vacancies	existing	at	the	same	time.

In	fact,	these	variations	on	the	optimal	stopping	problem	have	another,
even	more	surprising	property.	As	we	saw,	the	ability	to	“recall”	a	past
opportunity	was	vital	in	Kepler’s	quest	for	love.	But	in	house	selling	and	job
hunting,	even	if	it’s	possible	to	reconsider	an	earlier	offer,	and	even	if	that
offer	is	guaranteed	to	still	be	on	the	table,	you	should	nonetheless	never	do	so.
If	it	wasn’t	above	your	threshold	then,	it	won’t	be	above	your	threshold	now.
What	you’ve	paid	to	keep	searching	is	a	sunk	cost.	Don’t	compromise,	don’t
second-guess.	And	don’t	look	back.

When	to	Park

I	find	that	the	three	major	administrative	problems	on	a	campus	are	sex
for	the	students,	athletics	for	the	alumni,	and	parking	for	the	faculty.

—CLARK	KERR,	PRESIDENT	OF	UC	BERKELEY,	1958–1967

Another	domain	where	optimal	stopping	problems	abound—and	where

looking	back	is	also	generally	ill-advised—is	the	car.	Motorists	feature	in
some	of	the	earliest	literature	on	the	secretary	problem,	and	the	framework	of
constant	forward	motion	makes	almost	every	car-trip	decision	into	a	stopping
problem:	the	search	for	a	restaurant;	the	search	for	a	bathroom;	and,	most
acutely	for	urban	drivers,	the	search	for	a	parking	space.	Who	better	to	talk	to
about	the	ins	and	outs	of	parking	than	the	man	described	by	the	Los	Angeles
Times	as	“the	parking	rock	star,”	UCLA	Distinguished	Professor	of	Urban
Planning	Donald	Shoup?	We	drove	down	from	Northern	California	to	visit
him,	reassuring	Shoup	that	we’d	be	leaving	plenty	of	time	for	unexpected
traffic.	“As	for	planning	on	‘unexpected	traffic,’	I	think	you	should	plan	on
expected	traffic,”	he	replied.	Shoup	is	perhaps	best	known	for	his	book	The
High	Cost	of	Free	Parking,	and	he	has	done	much	to	advance	the	discussion
and	understanding	of	what	really	happens	when	someone	drives	to	their
destination.

We	should	pity	the	poor	driver.	The	ideal	parking	space,	as	Shoup	models
it,	is	one	that	optimizes	a	precise	balance	between	the	“sticker	price”	of	the
space,	the	time	and	inconvenience	of	walking,	the	time	taken	seeking	the
space	(which	varies	wildly	with	destination,	time	of	day,	etc.),	and	the	gas
burned	in	doing	so.	The	equation	changes	with	the	number	of	passengers	in
the	car,	who	can	split	the	monetary	cost	of	a	space	but	not	the	search	time	or
the	walk.	At	the	same	time,	the	driver	needs	to	consider	that	the	area	with	the
most	parking	supply	may	also	be	the	area	with	the	most	demand;	parking	has
a	game-theoretic	component,	as	you	try	to	outsmart	the	other	drivers	on	the
road	while	they	in	turn	are	trying	to	outsmart	you.*	That	said,	many	of	the
challenges	of	parking	boil	down	to	a	single	number:	the	occupancy	rate.	This
is	the	proportion	of	all	parking	spots	that	are	currently	occupied.	If	the
occupancy	rate	is	low,	it’s	easy	to	find	a	good	parking	spot.	If	it’s	high,
finding	anywhere	at	all	to	park	is	a	challenge.

Shoup	argues	that	many	of	the	headaches	of	parking	are	consequences	of
cities	adopting	policies	that	result	in	extremely	high	occupancy	rates.	If	the
cost	of	parking	in	a	particular	location	is	too	low	(or—horrors!—nothing	at
all),	then	there	is	a	high	incentive	to	park	there,	rather	than	to	park	a	little
farther	away	and	walk.	So	everybody	tries	to	park	there,	but	most	of	them
find	the	spaces	are	already	full,	and	people	end	up	wasting	time	and	burning
fossil	fuel	as	they	cruise	for	a	spot.

Shoup’s	solution	involves	installing	digital	parking	meters	that	are	capable

of	adaptive	prices	that	rise	with	demand.	(This	has	now	been	implemented	in
downtown	San	Francisco.)	The	prices	are	set	with	a	target	occupancy	rate	in
mind,	and	Shoup	argues	that	this	rate	should	be	somewhere	around	85%—a
radical	drop	from	the	nearly	100%-packed	curbs	of	most	major	cities.	As	he
notes,	when	occupancy	goes	from	90%	to	95%,	it	accommodates	only	5%
more	cars	but	doubles	the	length	of	everyone’s	search.

The	key	impact	that	occupancy	rate	has	on	parking	strategy	becomes	clear
once	we	recognize	that	parking	is	an	optimal	stopping	problem.	As	you	drive
along	the	street,	every	time	you	see	the	occasional	empty	spot	you	have	to
make	a	decision:	should	you	take	this	spot,	or	go	a	little	closer	to	your
destination	and	try	your	luck?

Assume	you’re	on	an	infinitely	long	road,	with	parking	spots	evenly
spaced,	and	your	goal	is	to	minimize	the	distance	you	end	up	walking	to	your
destination.	Then	the	solution	is	the	Look-Then-Leap	Rule.	The	optimally
stopping	driver	should	pass	up	all	vacant	spots	occurring	more	than	a	certain
distance	from	the	destination	and	then	take	the	first	space	that	appears
thereafter.	And	the	distance	at	which	to	switch	from	looking	to	leaping
depends	on	the	proportion	of	spots	that	are	likely	to	be	filled—the	occupancy
rate.	The	table	on	the	next	page	gives	the	distances	for	some	representative
proportions.

How	to	optimally	find	parking.

If	this	infinite	street	has	a	big-city	occupancy	rate	of	99%,	with	just	1%	of
spots	vacant,	then	you	should	take	the	first	spot	you	see	starting	at	almost	70
spots—more	than	a	quarter	mile—from	your	destination.	But	if	Shoup	has	his
way	and	occupancy	rates	drop	to	just	85%,	you	don’t	need	to	start	seriously
looking	until	you’re	half	a	block	away.

Most	of	us	don’t	drive	on	perfectly	straight,	infinitely	long	roads.	So	as
with	other	optimal	stopping	problems,	researchers	have	considered	a	variety
of	tweaks	to	this	basic	scenario.	For	instance,	they	have	studied	the	optimal
parking	strategy	for	cases	where	the	driver	can	make	U-turns,	where	fewer
parking	spaces	are	available	the	closer	one	gets	to	the	destination,	and	where
the	driver	is	in	competition	against	rival	drivers	also	heading	to	the	same
destination.	But	whatever	the	exact	parameters	of	the	problem,	more	vacant
spots	are	always	going	to	make	life	easier.	It’s	something	of	a	policy	reminder
to	municipal	governments:	parking	is	not	as	simple	as	having	a	resource
(spots)	and	maximizing	its	utilization	(occupancy).	Parking	is	also	a	process
—an	optimal	stopping	problem—and	it’s	one	that	consumes	attention,	time,
and	fuel,	and	generates	both	pollution	and	congestion.	The	right	policy

addresses	the	whole	problem.	And,	counterintuitively,	empty	spots	on	highly
desirable	blocks	can	be	the	sign	that	things	are	working	correctly.

We	asked	Shoup	if	his	research	allows	him	to	optimize	his	own	commute,
through	the	Los	Angeles	traffic	to	his	office	at	UCLA.	Does	arguably	the
world’s	top	expert	on	parking	have	some	kind	of	secret	weapon?

He	does:	“I	ride	my	bike.”

When	to	Quit

In	1997,	Forbes	magazine	identified	Boris	Berezovsky	as	the	richest	man	in
Russia,	with	a	fortune	of	roughly	$3	billion.	Just	ten	years	earlier	he	had	been
living	on	a	mathematician’s	salary	from	the	USSR	Academy	of	Sciences.	He
made	his	billions	by	drawing	on	industrial	relationships	he’d	formed	through
his	research	to	found	a	company	that	facilitated	interaction	between	foreign
carmakers	and	the	Soviet	car	manufacturer	AvtoVAZ.	Berezovky’s	company
then	became	a	large-scale	dealer	for	the	cars	that	AvtoVAZ	produced,	using	a
payment	installment	scheme	to	take	advantage	of	hyperinflation	in	the	ruble.
Using	the	funds	from	this	partnership	he	bought	partial	ownership	of
AvtoVAZ	itself,	then	the	ORT	Television	network,	and	finally	the	Sibneft	oil
company.	Becoming	one	of	a	new	class	of	oligarchs,	he	participated	in
politics,	supporting	Boris	Yeltsin’s	re-election	in	1996	and	the	choice	of
Vladimir	Putin	as	his	successor	in	1999.

But	that’s	when	Berezovsky’s	luck	turned.	Shortly	after	Putin’s	election,
Berezovsky	publicly	objected	to	proposed	constitutional	reforms	that	would
expand	the	power	of	the	president.	His	continued	public	criticism	of	Putin	led
to	the	deterioration	of	their	relationship.	In	October	2000,	when	Putin	was
asked	about	Berezovsky’s	criticisms,	he	replied,	“The	state	has	a	cudgel	in	its
hands	that	you	use	to	hit	just	once,	but	on	the	head.	We	haven’t	used	this
cudgel	yet.…	The	day	we	get	really	angry,	we	won’t	hesitate.”	Berezovsky
left	Russia	permanently	the	next	month,	taking	up	exile	in	England,	where	he
continued	to	criticize	Putin’s	regime.

How	did	Berezovsky	decide	it	was	time	to	leave	Russia?	Is	there	a	way,
perhaps,	to	think	mathematically	about	the	advice	to	“quit	while	you’re
ahead”?	Berezovsky	in	particular	might	have	considered	this	very	question
himself,	since	the	topic	he	had	worked	on	all	those	years	ago	as	a
mathematician	was	none	other	than	optimal	stopping;	he	authored	the	first

(and,	so	far,	the	only)	book	entirely	devoted	to	the	secretary	problem.

The	problem	of	quitting	while	you’re	ahead	has	been	analyzed	under
several	different	guises,	but	perhaps	the	most	appropriate	to	Berezovsky’s
case—with	apologies	to	Russian	oligarchs—is	known	as	the	“burglar
problem.”	In	this	problem,	a	burglar	has	the	opportunity	to	carry	out	a
sequence	of	robberies.	Each	robbery	provides	some	reward,	and	there’s	a
chance	of	getting	away	with	it	each	time.	But	if	the	burglar	is	caught,	he	gets
arrested	and	loses	all	his	accumulated	gains.	What	algorithm	should	he	follow
to	maximize	his	expected	take?

The	fact	that	this	problem	has	a	solution	is	bad	news	for	heist	movie
screenplays:	when	the	team	is	trying	to	lure	the	old	burglar	out	of	retirement
for	one	last	job,	the	canny	thief	need	only	crunch	the	numbers.	Moreover,	the
results	are	pretty	intuitive:	the	number	of	robberies	you	should	carry	out	is
roughly	equal	to	the	chance	you	get	away,	divided	by	the	chance	you	get
caught.	If	you’re	a	skilled	burglar	and	have	a	90%	chance	of	pulling	off	each
robbery	(and	a	10%	chance	of	losing	it	all),	then	retire	after	90/10	=	9
robberies.	A	ham-fisted	amateur	with	a	50/50	chance	of	success?	The	first
time	you	have	nothing	to	lose,	but	don’t	push	your	luck	more	than	once.

Despite	his	expertise	in	optimal	stopping,	Berezovsky’s	story	ends	sadly.
He	died	in	March	2013,	found	by	a	bodyguard	in	the	locked	bathroom	of	his
house	in	Berkshire	with	a	ligature	around	his	neck.	The	official	conclusion	of
a	postmortem	examination	was	that	he	had	committed	suicide,	hanging
himself	after	losing	much	of	his	wealth	through	a	series	of	high-profile	legal
cases	involving	his	enemies	in	Russia.	Perhaps	he	should	have	stopped	sooner
—amassing	just	a	few	tens	of	millions	of	dollars,	say,	and	not	getting	into
politics.	But,	alas,	that	was	not	his	style.	One	of	his	mathematician	friends,
Leonid	Boguslavsky,	told	a	story	about	Berezovsky	from	when	they	were
both	young	researchers:	on	a	water-skiing	trip	to	a	lake	near	Moscow,	the	boat
they	had	planned	to	use	broke	down.	Here’s	how	David	Hoffman	tells	it	in	his
book	The	Oligarchs:

While	their	friends	went	to	the	beach	and	lit	a	bonfire,	Boguslavsky	and	Berezovsky	headed	to
the	dock	to	try	to	repair	the	motor.…	Three	hours	later,	they	had	taken	apart	and	reassembled	the
motor.	It	was	still	dead.	They	had	missed	most	of	the	party,	yet	Berezovsky	insisted	they	had	to
keep	trying.	“We	tried	this	and	that,”	Boguslavsky	recalled.	Berezovsky	would	not	give	up.

Surprisingly,	not	giving	up—ever—also	makes	an	appearance	in	the
optimal	stopping	literature.	It	might	not	seem	like	it	from	the	wide	range	of

problems	we	have	discussed,	but	there	are	sequential	decision-making
problems	for	which	there	is	no	optimal	stopping	rule.	A	simple	example	is	the
game	of	“triple	or	nothing.”	Imagine	you	have	$1.00,	and	can	play	the
following	game	as	many	times	as	you	want:	bet	all	your	money,	and	have	a
50%	chance	of	receiving	triple	the	amount	and	a	50%	chance	of	losing	your
entire	stake.	How	many	times	should	you	play?	Despite	its	simplicity,	there	is
no	optimal	stopping	rule	for	this	problem,	since	each	time	you	play,	your
average	gains	are	a	little	higher.	Starting	with	$1.00,	you	will	get	$3.00	half
the	time	and	$0.00	half	the	time,	so	on	average	you	expect	to	end	the	first
round	with	$1.50	in	your	pocket.	Then,	if	you	were	lucky	in	the	first	round,
the	two	possibilities	from	the	$3.00	you’ve	just	won	are	$9.00	and	$0.00—for
an	average	return	of	$4.50	from	the	second	bet.	The	math	shows	that	you
should	always	keep	playing.	But	if	you	follow	this	strategy,	you	will
eventually	lose	everything.	Some	problems	are	better	avoided	than	solved.

Always	Be	Stopping

I	expect	to	pass	through	this	world	but	once.	Any	good	therefore	that	I
can	do,	or	any	kindness	that	I	can	show	to	any	fellow	creature,	let	me	do
it	now.	Let	me	not	defer	or	neglect	it,	for	I	shall	not	pass	this	way	again.

—STEPHEN	GRELLET

Spend	the	afternoon.	You	can’t	take	it	with	you.
—ANNIE	DILLARD

We’ve	looked	at	specific	cases	of	people	confronting	stopping	problems	in
their	lives,	and	it’s	clear	that	most	of	us	encounter	these	kinds	of	problems,	in
one	form	or	another,	daily.	Whether	it	involves	secretaries,	fiancé(e)s,	or
apartments,	life	is	full	of	optimal	stopping.	So	the	irresistible	question	is
whether—by	evolution	or	education	or	intuition—we	actually	do	follow	the
best	strategies.

At	first	glance,	the	answer	is	no.	About	a	dozen	studies	have	produced	the
same	result:	people	tend	to	stop	early,	leaving	better	applicants	unseen.	To	get
a	better	sense	for	these	findings,	we	talked	to	UC	Riverside’s	Amnon
Rapoport,	who	has	been	running	optimal	stopping	experiments	in	the
laboratory	for	more	than	forty	years.

The	study	that	most	closely	follows	the	classical	secretary	problem	was
run	in	the	1990s	by	Rapoport	and	his	collaborator	Darryl	Seale.	In	this	study

people	went	through	numerous	repetitions	of	the	secretary	problem,	with
either	40	or	80	applicants	each	time.	The	overall	rate	at	which	people	found
the	best	possible	applicant	was	pretty	good:	about	31%,	not	far	from	the
optimal	37%.	Most	people	acted	in	a	way	that	was	consistent	with	the	Look-
Then-Leap	Rule,	but	they	leapt	sooner	than	they	should	have	more	than	four-
fifths	of	the	time.

Rapoport	told	us	that	he	keeps	this	in	mind	when	solving	optimal	stopping
problems	in	his	own	life.	In	searching	for	an	apartment,	for	instance,	he	fights
his	own	urge	to	commit	quickly.	“Despite	the	fact	that	by	nature	I	am	very
impatient	and	I	want	to	take	the	first	apartment,	I	try	to	control	myself!”

But	that	impatience	suggests	another	consideration	that	isn’t	taken	into
account	in	the	classical	secretary	problem:	the	role	of	time.	After	all,	the
whole	time	you’re	searching	for	a	secretary,	you	don’t	have	a	secretary.
What’s	more,	you’re	spending	the	day	conducting	interviews	instead	of
getting	your	own	work	done.

This	type	of	cost	offers	a	potential	explanation	for	why	people	stop	early
when	solving	a	secretary	problem	in	the	lab.	Seale	and	Rapoport	showed	that
if	the	cost	of	seeing	each	applicant	is	imagined	to	be,	for	instance,	1%	of	the
value	of	finding	the	best	secretary,	then	the	optimal	strategy	would	perfectly
align	with	where	people	actually	switched	from	looking	to	leaping	in	their
experiment.

The	mystery	is	that	in	Seale	and	Rapoport’s	study,	there	wasn’t	a	cost	for
search.	So	why	might	people	in	the	laboratory	be	acting	like	there	was	one?

Because	for	people	there’s	always	a	time	cost.	It	doesn’t	come	from	the
design	of	the	experiment.	It	comes	from	people’s	lives.

The	“endogenous”	time	costs	of	searching,	which	aren’t	usually	captured
by	optimal	stopping	models,	might	thus	provide	an	explanation	for	why
human	decision-making	routinely	diverges	from	the	prescriptions	of	those
models.	As	optimal	stopping	researcher	Neil	Bearden	puts	it,	“After	searching
for	a	while,	we	humans	just	tend	to	get	bored.	It’s	not	irrational	to	get	bored,
but	it’s	hard	to	model	that	rigorously.”

But	this	doesn’t	make	optimal	stopping	problems	less	important;	it
actually	makes	them	more	important,	because	the	flow	of	time	turns	all
decision-making	into	optimal	stopping.

“The	theory	of	optimal	stopping	is	concerned	with	the	problem	of
choosing	a	time	to	take	a	given	action,”	opens	the	definitive	textbook	on
optimal	stopping,	and	it’s	hard	to	think	of	a	more	concise	description	of	the
human	condition.	We	decide	the	right	time	to	buy	stocks	and	the	right	time	to
sell	them,	sure;	but	also	the	right	time	to	open	the	bottle	of	wine	we’ve	been
keeping	around	for	a	special	occasion,	the	right	moment	to	interrupt	someone,
the	right	moment	to	kiss	them.

Viewed	this	way,	the	secretary	problem’s	most	fundamental	yet	most
unbelievable	assumption—its	strict	seriality,	its	inexorable	one-way	march—
is	revealed	to	be	the	nature	of	time	itself.	As	such,	the	explicit	premise	of	the
optimal	stopping	problem	is	the	implicit	premise	of	what	it	is	to	be	alive.	It’s
this	that	forces	us	to	decide	based	on	possibilities	we’ve	not	yet	seen,	this	that
forces	us	to	embrace	high	rates	of	failure	even	when	acting	optimally.	No
choice	recurs.	We	may	get	similar	choices	again,	but	never	that	exact	one.
Hesitation—inaction—is	just	as	irrevocable	as	action.	What	the	motorist,
locked	on	the	one-way	road,	is	to	space,	we	are	to	the	fourth	dimension:	we
truly	pass	this	way	but	once.

Intuitively,	we	think	that	rational	decision-making	means	exhaustively
enumerating	our	options,	weighing	each	one	carefully,	and	then	selecting	the
best.	But	in	practice,	when	the	clock—or	the	ticker—is	ticking,	few	aspects	of
decision-making	(or	of	thinking	more	generally)	are	as	important	as	this	one:
when	to	stop.

*We	use	boldface	to	indicate	the	algorithms	that	appear	throughout	the	book.

*With	this	strategy	we	have	a	33%	risk	of	dismissing	the	best	applicant	and	a	16%	risk	of	never	meeting
her.	To	elaborate,	there	are	exactly	six	possible	orderings	of	the	three	applicants:	1-2-3,	1-3-2,	2-1-3,	2-
3-1,	3-1-2,	and	3-2-1.	The	strategy	of	looking	at	the	first	applicant	and	then	leaping	for	whoever
surpasses	her	will	succeed	in	three	of	the	six	cases	(2-1-3,	2-3-1,	3-1-2)	and	will	fail	in	the	other	three—
twice	by	being	overly	choosy	(1-2-3,	1-3-2)	and	once	by	not	being	choosy	enough	(3-2-1).

*Just	a	hair	under	37%,	actually.	To	be	precise,	the	mathematically	optimal	proportion	of	applicants	to
look	at	is	1/e—the	same	mathematical	constant	e,	equivalent	to	2.71828…,	that	shows	up	in	calculations
of	compound	interest.	But	you	don’t	need	to	worry	about	knowing	e	to	twelve	decimal	places:	anything
between	35%	and	40%	provides	a	success	rate	extremely	close	to	the	maximum.	For	more	of	the
mathematical	details,	see	the	notes	at	the	end	of	the	book.

*More	on	the	computational	perils	of	game	theory	in	chapter	11.

	

2			Explore/Exploit
The	Latest	vs.	the	Greatest

Your	stomach	rumbles.	Do	you	go	to	the	Italian	restaurant	that	you	know	and
love,	or	the	new	Thai	place	that	just	opened	up?	Do	you	take	your	best	friend,
or	reach	out	to	a	new	acquaintance	you’d	like	to	get	to	know	better?	This	is
too	hard—maybe	you’ll	just	stay	home.	Do	you	cook	a	recipe	that	you	know
is	going	to	work,	or	scour	the	Internet	for	new	inspiration?	Never	mind,	how
about	you	just	order	a	pizza?	Do	you	get	your	“usual,”	or	ask	about	the
specials?	You’re	already	exhausted	before	you	get	to	the	first	bite.	And	the
thought	of	putting	on	a	record,	watching	a	movie,	or	reading	a	book—which
one?—no	longer	seems	quite	so	relaxing.

Every	day	we	are	constantly	forced	to	make	decisions	between	options
that	differ	in	a	very	specific	dimension:	do	we	try	new	things	or	stick	with	our
favorite	ones?	We	intuitively	understand	that	life	is	a	balance	between	novelty
and	tradition,	between	the	latest	and	the	greatest,	between	taking	risks	and
savoring	what	we	know	and	love.	But	just	as	with	the	look-or-leap	dilemma
of	the	apartment	hunt,	the	unanswered	question	is:	what	balance?

In	the	1974	classic	Zen	and	the	Art	of	Motorcycle	Maintenance,	Robert
Pirsig	decries	the	conversational	opener	“What’s	new?”—arguing	that	the
question,	“if	pursued	exclusively,	results	only	in	an	endless	parade	of	trivia
and	fashion,	the	silt	of	tomorrow.”	He	endorses	an	alternative	as	vastly
superior:	“What’s	best?”

But	the	reality	is	not	so	simple.	Remembering	that	every	“best”	song	and
restaurant	among	your	favorites	began	humbly	as	something	merely	“new”	to
you	is	a	reminder	that	there	may	be	yet-unknown	bests	still	out	there—and
thus	that	the	new	is	indeed	worthy	of	at	least	some	of	our	attention.

Age-worn	aphorisms	acknowledge	this	tension	but	don’t	solve	it.	“Make
new	friends,	but	keep	the	old	/	Those	are	silver,	these	are	gold,”	and	“There	is
no	life	so	rich	and	rare	/	But	one	more	friend	could	enter	there”	are	true
enough;	certainly	their	scansion	is	unimpeachable.	But	they	fail	to	tell	us
anything	useful	about	the	ratio	of,	say,	“silver”	and	“gold”	that	makes	the	best

alloy	of	a	life	well	lived.

Computer	scientists	have	been	working	on	finding	this	balance	for	more
than	fifty	years.	They	even	have	a	name	for	it:	the	explore/exploit	tradeoff.

Explore/Exploit

In	English,	the	words	“explore”	and	“exploit”	come	loaded	with	completely
opposite	connotations.	But	to	a	computer	scientist,	these	words	have	much
more	specific	and	neutral	meanings.	Simply	put,	exploration	is	gathering
information,	and	exploitation	is	using	the	information	you	have	to	get	a
known	good	result.

It’s	fairly	intuitive	that	never	exploring	is	no	way	to	live.	But	it’s	also
worth	mentioning	that	never	exploiting	can	be	every	bit	as	bad.	In	the
computer	science	definition,	exploitation	actually	comes	to	characterize	many
of	what	we	consider	to	be	life’s	best	moments.	A	family	gathering	together	on
the	holidays	is	exploitation.	So	is	a	bookworm	settling	into	a	reading	chair
with	a	hot	cup	of	coffee	and	a	beloved	favorite,	or	a	band	playing	their
greatest	hits	to	a	crowd	of	adoring	fans,	or	a	couple	that	has	stood	the	test	of
time	dancing	to	“their	song.”

What’s	more,	exploration	can	be	a	curse.

Part	of	what’s	nice	about	music,	for	instance,	is	that	there	are	constantly
new	things	to	listen	to.	Or,	if	you’re	a	music	journalist,	part	of	what’s	terrible
about	music	is	that	there	are	constantly	new	things	to	listen	to.	Being	a	music
journalist	means	turning	the	exploration	dial	all	the	way	to	11,	where	it’s
nothing	but	new	things	all	the	time.	Music	lovers	might	imagine	working	in
music	journalism	to	be	paradise,	but	when	you	constantly	have	to	explore	the
new	you	can	never	enjoy	the	fruits	of	your	connoisseurship—a	particular	kind
of	hell.	Few	people	know	this	experience	as	deeply	as	Scott	Plagenhoef,	the
former	editor	in	chief	of	Pitchfork.	“You	try	to	find	spaces	when	you’re
working	to	listen	to	something	that	you	just	want	to	listen	to,”	he	says	of	a
critic’s	life.	His	desperate	urges	to	stop	wading	through	unheard	tunes	of
dubious	quality	and	just	listen	to	what	he	loved	were	so	strong	that
Plagenhoef	would	put	only	new	music	on	his	iPod,	to	make	himself
physically	incapable	of	abandoning	his	duties	in	those	moments	when	he	just
really,	really,	really	wanted	to	listen	to	the	Smiths.	Journalists	are	martyrs,
exploring	so	that	others	may	exploit.

In	computer	science,	the	tension	between	exploration	and	exploitation
takes	its	most	concrete	form	in	a	scenario	called	the	“multi-armed	bandit
problem.”	The	odd	name	comes	from	the	colloquial	term	for	a	casino	slot
machine,	the	“one-armed	bandit.”	Imagine	walking	into	a	casino	full	of
different	slot	machines,	each	one	with	its	own	odds	of	a	payoff.	The	rub,	of
course,	is	that	you	aren’t	told	those	odds	in	advance:	until	you	start	playing,
you	won’t	have	any	idea	which	machines	are	the	most	lucrative	(“loose,”	as
slot-machine	aficionados	call	it)	and	which	ones	are	just	money	sinks.

Naturally,	you’re	interested	in	maximizing	your	total	winnings.	And	it’s
clear	that	this	is	going	to	involve	some	combination	of	pulling	the	arms	on
different	machines	to	test	them	out	(exploring),	and	favoring	the	most
promising	machines	you’ve	found	(exploiting).

To	get	a	sense	for	the	problem’s	subtleties,	imagine	being	faced	with	only
two	machines.	One	you’ve	played	a	total	of	15	times;	9	times	it	paid	out,	and
6	times	it	didn’t.	The	other	you’ve	played	only	twice,	and	it	once	paid	out	and
once	did	not.	Which	is	more	promising?

Simply	dividing	the	wins	by	the	total	number	of	pulls	will	give	you	the
machine’s	“expected	value,”	and	by	this	method	the	first	machine	clearly
comes	out	ahead.	Its	9–6	record	makes	for	an	expected	value	of	60%,	whereas
the	second	machine’s	1–1	record	yields	an	expected	value	of	only	50%.	But
there’s	more	to	it	than	that.	After	all,	just	two	pulls	aren’t	really	very	many.	So
there’s	a	sense	in	which	we	just	don’t	yet	know	how	good	the	second	machine
might	actually	be.

Choosing	a	restaurant	or	an	album	is,	in	effect,	a	matter	of	deciding	which
arm	to	pull	in	life’s	casino.	But	understanding	the	explore/exploit	tradeoff
isn’t	just	a	way	to	improve	decisions	about	where	to	eat	or	what	to	listen	to.	It
also	provides	fundamental	insights	into	how	our	goals	should	change	as	we
age,	and	why	the	most	rational	course	of	action	isn’t	always	trying	to	choose
the	best.	And	it	turns	out	to	be	at	the	heart	of,	among	other	things,	web	design
and	clinical	trials—two	topics	that	normally	aren’t	mentioned	in	the	same
sentence.

People	tend	to	treat	decisions	in	isolation,	to	focus	on	finding	each	time
the	outcome	with	the	highest	expected	value.	But	decisions	are	almost	never
isolated,	and	expected	value	isn’t	the	end	of	the	story.	If	you’re	thinking	not
just	about	the	next	decision,	but	about	all	the	decisions	you	are	going	to	make

about	the	same	options	in	the	future,	the	explore/exploit	tradeoff	is	crucial	to
the	process.	In	this	way,	writes	mathematician	Peter	Whittle,	the	bandit
problem	“embodies	in	essential	form	a	conflict	evident	in	all	human	action.”

So	which	of	those	two	arms	should	you	pull?	It’s	a	trick	question.	It
completely	depends	on	something	we	haven’t	discussed	yet:	how	long	you
plan	to	be	in	the	casino.

Seize	the	Interval

“Carpe	diem,”	urges	Robin	Williams	in	one	of	the	most	memorable	scenes	of
the	1989	film	Dead	Poets	Society.	“Seize	the	day,	boys.	Make	your	lives
extraordinary.”

It’s	incredibly	important	advice.	It’s	also	somewhat	self-contradictory.
Seizing	a	day	and	seizing	a	lifetime	are	two	entirely	different	endeavors.	We
have	the	expression	“Eat,	drink,	and	be	merry,	for	tomorrow	we	die,”	but
perhaps	we	should	also	have	its	inverse:	“Start	learning	a	new	language	or	an
instrument,	and	make	small	talk	with	a	stranger,	because	life	is	long,	and	who
knows	what	joy	could	blossom	over	many	years’	time.”	When	balancing
favorite	experiences	and	new	ones,	nothing	matters	as	much	as	the	interval
over	which	we	plan	to	enjoy	them.

“I’m	more	likely	to	try	a	new	restaurant	when	I	move	to	a	city	than	when
I’m	leaving	it,”	explains	data	scientist	and	blogger	Chris	Stucchio,	a	veteran
of	grappling	with	the	explore/exploit	tradeoff	in	both	his	work	and	his	life.	“I
mostly	go	to	restaurants	I	know	and	love	now,	because	I	know	I’m	going	to
be	leaving	New	York	fairly	soon.	Whereas	a	couple	years	ago	I	moved	to
Pune,	India,	and	I	just	would	eat	friggin’	everywhere	that	didn’t	look	like	it
was	gonna	kill	me.	And	as	I	was	leaving	the	city	I	went	back	to	all	my	old
favorites,	rather	than	trying	out	new	stuff.…	Even	if	I	find	a	slightly	better
place,	I’m	only	going	to	go	there	once	or	twice,	so	why	take	the	risk?”

A	sobering	property	of	trying	new	things	is	that	the	value	of	exploration,
of	finding	a	new	favorite,	can	only	go	down	over	time,	as	the	remaining
opportunities	to	savor	it	dwindle.	Discovering	an	enchanting	café	on	your	last
night	in	town	doesn’t	give	you	the	opportunity	to	return.

The	flip	side	is	that	the	value	of	exploitation	can	only	go	up	over	time.	The
loveliest	café	that	you	know	about	today	is,	by	definition,	at	least	as	lovely	as
the	loveliest	café	you	knew	about	last	month.	(And	if	you’ve	found	another

favorite	since	then,	it	might	just	be	more	so.)	So	explore	when	you	will	have
time	to	use	the	resulting	knowledge,	exploit	when	you’re	ready	to	cash	in.
The	interval	makes	the	strategy.

Interestingly,	since	the	interval	makes	the	strategy,	then	by	observing	the
strategy	we	can	also	infer	the	interval.	Take	Hollywood,	for	instance:	Among
the	ten	highest-grossing	movies	of	1981,	only	two	were	sequels.	In	1991,	it
was	three.	In	2001,	it	was	five.	And	in	2011,	eight	of	the	top	ten	highest-
grossing	films	were	sequels.	In	fact,	2011	set	a	record	for	the	greatest
percentage	of	sequels	among	major	studio	releases.	Then	2012	immediately
broke	that	record;	the	next	year	would	break	it	again.	In	December	2012,
journalist	Nick	Allen	looked	ahead	with	palpable	fatigue	to	the	year	to	come:

Audiences	will	be	given	a	sixth	helping	of	X-Men	plus	Fast	and	Furious	6,	Die	Hard	5,	Scary
Movie	5	and	Paranormal	Activity	5.	There	will	also	be	Iron	Man	3,	The	Hangover	3,	and	second
outings	for	The	Muppets,	The	Smurfs,	GI	Joe	and	Bad	Santa.

From	a	studio’s	perspective,	a	sequel	is	a	movie	with	a	guaranteed	fan	base:	a
cash	cow,	a	sure	thing,	an	exploit.	And	an	overload	of	sure	things	signals	a
short-termist	approach,	as	with	Stucchio	on	his	way	out	of	town.	The	sequels
are	more	likely	than	brand-new	movies	to	be	hits	this	year,	but	where	will	the
beloved	franchises	of	the	future	come	from?	Such	a	sequel	deluge	is	not	only
lamentable	(certainly	critics	think	so);	it’s	also	somewhat	poignant.	By
entering	an	almost	purely	exploit-focused	phase,	the	film	industry	seems	to	be
signaling	a	belief	that	it	is	near	the	end	of	its	interval.

A	look	into	the	economics	of	Hollywood	confirms	this	hunch.	Profits	of
the	largest	film	studios	declined	by	40%	between	2007	and	2011,	and	ticket
sales	have	declined	in	seven	of	the	past	ten	years.	As	the	Economist	puts	it,
“Squeezed	between	rising	costs	and	falling	revenues,	the	big	studios	have
responded	by	trying	to	make	more	films	they	think	will	be	hits:	usually
sequels,	prequels,	or	anything	featuring	characters	with	name	recognition.”	In
other	words,	they’re	pulling	the	arms	of	the	best	machines	they’ve	got	before
the	casino	turns	them	out.

Win-Stay

Finding	optimal	algorithms	that	tell	us	exactly	how	to	handle	the	multi-armed
bandit	problem	has	proven	incredibly	challenging.	Indeed,	as	Peter	Whittle
recounts,	during	World	War	II	efforts	to	solve	the	question	“so	sapped	the
energies	and	minds	of	Allied	analysts	…	that	the	suggestion	was	made	that

the	problem	be	dropped	over	Germany,	as	the	ultimate	instrument	of
intellectual	sabotage.”

The	first	steps	toward	a	solution	were	taken	in	the	years	after	the	war,
when	Columbia	mathematician	Herbert	Robbins	showed	that	there’s	a	simple
strategy	that,	while	not	perfect,	comes	with	some	nice	guarantees.

Robbins	specifically	considered	the	case	where	there	are	exactly	two	slot
machines,	and	proposed	a	solution	called	the	Win-Stay,	Lose-Shift
algorithm:	choose	an	arm	at	random,	and	keep	pulling	it	as	long	as	it	keeps
paying	off.	If	the	arm	doesn’t	pay	off	after	a	particular	pull,	then	switch	to	the
other	one.	Although	this	simple	strategy	is	far	from	a	complete	solution,
Robbins	proved	in	1952	that	it	performs	reliably	better	than	chance.

Following	Robbins,	a	series	of	papers	examined	the	“stay	on	a	winner”
principle	further.	Intuitively,	if	you	were	already	willing	to	pull	an	arm,	and	it
has	just	paid	off,	that	should	only	increase	your	estimate	of	its	value,	and	you
should	be	only	more	willing	to	pull	it	again.	And	indeed,	win-stay	turns	out	to
be	an	element	of	the	optimal	strategy	for	balancing	exploration	and
exploitation	under	a	wide	range	of	conditions.

But	lose-shift	is	another	story.	Changing	arms	each	time	one	fails	is	a
pretty	rash	move.	Imagine	going	to	a	restaurant	a	hundred	times,	each	time
having	a	wonderful	meal.	Would	one	disappointment	be	enough	to	induce	you
to	give	up	on	it?	Good	options	shouldn’t	be	penalized	too	strongly	for	being
imperfect.

More	significantly,	Win-Stay,	Lose-Shift	doesn’t	have	any	notion	of	the
interval	over	which	you	are	optimizing.	If	your	favorite	restaurant
disappointed	you	the	last	time	you	ate	there,	that	algorithm	always	says	you
should	go	to	another	place—even	if	it’s	your	last	night	in	town.

Still,	Robbins’s	initial	work	on	the	multi-armed	bandit	problem	kicked	off
a	substantial	literature,	and	researchers	made	significant	progress	over	the
next	few	years.	Richard	Bellman,	a	mathematician	at	the	RAND	Corporation,
found	an	exact	solution	to	the	problem	for	cases	where	we	know	in	advance
exactly	how	many	options	and	opportunities	we’ll	have	in	total.	As	with	the
full-information	secretary	problem,	Bellman’s	trick	was	essentially	to	work
backward,	starting	by	imagining	the	final	pull	and	considering	which	slot
machine	to	choose	given	all	the	possible	outcomes	of	the	previous	decisions.
Having	figured	that	out,	you’d	then	turn	to	the	second-to-last	opportunity,

then	the	previous	one,	and	the	one	before	that,	all	the	way	back	to	the	start.

The	answers	that	emerge	from	Bellman’s	method	are	ironclad,	but	with
many	options	and	a	long	casino	visit	it	can	require	a	dizzying—or	impossible
—amount	of	work.	What’s	more,	even	if	we	are	able	to	calculate	all	possible
futures,	we	of	course	don’t	always	know	exactly	how	many	opportunities	(or
even	how	many	options)	we’ll	have.	For	these	reasons,	the	multi-armed
bandit	problem	effectively	stayed	unsolved.	In	Whittle’s	words,	“it	quickly
became	a	classic,	and	a	byword	for	intransigence.”

The	Gittins	Index

As	so	often	happens	in	mathematics,	though,	the	particular	is	the	gateway	to
the	universal.	In	the	1970s,	the	Unilever	corporation	asked	a	young
mathematician	named	John	Gittins	to	help	them	optimize	some	of	their	drug
trials.	Unexpectedly,	what	they	got	was	the	answer	to	a	mathematical	riddle
that	had	gone	unsolved	for	a	generation.

Gittins,	who	is	now	a	professor	of	statistics	at	Oxford,	pondered	the
question	posed	by	Unilever.	Given	several	different	chemical	compounds,
what	is	the	quickest	way	to	determine	which	compound	is	likely	to	be
effective	against	a	disease?	Gittins	tried	to	cast	the	problem	in	the	most
general	form	he	could:	multiple	options	to	pursue,	a	different	probability	of
reward	for	each	option,	and	a	certain	amount	of	effort	(or	money,	or	time)	to
be	allocated	among	them.	It	was,	of	course,	another	incarnation	of	the	multi-
armed	bandit	problem.

Both	the	for-profit	drug	companies	and	the	medical	profession	they	serve
are	constantly	faced	with	the	competing	demands	of	the	explore/exploit
tradeoff.	Companies	want	to	invest	R	&	D	money	into	the	discovery	of	new
drugs,	but	also	want	to	make	sure	their	profitable	current	product	lines	are
flourishing.	Doctors	want	to	prescribe	the	best	existing	treatments	so	that
patients	get	the	care	they	need,	but	also	want	to	encourage	experimental
studies	that	may	turn	up	even	better	ones.

In	both	cases,	notably,	it’s	not	entirely	clear	what	the	relevant	interval
ought	to	be.	In	a	sense,	drug	companies	and	doctors	alike	are	interested	in	the
indefinite	future.	Companies	want	to	be	around	theoretically	forever,	and	on
the	medical	side	a	breakthrough	could	go	on	to	help	people	who	haven’t	even
been	born	yet.	Nonetheless,	the	present	has	a	higher	priority:	a	cured	patient

today	is	taken	to	be	more	valuable	than	one	cured	a	week	or	a	year	from	now,
and	certainly	the	same	holds	true	of	profits.	Economists	refer	to	this	idea,	of
valuing	the	present	more	highly	than	the	future,	as	“discounting.”

Unlike	previous	researchers,	Gittins	approached	the	multi-armed	bandit
problem	in	those	terms.	He	conceived	the	goal	as	maximizing	payoffs	not	for
a	fixed	interval	of	time,	but	for	a	future	that	is	endless	yet	discounted.

Such	discounting	is	not	unfamiliar	to	us	from	our	own	lives.	After	all,	if
you	visit	a	town	for	a	ten-day	vacation,	then	you	should	be	making	your
restaurant	decisions	with	a	fixed	interval	in	mind;	but	if	you	live	in	the	town,
this	doesn’t	make	as	much	sense.	Instead,	you	might	imagine	the	value	of
payoffs	decreasing	the	further	into	the	future	they	are:	you	care	more	about
the	meal	you’re	going	to	eat	tonight	than	the	meal	you’re	going	to	eat
tomorrow,	and	more	about	tomorrow’s	meal	than	one	a	year	from	now,	with
the	specifics	of	how	much	more	depending	on	your	particular	“discount
function.”	Gittins,	for	his	part,	made	the	assumption	that	the	value	assigned	to
payoffs	decreases	geometrically:	that	is,	each	restaurant	visit	you	make	is
worth	a	constant	fraction	of	the	last	one.	If,	let’s	say,	you	believe	there	is	a	1%
chance	you’ll	get	hit	by	a	bus	on	any	given	day,	then	you	should	value
tomorrow’s	dinner	at	99%	of	the	value	of	tonight’s,	if	only	because	you	might
never	get	to	eat	it.

Working	with	this	geometric-discounting	assumption,	Gittins	investigated
a	strategy	that	he	thought	“at	least	would	be	a	pretty	good	approximation”:	to
think	about	each	arm	of	the	multi-armed	bandit	separately	from	the	others,
and	try	to	work	out	the	value	of	that	arm	on	its	own.	He	did	this	by	imagining
something	rather	ingenious:	a	bribe.

In	the	popular	television	game	show	Deal	or	No	Deal,	a	contestant
chooses	one	of	twenty-six	briefcases,	which	contain	prizes	ranging	from	a
penny	to	a	million	dollars.	As	the	game	progresses,	a	mysterious	character
called	the	Banker	will	periodically	call	in	and	offer	the	contestant	various
sums	of	money	to	not	open	the	chosen	briefcase.	It’s	up	to	the	contestant	to
decide	at	what	price	they’re	willing	to	take	a	sure	thing	over	the	uncertainty
of	the	briefcase	prize.

Gittins	(albeit	many	years	before	the	first	episode	of	Deal	or	No	Deal
aired)	realized	that	the	multi-armed	bandit	problem	is	no	different.	For	every
slot	machine	we	know	little	or	nothing	about,	there	is	some	guaranteed	payout

rate	which,	if	offered	to	us	in	lieu	of	that	machine,	will	make	us	quite	content
never	to	pull	its	handle	again.	This	number—which	Gittins	called	the
“dynamic	allocation	index,”	and	which	the	world	now	knows	as	the	Gittins
index—suggests	an	obvious	strategy	on	the	casino	floor:	always	play	the	arm
with	the	highest	index.*

In	fact,	the	index	strategy	turned	out	to	be	more	than	a	good
approximation.	It	completely	solves	the	multi-armed	bandit	with
geometrically	discounted	payoffs.	The	tension	between	exploration	and
exploitation	resolves	into	the	simpler	task	of	maximizing	a	single	quantity
that	accounts	for	both.	Gittins	is	modest	about	the	achievement—“It’s	not
quite	Fermat’s	Last	Theorem,”	he	says	with	a	chuckle—but	it’s	a	theorem	that
put	to	rest	a	significant	set	of	questions	about	the	explore/exploit	dilemma.

Now,	actually	calculating	the	Gittins	index	for	a	specific	machine,	given
its	track	record	and	our	discounting	rate,	is	still	fairly	involved.	But	once	the
Gittins	index	for	a	particular	set	of	assumptions	is	known,	it	can	be	used	for
any	problem	of	that	form.	Crucially,	it	doesn’t	even	matter	how	many	arms
are	involved,	since	the	index	for	each	arm	is	calculated	separately.

In	the	table	on	the	next	page	we	provide	the	Gittins	index	values	for	up	to
nine	successes	and	failures,	assuming	that	a	payoff	on	our	next	pull	is	worth
90%	of	a	payoff	now.	These	values	can	be	used	to	resolve	a	variety	of
everyday	multi-armed	bandit	problems.	For	example,	under	these
assumptions	you	should,	in	fact,	choose	the	slot	machine	that	has	a	track
record	of	1–1	(and	an	expected	value	of	50%)	over	the	one	with	a	track	record
of	9–6	(and	an	expected	value	of	60%).	Looking	up	the	relevant	coordinates
in	the	table	shows	that	the	lesser-known	machine	has	an	index	of	0.6346,
while	the	more-played	machine	scores	only	a	0.6300.	Problem	solved:	try
your	luck	this	time,	and	explore.

Looking	at	the	Gittins	index	values	in	the	table,	there	are	a	few	other
interesting	observations.	First,	you	can	see	the	win-stay	principle	at	work:	as
you	go	from	left	to	right	in	any	row,	the	index	scores	always	increase.	So	if	an
arm	is	ever	the	correct	one	to	pull,	and	that	pull	is	a	winner,	then	(following
the	chart	to	the	right)	it	can	only	make	more	sense	to	pull	the	same	arm	again.
Second,	you	can	see	where	lose-shift	would	get	you	into	trouble.	Having	nine
initial	wins	followed	by	a	loss	gets	you	an	index	of	0.8695,	which	is	still
higher	than	most	of	the	other	values	in	the	table—so	you	should	probably	stay

with	that	arm	for	at	least	another	pull.

Gittins	index	values	as	a	function	of	wins	and	losses,	assuming	that	a	payoff	next	time	is	worth	90%	of	a
payoff	now.

But	perhaps	the	most	interesting	part	of	the	table	is	the	top-left	entry.	A
record	of	0–0—an	arm	that’s	a	complete	unknown—has	an	expected	value	of
0.5000	but	a	Gittins	index	of	0.7029.	In	other	words,	something	you	have	no
experience	with	whatsoever	is	more	attractive	than	a	machine	that	you	know
pays	out	seven	times	out	of	ten!	As	you	go	down	the	diagonal,	notice	that	a
record	of	1–1	yields	an	index	of	0.6346,	a	record	of	2–2	yields	0.6010,	and	so
on.	If	such	50%-successful	performance	persists,	the	index	does	ultimately
converge	on	0.5000,	as	experience	confirms	that	the	machine	is	indeed
nothing	special	and	takes	away	the	“bonus”	that	spurs	further	exploration.	But
the	convergence	happens	fairly	slowly;	the	exploration	bonus	is	a	powerful
force.	Indeed,	note	that	even	a	failure	on	the	very	first	pull,	producing	a
record	of	0–1,	makes	for	a	Gittins	index	that’s	still	above	50%.

We	can	also	see	how	the	explore/exploit	tradeoff	changes	as	we	change	the
way	we’re	discounting	the	future.	The	following	table	presents	exactly	the
same	information	as	the	preceding	one,	but	assumes	that	a	payoff	next	time	is
worth	99%	of	one	now,	rather	than	90%.	With	the	future	weighted	nearly	as
heavily	as	the	present,	the	value	of	making	a	chance	discovery,	relative	to
taking	a	sure	thing,	goes	up	even	more.	Here,	a	totally	untested	machine	with
a	0–0	record	is	worth	a	guaranteed	86.99%	chance	of	a	payout!

Gittins	index	values	as	a	function	of	wins	and	losses,	assuming	that	a	payoff	next	time	is	worth	99%	of	a
payoff	now.

The	Gittins	index,	then,	provides	a	formal,	rigorous	justification	for
preferring	the	unknown,	provided	we	have	some	opportunity	to	exploit	the
results	of	what	we	learn	from	exploring.	The	old	adage	tells	us	that	“the	grass
is	always	greener	on	the	other	side	of	the	fence,”	but	the	math	tells	us	why:
the	unknown	has	a	chance	of	being	better,	even	if	we	actually	expect	it	to	be
no	different,	or	if	it’s	just	as	likely	to	be	worse.	The	untested	rookie	is	worth
more	(early	in	the	season,	anyway)	than	the	veteran	of	seemingly	equal
ability,	precisely	because	we	know	less	about	him.	Exploration	in	itself	has
value,	since	trying	new	things	increases	our	chances	of	finding	the	best.	So
taking	the	future	into	account,	rather	than	focusing	just	on	the	present,	drives
us	toward	novelty.

The	Gittins	index	thus	provides	an	amazingly	straightforward	solution	to
the	multi-armed	bandit	problem.	But	it	doesn’t	necessarily	close	the	book	on
the	puzzle,	or	help	us	navigate	all	the	explore/exploit	tradeoffs	of	everyday
life.	For	one,	the	Gittins	index	is	optimal	only	under	some	strong
assumptions.	It’s	based	on	geometric	discounting	of	future	reward,	valuing
each	pull	at	a	constant	fraction	of	the	previous	one,	which	is	something	that	a
variety	of	experiments	in	behavioral	economics	and	psychology	suggest
people	don’t	do.	And	if	there’s	a	cost	to	switching	among	options,	the	Gittins
strategy	is	no	longer	optimal	either.	(The	grass	on	the	other	side	of	the	fence
may	look	a	bit	greener,	but	that	doesn’t	necessarily	warrant	climbing	the	fence
—let	alone	taking	out	a	second	mortgage.)	Perhaps	even	more	importantly,

it’s	hard	to	compute	the	Gittins	index	on	the	fly.	If	you	carry	around	a	table	of
index	values	you	can	optimize	your	dining	choices,	but	the	time	and	effort
involved	might	not	be	worth	it.	(“Wait,	I	can	resolve	this	argument.	That
restaurant	was	good	29	times	out	of	35,	but	this	other	one	has	been	good	13
times	out	of	16,	so	the	Gittins	indices	are	…	Hey,	where	did	everybody	go?”)

In	the	time	since	the	development	of	the	Gittins	index,	such	concerns	have
sent	computer	scientists	and	statisticians	searching	for	simpler	and	more
flexible	strategies	for	dealing	with	multi-armed	bandits.	These	strategies	are
easier	for	humans	(and	machines)	to	apply	in	a	range	of	situations	than
crunching	the	optimal	Gittins	index,	while	still	providing	comparably	good
performance.	They	also	engage	with	one	of	our	biggest	human	fears	regarding
decisions	about	which	chances	to	take.

Regret	and	Optimism

Regrets,	I’ve	had	a	few.	But	then	again,	too	few	to	mention.
—FRANK	SINATRA

For	myself	I	am	an	optimist.	It	does	not	seem	to	be	much	use	being
anything	else.

—WINSTON	CHURCHILL

If	the	Gittins	index	is	too	complicated,	or	if	you’re	not	in	a	situation	well
characterized	by	geometric	discounting,	then	you	have	another	option:	focus
on	regret.	When	we	choose	what	to	eat,	who	to	spend	time	with,	or	what	city
to	live	in,	regret	looms	large—presented	with	a	set	of	good	options,	it	is	easy
to	torture	ourselves	with	the	consequences	of	making	the	wrong	choice.	These
regrets	are	often	about	the	things	we	failed	to	do,	the	options	we	never	tried.
In	the	memorable	words	of	management	theorist	Chester	Barnard,	“To	try	and
fail	is	at	least	to	learn;	to	fail	to	try	is	to	suffer	the	inestimable	loss	of	what
might	have	been.”

Regret	can	also	be	highly	motivating.	Before	he	decided	to	start
Amazon.com,	Jeff	Bezos	had	a	secure	and	well-paid	position	at	the
investment	company	D.	E.	Shaw	&	Co.	in	New	York.	Starting	an	online
bookstore	in	Seattle	was	going	to	be	a	big	leap—something	that	his	boss
(that’s	D.	E.	Shaw)	advised	him	to	think	about	carefully.	Says	Bezos:

The	framework	I	found,	which	made	the	decision	incredibly	easy,	was	what	I	called—which	only
a	nerd	would	call—a	“regret	minimization	framework.”	So	I	wanted	to	project	myself	forward	to

age	80	and	say,	“Okay,	now	I’m	looking	back	on	my	life.	I	want	to	have	minimized	the	number	of
regrets	I	have.”	I	knew	that	when	I	was	80	I	was	not	going	to	regret	having	tried	this.	I	was	not
going	to	regret	trying	to	participate	in	this	thing	called	the	Internet	that	I	thought	was	going	to	be
a	really	big	deal.	I	knew	that	if	I	failed	I	wouldn’t	regret	that,	but	I	knew	the	one	thing	I	might
regret	is	not	ever	having	tried.	I	knew	that	that	would	haunt	me	every	day,	and	so,	when	I	thought
about	it	that	way	it	was	an	incredibly	easy	decision.

Computer	science	can’t	offer	you	a	life	with	no	regret.	But	it	can,
potentially,	offer	you	just	what	Bezos	was	looking	for:	a	life	with	minimal
regret.

Regret	is	the	result	of	comparing	what	we	actually	did	with	what	would
have	been	best	in	hindsight.	In	a	multi-armed	bandit,	Barnard’s	“inestimable
loss”	can	in	fact	be	measured	precisely,	and	regret	assigned	a	number:	it’s	the
difference	between	the	total	payoff	obtained	by	following	a	particular	strategy
and	the	total	payoff	that	theoretically	could	have	been	obtained	by	just	pulling
the	best	arm	every	single	time	(had	we	only	known	from	the	start	which	one	it
was).	We	can	calculate	this	number	for	different	strategies,	and	search	for
those	that	minimize	it.

In	1985,	Herbert	Robbins	took	a	second	shot	at	the	multi-armed	bandit
problem,	some	thirty	years	after	his	initial	work	on	Win-Stay,	Lose-Shift.	He
and	fellow	Columbia	mathematician	Tze	Leung	Lai	were	able	to	prove
several	key	points	about	regret.	First,	assuming	you’re	not	omniscient,	your
total	amount	of	regret	will	probably	never	stop	increasing,	even	if	you	pick
the	best	possible	strategy—because	even	the	best	strategy	isn’t	perfect	every
time.	Second,	regret	will	increase	at	a	slower	rate	if	you	pick	the	best	strategy
than	if	you	pick	others;	what’s	more,	with	a	good	strategy	regret’s	rate	of
growth	will	go	down	over	time,	as	you	learn	more	about	the	problem	and	are
able	to	make	better	choices.	Third,	and	most	specifically,	the	minimum
possible	regret—again	assuming	non-omniscience—is	regret	that	increases	at
a	logarithmic	rate	with	every	pull	of	the	handle.

Logarithmically	increasing	regret	means	that	we’ll	make	as	many	mistakes
in	our	first	ten	pulls	as	in	the	following	ninety,	and	as	many	in	our	first	year	as
in	the	rest	of	the	decade	combined.	(The	first	decade’s	mistakes,	in	turn,	are	as
many	as	we’ll	make	for	the	rest	of	the	century.)	That’s	some	measure	of
consolation.	In	general	we	can’t	realistically	expect	someday	to	never	have
any	more	regrets.	But	if	we’re	following	a	regret-minimizing	algorithm,	every
year	we	can	expect	to	have	fewer	new	regrets	than	we	did	the	year	before.

Starting	with	Lai	and	Robbins,	researchers	in	recent	decades	have	set
about	looking	for	algorithms	that	offer	the	guarantee	of	minimal	regret.	Of	the
ones	they’ve	discovered,	the	most	popular	are	known	as	Upper	Confidence
Bound	algorithms.

Visual	displays	of	statistics	often	include	so-called	error	bars	that	extend
above	and	below	any	data	point,	indicating	uncertainty	in	the	measurement;
the	error	bars	show	the	range	of	plausible	values	that	the	quantity	being
measured	could	actually	have.	This	range	is	known	as	the	“confidence
interval,”	and	as	we	gain	more	data	about	something	the	confidence	interval
will	shrink,	reflecting	an	increasingly	accurate	assessment.	(For	instance,	a
slot	machine	that	has	paid	out	once	out	of	two	pulls	will	have	a	wider
confidence	interval,	though	the	same	expected	value,	as	a	machine	that	has
paid	out	five	times	on	ten	pulls.)	In	a	multi-armed	bandit	problem,	an	Upper
Confidence	Bound	algorithm	says,	quite	simply,	to	pick	the	option	for	which
the	top	of	the	confidence	interval	is	highest.

Like	the	Gittins	index,	therefore,	Upper	Confidence	Bound	algorithms
assign	a	single	number	to	each	arm	of	the	multi-armed	bandit.	And	that
number	is	set	to	the	highest	value	that	the	arm	could	reasonably	have,	based
on	the	information	available	so	far.	So	an	Upper	Confidence	Bound	algorithm
doesn’t	care	which	arm	has	performed	best	so	far;	instead,	it	chooses	the	arm
that	could	reasonably	perform	best	in	the	future.	If	you	have	never	been	to	a
restaurant	before,	for	example,	then	for	all	you	know	it	could	be	great.	Even	if
you	have	gone	there	once	or	twice,	and	tried	a	couple	of	their	dishes,	you
might	not	have	enough	information	to	rule	out	the	possibility	that	it	could	yet
prove	better	than	your	regular	favorite.	Like	the	Gittins	index,	the	Upper
Confidence	Bound	is	always	greater	than	the	expected	value,	but	by	less	and
less	as	we	gain	more	experience	with	a	particular	option.	(A	restaurant	with	a
single	mediocre	review	still	retains	a	potential	for	greatness	that’s	absent	in	a
restaurant	with	hundreds	of	such	reviews.)	The	recommendations	given	by
Upper	Confidence	Bound	algorithms	will	be	similar	to	those	provided	by	the
Gittins	index,	but	they	are	significantly	easier	to	compute,	and	they	don’t
require	the	assumption	of	geometric	discounting.

Upper	Confidence	Bound	algorithms	implement	a	principle	that	has	been
dubbed	“optimism	in	the	face	of	uncertainty.”	Optimism,	they	show,	can	be
perfectly	rational.	By	focusing	on	the	best	that	an	option	could	be,	given	the
evidence	obtained	so	far,	these	algorithms	give	a	boost	to	possibilities	we

know	less	about.	As	a	consequence,	they	naturally	inject	a	dose	of	exploration
into	the	decision-making	process,	leaping	at	new	options	with	enthusiasm
because	any	one	of	them	could	be	the	next	big	thing.	The	same	principle	has
been	used,	for	instance,	by	MIT’s	Leslie	Kaelbling,	who	builds	“optimistic
robots”	that	explore	the	space	around	them	by	boosting	the	value	of	uncharted
terrain.	And	it	clearly	has	implications	for	human	lives	as	well.

The	success	of	Upper	Confidence	Bound	algorithms	offers	a	formal
justification	for	the	benefit	of	the	doubt.	Following	the	advice	of	these
algorithms,	you	should	be	excited	to	meet	new	people	and	try	new	things—to
assume	the	best	about	them,	in	the	absence	of	evidence	to	the	contrary.	In	the
long	run,	optimism	is	the	best	prevention	for	regret.

Bandits	Online

In	2007,	Google	product	manager	Dan	Siroker	took	a	leave	of	absence	to	join
the	presidential	campaign	of	then	senator	Barack	Obama	in	Chicago.	Heading
the	“New	Media	Analytics”	team,	Siroker	brought	one	of	Google’s	web
practices	to	bear	on	the	campaign’s	bright-red	DONATE	button.	The	result	was
nothing	short	of	astonishing:	$57	million	of	additional	donations	were	raised
as	a	direct	result	of	his	work.

What	exactly	did	he	do	to	that	button?

He	A/B	tested	it.

A/B	testing	works	as	follows:	a	company	drafts	several	different	versions
of	a	particular	webpage.	Perhaps	they	try	different	colors	or	images,	or
different	headlines	for	a	news	article,	or	different	arrangements	of	items	on
the	screen.	Then	they	randomly	assign	incoming	users	to	these	various	pages,
usually	in	equal	numbers.	One	user	may	see	a	red	button,	while	another	user
may	see	a	blue	one;	one	may	see	DONATE	and	another	may	see	CONTRIBUTE.
The	relevant	metrics	(e.g.,	click-through	rate	or	average	revenue	per	visitor)
are	then	monitored.	After	a	period	of	time,	if	statistically	significant	effects
are	observed,	the	“winning”	version	is	typically	locked	into	place—or
becomes	the	control	for	another	round	of	experiments.

In	the	case	of	Obama’s	donation	page,	Siroker’s	A/B	tests	were	revealing.
For	first-time	visitors	to	the	campaign	site,	a	DONATE	AND	GET	A	GIFT	button
turned	out	to	be	the	best	performer,	even	after	the	cost	of	sending	the	gifts
was	taken	into	account.	For	longtime	newsletter	subscribers	who	had	never

given	money,	PLEASE	DONATE	worked	the	best,	perhaps	appealing	to	their
guilt.	For	visitors	who	had	already	donated	in	the	past,	CONTRIBUTE	worked
best	at	securing	follow-up	donations—the	logic	being	perhaps	that	the	person
had	already	“donated”	but	could	always	“contribute”	more.	And	in	all	cases,
to	the	astonishment	of	the	campaign	team,	a	simple	black-and-white	photo	of
the	Obama	family	outperformed	any	other	photo	or	video	the	team	could
come	up	with.	The	net	effect	of	all	these	independent	optimizations	was
gigantic.

If	you’ve	used	the	Internet	basically	at	all	over	the	past	decade,	then
you’ve	been	a	part	of	someone	else’s	explore/exploit	problem.	Companies
want	to	discover	the	things	that	make	them	the	most	money	while
simultaneously	making	as	much	of	it	as	they	can—explore,	exploit.	Big	tech
firms	such	as	Amazon	and	Google	began	carrying	out	live	A/B	tests	on	their
users	starting	in	about	2000,	and	over	the	following	years	the	Internet	has
become	the	world’s	largest	controlled	experiment.	What	are	these	companies
exploring	and	exploiting?	In	a	word,	you:	whatever	it	is	that	makes	you	move
your	mouse	and	open	your	wallet.

Companies	A/B	test	their	site	navigation,	the	subject	lines	and	timing	of
their	marketing	emails,	and	sometimes	even	their	actual	features	and	pricing.
Instead	of	“the”	Google	search	algorithm	and	“the”	Amazon	checkout	flow,
there	are	now	untold	and	unfathomably	subtle	permutations.	(Google
infamously	tested	forty-one	shades	of	blue	for	one	of	its	toolbars	in	2009.)	In
some	cases,	it’s	unlikely	that	any	pair	of	users	will	have	the	exact	same
experience.

Data	scientist	Jeff	Hammerbacher,	former	manager	of	the	Data	group	at
Facebook,	once	told	Bloomberg	Businessweek	that	“the	best	minds	of	my
generation	are	thinking	about	how	to	make	people	click	ads.”	Consider	it	the
millennials’	Howl—what	Allen	Ginsberg’s	immortal	“I	saw	the	best	minds	of
my	generation	destroyed	by	madness”	was	to	the	Beat	Generation.
Hammerbacher’s	take	on	the	situation	was	that	this	state	of	affairs	“sucks.”
But	regardless	of	what	one	makes	of	it,	the	web	is	allowing	for	an
experimental	science	of	the	click	the	likes	of	which	had	never	even	been
dreamed	of	by	marketers	of	the	past.

We	know	what	happened	to	Obama	in	the	2008	election,	of	course.	But
what	happened	to	his	director	of	analytics,	Dan	Siroker?	After	the

inauguration,	Siroker	returned	west,	to	California,	and	with	fellow	Googler
Pete	Koomen	co-founded	the	website	optimization	firm	Optimizely.	By	the
2012	presidential	election	cycle,	their	company	counted	among	its	clients
both	the	Obama	re-election	campaign	and	the	campaign	of	Republican
challenger	Mitt	Romney.

Within	a	decade	or	so	after	its	first	tentative	use,	A/B	testing	was	no	longer
a	secret	weapon.	It	has	become	such	a	deeply	embedded	part	of	how	business
and	politics	are	conducted	online	as	to	be	effectively	taken	for	granted.	The
next	time	you	open	your	browser,	you	can	be	sure	that	the	colors,	images,
text,	perhaps	even	the	prices	you	see—and	certainly	the	ads—have	come
from	an	explore/exploit	algorithm,	tuning	itself	to	your	clicks.	In	this
particular	multi-armed	bandit	problem,	you’re	not	the	gambler;	you’re	the
jackpot.

The	process	of	A/B	testing	itself	has	become	increasingly	refined	over
time.	The	most	canonical	A/B	setup—splitting	the	traffic	evenly	between	two
options,	running	the	test	for	a	set	period	of	time,	and	thereafter	giving	all	the
traffic	to	the	winner—might	not	necessarily	be	the	best	algorithm	for	solving
the	problem,	since	it	means	half	the	users	are	stuck	getting	the	inferior	option
as	long	as	the	test	continues.	And	the	rewards	for	finding	a	better	approach
are	potentially	very	high.	More	than	90%	of	Google’s	approximately	$50
billion	in	annual	revenue	currently	comes	from	paid	advertising,	and	online
commerce	comprises	hundreds	of	billions	of	dollars	a	year.	This	means	that
explore/exploit	algorithms	effectively	power,	both	economically	and
technologically,	a	significant	fraction	of	the	Internet	itself.	The	best
algorithms	to	use	remain	hotly	contested,	with	rival	statisticians,	engineers,
and	bloggers	endlessly	sparring	about	the	optimal	way	to	balance	exploration
and	exploitation	in	every	possible	business	scenario.

Debating	the	precise	distinctions	among	various	takes	on	the
explore/exploit	problem	may	seem	hopelessly	arcane.	In	fact,	these
distinctions	turn	out	to	matter	immensely—and	it’s	not	just	presidential
elections	and	the	Internet	economy	that	are	at	stake.

It’s	also	human	lives.

Clinical	Trials	on	Trial

Between	1932	and	1972,	several	hundred	African-American	men	with

syphilis	in	Macon	County,	Alabama,	went	deliberately	untreated	by	medical
professionals,	as	part	of	a	forty-year	experiment	by	the	US	Public	Health
Service	known	as	the	Tuskegee	Syphilis	Study.	In	1966,	Public	Health
Service	employee	Peter	Buxtun	filed	a	protest.	He	filed	a	second	protest	in
1968.	But	it	was	not	until	he	broke	the	story	to	the	press—it	appeared	in	the
Washington	Star	on	July	25,	1972,	and	was	the	front-page	story	in	the	New
York	Times	the	next	day—that	the	US	government	finally	halted	the	study.

What	followed	the	public	outcry,	and	the	subsequent	congressional
hearing,	was	an	initiative	to	formalize	the	principles	and	standards	of	medical
ethics.	A	commission	held	at	the	pastoral	Belmont	Conference	Center	in
Maryland	resulted	in	a	1979	document	known	as	the	Belmont	Report.	The
Belmont	Report	lays	out	a	foundation	for	the	ethical	practice	of	medical
experiments,	so	that	the	Tuskegee	experiment—an	egregious,	unambiguously
inappropriate	breach	of	the	health	profession’s	duty	to	its	patients—might
never	be	repeated.	But	it	also	notes	the	difficulty,	in	many	other	cases,	of
determining	exactly	where	the	line	should	be	drawn.

“The	Hippocratic	maxim	‘do	no	harm’	has	long	been	a	fundamental
principle	of	medical	ethics,”	the	report	points	out.	“[The	physiologist]	Claude
Bernard	extended	it	to	the	realm	of	research,	saying	that	one	should	not	injure
one	person	regardless	of	the	benefits	that	might	come	to	others.	However,
even	avoiding	harm	requires	learning	what	is	harmful;	and,	in	the	process	of
obtaining	this	information,	persons	may	be	exposed	to	risk	of	harm.”

The	Belmont	Report	thus	acknowledges,	but	does	not	resolve,	the	tension
that	exists	between	acting	on	one’s	best	knowledge	and	gathering	more.	It
also	makes	it	clear	that	gathering	knowledge	can	be	so	valuable	that	some
aspects	of	normal	medical	ethics	can	be	suspended.	Clinical	testing	of	new
drugs	and	treatments,	the	report	notes,	often	requires	risking	harm	to	some
patients,	even	if	steps	are	taken	to	minimize	that	risk.

The	principle	of	beneficence	is	not	always	so	unambiguous.	A	difficult	ethical	problem	remains,
for	example,	about	research	[on	childhood	diseases]	that	presents	more	than	minimal	risk	without
immediate	prospect	of	direct	benefit	to	the	children	involved.	Some	have	argued	that	such
research	is	inadmissible,	while	others	have	pointed	out	that	this	limit	would	rule	out	much
research	promising	great	benefit	to	children	in	the	future.	Here	again,	as	with	all	hard	cases,	the
different	claims	covered	by	the	principle	of	beneficence	may	come	into	conflict	and	force	difficult
choices.

One	of	the	fundamental	questions	that	has	arisen	in	the	decades	since	the

Belmont	Report	is	whether	the	standard	approach	to	conducting	clinical	trials
really	does	minimize	risk	to	patients.	In	a	conventional	clinical	trial,	patients
are	split	into	groups,	and	each	group	is	assigned	to	receive	a	different
treatment	for	the	duration	of	the	study.	(Only	in	exceptional	cases	does	a	trial
get	stopped	early.)	This	procedure	focuses	on	decisively	resolving	the
question	of	which	treatment	is	better,	rather	than	on	providing	the	best
treatment	to	each	patient	in	the	trial	itself.	In	this	way	it	operates	exactly	like
a	website’s	A/B	test,	with	a	certain	fraction	of	people	receiving	an	experience
during	the	experiment	that	will	eventually	be	proven	inferior.	But	doctors,	like
tech	companies,	are	gaining	some	information	about	which	option	is	better
while	the	trial	proceeds—information	that	could	be	used	to	improve	outcomes
not	only	for	future	patients	beyond	the	trial,	but	for	the	patients	currently	in	it.

Millions	of	dollars	are	at	stake	in	experiments	to	find	the	optimal
configuration	of	a	website,	but	in	clinical	trials,	experimenting	to	find	optimal
treatments	has	direct	life-or-death	consequences.	And	a	growing	community
of	doctors	and	statisticians	think	that	we’re	doing	it	wrong:	that	we	should	be
treating	the	selection	of	treatments	as	a	multi-armed	bandit	problem,	and
trying	to	get	the	better	treatments	to	people	even	while	an	experiment	is	in
progress.

In	1969,	Marvin	Zelen,	a	biostatistician	who	is	now	at	Harvard,	proposed
conducting	“adaptive”	trials.	One	of	the	ideas	he	suggested	was	a	randomized
“play	the	winner”	algorithm—a	version	of	Win-Stay,	Lose-Shift,	in	which	the
chance	of	using	a	given	treatment	is	increased	by	each	win	and	decreased	by
each	loss.	In	Zelen’s	procedure,	you	start	with	a	hat	that	contains	one	ball	for
each	of	the	two	treatment	options	being	studied.	The	treatment	for	the	first
patient	is	selected	by	drawing	a	ball	at	random	from	the	hat	(the	ball	is	put
back	afterward).	If	the	chosen	treatment	is	a	success,	you	put	another	ball	for
that	treatment	into	the	hat—now	you	have	three	balls,	two	of	which	are	for
the	successful	treatment.	If	it	fails,	then	you	put	another	ball	for	the	other
treatment	into	the	hat,	making	it	more	likely	you’ll	choose	the	alternative.

Zelen’s	algorithm	was	first	used	in	a	clinical	trial	sixteen	years	later,	for	a
study	of	extracorporeal	membrane	oxygenation,	or	“ECMO”—an	audacious
approach	to	treating	respiratory	failure	in	infants.	Developed	in	the	1970s	by
Robert	Bartlett	of	the	University	of	Michigan,	ECMO	takes	blood	that’s
heading	for	the	lungs	and	routes	it	instead	out	of	the	body,	where	it	is
oxygenated	by	a	machine	and	returned	to	the	heart.	It	is	a	drastic	measure,

with	risks	of	its	own	(including	the	possibility	of	embolism),	but	it	offered	a
possible	approach	in	situations	where	no	other	options	remained.	In	1975
ECMO	saved	the	life	of	a	newborn	girl	in	Orange	County,	California,	for
whom	even	a	ventilator	was	not	providing	enough	oxygen.	That	girl	has	now
celebrated	her	fortieth	birthday	and	is	married	with	children	of	her	own.	But
in	its	early	days	the	ECMO	technology	and	procedure	were	considered	highly
experimental,	and	early	studies	in	adults	showed	no	benefit	compared	to
conventional	treatments.

From	1982	to	1984,	Bartlett	and	his	colleagues	at	the	University	of
Michigan	performed	a	study	on	newborns	with	respiratory	failure.	The	team
was	clear	that	they	wanted	to	address,	as	they	put	it,	“the	ethical	issue	of
withholding	an	unproven	but	potentially	lifesaving	treatment,”	and	were
“reluctant	to	withhold	a	lifesaving	treatment	from	alternate	patients	simply	to
meet	conventional	random	assignment	technique.”	Hence	they	turned	to
Zelen’s	algorithm.	The	strategy	resulted	in	one	infant	being	assigned	the
“conventional”	treatment	and	dying,	and	eleven	infants	in	a	row	being
assigned	the	experimental	ECMO	treatment,	all	of	them	surviving.	Between
April	and	November	of	1984,	after	the	end	of	the	official	study,	ten	additional
infants	met	the	criteria	for	ECMO	treatment.	Eight	were	treated	with	ECMO,
and	all	eight	survived.	Two	were	treated	conventionally,	and	both	died.

These	are	eye-catching	numbers,	yet	shortly	after	the	University	of
Michigan	study	on	ECMO	was	completed	it	became	mired	in	controversy.
Having	so	few	patients	in	a	trial	receive	the	conventional	treatment	deviated
significantly	from	standard	methodology,	and	the	procedure	itself	was	highly
invasive	and	potentially	risky.	After	the	publication	of	the	paper,	Jim	Ware,
professor	of	biostatistics	at	the	Harvard	School	of	Public	Health,	and	his
medical	colleagues	examined	the	data	carefully	and	concluded	that	they	“did
not	justify	routine	use	of	ECMO	without	further	study.”	So	Ware	and	his
colleagues	designed	a	second	clinical	trial,	still	trying	to	balance	the
acquisition	of	knowledge	with	the	effective	treatment	of	patients	but	using	a
less	radical	design.	They	would	randomly	assign	patients	to	either	ECMO	or
the	conventional	treatment	until	a	prespecified	number	of	deaths	was
observed	in	one	of	the	groups.	Then	they	would	switch	all	the	patients	in	the
study	to	the	more	effective	treatment	of	the	two.

In	the	first	phase	of	Ware’s	study,	four	of	ten	infants	receiving
conventional	treatment	died,	and	all	nine	of	nine	infants	receiving	ECMO

survived.	The	four	deaths	were	enough	to	trigger	a	transition	to	the	second
phase,	where	all	twenty	patients	were	treated	with	ECMO	and	nineteen
survived.	Ware	and	colleagues	were	convinced,	concluding	that	“it	is	difficult
to	defend	further	randomization	ethically.”

But	some	had	already	concluded	this	before	the	Ware	study,	and	were
vocal	about	it.	The	critics	included	Don	Berry,	one	of	the	world’s	leading
experts	on	multi-armed	bandits.	In	a	comment	that	was	published	alongside
the	Ware	study	in	Statistical	Science,	Berry	wrote	that	“randomizing	patients
to	non-ECMO	therapy	as	in	the	Ware	study	was	unethical.…	In	my	view,	the
Ware	study	should	not	have	been	conducted.”

And	yet	even	the	Ware	study	was	not	conclusive	for	all	in	the	medical
community.	In	the	1990s	yet	another	study	on	ECMO	was	conducted,
enrolling	nearly	two	hundred	infants	in	the	United	Kingdom.	Instead	of	using
adaptive	algorithms,	this	study	followed	the	traditional	methods,	splitting	the
infants	randomly	into	two	equal	groups.	The	researchers	justified	the
experiment	by	saying	that	ECMO’s	usefulness	“is	controversial	because	of
varying	interpretation	of	the	available	evidence.”	As	it	turned	out,	the
difference	between	the	treatments	wasn’t	as	pronounced	in	the	United
Kingdom	as	it	had	been	in	the	two	American	studies,	but	the	results	were
nonetheless	declared	“in	accord	with	the	earlier	preliminary	findings	that	a
policy	of	ECMO	support	reduces	the	risk	of	death.”	The	cost	of	that
knowledge?	Twenty-four	more	infants	died	in	the	“conventional”	group	than
in	the	group	receiving	ECMO	treatment.

The	widespread	difficulty	with	accepting	results	from	adaptive	clinical
trials	might	seem	incomprehensible.	But	consider	that	part	of	what	the	advent
of	statistics	did	for	medicine,	at	the	start	of	the	twentieth	century,	was	to
transform	it	from	a	field	in	which	doctors	had	to	persuade	each	other	in	ad
hoc	ways	about	every	new	treatment	into	one	where	they	had	clear	guidelines
about	what	sorts	of	evidence	were	and	were	not	persuasive.	Changes	to
accepted	standard	statistical	practice	have	the	potential	to	upset	this	balance,
at	least	temporarily.

After	the	controversy	over	ECMO,	Don	Berry	moved	from	the	statistics
department	at	the	University	of	Minnesota	to	the	MD	Anderson	Cancer
Center	in	Houston,	where	he	has	used	methods	developed	by	studying	multi-
armed	bandits	to	design	clinical	trials	for	a	variety	of	cancer	treatments.

While	he	remains	one	of	the	more	vocal	critics	of	randomized	clinical	trials,
he	is	by	no	means	the	only	one.	In	recent	years,	the	ideas	he’s	been	fighting
for	are	finally	beginning	to	come	into	the	mainstream.	In	February	2010,	the
FDA	released	a	“guidance”	document,	“Adaptive	Design	Clinical	Trials	for
Drugs	and	Biologics,”	which	suggests—despite	a	long	history	of	sticking	to
an	option	they	trust—that	they	might	at	last	be	willing	to	explore	alternatives.

The	Restless	World

Once	you	become	familiar	with	them,	it’s	easy	to	see	multi-armed	bandits	just
about	everywhere	we	turn.	It’s	rare	that	we	make	an	isolated	decision,	where
the	outcome	doesn’t	provide	us	with	any	information	that	we’ll	use	to	make
other	decisions	in	the	future.	So	it’s	natural	to	ask,	as	we	did	with	optimal
stopping,	how	well	people	generally	tend	to	solve	these	problems—a	question
that	has	been	extensively	explored	in	the	laboratory	by	psychologists	and
behavioral	economists.

In	general,	it	seems	that	people	tend	to	over-explore—to	favor	the	new
disproportionately	over	the	best.	In	a	simple	demonstration	of	this
phenomenon,	published	in	1966,	Amos	Tversky	and	Ward	Edwards
conducted	experiments	where	people	were	shown	a	box	with	two	lights	on	it
and	told	that	each	light	would	turn	on	a	fixed	(but	unknown)	percentage	of	the
time.	They	were	then	given	1,000	opportunities	either	to	observe	which	light
came	on,	or	to	place	a	bet	on	the	outcome	without	getting	to	observe	it.
(Unlike	a	more	traditional	bandit	problem	setup,	here	one	could	not	make	a
“pull”	that	was	both	wager	and	observation	at	once;	participants	would	not
learn	whether	their	bets	had	paid	off	until	the	end.)	This	is	pure	exploration
vs.	exploitation,	pitting	the	gaining	of	information	squarely	against	the	use	of
it.	For	the	most	part,	people	adopted	a	sensible	strategy	of	observing	for	a
while,	then	placing	bets	on	what	seemed	like	the	best	outcome—but	they
consistently	spent	a	lot	more	time	observing	than	they	should	have.	How
much	more	time?	In	one	experiment,	one	light	came	on	60%	of	the	time	and
the	other	40%	of	the	time,	a	difference	neither	particularly	blatant	nor
particularly	subtle.	In	that	case,	people	chose	to	observe	505	times,	on
average,	placing	bets	the	other	495	times.	But	the	math	says	they	should	have
started	to	bet	after	just	38	observations—leaving	962	chances	to	cash	in.

Other	studies	have	produced	similar	conclusions.	In	the	1990s,	Robert
Meyer	and	Yong	Shi,	researchers	at	Wharton,	ran	a	study	where	people	were

given	a	choice	between	two	options,	one	with	a	known	payoff	chance	and	one
unknown—specifically	two	airlines,	an	established	carrier	with	a	known	on-
time	rate	and	a	new	company	without	a	track	record	yet.	Given	the	goal	of
maximizing	the	number	of	on-time	arrivals	over	some	period	of	time,	the
mathematically	optimal	strategy	is	to	initially	only	fly	the	new	airline,	as	long
as	the	established	one	isn’t	clearly	better.	If	at	any	point	it’s	apparent	that	the
well-known	carrier	is	better—that	is,	if	the	Gittins	index	of	the	new	option
falls	below	the	on-time	rate	of	the	familiar	carrier—then	you	should	switch
hard	to	the	familiar	one	and	never	look	back.	(Since	in	this	setup	you	can’t	get
any	more	information	about	the	new	company	once	you	stop	flying	it,	there	is
no	opportunity	for	it	to	redeem	itself.)	But	in	the	experiment,	people	tended	to
use	the	untried	airline	too	little	when	it	was	good	and	too	much	when	it	was
bad.	They	also	didn’t	make	clean	breaks	away	from	it,	often	continuing	to
alternate,	particularly	when	neither	airline	was	departing	on	time.	All	of	this
is	consistent	with	tending	to	over-explore.

Finally,	psychologists	Mark	Steyvers,	Michael	Lee,	and	E.-J.
Wagenmakers	have	run	an	experiment	with	a	four-armed	bandit,	asking	a
group	of	people	to	choose	which	arm	to	play	over	a	sequence	of	fifteen
opportunities.	They	then	classified	the	strategies	that	participants	seemed	to
use.	The	results	suggested	that	30%	were	closest	to	the	optimal	strategy,	47%
most	resembled	Win-Stay,	Lose-Shift,	and	22%	seemed	to	move	at	random
between	selecting	a	new	arm	and	playing	the	best	arm	found	so	far.	Again,
this	is	consistent	with	over-exploring,	as	Win-Stay,	Lose-Shift	and
occasionally	trying	an	arm	at	random	are	both	going	to	lead	people	to	try
things	other	than	the	best	option	late	in	the	game,	when	they	should	be	purely
exploiting.

So,	while	we	tend	to	commit	to	a	new	secretary	too	soon,	it	seems	like	we
tend	to	stop	trying	new	airlines	too	late.	But	just	as	there’s	a	cost	to	not	having
a	secretary,	there’s	a	cost	to	committing	too	soon	to	a	particular	airline:	the
world	might	change.

The	standard	multi-armed	bandit	problem	assumes	that	the	probabilities
with	which	the	arms	pay	off	are	fixed	over	time.	But	that’s	not	necessarily
true	of	airlines,	restaurants,	or	other	contexts	in	which	people	have	to	make
repeated	choices.	If	the	probabilities	of	a	payoff	on	the	different	arms	change
over	time—what	has	been	termed	a	“restless	bandit”—the	problem	becomes
much	harder.	(So	much	harder,	in	fact,	that	there’s	no	tractable	algorithm	for

completely	solving	it,	and	it’s	believed	there	never	will	be.)	Part	of	this
difficulty	is	that	it	is	no	longer	simply	a	matter	of	exploring	for	a	while	and
then	exploiting:	when	the	world	can	change,	continuing	to	explore	can	be	the
right	choice.	It	might	be	worth	going	back	to	that	disappointing	restaurant	you
haven’t	visited	for	a	few	years,	just	in	case	it’s	under	new	management.

In	his	celebrated	essay	“Walking,”	Henry	David	Thoreau	reflected	on	how
he	preferred	to	do	his	traveling	close	to	home,	how	he	never	tired	of	his
surroundings	and	always	found	something	new	or	surprising	in	the
Massachusetts	landscape.	“There	is	in	fact	a	sort	of	harmony	discoverable
between	the	capabilities	of	the	landscape	within	a	circle	of	ten	miles’	radius,
or	the	limits	of	an	afternoon	walk,	and	the	threescore	years	and	ten	of	human
life,”	he	wrote.	“It	will	never	become	quite	familiar	to	you.”

To	live	in	a	restless	world	requires	a	certain	restlessness	in	oneself.	So
long	as	things	continue	to	change,	you	must	never	fully	cease	exploring.

Still,	the	algorithmic	techniques	honed	for	the	standard	version	of	the
multi-armed	bandit	problem	are	useful	even	in	a	restless	world.	Strategies	like
the	Gittins	index	and	Upper	Confidence	Bound	provide	reasonably	good
approximate	solutions	and	rules	of	thumb,	particularly	if	payoffs	don’t	change
very	much	over	time.	And	many	of	the	world’s	payoffs	are	arguably	more
static	today	than	they’ve	ever	been.	A	berry	patch	might	be	ripe	one	week	and
rotten	the	next,	but	as	Andy	Warhol	put	it,	“A	Coke	is	a	Coke.”	Having
instincts	tuned	by	evolution	for	a	world	in	constant	flux	isn’t	necessarily
helpful	in	an	era	of	industrial	standardization.

Perhaps	most	importantly,	thinking	about	versions	of	the	multi-armed
bandit	problem	that	do	have	optimal	solutions	doesn’t	just	offer	algorithms,	it
also	offers	insights.	The	conceptual	vocabulary	derived	from	the	classical
form	of	the	problem—the	tension	of	explore/exploit,	the	importance	of	the
interval,	the	high	value	of	the	0–0	option,	the	minimization	of	regret—gives
us	a	new	way	of	making	sense	not	only	of	specific	problems	that	come	before
us,	but	of	the	entire	arc	of	human	life.

Explore	…

While	laboratory	studies	can	be	illuminating,	the	interval	of	many	of	the	most
important	problems	people	face	is	far	too	long	to	be	studied	in	the	lab.
Learning	the	structure	of	the	world	around	us	and	forming	lasting	social

relationships	are	both	lifelong	tasks.	So	it’s	instructive	to	see	how	the	general
pattern	of	early	exploration	and	late	exploitation	appears	over	the	course	of	a
lifetime.

One	of	the	curious	things	about	human	beings,	which	any	developmental
psychologist	aspires	to	understand	and	explain,	is	that	we	take	years	to
become	competent	and	autonomous.	Caribou	and	gazelles	must	be	prepared
to	run	from	predators	the	day	they’re	born,	but	humans	take	more	than	a	year
to	make	their	first	steps.	Alison	Gopnik,	professor	of	developmental
psychology	at	UC	Berkeley	and	author	of	The	Scientist	in	the	Crib,	has	an
explanation	for	why	human	beings	have	such	an	extended	period	of
dependence:	“it	gives	you	a	developmental	way	of	solving	the
exploration/exploitation	tradeoff.”	As	we	have	seen,	good	algorithms	for
playing	multi-armed	bandits	tend	to	explore	more	early	on,	exploiting	the
resulting	knowledge	later.	But	as	Gopnik	points	out,	“the	disadvantage	of	that
is	that	you	don’t	get	good	payoffs	when	you	are	in	the	exploration	stage.”
Hence	childhood:	“Childhood	gives	you	a	period	in	which	you	can	just
explore	possibilities,	and	you	don’t	have	to	worry	about	payoffs	because
payoffs	are	being	taken	care	of	by	the	mamas	and	the	papas	and	the	grandmas
and	the	babysitters.”

Thinking	about	children	as	simply	being	at	the	transitory	exploration	stage
of	a	lifelong	algorithm	might	provide	some	solace	for	parents	of	preschoolers.
(Tom	has	two	highly	exploratory	preschool-age	daughters,	and	hopes	they	are
following	an	algorithm	that	has	minimal	regret.)	But	it	also	provides	new
insights	about	the	rationality	of	children.	Gopnik	points	out	that	“if	you	look
at	the	history	of	the	way	that	people	have	thought	about	children,	they	have
typically	argued	that	children	are	cognitively	deficient	in	various	ways—
because	if	you	look	at	their	exploit	capacities,	they	look	terrible.	They	can’t
tie	their	shoes,	they’re	not	good	at	long-term	planning,	they’re	not	good	at
focused	attention.	Those	are	all	things	that	kids	are	really	awful	at.”	But
pressing	buttons	at	random,	being	very	interested	in	new	toys,	and	jumping
quickly	from	one	thing	to	another	are	all	things	that	kids	are	really	great	at.
And	those	are	exactly	what	they	should	be	doing	if	their	goal	is	exploration.	If
you’re	a	baby,	putting	every	object	in	the	house	into	your	mouth	is	like
studiously	pulling	all	the	handles	at	the	casino.

More	generally,	our	intuitions	about	rationality	are	too	often	informed	by
exploitation	rather	than	exploration.	When	we	talk	about	decision-making,	we

usually	focus	just	on	the	immediate	payoff	of	a	single	decision—and	if	you
treat	every	decision	as	if	it	were	your	last,	then	indeed	only	exploitation
makes	sense.	But	over	a	lifetime,	you’re	going	to	make	a	lot	of	decisions.	And
it’s	actually	rational	to	emphasize	exploration—the	new	rather	than	the	best,
the	exciting	rather	than	the	safe,	the	random	rather	than	the	considered—for
many	of	those	choices,	particularly	earlier	in	life.

What	we	take	to	be	the	caprice	of	children	may	be	wiser	than	we	know.

	…	And	Exploit

I	had	reached	a	juncture	in	my	reading	life	that	is	familiar	to	those	who
have	been	there:	in	the	allotted	time	left	to	me	on	earth,	should	I	read
more	and	more	new	books,	or	should	I	cease	with	that	vain	consumption
—vain	because	it	is	endless—and	begin	to	reread	those	books	that	had
given	me	the	intensest	pleasure	in	my	past.

—LYDIA	DAVIS

At	the	other	extreme	from	toddlers	we	have	the	elderly.	And	thinking	about
aging	from	the	perspective	of	the	explore/exploit	dilemma	also	provides	some
surprising	insights	into	how	we	should	expect	our	lives	to	change	as	time	goes
on.

Laura	Carstensen,	a	professor	of	psychology	at	Stanford,	has	spent	her
career	challenging	our	preconceptions	about	getting	older.	Particularly,	she
has	investigated	exactly	how,	and	why,	people’s	social	relationships	change	as
they	age.	The	basic	pattern	is	clear:	the	size	of	people’s	social	networks	(that
is,	the	number	of	social	relationships	they	engage	in)	almost	invariably
decreases	over	time.	But	Carstensen’s	research	has	transformed	how	we
should	think	about	this	phenomenon.

The	traditional	explanation	for	the	elderly	having	smaller	social	networks
is	that	it’s	just	one	example	of	the	decrease	in	quality	of	life	that	comes	with
aging—the	result	of	diminished	ability	to	contribute	to	social	relationships,
greater	fragility,	and	general	disengagement	from	society.	But	Carstensen	has
argued	that,	in	fact,	the	elderly	have	fewer	social	relationships	by	choice.	As
she	puts	it,	these	decreases	are	“the	result	of	lifelong	selection	processes	by
which	people	strategically	and	adaptively	cultivate	their	social	networks	to
maximize	social	and	emotional	gains	and	minimize	social	and	emotional
risks.”

What	Carstensen	and	her	colleagues	found	is	that	the	shrinking	of	social
networks	with	aging	is	due	primarily	to	“pruning”	peripheral	relationships
and	focusing	attention	instead	on	a	core	of	close	friends	and	family	members.
This	process	seems	to	be	a	deliberate	choice:	as	people	approach	the	end	of
their	lives,	they	want	to	focus	more	on	the	connections	that	are	the	most
meaningful.

In	an	experiment	testing	this	hypothesis,	Carstensen	and	her	collaborator
Barbara	Fredrickson	asked	people	to	choose	who	they’d	rather	spend	thirty
minutes	with:	an	immediate	family	member,	the	author	of	a	book	they’d
recently	read,	or	somebody	they	had	met	recently	who	seemed	to	share	their
interests.	Older	people	preferred	the	family	member;	young	people	were	just
as	excited	to	meet	the	author	or	make	a	new	friend.	But	in	a	critical	twist,	if
the	young	people	were	asked	to	imagine	that	they	were	about	to	move	across
the	country,	they	preferred	the	family	member	too.	In	another	study,
Carstensen	and	her	colleagues	found	the	same	result	in	the	other	direction	as
well:	if	older	people	were	asked	to	imagine	that	a	medical	breakthrough
would	allow	them	to	live	twenty	years	longer,	their	preferences	became
indistinguishable	from	those	of	young	people.	The	point	is	that	these
differences	in	social	preference	are	not	about	age	as	such—they’re	about
where	people	perceive	themselves	to	be	on	the	interval	relevant	to	their
decision.

Being	sensitive	to	how	much	time	you	have	left	is	exactly	what	the
computer	science	of	the	explore/exploit	dilemma	suggests.	We	think	of	the
young	as	stereotypically	fickle;	the	old,	stereotypically	set	in	their	ways.	In
fact,	both	are	behaving	completely	appropriately	with	respect	to	their
intervals.	The	deliberate	honing	of	a	social	network	down	to	the	most
meaningful	relationships	is	the	rational	response	to	having	less	time	to	enjoy
them.

Recognizing	that	old	age	is	a	time	of	exploitation	helps	provide	new
perspectives	on	some	of	the	classic	phenomena	of	aging.	For	example,	while
going	to	college—a	new	social	environment	filled	with	people	you	haven’t
met—is	typically	a	positive,	exciting	time,	going	to	a	retirement	home—a
new	social	environment	filled	with	people	you	haven’t	met—can	be	painful.
And	that	difference	is	partly	the	result	of	where	we	are	on	the	explore/exploit
continuum	at	those	stages	of	our	lives.

The	explore/exploit	tradeoff	also	tells	us	how	to	think	about	advice	from
our	elders.	When	your	grandfather	tells	you	which	restaurants	are	good,	you
should	listen—these	are	pearls	gleaned	from	decades	of	searching.	But	when
he	only	goes	to	the	same	restaurant	at	5:00	p.m.	every	day,	you	should	feel
free	to	explore	other	options,	even	though	they’ll	likely	be	worse.

Perhaps	the	deepest	insight	that	comes	from	thinking	about	later	life	as	a
chance	to	exploit	knowledge	acquired	over	decades	is	this:	life	should	get
better	over	time.	What	an	explorer	trades	off	for	knowledge	is	pleasure.	The
Gittins	index	and	the	Upper	Confidence	Bound,	as	we’ve	seen,	inflate	the
appeal	of	lesser-known	options	beyond	what	we	actually	expect,	since
pleasant	surprises	can	pay	off	many	times	over.	But	at	the	same	time,	this
means	that	exploration	necessarily	leads	to	being	let	down	on	most	occasions.
Shifting	the	bulk	of	one’s	attention	to	one’s	favorite	things	should	increase
quality	of	life.	And	it	seems	like	it	does:	Carstensen	has	found	that	older
people	are	generally	more	satisfied	with	their	social	networks,	and	often
report	levels	of	emotional	well-being	that	are	higher	than	those	of	younger
adults.

So	there’s	a	lot	to	look	forward	to	in	being	that	late-afternoon	restaurant
regular,	savoring	the	fruits	of	a	life’s	explorations.

*The	basic	summary	of	this	section:	git	while	the	Gittins’s	good.

	

3			Sorting
Making	Order
Nowe	if	the	word,	which	thou	art	desirous	to	finde,	begin	with	(a)	then
looke	in	the	beginning	of	this	Table,	but	if	with	(v)	looke	towards	the	end.
Againe,	if	thy	word	beginne	with	(ca)	looke	in	the	beginning	of	the	letter
(c)	but	if	with	(cu)	then	looke	toward	the	end	of	that	letter.	And	so	of	all
the	rest.	&c.

—ROBERT	CAWDREY,	A	TABLE	ALPHABETICALL	(1604)

Before	Danny	Hillis	founded	the	Thinking	Machines	corporation,	before	he
invented	the	famous	Connection	Machine	parallel	supercomputer,	he	was	an
MIT	undergraduate,	living	in	the	student	dormitory,	and	horrified	by	his
roommate’s	socks.

What	horrified	Hillis,	unlike	many	a	college	undergraduate,	wasn’t	his
roommate’s	hygiene.	It	wasn’t	that	the	roommate	didn’t	wash	the	socks;	he
did.	The	problem	was	what	came	next.

The	roommate	pulled	a	sock	out	of	the	clean	laundry	hamper.	Next	he
pulled	another	sock	out	at	random.	If	it	didn’t	match	the	first	one,	he	tossed	it
back	in.	Then	he	continued	this	process,	pulling	out	socks	one	by	one	and
tossing	them	back	until	he	found	a	match	for	the	first.

With	just	10	different	pairs	of	socks,	following	this	method	will	take	on
average	19	pulls	merely	to	complete	the	first	pair,	and	17	more	pulls	to
complete	the	second.	In	total,	the	roommate	can	expect	to	go	fishing	in	the
hamper	110	times	just	to	pair	20	socks.

It	was	enough	to	make	any	budding	computer	scientist	request	a	room
transfer.

Now,	just	how	socks	should	be	sorted	is	a	good	way	get	computer
scientists	talking	at	surprising	length.	A	question	about	socks	posted	to	the
programming	website	Stack	Overflow	in	2013	prompted	some	twelve
thousand	words	of	debate.

“Socks	confound	me!”	confessed	legendary	cryptographer	and	Turing
Award–winning	computer	scientist	Ron	Rivest	to	the	two	of	us	when	we
brought	up	the	topic.

He	was	wearing	sandals	at	the	time.

The	Ecstasy	of	Sorting

Sorting	is	at	the	very	heart	of	what	computers	do.	In	fact,	in	many	ways	it	was
sorting	that	brought	the	computer	into	being.

In	the	late	nineteenth	century,	the	American	population	was	growing	by
30%	every	decade,	and	the	number	of	“subjects	of	inquiry”	in	the	US	Census
had	gone	from	just	five	in	1870	to	more	than	two	hundred	in	1880.	The
tabulation	of	the	1880	census	took	eight	years—just	barely	finishing	by	the
time	the	1890	census	began.	As	a	writer	at	the	time	put	it,	it	was	a	wonder
“the	clerks	who	toiled	at	the	irritating	slips	of	tally	paper	…	did	not	go	blind
and	crazy.”	The	whole	enterprise	was	threatening	to	collapse	under	its	own
weight.	Something	had	to	be	done.

Inspired	by	the	punched	railway	tickets	of	the	time,	an	inventor	by	the
name	of	Herman	Hollerith	devised	a	system	of	punched	manila	cards	to	store
information,	and	a	machine,	which	he	called	the	Hollerith	Machine,	to	count
and	sort	them.	Hollerith	was	awarded	a	patent	in	1889,	and	the	government
adopted	the	Hollerith	Machine	for	the	1890	census.	No	one	had	ever	seen
anything	like	it.	Wrote	one	awestruck	observer,	“The	apparatus	works	as
unerringly	as	the	mills	of	the	Gods,	but	beats	them	hollow	as	to	speed.”
Another,	however,	reasoned	that	the	invention	was	of	limited	use:	“As	no	one
will	ever	use	it	but	governments,	the	inventor	will	not	likely	get	very	rich.”
This	prediction,	which	Hollerith	clipped	and	saved,	would	not	prove	entirely
correct.	Hollerith’s	firm	merged	with	several	others	in	1911	to	become	the
Computing-Tabulating-Recording	Company.	A	few	years	later	it	was	renamed
—to	International	Business	Machines,	or	IBM.

Sorting	continued	to	spur	the	development	of	the	computer	through	the
next	century.	The	first	code	ever	written	for	a	“stored	program”	computer	was
a	program	for	efficient	sorting.	In	fact,	it	was	the	computer’s	ability	to	outsort
IBM’s	dedicated	card-sorting	machines	that	convinced	the	US	government
their	enormous	financial	investment	in	a	general-purpose	machine	was
justified.	By	the	1960s,	one	study	estimated	that	more	than	a	quarter	of	the

computing	resources	of	the	world	were	being	spent	on	sorting.	And	no
wonder—sorting	is	essential	to	working	with	almost	any	kind	of	information.
Whether	it’s	finding	the	largest	or	the	smallest,	the	most	common	or	the
rarest,	tallying,	indexing,	flagging	duplicates,	or	just	plain	looking	for	the
thing	you	want,	they	all	generally	begin	under	the	hood	with	a	sort.

But	sorting	is	more	pervasive,	even,	than	this.	After	all,	one	of	the	main
reasons	things	get	sorted	is	to	be	shown	in	useful	form	to	human	eyes,	which
means	that	sorting	is	also	key	to	the	human	experience	of	information.	Sorted
lists	are	so	ubiquitous	that—like	the	fish	who	asks,	“What	is	water?”—we
must	consciously	work	to	perceive	them	at	all.	And	then	we	perceive	them
everywhere.

Our	email	inbox	typically	displays	the	top	fifty	messages	of	potentially
thousands,	sorted	by	time	of	receipt.	When	we	look	for	restaurants	on	Yelp
we’re	shown	the	top	dozen	or	so	of	hundreds,	sorted	by	proximity	or	by
rating.	A	blog	shows	a	cropped	list	of	articles,	sorted	by	date.	The	Facebook
news	feed,	Twitter	stream,	and	Reddit	homepage	all	present	themselves	as
lists,	sorted	by	some	proprietary	measure.	We	refer	to	things	like	Google	and
Bing	as	“search	engines,”	but	that	is	something	of	a	misnomer:	they’re	really
sort	engines.	What	makes	Google	so	dominant	as	a	means	of	accessing	the
world’s	information	is	less	that	it	finds	our	text	within	hundreds	of	millions	of
webpages—its	1990s	competitors	could	generally	do	that	part	well	enough—
but	that	it	sorts	those	webpages	so	well,	and	only	shows	us	the	most	relevant
ten.

The	truncated	top	of	an	immense,	sorted	list	is	in	many	ways	the	universal
user	interface.

Computer	science	gives	us	a	way	to	understand	what’s	going	on	behind
the	scenes	in	all	of	these	cases,	which	in	turn	can	offer	us	some	insight	for
those	times	when	we	are	the	one	stuck	making	order—with	our	bills,	our
papers,	our	books,	our	socks,	probably	more	times	each	day	than	we	realize.
By	quantifying	the	vice	(and	the	virtue)	of	mess,	it	also	shows	us	the	cases
where	we	actually	shouldn’t	make	order	at	all.

What’s	more,	when	we	begin	looking,	we	see	that	sorting	isn’t	just
something	we	do	with	information.	It’s	something	we	do	with	people.	Perhaps
the	place	where	the	computer	science	of	establishing	rank	is	most
unexpectedly	useful	is	on	the	sporting	field	and	in	the	boxing	ring—which	is

why	knowing	a	little	about	sorting	might	help	explain	how	human	beings	are
able	to	live	together	while	only	occasionally	coming	to	blows.	That	is	to	say,
sorting	offers	some	surprising	clues	about	the	nature	of	society—that	other,
larger,	and	more	important	kind	of	order	that	we	make.

The	Agony	of	Sorting

“To	lower	costs	per	unit	of	output,	people	usually	increase	the	size	of	their
operations,”	wrote	J.	C.	Hosken	in	1955,	in	the	first	scientific	article
published	on	sorting.	This	is	the	economy	of	scale	familiar	to	any	business
student.	But	with	sorting,	size	is	a	recipe	for	disaster:	perversely,	as	a	sort
grows	larger,	“the	unit	cost	of	sorting,	instead	of	falling,	rises.”	Sorting
involves	steep	diseconomies	of	scale,	violating	our	normal	intuitions	about
the	virtues	of	doing	things	in	bulk.	Cooking	for	two	is	typically	no	harder	than
cooking	for	one,	and	it’s	certainly	easier	than	cooking	for	one	person	twice.
But	sorting,	say,	a	shelf	of	a	hundred	books	will	take	you	longer	than	sorting
two	bookshelves	of	fifty	apiece:	you	have	twice	as	many	things	to	organize,
and	there	are	twice	as	many	places	each	of	them	could	go.	The	more	you	take
on,	the	worse	it	gets.

This	is	the	first	and	most	fundamental	insight	of	sorting	theory.	Scale
hurts.

From	this	we	might	infer	that	minimizing	our	pain	and	suffering	when	it
comes	to	sorting	is	all	about	minimizing	the	number	of	things	we	have	to	sort.
It’s	true:	one	of	the	best	preventives	against	the	computational	difficulty	of
sock	sorting	is	just	doing	your	laundry	more	often.	Doing	laundry	three	times
as	frequently,	say,	could	reduce	your	sorting	overhead	by	a	factor	of	nine.
Indeed,	if	Hillis’s	roommate	stuck	with	his	peculiar	procedure	but	went
thirteen	days	between	washes	instead	of	fourteen,	that	alone	would	save	him
twenty-eight	pulls	from	the	hamper.	(And	going	just	a	single	day	longer
between	washes	would	cost	him	thirty	pulls	more.)

Even	at	such	a	modest,	fortnightly	scope	we	can	see	the	scale	of	sorting
beginning	to	grow	untenable.	Computers,	though,	must	routinely	sort	millions
of	items	in	a	single	go.	For	that,	as	the	line	from	Jaws	puts	it,	we’re	going	to
need	a	bigger	boat—and	a	better	algorithm.

But	to	answer	the	question	of	just	how	we	ought	to	be	sorting,	and	which
methods	come	out	on	top,	we	need	to	figure	out	something	else	first:	how

we’re	going	to	keep	score.

Big-O:	A	Yardstick	for	the	Worst	Case

The	Guinness	Book	of	World	Records	attributes	the	record	for	sorting	a	deck
of	cards	to	the	Czech	magician	Zdeněk	Bradáč.	On	May	15,	2008,	Bradáč
sorted	a	52-card	deck	in	just	36.16	seconds.*	How	did	he	do	it?	What	sorting
technique	delivered	him	the	title?	Though	the	answer	would	shed	interesting
light	on	sorting	theory,	Bradáč	declined	to	comment.

While	we	have	nothing	but	respect	for	Bradáč’s	skill	and	dexterity,	we	are
100%	certain	of	the	following:	we	can	personally	break	his	record.	In	fact,	we
are	100%	certain	that	we	can	attain	an	unbreakable	record.	All	we	need	are
about
80,658,175,170,943,878,571,660,636,856,403,766,975,289,505,440,883,277,824,000,000,000,000
attempts	at	the	title.	This	number,	a	bit	over	80	unvigintillion,	is	52	factorial,
or	“52!”	in	mathematical	notation—the	number	of	ways	that	a	deck	of	52
cards	can	possibly	be	ordered.	By	taking	roughly	that	many	attempts,	sooner
or	later	we	are	bound	to	start	with	a	shuffled	deck	that	is	in	fact	completely
sorted	by	chance.	At	that	point	we	can	proudly	enter	Christian-Griffiths	into
The	Guinness	Book	alongside	a	not-too-shabby	sort	time	of	0m00s.

To	be	fair,	we’d	almost	certainly	be	trying	until	the	heat	death	of	the
universe	before	we	got	our	perfect	record	attempt.	Nonetheless,	this
highlights	the	biggest	fundamental	difference	between	record	keepers	and
computer	scientists.	The	fine	folks	at	Guinness	care	only	about	best-case
performance	(and	beer).	They’re	hardly	blameworthy,	of	course:	all	records	in
sports	reflect	the	single	best	performance.	Computer	science,	however,	almost
never	cares	about	the	best	case.	Instead,	computer	scientists	might	want	to
know	the	average	sort	time	of	someone	like	Bradáč:	get	him	to	sort	all	of	the
80	unvigintillion	deck	orders,	or	a	reasonably	sized	sample,	and	score	him	on
his	average	speed	across	all	attempts.	(You	can	see	why	they	don’t	let
computer	scientists	run	these	things.)

Moreover,	a	computer	scientist	would	want	to	know	the	worst	sort	time.
Worst-case	analysis	lets	us	make	hard	guarantees:	that	a	critical	process	will
finish	in	time,	that	deadlines	won’t	be	blown.	So	for	the	rest	of	this	chapter—
and	the	rest	of	this	book,	actually—we	will	be	discussing	only	algorithms’
worst-case	performance,	unless	noted	otherwise.

Computer	science	has	developed	a	shorthand	specifically	for	measuring
algorithmic	worst-case	scenarios:	it’s	called	“Big-O”	notation.	Big-O	notation
has	a	particular	quirk,	which	is	that	it’s	inexact	by	design.	That	is,	rather	than
expressing	an	algorithm’s	performance	in	minutes	and	seconds,	Big-O
notation	provides	a	way	to	talk	about	the	kind	of	relationship	that	holds
between	the	size	of	the	problem	and	the	program’s	running	time.	Because
Big-O	notation	deliberately	sheds	fine	details,	what	emerges	is	a	schema	for
dividing	problems	into	different	broad	classes.

Imagine	you’re	hosting	a	dinner	party	with	n	guests.	The	time	required	to
clean	the	house	for	their	arrival	doesn’t	depend	on	the	number	of	guests	at	all.
This	is	the	rosiest	class	of	problems	there	is:	called	“Big-O	of	one,”	written
O(1),	it	is	also	known	as	“constant	time.”	Notably,	Big-O	notation	doesn’t
care	a	whit	how	long	the	cleaning	actually	takes—just	that	it’s	always	the
same,	totally	invariant	of	the	guest	list.	You’ve	got	the	same	work	to	do	if	you
have	one	guest	as	if	you	have	ten,	a	hundred,	or	any	other	n.

Now,	the	time	required	to	pass	the	roast	around	the	table	will	be	“Big-O	of
n,”	written	O(n),	also	known	as	“linear	time”—with	twice	the	guests,	you’ll
wait	twice	as	long	for	the	dish	to	come	around.	And	again,	Big-O	notation
couldn’t	care	less	about	the	number	of	courses	that	get	served,	or	whether
they	go	around	for	second	helpings.	In	each	case,	the	time	still	depends
linearly	on	the	guest	list	size—if	you	drew	a	graph	of	the	number	of	guests	vs.
the	time	taken,	it	would	be	a	straight	line.	What’s	more,	the	existence	of	any
linear-time	factors	will,	in	Big-O	notation,	swamp	all	constant-time	factors.
That	is	to	say,	passing	the	roast	once	around	the	table,	or	remodeling	your
dining	room	for	three	months	and	then	passing	the	roast	once	around	the
table,	are	both,	to	a	computer	scientist,	effectively	equivalent.	If	that	seems
crazy,	remember	that	computers	deal	with	values	of	n	that	could	easily	be	in
the	thousands,	millions,	or	billions.	In	other	words,	computer	scientists	are
thinking	about	very,	very	big	parties.	With	a	guest	list	in	the	millions,	passing
the	roast	once	around	would	indeed	make	the	home	remodel	seem	dwarfed	to
the	point	of	insignificance.

What	if,	as	the	guests	arrived,	each	one	hugged	the	others	in	greeting?
Your	first	guest	hugs	you;	your	second	guest	has	two	hugs	to	give;	your	third
guest,	three.	How	many	hugs	will	there	be	in	total?	This	turns	out	to	be	“Big-
O	of	n-squared,”	written	O(n2)	and	also	known	as	“quadratic	time.”	Here
again,	we	only	care	about	the	basic	contours	of	the	relationship	between	n	and

time.	There’s	no	O(2n2)	for	two	hugs	apiece,	or	O(n2	+	n)	for	hugs	plus
passing	the	food	around,	or	O(n2	+	1)	for	hugs	plus	home	cleaning.	It’s	all
quadratic	time,	so	O(n2)	covers	everything.

Constant	time,	written	O(1);	linear	time,	written	O(n);	and	quadratic	time,	written	O(n2).

It	gets	worse	from	there.	There’s	“exponential	time,”	O(2n),	where	each
additional	guest	doubles	your	work.	Even	worse	is	“factorial	time,”	O(n!),	a
class	of	problems	so	truly	hellish	that	computer	scientists	only	talk	about	it
when	they’re	joking—as	we	were	in	imagining	shuffling	a	deck	until	it’s
sorted—or	when	they	really,	really	wish	they	were.

The	Squares:	Bubble	Sort	and	Insertion	Sort

When	then	senator	Obama	visited	Google	in	2007,	CEO	Eric	Schmidt
jokingly	began	the	Q&A	like	a	job	interview,	asking	him,	“What’s	the	best
way	to	sort	a	million	thirty-two-bit	integers?”	Without	missing	a	beat,	Obama
cracked	a	wry	smile	and	replied,	“I	think	the	Bubble	Sort	would	be	the
wrong	way	to	go.”	The	crowd	of	Google	engineers	erupted	in	cheers.	“He	had
me	at	Bubble	Sort,”	one	later	recalled.

Obama	was	right	to	eschew	Bubble	Sort,	an	algorithm	which	has	become
something	of	a	punching	bag	for	computer	science	students:	it’s	simple,	it’s
intuitive,	and	it’s	extremely	inefficient.

Imagine	you	want	to	alphabetize	your	unsorted	collection	of	books.	A
natural	approach	would	be	just	to	scan	across	the	shelf	looking	for	out-of-
order	pairs—Wallace	followed	by	Pynchon,	for	instance—and	flipping	them
around.	Put	Pynchon	ahead	of	Wallace,	then	continue	your	scan,	looping
around	to	the	beginning	of	the	shelf	each	time	you	reach	the	end.	When	you
make	a	complete	pass	without	finding	any	more	out-of-order	pairs	on	the
entire	shelf,	then	you	know	the	job	is	done.

This	is	Bubble	Sort,	and	it	lands	us	in	quadratic	time.	There	are	n	books

out	of	order,	and	each	scan	through	the	shelf	can	move	each	one	at	most	one
position.	(We	spot	a	tiny	problem,	make	a	tiny	fix.)	So	in	the	worst	case,
where	the	shelf	is	perfectly	backward,	at	least	one	book	will	need	to	be	moved
n	positions.	Thus	a	maximum	of	n	passes	through	n	books,	which	gives	us
O(n2)	in	the	worst	case.*	It’s	not	terrible—for	one	thing,	it’s	worlds	better
than	our	O(n!)	shuffle-till-it’s-sorted	idea	from	earlier	(in	case	you	needed
computer	science	to	confirm	that).	But	all	the	same,	that	squared	term	can	get
daunting	quickly.	For	instance,	it	means	that	sorting	five	shelves	of	books	will
take	not	five	times	as	long	as	sorting	a	single	shelf,	but	twenty-five	times	as
long.

You	might	take	a	different	tack—pulling	all	the	books	off	the	shelf	and
putting	them	back	in	place	one	by	one.	You’d	put	the	first	book	in	the	middle
of	the	shelf,	then	take	the	second	and	compare	it	to	the	first,	inserting	it	either
to	the	right	or	to	the	left.	Picking	up	the	third	book,	you’d	run	through	the
books	on	the	shelf	from	left	to	right	until	you	found	the	right	spot	to	tuck	it	in.
Repeating	this	process,	gradually	all	of	the	books	would	end	up	sorted	on	the
shelf	and	you’d	be	done.

Computer	scientists	call	this,	appropriately	enough,	Insertion	Sort.	The
good	news	is	that	it’s	arguably	even	more	intuitive	than	Bubble	Sort	and
doesn’t	have	quite	the	bad	reputation.	The	bad	news	is	that	it’s	not	actually
that	much	faster.	You	still	have	to	do	one	insertion	for	each	book.	And	each
insertion	still	involves	moving	past	about	half	the	books	on	the	shelf,	on
average,	to	find	the	correct	place.	Although	in	practice	Insertion	Sort	does	run
a	bit	faster	than	Bubble	Sort,	again	we	land	squarely,	if	you	will,	in	quadratic
time.	Sorting	anything	more	than	a	single	bookshelf	is	still	an	unwieldy
prospect.

Breaking	the	Quadratic	Barrier:	Divide	and	Conquer

At	this	point,	having	seen	two	entirely	sensible	approaches	fall	into
unsustainable	quadratic	time,	it’s	natural	to	wonder	whether	faster	sorting	is
even	possible.

The	question	sounds	like	it’s	about	productivity.	But	talk	to	a	computer
scientist	and	it	turns	out	to	be	closer	to	metaphysics—akin	to	thinking	about
the	speed	of	light,	time	travel,	superconductors,	or	thermodynamic	entropy.
What	are	the	universe’s	fundamental	rules	and	limits?	What	is	possible?	What
is	allowed?	In	this	way	computer	scientists	are	glimpsing	God’s	blueprints

every	bit	as	much	as	the	particle	physicists	and	cosmologists.	What	is	the
minimum	effort	requred	to	make	order?

Could	we	find	a	constant-time	sort,	O(1),	one	that	(like	cleaning	the	house
before	the	bevy	of	guests	arrive)	can	sort	a	list	of	any	size	in	the	same	amount
of	time?	Well,	even	just	confirming	that	a	shelf	of	n	books	is	sorted	cannot	be
done	in	constant	time,	since	it	requires	checking	all	n	of	them.	So	actually
sorting	the	books	in	constant	time	seems	out	of	the	question.

What	about	a	linear-time	sort,	O(n),	as	efficient	as	passing	a	dish	around	a
table,	where	doubling	the	number	of	items	to	sort	merely	doubles	the	work?
Thinking	about	the	examples	above,	it’s	tough	to	imagine	how	that	might
work	either.	The	n2	in	each	case	comes	from	the	fact	that	you	need	to	move	n
books,	and	the	work	required	in	each	move	scales	with	n	as	well.	How	would
we	get	from	n	moves	of	size	n	down	to	just	n	by	itself?	In	Bubble	Sort,	our
O(n2)	running	time	came	from	handling	each	of	the	n	books	and	moving	them
as	many	as	n	places	each.	In	Insertion	Sort,	quadratic	running	time	came	from
handling	each	of	the	n	books	and	comparing	them	to	as	many	as	n	others
before	inserting	them.	A	linear-time	sort	means	handling	each	book	for
constant	time	regardless	of	how	many	others	it	needs	to	find	its	place	among.
Doesn’t	seem	likely.

So	we	know	that	we	can	do	at	least	as	well	as	quadratic	time,	but	probably
not	as	well	as	linear	time.	Perhaps	our	limit	lies	somewhere	between	linear
time	and	quadratic	time.	Are	there	any	algorithms	between	linear	and
quadratic,	between	n	and	n	×	n?

There	are—and	they	were	hiding	in	plain	sight.

As	we	mentioned	earlier,	information	processing	began	in	the	US	censuses
of	the	nineteenth	century,	with	the	development,	by	Herman	Hollerith	and
later	by	IBM,	of	physical	punch-card	sorting	devices.	In	1936,	IBM	began
producing	a	line	of	machines	called	“collators”	that	could	merge	two
separately	ordered	stacks	of	cards	into	one.	As	long	as	the	two	stacks	were
themselves	sorted,	the	procedure	of	merging	them	into	a	single	sorted	stack
was	incredibly	straightforward	and	took	linear	time:	simply	compare	the	two
top	cards	to	each	other,	move	the	smaller	of	them	to	the	new	stack	you’re
creating,	and	repeat	until	finished.

The	program	that	John	von	Neumann	wrote	in	1945	to	demonstrate	the

power	of	the	stored-program	computer	took	the	idea	of	collating	to	its
beautiful	and	ultimate	conclusion.	Sorting	two	cards	is	simple:	just	put	the
smaller	one	on	top.	And	given	a	pair	of	two-card	stacks,	both	of	them	sorted,
you	can	easily	collate	them	into	an	ordered	stack	of	four.	Repeating	this	trick
a	few	times,	you’d	build	bigger	and	bigger	stacks,	each	one	of	them	already
sorted.	Soon	enough,	you	could	collate	yourself	a	perfectly	sorted	full	deck—
with	a	final	climactic	merge,	like	a	riffle	shuffle’s	order-creating	twin,
producing	the	desired	result.

This	approach	is	known	today	as	Mergesort,	one	of	the	legendary
algorithms	in	computer	science.	As	a	1997	paper	put	it,	“Mergesort	is	as
important	in	the	history	of	sorting	as	sorting	in	the	history	of	computing.”

The	power	of	Mergesort	comes	from	the	fact	that	it	indeed	ends	up	with	a
complexity	between	linear	and	quadratic	time—specifically,	O(n	log	n),
known	as	“linearithmic”	time.	Each	pass	through	the	cards	doubles	the	size	of
the	sorted	stacks,	so	to	completely	sort	n	cards	you’ll	need	to	make	as	many
passes	as	it	takes	for	the	number	2,	multiplied	by	itself,	to	equal	n:	the	base-
two	logarithm,	in	other	words.	You	can	sort	up	to	four	cards	in	two	collation
passes,	up	to	eight	cards	with	a	third	pass,	and	up	to	sixteen	cards	with	a
fourth.	Mergesort’s	divide-and-conquer	approach	inspired	a	host	of	other
linearithmic	sorting	algorithms	that	quickly	followed	on	its	heels.	And	to	say
that	linearithmic	complexity	is	an	improvement	on	quadratic	complexity	is	a
titanic	understatement.	In	the	case	of	sorting,	say,	a	census-level	number	of
items,	it’s	the	difference	between	making	twenty-nine	passes	through	your
data	set	…	and	three	hundred	million.	No	wonder	it’s	the	method	of	choice
for	large-scale	industrial	sorting	problems.

Mergesort	also	has	real	applications	in	small-scale	domestic	sorting
problems.	Part	of	the	reason	why	it’s	so	widely	used	is	that	it	can	easily	be
parallelized.	If	you’re	still	strategizing	about	that	bookshelf,	the	Mergesort
solution	would	be	to	order	a	pizza	and	invite	over	a	few	friends.	Divide	the
books	evenly,	and	have	each	person	sort	their	own	stack.	Then	pair	people	up
and	have	them	merge	their	stacks.	Repeat	this	process	until	there	are	just	two
stacks	left,	and	merge	them	one	last	time	onto	the	shelf.	Just	try	to	avoid
getting	pizza	stains	on	the	books.

Beyond	Comparison:	Outsmarting	the	Logarithm

In	an	inconspicuous	industrial	park	near	the	town	of	Preston,	Washington,

tucked	behind	one	nondescript	gray	entrance	of	many,	lies	the	2011	and	2013
National	Library	Sorting	Champion.	A	long,	segmented	conveyor	belt	moves
167	books	a	minute—85,000	a	day—through	a	bar	code	scanner,	where	they
are	automatically	diverted	into	bomb-bay	doors	that	drop	into	one	of	96	bins.

A	Mergesort	in	action.	Given	a	shelf	of	eight	unsorted	books,	start	by	putting	adjacent	books	into	sorted
pairs.	Then	collate	the	pairs	into	ordered	sets	of	four,	and	finally	collate	those	sets	to	get	a	fully	sorted
shelf.

The	Preston	Sort	Center	is	one	of	the	biggest	and	most	efficient	book-
sorting	facilities	in	the	world.	It’s	run	by	the	King	County	Library	System,
which	has	begun	a	healthy	rivalry	with	the	similarly	equipped	New	York
Public	Library,	with	the	title	going	back	and	forth	over	four	closely	contested
years.	“King	County	Library	beating	us	this	year?”	said	the	NYPL’s	deputy
director	of	BookOps,	Salvatore	Magaddino,	before	the	2014	showdown.
“Fuhgeddaboutit.”

There’s	something	particularly	impressive	about	the	Preston	Sort	Center
from	a	theoretician’s	point	of	view,	too.	The	books	going	through	its	system
are	sorted	in	O(n)—linear	time.

In	an	important	sense,	the	O(n	log	n)	linearithmic	time	offered	by
Mergesort	is	truly	the	best	we	can	hope	to	achieve.	It’s	been	proven	that	if	we
want	to	fully	sort	n	items	via	a	series	of	head-to-head	comparisons,	there’s
just	no	way	to	compare	them	any	fewer	than	O(n	log	n)	times.	It’s	a
fundamental	law	of	the	universe,	and	there	are	no	two	ways	around	it.

But	this	doesn’t,	strictly	speaking,	close	the	book	on	sorting.	Because
sometimes	you	don’t	need	a	fully	ordered	set—and	sometimes	sorting	can	be
done	without	any	item-to-item	comparisons	at	all.	These	two	principles,	taken
together,	allow	for	rough	practical	sorts	in	faster	than	linearithmic	time.	This
is	beautifully	demonstrated	by	an	algorithm	known	as	Bucket	Sort—of
which	the	Preston	Sort	Center	is	a	perfect	illustration.

In	Bucket	Sort,	items	are	grouped	together	into	a	number	of	sorted
categories,	with	no	regard	for	finer,	intracategory	sorting;	that	can	come	later.
(In	computer	science	the	term	“bucket”	simply	refers	to	a	chunk	of	unsorted
data,	but	some	of	the	most	powerful	real-world	uses	of	Bucket	Sort,	as	at	the
KCLS,	take	the	name	entirely	literally.)	Here’s	the	kicker:	if	you	want	to
group	n	items	into	m	buckets,	the	grouping	can	be	done	in	O(nm)	time—that
is,	the	time	is	simply	proportional	to	the	number	of	items	times	the	number	of
buckets.	And	as	long	as	the	number	of	buckets	is	relatively	small	compared	to
the	number	of	items,	Big-O	notation	will	round	that	to	O(n),	or	linear	time.

The	key	to	actually	breaking	the	linearithmic	barrier	is	knowing	the
distribution	from	which	the	items	you’re	sorting	are	drawn.	Poorly	chosen

buckets	will	leave	you	little	better	than	when	you	started;	if	all	the	books	end
up	in	the	same	bin,	for	instance,	you	haven’t	made	any	progress	at	all.	Well-
chosen	buckets,	however,	will	divide	your	items	into	roughly	equal-sized
groups,	which—given	sorting’s	fundamental	“scale	hurts”	nature—is	a	huge
step	toward	a	complete	sort.	At	the	Preston	Sort	Center,	whose	job	is	to	sort
books	by	their	destination	branch,	rather	than	alphabetically,	the	choice	of
buckets	is	driven	by	circulation	statistics.	Some	branches	have	a	greater
circulation	volume	than	others,	so	they	may	have	two	bins	allocated	to	them,
or	even	three.

A	similar	knowledge	of	the	material	is	useful	to	human	sorters	too.	To	see
sorting	experts	in	action,	we	took	a	field	trip	to	UC	Berkeley’s	Doe	and
Moffitt	Libraries,	where	there	are	no	less	than	fifty-two	miles	of	bookshelves
to	keep	in	order—and	it’s	all	done	by	hand.	Books	returned	to	the	library	are
first	placed	in	a	behind-the-scenes	area,	allocated	to	shelves	designated	by
Library	of	Congress	call	numbers.	For	example,	one	set	of	shelves	there
contains	a	jumble	of	all	the	recently	returned	books	with	call	numbers
PS3000–PS9999.	Then	student	assistants	load	those	books	onto	carts,	putting
up	to	150	books	in	proper	order	so	they	can	be	returned	to	the	library	shelves.
The	students	get	some	basic	training	in	sorting,	but	develop	their	own
strategies	over	time.	After	a	bit	of	experience,	they	can	sort	a	full	cart	of	150
books	in	less	than	40	minutes.	And	a	big	part	of	that	experience	involves
knowing	what	to	expect.

Berkeley	undergraduate	Jordan	Ho,	a	chemistry	major	and	star	sorter,
talked	us	through	his	process	as	he	went	through	an	impressive	pile	of	books
on	the	PS3000–PS9999	shelves:

I	know	from	experience	that	there’s	a	lot	of	3500s,	so	I	want	to	look	for	any	books	that	are	below
3500	and	rough-sort	those	out.	And	once	I	do	that,	then	I	sort	those	more	finely.	After	I	sort	the
ones	under	3500,	I	know	3500	itself	is	a	big	section—3500–3599—so	I	want	to	make	that	a
section	itself.	If	there	are	a	lot	of	those	I	might	want	to	fine-tune	it	even	more:	3510s,	3520s,
3530s.

Jordan	aims	to	get	a	group	of	25	or	so	books	onto	his	cart	before	putting	them
in	final	order,	which	he	does	using	an	Insertion	Sort.	And	his	carefully
developed	strategy	is	exactly	the	right	way	to	get	there:	a	Bucket	Sort,	with
his	well-informed	forecast	of	how	many	books	he’ll	have	with	various	call
numbers	telling	him	what	his	buckets	should	be.

Sort	Is	Prophylaxis	for	Search

Knowing	all	these	sorting	algorithms	should	come	in	handy	next	time	you
decide	to	alphabetize	your	bookshelf.	Like	President	Obama,	you’ll	know	not
to	use	Bubble	Sort.	Instead,	a	good	strategy—ratified	by	human	and	machine
librarians	alike—is	to	Bucket	Sort	until	you	get	down	to	small	enough	piles
that	Insertion	Sort	is	reasonable,	or	to	have	a	Mergesort	pizza	party.

But	if	you	actually	asked	a	computer	scientist	to	help	implement	this
process,	the	first	question	they	would	ask	is	whether	you	should	be	sorting	at
all.

Computer	science,	as	undergraduates	are	taught,	is	all	about	tradeoffs.
We’ve	already	seen	this	in	the	tensions	between	looking	and	leaping,	between
exploring	and	exploiting.	And	one	of	the	most	central	tradeoffs	is	between
sorting	and	searching.	The	basic	principle	is	this:	the	effort	expended	on
sorting	materials	is	just	a	preemptive	strike	against	the	effort	it’ll	take	to
search	through	them	later.	What	the	precise	balance	should	be	depends	on	the
exact	parameters	of	the	situation,	but	thinking	about	sorting	as	valuable	only
to	support	future	search	tells	us	something	surprising:

Err	on	the	side	of	messiness.

Sorting	something	that	you	will	never	search	is	a	complete	waste;
searching	something	you	never	sorted	is	merely	inefficient.

The	question,	of	course,	becomes	how	to	estimate	ahead	of	time	what	your
future	usage	will	be.

The	poster	child	for	the	advantages	of	sorting	would	be	an	Internet	search
engine	like	Google.	It	seems	staggering	to	think	that	Google	can	take	the
search	phrase	you	typed	in	and	scour	the	entire	Internet	for	it	in	less	than	half
a	second.	Well,	it	can’t—but	it	doesn’t	need	to.	If	you’re	Google,	you	are
almost	certain	that	(a)	your	data	will	be	searched,	(b)	it	will	be	searched	not
just	once	but	repeatedly,	and	(c)	the	time	needed	to	sort	is	somehow	“less
valuable”	than	the	time	needed	to	search.	(Here,	sorting	is	done	by	machines
ahead	of	time,	before	the	results	are	needed,	and	searching	is	done	by	users
for	whom	time	is	of	the	essence.)	All	of	these	factors	point	in	favor	of
tremendous	up-front	sorting,	which	is	indeed	what	Google	and	its	fellow
search	engines	do.

So,	should	you	alphabetize	your	bookshelves?	For	most	domestic
bookshelves,	almost	none	of	the	conditions	that	make	sorting	worthwhile	are

true.	It’s	fairly	rare	that	we	find	ourselves	searching	for	a	particular	title.	The
costs	of	an	unsorted	search	are	pretty	low:	for	every	book,	if	we	know	roughly
where	it	is	we	can	put	our	hands	on	it	quickly.	And	the	difference	between	the
two	seconds	it	would	take	to	find	the	book	on	a	sorted	shelf	and	the	ten
seconds	it	would	take	to	scan	for	it	on	an	unsorted	one	is	hardly	a	deal
breaker.	We	rarely	need	to	find	a	title	so	urgently	that	it’s	worth	spending
preparatory	hours	up	front	to	shave	off	seconds	later	on.	What’s	more,	we
search	with	our	quick	eyes	and	sort	with	slow	hands.

The	verdict	is	clear:	ordering	your	bookshelf	will	take	more	time	and
energy	than	scanning	through	it	ever	will.

Your	unsorted	bookshelf	might	not	be	an	everyday	preoccupation,	but	your
email	inbox	almost	certainly	is—and	it’s	another	domain	where	searching
beats	sorting	handily.	Filing	electronic	messages	by	hand	into	folders	takes
about	the	same	amount	of	time	as	filing	physical	papers	in	the	real	world,	but
emails	can	be	searched	much	more	efficiently	than	their	physical
counterparts.	As	the	cost	of	searching	drops,	sorting	becomes	less	valuable.

Steve	Whittaker	is	one	of	the	world’s	experts	on	how	people	handle	their
email.	A	research	scientist	at	IBM	and	professor	at	UC	Santa	Cruz,	Whittaker,
for	almost	two	decades,	has	been	studying	how	people	manage	personal
information.	(He	wrote	a	paper	on	“email	overload”	in	1996,	before	many
people	even	had	email.)	In	2011,	Whittaker	led	a	study	of	the	searching	and
sorting	habits	of	email	users,	resulting	in	a	paper	titled	“Am	I	Wasting	My
Time	Organizing	Email?”	Spoiler	alert:	the	conclusion	was	an	emphatic	Yes.
“It’s	empirical,	but	it’s	also	experiential,”	Whittaker	points	out.	“When	I
interview	people	about	these	kinds	of	organizational	problems,	that’s
something	that	they	characteristically	talk	about,	is	that	they	sort	of	wasted	a
part	of	their	life.”

Computer	science	shows	that	the	hazards	of	mess	and	the	hazards	of	order
are	quantifiable	and	that	their	costs	can	be	measured	in	the	same	currency:
time.	Leaving	something	unsorted	might	be	thought	of	as	an	act	of
procrastination—passing	the	buck	to	one’s	future	self,	who’ll	have	to	pay	off
with	interest	what	we	chose	not	to	pay	up	front.	But	the	whole	story	is	subtler
than	that.	Sometimes	mess	is	more	than	just	the	easy	choice.	It’s	the	optimal
choice.

Sorts	and	Sports

The	search-sort	tradeoff	suggests	that	it’s	often	more	efficient	to	leave	a	mess.
Saving	time	isn’t	the	only	reason	we	sort	things,	though:	sometimes
producing	a	final	order	is	an	end	in	itself.	And	nowhere	is	that	clearer	than	on
the	sporting	field.

In	1883,	Charles	Lutwidge	Dodgson	developed	incredibly	strong	feelings
about	the	state	of	British	lawn	tennis.	As	he	explains:

At	a	Lawn	Tennis	Tournament,	where	I	chanced,	some	while	ago,	to	be	a	spectator,	the	present
method	of	assigning	prizes	was	brought	to	my	notice	by	the	lamentations	of	one	of	the	Players,
who	had	been	beaten	(and	had	thus	lost	all	chance	of	a	prize)	early	in	the	contest,	and	who	had
had	the	mortification	of	seeing	the	2nd	prize	carried	off	by	a	Player	whom	he	knew	to	be	quite
inferior	to	himself.

Normal	spectators	might	chalk	up	such	“lamentations”	to	little	more	than
the	sting	of	defeat,	but	Dodgson	was	no	ordinary	sympathetic	ear.	He	was	an
Oxford	lecturer	in	mathematics,	and	the	sportsman’s	complaints	sent	him	on	a
deep	investigation	of	the	nature	of	sports	tournaments.

Dodgson	was	more	than	just	an	Oxford	mathematician—in	fact,	he’s
barely	remembered	as	having	been	one.	Today	he’s	best	known	by	his	pen
name,	Lewis	Carroll,	under	which	he	wrote	Alice’s	Adventures	in	Wonderland
and	many	other	beloved	works	of	nineteenth-century	literature.	Fusing	his
mathematical	and	literary	talents,	Dodgson	produced	one	of	his	lesser-known
works:	“Lawn	Tennis	Tournaments:	The	True	Method	of	Assigning	Prizes
with	a	Proof	of	the	Fallacy	of	the	Present	Method.”

Dodgson’s	complaint	was	directed	at	the	structure	of	the	Single
Elimination	tournament,	where	players	are	paired	off	with	one	another	and
eliminated	from	competition	as	soon	as	they	lose	a	single	match.	As	Dodgson
forcefully	argued,	the	true	second-best	player	could	be	any	of	the	players
eliminated	by	the	best—not	just	the	last-eliminated	one.	Ironically,	in	the
Olympics	we	do	hold	bronze	medal	matches,	by	which	we	appear	to
acknowledge	that	the	Single	Elimination	format	doesn’t	give	us	enough
information	to	determine	third	place.*	But	in	fact	this	format	doesn’t	tell	us
enough	to	determine	second	place	either—or,	indeed,	anything	except	the
winner.	As	Dodgson	put	it,	“The	present	method	of	assigning	prizes	is,	except
in	the	case	of	the	first	prize,	entirely	unmeaning.”	Said	plainly,	the	silver
medal	is	a	lie.

“As	a	mathematical	fact,”	he	continued,	“the	chance	that	the	2nd	best

Player	will	get	the	prize	he	deserves	is	only	16/31sts;	while	the	chance	that
the	best	4	shall	get	their	proper	prizes	is	so	small,	that	the	odds	are	12	to	1
against	its	happening!”

Despite	the	powers	of	his	pen,	it	appears	that	Dodgson	had	little	impact	on
the	world	of	lawn	tennis.	His	solution,	an	awkward	take	on	triple	elimination
where	the	defeat	of	someone	who	had	defeated	you	could	also	eliminate	you,
never	caught	on.	But	if	Dodgson’s	solution	was	cumbersome,	his	critique	of
the	problem	was	nevertheless	spot	on.	(Alas,	silver	medals	are	still	being
handed	out	in	Single	Elimination	tournaments	to	this	day.)

But	there’s	also	a	deeper	insight	in	Dodgson’s	logic.	We	humans	sort	more
than	our	data,	more	than	our	possessions.	We	sort	ourselves.

The	World	Cup,	the	Olympics,	the	NCAA,	NFL,	NHL,	NBA,	and	MLB—
all	of	these	implicitly	implement	sorting	procedures.	Their	seasons,	ladders,
and	playoffs	are	algorithms	for	producing	rank	order.

One	of	the	most	familiar	algorithms	in	sports	is	the	Round-Robin	format,
where	each	of	n	teams	eventually	plays	every	one	of	the	other	n	−	1	teams.
While	arguably	the	most	comprehensive,	it’s	also	one	of	the	most	laborious.
Having	every	team	grapple	with	every	other	team	is	like	having	guests
exchange	hugs	at	our	dinner	party:	the	dreaded	O(n2),	quadratic	time.

Ladder	tournaments—popular	in	sports	like	badminton,	squash,	and
racquetball—put	players	in	a	linear	ranking,	with	each	player	allowed	to	issue
a	direct	challenge	to	the	player	immediately	above	them,	exchanging	places	if
they	prevail.	Ladders	are	the	Bubble	Sorts	of	the	athletic	world	and	are	thus
also	quadratic,	requiring	O(n2)	games	to	reach	a	stable	ranking.

Perhaps	the	most	prevalent	tournament	format,	however,	is	a	bracket
tournament—as	in	the	famous	NCAA	basketball	“March	Madness,”	among
many	others.	The	March	Madness	tournament	progresses	from	the	“Round	of
64”	and	the	“Round	of	32”	to	the	“Sweet	16,”	“Elite	Eight,”	“Final	Four,”	and
the	finals.	Each	round	divides	the	field	in	half:	does	that	sound	familiarly
logarithmic?	These	tournaments	are	effectively	Mergesort,	beginning	with
unsorted	pairs	of	teams	and	collating,	collating,	collating	them.

We	know	that	Mergesort	operates	in	linearithmic	time—O(n	log	n)—and
so,	given	that	there	are	64	teams,	we	can	expect	to	only	need	something	like	6
rounds	(192	games),	rather	than	the	whopping	63	rounds	(2,016	games)	it

would	take	to	do	a	ladder	or	Round-Robin.	That’s	a	huge	improvement:
algorithm	design	at	work.

Six	rounds	of	March	Madness	sounds	about	right,	but	wait	a	second:	192
games?	The	NCAA	tournament	is	only	63	games	long.

In	fact,	March	Madness	is	not	a	complete	Mergesort—it	doesn’t	produce	a
full	ordering	of	all	64	teams.	To	truly	rank	the	teams,	we’d	need	an	extra	set
of	games	to	determine	second	place,	another	for	third,	and	so	on—taking	a
linearithmic	number	of	games	in	sum.	But	March	Madness	doesn’t	do	that.
Instead,	just	like	the	lawn	tennis	tournament	that	Dodgson	complained	about,
it	uses	a	Single	Elimination	format	where	the	eliminated	teams	are	left
unsorted.	The	advantage	is	that	it	runs	in	linear	time:	since	every	game
eliminates	exactly	one	team,	in	order	to	have	one	team	left	standing	you	need
just	n	−	1	games—a	linear	number.	The	disadvantage	is	that,	well,	you	never
really	figure	out	the	standings	aside	from	first	place.

Ironically,	in	Single	Elimination	no	tournament	structure	is	actually
necessary	at	all.	Any	63	games	will	yield	a	single	undefeated	champion.	For
instance,	you	could	simply	have	a	single	“king	of	the	hill”	team	take	on
challengers	one	by	one	until	it	is	dethroned,	at	which	point	whoever	defeated
it	takes	over	its	spot	and	continues.	This	format	would	have	the	drawback	of
needing	63	separate	rounds,	however,	as	games	couldn’t	happen	in	parallel;
also,	one	team	could	potentially	have	to	play	as	many	as	63	games	in	a	row,
which	might	not	be	ideal	from	a	fatigue	standpoint.

Though	born	well	over	a	century	after	Dodgson,	perhaps	no	one	carries
forward	his	mathematical	take	on	sporting	into	the	twenty-first	century	as
strongly	as	Michael	Trick.	We	met	Trick	back	in	our	discussion	of	optimal
stopping,	but	in	the	decades	since	his	hapless	application	of	the	37%	Rule	to
his	love	life	he’s	become	not	only	a	husband	and	a	professor	of	operations
research—he’s	now	also	one	of	the	principal	schedulers	for	Major	League
Baseball	and	for	NCAA	conferences	like	the	Big	Ten	and	the	ACC,	using
computer	science	to	decide	the	year’s	matchups.

As	Trick	points	out,	sports	leagues	aren’t	concerned	with	determining	the
rankings	as	quickly	and	expeditiously	as	possible.	Instead,	sports	calendars
are	explicitly	designed	to	maintain	tension	throughout	the	season,	something
that	has	rarely	been	a	concern	of	sorting	theory.

For	instance	in	Major	League	Baseball,	you	often	have	races	to	see	who	is	going	to	win	the

division.	Now,	if	we	ignored	the	divisional	setup,	some	of	those	races	might	get	resolved	fairly
early	in	the	season.	But	instead	what	we	do	is	we	make	certain	in	the	last	five	weeks,	everybody
plays	everybody	else	within	their	division.	The	purpose	of	that	is	it	doesn’t	matter	who’s	in	a
divisional	race:	they’re	going	to	have	to	play	their	next	closest	opponent	at	least	six	games	in	the
final	five	weeks	of	the	season.	That	allows	for	more	interest	in	the	schedule	or	interest	in	the
season	because	in	this	case,	uncertainty	is	delayed	in	its	resolution.

What’s	more,	sports	are	not,	of	course,	always	designed	strictly	to
minimize	the	number	of	games.	Without	remembering	this,	some	aspects	of
sports	scheduling	would	otherwise	seem	mysterious	to	a	computer	scientist.
As	Trick	says	of	baseball’s	regular	season	of	2,430	games,	“We	know	that	n
log	n	is	the	right	number	of	comparisons	to	do	a	full	sort.	That	can	get	you
everybody.	Why	do	they	do	n2	in	order	to	just	get,	in	some	sense,	the	top,	if
that’s	all	they	care	about?”	In	other	words,	why	do	a	full	O(n2)	Round-Robin
and	then	some,	if	we	know	we	can	do	a	full	sort	in	linearithmic	time,	and	can
crown	an	undefeated	Single	Elimination	champion	in	less	than	n	games?
Well,	minimizing	the	number	of	games	isn’t	actually	in	the	league’s	interest.
In	computer	science	unnecessary	comparisons	are	always	bad,	a	waste	of	time
and	effort.	But	in	sports	that’s	far	from	the	case.	In	many	respects,	after	all,
the	games	themselves	are	the	point.

Griping	Rights:	Noise	and	Robustness

Another,	perhaps	even	more	important	way	of	training	an	algorithmic	lens	on
sports	is	to	ask	not	what	confidence	we	should	have	in	the	silver	medal,	but
what	confidence	we	should	have	in	the	gold.

As	Michael	Trick	explains,	in	some	sports,	“for	instance	baseball,	a	team
is	going	to	lose	30%	of	their	games	and	a	team	is	going	to	win	30%	of	their
games	practically	no	matter	who	they	are.”	This	has	disturbing	implications
for	the	Single	Elimination	format.	If	NCAA	basketball	games,	say,	are	won	by
the	stronger	team	70%	of	the	time,	and	winning	the	tournament	involves
prevailing	in	6	straight	games,	then	the	best	team	has	only	a	0.70	to	the	6th
power—less	than	12%—chance	of	winning	the	tournament!	Put	another	way,
the	tournament	would	crown	the	league’s	truly	best	team	just	once	a	decade.

It	may	be	that	in	some	sports,	having	even	70%	confidence	in	a	game’s
outcome	might	be	putting	too	much	stock	in	the	final	score.	UCSD	physicist
Tom	Murphy	applied	numerical	modeling	techniques	to	soccer	and	concluded
that	soccer’s	low	scores	make	game	outcomes	much	closer	to	random	than
most	fans	would	prefer	to	imagine.	“A	3:2	score	gives	the	winning	team	only

a	5-in-8	chance	of	actually	being	a	better	team	…	Personally,	I	don’t	find	this
to	be	very	impressive.	Even	a	6:1	blowout	leaves	a	7%	chance	that	it	was	a
statistical	fluke.”

Computer	scientists	call	this	phenomenon	noise.	All	of	the	sorting
algorithms	that	we’ve	considered	thus	far	assume	perfect,	flawless,	foolproof
comparisons,	ones	that	never	mess	up	and	mistakenly	judge	the	lesser	of	two
quantities	to	be	the	greater.	Once	you	allow	for	a	“noisy	comparator,”	some	of
computer	science’s	most	hallowed	algorithms	go	out	the	window—and	some
of	its	most	maligned	have	their	day	of	redemption.

Dave	Ackley,	professor	of	computer	science	at	the	University	of	New
Mexico,	works	at	the	intersection	of	computer	science	and	“artificial	life”—
he	believes	computers	can	stand	to	learn	a	few	things	from	biology.	For
starters,	organisms	live	in	a	world	where	few	processes	have	anywhere	near
the	level	of	reliability	that	computers	depend	on,	so	they	are	built	from	the
ground	up	for	what	researchers	call	robustness.	It’s	time,	argues	Ackley,	that
we	started	recognizing	the	virtues	of	robustness	in	algorithms	too.

Thus,	while	the	authoritative	programming	tome	Sorting	and	Searching
boldly	declares	that	“bubble	sort	has	no	apparent	redeeming	features,”	the
research	of	Ackley	and	his	collaborators	suggests	that	there	may	be	a	place
for	algorithms	like	Bubble	Sort	after	all.	Its	very	inefficiency—moving	items
only	one	position	at	a	time—makes	it	fairly	robust	against	noise,	far	more
robust	than	faster	algorithms	like	Mergesort,	in	which	each	comparison
potentially	moves	an	item	a	long	way.	Mergesort’s	very	efficiency	makes	it
brittle.	An	early	error	in	a	Mergesort	is	like	a	fluke	loss	in	the	first	round	of	a
Single	Elimination	tournament,	which	can	not	only	dash	a	favored	team’s
championship	hopes	but	also	permanently	relegate	them	to	the	bottom	half	of
the	results.*	In	a	Ladder	tournament,	on	the	other	hand,	as	in	a	Bubble	Sort,	a
fluke	loss	would	only	set	a	player	back	a	single	place	in	the	standings.

But	in	fact	it	isn’t	Bubble	Sort	that	emerges	as	the	single	best	algorithm	in
the	face	of	a	noisy	comparator.	The	winner	of	that	particular	honor	is	an
algorithm	called	Comparison	Counting	Sort.	In	this	algorithm,	each	item	is
compared	to	all	the	others,	generating	a	tally	of	how	many	items	it	is	bigger
than.	This	number	can	then	be	used	directly	as	the	item’s	rank.	Since	it
compares	all	pairs,	Comparison	Counting	Sort	is	a	quadratic-time	algorithm,
like	Bubble	Sort.	Thus	it’s	not	a	popular	choice	in	traditional	computer

science	applications,	but	it’s	exceptionally	fault-tolerant.

This	algorithm’s	workings	should	sound	familiar.	Comparison	Counting
Sort	operates	exactly	like	a	Round-Robin	tournament.	In	other	words,	it
strongly	resembles	a	sports	team’s	regular	season—playing	every	other	team
in	the	division	and	building	up	a	win-loss	record	by	which	they	are	ranked.

That	Comparison	Counting	Sort	is	the	single	most	robust	sorting	algorithm
known,	quadratic	or	better,	should	offer	something	very	specific	to	sports
fans:	if	your	team	doesn’t	make	the	playoffs,	don’t	whine.	The	Mergesort
postseason	is	chancy,	but	the	Comparison	Counting	regular	season	is	not;
championship	rings	aren’t	robust,	but	divisional	standings	are	literally	as
robust	as	it	gets.	Put	differently,	if	your	team	is	eliminated	early	in	the
postseason,	it’s	tough	luck.	But	if	your	team	fails	to	get	to	the	postseason,	it’s
tough	truth.	You	may	get	sports-bar	sympathy	from	your	fellow	disappointed
fans,	but	you	won’t	get	any	from	a	computer	scientist.

Blood	Sort:	Pecking	Orders	and	Dominance	Hierarchies

In	all	the	examples	we’ve	considered	so	far,	the	sorting	process	in	every	case
has	been	imposed	from	the	top	down:	a	librarian	shelving	books,	the	NCAA
telling	teams	whom	to	play	and	when.	But	what	if	head-to-head	comparisons
happened	only	voluntarily?	What	does	sorting	look	like	when	it	emerges
organically,	from	the	bottom	up?

It	might	look	something	like	online	poker.

Unlike	most	sports,	which	are	governed	by	a	ruling	body	of	some	kind,
poker	remains	somewhat	anarchic	despite	exploding	in	popularity	over	the
past	decade.	Though	some	high-profile	tournaments	do	explicitly	sort	their
contestants	(and	remunerate	them	accordingly),	a	substantial	portion	of	poker
is	still	played	in	what	are	known	as	“cash	games,”	where	two	or	more	players
spontaneously	agree	to	play	with	real	money	on	the	line	with	every	hand.

Virtually	no	one	knows	this	world	more	deeply	than	Isaac	Haxton,	one	of
the	world’s	best	cash-game	poker	players.	In	most	sports	it’s	sufficient	to	be
as	good	as	possible,	and	the	less	self-conscious	one	is	about	one’s	skills	the
better.	But,	Haxton	explains,	“In	some	ways	the	most	important	skill	as	a
professional	poker	player	is	to	be	able	to	evaluate	how	good	you	are.	If	you’re
anything	short	of	the	very	best	poker	player	in	the	world,	you	can	be	pretty
much	assured	of	going	broke	if	you	are	endlessly	willing	to	play	people	better

than	you.”

Haxton	is	a	heads-up,	no-limit	specialist:	“heads-up”	meaning	one-on-one
poker,	and	“no-limit”	meaning	just	that—the	highest	stakes,	limited	only	by
what	they	can	bankroll	and	stomach.	In	multi-handed	poker	cash	games,	there
will	often	be	one	weak	player—a	wealthy	amateur,	for	instance—feeding	a
table	full	of	professionals,	who	then	don’t	much	care	who	among	them	is
better	than	whom.	In	the	world	of	heads-up,	it’s	different.	“There	has	to	be	a
disagreement	between	you	and	them	about	who’s	better—or	somebody	has	to
be	willingly	losing.”

So	what	happens	when	there’s	a	fairly	established	consensus	and	no	one’s
willing	to	play	anyone	better	than	they	are?	You	get	something	that	looks	a	lot
like	players	simply	jockeying	for	seats.	Most	online	poker	sites	have	only	a
finite	number	of	tables	available.	“So	if	you	want	to	play	heads-up	no-limit,
with	blinds	of	fifty	and	one	hundred	dollars,	there	are	only	ten	available	tables
for	that,”	says	Haxton,	“and	so	only	the	consensus	ten	best	players	who	are
out	right	now	…	sit	and	wait	for	someone	to	show	up	who	wants	to	play.”
And	if	a	superior	player	arrives	and	sits	down	at	one	of	these	tables?	If	the
person	sitting	isn’t	willing	to	ante	up,	they	scram.

“Imagine	two	monkeys,”	says	Christof	Neumann.	“One	is	sitting	and
feeding	in	its	spot,	very	peacefully,	and	another	one	is	coming	up	[to]	where
the	other	guy	is	sitting.	And	that	guy	would	then	stand	up	and	leave.”

Neumann	isn’t	making	a	poker	metaphor.	He’s	a	behavioral	biologist	at	the
University	of	Neuchâtel	who	studies	dominance	in	macaques.	What	he’s	just
described	is	known	as	displacement.

Displacement	happens	when	an	animal	uses	its	knowledge	of	the	hierarchy
to	determine	that	a	particular	confrontation	simply	isn’t	worth	it.	In	many
animal	societies,	resources	and	opportunities—food,	mates,	preferred	spaces,
and	so	forth—are	scarce,	and	somehow	it	must	be	decided	who	gets	what.
Establishing	an	order	ahead	of	time	is	less	violent	than	coming	to	blows	every
time	a	mating	opportunity	or	a	prime	spot	of	grass	becomes	available.	Though
we	may	cringe	when	we	see	creatures	turning	their	claws	and	beaks	on	each
other,	biologists	tend	to	think	of	pecking	orders	as	the	violence	that	preempts
violence.

Sound	familiar?	It’s	the	search-sort	tradeoff.

The	creation	of	a	pecking	order	is	a	pugilistic	solution	to	a	fundamentally
computational	problem.	For	this	reason,	incidentally,	debeaking	chickens	on
farms	may	be	a	well-intentioned	but	counterproductive	approach:	it	removes
the	authority	of	individual	fights	to	resolve	the	order,	and	therefore	makes	it
much	harder	for	the	flock	to	run	any	sorting	procedure	at	all.	So	the	amount
of	antagonism	within	the	flock	in	many	cases	actually	increases.

Looking	at	animal	behavior	from	the	perspective	of	computer	science
suggests	several	things.	For	one,	it	implies	that	the	number	of	hostile
confrontations	encountered	by	each	individual	will	grow	substantially—at
least	logarithmically,	and	perhaps	quadratically—as	the	group	gets	bigger.
Indeed,	studies	of	“agonistic	behavior”	in	hens	have	found	that	“aggressive
acts	per	hen	increased	as	group	size	increased.”	Sorting	theory	thus	suggests
that	the	ethical	raising	of	livestock	may	include	limiting	the	size	of	the	flock
or	herd.	(In	the	wild,	feral	chickens	roam	in	groups	of	ten	to	twenty,	far
smaller	than	flock	sizes	on	commercial	farms.)	The	studies	also	show	that
aggression	appears	to	go	away	after	a	period	of	some	weeks,	unless	new
members	are	added	to	the	flock—corroborating	the	idea	that	the	group	is
sorting	itself.

The	key	to	thinking	about	decentralized	sorting	in	nature,	argues	Jessica
Flack,	codirector	of	the	Center	for	Complexity	and	Collective	Computation	at
UW–Madison,	is	that	dominance	hierarchies	are	ultimately	information
hierarchies.	There’s	a	significant	computational	burden	to	these	decentralized
sorting	systems,	Flack	points	out.	The	number	of	fights	in,	say,	a	group	of
macaques	is	minimized	only	to	the	extent	that	every	monkey	has	a	detailed—
and	similar—understanding	of	the	hierarchy.	Otherwise	violence	will	ensue.

If	it	comes	down	to	how	good	the	protagonists	are	at	keeping	track	of	the
current	order,	we	might	expect	to	see	fewer	confrontations	as	animals	become
better	able	to	reason	and	remember.	And	perhaps	humans	do	come	closest	to
optimally	efficient	sorting.	As	Haxton	says	of	the	poker	world,	“I’m	one	of
the	top	heads-up,	no-limit	hold	’em	players	in	the	world,	and	in	my	head	I
have	a	fairly	specific	ranking	of	who	I	think	the	twenty	or	so	best	players	are,
and	I	think	each	of	them	has	a	similar	ranking	in	their	mind.	I	think	there	is	a
pretty	high	degree	of	consensus	about	what	the	list	looks	like.”	Only	when
these	rankings	differ	will	cash	games	ensue.

A	Race	Instead	of	a	Fight

We’ve	now	seen	two	separate	downsides	to	the	desire	of	any	group	to	sort
itself.	You	have,	at	minimum,	a	linearithmic	number	of	confrontations,
making	everyone’s	life	more	combative	as	the	group	grows—and	you	also
oblige	every	competitor	to	keep	track	of	the	ever-shifting	status	of	everyone
else,	otherwise	they’ll	find	themselves	fighting	battles	they	didn’t	need	to.	It
taxes	not	only	the	body	but	the	mind.

But	it	doesn’t	have	to	be	that	way.	There	are	ways	of	making	order	without
the	costs.

There’s	one	sporting	contest,	for	instance,	where	tens	of	thousands	of
competitors	are	completely	sorted	within	the	time	that	it	takes	to	hold	just	a
single	event.	(A	Round-Robin	tournament	with	ten	thousand	players,	on	the
other	hand,	would	require	a	hundred	million	matchups.)	The	only	caveat	is
that	the	time	required	for	the	event	is	determined	by	its	slowest	competitors.
This	sporting	contest	is	the	marathon,	and	it	suggests	something	critical:	a
race	is	fundamentally	different	from	a	fight.

Consider	the	difference	between	boxers	and	skiers,	between	fencers	and
runners.	An	Olympic	boxer	must	risk	concussion	O(log	n)	times,	usually	from
4	to	6,	to	make	it	to	the	podium;	allowing	a	greater	number	of	athletes	into	the
games	would	imperil	the	health	of	all.	But	a	skeleton	racer	or	ski	jumper	or
halfpipe	specialist	needs	to	make	only	a	constant	number	of	gambles	with
gravity,	no	matter	the	size	of	the	field.	A	fencer	puts	herself	at	her	opponent’s
mercy	O(log	n)	times,	but	a	marathoner	must	endure	only	one	race.	Being
able	to	assign	a	simple	numerical	measure	of	performance	results	in	a
constant-time	algorithm	for	status.

This	move	from	“ordinal”	numbers	(which	only	express	rank)	to
“cardinal”	ones	(which	directly	assign	a	measure	to	something’s	caliber)
naturally	orders	a	set	without	requiring	pairwise	comparisons.	Accordingly,	it
makes	possible	dominance	hierarchies	that	don’t	require	direct	head-to-head
matchups.	The	Fortune	500	list,	to	the	extent	that	it	creates	a	kind	of
corporate	hierarchy,	is	one	of	these.	To	find	the	most	valuable	company	in	the
United	States,	analysts	don’t	need	to	perform	due	diligence	comparing
Microsoft	to	General	Motors,	then	General	Motors	to	Chevron,	Chevron	to
Walmart,	and	so	forth.	These	seemingly	apples-to-oranges	contests	(how
many	enterprise	software	installations	equal	how	many	oil	futures?)	become
apples-to-apples	in	the	medium	of	dollars.	Having	a	benchmark—any

benchmark—solves	the	computational	problem	of	scaling	up	a	sort.

In	Silicon	Valley,	for	instance,	there’s	an	adage	about	meetings:	“You	go	to
the	money,	the	money	doesn’t	come	to	you.”	Vendors	go	to	founders,
founders	go	to	venture	capitalists,	venture	capitalists	go	to	their	limited
partners.	It’s	possible	for	the	individuals	to	resent	the	basis	of	this	hierarchy,
but	not	really	to	contest	its	verdict.	As	a	result,	individual	pairwise
interactions	take	place	with	a	minimum	of	jockeying	for	status.	By	and	large,
any	pair	of	people	can	tell,	without	needing	to	negotiate,	who	is	supposed	to
show	what	level	of	respect	to	whom.	Everyone	knows	where	to	meet.

Likewise,	while	maritime	right-of-way	is	governed	in	theory	by	an
extremely	elaborate	set	of	conventions,	in	practice	one	straightforward
principle	determines	which	ships	give	way	to	which:	the	“Law	of	Gross
Tonnage.”	Quite	simply,	the	smaller	ship	gets	out	of	the	way	of	the	larger	one.
Some	animals	are	also	lucky	enough	to	have	such	clear-cut	dominance
hierarchies.	As	Neumann	observes,	“Look	at	fish,	for	example:	the	bigger	one
is	the	dominant	one.	It’s	very	simple.”	And	because	it’s	so	simple,	it’s
peaceful.	Unlike	chickens	and	primates,	fish	make	order	without	shedding
blood.

When	we	think	about	the	factors	that	make	large-scale	human	societies
possible,	it’s	easy	to	focus	on	technologies:	agriculture,	metals,	machinery.
But	the	cultural	practice	of	measuring	status	with	quantifiable	metrics	might
be	just	as	important.	Money,	of	course,	need	not	be	the	criterion;	a	rule	like
“respect	your	elders,”	for	instance,	likewise	settles	questions	of	people’s
status	by	reference	to	a	common	quantity.	And	the	same	principle	is	at	work
between	nations	as	within	them.	It	is	often	noted	that	a	benchmark	like
national	GDP—which	underlies	the	invite	lists	to	diplomatic	summits	such	as
the	G20—is	a	crude,	imperfect	measurement.	But	the	existence	of	any
benchmark	at	all	transforms	the	question	of	national	status	from	one
demanding	at	least	a	linearithmic	number	of	tussles	and	resolutions	into
something	with	a	single	reference	point	that	ranks	all.	Given	that	nation-to-
nation	status	disputes	often	take	military	form,	this	saves	not	only	time	but
lives.

Linearithmic	numbers	of	fights	might	work	fine	for	small-scale	groups;
they	do	in	nature.	But	in	a	world	where	status	is	established	through	pairwise
comparisons—whether	they	involve	exchanging	rhetoric	or	gunfire—the

amount	of	confrontation	quickly	spirals	out	of	control	as	society	grows.
Operating	at	industrial	scale,	with	many	thousands	or	millions	of	individuals
sharing	the	same	space,	requires	a	leap	beyond.	A	leap	from	ordinal	to
cardinal.

Much	as	we	bemoan	the	daily	rat	race,	the	fact	that	it’s	a	race	rather	than	a
fight	is	a	key	part	of	what	sets	us	apart	from	the	monkeys,	the	chickens—and,
for	that	matter,	the	rats.

*This	is	far	from	Bradáč’s	only	record—he	can	escape	from	three	pairs	of	handcuffs	while	underwater
in	roughly	the	same	amount	of	time.

*Actually,	the	average	running	time	for	Bubble	Sort	isn’t	any	better,	as	books	will,	on	average,	be	n/2
positions	away	from	where	they’re	supposed	to	end	up.	A	computer	scientist	will	still	round	n/2	passes
of	n	books	up	to	O(n2).

*On	rare	occasions,	as	in	boxing—where	it	is	medically	unsafe	for	a	boxer	to	fight	again	after	being
recently	knocked	out—two	bronzes	are	awarded	instead.

*It’s	interesting	to	note	that	NCAA’s	March	Madness	tournament	is	consciously	designed	to	mitigate
this	flaw	in	its	algorithm.	The	biggest	problem	in	Single	Elimination,	as	we’ve	said,	would	seem	to	be	a
scenario	where	the	first	team	that	gets	eliminated	by	the	winning	team	is	actually	the	second-best	team
overall,	yet	lands	in	the	(unsorted)	bottom	half.	The	NCAA	works	around	this	by	seeding	the	teams,	so
that	top-ranked	teams	cannot	meet	each	other	in	the	early	rounds.	The	seeding	process	appears	to	be
reliable	at	least	in	the	most	extreme	case,	as	a	sixteenth-seeded	team	has	never	defeated	a	first	seed	in
the	history	of	March	Madness.

	

4			Caching
Forget	About	It
In	the	practical	use	of	our	intellect,	forgetting	is	as	important	a	function
as	remembering.

—WILLIAM	JAMES

You	have	a	problem.	Your	closet	is	overflowing,	spilling	shoes,	shirts,	and
underwear	onto	the	floor.	You	think,	“It’s	time	to	get	organized.”	Now	you
have	two	problems.

Specifically,	you	first	need	to	decide	what	to	keep,	and	second,	how	to
arrange	it.	Fortunately,	there	is	a	small	industry	of	people	who	think	about
these	twin	problems	for	a	living,	and	they	are	more	than	happy	to	offer	their
advice.

On	what	to	keep,	Martha	Stewart	says	to	ask	yourself	a	few	questions:
“How	long	have	I	had	it?	Does	it	still	function?	Is	it	a	duplicate	of	something
I	already	own?	When	was	the	last	time	I	wore	it	or	used	it?”	On	how	to
organize	what	you	keep,	she	recommends	“grouping	like	things	together,”	and
her	fellow	experts	agree.	Francine	Jay,	in	The	Joy	of	Less,	stipulates,	“Hang
all	your	skirts	together,	pants	together,	dresses	together,	and	coats	together.”
Andrew	Mellen,	who	bills	himself	as	“The	Most	Organized	Man	in	America,”
dictates,	“Items	will	be	sorted	by	type—all	slacks	together,	shirts	together,
coats,	etc.	Within	each	type,	they’re	further	sorted	by	color	and	style—long-
sleeved	or	short-sleeved,	by	neckline,	etc.”	Other	than	the	sorting	problem
this	could	entail,	it	looks	like	good	advice;	it	certainly	seems	unanimous.

Except	that	there	is	another,	larger	industry	of	professionals	who	also	think
obsessively	about	storage—and	they	have	their	own	ideas.

Your	closet	presents	much	the	same	challenge	that	a	computer	faces	when
managing	its	memory:	space	is	limited,	and	the	goal	is	to	save	both	money
and	time.	For	as	long	as	there	have	been	computers,	computer	scientists	have
grappled	with	the	dual	problems	of	what	to	keep	and	how	to	arrange	it.	The
results	of	these	decades	of	effort	reveal	that	in	her	four-sentence	advice	about
what	to	toss,	Martha	Stewart	actually	makes	several	different,	and	not	fully

compatible,	recommendations—one	of	which	is	much	more	critical	than	the
others.

The	computer	science	of	memory	management	also	reveals	exactly	how
your	closet	(and	your	office)	ought	to	be	arranged.	At	first	glance,	computers
appear	to	follow	Martha	Stewart’s	maxim	of	“grouping	like	things	together.”
Operating	systems	encourage	us	to	put	our	files	into	folders,	like	with	like,
forming	hierarchies	that	branch	as	their	contents	become	ever	more	specific.
But	just	as	the	tidiness	of	a	scholar’s	desk	may	hide	the	messiness	of	their
mind,	so	does	the	apparent	tidiness	of	a	computer’s	file	system	obscure	the
highly	engineered	chaos	of	how	data	is	actually	being	stored	underneath	the
nested-folder	veneer.

What’s	really	happening	is	called	caching.

Caching	plays	a	critical	role	in	the	architecture	of	memory,	and	it	underlies
everything	from	the	layout	of	processor	chips	at	the	millimeter	scale	to	the
geography	of	the	global	Internet.	It	offers	a	new	perspective	on	all	the	various
storage	systems	and	memory	banks	of	human	life—not	only	our	machines,
but	also	our	closets,	our	offices,	our	libraries.	And	our	heads.

The	Memory	Hierarchy

A	certain	woman	had	a	very	sharp	consciousness	but	almost	no	memory.
…	She	remembered	enough	to	work,	and	she	worked	hard.

—LYDIA	DAVIS

Starting	roughly	around	2008,	anyone	in	the	market	for	a	new	computer	has
encountered	a	particular	conundrum	when	choosing	their	storage	option.	They
must	make	a	tradeoff	between	size	and	speed.	The	computer	industry	is
currently	in	transition	from	hard	disk	drives	to	solid-state	drives;	at	the	same
price	point,	a	hard	disk	will	offer	dramatically	greater	capacity,	but	a	solid-
state	drive	will	offer	dramatically	better	performance—as	most	consumers
now	know,	or	soon	discover	when	they	begin	to	shop.

What	casual	consumers	may	not	know	is	that	this	exact	tradeoff	is	being
made	within	the	machine	itself	at	a	number	of	scales—to	the	point	where	it’s
considered	one	of	the	fundamental	principles	of	computing.

In	1946,	Arthur	Burks,	Herman	Goldstine,	and	John	von	Neumann,
working	at	the	Institute	for	Advanced	Study	in	Princeton,	laid	out	a	design

proposal	for	what	they	called	an	electrical	“memory	organ.”	In	an	ideal	world,
they	wrote,	the	machine	would	of	course	have	limitless	quantities	of
lightning-fast	storage,	but	in	practice	this	wasn’t	possible.	(It	still	isn’t.)
Instead,	the	trio	proposed	what	they	believed	to	be	the	next	best	thing:	“a
hierarchy	of	memories,	each	of	which	has	greater	capacity	than	the	preceding
but	which	is	less	quickly	accessible.”	By	having	effectively	a	pyramid	of
different	forms	of	memory—a	small,	fast	memory	and	a	large,	slow	one—
maybe	we	could	somehow	get	the	best	of	both.

The	basic	idea	behind	a	memory	hierarchy	should	be	intuitive	to	anyone
who	has	ever	used	a	library.	If	you	are	researching	a	topic	for	a	paper,	let’s
say,	there	are	some	books	you	might	need	to	refer	to	on	multiple	occasions.
Rather	than	go	back	to	the	library	each	time,	you	of	course	check	out	the
relevant	books	and	take	them	home	to	your	desk,	where	you	can	access	them
more	easily.

In	computing,	this	idea	of	a	“memory	hierarchy”	remained	just	a	theory
until	the	development	in	1962	of	a	supercomputer	in	Manchester,	England,
called	Atlas.	Its	principal	memory	consisted	of	a	large	drum	that	could	be
rotated	to	read	and	write	information,	not	unlike	a	wax	phonograph	cylinder.
But	Atlas	also	had	a	smaller,	faster	“working”	memory	built	from	polarized
magnets.	Data	could	be	read	from	the	drum	to	the	magnets,	manipulated	there
with	ease,	and	the	results	then	written	back	to	the	drum.

Shortly	after	the	development	of	Atlas,	Cambridge	mathematician	Maurice
Wilkes	realized	that	this	smaller	and	faster	memory	wasn’t	just	a	convenient
place	to	work	with	data	before	saving	it	off	again.	It	could	also	be	used	to
deliberately	hold	on	to	pieces	of	information	likely	to	be	needed	later,
anticipating	similar	future	requests—and	dramatically	speeding	up	the
operation	of	the	machine.	If	what	you	needed	was	still	in	the	working
memory,	you	wouldn’t	have	to	load	it	from	the	drum	at	all.	As	Wilkes	put	it,
the	smaller	memory	“automatically	accumulates	to	itself	words	that	come
from	a	slower	main	memory,	and	keeps	them	available	for	subsequent	use
without	it	being	necessary	for	the	penalty	of	main	memory	access	to	be
incurred	again.”

The	key,	of	course,	would	be	managing	that	small,	fast,	precious	memory
so	it	had	what	you	were	looking	for	as	often	as	possible.	To	continue	the
library	analogy,	if	you’re	able	to	make	just	one	trip	to	the	stacks	to	get	all	the

books	you	need,	and	then	spend	the	rest	of	the	week	working	at	home,	that’s
almost	as	good	as	if	every	book	in	the	library	had	already	been	available	at
your	desk.	The	more	trips	back	to	the	library	you	make,	the	slower	things	go,
and	the	less	your	desk	is	really	doing	for	you.

Wilkes’s	proposal	was	implemented	in	the	IBM	360/85	supercomputer
later	in	the	1960s,	where	it	acquired	the	name	of	the	“cache.”	Since	then,
caches	have	appeared	everywhere	in	computer	science.	The	idea	of	keeping
around	pieces	of	information	that	you	refer	to	frequently	is	so	powerful	that	it
is	used	in	every	aspect	of	computation.	Processors	have	caches.	Hard	drives
have	caches.	Operating	systems	have	caches.	Web	browsers	have	caches.	And
the	servers	that	deliver	content	to	those	browsers	also	have	caches,	making	it
possible	to	instantly	show	you	the	same	video	of	a	cat	riding	a	vacuum
cleaner	that	millions	of	…	But	we’re	getting	ahead	of	ourselves	a	bit.

The	story	of	the	computer	over	the	past	fifty-plus	years	has	been	painted
as	one	of	exponential	growth	year	after	year—referencing,	in	part,	the
famously	accurate	“Moore’s	Law”	prediction,	made	by	Intel’s	Gordon	Moore
in	1975,	that	the	number	of	transistors	in	CPUs	would	double	every	two
years.	What	hasn’t	improved	at	that	rate	is	the	performance	of	memory,	which
means	that	relative	to	processing	time,	the	cost	of	accessing	memory	is	also
increasing	exponentially.	The	faster	you	can	write	your	papers,	for	instance,
the	greater	the	loss	of	productivity	from	each	trip	to	the	library.	Likewise,	a
factory	that	doubles	its	manufacturing	speed	each	year—but	has	the	same
number	of	parts	shipped	to	it	from	overseas	at	the	same	sluggish	pace—will
mean	little	more	than	a	factory	that’s	twice	as	idle.	For	a	while	it	seemed	that
Moore’s	Law	was	yielding	little	except	processors	that	twiddled	their	thumbs
ever	faster	and	ever	more	of	the	time.	In	the	1990s	this	began	to	be	known	as
the	“memory	wall.”

Computer	science’s	best	defense	against	hitting	that	wall	has	been	an	ever
more	elaborate	hierarchy:	caches	for	caches	for	caches,	all	the	way	down.
Modern	consumer	laptops,	tablets,	and	smartphones	have	on	the	order	of	a
six-layer	memory	hierarchy,	and	managing	memory	smartly	has	never	been	as
important	to	computer	science	as	it	is	today.

So	let’s	start	with	the	first	question	that	comes	to	mind	about	caches	(or
closets,	for	that	matter).	What	do	we	do	when	they	get	full?

Eviction	and	Clairvoyance

Depend	upon	it	there	comes	a	time	when	for	every	addition	of	knowledge
you	forget	something	that	you	knew	before.	It	is	of	the	highest
importance,	therefore,	not	to	have	useless	facts	elbowing	out	the	useful
ones.

—SHERLOCK	HOLMES

When	a	cache	fills	up,	you	are	obviously	going	to	need	to	make	room	if	you
want	to	store	anything	else,	and	in	computer	science	this	making	of	room	is
called	“cache	replacement”	or	“cache	eviction.”	As	Wilkes	wrote,	“Since	the
[cache]	can	only	be	a	fraction	of	the	size	of	the	main	memory,	words	cannot
be	preserved	in	it	indefinitely,	and	there	must	be	wired	into	the	system	an
algorithm	by	which	they	are	progressively	overwritten.”	These	algorithms	are
known	as	“replacement	policies”	or	“eviction	policies,”	or	simply	as	caching
algorithms.

IBM,	as	we’ve	seen,	played	an	early	role	in	the	deployment	of	caching
systems	in	the	1960s.	Unsurprisingly,	it	was	also	the	home	of	seminal	early
research	on	caching	algorithms—none,	perhaps,	as	important	as	that	of	László
“Les”	Bélády.	Bélády	was	born	in	1928	in	Hungary,	where	he	studied	as	a
mechanical	engineer	before	fleeing	to	Germany	during	the	1956	Hungarian
Revolution	with	nothing	but	a	satchel	containing	“one	change	of	underwear
and	my	graduation	paper.”	From	Germany	he	went	to	France,	and	in	1961
immigrated	to	the	United	States,	bringing	his	wife,	“an	infant	son	and	$1,000
in	my	pocket,	and	that’s	it.”	It	seems	he	had	acquired	a	finely	tuned	sense	of
what	to	keep	and	what	to	leave	behind	by	the	time	he	found	himself	at	IBM,
working	on	cache	eviction.

Bélády’s	1966	paper	on	caching	algorithms	would	become	the	most	cited
piece	of	computer	science	research	for	fifteen	years.	As	it	explains,	the	goal
of	cache	management	is	to	minimize	the	number	of	times	you	can’t	find	what
you’re	looking	for	in	the	cache	and	must	go	to	the	slower	main	memory	to
find	it;	these	are	known	as	“page	faults”	or	“cache	misses.”	The	optimal	cache
eviction	policy—essentially	by	definition,	Bélády	wrote—is,	when	the	cache
is	full,	to	evict	whichever	item	we’ll	need	again	the	longest	from	now.

Of	course,	knowing	exactly	when	you’ll	need	something	again	is	easier
said	than	done.

The	hypothetical	all-knowing,	prescient	algorithm	that	would	look	ahead
and	execute	the	optimal	policy	is	known	today	in	tribute	as	Bélády’s

Algorithm.	Bélády’s	Algorithm	is	an	instance	of	what	computer	scientists
call	a	“clairvoyant”	algorithm:	one	informed	by	data	from	the	future.	It’s	not
necessarily	as	crazy	as	it	sounds—there	are	cases	where	a	system	might	know
what	to	expect—but	in	general	clairvoyance	is	hard	to	come	by,	and	software
engineers	joke	about	encountering	“implementation	difficulties”	when	they
try	to	deploy	Bélády’s	Algorithm	in	practice.	So	the	challenge	is	to	find	an
algorithm	that	comes	as	close	to	clairvoyance	as	we	can	get,	for	all	those
times	when	we’re	stuck	firmly	in	the	present	and	can	only	guess	at	what	lies
ahead.

We	could	just	try	Random	Eviction,	adding	new	data	to	the	cache	and
overwriting	old	data	at	random.	One	of	the	startling	early	results	in	caching
theory	is	that,	while	far	from	perfect,	this	approach	is	not	half	bad.	As	it
happens,	just	having	a	cache	at	all	makes	a	system	more	efficient,	regardless
of	how	you	maintain	it.	Items	you	use	often	will	end	up	back	in	the	cache
soon	anyway.	Another	simple	strategy	is	First-In,	First-Out	(FIFO),	where
you	evict	or	overwrite	whatever	has	been	sitting	in	the	cache	the	longest	(as	in
Martha	Stewart’s	question	“How	long	have	I	had	it?”).	A	third	approach	is
Least	Recently	Used	(LRU):	evicting	the	item	that’s	gone	the	longest
untouched	(Stewart’s	“When	was	the	last	time	I	wore	it	or	used	it?”).

It	turns	out	that	not	only	do	these	two	mantras	of	Stewart’s	suggest	very
different	policies,	one	of	her	suggestions	clearly	outperforms	the	other.
Bélády	compared	Random	Eviction,	FIFO,	and	variants	of	LRU	in	a	number
of	scenarios	and	found	that	LRU	consistently	performed	the	closest	to
clairvoyance.	The	LRU	principle	is	effective	because	of	something	computer
scientists	call	“temporal	locality”:	if	a	program	has	called	for	a	particular
piece	of	information	once,	it’s	likely	to	do	so	again	in	the	near	future.
Temporal	locality	results	in	part	from	the	way	computers	solve	problems	(for
example,	executing	a	loop	that	makes	a	rapid	series	of	related	reads	and
writes),	but	it	emerges	in	the	way	people	solve	problems,	too.	If	you	are
working	on	your	computer,	you	might	be	switching	among	your	email,	a	web
browser,	and	a	word	processor.	The	fact	that	you	accessed	one	of	these
recently	is	a	clue	that	you’re	likely	to	do	so	again,	and,	all	things	being	equal,
the	program	that	you	haven’t	been	using	for	the	longest	time	is	also	probably
the	one	that	won’t	be	used	for	some	time	to	come.

In	fact,	this	principle	is	even	implicit	in	the	interface	that	computers	show
to	their	users.	The	windows	on	your	computer	screen	have	what’s	called	a	“Z-

order,”	a	simulated	depth	that	determines	which	programs	are	overlaid	on	top
of	which.	The	least	recently	used	end	up	at	the	bottom.	As	former	creative
lead	for	Firefox,	Aza	Raskin,	puts	it,	“Much	of	your	time	using	a	modern
browser	(computer)	is	spent	in	the	digital	equivalent	of	shuffling	papers.”
This	“shuffling”	is	also	mirrored	exactly	in	the	Windows	and	Mac	OS	task
switching	interfaces:	when	you	press	Alt	+	Tab	or	Command	+	Tab,	you	see
your	applications	listed	in	order	from	the	most	recently	to	the	least	recently
used.

The	literature	on	eviction	policies	goes	about	as	deep	as	one	can	imagine
—including	algorithms	that	account	for	frequency	as	well	as	recency	of	use,
algorithms	that	track	the	time	of	the	next-to-last	access	rather	than	the	last
one,	and	so	on.	But	despite	an	abundance	of	innovative	caching	schemes,
some	of	which	can	beat	LRU	under	the	right	conditions,	LRU	itself—and
minor	tweaks	thereof—is	the	overwhelming	favorite	of	computer	scientists,
and	is	used	in	a	wide	variety	of	deployed	applications	at	a	variety	of	scales.
LRU	teaches	us	that	the	next	thing	we	can	expect	to	need	is	the	last	one	we
needed,	while	the	thing	we’ll	need	after	that	is	probably	the	second-most-
recent	one.	And	the	last	thing	we	can	expect	to	need	is	the	one	we’ve	already
gone	longest	without.

Unless	we	have	good	reason	to	think	otherwise,	it	seems	that	our	best
guide	to	the	future	is	a	mirror	image	of	the	past.	The	nearest	thing	to
clairvoyance	is	to	assume	that	history	repeats	itself—backward.

Turning	the	Library	Inside	Out

Deep	within	the	underground	Gardner	Stacks	at	the	University	of	California,
Berkeley,	behind	a	locked	door	and	a	prominent	“Staff	Only”	notice,	totally
off-limits	to	patrons,	is	one	of	the	jewels	of	the	UC	library	system.	Cormac
McCarthy,	Thomas	Pynchon,	Elizabeth	Bishop,	and	J.	D.	Salinger;	Anaïs	Nin,
Susan	Sontag,	Junot	Díaz,	and	Michael	Chabon;	Annie	Proulx,	Mark	Strand,
and	Philip	K.	Dick;	William	Carlos	Williams,	Chuck	Palahniuk,	and	Toni
Morrison;	Denis	Johnson,	Juliana	Spahr,	Jorie	Graham,	and	David	Sedaris;
Sylvia	Plath,	David	Mamet,	David	Foster	Wallace,	and	Neil	Gaiman	…	It
isn’t	the	library’s	rare	book	collection;	it’s	its	cache.

As	we	have	already	discussed,	libraries	are	a	natural	example	of	a	memory
hierarchy	when	used	in	concert	with	our	own	desk	space.	In	fact,	libraries	in
themselves,	with	their	various	sections	and	storage	facilities,	are	a	great

example	of	a	memory	hierarchy	with	multiple	levels.	As	a	consequence,	they
face	all	sorts	of	caching	problems.	They	have	to	decide	which	books	to	put	in
the	limited	display	space	at	the	front	of	the	library,	which	to	keep	in	their
stacks,	and	which	to	consign	to	offsite	storage.	The	policy	for	which	books	to
shunt	offsite	varies	from	library	to	library,	but	almost	all	use	a	version	of
LRU.	“For	the	Main	Stacks,	for	example,”	says	Beth	Dupuis,	who	oversees
the	process	in	the	UC	Berkeley	libraries,	“if	an	item	hasn’t	been	used	in
twelve	years,	that’s	the	cutoff.”

At	the	other	end	of	the	spectrum	from	the	books	untouched	in	a	dozen
years	is	the	library’s	“rough	sorting”	area,	which	we	visited	in	the	previous
chapter.	This	is	where	books	go	just	after	they	are	returned,	before	they’re
fully	sorted	and	shelved	once	again	in	the	stacks.	The	irony	is	that	the
hardworking	assistants	putting	them	back	on	their	shelves	might,	in	some
sense,	be	making	them	less	ordered.

Here’s	why:	if	temporal	locality	holds,	then	the	rough-sorting	shelves
contain	the	most	important	books	in	the	whole	building.	These	are	the	books
that	were	most	recently	used,	so	they	are	the	ones	that	patrons	are	most	likely
to	be	looking	for.	It	seems	a	crime	that	arguably	the	juiciest	and	most
browseworthy	shelf	of	the	libraries’	miles	of	stacks	is	both	hidden	away	and
constantly	eroded	by	earnest	library	staff	just	doing	their	jobs.

Meanwhile,	the	lobby	of	the	Moffit	Undergraduate	Library—the	location
of	the	most	prominent	and	accessible	shelves—showcases	the	library’s	most
recently	acquired	books.	This	is	instantiating	a	kind	of	FIFO	cache,
privileging	the	items	that	were	last	added	to	the	library,	not	last	read.

The	dominant	performance	of	the	LRU	algorithm	in	most	tests	that
computer	scientists	have	thrown	at	it	leads	to	a	simple	suggestion:	turn	the
library	inside	out.	Put	acquisitions	in	the	back,	for	those	who	want	to	find
them.	And	put	the	most	recently	returned	items	in	the	lobby,	where	they	are
ripe	for	the	browsing.

Humans	are	social	creatures,	and	presumably	the	undergraduate	body
would	find	it	interesting	to	peruse	its	own	reading	habits.	It	would	nudge	the
campus	toward	a	more	organic	and	free-form	version	of	what	colleges	strive
for	when	they	assign	“common	books”:	the	facilitation	of	intellectual
common	points	of	reference.	Here,	the	books	being	read	on	campus,	whatever
they	happened	to	be,	would	become	the	books	most	likely	to	be

serendipitously	encountered	by	other	students.	A	kind	of	grassroots,	bottom-
up	analogue	of	the	common	book	program.

But	a	system	like	this	wouldn’t	only	be	more	socially	positive.	Since	the
items	most	recently	returned	are	the	ones	most	likely	to	be	next	checked	out,
it	would	also	be	more	efficient.	It’s	true	that	students	might	be	puzzled	by	the
fact	that	popular	books	will	sometimes	be	found	in	the	stacks	and	sometimes
in	the	lobby.	However,	recently	returned	books	that	await	reshelving	are
missing	from	the	stacks	either	way.	It’s	just	that	currently	they	are	off-limits
during	this	brief	limbo.	Allowing	the	returned	books	to	adorn	the	lobby
instead	would	give	students	a	chance	to	short-circuit	the	shelving	process
entirely.	No	employees	would	have	to	venture	into	the	stacks	to	deposit	the
volumes,	and	no	students	would	have	to	venture	into	the	stacks	to	get	them
back	out.	That’s	exactly	how	caching	is	meant	to	work.

The	Cloud	at	the	End	of	the	Street

“We	actually	made	a	map	of	the	country,	on	the	scale	of	a	mile	to	the
mile!”

“Have	you	used	it	much?”	I	enquired.

“It	has	never	been	spread	out,	yet,”	said	Mein	Herr:	“the	farmers
objected:	they	said	it	would	cover	the	whole	country,	and	shut	out	the
sunlight!	So	we	now	use	the	country	itself,	as	its	own	map,	and	I	assure
you	it	does	nearly	as	well.”

—LEWIS	CARROLL

We	often	think	of	the	Internet	as	a	flat,	independent,	and	loosely	connected
network.	In	fact,	it’s	none	of	those	things.	A	quarter	of	all	Internet	traffic	at
present	is	handled	by	a	single	corporation,	one	that	manages	to	stay	almost
entirely	out	of	the	headlines.	This	Massachusetts-based	company	is	called
Akamai,	and	they’re	in	the	caching	business.

We	also	think	of	the	Internet	as	abstract,	dematerial,	post-geographic.
We’re	told	our	data	is	“in	the	cloud,”	which	is	meant	to	suggest	a	diffuse,
distant	place.	Again,	none	of	these	are	true.	The	reality	is	that	the	Internet	is
all	about	bundles	of	physical	wires	and	racks	of	metal.	And	it’s	much	more
closely	tied	to	geography	than	you	might	expect.

Engineers	think	about	geography	on	a	tiny	scale	when	they	design

computer	hardware:	faster	memory	is	usually	placed	closer	to	the	processor,
minimizing	the	length	of	the	wires	that	information	has	to	travel	along.
Today’s	processor	cycles	are	measured	in	gigahertz,	which	is	to	say	they	are
performing	operations	in	fractions	of	nanoseconds.	For	reference,	that’s	the
time	it	takes	light	to	travel	a	few	inches—so	the	physical	layout	of	a
computer’s	internals	is	very	much	a	concern.	And	applying	the	same	principle
at	a	dramatically	larger	scale,	actual	geography	turns	out	to	be	critical	for	the
functioning	of	the	web,	where	the	wires	span	not	inches	but	potentially
thousands	of	miles.

If	you	can	create	a	cache	of	webpage	content	that	is	physically,
geographically	closer	to	the	people	who	want	it,	you	can	serve	those	pages
faster.	Much	of	the	traffic	on	the	Internet	is	now	handled	by	“content
distribution	networks”	(CDNs),	which	have	computers	around	the	world	that
maintain	copies	of	popular	websites.	This	allows	users	requesting	those	pages
to	get	their	data	from	a	computer	that’s	nearby,	without	having	to	make	the
long	haul	across	continents	to	the	original	server.

The	largest	of	these	CDNs	is	managed	by	Akamai:	content	providers	pay
for	their	websites	to	be	“Akamaized”	for	better	performance.	An	Australian
who	streams	video	from	the	BBC,	for	instance,	is	probably	hitting	local
Akamai	servers	in	Sydney;	the	request	never	makes	it	to	London	at	all.	It
doesn’t	have	to.	Says	Akamai’s	chief	architect,	Stephen	Ludin,	“It’s	our	belief
—and	we	build	the	company	around	the	fact—that	distance	matters.”

In	our	earlier	discussion,	we	noted	that	certain	types	of	computer	memory
have	faster	performance	but	cost	more	per	unit	of	storage,	leading	to	a
“memory	hierarchy”	that	tries	to	get	the	best	of	both.	But	it’s	not	actually
necessary	to	have	memory	made	of	different	materials	for	caching	to	make
sense.	Caching	is	just	as	useful	when	it’s	proximity,	rather	than	performance,
that’s	the	scarce	resource.

This	fundamental	insight—that	in-demand	files	should	be	stored	near	the
location	where	they	are	used—also	translates	into	purely	physical
environments.	For	example,	Amazon’s	enormous	fulfillment	centers	generally
eschew	any	type	of	human-comprehensible	organization,	of	the	kind	you’d
find	in	a	library	or	a	department	store.	Instead,	employees	are	told	to	place
incoming	items	wherever	they	can	find	space	in	the	warehouse—batteries
cheek	by	jowl	with	pencil	sharpeners,	diapers,	barbecue	grills,	and	learn-the-

dobro	DVDs—and	tag	the	location	of	each	item	in	a	central	database	using
bar	codes.	But	this	deliberately	disorganized-looking	storage	system	still	has
one	visible	exception:	high-demand	items	are	placed	in	a	different	area,	more
quickly	accessible	than	the	rest.	That	area	is	Amazon’s	cache.

Recently,	Amazon	was	granted	a	patent	for	an	innovation	that	pushes	this
principle	one	step	further.	The	patent	talks	about	“anticipatory	package
shipping,”	which	the	press	seized	upon	as	though	Amazon	could	somehow
mail	you	something	before	you	bought	it.	Amazon,	like	any	technology
company,	would	love	to	have	that	kind	of	Bélády-like	clairvoyance—but	for
the	next	best	thing,	it	turns	to	caching.	Their	patent	is	actually	for	shipping
items	that	have	been	recently	popular	in	a	given	region	to	a	staging	warehouse
in	that	region—like	having	their	own	CDN	for	physical	goods.	Then,	when
somebody	places	an	order,	the	item	is	just	down	the	street.	Anticipating	the
purchases	of	individuals	is	challenging,	but	when	predicting	the	purchases	of
a	few	thousand	people,	the	law	of	large	numbers	kicks	in.	Somebody	in
Berkeley	is	going	to	order,	say,	recycled	toilet	paper	in	a	given	day,	and	when
they	do	it’s	already	most	of	the	way	there.

When	the	things	popular	in	an	area	are	also	from	that	area,	an	even	more
interesting	geography	of	the	cloud	emerges.	In	2011,	film	critic	Micah	Mertes
created	a	map	of	the	United	States	using	each	state’s	“Local	Favorites”	from
Netflix—highlighting	the	movies	uncommonly	popular	in	each	of	those
states.	Overwhelmingly,	it	turned	out,	people	love	watching	movies	set	where
they	live.	Washingtonians	favor	Singles,	set	in	Seattle;	Louisianans	watch	The
Big	Easy,	set	in	New	Orleans;	Angelinos	unsurprisingly	enjoy	L.A.	Story;
Alaskans	love	Braving	Alaska;	and	Montanans,	Montana	Sky.*	And	because
nothing	benefits	quite	so	much	from	local	caching	as	the	enormous	files	that
comprise	full-length	HD	video,	it’s	certain	that	Netflix	has	arranged	it	so	the
files	for,	say,	L.A.	Story	live	right	in	Los	Angeles,	just	like	its	characters—
and,	more	importantly,	its	fans.

Caching	on	the	Home	Front

While	caching	began	as	a	scheme	for	organizing	digital	information	inside
computers,	it’s	clear	that	it	is	just	as	applicable	to	organizing	physical	objects
in	human	environments.	When	we	spoke	to	John	Hennessy—president	of
Stanford	University,	and	a	pioneering	computer	architect	who	helped	develop
modern	caching	systems—he	immediately	saw	the	link:

Caching	is	such	an	obvious	thing	because	we	do	it	all	the	time.	I	mean,	the	amount	of	information
I	get	…	certain	things	I	have	to	keep	track	of	right	now,	a	bunch	of	things	I	have	on	my	desk,	and
then	other	things	are	filed	away,	and	then	eventually	filed	away	into	the	university	archives
system	where	it	takes	a	whole	day	to	get	stuff	out	of	it	if	I	wanted.	But	we	use	that	technique	all
the	time	to	try	to	organize	our	lives.

The	direct	parallel	between	these	problems	means	that	there’s	the	potential	to
consciously	apply	the	solutions	from	computer	science	to	the	home.

First,	when	you	are	deciding	what	to	keep	and	what	to	throw	away,	LRU	is
potentially	a	good	principle	to	use—much	better	than	FIFO.	You	shouldn’t
necessarily	toss	that	T-shirt	from	college	if	you	still	wear	it	every	now	and
then.	But	the	plaid	pants	you	haven’t	worn	in	ages?	Those	can	be	somebody
else’s	thrift-store	bonanza.

Second,	exploit	geography.	Make	sure	things	are	in	whatever	cache	is
closest	to	the	place	where	they’re	typically	used.	This	isn’t	a	concrete
recommendation	in	most	home-organization	books,	but	it	consistently	turns
up	in	the	schemes	that	actual	people	describe	as	working	well	for	them.	“I
keep	running	and	exercise	gear	in	a	crate	on	the	floor	of	my	front	coat	closet,”
says	one	person	quoted	in	Julie	Morgenstern’s	Organizing	from	the	Inside
Out,	for	instance.	“I	like	having	it	close	to	the	front	door.”

A	slightly	more	extreme	example	appears	in	the	book	Keeping	Found
Things	Found,	by	William	Jones:

A	doctor	told	me	about	her	approach	to	keeping	things.	“My	kids	think	I’m	whacky,	but	I	put
things	where	I	think	I’ll	need	them	again	later,	even	if	it	doesn’t	make	much	sense.”	As	an
example	of	her	system,	she	told	me	that	she	keeps	extra	vacuum	cleaner	bags	behind	the	couch	in
the	living	room.	Behind	the	couch	in	the	living	room?	Does	that	make	any	sense?…	It	turns	out
that	when	the	vacuum	cleaner	is	used,	it	is	usually	used	for	the	carpet	in	the	living	room.…	When
a	vacuum	cleaner	bag	gets	full	and	a	new	one	is	needed,	it’s	usually	in	the	living	room.	And	that’s
just	where	the	vacuum	cleaner	bags	are.

A	final	insight,	which	hasn’t	yet	made	it	into	guides	on	closet	organization,
is	that	of	the	multi-level	memory	hierarchy.	Having	a	cache	is	efficient,	but
having	multiple	levels	of	caches—from	smallest	and	fastest	to	largest	and
slowest—can	be	even	better.	Where	your	belongings	are	concerned,	your
closet	is	one	cache	level,	your	basement	another,	and	a	self-storage	locker	a
third.	(These	are	in	decreasing	order	of	access	speed,	of	course,	so	you	should
use	the	LRU	principle	as	the	basis	for	deciding	what	gets	evicted	from	each
level	to	the	next.)	But	you	might	also	be	able	to	speed	things	up	by	adding	yet
another	level	of	caching:	an	even	smaller,	faster,	closer	one	than	your	closet.

Tom’s	otherwise	extremely	tolerant	wife	objects	to	a	pile	of	clothes	next	to
the	bed,	despite	his	insistence	that	it’s	in	fact	a	highly	efficient	caching
scheme.	Fortunately,	our	conversations	with	computer	scientists	revealed	a
solution	to	this	problem	too.	Rik	Belew	of	UC	San	Diego,	who	studies	search
engines	from	a	cognitive	perspective,	recommended	the	use	of	a	valet	stand.
Though	you	don’t	see	too	many	of	them	these	days,	a	valet	stand	is	essentially
a	one-outfit	closet,	a	compound	hanger	for	jacket,	tie,	and	slacks—the	perfect
piece	of	hardware	for	your	domestic	caching	needs.	Which	just	goes	to	show
that	computer	scientists	won’t	only	save	you	time;	they	might	also	save	your
marriage.

Filing	and	Piling

After	deciding	what	to	keep	and	where	it	should	go,	the	final	challenge	is
knowing	how	to	organize	it.	We’ve	talked	about	what	goes	in	the	closet	and
where	the	closet	should	be,	but	how	should	things	be	arranged	inside?

One	of	the	constants	across	all	pieces	of	home-organization	advice	we’ve
seen	so	far	is	the	idea	of	grouping	“like	with	like”—and	perhaps	no	one	so
directly	flies	in	the	face	of	that	advice	as	Yukio	Noguchi.	“I	have	to
emphasize,”	says	Noguchi,	“that	a	very	fundamental	principle	in	my	method
is	not	to	group	files	according	to	content.”	Noguchi	is	an	economist	at	the
University	of	Tokyo,	and	the	author	of	a	series	of	books	that	offer	“super”
tricks	for	sorting	out	your	office	and	your	life.	Their	titles	translate	roughly	to
Super	Persuasion	Method,	Super	Work	Method,	Super	Study	Method—and,
most	relevantly	for	us,	Super	Organized	Method.

Early	in	his	career	as	an	economist,	Noguchi	found	himself	constantly
inundated	with	information—correspondence,	data,	manuscripts—and	losing
a	significant	portion	of	each	day	just	trying	to	organize	it	all.	So	he	looked	for
an	alternative.	He	began	by	simply	putting	each	document	into	a	file	labeled
with	the	document’s	title	and	date,	and	putting	all	the	files	into	one	big	box.
That	saved	time—he	didn’t	have	to	think	about	the	right	place	to	put	each
document—but	it	didn’t	result	in	any	form	of	organization.	Then,	sometime	in
the	early	1990s,	he	had	a	breakthrough:	he	started	to	insert	the	files
exclusively	at	the	left-hand	side	of	the	box.	And	thus	the	“super”	filing
system	was	born.

The	left-side	insertion	rule,	Noguchi	specifies,	has	to	be	followed	for	old
files	as	well	as	new	ones:	every	time	you	pull	out	a	file	to	use	its	contents,

you	must	put	it	back	as	the	leftmost	file	when	you	return	it	to	the	box.	And
when	you	search	for	a	file,	you	always	start	from	the	left-hand	side	as	well.
The	most	recently	accessed	files	are	thus	the	fastest	to	find.

This	practice	began,	Noguchi	explains,	because	returning	every	file	to	the
left	side	was	just	easier	than	trying	to	reinsert	it	at	the	same	spot	it	came	from.
Only	gradually	did	he	realize	that	this	procedure	was	not	only	simple	but	also
startlingly	efficient.

The	Noguchi	Filing	System	clearly	saves	time	when	you’re	replacing
something	after	you’re	done	using	it.	There’s	still	the	question,	however,	of
whether	it’s	a	good	way	to	find	the	files	you	need	in	the	first	place.	After	all,
it	certainly	goes	against	the	recommendations	of	other	efficiency	gurus,	who
tell	us	that	we	should	put	similar	things	together.	Indeed,	even	the	etymology
of	the	word	“organized”	evokes	a	body	composed	of	organs—which	are
nothing	if	not	cells	grouped	“like	with	like,”	marshalled	together	by	similar
form	and	function.

But	computer	science	gives	us	something	that	most	efficiency	gurus	don’t:
guarantees.

Though	Noguchi	didn’t	know	it	at	the	time,	his	filing	system	represents	an
extension	of	the	LRU	principle.	LRU	tells	us	that	when	we	add	something	to
our	cache	we	should	discard	the	oldest	item—but	it	doesn’t	tell	us	where	we
should	put	the	new	item.	The	answer	to	that	question	comes	from	a	line	of
research	carried	out	by	computer	scientists	in	the	1970s	and	’80s.	Their
version	of	the	problem	is	called	“self-organizing	lists,”	and	its	setup	almost
exactly	mimics	Noguchi’s	filing	dilemma.	Imagine	that	you	have	a	set	of
items	in	a	sequence,	and	you	must	periodically	search	through	them	to	find
specific	items.	The	search	itself	is	constrained	to	be	linear—you	must	look
through	the	items	one	by	one,	starting	at	the	beginning—but	once	you	find	the
item	you’re	looking	for,	you	can	put	it	back	anywhere	in	the	sequence.	Where
should	you	replace	the	items	to	make	searching	as	efficient	as	possible?

The	definitive	paper	on	self-organizing	lists,	published	by	Daniel	Sleator
and	Robert	Tarjan	in	1985,	examined	(in	classic	computer	science	fashion)
the	worst-case	performance	of	various	ways	to	organize	the	list	given	all
possible	sequences	of	requests.	Intuitively,	since	the	search	starts	at	the	front,
you	want	to	arrange	the	sequence	so	that	the	items	most	likely	to	be	searched
for	appear	there.	But	which	items	will	those	be?	We’re	back	to	wishing	for

clairvoyance	again.	“If	you	know	the	sequence	ahead	of	time,”	says	Tarjan,
who	splits	his	time	between	Princeton	and	Silicon	Valley,	“you	can	customize
the	data	structure	to	minimize	the	total	time	for	the	entire	sequence.	That’s	the
optimum	offline	algorithm:	God’s	algorithm	if	you	will,	or	the	algorithm	in
the	sky.	Of	course,	nobody	knows	the	future,	so	the	question	is,	if	you	don’t
know	the	future,	how	close	can	you	come	to	this	optimum	algorithm	in	the
sky?”	Sleator	and	Tarjan’s	results	showed	that	some	“very	simple	self-
adjusting	schemes,	amazingly,	come	within	a	constant	factor”	of
clairvoyance.	Namely,	if	you	follow	the	LRU	principle—where	you	simply
always	put	an	item	back	at	the	very	front	of	the	list—then	the	total	amount	of
time	you	spend	searching	will	never	be	more	than	twice	as	long	as	if	you’d
known	the	future.	That’s	not	a	guarantee	any	other	algorithm	can	make.

Recognizing	the	Noguchi	Filing	System	as	an	instance	of	the	LRU
principle	in	action	tells	us	that	it	is	not	merely	efficient.	It’s	actually	optimal.

Sleator	and	Tarjan’s	results	also	provide	us	with	one	further	twist,	and	we
get	it	by	turning	the	Noguchi	Filing	System	on	its	side.	Quite	simply,	a	box	of
files	on	its	side	becomes	a	pile.	And	it’s	the	very	nature	of	piles	that	you
search	them	from	top	to	bottom,	and	that	each	time	you	pull	out	a	document	it
goes	back	not	where	you	found	it,	but	on	top.*

In	short,	the	mathematics	of	self-organizing	lists	suggests	something
radical:	the	big	pile	of	papers	on	your	desk,	far	from	being	a	guilt-inducing
fester	of	chaos,	is	actually	one	of	the	most	well-designed	and	efficient
structures	available.	What	might	appear	to	others	to	be	an	unorganized	mess
is,	in	fact,	a	self-organizing	mess.	Tossing	things	back	on	the	top	of	the	pile	is
the	very	best	you	can	do,	shy	of	knowing	the	future.	In	the	previous	chapter
we	examined	cases	where	leaving	something	unsorted	was	more	efficient	than
taking	the	time	to	sort	everything;	here,	however,	there’s	a	very	different
reason	why	you	don’t	need	to	organize	it.

You	already	have.

The	Forgetting	Curve

Of	course,	no	discussion	of	memory	could	be	complete	without	mention	of
the	“memory	organ”	closest	to	home:	the	human	brain.	Over	the	past	few
decades,	the	influence	of	computer	science	has	brought	about	something	of	a
revolution	in	how	psychologists	think	about	memory.

The	science	of	human	memory	is	said	to	have	begun	in	1879,	with	a	young
psychologist	at	the	University	of	Berlin	named	Hermann	Ebbinghaus.
Ebbinghaus	wanted	to	get	to	the	bottom	of	how	human	memory	worked,	and
to	show	that	it	was	possible	to	study	the	mind	with	all	the	mathematical	rigor
of	the	physical	sciences.	So	he	began	to	experiment	on	himself.

Each	day,	Ebbinghaus	would	sit	down	and	memorize	a	list	of	nonsense
syllables.	Then	he	would	test	himself	on	lists	from	previous	days.	Pursuing
this	habit	over	the	course	of	a	year,	he	established	many	of	the	most	basic
results	in	human	memory	research.	He	confirmed,	for	instance,	that	practicing
a	list	multiple	times	makes	it	persist	longer	in	memory,	and	that	the	number	of
items	one	can	accurately	recall	goes	down	as	time	passes.	His	results	mapped
out	a	graph	of	how	memory	fades	over	time,	known	today	by	psychologists	as
“the	forgetting	curve.”

Ebbinghaus’s	results	established	the	credibility	of	a	quantitative	science	of
human	memory,	but	they	left	open	something	of	a	mystery.	Why	this
particular	curve?	Does	it	suggest	that	human	memory	is	good	or	bad?	What’s
the	underlying	story	here?	These	questions	have	stimulated	psychologists’
speculation	and	research	for	more	than	a	hundred	years.

In	1987,	Carnegie	Mellon	psychologist	and	computer	scientist	John
Anderson	found	himself	reading	about	the	information	retrieval	systems	of
university	libraries.	Anderson’s	goal—or	so	he	thought—was	to	write	about
how	the	design	of	those	systems	could	be	informed	by	the	study	of	human
memory.	Instead,	the	opposite	happened:	he	realized	that	information	science
could	provide	the	missing	piece	in	the	study	of	the	mind.

“For	a	long	time,”	says	Anderson,	“I	had	felt	that	there	was	something
missing	in	the	existing	theories	of	human	memory,	including	my	own.
Basically,	all	of	these	theories	characterize	memory	as	an	arbitrary	and	non-
optimal	configuration.…	I	had	long	felt	that	the	basic	memory	processes	were
quite	adaptive	and	perhaps	even	optimal;	however,	I	had	never	been	able	to
see	a	framework	in	which	to	make	this	point.	In	the	computer	science	work	on
information	retrieval,	I	saw	that	framework	laid	out	before	me.”

A	natural	way	to	think	about	forgetting	is	that	our	minds	simply	run	out	of
space.	The	key	idea	behind	Anderson’s	new	account	of	human	memory	is	that
the	problem	might	be	not	one	of	storage,	but	of	organization.	According	to
his	theory,	the	mind	has	essentially	infinite	capacity	for	memories,	but	we

have	only	a	finite	amount	of	time	in	which	to	search	for	them.	Anderson	made
the	analogy	to	a	library	with	a	single,	arbitrarily	long	shelf—the	Noguchi
Filing	System	at	Library	of	Congress	scale.	You	can	fit	as	many	items	as	you
want	on	that	shelf,	but	the	closer	something	is	to	the	front	the	faster	it	will	be
to	find.

The	key	to	a	good	human	memory	then	becomes	the	same	as	the	key	to	a
good	computer	cache:	predicting	which	items	are	most	likely	to	be	wanted	in
the	future.

Barring	clairvoyance,	the	best	approach	to	making	such	predictions	in	the
human	world	requires	understanding	the	world	itself.	With	his	collaborator
Lael	Schooler,	Anderson	set	out	to	perform	Ebbinghaus-like	studies	not	on
human	minds,	but	on	human	society.	The	question	was	straightforward:	what
patterns	characterize	the	way	the	world	itself	“forgets”—the	way	that	events
and	references	fade	over	time?	Anderson	and	Schooler	analyzed	three	human
environments:	headlines	from	the	New	York	Times,	recordings	of	parents
talking	to	their	children,	and	Anderson’s	own	email	inbox.	In	all	domains,
they	found	that	a	word	is	most	likely	to	appear	again	right	after	it	had	just
been	used,	and	that	the	likelihood	of	seeing	it	again	falls	off	as	time	goes	on.

In	other	words,	reality	itself	has	a	statistical	structure	that	mimics	the
Ebbinghaus	curve.

This	suggests	something	remarkable.	If	the	pattern	by	which	things	fade
from	our	minds	is	the	very	pattern	by	which	things	fade	from	use	around	us,
then	there	may	be	a	very	good	explanation	indeed	for	the	Ebbinghaus
forgetting	curve—namely,	that	it’s	a	perfect	tuning	of	the	brain	to	the	world,
making	available	precisely	the	things	most	likely	to	be	needed.

Human	memory	and	human	environments.	The	left	panel	shows	the	percentage	of	nonsense	syllables

Ebbinghaus	correctly	recalled	from	a	list,	as	a	function	of	the	number	of	hours	he	waited	after	first
memorizing	the	list.	The	right	panel	shows	the	chance	that	a	word	appears	in	the	headlines	of	the	New
York	Times	on	a	given	day,	as	a	function	of	the	time	since	its	previous	appearance	in	print.

In	putting	the	emphasis	on	time,	caching	shows	us	that	memory	involves
unavoidable	tradeoffs,	and	a	certain	zero-sumness.	You	can’t	have	every
library	book	at	your	desk,	every	product	on	display	at	the	front	of	the	store,
every	headline	above	the	fold,	every	paper	at	the	top	of	the	pile.	And	in	the
same	way,	you	can’t	have	every	fact	or	face	or	name	at	the	front	of	your	mind.

“Many	people	hold	the	bias	that	human	memory	is	anything	but	optimal,”
wrote	Anderson	and	Schooler.	“They	point	to	the	many	frustrating	failures	of
memory.	However,	these	criticisms	fail	to	appreciate	the	task	before	human
memory,	which	is	to	try	to	manage	a	huge	stockpile	of	memories.	In	any
system	responsible	for	managing	a	vast	data	base	there	must	be	failures	of
retrieval.	It	is	just	too	expensive	to	maintain	access	to	an	unbounded	number
of	items.”

This	understanding	has	in	turn	led	to	a	second	revelation	about	human
memory.	If	these	tradeoffs	really	are	unavoidable,	and	the	brain	appears	to	be
optimally	tuned	to	the	world	around	it,	then	what	we	refer	to	as	the	inevitable
“cognitive	decline”	that	comes	with	age	may	in	fact	be	something	else.

The	Tyranny	of	Experience

A	big	book	is	a	big	nuisance.
—CALLIMACHUS	(305–410	BC),	LIBRARIAN	AT	ALEXANDRIA

Why	don’t	they	make	the	whole	plane	out	of	that	black	box	stuff?
—STEVEN	WRIGHT

The	need	for	a	computer	memory	hierarchy,	in	the	form	of	a	cascade	of
caches,	is	in	large	part	the	result	of	our	inability	to	afford	making	the	entire
memory	out	of	the	most	expensive	type	of	hardware.	The	fastest	cache	on
current	computers,	for	instance,	is	made	with	what’s	called	SRAM,	which
costs	roughly	a	thousand	times	as	much	per	byte	as	the	flash	memory	in	solid-
state	drives.	But	the	true	motivation	for	caching	goes	deeper	than	that.	In	fact,
even	if	we	could	get	a	bespoke	machine	that	used	exclusively	the	fastest	form
of	memory	possible,	we’d	still	need	caches.

As	John	Hennessy	explains,	size	alone	is	enough	to	impair	speed:
When	you	make	something	bigger,	it’s	inherently	slower,	right?	If	you	make	a	city	bigger,	it	takes

longer	to	get	from	point	A	to	point	B.	If	you	make	a	library	bigger,	it	takes	longer	to	find	a	book
in	the	library.	If	you	have	a	stack	of	papers	on	your	desk	that’s	bigger,	it	takes	longer	to	find	the
paper	you’re	looking	for,	right?	Caches	are	actually	a	solution	to	that	problem.…	For	example,
right	now,	if	you	go	to	buy	a	processor,	what	you’ll	get	is	a	Level	1	cache	and	a	Level	2	cache	on
the	chip.	The	reason	that	there	are—even	just	on	the	chip	there	are	two	caches!—is	that	in	order
to	keep	up	with	the	cycle	rate	of	the	processor,	the	first-level	cache	is	limited	in	size.

Unavoidably,	the	larger	a	memory	is,	the	more	time	it	takes	to	search	for	and
extract	a	piece	of	information	from	it.

Brian	and	Tom,	in	their	thirties,	already	find	themselves	more	frequently
stalling	a	conversation	as,	for	instance,	they	wait	for	the	name	of	someone	“on
the	tip	of	the	tongue”	to	come	to	mind.	Then	again,	Brian	at	age	ten	had	two
dozen	schoolmates;	twenty	years	later	he	has	hundreds	of	contacts	in	his
phone	and	thousands	on	Facebook,	and	has	lived	in	four	cities,	each	with	its
own	community	of	friends,	acquaintances,	and	colleagues.	Tom,	by	this	point
in	his	academic	career,	has	worked	with	hundreds	of	collaborators	and	taught
thousands	of	students.	(In	fact,	this	very	book	involved	meeting	with	about	a
hundred	people	and	citing	a	thousand.)	Such	effects	are	by	no	means	limited
to	social	connections,	of	course:	a	typical	two-year-old	knows	two	hundred
words;	a	typical	adult	knows	thirty	thousand.	And	when	it	comes	to	episodic
memory,	well,	every	year	adds	a	third	of	a	million	waking	minutes	to	one’s
total	lived	experience.

Considered	this	way,	it’s	a	wonder	that	the	two	of	us—or	anyone—can
mentally	keep	up	at	all.	What’s	surprising	is	not	memory’s	slowdown,	but	the
fact	that	the	mind	can	possibly	stay	afloat	and	responsive	as	so	much	data
accumulates.

If	the	fundamental	challenge	of	memory	really	is	one	of	organization
rather	than	storage,	perhaps	it	should	change	how	we	think	about	the	impact
of	aging	on	our	mental	abilities.	Recent	work	by	a	team	of	psychologists	and
linguists	led	by	Michael	Ramscar	at	the	University	of	Tübingen	has	suggested
that	what	we	call	“cognitive	decline”—lags	and	retrieval	errors—may	not	be
about	the	search	process	slowing	or	deteriorating,	but	(at	least	partly)	an
unavoidable	consequence	of	the	amount	of	information	we	have	to	navigate
getting	bigger	and	bigger.	Regardless	of	whatever	other	challenges	aging
brings,	older	brains—which	must	manage	a	greater	store	of	memories—are
literally	solving	harder	computational	problems	with	every	passing	day.	The
old	can	mock	the	young	for	their	speed:	“It’s	because	you	don’t	know

anything	yet!”

Ramscar’s	group	demonstrated	the	impact	of	extra	information	on	human
memory	by	focusing	on	the	case	of	language.	Through	a	series	of	simulations,
the	researchers	showed	that	simply	knowing	more	makes	things	harder	when
it	comes	to	recognizing	words,	names,	and	even	letters.	No	matter	how	good
your	organization	scheme	is,	having	to	search	through	more	things	will
inevitably	take	longer.	It’s	not	that	we’re	forgetting;	it’s	that	we’re
remembering.	We’re	becoming	archives.

An	understanding	of	the	unavoidable	computational	demands	of	memory,
Ramscar	says,	should	help	people	come	to	terms	with	the	effects	of	aging	on
cognition.	“I	think	the	most	important	tangible	thing	seniors	can	do	is	to	try	to
get	a	handle	on	the	idea	that	their	minds	are	natural	information	processing
devices,”	he	writes.	“Some	things	that	might	seem	frustrating	as	we	grow
older	(like	remembering	names!)	are	a	function	of	the	amount	of	stuff	we
have	to	sift	through	…	and	are	not	necessarily	a	sign	of	a	failing	mind.”	As	he
puts	it,	“A	lot	of	what	is	currently	called	decline	is	simply	learning.”

Caching	gives	us	the	language	to	understand	what’s	happening.	We	say
“brain	fart”	when	we	should	really	say	“cache	miss.”	The	disproportionate
occasional	lags	in	information	retrieval	are	a	reminder	of	just	how	much	we
benefit	the	rest	of	the	time	by	having	what	we	need	at	the	front	of	our	minds.

So	as	you	age,	and	begin	to	experience	these	sporadic	latencies,	take	heart:
the	length	of	a	delay	is	partly	an	indicator	of	the	extent	of	your	experience.
The	effort	of	retrieval	is	a	testament	to	how	much	you	know.	And	the	rarity	of
those	lags	is	a	testament	to	how	well	you’ve	arranged	it:	keeping	the	most
important	things	closest	to	hand.

*For	unknown	reasons,	My	Own	Private	Idaho	is	best	loved	in	Maine.

*You	can	force	your	computer	to	show	your	electronic	documents	in	a	pile,	as	well.	Computers’	default
file-browsing	interface	makes	you	click	through	folders	in	alphabetical	order—but	the	power	of	LRU
suggests	that	you	should	override	this,	and	display	your	files	by	“Last	Opened”	rather	than	“Name.”
What	you’re	looking	for	will	almost	always	be	at	or	near	the	top.

	

5			Scheduling
First	Things	First
How	we	spend	our	days	is,	of	course,	how	we	spend	our	lives.

—ANNIE	DILLARD

“Why	don’t	we	write	a	book	on	scheduling	theory?”	I	asked.…	“It
shouldn’t	take	much	time!”	Book-writing,	like	war-making,	often	entails
grave	miscalculations.	Fifteen	years	later,	Scheduling	is	still	unfinished.

—EUGENE	LAWLER

It’s	Monday	morning,	and	you	have	an	as-yet	blank	schedule	and	a	long	list	of
tasks	to	complete.	Some	can	be	started	only	after	others	are	finished	(you
can’t	load	the	dishwasher	unless	it’s	unloaded	first),	and	some	can	be	started
only	after	a	certain	time	(the	neighbors	will	complain	if	you	put	the	trash	out
on	the	curb	before	Tuesday	night).	Some	have	sharp	deadlines,	others	can	be
done	whenever,	and	many	are	fuzzily	in	between.	Some	are	urgent,	but	not
important.	Some	are	important,	but	not	urgent.	“We	are	what	we	repeatedly
do,”	you	seem	to	recall	Aristotle	saying—whether	it’s	mop	the	floor,	spend
more	time	with	family,	file	taxes	on	time,	learn	French.

So	what	to	do,	and	when,	and	in	what	order?	Your	life	is	waiting.

Though	we	always	manage	to	find	some	way	to	order	the	things	we	do	in
our	days,	as	a	rule	we	don’t	consider	ourselves	particularly	good	at	it—hence
the	perennial	bestseller	status	of	time-management	guides.	Unfortunately,	the
guidance	we	find	in	them	is	frequently	divergent	and	inconsistent.	Getting
Things	Done	advocates	a	policy	of	immediately	doing	any	task	of	two
minutes	or	less	as	soon	as	it	comes	to	mind.	Rival	bestseller	Eat	That	Frog!
advises	beginning	with	the	most	difficult	task	and	moving	toward	easier	and
easier	things.	The	Now	Habit	suggests	first	scheduling	one’s	social
engagements	and	leisure	time	and	then	filling	the	gaps	with	work—rather
than	the	other	way	around,	as	we	so	often	do.	William	James,	the	“father	of
American	psychology,”	asserts	that	“there’s	nothing	so	fatiguing	as	the	eternal
hanging	on	of	an	uncompleted	task,”	but	Frank	Partnoy,	in	Wait,	makes	the
case	for	deliberately	not	doing	things	right	away.

Every	guru	has	a	different	system,	and	it’s	hard	to	know	who	to	listen	to.

Spending	Time	Becomes	a	Science

Though	time	management	seems	a	problem	as	old	as	time	itself,	the	science
of	scheduling	began	in	the	machine	shops	of	the	industrial	revolution.	In
1874,	Frederick	Taylor,	the	son	of	a	wealthy	lawyer,	turned	down	his
acceptance	at	Harvard	to	become	an	apprentice	machinist	at	Enterprise
Hydraulic	Works	in	Philadelphia.	Four	years	later,	he	completed	his
apprenticeship	and	began	working	at	the	Midvale	Steel	Works,	where	he	rose
through	the	ranks	from	lathe	operator	to	machine	shop	foreman	and	ultimately
to	chief	engineer.	In	the	process,	he	came	to	believe	that	the	time	of	the
machines	(and	people)	he	oversaw	was	not	being	used	very	well,	leading	him
to	develop	a	discipline	he	called	“Scientific	Management.”

Taylor	created	a	planning	office,	at	the	heart	of	which	was	a	bulletin	board
displaying	the	shop’s	schedule	for	all	to	see.	The	board	depicted	every
machine	in	the	shop,	showing	the	task	currently	being	carried	out	by	that
machine	and	all	the	tasks	waiting	for	it.	This	practice	would	be	built	upon	by
Taylor’s	colleague	Henry	Gantt,	who	in	the	1910s	developed	the	Gantt	charts
that	would	help	organize	many	of	the	twentieth	century’s	most	ambitious
construction	projects,	from	the	Hoover	Dam	to	the	Interstate	Highway
System.	A	century	later,	Gantt	charts	still	adorn	the	walls	and	screens	of
project	managers	at	firms	like	Amazon,	IKEA,	and	SpaceX.

Taylor	and	Gantt	made	scheduling	an	object	of	study,	and	they	gave	it
visual	and	conceptual	form.	But	they	didn’t	solve	the	fundamental	problem	of
determining	which	schedules	were	best.	The	first	hint	that	this	problem	even
could	be	solved	wouldn’t	appear	until	several	decades	later,	in	a	1954	paper
published	by	RAND	Corporation	mathematician	Selmer	Johnson.

The	scenario	Johnson	examined	was	bookbinding,	where	each	book	needs
to	be	printed	on	one	machine	and	then	bound	on	another.	But	the	most
common	instance	of	this	two-machine	setup	is	much	closer	to	home:	the
laundry.	When	you	wash	your	clothes,	they	have	to	pass	through	the	washer
and	the	dryer	in	sequence,	and	different	loads	will	take	different	amounts	of
time	in	each.	A	heavily	soiled	load	might	take	longer	to	wash	but	the	usual
time	to	dry;	a	large	load	might	take	longer	to	dry	but	the	usual	time	to	wash.
So,	Johnson	asked,	if	you	have	several	loads	of	laundry	to	do	on	the	same
day,	what’s	the	best	way	to	do	them?

His	answer	was	that	you	should	begin	by	finding	the	single	step	that	takes
the	least	amount	of	time—the	load	that	will	wash	or	dry	the	quickest.	If	that
shortest	step	involves	the	washer,	plan	to	do	that	load	first.	If	it	involves	the
dryer,	plan	to	do	it	last.	Repeat	this	process	for	the	remaining	loads,	working
from	the	two	ends	of	the	schedule	toward	the	middle.

Intuitively,	Johnson’s	algorithm	works	because	regardless	of	how	you
sequence	the	loads,	there’s	going	to	be	some	time	at	the	start	when	the	washer
is	running	but	not	the	dryer,	and	some	time	at	the	end	when	the	dryer	is
running	but	not	the	washer.	By	having	the	shortest	washing	times	at	the	start,
and	the	shortest	drying	times	at	the	end,	you	maximize	the	amount	of	overlap
—when	the	washer	and	dryer	are	running	simultaneously.	Thus	you	can	keep
the	total	amount	of	time	spent	doing	laundry	to	the	absolute	minimum.
Johnson’s	analysis	had	yielded	scheduling’s	first	optimal	algorithm:	start	with
the	lightest	wash,	end	with	the	smallest	hamper.

Beyond	its	immediate	applications,	Johnson’s	paper	revealed	two	deeper
points:	first,	that	scheduling	could	be	expressed	algorithmically,	and	second,
that	optimal	scheduling	solutions	existed.	This	kicked	off	what	has	become	a
sprawling	literature,	exploring	strategies	for	a	vast	menagerie	of	hypothetical
factories	with	every	conceivable	number	and	kind	of	machines.

We’re	going	to	focus	on	a	tiny	subset	of	this	literature:	the	part	that,	unlike
bookbinding	or	laundry,	deals	with	scheduling	for	a	single	machine.	Because
the	scheduling	problem	that	matters	the	most	involves	just	one	machine:
ourselves.

Handling	Deadlines

With	single-machine	scheduling,	we	run	into	something	of	a	problem	right	off
the	bat.	Johnson’s	work	on	bookbinding	was	based	on	minimizing	the	total
time	required	for	the	two	machines	to	complete	all	of	their	jobs.	In	the	case	of
single-machine	scheduling,	however,	if	we	are	going	to	do	all	the	tasks
assigned,	then	all	schedules	will	take	equally	long	to	complete;	the	order	is
irrelevant.

This	is	a	sufficiently	fundamental	and	counterintuitive	point	that	it’s	worth
repeating.	If	you	have	only	a	single	machine,	and	you’re	going	to	do	all	of
your	tasks,	then	any	ordering	of	the	tasks	will	take	you	the	same	amount	of
time.

Thus	we	encounter	the	first	lesson	in	single-machine	scheduling	literally
before	we	even	begin:	make	your	goals	explicit.	We	can’t	declare	some
schedule	a	winner	until	we	know	how	we’re	keeping	score.	This	is	something
of	a	theme	in	computer	science:	before	you	can	have	a	plan,	you	must	first
choose	a	metric.	And	as	it	turns	out,	which	metric	we	pick	here	will	directly
affect	which	scheduling	approaches	fare	best.

The	first	papers	on	single-machine	scheduling	followed	quickly	on	the
heels	of	Johnson’s	bookbinding	work	and	offered	several	plausible	metrics	to
consider.	For	each	metric,	they	discovered	a	simple,	optimal	strategy.

It	is	of	course	common,	for	instance,	for	tasks	to	have	a	due	date,	with	the
lateness	of	a	task	being	how	far	it	has	gone	overdue.	So	we	can	think	of	the
“maximum	lateness”	of	a	set	of	tasks	as	the	lateness	of	whatever	task	has
gone	furthest	past	its	due	date—the	kind	of	thing	your	employer	might	care
about	in	a	performance	review.	(Or	what	your	customers	might	care	about	in	a
retail	or	service	setting,	where	the	“maximally	late”	task	corresponds	to	the
customer	subjected	to	the	longest	wait	time.)

If	you’re	concerned	with	minimizing	maximum	lateness,	then	the	best
strategy	is	to	start	with	the	task	due	soonest	and	work	your	way	toward	the
task	due	last.	This	strategy,	known	as	Earliest	Due	Date,	is	fairly	intuitive.
(For	instance,	in	a	service-sector	context,	where	each	arriving	patron’s	“due
date”	is	effectively	the	instant	they	walk	in	the	door,	it	just	means	serving
customers	in	order	of	arrival.)	But	some	of	its	implications	are	surprising.	For
example,	how	long	each	task	will	take	to	complete	is	entirely	irrelevant:	it
doesn’t	change	the	plan,	so	in	fact	you	don’t	even	need	to	know.	All	that
matters	is	when	the	tasks	are	due.

You	might	already	be	using	Earliest	Due	Date	to	tackle	your	workload,	in
which	case	you	probably	don’t	need	computer	science	to	tell	you	that	it’s	a
sensible	strategy.	What	you	may	not	have	known,	though,	is	that	it’s	the
optimal	strategy.	More	precisely,	it	is	optimal	assuming	that	you’re	only
interested	in	one	metric	in	particular:	reducing	your	maximum	lateness.	If
that’s	not	your	goal,	however,	then	another	strategy	might	be	more	applicable.

For	instance,	consider	the	refrigerator.	If	you’re	one	of	the	many	people
who	have	a	community-supported	agriculture	(CSA)	subscription,	then	every
week	or	two	you’ve	got	a	lot	of	fresh	produce	coming	to	your	doorstep	all	at
once.	Each	piece	of	produce	is	set	to	spoil	on	a	different	date—so	eating	them

by	Earliest	Due	Date,	in	order	of	their	spoilage	schedule,	seems	like	a
reasonable	starting	point.	It’s	not,	however,	the	end	of	the	story.	Earliest	Due
Date	is	optimal	for	reducing	maximum	lateness,	which	means	it	will
minimize	the	rottenness	of	the	single	most	rotten	thing	you’ll	have	to	eat;	that
may	not	be	the	most	appetizing	metric	to	eat	by.

Maybe	instead	we	want	to	minimize	the	number	of	foods	that	spoil.	Here	a
strategy	called	Moore’s	Algorithm	gives	us	our	best	plan.	Moore’s
Algorithm	says	that	we	start	out	just	like	with	Earliest	Due	Date—by
scheduling	out	our	produce	in	order	of	spoilage	date,	earliest	first,	one	item	at
a	time.	However,	as	soon	as	it	looks	like	we	won’t	get	to	eating	the	next	item
in	time,	we	pause,	look	back	over	the	meals	we’ve	already	planned,	and	throw
out	the	biggest	item	(that	is,	the	one	that	would	take	the	most	days	to
consume).	For	instance,	that	might	mean	forgoing	the	watermelon	that	would
take	a	half	dozen	servings	to	eat;	not	even	attempting	it	will	mean	getting	to
everything	that	follows	a	lot	sooner.	We	then	repeat	this	pattern,	laying	out	the
foods	by	spoilage	date	and	tossing	the	largest	already	scheduled	item	any	time
we	fall	behind.	Once	everything	that	remains	can	be	eaten	in	order	of	spoilage
date	without	anything	spoiling,	we’ve	got	our	plan.

Moore’s	Algorithm	minimizes	the	number	of	items	you’ll	need	to	throw
away.	Of	course,	you’re	also	welcome	to	compost	the	food,	donate	it	to	the
local	food	bank,	or	give	it	to	your	neighbor.	In	an	industrial	or	bureaucratic
context	where	you	can’t	simply	discard	a	project,	but	in	which	the	number—
rather	than	the	severity—of	late	projects	is	still	your	biggest	concern,	Moore’s
Algorithm	is	just	as	indifferent	about	how	those	late	tasks	are	handled.
Anything	booted	from	the	main	portion	of	your	schedule	can	get	done	at	the
very	end,	in	any	order;	it	doesn’t	matter,	as	they’re	all	already	late.

Getting	Things	Done

Do	the	difficult	things	while	they	are	easy	and	do	the	great	things	while
they	are	small.

—LAO	TZU

Sometimes	due	dates	aren’t	our	primary	concern	and	we	just	want	to	get	stuff
done:	as	much	stuff,	as	quickly	as	possible.	It	turns	out	that	translating	this
seemingly	simple	desire	into	an	explicit	scheduling	metric	is	harder	than	it
sounds.

One	approach	is	to	take	an	outsider’s	perspective.	We’ve	noted	that	in
single-machine	scheduling,	nothing	we	do	can	change	how	long	it	will	take	us
to	finish	all	of	our	tasks—but	if	each	task,	for	instance,	represents	a	waiting
client,	then	there	is	a	way	to	take	up	as	little	of	their	collective	time	as
possible.	Imagine	starting	on	Monday	morning	with	a	four-day	project	and	a
one-day	project	on	your	agenda.	If	you	deliver	the	bigger	project	on	Thursday
afternoon	(4	days	elapsed)	and	then	the	small	one	on	Friday	afternoon	(5	days
elapsed),	the	clients	will	have	waited	a	total	of	4	+	5	=	9	days.	If	you	reverse
the	order,	however,	you	can	finish	the	small	project	on	Monday	and	the	big
one	on	Friday,	with	the	clients	waiting	a	total	of	only	1	+	5	=	6	days.	It’s	a	full
workweek	for	you	either	way,	but	now	you’ve	saved	your	clients	three	days
of	their	combined	time.	Scheduling	theorists	call	this	metric	the	“sum	of
completion	times.”

Minimizing	the	sum	of	completion	times	leads	to	a	very	simple	optimal
algorithm	called	Shortest	Processing	Time:	always	do	the	quickest	task	you
can.

Even	if	you	don’t	have	impatient	clients	hanging	on	every	job,	Shortest
Processing	Time	gets	things	done.	(Perhaps	it’s	no	surprise	that	it	is
compatible	with	the	recommendation	in	Getting	Things	Done	to	immediately
perform	any	task	that	takes	less	than	two	minutes.)	Again,	there’s	no	way	to
change	the	total	amount	of	time	your	work	will	take	you,	but	Shortest
Processing	Time	may	ease	your	mind	by	shrinking	the	number	of	outstanding
tasks	as	quickly	as	possible.	Its	sum-of-completion-times	metric	can	be
expressed	another	way:	it’s	like	focusing	above	all	on	reducing	the	length	of
your	to-do	list.	If	each	piece	of	unfinished	business	is	like	a	thorn	in	your
side,	then	racing	through	the	easiest	items	may	bring	some	measure	of	relief.

Of	course,	not	all	unfinished	business	is	created	equal.	Putting	out	an
actual	fire	in	the	kitchen	should	probably	be	done	before	“putting	out	a	fire”
with	a	quick	email	to	a	client,	even	if	the	former	takes	a	bit	longer.	In
scheduling,	this	difference	of	importance	is	captured	in	a	variable	known	as
weight.	When	you’re	going	through	your	to-do	list,	this	weight	might	feel
literal—the	burden	you	get	off	your	shoulders	by	finishing	each	task.	A	task’s
completion	time	shows	how	long	you	carry	that	burden,	so	minimizing	the
sum	of	weighted	completion	times	(that	is,	each	task’s	duration	multiplied	by
its	weight)	means	minimizing	your	total	oppression	as	you	work	through	your
entire	agenda.

The	optimal	strategy	for	that	goal	is	a	simple	modification	of	Shortest
Processing	Time:	divide	the	weight	of	each	task	by	how	long	it	will	take	to
finish,	and	then	work	in	order	from	the	highest	resulting	importance-per-unit-
time	(call	it	“density”	if	you	like,	to	continue	the	weight	metaphor)	to	the
lowest.	And	while	it	might	be	hard	to	assign	a	degree	of	importance	to	each
one	of	your	daily	tasks,	this	strategy	nonetheless	offers	a	nice	rule	of	thumb:
only	prioritize	a	task	that	takes	twice	as	long	if	it’s	twice	as	important.

In	business	contexts,	“weight”	might	easily	be	translated	to	the	amount	of
money	each	task	will	bring	in.	The	notion	of	dividing	reward	by	duration
translates,	therefore,	to	assigning	each	task	an	hourly	rate.	(If	you’re	a
consultant	or	freelancer,	that	might	in	effect	already	be	done	for	you:	simply
divide	each	project’s	fee	by	its	size,	and	work	your	way	from	the	highest
hourly	rate	to	the	lowest.)	Interestingly,	this	weighted	strategy	also	shows	up
in	studies	of	animal	foraging,	with	nuts	and	berries	taking	the	place	of	dollars
and	cents.	Animals,	seeking	to	maximize	the	rate	at	which	they	accumulate
energy	from	food,	should	pursue	foods	in	order	of	the	ratio	of	their	caloric
energy	to	the	time	required	to	get	and	eat	them—and	indeed	appear	to	do	so.

When	applied	to	debts	rather	than	incomes,	the	same	principle	yields	a
strategy	for	getting	in	the	black	that’s	come	to	be	called	the	“debt	avalanche.”
This	debt-reduction	strategy	says	to	ignore	the	number	and	size	of	your	debts
entirely,	and	simply	funnel	your	money	toward	the	debt	with	the	single
highest	interest	rate.	This	corresponds	rather	neatly	to	working	through	jobs
in	order	of	importance	per	unit	time.	And	it’s	the	strategy	that	will	reduce	the
total	burden	of	your	debt	as	quickly	as	possible.

If,	on	the	other	hand,	you’re	more	concerned	with	reducing	the	number	of
debts	than	the	amount	of	debt—if,	for	instance,	the	hassle	of	numerous	bills
and	collection	phone	calls	is	a	bigger	deal	than	the	difference	in	interest	rates
—then	you’re	back	to	the	unweighted,	“just	get	stuff	done”	flavor	of	Shortest
Processing	Time,	paying	off	the	smallest	debts	first	simply	to	get	them	out	of
the	way.	In	debt-reduction	circles,	this	approach	is	known	as	the	“debt
snowball.”	Whether	people,	in	practice,	ought	to	prioritize	lowering	the	dollar
amount	of	their	debts	or	the	quantity	of	them	remains	an	active	controversy,
both	in	the	popular	press	as	well	as	in	economics	research.

Picking	Our	Problems

This	brings	us	back	to	the	note	on	which	we	began	our	discussion	of	single-

machine	scheduling.	It’s	said	that	“a	man	with	one	watch	knows	what	time	it
is;	a	man	with	two	watches	is	never	sure.”	Computer	science	can	offer	us
optimal	algorithms	for	various	metrics	available	in	single-machine
scheduling,	but	choosing	the	metric	we	want	to	follow	is	up	to	us.	In	many
cases,	we	get	to	decide	what	problem	we	want	to	be	solving.

This	offers	a	radical	way	to	rethink	procrastination,	the	classic	pathology
of	time	management.	We	typically	think	of	it	as	a	faulty	algorithm.	What	if
it’s	exactly	the	opposite?	What	if	it’s	an	optimal	solution	to	the	wrong
problem?

There’s	an	episode	of	The	X-Files	where	the	protagonist	Mulder,
bedridden	and	about	to	be	consumed	by	an	obsessive-compulsive	vampire,
spills	a	bag	of	sunflower	seeds	on	the	floor	in	self-defense.	The	vampire,
powerless	against	his	compulsion,	stoops	to	pick	them	up	one	by	one,	and
ultimately	the	sun	rises	before	he	can	make	a	meal	of	Mulder.	Computer
scientists	would	call	this	a	“ping	attack”	or	a	“denial	of	service”	attack:	give	a
system	an	overwhelming	number	of	trivial	things	to	do,	and	the	important
things	get	lost	in	the	chaos.

We	typically	associate	procrastination	with	laziness	or	avoidance	behavior,
but	it	can	just	as	easily	spring	up	in	people	(or	computers,	or	vampires)	who
are	trying	earnestly	and	enthusiastically	to	get	things	done	as	quickly	as
possible.	In	a	2014	study	led	by	Penn	State’s	David	Rosenbaum,	for	example,
participants	were	asked	to	bring	either	one	of	two	heavy	buckets	to	the
opposite	end	of	a	hallway.	One	of	the	buckets	was	right	next	to	the
participant;	the	other	was	partway	down	the	hall.	To	the	experimenters’
surprise,	people	immediately	picked	up	the	bucket	near	them	and	lugged	it	all
the	way	down—passing	the	other	bucket	on	the	way,	which	they	could	have
carried	a	fraction	of	the	distance.	As	the	researchers	write,	“this	seemingly
irrational	choice	reflected	a	tendency	to	pre-crastinate,	a	term	we	introduce	to
refer	to	the	hastening	of	subgoal	completion,	even	at	the	expense	of	extra
physical	effort.”	Putting	off	work	on	a	major	project	by	attending	instead	to
various	trivial	matters	can	likewise	be	seen	as	“the	hastening	of	subgoal
completion”—which	is	another	way	of	saying	that	procrastinators	are	acting
(optimally!)	to	reduce	as	quickly	as	possible	the	number	of	outstanding	tasks
on	their	minds.	It’s	not	that	they	have	a	bad	strategy	for	getting	things	done;
they	have	a	great	strategy	for	the	wrong	metric.

Working	on	a	computer	brings	with	it	an	additional	hazard	when	it	comes
to	being	conscious	and	deliberate	about	our	scheduling	metrics:	the	user
interface	may	subtly	(or	not	so	subtly)	force	its	own	metric	upon	us.	A
modern	smartphone	user,	for	instance,	is	accustomed	to	seeing	“badges”
hovering	over	application	icons,	ominous	numbers	in	white-on-red	signaling
exactly	how	many	tasks	each	particular	app	expects	us	to	complete.	If	it’s	an
email	inbox	blaring	the	figure	of	unread	messages,	then	all	messages	are
implicitly	being	given	equal	weight.	Can	we	be	blamed,	then,	for	applying	the
unweighted	Shortest	Processing	Time	algorithm	to	the	problem—dealing	with
all	of	the	easiest	emails	first	and	deferring	the	hardest	ones	till	last—to	lower
this	numeral	as	quickly	as	possible?

Live	by	the	metric,	die	by	the	metric.	If	all	tasks	are	indeed	of	equal
weight,	then	that’s	exactly	what	we	should	be	doing.	But	if	we	don’t	want	to
become	slaves	to	minutiae,	then	we	need	to	take	measures	toward	that	end.
This	starts	with	making	sure	that	the	single-machine	problem	we’re	solving	is
the	one	we	want	to	be	solving.	(In	the	case	of	app	badges,	if	we	can’t	get	them
to	reflect	our	actual	priorities,	and	can’t	overcome	the	impulse	to	optimally
reduce	any	numerical	figure	thrown	in	our	face,	then	perhaps	the	next	best
thing	is	simply	to	turn	the	badges	off.)

Staying	focused	not	just	on	getting	things	done	but	on	getting	weighty
things	done—doing	the	most	important	work	you	can	at	every	moment—
sounds	like	a	surefire	cure	for	procrastination.	But	as	it	turns	out,	even	that	is
not	enough.	And	a	group	of	computer	scheduling	experts	would	encounter
this	lesson	in	the	most	dramatic	way	imaginable:	on	the	surface	of	Mars,	with
the	whole	world	watching.

Priority	Inversion	and	Precedence	Constraints

It	was	the	summer	of	1997,	and	humanity	had	a	lot	to	celebrate.	For	the	first
time	ever,	a	rover	was	navigating	the	surface	of	Mars.	The	$150	million	Mars
Pathfinder	spacecraft	had	accelerated	to	a	speed	of	16,000	miles	per	hour,
traveled	across	309	million	miles	of	empty	space,	and	landed	with	space-
grade	airbags	onto	the	rocky	red	Martian	surface.

And	now	it	was	procrastinating.

Back	on	Earth,	Jet	Propulsion	Laboratory	(JPL)	engineers	were	both
worried	and	stumped.	Pathfinder’s	highest	priority	task	(to	move	data	into	and

out	of	its	“information	bus”)	was	mysteriously	being	neglected	as	the	robot
whiled	away	its	time	on	tasks	of	middling	importance.	What	was	going	on?
Didn’t	the	robot	know	any	better?

Suddenly	Pathfinder	registered	that	the	information	bus	hadn’t	been	dealt
with	for	an	unacceptably	long	time,	and,	lacking	a	subtler	recourse,	initiated	a
complete	restart,	costing	the	mission	the	better	part	of	a	day’s	work.	A	day	or
so	later,	the	same	thing	happened	again.

Working	feverishly,	the	JPL	team	finally	managed	to	reproduce	and	then
diagnose	the	behavior.	The	culprit	was	a	classic	scheduling	hazard	called
priority	inversion.	What	happens	in	a	priority	inversion	is	that	a	low-priority
task	takes	possession	of	a	system	resource	(access	to	a	database,	let’s	say)	to
do	some	work,	but	is	then	interrupted	partway	through	that	work	by	a	timer,
which	pauses	it	and	invokes	the	system	scheduler.	The	scheduler	tees	up	a
high-priority	task,	but	it	can’t	run	because	the	database	is	occupied.	And	so
the	scheduler	moves	down	the	priority	list,	running	various	unblocked
medium-priority	tasks	instead—rather	than	the	high-priority	one	(which	is
blocked),	or	the	low-priority	one	that’s	blocking	it	(which	is	stuck	in	line
behind	all	the	medium-priority	work).	In	these	nightmarish	scenarios,	the
system’s	highest	priority	can	sometimes	be	neglected	for	arbitrarily	long
periods	of	time.*

Once	JPL	engineers	had	identified	the	Pathfinder	problem	as	a	case	of
priority	inversion,	they	wrote	up	a	fix	and	beamed	the	new	code	across
millions	of	miles	to	Pathfinder.	What	was	the	solution	they	sent	flying	across
the	solar	system?	Priority	inheritance.	If	a	low-priority	task	is	found	to	be
blocking	a	high-priority	resource,	well,	then	all	of	a	sudden	that	low-priority
task	should	momentarily	become	the	highest-priority	thing	on	the	system,
“inheriting”	the	priority	of	the	thing	it’s	blocking.

The	comedian	Mitch	Hedberg	recounts	a	time	when	“I	was	at	a	casino,	I
was	minding	my	own	business,	and	this	guy	came	up	and	said,	‘You’re	gonna
have	to	move,	you’re	blocking	the	fire	exit.’	As	though	if	there	was	a	fire,	I
wasn’t	gonna	run.”	The	bouncer’s	argument	was	priority	inversion;	Hedberg’s
rebuttal	was	priority	inheritance.	Hedberg	lounging	casually	in	front	of	a
fleeing	mob	puts	his	low-priority	loitering	ahead	of	their	high-priority	running
for	their	lives—but	not	if	he	inherits	their	priority.	And	an	onrushing	mob	has
a	way	of	making	one	inherit	their	priority	rather	quickly.	As	Hedberg

explains,	“If	you’re	flammable	and	have	legs,	you	are	never	blocking	a	fire
exit.”

The	moral	here	is	that	a	love	of	getting	things	done	isn’t	enough	to	avoid
scheduling	pitfalls,	and	neither	is	a	love	of	getting	important	things	done.	A
commitment	to	fastidiously	doing	the	most	important	thing	you	can,	if
pursued	in	a	head-down,	myopic	fashion,	can	lead	to	what	looks	for	all	the
world	like	procrastination.	As	with	a	car	spinning	its	tires,	the	very	desire	to
make	immediate	progress	is	how	one	gets	stuck.	“Things	which	matter	most
must	never	be	at	the	mercy	of	things	which	matter	least,”	Goethe	allegedly
proclaimed;	but	while	that	has	the	ring	of	wisdom	about	it,	sometimes	it’s	just
not	true.	Sometimes	that	which	matters	most	cannot	be	done	until	that	which
matters	least	is	finished,	so	there’s	no	choice	but	to	treat	that	unimportant
thing	as	being	every	bit	as	important	as	whatever	it’s	blocking.

When	a	certain	task	can’t	be	started	until	another	one	is	finished,
scheduling	theorists	call	that	a	“precedence	constraint.”	For	operations
research	expert	Laura	Albert	McLay,	explicitly	remembering	this	principle
has	made	the	difference	on	more	than	one	occasion	in	her	own	household.	“It
can	be	really	helpful	if	you	can	see	these	things.	Of	course,	getting	through
the	day	with	three	kids,	there’s	a	lot	of	scheduling.…	We	can’t	get	out	the
door	unless	the	kids	get	breakfast	first,	and	they	can’t	get	breakfast	first	if	I
don’t	remember	to	give	them	a	spoon.	Sometimes	there’s	something	very
simple	that	you	forget	that	just	delays	everything.	In	terms	of	scheduling
algorithms,	just	knowing	what	[that]	is,	and	keeping	that	moving,	is
incredibly	helpful.	That’s	how	I	get	things	done	every	day.”

In	1978,	scheduling	researcher	Jan	Karel	Lenstra	was	able	to	use	the	same
principle	while	helping	his	friend	Gene	move	into	a	new	house	in	Berkeley.
“Gene	was	postponing	something	that	had	to	be	finished	before	we	could	start
something	else	which	was	urgent.”	As	Lenstra	recalls,	they	needed	to	return	a
van,	but	needed	the	van	to	return	a	piece	of	equipment,	but	needed	the
equipment	to	fix	something	in	the	apartment.	The	apartment	fix	didn’t	feel
urgent	(hence	its	postponement),	but	the	van	return	did.	Says	Lenstra,	“I
explained	to	him	that	the	former	task	should	be	considered	even	more
urgent.”	While	Lenstra	is	a	central	figure	in	scheduling	theory,	and	thus	was
well	positioned	to	give	this	advice	to	his	friend,	it	came	with	a	particularly
delicious	irony.	This	was	a	textbook	case	of	priority	inversion	caused	by
precedence	constraints.	And	arguably	the	twentieth	century’s	single	greatest

expert	on	precedence	constraints	was	none	other	than	his	friend,	Eugene
“Gene”	Lawler.

The	Speed	Bump

Considering	he	spent	much	of	his	life	thinking	about	how	to	most	efficiently
complete	a	sequence	of	tasks,	Lawler	took	an	intriguingly	circuitous	route	to
his	own	career.	He	studied	mathematics	at	Florida	State	University	before
beginning	graduate	work	at	Harvard	in	1954,	though	he	left	before	finishing	a
doctorate.	After	time	in	law	school,	the	army,	and	(thematically	enough)
working	in	a	machine	shop,	he	went	back	to	Harvard	in	1958,	finishing	his
PhD	and	taking	a	position	at	the	University	of	Michigan.	Visiting	Berkeley	on
sabbatical	in	1969,	he	was	arrested	at	a	notorious	Vietnam	War	protest.	He
became	a	member	of	the	faculty	at	Berkeley	the	following	year,	and	acquired
a	reputation	there	for	being	“the	social	conscience”	of	the	computer	science
department.	After	his	death	in	1994,	the	Association	for	Computing
Machinery	established	an	award	in	Lawler’s	name,	honoring	people	who
demonstrate	the	humanitarian	potential	of	computer	science.

Lawler’s	first	investigation	into	precedence	constraints	suggested	that	they
could	be	handled	quite	easily.	For	instance,	take	the	Earliest	Due	Date
algorithm	that	minimizes	the	maximum	lateness	of	a	set	of	tasks.	If	your	tasks
have	precedence	constraints,	that	makes	things	trickier—you	can’t	just	plow
forward	in	order	of	due	date	if	some	tasks	can’t	be	started	until	others	are
finished.	But	in	1968,	Lawler	proved	that	this	is	no	trouble	as	long	as	you
build	the	schedule	back	to	front:	look	only	at	the	tasks	that	no	other	tasks
depend	on,	and	put	the	one	with	the	latest	due	date	at	the	end	of	the	schedule.
Then	simply	repeat	this	process,	again	considering	at	each	step	only	those
tasks	that	no	other	(as-yet	unscheduled)	tasks	depend	upon	as	a	prerequisite.

But	as	Lawler	looked	more	deeply	into	precedence	constraints,	he	found
something	curious.	The	Shortest	Processing	Time	algorithm,	as	we	saw,	is	the
optimal	policy	if	you	want	to	cross	off	as	many	items	as	quickly	as	possible
from	your	to-do	list.	But	if	some	of	your	tasks	have	precedence	constraints,
there	isn’t	a	simple	or	obvious	tweak	to	Shortest	Processing	Time	to	adjust	for
that.	Although	it	looked	like	an	elementary	scheduling	problem,	neither
Lawler	nor	any	other	researcher	seemed	to	be	able	to	find	an	efficient	way	to
solve	it.

In	fact,	it	was	much	worse	than	this.	Lawler	himself	would	soon	discover

that	this	problem	belongs	to	a	class	that	most	computer	scientists	believe	has
no	efficient	solution—it’s	what	the	field	calls	“intractable.”*	Scheduling
theory’s	first	speed	bump	turned	out	to	be	a	brick	wall.

As	we	saw	with	the	“triple	or	nothing”	scenario	for	which	optimal
stopping	theory	has	no	sage	words,	not	every	problem	that	can	be	formally
articulated	has	an	answer.	In	scheduling,	it’s	clear	by	definition	that	every	set
of	tasks	and	constraints	has	some	schedule	that’s	the	best,	so	scheduling
problems	aren’t	unanswerable,	per	se—but	it	may	simply	be	the	case	that
there’s	no	straightforward	algorithm	that	can	find	you	the	optimal	schedule	in
a	reasonable	amount	of	time.

This	led	researchers	like	Lawler	and	Lenstra	to	an	irresistible	question.
Just	what	proportion	of	scheduling	problems	was	intractable,	anyway?
Twenty	years	after	scheduling	theory	was	kick-started	by	Selmer	Johnson’s
bookbinding	paper,	the	search	for	individual	solutions	was	about	to	become
something	much	grander	and	more	ambitious	by	far:	a	quest	to	map	the	entire
landscape	of	scheduling	theory.

What	the	researchers	found	was	that	even	the	subtlest	change	to	a
scheduling	problem	often	tips	it	over	the	fine	and	irregular	line	between
tractable	and	intractable.	For	example,	Moore’s	Algorithm	minimizes	the
number	of	late	tasks	(or	rotten	fruits)	when	they’re	all	of	equal	value—but	if
some	are	more	important	than	others,	the	problem	becomes	intractable	and	no
algorithm	can	readily	provide	the	optimal	schedule.	Likewise,	having	to	wait
until	a	certain	time	to	start	some	of	your	tasks	makes	nearly	all	of	the
scheduling	problems	for	which	we	otherwise	have	efficient	solutions	into
intractable	problems.	Not	being	able	to	put	out	the	trash	until	the	night	before
collection	might	be	a	reasonable	municipal	bylaw,	but	it	will	send	your
calendar	headlong	into	intractability.

The	drawing	of	the	borders	of	scheduling	theory	continues	to	this	day.	A
recent	survey	showed	that	the	status	of	about	7%	of	all	problems	is	still
unknown,	scheduling’s	terra	incognita.	Of	the	93%	of	the	problems	that	we	do
understand,	however,	the	news	isn’t	great:	only	9%	can	be	solved	efficiently,
and	the	other	84%	have	been	proven	intractable.*	In	other	words,	most
scheduling	problems	admit	no	ready	solution.	If	trying	to	perfectly	manage
your	calendar	feels	overwhelming,	maybe	that’s	because	it	actually	is.
Nonetheless,	the	algorithms	we	have	discussed	are	often	the	starting	point	for

tackling	those	hard	problems—if	not	perfectly,	then	at	least	as	well	as	can	be
expected.

Drop	Everything:	Preemption	and	Uncertainty

The	best	time	to	plant	a	tree	is	twenty	years	ago.	The	second	best	time	is
now.

—PROVERB

So	far	we	have	considered	only	factors	that	make	scheduling	harder.	But	there
is	one	twist	that	can	make	it	easier:	being	able	to	stop	one	task	partway
through	and	switch	to	another.	This	property,	“preemption,”	turns	out	to
change	the	game	dramatically.

Minimizing	maximum	lateness	(for	serving	customers	in	a	coffee	shop)	or
the	sum	of	completion	times	(for	rapidly	shortening	your	to-do	list)	both	cross
the	line	into	intractability	if	some	tasks	can’t	be	started	until	a	particular	time.
But	they	return	to	having	efficient	solutions	once	preemption	is	allowed.	In
both	cases,	the	classic	strategies—Earliest	Due	Date	and	Shortest	Processing
Time,	respectively—remain	the	best,	with	a	fairly	straightforward
modification.	When	a	task’s	starting	time	comes,	compare	that	task	to	the	one
currently	under	way.	If	you’re	working	by	Earliest	Due	Date	and	the	new	task
is	due	even	sooner	than	the	current	one,	switch	gears;	otherwise	stay	the
course.	Likewise,	if	you’re	working	by	Shortest	Processing	Time,	and	the	new
task	can	be	finished	faster	than	the	current	one,	pause	to	take	care	of	it	first;
otherwise,	continue	with	what	you	were	doing.

Now,	on	a	good	week	a	machine	shop	might	know	everything	expected	of
them	in	the	next	few	days,	but	most	of	us	are	usually	flying	blind,	at	least	in
part.	We	might	not	even	be	sure,	for	instance,	when	we’ll	be	able	to	start	a
particular	project	(when	will	so-and-so	give	me	a	solid	answer	on	the	such-
and-such?).	And	at	any	moment	our	phone	can	ring	or	an	email	can	pop	up
with	news	of	a	whole	new	task	to	add	to	our	agenda.

It	turns	out,	though,	that	even	if	you	don’t	know	when	tasks	will	begin,
Earliest	Due	Date	and	Shortest	Processing	Time	are	still	optimal	strategies,
able	to	guarantee	you	(on	average)	the	best	possible	performance	in	the	face
of	uncertainty.	If	assignments	get	tossed	on	your	desk	at	unpredictable
moments,	the	optimal	strategy	for	minimizing	maximum	lateness	is	still	the
preemptive	version	of	Earliest	Due	Date—switching	to	the	job	that	just	came

up	if	it’s	due	sooner	than	the	one	you’re	currently	doing,	and	otherwise
ignoring	it.	Similarly,	the	preemptive	version	of	Shortest	Processing	Time—
compare	the	time	left	to	finish	the	current	task	to	the	time	it	would	take	to
complete	the	new	one—is	still	optimal	for	minimizing	the	sum	of	completion
times.

In	fact,	the	weighted	version	of	Shortest	Processing	Time	is	a	pretty	good
candidate	for	best	general-purpose	scheduling	strategy	in	the	face	of
uncertainty.	It	offers	a	simple	prescription	for	time	management:	each	time	a
new	piece	of	work	comes	in,	divide	its	importance	by	the	amount	of	time	it
will	take	to	complete.	If	that	figure	is	higher	than	for	the	task	you’re	currently
doing,	switch	to	the	new	one;	otherwise	stick	with	the	current	task.	This
algorithm	is	the	closest	thing	that	scheduling	theory	has	to	a	skeleton	key	or
Swiss	Army	knife,	the	optimal	strategy	not	just	for	one	flavor	of	problem	but
for	many.	Under	certain	assumptions	it	minimizes	not	just	the	sum	of
weighted	completion	times,	as	we	might	expect,	but	also	the	sum	of	the
weights	of	the	late	jobs	and	the	sum	of	the	weighted	lateness	of	those	jobs.

Intriguingly,	optimizing	all	these	other	metrics	is	intractable	if	we	know
the	start	times	and	durations	of	jobs	ahead	of	time.	So	considering	the	impact
of	uncertainty	in	scheduling	reveals	something	counterintuitive:	there	are
cases	where	clairvoyance	is	a	burden.	Even	with	complete	foreknowledge,
finding	the	perfect	schedule	might	be	practically	impossible.	In	contrast,
thinking	on	your	feet	and	reacting	as	jobs	come	in	won’t	give	you	as	perfect	a
schedule	as	if	you’d	seen	into	the	future—but	the	best	you	can	do	is	much
easier	to	compute.	That’s	some	consolation.	As	business	writer	and	coder
Jason	Fried	says,	“Feel	like	you	can’t	proceed	until	you	have	a	bulletproof
plan	in	place?	Replace	‘plan’	with	‘guess’	and	take	it	easy.”	Scheduling	theory
bears	this	out.

When	the	future	is	foggy,	it	turns	out	you	don’t	need	a	calendar—just	a	to-
do	list.

Preemption	Isn’t	Free:	The	Context	Switch

The	hurrieder	I	go	/	The	behinder	I	get
—NEEDLEPOINT	SEEN	IN	BOONVILLE,	CA

Programmers	don’t	talk	because	they	must	not	be	interrupted.…	To
synchronize	with	other	people	(or	their	representation	in	telephones,

buzzers	and	doorbells)	can	only	mean	interrupting	the	thought	train.
Interruptions	mean	certain	bugs.	You	must	not	get	off	the	train.

—ELLEN	ULLMAN

Scheduling	theory	thus	tells	a	reasonably	encouraging	story	after	all.	There
are	simple,	optimal	algorithms	for	solving	many	scheduling	problems,	and
those	problems	are	tantalizingly	close	to	situations	we	encounter	daily	in
human	lives.	But	when	it	comes	to	actually	carrying	out	single-machine
scheduling	in	the	real	world,	things	get	complicated.

First	of	all,	people	and	computer	operating	systems	alike	face	a	curious
challenge:	the	machine	that	is	doing	the	scheduling	and	the	machine	being
scheduled	are	one	and	the	same.	Which	makes	straightening	out	your	to-do
list	an	item	on	your	to-do	list—needing,	itself,	to	get	prioritized	and
scheduled.

Second,	preemption	isn’t	free.	Every	time	you	switch	tasks,	you	pay	a
price,	known	in	computer	science	as	a	context	switch.	When	a	computer
processor	shifts	its	attention	away	from	a	given	program,	there’s	always	a
certain	amount	of	necessary	overhead.	It	needs	to	effectively	bookmark	its
place	and	put	aside	all	of	its	information	related	to	that	program.	Then	it
needs	to	figure	out	which	program	to	run	next.	Finally	it	must	haul	out	all	the
relevant	information	for	that	program,	find	its	place	in	the	code,	and	get	in
gear.

None	of	this	switching	back	and	forth	is	“real	work”—that	is,	none	of	it
actually	advances	the	state	of	any	of	the	various	programs	the	computer	is
switching	between.	It’s	metawork.	Every	context	switch	is	wasted	time.

Humans	clearly	have	context-switching	costs	too.	We	feel	them	when	we
move	papers	on	and	off	our	desk,	close	and	open	documents	on	our	computer,
walk	into	a	room	without	remembering	what	had	sent	us	there,	or	simply	say
out	loud,	“Now,	where	was	I?”	or	“What	was	I	saying?”	Psychologists	have
shown	that	for	us,	the	effects	of	switching	tasks	can	include	both	delays	and
errors—at	the	scale	of	minutes	rather	than	microseconds.	To	put	that	figure	in
perspective,	anyone	you	interrupt	more	than	a	few	times	an	hour	is	in	danger
of	doing	no	work	at	all.

Personally,	we	have	found	that	both	programming	and	writing	require
keeping	in	mind	the	state	of	the	entire	system,	and	thus	carry	inordinately

large	context-switching	costs.	A	friend	of	ours	who	writes	software	says	that
the	normal	workweek	isn’t	well	suited	to	his	workflow,	since	for	him	sixteen-
hour	days	are	more	than	twice	as	productive	as	eight-hour	days.	Brian,	for	his
part,	thinks	of	writing	as	a	kind	of	blacksmithing,	where	it	takes	a	while	just
to	heat	up	the	metal	before	it’s	malleable.	He	finds	it	somewhat	useless	to
block	out	anything	less	than	ninety	minutes	for	writing,	as	nothing	much
happens	in	the	first	half	hour	except	loading	a	giant	block	of	“Now,	where
was	I?”	into	his	head.	Scheduling	expert	Kirk	Pruhs,	of	the	University	of
Pittsburgh,	has	had	the	same	experience.	“If	it’s	less	than	an	hour	I’ll	just	do
errands	instead,	because	it’ll	take	me	the	first	thirty-five	minutes	to	really
figure	out	what	I	want	to	do	and	then	I	might	not	have	time	to	do	it.”

Rudyard	Kipling’s	celebrated	1910	poem	“If—”	ends	with	an	exuberant
call	for	time	management:	“If	you	can	fill	the	unforgiving	minute	/	With	sixty
seconds’	worth	of	distance	run…”

If	only.	The	truth	is,	there’s	always	overhead—time	lost	to	metawork,	to
the	logistics	of	bookkeeping	and	task	management.	This	is	one	of	the
fundamental	tradeoffs	of	scheduling.	And	the	more	you	take	on,	the	more
overhead	there	is.	At	its	nightmarish	extreme,	this	turns	into	a	phenomenon
called	thrashing.

Thrashing

Gage:	Mr.	Zuckerberg,	do	I	have	your	full	attention?…

Zuckerberg:	You	have	part	of	my	attention—you	have	the	minimum
amount.

—THE	SOCIAL	NETWORK

Computers	multitask	through	a	process	called	“threading,”	which	you	can
think	of	as	being	like	juggling	a	set	of	balls.	Just	as	a	juggler	only	hurls	one
ball	at	a	time	into	the	air	but	keeps	three	aloft,	a	CPU	only	works	on	one
program	at	a	time,	but	by	swapping	between	them	quickly	enough	(on	the
scale	of	ten-thousandths	of	a	second)	it	appears	to	be	playing	a	movie,
navigating	the	web,	and	alerting	you	to	incoming	email	all	at	once.

In	the	1960s,	computer	scientists	began	thinking	about	how	to	automate
the	process	of	sharing	computer	resources	between	different	tasks	and	users.
It	was	an	exciting	time,	recounts	Peter	Denning,	now	one	of	the	top	experts
on	computer	multitasking,	who	was	then	working	on	his	doctorate	at	MIT.

Exciting,	and	uncertain:	“How	do	you	partition	a	main	memory	among	a
bunch	of	jobs	that	are	in	there	when	some	of	them	want	to	grow	and	some
might	want	to	shrink	and	they’re	going	to	interact	with	each	other,	trying	to
steal	[memory]	and	all	these	kinds	of	things?…	How	do	you	manage	that
whole	set	of	interactions?	Nobody	knew	anything	about	that.”

Not	surprisingly,	given	that	the	researchers	didn’t	really	know	yet	what
they	were	doing,	the	effort	encountered	difficulties.	And	there	was	one	in
particular	that	caught	their	attention.	As	Denning	explains,	under	certain
conditions	a	dramatic	problem	“shows	up	as	you	add	more	jobs	to	the
multiprogramming	mix.	At	some	point	you	pass	a	critical	threshold—
unpredictable	exactly	where	it	is,	but	you’ll	know	it	when	you	get	there—and
all	of	a	sudden	the	system	seems	to	die.”

Think	again	about	our	image	of	a	juggler.	With	one	ball	in	the	air,	there’s
enough	spare	time	while	that	ball	is	aloft	for	the	juggler	to	toss	some	others
upward	as	well.	But	what	if	the	juggler	takes	on	one	more	ball	than	he	can
handle?	He	doesn’t	drop	that	ball;	he	drops	everything.	The	whole	system,
quite	literally,	goes	down.	As	Denning	puts	it,	“The	presence	of	one
additional	program	has	caused	a	complete	collapse	of	service.…	The	sharp
difference	between	the	two	cases	at	first	defies	intuition,	which	might	lead	us
to	expect	a	gradual	degradation	of	service	as	new	programs	are	introduced
into	crowded	main	memory.”	Instead,	catastrophe.	And	while	we	can
understand	a	human	juggler	being	overwhelmed,	what	could	cause	something
like	this	to	happen	to	a	machine?

Here	scheduling	theory	intersects	caching	theory.	The	whole	idea	of
caches	is	to	keep	the	“working	set”	of	needed	items	available	for	quick
access.	One	way	this	is	done	is	by	keeping	the	information	the	computer	is
currently	using	in	fast	memory	rather	than	on	the	slow	hard	disk.	But	if	a	task
requires	keeping	track	of	so	many	things	that	they	won’t	all	fit	into	memory,
then	you	might	well	end	up	spending	more	time	swapping	information	in	and
out	of	memory	than	doing	the	actual	work.	What’s	more,	when	you	switch
tasks,	the	newly	active	task	might	make	space	for	its	working	set	by	evicting
portions	of	other	working	sets	from	memory.	The	next	task,	upon
reactivation,	would	then	reacquire	parts	of	its	working	set	from	the	hard	disk
and	muscle	them	back	into	memory,	again	displacing	others.	This	problem—
tasks	stealing	space	from	each	other—can	get	even	worse	in	systems	with
hierarchies	of	caches	between	the	processor	and	the	memory.	As	Peter

Zijlstra,	one	of	the	head	developers	on	the	Linux	operating	system	scheduler,
puts	it,	“The	caches	are	warm	for	the	current	workload,	and	when	you	context
switch	you	pretty	much	invalidate	all	caches.	And	that	hurts.”	At	the	extreme,
a	program	may	run	just	long	enough	to	swap	its	needed	items	into	memory,
before	giving	way	to	another	program	that	runs	just	long	enough	to	overwrite
them	in	turn.

This	is	thrashing:	a	system	running	full-tilt	and	accomplishing	nothing	at
all.	Denning	first	diagnosed	this	phenomenon	in	a	memory-management
context,	but	computer	scientists	now	use	the	term	“thrashing”	to	refer	to
pretty	much	any	situation	where	the	system	grinds	to	a	halt	because	it’s
entirely	preoccupied	with	metawork.	A	thrashing	computer’s	performance
doesn’t	bog	down	gradually.	It	falls	off	a	cliff.	“Real	work”	has	dropped	to
effectively	zero,	which	also	means	it’s	going	to	be	nearly	impossible	to	get
out.

Thrashing	is	a	very	recognizable	human	state.	If	you’ve	ever	had	a
moment	where	you	wanted	to	stop	doing	everything	just	to	have	the	chance	to
write	down	everything	you	were	supposed	to	be	doing,	but	couldn’t	spare	the
time,	you’ve	thrashed.	And	the	cause	is	much	the	same	for	people	as	for
computers:	each	task	is	a	draw	on	our	limited	cognitive	resources.	When
merely	remembering	everything	we	need	to	be	doing	occupies	our	full
attention—or	prioritizing	every	task	consumes	all	the	time	we	had	to	do	them
—or	our	train	of	thought	is	continually	interrupted	before	those	thoughts	can
translate	to	action—it	feels	like	panic,	like	paralysis	by	way	of	hyperactivity.
It’s	thrashing,	and	computers	know	it	well.

If	you’ve	ever	wrestled	with	a	system	in	a	state	of	thrashing—and	if
you’ve	ever	been	in	such	a	state—then	you	might	be	curious	about	the
computer	science	of	getting	out.	In	his	landmark	1960s	paper	on	the	subject,
Denning	noted	that	an	ounce	of	prevention	is	worth	a	pound	of	cure.	The
easiest	thing	to	do	is	simply	to	get	more	memory:	enough	RAM,	for	instance,
to	fit	the	working	sets	of	all	the	running	programs	into	memory	at	once	and
reduce	the	time	taken	by	a	context	switch.	But	preventive	advice	for	thrashing
doesn’t	help	you	when	you	find	yourself	in	the	midst	of	it.	Besides,	when	it
comes	to	human	attention,	we’re	stuck	with	what	we’ve	got.

Another	way	to	avert	thrashing	before	it	starts	is	to	learn	the	art	of	saying
no.	Denning	advocated,	for	instance,	that	a	system	should	simply	refuse	to

add	a	program	to	its	workload	if	it	didn’t	have	enough	free	memory	to	hold	its
working	set.	This	prevents	thrashing	in	machines,	and	is	sensible	advice	for
anyone	with	a	full	plate.	But	this,	too,	might	seem	like	an	unattainable	luxury
to	those	of	us	who	find	ourselves	already	overloaded—or	otherwise	unable	to
throttle	the	demands	being	placed	on	us.

In	these	cases	there’s	clearly	no	way	to	work	any	harder,	but	you	can
work	…	dumber.	Along	with	considerations	of	memory,	one	of	the	biggest
sources	of	metawork	in	switching	contexts	is	the	very	act	of	choosing	what	to
do	next.	This,	too,	can	at	times	swamp	the	actual	doing	of	the	work.	Faced
with,	say,	an	overflowing	inbox	of	n	messages,	we	know	from	sorting	theory
that	repeatedly	scanning	it	for	the	most	important	one	to	answer	next	will	take
O(n2)	operations—n	scans	of	n	messages	apiece.	This	means	that	waking	up
to	an	inbox	that’s	three	times	as	full	as	usual	could	take	you	nine	times	as
long	to	process.	What’s	more,	scanning	through	those	emails	means	swapping
every	message	into	your	mind,	one	after	another,	before	you	respond	to	any	of
them:	a	surefire	recipe	for	memory	thrashing.

In	a	thrashing	state,	you’re	making	essentially	no	progress,	so	even	doing
tasks	in	the	wrong	order	is	better	than	doing	nothing	at	all.	Instead	of
answering	the	most	important	emails	first—which	requires	an	assessment	of
the	whole	picture	that	may	take	longer	than	the	work	itself—maybe	you
should	sidestep	that	quadratic-time	quicksand	by	just	answering	the	emails	in
random	order,	or	in	whatever	order	they	happen	to	appear	on-screen.
Thinking	along	the	same	lines,	the	Linux	core	team,	several	years	ago,
replaced	their	scheduler	with	one	that	was	less	“smart”	about	calculating
process	priorities	but	more	than	made	up	for	it	by	taking	less	time	to	calculate
them.

If	you	still	want	to	maintain	your	priorities,	though,	there’s	a	different	and
even	more	interesting	bargain	you	can	strike	to	get	your	productivity	back.

Interrupt	Coalescing

Part	of	what	makes	real-time	scheduling	so	complex	and	interesting	is	that	it
is	fundamentally	a	negotiation	between	two	principles	that	aren’t	fully
compatible.	These	two	principles	are	called	responsiveness	and	throughput:
how	quickly	you	can	respond	to	things,	and	how	much	you	can	get	done
overall.	Anyone	who’s	ever	worked	in	an	office	environment	can	readily
appreciate	the	tension	between	these	two	metrics.	It’s	part	of	the	reason	there

are	people	whose	job	it	is	to	answer	the	phone:	they	are	responsive	so	that
others	may	have	throughput.

Again,	life	is	harder	when—like	a	computer—you	must	make	the
responsiveness/throughput	tradeoff	yourself.	And	the	best	strategy	for	getting
things	done	might	be,	paradoxically,	to	slow	down.

Operating	system	schedulers	typically	define	a	“period”	in	which	every
program	is	guaranteed	to	run	at	least	a	little	bit,	with	the	system	giving	a
“slice”	of	that	period	to	each	program.	The	more	programs	are	running,	the
smaller	those	slices	become,	and	the	more	context	switches	are	happening
every	period,	maintaining	responsiveness	at	the	cost	of	throughput.	Left
unchecked,	however,	this	policy	of	guaranteeing	each	process	at	least	some
attention	every	period	could	lead	to	catastrophe.	With	enough	programs
running,	a	task’s	slice	would	shrink	to	the	point	that	the	system	was	spending
the	entire	slice	on	context	switching,	before	immediately	context-switching
again	to	the	next	task.

The	culprit	is	the	hard	responsiveness	guarantee.	So	modern	operating
systems	in	fact	set	a	minimum	length	for	their	slices	and	will	refuse	to
subdivide	the	period	any	more	finely.	(In	Linux,	for	instance,	this	minimum
useful	slice	turns	out	to	be	about	three-quarters	of	a	millisecond,	but	in
humans	it	might	realistically	be	at	least	several	minutes.)	If	more	processes
are	added	beyond	that	point,	the	period	will	simply	get	longer.	This	means
that	processes	will	have	to	wait	longer	to	get	their	turn,	but	the	turns	they	get
will	at	least	be	long	enough	to	do	something.

Establishing	a	minimum	amount	of	time	to	spend	on	any	one	task	helps	to
prevent	a	commitment	to	responsiveness	from	obliterating	throughput
entirely:	if	the	minimum	slice	is	longer	than	the	time	it	takes	to	context-
switch,	then	the	system	can	never	get	into	a	state	where	context	switching	is
the	only	thing	it’s	doing.	It’s	also	a	principle	that	is	easy	to	translate	into	a
recommendation	for	human	lives.	Methods	such	as	“timeboxing”	or
“pomodoros,”	where	you	literally	set	a	kitchen	timer	and	commit	to	doing	a
single	task	until	it	runs	out,	are	one	embodiment	of	this	idea.

But	what	slice	size	should	you	aim	for?	Faced	with	the	question	of	how
long	to	wait	between	intervals	of	performing	a	recurring	task,	like	checking
your	email,	the	answer	from	the	perspective	of	throughput	is	simple:	as	long
as	possible.	But	that’s	not	the	end	of	the	story;	higher	throughput,	after	all,

also	means	lower	responsiveness.

For	your	computer,	the	annoying	interruption	that	it	has	to	check	on
regularly	isn’t	email—it’s	you.	You	might	not	move	the	mouse	for	minutes	or
hours,	but	when	you	do,	you	expect	to	see	the	pointer	on	the	screen	move
immediately,	which	means	the	machine	expends	a	lot	of	effort	simply
checking	in	on	you.	The	more	frequently	it	checks	on	the	mouse	and
keyboard,	the	quicker	it	can	react	when	there	is	input,	but	the	more	context
switches	it	has	to	do.	So	the	rule	that	computer	operating	systems	follow
when	deciding	how	long	they	can	afford	to	dedicate	themselves	to	some	task
is	simple:	as	long	as	possible	without	seeming	jittery	or	slow	to	the	user.

When	we	humans	leave	the	house	to	run	a	quick	errand,	we	might	say
something	like,	“You	won’t	even	notice	I’m	gone.”	When	our	machines
context-switch	into	a	computation,	they	must	literally	return	to	us	before	we
notice	they’re	gone.	To	find	this	balancing	point,	operating	systems
programmers	have	turned	to	psychology,	mining	papers	in	psychophysics	for
the	exact	number	of	milliseconds	of	delay	it	takes	for	a	human	brain	to
register	lag	or	flicker.	There	is	no	point	in	attending	to	the	user	any	more
often	than	that.

Thanks	to	these	efforts,	when	operating	systems	are	working	right	you
don’t	even	notice	how	hard	your	computer	is	exerting	itself.	You	continue	to
be	able	to	move	your	mouse	around	the	screen	fluidly	even	when	your
processor	is	hauling	full-tilt.	The	fluidity	is	costing	you	some	throughput,	but
that’s	a	design	tradeoff	that	has	been	explicitly	made	by	the	system	engineers:
your	system	spends	as	much	time	as	it	possibly	can	away	from	interacting
with	you,	then	gets	around	to	redrawing	the	mouse	just	in	time.

And	again,	this	is	a	principle	that	can	be	transferred	to	human	lives.	The
moral	is	that	you	should	try	to	stay	on	a	single	task	as	long	as	possible
without	decreasing	your	responsiveness	below	the	minimum	acceptable	limit.
Decide	how	responsive	you	need	to	be—and	then,	if	you	want	to	get	things
done,	be	no	more	responsive	than	that.

If	you	find	yourself	doing	a	lot	of	context	switching	because	you’re
tackling	a	heterogeneous	collection	of	short	tasks,	you	can	also	employ
another	idea	from	computer	science:	“interrupt	coalescing.”	If	you	have	five
credit	card	bills,	for	instance,	don’t	pay	them	as	they	arrive;	take	care	of	them
all	in	one	go	when	the	fifth	bill	comes.	As	long	as	your	bills	are	never	due

less	than	thirty-one	days	after	they	arrive,	you	can	designate,	say,	the	first	of
each	month	as	“bill-paying	day,”	and	sit	down	at	that	point	to	process	every
bill	on	your	desk,	no	matter	whether	it	came	three	weeks	or	three	hours	ago.
Likewise,	if	none	of	your	email	correspondents	require	you	to	respond	in	less
than	twenty-four	hours,	you	can	limit	yourself	to	checking	your	messages
once	a	day.	Computers	themselves	do	something	like	this:	they	wait	until
some	fixed	interval	and	check	everything,	instead	of	context-switching	to
handle	separate,	uncoordinated	interrupts	from	their	various	subcomponents.*

On	occasion,	computer	scientists	notice	the	absence	of	interrupt	coalescing
in	their	own	lives.	Says	Google	director	of	research	Peter	Norvig:	“I	had	to	go
downtown	three	times	today	to	run	errands,	and	I	said,	‘Oh,	well,	that’s	just	a
one-line	bug	in	your	algorithm.	You	should	have	just	waited,	or	added	it	to	the
to-do	queue,	rather	than	executing	them	sequentially	as	they	got	added	one	at
a	time.’”

At	human	scale,	we	get	interrupt	coalescing	for	free	from	the	postal
system,	just	as	a	consequence	of	their	delivery	cycle.	Because	mail	gets
delivered	only	once	a	day,	something	mailed	only	a	few	minutes	late	might
take	an	extra	twenty-four	hours	to	reach	you.	Considering	the	costs	of	context
switching,	the	silver	lining	to	this	should	by	now	be	obvious:	you	can	only	get
interrupted	by	bills	and	letters	at	most	once	a	day.	What’s	more,	the	twenty-
four-hour	postal	rhythm	demands	minimal	responsiveness	from	you:	it
doesn’t	make	any	difference	whether	you	mail	your	reply	five	minutes	or	five
hours	after	receiving	a	letter.

In	academia,	holding	office	hours	is	a	way	of	coalescing	interruptions
from	students.	And	in	the	private	sector,	interrupt	coalescing	offers	a
redemptive	view	of	one	of	the	most	maligned	office	rituals:	the	weekly
meeting.	Whatever	their	drawbacks,	regularly	scheduled	meetings	are	one	of
our	best	defenses	against	the	spontaneous	interruption	and	the	unplanned
context	switch.

Perhaps	the	patron	saint	of	the	minimal-context-switching	lifestyle	is	the
legendary	programmer	Donald	Knuth.	“I	do	one	thing	at	a	time,”	he	says.
“This	is	what	computer	scientists	call	batch	processing—the	alternative	is
swapping	in	and	out.	I	don’t	swap	in	and	out.”	Knuth	isn’t	kidding.	On
January	1,	2014,	he	embarked	on	“The	TeX	Tuneup	of	2014,”	in	which	he
fixed	all	of	the	bugs	that	had	been	reported	in	his	TeX	typesetting	software

over	the	previous	six	years.	His	report	ends	with	the	cheery	sign-off	“Stay
tuned	for	The	TeX	Tuneup	of	2021!”	Likewise,	Knuth	has	not	had	an	email
address	since	1990.	“Email	is	a	wonderful	thing	for	people	whose	role	in	life
is	to	be	on	top	of	things.	But	not	for	me;	my	role	is	to	be	on	the	bottom	of
things.	What	I	do	takes	long	hours	of	studying	and	uninterruptible
concentration.”	He	reviews	all	his	postal	mail	every	three	months,	and	all	his
faxes	every	six.

But	one	does	not	need	to	take	things	to	Knuth’s	extreme	to	wish	that	more
of	our	lives	used	interrupt	coalescing	as	a	design	principle.	The	post	office
gives	it	to	us	almost	by	accident;	elsewhere,	we	need	to	build	it,	or	demand	it,
for	ourselves.	Our	beeping	and	buzzing	devices	have	“Do	Not	Disturb”
modes,	which	we	could	manually	toggle	on	and	off	throughout	the	day,	but
that	is	too	blunt	an	instrument.	Instead,	we	might	agitate	for	settings	that
would	provide	an	explicit	option	for	interrupt	coalescing—the	same	thing	at	a
human	timescale	that	the	devices	are	doing	internally.	Alert	me	only	once
every	ten	minutes,	say;	then	tell	me	everything.

*Ironically	enough,	Pathfinder	software	team	leader	Glenn	Reeves	would	blame	the	bug	on	“deadline
pressures,”	and	on	the	fact	that	fixing	this	particular	issue	during	development	had	been	deemed	a
“lower	priority.”	So	the	root	cause,	in	a	sense,	mirrored	the	problem	itself.

*We	will	discuss	“intractable”	problems	in	more	detail	in	chapter	8.

*Things	aren’t	quite	as	bad	as	this	number	might	make	them	seem,	though,	since	it	includes	scheduling
problems	involving	multiple	machines—which	is	more	like	managing	a	group	of	employees	than
managing	your	calendar.

*Given	that	many	computers	tend	to	brashly	pop	up	error	messages	and	cursor-stealing	dialogue	boxes
whenever	they	want	something	from	us,	their	behavior	is	somewhat	hypocritical.	The	user	interface
demands	the	user’s	attention	in	a	way	that	the	CPU	itself	would	rarely	tolerate.

	

6			Bayes’s	Rule
Predicting	the	Future
All	human	knowledge	is	uncertain,	inexact,	and	partial.

—BERTRAND	RUSSELL

The	sun’ll	come	out	tomorrow.	You	can	bet	your	bottom	dollar	there’ll	be
sun.

—ANNIE

In	1969,	before	embarking	on	a	doctorate	in	astrophysics	at	Princeton,	J.
Richard	Gott	III	took	a	trip	to	Europe.	There	he	saw	the	Berlin	Wall,	which
had	been	built	eight	years	earlier.	Standing	in	the	shadow	of	the	wall,	a	stark
symbol	of	the	Cold	War,	he	began	to	wonder	how	much	longer	it	would
continue	to	divide	the	East	and	West.

On	the	face	of	it,	there’s	something	absurd	about	trying	to	make	this	kind
of	prediction.	Even	setting	aside	the	impossibility	of	forecasting	geopolitics,
the	question	seems	mathematically	laughable:	it’s	trying	to	make	a	prediction
from	a	single	data	point.

But	as	ridiculous	as	this	might	seem	on	its	face,	we	make	such	predictions
all	the	time,	by	necessity.	You	arrive	at	a	bus	stop	in	a	foreign	city	and	learn,
perhaps,	that	the	other	tourist	standing	there	has	been	waiting	seven	minutes.
When	is	the	next	bus	likely	to	arrive?	Is	it	worthwhile	to	wait—and	if	so,	how
long	should	you	do	so	before	giving	up?

Or	perhaps	a	friend	of	yours	has	been	dating	somebody	for	a	month	and
wants	your	advice:	is	it	too	soon	to	invite	them	along	to	an	upcoming	family
wedding?	The	relationship	is	off	to	a	good	start—but	how	far	ahead	is	it	safe
to	make	plans?

A	famous	presentation	made	by	Peter	Norvig,	Google’s	director	of
research,	carried	the	title	“The	Unreasonable	Effectiveness	of	Data”	and
enthused	about	“how	billions	of	trivial	data	points	can	lead	to	understanding.”
The	media	constantly	tell	us	that	we’re	living	in	an	“age	of	big	data,”	when
computers	can	sift	through	those	billions	of	data	points	and	find	patterns

invisible	to	the	naked	eye.	But	often	the	problems	most	germane	to	daily
human	life	are	at	the	opposite	extreme.	Our	days	are	full	of	“small	data.”	In
fact,	like	Gott	standing	at	the	Berlin	Wall,	we	often	have	to	make	an	inference
from	the	smallest	amount	of	data	we	could	possibly	have:	a	single
observation.

So	how	do	we	do	it?	And	how	should	we?

The	story	begins	in	eighteenth-century	England,	in	a	domain	of	inquiry
irresistible	to	great	mathematical	minds	of	the	time,	even	those	of	the	clergy:
gambling.

Reasoning	Backward	with	the	Reverend	Bayes

If	we	be,	therefore,	engaged	by	arguments	to	put	trust	in	past	experience,
and	make	it	the	standard	of	our	future	judgement,	these	arguments	must
be	probable	only.

—DAVID	HUME

More	than	250	years	ago,	the	question	of	making	predictions	from	small	data
weighed	heavily	on	the	mind	of	the	Reverend	Thomas	Bayes,	a	Presbyterian
minister	in	the	charming	spa	town	of	Tunbridge	Wells,	England.

If	we	buy	ten	tickets	for	a	new	and	unfamiliar	raffle,	Bayes	imagined,	and
five	of	them	win	prizes,	then	it	seems	relatively	easy	to	estimate	the	raffle’s
chances	of	a	win:	5/10,	or	50%.	But	what	if	instead	we	buy	a	single	ticket	and
it	wins	a	prize?	Do	we	really	imagine	the	probability	of	winning	to	be	1/1,	or
100%?	That	seems	too	optimistic.	Is	it?	And	if	so,	by	how	much?	What
should	we	actually	guess?

For	somebody	who	has	had	such	an	impact	on	the	history	of	reasoning
under	uncertainty,	Bayes’s	own	history	remains	ironically	uncertain.	He	was
born	in	1701,	or	perhaps	1702,	in	the	English	county	of	Hertfordshire,	or
maybe	it	was	London.	And	in	either	1746,	’47,	’48,	or	’49	he	would	write	one
of	the	most	influential	papers	in	all	of	mathematics,	abandon	it	unpublished,
and	move	on	to	other	things.

Between	those	two	events	we	have	a	bit	more	certainty.	The	son	of	a
minister,	Bayes	went	to	the	University	of	Edinburgh	to	study	theology,	and
was	ordained	like	his	father.	He	had	mathematical	as	well	as	theological
interests,	and	in	1736	he	wrote	an	impassioned	defense	of	Newton’s

newfangled	“calculus”	in	response	to	an	attack	by	Bishop	George	Berkeley.
This	work	resulted	in	his	election	in	1742	as	a	Fellow	of	the	Royal	Society,	to
whom	he	was	recommended	as	“a	Gentleman	…	well	skilled	in	Geometry
and	all	parts	of	Mathematical	and	Philosophical	Learning.”

After	Bayes	died	in	1761,	his	friend	Richard	Price	was	asked	to	review	his
mathematical	papers	to	see	if	they	contained	any	publishable	material.	Price
came	upon	one	essay	in	particular	that	excited	him—one	he	said	“has	great
merit,	and	deserves	to	be	preserved.”	The	essay	concerned	exactly	the	kind	of
raffle	problem	under	discussion:

Let	us	then	imagine	a	person	present	at	the	drawing	of	a	lottery,	who	knows	nothing	of	its	scheme
or	of	the	proportion	of	Blanks	to	Prizes	in	it.	Let	it	further	be	supposed,	that	he	is	obliged	to	infer
this	from	the	number	of	blanks	he	hears	drawn	compared	with	the	number	of	prizes;	and	that	it	is
enquired	what	conclusions	in	these	circumstances	he	may	reasonably	make.

Bayes’s	critical	insight	was	that	trying	to	use	the	winning	and	losing	tickets
we	see	to	figure	out	the	overall	ticket	pool	that	they	came	from	is	essentially
reasoning	backward.	And	to	do	that,	he	argued,	we	need	to	first	reason
forward	from	hypotheticals.	In	other	words,	we	need	to	first	determine	how
probable	it	is	that	we	would	have	drawn	the	tickets	we	did	if	various	scenarios
were	true.	This	probability—known	to	modern	statisticians	as	the
“likelihood”—gives	us	the	information	we	need	to	solve	the	problem.

For	instance,	imagine	we	bought	three	tickets	and	all	three	were	winners.
Now,	if	the	raffle	was	of	the	particularly	generous	sort	where	all	the	tickets
are	winners,	then	our	three-for-three	experience	would	of	course	happen	all	of
the	time;	it	has	a	100%	chance	in	that	scenario.	If,	instead,	only	half	of	the
raffle’s	tickets	were	winners,	our	three-for-three	experience	would	happen
1⁄2	×	1⁄2	×	1⁄2	of	the	time,	or	in	other	words	1⁄8	of	the	time.	And	if	the	raffle
rewarded	only	one	ticket	in	a	thousand,	our	outcome	would	have	been
incredibly	unlikely:	1⁄1,000	×	1⁄1,000	×	1⁄1,000,	or	one	in	a	billion.

Bayes	argued	that	we	should	accordingly	judge	it	to	be	more	probable	that
all	the	raffle	tickets	are	winners	than	that	half	of	them	are,	and	in	turn	more
probable	that	half	of	them	are	than	that	only	one	in	a	thousand	is.	Perhaps	we
had	already	intuited	as	much,	but	Bayes’s	logic	offers	us	the	ability	to
quantify	that	intuition.	All	things	being	equal,	we	should	imagine	it	to	be
exactly	eight	times	likelier	that	all	the	tickets	are	winners	than	that	half	of
them	are—because	the	tickets	we	drew	are	exactly	eight	times	likelier	(100%
versus	one-in-eight)	in	that	scenario.	Likewise,	it’s	exactly	125	million	times

likelier	that	half	the	raffle	tickets	are	winners	than	that	there’s	only	one
winning	ticket	per	thousand,	which	we	know	by	comparing	one-in-eight	to
one-in-a-billion.

This	is	the	crux	of	Bayes’s	argument.	Reasoning	forward	from
hypothetical	pasts	lays	the	foundation	for	us	to	then	work	backward	to	the
most	probable	one.

It	was	an	ingenious	and	innovative	approach,	but	it	did	not	manage	to
provide	a	full	answer	to	the	raffle	problem.	In	presenting	Bayes’s	results	to
the	Royal	Society,	Price	was	able	to	establish	that	if	you	buy	a	single	raffle
ticket	and	it’s	a	winner,	then	there’s	a	75%	chance	that	at	least	half	the	tickets
are	winners.	But	thinking	about	the	probabilities	of	probabilities	can	get	a	bit
head-spinning.	What’s	more,	if	someone	pressed	us,	“Well,	fine,	but	what	do
you	think	the	raffle	odds	actually	are?”	we	still	wouldn’t	know	what	to	say.

The	answer	to	this	question—how	to	distill	all	the	various	possible
hypotheses	into	a	single	specific	expectation—would	be	discovered	only	a
few	years	later,	by	the	French	mathematician	Pierre-Simon	Laplace.

Laplace’s	Law

Laplace	was	born	in	Normandy	in	1749,	and	his	father	sent	him	to	a	Catholic
school	with	the	intent	that	he	join	the	clergy.	Laplace	went	on	to	study
theology	at	the	University	of	Caen,	but	unlike	Bayes—who	balanced	spiritual
and	scientific	devotions	his	whole	life—he	ultimately	abandoned	the	cloth
entirely	for	mathematics.

In	1774,	completely	unaware	of	the	previous	work	by	Bayes,	Laplace
published	an	ambitious	paper	called	“Treatise	on	the	Probability	of	the	Causes
of	Events.”	In	it,	Laplace	finally	solved	the	problem	of	how	to	make
inferences	backward	from	observed	effects	to	their	probable	causes.

Bayes,	as	we	saw,	had	found	a	way	to	compare	the	relative	probability	of
one	hypothesis	to	another.	But	in	the	case	of	a	raffle,	there	is	literally	an
infinite	number	of	hypotheses:	one	for	every	conceivable	proportion	of
winning	tickets.	Using	calculus,	the	once-controversial	mathematics	of	which
Bayes	had	been	an	important	defender,	Laplace	was	able	to	prove	that	this
vast	spectrum	of	possibilities	could	be	distilled	down	to	a	single	estimate,	and
a	stunningly	concise	one	at	that.	If	we	really	know	nothing	about	our	raffle
ahead	of	time,	he	showed,	then	after	drawing	a	winning	ticket	on	our	first	try

we	should	expect	that	the	proportion	of	winning	tickets	in	the	whole	pool	is
exactly	2/3.	If	we	buy	three	tickets	and	all	of	them	are	winners,	the	expected
proportion	of	winning	tickets	is	exactly	4/5.	In	fact,	for	any	possible	drawing
of	w	winning	tickets	in	n	attempts,	the	expectation	is	simply	the	number	of
wins	plus	one,	divided	by	the	number	of	attempts	plus	two:	(w+1)⁄(n+2).

This	incredibly	simple	scheme	for	estimating	probabilities	is	known	as
Laplace’s	Law,	and	it	is	easy	to	apply	in	any	situation	where	you	need	to
assess	the	chances	of	an	event	based	on	its	history.	If	you	make	ten	attempts
at	something	and	five	of	them	succeed,	Laplace’s	Law	estimates	your	overall
chances	to	be	6/12	or	50%,	consistent	with	our	intuitions.	If	you	try	only	once
and	it	works	out,	Laplace’s	estimate	of	2/3	is	both	more	reasonable	than
assuming	you’ll	win	every	time,	and	more	actionable	than	Price’s	guidance
(which	would	tell	us	that	there	is	a	75%	metaprobability	of	a	50%	or	greater
chance	of	success).

Laplace	went	on	to	apply	his	statistical	approach	to	a	wide	range	of
problems	of	his	time,	including	assessing	whether	babies	are	truly	equally
likely	to	be	born	male	or	female.	(He	established,	to	a	virtual	certainty,	that
male	infants	are	in	fact	slightly	more	likely	than	female	ones.)	He	also	wrote
the	Philosophical	Essay	on	Probabilities,	arguably	the	first	book	about
probability	for	a	general	audience	and	still	one	of	the	best,	laying	out	his
theory	and	considering	its	applications	to	law,	the	sciences,	and	everyday	life.

Laplace’s	Law	offers	us	the	first	simple	rule	of	thumb	for	confronting
small	data	in	the	real	world.	Even	when	we’ve	made	only	a	few	observations
—or	only	one—it	offers	us	practical	guidance.	Want	to	calculate	the	chance
your	bus	is	late?	The	chance	your	softball	team	will	win?	Count	the	number
of	times	it	has	happened	in	the	past	plus	one,	then	divide	by	the	number	of
opportunities	plus	two.	And	the	beauty	of	Laplace’s	Law	is	that	it	works
equally	well	whether	we	have	a	single	data	point	or	millions	of	them.	Little
Annie’s	faith	that	the	sun	will	rise	tomorrow	is	justified,	it	tells	us:	with	an
Earth	that’s	seen	the	sun	rise	for	about	1.6	trillion	days	in	a	row,	the	chance	of
another	sunrise	on	the	next	“attempt”	is	all	but	indistinguishable	from	100%.

Bayes’s	Rule	and	Prior	Beliefs

All	these	suppositions	are	consistent	and	conceivable.	Why	should	we
give	the	preference	to	one,	which	is	no	more	consistent	or	conceivable
than	the	rest?

—DAVID	HUME

Laplace	also	considered	another	modification	to	Bayes’s	argument	that	would
prove	crucial:	how	to	handle	hypotheses	that	are	simply	more	probable	than
others.	For	instance,	while	it’s	possible	that	a	lottery	might	give	away	prizes
to	99%	of	the	people	who	buy	tickets,	it’s	more	likely—we’d	assume—that
they	would	give	away	prizes	to	only	1%.	That	assumption	should	be	reflected
in	our	estimates.

To	make	things	concrete,	let’s	say	a	friend	shows	you	two	different	coins.
One	is	a	normal,	“fair”	coin	with	a	50–50	chance	of	heads	and	tails;	the	other
is	a	two-headed	coin.	He	drops	them	into	a	bag	and	then	pulls	one	out	at
random.	He	flips	it	once:	heads.	Which	coin	do	you	think	your	friend	flipped?

Bayes’s	scheme	of	working	backward	makes	short	work	of	this	question.
A	flip	coming	up	heads	happens	50%	of	the	time	with	a	fair	coin	and	100%	of
the	time	with	a	two-headed	coin.	Thus	we	can	assert	confidently	that	it’s
100%⁄50%,	or	exactly	twice	as	probable,	that	the	friend	had	pulled	out	the	two-
headed	coin.

Now	consider	the	following	twist.	This	time,	the	friend	shows	you	nine
fair	coins	and	one	two-headed	coin,	puts	all	ten	into	a	bag,	draws	one	at
random,	and	flips	it:	heads.	Now	what	do	you	suppose?	Is	it	a	fair	coin	or	the
two-headed	one?

Laplace’s	work	anticipated	this	wrinkle,	and	here	again	the	answer	is
impressively	simple.	As	before,	a	fair	coin	is	exactly	half	as	likely	to	come	up
heads	as	a	two-headed	coin.	But	now,	a	fair	coin	is	also	nine	times	as	likely	to
have	been	drawn	in	the	first	place.	It	turns	out	that	we	can	just	take	these	two
different	considerations	and	multiply	them	together:	it	is	exactly	four	and	a
half	times	more	likely	that	your	friend	is	holding	a	fair	coin	than	the	two-
headed	one.

The	mathematical	formula	that	describes	this	relationship,	tying	together
our	previously	held	ideas	and	the	evidence	before	our	eyes,	has	come	to	be
known—ironically,	as	the	real	heavy	lifting	was	done	by	Laplace—as	Bayes’s
Rule.	And	it	gives	a	remarkably	straightforward	solution	to	the	problem	of
how	to	combine	preexisting	beliefs	with	observed	evidence:	multiply	their
probabilities	together.

Notably,	having	some	preexisting	beliefs	is	crucial	for	this	formula	to
work.	If	your	friend	simply	approached	you	and	said,	“I	flipped	one	coin	from

this	bag	and	it	came	up	heads.	How	likely	do	you	think	it	is	that	this	is	a	fair
coin?,”	you	would	be	totally	unable	to	answer	that	question	unless	you	had	at
least	some	sense	of	what	coins	were	in	the	bag	to	begin	with.	(You	can’t
multiply	the	two	probabilities	together	when	you	don’t	have	one	of	them.)
This	sense	of	what	was	“in	the	bag”	before	the	coin	flip—the	chances	for
each	hypothesis	to	have	been	true	before	you	saw	any	data—is	known	as	the
prior	probabilities,	or	“prior”	for	short.	And	Bayes’s	Rule	always	needs	some
prior	from	you,	even	if	it’s	only	a	guess.	How	many	two-headed	coins	exist?
How	easy	are	they	to	get?	How	much	of	a	trickster	is	your	friend,	anyway?

The	fact	that	Bayes’s	Rule	is	dependent	on	the	use	of	priors	has	at	certain
points	in	history	been	considered	controversial,	biased,	even	unscientific.	But
in	reality,	it	is	quite	rare	to	go	into	a	situation	so	totally	unfamiliar	that	our
mind	is	effectively	a	blank	slate—a	point	we’ll	return	to	momentarily.

When	you	do	have	some	estimate	of	prior	probabilities,	meanwhile,
Bayes’s	Rule	applies	to	a	wide	range	of	prediction	problems,	be	they	of	the
big-data	variety	or	the	more	common	small-data	sort.	Computing	the
probability	of	winning	a	raffle	or	tossing	heads	is	only	the	beginning.	The
methods	developed	by	Bayes	and	Laplace	can	offer	help	any	time	you	have
uncertainty	and	a	bit	of	data	to	work	with.	And	that’s	exactly	the	situation	we
face	when	we	try	to	predict	the	future.

The	Copernican	Principle

It’s	difficult	to	make	predictions,	especially	about	the	future.
—DANISH	PROVERB

When	J.	Richard	Gott	arrived	at	the	Berlin	Wall,	he	asked	himself	a	very
simple	question:	Where	am	I?	That	is	to	say,	where	in	the	total	life	span	of
this	artifact	have	I	happened	to	arrive?	In	a	way,	he	was	asking	the	temporal
version	of	the	spatial	question	that	had	obsessed	the	astronomer	Nicolaus
Copernicus	four	hundred	years	earlier:	Where	are	we?	Where	in	the	universe
is	the	Earth?	Copernicus	would	make	the	radical	paradigm	shift	of	imagining
that	the	Earth	was	not	the	bull’s-eye	center	of	the	universe—that	it	was,	in
fact,	nowhere	special	in	particular.	Gott	decided	to	take	the	same	step	with
regard	to	time.

He	made	the	assumption	that	the	moment	when	he	encountered	the	Berlin
Wall	wasn’t	special—that	it	was	equally	likely	to	be	any	moment	in	the	wall’s

total	lifetime.	And	if	any	moment	was	equally	likely,	then	on	average	his
arrival	should	have	come	precisely	at	the	halfway	point	(since	it	was	50%
likely	to	fall	before	halfway	and	50%	likely	to	fall	after).	More	generally,
unless	we	know	better	we	can	expect	to	have	shown	up	precisely	halfway	into
the	duration	of	any	given	phenomenon.*	And	if	we	assume	that	we’re	arriving
precisely	halfway	into	something’s	duration,	the	best	guess	we	can	make	for
how	long	it	will	last	into	the	future	becomes	obvious:	exactly	as	long	as	it’s
lasted	already.	Gott	saw	the	Berlin	Wall	eight	years	after	it	was	built,	so	his
best	guess	was	that	it	would	stand	for	eight	years	more.	(It	ended	up	being
twenty.)

This	straightforward	reasoning,	which	Gott	named	the	Copernican
Principle,	results	in	a	simple	algorithm	that	can	be	used	to	make	predictions
about	all	sorts	of	topics.	Without	any	preconceived	expectations,	we	might
use	it	to	obtain	predictions	for	the	end	of	not	only	the	Berlin	Wall	but	any
number	of	other	short-	and	long-lived	phenomena.	The	Copernican	Principle
predicts	that	the	United	States	of	America	will	last	as	a	nation	until
approximately	the	year	2255,	that	Google	will	last	until	roughly	2032,	and
that	the	relationship	your	friend	began	a	month	ago	will	probably	last	about
another	month	(maybe	tell	him	not	to	RSVP	to	that	wedding	invitation	just
yet).	Likewise,	it	tells	us	to	be	skeptical	when,	for	instance,	a	recent	New
Yorker	cover	depicts	a	man	holding	a	six-inch	smartphone	with	a	familiar	grid
of	square	app	icons,	and	the	caption	reads	“2525.”	Doubtful.	The	smartphone
as	we	know	it	is	barely	a	decade	old,	and	the	Copernican	Principle	tells	us
that	it	isn’t	likely	to	be	around	in	2025,	let	alone	five	centuries	later.	By	2525
it’d	be	mildly	surprising	if	there	were	even	a	New	York	City.

More	practically,	if	we’re	considering	employment	at	a	construction	site
whose	signage	indicates	that	it’s	been	“7	days	since	the	last	industrial
accident,”	we	might	want	to	stay	away,	unless	it’s	a	particularly	short	job	we
plan	to	do.	And	if	a	municipal	transit	system	cannot	afford	the	incredibly
useful	but	expensive	real-time	signs	that	tell	riders	when	the	next	bus	is	going
to	arrive,	the	Copernican	Principle	suggests	that	there	might	be	a	dramatically
simpler	and	cheaper	alternative.	Simply	displaying	how	long	it’s	been	since
the	previous	bus	arrived	at	that	stop	offers	a	substantial	hint	about	when	the
next	one	will.

But	is	the	Copernican	Principle	right?	After	Gott	published	his	conjecture
in	Nature,	the	journal	received	a	flurry	of	critical	correspondence.	And	it’s

easy	to	see	why	when	we	try	to	apply	the	rule	to	some	more	familiar
examples.	If	you	meet	a	90-year-old	man,	the	Copernican	Principle	predicts
he	will	live	to	180.	Every	6-year-old	boy,	meanwhile,	is	predicted	to	face	an
early	death	at	the	tender	age	of	12.

To	understand	why	the	Copernican	Principle	works,	and	why	it	sometimes
doesn’t,	we	need	to	return	to	Bayes.	Because	despite	its	apparent	simplicity,
the	Copernican	Principle	is	really	an	instance	of	Bayes’s	Rule.

Bayes	Meets	Copernicus

When	predicting	the	future,	such	as	the	longevity	of	the	Berlin	Wall,	the
hypotheses	we	need	to	evaluate	are	all	the	possible	durations	of	the
phenomenon	at	hand:	will	it	last	a	week,	a	month,	a	year,	a	decade?	To	apply
Bayes’s	Rule,	as	we	have	seen,	we	first	need	to	assign	a	prior	probability	to
each	of	these	durations.	And	it	turns	out	that	the	Copernican	Principle	is
exactly	what	results	from	applying	Bayes’s	Rule	using	what	is	known	as	an
uninformative	prior.

At	first	this	may	seem	like	a	contradiction	in	terms.	If	Bayes’s	Rule	always
requires	us	to	specify	our	prior	expectations	and	beliefs,	how	could	we	tell	it
that	we	don’t	have	any?	In	the	case	of	a	raffle,	one	way	to	plead	ignorance
would	be	to	assume	what’s	called	the	“uniform	prior,”	which	considers	every
proportion	of	winning	tickets	to	be	equally	likely.*	In	the	case	of	the	Berlin
Wall,	an	uninformative	prior	means	saying	that	we	don’t	know	anything	about
the	time	span	we’re	trying	to	predict:	the	wall	could	equally	well	come	down
in	the	next	five	minutes	or	last	for	five	millennia.

Aside	from	that	uninformative	prior,	the	only	piece	of	data	we	supply	to
Bayes’s	Rule,	as	we’ve	seen,	is	the	fact	that	we’ve	encountered	the	Berlin
Wall	when	it	is	eight	years	old.	Any	hypothesis	that	would	have	predicted	a
less	than	eight-year	life	span	for	the	wall	is	thereby	ruled	out	immediately,
since	those	hypotheses	can’t	account	for	our	situation	at	all.	(Similarly,	a	two-
headed	coin	is	ruled	out	by	the	first	appearance	of	tails.)	Anything	longer	than
eight	years	is	within	the	realm	of	possibility—but	if	the	wall	were	going	to	be
around	for	a	million	years,	it	would	be	a	big	coincidence	that	we	happened	to
bump	into	it	so	very	close	to	the	start	of	its	existence.	Therefore,	even	though
enormously	long	life	spans	cannot	be	ruled	out,	neither	are	they	very	likely.

When	Bayes’s	Rule	combines	all	these	probabilities—the	more-probable

short	time	spans	pushing	down	the	average	forecast,	the	less-probable	yet	still
possible	long	ones	pushing	it	up—the	Copernican	Principle	emerges:	if	we
want	to	predict	how	long	something	will	last,	and	have	no	other	knowledge
about	it	whatsoever,	the	best	guess	we	can	make	is	that	it	will	continue	just	as
long	as	it’s	gone	on	so	far.

In	fact,	Gott	wasn’t	even	the	first	to	propose	something	like	the
Copernican	Principle.	In	the	mid-twentieth	century,	the	Bayesian	statistician
Harold	Jeffreys	had	looked	into	determining	the	number	of	tramcars	in	a	city
given	the	serial	number	on	just	one	tramcar,	and	came	up	with	the	same
answer:	double	the	serial	number.	And	a	similar	problem	had	arisen	even
earlier,	during	World	War	II,	when	the	Allies	sought	to	estimate	the	number	of
tanks	being	produced	by	Germany.	Purely	mathematical	estimates	based	on
captured	tanks’	serial	numbers	predicted	that	the	Germans	were	producing
246	tanks	every	month,	while	estimates	obtained	by	extensive	(and	highly
risky)	aerial	reconnaissance	suggested	the	figure	was	more	like	1,400.	After
the	war,	German	records	revealed	the	true	figure:	245.

Recognizing	that	the	Copernican	Principle	is	just	Bayes’s	Rule	with	an
uninformative	prior	answers	a	lot	of	questions	about	its	validity.	The
Copernican	Principle	seems	reasonable	exactly	in	those	situations	where	we
know	nothing	at	all—such	as	looking	at	the	Berlin	Wall	in	1969,	when	we’re
not	even	sure	what	timescale	is	appropriate.	And	it	feels	completely	wrong	in
those	cases	where	we	do	know	something	about	the	subject	matter.	Predicting
that	a	90-year-old	man	will	live	to	180	years	seems	unreasonable	precisely
because	we	go	into	the	problem	already	knowing	a	lot	about	human	life	spans
—and	so	we	can	do	better.	The	richer	the	prior	information	we	bring	to
Bayes’s	Rule,	the	more	useful	the	predictions	we	can	get	out	of	it.

Real-World	Priors	…

In	the	broadest	sense,	there	are	two	types	of	things	in	the	world:	things	that
tend	toward	(or	cluster	around)	some	kind	of	“natural”	value,	and	things	that
don’t.

Human	life	spans	are	clearly	in	the	former	category.	They	roughly	follow
what’s	termed	a	“normal”	distribution—also	known	as	the	“Gaussian”
distribution,	after	the	German	mathematician	Carl	Friedrich	Gauss,	and
informally	called	the	“bell	curve”	for	its	characteristic	shape.	This	shape	does
a	good	job	of	characterizing	human	life	spans;	the	average	life	span	for	men

in	the	United	States,	for	instance,	is	centered	at	about	76	years,	and	the
probabilities	fall	off	fairly	sharply	to	either	side.	Normal	distributions	tend	to
have	a	single	appropriate	scale:	a	one-digit	life	span	is	considered	tragic,	a
three-digit	one	extraordinary.	Many	other	things	in	the	natural	world	are
normally	distributed	as	well,	from	human	height,	weight,	and	blood	pressure
to	the	noontime	temperature	in	a	city	and	the	diameter	of	fruits	in	an	orchard.

There	are	a	number	of	things	in	the	world	that	don’t	look	normally
distributed,	however—not	by	a	long	shot.	The	average	population	of	a	town
in	the	United	States,	for	instance,	is	8,226.	But	if	you	were	to	make	a	graph	of
the	number	of	towns	by	population,	you	wouldn’t	see	anything	remotely	like
a	bell	curve.	There	would	be	way	more	towns	smaller	than	8,226	than	larger.
At	the	same	time,	the	larger	ones	would	be	way	bigger	than	the	average.	This
kind	of	pattern	typifies	what	are	called	“power-law	distributions.”	These	are
also	known	as	“scale-free	distributions”	because	they	characterize	quantities
that	can	plausibly	range	over	many	scales:	a	town	can	have	tens,	hundreds,
thousands,	tens	of	thousands,	hundreds	of	thousands,	or	millions	of	residents,
so	we	can’t	pin	down	a	single	value	for	how	big	a	“normal”	town	should	be.

The	power-law	distribution	characterizes	a	host	of	phenomena	in	everyday
life	that	have	the	same	basic	quality	as	town	populations:	most	things	below
the	mean,	and	a	few	enormous	ones	above	it.	Movie	box-office	grosses,
which	can	range	from	four	to	ten	figures,	are	another	example.	Most	movies
don’t	make	much	money	at	all,	but	the	occasional	Titanic	makes	…	well,
titanic	amounts.

In	fact,	money	in	general	is	a	domain	full	of	power	laws.	Power-law
distributions	characterize	both	people’s	wealth	and	people’s	incomes.	The
mean	income	in	America,	for	instance,	is	$55,688—but	because	income	is
roughly	power-law	distributed,	we	know,	again,	that	many	more	people	will
be	below	this	mean	than	above	it,	while	those	who	are	above	might	be
practically	off	the	charts.	So	it	is:	two-thirds	of	the	US	population	make	less
than	the	mean	income,	but	the	top	1%	make	almost	ten	times	the	mean.	And
the	top	1%	of	the	1%	make	ten	times	more	than	that.

It’s	often	lamented	that	“the	rich	get	richer,”	and	indeed	the	process	of
“preferential	attachment”	is	one	of	the	surest	ways	to	produce	a	power-law
distribution.	The	most	popular	websites	are	the	most	likely	to	get	incoming
links;	the	most	followed	online	celebrities	are	the	ones	most	likely	to	gain

new	fans;	the	most	prestigious	firms	are	the	ones	most	likely	to	attract	new
clients;	the	biggest	cities	are	the	ones	most	likely	to	draw	new	residents.	In
every	case,	a	power-law	distribution	will	result.

Bayes’s	Rule	tells	us	that	when	it	comes	to	making	predictions	based	on
limited	evidence,	few	things	are	as	important	as	having	good	priors—that	is,	a
sense	of	the	distribution	from	which	we	expect	that	evidence	to	have	come.
Good	predictions	thus	begin	with	having	good	instincts	about	when	we’re
dealing	with	a	normal	distribution	and	when	with	a	power-law	distribution.
As	it	turns	out,	Bayes’s	Rule	offers	us	a	simple	but	dramatically	different
predictive	rule	of	thumb	for	each.

	…	and	Their	Prediction	Rules

Did	you	mean	“this	could	go	on	forever”	in	a	good	way?
—BEN	LERNER

Examining	the	Copernican	Principle,	we	saw	that	when	Bayes’s	Rule	is	given
an	uninformative	prior,	it	always	predicts	that	the	total	life	span	of	an	object
will	be	exactly	double	its	current	age.	In	fact,	the	uninformative	prior,	with	its
wildly	varying	possible	scales—the	wall	that	might	last	for	months	or	for
millennia—is	a	power-law	distribution.	And	for	any	power-law	distribution,
Bayes’s	Rule	indicates	that	the	appropriate	prediction	strategy	is	a
Multiplicative	Rule:	multiply	the	quantity	observed	so	far	by	some	constant
factor.	For	an	uninformative	prior,	that	constant	factor	happens	to	be	2,	hence
the	Copernican	prediction;	in	other	power-law	cases,	the	multiplier	will
depend	on	the	exact	distribution	you’re	working	with.	For	the	grosses	of
movies,	for	instance,	it	happens	to	be	about	1.4.	So	if	you	hear	a	movie	has
made	$6	million	so	far,	you	can	guess	it	will	make	about	$8.4	million	overall;
if	it’s	made	$90	million,	guess	it	will	top	out	at	$126	million.

This	multiplicative	rule	is	a	direct	consequence	of	the	fact	that	power-law
distributions	do	not	specify	a	natural	scale	for	the	phenomenon	they’re
describing.	The	only	thing	that	gives	us	a	sense	of	scale	for	our	prediction,
therefore,	is	the	single	data	point	we	have—such	as	the	fact	that	the	Berlin
Wall	has	stood	for	eight	years.	The	larger	the	value	of	that	single	data	point,
the	larger	the	scale	we’re	probably	dealing	with,	and	vice	versa.	It’s	possible
that	a	movie	that’s	grossed	$6	million	is	actually	a	blockbuster	in	its	first	hour
of	release,	but	it’s	far	more	likely	to	be	just	a	single-digit-millions	kind	of
movie.

When	we	apply	Bayes’s	Rule	with	a	normal	distribution	as	a	prior,	on	the
other	hand,	we	obtain	a	very	different	kind	of	guidance.	Instead	of	a
multiplicative	rule,	we	get	an	Average	Rule:	use	the	distribution’s	“natural”
average—its	single,	specific	scale—as	your	guide.	For	instance,	if	somebody
is	younger	than	the	average	life	span,	then	simply	predict	the	average;	as	their
age	gets	close	to	and	then	exceeds	the	average,	predict	that	they’ll	live	a	few
years	more.	Following	this	rule	gives	reasonable	predictions	for	the	90-year-
old	and	the	6-year-old:	94	and	77,	respectively.	(The	6-year-old	gets	a	tiny
edge	over	the	population	average	of	76	by	virtue	of	having	made	it	through
infancy:	we	know	he’s	not	in	the	distribution’s	left	tail.)

Movie	running	times,	like	human	lifetimes,	also	follow	a	normal
distribution:	most	films	cluster	right	around	a	hundred	minutes	or	so,	with
diminishing	numbers	of	exceptions	tailing	off	to	either	side.	But	not	all
human	activities	are	so	well	behaved.	The	poet	Dean	Young	once	remarked
that	whenever	he’s	listening	to	a	poem	in	numbered	sections,	his	heart	sinks	if
the	reader	announces	the	start	of	section	four:	if	there	are	more	than	three
parts,	all	bets	are	off,	and	Young	needs	to	hunker	down	for	an	earful.	It	turns
out	that	Young’s	dismay	is,	in	fact,	perfectly	Bayesian.	An	analysis	of	poems
shows	that,	unlike	movie	running	times,	poems	follow	something	closer	to	a
power-law	than	a	normal	distribution:	most	poems	are	short,	but	some	are
epics.	So	when	it	comes	to	poetry,	make	sure	you’ve	got	a	comfortable	seat.
Something	normally	distributed	that’s	gone	on	seemingly	too	long	is	bound	to
end	shortly;	but	the	longer	something	in	a	power-law	distribution	has	gone	on,
the	longer	you	can	expect	it	to	keep	going.

Between	those	two	extremes,	there’s	actually	a	third	category	of	things	in
life:	those	that	are	neither	more	nor	less	likely	to	end	just	because	they’ve
gone	on	for	a	while.	Sometimes	things	are	simply	…	invariant.	The	Danish
mathematician	Agner	Krarup	Erlang,	who	studied	such	phenomena,
formalized	the	spread	of	intervals	between	independent	events	into	the
function	that	now	carries	his	name:	the	Erlang	distribution.	The	shape	of	this
curve	differs	from	both	the	normal	and	the	power-law:	it	has	a	winglike
contour,	rising	to	a	gentle	hump,	with	a	tail	that	falls	off	faster	than	a	power-
law	but	more	slowly	than	a	normal	distribution.	Erlang	himself,	working	for
the	Copenhagen	Telephone	Company	in	the	early	twentieth	century,	used	it	to
model	how	much	time	could	be	expected	to	pass	between	successive	calls	on
a	phone	network.	Since	then,	the	Erlang	distribution	has	also	been	used	by

urban	planners	and	architects	to	model	car	and	pedestrian	traffic,	and	by
networking	engineers	designing	infrastructure	for	the	Internet.	There	are	a
number	of	domains	in	the	natural	world,	too,	where	events	are	completely
independent	from	one	another	and	the	intervals	between	them	thus	fall	on	an
Erlang	curve.	Radioactive	decay	is	one	example,	which	means	that	the	Erlang
distribution	perfectly	models	when	to	expect	the	next	ticks	of	a	Geiger
counter.	It	also	turns	out	to	do	a	pretty	good	job	of	describing	certain	human
endeavors—such	as	the	amount	of	time	politicians	stay	in	the	House	of
Representatives.

The	Erlang	distribution	gives	us	a	third	kind	of	prediction	rule,	the
Additive	Rule:	always	predict	that	things	will	go	on	just	a	constant	amount
longer.	The	familiar	refrain	of	“Just	five	more	minutes!…	[five	minutes	later]
Five	more	minutes!”	that	so	often	characterizes	human	claims	regarding,	say,
one’s	readiness	to	leave	the	house	or	office,	or	the	time	until	the	completion
of	some	task,	may	seem	indicative	of	some	chronic	failure	to	make	realistic
estimates.	Well,	in	the	cases	where	one’s	up	against	an	Erlang	distribution,
anyway,	that	refrain	happens	to	be	correct.

If	a	casino	card-playing	enthusiast	tells	his	impatient	spouse,	for	example,
that	he’ll	quit	for	the	day	after	hitting	one	more	blackjack	(the	odds	of	which
are	about	20	to	1),	he	might	cheerily	predict,	“I’ll	be	done	in	about	twenty
more	hands!”	If,	an	unlucky	twenty	hands	later,	she	returns,	asking	how	long
he’s	going	to	make	her	wait	now,	his	answer	will	be	unchanged:	“I’ll	be	done
in	about	twenty	more	hands!”	It	sounds	like	our	indefatigable	card	shark	has
suffered	a	short-term	memory	loss—but,	in	fact,	his	prediction	is	entirely
correct.	Indeed,	distributions	that	yield	the	same	prediction,	no	matter	their
history	or	current	state,	are	known	to	statisticians	as	“memoryless.”

Different	prior	distributions	and	their	prediction	rules.

These	three	very	different	patterns	of	optimal	prediction—the
Multiplicative,	Average,	and	Additive	Rules—all	result	directly	from

applying	Bayes’s	Rule	to	the	power-law,	normal,	and	Erlang	distributions,
respectively.	And	given	the	way	those	predictions	come	out,	the	three
distributions	offer	us	different	guidance,	too,	on	how	surprised	we	should	be
by	certain	events.

In	a	power-law	distribution,	the	longer	something	has	gone	on,	the	longer
we	expect	it	to	continue	going	on.	So	a	power-law	event	is	more	surprising
the	longer	we’ve	been	waiting	for	it—and	maximally	surprising	right	before	it
happens.	A	nation,	corporation,	or	institution	only	grows	more	venerable	with
each	passing	year,	so	it’s	always	stunning	when	it	collapses.

In	a	normal	distribution,	events	are	surprising	when	they’re	early—since
we	expected	them	to	reach	the	average—but	not	when	they’re	late.	Indeed,	by
that	point	they	seem	overdue	to	happen,	so	the	longer	we	wait,	the	more	we
expect	them.

And	in	an	Erlang	distribution,	events	by	definition	are	never	any	more	or
less	surprising	no	matter	when	they	occur.	Any	state	of	affairs	is	always
equally	likely	to	end	regardless	of	how	long	it’s	lasted.	No	wonder	politicians
are	always	thinking	about	their	next	election.

Gambling	is	characterized	by	a	similar	kind	of	steady-state	expectancy.	If
your	wait	for,	say,	a	win	at	the	roulette	wheel	were	characterized	by	a	normal
distribution,	then	the	Average	Rule	would	apply:	after	a	run	of	bad	luck,	it’d
tell	you	that	your	number	should	be	coming	any	second,	probably	followed	by
more	losing	spins.	(In	that	case,	it’d	make	sense	to	press	on	to	the	next	win
and	then	quit.)	If,	instead,	the	wait	for	a	win	obeyed	a	power-law	distribution,
then	the	Multiplicative	Rule	would	tell	you	that	winning	spins	follow	quickly
after	one	another,	but	the	longer	a	drought	had	gone	on	the	longer	it	would
probably	continue.	(In	that	scenario,	you’d	be	right	to	keep	playing	for	a
while	after	any	win,	but	give	up	after	a	losing	streak.)	Up	against	a
memoryless	distribution,	however,	you’re	stuck.	The	Additive	Rule	tells	you
the	chance	of	a	win	now	is	the	same	as	it	was	an	hour	ago,	and	the	same	as	it
will	be	an	hour	from	now.	Nothing	ever	changes.	You’re	not	rewarded	for
sticking	it	out	and	ending	on	a	high	note;	neither	is	there	a	tipping	point	when
you	should	just	cut	your	losses.	In	“The	Gambler,”	Kenny	Rogers	famously
advised	that	you’ve	got	to	“Know	when	to	walk	away	/	Know	when	to	run”—
but	for	a	memoryless	distribution,	there	is	no	right	time	to	quit.	This	may	in
part	explain	these	games’	addictiveness.

Knowing	what	distribution	you’re	up	against	can	make	all	the	difference.
When	the	Harvard	biologist	and	prolific	popularizer	of	science	Stephen	Jay
Gould	discovered	that	he	had	cancer,	his	immediate	impulse	was	to	read	the
relevant	medical	literature.	Then	he	found	out	why	his	doctors	had
discouraged	him	from	doing	so:	half	of	all	patients	with	his	form	of	cancer
died	within	eight	months	of	discovery.

But	that	one	statistic—eight	months—didn’t	tell	him	anything	about	the
distribution	of	survivors.	If	it	were	a	normal	distribution,	then	the	Average
Rule	would	give	a	pretty	clear	forecast	of	how	long	he	could	expect	to	live:
about	eight	months.	But	if	it	were	a	power-law,	with	a	tail	that	stretches	far
out	to	the	right,	then	the	situation	would	be	quite	different:	the	Multiplicative
Rule	would	tell	him	that	the	longer	he	lived,	the	more	evidence	it	would
provide	that	he	would	live	longer.	Reading	further,	Gould	discovered	that	“the
distribution	was	indeed,	strongly	right	skewed,	with	a	long	tail	(however
small)	that	extended	for	several	years	above	the	eight	month	median.	I	saw	no
reason	why	I	shouldn’t	be	in	that	small	tail,	and	I	breathed	a	very	long	sigh	of
relief.”	Gould	would	go	on	to	live	for	twenty	more	years	after	his	diagnosis.

Small	Data	and	the	Mind

The	three	prediction	rules—Multiplicative,	Average,	and	Additive—are
applicable	in	a	wide	range	of	everyday	situations.	And	in	those	situations,
people	in	general	turn	out	to	be	remarkably	good	at	using	the	right	prediction
rule.	When	he	was	in	graduate	school,	Tom,	along	with	MIT’s	Josh
Tenenbaum,	ran	an	experiment	asking	people	to	make	predictions	for	a
variety	of	everyday	quantities—such	as	human	life	spans,	the	grosses	of
movies,	and	the	time	that	US	representatives	would	spend	in	office—based	on
just	one	piece	of	information	in	each	case:	current	age,	money	earned	so	far,
and	years	served	to	date.	Then	they	compared	the	predictions	people	made	to
the	predictions	given	by	applying	Bayes’s	Rule	to	the	actual	real-world	data
across	each	of	those	domains.

As	it	turned	out,	the	predictions	that	people	had	made	were	extremely
close	to	those	produced	by	Bayes’s	Rule.	Intuitively,	people	made	different
types	of	predictions	for	quantities	that	followed	different	distributions—
power-law,	normal,	and	Erlang—in	the	real	world.	In	other	words,	while	you
might	not	know	or	consciously	remember	which	situation	calls	for	the
Multiplicative,	Average,	or	Additive	Rule,	the	predictions	you	make	every

day	tend	to	implicitly	reflect	the	different	cases	where	these	distributions
appear	in	everyday	life,	and	the	different	ways	they	behave.

In	light	of	what	we	know	about	Bayes’s	Rule,	this	remarkably	good	human
performance	suggests	something	critical	that	helps	to	understand	how	people
make	predictions.	Small	data	is	big	data	in	disguise.	The	reason	we	can	often
make	good	predictions	from	a	small	number	of	observations—or	just	a	single
one—is	that	our	priors	are	so	rich.	Whether	we	know	it	or	not,	we	appear	to
carry	around	in	our	heads	surprisingly	accurate	priors	about	movie	grosses
and	running	times,	poem	lengths,	and	political	terms	of	office,	not	to	mention
human	life	spans.	We	don’t	need	to	gather	them	explicitly;	we	absorb	them
from	the	world.

The	fact	that,	on	the	whole,	people’s	hunches	seem	to	closely	match	the
predictions	of	Bayes’s	Rule	also	makes	it	possible	to	reverse-engineer	all
kinds	of	prior	distributions,	even	ones	about	which	it’s	harder	to	get
authoritative	real-world	data.	For	instance,	being	kept	on	hold	by	customer
service	is	a	lamentably	common	facet	of	human	experience,	but	there	aren’t
publicly	available	data	sets	on	hold	times	the	way	there	are	for	Hollywood
box-office	grosses.	But	if	people’s	predictions	are	informed	by	their
experiences,	we	can	use	Bayes’s	Rule	to	conduct	indirect	reconnaissance
about	the	world	by	mining	people’s	expectations.	When	Tom	and	Josh	asked
people	to	predict	hold	times	from	a	single	data	point,	the	results	suggested
that	their	subjects	were	using	the	Multiplicative	Rule:	the	total	wait	people
expect	is	one	and	a	third	times	as	long	as	they’ve	waited	so	far.	This	is
consistent	with	having	a	power-law	distribution	as	a	prior,	where	a	wide	range
of	scales	is	possible.	Just	hope	you	don’t	end	up	on	the	Titanic	of	hold	times.
Over	the	past	decade,	approaches	like	these	have	enabled	cognitive	scientists
to	identify	people’s	prior	distributions	across	a	broad	swath	of	domains,	from
vision	to	language.

There’s	a	crucial	caveat	here,	however.	In	cases	where	we	don’t	have	good
priors,	our	predictions	aren’t	good.	In	Tom	and	Josh’s	study,	for	instance,
there	was	one	subject	where	people’s	predictions	systematically	diverged
from	Bayes’s	Rule:	predicting	the	length	of	the	reign	of	Egyptian	pharaohs.
(As	it	happens,	pharaohs’	reigns	follow	an	Erlang	distribution.)	People	simply
didn’t	have	enough	everyday	exposure	to	have	an	intuitive	feel	for	the	range
of	those	values,	so	their	predictions,	of	course,	faltered.	Good	predictions
require	good	priors.

This	has	a	number	of	important	implications.	Our	judgments	betray	our
expectations,	and	our	expectations	betray	our	experience.	What	we	project
about	the	future	reveals	a	lot—about	the	world	we	live	in,	and	about	our	own
past.

What	Our	Predictions	Tell	Us	About	Ourselves

When	Walter	Mischel	ran	his	famous	“marshmallow	test”	in	the	early	1970s,
he	was	trying	to	understand	how	the	ability	to	delay	gratification	develops
with	age.	At	a	nursery	school	on	the	Stanford	campus,	a	series	of	three-,	four-,
and	five-year-olds	had	their	willpower	tested.	Each	child	would	be	shown	a
delicious	treat,	such	as	a	marshmallow,	and	told	that	the	adult	running	the
experiment	was	about	to	leave	the	room	for	a	while.	If	they	wanted	to,	they
could	eat	the	treat	right	away.	But	if	they	waited	until	the	experimenter	came
back,	they	would	get	two	treats.

Unable	to	resist,	some	of	the	children	ate	the	treat	immediately.	And	some
of	them	stuck	it	out	for	the	full	fifteen	minutes	or	so	until	the	experimenter
returned,	and	got	two	treats	as	promised.	But	perhaps	the	most	interesting
group	comprised	the	ones	in	between—the	ones	who	managed	to	wait	a	little
while,	but	then	surrendered	and	ate	the	treat.

These	cases,	where	children	struggled	mightily	and	suffered	valiantly,	only
to	give	in	and	lose	the	extra	marshmallow	anyway,	have	been	interpreted	as
suggesting	a	kind	of	irrationality.	If	you’re	going	to	cave,	why	not	just	cave
immediately,	and	skip	the	torture?	But	it	all	depends	on	what	kind	of	situation
the	children	think	they	are	in.	As	the	University	of	Pennsylvania’s	Joe
McGuire	and	Joe	Kable	have	pointed	out,	if	the	amount	of	time	it	takes	for
adults	to	come	back	is	governed	by	a	power-law	distribution—with	long
absences	suggesting	even	longer	waits	lie	ahead—then	cutting	one’s	losses	at
some	point	can	make	perfect	sense.

In	other	words,	the	ability	to	resist	temptation	may	be,	at	least	in	part,	a
matter	of	expectations	rather	than	willpower.	If	you	predict	that	adults	tend	to
come	back	after	short	delays—something	like	a	normal	distribution—you
should	be	able	to	hold	out.	The	Average	Rule	suggests	that	after	a	painful
wait,	the	thing	to	do	is	hang	in	there:	the	experimenter	should	be	returning
any	minute	now.	But	if	you	have	no	idea	of	the	timescale	of	the	disappearance
—consistent	with	a	power-law	distribution—then	it’s	an	uphill	battle.	The
Multiplicative	Rule	then	suggests	that	a	protracted	wait	is	just	a	small	fraction

of	what’s	to	come.

Decades	after	the	original	marshmallow	experiments,	Walter	Mischel	and
his	colleagues	went	back	and	looked	at	how	the	participants	were	faring	in
life.	Astonishingly,	they	found	that	children	who	had	waited	for	two	treats
grew	into	young	adults	who	were	more	successful	than	the	others,	even
measured	by	quantitative	metrics	like	their	SAT	scores.	If	the	marshmallow
test	is	about	willpower,	this	is	a	powerful	testament	to	the	impact	that	learning
self-control	can	have	on	one’s	life.	But	if	the	test	is	less	about	will	than	about
expectations,	then	this	tells	a	different,	perhaps	more	poignant	story.

A	team	of	researchers	at	the	University	of	Rochester	recently	explored
how	prior	experiences	might	affect	behavior	in	the	marshmallow	test.	Before
marshmallows	were	even	mentioned,	the	kids	in	the	experiment	embarked	on
an	art	project.	The	experimenter	gave	them	some	mediocre	supplies,	and
promised	to	be	back	with	better	options	soon.	But,	unbeknownst	to	them,	the
children	were	divided	into	two	groups.	In	one	group,	the	experimenter	was
reliable,	and	came	back	with	the	better	art	supplies	as	promised.	In	the	other,
she	was	unreliable,	coming	back	with	nothing	but	apologies.

The	art	project	completed,	the	children	went	on	to	the	standard
marshmallow	test.	And	here,	the	children	who	had	learned	that	the
experimenter	was	unreliable	were	more	likely	to	eat	the	marshmallow	before
she	came	back,	losing	the	opportunity	to	earn	a	second	treat.

Failing	the	marshmallow	test—and	being	less	successful	in	later	life—may
not	be	about	lacking	willpower.	It	could	be	a	result	of	believing	that	adults	are
not	dependable:	that	they	can’t	be	trusted	to	keep	their	word,	that	they
disappear	for	intervals	of	arbitrary	length.	Learning	self-control	is	important,
but	it’s	equally	important	to	grow	up	in	an	environment	where	adults	are
consistently	present	and	trustworthy.

Priors	in	the	Age	of	Mechanical	Reproduction

As	if	someone	were	to	buy	several	copies	of	the	morning	paper	to	assure
himself	that	what	it	said	was	true.

—LUDWIG	WITTGENSTEIN

He	is	careful	of	what	he	reads,	for	that	is	what	he	will	write.	He	is
careful	of	what	he	learns,	for	that	is	what	he	will	know.

—ANNIE	DILLARD

The	best	way	to	make	good	predictions,	as	Bayes’s	Rule	shows	us,	is	to	be
accurately	informed	about	the	things	you’re	predicting.	That’s	why	we	can	do
a	good	job	of	projecting	human	life	spans,	but	perform	poorly	when	asked	to
estimate	the	reigns	of	pharaohs.

Being	a	good	Bayesian	means	representing	the	world	in	the	correct
proportions—having	good	priors,	appropriately	calibrated.	By	and	large,	for
humans	and	other	animals	this	happens	naturally;	as	a	rule,	when	something
surprises	us,	it	ought	to	surprise	us,	and	when	it	doesn’t,	it	ought	not	to.	Even
when	we	accumulate	biases	that	aren’t	objectively	correct,	they	still	usually
do	a	reasonable	job	of	reflecting	the	specific	part	of	the	world	we	live	in.	For
instance,	someone	living	in	a	desert	climate	might	overestimate	the	amount	of
sand	in	the	world,	and	someone	living	at	the	poles	might	overestimate	the
amount	of	snow.	Both	are	well	tuned	to	their	own	ecological	niche.

Everything	starts	to	break	down,	however,	when	a	species	gains	language.
What	we	talk	about	isn’t	what	we	experience—we	speak	chiefly	of	interesting
things,	and	those	tend	to	be	things	that	are	uncommon.	More	or	less	by
definition,	events	are	always	experienced	at	their	proper	frequencies,	but	this
isn’t	at	all	true	of	language.	Anyone	who	has	experienced	a	snake	bite	or	a
lightning	strike	will	tend	to	retell	those	singular	stories	for	the	rest	of	their
lives.	And	those	stories	will	be	so	salient	that	they	will	be	picked	up	and
retold	by	others.

There’s	a	curious	tension,	then,	between	communicating	with	others	and
maintaining	accurate	priors	about	the	world.	When	people	talk	about	what
interests	them—and	offer	stories	they	think	their	listeners	will	find	interesting
—it	skews	the	statistics	of	our	experience.	That	makes	it	hard	to	maintain
appropriate	prior	distributions.	And	the	challenge	has	only	increased	with	the
development	of	the	printing	press,	the	nightly	news,	and	social	media—
innovations	that	allow	our	species	to	spread	language	mechanically.

Consider	how	many	times	you’ve	seen	either	a	crashed	plane	or	a	crashed
car.	It’s	entirely	possible	you’ve	seen	roughly	as	many	of	each—yet	many	of
those	cars	were	on	the	road	next	to	you,	whereas	the	planes	were	probably	on
another	continent,	transmitted	to	you	via	the	Internet	or	television.	In	the
United	States,	for	instance,	the	total	number	of	people	who	have	lost	their
lives	in	commercial	plane	crashes	since	the	year	2000	would	not	be	enough	to
fill	Carnegie	Hall	even	half	full.	In	contrast,	the	number	of	people	in	the

United	States	killed	in	car	accidents	over	that	same	time	is	greater	than	the
entire	population	of	Wyoming.

Simply	put,	the	representation	of	events	in	the	media	does	not	track	their
frequency	in	the	world.	As	sociologist	Barry	Glassner	notes,	the	murder	rate
in	the	United	States	declined	by	20%	over	the	course	of	the	1990s,	yet	during
that	time	period	the	presence	of	gun	violence	on	American	news	increased	by
600%.

If	you	want	to	be	a	good	intuitive	Bayesian—if	you	want	to	naturally
make	good	predictions,	without	having	to	think	about	what	kind	of	prediction
rule	is	appropriate—you	need	to	protect	your	priors.	Counterintuitively,	that
might	mean	turning	off	the	news.

*There’s	a	certain	irony	here:	when	it	comes	to	time,	assuming	that	there’s	nothing	special	about	our
arrival	does	result	in	us	imagining	ourselves	at	the	very	center	after	all.

*This	is	precisely	what	Laplace’s	Law	does	in	its	simplest	form:	it	assumes	that	having	1%	or	10%	of
the	tickets	be	winners	is	just	as	likely	as	50%	or	100%.	The	(w+1)⁄(n+2)	formula	might	seem	naive	in	its
suggestion	that	after	buying	a	single	losing	Powerball	ticket	you	have	a	1/3	chance	of	winning	on	your
next	one—but	that	result	faithfully	reflects	the	odds	in	a	raffle	where	you	come	in	knowing	nothing	at
all.

	

7			Overfitting
When	to	Think	Less

When	Charles	Darwin	was	trying	to	decide	whether	he	should	propose	to	his
cousin	Emma	Wedgwood,	he	got	out	a	pencil	and	paper	and	weighed	every
possible	consequence.	In	favor	of	marriage	he	listed	children,	companionship,
and	the	“charms	of	music	&	female	chit-chat.”	Against	marriage	he	listed	the
“terrible	loss	of	time,”	lack	of	freedom	to	go	where	he	wished,	the	burden	of
visiting	relatives,	the	expense	and	anxiety	provoked	by	children,	the	concern
that	“perhaps	my	wife	won’t	like	London,”	and	having	less	money	to	spend
on	books.	Weighing	one	column	against	the	other	produced	a	narrow	margin
of	victory,	and	at	the	bottom	Darwin	scrawled,	“Marry—Marry—Marry
Q.E.D.”	Quod	erat	demonstrandum,	the	mathematical	sign-off	that	Darwin
himself	then	restated	in	English:	“It	being	proved	necessary	to	Marry.”

The	pro-and-con	list	was	already	a	time-honored	algorithm	by	Darwin’s
time,	being	endorsed	by	Benjamin	Franklin	a	century	before.	To	get	over	“the
Uncertainty	that	perplexes	us,”	Franklin	wrote,

my	Way	is,	divide	half	a	Sheet	of	Paper	by	a	Line	into	two	Columns,	writing	over	the	one	Pro,
and	over	the	other	Con.	Then	during	three	or	four	Days	Consideration	I	put	down	under	the
different	Heads	short	Hints	of	the	different	Motives	that	at	different	Times	occur	to	me	for	or
against	the	Measure.	When	I	have	thus	got	them	all	together	in	one	View,	I	endeavour	to	estimate
their	respective	Weights;	and	where	I	find	two,	one	on	each	side,	that	seem	equal,	I	strike	them
both	out:	If	I	find	a	Reason	pro	equal	to	some	two	Reasons	con,	I	strike	out	the	three.	If	I	judge
some	two	Reasons	con	equal	to	some	three	Reasons	pro,	I	strike	out	the	five;	and	thus	proceeding
I	find	at	length	where	the	Ballance	lies;	and	if	after	a	Day	or	two	of	farther	Consideration	nothing
new	that	is	of	Importance	occurs	on	either	side,	I	come	to	a	Determination	accordingly.

Franklin	even	thought	about	this	as	something	like	a	computation,	saying,	“I
have	found	great	Advantage	from	this	kind	of	Equation,	in	what	may	be
called	Moral	or	Prudential	Algebra.”

Darwin’s	journal,	July	1838.	Reprinted	with	permission	of	Cambridge	University	Library.

When	we	think	about	thinking,	it’s	easy	to	assume	that	more	is	better:	that
you	will	make	a	better	decision	the	more	pros	and	cons	you	list,	make	a	better
prediction	about	the	price	of	a	stock	the	more	relevant	factors	you	identify,
and	write	a	better	report	the	more	time	you	spend	working	on	it.	This	is
certainly	the	premise	behind	Franklin’s	system.	In	this	sense,	Darwin’s
“algebraic”	approach	to	matrimony,	despite	its	obvious	eccentricity,	seems
remarkably	and	maybe	even	laudably	rational.

However,	if	Franklin	or	Darwin	had	lived	into	the	era	of	machine-learning
research—the	science	of	teaching	computers	to	make	good	judgments	from
experience—they’d	have	seen	Moral	Algebra	shaken	to	its	foundations.	The
question	of	how	hard	to	think,	and	how	many	factors	to	consider,	is	at	the
heart	of	a	knotty	problem	that	statisticians	and	machine-learning	researchers
call	“overfitting.”	And	dealing	with	that	problem	reveals	that	there’s	a
wisdom	to	deliberately	thinking	less.	Being	aware	of	overfitting	changes	how
we	should	approach	the	market,	the	dining	table,	the	gym	…	and	the	altar.

The	Case	Against	Complexity

Anything	you	can	do	I	can	do	better;	I	can	do	anything	better	than	you.
—ANNIE	GET	YOUR	GUN

Every	decision	is	a	kind	of	prediction:	about	how	much	you’ll	like	something
you	haven’t	tried	yet,	about	where	a	certain	trend	is	heading,	about	how	the
road	less	traveled	(or	more	so)	is	likely	to	pan	out.	And	every	prediction,
crucially,	involves	thinking	about	two	distinct	things:	what	you	know	and
what	you	don’t.	That	is,	it’s	an	attempt	to	formulate	a	theory	that	will	account
for	the	experiences	you’ve	had	to	date	and	say	something	about	the	future
ones	you’re	guessing	at.	A	good	theory,	of	course,	will	do	both.	But	the	fact
that	every	prediction	must	in	effect	pull	double	duty	creates	a	certain
unavoidable	tension.

Life	satisfaction	as	a	function	of	time	since	marriage.

As	one	illustration	of	this	tension,	let’s	look	at	a	data	set	that	might	have
been	relevant	to	Darwin:	people’s	life	satisfaction	over	their	first	ten	years	of
marriage,	from	a	recent	study	conducted	in	Germany.	Each	point	on	that	chart
is	taken	from	the	study	itself;	our	job	is	to	figure	out	the	formula	for	a	line
that	would	fit	those	points	and	extend	into	the	future,	allowing	us	to	make
predictions	past	the	ten-year	mark.

One	possible	formula	would	use	just	a	single	factor	to	predict	life
satisfaction:	the	time	since	marriage.	This	would	create	a	straight	line	on	the
chart.	Another	possibility	is	to	use	two	factors,	time	and	time	squared;	the
resulting	line	would	have	a	parabolic	U-shape,	letting	it	capture	a	potentially
more	complex	relationship	between	time	and	happiness.	And	if	we	expand	the
formula	to	include	yet	more	factors	(time	cubed	and	so	on),	the	line	will
acquire	ever	more	inflection	points,	getting	more	and	more	“bendy”	and
flexible.	By	the	time	we	get	to	a	nine-factor	formula,	we	can	capture	very
complex	relationships	indeed.

Mathematically	speaking,	our	two-factor	model	incorporates	all	the
information	that	goes	into	the	one-factor	model,	and	has	another	term	it	could
use	as	well.	Likewise,	the	nine-factor	model	leverages	all	of	the	information
at	the	disposal	of	the	two-factor	model,	plus	potentially	lots	more.	By	this

logic,	it	seems	like	the	nine-factor	model	ought	to	always	give	us	the	best
predictions.

As	it	turns	out,	things	are	not	quite	so	simple.

Predictions	of	life	satisfaction	using	models	with	different	numbers	of	factors.

The	result	of	applying	these	models	to	the	data	is	shown	above.	The	one-
factor	model,	unsurprisingly,	misses	a	lot	of	the	exact	data	points,	though	it
captures	the	basic	trend—a	comedown	after	the	honeymoon	bliss.	However,
its	straight-line	prediction	forecasts	that	this	decrease	will	continue	forever,
ultimately	resulting	in	infinite	misery.	Something	about	that	trajectory	doesn’t
sound	quite	right.	The	two-factor	model	comes	closer	to	fitting	the	survey
data,	and	its	curved	shape	makes	a	different	long-term	prediction,	suggesting
that	after	the	initial	decline	life	satisfaction	more	or	less	levels	out	over	time.
Finally,	the	nine-factor	model	passes	through	each	and	every	point	on	the
chart;	it	is	essentially	a	perfect	fit	for	all	the	data	from	the	study.

In	that	sense	it	seems	like	the	nine-factor	formula	is	indeed	our	best
model.	But	if	you	look	at	the	predictions	it	makes	for	the	years	not	included	in
the	study,	you	might	wonder	about	just	how	useful	it	really	is:	it	predicts
misery	at	the	altar,	a	giddily	abrupt	rise	in	satisfaction	after	several	months	of
marriage,	a	bumpy	roller-coaster	ride	thereafter,	and	a	sheer	drop	after	year
ten.	By	contrast,	the	leveling	off	predicted	by	the	two-factor	model	is	the
forecast	most	consistent	with	what	psychologists	and	economists	say	about
marriage	and	happiness.	(They	believe,	incidentally,	that	it	simply	reflects	a
return	to	normalcy—to	people’s	baseline	level	of	satisfaction	with	their	lives
—rather	than	any	displeasure	with	marriage	itself.)

The	lesson	is	this:	it	is	indeed	true	that	including	more	factors	in	a	model

will	always,	by	definition,	make	it	a	better	fit	for	the	data	we	have	already.
But	a	better	fit	for	the	available	data	does	not	necessarily	mean	a	better
prediction.

Adding	small	amounts	of	random	“noise”	to	the	data	(simulating	the	effects	of	repeating	the	survey	with
a	different	group	of	participants)	produces	wild	undulations	in	the	nine-factor	model,	while	the	one-	and
two-factor	models	in	comparison	are	much	more	stable	and	consistent	in	their	predictions.

Granted,	a	model	that’s	too	simple—for	instance,	the	straight	line	of	the
one-factor	formula—can	fail	to	capture	the	essential	pattern	in	the	data.	If	the
truth	looks	like	a	curve,	no	straight	line	can	ever	get	it	right.	On	the	other
hand,	a	model	that’s	too	complicated,	such	as	our	nine-factor	model	here,
becomes	oversensitive	to	the	particular	data	points	that	we	happened	to
observe.	As	a	consequence,	precisely	because	it	is	tuned	so	finely	to	that

specific	data	set,	the	solutions	it	produces	are	highly	variable.	If	the	study
were	repeated	with	different	people,	producing	slight	variations	on	the	same
essential	pattern,	the	one-	and	two-factor	models	would	remain	more	or	less
steady—but	the	nine-factor	model	would	gyrate	wildly	from	one	instance	of
the	study	to	the	next.	This	is	what	statisticians	call	overfitting.

So	one	of	the	deepest	truths	of	machine	learning	is	that,	in	fact,	it’s	not
always	better	to	use	a	more	complex	model,	one	that	takes	a	greater	number
of	factors	into	account.	And	the	issue	is	not	just	that	the	extra	factors	might
offer	diminishing	returns—performing	better	than	a	simpler	model,	but	not
enough	to	justify	the	added	complexity.	Rather,	they	might	make	our
predictions	dramatically	worse.

The	Idolatry	of	Data

If	we	had	copious	data,	drawn	from	a	perfectly	representative	sample,
completely	mistake-free,	and	representing	exactly	what	we’re	trying	to
evaluate,	then	using	the	most	complex	model	available	would	indeed	be	the
best	approach.	But	if	we	try	to	perfectly	fit	our	model	to	the	data	when	any	of
these	factors	fails	to	hold,	we	risk	overfitting.

In	other	words,	overfitting	poses	a	danger	any	time	we’re	dealing	with
noise	or	mismeasurement—and	we	almost	always	are.	There	can	be	errors	in
how	the	data	were	collected,	or	in	how	they	were	reported.	Sometimes	the
phenomena	being	investigated,	such	as	human	happiness,	are	hard	to	even
define,	let	alone	measure.	Thanks	to	their	flexibility,	the	most	complex
models	available	to	us	can	fit	any	patterns	that	appear	in	the	data,	but	this
means	that	they	will	also	do	so	even	when	those	patterns	are	mere	phantoms
and	mirages	in	the	noise.

Throughout	history,	religious	texts	have	warned	their	followers	against
idolatry:	the	worshipping	of	statues,	paintings,	relics,	and	other	tangible
artifacts	in	lieu	of	the	intangible	deities	those	artifacts	represent.	The	First
Commandment,	for	instance,	warns	against	bowing	down	to	“any	graven
image,	or	any	likeness	of	any	thing	that	is	in	heaven.”	And	in	the	Book	of
Kings,	a	bronze	snake	made	at	God’s	orders	becomes	an	object	of	worship
and	incense-burning,	instead	of	God	himself.	(God	is	not	amused.)
Fundamentally,	overfitting	is	a	kind	of	idolatry	of	data,	a	consequence	of
focusing	on	what	we’ve	been	able	to	measure	rather	than	what	matters.

This	gap	between	the	data	we	have	and	the	predictions	we	want	is	virtually
everywhere.	When	making	a	big	decision,	we	can	only	guess	at	what	will
please	us	later	by	thinking	about	the	factors	important	to	us	right	now.	(As
Harvard’s	Daniel	Gilbert	puts	it,	our	future	selves	often	“pay	good	money	to
remove	the	tattoos	that	we	paid	good	money	to	get.”)	When	making	a
financial	forecast,	we	can	only	look	at	what	correlated	with	the	price	of	a
stock	in	the	past,	not	what	might	in	the	future.	Even	in	our	small	daily	acts
this	pattern	holds:	writing	an	email,	we	use	our	own	read-through	of	the	text
to	predict	that	of	the	recipient.	No	less	than	in	public	surveys,	the	data	in	our
own	lives	are	thus	also	always	noisy,	at	best	a	proxy	metric	for	the	things	we
really	care	about.

As	a	consequence,	considering	more	and	more	factors	and	expending	more
effort	to	model	them	can	lead	us	into	the	error	of	optimizing	for	the	wrong
thing—offering	prayers	to	the	bronze	snake	of	data	rather	than	the	larger	force
behind	it.

Overfitting	Everywhere

Once	you	know	about	overfitting,	you	see	it	everywhere.

Overfitting,	for	instance,	explains	the	irony	of	our	palates.	How	can	it	be
that	the	foods	that	taste	best	to	us	are	broadly	considered	to	be	bad	for	our
health,	when	the	entire	function	of	taste	buds,	evolutionarily	speaking,	is	to
prevent	us	from	eating	things	that	are	bad?

The	answer	is	that	taste	is	our	body’s	proxy	metric	for	health.	Fat,	sugar,
and	salt	are	important	nutrients,	and	for	a	couple	hundred	thousand	years,
being	drawn	to	foods	containing	them	was	a	reasonable	measure	for	a
sustaining	diet.

But	being	able	to	modify	the	foods	available	to	us	broke	that	relationship.
We	can	now	add	fat	and	sugar	to	foods	beyond	amounts	that	are	good	for	us,
and	then	eat	those	foods	exclusively	rather	than	the	mix	of	plants,	grains,	and
meats	that	historically	made	up	the	human	diet.	In	other	words,	we	can	overfit
taste.	And	the	more	skillfully	we	can	manipulate	food	(and	the	more	our
lifestyles	diverge	from	those	of	our	ancestors),	the	more	imperfect	a	metric
taste	becomes.	Our	human	agency	thus	turns	into	a	curse,	making	us
dangerously	able	to	have	exactly	what	we	want	even	when	we	don’t	quite
want	exactly	the	right	thing.

Beware:	when	you	go	to	the	gym	to	work	off	the	extra	weight	from	all	that
sugar,	you	can	also	risk	overfitting	fitness.	Certain	visible	signs	of	fitness—
low	body	fat	and	high	muscle	mass,	for	example—are	easy	to	measure,	and
they	are	related	to,	say,	minimizing	the	risk	of	heart	disease	and	other
ailments.	But	they,	too,	are	an	imperfect	proxy	measure.	Overfitting	the
signals—adopting	an	extreme	diet	to	lower	body	fat	and	taking	steroids	to
build	muscle,	perhaps—can	make	you	the	picture	of	good	health,	but	only	the
picture.

Overfitting	also	shows	up	in	sports.	For	instance,	Tom	has	been	a	fencer,
on	and	off,	since	he	was	a	teenager.	The	original	goal	of	fencing	was	to	teach
people	how	to	defend	themselves	in	a	duel,	hence	the	name:	“defencing.”	And
the	weapons	used	in	modern	fencing	are	similar	to	those	that	were	used	to
train	for	such	encounters.	(This	is	particularly	true	of	the	épée,	which	was	still
used	in	formal	duels	less	than	fifty	years	ago.)	But	the	introduction	of
electronic	scoring	equipment—a	button	on	the	tip	of	the	blade	that	registers	a
hit—has	changed	the	nature	of	the	sport,	and	techniques	that	would	serve	you
poorly	in	a	serious	duel	have	become	critical	skills	in	competition.	Modern
fencers	use	flexible	blades	that	allow	them	to	“flick”	the	button	at	their
opponent,	grazing	just	hard	enough	to	register	and	score.	As	a	result,	they	can
look	more	like	they’re	cracking	thin	metal	whips	at	each	other	than	cutting	or
thrusting.	It’s	as	exciting	a	sport	as	ever,	but	as	athletes	overfit	their	tactics	to
the	quirks	of	scorekeeping,	it	becomes	less	useful	in	instilling	the	skills	of
real-world	swordsmanship.

Perhaps	nowhere,	however,	is	overfitting	as	powerful	and	troublesome	as
in	the	world	of	business.	“Incentive	structures	work,”	as	Steve	Jobs	put	it.	“So
you	have	to	be	very	careful	of	what	you	incent	people	to	do,	because	various
incentive	structures	create	all	sorts	of	consequences	that	you	can’t	anticipate.”
Sam	Altman,	president	of	the	startup	incubator	Y	Combinator,	echoes	Jobs’s
words	of	caution:	“It	really	is	true	that	the	company	will	build	whatever	the
CEO	decides	to	measure.”

In	fact,	it’s	incredibly	difficult	to	come	up	with	incentives	or
measurements	that	do	not	have	some	kind	of	perverse	effect.	In	the	1950s,
Cornell	management	professor	V.	F.	Ridgway	cataloged	a	host	of	such
“Dysfunctional	Consequences	of	Performance	Measurements.”	At	a	job-
placement	firm,	staffers	were	evaluated	on	the	number	of	interviews	they
conducted,	which	motivated	them	to	run	through	the	meetings	as	quickly	as

possible,	without	spending	much	time	actually	helping	their	clients	find	jobs.
At	a	federal	law	enforcement	agency,	investigators	given	monthly
performance	quotas	were	found	to	pick	easy	cases	at	the	end	of	the	month
rather	than	the	most	urgent	ones.	And	at	a	factory,	focusing	on	production
metrics	led	supervisors	to	neglect	maintenance	and	repairs,	setting	up	future
catastrophe.	Such	problems	can’t	simply	be	dismissed	as	a	failure	to	achieve
management	goals.	Rather,	they	are	the	opposite:	the	ruthless	and	clever
optimization	of	the	wrong	thing.

The	twenty-first-century	shift	into	real-time	analytics	has	only	made	the
danger	of	metrics	more	intense.	Avinash	Kaushik,	digital	marketing
evangelist	at	Google,	warns	that	trying	to	get	website	users	to	see	as	many	ads
as	possible	naturally	devolves	into	trying	to	cram	sites	with	ads:	“When	you
are	paid	on	a	[cost	per	thousand	impressions]	basis	the	incentive	is	to	figure
out	how	to	show	the	most	possible	ads	on	every	page	[and]	ensure	the	visitor
sees	the	most	possible	pages	on	the	site.…	That	incentive	removes	a	focus
from	the	important	entity,	your	customer,	and	places	it	on	the	secondary
entity,	your	advertiser.”	The	website	might	gain	a	little	more	money	in	the
short	term,	but	ad-crammed	articles,	slow-loading	multi-page	slide	shows,
and	sensationalist	clickbait	headlines	will	drive	away	readers	in	the	long	run.
Kaushik’s	conclusion:	“Friends	don’t	let	friends	measure	Page	Views.	Ever.”

In	some	cases,	the	difference	between	a	model	and	the	real	world	is
literally	a	matter	of	life	and	death.	In	the	military	and	in	law	enforcement,	for
example,	repetitive,	rote	training	is	considered	a	key	means	for	instilling	line-
of-fire	skills.	The	goal	is	to	drill	certain	motions	and	tactics	to	the	point	that
they	become	totally	automatic.	But	when	overfitting	creeps	in,	it	can	prove
disastrous.	There	are	stories	of	police	officers	who	find	themselves,	for
instance,	taking	time	out	during	a	gunfight	to	put	their	spent	casings	in	their
pockets—good	etiquette	on	a	firing	range.	As	former	Army	Ranger	and	West
Point	psychology	professor	Dave	Grossman	writes,	“After	the	smoke	had
settled	in	many	real	gunfights,	officers	were	shocked	to	discover	empty	brass
in	their	pockets	with	no	memory	of	how	it	got	there.	On	several	occasions,
dead	cops	were	found	with	brass	in	their	hands,	dying	in	the	middle	of	an
administrative	procedure	that	had	been	drilled	into	them.”	Similarly,	the	FBI
was	forced	to	change	its	training	after	agents	were	found	reflexively	firing
two	shots	and	then	holstering	their	weapon—a	standard	cadence	in	training—
regardless	of	whether	their	shots	had	hit	the	target	and	whether	there	was	still

a	threat.	Mistakes	like	these	are	known	in	law	enforcement	and	the	military	as
“training	scars,”	and	they	reflect	the	fact	that	it’s	possible	to	overfit	one’s	own
preparation.	In	one	particularly	dramatic	case,	an	officer	instinctively	grabbed
the	gun	out	of	the	hands	of	an	assailant	and	then	instinctively	handed	it	right
back—just	as	he	had	done	time	and	time	again	with	his	trainers	in	practice.

Detecting	Overfitting:	Cross-Validation

Because	overfitting	presents	itself	initially	as	a	theory	that	perfectly	fits	the
available	data,	it	may	seem	insidiously	hard	to	detect.	How	can	we	expect	to
tell	the	difference	between	a	genuinely	good	model	and	one	that’s	overfitting?
In	an	educational	setting,	how	can	we	distinguish	between	a	class	of	students
excelling	at	the	subject	matter	and	a	class	merely	being	“taught	to	the	test”?
In	the	business	world,	how	can	we	tell	a	genuine	star	performer	from	an
employee	who	has	just	cannily	overfit	their	work	to	the	company’s	key
performance	indicators—or	to	the	boss’s	perception?

Teasing	apart	those	scenarios	is	indeed	challenging,	but	it	is	not
impossible.	Research	in	machine	learning	has	yielded	several	concrete
strategies	for	detecting	overfitting,	and	one	of	the	most	important	is	what’s
known	as	Cross-Validation.

Simply	put,	Cross-Validation	means	assessing	not	only	how	well	a	model
fits	the	data	it’s	given,	but	how	well	it	generalizes	to	data	it	hasn’t	seen.
Paradoxically,	this	may	involve	using	less	data.	In	the	marriage	example,	we
might	“hold	back,”	say,	two	points	at	random,	and	fit	our	models	only	to	the
other	eight.	We’d	then	take	those	two	test	points	and	use	them	to	gauge	how
well	our	various	functions	generalize	beyond	the	eight	“training”	points
they’ve	been	given.	The	two	held-back	points	function	as	canaries	in	the	coal
mine:	if	a	complex	model	nails	the	eight	training	points	but	wildly	misses	the
two	test	points,	it’s	a	good	bet	that	overfitting	is	at	work.

Aside	from	withholding	some	of	the	available	data	points,	it	is	also	useful
to	consider	testing	the	model	with	data	derived	from	some	other	form	of
evaluation	entirely.	As	we	have	seen,	the	use	of	proxy	metrics—taste	as	a
proxy	for	nutrition,	number	of	cases	solved	as	a	proxy	for	investigator
diligence—can	also	lead	to	overfitting.	In	these	cases,	we’ll	need	to	cross-
validate	the	primary	performance	measure	we’re	using	against	other	possible
measures.

In	schools,	for	example,	standardized	tests	offer	a	number	of	benefits,
including	a	distinct	economy	of	scale:	they	can	be	graded	cheaply	and	rapidly
by	the	thousands.	Alongside	such	tests,	however,	schools	could	randomly
assess	some	small	fraction	of	the	students—one	per	class,	say,	or	one	in	a
hundred—using	a	different	evaluation	method,	perhaps	something	like	an
essay	or	an	oral	exam.	(Since	only	a	few	students	would	be	tested	this	way,
having	this	secondary	method	scale	well	is	not	a	big	concern.)	The
standardized	tests	would	provide	immediate	feedback—you	could	have
students	take	a	short	computerized	exam	every	week	and	chart	the	class’s
progress	almost	in	real	time,	for	instance—while	the	secondary	data	points
would	serve	to	cross-validate:	to	make	sure	that	the	students	were	actually
acquiring	the	knowledge	that	the	standardized	test	is	meant	to	measure,	and
not	simply	getting	better	at	test-taking.	If	a	school’s	standardized	scores	rose
while	its	“nonstandardized”	performance	moved	in	the	opposite	direction,
administrators	would	have	a	clear	warning	sign	that	“teaching	to	the	test”	had
set	in,	and	the	pupils’	skills	were	beginning	to	overfit	the	mechanics	of	the
test	itself.

Cross-Validation	also	offers	a	suggestion	for	law	enforcement	and	military
personnel	looking	to	instill	good	reflexes	without	hammering	in	habits	from
the	training	process	itself.	Just	as	essays	and	oral	exams	can	cross-validate
standardized	tests,	so	occasional	unfamiliar	“cross-training”	assessments
might	be	used	to	measure	whether	reaction	time	and	shooting	accuracy	are
generalizing	to	unfamiliar	tasks.	If	they	aren’t,	then	that’s	a	strong	signal	to
change	the	training	regimen.	While	nothing	may	truly	prepare	one	for	actual
combat,	exercises	like	this	may	at	least	warn	in	advance	where	“training
scars”	are	likely	to	have	formed.

How	to	Combat	Overfitting:	Penalizing	Complexity

If	you	can’t	explain	it	simply,	you	don’t	understand	it	well	enough.
—ANONYMOUS

We’ve	seen	some	of	the	ways	that	overfitting	can	rear	its	head,	and	we’ve
looked	at	some	of	the	methods	to	detect	and	measure	it.	But	what	can	we
actually	do	to	alleviate	it?

From	a	statistics	viewpoint,	overfitting	is	a	symptom	of	being	too	sensitive
to	the	actual	data	we’ve	seen.	The	solution,	then,	is	straightforward:	we	must
balance	our	desire	to	find	a	good	fit	against	the	complexity	of	the	models	we

use	to	do	so.

One	way	to	choose	among	several	competing	models	is	the	Occam’s	razor
principle,	which	suggests	that,	all	things	being	equal,	the	simplest	possible
hypothesis	is	probably	the	correct	one.	Of	course,	things	are	rarely	completely
equal,	so	it’s	not	immediately	obvious	how	to	apply	something	like	Occam’s
razor	in	a	mathematical	context.	Grappling	with	this	challenge	in	the	1960s,
Russian	mathematician	Andrey	Tikhonov	proposed	one	answer:	introduce	an
additional	term	to	your	calculations	that	penalizes	more	complex	solutions.	If
we	introduce	a	complexity	penalty,	then	more	complex	models	need	to	do	not
merely	a	better	job	but	a	significantly	better	job	of	explaining	the	data	to
justify	their	greater	complexity.	Computer	scientists	refer	to	this	principle—
using	constraints	that	penalize	models	for	their	complexity—as
Regularization.

So	what	do	these	complexity	penalties	look	like?	One	algorithm,
discovered	in	1996	by	biostatistician	Robert	Tibshirani,	is	called	the	Lasso
and	uses	as	its	penalty	the	total	weight	of	the	different	factors	in	the	model.*
By	putting	this	downward	pressure	on	the	weights	of	the	factors,	the	Lasso
drives	as	many	of	them	as	possible	completely	to	zero.	Only	the	factors	that
have	a	big	impact	on	the	results	remain	in	the	equation—thus	potentially
transforming,	say,	an	overfitted	nine-factor	model	into	a	simpler,	more	robust
formula	with	just	a	couple	of	the	most	critical	factors.

Techniques	like	the	Lasso	are	now	ubiquitous	in	machine	learning,	but	the
same	kind	of	principle—a	penalty	for	complexity—also	appears	in	nature.
Living	organisms	get	a	certain	push	toward	simplicity	almost	automatically,
thanks	to	the	constraints	of	time,	memory,	energy,	and	attention.	The	burden
of	metabolism,	for	instance,	acts	as	a	brake	on	the	complexity	of	organisms,
introducing	a	caloric	penalty	for	overly	elaborate	machinery.	The	fact	that	the
human	brain	burns	about	a	fifth	of	humans’	total	daily	caloric	intake	is	a
testament	to	the	evolutionary	advantages	that	our	intellectual	abilities	provide
us	with:	the	brain’s	contributions	must	somehow	more	than	pay	for	that
sizable	fuel	bill.	On	the	other	hand,	we	can	also	infer	that	a	substantially	more
complex	brain	probably	didn’t	provide	sufficient	dividends,	evolutionarily
speaking.	We’re	as	brainy	as	we	have	needed	to	be,	but	not	extravagantly
more	so.

The	same	kind	of	process	is	also	believed	to	play	a	role	at	the	neural	level.

In	computer	science,	software	models	based	on	the	brain,	known	as	“artificial
neural	networks,”	can	learn	arbitrarily	complex	functions—they’re	even	more
flexible	than	our	nine-factor	model	above—but	precisely	because	of	this	very
flexibility	they	are	notoriously	vulnerable	to	overfitting.	Actual,	biological
neural	networks	sidestep	some	of	this	problem	because	they	need	to	trade	off
their	performance	against	the	costs	of	maintaining	it.	Neuroscientists	have
suggested,	for	instance,	that	brains	try	to	minimize	the	number	of	neurons	that
are	firing	at	any	given	moment—implementing	the	same	kind	of	downward
pressure	on	complexity	as	the	Lasso.

Language	forms	yet	another	natural	Lasso:	complexity	is	punished	by	the
labor	of	speaking	at	greater	length	and	the	taxing	of	our	listener’s	attention
span.	Business	plans	get	compressed	to	an	elevator	pitch;	life	advice	becomes
proverbial	wisdom	only	if	it	is	sufficiently	concise	and	catchy.	And	anything
that	needs	to	be	remembered	has	to	pass	through	the	inherent	Lasso	of
memory.

The	Upside	of	Heuristics

The	economist	Harry	Markowitz	won	the	1990	Nobel	Prize	in	Economics	for
developing	modern	portfolio	theory:	his	groundbreaking	“mean-variance
portfolio	optimization”	showed	how	an	investor	could	make	an	optimal
allocation	among	various	funds	and	assets	to	maximize	returns	at	a	given
level	of	risk.	So	when	it	came	time	to	invest	his	own	retirement	savings,	it
seems	like	Markowitz	should	have	been	the	one	person	perfectly	equipped	for
the	job.	What	did	he	decide	to	do?

I	should	have	computed	the	historical	covariances	of	the	asset	classes	and	drawn	an	efficient
frontier.	Instead,	I	visualized	my	grief	if	the	stock	market	went	way	up	and	I	wasn’t	in	it—or	if	it
went	way	down	and	I	was	completely	in	it.	My	intention	was	to	minimize	my	future	regret.	So	I
split	my	contributions	fifty-fifty	between	bonds	and	equities.

Why	in	the	world	would	he	do	that?	The	story	of	the	Nobel	Prize	winner
and	his	investment	strategy	could	be	presented	as	an	example	of	human
irrationality:	faced	with	the	complexity	of	real	life,	he	abandoned	the	rational
model	and	followed	a	simple	heuristic.	But	it’s	precisely	because	of	the
complexity	of	real	life	that	a	simple	heuristic	might	in	fact	be	the	rational
solution.

When	it	comes	to	portfolio	management,	it	turns	out	that	unless	you’re
highly	confident	in	the	information	you	have	about	the	markets,	you	may

actually	be	better	off	ignoring	that	information	altogether.	Applying
Markowitz’s	optimal	portfolio	allocation	scheme	requires	having	good
estimates	of	the	statistical	properties	of	different	investments.	An	error	in
those	estimates	can	result	in	very	different	asset	allocations,	potentially
increasing	risk.	In	contrast,	splitting	your	money	evenly	across	stocks	and
bonds	is	not	affected	at	all	by	what	data	you’ve	observed.	This	strategy
doesn’t	even	try	to	fit	itself	to	the	historical	performance	of	those	investment
types—so	there’s	no	way	it	can	overfit.

Of	course,	just	using	a	fifty-fifty	split	is	not	necessarily	the	complexity
sweet	spot,	but	there’s	something	to	be	said	for	it.	If	you	happen	to	know	the
expected	mean	and	expected	variance	of	a	set	of	investments,	then	use	mean-
variance	portfolio	optimization—the	optimal	algorithm	is	optimal	for	a
reason.	But	when	the	odds	of	estimating	them	all	correctly	are	low,	and	the
weight	that	the	model	puts	on	those	untrustworthy	quantities	is	high,	then	an
alarm	should	be	going	off	in	the	decision-making	process:	it’s	time	to
regularize.

Inspired	by	examples	like	Markowitz’s	retirement	savings,	psychologists
Gerd	Gigerenzer	and	Henry	Brighton	have	argued	that	the	decision-making
shortcuts	people	use	in	the	real	world	are	in	many	cases	exactly	the	kind	of
thinking	that	makes	for	good	decisions.	“In	contrast	to	the	widely	held	view
that	less	processing	reduces	accuracy,”	they	write,	“the	study	of	heuristics
shows	that	less	information,	computation,	and	time	can	in	fact	improve
accuracy.”	A	heuristic	that	favors	simpler	answers—with	fewer	factors,	or
less	computation—offers	precisely	these	“less	is	more”	effects.

Imposing	penalties	on	the	ultimate	complexity	of	a	model	is	not	the	only
way	to	alleviate	overfitting,	however.	You	can	also	nudge	a	model	toward
simplicity	by	controlling	the	speed	with	which	you	allow	it	to	adapt	to
incoming	data.	This	makes	the	study	of	overfitting	an	illuminating	guide	to
our	history—both	as	a	society	and	as	a	species.

The	Weight	of	History

Every	food	a	living	rat	has	eaten	has,	necessarily,	not	killed	it.
—SAMUEL	REVUSKY	AND	ERWIN	BEDARF,	“ASSOCIATION	OF	ILLNESS	WITH	PRIOR	INGESTION

OF	NOVEL	FOODS”

The	soy	milk	market	in	the	United	States	more	than	quadrupled	from	the	mid-
1990s	to	2013.	But	by	the	end	of	2013,	according	to	news	headlines,	it

already	seemed	to	be	a	thing	of	the	past,	a	distant	second	place	to	almond
milk.	As	food	and	beverage	researcher	Larry	Finkel	told	Bloomberg
Businessweek:	“Nuts	are	trendy	now.	Soy	sounds	more	like	old-fashioned
health	food.”	The	Silk	company,	famous	for	popularizing	soy	milk	(as	the
name	implies),	reported	in	late	2013	that	its	almond	milk	products	had	grown
by	more	than	50%	in	the	previous	quarter	alone.	Meanwhile,	in	other
beverage	news,	the	leading	coconut	water	brand,	Vita	Coco,	reported	in	2014
that	its	sales	had	doubled	since	2011—and	had	increased	an	astounding	three-
hundred-fold	since	2004.	As	the	New	York	Times	put	it,	“coconut	water	seems
to	have	jumped	from	invisible	to	unavoidable	without	a	pause	in	the	realm	of
the	vaguely	familiar.”	Meanwhile,	the	kale	market	grew	by	40%	in	2013
alone.	The	biggest	purchaser	of	kale	the	year	before	had	been	Pizza	Hut,
which	put	it	in	their	salad	bars—as	decoration.

Some	of	the	most	fundamental	domains	of	human	life,	such	as	the
question	of	what	we	should	put	in	our	bodies,	seem	curiously	to	be	the	ones
most	dominated	by	short-lived	fads.	Part	of	what	enables	these	fads	to	take
the	world	by	storm	is	how	quickly	our	culture	can	change.	Information	now
flows	through	society	faster	than	ever	before,	while	global	supply	chains
enable	consumers	to	rapidly	change	their	buying	habits	en	masse	(and
marketing	encourages	them	to	do	so).	If	some	particular	study	happens	to
suggest	a	health	benefit	from,	say,	star	anise,	it	can	be	all	over	the
blogosphere	within	the	week,	on	television	the	week	after	that,	and	in
seemingly	every	supermarket	in	six	months,	with	dedicated	star	anise
cookbooks	soon	rolling	off	the	presses.	This	breathtaking	speed	is	both	a
blessing	and	a	curse.

In	contrast,	if	we	look	at	the	way	organisms—including	humans—evolve,
we	notice	something	intriguing:	change	happens	slowly.	This	means	that	the
properties	of	modern-day	organisms	are	shaped	not	only	by	their	present
environments,	but	also	by	their	history.	For	example,	the	oddly	cross-wired
arrangement	of	our	nervous	system	(the	left	side	of	our	body	controlled	by	the
right	side	of	our	brain	and	vice	versa)	reflects	the	evolutionary	history	of
vertebrates.	This	phenomenon,	called	“decussation,”	is	theorized	to	have
arisen	at	a	point	in	evolution	when	early	vertebrates’	bodies	twisted	180
degrees	with	respect	to	their	heads;	whereas	the	nerve	cords	of	invertebrates
such	as	lobsters	and	earthworms	run	on	the	“belly”	side	of	the	animal,
vertebrates	have	their	nerve	cords	along	the	spine	instead.

The	human	ear	offers	another	example.	Viewed	from	a	functional
perspective,	it	is	a	system	for	translating	sound	waves	into	electrical	signals
by	way	of	amplification	via	three	bones:	the	malleus,	incus,	and	stapes.	This
amplification	system	is	impressive—but	the	specifics	of	how	it	works	have	a
lot	to	do	with	historical	constraints.	Reptiles,	it	turns	out,	have	just	a	single
bone	in	their	ear,	but	additional	bones	in	the	jaw	that	mammals	lack.	Those
jawbones	were	apparently	repurposed	in	the	mammalian	ear.	So	the	exact
form	and	configuration	of	our	ear	anatomy	reflects	our	evolutionary	history	at
least	as	much	as	it	does	the	auditory	problem	being	solved.

The	concept	of	overfitting	gives	us	a	way	of	seeing	the	virtue	in	such
evolutionary	baggage.	Though	crossed-over	nerve	fibers	and	repurposed
jawbones	may	seem	like	suboptimal	arrangements,	we	don’t	necessarily	want
evolution	to	fully	optimize	an	organism	to	every	shift	in	its	environmental
niche—or,	at	least,	we	should	recognize	that	doing	so	would	make	it
extremely	sensitive	to	further	environmental	changes.	Having	to	make	use	of
existing	materials,	on	the	other	hand,	imposes	a	kind	of	useful	restraint.	It
makes	it	harder	to	induce	drastic	changes	in	the	structure	of	organisms,	harder
to	overfit.	As	a	species,	being	constrained	by	the	past	makes	us	less	perfectly
adjusted	to	the	present	we	know	but	helps	keep	us	robust	for	the	future	we
don’t.

A	similar	insight	might	help	us	resist	the	quick-moving	fads	of	human
society.	When	it	comes	to	culture,	tradition	plays	the	role	of	the	evolutionary
constraints.	A	bit	of	conservatism,	a	certain	bias	in	favor	of	history,	can	buffer
us	against	the	boom-and-bust	cycle	of	fads.	That	doesn’t	mean	we	ought	to
ignore	the	latest	data	either,	of	course.	Jump	toward	the	bandwagon,	by	all
means—but	not	necessarily	on	it.

In	machine	learning,	the	advantages	of	moving	slowly	emerge	most
concretely	in	a	regularization	technique	known	as	Early	Stopping.	When	we
looked	at	the	German	marriage	survey	data	at	the	beginning	of	the	chapter,	we
went	straight	to	examining	the	best-fitted	one-,	two-,	and	nine-factor	models.
In	many	situations,	however,	tuning	the	parameters	to	find	the	best	possible	fit
for	given	data	is	a	process	in	and	of	itself.	What	happens	if	we	stop	that
process	early	and	simply	don’t	allow	a	model	the	time	to	become	too
complex?	Again,	what	might	seem	at	first	blush	like	being	halfhearted	or
unthorough	emerges,	instead,	as	an	important	strategy	in	its	own	right.

Many	prediction	algorithms,	for	instance,	start	out	by	searching	for	the
single	most	important	factor	rather	than	jumping	to	a	multi-factor	model.
Only	after	finding	that	first	factor	do	they	look	for	the	next	most	important
factor	to	add	to	the	model,	then	the	next,	and	so	on.	Their	models	can
therefore	be	kept	from	becoming	overly	complex	simply	by	stopping	the
process	short,	before	overfitting	has	had	a	chance	to	creep	in.	A	related
approach	to	calculating	predictions	considers	one	data	point	at	a	time,	with
the	model	tweaked	to	account	for	each	new	point	before	more	points	are
added;	there,	too,	the	complexity	of	the	model	increases	gradually,	so
stopping	the	process	short	can	help	keep	it	from	overfitting.

This	kind	of	setup—where	more	time	means	more	complexity—
characterizes	a	lot	of	human	endeavors.	Giving	yourself	more	time	to	decide
about	something	does	not	necessarily	mean	that	you’ll	make	a	better	decision.
But	it	does	guarantee	that	you’ll	end	up	considering	more	factors,	more
hypotheticals,	more	pros	and	cons,	and	thus	risk	overfitting.

Tom	had	exactly	this	experience	when	he	became	a	professor.	His	first
semester,	teaching	his	first	class	ever,	he	spent	a	huge	amount	of	time
perfecting	his	lectures—more	than	ten	hours	of	preparation	for	every	hour	of
class.	His	second	semester,	teaching	a	different	class,	he	wasn’t	able	to	put	in
as	much	time,	and	worried	that	it	would	be	a	disaster.	But	a	strange	thing
happened:	the	students	liked	the	second	class.	In	fact,	they	liked	it	more	than
the	first	one.	Those	extra	hours,	it	turned	out,	had	been	spent	nailing	down
nitty-gritty	details	that	only	confused	the	students,	and	wound	up	getting	cut
from	the	lectures	the	next	time	Tom	taught	the	class.	The	underlying	issue,
Tom	eventually	realized,	was	that	he’d	been	using	his	own	taste	and	judgment
as	a	kind	of	proxy	metric	for	his	students’.	This	proxy	metric	worked
reasonably	well	as	an	approximation,	but	it	wasn’t	worth	overfitting—which
explained	why	spending	extra	hours	painstakingly	“perfecting”	all	the	slides
had	been	counterproductive.

The	effectiveness	of	regularization	in	all	kinds	of	machine-learning	tasks
suggests	that	we	can	make	better	decisions	by	deliberately	thinking	and	doing
less.	If	the	factors	we	come	up	with	first	are	likely	to	be	the	most	important
ones,	then	beyond	a	certain	point	thinking	more	about	a	problem	is	not	only
going	to	be	a	waste	of	time	and	effort—it	will	lead	us	to	worse	solutions.
Early	Stopping	provides	the	foundation	for	a	reasoned	argument	against
reasoning,	the	thinking	person’s	case	against	thought.	But	turning	this	into

practical	advice	requires	answering	one	more	question:	when	should	we	stop
thinking?

When	to	Think	Less

As	with	all	issues	involving	overfitting,	how	early	to	stop	depends	on	the	gap
between	what	you	can	measure	and	what	really	matters.	If	you	have	all	the
facts,	they’re	free	of	all	error	and	uncertainty,	and	you	can	directly	assess
whatever	is	important	to	you,	then	don’t	stop	early.	Think	long	and	hard:	the
complexity	and	effort	are	appropriate.

But	that’s	almost	never	the	case.	If	you	have	high	uncertainty	and	limited
data,	then	do	stop	early	by	all	means.	If	you	don’t	have	a	clear	read	on	how
your	work	will	be	evaluated,	and	by	whom,	then	it’s	not	worth	the	extra	time
to	make	it	perfect	with	respect	to	your	own	(or	anyone	else’s)	idiosyncratic
guess	at	what	perfection	might	be.	The	greater	the	uncertainty,	the	bigger	the
gap	between	what	you	can	measure	and	what	matters,	the	more	you	should
watch	out	for	overfitting—that	is,	the	more	you	should	prefer	simplicity,	and
the	earlier	you	should	stop.

When	you’re	truly	in	the	dark,	the	best-laid	plans	will	be	the	simplest.
When	our	expectations	are	uncertain	and	the	data	are	noisy,	the	best	bet	is	to
paint	with	a	broad	brush,	to	think	in	broad	strokes.	Sometimes	literally.	As
entrepreneurs	Jason	Fried	and	David	Heinemeier	Hansson	explain,	the	further
ahead	they	need	to	brainstorm,	the	thicker	the	pen	they	use—a	clever	form	of
simplification	by	stroke	size:

When	we	start	designing	something,	we	sketch	out	ideas	with	a	big,	thick	Sharpie	marker,	instead
of	a	ball-point	pen.	Why?	Pen	points	are	too	fine.	They’re	too	high-resolution.	They	encourage
you	to	worry	about	things	that	you	shouldn’t	worry	about	yet,	like	perfecting	the	shading	or
whether	to	use	a	dotted	or	dashed	line.	You	end	up	focusing	on	things	that	should	still	be	out	of
focus.

A	Sharpie	makes	it	impossible	to	drill	down	that	deep.	You	can	only	draw	shapes,	lines,	and
boxes.	That’s	good.	The	big	picture	is	all	you	should	be	worrying	about	in	the	beginning.

As	McGill’s	Henry	Mintzberg	puts	it,	“What	would	happen	if	we	started	from
the	premise	that	we	can’t	measure	what	matters	and	go	from	there?	Then
instead	of	measurement	we’d	have	to	use	something	very	scary:	it’s	called
judgment.”

The	upshot	of	Early	Stopping	is	that	sometimes	it’s	not	a	matter	of
choosing	between	being	rational	and	going	with	our	first	instinct.	Going	with

our	first	instinct	can	be	the	rational	solution.	The	more	complex,	unstable,	and
uncertain	the	decision,	the	more	rational	an	approach	that	is.

To	return	to	Darwin,	his	problem	of	deciding	whether	to	propose	could
probably	have	been	resolved	based	on	just	the	first	few	pros	and	cons	he
identified,	with	the	subsequent	ones	adding	to	the	time	and	anxiety	expended
on	the	decision	without	necessarily	aiding	its	resolution	(and	in	all	likelihood
impeding	it).	What	seemed	to	make	up	his	mind	was	the	thought	that	“it	is
intolerable	to	think	of	spending	one’s	whole	life	like	a	neuter	bee,	working,
working,	&	nothing	after	all.”	Children	and	companionship—the	very	first
points	he	mentioned—were	precisely	those	that	ultimately	swayed	him	in
favor	of	marriage.	His	book	budget	was	a	distraction.

Before	we	get	too	critical	of	Darwin,	however,	painting	him	as	an
inveterate	overthinker,	it’s	worth	taking	a	second	look	at	this	page	from	his
diary.	Seeing	it	in	facsimile	shows	something	fascinating.	Darwin	was	no
Franklin,	adding	assorted	considerations	for	days.	Despite	the	seriousness
with	which	he	approached	this	life-changing	choice,	Darwin	made	up	his
mind	exactly	when	his	notes	reached	the	bottom	of	the	diary	sheet.	He	was
regularizing	to	the	page.	This	is	reminiscent	of	both	Early	Stopping	and	the
Lasso:	anything	that	doesn’t	make	the	page	doesn’t	make	the	decision.

His	mind	made	up	to	marry,	Darwin	immediately	went	on	to	overthink	the
timing.	“When?	Soon	or	Late,”	he	wrote	above	another	list	of	pros	and	cons,
considering	everything	from	happiness	to	expenses	to	“awkwardness”	to	his
long-standing	desire	to	travel	in	a	hot	air	balloon	and/or	to	Wales.	But	by	the
end	of	the	page	he	resolved	to	“Never	mind,	trust	to	chance”—and	the	result,
within	several	months’	time,	was	a	proposal	to	Emma	Wedgwood,	the	start	of
a	fulfilling	partnership	and	a	happy	family	life.

*For	the	mathematically	inclined,	that’s	the	sum	of	the	absolute	values	of	the	variables’	coefficients.

	

8			Relaxation
Let	It	Slide

In	2010	Meghan	Bellows	was	working	on	her	PhD	in	chemical	engineering	at
Princeton	by	day	and	planning	her	wedding	by	night.	Her	research	revolved
around	finding	the	right	places	to	put	amino	acids	in	a	protein	chain	to	yield	a
molecule	with	particular	characteristics.	(“If	you	maximize	the	binding	energy
of	two	proteins	then	you	can	successfully	design	a	peptidic	inhibitor	of	some
biological	function	so	you	can	actually	inhibit	a	disease’s	progress.”)	On	the
nuptial	front,	she	was	stuck	on	the	problem	of	seating.

There	was	a	group	of	nine	college	friends,	and	Bellows	agonized	over	who
else	to	throw	into	the	midst	of	such	a	mini-reunion	to	make	a	table	of	ten.
Even	worse,	she’d	counted	up	eleven	close	relatives.	Who	would	get	the	boot
from	the	honored	parents’	table,	and	how	could	she	explain	it	to	them?	And
what	about	folks	like	her	childhood	neighbors	and	babysitter,	or	her	parents’
work	colleagues,	who	didn’t	really	know	anyone	at	the	wedding	at	all?

The	problem	seemed	every	bit	as	hard	as	the	protein	problem	she	was
working	on	at	the	lab.	Then	it	hit	her.	It	was	the	problem	she	was	working	on
at	the	lab.	One	evening,	as	she	stared	at	her	seating	charts,	“I	realized	that
there	was	literally	a	one-to-one	correlation	between	the	amino	acids	and
proteins	in	my	PhD	thesis	and	people	sitting	at	tables	at	my	wedding.”
Bellows	called	out	to	her	fiancé	for	a	piece	of	paper	and	began	scribbling
equations.	Amino	acids	became	guests,	binding	energies	became
relationships,	and	the	molecules’	so-called	nearest-neighbor	interactions
became—well—nearest-neighbor	interactions.	She	could	use	the	algorithms
from	her	research	to	solve	her	own	wedding.

Bellows	worked	out	a	way	to	numerically	define	the	strength	of	the
relationships	among	all	the	guests.	If	a	particular	pair	of	people	didn’t	know
one	another	they	got	a	0,	if	they	did	they	got	a	1,	and	if	they	were	a	couple
they	got	a	50.	(The	sister	of	the	bride	got	to	give	a	score	of	10	to	all	the
people	she	wanted	to	sit	with,	as	a	special	prerogative.)	Bellows	then
specified	a	few	constraints:	the	maximum	table	capacity,	and	a	minimum
score	necessary	for	each	table,	so	that	no	one	table	became	the	awkward

“miscellaneous”	group	full	of	strangers.	She	also	codified	the	program’s	goal:
to	maximize	the	relationship	scores	between	the	guests	and	their	tablemates.

There	were	107	people	at	the	wedding	and	11	tables,	which	could
accommodate	ten	people	each.	This	means	there	were	about	11107	possible
seating	plans:	that’s	a	112-digit	number,	more	than	200	billion	googols,	a
figure	that	dwarfs	the	(merely	80-digit)	number	of	atoms	in	the	observable
universe.	Bellows	submitted	the	job	to	her	lab	computer	on	Saturday	evening
and	let	it	churn.	When	she	came	in	on	Monday	morning,	it	was	still	running;
she	had	it	spit	out	the	best	assignment	it	had	found	so	far	and	put	it	back	onto
protein	design.

Even	with	a	high-powered	lab	computer	cluster	and	a	full	thirty-six	hours
of	processing	time,	there	was	no	way	for	the	program	to	evaluate	more	than	a
tiny	fraction	of	the	potential	seating	arrangements.	The	odds	are	that	the	truly
optimal	solution,	the	one	that	would	have	earned	the	very	highest	score,	never
came	up	in	its	permutations.	Still,	Bellows	was	pleased	with	the	computer’s
results.	“It	identified	relationships	that	we	were	forgetting	about,”	she	says,
offering	delightful,	unconventional	possibilities	that	the	human	planners
hadn’t	even	considered.	For	instance,	it	proposed	removing	her	parents	from
the	family	table,	putting	them	instead	with	old	friends	they	hadn’t	seen	for
years.	Its	final	recommendation	was	an	arrangement	that	all	parties	agreed
was	a	hit—although	the	mother	of	the	bride	couldn’t	resist	making	just	a	few
manual	tweaks.

The	fact	that	all	the	computing	power	of	a	lab	at	Princeton	couldn’t	find
the	perfect	seating	plan	might	seem	surprising.	In	most	of	the	domains	we’ve
discussed	so	far,	straightforward	algorithms	could	guarantee	optimal
solutions.	But	as	computer	scientists	have	discovered	over	the	past	few
decades,	there	are	entire	classes	of	problems	where	a	perfect	solution	is
essentially	unreachable,	no	matter	how	fast	we	make	our	computers	or	how
cleverly	we	program	them.	In	fact,	no	one	understands	as	well	as	a	computer
scientist	that	in	the	face	of	a	seemingly	unmanageable	challenge,	you	should
neither	toil	forever	nor	give	up,	but—as	we’ll	see—try	a	third	thing	entirely.

The	Difficulty	of	Optimization

Before	leading	the	country	through	the	American	Civil	War,	before	drafting
the	Emancipation	Proclamation	or	delivering	the	Gettysburg	Address,
Abraham	Lincoln	worked	as	a	“prairie	lawyer”	in	Springfield,	Illinois,

traveling	the	Eighth	Judicial	Circuit	twice	a	year	for	sixteen	years.	Being	a
circuit	lawyer	meant	literally	making	a	circuit—moving	through	towns	in
fourteen	different	counties	to	try	cases,	riding	hundreds	of	miles	over	many
weeks.	Planning	these	circuits	raised	a	natural	challenge:	how	to	visit	all	the
necessary	towns	while	covering	as	few	miles	as	possible	and	without	going	to
any	town	twice.

This	is	an	instance	of	what’s	known	to	mathematicians	and	computer
scientists	as	a	“constrained	optimization”	problem:	how	to	find	the	single	best
arrangement	of	a	set	of	variables,	given	particular	rules	and	a	scorekeeping
measure.	In	fact,	it’s	the	most	famous	optimization	problem	of	them	all.	If	it
had	been	studied	in	the	nineteenth	century	it	might	have	become	forever
known	as	“the	prairie	lawyer	problem,”	and	if	it	had	first	come	up	in	the
twenty-first	century	it	might	have	been	nicknamed	“the	delivery	drone
problem.”	But	like	the	secretary	problem,	it	emerged	in	the	mid-twentieth
century,	a	period	unmistakably	evoked	by	its	canonical	name:	“the	traveling
salesman	problem.”

The	problem	of	route	planning	didn’t	get	the	attention	of	the	mathematics
community	until	the	1930s,	but	then	it	did	so	with	a	vengeance.
Mathematician	Karl	Menger	spoke	of	“the	postal	messenger	problem”	in
1930,	noting	that	no	easier	solution	was	known	than	simply	trying	out	every
possibility	in	turn.	Hassler	Whitney	posed	the	problem	in	a	1934	talk	at
Princeton,	where	it	lodged	firmly	in	the	brain	of	fellow	mathematician	Merrill
Flood	(who,	you	might	recall	from	chapter	1,	is	also	credited	with	circulating
the	first	solution	to	the	secretary	problem).	When	Flood	moved	to	California
in	the	1940s	he	spread	it	in	turn	to	his	colleagues	at	the	RAND	Institute,	and
the	problem’s	iconic	name	first	appeared	in	print	in	a	1949	paper	by
mathematician	Julia	Robinson.	As	the	problem	swept	through	mathematical
circles,	it	grew	in	notoriety.	Many	of	the	greatest	minds	of	the	time	obsessed
over	it,	and	no	one	seemed	able	to	make	real	headway.

In	the	traveling	salesman	problem,	the	question	isn’t	whether	a	computer
(or	a	mathematician)	could	find	the	shortest	route:	theoretically,	one	can
simply	crank	out	a	list	of	all	the	possibilities	and	measure	each	one.	Rather,
the	issue	is	that	as	the	number	of	towns	grows,	the	list	of	possible	routes
connecting	them	explodes.	A	route	is	just	an	ordering	of	the	towns,	so	trying
them	all	by	brute	force	is	the	dreaded	O(n!)	“factorial	time”—the
computational	equivalent	of	sorting	a	deck	of	cards	by	throwing	them	in	the

air	until	they	happen	to	land	in	order.

The	question	is:	is	there	any	hope	of	doing	better?

Decades	of	work	did	little	to	tame	the	traveling	salesman	problem.	Flood,
for	instance,	wrote	in	1956,	more	than	twenty	years	after	first	encountering	it:
“It	seems	very	likely	that	quite	a	different	approach	from	any	yet	used	may	be
required	for	successful	treatment	of	the	problem.	In	fact,	there	may	well	be	no
general	method	for	treating	the	problem	and	impossibility	results	would	also
be	valuable.”	Another	decade	later,	the	mood	was	only	more	grim.	“I
conjecture,”	wrote	Jack	Edmonds,	“that	there	is	no	good	algorithm	for	the
traveling	salesman	problem.”

These	words	would	prove	prophetic.

Defining	Difficulty

In	the	mid-1960s,	Edmonds,	at	the	National	Institute	of	Standards	and
Technology,	along	with	Alan	Cobham	of	IBM,	developed	a	working
definition	for	what	makes	a	problem	feasible	to	solve	or	not.	They	asserted
what’s	now	known	as	the	Cobham–Edmonds	thesis:	an	algorithm	should	be
considered	“efficient”	if	it	runs	in	what’s	called	“polynomial	time”—that	is,
O(n2),	O(n3),	or	in	fact	n	to	the	power	of	any	number	at	all.	A	problem,	in
turn,	is	considered	“tractable”	if	we	know	how	to	solve	it	using	an	efficient
algorithm.	A	problem	we	don’t	know	how	to	solve	in	polynomial	time,	on	the
other	hand,	is	considered	“intractable.”	And	at	anything	but	the	smallest
scales,	intractable	problems	are	beyond	the	reach	of	solution	by	computers,	no
matter	how	powerful.*

This	amounts	to	what	is	arguably	the	central	insight	of	computer	science.
It’s	possible	to	quantify	the	difficulty	of	a	problem.	And	some	problems	are
just	…	hard.

Where	does	this	leave	the	traveling	salesman	problem?	Curiously	enough,
we	are	still	not	quite	sure.	In	1972,	Berkeley’s	Richard	Karp	demonstrated
that	the	traveling	salesman	problem	is	linked	to	a	controversially	borderline
class	of	problems	that	have	not	yet	been	definitively	proven	to	be	either
efficiently	solvable	or	not.	But	so	far	there	have	been	no	efficient	solutions
found	for	any	of	those	problems—making	them	effectively	intractable—and
most	computer	scientists	believe	that	there	aren’t	any	to	be	found.	So	the
“impossibility	result”	for	the	traveling	salesman	problem	that	Flood	imagined

in	the	1950s	is	likely	to	be	its	ultimate	fate.	What’s	more,	many	other
optimization	problems—with	implications	for	everything	from	political
strategy	to	public	health	to	fire	safety—are	similarly	intractable.

But	for	the	computer	scientists	who	wrestle	with	such	problems,	this
verdict	isn’t	the	end	of	the	story.	Instead,	it’s	more	like	a	call	to	arms.	Having
determined	a	problem	to	be	intractable,	you	can’t	just	throw	up	your	hands.
As	scheduling	expert	Jan	Karel	Lenstra	told	us,	“When	the	problem	is	hard,	it
doesn’t	mean	that	you	can	forget	about	it,	it	means	that	it’s	just	in	a	different
status.	It’s	a	serious	enemy,	but	you	still	have	to	fight	it.”	And	this	is	where
the	field	figured	out	something	invaluable,	something	we	can	all	learn	from:
how	to	best	approach	problems	whose	optimal	answers	are	out	of	reach.	How
to	relax.

Just	Relax

The	perfect	is	the	enemy	of	the	good.
—VOLTAIRE

When	somebody	tells	you	to	relax,	it’s	probably	because	you’re	uptight—
making	a	bigger	deal	of	things	than	you	should.	When	computer	scientists	are
up	against	a	formidable	challenge,	their	minds	also	turn	to	relaxation,	as	they
pass	around	books	like	An	Introduction	to	Relaxation	Methods	or	Discrete
Relaxation	Techniques.	But	they	don’t	relax	themselves;	they	relax	the
problem.

One	of	the	simplest	forms	of	relaxation	in	computer	science	is	known	as
Constraint	Relaxation.	In	this	technique,	researchers	remove	some	of	the
problem’s	constraints	and	set	about	solving	the	problem	they	wish	they	had.
Then,	after	they’ve	made	a	certain	amount	of	headway,	they	try	to	add	the
constraints	back	in.	That	is,	they	make	the	problem	temporarily	easier	to
handle	before	bringing	it	back	to	reality.

For	instance,	you	can	relax	the	traveling	salesman	problem	by	letting	the
salesman	visit	the	same	town	more	than	once,	and	letting	him	retrace	his	steps
for	free.	Finding	the	shortest	route	under	these	looser	rules	produces	what’s
called	the	“minimum	spanning	tree.”	(If	you	prefer,	you	can	also	think	of	the
minimum	spanning	tree	as	the	fewest	miles	of	road	needed	to	connect	every
town	to	at	least	one	other	town.	The	shortest	traveling	salesman	route	and	the
minimum	spanning	tree	for	Lincoln’s	judicial	circuit	are	shown	below.)	As	it

turns	out,	solving	this	looser	problem	takes	a	computer	essentially	no	time	at
all.	And	while	the	minimum	spanning	tree	doesn’t	necessarily	lead	straight	to
the	solution	of	the	real	problem,	it	is	quite	useful	all	the	same.	For	one	thing,
the	spanning	tree,	with	its	free	backtracking,	will	never	be	any	longer	than	the
real	solution,	which	has	to	follow	all	the	rules.	Therefore,	we	can	use	the
relaxed	problem—the	fantasy—as	a	lower	bound	on	the	reality.	If	we
calculate	that	the	spanning	tree	distance	for	a	particular	set	of	towns	is	100
miles,	we	can	be	sure	the	traveling	salesman	distance	will	be	no	less	than	that.
And	if	we	find,	say,	a	110-mile	route,	we	can	be	certain	it	is	at	most	10%
longer	than	the	best	solution.	Thus	we	can	get	a	grasp	of	how	close	we	are	to
the	real	answer	even	without	knowing	what	it	is.

Figure	8.1	The	shortest	traveling	salesman	route	(top)	and	minimum	spanning	tree	(bottom)	for
Lincoln’s	1855	judicial	circuit.

Even	better,	in	the	traveling	salesman	problem	it	turns	out	that	the
minimum	spanning	tree	is	actually	one	of	the	best	starting	points	from	which
to	begin	a	search	for	the	real	solution.	Approaches	like	these	have	allowed
even	one	of	the	largest	traveling	salesman	problems	imaginable—finding	the
shortest	route	that	visits	every	single	town	on	Earth—to	be	solved	to	within
less	than	0.05%	of	the	(unknown)	optimal	solution.

Though	most	of	us	haven’t	encountered	the	formal	algorithmic	version	of
Constraint	Relaxation,	its	basic	message	is	familiar	to	almost	anyone	who’s
dreamed	big	about	life	questions.	What	would	you	do	if	you	weren’t	afraid?
reads	a	mantra	you	might	have	seen	in	a	guidance	counselor’s	office	or	heard
at	a	motivational	seminar.	What	would	you	do	if	you	could	not	fail?	Similarly,
when	considering	questions	of	profession	or	career,	we	ask	questions	like
What	would	you	do	if	you	won	the	lottery?	or,	taking	a	different	tack,	What
would	you	do	if	all	jobs	paid	the	same?	The	idea	behind	such	thought
exercises	is	exactly	that	of	Constraint	Relaxation:	to	make	the	intractable
tractable,	to	make	progress	in	an	idealized	world	that	can	be	ported	back	to
the	real	one.	If	you	can’t	solve	the	problem	in	front	of	you,	solve	an	easier
version	of	it—and	then	see	if	that	solution	offers	you	a	starting	point,	or	a
beacon,	in	the	full-blown	problem.	Maybe	it	does.

What	relaxation	cannot	do	is	offer	you	a	guaranteed	shortcut	to	the	perfect
answer.	But	computer	science	can	also	quantify	the	tradeoff	that	relaxation
offers	between	time	and	solution	quality.	In	many	cases,	the	ratio	is	dramatic,
a	no-brainer—for	instance,	an	answer	at	least	half	as	good	as	the	perfect
solution	in	a	quadrillionth	of	the	time.	The	message	is	simple	but	profound:	if
we’re	willing	to	accept	solutions	that	are	close	enough,	then	even	some	of	the
hairiest	problems	around	can	be	tamed	with	the	right	techniques.

Temporarily	removing	constraints,	as	in	the	minimum	spanning	tree	and
the	“what	if	you	won	the	lottery?”	examples,	is	the	most	straightforward	form
of	algorithmic	relaxation.	But	there	are	also	two	other,	subtler	types	of
relaxation	that	repeatedly	show	up	in	optimization	research.	They	have
proven	instrumental	in	solving	some	of	the	field’s	most	important	intractable
problems,	with	direct	real-world	implications	for	everything	from	city
planning	and	disease	control	to	the	cultivation	of	athletic	rivalries.

Uncountably	Many	Shades	of	Gray:	Continuous	Relaxation

The	traveling	salesman	problem,	like	Meghan	Bellows’s	search	for	the	best

seating	arrangement,	is	a	particular	kind	of	optimization	problem	known	as
“discrete	optimization”—that	is,	there’s	no	smooth	continuum	among	its
solutions.	The	salesman	goes	either	to	this	town	or	to	that	one;	you’re	either	at
table	five	or	at	table	six.	There	are	no	shades	of	gray	in	between.

Such	discrete	optimization	problems	are	all	around	us.	In	cities,	for
example,	planners	try	to	place	fire	trucks	so	that	every	house	can	be	reached
within	a	fixed	amount	of	time—say,	five	minutes.	Mathematically,	each	fire
truck	“covers”	whatever	houses	can	be	reached	within	five	minutes	from	its
location.	The	challenge	is	finding	the	minimal	set	of	locations	such	that	all
houses	are	covered.	“The	whole	[fire	and	emergency]	profession	has	just
adopted	this	coverage	model,	and	it’s	great,”	says	University	of	Wisconsin–
Madison’s	Laura	Albert	McLay.	“It’s	a	nice,	clear	thing	we	can	model.”	But
since	a	fire	truck	either	exists	at	a	location	or	it	doesn’t,	calculating	that
minimal	set	involves	discrete	optimization.	And	as	McLay	notes,	“that’s
where	a	lot	of	problems	become	computationally	hard,	when	you	can’t	do	half
of	this	and	half	of	that.”

The	challenge	of	discrete	optimization	shows	up	in	social	settings,	too.
Imagine	you	wanted	to	throw	a	party	for	all	your	friends	and	acquaintances,
but	didn’t	want	to	pay	for	all	the	envelopes	and	stamps	that	so	many
invitations	would	entail.	You	could	instead	decide	to	mail	invitations	to	a	few
well-connected	friends,	and	tell	them	to	“bring	everyone	we	know.”	What
you’d	ideally	want	to	find,	then,	is	the	smallest	subgroup	of	your	friends	that
knows	all	the	rest	of	your	social	circle—which	would	let	you	lick	the	fewest
envelopes	and	still	get	everyone	to	attend.	Granted,	this	might	sound	like	a	lot
of	work	just	to	save	a	few	bucks	on	stamps,	but	it’s	exactly	the	kind	of
problem	that	political	campaign	managers	and	corporate	marketers	want	to
solve	to	spread	their	message	most	effectively.	And	it’s	also	the	problem	that
epidemiologists	study	in	thinking	about,	say,	the	minimum	number	of	people
in	a	population—and	which	people—to	vaccinate	to	protect	a	society	from
communicable	diseases.

As	we	noted,	discrete	optimization’s	commitment	to	whole	numbers—a
fire	department	can	have	one	engine	in	the	garage,	or	two,	or	three,	but	not
two	and	a	half	fire	trucks,	or	π	of	them—is	what	makes	discrete	optimization
problems	so	hard	to	solve.	In	fact,	both	the	fire	truck	problem	and	the	party
invitation	problem	are	intractable:	no	general	efficient	solution	for	them
exists.	But,	as	it	turns	out,	there	do	exist	a	number	of	efficient	strategies	for

solving	the	continuous	versions	of	these	problems,	where	any	fraction	or
decimal	is	a	possible	solution.	Researchers	confronted	with	a	discrete
optimization	problem	might	gaze	at	those	strategies	enviously—but	they	also
can	do	more	than	that.	They	can	try	to	relax	their	discrete	problem	into	a
continuous	one	and	see	what	happens.

In	the	case	of	the	invitation	problem,	relaxing	it	from	discrete	to
continuous	optimization	means	that	a	solution	may	tell	us	to	send	someone	a
quarter	of	an	invitation,	and	someone	else	two-thirds	of	one.	What	does	that
even	mean?	It	obviously	can’t	be	the	answer	to	the	original	question,	but,	like
the	minimum	spanning	tree,	it	does	give	us	a	place	to	start.	With	the	relaxed
solution	in	hand,	we	can	decide	how	to	translate	those	fractions	back	into
reality.	We	could,	for	example,	choose	to	simply	round	them	as	necessary,
sending	invitations	to	everyone	who	got	“half	an	invitation”	or	more	in	the
relaxed	scenario.	We	could	also	interpret	these	fractions	as	probabilities—for
instance,	flipping	a	coin	for	every	location	where	the	relaxed	solution	tells	us
to	put	half	a	fire	truck,	and	actually	placing	a	truck	there	only	if	it	lands
heads.	In	either	case,	with	these	fractions	turned	back	to	whole	numbers,	we’ll
have	a	solution	that	makes	sense	in	the	context	of	our	original,	discrete
problem.

The	final	step,	as	with	any	relaxation,	is	to	ask	how	good	this	solution	is
compared	to	the	actual	best	solution	we	might	have	come	up	with	by
exhaustively	checking	every	single	possible	answer	to	the	original	problem.	It
turns	out	that	for	the	invitations	problem,	Continuous	Relaxation	with
rounding	will	give	us	an	easily	computed	solution	that’s	not	half	bad:	it’s
mathematically	guaranteed	to	get	everyone	you	want	to	the	party	while
sending	out	at	most	twice	as	many	invitations	as	the	best	solution	obtainable
by	brute	force.	Similarly,	in	the	fire	truck	problem,	Continuous	Relaxation
with	probabilities	can	quickly	get	us	within	a	comfortable	bound	of	the
optimal	answer.

Continuous	Relaxation	is	not	a	magic	bullet:	it	still	doesn’t	give	us	an
efficient	way	to	get	to	the	truly	optimal	answers,	only	to	their	approximations.
But	delivering	twice	as	many	mailings	or	inoculations	as	optimal	is	still	far
better	than	the	unoptimized	alternatives.

Just	a	Speeding	Ticket:	Lagrangian	Relaxation

Vizzini:	Inconceivable!

Inigo	Montoya:	You	keep	using	that	word.	I	do	not	think	it	means	what
you	think	it	means.

—THE	PRINCESS	BRIDE

One	day	as	a	child,	Brian	was	complaining	to	his	mother	about	all	the	things
he	had	to	do:	his	homework,	his	chores.…	“Technically,	you	don’t	have	to	do
anything,”	his	mother	replied.	“You	don’t	have	to	do	what	your	teachers	tell
you.	You	don’t	have	to	do	what	I	tell	you.	You	don’t	even	have	to	obey	the
law.	There	are	consequences	to	everything,	and	you	get	to	decide	whether	you
want	to	face	those	consequences.”

Brian’s	kid-mind	was	blown.	It	was	a	powerful	message,	an	awakening	of
a	sense	of	agency,	responsibility,	moral	judgment.	It	was	something	else,	too:
a	powerful	computational	technique	called	Lagrangian	Relaxation.	The	idea
behind	Lagrangian	Relaxation	is	simple.	An	optimization	problem	has	two
parts:	the	rules	and	the	scorekeeping.	In	Lagrangian	Relaxation,	we	take	some
of	the	problem’s	constraints	and	bake	them	into	the	scoring	system	instead.
That	is,	we	take	the	impossible	and	downgrade	it	to	costly.	(In	a	wedding
seating	optimization,	for	instance,	we	might	relax	the	constraint	that	tables
each	hold	ten	people	max,	allowing	overfull	tables	but	with	some	kind	of
elbow-room	penalty.)	When	an	optimization	problem’s	constraints	say	“Do	it,
or	else!,”	Lagrangian	Relaxation	replies,	“Or	else	what?”	Once	we	can	color
outside	the	lines—even	just	a	little	bit,	and	even	at	a	steep	cost—problems
become	tractable	that	weren’t	tractable	before.

Lagrangian	Relaxations	are	a	huge	part	of	the	theoretical	literature	on	the
traveling	salesman	problem	and	other	hard	problems	in	computer	science.
They’re	also	a	critical	tool	for	a	number	of	practical	applications.	For
instance,	recall	Carnegie	Mellon’s	Michael	Trick,	who,	as	we	mentioned	in
chapter	3,	is	in	charge	of	scheduling	for	Major	League	Baseball	and	a	number
of	NCAA	conferences.	What	we	hadn’t	mentioned	is	how	he	does	it.	The
composition	of	each	year’s	schedule	is	a	giant	discrete	optimization	problem,
much	too	complex	for	any	computer	to	solve	by	brute	force.	So	each	year
Trick	and	his	colleagues	at	the	Sports	Scheduling	Group	turn	to	Lagrangian
Relaxation	to	get	the	job	done.	Every	time	you	turn	on	the	television	or	take	a
seat	in	a	stadium,	know	that	the	meeting	of	those	teams	on	that	court	on	that
particular	night	…	well,	it’s	not	necessarily	the	optimum	matchup.	But	it’s
close.	And	for	that	we	have	not	only	Michael	Trick	but	eighteenth-century
French	mathematician	Joseph-Louis	Lagrange	to	thank.

In	scheduling	a	sports	season,	Trick	finds	that	the	Continuous	Relaxation
we	described	above	doesn’t	necessarily	make	his	life	any	easier.	“If	you	end
up	with	fractional	games,	you	just	don’t	get	anything	useful.”	It’s	one	thing	to
end	up	with	fractional	allocations	of	party	invitations	or	fire	trucks,	where	the
numbers	can	always	be	rounded	up	if	necessary.	But	in	sports,	the	integer
constraints—on	how	many	teams	play	a	game,	how	many	games	are	played	in
sum,	and	how	many	times	each	team	plays	every	other	team—are	just	too
strong.	“And	so	we	cannot	relax	in	that	direction.	We	really	have	got	to	keep
the	fundamental	[discrete]	part	of	the	model.”

Nonetheless,	something	has	to	be	done	to	reckon	with	the	sheer
complexity	of	the	problem.	So	“we	have	to	work	with	the	leagues	to	relax
some	of	the	constraints	they	might	like	to	have,”	Trick	explains.	The	number
of	such	constraints	that	go	into	scheduling	a	sports	season	is	immense,	and	it
includes	not	only	the	requirements	arising	from	the	league’s	basic	structure
but	also	all	sorts	of	idiosyncratic	requests	and	qualms.	Some	leagues	are	fine
with	the	second	half	of	the	season	mirroring	the	first,	just	with	home	and
away	games	reversed;	other	leagues	don’t	want	that	structure,	but	nonetheless
demand	that	no	teams	meet	for	a	second	time	until	they’ve	already	met	every
other	team	once.	Some	leagues	insist	on	making	the	most	famous	rivalries
happen	in	the	final	game	of	the	season.	Some	teams	cannot	play	home	games
on	certain	dates	due	to	conflicting	events	at	their	arenas.	In	the	case	of	NCAA
basketball,	Trick	also	has	to	consider	further	constraints	coming	from	the
television	networks	that	broadcast	the	games.	Television	channels	define	a
year	in	advance	what	they	anticipate	“A	games”	and	“B	games”	to	be—the
games	that	will	attract	the	biggest	audience.	(Duke	vs.	UNC	is	a	perennial	A
game,	for	instance.)	The	channels	then	expect	one	A	game	and	one	B	game
each	week—but	never	two	A	games	at	the	same	time,	lest	it	split	the
viewership.

Unsurprisingly,	given	all	these	demands,	Trick	has	found	that	computing	a
sports	schedule	often	becomes	possible	only	by	softening	some	of	these	hard
constraints.

Generally,	when	people	first	come	to	us	with	a	sports	schedule,	they	will	claim	…	“We	never	do	x
and	we	never	do	y.”	Then	we	look	at	their	schedules	and	we	say,	“Well,	twice	you	did	x	and	three
times	you	did	y	last	year.”	Then	“Oh,	yeah,	well,	okay.	Then	other	than	that	we	never	do	it.”	And
then	we	go	back	the	year	before.…	We	generally	realize	that	there	are	some	things	they	think	they
never	do	that	people	do	do.	People	in	baseball	believe	that	the	Yankees	and	the	Mets	are	never	at
home	at	the	same	time.	And	it’s	not	true.	It’s	never	been	true.	They	are	at	home	perhaps	three

games,	perhaps	six	games	in	a	year	at	the	same	day.	But	in	the	broad	season,	eighty-one	games	at
home	for	each	of	the	teams,	it’s	relatively	rare,	people	forget	about	them.

Occasionally	it	takes	a	bit	of	diplomatic	finesse,	but	a	Lagrangian
Relaxation—where	some	impossibilities	are	downgraded	to	penalties,	the
inconceivable	to	the	undesirable—enables	progress	to	be	made.	As	Trick
says,	rather	than	spending	eons	searching	for	an	unattainable	perfect	answer,
using	Lagrangian	Relaxation	allows	him	to	ask	questions	like,	“How	close
can	you	get?”	Close	enough,	it	turns	out,	to	make	everyone	happy—the
league,	the	schools,	the	networks—and	to	stoke	the	flames	of	March
Madness,	year	after	year.

Learning	to	Relax

Of	the	various	ways	that	computational	questions	present	themselves	to	us,
optimization	problems—one	part	goals,	one	part	rules—are	arguably	the	most
common.	And	discrete	optimization	problems,	where	our	options	are	stark
either/or	choices,	with	no	middle	ground,	are	the	most	typical	of	those.	Here,
computer	science	hands	down	a	disheartening	verdict.	Many	discrete
optimization	problems	are	truly	hard.	The	field’s	brightest	minds	have	come
up	empty	in	every	attempt	to	find	an	easy	path	to	perfect	answers,	and	in	fact
are	increasingly	more	devoted	to	proving	that	such	paths	don’t	exist	than	to
searching	for	them.

If	nothing	else,	this	should	offer	us	some	consolation.	If	we’re	up	against	a
problem	that	seems	gnarly,	thorny,	impassable—well,	we	might	be	right.	And
having	a	computer	won’t	necessarily	help.

At	least,	not	unless	we	can	learn	to	relax.

There	are	many	ways	to	relax	a	problem,	and	we’ve	seen	three	of	the	most
important.	The	first,	Constraint	Relaxation,	simply	removes	some	constraints
altogether	and	makes	progress	on	a	looser	form	of	the	problem	before	coming
back	to	reality.	The	second,	Continuous	Relaxation,	turns	discrete	or	binary
choices	into	continua:	when	deciding	between	iced	tea	and	lemonade,	first
imagine	a	50–50	“Arnold	Palmer”	blend	and	then	round	it	up	or	down.	The
third,	Lagrangian	Relaxation,	turns	impossibilities	into	mere	penalties,
teaching	the	art	of	bending	the	rules	(or	breaking	them	and	accepting	the
consequences).	A	rock	band	deciding	which	songs	to	cram	into	a	limited	set,
for	instance,	is	up	against	what	computer	scientists	call	the	“knapsack
problem”—a	puzzle	that	asks	one	to	decide	which	of	a	set	of	items	of

different	bulk	and	importance	to	pack	into	a	confined	volume.	In	its	strict
formulation	the	knapsack	problem	is	famously	intractable,	but	that	needn’t
discourage	our	relaxed	rock	stars.	As	demonstrated	in	several	celebrated
examples,	sometimes	it’s	better	to	simply	play	a	bit	past	the	city	curfew	and
incur	the	related	fines	than	to	limit	the	show	to	the	available	slot.	In	fact,	even
when	you	don’t	commit	the	infraction,	simply	imagining	it	can	be
illuminating.

The	conservative	British	columnist	Christopher	Booker	says	that	“when
we	embark	on	a	course	of	action	which	is	unconsciously	driven	by	wishful
thinking,	all	may	seem	to	go	well	for	a	time”—but	that	because	“this	make-
believe	can	never	be	reconciled	with	reality,”	it	will	inevitably	lead	to	what	he
describes	as	a	multi-stage	breakdown:	“dream,”	“frustration,”	“nightmare,”
“explosion.”	Computer	science	paints	a	dramatically	rosier	view.	Then	again,
as	an	optimization	technique,	relaxation	is	all	about	being	consciously	driven
by	wishful	thinking.	Perhaps	that’s	partly	what	makes	the	difference.

Relaxations	offer	us	a	number	of	advantages.	For	one,	they	offer	a	bound
on	the	quality	of	the	true	solution.	If	we’re	trying	to	pack	our	calendar,
imagining	that	we	can	magically	teleport	across	town	will	instantaneously
make	it	clear	that	eight	one-hour	meetings	is	the	most	we	could	possibly
expect	to	fit	into	a	day;	such	a	bound	might	be	useful	in	setting	expectations
before	we	face	the	full	problem.	Second,	relaxations	are	designed	so	that	they
can	indeed	be	reconciled	with	reality—and	this	gives	us	bounds	on	the
solution	from	the	other	direction.	When	Continuous	Relaxation	tells	us	to
give	out	fractional	vaccines,	we	can	just	immunize	everyone	assigned	to
receive	half	a	vaccine	or	more,	and	end	up	with	an	easily	calculated	solution
that	requires	at	worst	twice	as	many	inoculations	as	in	a	perfect	world.	Maybe
we	can	live	with	that.

Unless	we’re	willing	to	spend	eons	striving	for	perfection	every	time	we
encounter	a	hitch,	hard	problems	demand	that	instead	of	spinning	our	tires	we
imagine	easier	versions	and	tackle	those	first.	When	applied	correctly,	this	is
not	just	wishful	thinking,	not	fantasy	or	idle	daydreaming.	It’s	one	of	our	best
ways	of	making	progress.

*It	may	look	strange,	given	that	O(n2)	seemed	so	odious	in	the	sorting	context,	to	call	it	“efficient”	here.
But	the	truth	is	that	even	exponential	time	with	an	unassumingly	small	base	number,	like	O(2n),	quickly
gets	hellish	even	when	compared	to	a	polynomial	with	a	large	base,	like	n10.	The	exponent	will	always
overtake	the	polynomial	at	some	problem	size—in	this	case,	if	you’re	sorting	more	than	several	dozen
items,	n10	starts	to	look	like	a	walk	in	the	park	compared	to	2n.	Ever	since	Cobham	and	Edmonds’s
work,	this	chasm	between	“polynomials”	(n-to-the-something)	and	“exponentials”	(something-to-the-n)
has	served	as	the	field’s	de	facto	out-of-bounds	marker.

	

9			Randomness
When	to	Leave	It	to	Chance
I	must	admit	that	after	many	years	of	work	in	this	area,	the	efficacy	of
randomness	for	so	many	algorithmic	problems	is	absolutely	mysterious
to	me.	It	is	efficient,	it	works;	but	why	and	how	is	absolutely	mysterious.

—MICHAEL	RABIN

Randomness	seems	like	the	opposite	of	reason—a	form	of	giving	up	on	a
problem,	a	last	resort.	Far	from	it.	The	surprising	and	increasingly	important
role	of	randomness	in	computer	science	shows	us	that	making	use	of	chance
can	be	a	deliberate	and	effective	part	of	approaching	the	hardest	sets	of
problems.	In	fact,	there	are	times	when	nothing	else	will	do.

In	contrast	to	the	standard	“deterministic”	algorithms	we	typically	imagine
computers	using,	where	one	step	follows	from	another	in	exactly	the	same
way	every	time,	a	randomized	algorithm	uses	randomly	generated	numbers	to
solve	a	problem.	Recent	work	in	computer	science	has	shown	that	there	are
cases	where	randomized	algorithms	can	produce	good	approximate	answers
to	difficult	questions	faster	than	all	known	deterministic	algorithms.	And
while	they	do	not	always	guarantee	the	optimal	solutions,	randomized
algorithms	can	get	surprisingly	close	to	them	in	a	fraction	of	the	time,	just	by
strategically	flipping	a	few	coins	while	their	deterministic	cousins	sweat	it
out.

There	is	a	deep	message	in	the	fact	that	on	certain	problems,	randomized
approaches	can	outperform	even	the	best	deterministic	ones.	Sometimes	the
best	solution	to	a	problem	is	to	turn	to	chance	rather	than	trying	to	fully
reason	out	an	answer.

But	merely	knowing	that	randomness	can	be	helpful	isn’t	good	enough.
You	need	to	know	when	to	rely	on	chance,	in	what	way,	and	to	what	extent.
The	recent	history	of	computer	science	provides	some	answers—though	the
story	begins	a	couple	of	centuries	earlier.

Sampling

In	1777,	George-Louis	Leclerc,	Comte	de	Buffon,	published	the	results	of	an
interesting	probabilistic	analysis.	If	we	drop	a	needle	onto	a	lined	piece	of
paper,	he	asked,	how	likely	is	it	to	cross	one	of	the	lines?	Buffon’s	work
showed	that	if	the	needle	is	shorter	than	the	gap	between	the	blines,	the
answer	is	2⁄π	times	the	needle’s	length	divided	by	the	length	of	the	gap.	For
Buffon,	deriving	this	formula	was	enough.	But	in	1812,	Pierre-Simon
Laplace,	one	of	the	heroes	of	chapter	6,	pointed	out	that	this	result	has	another
implication:	one	could	estimate	the	value	of	π	simply	by	dropping	needles
onto	paper.

Laplace’s	proposal	pointed	to	a	profound	general	truth:	when	we	want	to
know	something	about	a	complex	quantity,	we	can	estimate	its	value	by
sampling	from	it.	This	is	exactly	the	kind	of	calculation	that	his	work	on
Bayes’s	Rule	helps	us	to	perform.	In	fact,	following	Laplace’s	suggestion,
several	people	have	carried	out	exactly	the	experiment	he	suggested,
confirming	that	it	is	possible—although	not	particularly	efficient—to	estimate
the	value	of	π	in	this	hands-on	way.*

Throwing	thousands	of	needles	onto	lined	paper	makes	for	an	interesting
pastime	(for	some),	but	it	took	the	development	of	the	computer	to	make
sampling	into	a	practical	method.	Before,	when	mathematicians	and
physicists	tried	using	randomness	to	solve	problems,	their	calculations	had	to
be	laboriously	worked	out	by	hand,	so	it	was	hard	to	generate	enough	samples
to	yield	accurate	results.	Computers—in	particular,	the	computer	developed	in
Los	Alamos	during	World	War	II—made	all	the	difference.

Stanislaw	“Stan”	Ulam	was	one	of	the	mathematicians	who	helped
develop	the	atomic	bomb.	Having	grown	up	in	Poland,	he	moved	to	the
United	States	in	1939,	and	joined	the	Manhattan	Project	in	1943.	After	a	brief
return	to	academia	he	was	back	at	Los	Alamos	in	1946,	working	on	the	design
of	thermonuclear	weapons.	But	he	was	also	sick—he	had	contracted
encephalitis,	and	had	emergency	brain	surgery.	And	as	he	recovered	from	his
illness	he	worried	about	whether	he	would	regain	his	mathematical	abilities.

While	convalescing,	Ulam	played	a	lot	of	cards,	particularly	solitaire
(a.k.a.	Klondike).	As	any	solitaire	player	knows,	some	shuffles	of	the	deck
produce	games	that	just	can’t	be	won.	So	as	Ulam	played,	he	asked	himself	a
natural	question:	what	is	the	probability	that	a	shuffled	deck	will	yield	a
winnable	game?

In	a	game	like	solitaire,	reasoning	your	way	through	the	space	of
possibilities	gets	almost	instantly	overwhelming.	Flip	over	the	first	card,	and
there	are	fifty-two	possible	games	to	keep	track	of;	flip	over	the	second,	and
there	are	fifty-one	possibilities	for	each	first	card.	That	means	we’re	already
up	into	thousands	of	possible	games	before	we’ve	even	begun	to	play.	F.	Scott
Fitzgerald	once	wrote	that	“the	test	of	a	first-rate	intelligence	is	the	ability	to
hold	two	opposing	ideas	in	mind	at	the	same	time	and	still	retain	the	ability	to
function.”	That	may	be	true,	but	no	first-rate	intelligence,	human	or
otherwise,	can	possibly	hold	the	eighty	unvigintillion	possible	shuffled-deck
orders	in	mind	and	have	any	hope	of	functioning.

After	trying	some	elaborate	combinatorial	calculations	of	this	sort	and
giving	up,	Ulam	landed	on	a	different	approach,	beautiful	in	its	simplicity:
just	play	the	game.

I	noticed	that	it	may	be	much	more	practical	to	[try]	…	laying	down	the	cards,	or	experimenting
with	the	process	and	merely	noticing	what	proportion	comes	out	successfully,	rather	than	to	try	to
compute	all	the	combinatorial	possibilities	which	are	an	exponentially	increasing	number	so	great
that,	except	in	very	elementary	cases,	there	is	no	way	to	estimate	it.	This	is	intellectually
surprising,	and	if	not	exactly	humiliating,	it	gives	one	a	feeling	of	modesty	about	the	limits	of
rational	or	traditional	thinking.	In	a	sufficiently	complicated	problem,	actual	sampling	is	better
than	an	examination	of	all	the	chains	of	possibilities.

When	he	says	“better,”	note	that	he	doesn’t	necessarily	mean	that	sampling
will	offer	you	more	precise	answers	than	exhaustive	analysis:	there	will
always	be	some	error	associated	with	a	sampling	process,	though	you	can
reduce	it	by	ensuring	your	samples	are	indeed	random	and	by	taking	more	and
more	of	them.	What	he	means	is	that	sampling	is	better	because	it	gives	you
an	answer	at	all,	in	cases	where	nothing	else	will.

Ulam’s	insight—that	sampling	can	succeed	where	analysis	fails—was	also
crucial	to	solving	some	of	the	difficult	nuclear	physics	problems	that	arose	at
Los	Alamos.	A	nuclear	reaction	is	a	branching	process,	where	possibilities
multiply	just	as	wildly	as	they	do	in	cards:	one	particle	splits	in	two,	each	of
which	may	go	on	to	strike	others,	causing	them	to	split	in	turn,	and	so	on.
Exactly	calculating	the	chances	of	some	particular	outcome	of	that	process,
with	many,	many	particles	interacting,	is	hard	to	the	point	of	impossibility.
But	simulating	it,	with	each	interaction	being	like	turning	over	a	new	card,
provides	an	alternative.

Ulam	developed	the	idea	further	with	John	von	Neumann,	and	worked

with	Nicholas	Metropolis,	another	of	the	physicists	from	the	Manhattan
Project,	on	implementing	the	method	on	the	Los	Alamos	computer.
Metropolis	named	this	approach—replacing	exhaustive	probability
calculations	with	sample	simulations—the	Monte	Carlo	Method,	after	the
Monte	Carlo	casino	in	Monaco,	a	place	equally	dependent	on	the	vagaries	of
chance.	The	Los	Alamos	team	was	able	to	use	it	to	solve	key	problems	in
nuclear	physics.	Today	the	Monte	Carlo	Method	is	one	of	the	cornerstones	of
scientific	computing.

Many	of	these	problems,	like	calculating	the	interactions	of	subatomic
particles	or	the	chances	of	winning	at	solitaire,	are	themselves	intrinsically
probabilistic,	so	solving	them	through	a	randomized	approach	like	Monte
Carlo	makes	a	fair	bit	of	sense.	But	perhaps	the	most	surprising	realization
about	the	power	of	randomness	is	that	it	can	be	used	in	situations	where
chance	seemingly	plays	no	role	at	all.	Even	if	you	want	the	answer	to	a
question	that	is	strictly	yes	or	no,	true	or	false—no	probabilities	about	it—
rolling	a	few	dice	may	still	be	part	of	the	solution.

Randomized	Algorithms

The	first	person	to	demonstrate	the	surprisingly	broad	applications	of
randomness	in	computer	science	was	Michael	Rabin.	Born	in	1931	in	Breslau,
Germany	(which	became	Wrocław,	Poland,	at	the	end	of	World	War	II),
Rabin	was	the	descendant	of	a	long	line	of	rabbis.	His	family	left	Germany
for	Palestine	in	1935,	and	there	he	was	diverted	from	the	rabbinical	path	his
father	had	laid	down	for	him	by	the	beauty	of	mathematics—discovering	Alan
Turing’s	work	early	in	his	undergraduate	career	at	the	Hebrew	University	and
immigrating	to	the	United	States	to	begin	a	PhD	at	Princeton.	Rabin	would	go
on	to	win	the	Turing	Award—the	computer	science	equivalent	of	a	Nobel—
for	extending	theoretical	computer	science	to	accommodate
“nondeterministic”	cases,	where	a	machine	isn’t	forced	to	pursue	a	single
option	but	has	multiple	paths	it	might	follow.	On	sabbatical	in	1975,	Rabin
came	to	MIT,	searching	for	a	new	research	direction	to	pursue.

He	found	it	in	one	of	the	oldest	problems	of	them	all:	how	to	identify
prime	numbers.

Algorithms	for	finding	prime	numbers	date	back	at	least	as	far	as	ancient
Greece,	where	mathematicians	used	a	straightforward	approach	known	as	the
Sieve	of	Erastothenes.	The	Sieve	of	Erastothenes	works	as	follows:	To	find	all

the	primes	less	than	n,	begin	by	writing	down	all	the	numbers	from	1	to	n	in
sequence.	Then	cross	out	all	the	numbers	that	are	multiples	of	2,	besides	itself
(4,	6,	8,	10,	12,	and	so	on).	Take	the	next	smallest	number	that	hasn’t	been
crossed	out	(in	this	case,	3),	and	cross	out	all	multiples	of	that	number	(6,	9,
12,	15).	Keep	going	like	this,	and	the	numbers	that	remain	at	the	end	are	the
primes.

For	millennia,	the	study	of	prime	numbers	was	believed	to	be,	as	G.	H.
Hardy	put	it,	“one	of	the	most	obviously	useless	branches”	of	mathematics.
But	it	lurched	into	practicality	in	the	twentieth	century,	becoming	pivotal	in
cryptography	and	online	security.	As	it	happens,	it	is	much	easier	to	multiply
primes	together	than	to	factor	them	back	out.	With	big	enough	primes—say,	a
thousand	digits—the	multiplication	can	be	done	in	a	fraction	of	a	second
while	the	factoring	could	take	literally	millions	of	years;	this	makes	for	what
is	known	as	a	“one-way	function.”	In	modern	encryption,	for	instance,	secret
primes	known	only	to	the	sender	and	recipient	get	multiplied	together	to
create	huge	composite	numbers	that	can	be	transmitted	publicly	without	fear,
since	factoring	the	product	would	take	any	eavesdropper	way	too	long	to	be
worth	attempting.	Thus	virtually	all	secure	communication	online—be	it
commerce,	banking,	or	email—begins	with	a	hunt	for	prime	numbers.

This	cryptographic	application	suddenly	made	algorithms	for	finding	and
checking	primes	incredibly	important.	And	while	the	Sieve	of	Erastothenes	is
effective,	it	is	not	efficient.	If	you	want	to	check	whether	a	particular	number
is	prime—known	as	testing	its	“primality”—then	following	the	sieve	strategy
requires	trying	to	divide	it	by	all	the	primes	up	to	its	square	root.*	Checking
whether	a	six-digit	number	is	prime	would	require	dividing	by	all	of	the	168
primes	less	than	1,000—not	so	bad.	But	checking	a	twelve-digit	number
involves	dividing	by	the	78,498	primes	less	than	1	million,	and	all	that
division	quickly	starts	to	get	out	of	control.	The	primes	used	in	modern
cryptography	are	hundreds	of	digits	long;	forget	about	it.

At	MIT,	Rabin	ran	into	Gary	Miller,	a	recent	graduate	from	the	computer
science	department	at	Berkeley.	In	his	PhD	thesis,	Miller	had	developed	an
intriguingly	promising,	much	faster	algorithm	for	testing	primality—but	there
was	one	small	problem:	it	didn’t	always	work.

Miller	had	found	a	set	of	equations	(expressed	in	terms	of	two	numbers,	n
and	x)	that	are	always	true	if	n	is	prime,	regardless	of	what	values	you	plug	in

for	x.	If	they	come	out	false	even	for	a	single	value	of	x,	then	there’s	no	way	n
can	be	prime—in	these	cases,	x	is	called	a	“witness”	against	primality.	The
problem,	though,	is	false	positives:	even	when	n	is	not	prime,	the	equations
will	still	come	out	true	some	of	the	time.	This	seemed	to	leave	Miller’s
approach	hanging.

Rabin	realized	that	this	was	a	place	where	a	step	outside	the	usually
deterministic	world	of	computer	science	might	be	valuable.	If	the	number	n	is
actually	nonprime,	how	many	possible	values	of	x	would	give	a	false	positive
and	declare	it	a	prime	number?	The	answer,	Rabin	showed,	is	no	more	than
one-quarter.	So	for	a	random	value	of	x,	if	Miller’s	equations	come	out	true,
there’s	only	a	one-in-four	chance	that	n	isn’t	actually	prime.	And	crucially,
each	time	we	sample	a	new	random	x	and	Miller’s	equations	check	out,	the
probability	that	n	only	seems	prime,	but	isn’t	really,	drops	by	another	multiple
of	four.	Repeat	the	procedure	ten	times,	and	the	probability	of	a	false	positive
is	one	in	four	to	the	tenth	power—less	than	one	in	a	million.	Still	not	enough
certainty?	Check	another	five	times	and	you’re	down	to	one	in	a	billion.

Vaughan	Pratt,	another	computer	scientist	at	MIT,	implemented	Rabin’s
algorithm	and	started	getting	results	late	one	winter	night,	while	Rabin	was	at
home	having	friends	over	for	a	Hanukkah	party.	Rabin	remembers	getting	a
call	around	midnight:

“Michael,	this	is	Vaughan.	I’m	getting	the	output	from	these	experiments.	Take	a	pencil	and	paper
and	write	this	down.”	And	so	he	had	that	2400−593	is	prime.	Denote	the	product	of	all	primes	p
smaller	than	300	by	k.	The	numbers	k	×	338	+	821	and	k	×	338	+	823	are	twin	primes.*	These
constituted	the	largest	twin	primes	known	at	the	time.	My	hair	stood	on	end.	It	was	incredible.	It
was	just	incredible.

The	Miller-Rabin	primality	test,	as	it’s	now	known,	provides	a	way	to
quickly	identify	even	gigantic	prime	numbers	with	an	arbitrary	degree	of
certainty.

Here	we	might	ask	a	philosophical	question—about	what	the	meaning	of
“is”	is.	We’re	so	used	to	mathematics	being	a	realm	of	certainty	that	it’s
jarring	to	think	that	a	number	could	be	“probably	prime”	or	“almost	definitely
prime.”	How	certain	is	certain	enough?	In	practice,	modern	cryptographic
systems,	the	ones	that	encrypt	Internet	connections	and	digital	transactions,
are	tuned	for	a	false	positive	rate	of	less	than	one	in	a	million	billion	billion.
In	other	words,	that’s	a	decimal	that	begins	with	twenty-four	zeros—less	than
one	false	prime	for	the	number	of	grains	of	sand	on	Earth.	This	standard

comes	after	a	mere	forty	applications	of	the	Miller-Rabin	test.	It’s	true	that
you	are	never	fully	certain—but	you	can	get	awfully	close,	awfully	quick.

Though	you	may	have	never	heard	of	the	Miller-Rabin	test,	your	laptop,
tablet,	and	phone	know	it	well.	Several	decades	after	its	discovery,	it	is	still
the	standard	method	used	to	find	and	check	primes	in	many	domains.	It’s
working	behind	the	scenes	whenever	you	use	your	credit	card	online,	and
almost	any	time	secure	communications	are	sent	through	the	air	or	over	wires.

For	decades	after	Miller	and	Rabin’s	work,	it	wasn’t	known	whether	there
would	ever	be	an	efficient	algorithm	that	allows	testing	primality	in
deterministic	fashion,	with	absolute	certainty.	In	2002,	one	such	method	did
get	discovered	by	Manindra	Agrawal,	Neeraj	Kayal,	and	Nitin	Saxena	at	the
Indian	Institute	of	Technology—but	randomized	algorithms	like	Miller-Rabin
are	much	faster	and	thus	are	still	the	ones	used	in	practice	today.

And	for	some	other	problems,	randomness	still	provides	the	only	known
route	to	efficient	solutions.	One	curious	example	from	mathematics	is	known
as	“polynomial	identity	testing.”	If	you	have	two	polynomial	expressions,
such	as	2x3	+	13x2	+	22x	+	8	and	(2x	+	1)	×	(x	+	2)	×	(x	+	4),	working	out
whether	those	expressions	are	in	fact	the	same	function—by	doing	all	the
multiplication,	then	comparing	the	results—can	be	incredibly	time-
consuming,	especially	as	the	number	of	variables	increases.

Here	again	randomness	offers	a	way	forward:	just	generate	some	random
xs	and	plug	them	in.	If	the	two	expressions	are	not	the	same,	it	would	be	a	big
coincidence	if	they	gave	the	same	answer	for	some	randomly	generated	input.
And	an	even	bigger	coincidence	if	they	also	gave	identical	answers	for	a
second	random	input.	And	a	bigger	coincidence	still	if	they	did	it	for	three
random	inputs	in	a	row.	Since	there	is	no	known	deterministic	algorithm	for
efficiently	testing	polynomial	identity,	this	randomized	method—with
multiple	observations	quickly	giving	rise	to	near-certainty—is	the	only
practical	one	we	have.

In	Praise	of	Sampling

The	polynomial	identity	test	shows	that	sometimes	our	effort	is	better	spent
checking	random	values—sampling	from	the	two	expressions	we	want	to
know	about—than	trying	to	untangle	their	inner	workings.	To	some	extent
this	seems	reasonably	intuitive.	Given	a	pair	of	nondescript	gadgets	and	asked

whether	they	are	two	different	devices	or	two	copies	of	the	same	one,	most	of
us	would	start	pushing	random	buttons	rather	than	crack	open	the	cases	to
examine	the	wiring.	And	we	aren’t	particularly	surprised	when,	say,	a
television	drug	lord	knifes	open	a	few	bundles	at	random	to	be	reasonably
certain	about	the	quality	of	the	entire	shipment.

There	are	cases,	though,	where	we	don’t	turn	to	randomness—and	maybe
we	should.

Arguably	the	most	important	political	philosopher	of	the	twentieth	century
was	Harvard’s	John	Rawls,	who	set	for	himself	the	ambitious	task	of
reconciling	two	seemingly	opposite	key	ideas	in	his	field:	liberty	and	equality.
Is	a	society	more	“just”	when	it’s	more	free,	or	more	equal?	And	do	the	two
really	have	to	be	mutually	exclusive?	Rawls	offered	a	way	of	approaching	this
set	of	questions	that	he	called	the	“veil	of	ignorance.”	Imagine,	he	said,	that
you	were	about	to	be	born,	but	didn’t	know	as	whom:	male	or	female,	rich	or
poor,	urban	or	rural,	sick	or	healthy.	And	before	learning	your	status,	you	had
to	choose	what	kind	of	society	you’d	live	in.	What	would	you	want?	By
evaluating	various	social	arrangements	from	behind	the	veil	of	ignorance,
argued	Rawls,	we’d	more	readily	come	to	a	consensus	about	what	an	ideal
one	would	look	like.

What	Rawls’s	thought	experiment	does	not	take	into	account,	however,	is
the	computational	cost	of	making	sense	of	a	society	from	behind	such	a	veil.
How	could	we,	in	this	hypothetical	scenario,	possibly	hope	to	hold	all	of	the
relevant	information	in	our	heads?	Set	aside	grand	questions	of	justice	and
fairness	for	a	moment	and	try	to	apply	Rawls’s	approach	merely	to,	say,	a
proposed	change	in	health	insurance	regulations.	Take	the	probability	of	being
born,	perhaps,	as	someone	who	grows	up	to	become	a	town	clerk	in	the
Midwest;	multiply	that	by	the	distribution	of	the	different	health	care	plans
available	to	government	employees	across	various	midwestern	municipalities;
multiply	that	by	actuarial	data	that	offer	the	probability	of,	for	instance,	a
fractured	tibia;	multiply	that	by	the	average	medical	bill	for	the	average
procedure	for	a	fractured	tibia	at	a	midwestern	hospital	given	the	distribution
of	possible	insurance	plans.…	Okay,	so	would	the	proposed	insurance
revision	be	“good”	or	“bad”	for	the	nation?	We	can	barely	hope	to	evaluate	a
single	injured	shin	this	way,	let	alone	the	lives	of	hundreds	of	millions.

Rawls’s	philosophical	critics	have	argued	at	length	about	how	exactly	we

are	supposed	to	leverage	the	information	obtained	from	the	veil	of	ignorance.
Should	we	be	trying,	for	instance,	to	maximize	mean	happiness,	median
happiness,	total	happiness,	or	something	else?	Each	of	these	approaches,
famously,	leaves	itself	open	to	pernicious	dystopias—such	as	the	civilization
of	Omelas	imagined	by	writer	Ursula	K.	Le	Guin,	in	which	prosperity	and
harmony	abound	but	a	single	child	is	forced	to	live	in	abject	misery.	These	are
worthy	critiques,	and	Rawls	deliberately	sidesteps	them	by	leaving	open	the
question	of	what	to	do	with	the	information	we	get	from	behind	the	veil.
Perhaps	the	bigger	question,	though,	is	how	to	gather	that	information	in	the
first	place.

The	answer	may	well	come	from	computer	science.	MIT’s	Scott	Aaronson
says	he’s	surprised	that	computer	scientists	haven’t	yet	had	more	influence	on
philosophy.	Part	of	the	reason,	he	suspects,	is	just	their	“failure	to
communicate	what	they	can	add	to	philosophy’s	conceptual	arsenal.”	He
elaborates:

One	might	think	that,	once	we	know	something	is	computable,	whether	it	takes	10	seconds	or	20
seconds	to	compute	is	obviously	the	concern	of	engineers	rather	than	philosophers.	But	that
conclusion	would	not	be	so	obvious,	if	the	question	were	one	of	10	seconds	versus	101010

seconds!	And	indeed,	in	complexity	theory,	the	quantitative	gaps	we	care	about	are	usually	so
vast	that	one	has	to	consider	them	qualitative	gaps	as	well.	Think,	for	example,	of	the	difference
between	reading	a	400-page	book	and	reading	every	possible	such	book,	or	between	writing	down
a	thousand-digit	number	and	counting	to	that	number.

Computer	science	gives	us	a	way	to	articulate	the	complexity	of	evaluating
all	possible	social	provisions	for	something	like	an	injured	shin.	But
fortunately,	it	also	provides	tools	for	dealing	with	that	complexity.	And	the
sampling-based	Monte	Carlo	algorithms	are	some	of	the	most	useful
approaches	in	that	toolbox.

When	we	need	to	make	sense	of,	say,	national	health	care	reform—a	vast
apparatus	too	complex	to	be	readily	understood—our	political	leaders
typically	offer	us	two	things:	cherry-picked	personal	anecdotes	and	aggregate
summary	statistics.	The	anecdotes,	of	course,	are	rich	and	vivid,	but	they’re
unrepresentative.	Almost	any	piece	of	legislation,	no	matter	how	enlightened
or	misguided,	will	leave	someone	better	off	and	someone	worse	off,	so
carefully	selected	stories	don’t	offer	any	perspective	on	broader	patterns.
Aggregate	statistics,	on	the	other	hand,	are	the	reverse:	comprehensive	but
thin.	We	might	learn,	for	instance,	whether	average	premiums	fell	nationwide,
but	not	how	that	change	works	out	on	a	more	granular	level:	they	might	go

down	for	most	but,	Omelas-style,	leave	some	specific	group—
undergraduates,	or	Alaskans,	or	pregnant	women—in	dire	straits.	A	statistic
can	only	tell	us	part	of	the	story,	obscuring	any	underlying	heterogeneity.	And
often	we	don’t	even	know	which	statistic	we	need.

Since	neither	sweeping	statistics	nor	politicians’	favorite	stories	can	truly
guide	us	through	thousands	of	pages	of	proposed	legislation,	a	Monte	Carlo–
informed	computer	scientist	would	propose	a	different	approach:	sampling.	A
close	examination	of	random	samples	can	be	one	of	the	most	effective	means
of	making	sense	of	something	too	complex	to	be	comprehended	directly.
When	it	comes	to	handling	a	qualitatively	unmanageable	problem,	something
so	thorny	and	complicated	that	it	can’t	be	digested	whole—solitaire	or	atomic
fission,	primality	testing	or	public	policy—sampling	offers	one	of	the
simplest,	and	also	the	best,	ways	of	cutting	through	the	difficulties.

We	can	see	this	approach	at	work	with	the	charity	GiveDirectly,	which
distributes	unconditional	cash	transfers	to	people	living	in	extreme	poverty	in
Kenya	and	Uganda.	It	has	attracted	attention	for	rethinking	conventional
charity	practices	on	a	number	of	levels:	not	only	in	its	unusual	mission,	but	in
the	level	of	transparency	and	accountability	it	brings	to	its	own	process.	And
the	latest	element	of	the	status	quo	that	it’s	challenging	is	success	stories.

“If	you	regularly	check	our	website,	blog,	or	Facebook	page,”	writes
program	assistant	Rebecca	Lange,	“you	may	have	noticed	something	you
don’t	often	see:	stories	and	photos	of	our	recipients.”	The	problem	isn’t	that
the	glowing	stories	proffered	by	other	charities	aren’t	true.	Rather,	the	very
fact	that	they	were	deliberately	chosen	to	showcase	successes	makes	it
unclear	how	much	information	can	be	gleaned	from	them.	So	GiveDirectly
decided	to	put	a	twist	on	this	conventional	practice	as	well.

Every	Wednesday,	the	GiveDirectly	team	selects	a	cash	recipient	at
random,	sends	out	a	field	officer	to	interview	them,	and	publishes	the	field
officer’s	notes	verbatim,	no	matter	what.	For	instance,	here’s	their	first	such
interview,	with	a	woman	named	Mary,	who	used	the	money	for	a	tin	roof:*

She	was	able	to	make	a	better	house	and	that	was	a	tinned	house.	She	was	also	able	to	buy	a	sofa
set	for	her	own	house.	Her	life	has	changed	because	she	used	to	have	a	leaking	roof	soaking	up
everything	in	the	house	whenever	it	rained.	But	because	of	the	transfer	she	was	able	to	make	a
better	tinned	house.

“We	hope	that	this	gives	you	confidence	in	all	types	of	information	we

share	with	you,”	Lange	writes,	“and	maybe	even	inspires	you	to	hold	other
organizations	to	a	higher	bar.”

The	Three-Part	Tradeoff

At	once	it	struck	me	what	quality	went	to	form	a	Man	of	Achievement,
especially	in	Literature,	and	which	Shakespeare	possessed	so
enormously—I	mean	Negative	Capability,	that	is,	when	a	man	is	capable
of	being	in	uncertainties,	mysteries,	doubts,	without	any	irritable
reaching	after	fact	and	reason.

—JOHN	KEATS

There	is	no	such	thing	as	absolute	certainty,	but	there	is	assurance
sufficient	for	the	purposes	of	human	life.

—JOHN	STUART	MILL

Computer	science	is	often	a	matter	of	negotiating	tradeoffs.	In	our	discussion
of	sorting	in	chapter	3,	for	instance,	we	noted	the	tradeoff	between	time	spent
up	front	on	sorting	versus	the	time	spent	later	on	searching.	And	in	the
discussion	of	caching	in	chapter	4,	we	explored	the	tradeoff	of	taking	up	extra
space—caches	for	caches	for	caches—to	save	time.

Time	and	space	are	at	the	root	of	the	most	familiar	tradeoffs	in	computer
science,	but	recent	work	on	randomized	algorithms	shows	that	there’s	also
another	variable	to	consider:	certainty.	As	Harvard’s	Michael	Mitzenmacher
puts	it,	“What	we’re	going	to	do	is	come	up	with	an	answer	which	saves	you
in	time	and	space	and	trades	off	this	third	dimension:	error	probability.”
Asked	for	his	favorite	example	of	this	tradeoff	into	uncertainty,	he	doesn’t
hesitate.	“A	colleague	just	said	that	there	should	be	a	drinking	game	that
every	time	this	term	appears	on	one	of	my	slides,	you	have	to	take	a	drink.
Have	you	ever	heard	of	Bloom	filters?”

To	understand	the	idea	behind	a	Bloom	filter,	Mitzenmacher	says,	consider
a	search	engine	like	Google,	trying	to	crawl	the	entire	web	and	index	every
possible	URL.	The	web	is	comprised	of	well	over	a	trillion	distinct	URLs,	and
the	average	URL	weighs	in	at	about	seventy-seven	characters	long.	When	the
search	engine	looks	at	some	URL,	how	can	it	check	whether	that	page	has
already	been	processed?	Just	storing	a	list	of	all	the	URLs	that	have	been
visited	would	take	a	huge	amount	of	space,	and	repeatedly	searching	that	list
(even	if	it	were	fully	sorted)	could	prove	a	nightmare.	In	fact,	it	could	well	be

that	the	cure	is	worse	than	the	disease:	in	other	words,	checking	every	time	to
make	sure	that	we’re	not	reindexing	a	page	might	be	more	time-consuming
than	just	indexing	the	occasional	page	twice.

But	what	if	we	only	needed	to	be	mostly	sure	this	URL	was	new	to	us?
That’s	where	the	Bloom	filter	comes	in.	Named	for	its	inventor,	Burton	H.
Bloom,	a	Bloom	filter	works	much	like	the	Rabin-Miller	primality	test:	the
URL	is	entered	into	a	set	of	equations	that	esssentially	check	for	“witnesses”
to	its	novelty.	(Rather	than	proclaim	“n	is	not	prime,”	these	equations	say	“I
have	not	seen	n	before.”)	If	you’re	willing	to	tolerate	an	error	rate	of	just	1%
or	2%,	storing	your	findings	in	a	probabilistic	data	structure	like	a	Bloom
filter	will	save	you	significant	amounts	of	both	time	and	space.	And	the
usefulness	of	such	filters	is	not	confined	to	search	engines:	Bloom	filters	have
shipped	with	a	number	of	recent	web	browsers	to	check	URLs	against	a	list	of
known	malicious	websites,	and	they	are	also	an	important	part	of
cryptocurrencies	like	Bitcoin.

Says	Mitzenmacher,	“The	idea	of	the	error	tradeoff	space—I	think	the
issue	is	that	people	don’t	associate	that	with	computing.	They	think
computers	are	supposed	to	give	you	the	answer.	So	when	you	hear	in	your
algorithms	class,	‘It’s	supposed	to	give	you	one	answer;	it	might	not	be	the
right	answer’—I	like	to	think	that	when	[students]	hear	that,	it	focuses	them.	I
think	people	don’t	realize	in	their	own	lives	how	much	they	do	that	and
accept	that.”

Hills,	Valleys,	and	Traps

The	river	meanders	because	it	can’t	think.
—RICHARD	KENNEY

Randomness	has	also	proven	itself	to	be	a	powerful	weapon	for	solving
discrete	optimization	problems,	like	assembling	the	calendar	for	NCAA
basketball	or	finding	the	shortest	route	for	a	traveling	salesman.	In	the
previous	chapter	we	saw	how	relaxation	can	play	a	big	role	in	cutting	such
problems	down	to	size,	but	the	tactical	use	of	randomness	has	emerged	as	an
arguably	even	more	important	technique.

Imagine	you’re	putting	together	a	globe-trotting	ten-city	vacation,	your
own	version	of	the	traveling	salesman	problem:	you’ll	start	and	finish	in	San
Francisco	and	visit	Seattle,	Los	Angeles,	New	York,	Buenos	Aires,	London,

Amsterdam,	Copenhagen,	Istanbul,	Delhi,	and	Kyoto.	You	might	not	be	too
worried	about	the	total	length	of	the	route,	but	you	probably	do	want	to
minimize	the	monetary	cost	of	the	trip.	The	first	thing	to	note	here	is	that	even
though	ten	cities	hardly	sounds	like	a	lot,	the	number	of	possible	itineraries	is
ten	factorial:	more	than	three	and	a	half	million.	In	other	words,	there’s	no
practical	way	for	you	to	simply	check	every	permutation	and	pick	the	lowest
price.	You	have	to	work	smarter	than	that.

For	your	first	attempt	at	an	itinerary,	you	might	look	at	taking	the	cheapest
flight	out	of	San	Francisco	(let’s	say	it’s	Seattle),	then	taking	the	cheapest
flight	from	there	to	any	of	the	other	remaining	cities	(call	it	Los	Angeles),
then	the	cheapest	from	there	(say,	New	York),	and	so	forth,	until	you’re	at
your	tenth	city	and	you	fly	from	there	back	to	San	Francisco.	This	is	an
example	of	a	so-called	greedy	algorithm,	which	you	can	also	think	of	as	a
“myopic	algorithm”:	one	that	shortsightedly	takes	the	best	thing	available
every	step	of	the	way.	In	scheduling	theory,	as	we	saw	in	chapter	5,	a	greedy
algorithm—for	instance,	always	doing	the	shortest	job	available,	without
looking	or	planning	beyond—can	sometimes	be	all	that	a	problem	requires.	In
this	case,	for	the	traveling	salesman	problem,	the	solution	given	by	the	greedy
algorithm	probably	isn’t	terrible,	but	it’s	likely	to	be	far	from	the	best	you	can
do.

Once	you’ve	assembled	a	baseline	itinerary,	you	might	test	some
alternatives	by	making	slight	perturbations	to	the	city	sequence	and	seeing	if
that	makes	an	improvement.	For	instance,	if	we	are	going	first	to	Seattle,	then
to	Los	Angeles,	we	can	try	doing	those	cities	in	reverse	order:	L.A.	first,	then
Seattle.	For	any	given	itinerary,	we	can	make	eleven	such	two-city	flip-flops;
let’s	say	we	try	them	all	and	then	go	with	the	one	that	gives	us	the	best
savings.	From	here	we’ve	got	a	new	itinerary	to	work	with,	and	we	can	start
permuting	that	one,	again	looking	for	the	best	local	improvement.	This	is	an
algorithm	known	as	Hill	Climbing—since	the	search	through	a	space	of
solutions,	some	better	and	some	worse,	is	commonly	thought	of	in	terms	of	a
landscape	with	hills	and	valleys,	where	your	goal	is	to	reach	the	highest	peak.

Eventually	you	will	end	up	with	a	solution	that	is	better	than	all	of	its
permutations;	no	matter	which	adjacent	stops	you	flip,	nothing	beats	it.	It’s
here	that	the	hill	climbing	stops.	Does	this	mean	you’ve	definitely	found	the
single	best	possible	itinerary,	though?	Sadly,	no.	You	may	have	found	only	a
so-called	“local	maximum,”	not	the	global	maximum	of	all	the	possibilities.

The	hill-climbing	landscape	is	a	misty	one.	You	can	know	that	you’re
standing	on	a	mountaintop	because	the	ground	falls	away	in	all	directions—
but	there	might	be	a	higher	mountain	just	across	the	next	valley,	hidden
behind	clouds.

An	“error	landscape,”	which	depicts	how	solution	quality	can	vary	across	different	possibilities.

Consider	the	lobster	stuck	in	the	lobster	trap:	poor	beast,	he	doesn’t	realize
that	exiting	the	cage	means	backtracking	to	the	cage’s	center,	that	he	needs	to
go	deeper	into	the	cage	to	make	it	out.	A	lobster	trap	is	nothing	other	than	a
local	maximum	made	of	wire—a	local	maximum	that	kills.

In	the	case	of	vacation	planning,	local	maxima	are	fortunately	less	fatal,
but	they	have	the	same	character.	Even	once	we’ve	found	a	solution	that	can’t
be	improved	by	any	small	tweaks,	it’s	possible	that	we	are	still	missing	the
global	maximum.	The	true	best	itinerary	may	require	a	radical	overhaul	of	the
trip:	doing	entire	continents	in	a	different	order,	for	instance,	or	proceeding
westward	instead	of	eastward.	We	may	need	to	temporarily	worsen	our
solution	if	we	want	to	continue	searching	for	improvements.	And	randomness
provides	a	strategy—actually,	several	strategies—for	doing	just	that.

Out	of	the	Local	Maximum

One	approach	is	to	augment	Hill	Climbing	with	what’s	known	as	“jitter”:	if	it
looks	like	you’re	stuck,	mix	things	up	a	little.	Make	a	few	random	small
changes	(even	if	they	are	for	the	worse),	then	go	back	to	Hill	Climbing;	see	if

you	end	up	at	a	higher	peak.

Another	approach	is	to	completely	scramble	our	solution	when	we	reach	a
local	maximum,	and	start	Hill	Climbing	anew	from	this	random	new	starting
point.	This	algorithm	is	known,	appropriately	enough,	as	“Random-Restart
Hill	Climbing”—or,	more	colorfully,	as	“Shotgun	Hill	Climbing.”	It’s	a
strategy	that	proves	very	effective	when	there	are	lots	of	local	maxima	in	a
problem.	For	example,	computer	scientists	use	this	approach	when	trying	to
decipher	codes,	since	there	are	lots	of	ways	to	begin	decrypting	a	message
that	look	promising	at	first	but	end	up	being	dead	ends.	In	decryption,	having
a	text	that	looks	somewhat	close	to	sensible	English	doesn’t	necessarily	mean
that	you’re	even	on	the	right	track.	So	sometimes	it’s	best	not	to	get	too
attached	to	an	initial	direction	that	shows	promise,	and	simply	start	over	from
scratch.

But	there’s	also	a	third	approach:	instead	of	turning	to	full-bore
randomness	when	you’re	stuck,	use	a	little	bit	of	randomness	every	time	you
make	a	decision.	This	technique,	developed	by	the	same	Los	Alamos	team
that	came	up	with	the	Monte	Carlo	Method,	is	called	the	Metropolis
Algorithm.	The	Metropolis	Algorithm	is	like	Hill	Climbing,	trying	out
different	small-scale	tweaks	on	a	solution,	but	with	one	important	difference:
at	any	given	point,	it	will	potentially	accept	bad	tweaks	as	well	as	good	ones.

We	can	imagine	applying	this	to	our	vacation	planning	problem.	Again,
we	try	to	tweak	our	proposed	solution	by	jiggling	around	the	positions	of
different	cities.	If	a	randomly	generated	tweak	to	our	travel	route	results	in	an
improvement,	then	we	always	accept	it,	and	continue	tweaking	from	there.
But	if	the	alteration	would	make	thing	a	little	worse,	there’s	still	a	chance	that
we	go	with	it	anyway	(although	the	worse	the	alteration	is,	the	smaller	the
chance).	That	way,	we	won’t	get	stuck	in	any	local	maximum	for	very	long:
eventually	we’ll	try	another	nearby	solution,	even	though	it’s	more	expensive,
and	potentially	be	on	our	way	to	coming	up	with	a	new	and	better	plan.

Whether	it’s	jitter,	random	restarts,	or	being	open	to	occasional	worsening,
randomness	is	incredibly	useful	for	avoiding	local	maxima.	Chance	is	not	just
a	viable	way	of	dealing	with	tough	optimization	problems;	in	many	cases,	it’s
essential.	Some	questions	linger,	however.	How	much	randomness	should	you
use?	And	when?	And—given	that	strategies	such	as	the	Metropolis	Algorithm
can	permute	our	itinerary	pretty	much	ad	infinitum—how	do	you	ever	know

that	you’re	done?	For	researchers	working	on	optimization,	a	surprisingly
definitive	answer	to	these	questions	would	come	from	another	field	entirely.

Simulated	Annealing

In	the	late	1970s	and	early	’80s,	Scott	Kirkpatrick	considered	himself	a
physicist,	not	a	computer	scientist.	In	particular,	Kirkpatrick	was	interested	in
statistical	physics,	which	uses	randomness	as	a	way	to	explain	certain	natural
phenomena—for	instance,	the	physics	of	annealing,	the	way	that	materials
change	state	as	they	are	heated	and	cooled.	Perhaps	the	most	interesting
characteristic	of	annealing	is	that	how	quickly	or	slowly	a	material	is	cooled
tends	to	have	tremendous	impact	on	its	final	structure.	As	Kirkpatrick
explains:

Growing	a	single	crystal	from	a	melt	[is]	done	by	careful	annealing,	first	melting	the	substance,
then	lowering	the	temperature	slowly,	and	spending	a	long	time	at	temperatures	in	the	vicinity	of
the	freezing	point.	If	this	is	not	done,	and	the	substance	is	allowed	to	get	out	of	equilibrium,	the
resulting	crystal	will	have	many	defects,	or	the	substance	may	form	a	glass,	with	no	crystalline
order.

Kirkpatrick	was	then	working	at	IBM,	where	one	of	the	biggest,	trickiest,
and	most	hallowed	problems	was	how	to	lay	out	the	circuits	on	the	chips	that
IBM	was	manufacturing.	The	problem	was	ungainly	and	intractable:	there
was	an	enormous	range	of	possible	solutions	to	consider,	and	some	tricky
constraints.	It	was	better	in	general	for	the	components	to	be	close	together,
for	instance—but	not	too	close,	or	there	would	be	no	room	for	the	wires.	And
any	time	you	moved	anything,	you’d	have	to	recompute	how	all	the	wires
would	run	in	the	new	hypothetical	layout.

At	the	time,	this	process	was	led	by	something	of	a	cryptic	guru-type
figure	within	IBM.	As	Kirkpatrick	recalls,	“The	guy	who	was	the	best	at	IBM
at	squeezing	more	circuits	on	a	chip	…	he	had	the	most	mysterious	way	of
explaining	what	he	was	doing.	He	didn’t	like	to	really	tell	you.”

Kirkpatrick’s	friend	and	IBM	colleague	Dan	Gelatt	was	fascinated	by	the
problem,	and	quickly	hooked	Kirkpatrick,	who	had	a	flash	of	insight.	“The
way	to	study	[physical	systems]	was	to	warm	them	up	then	cool	them	down,
and	let	the	system	organize	itself.	From	that	background,	it	seemed	like	a
perfectly	natural	thing	to	treat	all	kinds	of	optimization	problems	as	if	the
degrees	of	freedom	that	you	were	trying	to	organize	were	little	atoms,	or
spins,	or	what	have	you.”

In	physics,	what	we	call	“temperature”	is	really	velocity—random	motion
at	the	molecular	scale.	This	was	directly	analogous,	Kirkpatrick	reasoned,	to
the	random	jitter	that	can	be	added	to	a	hill-climbing	algorithm	to	make	it
sometimes	backtrack	from	better	solutions	to	worse	ones.	In	fact,	the
Metropolis	Algorithm	itself	had	initially	been	designed	to	model	random
behavior	in	physical	systems	(in	that	case,	nuclear	explosions).	So	what
would	happen,	Kirkpatrick	wondered,	if	you	treated	an	optimization	problem
like	an	annealing	problem—if	you	“heated	it	up”	and	then	slowly	“cooled	it
off”?

Taking	the	ten-city	vacation	problem	from	above,	we	could	start	at	a	“high
temperature”	by	picking	our	starting	itinerary	entirely	at	random,	plucking
one	out	of	the	whole	space	of	possible	solutions	regardless	of	price.	Then	we
can	start	to	slowly	“cool	down”	our	search	by	rolling	a	die	whenever	we	are
considering	a	tweak	to	the	city	sequence.	Taking	a	superior	variation	always
makes	sense,	but	we	would	only	take	inferior	ones	when	the	die	shows,	say,	a
2	or	more.	After	a	while,	we’d	cool	it	further	by	only	taking	a	higher-price
change	if	the	die	shows	a	3	or	greater—then	4,	then	5.	Eventually	we’d	be
mostly	hill	climbing,	making	the	inferior	move	just	occasionally	when	the	die
shows	a	6.	Finally	we’d	start	going	only	uphill,	and	stop	when	we	reached	the
next	local	max.

This	approach,	called	Simulated	Annealing,	seemed	like	an	intriguing
way	to	map	physics	onto	problem	solving.	But	would	it	work?	The	initial
reaction	among	more	traditional	optimization	researchers	was	that	this	whole
approach	just	seemed	a	little	too	…	metaphorical.	“I	couldn’t	convince	math
people	that	this	messy	stuff	with	temperatures,	all	this	analogy-based	stuff,
was	real,”	says	Kirkpatrick,	“because	mathematicians	are	trained	to	really
distrust	intuition.”

But	any	distrust	regarding	the	analogy-based	approach	would	soon	vanish:
at	IBM,	Kirkpatrick	and	Gelatt’s	simulated	annealing	algorithms	started
making	better	chip	layouts	than	the	guru.	Rather	than	keep	mum	about	their
secret	weapon	and	become	cryptic	guru	figures	themselves,	they	published
their	method	in	a	paper	in	Science,	opening	it	up	to	others.	Over	the	next	few
decades,	that	paper	would	be	cited	a	whopping	thirty-two	thousand	times.	To
this	day,	simulated	annealing	remains	one	of	the	most	promising	approaches
to	optimization	problems	known	to	the	field.

Randomness,	Evolution,	and	Creativity

In	1943,	Salvador	Luria	didn’t	know	he	was	about	to	make	a	discovery	that
would	lead	to	a	Nobel	Prize;	he	thought	he	was	going	to	a	dance.	A	recent
immigrant	to	the	United	States	from	Mussolini’s	Italy,	where	his	Sephardic
Jewish	family	had	lived,	Luria	was	a	researcher	studying	how	bacteria
developed	immunity	from	viruses.	But	at	this	moment	his	research	was	far
from	his	mind,	as	he	attended	a	faculty	gathering	at	a	country	club	near
Indiana	University.

Luria	was	watching	one	of	his	colleagues	play	a	slot	machine:

Not	a	gambler	myself,	I	was	teasing	him	about	his	inevitable	losses,	when	he	suddenly	hit	the
jackpot,	about	three	dollars	in	dimes,	gave	me	a	dirty	look,	and	walked	away.	Right	then	I	began
giving	some	thought	to	the	actual	numerology	of	slot	machines;	in	doing	so	it	dawned	on	me	that
slot	machines	and	bacterial	mutations	have	something	to	teach	each	other.

In	the	1940s,	it	wasn’t	known	exactly	why	or	how	bacterial	resistance	to
viruses	(and,	for	that	matter,	to	antibiotics)	came	about.	Were	they	reactions
within	the	bacteria	to	the	virus,	or	were	there	simply	ongoing	mutations	that
occasionally	produced	resistance	by	accident?	There	seemed	no	way	to	devise
an	experiment	that	would	offer	a	decisive	answer	one	way	or	the	other—that
is,	until	Luria	saw	that	slot	machine	and	something	clicked.	Luria	realized
that	if	he	bred	several	generations	of	different	lineages	of	bacteria,	then
exposed	the	last	generation	to	a	virus,	one	of	two	radically	different	things
would	happen.	If	resistance	was	a	response	to	the	virus,	he’d	expect	roughly
the	same	amount	of	resistant	bacteria	to	appear	in	every	one	of	his	bacterial
cultures,	regardless	of	their	lineage.	On	the	other	hand,	if	resistance	emerged
from	chance	mutations,	he’d	expect	to	see	something	a	lot	more	uneven—just
like	a	slot	machine’s	payouts.	That	is,	bacteria	from	most	lineages	would
show	no	resistance	at	all;	some	lineages	would	have	a	single	“grandchild”
culture	that	had	mutated	to	become	resistant;	and	on	rare	occasions,	if	the
proper	mutation	had	happened	several	generations	up	the	“family	tree,”	there
would	be	a	jackpot:	all	the	“grandchildren”	in	the	lineage	would	be	resistant.
Luria	left	the	dance	as	soon	as	he	could	and	set	the	experiment	in	motion.

After	several	days	of	tense,	restless	waiting,	Luria	returned	to	the	lab	to
check	on	his	colonies.	Jackpot.

Luria’s	discovery	was	about	the	power	of	chance:	about	how	random,
haphazard	mutations	can	produce	viral	resistance.	But	it	was	also,	at	least	in

part,	due	to	the	power	of	chance.	He	was	in	the	right	place	at	the	right	time,
where	seeing	the	slot	machine	triggered	a	new	idea.	Tales	of	discovery	often
feature	a	similar	moment:	Newton’s	(possibly	apocryphal)	apple,	Archimedes’
bathtub	“Eureka!,”	the	neglected	petri	dish	that	grew	Penicillium	mold.
Indeed,	it’s	a	common	enough	phenomenon	that	a	word	was	invented	to
capture	it:	in	1754,	Horace	Walpole	coined	the	term	“serendipity,”	based	on
the	fairy	tale	adventures	of	The	Three	Princes	of	Serendip	(Serendip	being	the
archaic	name	of	Sri	Lanka),	who	“were	always	making	discoveries,	by
accidents	and	sagacity,	of	things	they	were	not	in	quest	of.”

This	double	role	of	randomness—a	key	part	of	biology,	a	key	part	of
discovery—has	repeatedly	caught	the	eye	of	psychologists	who	want	to
explain	human	creativity.	An	early	instance	of	this	idea	was	offered	by
William	James.	In	1880,	having	recently	been	appointed	assistant	professor	of
psychology	at	Harvard,	and	ten	years	away	from	publishing	his	definitive
Principles	of	Psychology,	James	wrote	an	article	in	the	Atlantic	Monthly
called	“Great	Men,	Great	Thoughts,	and	the	Environment.”	The	article	opens
with	his	thesis:

A	remarkable	parallel,	which	to	my	knowledge	has	never	been	noticed,	obtains	between	the	facts
of	social	evolution	and	the	mental	growth	of	the	race,	on	the	one	hand,	and	of	zoölogical
evolution,	as	expounded	by	Mr.	Darwin,	on	the	other.

At	the	time	James	was	writing,	the	idea	of	“zoölogical	evolution”	was	still
fresh—On	the	Origin	of	Species	having	been	published	in	1859	and	Mr.
Darwin	himself	still	alive.	James	discussed	how	evolutionary	ideas	might	be
applied	to	different	aspects	of	human	society,	and	toward	the	end	of	the	article
turned	to	the	evolution	of	ideas:

New	conceptions,	emotions,	and	active	tendencies	which	evolve	are	originally	produced	in	the
shape	of	random	images,	fancies,	accidental	out-births	of	spontaneous	variation	in	the	functional
activity	of	the	excessively	unstable	human	brain,	which	the	outer	environment	simply	confirms	or
refutes,	adopts	or	rejects,	preserves	or	destroys—selects,	in	short,	just	as	it	selects	morphological
and	social	variations	due	to	molecular	accidents	of	an	analogous	sort.

James	thus	viewed	randomness	as	the	heart	of	creativity.	And	he	believed	it
was	magnified	in	the	most	creative	people.	In	their	presence,	he	wrote,	“we
seem	suddenly	introduced	into	a	seething	caldron	of	ideas,	where	everything
is	fizzling	and	bobbing	about	in	a	state	of	bewildering	activity,	where
partnerships	can	be	joined	or	loosened	in	an	instant,	treadmill	routine	is
unknown,	and	the	unexpected	seems	the	only	law.”	(Note	here	the	same

“annealing”	intuition,	rooted	in	metaphors	of	temperature,	where	wild
permutation	equals	heat.)

The	modern	instantiation	of	James’s	theory	appears	in	the	work	of	Donald
Campbell,	a	psychologist	who	lived	a	hundred	years	later.	In	1960,	Campbell
published	a	paper	called	“Blind	Variation	and	Selective	Retention	in	Creative
Thought	as	in	Other	Knowledge	Processes.”	Like	James,	he	opened	with	his
central	thesis:	“A	blind-variation-and-selective-retention	process	is
fundamental	to	all	inductive	achievements,	to	all	genuine	increases	in
knowledge,	to	all	increases	in	fit	of	system	to	environment.”	And	like	James
he	was	inspired	by	evolution,	thinking	about	creative	innovation	as	the
outcome	of	new	ideas	being	generated	randomly	and	astute	human	minds
retaining	the	best	of	those	ideas.	Campbell	supported	his	argument	liberally
with	quotes	from	other	scientists	and	mathematicians	about	the	processes
behind	their	own	discoveries.	The	nineteenth-century	physicists	and
philosophers	Ernst	Mach	and	Henri	Poincaré	both	seemed	to	offer	an	account
similar	to	Campbell’s,	with	Mach	going	so	far	as	to	declare	that	“thus	are	to
be	explained	the	statements	of	Newton,	Mozart,	Richard	Wagner,	and	others,
when	they	say	that	thought,	melodies,	and	harmonies	had	poured	in	upon
them,	and	that	they	had	simply	retained	the	right	ones.”

When	it	comes	to	stimulating	creativity,	a	common	technique	is
introducing	a	random	element,	such	as	a	word	that	people	have	to	form
associations	with.	For	example,	musician	Brian	Eno	and	artist	Peter	Schmidt
created	a	deck	of	cards	known	as	Oblique	Strategies	for	solving	creative
problems.	Pick	a	card,	any	card,	and	you	will	get	a	random	new	perspective
on	your	project.	(And	if	that	sounds	like	too	much	work,	you	can	now
download	an	app	that	will	pick	a	card	for	you.)	Eno’s	account	of	why	they
developed	the	cards	has	clear	parallels	with	the	idea	of	escaping	local
maxima:

When	you’re	very	in	the	middle	of	something,	you	forget	the	most	obvious	things.	You	come	out
of	the	studio	and	you	think	“why	didn’t	we	remember	to	do	this	or	that?”	These	[cards]	really	are
just	ways	of	throwing	you	out	of	the	frame,	of	breaking	the	context	a	little	bit,	so	that	you’re	not	a
band	in	a	studio	focused	on	one	song,	but	you’re	people	who	are	alive	and	in	the	world	and	aware
of	a	lot	of	other	things	as	well.

Being	randomly	jittered,	thrown	out	of	the	frame	and	focused	on	a	larger
scale,	provides	a	way	to	leave	what	might	be	locally	good	and	get	back	to	the
pursuit	of	what	might	be	globally	optimal.

And	you	don’t	need	to	be	Brian	Eno	to	add	a	little	random	stimulation	to
your	life.	Wikipedia,	for	instance,	offers	a	“Random	article”	link,	and	Tom
has	been	using	it	as	his	browser’s	default	homepage	for	several	years,	seeing
a	randomly	selected	Wikipedia	entry	each	time	he	opens	a	new	window.
While	this	hasn’t	yet	resulted	in	any	striking	discoveries,	he	now	knows	a	lot
about	some	obscure	topics	(such	as	the	kind	of	knife	used	by	the	Chilean
armed	forces)	and	he	feels	that	some	of	these	have	enriched	his	life.	(For
example,	he’s	learned	that	there	is	a	word	in	Portuguese	for	a	“vague	and
constant	desire	for	something	that	does	not	and	probably	cannot	exist,”	a
problem	we	still	can’t	solve	with	a	search	engine.)	An	interesting	side	effect	is
that	he	now	also	has	a	better	sense	not	just	of	what	sorts	of	topics	are	covered
on	Wikipedia,	but	also	of	what	randomness	really	looks	like.	For	example,
pages	that	feel	like	they	have	some	connection	to	him—articles	about	people
or	places	he	knows—show	up	with	what	seems	like	surprising	frequency.	(In
a	test,	he	got	“Members	of	the	Western	Australian	Legislative	Council,	1962–
1965”	after	just	two	reloads,	and	he	grew	up	in	Western	Australia.)	Knowing
that	these	are	actually	randomly	generated	makes	it	possible	to	become	better
calibrated	for	evaluating	other	“coincidences”	in	the	rest	of	his	life.

In	the	physical	world,	you	can	randomize	your	vegetables	by	joining	a
Community-Supported	Agriculture	farm,	which	will	deliver	a	box	of	produce
to	you	every	week.	As	we	saw	earlier,	a	CSA	subscription	does	potentially
pose	a	scheduling	problem,	but	being	sent	fruits	and	vegetables	you	wouldn’t
normally	buy	is	a	great	way	to	get	knocked	out	of	a	local	maximum	in	your
recipe	rotation.	Likewise,	book-,	wine-,	and	chocolate-of-the-month	clubs	are
a	way	to	get	exposed	to	intellectual,	oenophilic,	and	gustatory	possibilities
that	you	might	never	have	encountered	otherwise.

You	might	worry	that	making	every	decision	by	flipping	a	coin	could	lead
to	trouble,	not	least	with	your	boss,	friends,	and	family.	And	it’s	true	that
mainlining	randomness	into	your	life	is	not	necessarily	a	recipe	for	success.
The	cult	classic	1971	novel	The	Dice	Man	by	Luke	Rhinehart	(real	name:
George	Cockcroft)	provides	a	cautionary	tale.	Its	narrator,	a	man	who	replaces
decision-making	with	dice	rolling,	quickly	ends	up	in	situations	that	most	of
us	would	probably	like	to	avoid.

But	perhaps	it’s	just	a	case	of	a	little	knowledge	being	a	dangerous	thing.
If	the	Dice	Man	had	only	had	a	deeper	grasp	of	computer	science,	he’d	have
had	some	guidance.	First,	from	Hill	Climbing:	even	if	you’re	in	the	habit	of

sometimes	acting	on	bad	ideas,	you	should	always	act	on	good	ones.	Second,
from	the	Metropolis	Algorithm:	your	likelihood	of	following	a	bad	idea
should	be	inversely	proportional	to	how	bad	an	idea	it	is.	Third,	from
Simulated	Annealing:	you	should	front-load	randomness,	rapidly	cooling	out
of	a	totally	random	state,	using	ever	less	and	less	randomness	as	time	goes	on,
lingering	longest	as	you	approach	freezing.	Temper	yourself—literally.

This	last	point	wasn’t	lost	on	the	novel’s	author.	Cockcroft	himself
apparently	turned,	not	unlike	his	protagonist,	to	“dicing”	for	a	time	in	his	life,
living	nomadically	with	his	family	on	a	Mediterranean	sailboat,	in	a	kind	of
Brownian	slow	motion.	At	some	point,	however,	his	annealing	schedule
cooled	off:	he	settled	down	comfortably	into	a	local	maximum,	on	a	lake	in
upstate	New	York.	Now	in	his	eighties,	he’s	still	contentedly	there.	“Once	you
got	somewhere	you	were	happy,”	he	told	the	Guardian,	“you’d	be	stupid	to
shake	it	up	any	further.”

*Interestingly,	some	of	these	experiments	appear	to	have	produced	a	far	better	estimate	of	π	than	would
be	expected	by	chance—which	suggests	that	they	may	have	been	deliberately	cut	short	at	a	good
stopping	point,	or	faked	altogether.	For	example,	in	1901	the	Italian	mathematician	Mario	Lazzarini
supposedly	made	3,408	tosses	and	obtained	an	estimate	of	π	≈	355⁄113	=	3.1415929	(the	actual	value	of	π	to
seven	decimal	places	is	3.1415927).	But	if	the	number	of	times	the	needle	crossed	the	line	had	been	off
by	just	a	single	toss,	the	estimate	would	have	been	far	less	pretty—3.1398	or	3.1433—which	makes
Lazzarini’s	report	seem	suspicious.	Laplace	might	have	found	it	fitting	that	we	can	use	Bayes’s	Rule	to
confirm	that	this	result	is	unlikely	to	have	arisen	from	a	valid	experiment.

*You	don’t	need	to	check	beyond	the	square	root,	because	if	a	number	has	a	factor	greater	than	its
square	root	then	by	definition	it	must	also	have	a	corresponding	factor	smaller	than	the	square	root—so
you	would	have	caught	it	already.	If	you’re	looking	for	factors	of	100,	for	instance,	every	factor	that’s
greater	than	10	will	be	paired	with	a	factor	smaller	than	10:	20	is	matched	up	with	5,	25	with	4,	and	so
on.

*Twin	primes	are	consecutive	odd	numbers	that	are	both	prime,	like	5	and	7.

*Note	that	we	deliberately	took	the	very	first	story	from	the	site—that	is,	we	did	not	read	through	all	of
them	to	pick	one	to	share,	which	would	have	defeated	the	purpose.

	

10		Networking
How	We	Connect
The	term	connection	has	a	wide	variety	of	meanings.	It	can	refer	to	a
physical	or	logical	path	between	two	entities,	it	can	refer	to	the	flow	over
the	path,	it	can	inferentially	refer	to	an	action	associated	with	the	setting
up	of	a	path,	or	it	can	refer	to	an	association	between	two	or	more
entities,	with	or	without	regard	to	any	path	between	them.

—VINT	CERF	AND	BOB	KAHN

Only	connect.
—E.	M.	FORSTER

The	long-distance	telegraph	began	with	a	portent—Samuel	F.	B.	Morse,
standing	in	the	chambers	of	the	US	Supreme	Court	on	May	24,	1844,	wiring
his	assistant	Alfred	Vail	in	Baltimore	a	verse	from	the	Old	Testament:
“WHAT	HATH	GOD	WROUGHT.”	The	first	thing	we	ask	of	any	new
connection	is	how	it	began,	and	from	that	origin	can’t	help	trying	to	augur	its
future.

The	first	telephone	call	in	history,	made	by	Alexander	Graham	Bell	to	his
assistant	on	March	10,	1876,	began	with	a	bit	of	a	paradox.	“Mr.	Watson,
come	here;	I	want	to	see	you”—a	simultaneous	testament	to	its	ability	and
inability	to	overcome	physical	distance.

The	cell	phone	began	with	a	boast—Motorola’s	Martin	Cooper	walking
down	Sixth	Avenue	on	April	3,	1973,	as	Manhattan	pedestrians	gawked,
calling	his	rival	Joel	Engel	at	AT&T:	“Joel,	I’m	calling	you	from	a	cellular
phone.	A	real	cellular	phone:	a	handheld,	portable,	real	cellular	phone.”	(“I
don’t	remember	exactly	what	he	said,”	Cooper	recalls,	“but	it	was	really	quiet
for	a	while.	My	assumption	was	that	he	was	grinding	his	teeth.”)

And	the	text	message	began,	on	December	3,	1992,	with	cheer:	Neil
Papworth	at	Sema	Group	Telecoms	wishing	Vodafone’s	Richard	Jarvis	an
early	“Merry	Christmas.”

The	beginnings	of	the	Internet	were,	somehow	fittingly,	much	humbler	and

more	inauspicious	than	all	of	that.	It	was	October	29,	1969,	and	Charley	Kline
at	UCLA	sent	to	Bill	Duvall	at	the	Stanford	Research	Institute	the	first
message	ever	transmitted	from	one	computer	to	another	via	the	ARPANET.
The	message	was	“login”—or	would	have	been,	had	the	receiving	machine
not	crashed	after	“lo.”

Lo—verily,	Kline	managed	to	sound	portentous	and	Old	Testament	despite
himself.

The	foundation	of	human	connection	is	protocol—a	shared	convention	of
procedures	and	expectations,	from	handshakes	and	hellos	to	etiquette,
politesse,	and	the	full	gamut	of	social	norms.	Machine	connection	is	no
different.	Protocol	is	how	we	get	on	the	same	page;	in	fact,	the	word	is	rooted
in	the	Greek	protokollon,	“first	glue,”	which	referred	to	the	outer	page
attached	to	a	book	or	manuscript.

In	interpersonal	affairs,	these	protocols	prove	a	subtle	but	perennial	source
of	anxiety.	I	sent	so-and-so	a	message	however	many	days	ago;	at	what	point
do	I	begin	to	suspect	they	never	received	it?	It’s	now	12:05	p.m.	and	our	call
was	set	for	noon;	are	we	both	expecting	each	other	to	be	the	one	calling?	Your
answer	seems	odd;	did	I	mishear	you	or	did	you	mishear	me?	Come	again?

Most	of	our	communication	technology—from	the	telegraph	to	the	text—
has	merely	provided	us	with	new	conduits	to	experience	these	familiar
person-to-person	challenges.	But	with	the	Internet,	computers	became	not
only	the	conduit	but	also	the	endpoints:	the	ones	doing	the	talking.	As	such,
they’ve	needed	to	be	responsible	for	solving	their	own	communication	issues.
These	machine-to-machine	problems—and	their	solutions—at	once	mimic
and	illuminate	our	own.

Packet	Switching

What	we	now	think	of	as	“the	Internet”	is	actually	a	collection	of	many
protocols,	but	the	chief	among	them	(so	much	so	that	it’s	often	referred	to
more	or	less	synonymously	with	the	Internet)	is	what’s	known	as
Transmission	Control	Protocol,	or	TCP.	It	was	born	from	a	1973	talk	and	a
1974	paper	by	Vinton	“Vint”	Cerf	and	Robert	“Bob”	Kahn,	who	laid	out	a
proposal	for	the	language	of—as	they	imagined	calling	it—an	“internetwork.”

TCP	initially	used	telephone	lines,	but	it’s	more	appropriately	regarded	as
the	evolution	of	the	mail	rather	than	the	phone.	Phone	calls	use	what’s	called

“circuit	switching”:	the	system	opens	a	channel	between	the	sender	and	the
receiver,	which	supplies	constant	bandwidth	between	the	parties	in	both
directions	as	long	as	the	call	lasts.	Circuit	switching	makes	plenty	of	sense	for
human	interaction,	but	as	early	as	the	1960s	it	was	clear	that	this	paradigm
wasn’t	going	to	work	for	machine	communications.

As	UCLA’s	Leonard	Kleinrock	recalls,
I	knew	that	computers,	when	they	talk,	they	don’t	talk	the	way	I	am	now—continuously.	They	go
blast!	and	they’re	quiet	for	a	while.	A	little	while	later,	they	suddenly	come	up	and	blast	again.
And	you	can’t	afford	to	dedicate	a	communications	connection	to	something	which	is	almost
never	talking,	but	when	it	wants	to	talk	it	wants	immediate	access.	So	we	had	to	not	use	the
telephone	network,	which	was	designed	for	continuous	talking—the	circuit	switching	network—
but	something	else.

The	telephone	companies,	for	their	part,	did	not	seem	especially	amenable
to	talk	of	a	fundamental	shift	in	their	protocols.	Moving	away	from	circuit
switching	was	considered	lunatic—“utter	heresy,”	in	the	words	of	networking
researcher	Van	Jacobson.	Kleinrock	reminisces	about	his	own	encounters	with
the	telecommunications	industry:

I	went	to	AT&T,	the	biggest	network	of	the	time,	and	I	explained	to	them,	you	guys	ought	to	give
us	good	data	communications.	And	their	answer	was,	what	are	you	talking	about?	The	United
States	is	a	copper	mine,	it’s	full	of	telephone	wires,	use	that.	I	said	no,	no,	you	don’t	understand.
It	takes	35	seconds	to	set	up	a	call,	you	charge	me	a	minimum	of	3	minutes,	and	I	want	to	send
100	milliseconds	of	data!	And	their	answer	was,	“Little	boy,	go	away.”	So	little	boy	went	away
and,	with	others,	developed	this	technology	which	ate	their	lunch.

The	technology	that	ate	circuit	switching’s	lunch	would	become	known	as
packet	switching.	In	a	packet-switched	network,	rather	than	using	a	dedicated
channel	for	each	connection,	senders	and	receivers	atomize	their	messages
into	tiny	shards	known	as	“packets,”	and	merge	them	into	the	communal	flow
of	data—a	bit	like	postcards	moving	at	the	speed	of	light.

In	such	a	network,	“what	you	might	call	a	connection	is	a	consensual
illusion	between	the	two	endpoints,”	explains	Apple	networking	expert	Stuart
Cheshire.	“There	are	no	connections	in	the	Internet.	Talking	about	a
connection	in	the	Internet	is	like	talking	about	a	connection	in	the	US	Mail
system.	You	write	letters	to	people	and	each	letter	goes	independently—and
you	may	have	a	correspondence	that	goes	back	and	forth	and	has	some
continuity	to	it,	but	the	US	Mail	doesn’t	need	to	know	about	that.…	They	just
deliver	the	letters.”

Efficient	use	of	bandwidth	wasn’t	the	only	consideration	driving	research
into	packet	switching	in	the	1960s;	the	other	was	nuclear	war.	Paul	Baran	at
the	RAND	Corporation	was	trying	to	solve	the	problem	of	network
robustness,	so	that	military	communications	could	survive	a	nuclear	attack
that	took	out	a	sizable	fraction	of	the	network.	Inspired	by	algorithms
developed	in	the	1950s	for	navigating	mazes,	Baran	imagined	a	design	in
which	every	piece	of	information	could	independently	make	its	own	way	to
its	destination,	even	as	the	network	was	changing	dynamically—or	being	torn
to	tatters.

This	was	the	second	demerit	against	circuit	switching	and	its	dedicated,
stable	connections:	that	very	stability	meant	that	a	dropped	call	stayed
dropped.	Circuit	switching	just	wasn’t	flexible	or	adaptable	enough	to	be
robust.	And	here,	too,	packet	switching	could	offer	just	what	the	times	were
calling	for.	In	circuit-switched	networks,	a	call	fails	if	any	one	of	its	links	gets
disrupted—which	means	that	reliability	goes	down	exponentially	as	a
network	grows	larger.	In	packet	switching,	on	the	other	hand,	the	proliferation
of	paths	in	a	growing	network	becomes	a	virtue:	there	are	now	that	many
more	ways	for	data	to	flow,	so	the	reliability	of	the	network	increases
exponentially	with	its	size.

Still,	as	Van	Jacobson	tells	it,	even	after	packet	switching	was	devised,	the
phone	companies	were	unimpressed.	“All	the	telco	people	said,	with	very
loud	voices,	that’s	not	a	network!	That’s	just	a	crummy	way	to	use	our
network!	You’re	taking	our	wires,	you’re	sending	on	the	paths	that	we	create!
And	you’re	putting	a	lot	of	extra	gunk	on	it	so	that	you	use	it	really
inefficiently.”	But	from	a	packet-switching	point	of	view,	the	phone	wires	are
just	a	means	to	an	end;	the	sender	and	receiver	don’t	actually	care	how	the
packets	get	delivered.	The	ability	to	operate	agnostically	over	any	number	of
diverse	media	would	be	packet	switching’s	great	virtue.	After	early	networks
in	the	late	’60s	and	early	’70s,	such	as	the	ARPANET,	proved	the	viability	of
the	concept,	networks	of	all	types	began	sprouting	across	the	country,	doing
packet	switching	not	only	over	copper	phone	wires,	but	over	satellites	and
over	radio.	In	2001,	a	group	of	computer	scientists	in	the	Norwegian	city	of
Bergen	briefly	even	implemented	a	packet-switching	network	over	“Avian
Carriers”—that	is,	packets	written	down	on	paper	and	tied	to	pigeons’	feet.

Of	course,	packet	switching	would	not	be	without	its	own	problems.	For
starters,	one	of	the	first	questions	for	any	protocol,	human	or	machine,	is,

quite	simply:	how	do	you	know	your	messages	are	getting	through?

Acknowledgment

No	transmission	can	be	100	percent	reliable.
—VINT	CERF	AND	BOB	KAHN

“WHAT	HATH	GOD	WROUGHT”	wasn’t	just	the	first	long-distance
telegraph	message	sent	in	the	United	States.	It	was	also	the	second:	Alfred
Vail	sent	the	quotation	back	to	Morse	in	the	Supreme	Court	chambers	as	a
way	of	confirming	receipt.

Now,	Vail’s	reply	could	make	Morse,	and	the	US	legislators	gathered
around	him,	confident	that	Morse’s	message	had	been	received—presuming,
of	course,	that	Vail	hadn’t	known	the	choice	of	message	in	advance.	But	what
would	make	Vail	confident	that	his	confirmation	had	been	received?

Computer	scientists	know	this	concept	as	the	“Byzantine	generals
problem.”	Imagine	two	generals,	on	opposite	sides	of	a	valley	that	contains
their	common	enemy,	attempting	to	coordinate	an	attack.	Only	by	perfect
synchronization	will	they	succeed;	for	either	to	attack	alone	is	suicide.	What’s
worse,	any	messages	from	one	general	to	the	other	must	be	delivered	by	hand
across	the	very	terrain	that	contains	the	enemy,	meaning	there’s	a	chance	that
any	given	message	will	never	arrive.

The	first	general,	say,	suggests	a	time	for	the	attack,	but	won’t	dare	go	for
it	unless	he	knows	for	sure	that	his	comrade	is	moving,	too.	The	second
general	receives	the	orders	and	sends	back	a	confirmation—but	won’t	dare
attack	unless	he	knows	that	the	first	general	received	that	confirmation	(since
otherwise	the	first	general	won’t	be	going).	The	first	general	receives	the
confirmation—but	won’t	attack	until	he’s	certain	that	the	second	general
knows	he	did.	Following	this	chain	of	logic	requires	an	infinite	series	of
messages,	and	obviously	that	won’t	do.	Communication	is	one	of	those
delightful	things	that	work	only	in	practice;	in	theory	it’s	impossible.

In	most	scenarios	the	consequences	of	communication	lapses	are	rarely	so
dire,	and	the	need	for	certainty	rarely	so	absolute.	In	TCP,	a	failure	generally
leads	to	retransmission	rather	than	death,	so	it’s	considered	enough	for	a
session	to	begin	with	what’s	called	a	“triple	handshake.”	The	visitor	says
hello,	the	server	acknowledges	the	hello	and	says	hello	back,	the	visitor
acknowledges	that,	and	if	the	server	receives	this	third	message,	then	no

further	confirmation	is	needed	and	they’re	off	to	the	races.	Even	after	this
initial	connection	is	made,	however,	there’s	still	a	risk	that	some	later	packets
may	be	damaged	or	lost	in	transit,	or	arrive	out	of	order.	In	the	postal	mail,
package	delivery	can	be	confirmed	via	return	receipts;	online,	packet	delivery
is	confirmed	by	what	are	called	acknowledgment	packets,	or	ACKs.	These	are
critical	to	the	functioning	of	the	network.

The	way	that	ACKs	work	is	both	simple	and	clever.	Behind	the	scenes	of
the	triple	handshake,	each	machine	provides	the	other	with	a	kind	of	serial
number—and	it’s	understood	that	every	packet	sent	after	that	will	increment
those	serial	numbers	by	one	each	time,	like	checks	in	a	checkbook.	For
instance,	if	your	computer	initiates	contact	with	a	web	server,	it	might	send
that	server,	say,	the	number	100.	The	ACK	sent	by	the	server	will	in	turn
specify	the	serial	number	at	which	the	server’s	own	packets	will	begin	(call	it
5,000),	and	also	will	say	“Ready	for	101.”	Your	machine’s	ACK	will	carry	the
number	101	and	will	convey	in	turn	“Ready	for	5,001.”	(Note	that	these	two
numbering	schemes	are	totally	independent,	and	the	number	that	begins	each
sequence	is	typically	chosen	at	random.)

This	mechanism	offers	a	ready	way	to	pinpoint	when	packets	have	gone
astray.	If	the	server	is	expecting	101	but	instead	gets	102,	it	will	send	an	ACK
to	packet	102	that	still	says	“Ready	for	101.”	If	it	next	gets	packet	103,	it	will
say,	again,	“Ready	for	101.”	Three	such	redundant	ACKs	in	a	row	would
signal	to	your	machine	that	101	isn’t	just	delayed	but	hopelessly	gone,	so	it
will	resend	that	packet.	At	that	point,	the	server	(which	has	kept	packets	102
and	103)	will	send	an	ACK	saying	“Ready	for	104”	to	signal	that	the
sequence	has	been	restored.

All	those	acknowledgments	can	actually	add	up	to	a	considerable	amount
of	traffic.	We	think	of,	say,	a	large	file	transfer	as	a	one-way	operation,	but	in
fact	the	recipient	is	sending	hundreds	of	“control	messages”	back	to	the
sender.	A	report	from	the	second	half	of	2014	showed	that	almost	10%	of
upstream	Internet	traffic	during	peak	hours	was	due	to	Netflix—which	we
tend	to	think	of	as	sending	data	almost	exclusively	downstream,	to	users.	But
all	that	video	generates	an	awful	lot	of	ACKs.

In	the	human	sphere,	the	anxiety	that	the	message	is	indeed	being	received
similarly	pervades	conversation.	A	speaker	might	subconsciously	append
“You	know?”	to	the	end	of	every	sentence,	and	a	listener,	for	their	part,	can’t

help	but	make	a	steady	stream	of	nods,	yeahs,	aye-ayes,	roger-thats,	ten-fours,
uh-huhs.	We	do	this	even	face-to-face,	but	on	a	phone	call	sometimes	it’s	the
only	way	to	know	the	call	is	even	still	in	progress.	No	wonder	that	the	most
successful	twenty-first-century	marketing	campaign	for	a	wireless	carrier
featured	a	network	engineer’s	quality-control	catchphrase,	repeated	again	and
again:	“Can	you	hear	me	now?”

When	something	goes	wrong	in	that	back-and-forth,	we’re	often	left	with
a	question	mark.	As	software	blogger	Tyler	Treat	says,

In	a	distributed	system,	we	try	to	guarantee	the	delivery	of	a	message	by	waiting	for	an
acknowledgement	that	it	was	received,	but	all	sorts	of	things	can	go	wrong.	Did	the	message	get
dropped?	Did	the	ack	get	dropped?	Did	the	receiver	crash?	Are	they	just	slow?	Is	the	network
slow?	Am	I	slow?

The	issues	faced	by	the	Byzantine	generals,	as	he	reminds	us,	“are	not	design
complexities,	they	are	impossibility	results.”

Earlier	networking	research,	Vint	Cerf	notes,	had	been	founded	“on	the
assumption	that	you	could	build	a	reliable	underlying	net.”	On	the	other	hand,
“the	Internet	was	based	on	the	assumption	that	no	network	was	necessarily
reliable,	and	you	had	to	do	end-to-end	retransmissions	to	recover.”

Ironically,	one	of	the	few	exceptions	to	this	is	in	transmitting	the	human
voice.	Real-time	voice	communications,	such	as	Skype,	typically	do	not	use
TCP,	which	underlies	most	of	the	rest	of	the	Internet.	As	researchers
discovered	in	the	early	days	of	networking,	using	reliable,	robust	protocols—
with	all	their	ACKs	and	retransmission	of	lost	packets—to	transmit	the
human	voice	is	overkill.	The	humans	provide	the	robustness	themselves.	As
Cerf	explains,	“In	the	case	of	voice,	if	you	lose	a	packet,	you	just	say,	‘Say
that	again,	I	missed	something.’”

For	this	reason,	phone	services	that	automatically	reduce	background
noise	to	silence	are	doing	their	users	a	major	disservice.	Background	static	is
a	continual	reassurance	that	the	call	is	still	connected	and	that	any	silence	is	a
deliberate	choice	by	the	other	party.	Without	it,	one	must	constantly	confront
the	possibility	that	the	call	has	dropped,	and	constantly	offer	reassurances	that
it	has	not.	This,	too,	is	the	anxiety	of	all	packet-switching	protocols,	indeed	of
any	medium	rooted	in	asynchronous	turn-taking—be	it	letter	writing,	texting,
or	the	tentative	back-and-forths	of	online	dating.	Every	message	could	be	the
last,	and	there	is	often	no	telling	the	difference	between	someone	taking	their

time	to	respond	and	someone	who	has	long	since	ended	the	conversation.

So	how	exactly	should	we	handle	a	person—or	a	computer—that’s
unreliable?

The	first	question	is	how	long	a	period	of	nonresponsiveness	we	should
take	to	constitute	a	breakdown.	Partly	this	depends	on	the	nature	of	the
network:	we	start	to	worry	in	a	matter	of	seconds	over	the	phone,	days	over
email,	and	weeks	over	postal	mail.	The	longer	the	round-trip	time	between
sender	and	receiver,	the	longer	it	takes	a	silence	to	be	significant—and	the
more	information	can	be	potentially	“in	flight”	before	the	sender	realizes
there’s	a	problem.	In	networking,	having	the	parties	properly	tune	their
expectations	for	the	timeliness	of	acknowledgments	is	crucial	to	the	system
functioning	correctly.

The	second	question,	of	course,	once	we	do	recognize	a	breakdown,	is
what	exactly	we	should	do	about	it.

Exponential	Backoff:	The	Algorithm	of	Forgiveness

The	world’s	most	difficult	word	to	translate	has	been	identified	as
“ilunga,”	from	the	Tshiluba	language	spoken	in	south-eastern	DR
Congo.…	Ilunga	means	“a	person	who	is	ready	to	forgive	any	abuse	for
the	first	time,	to	tolerate	it	a	second	time,	but	never	a	third	time.”

—BBC	NEWS

If	at	first	you	don’t	succeed,	/	Try,	try	again.
—T.	H.	PALMER

Today	we	expect	our	devices	to	communicate	wirelessly	even	when	wires
would	be	easy—our	keyboard	and	mouse,	for	instance,	talking	wirelessly
with	a	computer	sitting	inches	away.	But	wireless	networking	began	as	a
matter	of	necessity,	in	a	place	where	no	wires	could	do	the	job:	Hawaii.	In	the
late	’60s	and	early	’70s,	Norman	Abramson	at	the	University	of	Hawaii	in
Honolulu	was	trying	to	link	together	the	university’s	seven	campuses	and
many	research	institutes,	spread	across	four	islands	and	hundreds	of	miles.	He
hit	upon	the	idea	of	implementing	packet	switching	via	radio	rather	than	the
phone	system,	connecting	the	islands	with	a	loose	chain	of	transmitters	and
receivers.	This	system	would	come	to	be	known	as	the	ALOHAnet.

The	biggest	hurdle	that	the	ALOHAnet	had	to	overcome	was	interference.

Sometimes	two	stations	would	transmit	at	the	same	moment,	inadvertently
jamming	one	another’s	signals.	(This	is,	of	course,	a	familiar	feature	in	human
conversation	as	well.)	If	both	stations	simply	retransmitted	right	away	to	try
to	get	their	message	across,	they’d	run	the	risk	of	getting	stuck	in	perpetual
interference	forever.	Clearly	the	ALOHAnet	protocol	was	going	to	need	to
tell	competing	signals	how	to	give	each	other	space,	how	to	yield	and	make
way	for	one	another.

The	first	thing	that	the	senders	need	to	do	here	is	what’s	called	“breaking
symmetry.”	As	any	sidewalk	pedestrian	knows,	dodging	right	as	an	oncoming
walker	dodges	left,	and	then	having	both	of	you	simultaneously	dodge	back
the	other	way,	doesn’t	solve	anything.	It’s	the	same	story	when	two	speakers
both	pause,	make	gestures	of	deference	to	the	other,	and	then	start	to	speak
again	at	the	same	time;	or	when	two	cars	at	an	intersection,	each	having
stopped	to	yield	to	the	other,	try	to	accelerate	in	sync.	This	is	an	area	where
the	use	of	randomness	becomes	essential—indeed,	networking	wouldn’t	be
possible	without	it.

One	straightforward	solution	is	to	have	each	station	flip	a	coin.	Heads,	it
retransmits;	tails,	it	waits	a	turn,	then	retransmits.	Surely	one	of	them	will	get
through	uncontested	before	long.	This	works	well	enough	when	there	are	only
two	senders.	But	what	if	there	are	three	simultaneous	signals?	Or	four?	It
would	take	a	one-in-four	chance	for	the	network	to	get	even	a	single	packet
through	at	that	point	(after	which	you’d	still	have	three	conflicting	stations
left,	and	perhaps	even	more	competing	signals	arriving	meanwhile).	As	the
number	of	conflicts	increases	further,	the	network’s	throughput	could	simply
fall	off	a	cliff.	A	1970	report	on	the	ALOHAnet	said	that	above	a	mere	18.6%
average	utilization	of	the	airwaves,	“the	channel	becomes	unstable	…	and	the
average	number	of	retransmissions	becomes	unbounded.”	Not	good.

So,	what	to	do?	Is	there	a	way	to	make	a	system	that	could	avoid	this	fate?

The	breakthrough	turned	out	to	be	increasing	the	average	delay	after	every
successive	failure—specifically,	doubling	the	potential	delay	before	trying	to
transmit	again.	So	after	an	initial	failure,	a	sender	would	randomly	retransmit
either	one	or	two	turns	later;	after	a	second	failure,	it	would	try	again
anywhere	from	one	to	four	turns	later;	a	third	failure	in	a	row	would	mean
waiting	somewhere	between	one	and	eight	turns,	and	so	on.	This	elegant
approach	allows	the	network	to	accommodate	potentially	any	number	of

competing	signals.	Since	the	maximum	delay	length	(2,	4,	8,	16…)	forms	an
exponential	progression,	it’s	become	known	as	Exponential	Backoff.

Exponential	Backoff	was	a	huge	part	of	the	successful	functioning	of	the
ALOHAnet	beginning	in	1971,	and	in	the	1980s	it	was	baked	into	TCP,
becoming	a	critical	part	of	the	Internet.	All	these	decades	later,	it	still	is.	As
one	influential	paper	puts	it,	“For	a	transport	endpoint	embedded	in	a	network
of	unknown	topology	and	with	an	unknown,	unknowable	and	constantly
changing	population	of	competing	conversations,	only	one	scheme	has	any
hope	of	working—exponential	backoff.”

But	it	is	the	algorithm’s	other	uses	that	suggest	something	both	more
prescriptive	and	more	profound.	Beyond	just	collision	avoidance,	Exponential
Backoff	has	become	the	default	way	of	handling	almost	all	cases	of
networking	failure	or	unreliability.	For	instance,	when	your	computer	is	trying
to	reach	a	website	that	appears	to	be	down,	it	uses	Exponential	Backoff—
trying	again	one	second	later,	again	a	few	seconds	after	that,	and	so	forth.
This	is	good	for	everyone:	it	prevents	a	host	server	that’s	down	from	getting
slammed	with	requests	as	soon	as	it	comes	back	online,	and	it	prevents	your
own	machine	from	wasting	too	much	effort	trying	to	get	blood	from	a	stone.
But	interestingly,	it	also	does	not	force	(or	allow)	your	machine	to	ever
completely	give	up.

Exponential	Backoff	is	also	a	critical	part	of	networking	security,	when
successive	password	failures	in	logging	into	an	account	are	punished	by	an
exponentially	increasing	lockout	period.	This	prevents	a	hacker	from	using	a
“dictionary	attack”	against	an	account,	cycling	through	potential	password
after	password	until	eventually	they	get	lucky.	At	the	same	time	it	also	solves
another	problem:	the	account’s	real	owner,	no	matter	how	forgetful,	is	never
permanently	locked	out	after	some	arbitrary	cutoff.

In	human	society,	we	tend	to	adopt	a	policy	of	giving	people	some	finite
number	of	chances	in	a	row,	then	giving	up	entirely.	Three	strikes,	you’re	out.
This	pattern	prevails	by	default	in	almost	any	situation	that	requires
forgiveness,	lenience,	or	perseverance.	Simply	put,	maybe	we’re	doing	it
wrong.

A	friend	of	ours	recently	mused	about	a	childhood	companion	who	had	a
disconcerting	habit	of	flaking	on	social	plans.	What	to	do?	Deciding	once	and
for	all	that	she’d	finally	had	enough	and	giving	up	entirely	on	the	relationship

seemed	arbitrary	and	severe,	but	continuing	to	persist	in	perpetual
rescheduling	seemed	naïve,	liable	to	lead	to	an	endless	amount	of
disappointment	and	wasted	time.	Solution:	Exponential	Backoff	on	the
invitation	rate.	Try	to	reschedule	in	a	week,	then	two,	then	four,	then	eight.
The	rate	of	“retransmission”	goes	toward	zero—yet	you	never	have	to
completely	give	up.

Another	friend	of	ours	agonized	about	whether	to	offer	shelter	and
financial	assistance	to	a	family	member	with	a	history	of	drug	addiction.	She
couldn’t	bear	to	give	up	hope	that	he	would	turn	things	around,	and	couldn’t
bear	the	thought	of	turning	her	back	on	him	for	good.	But	she	also	couldn’t
bring	herself	to	do	all	that	it	required	to	have	him	in	her	house—buying	him
clothes	and	cooking	for	him,	reopening	bank	accounts	for	him,	and	driving
him	to	work	each	morning—when	at	some	mysterious	and	abrupt	moment	he
would	take	all	the	money	and	disappear,	only	to	call	again	several	weeks	later
and	ask	to	be	forgiven	and	taken	back	in.	It	seemed	like	a	paradox,	a	cruel	and
impossible	choice.

Exponential	Backoff	isn’t	a	magic	panacea	in	cases	like	this,	but	it	does
offer	a	possible	way	forward.	Requiring	an	exponentially	increasing	period	of
sobriety,	for	instance,	would	offer	a	disincentive	to	violate	the	house	rules
again.	It	would	make	the	family	member	prove	ever	more	assiduously	that	he
was	serious	about	returning,	and	would	protect	the	host	from	the	otherwise
continuous	stress	of	the	cycle.	Perhaps	most	importantly,	the	host	would	never
have	to	tell	her	relative	that	she’d	given	up	on	him	for	good	or	that	he	was
beyond	redemption.	It	offers	a	way	to	have	finite	patience	and	infinite	mercy.
Maybe	we	don’t	have	to	choose.

In	fact,	the	past	decade	has	seen	the	beginnings	of	a	quiet	revolution	in	the
way	the	justice	system	itself	handles	community	supervision	for	drug
offenders.	That	revolution	is	being	spearheaded	by	a	pilot	program	called
HOPE,	which	uses	the	Exponential	Backoff	principles	of	the	ALOHAnet—
and	which,	in	a	striking	coincidence,	began	at	the	birthplace	of	the
ALOHAnet	itself:	Honolulu.

Shortly	after	being	sworn	in	to	Hawaii’s	First	Circuit	Court,	Judge	Steven
Alm	noticed	a	remarkable	pattern.	Probationers	would	repeatedly	violate	their
probation	terms,	and	circuit	judges	would	routinely	use	their	discretion	to	let
them	off	with	a	warning.	But	at	some	point,	perhaps	after	a	dozen	or	more

violations,	the	judge	would	decide	to	be	strict,	and	assign	the	violator	a	prison
sentence	measured	in	years.	Says	Alm,	“I	thought,	what	a	crazy	way	to	try	to
change	anybody’s	behavior.”	So	Alm	proposed	almost	exactly	the	opposite.	In
place	of	violation	hearings	scheduled	a	long	time	into	the	future,	requiring
uncertain	judgment	calls,	and	occasionally	producing	huge	penalties,	HOPE	is
based	on	immediate,	predefined	punishments	that	begin	with	just	one	day	in
jail	and	increase	after	each	incident.	A	five-year	study	by	the	Department	of
Justice	reported	that	HOPE	probationers	were	half	as	likely	as	regular
probationers	to	be	arrested	for	a	new	crime	or	have	their	probation	revoked.
And	they	were	72%	less	likely	to	use	drugs.	Seventeen	states	have	followed
Hawaii’s	lead	and	launched	their	own	versions	of	HOPE.

Flow	Control	and	Congestion	Avoidance

The	first	efforts	at	computer	networking	focused	on	establishing	reliable
transmissions	over	unreliable	links.	These	efforts	proved	to	be	so	successful
that	a	second	concern	immediately	arose:	making	sure	that	an	overloaded
network	could	avoid	catastrophic	meltdown.	No	sooner	had	TCP	solved	the
problem	of	getting	data	from	point	A	to	point	B	than	it	was	confronted	with
the	problem	of	gridlock.

The	most	significant	early	warning	came	in	1986,	on	a	line	connecting	the
Lawrence	Berkeley	Laboratory	and	the	UC	Berkeley	campus,	which	are
separated	by	about	the	length	of	a	football	field.	(At	Berkeley,	the	space
happens	to	be	filled	with	an	actual	football	field.)	One	day,	the	bandwidth	of
that	line	dropped	abruptly	from	its	typical	32,000	bits	per	second	to	just	40
bits	per	second.	The	victims,	Van	Jacobson	at	LBL	and	Michael	Karels	at
UCB,	“were	fascinated	by	this	sudden	factor-of-thousand	drop	in	bandwidth
and	embarked	on	an	investigation	of	why	things	had	gotten	so	bad.”

Meanwhile,	they	heard	murmurings	from	other	networking	groups	across
the	country	who	were	running	into	the	same	thing.	Jacobson	began	looking
into	the	underlying	code.	“Is	there	some	mistake	in	the	protocol?”	he
wondered.	“This	thing	was	working	on	smaller-scale	tests,	and	then	it
suddenly	fell	apart.”

One	of	the	biggest	differences	between	circuit	switching	and	packet
switching	emerges	in	how	they	deal	with	congestion.	In	circuit	switching,	the
system	either	approves	a	channel	request,	or	denies	it	outright	if	the	request
cannot	be	accommodated.	That’s	why,	if	you’ve	ever	tried	using	a	phone

system	during	some	peak	time,	you	may	have	encountered	the	“special
information	tone”	and	message	proclaiming	that	“all	circuits	are	busy.”

Packet	switching	is	radically	different.	The	phone	system	gets	full;	the
mail	system	gets	slow.	There’s	nothing	in	the	network	to	explicitly	tell	a
sender	how	many	other	senders	there	are,	or	how	congested	the	network	is	at
any	given	moment,	and	the	amount	of	congestion	is	constantly	changing.
Therefore,	the	sender	and	receiver	must	not	only	communicate	but
metacommunicate:	they	need	to	figure	out	how	fast	the	data	should	be	sent.
Somehow,	assorted	packet	flows—without	explicit	management	or
coordination—must	both	get	out	of	each	other’s	way	and	quickly	take
advantage	of	any	newly	available	space.

The	result	of	Jacobson	and	Karels’s	detective	work	was	a	revised	set	of
flow	control	and	congestion-avoidance	algorithms—one	of	the	biggest
modifications	to	TCP	in	forty	years.

At	the	heart	of	TCP	congestion	control	is	an	algorithm	called	Additive
Increase,	Multiplicative	Decrease,	or	AIMD.	Before	AIMD	kicks	in,	a	new
connection	will	ramp	up	its	transmission	rate	aggressively:	if	the	first	packet
is	received	successfully	it	sends	out	two	more,	if	both	of	those	get	through	it
sends	out	a	batch	of	four,	and	so	on.	But	as	soon	as	any	packet’s	ACK	does
not	come	back	to	the	sender,	the	AIMD	algorithm	takes	over.	Under	AIMD,
any	fully	received	batch	of	packets	causes	the	number	of	packets	in	flight	not
to	double	but	merely	to	increase	by	1,	and	dropped	packets	cause	the
transmission	rate	to	cut	back	by	half	(hence	the	name	Additive	Increase,
Multiplicative	Decrease).	Essentially,	AIMD	takes	the	form	of	someone
saying,	“A	little	more,	a	little	more,	a	little	more,	whoa,	too	much,	cut	way
back,	okay	a	little	more,	a	little	more…”	Thus	it	leads	to	a	characteristic
bandwidth	shape	known	as	the	“TCP	sawtooth”—steady	upward	climbs
punctuated	by	steep	drops.

Why	such	a	sharp,	asymmetrical	decrease?	As	Jacobson	and	Karels
explain,	the	first	time	AIMD	kicks	in	is	when	a	connection	has	experienced
the	first	dropped	packet	in	its	initial	aggressive	ramping-up	phase.	Because
that	initial	phase	involved	doubling	the	rate	of	transmission	with	every
successful	volley,	cutting	the	speed	back	by	half	as	soon	as	there’s	been	a
problem	is	entirely	appropriate.	And	once	a	transmission	is	in	progress,	if	it
starts	to	falter	again	that’s	likely	to	be	because	some	new	connection	is

competing	for	the	network.	The	most	conservative	assessment	of	that
situation—namely,	assuming	you	were	the	only	person	using	the	network	and
now	there’s	a	second	person	taking	half	the	resources—also	leads	to	cutting
back	by	half.	Conservatism	here	is	essential:	a	network	can	stabilize	only	if	its
users	pull	back	at	least	as	fast	as	the	rate	at	which	it	is	being	overloaded.	For
the	same	reason,	a	merely	additive	increase	helps	stabilize	things	for
everyone,	preventing	rapid	overload-and-recovery	cycles.

Though	such	a	strict	distinction	between	addition	and	multiplication	is	the
kind	of	thing	unlikely	to	be	found	in	nature,	the	TCP	sawtooth	does	find
resonance	in	various	domains	where	the	idea	is	to	take	as	much	as	one	can
safely	get	away	with.

In	a	serendipitous	2012	collaboration,	for	instance,	Stanford	ecologist
Deborah	Gordon	and	computer	scientist	Balaji	Prabhakar	discovered	that	ants
appear	to	have	developed	flow	control	algorithms	millions	of	years	before
humans	did.	Like	a	computer	network,	an	ant	colony	faces	an	allocation
problem	in	trying	to	manage	its	“flow”—in	this	case,	the	flow	of	ants	heading
out	to	forage	for	food—under	variable	conditions	that	may	sharply	affect	the
rate	at	which	the	ants	make	successful	round-trips.	And	like	computers	on	the
Internet,	ants	must	solve	this	shared	problem	without	the	benefit	of	a	central
decision	maker,	instead	developing	what	Gordon	calls	“control	without
hierarchy.”	It	turns	out	the	ants’	solution	is	similar,	too:	a	feedback	cycle
where	successful	foragers	prompt	more	to	leave	the	nest,	while	unsuccessful
returnees	result	in	a	diminishment	of	foraging	activity.

Other	animal	behavior	also	evokes	TCP	flow	control,	with	its
characteristic	sawtooth.	Squirrels	and	pigeons	going	after	human	food	scraps
will	creep	forward	a	step	at	a	time,	occasionally	leap	back,	then	steadily	creep
forward	again.	And	it	may	be	that	human	communications	themselves	mirror
the	very	protocols	that	transmit	them:	every	text	message	or	email	reply
encourages	yet	another,	while	every	unreturned	message	stanches	the	flow.

More	broadly,	AIMD	suggests	an	approach	to	the	many	places	in	life
where	we	struggle	to	allocate	limited	resources	in	uncertain	and	fluctuating
conditions.

The	satirical	“Peter	Principle,”	articulated	in	the	1960s	by	education
professor	Laurence	J.	Peter,	states	that	“every	employee	tends	to	rise	to	his
level	of	incompetence.”	The	idea	is	that	in	a	hierarchical	organization,	anyone

doing	a	job	proficiently	will	be	rewarded	with	a	promotion	into	a	new	job	that
may	involve	more	complex	and/or	different	challenges.	When	the	employee
finally	reaches	a	role	in	which	they	don’t	perform	well,	their	march	up	the
ranks	will	stall,	and	they	will	remain	in	that	role	for	the	rest	of	their	career.
Thus	it	stands	to	reason,	goes	the	ominous	logic	of	the	Peter	Principle,	that
eventually	every	spot	in	an	organization	will	come	to	be	filled	by	someone
doing	that	job	badly.	Some	fifty	years	before	Peter’s	formulation,	Spanish
philosopher	José	Ortega	y	Gasset	in	1910	voiced	the	same	sentiment.	“Every
public	servant	should	be	demoted	to	the	immediately	lower	rank,”	he	wrote,
“because	they	were	advanced	until	they	became	incompetent.”

Some	organizations	have	attempted	to	remediate	the	Peter	Principle	by
simply	firing	employees	who	don’t	advance.	The	so-called	Cravath	System,
devised	by	leading	law	firm	Cravath,	Swaine	&	Moore,	involves	hiring
almost	exclusively	recent	graduates,	placing	them	into	the	bottom	ranks,	and
then	routinely	either	promoting	or	firing	them	over	the	following	years.	In
1980,	the	US	Armed	Forces	adopted	a	similar	“up	or	out”	policy	with	the
Defense	Officer	Personnel	Management	Act.	The	United	Kingdom	has
likewise	pursued	what	they	call	“manning	control,”	to	great	controversy.

Is	there	any	alternative,	any	middle	path	between	the	institutional
stagnation	of	the	Peter	Principle	and	the	draconian	severity	of	the	“up	or	out”
system?	The	AIMD	algorithm	can	offer	just	such	an	approach,	since	it	is
explicitly	designed	to	handle	the	demands	of	a	volatile	environment.	A
computer	network	must	manage	its	own	maximum	transmission	capacity,	plus
the	transmission	rates	of	its	clients,	all	of	which	may	be	fluctuating
unpredictably.	Likewise,	in	a	business	setting,	a	company	has	a	limited	pool
of	funds	to	pay	for	its	operations,	and	each	worker	or	vendor	has	a	limited
capacity	for	the	amount	of	work	they	can	do	and	the	amount	of	responsibility
they	can	handle.	Everyone’s	needs,	capacities,	and	partnerships	are	always	in
flux.

The	lesson	of	the	TCP	sawtooth	is	that	in	an	unpredictable	and	changing
environment,	pushing	things	to	the	point	of	failure	is	indeed	sometimes	the
best	(or	the	only)	way	to	use	all	the	resources	to	their	fullest.	What	matters	is
making	sure	that	the	response	to	failure	is	both	sharp	and	resilient.	Under
AIMD,	every	connection	that	isn’t	dropping	the	ball	is	accelerated	until	it	is—
and	then	it’s	cut	in	half,	and	immediately	begins	accelerating	again.	And
though	it	would	violate	almost	every	norm	of	current	corporate	culture,	one

can	imagine	a	corporation	in	which,	annually,	every	employee	is	always	either
promoted	a	single	step	up	the	org	chart	or	sent	part	of	the	way	back	down.

As	Laurence	J.	Peter	saw	it,	the	insidious	Peter	Principle	arises	in
corporations	because	of	“the	first	commandment	of	hierarchical	life:	the
hierarchy	must	be	preserved.”	TCP,	in	contrast,	teaches	the	virtues	of
flexibility.	Companies	speak	of	“flat”	hierarchies	and	“tall”	hierarchies,	but
they	might	consider	speaking	of	dynamic	ones.	Under	an	AIMD	system,	no
one	is	long	anxious	about	being	overtaxed,	nor	long	resentful	about	a	missed
promotion;	both	are	temporary	and	frequent	correctives,	and	the	system
hovers	near	its	equilibrium	despite	everything	changing	all	the	time.	Perhaps
one	day	we’ll	speak	not	of	the	arc	of	one’s	career,	but	rather	of	its	sawtooth.

Backchannels:	Flow	Control	in	Linguistics

Looking	into	networking’s	flow	control	makes	it	clear	that	upstream	ACK
packets	not	only	acknowledge	and	confirm	transmissions,	but	shape	the
contours	of	the	entire	interaction,	its	pace	and	cadence.	This	offers	us	both	a
reminder	and	an	insight	into	how	important	feedback	is	to	communication.	In
TCP,	as	we’ve	seen,	there’s	no	such	thing	as	a	one-way	transmission:	without
consistent	feedback,	the	sender	will	slow	down	almost	immediately.

Curiously,	the	rising	awareness	of	the	critical	role	of	feedback	in	the	field
of	networking	mirrored	an	almost	identical	set	of	developments	going	on
around	the	same	time	in	the	linguistics	community.	In	the	middle	of	the
twentieth	century,	linguistics	was	dominated	by	the	theories	of	Noam
Chomsky,	which	considered	language	in	its	most	perfect	and	ideal	state—
perfectly	fluent,	grammatical,	uninterrupted	sentences,	as	if	all
communication	were	written	text.	But	starting	in	the	1960s	and	’70s,	a	surge
of	interest	in	the	practical	aspects	of	spoken	language	revealed	just	how
elaborate	and	subtle	the	processes	are	that	govern	turn-taking,	interruption,
and	composing	a	sentence	or	story	on	the	fly	while	being	attuned	to	a
listener’s	reactions	every	step	of	the	way.	What	emerged	was	a	vision	of	even
ostensibly	one-way	communication	as	a	collaborative	act.	As	linguist	Victor
Yngve	would	write	in	1970,	“In	fact,	both	the	person	who	has	the	turn	and	his
partner	are	simultaneously	engaged	in	both	speaking	and	listening.	This	is
because	of	the	existence	of	what	I	call	the	back	channel,	over	which	the
person	who	has	the	turn	receives	short	messages	such	as	‘yes’	and	‘uh-huh’
without	relinquishing	the	turn.”

An	examination	of	human	“backchannels”	opened	a	whole	new	horizon
for	the	field	of	linguistics,	prompting	a	complete	re-evaluation	of	the
dynamics	of	communication—specifically,	the	role	of	the	listener.	In	one
illustrative	study,	a	team	led	by	Janet	Bavelas	at	the	University	of	Victoria
investigated	what	would	happen	when	someone	listening	to	a	personal	story
got	distracted:	not	what	would	happen	to	the	listener’s	comprehension,	but
what	would	happen	to	the	story.	With	poor	feedback,	they	discovered,	the
story	falls	apart.

Narrators	who	told	close-call	stories	to	distracted	listeners	…	told	them	less	well	overall	and
particularly	poorly	at	what	should	have	been	the	dramatic	conclusion.	Their	story	endings	were
abrupt	or	choppy,	or	they	circled	around	and	retold	the	ending	more	than	once,	and	they	often
justified	their	story	by	explaining	the	obvious	close	call.

We’ve	all	had	the	experience	of	talking	to	someone	whose	eyes	drifted
away—to	their	phone,	perhaps—making	us	wonder	whether	our	lackluster
storytelling	was	to	blame.	In	fact,	it’s	now	clear	that	the	cause	and	effect	are
often	the	reverse:	a	poor	listener	destroys	the	tale.

Understanding	the	exact	function	and	meaning	of	human	backchannels
continues	to	be	an	active	area	of	research.	In	2014,	for	instance,	UC	Santa
Cruz’s	Jackson	Tolins	and	Jean	Fox	Tree	demonstrated	that	those
inconspicuous	“uh-huhs”	and	“yeahs”	and	“hmms”	and	“ohs”	that	pepper	our
speech	perform	distinct,	precise	roles	in	regulating	the	flow	of	information
from	speaker	to	listener—both	its	rate	and	level	of	detail.	Indeed,	they	are
every	bit	as	critical	as	ACKs	are	in	TCP.	Says	Tolins,	“Really,	while	some
people	may	be	worse	than	others,	‘bad	storytellers’	can	at	least	partly	blame
their	audience.”	This	realization	has	had	the	unexpected	side	effect	of	taking
off	some	of	the	pressure	when	he	gives	lectures—including,	of	course,
lectures	about	that	very	result.	“Whenever	I	give	these	backchannel	talks,	I
always	tell	the	audience	that	the	way	they	are	backchanneling	to	my	talk	right
now	is	changing	what	I	say,”	he	jokes,	“so	they’re	responsible	for	how	well	I
do.”

Bufferbloat:	It’s	the	Latency,	Stupid

Developing	effective	active	queue	management	has	been	hampered	by
misconceptions	about	the	cause	and	meaning	of	queues.

—KATHLEEN	NICHOLS	AND	VAN	JACOBSON

It	was	the	summer	of	2010,	and	like	many	parents,	Jim	Gettys	was	fielding

frequent	complaints	from	his	children	that	the	family	wi-fi	network	was
running	slowly.	Unlike	most	parents,	though,	Gettys	has	worked	at	HP,
Alcatel-Lucent,	the	World	Wide	Web	Consortium,	and	the	Internet
Engineering	Task	Force.	He	was	literally	the	editor,	in	1999,	of	the	HTTP
specification	still	in	use	today.	So	where	most	geek	dads	would	look	into	the
problem,	Gettys	looked	into	the	problem.

As	Gettys	would	explain	to	a	roomful	of	Google	engineers,	with
networking	jargon	giving	way	to	an	urgent	and	unmistakable	conviction:

I	happened	to	be	copying,	or	rsyncing,	the	old	X	Consortium	archives	from	my	house	to	MIT
over	this	ten-millisecond-long	path.…	SmokePing	[was]	reporting	latencies	averaging	well	over
one	second,	along	with	bad	packet	loss,	just	while	copying	a	file.…	I	took	Wireshark,	and	there
were	these	bursts	of	really	strange	behavior.…	This	looked	like	no	TCP	[sawtooth]	I	expected	at
all.	It	should	never	occur	that	way.

In	plain	English,	he	saw	something	…	very	weird.	As	the	saying	goes,	“the
most	exciting	phrase	to	hear	in	science,	the	one	that	heralds	new	discoveries,
is	not	‘Eureka!’	but	‘That’s	funny.’”

At	first	Gettys	thought	that	something	was	wrong	with	his	cable	modem.
What	his	family	had	been	calling	a	problem	in	the	Internet	seemed	like	a
traffic	jam	at	their	own	wall	socket.	Packets	meant	for	Boston	weren’t	getting
stuck	midway	there;	they	were	getting	stuck	in	the	house.

But	the	deeper	Gettys	looked	into	it,	the	more	concerned	he	grew.	The
problem	didn’t	affect	just	his	home	router	and	modem,	but	every	home	router
and	modem.	And	the	problem	wasn’t	just	in	networking	devices—it	was	in
computers	themselves,	in	desktops,	laptops,	tablets,	and	smartphones,	woven
into	Linux,	Windows,	and	OS	X.	And	it	wasn’t	just	in	end-user	hardware,
either:	it	touched	the	very	infrastructure	of	the	Internet	itself.	Gettys	sat	down
to	lunches	with	key	players	at	Comcast,	Verizon,	Cisco,	and	Google,
including	Van	Jacobson	and	Vint	Cerf,	and	slowly	started	to	piece	the	puzzle
together.

The	problem	was	everywhere.	And	the	problem	was	bufferbloat.

A	buffer	is	essentially	a	queue	whose	function	is	to	smooth	out	bursts.	If
you	walked	into	a	doughnut	shop	at	roughly	the	same	time	as	another
customer,	it	wouldn’t	do	for	the	very	momentarily	overwhelmed	cashier	to
make	one	of	you	leave	the	store	and	come	back	another	time.	Customers
wouldn’t	have	it,	of	course,	but	neither	would	management:	such	a	policy	is

virtually	guaranteed	to	underutilize	the	cashier.	Putting	the	customers	in	a
queue	instead	ensures	that	the	average	throughput	of	the	store	approaches	its
maximum	throughput.	That’s	a	good	thing.

This	superior	resource	utilization	comes	with	a	very	real	cost,	however:
delay.	When	Tom	took	his	daughter	to	a	Cinco	de	Mayo	festival	in	Berkeley,
she	set	her	heart	on	a	chocolate	banana	crêpe,	so	they	got	in	line	and	waited.
Eventually—after	twenty	minutes—Tom	got	to	the	front	of	the	line	and
placed	his	order.	But	after	paying,	they	then	had	to	wait	forty	more	minutes	to
actually	get	the	crêpe.	(Like	Jim	Gettys,	Tom	quickly	found	himself	fielding	a
substantial	volume	of	familial	complaints.)	Taking	orders	turned	out	to	take
less	time	than	making	crêpes,	so	the	queue	to	order	was	just	the	first	part	of
the	problem.	At	least	it	was	visible,	though;	customers	knew	what	they	were
in	for.	The	second,	longer	queue	was	invisible.	So	in	this	case	it	would	have
been	a	much	happier	outcome	for	all	if	the	crêpe	stand	had	just	cut	off	the	line
at	some	point	and	put	up	a	sign	that	they	weren’t	taking	orders	for	a	bit.
Turning	customers	away	would	have	made	everyone	better	off—whether	they
ended	up	in	a	shorter	crêpe	line	or	went	elsewhere.	And	wouldn’t	have	cost
the	crêpe	stand	a	dime	of	lost	sales,	because	either	way	they	can	only	sell	as
many	crêpes	as	they	can	make	in	a	day,	regardless	of	how	long	their
customers	are	waiting.

This	is	precisely	the	phenomenon	that	Jim	Gettys	was	observing	in	his
home	cable	modem.	Because	he	was	uploading	a	file,	his	computer	was
sending	the	modem	as	many	upstream	packets	as	it	could	handle.	And	the
modem	was	pretending	to	handle	a	lot	more	than	it	actually	could,	turning
none	away	while	building	up	a	massive	queue.	So	when	Gettys	tried	to
download	something	at	the	same	time—to	visit	a	webpage	or	check	email—
his	ACK	packets	would	get	stuck	behind	the	upload,	having	to	wait	in	line	at
the	modem	to	leave	the	house.	Because	his	ACKs	then	took	forever	to	return
to	the	web	and	email	servers,	the	servers	would	in	turn	throttle	their	own
downstream	connection	speeds	to	a	corresponding	crawl.

It	was	like	trying	to	have	a	conversation	where	every	time	you	say	“uh-
huh”	it	is	delayed	by	ten	or	twenty	seconds.	The	speaker	is	going	to	slow	way
down,	assuming	you	aren’t	comprehending	them,	and	there’s	nothing	you	can
do	about	it.

When	a	networking	buffer	fills	up,	what	typically	happens	is	called	Tail

Drop:	an	unceremonious	way	of	saying	that	every	packet	arriving	after	that
point	is	simply	rejected,	and	effectively	deleted.	(Turning	new	customers
away	from	the	crêpe	stand	once	the	line	gets	too	long	would	be	a	version	of
Tail	Drop	in	a	human	context.)	Given	the	postal	metaphor	for	packet
switching,	it	might	seem	a	bit	odd	to	imagine	a	mail	carrier	who	simply
vaporizes	every	parcel	that	doesn’t	fit	onto	the	truck	that	morning.	Yet	it’s
precisely	such	“packet	drops”	that	lead	a	computer	to	notice	that	one	of	its
packets	hasn’t	been	acknowledged,	prompting	AIMD	to	start	halving	the
bandwidth.	Dropped	packets	are	the	Internet’s	primary	feedback	mechanism.
A	buffer	that’s	too	large—a	restaurant	taking	every	order	no	matter	how	short-
staffed	the	kitchen,	a	modem	taking	every	packet	that	comes	in	regardless	of
how	long	it’ll	take	to	send	them	on—prevents	this	moderation	from
happening	as	it	should.

Fundamentally,	buffers	use	delay—known	in	networking	as	“latency”—in
order	to	maximize	throughput.	That	is,	they	cause	packets	(or	customers)	to
wait,	to	take	advantage	of	later	periods	when	things	are	slow.	But	a	buffer
that’s	operating	permanently	full	gives	you	the	worst	of	both	worlds:	all	the
latency	and	none	of	the	give.	Smoothing	out	bursts	is	great	if	you	are,	on
average,	clearing	things	at	least	as	quickly	as	they’re	arriving—but	if	your
average	workload	exceeds	your	average	work	rate,	no	buffer	can	work
miracles.	And	the	bigger	the	buffer	is,	the	further	behind	you’ll	get	before	you
start	signaling	for	help.	One	of	the	fundamental	principles	of	buffers,	be	they
for	packets	or	patrons,	is	that	they	only	work	correctly	when	they	are
routinely	zeroed	out.

For	decades,	computer	memory	was	sufficiently	expensive	that	there	was
simply	no	reason	to	build	modems	with	oodles	of	unnecessary	memory
capacity.	Thus,	there	had	simply	been	no	way	for	a	modem	to	build	up	a
queue	bigger	than	it	could	handle.	But	at	some	point,	as	economies	of	scale	in
the	computer	industry	radically	lowered	the	cost	of	memory,	modem
manufacturers	started	giving	their	machines	gigabytes	of	RAM	because	that
was	effectively	the	smallest	amount	of	RAM	they	could	get.	As	a	result,	the
ubiquitous	device	buffers—in	modems,	routers,	laptops,	smartphones,	and	in
the	backbone	of	the	Internet	itself—became	thousands	of	times	too	big,
before	people	like	Jim	Gettys	sounded	the	alarm	to	do	something	about	it.

Better	Never	than	Late

Take	your	most	basic	problem	as	a	single	person	…	someone	likes	you,
you	don’t	like	them	back.	At	one	point,	that	used	to	be	kind	of	an
awkward	situation.	You	had	to	have	a	conversation,	it	was	weird.	Now
what	do	you	do?	Someone	likes	you,	you	don’t	like	them	back?	You	just
pretend	to	be	busy	…	forever.

—AZIZ	ANSARI

Now	is	better	than	never.

Although	never	is	often	better	than	right	now.
—THE	ZEN	OF	PYTHON

Singer	Katy	Perry	has	107%	more	Twitter	followers	than	her	home	state	of
California	has	people.	The	most-followed	person	on	Twitter,	as	of	early	2016
she	counts	some	81.2	million	accounts	among	her	fans.	This	means	that	even
if	99%	of	her	fans	never	message	her	at	all—and	even	if	that	most	devoted
1%	who	message	her	do	so	only	once	per	year—then	she	still	gets	2,225
messages	a	day.	Every	single	day.

Imagine	if	Perry	were	committed	to	answering	each	fan	message	in	the
order	received.	If	she	could	reply	to	100	a	day,	then	the	fans’	expected	wait
time	for	a	response	would	soon	be	measured	in	decades.	It’s	fair	to	imagine
that	most	fans	would	prefer	a	slim	chance	of	getting	a	reply	right	away	to	a
guaranteed	reply	ten	or	twenty	years	hence.

Note	that	Perry	doesn’t	have	this	problem	when	she	leaves	a	venue	and
must	run	a	gauntlet	of	fans	expecting	an	autograph	or	a	few	words.	Perry	does
what	she	can,	moves	on,	and	the	lost	opportunities	dissipate.	The	body	is	its
own	flow	control.	We	can’t	be	in	more	than	one	place	at	one	time.	At	a
crowded	party	we	inevitably	participate	in	less	than	5%	of	the	conversation,
and	cannot	read	up	or	catch	up	on	the	remainder.	Photons	that	miss	the	retina
aren’t	queued	for	later	viewing.	In	real	life,	packet	loss	is	almost	total.

We	use	the	idiom	of	“dropped	balls”	almost	exclusively	in	a	derogatory
sense,	implying	that	the	person	in	question	was	lazy,	complacent,	or	forgetful.
But	the	tactical	dropping	of	balls	is	a	critical	part	of	getting	things	done	under
overload.

The	most	prevalent	critique	of	modern	communications	is	that	we	are
“always	connected.”	But	the	problem	isn’t	that	we’re	always	connected;
we’re	not.	The	problem	is	that	we’re	always	buffered.	The	difference	is

enormous.

The	feeling	that	one	needs	to	look	at	everything	on	the	Internet,	or	read	all
possible	books,	or	see	all	possible	shows,	is	bufferbloat.	You	miss	an	episode
of	your	favorite	series	and	watch	it	an	hour,	a	day,	a	decade	later.	You	go	on
vacation	and	come	home	to	a	mountain	of	correspondence.	It	used	to	be	that
people	knocked	on	your	door,	got	no	response,	and	went	away.	Now	they’re
effectively	waiting	in	line	when	you	come	home.

Heck,	email	was	deliberately	designed	to	overcome	Tail	Drop.	As	its
inventor,	Ray	Tomlinson,	puts	it:

At	the	time	there	was	no	really	good	way	to	leave	messages	for	people.	The	telephone	worked	up
to	a	point,	but	someone	had	to	be	there	to	receive	the	call.	And	if	it	wasn’t	the	person	you	wanted
to	get,	it	was	an	administrative	assistant	or	an	answering	service	or	something	of	that	sort.	That
was	the	mechanism	you	had	to	go	through	to	leave	a	message,	so	everyone	latched	onto	the	idea
that	you	could	leave	messages	on	the	computer.

In	other	words,	we	asked	for	a	system	that	would	never	turn	a	sender
away,	and	for	better	or	worse	we	got	one.	Indeed,	over	the	past	fifteen	years,
the	move	from	circuit	switching	to	packet	switching	has	played	itself	out
across	society.	We	used	to	request	dedicated	circuits	with	others;	now	we	send
them	packets	and	wait	expectantly	for	ACKs.	We	used	to	reject;	now	we
defer.

The	much-lamented	“lack	of	idleness”	one	reads	about	is,	perversely,	the
primary	feature	of	buffers:	to	bring	average	throughput	up	to	peak	throughput.
Preventing	idleness	is	what	they	do.	You	check	email	from	the	road,	from
vacation,	on	the	toilet,	in	the	middle	of	the	night.	You	are	never,	ever	bored.
This	is	the	mixed	blessing	of	buffers,	operating	as	advertised.

Vacation	email	autoresponders	explicitly	tell	senders	to	expect	latency;	a
better	one	might	instead	tell	senders	to	expect	Tail	Drop.	Rather	than	warning
senders	of	above-average	queue	times,	it	might	warn	them	that	it	was	simply
rejecting	all	incoming	messages.	And	this	doesn’t	need	to	be	limited	to
vacations:	one	can	imagine	an	email	program	set	to	auto-reject	all	incoming
messages	once	the	inbox	reached,	say,	a	hundred	items.	This	is	ill-advised	for
bills	and	the	like,	but	not	an	unreasonable	approach	to,	say,	social	invitations.

The	idea	of	encountering	a	“full”	inbox	or	“full”	voicemail	is	an
anachronism	now,	a	glaring	throwback	to	the	late	twentieth	century	and	the
early	2000s.	But	if	the	networks	that	connect	our	newfangled	phones	and

computers,	with	their	effectively	infinite	storage,	are	still	deliberately
dropping	packets	when	things	get	fast	and	furious,	then	maybe	there’s	reason
to	think	of	Tail	Drop	not	as	the	lamentable	consequence	of	limited	memory
space	but	as	a	purposeful	strategy	in	its	own	right.

As	for	network	bufferbloat,	the	ongoing	story	is	a	complicated	but	happy
one,	involving	large-scale	efforts	by	hardware	and	operating	system
manufacturers	to	make	fundamental	changes	to	network	queues.	There’s	also
a	proposal	for	a	new	backchannel	for	TCP,	the	first	such	modification	in	many
years:	Explicit	Congestion	Notification,	or	ECN.	Fully	extricating	the	Internet
from	bufferbloat	will	draw	on	all	of	these	changes	and	require	the	patience	of
many	years.	“This	is	a	long-term	swamp,”	says	Gettys.

But	there’s	a	lot	to	look	forward	to	about	a	post-bufferbloat	future.	With
their	inherent	latency,	buffers	are	bad	for	most	interactive	processes.	When
we	speak	via	Skype,	for	example,	we	generally	prefer	an	occasionally	staticky
signal	now	to	a	clear	recording	of	what	our	caller	said	three	seconds	ago.	For
gamers,	even	a	50-millisecond	lag	could	be	the	difference	between	fragging
and	being	fragged;	in	fact,	gaming	is	so	sensitive	to	latency	that	all	important
gaming	honors	are	still	contested	in	person,	with	players	boarding	airplanes	to
gather	and	compete	over	a	network	serving	just	a	single	room.	And	much	the
same	is	true	for	anything	else	where	being	in	sync	matters.	“If	you	want	to
play	music	with	your	friends,	even	in	[your]	metropolitan	area,	you	care	about
tens	of	milliseconds,”	Gettys	notes,	imagining	a	whole	host	of	new
applications	and	businesses	that	might	spring	forth	to	take	advantage	of	the
interactive	potential	of	low	latencies.	“A	generalization	I	take	away	from	this
whole	experience	is	that	engineers	should	think	about	time	as	a	first-class
citizen.”

Apple’s	Stuart	Cheshire	concurs	that	it’s	high	time	for	latency	to	become	a
top	priority	for	network	engineers.	He’s	appalled	that	companies	who
advertise	“fast”	Internet	connections	refer	only	to	high	bandwidth,	not	to	low
delay.	By	analogy,	he	notes	that	a	Boeing	737	and	a	Boeing	747	both	fly	at
about	five	hundred	miles	per	hour;	the	former	can	hold	120	passengers,	while
the	latter	carries	three	times	as	many.	So	“would	you	say	that	a	Boeing	747	is
three	times	‘faster’	than	a	Boeing	737?	Of	course	not,”	Cheshire	exclaims.
Capacity	does	matter	sometimes:	for	transferring	large	files,	bandwidth	is	key.
(If	you’ve	got	a	huge	amount	of	cargo	to	move,	a	container	ship	may	well
trump	thousands	of	trips	by	a	747.)	For	interhuman	applications,	however,	a

quick	turnaround	time	is	often	far	more	important,	and	what	we	really	need
are	more	Concordes.	And	indeed,	bringing	latencies	down	is	one	of	the
current	frontiers	of	networking	research,	and	it	will	be	interesting	to	see	what
that	brings.

Meanwhile,	there	are	other	battles	to	be	waged.	Gettys	snaps	his	attention
away	for	a	second,	looking	out	of	the	frame.	“It’s	not	working	for	you?	I’m
talking	to	someone	at	the	moment,	and	I’ll	deal	with	it	when	I’m	finished.
We’re	wrapping	up	here—uh,	no,	the	5	GHz	is	working	at	the	moment,	the
2.4	GHz	channel	has	hung.	It’s	the	infamous	bug.	I’ll	reboot	the	router.”
Which	seems	an	opportune	moment	to	say	our	good-byes	and	release	our
bandwidth	to	the	commons,	to	the	myriad	flows	making	their	additive
increase.

	

11		Game	Theory
The	Minds	of	Others
I’m	an	optimist	in	the	sense	that	I	believe	humans	are	noble	and
honorable,	and	some	of	them	are	really	smart.…	I	have	a	somewhat
more	pessimistic	view	of	people	in	groups.

—STEVE	JOBS

An	investor	sells	a	stock	to	another,	one	convinced	it’s	headed	down	and	the
other	convinced	it’s	going	up;	I	think	I	know	what	you	think	but	have	no	idea
what	you	think	I	think;	an	economic	bubble	bursts;	a	prospective	lover	offers
a	gift	that	says	neither	“I	want	to	be	more	than	friends”	nor	“I	don’t	want	to
be	more	than	friends”;	a	table	of	diners	squabbles	over	who	should	treat
whom	and	why;	someone	trying	to	be	helpful	unintentionally	offends;
someone	trying	hard	to	be	cool	draws	snickers;	someone	trying	to	break	from
the	herd	finds,	dismayingly,	the	herd	following	his	lead.	“I	love	you,”	says
one	lover	to	another;	“I	love	you,	too,”	the	other	replies;	and	both	wonder
what	exactly	the	other	means	by	that.

What	does	computer	science	have	to	say	about	all	this?

Schoolchildren	are	taught	to	conceive	of	literary	plots	as	belonging	to	one
of	several	categories:	man	vs.	nature,	man	vs.	self,	man	vs.	man,	man	vs.
society.	Thus	far	in	this	book	we	have	considered	primarily	cases	in	the	first
two	categories—that	is	to	say,	computer	science	has	thus	far	been	our	guide	to
problems	created	by	the	fundamental	structure	of	the	world,	and	by	our
limited	capacities	for	processing	information.	Optimal	stopping	problems
spring	from	the	irreversibility	and	irrevocability	of	time;	the	explore/exploit
dilemma,	from	time’s	limited	supply.	Relaxation	and	randomization	emerge
as	vital	and	necessary	strategies	for	dealing	with	the	ineluctable	complexity	of
challenges	like	trip	planning	and	vaccinations.

In	this	chapter	we	shift	the	focus	and	consider	the	remaining	two	genres—
that	is,	man	vs.	man	and	man	vs.	society:	in	effect,	the	problems	that	we	pose
and	cause	each	other.	Our	best	guide	to	this	terrain	comes	from	a	branch	of
mathematics	known	as	game	theory,	a	field	that	in	its	classical	incarnation	had

an	enormous	impact	on	the	twentieth	century.	In	the	past	couple	of	decades,
cross-pollination	between	game	theory	and	computer	science	has	produced
the	field	of	algorithmic	game	theory—which	has	already	begun	to	have	an
impact	on	the	twenty-first.

Recursion

Now,	a	clever	man	would	put	the	poison	into	his	own	goblet	because	he
would	know	that	only	a	great	fool	would	reach	for	what	he	was	given.	I
am	not	a	great	fool,	so	I	can	clearly	not	choose	the	wine	in	front	of	you.
But	you	must	have	known	I	was	not	a	great	fool—you	would	have
counted	on	it—so	I	can	clearly	not	choose	the	wine	in	front	of	me.

—THE	PRINCESS	BRIDE

Arguably	the	most	influential	economist	of	the	twentieth	century,	John
Maynard	Keynes,	once	said	that	“successful	investing	is	anticipating	the
anticipations	of	others.”	For	a	share	of	stock	to	be	sold	at,	say,	$60,	the	buyer
must	believe	he	can	sell	it	later	for	$70—to	someone	who	believes	he	can	sell
it	for	$80	to	someone	who	believes	he	can	sell	it	for	$90	to	someone	who
believes	he	can	sell	it	for	$100	to	someone	else.	In	this	way,	the	value	of	a
stock	isn’t	what	people	think	it’s	worth	but	what	people	think	people	think	it’s
worth.	In	fact,	even	that’s	not	going	far	enough.	As	Keynes	put	it,	making	a
crucial	distinction	between	beauty	and	popularity:

Professional	investment	may	be	likened	to	those	newspaper	competitions	in	which	the
competitors	have	to	pick	out	the	six	prettiest	faces	from	a	hundred	photographs,	the	prize	being
awarded	to	the	competitor	whose	choice	most	nearly	corresponds	to	the	average	preferences	of
the	competitors	as	a	whole;	so	that	each	competitor	has	to	pick,	not	those	faces	which	he	himself
finds	prettiest,	but	those	which	he	thinks	likeliest	to	catch	the	fancy	of	the	other	competitors,	all
of	whom	are	looking	at	the	problem	from	the	same	point	of	view.	It	is	not	a	case	of	choosing
those	which,	to	the	best	of	one’s	judgment,	are	really	the	prettiest,	nor	even	those	which	average
opinion	genuinely	thinks	the	prettiest.	We	have	reached	the	third	degree	where	we	devote	our
intelligences	to	anticipating	what	average	opinion	expects	the	average	opinion	to	be.	And	there
are	some,	I	believe	who	practice	the	fourth,	fifth,	and	higher	degrees.

Computer	science	illustrates	the	fundamental	limitations	of	this	kind	of
reasoning	with	what’s	called	the	“halting	problem.”	As	Alan	Turing	proved	in
1936,	a	computer	program	can	never	tell	you	for	sure	whether	another
program	might	end	up	calculating	forever	without	end—except	by	simulating
the	operation	of	that	program	and	thus	potentially	going	off	the	deep	end
itself.	(Accordingly,	programmers	will	never	have	automated	tools	that	can

tell	them	whether	their	software	will	freeze.)	This	is	one	of	the	foundational
results	in	all	of	computer	science,	on	which	many	other	proofs	hang.*	Simply
put,	any	time	a	system—be	it	a	machine	or	a	mind—simulates	the	workings
of	something	as	complex	as	itself,	it	finds	its	resources	totally	maxed	out,
more	or	less	by	definition.	Computer	scientists	have	a	term	for	this	potentially
endless	journey	into	the	hall	of	mirrors,	minds	simulating	minds	simulating
minds:	“recursion.”

“In	poker,	you	never	play	your	hand,”	James	Bond	says	in	Casino	Royale;
“you	play	the	man	across	from	you.”	In	fact,	what	you	really	play	is	a
theoretically	infinite	recursion.	There’s	your	own	hand	and	the	hand	you
believe	your	opponent	to	have;	then	the	hand	you	believe	your	opponent
believes	you	have,	and	the	hand	you	believe	your	opponent	believes	you	to
believe	he	has	…	and	on	it	goes.	“I	don’t	know	if	this	is	an	actual	game-
theory	term,”	says	the	world’s	top-rated	poker	player,	Dan	Smith,	“but	poker
players	call	it	‘leveling.’	Level	one	is	‘I	know.’	Two	is	‘you	know	that	I
know.’	Three,	‘I	know	that	you	know	that	I	know.’	There	are	situations	where
it	just	comes	up	where	you	are	like,	‘Wow,	this	is	a	really	silly	spot	to	bluff
but	if	he	knows	that	it	is	a	silly	spot	to	bluff	then	he	won’t	call	me	and	that’s
where	it’s	the	clever	spot	to	bluff.’	Those	things	happen.”

One	of	the	most	memorable	bluffs	in	high-level	poker	occurred	when	Tom
Dwan	wagered	$479,500	on	Texas	Hold	’Em’s	absolute	worst	possible	hand,
the	2–7—while	literally	telling	his	opponent,	Sammy	George,	that	he	was
holding	it.	“You	don’t	have	deuce-seven,”	George	replied.	“You	don’t	have
deuce-seven.”	George	folded,	and	Dwan—with,	yes,	deuce-seven—took	the
pot.

In	poker,	recursion	is	a	dangerous	game.	You	don’t	want	to	get	caught	one
step	behind	your	opponent,	of	course—but	there’s	also	an	imperative	not	to
get	too	far	ahead	of	them	either.	“There’s	a	rule	that	you	really	only	want	to
play	one	level	above	your	opponent,”	explains	poker	professional	Vanessa
Rousso.	“If	you	play	too	far	above	your	opponent,	you’re	going	to	think	they
have	information	that	they	don’t	actually	have—[and]	they	won’t	be	able	to
glean	the	information	that	you	want	them	to	glean	from	your	actions.”
Sometimes	poker	pros	will	deliberately	bait	their	opponent	into	a	convoluted
recursion,	meanwhile	playing	completely	by-the-book,	unpsychological	poker
themselves.	This	is	known	as	luring	them	into	“a	leveling	war	against
themselves.”

(Luring	an	opponent	into	fruitless	recursion	can	be	an	effective	strategy	in
other	games,	too.	One	of	the	most	colorful,	bizarre,	and	fascinating	episodes
in	the	history	of	man-vs.-machine	chess	came	in	a	2008	blitz	showdown
between	American	grandmaster	Hikaru	Nakamura	and	leading	computer
chess	program	Rybka.	In	a	game	where	each	side	got	just	three	minutes	on	the
clock	to	play	all	of	their	moves	or	automatically	lose,	the	advantage	surely
seemed	to	be	on	the	side	of	the	computer—capable	of	evaluating	millions	of
positions	every	second,	and	of	making	its	move	without	twitching	a	muscle.
But	Nakamura	immediately	gridlocked	the	board,	and	proceeded	to	make
repetitive,	meaningless	moves	as	fast	as	he	could	click.	Meanwhile,	the
computer	wasted	precious	moments	fruitlessly	searching	for	winning
variations	that	didn’t	exist	and	doggedly	trying	to	anticipate	all	the	possible
future	moves	by	Nakamura,	who	himself	was	simply	doing	the	chess
equivalent	of	twiddling	his	thumbs.	When	the	computer	had	nearly	exhausted
its	time	and	began	flailing	so	as	not	to	lose	by	the	clock,	Nakamura	finally
opened	the	position	and	crashed	through.)

Given	recursion’s	dangers,	how	do	poker	professionals	break	out	of	it?
They	use	game	theory.	“Sometimes	you	can	come	up	with	reasons	to	make
exploitive	[leveling]	plays,	but	a	lot	of	the	time	you	are	just	making	inferior
plays	for	reasons	that	are	really	just	noise,”	Dan	Smith	explains.	“I	try	really
hard	to	have	a	base	level	of	theory	understanding	in	most	situations.…	I
always	start	by	knowing	or	trying	to	know	what	Nash	is.”

So	what	is	Nash?

Reaching	Equilibrium

You	know	the	rules,	and	so	do	I.…

We	know	the	game	and	we’re	gonna	play	it.
—RICK	ASTLEY

Game	theory	covers	an	incredibly	broad	spectrum	of	scenarios	of	cooperation
and	competition,	but	the	field	began	with	those	resembling	heads-up	poker:
two-person	contests	where	one	player’s	gain	is	another	player’s	loss.
Mathematicians	analyzing	these	games	seek	to	identify	a	so-called
equilibrium:	that	is,	a	set	of	strategies	that	both	players	can	follow	such	that
neither	player	would	want	to	change	their	own	play,	given	the	play	of	their
opponent.	It’s	called	an	equilibrium	because	it’s	stable—no	amount	of	further

reflection	by	either	player	will	bring	them	to	different	choices.	I’m	content
with	my	strategy,	given	yours,	and	you’re	content	with	your	strategy,	given
mine.

In	rock-paper-scissors,	for	example,	the	equilibrium	tells	us,	perhaps
unexcitingly,	to	choose	one	of	the	eponymous	hand	gestures	completely	at
random,	each	roughly	a	third	of	the	time.	What	makes	this	equilibrium	stable
is	that,	once	both	players	adopt	this	1⁄3	-	1⁄3	-	1⁄3	strategy,	there	is	nothing
better	for	either	to	do	than	stick	with	it.	(If	we	tried	playing,	say,	more	rock,
our	opponent	would	quickly	notice	and	start	playing	more	paper,	which	would
make	us	play	more	scissors,	and	so	forth	until	we	both	settled	into	the
1⁄3	-	1⁄3	-	1⁄3	equilibrium	again.)

In	one	of	the	seminal	results	in	game	theory,	the	mathematician	John	Nash
proved	in	1951	that	every	two-player	game	has	at	least	one	equilibrium.	This
major	discovery	would	earn	Nash	the	Nobel	Prize	in	Economics	in	1994	(and
lead	to	the	book	and	film	A	Beautiful	Mind,	about	Nash’s	life).	Such	an
equilibrium	is	now	often	spoken	of	as	the	“Nash	equilibrium”—the	“Nash”
that	Dan	Smith	always	tries	to	keep	track	of.

On	the	face	of	it,	the	fact	that	a	Nash	equilibrium	always	exists	in	two-
player	games	would	seem	to	bring	us	some	relief	from	the	hall-of-mirrors
recursions	that	characterize	poker	and	many	other	familiar	contests.	When	we
feel	ourselves	falling	down	the	recursive	rabbit	hole,	we	always	have	an
option	to	step	out	of	our	opponent’s	head	and	look	for	the	equilibrium,	going
directly	to	the	best	strategy,	assuming	rational	play.	In	rock-paper-scissors,
scrutinizing	your	opponent’s	face	for	signs	of	what	they	might	throw	next
may	not	be	worthwhile,	if	you	know	that	simply	throwing	at	random	is	an
unbeatable	strategy	in	the	long	run.

More	generally,	the	Nash	equilibrium	offers	a	prediction	of	the	stable
long-term	outcome	of	any	set	of	rules	or	incentives.	As	such,	it	provides	an
invaluable	tool	for	both	predicting	and	shaping	economic	policy,	as	well	as
social	policy	in	general.	As	Nobel	laureate	economist	Roger	Myerson	puts	it,
the	Nash	equilibrium	“has	had	a	fundamental	and	pervasive	impact	in
economics	and	the	social	sciences	which	is	comparable	to	that	of	the
discovery	of	the	DNA	double	helix	in	the	biological	sciences.”

Computer	science,	however,	has	complicated	this	story.	Put	broadly,	the
object	of	study	in	mathematics	is	truth;	the	object	of	study	in	computer

science	is	complexity.	As	we’ve	seen,	it’s	not	enough	for	a	problem	to	have	a
solution	if	that	problem	is	intractable.

In	a	game-theory	context,	knowing	that	an	equilibrium	exists	doesn’t
actually	tell	us	what	it	is—or	how	to	get	there.	As	UC	Berkeley	computer
scientist	Christos	Papadimitriou	writes,	game	theory	“predicts	the	agents’
equilibrium	behavior	typically	with	no	regard	to	the	ways	in	which	such	a
state	will	be	reached—a	consideration	that	would	be	a	computer	scientist’s
foremost	concern.”	Stanford’s	Tim	Roughgarden	echoes	the	sentiment	of
being	unsatisfied	with	Nash’s	proof	that	equilibria	always	exist.	“Okay,”	he
says,	“but	we’re	computer	scientists,	right?	Give	us	something	we	can	use.
Don’t	just	tell	me	that	it’s	there;	tell	me	how	to	find	it.”	And	so,	the	original
field	of	game	theory	begat	algorithmic	game	theory—that	is,	the	study	of
theoretically	ideal	strategies	for	games	became	the	study	of	how	machines
(and	people)	come	up	with	strategies	for	games.

As	it	turns	out,	asking	too	many	questions	about	Nash	equilibria	gets	you
into	computational	trouble	in	a	hurry.	By	the	end	of	the	twentieth	century,
determining	whether	a	game	has	more	than	one	equilibrium,	or	an	equilibrium
that	gives	a	player	a	certain	payoff,	or	an	equilibrium	that	involves	taking	a
particular	action,	had	all	been	proved	to	be	intractable	problems.	Then,	from
2005	to	2008,	Papadimitriou	and	his	colleagues	proved	that	simply	finding
Nash	equilibria	is	intractable	as	well.

Simple	games	like	rock-paper-scissors	may	have	equilibria	visible	at	a
glance,	but	in	games	of	real-world	complexity	it’s	now	clear	we	cannot	take
for	granted	that	the	participants	will	be	able	to	discover	or	reach	the	game’s
equilibrium.	This,	in	turn,	means	that	the	game’s	designers	can’t	necessarily
use	the	equilibrium	to	predict	how	the	players	will	behave.	The	ramifications
of	this	sobering	result	are	profound:	Nash	equilibria	have	held	a	hallowed
place	within	economic	theory	as	a	way	to	model	and	predict	market	behavior,
but	that	place	might	not	be	deserved.	As	Papadimitriou	explains,	“If	an
equilibrium	concept	is	not	efficiently	computable,	much	of	its	credibility	as	a
prediction	of	the	behavior	of	rational	agents	is	lost.”	MIT’s	Scott	Aaronson
agrees.	“In	my	opinion,”	he	says,	“if	the	theorem	that	Nash	equilibria	exist	is
considered	relevant	to	debates	about	(say)	free	markets	versus	government
intervention,	then	the	theorem	that	finding	those	equilibria	is	[intractable]
should	be	considered	relevant	also.”	The	predictive	abilities	of	Nash
equilibria	only	matter	if	those	equilibria	can	actually	be	found	by	the	players.

To	quote	eBay’s	former	director	of	research,	Kamal	Jain,	“If	your	laptop
cannot	find	it,	neither	can	the	market.”

Dominant	Strategies,	for	Better	or	Worse

Even	when	we	can	reach	an	equilibrium,	just	because	it’s	stable	doesn’t	make
it	good.	It	may	seem	paradoxical,	but	the	equilibrium	strategy—where	neither
player	is	willing	to	change	tack—is	by	no	means	necessarily	the	strategy	that
leads	to	the	best	outcomes	for	the	players.	Nowhere	is	that	better	illustrated
than	in	game	theory’s	most	famous,	provocative,	and	controversial	two-player
game:	“the	prisoner’s	dilemma.”

The	prisoner’s	dilemma	works	as	follows.	Imagine	that	you	and	a	co-
conspirator	have	been	arrested	after	robbing	a	bank,	and	are	being	held	in
separate	jail	cells.	Now	you	must	decide	whether	to	“cooperate”	with	each
other—by	remaining	silent	and	admitting	nothing—or	to	“defect”	from	your
partnership	by	ratting	out	the	other	to	the	police.	You	know	that	if	you	both
cooperate	with	each	other	and	keep	silent,	the	state	doesn’t	have	enough
evidence	to	convict	either	one	of	you,	so	you’ll	both	walk	free,	splitting	the
loot—half	a	million	dollars	each,	let’s	say.	If	one	of	you	defects	and	informs
on	the	other,	and	the	other	says	nothing,	the	informer	goes	free	and	gets	the
entire	million	dollars,	while	the	silent	one	is	convicted	as	the	sole	perpetrator
of	the	crime	and	receives	a	ten-year	sentence.	If	you	both	inform	on	each
other,	then	you’ll	share	the	blame	and	split	the	sentence:	five	years	each.

Here’s	the	problem.	No	matter	what	your	accomplice	does,	it’s	always
better	for	you	to	defect.

If	your	accomplice	has	ratted	you	out,	ratting	them	out	in	turn	will	give
you	five	years	of	your	life	back—you’ll	get	the	shared	sentence	(five	years)
rather	than	serving	the	whole	thing	yourself	(ten	years).	And	if	your
accomplice	has	stayed	quiet,	turning	them	in	will	net	you	the	full	million
dollars—you	won’t	have	to	split	it.	No	matter	what,	you’re	always	better	off
defecting	than	cooperating,	regardless	of	what	your	accomplice	decides.	To
do	otherwise	will	always	make	you	worse	off,	no	matter	what.

In	fact,	this	makes	defection	not	merely	the	equilibrium	strategy	but
what’s	known	as	a	dominant	strategy.	A	dominant	strategy	avoids	recursion
altogether,	by	being	the	best	response	to	all	of	your	opponent’s	possible
strategies—so	you	don’t	even	need	to	trouble	yourself	getting	inside	their

head	at	all.	A	dominant	strategy	is	a	powerful	thing.

But	now	we’ve	arrived	at	the	paradox.	If	everyone	does	the	rational	thing
and	follows	the	dominant	strategy,	the	story	ends	with	both	of	you	serving
five	years	of	hard	time—which,	compared	to	freedom	and	a	cool	half	million
apiece,	is	dramatically	worse	for	everyone	involved.	How	could	that	have
happened?

This	has	emerged	as	one	of	the	major	insights	of	traditional	game	theory:
the	equilibrium	for	a	set	of	players,	all	acting	rationally	in	their	own	interest,
may	not	be	the	outcome	that	is	actually	best	for	those	players.

Algorithmic	game	theory,	in	keeping	with	the	principles	of	computer
science,	has	taken	this	insight	and	quantified	it,	creating	a	measure	called	“the
price	of	anarchy.”	The	price	of	anarchy	measures	the	gap	between
cooperation	(a	centrally	designed	or	coordinated	solution)	and	competition
(where	each	participant	is	independently	trying	to	maximize	the	outcome	for
themselves).	In	a	game	like	the	prisoner’s	dilemma,	this	price	is	effectively
infinite:	increasing	the	amount	of	cash	at	stake	and	lengthening	the	jail
sentences	can	make	the	gap	between	possible	outcomes	arbitrarily	wide,	even
as	the	dominant	strategy	stays	the	same.	There’s	no	limit	to	how	painful
things	can	get	for	the	players	if	they	don’t	coordinate.	But	in	other	games,	as
algorithmic	game	theorists	would	discover,	the	price	of	anarchy	is	not	nearly
so	bad.

For	instance,	consider	traffic.	Whether	it’s	individual	commuters	trying	to
make	their	way	through	the	daily	bumper-to-bumper,	or	routers	shuffling	TCP
packets	across	the	Internet,	everyone	in	the	system	merely	wants	what’s
easiest	for	them	personally.	Drivers	just	want	to	take	the	fastest	route,
whatever	it	is,	and	routers	just	want	to	shuffle	along	their	packets	with
minimal	effort—but	in	both	cases	this	can	result	in	overcrowding	along
critical	pathways,	creating	congestion	that	harms	everyone.	How	much	harm,
though?	Surprisingly,	Tim	Roughgarden	and	Cornell’s	Éva	Tardos	proved	in
2002	that	the	“selfish	routing”	approach	has	a	price	of	anarchy	that’s	a	mere
4/3.	That	is,	a	free-for-all	is	only	33%	worse	than	perfect	top-down
coordination.

Roughgarden	and	Tardos’s	work	has	deep	implications	both	for	urban
planning	of	physical	traffic	and	for	network	infrastructure.	Selfish	routing’s
low	price	of	anarchy	may	explain,	for	instance,	why	the	Internet	works	as

well	as	it	does	without	any	central	authority	managing	the	routing	of
individual	packets.	Even	if	such	coordination	were	possible,	it	wouldn’t	add
very	much.

When	it	comes	to	traffic	of	the	human	kind,	the	low	price	of	anarchy	cuts
both	ways.	The	good	news	is	that	the	lack	of	centralized	coordination	is
making	your	commute	at	most	only	33%	worse.	On	the	other	hand,	if	you’re
hoping	that	networked,	self-driving	autonomous	cars	will	bring	us	a	future	of
traffic	utopia,	it	may	be	disheartening	to	learn	that	today’s	selfish,
uncoordinated	drivers	are	already	pretty	close	to	optimal.	It’s	true	that	self-
driving	cars	should	reduce	the	number	of	road	accidents	and	may	be	able	to
drive	more	closely	together,	both	of	which	would	speed	up	traffic.	But	from	a
congestion	standpoint,	the	fact	that	anarchy	is	only	4/3	as	congested	as	perfect
coordination	means	that	perfectly	coordinated	commutes	will	only	be	3/4	as
congested	as	they	are	now.	It’s	a	bit	like	the	famous	line	by	James	Branch
Cabell:	“The	optimist	proclaims	that	we	live	in	the	best	of	all	possible	worlds;
and	the	pessimist	fears	this	is	true.”	Congestion	will	always	be	a	problem
solvable	more	by	planners	and	by	overall	demand	than	by	the	decisions	of
individual	drivers,	human	or	computer,	selfish	or	cooperative.

Quantifying	the	price	of	anarchy	has	given	the	field	a	concrete	and
rigorous	way	to	assess	the	pros	and	cons	of	decentralized	systems,	which	has
broad	implications	across	any	number	of	domains	where	people	find
themselves	involved	in	game-playing	(whether	they	know	it	or	not).	A	low
price	of	anarchy	means	the	system	is,	for	better	or	worse,	about	as	good	on	its
own	as	it	would	be	if	it	were	carefully	managed.	A	high	price	of	anarchy,	on
the	other	hand,	means	that	things	have	the	potential	to	turn	out	fine	if	they’re
carefully	coordinated—but	that	without	some	form	of	intervention,	we	are
courting	disaster.	The	prisoner’s	dilemma	is	clearly	of	this	latter	type.
Unfortunately,	so	are	many	of	the	most	critical	games	the	world	must	play.

The	Tragedy	of	the	Commons

In	1968,	the	ecologist	Garrett	Hardin	took	the	two-player	prisoner’s	dilemma
and	imagined	scaling	it	up	to	involve	all	the	members	of	a	farming	village.
Hardin	invited	his	readers	to	picture	a	“commons”	of	public	lawn—available
to	be	grazed	by	everyone’s	livestock,	but	with	finite	capacity.	In	theory,	all	the
villagers	should	graze	only	as	many	animals	as	would	leave	some	grass	for
everyone.	In	practice,	though,	the	benefits	of	grazing	a	little	bit	more	than	that

accrue	directly	to	you,	while	the	harms	seem	too	small	to	be	of	consequence.
Yet	if	everyone	follows	this	logic	of	using	just	slightly	more	of	the	commons
than	they	should,	a	dreadful	equilibrium	results:	a	completely	devastated
lawn,	and	no	grass	for	anyone’s	livestock	thereafter.

Hardin	called	this	the	“tragedy	of	the	commons,”	and	it	has	become	one	of
the	primary	lenses	through	which	economists,	political	scientists,	and	the
environmental	movement	view	large-scale	ecological	crises	like	pollution	and
climate	change.	“When	I	was	a	kid,	there	was	this	thing	called	leaded
gasoline,”	says	Avrim	Blum,	Carnegie	Mellon	computer	scientist	and	game
theorist.	“Leaded	was	ten	cents	cheaper	or	something,	but	it	pollutes	the
environment.…	Given	what	everyone	else	is	doing,	how	much	worse	really
are	you	personally	[health-wise]	if	you	put	leaded	gasoline	in	your	own	car?
Not	that	much	worse.	It’s	the	prisoner’s	dilemma.”	The	same	is	true	at	the
corporate	and	national	levels.	A	recent	newspaper	headline	put	the	trouble
succinctly:	“Stable	climate	demands	most	fossil	fuels	stay	in	the	ground,	but
whose?”	Every	corporation	(and,	to	some	degree,	every	nation)	is	better	off
being	a	bit	more	reckless	than	their	peers	for	the	sake	of	competitive
advantage.	Yet	if	they	all	act	more	recklessly,	it	leads	to	a	ravaged	Earth,	and
all	for	nothing:	there’s	no	economic	advantage	for	anyone	relative	to	where
they	started.

The	logic	of	this	type	of	game	is	so	pervasive	that	we	don’t	even	have	to
look	to	misdeeds	to	see	it	running	amok.	We	can	just	as	easily	end	up	in	a
terrible	equilibrium	with	a	clean	conscience.	How?	Look	no	further	than	your
company	vacation	policy.	In	America,	people	work	some	of	the	longest	hours
in	the	world;	as	the	Economist	put	it,	“nowhere	is	the	value	of	work	higher
and	the	value	of	leisure	lower.”	There	are	few	laws	mandating	that	employers
provide	time	off,	and	even	when	American	employees	do	get	vacation	time
they	don’t	use	it.	A	recent	study	showed	that	the	average	worker	takes	only
half	of	the	vacation	days	granted	them,	and	a	stunning	15%	take	no	vacation
at	all.

At	the	present	moment,	the	Bay	Area	(where	the	two	of	us	live)	is
attempting	to	remedy	this	sorry	state	of	affairs	by	going	through	a	radical
paradigm	shift	when	it	comes	to	vacation	policy—a	shift	that	is	very	well
meaning	and	completely,	apocalyptically	doomed.	The	premise	sounds
innocent	enough:	instead	of	metering	out	some	fixed	arbitrary	number	of	days
for	each	employee,	then	wasting	HR	man-hours	making	sure	no	one	goes	over

their	limit,	why	not	just	let	your	employees	free?	Why	not	simply	allow	them
unlimited	vacation?	Anecdotal	reports	thus	far	are	mixed—but	from	a	game-
theoretic	perspective,	this	approach	is	a	nightmare.	All	employees	want,	in
theory,	to	take	as	much	vacation	as	possible.	But	they	also	all	want	to	take	just
slightly	less	vacation	than	each	other,	to	be	perceived	as	more	loyal,	more
committed,	and	more	dedicated	(hence	more	promotion-worthy).	Everyone
looks	to	the	others	for	a	baseline,	and	will	take	just	slightly	less	than	that.	The
Nash	equilibrium	of	this	game	is	zero.	As	the	CEO	of	software	company
Travis	CI,	Mathias	Meyer,	writes,	“People	will	hesitate	to	take	a	vacation	as
they	don’t	want	to	seem	like	that	person	who’s	taking	the	most	vacation	days.
It’s	a	race	to	the	bottom.”

This	is	the	tragedy	of	the	commons	in	full	effect.	And	it’s	just	as	bad
between	firms	as	within	them.	Imagine	two	shopkeepers	in	a	small	town.
Each	of	them	can	choose	either	to	stay	open	seven	days	a	week	or	to	be	open
only	six	days	a	week,	taking	Sunday	off	to	relax	with	their	friends	and	family.
If	both	of	them	take	a	day	off,	they’ll	retain	their	existing	market	share	and
experience	less	stress.	However,	if	one	shopkeeper	decides	to	open	his	shop
seven	days	a	week,	he’ll	draw	extra	customers—taking	them	away	from	his
competitor	and	threatening	his	livelihood.	The	Nash	equilibrium,	again,	is	for
everyone	to	work	all	the	time.

This	exact	issue	became	a	flash	point	in	the	United	States	during	the	2014
holiday	season,	as	retailer	after	retailer,	unwilling	to	cede	market	share	to
competitors	who	were	getting	ahead	of	the	usual	post-Thanksgiving	shopping
rush,	caved	in	toward	the	lousy	equilibrium.	“Stores	are	opening	earlier	than
ever	before,”	the	International	Business	Times	reported.	Macy’s	decided	to
open	two	hours	earlier	than	the	year	before,	as	did	Target.	Kmart,	for	its	part,
opened	at	6:00	a.m.	on	Thanksgiving	morning,	and	was	continuously	open	for
forty-two	hours.

So	what	can	we,	as	players,	do	when	we	find	ourselves	in	such	a	situation
—either	the	two-party	prisoner’s	dilemma,	or	the	multi-party	tragedy	of	the
commons?	In	a	sense,	nothing.	The	very	stability	that	these	bad	equilibria
have,	the	thing	that	makes	them	equilibria,	becomes	damnable.	By	and	large
we	cannot	shift	the	dominant	strategies	from	within.	But	this	doesn’t	mean
that	bad	equilibria	can’t	be	fixed.	It	just	means	that	the	solution	is	going	to
have	to	come	from	somewhere	else.

Mechanism	Design:	Change	the	Game

Don’t	hate	the	player,	hate	the	game.
—ICE-T

Don’t	ever	take	sides	with	anyone	against	the	family	again—ever.
—THE	GODFATHER

The	prisoner’s	dilemma	has	been	the	focal	point	for	generations	of	debate	and
controversy	about	the	nature	of	human	cooperation,	but	University	College
London	game	theorist	Ken	Binmore	sees	at	least	some	of	that	controversy	as
misguided.	As	he	argues,	it’s	“just	plain	wrong	that	the	Prisoner’s	Dilemma
captures	what	matters	about	human	cooperation.	On	the	contrary,	it	represents
a	situation	in	which	the	dice	are	as	loaded	against	the	emergence	of
cooperation	as	they	could	possibly	be.”*

Well,	if	the	rules	of	the	game	force	a	bad	strategy,	maybe	we	shouldn’t	try
to	change	strategies.	Maybe	we	should	try	to	change	the	game.

This	brings	us	to	a	branch	of	game	theory	known	as	“mechanism	design.”
While	game	theory	asks	what	behavior	will	emerge	given	a	set	of	rules,
mechanism	design	(sometimes	called	“reverse	game	theory”)	works	in	the
other	direction,	asking:	what	rules	will	give	us	the	behavior	we	want	to	see?
And	if	game	theory’s	revelations—like	the	fact	that	an	equilibrium	strategy
might	be	rational	for	each	player	yet	bad	for	everyone—have	proven
counterintuitive,	the	revelations	of	mechanism	design	are	even	more	so.

Let’s	return	you	and	your	bank-robbing	co-conspirator	to	the	jail	cell	for
another	go	at	the	prisoner’s	dilemma,	with	one	crucial	addition:	the
Godfather.	Now	you	and	your	fellow	thief	are	members	of	a	crime	syndicate,
and	the	don	has	made	it,	shall	we	say,	all	too	clear	that	any	informants	will
sleep	with	the	fishes.	This	alteration	of	the	game’s	payoffs	has	the	effect	of
limiting	the	actions	you	can	take,	yet	ironically	makes	it	far	more	likely	that
things	will	end	well,	both	for	you	and	your	partner.	Since	defection	is	now
less	attractive	(to	put	it	mildly),	both	prisoners	are	induced	to	cooperate,	and
both	will	confidently	walk	away	half	a	million	dollars	richer.	Minus,	of
course,	a	nominal	tithe	to	the	don.

The	counterintuitive	and	powerful	thing	here	is	we	can	worsen	every
outcome—death	on	the	one	hand,	taxes	on	the	other—yet	make	everyone’s
lives	better	by	shifting	the	equilibrium.

For	the	small-town	shopkeepers,	a	verbal	truce	to	take	Sundays	off	would
be	unstable:	as	soon	as	either	shopkeeper	needed	some	extra	cash	he’d	be
liable	to	violate	it,	prompting	the	other	to	start	working	Sundays	as	well	so	as
not	to	lose	market	share.	This	would	land	them	right	back	in	the	bad
equilibrium	where	they	get	the	worst	of	both	worlds—they’re	exhausted	and
don’t	get	any	competitive	advantage	for	it.	But	they	might	be	able	to	act	as
their	own	don	by	signing	a	legally	binding	contract	to	the	effect	that,	say,	any
proceeds	earned	by	either	shop	on	a	Sunday	go	to	the	other	shop.	By
worsening	the	unsatisfactory	equilibrium,	they’d	make	a	new	and	better	one.

On	the	other	hand,	a	change	to	the	game’s	payoffs	that	doesn’t	change	the
equilibrium	will	typically	have	a	much	smaller	effect	than	desired.	The	CEO
of	the	software	firm	Evernote,	Phil	Libin,	made	headlines	with	a	policy	of
offering	Evernote	employees	a	thousand	dollars	cash	for	taking	a	vacation.
This	sounds	like	a	reasonable	approach	to	getting	more	employees	to	take
vacation,	but	from	a	game-theoretic	perspective	it’s	actually	misguided.
Increasing	the	cash	on	the	table	in	the	prisoner’s	dilemma,	for	instance,
misses	the	point:	the	change	doesn’t	do	anything	to	alter	the	bad	equilibrium.
If	a	million-dollar	heist	ends	up	with	both	thieves	in	jail,	so	does	a	ten-
million-dollar	heist.	The	problem	isn’t	that	vacations	aren’t	attractive;	the
problem	is	that	everyone	wants	to	take	slightly	less	vacation	than	their	peers,
producing	a	game	whose	only	equilibrium	is	no	vacation	at	all.	A	thousand
bucks	sweetens	the	deal	but	doesn’t	change	the	principle	of	the	game—which
is	to	take	as	much	vacation	as	possible	while	still	being	perceived	as	slightly
more	loyal	than	the	next	guy	or	gal,	therefore	getting	a	raise	or	promotion
over	them	that’s	worth	many	thousands	of	dollars.

Does	this	mean	that	Libin	needs	to	offer	tens	of	thousands	of	dollars	per
employee	per	vacation?	No.	Mechanism	design	tells	us	that	Libin	can	get	the
happy	employees	he	wants	with	the	stick,	rather	than	the	carrot;	he	can	get	a
better	equilibrium	without	spending	a	dime.	For	instance,	he	could	simply
make	a	certain	minimal	amount	of	vacation	compulsory.	If	he	can’t	change
the	race,	he	can	still	change	the	bottom.	Mechanism	design	makes	a	powerful
argument	for	the	need	for	a	designer—be	it	a	CEO,	a	contract	binding	all
parties,	or	a	don	who	enforces	omertà	by	garroted	carotid.

A	league	commissioner	is	this	kind	of	a	designer	as	well.	Imagine	how
pathetic	a	sight	the	NBA	would	be	if	there	were	no	games	as	such,	and	teams
could	simply	score	on	each	other	at	literally	any	time	between	the	start	and

end	of	the	season:	3:00	a.m.	on	a	Sunday,	noon	on	Christmas,	you	name	it.
What	you’d	see	would	be	haggard,	cadaverous	players,	in	extreme	sleep	debt,
forcing	vigilance	with	chemical	stimulants,	almost	losing	their	minds.	War	is
like	this.	On	the	other	hand,	even	Wall	Street,	ruthless	cutthroat	capitalists
trading	by	the	microsecond	in	the	“city	that	never	sleeps,”	comes	to	a	cease-
fire	every	day	at	4:00	p.m.	sharp,	so	that	brokers	can	sleep	at	predictable
hours	every	night	without	getting	too	badly	ambushed	by	competitors	pushing
toward	a	sleepless	equilibrium.	In	this	sense,	the	stock	market	is	more	a	sport
than	a	war.

Scaling	up	this	logic	results	in	a	potent	argument	for	the	role	of
government.	In	fact,	many	governments	do	have	laws	on	the	books	mandating
minimum	vacations	and	limiting	shop	hours.	And	while	the	United	States	is
one	of	the	only	developed	nations	without	federal	requirements	for	paid
vacation,	Massachusetts,	Maine,	and	Rhode	Island	do	have	state-level
prohibitions	on	Thanksgiving	commerce.

Laws	like	these	often	stem	from	the	colonial	era	and	were	initially
religious	in	nature.	Indeed,	religion	itself	provides	a	very	direct	way	of
modifying	the	structure	of	games	of	this	kind.	In	particular,	a	religious	law
such	as	“Remember	the	Sabbath	day”	neatly	solves	the	problem	faced	by	the
shopkeepers,	whether	enforced	by	an	all-powerful	God	or	by	the	more
proximate	members	of	a	religious	community.	And	adding	divine	force	to
injunctions	against	other	kinds	of	antisocial	behavior,	such	as	murder,
adultery,	and	theft,	is	likewise	a	way	to	solve	some	of	the	game-theoretic
problems	of	living	in	a	social	group.	God	happens	to	be	even	better	than
government	in	this	respect,	since	omniscience	and	omnipotence	provide	a
particularly	strong	guarantee	that	taking	bad	actions	will	have	dire
consequences.	It	turns	out	there’s	no	Godfather	quite	like	God	the	Father.

Religion	seems	like	the	kind	of	thing	a	computer	scientist	rarely	talks
about;	in	fact,	it’s	literally	the	subject	of	a	book	called	Things	a	Computer
Scientist	Rarely	Talks	About.	But	by	reducing	the	number	of	options	that
people	have,	behavioral	constraints	of	the	kind	imposed	by	religion	don’t	just
make	certain	kinds	of	decisions	less	computationally	challenging—they	can
also	yield	better	outcomes.

Mechanism	Design	by	Evolution

How	selfish	soever	man	may	be	supposed,	there	are	evidently	some

principles	in	his	nature,	which	interest	him	in	the	fortune	of	others,	and
render	their	happiness	necessary	to	him,	though	he	derives	nothing	from
it,	except	the	pleasure	of	seeing	it.

—ADAM	SMITH,	THE	THEORY	OF	MORAL	SENTIMENTS

The	heart	has	its	reasons	which	reason	knows	nothing	of.
—BLAISE	PASCAL

The	redwoods	of	California	are	some	of	the	oldest	and	most	majestic	living
things	on	the	planet.	From	a	game-theoretic	standpoint,	though,	they’re
something	of	a	tragedy.	The	only	reason	they’re	so	tall	is	that	they’re	trying	to
be	taller	than	each	other—up	to	the	point	where	the	harms	of	overextension
are	finally	even	worse	than	the	harms	of	getting	shaded	out.	As	Richard
Dawkins	puts	it,

The	canopy	can	be	thought	of	as	an	aerial	meadow,	just	like	a	rolling	grassland	prairie,	but	raised
on	stilts.	The	canopy	is	gathering	solar	energy	at	much	the	same	rate	as	a	grassland	prairie	would.
But	a	substantial	portion	of	the	energy	is	“wasted”	by	being	fed	straight	into	the	stilts,	which	do
nothing	more	useful	than	loft	the	“meadow”	high	in	the	air,	where	it	picks	up	exactly	the	same
harvest	of	photons	as	it	would—at	far	lower	cost—if	it	were	laid	flat	on	the	ground.

If	the	forest	could	only	somehow	agree	to	a	kind	of	truce,	the	ecosystem
could	enjoy	the	photosynthetic	bounty	without	the	wood-making	arms	race
wasting	it	all.	But	as	we’ve	seen,	good	outcomes	in	these	scenarios	tend	only
to	arise	in	the	context	of	an	authority	outside	the	game—someone	changing
the	payoffs	from	the	top	down.	It	would	seem	as	though	in	nature,	then,	there
is	simply	no	way	of	establishing	good	equilibria	between	individuals.

On	the	other	hand,	if	cooperation	really	does	lead	to	better	outcomes	in
certain	games,	then	we’d	expect	that	cooperatively	minded	species	would
prevail	evolutionarily.	But	then	where	would	the	cooperation	come	from	if	it’s
only	rational	at	the	group	level,	not	the	individual	level?	Maybe	it	would	have
to	come	from	something	that	individuals	can’t	entirely	control.	Something,
for	instance,	like	emotions.

Consider	two	seemingly	unrelated	scenarios:	(1)	A	man	buys	a	vacuum
cleaner,	it	breaks	within	a	few	weeks,	and	he	spends	ten	minutes	online
leaving	a	vindictive	review.	(2)	A	woman	shopping	at	a	convenience	store
notices	someone	steal	an	elderly	man’s	wallet	and	bolt	for	the	door;	she
tackles	the	thief	and	wrestles	the	wallet	free.

Though	the	latter	protagonist	seems	clearly	heroic,	and	the	former	merely
angry,	what	these	vignettes	have	in	common—albeit	in	very	different	ways—
is	involuntary	selflessness.	The	unhappy	consumer	isn’t	trying	to	get	the
vacuum	cleaner	replaced	or	his	money	back;	he’s	after	a	highly	indirect	kind
of	retribution,	from	which—in	a	rational,	game-theoretic	sense—he	stands	to
gain	little	other	than	the	spiteful	satisfaction	of	writing	the	review	itself.	In	the
convenience	store,	the	heroic	woman	metes	out	vigilante	justice	at	enormous
personal	cost;	she	risks	injury	or	even	death	to	return,	say,	$40	to	a	man	who
is	a	total	stranger	to	her.	Even	if	she	wanted	to	help,	she	could	have	simply
taken	two	twenties	out	of	her	own	pocket	and	given	them	to	him	without
risking	a	trip	to	the	ER!	In	this	sense,	both	protagonists	are	acting	irrationally.
On	the	other	hand,	their	actions	are	good	for	their	society:	we	all	want	to	live
in	a	world	in	which	pickpocketing	doesn’t	pay	and	in	which	businesses	that
sell	poor-quality	products	get	a	bad	reputation.

Perhaps	each	of	us,	individually,	would	be	better	off	being	the	kind	of
person	who	can	always	make	a	detached,	calculated	decision	in	their	own	best
interest,	not	willing	to	lose	time	fuming	over	a	sunk	cost,	let	alone	lose	a	tooth
over	$40.	But	all	of	us	are	better	off	living	in	a	society	in	which	such	defiant
stands	are	common.

So	what	has	acted	up	in	these	people,	in	the	absence	of	an	external
authority,	to	make	them	buck	the	selfish	equilibrium?	Anger,	for	one	thing.
Whether	prompted	by	a	shoddy	business	or	a	petty	thief,	outrage	can	override
rationality.	And	in	these	instances,	it	may	be	that	the	hand	of	evolution	has
done	what	it	would	otherwise	have	taken	an	authority	outside	the	game	to
accomplish.

Nature	is	full	of	examples	of	individuals	being	essentially	hijacked	to
serve	the	goals	of	another	species.	The	lancet	liver	fluke	(Dicrocoelium
dendriticum),	for	instance,	is	a	parasite	that	makes	ants	deliberately	climb	to
the	tops	of	grass	blades	so	that	they’ll	be	eaten	by	sheep—the	lancet	fluke’s
preferred	host.	Likewise,	the	parasite	Toxoplasma	gondii	makes	mice
permanently	lose	their	fear	of	cats,	with	similar	results.

Emotion,	for	the	bitter,	retaliatory	consumer	and	for	the	convenience-store
hero	alike,	is	our	own	species	taking	over	the	controls	for	a	minute.	“Morality
is	herd	instinct	in	the	individual,”	wrote	Nietzsche.	Paraphrasing	slightly,	we
might	hazard	that	emotion	is	mechanism	design	in	the	species.	Precisely

because	feelings	are	involuntary,	they	enable	contracts	that	need	no	outside
enforcement.	Revenge	almost	never	works	out	in	favor	of	the	one	who	seeks
it,	and	yet	someone	who	will	respond	with	“irrational”	vehemence	to	being
taken	advantage	of	is	for	that	very	reason	more	likely	to	get	a	fair	deal.	As
Cornell	economist	Robert	Frank	puts	it,	“If	people	expect	us	to	respond
irrationally	to	the	theft	of	our	property,	we	will	seldom	need	to,	because	it	will
not	be	in	their	interests	to	steal	it.	Being	predisposed	to	respond	irrationally
serves	much	better	here	than	being	guided	only	by	material	self-interest.”

(Lest	you	think	that	civilized	modern	humans	have	legal	contracts	and	rule
of	law	instead	of	retribution,	recall	that	it’s	often	more	work	and	suffering	to
sue	or	prosecute	someone	than	the	victim	could	ever	hope	to	recover	in
material	terms.	Lawsuits	are	the	means	for	self-destructive	retaliation	in	a
developed	society,	not	the	substitute.)

As	for	anger,	so	for	compassion	and	guilt—and	love.

As	odd	as	it	might	sound,	the	prisoner’s	dilemma	also	has	a	lot	to	tell	us
about	marriage.	In	our	discussion	of	optimal	stopping	problems,	such	as	the
secretary	problem,	back	in	chapter	1,	we	looked	at	both	dating	and	apartment
hunting	as	cases	where	we	must	make	a	commitment	with	possible	future
options	yet	unseen.	In	both	love	and	housing,	though,	we	continue	to
encounter	more	options	even	after	our	optimal-stopping	decision	is	made—so
why	not	be	ready	to	jump	ship?	Of	course,	knowing	that	the	other	party	(be	it
spouse	or	landlord)	is	in	turn	prepared	to	jump	ship	would	prevent	many	of
the	long-term	investments	(having	children	together,	or	laboriously	moving	in
one’s	belongings)	that	make	those	agreements	worthwhile.

In	both	cases	this	so-called	commitment	problem	can	be	at	least	partially
addressed	by	a	contract.	But	game	theory	suggests	that	in	the	case	of	dating,
the	voluntary	bonds	of	the	law	are	less	relevant	to	an	enduring	partnership
than	the	involuntary	bonds	of	love	itself.	As	Robert	Frank	puts	it,	“The	worry
that	people	will	leave	relationships	because	it	may	later	become	rational	for
them	to	do	so	is	largely	erased	if	it	is	not	rational	assessment	that	binds	them
in	the	first	place.”	He	explains:

Yes,	people	search	for	objective	characteristics	they	care	about.	Everybody	wants	somebody
who’s	kind	and	intelligent	and	interesting	and	healthy	and	maybe	physically	attractive,	good
earning	power,	the	whole	laundry	list	of	features,	but	that’s	the	first	pass.…	After	you’ve	spent
enough	time	together,	it’s	not	those	things	that	make	you	want	to	stay	together.	It’s	just	the	fact
that	it’s	that	particular	person—that	is	what’s	valuable	to	you,	so	you	don’t	really	need	the

contract	so	much	as	you	need	a	feeling	that	makes	you	not	want	to	separate,	even	though
objectively	there	might	be	a	better	option	available	to	you.

Said	differently:	Love	is	like	organized	crime.	It	changes	the	structure	of	the
marriage	game	so	that	the	equilibrium	becomes	the	outcome	that	works	best
for	everybody.

Playwright	George	Bernard	Shaw	once	wrote	of	marriage	that	“If	the
prisoner	is	happy,	why	lock	him	in?	If	he	is	not,	why	pretend	that	he	is?”
Game	theory	offers	a	subtle	answer	to	this	particular	riddle.	Happiness	is	the
lock.

A	game-theoretic	argument	for	love	would	highlight	one	further	point:
marriage	is	a	prisoner’s	dilemma	in	which	you	get	to	choose	the	person	with
whom	you’re	in	cahoots.	This	might	seem	like	a	small	change,	but	it
potentially	has	a	big	effect	on	the	structure	of	the	game	you’re	playing.	If	you
knew	that,	for	some	reason,	your	partner	in	crime	would	be	miserable	if	you
weren’t	around—the	kind	of	misery	even	a	million	dollars	couldn’t	cure—
then	you’d	worry	much	less	about	them	defecting	and	leaving	you	to	rot	in
jail.

So	the	rational	argument	for	love	is	twofold:	the	emotions	of	attachment
not	only	spare	you	from	recursively	overthinking	your	partner’s	intentions,
but	by	changing	the	payoffs	actually	enable	a	better	outcome	altogether.
What’s	more,	being	able	to	fall	involuntarily	in	love	makes	you,	in	turn,	a
more	attractive	partner	to	have.	Your	capacity	for	heartbreak,	for	sleeping
with	the	emotional	fishes,	is	the	very	quality	that	makes	you	such	a	trusty
accomplice.

Information	Cascades:	The	Tragic	Rationality	of	Bubbles

Whenever	you	find	yourself	on	the	side	of	the	majority,	it	is	time	to	pause
and	reflect.

—MARK	TWAIN

Part	of	the	reason	why	it’s	a	good	idea	to	pay	attention	to	the	behavior	of
others	is	that	in	doing	so,	you	get	to	add	their	information	about	the	world	to
your	own.	A	popular	restaurant	is	probably	good;	a	half-empty	concert	hall	is
probably	a	bad	sign;	and	if	someone	you’re	talking	to	abruptly	yanks	their
gaze	toward	something	you	can’t	see,	it’s	probably	not	a	bad	idea	to	turn	your
head,	too.

On	the	other	hand,	learning	from	others	doesn’t	always	seem	particularly
rational.	Fads	and	fashions	are	the	result	of	following	others’	behavior
without	being	anchored	to	any	underlying	objective	truth	about	the	world.
What’s	worse,	the	assumption	that	other	people’s	actions	are	a	useful	guide
can	lead	to	the	sort	of	herd-following	that	precipitates	economic	disaster.	If
everybody	else	is	investing	in	real	estate,	it	seems	like	a	good	idea	to	buy	a
house;	after	all,	the	price	is	only	going	to	go	up.	Isn’t	it?

An	interesting	aspect	of	the	2007–2009	mortgage	crisis	is	that	everybody
involved	seemed	to	feel	like	they	were	unfairly	punished	for	simply	doing
what	they	were	supposed	to.	A	generation	of	Americans	who	grew	up
believing	that	houses	were	fail-safe	investments,	and	who	saw	everyone
around	them	buying	houses	despite	(or	because	of)	rapidly	rising	prices,	were
badly	burned	when	those	prices	finally	started	to	tumble.	Bankers,
meanwhile,	felt	they	were	unfairly	blamed	for	doing	what	they	had	always
done—offering	opportunities,	which	their	clients	could	accept	or	decline.	In
the	wake	of	an	abrupt	market	collapse,	the	temptation	is	always	to	assign
blame.	Here	game	theory	offers	a	sobering	perspective:	catastrophes	like	this
can	happen	even	when	no	one’s	at	fault.

Properly	appreciating	the	mechanics	of	financial	bubbles	begins	with
understanding	auctions.	While	auctions	may	seem	like	niche	corners	of	the
economy—evoking	either	million-dollar	oil	paintings	at	Sotheby’s	and
Christie’s,	or	Beanie	Babies	and	other	collectibles	on	eBay—they	actually
power	a	substantial	portion	of	the	economy.	Google,	for	instance,	makes	more
than	90%	of	its	revenue	from	selling	ads,	and	those	ads	are	all	sold	via
auctions.	Meanwhile,	governments	use	auctions	to	sell	rights	to	bands	of	the
telecommunications	spectrum	(such	as	cell	phone	transmission	frequencies),
raising	tens	of	billions	of	dollars	in	revenue.	In	fact,	many	global	markets,	in
everything	from	homes	to	books	to	tulips,	operate	via	auctions	of	various
styles.

One	of	the	simplest	auction	formats	has	each	participant	write	down	their
bid	in	secret,	and	the	one	whose	bid	is	highest	wins	the	item	for	whatever
price	they	wrote	down.	This	is	known	as	a	“sealed-bid	first-price	auction,”
and	from	an	algorithmic	game	theory	perspective	there’s	a	big	problem	with	it
—actually,	several.	For	one	thing,	there’s	a	sense	in	which	the	winner	always
overpays:	if	you	value	an	item	at	$25	and	I	value	it	at	$10,	and	we	both	bid
our	true	valuations	($25	and	$10),	then	you	end	up	buying	it	for	$25	when

you	could	have	had	it	for	just	a	hair	over	$10.	This	problem,	in	turn,	leads	to
another	one,	which	is	that	in	order	to	bid	properly—that	is,	in	order	not	to
overpay—you	need	to	predict	the	true	valuation	of	the	other	players	in	the
auction	and	“shade”	your	bid	accordingly.	That’s	bad	enough—but	the	other
players	aren’t	going	to	bid	their	true	valuations	either,	because	they’re
shading	their	bids	based	on	their	prediction	of	yours!	We	are	back	in	the	land
of	recursion.

Another	classic	auction	format,	the	“Dutch	auction”	or	“descending
auction,”	gradually	lowers	an	item’s	price	until	someone	is	willing	to	buy	it.
The	name	references	the	Aalsmeer	Flower	Auction,	the	largest	flower	auction
in	the	world,	which	takes	place	daily	in	the	Netherlands—but	Dutch	auctions
are	more	prevalent	than	they	might	initially	seem.	A	store	marking	down	its
unsold	items,	and	landlords	listing	apartments	at	the	highest	price	they	think
the	market	will	bear,	both	share	its	basic	quality:	the	seller	is	likely	to	begin
optimistically	and	nudge	the	price	down	until	a	buyer	is	found.	The
descending	auction	resembles	the	first-price	auction	in	that	you’re	more	likely
to	win	by	paying	near	the	top	of	your	range	(i.e.,	you’ll	be	poised	to	bid	as	the
price	falls	to	$25),	and	therefore	will	want	to	shade	your	offer	by	some
complexly	strategic	amount.	Do	you	buy	at	$25,	or	stay	your	hand	and	try	to
wait	for	a	lower	price?	Every	dollar	you	save	risks	losing	out	altogether.

The	inverse	of	a	Dutch	or	descending	auction	is	what’s	known	as	an
“English	auction”	or	“ascending	auction”—the	most	familiar	auction	format.
In	an	English	auction,	bidders	alternate	raising	the	price	until	all	but	one	of
them	drop	out.	This	seems	to	offer	something	closer	to	what	we	want:	here,	if
you	value	an	item	at	$25	and	I	value	it	at	$10,	you’ll	win	it	for	just	over	$10
without	either	having	to	go	all	the	way	to	$25	or	disappearing	down	the
strategic	rabbit	hole.

Both	the	Dutch	auction	and	English	auction	introduce	an	extra	level	of
complexity	when	compared	to	a	sealed-bid	auction,	however.	They	involve
not	only	the	private	information	that	each	bidder	has	but	also	the	public	flow
of	bidding	behavior.	(In	a	Dutch	auction,	it	is	the	absence	of	a	bid	that	reveals
information,	by	making	it	clear	that	none	of	the	other	bidders	value	the	item	at
the	current	price	level.)	And	under	the	right	circumstances,	this	mixing	of
private	and	public	data	can	prove	toxic.

Imagine	the	bidders	are	doubtful	about	their	own	estimations	of	the	value

of	an	auction	lot—say,	the	right	to	drill	for	oil	in	some	part	of	the	ocean.	As
University	College	London	game	theorist	Ken	Binmore	notes,	“the	amount	of
oil	in	a	tract	is	the	same	for	everybody,	but	the	buyers’	estimates	of	how	much
oil	is	likely	to	be	in	a	tract	will	depend	on	their	differing	geological	surveys.
Such	surveys	aren’t	only	expensive,	but	notoriously	unreliable.”	In	such	a
situation,	it	seems	natural	to	look	closely	at	your	opponents’	bids,	to	augment
your	own	meager	private	information	with	the	public	information.

But	this	public	information	might	not	be	nearly	as	informative	as	it	seems.
You	don’t	actually	get	to	know	the	other	bidders’	beliefs—only	their	actions.
And	it	is	entirely	possible	that	their	behavior	is	based	on	your	own,	just	as
your	behavior	is	being	influenced	by	theirs.	It’s	easy	to	imagine	a	bunch	of
people	all	going	over	a	cliff	together	because	“everyone	else”	was	acting	as
though	it’d	all	be	fine—when	in	reality	each	person	had	qualms,	but
suppressed	them	because	of	the	apparent	confidence	of	everyone	else	in	the
group.

Just	as	with	the	tragedy	of	the	commons,	this	failure	is	not	necessarily	the
players’	fault.	An	enormously	influential	paper	by	the	economists	Sushil
Bikhchandani,	David	Hirshleifer,	and	Ivo	Welch	has	demonstrated	that	under
the	right	circumstances,	a	group	of	agents	who	are	all	behaving	perfectly
rationally	and	perfectly	appropriately	can	nonetheless	fall	prey	to	what	is
effectively	infinite	misinformation.	This	has	come	to	be	known	as	an
“information	cascade.”

To	continue	the	oil	drilling	rights	scenario,	imagine	there	are	ten
companies	that	might	bid	on	the	rights	for	a	given	tract.	One	of	them	has	a
geological	survey	suggesting	the	tract	is	rich	with	oil;	another’s	survey	is
inconclusive;	the	reconnaissance	of	the	other	eight	suggests	it’s	barren.	But
being	competitors,	of	course,	the	companies	do	not	share	their	survey	results
with	each	other,	and	instead	can	only	watch	each	other’s	actions.	When	the
auction	begins,	the	first	company,	with	the	promising	report,	makes	a	high
initial	bid.	The	second	company,	encouraged	by	this	bid	to	take	an	optimistic
view	of	their	own	ambiguous	survey,	bids	even	higher.	The	third	company	has
a	weak	survey	but	now	doesn’t	trust	it	in	light	of	what	they	take	to	be	two
independent	surveys	that	suggest	it’s	a	gold	mine,	so	they	make	a	new	high
bid.	The	fourth	company,	which	also	has	a	lackluster	survey,	is	now	even
more	strongly	inclined	to	disregard	it,	as	it	seems	like	three	of	their
competitors	all	think	it’s	a	winner.	So	they	bid	too.	The	“consensus”	unglues

from	reality.	A	cascade	has	formed.

No	single	bidder	has	acted	irrationally,	yet	the	net	result	is	catastrophe.	As
Hirshleifer	puts	it,	“Something	very	important	happens	once	somebody
decides	to	follow	blindly	his	predecessors	independently	of	his	own
information	signal,	and	that	is	that	his	action	becomes	uninformative	to	all
later	decision	makers.	Now	the	public	pool	of	information	is	no	longer
growing.	That	welfare	benefit	of	having	public	information	…	has	ceased.”

To	see	what	happens	in	the	real	world	when	an	information	cascade	takes
over,	and	the	bidders	have	almost	nothing	but	one	another’s	behavior	to
estimate	an	item’s	value,	look	no	further	than	Peter	A.	Lawrence’s
developmental	biology	text	The	Making	of	a	Fly,	which	in	April	2011	was
selling	for	$23,698,655.93	(plus	$3.99	shipping)	on	Amazon’s	third-party
marketplace.	How	and	why	had	this—admittedly	respected—book	reached	a
sale	price	of	more	than	$23	million?	It	turns	out	that	two	of	the	sellers	were
setting	their	prices	algorithmically	as	constant	fractions	of	each	other:	one
was	always	setting	it	to	0.99830	times	the	competitor’s	price,	while	the
competitor	was	automatically	setting	their	own	price	to	1.27059	times	the
other’s.	Neither	seller	apparently	thought	to	set	any	limit	on	the	resulting
numbers,	and	eventually	the	process	spiraled	totally	out	of	control.

It’s	possible	that	a	similar	mechanism	was	in	play	during	the	enigmatic
and	controversial	stock	market	“flash	crash”	of	May	6,	2010,	when,	in	a
matter	of	minutes,	the	price	of	several	seemingly	random	companies	in	the
S&P	500	rose	to	more	than	$100,000	a	share,	while	others	dropped
precipitously—sometimes	to	$0.01	a	share.	Almost	$1	trillion	of	value
instantaneously	went	up	in	smoke.	As	CNBC’s	Jim	Cramer	reported	live,
dumbfounded,	“That	…	it	can’t	be	there.	That	is	not	a	real	price.	Oh	well,	just
go	buy	Procter!	Just	go	buy	Procter	&	Gamble,	they	reported	a	decent	quarter,
just	go	buy	it.…	I	mean,	this	is	ridi—this	is	a	good	opportunity.”	Cramer’s
incredulity	is	his	private	information	holding	up	against	the	public
information.	He’s	seemingly	the	only	person	in	the	world	willing	to	pay,	in
this	case,	$49	for	a	stock	that	the	market	is	apparently	valuing	at	under	$40,
but	he	doesn’t	care;	he’s	seen	the	quarterly	reports,	he’s	certain	in	what	he
knows.

Investors	are	said	to	fall	into	two	broad	camps:	“fundamental”	investors,
who	trade	on	what	they	perceive	as	the	underlying	value	of	a	company,	and

“technical”	investors,	who	trade	on	the	fluctuations	of	the	market.	The	rise	of
high-speed	algorithmic	trading	has	upset	the	balance	between	these	two
strategies,	and	it’s	frequently	complained	that	computers,	unanchored	to	the
real-world	value	of	goods—unbothered	at	pricing	a	texbook	at	tens	of
millions	of	dollars	and	blue-chip	stocks	at	a	penny—worsen	the	irrationality
of	the	market.	But	while	this	critique	is	typically	leveled	at	computers,	people
do	the	same	kind	of	thing	too,	as	any	number	of	investment	bubbles	can
testify.	Again,	the	fault	is	often	not	with	the	players	but	with	the	game	itself.

Information	cascades	offer	a	rational	theory	not	only	of	bubbles,	but	also
of	fads	and	herd	behavior	more	generally.	They	offer	an	account	of	how	it’s
easily	possible	for	any	market	to	spike	and	collapse,	even	in	the	absence	of
irrationality,	malevolence,	or	malfeasance.	The	takeaways	are	several.	For
one,	be	wary	of	cases	where	public	information	seems	to	exceed	private
information,	where	you	know	more	about	what	people	are	doing	than	why
they’re	doing	it,	where	you’re	more	concerned	with	your	judgments	fitting	the
consensus	than	fitting	the	facts.	When	you’re	mostly	looking	to	others	to	set	a
course,	they	may	well	be	looking	right	back	at	you	to	do	the	same.	Second,
remember	that	actions	are	not	beliefs;	cascades	get	caused	in	part	when	we
misinterpret	what	others	think	based	on	what	they	do.	We	should	be	especially
hesitant	to	overrule	our	own	doubts—and	if	we	do,	we	might	want	to	find
some	way	to	broadcast	those	doubts	even	as	we	move	forward,	lest	others	fail
to	distinguish	the	reluctance	in	our	minds	from	the	implied	enthusiasm	in	our
actions.	Last,	we	should	remember	from	the	prisoner’s	dilemma	that
sometimes	a	game	can	have	irredeemably	lousy	rules.	There	may	be	nothing
we	can	do	once	we’re	in	it,	but	the	theory	of	information	cascades	may	help
us	to	avoid	such	a	game	in	the	first	place.

And	if	you’re	the	kind	of	person	who	always	does	what	you	think	is	right,
no	matter	how	crazy	others	think	it	is,	take	heart.	The	bad	news	is	that	you
will	be	wrong	more	often	than	the	herd	followers.	The	good	news	is	that
sticking	to	your	convictions	creates	a	positive	externality,	letting	people	make
accurate	inferences	from	your	behavior.	There	may	come	a	time	when	you
will	save	the	entire	herd	from	disaster.

To	Thine	Own	Self	Compute

The	application	of	computer	science	to	game	theory	has	revealed	that	being
obligated	to	strategize	is	itself	a	part—often	a	big	part—of	the	price	we	pay	in

competing	with	one	another.	And	as	the	difficulties	of	recursion	demonstrate,
nowhere	is	that	price	as	high	as	when	we’re	required	to	get	inside	each	other’s
heads.	Here,	algorithmic	game	theory	gives	us	a	way	to	rethink	mechanism
design:	to	take	into	account	not	only	the	outcome	of	the	games,	but	also	the
computational	effort	required	of	the	players.

We’ve	seen	how	seemingly	innocuous	auction	mechanisms,	for	instance,
can	run	into	all	sorts	of	problems:	overthinking,	overpaying,	runaway
cascades.	But	the	situation	is	not	completely	hopeless.	In	fact,	there’s	one
auction	design	in	particular	that	cuts	through	the	burden	of	mental	recursion
like	a	hot	knife	through	butter.	It’s	called	the	Vickrey	auction.

Named	for	Nobel	Prize–winning	economist	William	Vickrey,	the	Vickrey
auction,	just	like	the	first-price	auction,	is	a	“sealed	bid”	auction	process.	That
is,	every	participant	simply	writes	down	a	single	number	in	secret,	and	the
highest	bidder	wins.	However,	in	a	Vickrey	auction,	the	winner	ends	up
paying	not	the	amount	of	their	own	bid,	but	that	of	the	second-place	bidder.
That	is	to	say,	if	you	bid	$25	and	I	bid	$10,	you	win	the	item	at	my	price:	you
only	have	to	pay	$10.

To	a	game	theorist,	a	Vickrey	auction	has	a	number	of	attractive
properties.	And	to	an	algorithmic	game	theorist	in	particular,	one	property
especially	stands	out:	the	participants	are	incentivized	to	be	honest.	In	fact,
there	is	no	better	strategy	than	just	bidding	your	“true	value”	for	the	item—
exactly	what	you	think	the	item	is	worth.	Bidding	any	more	than	your	true
value	is	obviously	silly,	as	you	might	end	up	stuck	buying	something	for	more
than	you	think	it’s	worth.	And	bidding	any	less	than	your	true	value	(i.e.,
shading	your	bid)	risks	losing	the	auction	for	no	good	reason,	since	it	doesn’t
save	you	any	money—because	if	you	win,	you’ll	only	be	paying	the	value	of
the	second-highest	bid,	regardless	of	how	high	your	own	was.	This	makes	the
Vickrey	auction	what	mechanism	designers	call	“strategy-proof,”	or	just
“truthful.”	In	the	Vickrey	auction,	honesty	is	literally	the	best	policy.

Even	better,	honesty	remains	the	best	policy	regardless	of	whether	the
other	bidders	are	honest	themselves.	In	the	prisoner’s	dilemma,	we	saw	how
defection	turned	out	to	be	the	“dominant”	strategy—the	best	move	no	matter
whether	your	partner	defected	or	cooperated.	In	a	Vickrey	auction,	on	the
other	hand,	honesty	is	the	dominant	strategy.	This	is	the	mechanism
designer’s	holy	grail.	You	do	not	need	to	strategize	or	recurse.

Now,	it	seems	like	the	Vickrey	auction	would	cost	the	seller	some	money
compared	to	the	first-price	auction,	but	this	isn’t	necessarily	true.	In	a	first-
price	auction,	every	bidder	is	shading	their	bid	down	to	avoid	overpaying;	in
the	second-price	Vickrey	auction,	there’s	no	need	to—in	a	sense,	the	auction
itself	is	optimally	shading	their	bid	for	them.	In	fact,	a	game-theoretic
principle	called	“revenue	equivalence”	establishes	that	over	time,	the	average
expected	sale	price	in	a	first-price	auction	will	converge	to	precisely	the	same
as	in	a	Vickrey	auction.	Thus	the	Vickrey	equilibrium	involves	the	same
bidder	winning	the	item	for	the	same	price—without	any	strategizing	by	any
of	the	bidders	whatsoever.	As	Tim	Roughgarden	tells	his	Stanford	students,
the	Vickrey	auction	is	“awesome.”

For	Hebrew	University	algorithmic	game	theorist	Noam	Nisan,	this
awesomeness	has	an	air	to	it	that’s	nearly	utopian.	“You	would	like	to	get
some	kind	of	rules	of	society	where	it’s	not	worthwhile	to	lie,	and	then	people
won’t	lie	so	much,	right?	That’s	the	basic	idea.	From	my	point	of	view,	the
amazing	thing	about	Vickrey	is	that	you	wouldn’t	expect	that	in	general	it’s
possible	to	do	that,	right?	Especially	in	things	like	an	auction,	where	of	course
I	want	to	pay	less,	how	can	you	ever	get—	And	then	yet	Vickrey	shows,	here
is	the	way	to	do	that.	I	think	that’s	really	fantastic.”

In	fact,	the	lesson	here	goes	far	beyond	auctions.	In	a	landmark	finding
called	the	“revelation	principle,”	Nobel	laureate	Roger	Myerson	proved	that
any	game	that	requires	strategically	masking	the	truth	can	be	transformed	into
a	game	that	requires	nothing	but	simple	honesty.	Paul	Milgrom,	Myerson’s
colleague	at	the	time,	reflects:	“It’s	one	of	those	results	that	as	you	look	at	it
from	different	sides,	on	the	one	side,	it’s	just	absolutely	shocking	and
amazing,	and	on	the	other	side,	it’s	trivial.	And	that’s	totally	wonderful,	it’s	so
awesome:	that’s	how	you	know	you’re	looking	at	one	of	the	best	things	you
can	see.”

The	revelation	principle	may	seem	hard	to	accept	on	its	face,	but	its	proof
is	actually	quite	intuitive.	Imagine	that	you	have	an	agent	or	a	lawyer	who
will	be	playing	the	game	for	you.	If	you	trust	them	to	represent	your	interests,
you’re	going	to	simply	tell	them	exactly	what	you	want,	and	let	them	handle
all	of	the	strategic	bid-shading	and	the	recursive	strategizing	on	your	behalf.
In	the	Vickrey	auction,	the	game	itself	performs	this	function.	And	the
revelation	principle	just	expands	this	idea:	any	game	that	can	be	played	for
you	by	agents	to	whom	you’ll	tell	the	truth,	it	says,	will	become	an	honesty-

is-best	game	if	the	behavior	you	want	from	your	agent	is	incorporated	into	the
rules	of	the	game	itself.	As	Nisan	puts	it,	“The	basic	thing	is	if	you	don’t	want
your	clients	to	optimize	against	you,	you’d	better	optimize	for	them.	That’s
the	whole	proof.…	If	I	design	an	algorithm	that	already	optimizes	for	you,
there	is	nothing	you	can	do.”

Algorithmic	game	theory	has	made	huge	contributions	to	a	number	of
practical	applications	over	the	past	twenty	years:	helping	us	understand
packet	routing	on	the	Internet,	improving	FCC	spectrum	auctions	that	allocate
precious	(if	invisible)	public	goods,	and	enhancing	the	matching	algorithms
that	pair	medical	students	with	hospitals,	among	others.	And	this	is	likely	just
the	beginning	of	a	much	larger	transformation.	“We	are	just	scratching	the
surface,”	says	Nisan.	“Even	in	the	theory	we	are	just	starting	to	understand	it.
And	there	is	another	generation	probably	until	what	I	completely	understand
today	theoretically	will	successfully	be	applied	to	humans.	It’s	a	generation;	I
think	not	more	than	that.	It	will	take	a	generation.”

French	existentialist	philosopher	Jean-Paul	Sartre	famously	wrote	that
“Hell	is	other	people.”	He	didn’t	mean	that	others	are	inherently	malicious	or
unpleasant,	but	rather	that	they	complicate	our	own	thoughts	and	beliefs:

When	we	think	about	ourselves,	when	we	try	to	know	ourselves	…	we	use	the	knowledge	of	us
which	other	people	already	have.	We	judge	ourselves	with	the	means	other	people	have	and	have
given	us	for	judging	ourselves.	Into	whatever	I	say	about	myself	someone	else’s	judgment	always
enters.	Into	whatever	I	feel	within	myself	someone	else’s	judgment	enters.…	But	that	does	not	at
all	mean	that	one	cannot	have	relations	with	other	people.	It	simply	brings	out	the	capital
importance	of	all	other	people	for	each	one	of	us.

Perhaps,	given	what	we’ve	seen	in	this	chapter,	we	might	endeavor	to
revise	Sartre’s	statement.	Interacting	with	others	doesn’t	have	to	be	a
nightmare—although	in	the	wrong	game	it	surely	can	be.	As	Keynes
observed,	popularity	is	complicated,	intractable,	a	recursive	hall	of	mirrors;
but	beauty,	in	the	eye	of	the	beholder,	is	not.	Adopting	a	strategy	that	doesn’t
require	anticipating,	predicting,	reading	into,	or	changing	course	because	of
the	tactics	of	others	is	one	way	to	cut	the	Gordian	knot	of	recursion.	And
sometimes	that	strategy	is	not	just	easy—it’s	optimal.

If	changing	strategies	doesn’t	help,	you	can	try	to	change	the	game.	And	if
that’s	not	possible,	you	can	at	least	exercise	some	control	about	which	games
you	choose	to	play.	The	road	to	hell	is	paved	with	intractable	recursions,	bad
equilibria,	and	information	cascades.	Seek	out	games	where	honesty	is	the

dominant	strategy.	Then	just	be	yourself.

*Indeed,	it’s	the	origin	of	all	modern	computers—it	was	the	halting	problem	that	inspired	Turing	to
formally	define	computation,	via	what	we	now	call	the	Turing	machine.

*Binmore	adds	another	insight:	games	like	the	prisoner’s	dilemma	seemingly	obliterate	Immanuel
Kant’s	argument	that	rationality	consists	of	what	he	called	the	“categorical	imperative,”	acting	the	way
you	wish	everyone	else	would	act.	The	categorical	imperative	would	give	us	a	better	outcome	in	the
prisoner’s	dilemma	than	the	equilibrium	strategy,	but	there’s	no	getting	around	the	fact	that	this	outcome
isn’t	a	stable	one.

	

Conclusion
Computational	Kindness
I	firmly	believe	that	the	important	things	about	humans	are	social	in
character	and	that	relief	by	machines	from	many	of	our	present
demanding	intellectual	functions	will	finally	give	the	human	race	time
and	incentive	to	learn	how	to	live	well	together.

—MERRILL	FLOOD

Any	dynamic	system	subject	to	the	constraints	of	space	and	time	is	up	against
a	core	set	of	fundamental	and	unavoidable	problems.	These	problems	are
computational	in	nature,	which	makes	computers	not	only	our	tools	but	also
our	comrades.	From	this	come	three	simple	pieces	of	wisdom.

First,	there	are	cases	where	computer	scientists	and	mathematicians	have
identified	good	algorithmic	approaches	that	can	simply	be	transferred	over	to
human	problems.	The	37%	Rule,	the	Least	Recently	Used	criterion	for
handling	overflowing	caches,	and	the	Upper	Confidence	Bound	as	a	guide	to
exploration	are	all	examples	of	this.

Second,	knowing	that	you	are	using	an	optimal	algorithm	should	be	a
relief	even	if	you	don’t	get	the	results	you	were	looking	for.	The	37%	Rule
fails	63%	of	the	time.	Maintaining	your	cache	with	LRU	doesn’t	guarantee
that	you	will	always	find	what	you’re	looking	for;	in	fact,	neither	would
clairvoyance.	Using	the	Upper	Confidence	Bound	approach	to	the
explore/exploit	tradeoff	doesn’t	mean	that	you	will	have	no	regrets,	just	that
those	regrets	will	accumulate	ever	more	slowly	as	you	go	through	life.	Even
the	best	strategy	sometimes	yields	bad	results—which	is	why	computer
scientists	take	care	to	distinguish	between	“process”	and	“outcome.”	If	you
followed	the	best	possible	process,	then	you’ve	done	all	you	can,	and	you
shouldn’t	blame	yourself	if	things	didn’t	go	your	way.

Outcomes	make	news	headlines—indeed,	they	make	the	world	we	live	in
—so	it’s	easy	to	become	fixated	on	them.	But	processes	are	what	we	have
control	over.	As	Bertrand	Russell	put	it,	“it	would	seem	we	must	take	account
of	probability	in	judging	of	objective	rightness.…	The	objectively	right	act	is

the	one	which	will	probably	be	most	fortunate.	I	shall	define	this	as	the	wisest
act.”	We	can	hope	to	be	fortunate—but	we	should	strive	to	be	wise.	Call	it	a
kind	of	computational	Stoicism.

Finally,	we	can	draw	a	clear	line	between	problems	that	admit
straightforward	solutions	and	problems	that	don’t.	If	you	wind	up	stuck	in	an
intractable	scenario,	remember	that	heuristics,	approximations,	and	strategic
use	of	randomness	can	help	you	find	workable	solutions.	A	theme	that	came
up	again	and	again	in	our	interviews	with	computer	scientists	was:	sometimes
“good	enough”	really	is	good	enough.	What’s	more,	being	aware	of
complexity	can	help	us	pick	our	problems:	if	we	have	control	over	which
situations	we	confront,	we	should	choose	the	ones	that	are	tractable.

But	we	don’t	only	pick	the	problems	that	we	pose	to	ourselves.	We	also
pick	the	problems	we	pose	each	other,	whether	it’s	the	way	we	design	a	city
or	the	way	we	ask	a	question.	This	creates	a	surprising	bridge	from	computer
science	to	ethics—in	the	form	of	a	principle	that	we	call	computational
kindness.

*			*			*

There’s	a	certain	paradox	the	two	of	us	observed	when	it	came	to	scheduling
the	interviews	that	went	into	this	book.	Our	interviewees	were	on	average
more	likely	to	be	available	when	we	requested	a	meeting,	say,	“next	Tuesday
between	1:00	and	2:00	p.m.	PST”	than	“at	a	convenient	time	this	coming
week.”	At	first	this	seems	absurd,	like	the	celebrated	studies	where	people	on
average	donate	more	money	to	save	the	life	of	one	penguin	than	eight
thousand	penguins,	or	report	being	more	worried	about	dying	in	an	act	of
terrorism	than	about	dying	from	any	cause,	terrorism	included.	In	the	case	of
interviews,	it	seems	that	people	preferred	receiving	a	constrained	problem,
even	if	the	constraints	were	plucked	out	of	thin	air,	than	a	wide-open	one.	It
was	seemingly	less	difficult	for	them	to	accommodate	our	preferences	and
constraints	than	to	compute	a	better	option	based	on	their	own.	Computer
scientists	would	nod	knowingly	here,	citing	the	complexity	gap	between
“verification”	and	“search”—which	is	about	as	wide	as	the	gap	between
knowing	a	good	song	when	you	hear	it	and	writing	one	on	the	spot.

One	of	the	implicit	principles	of	computer	science,	as	odd	as	it	may	sound,
is	that	computation	is	bad:	the	underlying	directive	of	any	good	algorithm	is
to	minimize	the	labor	of	thought.	When	we	interact	with	other	people,	we

present	them	with	computational	problems—not	just	explicit	requests	and
demands,	but	implicit	challenges	such	as	interpreting	our	intentions,	our
beliefs,	and	our	preferences.	It	stands	to	reason,	therefore,	that	a
computational	understanding	of	such	problems	casts	light	on	the	nature	of
human	interaction.	We	can	be	“computationally	kind”	to	others	by	framing
issues	in	terms	that	make	the	underlying	computational	problem	easier.	This
matters	because	many	problems—especially	social	ones,	as	we’ve	seen—are
intrinsically	and	inextricably	hard.

Consider	this	all-too-common	scenario.	A	group	of	friends	are	standing
around,	trying	to	figure	out	where	to	go	for	dinner.	Each	of	them	clearly	has
some	preferences,	albeit	potentially	weak	ones.	But	none	of	them	wants	to
state	those	preferences	explicitly,	so	they	politely	navigate	the	social	hazards
with	guesses	and	half-hints	instead.

They	may	well	come	to	a	resolution	that	is	satisfying	to	all.	But	this
procedure	can	easily	go	awry.	The	summer	after	college,	for	instance,	Brian
and	two	friends	took	a	trip	to	Spain.	They	negotiated	the	trip	itinerary	on	the
fly,	and	at	one	point	it	became	clear	that	they	wouldn’t	have	time	to	go	to	the
bullfight	they’d	researched	and	planned.	Only	then,	as	each	of	the	three
attempted	to	console	the	others,	did	they	suddenly	discover	that	in	fact	none
of	them	had	wanted	to	see	the	bullfight	in	the	first	place.	Each	had	just
gamely	adopted	what	they’d	perceived	to	be	the	others’	level	of	enthusiasm,
thereby	producing	the	level	of	enthusiasm	that	the	others	gamely	adopted	in
turn.

Likewise,	seemingly	innocuous	language	like	“Oh,	I’m	flexible”	or	“What
do	you	want	to	do	tonight?”	has	a	dark	computational	underbelly	that	should
make	you	think	twice.	It	has	the	veneer	of	kindness	about	it,	but	it	does	two
deeply	alarming	things.	First,	it	passes	the	cognitive	buck:	“Here’s	a	problem,
you	handle	it.”	Second,	by	not	stating	your	preferences,	it	invites	the	others	to
simulate	or	imagine	them.	And	as	we	have	seen,	the	simulation	of	the	minds
of	others	is	one	of	the	biggest	computational	challenges	a	mind	(or	machine)
can	ever	face.

In	such	situations,	computational	kindness	and	conventional	etiquette
diverge.	Politely	withholding	your	preferences	puts	the	computational
problem	of	inferring	them	on	the	rest	of	the	group.	In	contrast,	politely
asserting	your	preferences	(“Personally,	I’m	inclined	toward	x.	What	do	you

think?”)	helps	shoulder	the	cognitive	load	of	moving	the	group	toward
resolution.

Alternatively,	you	can	try	to	reduce,	rather	than	maximize,	the	number	of
options	that	you	give	other	people—say,	offering	a	choice	between	two	or
three	restaurants	rather	than	ten.	If	each	person	in	the	group	eliminates	their
least	preferred	option,	that	makes	the	task	easier	for	everyone.	And	if	you’re
inviting	somebody	out	to	lunch,	or	scheduling	a	meeting,	offering	one	or	two
concrete	proposals	that	they	can	accept	or	decline	is	a	good	starting	point.

None	of	these	actions	is	necessarily	“polite,”	but	all	of	them	can
significantly	lower	the	computational	cost	of	interaction.

*			*			*

Computational	kindness	isn’t	just	a	principle	of	behavior;	it’s	also	a	design
principle.

In	2003,	University	of	Waterloo	computer	scientist	Jeffrey	Shallit
investigated	the	question	of	what	coin,	if	put	into	circulation	in	the	United
States,	would	most	help	to	minimize	the	number	of	coins	needed	on	average
to	make	change.	Delightfully,	the	answer	turned	out	to	be	an	18-cent	piece—
but	Shallit	was	somewhat	stayed	from	making	a	policy	recommendation	by
computational	concerns.

At	present,	change-making	is	dead	simple:	for	any	given	amount,	just	use
as	many	quarters	as	you	can	without	going	over,	then	as	many	dimes	as
possible,	and	so	on	down	the	denominations.	For	instance,	fifty-four	cents	is
two	quarters,	then	four	pennies.	With	an	18-cent	piece,	that	simple	algorithm
is	no	longer	optimal:	fifty-four	cents	is	then	best	made	with	three	18-cent
pieces—and	no	quarters	at	all.	In	fact,	Shallit	observed	that	ungainly
denominations	turn	change-making	into	something	“at	least	as	hard	…	as	the
traveling	salesman	problem.”	That’s	a	lot	to	ask	of	a	cashier.	If	ease	of
computation	is	taken	into	account,	Shallit	found,	then	what	the	US	money
supply	could	best	make	use	of	is	either	a	2-cent	or	a	3-cent	piece.	Not	quite	as
exciting	as	an	18-cent	coin—but	almost	as	good,	and	computationally	kinder
by	a	long	shot.

The	deeper	point	is	that	subtle	changes	in	design	can	radically	shift	the
kind	of	cognitive	problem	posed	to	human	users.	Architects	and	urban
planners,	for	instance,	have	choices	about	how	they	construct	our

environment—which	means	they	have	choices	about	how	they	will	structure
the	computational	problems	we	have	to	solve.

Consider	a	large	parking	lot,	with	an	array	of	different	lanes,	of	the	kind
often	found	at	stadiums	and	shopping	centers.	You	may	drive	in	one	lane
toward	the	destination,	see	a	spot,	decide	to	let	it	go	in	favor	of	(hopefully)	a
better	one	farther	ahead—but	then,	finding	no	such	luck,	reach	the	destination
and	head	away	down	a	neighboring	lane.	After	a	certain	amount	of	driving,
you	must	decide	whether	another	space	is	good	enough	to	take,	or	so	far	away
that	you’ll	try	searching	in	a	third	lane	instead.

An	algorithmic	perspective	here	is	useful	not	just	for	the	driver	but	also	for
the	architect.	Contrast	the	hairy,	messy	decision	problem	posed	by	one	of
those	lots	to	a	single	linear	path	going	away	from	one’s	destination.	In	that
case,	one	simply	takes	the	first	available	space—no	game	theory,	no	analysis,
no	look-then-leap	rule	needed.	Some	parking	garages	are	structured	this	way,
with	a	single	helix	winding	upward	from	the	ground	level.	Their
computational	load	is	zero:	one	simply	drives	forward	until	the	first	space
appears,	then	takes	it.	Whatever	the	other	possible	factors	for	and	against	this
kind	of	construction,	we	can	definitely	say	that	it’s	cognitively	humane	to	its
drivers—computationally	kind.

One	of	the	chief	goals	of	design	ought	to	be	protecting	people	from
unnecessary	tension,	friction,	and	mental	labor.	(This	is	not	just	an	abstract
concern;	when	mall	parking	becomes	a	source	of	stress,	for	instance,	shoppers
may	spend	less	money	and	return	less	frequently.)	Urban	planners	and
architects	routinely	weigh	how	different	lot	designs	will	use	resources	such	as
limited	space,	materials,	and	money.	But	they	rarely	account	for	the	way	their
designs	tax	the	computational	resources	of	the	people	who	use	them.
Recognizing	the	algorithmic	underpinnings	of	our	daily	lives—in	this	case,
optimal	stopping—would	not	only	allow	drivers	to	make	the	best	decisions
when	they’re	in	a	particular	scenario,	but	also	encourage	planners	to	be	more
thoughtful	about	the	problems	they’re	forcing	drivers	into	in	the	first	place.

There	are	a	number	of	other	cases	where	computationally	kinder	designs
suggest	themselves.	For	example,	consider	restaurant	seating	policies.	Some
restaurants	have	an	“open	seating”	policy,	where	waiting	customers	simply
hover	until	a	table	opens	up,	and	the	first	to	sit	down	gets	the	table.	Others
will	take	your	name,	let	you	have	a	drink	at	the	bar,	and	notify	you	when	a

table	is	ready.	These	approaches	to	the	management	of	scarce	shared
resources	mirror	the	distinction	in	computer	science	between	“spinning”	and
“blocking.”	When	a	processing	thread	requests	a	resource	and	can’t	get	it,	the
computer	can	either	allow	that	thread	to	“spin”—to	continue	checking	for	the
resource	in	a	perpetual	“Is	it	ready	yet?”	loop—or	it	can	“block”:	halt	that
thread,	work	on	something	else,	and	then	come	back	around	whenever	the
resource	becomes	free.	To	a	computer	scientist,	this	is	a	practical	tradeoff:
weighing	the	time	lost	to	spinning	against	the	time	lost	in	context	switching.
But	at	a	restaurant,	not	all	of	the	resources	being	traded	off	are	their	own.	A
policy	of	“spinning”	fills	empty	tables	faster,	but	the	CPUs	being	worn	out	in
the	meantime	are	the	minds	of	their	customers,	trapped	in	a	tedious	but
consuming	vigilance.

As	a	parallel	example,	consider	the	computational	problem	posed	by	a	bus
stop.	If	there	is	a	live	display	saying	that	the	next	bus	is	“arriving	in	10
minutes,”	then	you	get	to	decide	once	whether	to	wait,	rather	than	taking	the
bus’s	continued	not-coming	as	a	stream	of	inferential	evidence,	moment	by
moment,	and	having	to	redecide	and	redecide.	Moreover,	you	can	take	your
attention	away	from	squinting	down	the	road—spinning—for	those	ten
minutes	straight.	(For	cities	that	aren’t	up	to	the	implementation	necessary	to
predict	the	next	arrival,	we	saw	how	Bayesian	inference	can	even	make
knowing	when	the	last	bus	left	a	useful	proxy.)	Such	subtle	acts	of
computational	kindness	could	do	as	much	for	ridership,	if	not	more,	as
subsidizing	the	fares:	think	of	it	as	a	cognitive	subsidy.

*			*			*

If	we	can	be	kinder	to	others,	we	can	also	be	kinder	to	ourselves.	Not	just
computationally	kinder—all	the	algorithms	and	ideas	we	have	discussed	will
help	with	that.	But	also	more	forgiving.

The	intuitive	standard	for	rational	decision-making	is	carefully
considering	all	available	options	and	taking	the	best	one.	At	first	glance,
computers	look	like	the	paragons	of	this	approach,	grinding	their	way	through
complex	computations	for	as	long	as	it	takes	to	get	perfect	answers.	But	as
we’ve	seen,	that	is	an	outdated	picture	of	what	computers	do:	it’s	a	luxury
afforded	by	an	easy	problem.	In	the	hard	cases,	the	best	algorithms	are	all
about	doing	what	makes	the	most	sense	in	the	least	amount	of	time,	which	by
no	means	involves	giving	careful	consideration	to	every	factor	and	pursuing

every	computation	to	the	end.	Life	is	just	too	complicated	for	that.

In	almost	every	domain	we’ve	considered,	we	have	seen	how	the	more
real-world	factors	we	include—whether	it’s	having	incomplete	information
when	interviewing	job	applicants,	dealing	with	a	changing	world	when	trying
to	resolve	the	explore/exploit	dilemma,	or	having	certain	tasks	depend	on
others	when	we’re	trying	to	get	things	done—the	more	likely	we	are	to	end	up
in	a	situation	where	finding	the	perfect	solution	takes	unreasonably	long.	And
indeed,	people	are	almost	always	confronting	what	computer	science	regards
as	the	hard	cases.	Up	against	such	hard	cases,	effective	algorithms	make
assumptions,	show	a	bias	toward	simpler	solutions,	trade	off	the	costs	of	error
against	the	costs	of	delay,	and	take	chances.

These	aren’t	the	concessions	we	make	when	we	can’t	be	rational.	They’re
what	being	rational	means.

	

Notes
Please	note	that	some	of	the	links	referenced	are	no	longer	working.

	

The	page	numbers	for	the	notes	that	appeared	in	the	print	version	of	this	title
are	not	in	your	e-book.	Please	use	the	search	function	on	your	e-reading
device	to	search	for	the	relevant	passages	documented	or	discussed.
	
INTRODUCTION

al-Jabr	wa’l-Muqābala:	Al-Jabr	wa’l-Muqābala	brought	with	it	a	truly	disruptive	technology—the
Indian	decimal	system—and	the	fact	that	we	refer	to	this	system	somewhat	erroneously	as	Arabic
numerals	is	testament	to	the	book’s	influence.	The	introduction	of	Arabic	numerals,	and	the	algorithms
they	support,	kicked	off	a	medieval	showdown	between	the	advocates	of	this	newfangled	math	(the
“algorists”)	and	more	traditional	accountants	who	favored	Roman	numerals	backed	up	by	an	abacus	(the
“abacists”).	It	got	pretty	intense:	the	city	of	Florence	passed	a	law	in	1399	that	banned	the	use	of	Arabic
numerals	by	banks.	Ironically,	Roman	numerals	were	themselves	a	controversial	innovation	when	they
were	offered	as	an	alternative	to	just	writing	out	numbers	with	words,	being	declared	“unfitted	for
showing	a	sum,	since	names	have	been	invented	for	that	purpose.”	See	Murray,	Chapters	in	the	History
of	Bookkeeping.

four-thousand-year-old	Sumerian	clay	tablet:	A	detailed	analysis	appears	in	Knuth,	“Ancient
Babylonian	Algorithms.”	Further	information	on	the	history	of	algorithms,	with	an	emphasis	on
mathematical	algorithms,	appears	in	Chabert,	Barbin,	and	Weeks,	A	History	of	Algorithms.

strikes	with	the	end	of	an	antler:	This	technique	is	known	as	“soft	hammer	percussion.”

“Science	is	a	way	of	thinking”:	Sagan,	Broca’s	Brain.

the	way	we	think	about	human	rationality:	The	limitations	of	a	classical	conception	of	rationality—
which	assumes	infinite	computational	capacity	and	infinite	time	to	solve	a	problem—were	famously
pointed	out	by	the	psychologist,	economist,	and	artificial	intelligence	pioneer	Herbert	Simon	in	the
1950s	(Simon,	Models	of	Man),	ultimately	leading	to	a	Nobel	Prize.	Simon	argued	that	“bounded
rationality”	could	provide	a	better	account	of	human	behavior.	Simon’s	insight	has	been	echoed	in
mathematics	and	computer	science.	Alan	Turing’s	colleague	I.	J.	Good	(famous	for	the	concept	of	“the
singularity”	and	for	advising	Stanley	Kubrick	about	HAL	9000	for	2001:	A	Space	Odyssey)	called	this
sort	of	thinking	“Type	II	Rationality.”	Whereas	classic,	old-fashioned	Type	I	Rationality	just	worries
about	getting	the	right	answer,	Type	II	Rationality	takes	into	account	the	cost	of	getting	that	answer,
recognizing	that	time	is	just	as	important	a	currency	as	accuracy.	See	Good,	Good	Thinking.

Artificial	intelligence	experts	of	the	twenty-first	century	have	also	argued	that	“bounded
optimality”—choosing	the	algorithm	that	best	trades	off	time	and	error—is	the	key	to	developing
functional	intelligent	agents.	This	is	a	point	made	by,	for	instance,	UC	Berkeley	computer	scientist
Stuart	Russell—who	literally	cowrote	the	book	on	artificial	intelligence	(the	bestselling	textbook
Artificial	Intelligence:	A	Modern	Approach)—and	by	Eric	Horvitz,	managing	director	at	Microsoft
Research.	See,	for	example,	Russell	and	Wefald,	Do	the	Right	Thing,	and	Horvitz	and	Zilberstein,
“Computational	Tradeoffs	Under	Bounded	Resources.”	Tom	and	his	colleagues	have	used	this	approach

to	develop	models	of	human	cognition;	see	Griffiths,	Lieder,	and	Goodman,	“Rational	Use	of	Cognitive
Resources.”

analogy	to	a	human	mathematician:	In	section	9	of	Turing,	“On	Computable	Numbers,”	Turing
justifies	the	choices	made	in	defining	what	we	now	call	a	Turing	machine	by	comparing	them	to
operations	that	a	person	might	carry	out:	a	two-dimensional	piece	of	paper	becomes	a	one-dimensional
tape,	the	person’s	state	of	mind	becomes	the	state	of	the	machine,	and	symbols	are	written	and	read	as
the	person	or	machine	moves	around	on	the	paper.	Computation	is	what	a	computer	does,	and	at	the
time	the	only	“computers”	were	people.

we	are	irrational	and	error-prone:	For	example,	see	Gilovich,	How	We	Know	What	Isn’t	So;	Ariely
and	Jones,	Predictably	Irrational;	and	Marcus,	Kluge.
1.	OPTIMAL	STOPPING

“Though	all	Christians	start”:	From	Kepler’s	letter	to	“an	unknown	nobleman”	on	October	23,	1613;
see,	e.g.,	Baumgardt,	Johannes	Kepler.

such	a	common	phenomenon:	The	turkey	drop	is	mentioned,	among	many	other	places,	in
http://www.npr.org/templates/story/story.php?storyId=120913056	and
http://jezebel.com/5862181/technology-cant-stop-the-turkey-drop.

In	any	optimal	stopping	problem:	For	more	about	the	mathematics	of	optimal	stopping,	Ferguson,
Optimal	Stopping	and	Applications,	is	a	wonderful	reference.

optimal	stopping’s	most	famous	puzzle:	A	detailed	treatment	of	the	nature	and	origins	of	the	secretary
problem	appears	in	Ferguson,	“Who	Solved	the	Secretary	Problem?”

its	first	appearance	in	print:	What	Gardner	writes	about	is	a	parlor	game	called	the	“Game	of
Googol,”	apparently	devised	in	1958	by	John	Fox	of	the	Minneapolis-Honeywell	Regulator	Company
and	Gerald	Marnie	of	MIT.	Here’s	how	it	was	described	by	Fox	in	his	original	letter	to	Gardner	on	May
11,	1959	(all	letters	to	Gardner	we	quote	are	from	Martin	Gardner’s	papers	at	Stanford	University,	series
1,	box	5,	folder	19):

The	first	player	writes	down	as	many	unique	positive	numbers	on	different	slips	of	paper	as	he
wishes.	Then	he	shuffles	them	and	turns	them	over	one	at	a	time.	If	the	second	player	tells	him
to	stop	at	a	certain	slip	and	the	number	on	that	slip	is	the	largest	number	in	the	collection	then
the	second	player	wins.	If	not,	the	first	player	wins.

Fox	further	noted	that	the	name	of	the	game	comes	from	the	fact	that	the	number	“one	googol”	is	often
written	on	one	of	the	slips	(presumably	to	trick	the	opponent	into	thinking	it’s	the	largest	number,	with
“two	googol”	appearing	somewhere	else).	He	then	claimed	that	the	optimal	strategy	for	the	second
player	was	to	wait	until	half	the	slips	had	been	turned	over	and	then	choose	the	first	number	larger	than
the	largest	in	the	first	half,	converging	on	a	34.7%	chance	of	winning.

Gardner	wrote	to	Leo	Moser,	a	mathematician	at	the	University	of	Alberta,	to	get	more	information
about	the	problem.	Moser	had	written	a	journal	article	in	1956	that	addressed	a	closely	related	problem
(Moser,	“On	a	Problem	of	Cayley”),	originally	proposed	in	1875	by	the	influential	British
mathematician	Arthur	Cayley	(Cayley,	“Mathematical	Questions”;	Cayley,	Collected	Mathematical
Papers).	Here’s	the	version	proposed	by	Cayley:

A	lottery	is	arranged	as	follows:	There	are	n	tickets	representing	a,	b,	c	pounds	respectively.	A
person	draws	once;	looks	at	his	ticket;	and	if	he	pleases,	draws	again	(out	of	the	remaining	n	−	1
tickets);	looks	at	his	ticket,	and	if	he	pleases	draws	again	(out	of	the	remaining	n	−	2	tickets);
and	so	on,	drawing	in	all	not	more	than	k	times;	and	he	receives	the	value	of	the	last	drawn
ticket.	Supposing	that	he	regulates	his	drawings	in	the	manner	most	advantageous	to	him

http://www.npr.org/templates/story/story.php?storyId=120913056
http://jezebel.com/5862181/technology-cant-stop-the-turkey-drop

according	to	the	theory	of	probabilities,	what	is	the	value	of	his	expectation?

Moser	added	one	more	piece	of	information—that	the	tickets	were	equally	likely	to	take	on	any	value
between	0	and	1.

In	Cayley’s	problem	and	Moser’s	slight	reframing	thereof	(sometimes	collectively	referred	to	as	the
Cayley-Moser	problem),	the	payoff	is	the	value	of	the	chosen	ticket	and	the	challenge	is	to	find	the
strategy	that	gives	the	highest	average	payoff.	It’s	here	that	the	problem	explored	by	Cayley	and	Moser
differs	from	the	secretary	problem	(and	the	Game	of	Googol)	by	focusing	on	maximizing	the	average
value	of	the	number	chosen,	rather	than	the	probability	of	finding	the	single	largest	number	(when
nothing	but	the	best	will	do).	Moser’s	1956	paper	is	notable	not	just	for	the	neat	solution	it	provides	to
this	problem,	but	also	because	it’s	the	first	place	we	see	mention	of	the	real-world	consequences	of
optimal	stopping.	Moser	talks	about	two	possible	scenarios:

1.	The	tourist’s	problem:	A	tourist	traveling	by	car	wants	to	stop	for	the	night	at	one	of	n	motels
indicated	on	his	road	guide.	He	seeks	the	most	comfortable	accommodation	but	naturally	does	not
want	to	retrace	any	part	of	his	journey.	What	criterion	should	he	use	for	stopping?

2.	The	bachelor’s	dilemma:	A	bachelor	meets	a	girl	who	is	willing	to	marry	him	and	whose	“worth”
he	can	estimate.	If	he	rejects	her	she	will	have	none	of	him	later	but	he	is	likely	to	meet	other	girls
in	the	future	and	he	estimates	that	he	will	have	n	chances	in	all.	Under	what	circumstances	should
he	marry?

The	idea	of	entertaining	a	series	of	suitors—with	the	sexes	of	the	protagonists	reversed—duly	made	an
appearance	in	Gardner’s	1960	column	on	the	Game	of	Googol.

Moser	provided	the	correct	solution—the	37%	Rule—to	Gardner,	but	his	letter	of	August	26,	1959,
suggested	that	the	problem	might	have	an	earlier	origin:	“I	also	found	it	in	some	notes	that	R.	E.	Gaskell
(of	Boeing	Aircraft	in	Seattle)	distributed	in	January,	1959.	He	credits	the	problem	to	Dr.	G.	Marsaglia.”

Gardner’s	charitable	interpretation	was	that	Fox	and	Marnie	were	claiming	the	creation	of	the
specific	Game	of	Googol,	not	of	the	broader	problem	of	which	that	game	was	an	instance,	a	point	that
was	carefully	made	in	his	column.	But	he	received	a	variety	of	letters	citing	earlier	instances	of	similar
problems,	and	it’s	clear	that	the	problem	was	passed	around	among	mathematicians.

origins	of	the	problem	are	surprisingly	mysterious:	Even	Gilbert	and	Mosteller,	“Recognizing	the
Maximum	of	a	Sequence,”	one	of	the	most	authoritative	scientific	papers	on	the	secretary	problem,
admits	that	“efforts	to	discover	the	originator	of	this	problem	have	been	unsuccessful.”	Ferguson,	“Who
Solved	the	Secretary	Problem?,”	provides	an	amusing	and	mathematically	detailed	history	of	the
secretary	problem,	including	some	of	its	variants.	Ferguson	argued	that	in	fact	the	problem	described	by
Gardner	hadn’t	been	solved.	It	should	already	be	clear	that	lots	of	people	solved	the	secretary	problem
of	maximizing	the	probability	of	selecting	the	best	from	a	sequence	of	applicants	distinguished	only	by
their	relative	ranks,	but	Ferguson	pointed	out	that	this	is	not	actually	the	problem	posed	in	the	Game	of
Googol.	First	of	all,	the	Googol	player	knows	the	values	observed	on	each	slip	of	paper.	Second,	it’s	a
competitive	game—with	one	player	trying	to	select	numbers	and	a	sequence	that	will	deceive	the	other.
Ferguson	has	his	own	solution	to	this	more	challenging	problem,	but	it’s	complex	enough	that	you	will
have	to	read	the	paper	yourself!

Mosteller	recalled	hearing	about	the	problem:	Gilbert	and	Mosteller,	“Recognizing	the	Maximum	of
a	Sequence.”

Roger	Pinkham	of	Rutgers	wrote:	Letter	from	Roger	Pinkham	to	Martin	Gardner,	January	29,	1960.

Flood’s	influence	on	computer	science:	See	Cook,	In	Pursuit	of	the	Traveling	Salesman;	Poundstone,
Prisoner’s	Dilemma;	and	Flood,	“Soft	News.”

considering	the	problem	since	1949:	Flood	made	this	claim	in	a	letter	he	wrote	to	Gardner	on	May	5,
1960.	He	enclosed	a	letter	from	May	5,	1958,	in	which	he	provided	the	correct	solution,	although	he

also	indicated	that	Andrew	Gleason,	David	Blackwell,	and	Herbert	Robbins	were	rumored	to	have
solved	the	problem	in	recent	years.

In	a	letter	to	Tom	Ferguson	dated	May	12,	1988,	Flood	went	into	more	detail	about	the	origin	of	the
problem.	(The	letter	is	on	file	in	the	Merrill	Flood	archive	at	the	University	of	Michigan.)	His	daughter,
recently	graduated	from	high	school,	had	entered	a	serious	relationship	with	an	older	man,	and	Flood
and	his	wife	disapproved.	His	daughter	was	taking	the	minutes	at	a	conference	at	George	Washington
University	in	January	1950,	and	Flood	presented	what	he	called	the	“fiancé	problem”	there.	In	his
words,	“I	made	no	attempt	to	solve	the	problem	at	that	time,	but	introduced	it	simply	because	I	hoped
that	[she]	would	think	in	those	terms	a	bit	and	it	sounded	like	it	might	be	a	nice	little	easy	mathematical
problem.”	Flood	indicates	that	Herbert	Robbins	provided	an	approximate	solution	a	few	years	later,
before	Flood	himself	figured	out	the	exact	solution.

appears	to	be	in	a	1964	paper:	The	paper	is	Chow	et	al.,	“Optimal	Selection	Based	on	Relative	Rank.”

the	best	you’ve	seen	so	far:	In	the	literature,	what	we	call	“best	yet”	applicants	are	referred	to	(we
think	somewhat	confusingly)	as	“candidates.”

settles	to	37%	of	the	pool:	The	37%	Rule	is	derived	by	doing	the	same	analysis	for	n	applicants—
working	out	the	probability	that	setting	a	standard	based	on	the	first	k	applicants	results	in	choosing	the
best	applicant	overall.	This	probability	can	be	expressed	in	terms	of	the	ratio	of	k	to	n,	which	we	can
call	p.	As	n	gets	larger,	the	probability	of	choosing	the	best	applicant	converges	to	the	mathematical
function	−p	log	p.	This	is	maximized	when	p	=	1/e.	The	value	of	e	is	2.71828…,	so	1/e	is
0.367879441…,	or	just	under	37%.	And	the	mathematical	coincidence—that	the	probability	of	success
is	the	same	as	p—arises	because	log	e	is	equal	to	1.	So	if	p	=	1/e,	−p	log	p	is	just	1/e.	A	well-explained
version	of	the	full	derivation	appears	in	Ferguson,	“Who	Solved	the	Secretary	Problem?”

one	of	the	problem’s	curious	mathematical	symmetries:	Mathematicians	John	Gilbert	and	Frederick
Mosteller	call	this	symmetry	“amusing”	and	discuss	it	at	slightly	greater	length	in	Gilbert	and	Mosteller,
“Recognizing	the	Maximum	of	a	Sequence.”

“The	passion	between	the	sexes”:	Malthus,	An	Essay	on	the	Principle	of	Population.

“married	the	first	man	I	ever	kissed”:	Attributed	by	many	sources,	e.g.,	Thomas,	Front	Row	at	the
White	House.

a	graduate	student,	looking	for	love:	Michael	Trick’s	blog	post	on	meeting	his	wife	is	“Finding	Love
Optimally,”	Michael	Trick’s	Operations	Research	Blog,	February	27,	2011,
http://mat.tepper.cmu.edu/blog/?p=1392.

the	number	of	applicants	or	the	time:	The	37%	Rule	applies	directly	to	the	time	period	of	one’s	search
only	when	the	applicants	are	uniformly	distributed	across	time.	Otherwise,	you’ll	want	to	aim	more
precisely	for	37%	of	the	distribution	over	time.	See	Bruss,	“A	Unified	Approach	to	a	Class	of	Best
Choice	Problems.”

the	37%	Rule	gave	age	26.1	years:	The	analysis	of	waiting	until	at	least	age	26	to	propose	(37%	of	the
way	from	18	to	40)	first	appears	in	Lindley,	“Dynamic	Programming	and	Decision	Theory,”	which	is
presumably	where	Trick	encountered	this	idea.

courting	a	total	of	eleven	women:	Kepler’s	story	is	covered	in	detail	in	Koestler,	The	Watershed,	and
in	Baumgardt,	Johannes	Kepler,	as	well	as	in	Connor,	Kepler’s	Witch.	Most	of	what	we	know	about
Kepler’s	search	for	a	second	wife	comes	from	one	letter	in	particular,	which	Kepler	wrote	to	“an
unknown	nobleman”	from	Linz,	Austria,	on	October	23,	1613.

propose	early	and	often:	Smith,	“A	Secretary	Problem	with	Uncertain	Employment,”	showed	that	if
the	probability	of	a	proposal	being	rejected	is	q,	then	the	strategy	that	maximizes	the	probability	of
finding	the	best	applicant	is	to	look	at	a	proportion	of	applicants	equal	to	q1/(1−q)	and	then	make	offers
to	each	applicant	better	than	those	seen	so	far.	This	proportion	is	always	less	than	1/e,	so	you’re	making

http://mat.tepper.cmu.edu/blog/?p=1392

your	chances	better	by	making	more	offers.	Unfortunately,	those	chances	are	still	worse	than	if	you
weren’t	getting	rejected—the	probability	of	ending	up	with	the	best	applicant	is	also	q1/(1−q),	and	hence
less	than	that	given	by	the	37%	Rule.

until	you’ve	seen	61%	of	applicants:	If	delayed	proposals	are	allowed,	the	optimal	strategy	depends
on	the	probability	of	an	immediate	proposal	being	accepted,	q,	and	the	probability	of	a	delayed	proposal
being	accepted,	p.	The	proportion	of	candidates	to	initially	pass	over	is	given	by	the	fairly	daunting
formula	 .	This	integrated	formula	for	rejection	and	recall	comes	from	Petruccelli,
“Best-Choice	Problems	Involving	Uncertainty,”	although	recalling	past	candidates	was	considered
earlier	by	Yang,	“Recognizing	the	Maximum	of	a	Random	Sequence.”

This	formula	simplifies	when	we	make	particular	choices	for	q	and	p.	If	p	=	0,	so	delayed	proposals
are	always	rejected,	we	get	back	the	rule	for	the	secretary	problem	with	rejection.	As	we	approach	q	=	1,
with	immediate	proposals	always	being	accepted,	the	proportion	at	which	to	begin	making	offers	tends
toward	ep−1,	which	is	always	greater	than	1/e	(which	can	be	rewritten	as	e−1).	This	means	that	having
the	potential	to	make	offers	to	applicants	who	have	been	passed	over	should	result	in	spending	more
time	passing	over	applicants—something	that	is	quite	intuitive.	In	the	main	text	we	assume	that
immediate	proposals	are	always	accepted	(q	=	1)	but	delayed	proposals	are	rejected	half	the	time	(p	=
0.5).	Then	you	should	pass	over	61%	of	applicants	and	make	an	offer	to	the	best	yet	who	follows,	going
back	at	the	end	and	making	an	offer	to	the	best	overall	if	necessary.

Another	possibility	considered	by	Petruccelli	is	that	the	probability	of	rejection	increases	with	time,
as	the	ardor	of	applicants	decreases.	If	the	probability	of	an	offer	being	accepted	by	an	applicant	is	qps,
where	s	is	the	number	of	“steps”	into	the	past	required	to	reach	that	applicant,	then	the	optimal	strategy
depends	on	q,	p,	and	the	number	of	applicants,	n.	If	q/(1	−	p)	is	more	than	n	−	1	then	it’s	best	to	play	a
waiting	game,	observing	all	applicants	and	then	making	an	offer	to	the	best.	Otherwise,	observe	a
proportion	equal	to	q1/(1−q)	and	make	an	offer	to	the	next	applicant	better	than	those	seen	so	far.
Interestingly,	this	is	exactly	the	same	strategy	(with	the	same	probability	of	success)	as	that	when	p	=	0,
meaning	that	if	the	probability	of	rejection	increases	with	time,	there	is	no	benefit	to	being	able	to	go
back	to	a	previous	candidate.

“No	buildup	of	experience	is	needed”:	Gilbert	and	Mosteller,	“Recognizing	the	Maximum	of	a
Sequence.”

use	the	Threshold	Rule:	The	general	strategy	for	solving	optimal	stopping	problems	like	the	full
information	game	is	to	start	at	the	end	and	reason	backward—a	principle	that	is	called	“backward
induction.”	For	instance,	imagine	a	game	where	you	roll	a	die,	and	have	the	option	either	to	stick	with
that	number	or	roll	again	a	maximum	of	k	times	(we	took	this	example	from	Hill,	“Knowing	When	to
Stop”).	What’s	the	optimal	strategy?	We	can	figure	it	out	by	working	backward.	If	k	=	0,	you	don’t	have
an	option—you	have	to	stick	with	your	roll,	and	you	will	average	3.5	points	(the	average	value	of	a	die
roll,	(1	+	2	+	3	+	4	+	5	+	6)/6).	If	k	=	1,	then	you	should	only	keep	a	roll	that	beats	that	average—a	4	or
higher.	If	you	get	a	1,	2,	or	3,	you’re	better	off	chancing	that	final	roll.	Following	this	strategy,	there’s	a
50%	chance	you	stop	with	a	4,	5,	or	6	(for	an	average	of	5)	and	a	50%	chance	you	go	on	to	the	final	roll
(for	an	average	of	3.5).	So	your	average	score	at	k	=	1	is	4.25,	and	you	should	only	keep	a	roll	at	k	=	2	if
it	beats	that	score—a	5	or	higher.	And	so	on.

Backward	induction	thus	answers	an	age-old	question.	“A	bird	in	the	hand	is	worth	two	in	the	bush,”
we	say,	but	is	2.0	the	right	coefficient	here?	The	math	suggests	that	the	right	number	of	birds	in	the	bush
actually	depends	on	the	quality	of	the	bird	in	the	hand.	Replacing	birds	with	dice	for	convenience,	a	roll
of	1,	2,	or	3	isn’t	even	worth	as	much	as	a	single	die	“in	the	bush.”	But	a	roll	of	4	is	worth	one	die	in	the
bush,	while	a	roll	of	5	is	worth	two,	three,	or	even	four	dice	in	the	bush.	And	a	roll	of	6	is	worth	even
more	than	the	entire	contents	of	an	infinitely	large	dice	bush—whatever	that	is.

Gilbert	and	Mosteller	used	the	same	approach	to	derive	the	series	of	thresholds	that	should	be	used

in	the	full-information	secretary	problem.	The	thresholds	themselves	are	not	described	by	a	simple
mathematical	formula,	but	some	approximations	appear	in	their	paper.	The	simplest	approximation
gives	a	threshold	of	tk	=	1/(1	+	0.804/k	+	0.183/k

2)	for	applicant	n	−	k.	If	the	probability	of	a	random
applicant	being	better	than	applicant	n	−	k	is	less	than	tk,	then	you	should	take	that	applicant.	Because
the	denominator	increases—at	an	increasing	rate—as	k	increases,	you	should	be	rapidly	lowering	your
threshold	as	time	goes	on.

many	more	variants	of	the	secretary	problem:	Freeman,	“The	Secretary	Problem	and	Its	Extensions”
summarizes	a	large	number	of	these	variants.	Here’s	a	quick	tour	of	some	of	the	most	useful	results.

If	the	number	of	applicants	is	equally	likely	to	be	any	number	from	1	to	n,	then	the	optimal	rule	is	to
view	the	first	n/e2	(which	is	approximately	13.5%	of	n)	and	take	the	next	candidate	better	than	the	best
seen	so	far,	with	a	chance	of	success	of	2/e2	(Presman	and	Sonin,	“The	Best	Choice	Problem	for	a
Random	Number	of	Objects”).

If	the	number	of	applicants	is	potentially	infinite,	but	the	search	stops	after	each	applicant	with
probability	p,	the	optimal	rule	is	to	view	the	first	0.18/p	applicants,	with	a	23.6%	chance	of	success
(ibid.).

Imagine	you	want	to	find	the	best	secretary,	but	the	value	of	doing	so	decreases	the	longer	you
search.	If	the	payoff	for	finding	the	best	secretary	after	viewing	k	applicants	is	dk,	then	the	strategy	that
maximizes	the	expected	payoff	sets	a	threshold	based	on	a	number	of	applicants	that	is	guaranteed	to	be
less	than	1/(1	−	d)	as	the	total	number	of	applicants	becomes	large	(Rasmussen	and	Pliska,	“Choosing
the	Maximum”).	If	d	is	close	to	1,	then	an	approximation	to	the	optimal	strategy	is	to	view	the	first
−0.4348/log	d	applicants	and	then	take	the	next	candidate	better	than	any	seen	so	far.	Following	this
strategy	can	result	in	viewing	only	a	handful	of	applicants,	regardless	of	the	size	of	the	pool.

One	way	in	which	real	life	differs	from	idealized	recruitment	scenarios	is	that	the	goal	might	not	be
to	maximize	the	probability	of	getting	the	best	secretary.	A	variety	of	alternatives	have	been	explored.
Chow	et	al.,	“Optimal	Selection	Based	on	Relative	Rank,”	showed	that	if	the	goal	is	to	maximize	the
average	rank	of	the	selected	candidate,	a	different	kind	of	strategy	applies.	Rather	than	a	single
threshold	on	the	relative	rank	of	the	applicant,	there	is	a	sequence	of	thresholds.	These	thresholds
increase	as	more	candidates	are	observed,	with	the	interviewer	becoming	less	stringent	over	time.	For
example,	with	four	applicants,	the	minimum	relative	rank	a	candidate	needs	to	have	to	stop	the	search	is
0	for	the	first	applicant	(never	stop	on	the	first),	1	for	the	second	(stop	only	if	they	are	better	than	the
first),	2	for	the	third	(stop	if	best	or	second	best),	and	4	for	the	fourth	(just	stop	already!).	Following	this
strategy	yields	an	average	expected	rank	of	17⁄8,	better	than	the	(1	+	2	+	3	+	4)/4	=	21⁄2	that	would	result
from	picking	an	applicant	at	random.	The	formula	for	the	optimal	thresholds	is	found	by	backward
induction,	and	is	complicated—we	refer	interested	readers	to	the	original	paper.

You	can	think	about	the	difference	between	the	classical	secretary	problem	and	the	average-rank
case	in	terms	of	how	they	assign	payoffs	to	different	ranks.	In	the	classical	problem,	you	get	a	payoff	of
1	for	picking	the	best	and	0	for	everybody	else.	In	the	average-rank	case,	you	get	a	payoff	equal	to	the
number	of	applicants	minus	the	rank	of	the	selected	applicant.	There	are	obvious	ways	to	generalize
this,	and	multi-threshold	strategies	similar	to	the	one	that	maximizes	the	average	rank	work	for	any
payoff	function	that	decreases	as	the	rank	of	the	applicant	increases	(Mucci,	“On	a	Class	of	Secretary
Problems”).	Another	interesting	generalization—with	important	implications	for	discerning	lovers—is
that	if	the	payoff	is	1	for	choosing	the	best	but	−1	for	choosing	anybody	else	(with	0	for	making	no
choice	at	all),	you	should	go	through	a	proportion	of	applicants	given	by	 ,	then	take	the
first	person	better	than	all	seen	so	far	(or	nobody	if	they	all	fail	this	criterion)	(Sakaguchi,	“Bilateral
Sequential	Games”).	So	think	hard	about	your	payoff	function	before	getting	ready	to	commit!

But	what	if	you	don’t	just	care	about	finding	the	best	person,	but	about	how	much	time	you	have
together?	Ferguson,	Hardwick,	and	Tamaki,	in	“Maximizing	the	Duration	of	Owning	a	Relatively	Best

Object,”	examined	several	variants	on	this	problem.	If	you	just	care	about	maximizing	the	time	you
spend	with	the	very	best	person	in	your	set	of	n,	then	you	should	look	at	the	first	0.204n	+	1.33	people
and	leap	for	the	next	person	better	than	all	of	them.	But	if	you	care	about	maximizing	the	amount	of
time	you	spend	with	somebody	who	is	the	best	of	all	the	people	seen	so	far,	you	should	just	look	at	a
proportion	corresponding	to	1/e2	≈	13.5%.	These	shorter	looking	periods	are	particularly	relevant	in
contexts—such	as	dating—where	the	search	for	a	partner	might	take	up	a	significant	proportion	of	your
life.

It	turns	out	that	it’s	harder	to	find	the	second-best	person	than	it	is	to	find	the	best.	The	optimal
strategy	is	to	pass	over	the	first	half	of	the	applicants,	then	choose	the	next	applicant	who	is	second	best
relative	to	those	seen	so	far	(Rose,	“A	Problem	of	Optimal	Choice	and	Assignment”).	The	probability	of
success	is	just	1/4	(as	opposed	to	1/e	for	the	best).	So	you’re	better	off	not	trying	to	settle.

Finally,	there	are	also	variants	that	recognize	the	fact	that	while	you	are	looking	for	a	secretary,	your
applicants	are	themselves	looking	for	a	job.	The	added	symmetry—which	is	particularly	relevant	when
the	scenario	concerns	dating—makes	the	problem	even	more	complicated.	Peter	Todd,	a	cognitive
scientist	at	Indiana	University,	has	explored	this	complexity	(and	how	to	simplify	it)	in	detail.	See	Todd
and	Miller,	“From	Pride	and	Prejudice	to	Persuasion	Satisficing	in	Mate	Search,”	and	Todd,	“Coevolved
Cognitive	Mechanisms	in	Mate	Search.”

Selling	a	house	is	similar:	The	house-selling	problem	is	analyzed	in	Sakaguchi,	“Dynamic
Programming	of	Some	Sequential	Sampling	Design”;	Chow	and	Robbins,	“A	Martingale	System
Theorem	and	Applications”;	and	Chow	and	Robbins,	“On	Optimal	Stopping	Rules.”	We	focus	on	the
case	where	there	are	potentially	infinitely	many	offers,	but	these	authors	also	provide	optimal	strategies
when	the	number	of	potential	offers	is	known	and	finite	(which	are	less	conservative—you	should	have
a	lower	threshold	if	you	only	have	finitely	many	opportunities).	In	the	infinite	case,	you	should	set	a
threshold	based	on	the	expected	value	of	waiting	for	another	offer,	and	take	the	first	offer	that	exceeds
that	threshold.

stopping	price	as	a	function	of	the	cost	of	waiting:	Expressing	both	the	offer	price	p	and	cost	of
waiting	for	another	offer	c	as	fractions	of	our	price	range	(with	0	as	the	bottom	of	the	range	and	1	as	the
top),	the	chance	that	our	next	offer	is	better	than	p	is	simply	1	−	p.	If	(or	when)	a	better	offer	arrives,	the
average	amount	we’d	expect	to	gain	relative	to	p	is	just	(1−p)⁄2.	Multiplying	these	together	gives	us	the
expected	outcome	of	entertaining	another	offer,	and	this	should	be	greater	than	or	equal	to	the	cost	c	to
be	worth	doing.	This	equation	(1	−	p)	((1−p)⁄2)	≥	c	can	be	simplified	to	 ,	and	solving	it	for	p
gives	us	the	answer	 ,	as	charted	here.

“The	first	offer	we	got	was	great”:	Laura	Albert	McLay,	personal	interview,	September	16,	2014.

to	model	how	people	look	for	jobs:	The	formulation	of	job	search	as	an	optimal	stopping	problem	is
dealt	with	in	Stigler,	“The	Economics	of	Information,”	and	Stigler,	“Information	in	the	Labor	Market.”
McCall,	“Economics	of	Information	and	Job	Search,”	proposed	using	a	model	equivalent	to	the	solution
to	the	house-selling	problem,	and	Lippman	and	McCall,	“The	Economics	of	Job	Search,”	discusses
several	extensions	to	this	model.	Just	as	the	secretary	problem	has	inspired	a	vast	array	of	variants,
economists	have	refined	this	simple	model	in	a	variety	of	ways	to	make	it	more	realistic:	allowing
multiple	offers	to	arrive	on	the	same	day,	tweaking	the	costs	for	the	seller,	and	incorporating	fluctuation
in	the	economy	during	the	search.	A	good	review	of	optimal	stopping	in	a	job-seeking	context	can	be
found	in	Rogerson,	Shimer,	and	Wright,	Search-Theoretic	Models	of	the	Labor	Market.

won’t	be	above	your	threshold	now:	As	a	survey	of	the	job-search	problem	puts	it:	“Assume
previously	rejected	offers	cannot	be	recalled,	although	this	is	actually	not	restrictive	because	the
problem	is	stationary,	so	an	offer	that	is	not	acceptable	today	will	not	be	acceptable	tomorrow”	(ibid.).

“parking	for	the	faculty”:	Clark	Kerr,	as	quoted	in	“Education:	View	from	the	Bridge,”	Time,
November	17,	1958.

“plan	on	expected	traffic”:	Donald	Shoup,	personal	correspondence,	June	2013.

implemented	in	downtown	San	Francisco:	More	information	on	the	SFpark	system	developed	by	the
SFMTA,	and	its	Shoup-inspired	dynamic	pricing,	can	be	found	at	http://sfpark.org/how-it-
works/pricing/.	(Shoup	himself	is	involved	in	an	advisory	role.)	This	program	began	taking	effect	in
2011,	and	is	the	first	project	of	its	kind	in	the	world.	For	a	recent	analysis	of	the	effects	of	the	program,
see	Millard-Ball,	Weinberger,	and	Hampshire,	“Is	the	Curb	80%	Full	or	20%	Empty?”

when	occupancy	goes	from	90%	to	95%:	Donald	Shoup,	personal	interview,	June	7,	2013.	To	be
precise,	the	increase	from	90%	to	95%	occupancy	reflects	an	increase	of	5.555	…	percent.

Assume	you’re	on	an	infinitely	long	road:	The	basic	parking	problem,	as	formulated	here,	was
presented	as	a	problem	in	DeGroot,	Optimal	Statistical	Decisions.	The	solution	is	to	take	the	first	empty
spot	less	than	−log	2	/	log(1−p)	spots	from	the	destination,	where	p	is	the	probability	of	any	given	space
being	available.

you	don’t	need	to	start	seriously	looking:	Chapter	17	of	Shoup’s	The	High	Cost	of	Free	Parking
discusses	the	optimal	on-street	parking	strategy	when	pricing	creates	an	average	of	one	free	space	per
block,	which,	as	Shoup	notes,	“depends	on	the	conflict	between	greed	and	sloth”	(personal
correspondence).	The	question	of	whether	to	“cruise”	for	cheap	on-street	spots	or	to	pay	for	private
parking	spaces	is	taken	up	in	Shoup’s	chapter	13.

a	variety	of	tweaks	to	this	basic	scenario:	Tamaki,	“Adaptive	Approach	to	Some	Stopping	Problems,”
allowed	the	probability	of	a	spot	being	available	to	vary	based	on	location	and	considered	how	these
probabilities	could	be	estimated	on	the	fly.	Tamaki,	“Optimal	Stopping	in	the	Parking	Problem	with	U-
Turn,”	added	the	possibility	of	U-turns.	Tamaki,	“An	Optimal	Parking	Problem,”	considered	an
extension	to	DeGroot’s	model	where	parking	opportunities	are	not	assumed	to	be	a	discrete	set	of	spots.
Sakaguchi	and	Tamaki,	“On	the	Optimal	Parking	Problem	in	Which	Spaces	Appear	Randomly,”	used
this	continuous	formulation	and	allowed	the	destination	to	be	unknown.	MacQueen	and	Miller,
“Optimal	Persistence	Policies,”	independently	considered	a	continuous	version	of	the	problem	that
allows	circling	the	block.

“I	ride	my	bike”:	Donald	Shoup,	personal	interview,	June	7,	2013.

Forbes	magazine	identified	Boris	Berezovsky:	Forbes,	“World’s	Billionaires,”	July	28,	1997,	p.	174.

one	of	a	new	class	of	oligarchs:	Paul	Klebnikov,	“The	Rise	of	an	Oligarch,”	Forbes,	September	9,
2000.

“to	hit	just	once,	but	on	the	head”:	Vladimir	Putin,	interview	with	the	French	newspaper	Le	Figaro,
October	26,	2000.

book	entirely	devoted	to	the	secretary	problem:	Berezovsky	and	Gnedin,	Problems	of	Best	Choice.

analyzed	under	several	different	guises:	There	are	various	ways	to	approach	the	problem	of	quitting
when	you’re	ahead.	The	first	is	maximizing	the	length	of	a	sequence	of	wins.	Assume	you’re	tossing	a
coin	that	has	a	probability	p	of	coming	up	heads.	You	pay	c	dollars	for	each	chance	to	flip	the	coin,	and
you	get	$1.00	when	it	comes	up	heads	but	lose	all	your	accumulated	gains	when	it	comes	up	tails.	When
should	you	stop	tossing	the	coin?	The	answer,	as	shown	by	Norman	Starr	in	1972,	is	to	stop	after	r
heads,	where	r	is	the	smallest	number	such	that	pr+1	≤	c.	So	if	it’s	a	regular	coin	with	p	=	1/2,	and	it
costs	$0.10	to	flip	the	coin,	you	should	stop	as	soon	as	you	get	four	heads	in	a	row.	The	analysis	of	runs
of	heads	appears	in	Starr,	“How	to	Win	a	War	if	You	Must,”	where	it	is	presented	as	a	model	for
winning	a	war	of	attrition.	A	more	comprehensive	analysis	is	presented	in	Ferguson,	“Stopping	a	Sum
During	a	Success	Run.”

Maximizing	the	length	of	a	run	of	heads	is	a	pretty	good	analogy	for	some	kinds	of	business
situations—for	a	sequence	of	deals	that	cost	c	to	set	up,	have	a	probability	p	of	working	out,	and	pay	d
on	success	but	wipe	out	your	gains	on	failure,	you	should	quit	after	making	r	dollars	such	that	pr/d+1	≤

http://sfpark.org/how-it-works/pricing/

c/d.	Ambitious	drug	dealers,	take	note.

In	the	burglar	problem	discussed	in	the	text,	assume	the	average	amount	gained	from	each	robbery	is
m	and	the	probability	of	getting	away	with	the	robbery	is	q.	But	if	the	burglar	is	caught,	which	happens
with	probability	1	−	q,	he	loses	everything.	The	solution:	quit	when	the	accumulated	gains	are	greater
than	or	equal	to	mq/(1	−	q).	The	burglar	problem	appears	in	Haggstrom,	“Optimal	Sequential
Procedures	When	More	Than	One	Stop	Is	Required,”	as	part	of	a	more	complex	problem	in	which	the
burglar	is	also	trying	to	decide	which	city	to	move	to.

found	by	a	bodyguard:	See,	e.g.,	“Boris	Berezovsky	‘Found	with	Ligature	Around	His	Neck,’”	BBC
News,	March	28,	2013,	http://www.bbc.com/news/uk-21963080.

official	conclusion	of	a	postmortem	examination:	See,	e.g.,	Reuters,	“Berezovsky	Death	Consistent
with	Hanging:	Police,”	March	25,	2013,	http://www.reuters.com/article/2013/03/25/us-britain-russia-
berezovsky-postmortem-idUSBRE92O12320130325.

“Berezovsky	would	not	give	up”:	Hoffman,	The	Oligarchs,	p.	128.

there	is	no	optimal	stopping	rule:	One	condition	for	an	optimal	stopping	rule	to	exist	is	that	the
average	reward	for	stopping	at	the	best	possible	point	be	finite	(see	Ferguson,	Optimal	Stopping	and
Applications).	The	“triple	or	nothing”	game	violates	this	condition—if	heads	come	up	k	times	followed
by	one	tail,	the	best	possible	player	gets	3k	−	1	as	a	payoff,	stopping	right	before	that	tail.	The
probability	of	this	is	1/2k+1.	The	average	over	k	is	thus	infinite.

If	you’re	thinking	that	this	could	be	resolved	by	assuming	that	people	value	money	less	the	more
they	have—that	tripling	the	monetary	reward	may	not	be	tripling	the	utility	people	assign	to	that	money
—then	there’s	a	simple	work-around:	you	still	get	a	game	with	no	optimal	stopping	rule	just	by	offering
rewards	that	triple	in	their	utility.	For	example,	if	the	utility	you	assign	to	money	increases	as	a
logarithmic	function	of	the	amount	of	money,	then	the	game	becomes	“cube	or	nothing”—the	amount	of
money	you	could	receive	on	the	next	gamble	is	raised	to	the	power	of	three	each	time	you	win.

Intriguingly,	while	there	is	no	optimal	stopping	rule	for	“triple	or	nothing,”	where	your	entire	fortune
is	always	on	the	line,	there	are	nonetheless	good	strategies	for	playing	games	like	this	when	you	can
choose	how	much	of	your	bankroll	to	bet.	The	so-called	Kelly	betting	scheme,	named	after	J.	L.	Kelly
Jr.	and	first	described	in	Kelly,	“A	New	Interpretation	of	Information	Rate,”	is	one	example.	In	this
scheme,	a	player	can	maximize	his	rate	of	return	by	betting	a	proportion	of	(p(b+1)−1)⁄b	of	his	bankroll	on
each	of	a	sequence	of	bets	that	pay	off	b	+	1	times	the	original	stake	with	probability	p.	For	our	triple	or
nothing	game,	b	=	2	and	p	=	0.5,	so	we	should	bet	a	quarter	of	our	bankroll	each	time—not	the	whole
thing,	which	inevitably	leads	to	bankruptcy.	An	accessible	history	of	Kelly	betting	appears	in
Poundstone,	Fortune’s	Formula.

“pass	through	this	world	but	once”:	The	provenance	of	this	quotation	is	not	fully	certain,	although	it
has	been	cited	as	a	Quaker	saying	since	the	second	half	of	the	nineteenth	century,	and	appears	to	have
been	attributed	to	Grellet	since	at	least	1893.	For	more,	see	W.	Gurney	Benham,	Benham’s	Book	of
Quotations,	Proverbs,	and	Household	Words,	1907.

“Spend	the	afternoon”:	Dillard,	Pilgrim	at	Tinker	Creek.

most	closely	follows	the	classical	secretary	problem:	Seale	and	Rapoport,	“Sequential	Decision
Making	with	Relative	Ranks.”

leapt	sooner	than	they	should	have:	Ibid.	The	typical	place	where	people	switched	from	looking	to
leaping	was	13	applicants	out	of	40,	and	21	applicants	out	of	80,	or	32%	and	26%,	respectively.

“by	nature	I	am	very	impatient”:	Amnon	Rapoport,	personal	interview,	June	11,	2013.

Seale	and	Rapoport	showed:	Seale	and	Rapoport,	“Sequential	Decision	Making	with	Relative	Ranks.”

“It’s	not	irrational	to	get	bored”:	Neil	Bearden,	personal	correspondence,	June	26,	2013.	See	also

http://www.bbc.com/news/uk-21963080
http://www.reuters.com/article/2013/03/25/us-britain-russia-berezovsky-postmortem-idUSBRE92O12320130325

Bearden,	“A	New	Secretary	Problem.”

turns	all	decision-making	into	optimal	stopping:	This	kind	of	argument	was	first	made	by	Herbert
Simon,	and	it	was	one	of	the	contributions	for	which	he	received	the	Nobel	Prize.	Simon	began	his
remarkable	career	as	a	political	scientist,	writing	a	dissertation	on	the	perhaps	unpromising	topic	of
administrative	behavior.	As	he	dug	into	the	problem	of	understanding	how	organizations	composed	of
real	people	make	decisions,	he	experienced	a	growing	dissatisfaction	with	the	abstract	models	of
decision-making	offered	by	mathematical	economics—models	that	line	up	with	the	intuition	that
rational	action	requires	exhaustive	consideration	of	our	options.

Simon’s	investigation	of	how	decisions	actually	get	made	in	organizations	made	it	clear	to	him	that
these	assumptions	were	incorrect.	An	alternative	was	needed.	As	he	put	it	in	“A	Behavioral	Model	of
Rational	Choice,”	“the	task	is	to	replace	the	global	rationality	of	economic	man	with	a	kind	of	rational
behavior	that	is	compatible	with	the	access	to	information	and	the	computational	capacities	that	are
actually	possessed	by	organisms,	including	man,	in	the	kinds	of	environments	in	which	such	organisms
exist.”

The	kind	of	solution	that	Simon	proposed	as	a	more	realistic	account	of	human	choice—what	he
dubbed	“satisficing”—uses	experience	to	set	some	threshold	for	a	satisfactory,	“good	enough”	outcome,
then	takes	the	first	option	to	exceed	that	threshold.	This	algorithm	has	the	same	character	as	the
solutions	to	the	optimal	stopping	problems	we	have	considered	here,	where	the	threshold	is	either
determined	by	spending	some	time	getting	a	sense	for	the	range	of	options	(as	in	the	secretary	problem)
or	based	on	knowing	the	probability	of	different	outcomes.	Indeed,	one	of	the	examples	Simon	used	in
his	argument	was	that	of	selling	a	house,	with	a	similar	kind	of	solution	to	that	presented	here.

the	definitive	textbook	on	optimal	stopping:	That’s	Ferguson,	Optimal	Stopping	and	Applications.
2.	EXPLORE/EXPLOIT

“Make	new	friends”:	Joseph	Parry,	“New	Friends	and	Old	Friends,”	in	The	Best	Loved	Poems	of	the
American	People,	ed.	Hazel	Felleman	(Garden	City,	NY:	Doubleday,	1936),	58.

“life	so	rich	and	rare”:	Helen	Steiner	Rice,	“The	Garden	of	Friendship,”	in	The	Poems	and	Prayers	of
Helen	Steiner	Rice,	ed.	Virginia	J.	Ruehlmann	(Grand	Rapids,	MI:	Fleming	H.	Revell),	47.

“You	try	to	find	spaces”:	Scott	Plagenhoef,	personal	interview,	September	5,	2013.

The	odd	name	comes	from:	In	a	letter	to	Merrill	Flood	dated	April	14,	1955	(available	in	the	Merrill
Flood	archive	at	the	University	of	Michigan),	Frederick	Mosteller	tells	the	story	of	the	origin	of	the
name.	Mosteller	and	his	collaborator	Robert	Bush	were	working	on	mathematical	models	of	learning—
one	of	the	earliest	instances	of	what	came	to	be	known	as	mathematical	psychology,	informing	the
research	that	Tom	does	today.	They	were	particularly	interested	in	a	series	of	experiments	that	had	been
done	with	a	T-shaped	maze,	where	animals	are	put	into	the	maze	at	the	bottom	of	the	T	and	then	have	to
decide	whether	to	go	left	or	right.	Food—the	payoff—may	or	may	not	appear	on	either	side	of	the	maze.
To	explore	this	behavior	with	humans	they	commissioned	a	machine	with	two	levers	that	people	could
pull,	which	Mosteller	dubbed	the	two-armed	bandit.	He	then	introduced	the	mathematical	form	of	the
problem	to	his	colleagues,	and	it	ultimately	became	generalized	to	the	multi-armed	bandit.

A	comprehensive	introduction	to	multi-armed	bandits	appears	in	Berry	and	Fristed,	Bandit
Problems.	Our	focus	in	this	chapter	is	on	bandits	where	each	arm	either	produces	a	payoff	or	doesn’t,
with	different	probabilities	but	the	same	payoff	amount	on	all	arms.	This	is	known	as	a	Bernoulli	bandit
in	the	literature,	as	the	probability	distribution	that	describes	a	coin	flip	is	called	the	Bernoulli
distribution	(after	the	seventeenth-century	Swiss	mathematician	Jacob	Bernoulli).	Other	kinds	of	multi-
armed	bandits	are	also	possible,	with	unknown	distributions	of	different	kinds	characterizing	the	payoffs
from	each	arm.

how	good	the	second	machine	might	actually	be:	The	“myopic”	strategy	of	pulling	the	arm	with
higher	expected	value	is	actually	optimal	in	some	cases.	Bradt,	Johnson,	and	Karlin,	“On	Sequential

Designs	for	Maximizing	the	Sum	of	N	Observations,”	showed	that	if	the	probabilities	of	a	payoff	for	a
two-armed	bandit	(with	p1	for	one	arm,	p2	for	the	other)	satisfy	p1	+	p2	=	1,	then	this	strategy	is	optimal.
They	conjectured	that	this	also	holds	for	pairs	of	probabilities	where	(p1,	p2)	either	take	on	the	values
(a,	b)	or	(b,	a)	(i.e.,	if	p1	is	a,	then	p2	is	b,	and	vice	versa).	This	was	proved	to	be	true	by	Feldman,
“Contributions	to	the	‘Two-Armed	Bandit’	Problem.”	Berry	and	Fristed,	Bandit	Problems,	has	further
details	on	myopic	strategies,	including	a	result	showing	that	choosing	the	highest	expected	value	is
optimal	when	p1	and	p2	are	restricted	to	take	on	just	two	possible	values	(e.g.,	either	or	both	of	p1	or	p2
could	be	0.4	or	0.7,	but	we	don’t	know	which	of	these	possibilities	is	true).

“embodies	in	essential	form”:	Whittle,	Optimization	over	Time.

“Eat,	drink,	and	be	merry”:	“Eat,	drink,	and	be	merry,	for	tomorrow	we	die,”	an	idiom	in	common
parlance	and	in	pop	culture	(e.g.,	forming	the	chorus	of	“Tripping	Billies”	by	the	Dave	Matthews	Band,
among	many	other	references),	appears	to	be	a	conflation	of	two	biblical	verses:	Ecclesiastes	8:15	(“A
man	hath	no	better	thing	under	the	sun,	than	to	eat,	and	to	drink,	and	to	be	merry”)	and	Isaiah	22:13
(“Let	us	eat	and	drink,	for	tomorrow	we	die”).

“why	take	the	risk?”:	Chris	Stucchio,	personal	interview,	August	15,	2013.

“a	sixth	helping	of	X-Men”:	Nick	Allen,	“Hollywood	makes	2013	the	year	of	the	sequel”
http://www.telegraph.co.uk/culture/film/film-news/9770154/Hollywood-makes-2013-the-year-of-the-
sequel.html.	See	also	http://www.shortoftheweek.com/2012/01/05/has-hollywood-lost-its-way/	and
http://boxofficemojo.com/news/?id=3063.

Profits	of	the	largest	film	studios	declined:	“Between	2007	and	2011,	pre-tax	profits	of	the	five
studios	controlled	by	large	media	conglomerates	(Disney,	Universal,	Paramount,	Twentieth	Century	Fox
and	Warner	Bros)	fell	by	around	40%,	says	Benjamin	Swinburne	of	Morgan	Stanley.”	In	“Hollywood:
Split	Screens,”	Economist,	February	23,	2013,	http://www.economist.com/news/business/21572218-
tale-two-tinseltowns-split-screens.

ticket	sales	have	declined:	Statistics	from	http://pro.boxoffice.com/statistics/yearly	and	http://www.the-
numbers.com/market/.	See	also	Max	Willens,	“Box	Office	Ticket	Sales	2014:	Revenues	Plunge	to
Lowest	in	Three	Years,”	International	Business	Times,	January	5,	2015.

“Squeezed	between	rising	costs”:	“Hollywood:	Split	Screens,”	Economist,	February	23,	2013,
http://www.economist.com/news/business/21572218-tale-two-tinseltowns-split-screens.

“the	ultimate	instrument	of	intellectual	sabotage”:	Whittle’s	comment	on	the	difficulty	of	bandit
problems	appears	in	his	discussion	of	Gittins,	“Bandit	Processes	and	Dynamic	Allocation	Indices.”

Robbins	proved	in	1952:	Robbins,	“Some	Aspects	of	the	Sequential	Design	of	Experiments”
introduces	the	Win-Stay,	Lose-Shift	algorithm.

Following	Robbins,	a	series	of	papers:	Bradt,	Johnson,	and	Karlin,	“On	Sequential	Designs	for
Maximizing	the	Sum	of	N	Observations,”	showed	that	“stay	on	a	winner”	is	always	true	where	the
probability	of	a	payoff	is	unknown	for	one	arm	but	known	for	the	other.	Berry,	“A	Bernoulli	Two-
Armed	Bandit,”	proved	that	the	principle	is	always	true	for	a	two-armed	bandit.	Generalizations	of	this
result	(and	a	characterization	of	the	cases	where	it	doesn’t	apply)	appear	in	Berry	and	Fristed,	Bandit
Problems.

exactly	how	many	options	and	opportunities:	This	solution	to	the	“finite	horizon”	version	of	the
multi-armed	bandit	problem	is	presented	in	Bellman’s	magnum	opus	Dynamic	Programming,	a	book
that	is	impressive	as	the	starting	point	(and	sometimes	endpoint)	of	a	number	of	topics	in	optimization
and	machine	learning.	Among	other	uses,	dynamic	programming	can	efficiently	solve	problems	that
require	backward	induction—which	we	also	encountered	briefly	in	chapter	1	in	the	context	of	the	full-
information	game.

http://www.telegraph.co.uk/culture/film/film-news/9770154/Hollywood-makes-2013-the-year-of-the-sequel.html
http://www.shortoftheweek.com/2012/01/05/has-hollywood-lost-its-way/
http://boxofficemojo.com/news/?id=3063
http://www.economist.com/news/business/21572218-tale-two-tinseltowns-split-screens
http://pro.boxoffice.com/statistics/yearly
http://www.the-numbers.com/market/
http://www.economist.com/news/business/21572218-tale-two-tinseltowns-split-screens

“a	byword	for	intransigence”:	Introduction	to	Gittins,	“Bandit	Processes	and	Dynamic	Allocation
Indices.”

“would	be	a	pretty	good	approximation”:	John	Gittins,	personal	interview,	August	27,	2013.

Deal	or	No	Deal:	The	many	worldwide	incarnations	of	this	game	show	began	with	the	Dutch	show
Miljoenenjacht,	which	first	aired	in	2000.

the	multi-armed	bandit	problem	is	no	different:	Previous	researchers	had	also	found	solutions	for
this	“one-armed	bandit”	problem	over	a	fixed	interval	(Bellman,	“A	Problem	in	the	Sequential	Design
of	Experiments”;	Bradt,	Johnson,	and	Karlin,	“On	Sequential	Designs	for	Maximizing	the	Sum	of	N
Observations”).

maximizing	a	single	quantity	that	accounts	for	both:	The	ideas	behind	the	Gittins	index	were	first
presented	at	a	conference	in	1972	and	appeared	in	the	proceedings	as	Gittins	and	Jones,	“A	Dynamic
Allocation	Index	for	the	Sequential	Design	of	Experiments,”	but	the	canonical	presentation	is	Gittins,
“Bandit	Processes	and	Dynamic	Allocation	Indices.”

we	provide	the	Gittins	index	values:	The	table	of	Gittins	index	scores	for	the	Bernoulli	bandit	was
taken	from	Gittins,	Glazebrook,	and	Weber,	Multi-Armed	Bandit	Allocation	Indices,	which	is	a
comprehensive	guide	to	the	topic.	It	assumes	complete	ignorance	about	the	probability	of	a	payoff.

drives	us	toward	novelty:	Taking	this	to	an	extreme	results	in	one	simple	strategy	called	the	Least
Failures	Rule:	always	choose	the	option	that’s	failed	the	fewest	number	of	times.	So,	landing	in	a	new
city,	pick	a	restaurant	at	random.	If	it	is	good,	stick	with	it.	As	soon	as	it	fails	to	satisfy,	choose	at
random	from	the	other	restaurants.	Continue	this	process	until	all	restaurants	have	failed	to	satisfy	once,
then	go	back	to	the	restaurant	with	the	most	nights	of	successful	dining	and	repeat.	This	strategy	builds
on	the	win-stay	principle,	and	it’s	precisely	what	the	Gittins	index	yields	if	you’re	the	patient	sort	who
values	tomorrow’s	payoff	as	being	essentially	as	good	as	today’s.	(The	rule	appears	in	Kelly,	“Multi-
Armed	Bandits	with	Discount	Factor	Near	One”;	formally,	it	is	optimal	under	geometric	discounting	in
the	limit	as	the	discount	rate	approaches	1.)	In	a	big	city	with	plenty	of	new	restaurants	opening	all	the
time,	a	Least	Failures	policy	says	quite	simply	that	if	you’re	ever	let	down,	there’s	too	much	else	out
there;	don’t	go	back.

a	variety	of	experiments	in	behavioral	economics:	See,	for	example,	Kirby,	“Bidding	on	the	Future.”

if	there’s	a	cost	to	switching:	This	case	is	analyzed	in	Banks	and	Sundaram,	“Switching	Costs	and	the
Gittins	Index.”

“Regrets,	I’ve	had	a	few”:	Frank	Sinatra,	“My	Way,”	from	My	Way	(1969),	lyrics	by	Paul	Anka.

“For	myself	I	am	an	optimist”:	Prime	Minister	Winston	Churchill,	speech,	Lord	Mayor’s	Banquet,
London,	November	9,	1954.	Printed	in	Churchill,	Winston	S.	Churchill:	His	Complete	Speeches.

“To	try	and	fail	is	at	least	to	learn”:	Barnard,	The	Functions	of	the	Executive.

“wanted	to	project	myself	forward	to	age	80”:	Jeff	Bezos,	interview	with	the	Academy	of
Achievement,	May	4,	2001,	http://www.achievement.org/autodoc/page/bez0int-3.

several	key	points	about	regret:	Lai	and	Robbins,	“Asymptotically	Efficient	Adaptive	Allocation
Rules.”

the	guarantee	of	minimal	regret:	Ibid.	offered	the	first	such	algorithms,	which	were	refined	by
Katehakis	and	Robbins,	“Sequential	Choice	from	Several	Populations”;	Agrawal,	“Sample	Mean	Based
Index	Policies”;	and	Auer,	Cesa-Bianchi,	and	Fischer,	“Finite-Time	Analysis	of	the	Multiarmed	Bandit
Problem,”	among	others.	The	latter	present	perhaps	the	simplest	strategy	of	this	kind,	which	is	to	assign
arm	j	a	score	of	 ,	where	sj	is	the	number	of	successes	out	of	nj	plays	on	that	arm,	and	n

=	Σjnj	is	the	total	number	of	plays	of	all	arms.	This	is	an	upper	bound	on	the	probability	of	a	successful

http://www.achievement.org/autodoc/page/bez0int-3

payoff	(which	is	just	sj/nj).	Choosing	the	arm	with	the	highest	score	guarantees	logarithmic	regret
(although	there	are	tweaks	to	this	score	that	result	in	better	performance	in	practice).

known	as	the	“confidence	interval”:	Confidence	intervals	originate	with	Neyman,	“Outline	of	a
Theory	of	Statistical	Estimation.”

“optimism	in	the	face	of	uncertainty”:	Kaelbling,	Littman,	and	Moore,	“Reinforcement	Learning.”

“optimistic	robots”:	Leslie	Kaelbling,	personal	interview,	November	22,	2013.	See	Kaelbling,
Learning	in	Embedded	Systems.

$57	million	of	additional	donations:	Siroker	and	Koomen,	A/B	Testing.

A/B	testing	works	as	follows:	Christian,	“The	A/B	Test.”	Also	informed	by	Steve	Hanov,	personal
interview,	August	30,	2013,	and	Noel	Welsh,	personal	interview,	August	27,	2013.

In	the	case	of	Obama’s	donation	page:	Dan	Siroker,	“How	We	Used	Data	to	Win	the	Presidential
Election”	(lecture),	Stanford	University,	May	8,	2009,	available	at	https://www.youtube.com/watch?
v=71bH8z6iqSc.	See	also,	Siroker,	“How	Obama	Raised	$60	Million,”
https://blog.optimizely.com/2010/11/29/how-obama-raised-60-million-by-running-a-simple-
experiment/.

live	A/B	tests	on	their	users:	Google’s	first	A/B	test	was	run	on	February	27,	2000.	See,	e.g.,	Christian,
“The	A/B	Test.”

Companies	A/B	test	their	site	navigation:	See,	e.g.,	Siroker	and	Koomen,	A/B	Testing.

tested	forty-one	shades	of	blue:	Laura	M.	Holson,	“Putting	a	Bolder	Face	on	Google,”	New	York
Times,	February	28,	2009.

“how	to	make	people	click	ads”:	Ashlee	Vance,	“This	Tech	Bubble	Is	Different,”	Bloomberg
Businessweek,	April	14,	2011.
http://www.bloomberg.com/bw/magazine/content/11_17/b4225060960537.htm.

“destroyed	by	madness”:	Ginsberg,	Howl	and	Other	Poems.

$50	billion	in	annual	revenue:	Google’s	finances	are	detailed	in	their	quarterly	shareholder	reports.
Reported	2013	advertising	revenue	was	$50.6	billion,	roughly	91%	of	total	revenue	of	$55.6	billion.	See
https://investor.google.com/financial/2013/tables.html.

online	commerce	comprises	hundreds	of	billions:	Online	sales	estimated	by	Forrester	Research.	See,
for	instance,	“US	Online	Retail	Sales	to	Reach	$370B	By	2017;	€191B	in	Europe,”	Forbes,	3/14/2013,
http://www.forbes.com/sites/forrester/2013/03/14/us-online-retail-sales-to-reach-370b-by-2017-e191b-
in-europe/.

best	algorithms	to	use	remain	hotly	contested:	Chris	Stucchio,	for	instance,	penned	a	cutting	article
titled	“Why	Multi-armed	Bandit	Algorithms	Are	Superior	to	A/B	Testing,”	which	was	then	countered
by	an	equally	cutting	article	called	“Don’t	Use	Bandit	Algorithms—They	Probably	Won’t	Work	for
You”—also	written	by	Chris	Stucchio.	See
https://www.chrisstucchio.com/blog/2012/bandit_algorithms_vs_ab.html	and
https://www.chrisstucchio.com/blog/2015/dont_use_bandits.html.	Stucchio’s	2012	post	was	written
partly	in	reference	to	an	article	by	Paras	Chopra	titled	“Why	Multi-armed	Bandit	Algorithm	Is	Not
‘Better’	than	A/B	Testing”	(https://vwo.com/blog/multi-armed-bandit-algorithm/),	which	was	itself
written	partly	in	reference	to	an	article	by	Steve	Hanov	titled	“20	lines	of	code	that	will	beat	A/B	testing
every	time”	(http://stevehanov.ca/blog/index.php?id=132).

it	appeared	in	the	Washington	Star:	Jean	Heller,	“Syphilis	Patients	Died	Untreated,”	Washington	Star,
July	25,	1972.

document	known	as	the	Belmont	Report:	The	Belmont	Report:	Ethical	principles	and	guidelines	for

https://www.youtube.com/watch?v=71bH8z6iqSc
https://blog.optimizely.com/2010/11/29/how-obama-raised-60-million-by-running-a-simple-experiment/
http://www.bloomberg.com/bw/magazine/content/11_17/b4225060960537.htm
https://investor.google.com/financial/2013/tables.html
http://www.forbes.com/sites/forrester/2013/03/14/us-online-retail-sales-to-reach-370b-by-2017-e191b-in-europe/
https://www.chrisstucchio.com/blog/2012/bandit_algorithms_vs_ab.html
https://www.chrisstucchio.com/blog/2015/dont_use_bandits.html
https://vwo.com/blog/multi-armed-bandit-algorithm/
http://stevehanov.ca/blog/index.php?id=132

the	protection	of	human	subjects	of	research,	April	18,	1979.	Available	at
http://www.hhs.gov/ohrp/humansubjects/guidance/belmont.html.

proposed	conducting	“adaptive”	trials:	See	Zelen,	“Play	the	Winner	Rule	and	the	Controlled	Clinical
Trial.”	While	this	was	a	radical	idea,	Zelen	wasn’t	the	first	to	propose	it.	That	honor	goes	to	William	R.
Thompson,	an	instructor	in	the	School	of	Pathology	at	Yale,	who	formulated	the	problem	of	identifying
whether	one	treatment	is	more	effective	than	another,	and	proposed	his	own	solution,	in	1933
(Thompson,	“On	the	Likelihood	That	One	Unknown	Probability	Exceeds	Another”).

The	solution	that	Thompson	proposed—randomly	sampling	options,	where	the	probability	of
choosing	an	option	corresponds	to	the	probability	that	it	is	the	best	based	on	the	evidence	observed	so
far—is	the	basis	for	much	recent	work	on	this	problem	in	machine	learning	(we	return	to	the
algorithmic	uses	of	randomness	and	sampling	in	chapter	9).

Neither	Frederick	Mosteller	nor	Herbert	Robbins	seemed	to	be	aware	of	Thompson’s	work	when
they	started	to	work	on	the	two-armed	bandit	problem.	Richard	Bellman	found	the	“little-known
papers”	a	few	years	later,	noting	that	“We	confess	that	we	found	these	papers	in	the	standard	fashion,
namely	while	thumbing	through	a	journal	containing	another	paper	of	interest”	(Bellman,	“A	Problem	in
the	Sequential	Design	of	Experiments”).

ECMO	saved	the	life	of	a	newborn	girl:	University	of	Michigan	Department	of	Surgery,	“‘Hope’	for
ECMO	Babies,”	http://surgery.med.umich.edu/giving/stories/ecmo.shtml.

has	now	celebrated	her	fortieth	birthday:	University	of	Michigan	Health	System,	“U-M	Health
System	ECMO	team	treats	its	2,000th	patient,”	March	1,	2011,
http://www.uofmhealth.org/news/ECMO%202000th%20patient.

early	studies	in	adults:	Zapol	et	al.,	“Extracorporeal	Membrane	Oxygenation	in	Severe	Acute
Respiratory	Failure.”

a	study	on	newborns:	Bartlett	et	al.,	“Extracorporeal	Circulation	in	Neonatal	Respiratory	Failure.”

“did	not	justify	routine	use	of	ECMO”:	Quotation	from	Ware,	“Investigating	Therapies	of	Potentially
Great	Benefit:	ECMO,”	referring	to	conclusions	in	Ware	and	Epstein,	“Comments	on	‘Extracorporeal
Circulation	in	Neonatal	Respiratory	Failure,’”	which	is	in	turn	a	comment	on	Bartlett	et	al.,
“Extracorporeal	Circulation	in	Neonatal	Respiratory	Failure.”

“difficult	to	defend	further	randomization	ethically”:	Ware,	“Investigating	Therapies	of	Potentially
Great	Benefit:	ECMO.”

one	of	the	world’s	leading	experts:	It	was	Berry,	in	his	1971	PhD	dissertation,	who	proved	that	staying
on	a	winner	is	optimal.	The	result	was	published	as	Berry,	“A	Bernoulli	Two-Armed	Bandit.”

“Ware	study	should	not	have	been	conducted”:	Berry,	“Comment:	Ethics	and	ECMO.”

nearly	two	hundred	infants	in	the	United	Kingdom:	UK	Collaborative	ECMO	Group,	“The
Collaborative	UK	ECMO	Trial.”

clinical	trials	for	a	variety	of	cancer	treatments:	Don	Berry,	personal	interview,	August	22,	2013.

the	FDA	released	a	“guidance”	document:	The	FDA’s	“Adaptive	Design	Clinical	Trials	for	Drugs	and
Biologics”	from	February	2010	can	be	found	at
http://www.fda.gov/downloads/Drugs/Guidances/ucm201790.pdf.

shown	a	box	with	two	lights	on	it:	The	study	appears	in	Tversky	and	Edwards,	“Information	Versus
Reward	in	Binary	Choices.”

two	airlines:	Meyer	and	Shi,	“Sequential	Choice	Under	Ambiguity.”

an	experiment	with	a	four-armed	bandit:	Steyvers,	Lee,	and	Wagenmakers,	“A	Bayesian	Analysis	of
Human	Decision-Making	on	Bandit	Problems.”

http://www.hhs.gov/ohrp/humansubjects/guidance/belmont.html
http://surgery.med.umich.edu/giving/stories/ecmo.shtml
http://www.uofmhealth.org/news/ECMO%202000th%20patient
http://www.fda.gov/downloads/Drugs/Guidances/ucm201790.pdf

what	has	been	termed	a	“restless	bandit”:	Restless	bandits	were	introduced	by	Whittle,	“Restless
Bandits,”	which	discusses	a	strategy	similar	to	the	Gittins	index	that	can	be	used	in	some	cases.	The
computational	challenges	posed	by	restless	bandits—and	the	consequent	pessimism	about	efficient
optimal	solutions—are	discussed	in	Papadimitriou	and	Tsitsiklis,	“The	Complexity	of	Optimal	Queuing
Network	Control.”

when	the	world	can	change:	Navarro	and	Newell,	“Information	Versus	Reward	in	a	Changing	World,”
provides	recent	results	supporting	the	idea	that	human	over-exploration	is	a	result	of	assuming	the	world
is	restless.

“There	is	in	fact	a	sort	of	harmony”:	Thoreau,	“Walking.”

“A	Coke	is	a	Coke”:	Warhol,	The	Philosophy	of	Andy	Warhol.

“a	developmental	way	of	solving	the	exploration/exploitation	tradeoff”:	Alison	Gopnik,	personal
interview,	August	22,	2013.	See	also	Gopnik,	The	Scientist	in	the	Crib.

“a	juncture	in	my	reading	life”:	Lydia	Davis,	“Someone	Reading	a	Book,”	Can’t	and	Won’t:	Stories.

challenging	our	preconceptions	about	getting	older:	Carstensen,	“Social	and	Emotional	Patterns	in
Adulthood”	presents	the	basic	“socioemotional	selectivity	theory”	we	discuss	in	this	section,	as	well	as
some	of	the	evidence	for	it.

“lifelong	selection	processes”:	Ibid.

about	to	move	across	the	country:	Fredrickson	and	Carstensen,	“Choosing	Social	Partners.”

their	preferences	became	indistinguishable:	Fung,	Carstensen,	and	Lutz,	“Influence	of	Time	on
Social	Preferences.”

older	people	are	generally	more	satisfied:	Evidence	of	improvements	in	emotional	well-being	with
aging	are	discussed	in	Charles	and	Carstensen,	“Social	and	Emotional	Aging.”
3.	SORTING

“Nowe	if	the	word”:	Cawdrey,	A	Table	Alphabeticall,	is	the	first	monolingual	dictionary	of	English.
For	more	on	the	history	of	sorting	vis-à-vis	searching,	see	Knuth,	The	Art	of	Computer	Programming,
§6.2.1.	For	more	on	the	invention	of	alphabetical	order,	see	Daly,	Contributions	to	a	History	of
Alphabetization.

The	roommate	pulled	a	sock	out:	Hillis,	The	Pattern	on	the	Stone.

posted	to	the	programming	website	Stack	Overflow:	“Pair	socks	from	a	pile	efficiently?”	Submitted
by	user	“amit”	to	Stack	Overflow	on	January	19,	2013,
http://stackoverflow.com/questions/14415881/pair-socks-from-a-pile-efficiently.

As	“amit”	(real	name	Amit	Gross,	a	graduate	student	at	the	Technion)	writes:	“Yesterday	I	was
pairing	the	socks	from	the	clean	laundry,	and	figured	out	the	way	I	was	doing	it	is	not	very	efficient.	I
was	doing	a	naive	search—picking	one	sock	and	‘iterating’	the	pile	in	order	to	find	its	pair.	This
requires	iterating	over	n/2	×	n/4	=	n2/8	socks	on	average.	As	a	computer	scientist	I	was	thinking	what	I
could	do?”

Amit’s	question	generated	a	number	of	answers,	but	the	one	that	received	the	most	support	from	his
fellow	programmers	was	to	do	a	Radix	Sort:	identify	the	dimensions	along	which	the	socks	vary	(e.g.,
color,	pattern)	and	sort	them	into	piles	on	each	of	these	dimensions.	Each	sort	requires	only	one	pass
through	all	the	socks,	and	the	result	is	a	set	of	smaller	piles.	Even	if	you	have	to	go	through	all	the	socks
in	those	piles	to	find	matches,	the	amount	of	time	this	takes	is	proportional	to	the	square	of	the	size	of
the	largest	pile	rather	than	the	square	of	the	total	number	of	socks.	(See	the	endnote	below	about	sorting
a	deck	of	cards	for	more	on	Radix	Sort.)

But	if	the	reason	we	are	pairing	socks	is	to	make	it	easier	to	find	a	pair	of	socks	when	we	need	them,

http://stackoverflow.com/questions/14415881/pair-socks-from-a-pile-efficiently

we	can	reduce	the	need	for	sorting	by	adopting	a	better	procedure	for	searching.

Let’s	say	your	socks	differ	along	only	one	dimension—color—and	you	have	three	different	colors	of
loose,	unpaired	socks	in	your	sock	drawer.	Then	you	are	guaranteed	to	find	a	matching	pair	if	you	take
four	socks	out	of	the	drawer	at	random.	(To	see	why,	imagine	the	worst-case	scenario:	each	of	the	first
three	socks	that	have	been	pulled	out	are	a	different	color.	When	you	go	back	for	a	fourth,	it	has	to
match	one	of	the	three	you	have	pulled	out	already.)	No	matter	how	many	colors	you	have,	taking	out
one	more	sock	than	the	number	of	colors	always	guarantees	you	a	matching	pair.	So	don’t	bother
pairing	them	if	you’re	willing	to	have	your	morning	run	a	little	slower.

This	neat	solution	to	the	problem	of	pairing	socks	comes	courtesy	of	the	Pigeonhole	Principle,	a
simple	but	powerful	mathematical	idea	attributed	to	the	nineteenth-century	German	mathematician
Peter	Gustave	Lejeune	Dirichlet.	(Rittaud	and	Heeffer,	“The	Pigeonhole	Principle,”	traces	the	history	of
the	Pigeonhole	Principle,	including	Dirichlet	as	well	as	what	appear	to	be	even	earlier	references.)	The
idea	is	simple:	if	a	group	of	pigeons	lands	in	a	set	of	nesting	holes,	and	there	are	more	pigeons	than
holes,	then	at	least	one	hole	must	contain	more	than	one	pigeon.	In	computer	science,	the	Pigeonhole
Principle	is	used	to	establish	basic	facts	about	the	theoretical	properties	of	algorithms.	For	example,	it	is
impossible	to	make	an	algorithm	that	will	compress	any	possible	file	without	loss	of	information,
because	there	are	more	long	files	than	there	are	short	files.

Applying	the	Pigeonhole	Principle	suggests	a	permanent	solution	to	the	problem	of	sock	pairing:
only	buy	one	kind	of	sock.	If	all	your	socks	are	the	same,	you	never	need	to	pair	them,	because	you	can
always	get	a	pair	by	taking	two	socks	out	of	the	drawer.	For	many	computer	scientists	(including	some
of	the	programmers	who	responded	to	Amit’s	question)	this	is	the	most	elegant	approach—redefining
the	problem	so	it	can	be	solved	efficiently.

One	last	word	of	warning,	though:	when	you	buy	that	one	kind	of	sock,	be	careful	what	kind	of
socks	you	buy.	The	reason	why	Ron	Rivest	has	particular	problems	with	socks	is	that	he	wears	socks
that	are	different	for	left	and	right	feet.	This	thwarts	the	Pigeonhole	Principle—to	guarantee	a	match
with	socks	like	that,	you’ll	need	to	pull	out	one	more	sock	than	the	total	number	of	pairs.

“Socks	confound	me!”:	Ronald	Rivest,	personal	interview,	July	25,	2013.

“go	blind	and	crazy”:	Martin,	“Counting	a	Nation	by	Electricity.”

“unerringly	as	the	mills	of	the	Gods”:	Ibid.

“no	one	will	ever	use	it	but	governments”:	Quoted	in	Austrian,	Herman	Hollerith.

Hollerith’s	firm	merged	with	several	others:	Austrian,	Herman	Hollerith.

first	code	ever	written	for	a	“stored	program”	computer:	“Written,”	here,	means	literally	written	out
by	hand:	when	the	renowned	mathematician	John	von	Neumann	jotted	down	the	sorting	program	in
1945,	the	computer	it	was	meant	for	was	still	several	years	away	from	completion.	Although	computer
programs	in	general	date	back	to	Ada	Lovelace’s	writing	in	1843	on	the	proposed	“Analytical	Engine”
of	Charles	Babbage,	von	Neumann’s	program	was	the	first	one	designed	to	be	stored	in	the	memory	of
the	computer	itself;	earlier	computing	machines	were	meant	to	be	guided	by	punch	cards	fed	into	them,
or	wired	for	specific	calculations.	See	Knuth,	“Von	Neumann’s	First	Computer	Program.”

outsort	IBM’s	dedicated	card-sorting	machines:	Ibid.

a	quarter	of	the	computing	resources	of	the	world:	Knuth,	The	Art	of	Computer	Programming,	p.	3.

“unit	cost	of	sorting,	instead	of	falling,	rises”:	Hosken,	“Evaluation	of	Sorting	Methods.”

the	record	for	sorting	a	deck	of	cards:	While	we	couldn’t	find	a	video	of	Bradáč’s	performance,	there
are	plenty	of	videos	online	of	people	trying	to	beat	it.	They	tend	to	sort	cards	into	the	four	suits,	and
then	sort	the	numbers	within	each	suit.	“But	there	is	a	faster	way	to	do	the	trick!”	urges	Donald	Knuth
in	The	Art	of	Computer	Programming:	First,	deal	out	the	cards	into	13	piles	based	on	their	face	value

(with	one	pile	containing	all	the	2s,	the	next	all	the	3s,	etc.).	Then,	after	gathering	up	all	the	piles,	deal
the	cards	out	into	the	four	suits.	The	result	will	be	one	pile	for	each	suit,	with	the	cards	ordered	within
each.	This	is	a	Radix	Sort,	and	is	related	to	the	Bucket	Sort	algorithm	we	discuss	later	in	the	chapter.
See	Knuth,	The	Art	of	Computer	Programming,	§5.2.5.

completely	sorted	by	chance:	Sorting	things	by	randomizing	them	and	hoping	for	the	best	is	actually
an	algorithm	with	a	name:	Bogosort,	part	of	computer	science’s	only	partly	tongue-in-cheek	subfield	of
“pessimal	algorithm	design.”	Pessimality	is	to	optimality	what	pessimism	is	to	optimism;	pessimal
algorithm	designers	compete	to	outdo	each	other	for	the	worst	possible	computing	performance.

Looking	into	the	matter	further,	pessimal	algorithm	designers	have	concluded	that	Bogosort	is
actually	far	too	lean	and	efficient.	Hence	their	“improvement”	Bogobogosort,	which	starts	by
incrementally	Bogosorting	the	first	two	elements,	then	the	first	three,	and	so	forth.	If	at	any	point	in
time	the	list	gets	out	of	order,	Bogobogosort	starts	over.	So	the	algorithm	won’t	complete	a	sort	of	four
cards,	for	instance,	until	it	throws	the	first	two	up	in	the	air,	sees	that	they’ve	landed	correctly,	then
throws	the	first	three	in	the	air,	sees	that	they’ve	landed	correctly,	and	at	last	throws	the	first	four	in	the
air	and	finds	them	in	the	correct	order	too.	All	in	a	row.	Otherwise	it	starts	over.	One	of	the	engineers	to
first	write	about	Bogobogosort	reports	running	it	on	his	computer	overnight	and	being	unable	to	sort	a
list	of	seven	items,	before	he	finally	turned	off	the	electricity	out	of	mercy.

Subsequent	engineers	have	suggested	that	Bogobogosort	isn’t	even	the	bottom	of	the	well,	and	have
proposed	getting	even	more	meta	and	Bogosorting	the	program	rather	than	the	data:	randomly	flipping
bits	in	the	computer	memory	until	it	just	so	happens	to	take	the	form	of	a	sorting	program	that	sorts	the
items.	The	time	bounds	of	such	a	monstrosity	are	still	being	explored.	The	quest	for	pessimality
continues.

Computer	science	has	developed	a	shorthand:	Big-O	notation	originated	in	the	1894	book	Die
analytische	zahlentheorie	by	Paul	Bachmann.	See	also	Donald	Knuth,	The	Art	of	Computer
Programming,	§1.2.11.1.	Formally,	we	say	that	the	runtime	of	an	algorithm	is	O(f(n))	if	it	is	less	than	or
equal	to	a	multiple	(with	a	coefficient	that	is	a	positive	constant)	of	f(n).	There	is	also	the	kindred	“Big-
Omega”	notation,	with	Ω(f(n))	indicating	that	the	runtime	is	greater	than	or	equal	to	a	multiple	of	f(n),
and	“Big-Theta”	notation,	with	Θ(f(n))	meaning	the	runtime	is	both	O(f(n))	and	Ω(f(n)).

“He	had	me	at	Bubble	Sort”:	This	engineer	is	Dan	Siroker,	whom	we	met	earlier	in	chapter	2.	See,
e.g.,	“The	A/B	Test:	Inside	the	Technology	That’s	Changing	the	Rules	of	Business,”	Wired,	May	2012.

information	processing	began	in	the	US	censuses:	For	more	details,	see	Knuth,	The	Art	of	Computer
Programming,	§5.5.

to	demonstrate	the	power	of	the	stored-program	computer:	The	computer	was	the	EDVAC	machine,
and	at	the	time	von	Neumann’s	program	was	classified	as	top-secret	military	intelligence.	See	Knuth,
“Von	Neumann’s	First	Computer	Program.”

“Mergesort	is	as	important	in	the	history	of	sorting”:	Katajainen	and	Träff,	“A	Meticulous	Analysis
of	Mergesort	Programs.”

large-scale	industrial	sorting	problems:	The	current	records	for	sorting	are	hosted	at
http://sortbenchmark.org/.	As	of	2014,	a	group	from	Samsung	holds	the	record	for	sorting	the	most	data
in	a	minute—a	whopping	3.7	terabytes	of	data.	That’s	the	equivalent	of	almost	37	billion	playing	cards,
enough	to	fill	five	hundred	Boeing	747s	to	capacity,	putting	Zdeněk	Bradáč’s	human	record	for	sorting
cards	in	perspective.

167	books	a	minute:	Says	shipping	manager	Tony	Miranda,	“We	will	process—I	think	our	highest	is—
250	totes	in	one	hour.	Our	average	is	about	180	totes	in	one	hour.	Keep	in	mind,	each	tote	has	about	40-
plus	items	inside	of	it.”	From	“KCLS	AMH	Tour,”	November	6,	2007,
https://www.youtube.com/watch?v=4fq3CWsyde4.

http://sortbenchmark.org/
https://www.youtube.com/watch?v=4fq3CWsyde4

85,000	a	day:	“Reducing	operating	costs,”	American	Libraries	Magazine,	August	31,	2010,
http://www.americanlibrariesmagazine.org/aldirect/al-direct-september-1-2010.

“Fuhgeddaboutit”:	See	Matthew	Taub,	“Brooklyn	&	Manhattan	Beat	Washington	State	in	4th	Annual
‘Battle	of	the	Book	Sorters,’”	Brooklyn	Brief,	October	29,	2014,	http://brooklynbrief.com/4th-annual-
battle-book-sorters-pits-brooklyn-washington-state/.

the	best	we	can	hope	to	achieve:	A	set	of	n	items	can	have	precisely	n!	distinct	orderings,	so	a	sort
produces	exactly	log	n!	bits	of	information,	which	is	approximately	n	log	n	bits.	Recall	that	n!	is	n	×	(n
−	1)	×	…	×	2	×	1,	which	is	the	product	of	n	numbers,	of	which	n	is	the	largest.	Consequently,	n!	<	nn,	so
log	n!	<	log	nn,	which	then	gives	us	log	n!	<	n	log	n.	This	approximation	of	n	log	n	for	log	n!	is	called
“Stirling’s	approximation,”	named	for	eighteenth-century	Scottish	mathematician	James	Stirling.
Because	a	single	pairwise	comparison	yields	at	most	one	bit	of	information,	n	log	n	comparisons	are
needed	to	fully	resolve	our	uncertainty	about	which	of	the	n!	possible	orders	of	our	n	things	is	the	right
one.	For	more	detail,	see	Knuth,	The	Art	of	Computer	Programming,	§5.3.1.

“I	know	from	experience”:	Jordan	Ho,	personal	interview,	October	15,	2013.

a	paper	on	“email	overload”:	Whittaker	and	Sidner,	“Email	Overload.”

“sort	of	wasted	a	part	of	their	life”:	Steve	Whittaker,	personal	interview,	November	14,	2013.

“At	a	Lawn	Tennis	Tournament”:	Dodgson,	“Lawn	Tennis	Tournaments.”

an	awkward	take	on	triple	elimination:	For	a	computer-scientific	critique	of	Dodgson’s	tournament
proposal,	see	Donald	Knuth’s	discussion	of	“minimum-comparison	selection”	in	The	Art	of	Computer
Programming,	§5.3.3.

doesn’t	produce	a	full	ordering:	An	algorithm	that,	rather	than	ranking	all	of	the	items,	identifies	one
of	them	as	the	largest	or	second-largest	or	median,	etc.,	is	known	as	a	“selection”	algorithm,	rather	than
a	sorting	algorithm.

schedulers	for	Major	League	Baseball:	Trick	works	as	part	of	the	Sports	Scheduling	Group,	which	he
co-founded.	From	1981	to	2004,	the	schedule	for	Major	League	Baseball	was	constructed	by	hand,	by
the	remarkable	husband-and-wife	team	of	Henry	and	Holly	Stephenson.	ESPN	chronicled	the	story	of
the	Stephensons	in	a	short	film	directed	by	Joseph	Garner	titled	The	Schedule	Makers.

“uncertainty	is	delayed	in	its	resolution”:	Michael	Trick,	personal	interview,	November	26,	2013.

“practically	no	matter	who	they	are”:	Ibid.

“A	3:2	score	gives	the	winning	team”:	Tom	Murphy,	“Tuning	in	on	Noise?”	Published	June	22,	2014
on	the	“Do	the	Math”	blog:	http://physics.ucsd.edu/do-the-math/2014/06/tuning-in-on-noise/

recognizing	the	virtues	of	robustness	in	algorithms:	Ackley,	“Beyond	Efficiency.”

“bubble	sort	has	no	apparent	redeeming	features”:	Knuth,	The	Art	of	Computer	Programming,	§5.5.

The	winner	of	that	particular	honor:	Dave	Ackley,	personal	interview,	November	26,	2013.	See
Jones	and	Ackley,	“Comparison	Criticality	in	Sorting	Algorithms,”	and	Ackley,	“Beyond	Efficiency.”
For	more	about	Comparison	Counting	Sort	(also	sometimes	known	as	Round-Robin	Sort)	see	Knuth,
The	Art	of	Computer	Programming,	§5.2.

“most	important	skill	as	a	professional	poker	player”:	Isaac	Haxton,	personal	interview,	February
20,	2014.

“Imagine	two	monkeys”:	Christof	Neumann,	personal	interview,	January	29,	2014.

“aggressive	acts	per	hen	increased”:	Craig,	Aggressive	Behavior	of	Chickens.

There’s	a	significant	computational	burden:	Jessica	Flack,	personal	interview,	September	10,	2014.
See	also	DeDeo,	Krakauer,	and	Flack,	“Evidence	of	Strategic	Periodicities	in	Collective	Conflict

http://www.americanlibrariesmagazine.org/aldirect/al-direct-september-1-2010
http://brooklynbrief.com/4th-annual-battle-book-sorters-pits-brooklyn-washington-state/
http://physics.ucsd.edu/do-the-math/2014/06/tuning-in-on-noise/

Dynamics”;	Daniels,	Krakauer,	and	Flack,	“Sparse	Code	of	Conflict	in	a	Primate	Society”;	Brush,
Krakauer,	and	Flack,	“A	Family	of	Algorithms	for	Computing	Consensus	About	Node	State	from
Network	Data.”	For	a	broader	overview	of	Flack’s	work,	see	Flack,	“Life’s	Information	Hierarchy.”

This	sporting	contest	is	the	marathon:	The	marathon	has	an	analogue	in	the	world	of	sorting
algorithms.	One	of	the	more	intriguing	(Wikipedia	used	the	word	“esoteric”	before	the	article	was
removed	entirely)	developments	in	beyond-comparison	sorting	theory	arose	from	one	of	the	most
unlikely	places:	the	notorious	Internet	message	board	4chan.	In	early	2011,	an	anonymous	post	there
proclaimed:	“Man,	am	I	a	genius.	Check	out	this	sorting	algorithm	I	just	invented.”	The	poster’s
“sorting	algorithm”—Sleep	Sort—creates	a	processing	thread	for	each	unsorted	item,	telling	each
thread	to	“sleep”	the	number	of	seconds	of	its	value,	and	then	“wake	up”	and	output	itself.	The	final
output	should,	indeed,	be	sorted.	Leaving	aside	the	implementation	details	that	reveal	the	cracks	in
Sleep	Sort’s	logic	and	just	taking	Sleep	Sort	on	face	value,	it	does	seem	to	promise	something	rather
intoxicating:	a	sort	whose	runtime	doesn’t	depend	on	the	number	of	elements	at	all,	but	rather	on	their
size.	(Thus	it’s	still	not	quite	as	good	as	a	straight-up	O(1)	constant-time	sort.)

“You	go	to	the	money”:	This	is	articulated	by	British	entrepreneur	Alexander	Dean	at
https://news.ycombinator.com/item?id=8871524.

“the	bigger	one	is	the	dominant	one”:	The	Law	of	Gross	Tonnage,	it	seems,	really	does	rule	the
ocean.	This	is	not	to	say	fish	are	entirely	pacifistic.	It’s	worth	noting	that	they	will	fight—aggressively
—when	their	sizes	are	similar.
4.	CACHING

“In	the	practical	use	of	our	intellect”:	James,	Psychology.

Now	you	have	two	problems:	This	construction	nods	to	a	famous	programming	joke	first	coined	by
Netscape	engineer	Jamie	Zawinski	in	a	Usenet	post	on	August	12,	1997:	“Some	people,	when
confronted	with	a	problem,	think	‘I	know,	I’ll	use	regular	expressions.’	Now	they	have	two	problems.”

“How	long	have	I	had	it?”:	Stewart,	Martha	Stewart’s	Homekeeping	Handbook.

“Hang	all	your	skirts	together”:	Jay,	The	Joy	of	Less.

“Items	will	be	sorted	by	type”:	Mellen,	Unstuff	Your	Life!

“a	very	sharp	consciousness	but	almost	no	memory”:	Davis,	Almost	No	Memory.

one	of	the	fundamental	principles	of	computing:	Our	history	of	caching	is	based	on	that	provided	by
Hennessy	and	Patterson,	Computer	Architecture,	which	also	has	a	great	treatment	of	modern	caching
methods	in	computer	design.

an	electrical	“memory	organ”:	Burks,	Goldstine,	and	von	Neumann,	Preliminary	Discussion	of	the
Logical	Design	of	an	Electronic	Computing	Instrument.

a	supercomputer	in	Manchester,	England,	called	Atlas:	Kilburn	et	al.,	“One-Level	Storage	System.”

“automatically	accumulates	to	itself	words”:	Wilkes,	“Slave	Memories	and	Dynamic	Storage
Allocation.”

implemented	in	the	IBM	360/85	supercomputer:	Conti,	Gibson,	and	Pitkowsky,	“Structural	Aspects
of	the	System/360	Model	85.”

number	of	transistors	in	CPUs	would	double	every	two	years:	Moore’s	initial	1965	prediction	in
“Cramming	More	Components	onto	Integrated	Circuits”	was	for	a	doubling	every	year;	in	1975	he	then
revised	this	in	“Progress	in	Digital	Integrated	Electronics”	to	be	a	doubling	every	two	years.

six-layer	memory	hierarchy:	Registers;	L1,	L2,	and	L3	caches;	RAM;	and	disk.	For	more	on	the
“memory	wall,”	see,	for	instance,	Wulf	and	McKee,	“Hitting	the	Memory	Wall.”

“not	to	have	useless	facts	elbowing	out	the	useful	ones”:	Conan	Doyle,	“A	Study	in	Scarlet:	The

https://news.ycombinator.com/item?id=8871524

Reminiscences	of	John	H.	Watson.”

“words	cannot	be	preserved	in	it	indefinitely”:	Wilkes,	“Slave	Memories	and	Dynamic	Storage
Allocation.”

Bélády	was	born	in	1928	in	Hungary:	Bélády’s	personal	history	is	based	on	an	oral	history	interview
he	conducted	with	Philip	L.	Frana	in	2002	(available	at
https://conservancy.umn.edu/bitstream/107110/1/oh352lab.pdf).	His	analysis	of	caching	algorithms	and
results	are	presented	in	Bélády,	“A	Study	of	Replacement	Algorithms	for	a	Virtual-Storage	Computer.”

the	most	cited	piece	of	computer	science	research	for	fifteen	years:	From	Bélády	himself:	“My	paper
written	in	1965	became	the	Citation	Index	most-referenced	paper	in	the	field	of	software	over	a	15-year
period.”	J.	A.	N.	Lee,	“Laszlo	A.	Belady,”	in	Computer	Pioneers,
http://history.computer.org/pioneers/belady.html.

LRU	consistently	performed	the	closest	to	clairvoyance:	A	couple	of	years	later,	Bélády	also	showed
that	FIFO	has	some	curious	additional	drawbacks—in	particular,	rare	cases	where	increasing	the	cache
size	can	actually	worsen	performance,	a	phenomenon	known	as	Bélády’s	Anomaly.	Bélády,	Nelson,	and
Shedler,	“An	Anomaly	in	Space-Time	Characteristics	of	Certain	Programs	Running	in	a	Paging
Machine.”

“the	digital	equivalent	of	shuffling	papers”:	Aza	Raskin,	“Solving	the	Alt-Tab	Problem,”
http://www.azarask.in/blog/post/solving-the-alt-tab-problem/.

The	literature	on	eviction	policies:	If	you’re	interested	in	trying	a	more	complex	caching	algorithm,
some	popular	variants	on	LRU	are	the	following:

•	LRU-K:	O’Neil,	O’Neil,	and	Weikum,	“The	LRU-K	Page	Replacement	Algorithm	for	Database
Disk	Buffering,”	which	looks	at	the	time	elapsed	since	the	K-th	most	recent	use	(which	is
maximal	for	items	in	the	cache	that	have	not	been	used	K	times).	This	introduces	a	frequency
bias.	LRU-2,	which	focuses	on	the	penultimate	use,	is	most	common.

•	2Q:	Johnson	and	Shasha,	“2Q:	A	Low	Overhead	High	Performance	Buffer	Management
Replacement	Algorithm,”	which	organizes	items	into	two	separate	“queues”	to	capture	a	little	bit
of	frequency	information.	Items	start	in	the	first	queue,	and	are	promoted	to	the	second	queue	if
they	are	referred	to	again	while	they	are	in	the	cache.	Items	are	evicted	from	this	second	queue
back	into	the	first	queue	using	LRU,	which	is	also	used	to	evict	items	from	the	first	queue.

•	LRFU:	Lee	et	al.,	“LRFU:	A	Spectrum	of	Policies	That	Subsumes	the	Least	Recently	Used	and
Least	Frequently	Used	Policies,”	which	combines	recency	and	frequency	by	assigning	a
numerical	score	to	each	item	that	is	incremented	when	the	item	is	used	but	decreases	gradually
over	time.

•	The	Adaptive	Replacement	Cache	(ARC):	Megiddo	and	Modha,	“Outperforming	LRU	with	an
Adaptive	Replacement	Cache	Algorithm,”	which	uses	two	queues	in	a	similar	fashion	to	2Q	but
adapts	the	length	of	the	queues	based	on	performance.

All	of	these	algorithms	have	been	shown	to	outperform	LRU	in	tests	of	cache-management
performance.

overwhelming	favorite	of	computer	scientists:	For	instance,	Pavel	Panchekha	wrote	an	article	in	2012
for	the	Dropbox	blog	where	he	lays	out	Dropbox’s	reasoning	for	using	LRU,	at
https://tech.dropbox.com/2012/10/caching-in-theory-and-practice/.

Deep	within	the	underground	Gardner	Stacks:	For	those	curious	to	know	exactly	what	UC	Berkeley
students	had	been	reading	when	we	visited:	Thoreau’s	Walden;	critical	texts	on	Song	of	Myself,	Cormac
McCarthy,	James	Merrill,	Thomas	Pynchon,	Elizabeth	Bishop,	J.	D.	Salinger,	Anaïs	Nin,	and	Susan
Sontag;	Drown	by	Junot	Díaz;	Telegraph	Avenue	and	The	Yiddish	Policemen’s	Union	by	Michael

https://conservancy.umn.edu/bitstream/107110/1/oh352lab.pdf
http://history.computer.org/pioneers/belady.html
http://www.azarask.in/blog/post/solving-the-alt-tab-problem/
https://tech.dropbox.com/2012/10/caching-in-theory-and-practice/

Chabon;	Bad	Dirt	and	Bird	Cloud	by	Annie	Proulx;	Mr.	and	Mrs.	Baby	by	Mark	Strand;	The	Man	in	the
High	Castle	by	Philip	K.	Dick;	the	collected	poetry	and	prose	of	William	Carlos	Williams;	Snuff	by
Chuck	Palahniuk;	Sula	by	Toni	Morrison;	Tree	of	Smoke	by	Denis	Johnson;	The	Connection	of
Everyone	with	Lungs	by	Juliana	Spahr;	The	Dream	of	the	Unified	Field	by	Jorie	Graham;	Naked,	Me
Talk	Pretty	One	Day,	and	Dress	Your	Family	in	Corduroy	and	Denim	by	David	Sedaris;	Ariel	by	Sylvia
Plath	and	Oleanna	by	David	Mamet;	D.	T.	Max’s	biography	of	David	Foster	Wallace;	Like	Something
Flying	Backwards,	Translations	of	the	Gospel	Back	into	Tongues,	and	Deepstep	Come	Shining	by	C.	D.
Wright;	the	prose	of	T.	S.	Eliot;	Eureka	by	Edgar	Allan	Poe;	Billy	Budd,	Sailor	and	a	collection	of	short
works	in	poetry	and	prose	by	Herman	Melville;	The	Aspern	Papers,	The	Portrait	of	a	Lady,	and	The
Turn	of	the	Screw	by	Henry	James;	Harold	Bloom	on	Billy	Budd,	Benito	Cereno,	and	“Bartleby	the
Scrivener”;	the	plays	of	Eugene	O’Neill;	Stardust	by	Neil	Gaiman;	Reservation	Blues	by	Sherman
Alexie;	No	Country	for	Old	Men	by	Cormac	McCarthy;	and	more.

“twelve	years,	that’s	the	cutoff”:	Elizabeth	Dupuis,	personal	interview,	September	16,	2014.

“on	the	scale	of	a	mile	to	the	mile!”:	Carroll,	Sylvie	and	Bruno	Concluded.

A	quarter	of	all	Internet	traffic:	Stephen	Ludin,	“Akamai:	Why	a	Quarter	of	the	Internet	Is	Faster	and
More	Secure	than	the	Rest,”	lecture,	March	19,	2014,	International	Computer	Science	Institute,
Berkeley,	California.	As	Akamai	claims	on	their	own	site,	“Akamai	delivers	between	15–30%	of	all
Web	traffic”	(http://www.akamai.com/html/about/facts_figures.html).

“distance	matters”:	Ludin,	“Akamai.”

eschew	any	type	of	human-comprehensible	organization:	Amazon’s	“chaotic	storage”	system	is
described	here:	http://www.ssi-schaefer.de/blog/en/order-picking/chaotic-storage-amazon/.

Amazon	was	granted	a	patent:	The	patent	on	preshipping	commonly	requested	items	is	US	Patent	No.
8,615,473,	granted	December	24,	2013,	“Method	and	system	for	anticipatory	package	shipping”	by	Joel
R.	Spiegel,	Michael	T.	McKenna,	Girish	S.	Lakshman,	and	Paul	G.	Nordstrom,	on	behalf	of	Amazon
Technologies	Inc.

which	the	press	seized	upon:	See,	e.g.,	Connor	Simpson,	“Amazon	Will	Sell	You	Things	Before	You
Know	You	Want	to	Buy	Them,”	The	Wire,	January	20,	2014,
http://www.thewire.com/technology/2014/01/amazon-thinks-it-can-predict-your-future/357188/;	Chris
Matyszczyk,	“Amazon	to	Ship	Things	Before	You’ve	Even	Thought	of	Buying	Them?,”	CNET,	January
19,	2014,	http://www.cnet.com/news/amazon-to-ship-things-before-youve-even-thought-of-buying-
them/.

each	state’s	“Local	Favorites”	from	Netflix:	Micah	Mertes,	“The	United	States	of	Netflix	Local
Favorites,”	July	10,	2011,	http://www.slacktory.com/2011/07/united-states-netflix-local-favorites/.

the	enormous	files	that	comprise	full-length	HD	video:	In	2012,	Netflix	announced	that	it	was	tired
of	paying	firms	like	Akamai	and	had	started	building	its	own	global	CDN.	See	Eric	Savitz,	“Netflix
Shifts	Traffic	to	Its	Own	CDN,”	Forbes,	June	5,	2012,
http://www.forbes.com/sites/ericsavitz/2012/06/05/netflix-shifts-traffic-to-its-own-cdn-akamai-
limelight-shrs-hit/.	More	information	about	Netflix’s	Open	Connect	CDN	can	be	found	at
https://www.netflix.com/openconnect.

“Caching	is	such	an	obvious	thing”:	John	Hennessy,	personal	interview,	January	9,	2013.

“a	crate	on	the	floor	of	my	front	coat	closet”:	Morgenstern,	Organizing	from	the	Inside	Out.

“extra	vacuum	cleaner	bags	behind	the	couch”:	Jones,	Keeping	Found	Things	Found.

search	engines	from	a	cognitive	perspective:	See	Belew,	Finding	Out	About.

recommended	the	use	of	a	valet	stand:	Rik	Belew,	personal	interview,	October	31,	2013.

“a	very	fundamental	principle	in	my	method”:	Yukio	Noguchi,	personal	interview,	December	17,

http://www.akamai.com/html/about/facts_figures.html
http://www.ssi-schaefer.de/blog/en/order-picking/chaotic-storage-amazon/
http://www.thewire.com/technology/2014/01/amazon-thinks-it-can-predict-your-future/357188/
http://www.cnet.com/news/amazon-to-ship-things-before-youve-even-thought-of-buying-them/
http://www.slacktory.com/2011/07/united-states-netflix-local-favorites/
http://www.forbes.com/sites/ericsavitz/2012/06/05/netflix-shifts-traffic-to-its-own-cdn-akamai-limelight-shrs-hit/
https://www.netflix.com/openconnect

2013.

the	“super”	filing	system	was	born:	Noguchi’s	filing	system	is	described	in	his	book	Super	Organized
Method,	and	was	initially	presented	in	English	by	the	translator	William	Lise.	The	blog	article
describing	the	system	is	no	longer	available	on	Lise’s	site,	but	it	can	still	be	visited	via	the	Internet
Archive	at	https://web.archive.org/web/20031223072329/http://www.lise.jp/honyaku/noguchi.html.
Further	information	comes	from	Yukio	Noguchi,	personal	interview,	December	17,	2013.

The	definitive	paper	on	self-organizing	lists:	Sleator	and	Tarjan,	“Amortized	Efficiency	of	List
Update	and	Paging	Rules,”	which	also	provided	the	clearest	results	on	the	theoretical	properties	of	the
LRU	principle.

“God’s	algorithm	if	you	will”:	Robert	Tarjan,	personal	interview,	December	17,	2013.

if	you	follow	the	LRU	principle:	This	application	of	the	LRU	principle	to	self-organizing	lists	is
known	as	the	Move-to-Front	algorithm.

not	merely	efficient.	It’s	actually	optimal:	This	doesn’t	mean	you	must	entirely	give	up	on
categorization.	If	you	want	to	make	things	a	bit	more	gaudy	and	speed	up	the	search	process,	Noguchi
suggests	putting	colored	tabs	on	files	that	fall	into	different	categories.	That	way	if	you	know	you’re
looking	for,	say,	accounts,	you	can	restrict	your	linear	search	to	just	those	items.	And	they	will	still	be
sorted	according	to	the	Move-to-Front	Rule	within	each	category.

the	information	retrieval	systems	of	university	libraries:	Anderson’s	findings	on	human	memory	are
published	in	Anderson	and	Milson,	“Human	Memory,”	and	in	the	book	The	Adaptive	Character	of
Thought.	This	book	has	been	influential	for	laying	out	a	strategy	for	analyzing	everyday	cognition	in
terms	of	ideal	solutions,	used	by	Tom	and	many	others	in	their	research.	Anderson	and	Milson,	“Human
Memory,”	in	turn,	draws	from	a	statistical	study	of	library	borrowing	that	appears	in	Burrell,	“A	Simple
Stochastic	Model	for	Library	Loans.”

the	missing	piece	in	the	study	of	the	mind:	Anderson’s	initial	exploration	of	connections	between
information	retrieval	by	computers	and	the	organization	of	human	memory	was	conducted	in	an	era
when	most	people	had	never	interacted	with	an	information	retrieval	system,	and	the	systems	in	use
were	quite	primitive.	As	search	engine	research	has	pushed	the	boundaries	of	what	information	retrieval
systems	can	do,	it’s	created	new	opportunities	for	discovering	parallels	between	minds	and	machines.
For	example,	Tom	and	his	colleagues	have	shown	how	ideas	behind	Google’s	PageRank	algorithm	are
relevant	to	understanding	human	semantic	memory.	See	Griffiths,	Steyvers,	and	Firl,	“Google	and	the
Mind.”

“I	saw	that	framework	laid	out	before	me”:	Anderson,	The	Adaptive	Character	of	Thought.

analyzed	three	human	environments:	The	analysis	of	the	environment	of	human	memory	is	presented
in	Anderson	and	Schooler,	“Reflections	of	the	Environment	in	Memory.”

reality	itself	has	a	statistical	structure:	“Human	memory	mirrors,	with	a	remarkable	degree	of	fidelity,
the	structure	that	exists	in	the	environment.”	Ibid.

“fail	to	appreciate	the	task	before	human	memory”:	Ibid.

“A	big	book	is	a	big	nuisance”:	The	quotation	in	Greek	is	“μέγα	βιβλίον	μέγα	κακόν”	(mega	biblion,
mega	kakon),	which	has	also	been	translated	as	“Big	book,	big	evil.”	The	original	reference	is	intended
as	a	disparagement	of	epic	poetry,	but	presumably	being	a	scholar	at	a	time	when	books	were	in	the
form	of	scrolls	dozens	of	feet	long	meant	that	big	books	were	a	nuisance	in	more	ways	than	aesthetic.
There’s	a	reason	why	the	practice	of	citation	and	quotation	didn’t	properly	begin	until	books	came	in
codices	with	numbered	pages.	For	an	excellent	recounting	of	this	history,	see	Boorstin,	The	Discoverers.

“If	you	make	a	city	bigger”:	John	Hennessy,	personal	interview,	January	9,	2014.

an	unavoidable	consequence	of	the	amount	of	information:	Ramscar	et	al.,	“The	Myth	of	Cognitive

https://web.archive.org/web/20031223072329/http://www.lise.jp/honyaku/noguchi.html

Decline.”

“minds	are	natural	information	processing	devices:”	Michael	Ramscar,	“Provider	Exclusive:
Michael	Ramscar	on	the	‘Myth’	of	Cognitive	Decline,”	interview	with	Bill	Myers,	February	19,	2014.
http://www.providermagazine.com/news/Pages/0214/Provider-Exclusive-Michael-Ramscar-On-The-
Myth-Of-Cognitive-Decline.aspx.
5.	SCHEDULING

“How	we	spend	our	days”:	Dillard,	The	Writing	Life.

“Book-writing,	like	war-making”:	Lawler,	“Old	Stories.”

“We	are	what	we	repeatedly	do”:	In	fact,	this	phrase,	frequently	attributed	to	Aristotle	himself,
originated	with	scholar	Will	Durant,	as	a	summary	(in	Durant’s	words)	of	Aristotle’s	thinking.	See
Durant,	The	Story	of	Philosophy.

any	task	of	two	minutes	or	less:	Allen,	Getting	Things	Done.

beginning	with	the	most	difficult	task:	Tracy,	Eat	That	Frog!	The	book	ascribes	its	titular	quotation
—“Eat	a	live	frog	first	thing	in	the	morning	and	nothing	worse	will	happen	to	you	the	rest	of	the	day”—
to	Mark	Twain,	although	this	attribution	may	be	apocryphal.	The	Quote	Investigator	website	cites
eighteenth-century	French	writer	Nicolas	Chamfort	as	the	more	likely	source.	See
http://quoteinvestigator.com/2013/04/03/eat-frog/	for	more.

first	scheduling	one’s	social	engagements:	Fiore,	The	Now	Habit.

“the	eternal	hanging	on	of	an	uncompleted	task”:	William	James,	in	a	letter	to	Carl	Stumpf,	January
1,	1886.

deliberately	not	doing	things	right	away:	Partnoy,	Wait.

developed	the	Gantt	charts:	The	role	of	Taylor	and	Gantt	in	the	history	of	scheduling	is	summarized
in	Herrmann,	“The	Perspectives	of	Taylor,	Gantt,	and	Johnson.”	Additional	biographical	details	on
Taylor	are	from	Kanigel,	The	One	Best	Way.

firms	like	Amazon,	IKEA,	and	SpaceX:	Gantt	chart	software	company	LiquidPlanner	boasts	Amazon,
IKEA,	and	SpaceX	among	its	clients	at	the	(counterintuitive)	URL	http://www.liquidplanner.com/death-
to-gantt-charts/.

first	hint	that	this	problem	even	could	be	solved:	Johnson’s	seminal	result	(on	what	is	now	called
“flowshop”	scheduling,	where	jobs	flow	from	one	machine	to	another)	appears	in	“Optimal	Two-	and
Three-Stage	Production	Schedules	with	Setup	Times	Included.”

start	with	the	task	due	soonest:	Earliest	Due	Date	(EDD),	also	known	as	Jackson’s	Rule,	was	derived
in	Jackson,	Scheduling	a	Production	Line	to	Minimize	Maximum	Tardiness.	James	R.	Jackson	grew	up
in	Los	Angeles	in	the	1930s,	and	through	his	work	with	UCLA’s	Logistics	Research	Project	spent	time
visiting	machine	shops	run	by	various	aerospace	companies	in	the	area.	His	thinking	about	how	jobs
moved	from	one	machine	to	another	ultimately	led	him	to	develop	a	mathematics	for	analyzing
“network	flows”—work	that	would	later	be	used	in	the	design	of	algorithms	for	routing	the	flow	of
traffic	on	the	Internet.	A	brief	biography	appears	in	Production	and	Operations	Management	Society,
“James	R.	Jackson.”

Moore’s	Algorithm:	Presented	in	Moore,	“An	N	Job,	One	Machine	Sequencing	Algorithm	for
Minimizing	the	Number	of	Late	Jobs.”	In	the	paper,	Moore	acknowledged	a	simplification	and
optimization	that	had	been	suggested	to	him	by	Thom	J.	Hodgson.	Today	the	terms	“Moore’s
Algorithm,”	“Hodgson’s	Algorithm,”	and	the	“Moore–Hodgson	Algorithm”	are	sometimes	used
interchangeably.

do	the	quickest	task	you	can:	Shortest	Processing	Time	(SPT),	or	Smith’s	Rule,	was	shown	to
minimize	the	sum	of	completion	times	in	Smith,	“Various	Optimizers	for	Single-Stage	Production.”

http://www.providermagazine.com/news/Pages/0214/Provider-Exclusive-Michael-Ramscar-On-The-Myth-Of-Cognitive-Decline.aspx
http://quoteinvestigator.com/2013/04/03/eat-frog/
http://www.liquidplanner.com/death-to-gantt-charts/

shows	up	in	studies	of	animal	foraging:	Stephens	and	Krebs,	Foraging	Theory.

known	as	the	“debt	snowball”:	In	the	popular	sphere,	author	and	speaker	Dave	Ramsey	is	perhaps	the
best-known	popularizer	and	advocate	of	the	“debt	snowball”	strategy,	and	has	garnered	many	supporters
and	detractors	alike.	On	the	academic	side,	a	2012	paper	by	business	school	researchers	at
Northwestern,	Gal	and	McShane,	“Can	Small	Victories	Help	Win	the	War?”	and	a	2014	paper	by
economists	at	Texas	A&M	Brown	and	Lahey,	Small	Victories,	for	instance,	have	looked	at	the	impact	of
“small	victories”	in	helping	people	get	out	of	consumer	debt.

an	obsessive-compulsive	vampire:	This	episode	is	Season	5,	Episode	12,	“Bad	Blood,”	which
originally	aired	February	22,	1998.

“a	tendency	to	pre-crastinate”:	Rosenbaum,	Gong,	and	Potts,	“Pre-Crastination.”

Reeves	would	blame	the	bug	on	“deadline	pressures”:	This	comes	from	an	email	dated	December
15,	1997,	from	Glenn	Reeves	to	his	colleagues,	subject	line	“What	really	happened	on	Mars?,”	available
online	at	http://research.microsoft.com/en-
us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html.

“If	you’re	flammable	and	have	legs”:	Hedberg’s	tale	can	be	found	on	his	1999	comedy	album
Strategic	Grill	Locations.

“Things	which	matter	most”:	The	first	appearance	of	this	quotation	in	English	seems	to	be	in	Covey,
How	to	Succeed	with	People,	where	it’s	attributed	to	Goethe	without	citation.

“That’s	how	I	get	things	done	every	day”:	Laura	Albert	McLay,	personal	interview,	September	16,
2014.

“Gene	was	postponing	something”:	Jan	Karel	Lenstra,	personal	interview,	September	2,	2014;	and
personal	correspondence.

Lawler	took	an	intriguingly	circuitous	route:	Lawler’s	biography	is	drawn	from	Lawler,	“Old
Stories,”	and	Lenstra,	“The	Mystical	Power	of	Twoness.”

“the	social	conscience”	of	the	computer	science	department:	Richard	Karp,	“A	Personal	View	of
Computer	Science	at	Berkeley,”	EECS	Department,	University	of	California,	Berkeley,
http://www.eecs.berkeley.edu/BEARS/CS_Anniversary/karp-talk.html.

an	award	in	Lawler’s	name:	See	http://awards.acm.org/lawler/.

build	the	schedule	back	to	front:	Lawler’s	analysis	of	precedence	constraints	for	the	maximum
lateness	problem	is	in	Lawler,	“Optimal	Sequencing	of	a	Single	Machine	Subject	to	Precedence
Constraints.”

it’s	what	the	field	calls	“intractable”:	This	analysis	is	in	Lawler,	“Sequencing	Jobs	to	Minimize	Total
Weighted	Completion	Time	Subject	to	Precedence	Constraints.”	More	precisely,	the	problem	is	“NP-
hard,”	meaning	it	has	no	known	efficient	solution,	and	might	never	have	one.

a	quest	to	map	the	entire	landscape	of	scheduling	theory:	The	quest	emerged	one	afternoon	in	1975,
as	Lawler,	Lenstra,	and	their	colleagues	Richard	Karp	and	Ben	Lageweg	sat	around	talking	scheduling
theory	in	the	Mathematisch	Centrum	in	Amsterdam.	Perhaps	it	was	the	“pungent	odors	of	malt	and
hops”	in	the	air	from	the	Amstel	brewery	next	door,	but	something	inspired	the	group	to	decide	that	a
book	containing	a	list	of	all	scheduling	problems	and	whether	they	had	been	solved	would	make	a	nice
gift	for	their	friend	and	colleague	Alexander	Rinnooy	Kan,	who	was	about	to	defend	his	thesis.	(This
story	appears	in	Lawler,	“Old	Stories,”	and	Lenstra,	“The	Mystical	Power	of	Twoness.”)	Rinnooy	Kan
would	go	on	to	make	important	contributions	not	just	to	academia	but	also	to	the	Dutch	economy,	sitting
on	the	board	of	directors	at	ING	and	being	named	by	the	newspaper	De	Volkskrant	as	the	most
influential	person	in	the	Netherlands—three	years	in	a	row.	See	“Rinnooy	Kan	weer	invloedrijkste
Nederlander,”	De	Volkskrant,	December	4,	2009,	http://nos.nl/artikel/112743-rinnooy-kan-weer-

http://research.microsoft.com/en-us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html
http://www.eecs.berkeley.edu/BEARS/CS_Anniversary/karp-talk.html
http://awards.acm.org/lawler/
http://nos.nl/artikel/112743-rinnooy-kan-weer-invloedrijkste-nederlander.html

invloedrijkste-nederlander.html.

Lageweg	wrote	a	computer	program	that	generated	the	list,	enumerating	some	4,536	different
permutations	of	the	scheduling	problem:	every	possible	combination	of	metrics	(maximum	lateness,
number	of	late	jobs,	sum	of	completion	times,	etc.)	and	constraints	(weights,	precedence,	start	times,
and	so	on)	that	they	could	think	of.	Over	a	series	of	enthralling	days,	the	group	“had	the	pleasure	of
knocking	off	one	obscure	problem	type	after	another	in	rapid	succession.”

Their	organizational	schema	for	describing	the	zoo	of	scheduling	problems	was	a	language	“laced
with	shorthand,”	which	they	called	“Schedulese”	(Graham	et	al.,	“Optimization	and	Approximation	in
Deterministic	Sequencing”).	The	basic	idea	is	that	scheduling	problems	are	described	by	three	variables:
the	nature	of	the	machines	involved,	the	nature	of	the	jobs,	and	the	goal	of	scheduling.	These	three
variables	are	specified	in	that	order,	with	standard	codes	describing	factors	such	as	precedence
constraints,	preemption,	release	times,	and	the	goal.	For	example,	1|rj|∑Cj	(pronounced	“one-arejay-
sum-ceejay”)	represents	a	single	machine,	release	times,	and	the	goal	of	minimizing	the	sum	of
completion	times.	As	Eugene	Lawler	recounts:

An	immediate	payoff	was	the	consummate	ease	with	which	we	could	communicate	problem
types.	Visitors	to	our	offices	were	sometimes	baffled	to	hear	exchanges	such	as:	“Since	one-
arejay-sum-ceejay	is	NP-hard,	does	that	imply	that	one-preemption-arejay-sum-ceejay	is	NP-
hard,	too?”	“No,	that’s	easy,	remember?”	“Well,	one-deejay-sum-ceejay	is	easy	and	that	implies
one-preemption-deejay-sum-ceejay	is	easy,	so	what	do	we	know	about	one-preemption-arejay-
deejay-sum-ceejay?”	“Nothing.”

(In	formal	notation:	“Since	1|rj|∑	Cj	is	NP-hard,	does	that	imply	that	1|pmtn,	rj|∑	Cj	is	NP-hard,	too?”
“No,	that’s	easy,	remember?”	“Well,	1|dj|∑	Cj	is	easy	and	that	implies	1|pmtn,	dj|∑	Cj	is	easy,	so	what	do
we	know	about	1|pmtn,	rj,	dj|∑	Cj?”	“Nothing”	[Lawler	et	al.,	“A	Gift	for	Alexander!”;	see	also	Lawler,
“Old	Stories”].)

the	problem	becomes	intractable:	In	fact,	it’s	equivalent	to	the	“knapsack	problem,”	computer
science’s	most	famously	intractable	problem	about	how	to	fill	space.	The	connection	between	this
scheduling	problem	and	the	knapsack	problem	appears	in	Lawler,	Scheduling	a	Single	Machine	to
Minimize	the	Number	of	Late	Jobs.

a	certain	time	to	start	some	of	your	tasks:	What	we	are	calling	“start	times”	are	referred	to	in	the
literature	(we	think	somewhat	ambiguously)	as	“release	times.”	Lenstra,	Rinnooy	Kan,	and	Brucker,
“Complexity	of	Machine	Scheduling	Problems,”	showed	that	both	minimizing	sum	of	completion	times
and	minimizing	maximal	lateness	with	arbitrary	release	times	are	NP-hard.	The	case	of	minimizing	the
number	of	late	jobs	with	arbitrary	release	times	is	discussed	in	Lawler,	“Scheduling	a	Single	Machine	to
Minimize	the	Number	of	Late	Jobs.”

A	recent	survey:	Lawler	et	al.,	“Sequencing	and	Scheduling.”	The	most	recent	version	of	this	list	is
available	at	http://www.informatik.uni-osnabrueck.de/knust/class/.

with	a	fairly	straightforward	modification:	The	effect	of	preemption	on	minimizing	maximal	lateness
with	release	times	is	analyzed	in	Baker	et	al.,	“Preemptive	Scheduling	of	a	Single	Machine.”	The
problem	of	minimizing	the	sum	of	completion	times	with	release	times	and	preemption	is	analyzed	in
Schrage,	“A	Proof	of	the	Optimality	of	the	Shortest	Remaining	Processing	Time	Discipline”	and	Baker,
Introduction	to	Sequencing	and	Scheduling.

still	the	preemptive	version	of	Earliest	Due	Date:	The	result	for	minimizing	expected	maximum
lateness	by	choosing	the	job	with	earliest	due	date	is	discussed	in	Pinedo,	Scheduling.

the	preemptive	version	of	Shortest	Processing	Time:	The	effectiveness	of	choosing	the	job	with	the
weighted	shortest	expected	processing	time	for	minimizing	the	sum	of	weighted	completion	times	in	a

http://www.informatik.uni-osnabrueck.de/knust/class/

dynamic	setting	(provided	the	estimate	of	the	time	to	complete	a	job	is	nonincreasing	in	the	duration
worked	on	that	job)	was	shown	by	Sevcik,	“Scheduling	for	Minimum	Total	Loss	Using	Service	Time
Distributions,”	as	part	of	a	more	general	strategy	for	dynamic	scheduling.

sum	of	the	weighted	lateness	of	those	jobs:	Pinedo,	“Stochastic	Scheduling	with	Release	Dates	and
Due	Dates,”	showed	that	this	algorithm	is	optimal	for	these	problems	under	the	(fairly	strong)
assumption	that	the	times	of	jobs	follow	a	memoryless	distribution,	which	means	that	your	estimate	of
how	long	they	will	take	remains	constant	no	matter	how	long	you	have	been	doing	them.	In	stochastic
scheduling,	optimal	algorithms	won’t	necessarily	be	ideal	for	every	possible	workload,	but	rather
minimize	the	expected	values	of	their	relevant	metrics.

“Replace	‘plan’	with	‘guess’”:	Jason	Fried,	“Let’s	just	call	plans	what	they	are:	guesses,”	July	14,
2009,	https://signalvnoise.com/posts/1805-lets-just-call-plans-what-they-are-guesses.

“You	must	not	get	off	the	train”:	Ullman,	“Out	of	Time.”

can	include	both	delays	and	errors:	Monsell,	“Task	Switching.”

“I’ll	just	do	errands	instead”:	Kirk	Pruhs,	personal	interview,	September	4,	2014.

“You	have	part	of	my	attention”:	The	Social	Network,	screenplay	by	Aaron	Sorkin;	Columbia
Pictures,	2010.

“Nobody	knew	anything	about	that”:	Peter	Denning,	personal	interview,	April	22,	2014.

“caused	a	complete	collapse	of	service”:	Denning,	“Thrashing:	Its	Causes	and	Prevention.”

“The	caches	are	warm	for	the	current	workload”:	Peter	Zijlstra,	personal	interview,	April	17,	2014.

any	situation	where	the	system	grinds	to	a	halt:	Thrashing	can	also	take	place	in	database	systems,
where	the	competition	between	different	processes	to	acquire	“locks”	to	access	the	database	can	swamp
the	system’s	ability	to	let	the	processes	currently	holding	the	locks	get	anything	done.	Similarly,
thrashing	can	appear	in	networking	contexts,	where	a	cacophony	of	different	signals	competing	for	the
network	channel	can	prevent	anything	at	all	from	getting	through.	We’ll	take	a	closer	look	at	the	latter
scenario	in	chapter	10.

replaced	their	scheduler:	The	“O(n)	Scheduler”	used	by	Linux	starting	with	version	2.4	in	2001	sorted
all	processes	by	priority,	which	took	longer	the	more	processes	there	were.	This	was	scrapped	in	favor
of	the	“O(1)	Scheduler”	starting	with	Linux	2.6	in	2003,	which	bucket-sorted	all	processes	into	a
predetermined	number	of	buckets,	regardless	of	how	many	processes	there	were.	However,	doing	this
bucket	sort	required	computing	complex	heuristics,	and	beginning	with	Linux	2.6.23	in	2007,	the	“O(1)
Scheduler”	was	replaced	with	the	even	more	straightforward	“Completely	Fair	Scheduler.”

In	Linux	this	minimum	useful	slice:	This	value	is	defined	in	the	Linux	kernel’s	“Completely	Fair
Scheduler”	in	the	variable	sysctl_sched_min_granularity.

Methods	such	as	“timeboxing”	or	“pomodoros”:	Timeboxing	has	been	written	about	widely	in	the
context	of	the	management	of	software	development	teams;	the	term	“timeboxing”	appears	to	originate
with	Zahniser,	“Timeboxing	for	Top	Team	Performance.”	The	“Pomodoro	Technique,”	whose	name
comes	from	a	tomato-shaped	kitchen	timer	(the	Italian	word	for	tomato	being	pomodoro),	was	devised
by	Francesco	Cirillo	in	the	late	1980s	and	has	been	taught	by	Cirillo	starting	in	1998.	See,	e.g.,	Cirillo,
The	Pomodoro	Technique.

programmers	have	turned	to	psychology:	E.g.,	Peter	Zijlstra,	personal	interview,	April	17,	2014.

Computers	themselves	do	something	like	this:	Linux	added	support	for	timer	coalescing	in	2007;
Microsoft	included	it	in	Windows	starting	with	Windows	7	in	2009;	and	Apple	followed	suit	in	OS	X
Mavericks	in	2013.

“just	a	one-line	bug	in	your	algorithm”:	Peter	Norvig,	personal	interview,	September	17,	2014.

https://signalvnoise.com/posts/1805-lets-just-call-plans-what-they-are-guesses

“I	don’t	swap	in	and	out”:	Shasha	and	Lazere,	Out	of	Their	Minds,	101.

“my	role	is	to	be	on	the	bottom	of	things”:	Donald	Knuth,	“Knuth	versus	Email,”	http://www-cs-
faculty.stanford.edu/~uno/email.html.
6.	BAYES’S	RULE

“All	human	knowledge	is	uncertain”:	Bertrand	Russell,	Human	Knowledge:	Its	Scope	and	Limits,
1948,	p.	527.

There	he	saw	the	Berlin	Wall:	Gott,	“Implications	of	the	Copernican	Principle	for	Our	Future
Prospects.”

“The	Unreasonable	Effectiveness	of	Data”:	The	talk	was	derived	from	Halevy,	Norvig,	and	Pereira,
“The	Unreasonable	Effectiveness	of	Data.”

“these	arguments	must	be	probable	only”:	An	Enquiry	Concerning	Human	Understanding,	§IV,
“Sceptical	Doubts	Concerning	the	Operations	of	the	Understanding.”

Bayes’s	own	history:	Our	brief	biography	draws	on	Dale,	A	History	of	Inverse	Probability,	and
Bellhouse,	“The	Reverend	Thomas	Bayes.”

in	either	1746,	’47,	’48,	or	’49:	Bayes’s	legendary	paper,	undated,	had	been	filed	between	a	pair	of
papers	dated	1746	and	1749.	See,	e.g.,	McGrayne,	The	Theory	That	Would	Not	Die.

defense	of	Newton’s	newfangled	“calculus”:	An	Introduction	to	the	Doctrine	of	fluxions,	and	Defence
of	the	Mathematicians	against	the	Objections	of	the	Author	of	the	analyst,	so	far	as	they	are	assigned	to
affect	their	general	methods	of	Reasoning.

“deserves	to	be	preserved”:	Introduction	to	Bayes,	“An	Essay	Towards	Solving	a	Problem	in	the
Doctrine	of	Chances.”

“the	proportion	of	Blanks	to	Prizes”:	Appendix	to	ibid.

we	need	to	first	reason	forward:	To	be	precise,	Bayes	was	arguing	that	given	hypotheses	h	and	some
observed	data	d,	we	should	evaluate	those	hypotheses	by	calculating	the	likelihood	p(d|h)	for	each	h.
(The	notation	p(d|h)	means	the	“conditional	probability”	of	d	given	h—that	is,	the	probability	of
observing	d	if	h	is	true.)	To	convert	this	back	into	a	probability	of	each	h	being	true,	we	then	divide	by
the	sum	of	these	likelihoods.

Laplace	was	born	in	Normandy:	For	more	details	on	Laplace’s	life	and	work,	see	Gillispie,	Pierre-
Simon	Laplace.

distilled	down	to	a	single	estimate:	Laplace’s	Law	is	derived	by	working	through	the	calculation
suggested	by	Bayes—the	tricky	part	is	the	sum	over	all	hypotheses,	which	involves	a	fun	application	of
integration	by	parts.	You	can	see	a	full	derivation	of	Laplace’s	Law	in	Griffiths,	Kemp,	and	Tenenbaum,
“Bayesian	Models	of	Cognition.”	From	the	perspective	of	modern	Bayesian	statistics,	Laplace’s	Law	is
the	posterior	mean	of	the	binomial	rate	using	a	uniform	prior.

If	you	try	only	once	and	it	works	out:	You	may	recall	that	in	our	discussion	of	multi-armed	bandits
and	the	explore/exploit	dilemma	in	chapter	2,	we	also	touched	on	estimates	of	the	success	rate	of	a
process—a	slot	machine—based	on	a	set	of	experiences.	The	work	of	Bayes	and	Laplace	undergirds
many	of	the	algorithms	we	discussed	in	that	chapter,	including	the	Gittins	index.	Like	Laplace’s	Law,
the	values	of	the	Gittins	index	we	presented	there	assumed	that	any	probability	of	success	is	equally
likely.	This	implicitly	takes	the	expected	overall	win	rate	for	a	slot	machine	with	a	1–0	record	to	be	two-
thirds.

“no	more	consistent	or	conceivable	than	the	rest”:	An	Enquiry	Concerning	Human	Understanding,
§IV,	“Sceptical	Doubts	Concerning	the	Operations	of	the	Understanding.”

the	real	heavy	lifting	was	done	by	Laplace:	In	fairness,	an	influential	1950	paper	(Bailey,	Credibility

http://www-cs-faculty.stanford.edu/~uno/email.html

Procedures)	referred	to	“Laplace’s	Generalization	of	Bayes’s	Rule,”	but	it	didn’t	quite	stick.	Discoveries
being	named	after	somebody	other	than	their	discoverer	is	a	sufficiently	common	phenomenon	that
statistician	and	historian	Stephen	Stigler	has	asserted	that	it	should	be	considered	an	empirical	law—
Stigler’s	Law	of	Eponymy.	Of	course,	Stigler	wasn’t	the	first	person	to	discover	this;	he	assigns	the
credit	to	sociologist	Robert	K.	Merton.	See	Stigler,	“Stigler’s	Law	of	Eponymy.”

multiply	their	probabilities	together:	For	the	mathematically	inclined,	here’s	the	full	version	of
Bayes’s	Rule.	We	want	to	calculate	how	much	probability	to	assign	a	hypothesis	h	given	data	d.	We
have	prior	beliefs	about	the	probability	of	that	hypothesis	being	true,	expressed	in	a	prior	distribution
p(h).	What	we	want	to	compute	is	the	“posterior”	distribution,	p(h|d),	indicating	how	we	should	update
our	prior	distribution	in	light	of	the	evidence	provided	by	d.	This	is	given	by

where	h′	ranges	over	the	full	set	of	hypotheses	under	consideration.

“especially	about	the	future”:	The	uncertain	origins	of	this	saying	are	described	in	detail	in	Quote
Investigator,	“It’s	Difficult	to	Make	Predictions,	Especially	About	the	Future,”
http://quoteinvestigator.com/2013/10/20/no-predict/.

surprising	if	there	were	even	a	New	York	City:	The	New	Yorker	cover	is	Richard	McGuire,	“Time
Warp,”	November	24,	2014.	For	a	fascinating	and	more	detailed	analysis	of	the	probable	life	spans	of
cities	and	corporations,	see	the	work	of	Geoffrey	West	and	Luis	Bettencourt—e.g.,	Bettencourt	et	al.,
“Growth,	Innovation,	Scaling,	and	the	Pace	of	Life	in	Cities.”

a	flurry	of	critical	correspondence:	For	example,	see	Garrett	and	Coles,	“Bayesian	Inductive
Inference	and	the	Anthropic	Principles”	and	Buch,	“Future	Prospects	Discussed.”

a	raffle	where	you	come	in	knowing	nothing:	The	statistician	Harold	Jeffreys	would	later	suggest,
instead	of	Laplace’s	(w+1)⁄(n+2),	using	rather	(w+0.5)⁄(n+1),	which	results	from	using	an	“uninformative”
prior	rather	than	the	“uniform”	prior	(Jeffreys,	Theory	of	Probability;	Jeffreys,	“An	Invariant	Form	for
the	Prior	Probability	in	Estimation	Problems”).	One	method	for	defining	more	informative	priors	results
in	predictions	of	the	form	(w+w′+1)⁄(n+n′+2),	where	w′	and	n′	are	the	number	of	wins	and	attempts	for
similar	processes	in	your	past	experience	(for	details	see	Griffiths,	Kemp,	and	Tenenbaum,	“Bayesian
Models	of	Cognition”).	Using	this	rule,	if	you	had	previously	seen	100	lottery	drawings	with	only	10
winning	tickets	(w	=	10,	n	=	100),	your	estimate	after	seeing	a	single	winning	draw	for	this	new	lottery
would	be	a	much	more	reasonable	12/103	(not	far	from	10%).	Variants	on	Laplace’s	Law	are	used
extensively	in	computational	linguistics,	where	they	provide	a	way	to	estimate	the	probabilities	of
words	that	have	never	been	seen	before	(Chen	and	Goodman,	“An	Empirical	Study	of	Smoothing
Techniques	for	Language	Modeling”).

or	last	for	five	millennia:	For	a	quantity	like	a	duration,	which	ranges	from	0	to	∞,	the	uninformative
prior	on	times	t	is	the	probability	density	p(t)	∝	1/t.	Changing	the	scale—defining	a	new	quantity	s	that
is	a	multiple	of	t—doesn’t	change	the	form	of	this	distribution:	if	s	=	ct,	then	p(s)	∝	p(t	=	s/c)	∝	1/s.
This	means	that	it	is	scale-invariant.	Lots	more	information	on	uninformative	priors	appears	in	Jeffreys,
Theory	of	Probability,	and	Jeffreys,	“An	Invariant	Form	for	the	Prior	Probability	in	Estimation
Problems.”

the	Copernican	Principle	emerges:	This	was	shown	by	Gott,	“Future	Prospects	Discussed,”	in
responding	to	Buch,	“Future	Prospects	Discussed.”

determining	the	number	of	tramcars:	Jeffreys,	Theory	of	Probability,	§4.8.	Jeffreys	credits
mathematician	Max	Newman	for	bringing	the	problem	to	his	attention.

sought	to	estimate	the	number	of	tanks:	This	has	come	to	be	known	as	the	“German	Tank	Problem,”
and	has	been	documented	in	a	number	of	sources.	See,	e.g.,	Gavyn	Davies,	“How	a	Statistical	Formula

http://quoteinvestigator.com/2013/10/20/no-predict/

won	the	War,”	the	Guardian,	July	19,	2006,
http://www.theguardian.com/world/2006/jul/20/secondworldwar.tvandradio.

fruits	in	an	orchard:	For	instance,	the	2002	New	Zealand	Avocado	Growers	Association	Annual
Research	Report	found	that	“by	April,	fruit	size	profiles	were	normally	distributed	and	remained	so	for
the	remainder	of	the	monitored	period.”

The	average	population	of	a	town:	This	figure	comes	from	Clauset,	Shalizi,	and	Newman,	“Power-
Law	Distributions	in	Empirical	Data,”	which	in	turn	cites	the	2000	US	Census.

can	plausibly	range	over	many	scales:	The	general	form	of	a	power-law	distribution	on	a	quantity	t	is
p(t)	∝	t−γ,	where	the	value	of	γ	describes	how	quickly	the	probability	of	t	decreases	as	t	gets	larger.	As
with	the	uninformative	prior,	the	form	of	the	distribution	doesn’t	change	if	we	take	s	=	ct,	changing	the
scale.

a	domain	full	of	power	laws:	The	observation	that	wealth	is	distributed	according	to	a	power-law
function	is	credited	to	Pareto,	Cours	d’économie	politique.	Another	good	discussion	of	the	power-law
distributions	of	populations	and	incomes	is	Simon,	“On	a	Class	of	Skew	Distribution	Functions.”

The	mean	income	in	America:	The	mean	individual	adjusted	gross	income	(AGI),	derived	from	IRS
filings,	was	estimated	to	be	$55,688	for	the	2009	tax	year,	the	most	recent	year	for	which	an	estimate
was	available;	see	the	2011	working	paper	“Evaluating	the	Use	of	the	New	Current	Population	Survey’s
Annual	Social	and	Economic	Supplement	Questions	in	the	Census	Bureau	Tax	Model,”	available	at
https://www.census.gov/content/dam/Census/library/working-
papers/2011/demo/2011_SPM_Tax_Model.pdf,	which	in	turn	cites	data	from	the	US	Census	Bureau’s
2010	Current	Population	Survey	Annual	Social	and	Economic	Supplement.

two-thirds	of	the	US	population	make	less	than	the	mean	income:	The	cutoff	for	the	top	40%	of
AGI	in	2012	was	$47,475,	and	the	cutoff	for	the	top	30%	was	$63,222,	from	which	we	can	infer	that	an
AGI	of	$55,688	lands	at	approximately	the	top	33%.	See	Adrian	Dungan,	“Individual	Income	Tax
Shares,	2012,”	IRS	Statistics	of	Income	Bulletin,	Spring	2015,	available	at	https://www.irs.gov/pub/irs-
soi/soi-a-ints-id1506.pdf.

the	top	1%	make	almost	ten	times	the	mean:	The	cutoff	for	the	top	1%	was	an	AGI	of	$434,682	in
2012,	and	the	cutoff	for	the	top	0.01%	was	$12,104,014.	Ibid.

the	process	of	“preferential	attachment”:	A	good	general-audience	discussion	of	the	idea	of	power-
law	distributions	emerging	from	preferential	attachment	can	be	found	in	Barabási,	Linked.

“‘could	go	on	forever’	in	a	good	way?”:	Lerner,	The	Lichtenberg	Figures.

appropriate	prediction	strategy	is	a	Multiplicative	Rule:	All	the	prediction	rules	discussed	in	this
section	are	derived	in	Griffiths	and	Tenenbaum,	“Optimal	Predictions	in	Everyday	Cognition.”

poems	follow	something	closer	to	a	power-law:	Ibid.

formalized	the	spread	of	intervals:	Erlang	first	modeled	the	rate	of	phone	calls	appearing	on	a
network	using	a	Poisson	distribution	in	“The	Theory	of	Probabilities	and	Telephone	Conversations,”
and	in	turn	developed	the	eponymous	Erlang	distribution	for	modeling	the	intervals	between	arriving
calls	in	“Solution	of	Some	Problems	in	the	Theory	of	Probabilities	of	Significance	in	Automatic
Telephone	Exchanges.”	For	more	details	on	Erlang’s	life,	see	Heyde,	“Agner	Krarup	Erlang.”

odds	of	which	are	about	20	to	1:	To	be	precise,	the	odds	against	being	dealt	a	blackjack	hand	in	the
eponymous	game	are	exactly	2,652	to	128,	or	about	20.7	to	1.	To	see	the	derivation	of	why	this	leads	to
an	expectation	of	playing	20.7	hands	before	getting	it,	we	can	define	our	expectation	recursively:	either
we	land	blackjack	for	a	result	of	1,	or	we	don’t	(in	which	case	we’re	back	where	we	started	one	hand
later).	If	x	is	our	expectation,	x	=	1	+	(2524/2652)x,	where	2524/2652	is	our	chance	of	not	getting	dealt
blackjack.	Solving	for	x	gives	about	20.7.

http://www.theguardian.com/world/2006/jul/20/secondworldwar.tvandradio
https://www.census.gov/content/dam/Census/library/working-papers/2011/demo/2011_SPM_Tax_Model.pdf
https://www.irs.gov/pub/irs-soi/soi-a-ints-id1506.pdf

known	to	statisticians	as	“memoryless”:	Technically,	the	time	to	the	next	blackjack	follows	a
geometric	distribution	(similar	to	the	exponential	distribution	for	a	continuous	quantity),	which	is
constantly	decreasing,	rather	than	the	more	wing-like	Erlang	distribution	we	describe	in	the	main	text.
However,	both	can	yield	memoryless	predictions	under	the	right	circumstances.	If	we	encounter	a
particular	phenomenon	at	some	random	point	in	its	duration,	as	Gott	assumed	regarding	the	Berlin	Wall,
then	the	wing-like	Erlang	gives	us	memoryless	Additive	Rule	predictions.	And	if	we	continuously
observe	a	phenomenon	that	has	a	geometric	distribution,	as	in	playing	a	game	of	blackjack,	the	same
kind	of	Additive	Rule	predictions	result.

Kenny	Rogers	famously	advised:	“The	Gambler”	is	best	known	as	sung	by	Kenny	Rogers	on	his	1978
album	of	the	same	name,	but	it	was	originally	written	and	performed	by	Don	Schlitz.	The	Rogers
recording	of	the	song	would	go	on	to	reach	the	top	spot	on	the	Billboard	country	charts,	and	win	the
1980	Grammy	for	Best	Male	Country	Vocal	Performance.

“I	breathed	a	very	long	sigh	of	relief”:	Gould,	“The	Median	Isn’t	the	Message.”

asking	people	to	make	predictions:	Griffiths	and	Tenenbaum,	“Optimal	Predictions	in	Everyday
Cognition.”

people’s	prior	distributions	across	a	broad	swath:	Studies	have	examined,	for	example,	how	we
manage	to	identify	moving	shapes	from	the	patterns	of	light	that	fall	on	the	retina,	infer	causal
relationships	from	the	interactions	between	objects,	and	learn	the	meaning	of	new	words	after	seeing
them	just	a	few	times.	See,	respectively,	Weiss,	Simoncelli,	and	Adelson,	“Motion	Illusions	as	Optimal
Percepts”;	Griffiths	et	al.,	“Bayes	and	Blickets”;	Xu	and	Tenenbaum,	“Word	Learning	as	Bayesian
Inference.”

famous	“marshmallow	test”:	Mischel,	Ebbesen,	and	Raskoff	Zeiss,	“Cognitive	and	Attentional
Mechanisms	in	Delay	of	Gratification.”

all	depends	on	what	kind	of	situation:	McGuire	and	Kable,	“Decision	Makers	Calibrate	Behavioral
Persistence	on	the	Basis	of	Time-Interval	Experience,”	and	McGuire	and	Kable,	“Rational	Temporal
Predictions	Can	Underlie	Apparent	Failures	to	Delay	Gratification.”

grew	into	young	adults	who	were	more	successful:	Mischel,	Shoda,	and	Rodriguez,	“Delay	of
Gratification	in	Children.”

how	prior	experiences	might	affect	behavior:	Kidd,	Palmeri,	and	Aslin,	“Rational	Snacking.”

Carnegie	Hall	even	half	full:	According	to	figures	from	the	Aviation	Safety	Network	(personal
correspondence),	the	number	of	fatalities	“on	board	US-owned	aircraft	that	are	capable	of	carrying	12+
passengers,	also	including	corporate	jets	and	military	transport	planes”	during	the	period	2000–2014
was	1,369,	and	adding	the	2014	figure	again	to	estimate	deaths	in	2015	yields	a	total	estimate	of	1,393
through	the	end	of	2015.	Carnegie	Hall’s	famous	Isaac	Stern	Auditorium	seats	2,804;	see
http://www.carnegiehall.org/Information/Stern-Auditorium-Perelman-Stage/.

greater	than	the	entire	population	of	Wyoming:	According	to	the	National	Highway	Traffic	Safety
Administration,	543,407	people	died	in	car	accidents	in	the	United	States	in	the	years	2000–2013.	See
http://www-fars.nhtsa.dot.gov.	Repeating	the	2013	figure	to	estimate	deaths	in	2014	and	2015	yields	an
estimate	of	608,845	deaths	through	the	end	of	2015.	The	2014	population	of	Wyoming,	as	estimated	by
the	US	Census	Bureau,	was	584,153.	See	http://quickfacts.census.gov/qfd/states/56000.html.

gun	violence	on	American	news:	Glassner,	“Narrative	Techniques	of	Fear	Mongering.”
7.	OVERFITTING

“Marry—Marry—Marry	Q.E.D.”:	This	note	by	Darwin	is	dated	April	7,	1838;	see,	e.g.,	Darwin,	The
Correspondence	of	Charles	Darwin,	Volume	2:	1837–1843.

“Moral	or	Prudential	Algebra”:	Franklin’s	letter	to	Joseph	Priestley,	London,	September	19,	1772.

http://www.carnegiehall.org/Information/Stern-Auditorium-Perelman-Stage/
http://www-fars.nhtsa.dot.gov
http://quickfacts.census.gov/qfd/states/56000.html

“Anything	you	can	do	I	can	do	better”:	“Anything	You	Can	Do,”	composed	by	Irving	Berlin,	in
Annie	Get	Your	Gun,	1946.

what	you	know	and	what	you	don’t:	In	the	language	of	machine-learning	researchers:	the	“training”
and	the	“test.”

a	recent	study	conducted	in	Germany:	Lucas	et	al.,	“Reexamining	Adaptation	and	the	Set	Point
Model	of	Happiness.”

our	job	is	to	figure	out	the	formula:	For	math	aficionados,	we’re	trying	to	find	the	best	polynomial
function	for	capturing	this	relationship.	Taking	time	since	marriage	to	be	x	and	satisfaction	to	be	y,	the
one-predictor	model	is	y	=	ax	+	b.	The	two-predictor	model	is	y	=	ax2	+	bx	+	c,	and	the	nine-predictor
model	finds	the	best	coefficients	for	all	values	of	x	up	to	x9,	estimating	a	polynomial	of	degree	9.

through	each	and	every	point	on	the	chart:	In	fact,	it’s	a	mathematical	truth	that	you	can	always	draw
a	polynomial	of	degree	n	−	1	through	any	n	points.

people’s	baseline	level	of	satisfaction:	Lucas	et	al.,	“Reexamining	Adaptation	and	the	Set	Point	Model
of	Happiness.”

not	always	better	to	use	a	more	complex	model:	Statisticians	refer	to	the	various	factors	in	the	model
as	“predictors.”	A	model	that’s	too	simple,	such	as	a	straight	line	attempting	to	fit	a	curve,	is	said	to
exhibit	“bias.”	The	opposite	kind	of	systemic	error,	where	a	model	is	made	too	complicated	and
therefore	gyrates	wildly	because	of	small	changes	in	the	data,	is	known	as	“variance.”

The	surprise	is	that	these	two	kinds	of	errors—bias	and	variance—can	be	complementary.	Reducing
bias	(making	the	model	more	flexible	and	complicated)	can	increase	variance.	And	increasing	bias
(simplifying	the	model	and	fitting	the	data	less	tightly)	can	sometimes	reduce	variance.

Like	the	famous	Heisenberg	uncertainty	principle	of	particle	physics,	which	says	that	the	more	you
know	about	a	particle’s	momentum	the	less	you	know	about	its	position,	the	so-called	bias-variance
tradeoff	expresses	a	deep	and	fundamental	bound	on	how	good	a	model	can	be—on	what	it’s	possible	to
know	and	to	predict.	This	notion	is	found	in	various	places	in	the	machine-learning	literature.	See,	for
instance,	Geman,	Bienenstock,	and	Doursat,	“Neural	Networks	and	the	Bias/Variance	Dilemma,”	and
Grenander,	“On	Empirical	Spectral	Analysis	of	Stochastic	Processes.”

in	the	Book	of	Kings:	The	bronze	snake,	known	as	Nehushtan,	gets	destroyed	in	2	Kings	18:4.

“pay	good	money	to	remove	the	tattoos”:	Gilbert,	Stumbling	on	Happiness.

duels	less	than	fifty	years	ago:	If	you’re	not	too	fainthearted,	you	can	watch	video	of	a	duel	fought	in
1967	at	http://passerelle-production.u-bourgogne.fr/web/atip_insulte/Video/archive_duel_france.swf.

as	athletes	overfit	their	tactics:	For	an	interesting	example	of	very	deliberately	overfitting	fencing,	see
Harmenberg,	Epee	2.0.

“Incentive	structures	work”:	Brent	Schlender,	“The	Lost	Steve	Jobs	Tapes,”	Fast	Company,	May
2012,	http://www.fastcompany.com/1826869/lost-steve-jobs-tapes.

“whatever	the	CEO	decides	to	measure”:	Sam	Altman,	“Welcome,	and	Ideas,	Products,	Teams	and
Execution	Part	I,”	Stanford	CS183B,	Fall	2014,	“How	to	Start	a	Startup,”
http://startupclass.samaltman.com/courses/lec01/.

Ridgway	cataloged	a	host	of	such:	Ridgway,	“Dysfunctional	Consequences	of	Performance
Measurements.”

At	a	job-placement	firm:	In	this	tale,	Ridgway	is	himself	citing	Blau,	The	Dynamics	of	Bureaucracy.

“Friends	don’t	let	friends	measure	Page	Views”:	Avinash	Kaushik,	“You	Are	What	You	Measure,	So
Choose	Your	KPIs	(Incentives)	Wisely!”	http://www.kaushik.net/avinash/measure-choose-smarter-kpis-
incentives/.

http://passerelle-production.u-bourgogne.fr/web/atip_insulte/Video/archive_duel_france.swf
http://www.fastcompany.com/1826869/lost-steve-jobs-tapes
http://startupclass.samaltman.com/courses/lec01/
http://www.kaushik.net/avinash/measure-choose-smarter-kpis-incentives/

“dead	cops	were	found”:	Grossman	and	Christensen,	On	Combat.	See
http://www.killology.com/on_combat_ch2.htm.

officer	instinctively	grabbed	the	gun:	Ibid.

“If	you	can’t	explain	it	simply”:	This	quotation	is	frequently	attributed	to	Albert	Einstein,	although
this	attribution	is	likely	to	be	apocryphal.

Tikhonov	proposed	one	answer:	See,	e.g.,	Tikhonov	and	Arsenin,	Solution	of	Ill-Posed	Problems.

invented	in	1996	by	biostatistician	Robert	Tibshirani:	Tibshirani,	“Regression	Shrinkage	and
Selection	via	the	Lasso.”

human	brain	burns	about	a	fifth:	For	more	on	the	human	brain’s	energy	consumption	see,	e.g.,
Raichle	and	Gusnard,	“Appraising	the	Brain’s	Energy	Budget,”	which	in	turn	cites,	e.g.,	Clarke	and
Sokoloff,	“Circulation	and	Energy	Metabolism	of	the	Brain.”

brains	try	to	minimize	the	number	of	neurons:	Using	this	neurally	inspired	strategy	(known	as
“sparse	coding”),	researchers	have	developed	artificial	neurons	that	have	properties	similar	to	those
found	in	the	visual	cortex.	See	Olshausen	and	Field,	“Emergence	of	Simple-Cell	Receptive	Field
Properties.”

groundbreaking	“mean-variance	portfolio	optimization”:	The	work	for	which	Markowitz	was
awarded	the	Nobel	Prize	appears	in	his	paper	“Portfolio	Selection”	and	his	book	Portfolio	Selection:
Efficient	Diversification	of	Investments.

“I	split	my	contributions	fifty-fifty”:	Harry	Markowitz,	as	quoted	in	Jason	Zweig,	“How	the	Big
Brains	Invest	at	TIAA–CREF,”	Money	27(1):	114,	January	1998.

“less	information,	computation,	and	time”:	Gigerenzer	and	Brighton,	“Homo	Heuristicus.”

more	than	quadrupled	from	the	mid-1990s	to	2013:	From	Soyfoods	Association	of	North	America,
“Sales	and	Trends,”	http://www.soyfoods.org/soy-products/sales-and-trends,	which	in	turn	cites	research
“conducted	by	Katahdin	Ventures.”

“Nuts	are	trendy	now”:	Vanessa	Wong,	“Drinkable	Almonds,”	Bloomberg	Businessweek,	August	21,
2013.

an	astounding	three-hundred-fold	since	2004:	Lisa	Roolant,	“Why	Coconut	Water	Is	Now	a	$1
Billion	Industry,”	TransferWise,	https://transferwise.com/blog/2014-05/why-coconut-water-is-now-a-1-
billion-industry/.

“jumped	from	invisible	to	unavoidable”:	David	Segal,	“For	Coconut	Waters,	a	Street	Fight	for	Shelf
Space,”	New	York	Times,	July	26,	2014.

the	kale	market	grew	by	40%:	“Sales	of	Kale	Soar	as	Celebrity	Chefs	Highlight	Health	Benefits,”	The
Telegraph,	March	25,	2013

Pizza	Hut,	which	put	it	in	their	salad	bars:	Ayla	Withee,	“Kale:	One	Easy	Way	to	Add	More
Superfoods	to	Your	Diet,”	Boston	Magazine,	May	31,	2012.

early	vertebrates’	bodies	twisted	180	degrees:	Kinsbourne,	“Somatic	Twist.”	Further	discussion	of
body	and	organ	structure	in	primitive	vertebrates	can	be	found	in	Lowe	et	al.,	“Dorsoventral	Patterning
in	Hemichordates.”	A	more	approachable	overview	is	Kelly	Zalocusky,	“Ask	a	Neuroscientist:	Why
Does	the	Nervous	System	Decussate?,”	Stanford	Neuroblog,	December	12,	2013,
https://neuroscience.stanford.edu/news/ask-neuroscientist-why-does-nervous-system-decussate.

jawbones	were	apparently	repurposed:	See,	for	example,	“Jaws	to	Ears	in	the	Ancestors	of
Mammals,”	Understanding	Evolution,	http://evolution.berkeley.edu/evolibrary/article/evograms_05.

“the	premise	that	we	can’t	measure	what	matters”:	“The	Scary	World	of	Mr	Mintzberg,”	interview
with	Simon	Caulkin,	Guardian,	January	25,	2003,

http://www.killology.com/on_combat_ch2.htm
http://www.soyfoods.org/soy-products/sales-and-trends
https://transferwise.com/blog/2014-05/why-coconut-water-is-now-a-1-billion-industry/
https://neuroscience.stanford.edu/news/ask-neuroscientist-why-does-nervous-system-decussate
http://evolution.berkeley.edu/evolibrary/article/evograms_05

http://www.theguardian.com/business/2003/jan/26/theobserver.observerbusiness11.

“one’s	whole	life	like	a	neuter	bee”:	Darwin,	The	Correspondence	of	Charles	Darwin,	Volume	2:
1837–1843.

“When?	Soon	or	Late”:	Ibid.
8.	RELAXATION

“successfully	design	a	peptidic	inhibitor”:	Meghan	Peterson	(née	Bellows),	personal	interview,
September	23,	2014.

about	11107	possible	seating	plans:	More	precisely,	there	would	be	11107	possibilities	if	we	were
choosing	a	table	assignment	for	each	person	independently.	The	number	is	a	little	less	once	we	take	into
account	the	constraint	that	only	10	people	can	sit	at	each	table.	But	it’s	still	huge.

Bellows	was	pleased	with	the	computer’s	results:	The	formal	framework	that	Meghan	Bellows	used
to	solve	her	wedding	seating	chart	is	described	in	Bellows	and	Peterson,	“Finding	an	Optimal	Seating
Chart.”

Lincoln	worked	as	a	“prairie	lawyer”:	You	can	read	more	about	Lincoln’s	circuit	in	Fraker,	“The	Real
Lincoln	Highway.”

“the	postal	messenger	problem”:	Menger,	“Das	botenproblem,”	contains	a	lecture	given	by	Menger
on	the	subject	in	Vienna	on	February	5,	1930.	For	a	fuller	history	of	the	traveling	salesman	problem	see
Schrijver,	“On	the	History	of	Combinatorial	Optimization,”	as	well	as	Cook’s	very	readable	book	In
Pursuit	of	the	Traveling	Salesman.

fellow	mathematician	Merrill	Flood:	Flood,	“The	Traveling-Salesman	Problem.”

iconic	name	first	appeared	in	print:	Robinson,	On	the	Hamiltonian	Game.

“impossibility	results	would	also	be	valuable”:	Flood,	“The	Traveling-Salesman	Problem.”

“no	good	algorithm	for	the	traveling	salesman	problem”:	Edmonds,	“Optimum	Branchings.”

what	makes	a	problem	feasible:	Cobham,	“The	Intrinsic	Computational	Difficulty	of	Functions,”
explicitly	considers	the	question	of	what	should	be	considered	an	“efficient”	algorithm.	Similarly,
Edmonds,	“Paths,	Trees,	and	Flowers,”	explains	why	a	solution	to	a	difficult	problem	is	significant	and,
in	making	the	case	for	this	particular	solution,	establishes	a	general	framework	for	what	makes
algorithms	good.

the	field’s	de	facto	out-of-bounds	marker:	There	are,	in	fact,	algorithms	that	run	slower	than
polynomial	time	but	faster	than	exponential	time;	these	“superpolynomial”	runtimes	also	put	them
outside	the	set	of	efficient	algorithms.

either	efficiently	solvable	or	not:	The	set	of	efficiently	solvable	problems	in	computer	science	is	called
P,	short	for	“polynomial	time.”	The	controversially	liminal	set	of	problems,	meanwhile,	is	known	as
NP,	for	“nondeterministic	polynomial.”	Problems	in	NP	can	have	their	solutions	verified	efficiently
once	found,	but	whether	every	problem	that	can	be	easily	verified	can	also	be	easily	solved	is	unknown.
For	instance,	if	someone	shows	you	a	route	and	says	that	it’s	less	than	1,000	miles,	the	claim	is	easy	to
check—but	finding	a	route	less	than	1,000	miles,	or	proving	that	it’s	impossible,	is	another	feat	entirely.
The	question	of	whether	P	=	NP	(i.e.,	whether	it’s	possible	to	jump	efficiently	to	the	solutions	of	NP
problems)	is	the	greatest	unsolved	mystery	in	computer	science.

The	main	advance	toward	a	solution	has	been	the	demonstration	that	there	are	certain	problems	with
a	special	status:	if	one	of	them	can	be	solved	efficiently,	then	any	problem	in	NP	can	be	solved
efficiently	and	P	=	NP	(Cook,	“The	Complexity	of	Theorem-Proving	Procedures”).	These	are	known	as
“NP-hard”	problems.	In	the	absence	of	an	answer	to	whether	P	=	NP,	problems	in	NP	cannot	be	solved
efficiently,	which	is	why	we	refer	to	them	as	“intractable.”	(In	“A	Terminological	Proposal,”	Donald

http://www.theguardian.com/business/2003/jan/26/theobserver.observerbusiness11

Knuth	suggested	this	as	an	appropriate	label	for	NP-hard	problems,	in	addition	to	offering	a	live	turkey
to	anybody	who	could	prove	P	=	NP.)	The	intractable	scheduling	problems	that	Eugene	Lawler
encountered	in	chapter	5	fall	into	this	category.	An	NP-hard	problem	that	is	itself	in	NP	is	known	as
“NP-complete.”	See	Karp,	“Reducibility	Among	Combinatorial	Problems,”	for	the	classic	result
showing	that	a	version	of	the	traveling	salesman	problem	is	NP-complete,	and	Fortnow,	The	Golden
Ticket:	P,	NP,	and	the	Search	for	the	Impossible,	for	an	accessible	introduction	to	P	and	NP.

most	computer	scientists	believe	that	there	aren’t	any:	In	a	2002	survey	of	one	hundred	leading
theoretical	computer	scientists,	sixty-one	thought	P	≠	NP	and	only	nine	thought	P	=	NP	(Gasarch,	“The
P	=?	NP	Poll”).	While	proving	P	=	NP	could	be	done	by	exhibiting	a	polynomial-time	algorithm	for	an
NP-complete	problem,	proving	P	≠	NP	requires	making	complex	arguments	about	the	limits	of
polynomial-time	algorithms,	and	there	wasn’t	much	agreement	among	the	people	surveyed	about
exactly	what	kind	of	mathematics	will	be	needed	to	solve	this	problem.	But	about	half	of	them	did	think
the	issue	would	be	resolved	before	2060.

What’s	more,	many	other	optimization	problems:	This	includes	versions	of	vertex	cover	and	set
cover—two	problems	identified	as	belonging	to	NP	in	Karp,	“Reducibility	Among	Combinatorial
Problems,”	where	twenty-one	problems	were	famously	shown	to	be	in	this	set.	By	the	end	of	the	1970s,
computer	scientists	had	identified	some	three	hundred	NP-complete	problems	(Garey	and	Johnson,
Computers	and	Intractability),	and	the	list	has	grown	significantly	since	then.	These	include	some
problems	that	are	very	familiar	to	humans.	In	2003,	Sudoku	was	shown	to	be	NP-complete	(Yato	and
Seta,	“Complexity	and	Completeness”),	as	was	maximizing	the	number	of	cleared	rows	in	Tetris,	even
with	perfect	knowledge	of	future	pieces	(Demaine,	Hohenberger,	and	Liben-Nowell,	“Tetris	Is	Hard,
Even	to	Approximate”).	In	2012,	determining	whether	there	exists	a	path	to	the	end	of	the	level	in
platformer	games	like	Super	Mario	Brothers	was	officially	added	to	the	list	(Aloupis,	Demaine,	and
Guo,	“Classic	Nintendo	Games	are	(NP-)	Hard”).

“you	still	have	to	fight	it”:	Jan	Karel	Lenstra,	personal	interview,	September	2,	2014.

“The	perfect	is	the	enemy	of	the	good”:	Voltaire’s	couplet	Dans	ses	écrits,	un	sage	Italien	/	Dit	que	le
mieux	est	l’ennemi	du	bien	(“In	his	writings,	an	Italian	sage	/	Says	the	perfect	is	the	enemy	of	the
good”)	appears	at	the	start	of	his	poem	“La	Bégueule.”	Voltaire	had	earlier	cited	the	Italian	expression
“Le	meglio	è	l’inimico	del	bene”	in	his	1764	Dictionnaire	philosophique.

their	minds	also	turn	to	relaxation:	Shaw,	An	Introduction	to	Relaxation	Methods;	Henderson,
Discrete	Relaxation	Techniques.	Caveat	lector:	the	math	is	intense	enough	that	these	make	for	far-from-
relaxing	reading.

for	Lincoln’s	judicial	circuit:	The	towns	of	Lincoln’s	judicial	circuit	are	derived	from	the	1847–1853
map	of	the	8th	Judicial	Circuit	in	the	Journal	of	the	Abraham	Lincoln	Association.	See	http://quod.lib.u
mich.edu/j/jala/images/fraker_fig01a.jpg.

essentially	no	time	at	all:	Well,	okay,	a	little	bit	of	time—linear	in	the	number	of	cities	if	you’re	lucky,
linearithmic	if	you’re	not.	Pettie	and	Ramachandran,	“An	Optimal	Minimum	Spanning	Tree
Algorithm.”

the	spanning	tree,	with	its	free	backtracking:	Approaching	the	traveling	salesman	problem	via	the
minimum	spanning	tree	is	discussed	in	Christofides,	Worst-Case	Analysis	of	a	New	Heuristic.

visits	every	single	town	on	Earth:	For	more	on	the	state	of	the	art	in	the	all-world-cities	traveling
salesman	problem	(the	so-called	“World	TSP”),	an	up-to-date	report	can	be	found	at
http://www.math.uwaterloo.ca/tsp/world/.	For	more	on	the	traveling	salesman	problem	in	general,	Cook,
In	Pursuit	of	the	Traveling	Salesman,	is	a	good	general	reference,	and	Lawler	et	al.,	The	Traveling
Salesman	Problem,	will	satisfy	those	who	want	to	go	deeper.

finding	the	minimal	set	of	locations:	This	classic	discrete	optimization	problem	is	known	as	the	“set
cover”	problem.

http://quod.lib.umich.edu/j/jala/images/fraker_fig01a.jpg
http://www.math.uwaterloo.ca/tsp/world/

“when	you	can’t	do	half	of	this”:	Laura	Albert	McLay,	personal	interview,	September	16,	2014.

let	you	lick	the	fewest	envelopes:	In	computer	science,	this	is	known	as	the	“vertex	cover”	problem.
It’s	a	kind	of	cousin	to	the	set	cover	problem,	where	instead	of	seeking	the	smallest	number	of	fire
stations	whose	coverage	includes	everyone,	the	goal	is	to	find	the	smallest	number	of	people	who	are
connected	to	everyone	else.

solving	the	continuous	versions	of	these	problems:	There	are	certain	kinds	of	continuous	optimization
problems	that	can	be	solved	in	polynomial	time;	the	most	prominent	example	is	linear	programming
problems,	in	which	both	the	metric	to	be	optimized	and	the	constraints	on	the	solution	can	be	expressed
as	a	linear	function	of	the	variables	involved.	See	Khachiyan,	“Polynomial	Algorithms	in	Linear
Programming,”	and	Karmarkar,	“A	New	Polynomial-Time	Algorithm	for	Linear	Programming.”
However,	continuous	optimization	is	no	panacea:	there	are	also	classes	of	continuous	optimization
problems	that	are	intractable.	For	example,	see	Pardalos	and	Schnitger,	“Checking	Local	Optimality	in
Constrained	Quadratic	Programming	is	NP-hard.”

at	most	twice	as	many	invitations:	Khot	and	Regev,	“Vertex	Cover	Might	Be	Hard	to	Approximate	to
Within	2-ε.”

quickly	get	us	within	a	comfortable	bound:	For	more	on	these	approximations,	see	Vazirani,
Approximation	Algorithms.

not	a	magic	bullet:	It’s	still	an	open	question	within	the	field	whether	Continuous	Relaxation	even
offers	the	best	possible	approximation	for	the	minimum	vertex	cover	(party	invitations)	problem,	or
whether	better	approximations	can	be	found.

“Inconceivable!”:	The	Princess	Bride,	screenplay	by	William	Goldman;	20th	Century	Fox,	1987.

computational	technique	called	Lagrangian	Relaxation:	Lagrangian	Relaxation	(initially	spelled
“Lagrangean”)	was	given	its	name	by	Arthur	M.	Geoffrion	of	UCLA	in	“Lagrangean	Relaxation	for
Integer	Programming.”	The	idea	itself	is	considered	to	have	emerged	in	the	work	of	Michael	Held	(of
IBM)	and	Richard	Karp	(of	UC	Berkeley)	on	the	traveling	salesman	problem	in	1970—see	Held	and
Karp,	“The	Traveling-Salesman	Problem	and	Minimum	Spanning	Trees,”	and	Held	and	Karp,	“The
Traveling-Salesman	Problem	and	Minimum	Spanning	Trees:	Part	II.”	Earlier	precursors,	however,	also
exist—for	instance,	Lorie	and	Savage,	“Three	Problems	in	Rationing	Capital”;	Everett	III,	“Generalized
Lagrange	Multiplier	Method”;	and	Gilmore	and	Gomory,	“A	Linear	Programming	Approach	to	the
Cutting	Stock	Problem,	Part	II.”	For	an	overview	and	reflections	see	Fisher,	“The	Lagrangian
Relaxation	Method	for	Solving	Integer	Programming	Problems,”	as	well	as	Geoffrion,	“Lagrangian
Relaxation	for	Integer	Programming.”

“If	you	end	up	with	fractional	games”:	Michael	Trick,	personal	interview,	November	26,	2013.

“make-believe	can	never	be	reconciled”:	Christopher	Booker,	“What	Happens	When	the	Great
Fantasies,	Like	Wind	Power	or	European	Union,	Collide	with	Reality?,”	the	Telegraph,	April	9,	2011.
9.	RANDOMNESS

“why	and	how	is	absolutely	mysterious”:	Quoted	in	Shasha	and	Rabin,	“An	Interview	with	Michael
Rabin.”

a	randomized	algorithm	uses:	Randomized	algorithms	are	discussed	in	detail	in	Motwani	and
Raghavan,	Randomized	Algorithms,	and	Mitzenmacher	and	Upfal,	Probability	and	Computing.	Shorter
but	older	introductions	are	provided	by	Karp,	“An	Introduction	to	Randomized	Algorithms,”	and
Motwani	and	Raghavan,	“Randomized	Algorithms.”

an	interesting	probabilistic	analysis:	Buffon,	“Essai	d’arithmétique	morale.”

simply	by	dropping	needles	onto	paper:	Laplace,	Théorie	analytique	des	probabilités.

Lazzarini	supposedly	made	3,408	tosses:	Lazzarini,	“Un’applicazione	del	calcolo	della	probabilità.”

makes	Lazzarini’s	report	seem	suspicious:	For	further	discussion	of	Lazzarini’s	results,	see
Gridgeman,	“Geometric	Probability	and	the	Number	π,”	and	Badger,	“Lazzarini’s	Lucky
Approximation	of	π.”

he	had	contracted	encephalitis:	Ulam’s	story	appears	in	Ulam,	Adventures	of	a	Mathematician.

“the	test	of	a	first-rate	intelligence”:	Fitzgerald,	“The	Crack-Up.”	Later	collected	with	other	essays	in
The	Crack-Up.

“it	may	be	much	more	practical”:	Ulam,	Adventures	of	a	Mathematician,	pp.	196–197.	Calculating
the	winning	odds	for	Klondike	solitaire	remains	an	active	area	of	research	to	this	day,	driven	chiefly	by
Monte	Carlo	simulation.	For	an	example	of	recent	work	in	the	area,	see	Bjarnason,	Fern,	and	Tadepalli,
“Lower	Bounding	Klondike	Solitaire	with	Monte-Carlo	Planning.”

Metropolis	named	this	approach:	Metropolis	claims	the	naming	rights	in	a	letter	that	appears	in	Hurd,
“Note	on	Early	Monte	Carlo	Computations.”

descendant	of	a	long	line	of	rabbis:	Shasha	and	Lazere,	Out	of	Their	Minds.

multiple	paths	it	might	follow:	Rabin’s	key	paper	here,	coauthored	with	Dana	Scott,	was	“Finite
Automata	and	Their	Decision	Problems.”	We’ve	already	encountered	one	of	the	ways	that	this	concept
became	central	to	theoretical	computer	science	in	our	discussion	of	the	complexity	class	of	the	traveling
salesman	problem	in	chapter	8;	Rabin’s	notion	of	“nondeterministic”	computing	is	the	“N”	of	NP.

“one	of	the	most	obviously	useless	branches”:	The	quote	is	from	Hardy,	“Prime	Numbers”;	see	also
Hardy,	Collected	Works.	For	more	about	the	influence	of	prime	numbers	in	cryptography,	see,	e.g.,
Schneier,	Applied	Cryptography.

In	modern	encryption,	for	instance:	One	widely	used	algorithm	that	is	based	on	the	multiplication	of
prime	numbers	is	RSA,	which	stands	for	the	initials	of	its	inventors:	Ron	Rivest,	Adi	Shamir,	and
Leonard	Adleman.	See	Rivest,	Shamir,	and	Adleman,	“A	Method	for	Obtaining	Digital	Signatures	and
Public-Key	Cryptosystems.”	Other	cryptographic	systems—e.g.,	Diffie-Hellman—also	use	prime
numbers;	see	Diffie	and	Hellman,	“New	Directions	in	Cryptography.”

The	problem,	though,	is	false	positives:	The	possible	breakthrough—or	lack	thereof—in	Miller’s
approach	would	come	down	to	how	easily	these	false	positives	could	be	dismissed.	How	many	values	of
x	do	you	need	to	check	to	be	sure	about	a	given	number	n?	Miller	showed	that	if	the	“generalized
Riemann	hypothesis”	were	true,	the	minimum	number	of	potential	witnesses	that	would	need	to	be
checked	is	O((log	n)2)—far	less	than	the	 	required	by	algorithms	like	the	Sieve	of	Erastothenes.	But
here	was	the	hitch:	the	generalized	Riemann	hypothesis	was—and	still	is—unproven.

(The	Riemann	hypothesis,	first	offered	by	the	German	mathematician	Bernhard	Riemann	in	1859,
concerns	the	properties	of	a	complex	mathematical	function	called	the	Riemann	zeta	function.	This
function	is	intimately	related	to	the	distribution	of	prime	numbers,	and	in	particular	how	regularly	those
numbers	appear	on	the	number	line.	If	the	hypothesis	is	true,	then	primes	are	well	enough	behaved	as	to
guarantee	the	efficiency	of	Miller’s	algorithm.	But	nobody	knows	if	it’s	true.	In	fact,	the	Riemann
hypothesis	is	one	of	six	major	open	problems	in	mathematics	for	whose	solutions	the	Clay	Mathematics
Institute	will	award	a	“Millennium	Prize”	of	$1	million.	The	question	of	whether	P	=	NP,	which	we	saw
in	chapter	8,	is	also	a	Millennium	Prize	problem.)

“Michael,	this	is	Vaughan”:	Rabin	tells	this	story	in	Shasha	and	Lazere,	Out	of	Their	Minds.

quickly	identify	even	gigantic	prime	numbers:	Rabin’s	paper	on	his	primality	test,	“Probabilistic
Algorithm	for	Testing	Primality,”	appeared	a	few	years	later.	In	parallel,	Robert	Solovay	and	Volker
Strassen	had	developed	a	similar	probabilistic	algorithm	based	on	a	different	set	of	equations	that
primes	need	to	obey,	although	their	algorithm	was	less	efficient;	see	Solovay	and	Strassen,	“A	Fast
Monte-Carlo	Test	for	Primality.”

less	than	one	in	a	million	billion	billion:	The	documentation	for	OpenSSL	specifies	a	function	to
“perform	a	Miller-Rabin	probabilistic	primality	test	with	…	a	number	of	iterations	used	…	that	yields	a
false	positive	rate	of	at	most	2−80	for	random	input”;	see
https://www.openssl.org/docs/crypto/BN_generate_prime.html.	Likewise	the	US	Federal	Information
Processing	Standard	(FIPS)	specifies	that	its	Digital	Signature	Standard	(DSS)	accept	error	probability
of	2−80	(for	1,024-bit	keys,	at	least);	see	Gallagher	and	Kerry,	Digital	Signature	Standard.	Forty	Miller-
Rabin	tests	are	sufficient	to	achieve	this	bound,	and	work	from	the	1990s	has	suggested	that	in	many
cases	as	few	as	three	Miller-Rabin	tests	will	suffice.	See	Damgård,	Landrock,	and	Pomerance,	“Average
Case	Error	Estimates	for	the	Strong	Probable	Prime	Test”;	Burthe	Jr.,	“Further	Investigations	with	the
Strong	Probable	Prime	Test”;	and	Menezes,	Van	Oorschot,	and	Vanstone,	Handbook	of	Applied
Cryptography,	as	well	as	more	recent	discussion	at
http://security.stackexchange.com/questions/4544/how-many-iterations-of-rabin-miller-should-be-used-
to-generate-cryptographic-saf.

for	the	number	of	grains	of	sand:	The	number	of	grains	of	sand	on	Earth	is	estimated	from	various
sources	at	between	1018	and	1024.

whether	there	would	ever	be	an	efficient	algorithm:	Here	by	“efficient”	we	are	using	the	field’s
standard	definition,	which	is	“polynomial-time,”	as	discussed	in	chapter	8.

one	such	method	did	get	discovered:	Agrawal,	Kayal,	and	Saxena,	“PRIMES	Is	in	P.”

generate	some	random	xs	and	plug	them	in:	One	of	the	key	results	on	the	role	of	randomness	in
polynomial	identity	testing	is	what’s	called	the	“Schwartz–Zippel	lemma.”	See	Schwartz,	“Fast
Probabilistic	Algorithms	for	Verification	of	Polynomial	Identities”;	Zippel,	“Probabilistic	Algorithms
for	Sparse	Polynomials”;	and	DeMillo	and	Lipton,	“A	Probabilistic	Remark	on	Algebraic	Program
Testing.”

the	only	practical	one	we	have:	Will	an	efficient	deterministic	algorithm	for	polynomial	identity
testing	ever	be	found?	More	broadly,	does	an	efficient	deterministic	algorithm	have	to	exist	anyplace	we
find	a	good	randomized	one?	Or	could	there	be	problems	that	randomized	algorithms	can	solve
efficiently	but	that	deterministic	algorithms	simply	cannot?	It	is	an	interesting	problem	in	theoretical
computer	science,	and	the	asnwer	to	it	is	still	unknown.

One	of	the	approaches	that	has	been	used	to	explore	the	relationship	between	randomized	and
deterministic	algorithms	is	called	derandomization—essentially,	taking	randomized	algorithms	and
removing	the	randomness	from	them.	In	practice,	it’s	hard	for	a	computer	to	get	access	to	true
randomness—so	when	people	implement	a	randomized	algorithm,	they	often	use	a	deterministic
procedure	to	generate	numbers	that	obey	certain	statistical	properties	of	true	randomness.
Derandomization	makes	this	explicit,	examining	what	happens	when	the	randomness	in	randomized
algorithms	is	replaced	by	the	output	of	some	other	complex	computational	process.

The	study	of	derandomization	shows	that	it’s	possible	to	turn	efficient	randomized	algorithms	into
efficient	deterministic	algorithms—provided	you	can	find	a	function	that	is	sufficiently	complex	that	its
output	looks	random	but	sufficiently	simple	that	it	can	be	computed	efficiently.	For	(detailed)	details,
see	Impagliazzo	and	Wigderson,	“P	=	BPP	if	E	Requires	Exponential	Circuits,”	and	Impagliazzo	and
Wigderson,	“Randomness	vs.	Time.”

he	called	the	“veil	of	ignorance”:	The	veil	of	ignorance	is	introduced	in	Rawls,	A	Theory	of	Justice.

Rawls’s	philosophical	critics:	Most	prominent	among	Rawls’s	critics	was	economist	John	Harsanyi;
see,	e.g.,	Harsanyi,	“Can	the	Maximin	Principle	Serve	as	a	Basis	for	Morality?	A	Critique	of	John
Rawls’s	Theory.”

the	civilization	of	Omelas:	Le	Guin,	“The	Ones	Who	Walk	Away	from	Omelas.”

These	are	worthy	critiques:	For	more	on	what	is	sometimes	called	“the	repugnant	conclusion,”	see

https://www.openssl.org/docs/crypto/BN_generate_prime.html
http://security.stackexchange.com/questions/4544/how-many-iterations-of-rabin-miller-should-be-used-to-generate-cryptographic-saf

Parfit,	Reasons	and	Persons,	as	well	as,	for	instance,	Arrhenius,	“An	Impossibility	Theorem	in
Population	Axiology.”

“concern	of	engineers	rather	than	philosophers”:	Aaronson,	“Why	Philosophers	Should	Care	About
Computational	Complexity.”

“noticed	something	you	don’t	often	see”:	Rebecca	Lange,	“Why	So	Few	Stories?,”	GiveDirectly	blog,
November	12,	2014,	https://www.givedirectly.org/blog-post.html?id=2288694352161893466.

“I	mean	Negative	Capability”:	John	Keats,	letter	to	George	and	Thomas	Keats,	December	21,	1817.

“assurance	sufficient	for	the	purposes	of	human	life”:	John	Stuart	Mill,	On	Liberty	(1859).

“there	should	be	a	drinking	game”:	Michael	Mitzenmacher,	personal	interview.	November	22,	2013.

well	over	a	trillion	distinct	URLs:	“We	Knew	the	Web	Was	Big…”	July	25,	2008,
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html.

weighs	in	at	about	seventy-seven	characters:	Kelvin	Tan,	“Average	Length	of	a	URL	(Part	2),”
August	16,	2010,	http://www.supermind.org/blog/740/average-length-of-a-url-part-2.

the	URL	is	entered	into	a	set	of	equations:	Bloom,	“Space/Time	Trade-offs	in	Hash	Coding	with
Allowable	Errors.”

shipped	with	a	number	of	recent	web	browsers:	Google	Chrome	until	at	least	2012	used	a	Bloom
filter:	see	http://blog.alexyakunin.com/2010/03/nice-bloom-filter-application.html	and
https://chromiumcodereview.appspot.com/10896048/.

part	of	cryptocurrencies	like	Bitcoin:	Gavin	Andresen,	“Core	Development	Status	Report	#1,”
November	1,	2012,	https://bitcoinfoundation.org/2012/11/core-development-status-report-1/.

“The	river	meanders”:	Richard	Kenney,	“Hydrology;	Lachrymation,”	in	The	One-Strand	River:
Poems,	1994–2007	(New	York:	Knopf,	2008).

use	this	approach	when	trying	to	decipher	codes:	See	Berg-Kirkpatrick	and	Klein,	“Decipherment
with	a	Million	Random	Restarts.”

called	the	Metropolis	Algorithm:	Sometimes	also	known	as	the	Metropolis-Hastings	Algorithm,	this
technique	is	described	in	Metropolis	et	al.,	“Equation	of	State	Calculations	by	Fast	Computing
Machines,”	and	Hastings,	“Monte	Carlo	Methods	Using	Markov	Chains	and	Their	Applications.”	The
Metropolis	Algorithm	was	developed	by	Nicholas	Metropolis	and	the	two	husband-and-wife	teams	of
Marshall	and	Arianna	Rosenbluth	and	Edward	and	Augusta	Teller	in	the	1950s.	Metropolis	was	the	first
author	on	the	paper	describing	the	algorithm,	so	today	it	is	known	as	the	Metropolis	Algorithm—which
is	doubly	ironic.	For	one	thing,	Metropolis	apparently	made	little	contribution	to	the	development	of	the
algorithm,	being	listed	as	an	author	out	of	courtesy,	as	the	head	of	the	computing	laboratory	(see
Rosenbluth,	Marshall	Rosenbluth,	Interviewed	by	Kai-Henrik	Barth).	What’s	more,	Metropolis	himself
liked	giving	things	illustrative	names:	he	claimed	to	have	named	the	chemical	elements	technetium	and
astatine,	as	well	as	the	MANIAC	computer	and	the	Monte	Carlo	technique	itself	(Hurd,	“Note	on	Early
Monte	Carlo	Computations”).

“Growing	a	single	crystal	from	a	melt”:	Kirkpatrick,	Gelatt,	and	Vecchi,	“Optimization	by	Simulated
Annealing.”

“The	guy	who	was	the	best	at	IBM”:	Scott	Kirkpatrick,	personal	interview,	September	2,	2014.

Finally	we’d	start	going	only	uphill:	If	this	idea—starting	out	being	willing	to	move	around	between
options,	then	focusing	more	tightly	on	the	good	ones—sounds	familiar,	it	should:	optimizing	a	complex
function	requires	facing	the	explore/exploit	tradeoff.	And	randomness	turns	out	to	be	a	source	of	pretty
good	strategies	for	solving	problems	like	multi-armed	bandits	as	well	as	the	kind	of	optimization
problems	that	Kirkpatrick	was	focused	on.

https://www.givedirectly.org/blog-post.html?id=2288694352161893466
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://www.supermind.org/blog/740/average-length-of-a-url-part-2
http://blog.alexyakunin.com/2010/03/nice-bloom-filter-application.html
https://chromiumcodereview.appspot.com/10896048/
https://bitcoinfoundation.org/2012/11/core-development-status-report-1/

If	you	recall,	the	multi-armed	bandit	offers	us	several	different	options—arms	we	can	pull—that
provide	different,	unknown	payoffs.	The	challenge	is	to	find	the	balance	between	trying	new	options
(exploring)	and	pursuing	the	best	option	found	so	far	(exploiting).	Being	more	optimistic	and	more
exploratory	early	on	is	best,	becoming	more	discerning	and	exploiting	more	later.	Pursuing	such	a
strategy	of	gradually	decreasing	optimism	about	the	alternatives	promises	the	best	outcome	you	can
hope	for—accumulating	regrets	at	a	decreasing	rate,	with	your	total	regret	rising	as	a	logarithmic
function	of	time.

Randomness	provides	an	alternative	strategy	to	optimism.	Intuitively,	if	the	problem	is	one	of
balancing	exploration	and	exploitation,	why	not	simply	do	so	explicitly?	Spend	some	amount	of	your
time	exploring	and	some	amount	exploiting.	And	that’s	exactly	the	strategy	that	multi-armed	bandit
experts	call	Epsilon	Greedy.

Epsilon	Greedy	has	two	parts—Epsilon	and	Greedy.	The	Epsilon	part	is	that	some	small	proportion
of	the	time	(the	letter	epsilon	is	used	by	mathematicians	to	denote	a	small	number),	you	choose	at
random	from	among	your	options.	The	Greedy	part	is	that	the	rest	of	the	time	you	take	the	best	option
you	have	found	so	far.	So	walk	into	the	restaurant	and	flip	a	coin	(or	roll	a	die,	depending	on	your	value
of	epsilon)	to	decide	whether	to	try	something	new.	If	it	says	yes,	close	your	eyes	and	point	at	the	menu.
If	not,	enjoy	your	current	favorite.

Unfortunately,	multi-armed	bandit	researchers	don’t	particularly	like	Epsilon	Greedy.	It	seems
wasteful—you’re	guaranteed	to	spend	a	proportion	of	your	time	trying	new	things	even	if	the	best
becomes	clear	very	quickly.	If	you	follow	Epsilon	Greedy,	then	your	regret	increases	linearly	in	the
number	of	times	you	play.	Each	time	you	dine,	there’s	a	chance	that	you’re	going	to	choose	something
other	than	the	best,	so	your	average	regret	increases	by	the	same	amount	every	time.	This	linear	growth
is	much	worse	than	the	logarithmic	regret	guaranteed	by	deterministic	algorithms	based	on
appropriately	calibrated	optimism.

But	if	the	simplicity	of	Epsilon	Greedy	is	appealing,	there	is	good	news.	There’s	a	simple	variant	of
this	algorithm—what	we	are	dubbing	Epsilon-Over-N	Greedy—that	does	guarantee	logarithmic	regret,
and	performs	well	in	practice	(see	Auer,	Cesa-Bianchi,	and	Fischer,	“Finite-Time	Analysis	of	the
Multiarmed	Bandit	Problem”).	The	trick	is	to	decrease	the	chance	of	trying	something	new	over	time.
The	first	time	you	make	a	choice,	you	choose	at	random	with	probability	1/1	(a.k.a.	always).	If	that
option	is	any	good,	then	the	second	time	you	choose	at	random	with	probability	1/2	(a.k.a.	flip	a	coin:
heads	you	take	the	same	option,	tails	you	try	something	new).	On	visit	three,	you	should	pick	the	best
thing	with	probability	2/3,	and	try	something	new	with	probability	1/3.	On	the	Nth	visit	to	the
restaurant,	you	choose	at	random	with	probability	1/N,	otherwise	taking	the	best	option	discovered	so
far.	By	gradually	decreasing	the	probability	of	trying	something	new,	you	hit	the	sweet	spot	between
exploration	and	exploitation.

There’s	also	another,	more	sophisticated	algorithm	for	playing	the	multi-armed	bandit	that	likewise
makes	use	of	randomness.	It’s	called	Thompson	Sampling,	named	after	William	R.	Thompson,	the
Yale	physician	who	first	posed	the	problem	(back	in	1933)	of	how	to	choose	between	two	treatments
(Thompson,	“On	the	Likelihood	That	One	Unknown	Probability	Exceeds	Another”).	Thompson’s
solution	was	simple:	using	Bayes’s	Rule,	calculate	the	probability	that	each	treatment	is	the	best.	Then
choose	that	treatment	with	that	probability.	To	begin	with	you	know	nothing,	and	you	are	equally	likely
to	choose	either	treatment.	As	the	data	accumulate	you	come	to	favor	one	over	the	other,	but	some	of
the	time	you	still	choose	the	dispreferred	treatment	and	have	the	chance	to	change	your	mind.	As	you
become	more	certain	that	one	treatment	is	better,	you	will	end	up	almost	always	using	that	treatment.
Thompson	Sampling	balances	exploration	and	exploitation	elegantly,	and	also	guarantees	that	regret
will	increase	only	logarithmically	(see	Agrawal	and	Goyal,	“Analysis	of	Thompson	Sampling”).

The	advantage	of	Thompson	Sampling	over	other	algorithms	for	solving	multi-armed	bandit
problems	is	its	flexibility.	Even	if	the	assumptions	of	the	problem	change—you	have	information

suggesting	one	option	is	better	than	the	others,	options	depend	on	one	another,	options	change	over	time
—Thompson’s	strategy	of	pursuing	options	with	a	probability	that	reflects	your	sense	that	they	are	the
best	currently	available	still	works.	So	rather	than	having	to	derive	a	new	algorithm	in	each	of	these
cases,	we	can	simply	apply	Bayes’s	Rule	and	use	the	results.	In	real	life,	those	Bayesian	calculations	can
be	hard	(it	took	Thompson	himself	several	pages	of	intricate	mathematics	to	solve	the	problem	with	just
two	options).	But	trying	to	choose	the	best	option	and	allowing	an	amount	of	randomness	to	your
choices	that	is	tempered	by	your	degree	of	certainty	is	an	algorithm	that	is	unlikely	to	lead	you	astray.

cited	a	whopping	thirty-two	thousand	times:	The	predominant	AI	textbook,	Artificial	Intelligence:	A
Modern	Approach,	declares	that	simulated	annealing	“is	now	a	field	in	itself,	with	hundreds	of	papers
published	every	year”	(p.	155).

one	of	the	most	promising	approaches	to	optimization:	Intriguingly,	a	2014	paper	appears	to
demonstrate	that	jellyfish	use	simulated	annealing	in	searching	for	food;	see	Reynolds,	“Signatures	of
Active	and	Passive	Optimized	Lévy	Searching	in	Jellyfish.”

“Not	a	gambler	myself”:	Luria,	A	Slot	Machine,	a	Broken	Test	Tube,	p.	75.	Also	discussed	in	Garfield,
“Recognizing	the	Role	of	Chance.”

coined	the	term	“serendipity”:	In	Horace	Walpole,	letter	to	Horace	Mann	(dated	January	28,	1754).

“A	remarkable	parallel”:	James,	“Great	Men,	Great	Thoughts,	and	the	Environment.”

“A	blind-variation-and-selective-retention	process”:	Campbell,	“Blind	Variation	and	Selective
Retention.”

“Newton,	Mozart,	Richard	Wagner,	and	others”:	Quoted	in	ibid.

“ways	of	throwing	you	out	of	the	frame”:	Brian	Eno,	interviewed	by	Jools	Holland,	on	Later	…	with
Jools	Holland,	May	2001.

“vague	and	constant	desire”:	The	word	is	saudade,	and	the	quoted	definition	comes	from	Bell,	In
Portugal.

“stupid	to	shake	it	up	any	further”:	Tim	Adams,	“Dicing	with	Life,”	Guardian,	August	26,	2000.
10.	NETWORKING

“connection	has	a	wide	variety	of	meanings”:	Cerf	and	Kahn,	“A	Protocol	for	Packet	Network
Intercommunication.”

“Only	connect”:	Forster,	Howards	End.

“handheld,	portable,	real	cellular	phone”:	Martin	Cooper,	“Inventor	of	Cell	Phone:	We	Knew
Someday	Everybody	Would	Have	One,”	interview	with	Tas	Anjarwalla,	CNN,	July	9,	2010.

The	message	was	“login”—or	would	have	been:	Leonard	Kleinrock	tells	the	story	in	a	2014	video
interview	conducted	by	Charles	Severence	and	available	at	“Len	Kleinrock:	The	First	Two	Packets	on
the	Internet,”	https://www.youtube.com/watch?v=uY7dUJT7OsU.

portentous	and	Old	Testament	despite	himself:	Says	UCLA’s	Leonard	Kleinrock,	“We	didn’t	plan	it,
but	we	couldn’t	have	come	up	with	a	better	message:	short	and	prophetic.”	The	tiles	on	the	floor	of
UCLA’s	Boelter	Hall,	if	their	colors	are	interpreted	as	binary	0s	and	1s	and	parsed	as	ASCII	characters,
spell	out	the	phrase	“LO	AND	BEHOLD!”	Credit	for	this	tribute	goes	to	architect	Erik	Hagen.	See,	e.g.,
Alison	Hewitt,	“Discover	the	Coded	Message	Hidden	in	Campus	Floor	Tiles,”	UCLA	Newsroom,	July	3,
2013,	http://newsroom.ucla.edu/stories/a-coded-message-hidden-in-floor-247232.

rooted	in	the	Greek	protokollon:	See,	e.g.,	the	Online	Etymology	Dictionary,
http://www.etymonline.com/index.php?term=protocol.

“They	go	blast!	and	they’re	quiet”:	Leonard	Kleinrock,	“Computing	Conversations:	Len	Kleinrock	on
the	Theory	of	Packets,”	interview	with	Charles	Severance	(2013).	See	https://www.youtube.com/watch?

https://www.youtube.com/watch?v=uY7dUJT7OsU
http://newsroom.ucla.edu/stories/a-coded-message-hidden-in-floor-247232
http://www.etymonline.com/index.php?term=protocol
https://www.youtube.com/watch?v=qsgrtrwydjw

v=qsgrtrwydjw	as	well	as	http://www.computer.org/csdl/mags/co/2013/08/mco2013080006.html.

“utter	heresy”:	Jacobson,	“A	New	Way	to	Look	at	Networking.”

“So	little	boy	went	away”:	Kleinrock,	“Computing	Conversations.”

would	become	known	as	packet	switching:	The	term	“packet	switching”	comes	from	Donald	W.
Davies	of	the	National	Physical	Laboratory,	another	key	contributor	to	packet	switching	research	at	the
time.

“a	consensual	illusion	between	the	two	endpoints”:	Stuart	Cheshire,	personal	interview,	February	26,
2015.

communications	could	survive	a	nuclear	attack:	Baran,	“On	Distributed	Communications.”

a	growing	network	becomes	a	virtue:	For	elaboration	on	this	point,	and	a	broader	reflection	on	the
history	of	networking	(including	its	current	problems),	see	Jacobson,	“A	New	Way	to	Look	at
Networking.”

a	packet-switching	network	over	“Avian	Carriers”:	See	Waitzman,	A	Standard	for	the	Transmission
of	IP	Datagrams	on	Avian	Carriers,	Waitzman,	IP	Over	Avian	Carriers	with	Quality	of	Service,	and
Carpenter	and	Hinden,	Adaptation	of	RFC	1149	for	IPv6	for	descriptions	of	the	avian	protocol,	and	see
http://www.blug.linux.no/rfc1149	for	details	of	the	actual	implementation	performed	in	Bergen,
Norway,	on	April	28,	2001.

“No	transmission	can	be	100	percent	reliable”:	Cerf	and	Kahn,	“A	Protocol	for	Packet	Network
Intercommunication.”

the	“Byzantine	generals	problem”:	Lamport,	Shostak,	and	Pease,	“The	Byzantine	Generals	Problem.”

signal	that	the	sequence	has	been	restored:	The	process	being	described	here	is	known	as	“fast
retransmit.”

almost	10%	of	upstream	Internet	traffic:	Jon	Brodkin,	“Netflix	takes	up	9.5%	of	upstream	traffic	on
the	North	American	Internet:	ACK	packets	make	Netflix	an	upload	monster	during	peak	viewing
hours,”	Ars	Technica,	November	20,	2014.	Brodkin	in	turn	cites	data	from	Sandvine’s	Global	Internet
Phenomena	Report,	https://www.sandvine.com/trends/global-internet-phenomena/.

“Did	the	receiver	crash?	Are	they	just	slow?”:	Tyler	Treat,	“You	Cannot	Have	Exactly-Once
Delivery,”	Brave	New	Geek:	Introspections	of	a	software	engineer,	March	25,	2015,
http://bravenewgeek.com/you-cannot-have-exactly-once-delivery/.

“end-to-end	retransmissions	to	recover”:	Vint	Cerf,	interviewed	by	Charles	Severance,	“Computing
Conversations:	Vint	Cerf	on	the	History	of	Packets,”	2012.

“you	just	say,	‘Say	that	again’”:	Ibid.

“The	world’s	most	difficult	word	to	translate”:	Oliver	Conway,	“Congo	Word	‘Most
Untranslatable,’”	BBC	News,	June	22,	2004.

“If	at	first	you	don’t	succeed”:	Thomas	H.	Palmer,	Teacher’s	Manual	(1840),	attested	in	The	Oxford
Dictionary	of	Proverbs,	2009.

trying	to	link	together	the	university’s	seven	campuses:	Abramson,	“The	ALOHA	System.”

above	a	mere	18.6%	average	utilization:	Ibid.	In	fact,	this	figure	is	1⁄2e,	exactly	half	of	the	n⁄e,	or
“37%,”	figure	given	in	the	discussion	of	optimal	stopping	in	chapter	1.

“only	one	scheme	has	any	hope	of	working”:	Jacobson,	“Congestion	Avoidance	and	Control.”

a	pilot	program	called	HOPE:	The	HOPE	program	is	evaluated	in	Hawken	and	Kleiman,	Managing
Drug	Involved	Probationers.

http://www.computer.org/csdl/mags/co/2013/08/mco2013080006.html
http://www.blug.linux.no/rfc1149
https://www.sandvine.com/trends/global-internet-phenomena/
http://bravenewgeek.com/you-cannot-have-exactly-once-delivery/

“what	a	crazy	way	to	try	to	change”:	For	more	information,	see,	e.g.,	“A	New	Probation	Program	in
Hawaii	Beats	the	Statistics,”	PBS	NewsHour,	February	2,	2014.

“this	sudden	factor-of-thousand	drop”:	Jacobson,	“Congestion	Avoidance	and	Control.”

“then	it	suddenly	fell	apart”:	Jacobson,	“Van	Jacobson:	The	Slow-Start	Algorithm,”	interview	with
Charles	Severance	(2012),	https://www.youtube.com/watch?v=QP4A6L7CEqA.

ramp	up	its	transmission	rate	aggressively:	This	initial	procedure—a	tentative	single	packet	followed
by	a	two-for-one	acceleration—is	known	in	TCP	as	Slow	Start.	This	name	is	a	partial	misnomer:	Slow
Start	is	“slow”	in	beginning	with	just	a	single	tentative	first	packet,	but	not	in	its	exponential	growth
thereafter.

“control	without	hierarchy”:	See,	e.g.,	Gordon,	“Control	without	Hierarchy.”

ants’	solution	is	similar:	The	findings	that	link	ant	foraging	to	flow	control	algorithms	like	Slow	Start
appear	in	Prabhakar,	Dektar,	and	Gordon,	“The	Regulation	of	Ant	Colony	Foraging	Activity	without
Spatial	Information.”

“tends	to	rise	to	his	level	of	incompetence”:	Peter	and	Hull,	The	Peter	Principle.

“Every	public	servant	should	be	demoted”:	This	widely	reproduced	aphorism,	in	the	original
Spanish,	reads,	“Todos	los	empleados	públicos	deberían	descender	a	su	grado	inmediato	inferior,
porque	han	sido	ascendidos	hasta	volverse	incompetentes.”

devised	by	leading	law	firm	Cravath,	Swaine	&	Moore:	The	Cravath	System	is	officially
documented	at	the	firm’s	own	website:	http://www.cravath.com/cravathsystem/.	The	“up	or	out”
component	of	the	Cravath	System	is	not	explicitly	discussed	there,	but	is	widely	referenced	elsewhere,
e.g.,	by	the	American	Bar	Association:	“In	the	1920s	Cravath,	Swaine	&	Moore	became	the	first	law
firm	on	record	to	openly	recruit	from	law	schools	with	the	express	understanding	that	many	of	the
young	lawyers	it	hired	would	not	make	partner.	Those	associates	who	did	not	make	partner	with	the	rest
of	their	class	were	expected	to	leave	the	firm.	However,	those	deemed	best	among	the	associates,	who
did	the	necessary	work	and	stayed	on	track	for	the	requisite	number	of	years,	could	expect	to	become
stakeholders,	earn	lockstep	increases	in	compensation,	and	enjoy	lifetime	employment	in	the	firm.”
(Janet	Ellen	Raasch,	“Making	Partner—or	Not:	Is	It	In,	Up	or	Over	in	the	Twenty-First	Century?,”	Law
Practice	33,	issue	4,	June	2007.)

the	US	Armed	Forces	adopted:	See,	e.g.,	Rostker	et	al.,	Defense	Officer	Personnel	Management	Act
of	1980.

pursued	what	they	call	“manning	control”:	See,	e.g.,	Michael	Smith,	“Army	Corporals	Forced	Out
‘to	Save	Pension	Cash,’”	Telegraph,	July	29,	2002.

as	if	all	communication	were	written	text:	As	Bavelas,	Coates,	and	Johnson,	“Listeners	as	Co-
Narrators,”	puts	it,	“Listeners	have	at	best	a	tenuous	foothold	in	most	theories.	At	the	extreme,	listeners
are	considered	nonexistent	or	irrelevant	because	the	theory	either	does	not	mention	them	or	treats	them
as	peripheral.	This	omission	may	be	attributed,	in	part,	to	the	implicit	use	of	written	text	as	the
prototype	for	all	language	use.”

“simultaneously	engaged	in	both	speaking	and	listening”:	Yngve,	“On	Getting	a	Word	in
Edgewise.”

“Narrators	who	told	close-call	stories	to	distracted	listeners”:	Bavelas,	Coates,	and	Johnson,
“Listeners	as	Co-Narrators.”

regulating	the	flow	of	information	from	speaker	to	listener:	Tolins	and	Fox	Tree,	“Addressee
Backchannels	Steer	Narrative	Development.”

“‘bad	storytellers’	can	at	least	partly	blame	their	audience”:	Jackson	Tolins,	personal
correspondence,	January	15,	2015.

https://www.youtube.com/watch?v=QP4A6L7CEqA
http://www.cravath.com/cravathsystem/

“misconceptions	about	the	cause	and	meaning	of	queues”:	Nichols	and	Jacobson,	“Controlling
Queue	Delay.”

the	HTTP	specification	still	in	use	today:	That	is	HTTP	1.1,	as	articulated	in	the	RFC	2616	document
from	June	1999,	available	at	http://tools.ietf.org/html/rfc2616.

“I	happened	to	be	copying,	or	rsyncing”:	Jim	Gettys,	“Bufferbloat:	Dark	Buffers	in	the	Internet,”
Google	Tech	Talk,	April	26,	2011.

“not	‘Eureka!’	but	‘That’s	funny’”:	This	quotation	has	appeared	in	countless	publications	with	an
attribution	to	Isaac	Asimov,	but	its	actual	authorhip	and	provenance	remain	elusive.	It	seems	to	have
first	shown	up—complete	with	the	Asimov	attribution—as	part	of	the	UNIX	“fortune”	program,	which
displays	quotes	or	sayings	in	the	style	of	a	fortune	cookie.	See
http://quoteinvestigator.com/2015/03/02/eureka-funny/.	Asimov	did	write	an	essay	about	“The	Eureka
Phenomenon,”	but	this	phrase	does	not	appear	there.

when	they	are	routinely	zeroed	out:	See	Nichols	and	Jacobson,	“Controlling	Queue	Delay.”

than	her	home	state	of	California	has	people:	The	US	Census	Bureau’s	2015	estimate	for	California’s
population	was	39,144,818.	See	http://www.census.gov/popest/data/state/totals/2015/index.html.

“no	really	good	way	to	leave	messages	for	people”:	Ray	Tomlinson,	interviewed	by	Jesse	Hicks,	“Ray
Tomlinson,	the	Inventor	of	Email:	‘I	See	Email	Being	Used,	by	and	Large,	Exactly	the	Way	I
Envisioned,’”	Verge,	May	2,	2012,	http://www.theverge.com/2012/5/2/2991486/ray-tomlinson-email-
inventor-interview-i-see-email-being-used.

simply	rejecting	all	incoming	messages:	One	such	approach	was	taken,	for	instance,	by	University	of
Sheffield	cognitive	scientist	Tom	Stafford.	During	his	2015	sabbatical,	his	automated	email	response
read:	“I	am	now	on	sabbatical	until	12th	June.	Email	sent	to	t.stafford@shef.ac.uk	has	been	deleted.”

Explicit	Congestion	Notification,	or	ECN:	The	Request	for	Comments	(RFC)	document	for	ECN	is
Ramakrishnan,	Floyd,	and	Black,	The	Addition	of	Explicit	Congestion	Notification	(ECN)	to	IP,	which
is	a	revision	of	Ramakrishnan	and	Floyd,	A	Proposal	to	Add	Explicit	Congestion	Notification	(ECN)	to
IP.	Though	the	original	proposal	dates	from	the	1990s,	ECN	remains	unimplemented	in	standard
networking	hardware	today	(Stuart	Cheshire,	personal	interview,	February	26,	2015).

“This	is	a	long-term	swamp”:	Jim	Gettys,	personal	interview,	July	15,	2014.

“would	you	say	that	a	Boeing	747	is	three	times	‘faster’”:	This	comes	from	Cheshire’s	famous	1996
“rant”	“It’s	the	Latency,	Stupid.”	See	http://stuartcheshire.org/rants/Latency.html.	Twenty	years	later,
the	sentiment	is	only	truer.
11.	GAME	THEORY

“I	believe	humans	are	noble	and	honorable”:	Steve	Jobs,	interview	with	Gary	Wolf,	Wired,	February
1996.

man	vs.	nature:	Appropriately,	schoolchildren	in	the	twenty-first	century	increasingly	learn	about
“person	vs.	nature,”	“person	vs.	self,”	“person	vs.	person,”	and	“person	vs.	society.”

“a	clever	man	would	put	the	poison	into	his	own	goblet”:	The	Princess	Bride,	screenplay	by	William
Goldman;	20th	Century	Fox,	1987.

“anticipating	the	anticipations	of	others”:	Attributed	to	Keynes	in	Gregory	Bergman,	Isms,	Adams
Media,	2006.

it	was	the	halting	problem	that	inspired	Turing:	Alan	Turing	considers	the	halting	problem	and
proposes	the	Turing	machine	in	“On	Computable	Numbers,	with	an	Application	to	the
Entscheidungsproblem”	and	“On	Computable	Numbers,	with	an	Application	to	the
Entscheidungsproblem.	A	Correction.”

http://tools.ietf.org/html/rfc2616
http://quoteinvestigator.com/2015/03/02/eureka-funny/
http://www.census.gov/popest/data/state/totals/2015/index.html
http://www.theverge.com/2012/5/2/2991486/ray-tomlinson-email-inventor-interview-i-see-email-being-used
http://stuartcheshire.org/rants/Latency.html

“poker	players	call	it	‘leveling’”:	Dan	Smith,	personal	interview,	September	11,	2014.

“You	don’t	have	deuce–seven”:	This	took	place	at	the	“Full	Tilt	Poker	Durrrr	Million	Dollar
Challenge,”	held	at	Les	Ambassadeurs	Club	in	London,	November	17–19,	2009,	and	was	televised	on
Sky	Sports.

“only	want	to	play	one	level	above	your	opponent”:	Vanessa	Rousso,	“Leveling	Wars,”
https://www.youtube.com/watch?v=Yt5ALnFrwR4.

“knowing	or	trying	to	know	what	Nash	is”:	Dan	Smith,	personal	interview,	September	11,	2014.

a	so-called	equilibrium:	The	concept	of	a	game-theoretic	equilibrium—and,	for	that	matter,	game
theory	itself—comes	from	Princeton’s	John	von	Neumann	and	Oskar	Morgenstern	in	Theory	of	Games
and	Economic	Behavior.

In	rock-paper-scissors,	for	example:	For	a	colorful	look	into	rock-paper-scissors	(“RPS”)	tournament
play,	including	a	glossary	of	the	game’s	various	three-move	“gambits”—like	the	Avalanche	(RRR),	the
Bureaucrat	(PPP),	and	Fistful	o’	Dollars	(RPP)—we	recommend	http://worldrps.com.	For	a	look	into
computer	RPS	play,	check	out	the	Rock	Paper	Scissors	Programming	Competition:
http://www.rpscontest.com.

choose	one	of	the	eponymous	hand	gestures	completely	at	random:	A	strategy,	like	this	one,	that
incorporates	randomness	is	called	a	“mixed”	strategy.	The	alternative	is	a	“pure”	strategy,	which	always
involves	taking	the	exact	same	option;	this	clearly	would	not	work	for	long	in	rock-paper-scissors.
Mixed	strategies	appears	as	part	of	the	equilibrium	in	many	games,	especially	in	“zero-sum”	games,
where	the	interests	of	the	players	are	pitted	directly	against	one	another.

every	two-player	game	has	at	least	one	equilibrium:	Nash,	“Equilibrium	Points	in	N-Person	Games”;
Nash,	“Non-Cooperative	Games.”

the	fact	that	a	Nash	equilibrium	always	exists:	To	be	more	precise,	ibid.	proved	that	every	game	with
a	finite	number	of	players	and	a	finite	number	of	strategies	has	at	least	one	mixed-strategy	equilibrium.

“has	had	a	fundamental	and	pervasive	impact”:	Myerson,	“Nash	Equilibrium	and	the	History	of
Economic	Theory.”

“a	computer	scientist’s	foremost	concern”:	Papadimitriou,	“Foreword.”

“Give	us	something	we	can	use”:	Tim	Roughgarden,	“Algorithmic	Game	Theory,	Lecture	1
(Introduction),”	Autumn	2013,	https://www.youtube.com/watch?v=TM_QFmQU_VA.

all	been	proved	to	be	intractable	problems:	Gilboa	and	Zemel,	“Nash	and	Correlated	Equilibria.”

simply	finding	Nash	equilibria	is	intractable:	Specifically,	finding	Nash	equilibria	was	shown	to
belong	to	a	class	of	problems	called	PPAD,	which	(like	NP)	is	widely	believed	to	be	intractable.	The
link	between	Nash	equilibria	and	PPAD	was	established	in	Daskalakis,	Goldberg,	and	Papadimitriou,
“The	Complexity	of	Computing	a	Nash	Equilibrium”	and	Goldberg	and	Papadimitriou,	“Reducibility
Between	Equilibrium	Problems,”	which	was	then	extended	to	two-player	games	by	Chen	and	Deng,
“Settling	the	Complexity	of	Two-Player	Nash	Equilibrium,”	and	then	further	generalized	in	Daskalakis,
Goldberg,	and	Papadimitriou,	“The	Complexity	of	Computing	a	Nash	Equilibrium.”	PPAD	stands	for
“Polynomial	Parity	Arguments	on	Directed	graphs”;	Papadimitriou,	who	named	this	class	of	problems
in	“On	Complexity	as	Bounded	Rationality,”	insists	any	resemblance	to	his	name	is	a	coincidence.
(Christos	Papadimitriou,	personal	interview,	September	4,	2014.)

PPAD	contains	other	interesting	problems,	such	as	the	ham	sandwich	problem:	given	n	sets	of	2n
points	in	n	dimensions,	find	a	plane	that	divides	each	set	of	points	exactly	in	half.	(With	n	=	3,	this
involves	figuring	out	the	path	a	knife	would	have	to	travel	to	cut	three	sets	of	points	in	half;	if	those	sets
of	points	correspond	to	two	pieces	of	bread	and	a	piece	of	ham,	the	result	is	a	perfectly	bisected
sandwich.)	Finding	Nash	equilibria	is	actually	PPAD-complete,	meaning	that	if	there	were	an	efficient

https://www.youtube.com/watch?v=Yt5ALnFrwR4
http://worldrps.com
http://www.rpscontest.com
https://www.youtube.com/watch?v=TM_QFmQU_VA

algorithm	for	solving	it	then	all	other	problems	in	the	class	could	also	be	solved	efficiently	(including
making	the	world’s	neatest	sandwiches).	But	being	PPAD-complete	is	not	quite	so	bad	as	being	NP-
complete.	P,	the	class	of	efficiently	solvable	problems,	could	be	equal	to	PPAD	without	being	equal	to
NP.	As	of	this	writing	the	jury	is	still	out:	it’s	theoretically	possible	that	somebody	could	devise	an
efficient	algorithm	for	finding	Nash	equilibria,	but	most	experts	aren’t	holding	their	breath.

“much	of	its	credibility	as	a	prediction”:	Christos	Papadimitriou,	“The	Complexity	of	Finding	Nash
Equilibria,”	in	Nisan	et	al.,	Algorithmic	Game	Theory.

“should	be	considered	relevant	also”:	Aaronson,	“Why	Philosophers	Should	Care	About
Computational	Complexity.”

“If	your	laptop	cannot	find	it”:	In	Christos	Papadimitriou,	“The	Complexity	of	Finding	Nash
Equilibria,”	in	Nisan	et	al.,	Algorithmic	Game	Theory,	p.	30.

“the	prisoner’s	dilemma”:	The	prisoner’s	dilemma	was	first	conceived	by	Merrill	Flood	(of	secretary
problem	and	traveling	salesman	problem	fame)	and	Melvin	Drescher	at	RAND	Corporation.	In	January
1950,	they	staged	a	game	between	UCLA’s	Armen	Alchian	and	RAND’s	John	D.	Williams	that	had
prisoner’s	dilemma–like	payoffs	(Flood,	“Some	Experimental	Games”).	Princeton’s	Albert	Tucker	was
intrigued	by	this	experiment,	and	in	preparing	to	discuss	it	that	May	in	a	lecture	at	Stanford,	he	gave	the
problem	its	now	famous	prison	formulation	and	its	name.	A	detailed	history	of	the	origins	of	game
theory	and	its	development	in	the	work	of	the	RAND	Corporation	can	be	found	in	Poundstone,
Prisoner’s	Dilemma.

a	price	of	anarchy	that’s	a	mere	4/3:	Roughgarden	and	Tardos,	“How	Bad	Is	Selfish	Routing?”
Roughgarden’s	2002	Cornell	PhD	also	addresses	the	topic	of	selfish	routing.

“the	pessimist	fears	this	is	true”:	Cabell,	The	Silver	Stallion.

picture	a	“commons”	of	public	lawn:	Hardin,	“The	Tragedy	of	the	Commons.”

“there	was	this	thing	called	leaded	gasoline”:	Avrim	Blum,	personal	interview,	December	17,	2014.

headline	put	the	trouble	succinctly:	Scott	K.	Johnson,	“Stable	Climate	Demands	Most	Fossil	Fuels
Stay	in	the	Ground,	but	Whose?,”	Ars	Technica,	January	8,	2015.

“nowhere	is	the	value	of	work	higher”:	“In	Search	of	Lost	Time,”	Economist,	December	20,	2014.

15%	take	no	vacation	at	all:	The	study	is	from	Glassdoor	and	is	referenced	in	ibid.

“People	will	hesitate	to	take	a	vacation”:	Mathias	Meyer,	“From	Open	(Unlimited)	to	Minimum
Vacation	Policy,”	December	10,	2014,	http://www.paperplanes.de/2014/12/10/from-open-to-minimum-
vacation-policy.html.

“Stores	are	opening	earlier	than	ever	before”:	Nicole	Massabrook,	“Stores	Open	on	Thanksgiving
2014:	Walmart,	Target,	Best	Buy	and	Other	Store	Hours	on	Turkey	Day,”	International	Business	Times,
November	26,	2014.

“Don’t	hate	the	player,	hate	the	game”:	Ice-T,	“Don’t	Hate	the	Playa,”	The	Seventh	Deadly	Sin,	1999.

“Don’t	ever	take	sides	with	anyone	against	the	family”:	The	Godfather,	screenplay	by	Mario	Puzo
and	Francis	Ford	Coppola,	Paramount	Pictures,	1972.

“loaded	against	the	emergence	of	cooperation”:	This	quotation	of	Binmore’s	appears	in	a	number	of
sources,	including	Binmore,	Natural	Justice,	and	Binmore,	Game	Theory.	Kant’s	“categorical
imperative”	originates	in	his	1785	Groundwork	of	the	Metaphysic	of	Morals	and	is	discussed	in	his
1788	Critique	of	Practical	Reason.

a	thousand	dollars	cash	for	taking	a	vacation:	Libin	discusses	the	motivations	for	the	thousand
dollars	in,	for	instance,	an	interview	with	Adam	Bryant,	“The	Phones	Are	Out,	but	the	Robot	Is	In,”
New	York	Times,	April	7,	2012.

http://www.paperplanes.de/2014/12/10/from-open-to-minimum-vacation-policy.html

make	a	certain	minimal	amount	of	vacation	compulsory:	Compulsory	vacation	is	already	a	standard
practice	in	finance,	although	for	reasons	of	fraud	detection	rather	than	morale.	For	more	on	compulsory
vacation	and	fraud	see,	e.g.,	Philip	Delves	Broughton,	“Take	Those	Two	Weeks	Off—or	Else,”	Wall
Street	Journal,	August	28,	2012.

without	federal	requirements	for	paid	vacation:	Rebecca	Ray,	Milla	Sanes,	and	John	Schmitt,	“No-
Vacation	Nation	Revisited,”	Center	for	Economic	Policy	and	Research,	May	2013,
http://www.cepr.net/index.php/publications/reports/no-vacation-nation-2013.

Things	a	Computer	Scientist	Rarely	Talks	About:	Donald	E.	Knuth.

“The	heart	has	its	reasons”:	As	Pascal	put	it	in	Pascal,	Pensées	sur	la	religion	et	sur	quelques	autres
sujets,	§277:	“Le	cœur	a	ses	raisons,	que	la	raison	ne	connaît	point.”

“The	canopy	can	be	thought	of	as	an	aerial	meadow”:	Dawkins,	The	Evidence	for	Evolution.

makes	mice	permanently	lose	their	fear	of	cats:	Ingram	et	al.,	“Mice	Infected	with	Low-Virulence
Strains	of	Toxoplasma	Gondii.”

“Morality	is	herd	instinct	in	the	individual”:	The	Gay	Science,	§116,	trans.	Walter	Kaufmann.

“If	people	expect	us	to	respond	irrationally”:	Frank,	Passions	within	Reason.

“The	worry	that	people	will	leave	relationships”:	Ibid.

“you	need	a	feeling	that	makes	you	not	want	to	separate”:	Robert	Frank,	personal	interview,	April
13,	2015.	Frank,	“If	Homo	Economicus	Could	Choose,”	contains	this	idea,	though	as	he	is	quick	to
acknowledge,	it	builds	on	work	such	as	Schelling,	The	Strategy	of	Conflict;	Schelling,	“Altruism,
Meanness,	and	Other	Potentially	Strategic	Behaviors”;	Akerlof,	“Loyalty	Filters”;	Hirshleifer,	“On	the
Emotions	as	Guarantors	of	Threats	and	Promises”;	Sen,	“Goals,	Commitment,	and	Identity”;	and
Gauthier,	Morals	by	Agreement.	Frank	treats	the	ideas	at	book	length	in	Passions	within	Reason.

“If	the	prisoner	is	happy,	why	lock	him	in?”:	Shaw,	Man	and	Superman.

makes	more	than	90%	of	its	revenue	from	selling	ads:	Google’s	2014	advertising	revenue,	as
detailed	in	its	shareholder	report,	was	$59.6	billion,	roughly	90.3%	of	its	total	revenue	of	$66	billion.
See	https://investor.google.com/financial/tables.html.

raising	tens	of	billions	of	dollars	in	revenue:	The	AWS-3	auction	that	closed	on	January	29,	2015,
resulted	in	winning	bids	totaling	$44.899	billion.	See	http://wireless.fcc.gov/auctions/default.htm?
job=auction_factsheet&id=97.

they’re	shading	their	bids	based	on	their	prediction	of	yours!:	The	equilibrium	strategy	for	a	sealed-
bid	first-price	auction	with	two	players	is	to	bid	exactly	half	what	you	think	the	item	is	worth.	More
generally,	in	this	auction	format	with	n	players,	you	should	bid	exactly	(n−1)⁄n	times	what	you	think	the
item	is	worth.	Note	that	this	strategy	is	the	Nash	equilibrium	but	is	not	a	dominant	strategy;	that	is	to
say,	nothing	is	better	if	everyone	else	is	doing	it,	too,	but	isn’t	necessarily	optimal	under	all
circumstances.	Caveat	emptor.	Also,	if	you	don’t	know	the	number	of	bidders	in	the	auction,	the	optimal
strategy	gets	complicated	in	a	hurry;	see,	for	instance,	An,	Hu,	and	Shum,	“Estimating	First-Price
Auctions	with	an	Unknown	Number	of	Bidders:	A	Misclassification	Approach.”	Actually,	even	the
seemingly	clean	results—(n−1)⁄n—require	some	serious	assumptions,	namely	that	the	bidders	are	“risk
neutral”	and	that	their	different	values	for	the	item	are	distributed	evenly	across	some	given	range.	The
(n−1)⁄n	result	here	comes	from	Vickrey,	“Counterspeculation,	Auctions,	and	Competitive	Sealed
Tenders,”	who	warns,	“If	the	assumption	of	homogeneity	among	the	bidders	be	abandoned,	the
mathematics	of	a	complete	treatment	become	intractable.”

the	largest	flower	auction	in	the	world:	For	more	about	the	Aalsmeer	Flower	Auction,	see
http://www.floraholland.com/en/about-floraholland/visit-the-flower-auction/.

http://www.cepr.net/index.php/publications/reports/no-vacation-nation-2013
https://investor.google.com/financial/tables.html
http://wireless.fcc.gov/auctions/default.htm?job=auction_factsheet&id=97
http://www.floraholland.com/en/about-floraholland/visit-the-flower-auction/

a	bunch	of	people	all	going	over	a	cliff	together:	Sometimes	these	cliffs	are	all	too	literal.	The	New
York	Times,	for	instance,	reported	on	the	deaths	of	several	experienced	backcountry	skiers	in
Washington	State.	The	accounts	of	the	survivors	show	how	a	group	of	extremely	skilled	skiers	ended	up
doing	something	that	almost	all	the	individual	members	had	a	bad	feeling	about.

“If	it	was	up	to	me,	I	would	never	have	gone	backcountry	skiing	with	twelve	people,”	said	one
survivor.	“That’s	just	way	too	many.	But	there	were	sort	of	the	social	dynamics	of	that—where	I	didn’t
want	to	be	the	one	to	say,	you	know,	‘Hey,	this	is	too	big	a	group	and	we	shouldn’t	be	doing	this.’”

“There’s	no	way	this	entire	group	can	make	a	decision	that	isn’t	smart,”	another	said	to	himself.	“Of
course	it’s	fine,	if	we’re	all	going.	It’s	got	to	be	fine.”

“Everything	in	my	mind	was	going	off,	wanting	to	tell	them	to	stop,”	said	a	third.

“I	thought:	Oh	yeah,	that’s	a	bad	place	to	be,”	recounted	a	fourth	member	of	the	party.	“That’s	a	bad
place	to	be	with	that	many	people.	But	I	didn’t	say	anything.	I	didn’t	want	to	be	the	jerk.”

As	the	Times	summarized:	“All	the	locals	in	the	group	presumed	they	knew	what	the	others	were
thinking.	They	did	not.”	See	Branch,	“Snow	Fall.”

known	as	an	“information	cascade”:	Bikhchandani,	Hirshleifer,	and	Welch,	“A	Theory	of	Fads.”	See
also	Bikhchandani,	Hirshleifer,	and	Welch,	“Learning	from	the	Behavior	of	Others.”

“the	public	pool	of	information	is	no	longer	growing”:	David	Hirshleifer,	personal	interview,	August
27,	2014.

a	sale	price	of	more	than	$23	million:	The	pricing	on	this	particular	Amazon	title	was	noticed	and
reported	on	by	UC	Berkeley	biologist	Michael	Eisen;	see	“Amazon’s	$23,698,655.93	book	about	flies,”
April	23,	2011	on	Eisen’s	blog	it	is	NOT	junk,	http://www.michaeleisen.org/blog/?p=358.

worsen	the	irrationality	of	the	market:	See,	for	instance,	the	reactions	of	Columbia	University
economist	Rajiv	Sethi	in	the	immediate	wake	of	the	flash	crash.	Sethi,	“Algorithmic	Trading	and	Price
Volatility.”

save	the	entire	herd	from	disaster:	This	can	also	be	thought	of	in	terms	of	mechanism	design	and
evolution.	It	is	better	on	average	for	any	particular	individual	to	be	a	somewhat	cautious	herd	follower,
yet	everyone	benefits	from	the	presence	of	some	group	members	who	are	headstrong	mavericks.	In	this
way,	overconfidence	can	be	thought	of	as	a	form	of	altruism.	For	more	on	the	“socially	optimal
proportion”	of	such	group	members,	see	Bernardo	and	Welch,	“On	the	Evolution	of	Overconfidence	and
Entrepreneurs.”

a	way	to	rethink	mechanism	design:	The	phrase	“algorithmic	mechanism	design”	first	entered	the
technical	literature	in	Nisan	and	Ronen,	“Algorithmic	Mechanism	Design.”

It’s	called	the	Vickrey	auction:	See	Vickrey,	“Counterspeculation,	Auctions,	and	Competitive	Sealed
Tenders.”

“strategy-proof,”	or	just	“truthful”:	“Strategy-proof”	games	are	also	known	as	“incentive-
compatible.”	See	Noam	Nisan,	“Introduction	to	Mechanism	Design	(for	Computer	Scientists),”	in	Nisan
et	al.,	eds.,	Algorithmic	Game	Theory.

honesty	is	the	dominant	strategy:	In	game	theory	terms,	this	makes	the	Vickrey	auction	“dominant-
strategy	incentive-compatible”	(DSIC).	And	a	major	result	in	algorithmic	game	theory,	known	as
“Myerson’s	Lemma,”	asserts	that	there	is	only	one	DSIC	payment	mechanism	possible.	This	means	that
the	Vickrey	auction	is	not	just	a	way	to	avoid	strategic,	recursive,	or	dishonest	behavior—it’s	the	only
way.	See	Myerson,	“Optimal	Auction	Design.”

a	game-theoretic	principle	called	“revenue	equivalence”:	The	revenue	equivalence	theorem
originated	with	Vickrey,	“Counterspeculation,	Auctions,	and	Competitive	Sealed	Tenders”	and	was
generalized	in	Myerson,	“Optimal	Auction	Design,”	and	Riley	and	Samuelson,	“Optimal	Auctions.”

http://www.michaeleisen.org/blog/?p=358

the	Vickrey	auction	is	“awesome”:	Tim	Roughgarden,	“Algorithmic	Game	Theory,	Lecture	3
(Myerson’s	Lemma),”	published	October	2,	2013,	https://www.youtube.com/watch?v=9qZwchMuslk.

“I	think	that’s	really	fantastic”:	Noam	Nisan,	personal	interview,	April	13,	2015.

“one	of	the	best	things	you	can	see”:	Paul	Milgrom,	personal	interview,	April	21,	2015.

“Hell	is	other	people”:	Sartre,	No	Exit.
CONCLUSION

“to	learn	how	to	live	well	together”:	Flood,	“What	Future	Is	There	for	Intelligent	Machines?”

“define	this	as	the	wisest	act”:	Russell,	“The	Elements	of	Ethics.”

a	kind	of	computational	Stoicism:	See,	e.g.,	Baltzly,	“Stoicism.”

knowing	a	good	song	when	you	hear	it:	It	also	happens	to	be	the	difference	between	P	and	NP.	For
more	delightful	philosophical	ruminations	of	this	nature,	see	Aaronson,	“Reasons	to	Believe,”	and
Wigderson,	“Knowledge,	Creativity,	and	P	versus	NP.”

none	of	them	had	wanted	to	see	the	bullfight:	Scenarios	like	this	one	sometimes	go	by	the	name	of
“The	Abilene	Paradox”;	see	Harvey,	“The	Abilene	Paradox.”

moving	the	group	toward	resolution:	This	point	has	also	been	made	by	Tim	Ferriss,	who	writes,	“Stop
asking	for	suggestions	or	solutions	and	start	proposing	them.	Begin	with	the	small	things.	Rather	than
asking	when	someone	would	like	to	meet	next	week,	propose	your	ideal	times	and	second	choices.	If
someone	asks,	‘Where	should	we	eat?,’	‘What	movie	should	we	watch?,’	‘What	should	we	do	tonight?,’
or	anything	similar,	do	not	reflect	it	back	with	‘Well,	what/when/where	do	you	want	to…?’	Offer	a
solution.	Stop	the	back	and	forth	and	make	a	decision.”	See	Ferriss,	The	4-Hour	Workweek.

offering	one	or	two	concrete	proposals:	Ideally,	one	would	want	to	know	the	values	that	each	person
in	the	group	assigns	to	all	the	options,	and	adopt	a	reasonable	policy	for	making	a	decision	based	on
those.	One	potential	approach	is	to	simply	select	the	option	that	maximizes	the	product	of	the	values
assigned	by	everyone—which	also	lets	anyone	veto	an	option	by	assigning	it	a	value	of	zero.	There	are
arguments	from	economics	that	this	is	a	good	strategy,	going	all	the	way	back	to	John	Nash.	See	Nash,
“The	Bargaining	Problem.”

minimize	the	number	of	coins:	Shallit,	“What	This	Country	Needs	Is	an	18¢	Piece.”

ungainly	denominations	turn	change-making:	Lueker,	“Two	NP-Complete	Problems	in	Nonnegative
Integer	Programming,”	showed	that	under	certain	assumptions,	making	change	with	the	fewest	number
of	coins	is	NP-hard.	This	result	holds	if	the	coins	are	denominated	in	binary	or	the	familiar	base	ten,	but
not	if	they	are	denominated	in	unary	(base	one),	which	does	have	an	efficient	solution,	as	shown	in
Wright,	“The	Change-Making	Problem.”	For	more	on	the	computational	complexity	of	making	change,
see	also	Kozen	and	Zaks,	“Optimal	Bounds	for	the	Change-Making	Problem.”

Consider	a	large	parking	lot:	Cassady	and	Kobza,	“A	Probabilistic	Approach	to	Evaluate	Strategies
for	Selecting	a	Parking	Space,”	compares	the	“Pick	a	Row,	Closest	Space	(PRCS)”	and	“Cycling
(CYC)”	parking	space–hunting	algorithms.	The	more	complicated	CYC	includes	an	optimal	stopping
rule,	while	PRCS	starts	at	the	destination,	pointing	away,	and	simply	takes	the	first	space.	The	more
aggressive	CYC	found	better	spaces	on	average,	but	the	simpler	PRCS	actually	won	in	terms	of	total
time	spent.	Drivers	following	the	CYC	algorithm	spent	more	time	finding	better	spaces	than	those	better
spaces	saved	them	in	walk	time.	The	authors	note	that	research	of	this	nature	might	be	useful	in	the
design	of	parking	lots.	Computational	models	of	parking	are	also	explored	in,	e.g.,	Benenson,	Martens,
and	Birfir,	“PARKAGENT:	An	Agent-Based	Model	of	Parking	in	the	City.”

“spinning”	and	“blocking”:	For	a	deeper	look	at	when	to	spin	and	when	to	block,	see,	for	instance,
Boguslavsky	et	al.,	“Optimal	Strategies	for	Spinning	and	Blocking.”	(Note	that	this	is	the	same	Leonid
Boguslavsky	we	encountered	briefly	in	chapter	1	on	a	water-skiing	trip.)

https://www.youtube.com/watch?v=9qZwchMuslk

	

Bibliography
Aaronson,	Scott.	“Reasons	to	Believe”	Shtetl-Optimized	(blog),	September	4,	2006.

http://www.scottaaronson.com/blog/?p=122/.

______.	“Why	Philosophers	Should	Care	About	Computational	Complexity.”	arXiv	preprint
arXiv:1108.1791,	2011.

Abramson,	Norman.	“The	ALOHA	System:	Another	Alternative	for	Computer	Communications.”	In
Proceedings	of	the	November	17–19,	1970,	Fall	Joint	Computer	Conference,	1970,	281–285.

Ackley,	David	H.	“Beyond	Efficiency.”	Communications	of	the	ACM	56,	no.	10	(2013):	38–40.

Agrawal,	Manindra,	Neeraj	Kayal,	and	Nitin	Saxena.	“PRIMES	Is	in	P.”	Annals	of	Mathematics	160
(2004):	781–793.

Agrawal,	Rajeev.	“Sample	Mean	Based	Index	Policies	with	O(log	n)	Regret	for	the	Multi-Armed	Bandit
Problem.”	Advances	in	Applied	Probability	27	(1995):	1054–1078.

Agrawal,	Shipra,	and	Navin	Goyal.	“Analysis	of	Thompson	Sampling	for	the	Multi-armed	Bandit
Problem.”	In	Proceedings	of	the	25th	Annual	Conference	on	Learning	Theory,	2012.

Akerlof,	George	A.	“Loyalty	Filters.”	American	Economic	Review	1983,	54–63.

Allen,	David.	Getting	Things	Done:	The	Art	of	Stress-Free	Productivity.	New	York:	Penguin,	2002.

Aloupis,	Greg,	Erik	D.	Demaine,	and	Alan	Guo.	“Classic	Nintendo	Games	Are	(NP-)	Hard.”	arXiv
preprint	arXiv:1203.1895,	2012.

An,	Yonghong,	Yingyao	Hu,	and	Matthew	Shum.	“Estimating	First-Price	Auctions	with	an	Unknown
Number	of	Bidders:	A	Misclassification	Approach.”	Journal	of	Econometrics	157,	no.	2	(2010):
328–341.

Anderson,	John	R.	The	Adaptive	Character	of	Thought.	Hillsdale,	NJ:	Erlbaum,	1990.

Anderson,	John	R.,	and	Robert	Milson.	“Human	Memory:	An	Adaptive	Perspective.”	Psychological
Review	96,	no.	4	(1989):	703–719.

Anderson,	John	R.,	and	Lael	J.	Schooler.	“Reflections	of	the	Environment	in	Memory.”	Psychological
Science	2,	no.	6	(1991):	396–408.

Ariely,	Dan,	and	Simon	Jones.	Predictably	Irrational.	New	York:	HarperCollins,	2008.

Arrhenius,	Gustaf.	“An	Impossibility	Theorem	in	Population	Axiology	with	Weak	Ordering
Assumptions.”	Philosophical	Studies	49	(1999):	11–21.

Auer,	Peter,	Nicolò	Cesa-Bianchi,	and	Paul	Fischer.	“Finite-Time	Analysis	of	the	Multiarmed	Bandit
Problem.”	Machine	Learning	47	(2002):	235–256.

Austen,	Jane.	Emma.	London:	John	Murray,	1815.

Austrian,	Geoffrey	D.	Herman	Hollerith:	Forgotten	Giant	of	Information	Processing.	New	York:
Columbia	University	Press,	1982.

Bachmann,	Paul.	Die	analytische	zahlentheorie.	Leipzig:	Teubner,	1894.

Badger,	Lee.	“Lazzarini’s	Lucky	Approximation	of	π.”	Mathematics	Magazine	67	(1994):	83–91.

Bailey,	Arthur	L.	Credibility	Procedures:	Laplace’s	Generalization	of	Bayes’	Rule	and	the	Combination

http://www.scottaaronson.com/blog/?p=122/

of	Collateral	Knowledge	with	Observed	Data.	New	York:	New	York	State	Insurance	Department,
1950.

Baker,	Kenneth	R.	Introduction	to	Sequencing	and	Scheduling.	New	York:	Wiley,	1974.

Baker,	Kenneth	R.,	Eugene	L.	Lawler,	Jan	Karel	Lenstra,	and	Alexander	H.	G.	Rinnooy	Kan.
“Preemptive	Scheduling	of	a	Single	Machine	to	Minimize	Maximum	Cost	Subject	to	Release	Dates
and	Precedence	Constraints.”	Operations	Research	31,	no.	2	(1983):	381–386.

Baltzly,	Dirk.	“Stoicism.”	In	The	Stanford	Encyclopedia	of	Philosophy	(spring	2014	edition).	Edited	by
Edward	N.	Zalta.	http://plato.stanford.edu/archives/spr2014/entries/stoicism/.

Banks,	Jeffrey	S.,	and	Rangarajan	K	Sundaram.	“Switching	Costs	and	the	Gittins	Index.”	Econometrica
62	(1994):	687–694.

Barabási,	Albert-László.	Linked:	How	Everything	Is	Connected	to	Everything	Else	and	What	It	Means
for	Business,	Science,	and	Everyday	Life.	New	York:	Penguin,	2002.

Baran,	Paul.	“On	Distributed	Communications.”	Volumes	I–XI,	RAND	Corporation	Research
Documents,	August	1964,	637–648.

Barnard,	Chester	I.	The	Functions	of	the	Executive.	Cambridge,	MA:	Harvard	University	Press,	1938.

Bartlett,	Robert	H.,	Dietrich	W.	Roloff,	Richard	G.	Cornell,	Alice	French	Andrews,	Peter	W.	Dillon,	and
Joseph	B.	Zwischenberger.	“Extracorporeal	Circulation	in	Neonatal	Respiratory	Failure:	A
Prospective	Randomized	Study.”	Pediatrics	76,	no.	4	(1985):	479–487.

Baumgardt,	Carola.	Johannes	Kepler:	Life	and	Letters.	New	York:	Philosophical	Library,	1951.

Bavelas,	Janet	B.,	Linda	Coates,	and	Trudy	Johnson.	“Listeners	as	Co-Narrators.”	Journal	of
Personality	and	Social	Psychology	79,	no.	6	(2000):	941–952.

Bayes,	Thomas.	“An	Essay	Towards	Solving	a	Problem	in	the	Doctrine	of	Chances.”	Philosophical
Transactions	53	(1763):	370–418.

Bearden,	Neil.	“A	New	Secretary	Problem	with	Rank-Based	Selection	and	Cardinal	Payoffs.”	Journal
of	Mathematical	Psychology	50	(2006):	58–59.

Bélády,	Laszlo	A.	“A	Study	of	Replacement	Algorithms	for	a	Virtual-Storage	Computer.”	IBM	Systems
Journal	5	(1966):	78–101.

Bélády,	Laszlo	A.,	Robert	A	Nelson,	and	Gerald	S.	Shedler.	“An	Anomaly	in	Space-Time
Characteristics	of	Certain	Programs	Running	in	a	Paging	Machine.”	Communications	of	the	ACM
12,	no.	6	(1969):	349–353.

Belew,	Richard	K.	Finding	Out	About:	A	Cognitive	Perspective	on	Search	Engine	Technology	and	the
WWW.	Cambridge,	UK:	Cambridge	University	Press,	2000.

Bell,	Aubrey	F.	G.	In	Portugal.	New	York:	John	Lane,	1912.

Bellhouse,	David	R.	“The	Reverend	Thomas	Bayes,	FRS:	A	Biography	to	Celebrate	the	Tercentenary	of
His	Birth.”	Statistical	Science	19	(2004):	3–43.

Bellman,	Richard.	Dynamic	Programming.	Princeton,	NJ:	Princeton	University	Press,	1957.

______.	“A	Problem	in	the	Sequential	Design	of	Experiments.”	Sankhyā:	The	Indian	Journal	of
Statistics	16	(1956):	221–229.

Bellows,	Meghan	L.,	and	J.	D.	Luc	Peterson.	“Finding	an	Optimal	Seating	Chart.”	Annals	of
Improbable	Research	(2012).

Benenson,	Itzhak,	Karel	Martens,	and	Slava	Birfir.	“PARKAGENT:	An	Agent-Based	Model	of	Parking
in	the	City.”	Computers,	Environment	and	Urban	Systems	32,	no.	6	(2008):	431–439.

http://plato.stanford.edu/archives/spr2014/entries/stoicism/

Berezovsky,	Boris,	and	Alexander	V.	Gnedin.	Problems	of	Best	Choice	(in	Russian).	Moscow:
Akademia	Nauk,	1984.

Berg-Kirkpatrick,	Taylor,	and	Dan	Klein.	“Decipherment	with	a	Million	Random	Restarts.”	In
Proceedings	of	the	Conference	on	Empirical	Methods	in	Natural	Language	Processing	(2013):	874–
878.

Bernardo,	Antonio	E.,	and	Ivo	Welch.	“On	the	Evolution	of	Overconfidence	and	Entrepreneurs.”
Journal	of	Economics	&	Management	Strategy	10,	no.	3	(2001):	301–330.

Berry,	Donald	A.	“A	Bernoulli	Two-Armed	Bandit.”	Annals	of	Mathematical	Statistics	43	(1972):	871–
897.

______.	“Comment:	Ethics	and	ECMO.”	Statistical	Science	4	(1989):	306–310.

Berry,	Donald	A.,	and	Bert	Fristed.	Bandit	Problems:	Sequential	Allocation	of	Experiments.	New	York:
Chapman	and	Hall,	1985.

Bettencourt,	Luís	M.	A.,	José	Lobo,	Dirk	Helbing,	Christian	Kühnert,	and	Geoffrey	B.	West.	“Growth,
Innovation,	Scaling,	and	the	Pace	of	Life	in	Cities.”	Proceedings	of	the	National	Academy	of
Sciences	104,	no.	17	(2007):	7301–7306.

Bikhchandani,	Sushil,	David	Hirshleifer,	and	Ivo	Welch.	“A	Theory	of	Fads,	Fashion,	Custom,	and
Cultural	Change	as	Informational	Cascades.”	Journal	of	Political	Economy	100,	no.	5	(1992):	992–
1026.

______.	“Learning	from	the	Behavior	of	Others:	Conformity,	Fads,	and	Informational	Cascades.”
Journal	of	Economic	Perspectives	12,	no.	3	(1998):	151–170.

Binmore,	Ken.	Game	Theory:	A	Very	Short	Introduction.	New	York:	Oxford	University	Press,	2007.

______.	Natural	Justice.	New	York:	Oxford	University	Press,	2005.

Bjarnason,	Ronald,	Alan	Fern,	and	Prasad	Tadepalli.	“Lower	Bounding	Klondike	Solitaire	with	Monte-
Carlo	Planning.”	In	Proceedings	of	the	19th	International	Conference	on	Automated	Planning	and
Scheduling,	ICAPS	2009.

Blau,	Peter	Michael.	The	Dynamics	of	Bureaucracy:	A	Study	of	Interpersonal	Relations	in	Two
Government	Agencies.	Chicago:	University	of	Chicago	Press,	1955.

Bloom,	Burton	H.	“Space/Time	Trade-offs	in	Hash	Coding	with	Allowable	Errors.”	Communications	of
the	ACM	13,	no.	7	(1970):	422–426.

Boguslavsky,	Leonid,	Karim	Harzallah,	A.	Kreinen,	K.	Sevcik,	and	Alexander	Vainshtein.	“Optimal
Strategies	for	Spinning	and	Blocking.”	Journal	of	Parallel	and	Distributed	Computing	21,	no.	2
(1994):	246–254.

Boorstin,	Daniel	J.	The	Discoverers:	A	History	of	Man’s	Search	to	Know	His	World	and	Himself.	New
York:	Random	House,	1983.

Bradt,	Russell	N.,	S.	M.	Johnson,	and	Samuel	Karlin.	“On	Sequential	Designs	for	Maximizing	the	Sum
of	N	Observations.”	Annals	of	Mathematical	Statistics	27	(1956):	1060–1074.

Branch,	John.	“Snow	Fall:	The	Avalanche	at	Tunnel	Creek.”	New	York	Times,	December	20,	2012.

Brown,	Alexander	L.,	and	Joanna	N.	Lahey.	Small	Victories:	Creating	Intrinsic	Motivation	in	Savings
and	Debt	Reduction.	Technical	report.	Cambridge,	MA:	National	Bureau	of	Economic	Research,
2014.

Brush,	Eleanor	R.,	David	C.	Krakauer,	and	Jessica	C.	Flack.	“A	Family	of	Algorithms	for	Computing
Consensus	About	Node	State	from	Network	Data.”	PLoS	Computational	Biology	9,	no.	7	(2013).

Bruss,	F.	Thomas.	“A	Unified	Approach	to	a	Class	of	Best	Choice	Problems	with	an	Unknown	Number
of	Options.”	Annals	of	Probability	12	(1984):	882–889.

Buch,	P.	“Future	Prospects	Discussed.”	Nature	368	(1994):	107–108.

Buffon,	Georges-Louis	Leclerc,	Comte	de.	“Essai	d’arithmétique	morale.”	Supplément	à	l’Histoire
naturelle,	générale	et	particuliére	4	(1777):	46–148.

Burks,	Arthur	W.,	Herman	H.	Goldstine,	and	John	von	Neumann.	Preliminary	Discussion	of	the	Logical
Design	of	an	Electronic	Computing	Instrument.	Princeton,	NJ:	Institute	for	Advanced	Study,	1946.

Burrell,	Quentin.	“A	Simple	Stochastic	Model	for	Library	Loans.”	Journal	of	Documentation	36,	no.	2
(1980):	115–132.

Burthe	Jr.,	Ronald.	“Further	Investigations	with	the	Strong	Probable	Prime	Test.”	Mathematics	of
Computation	of	the	American	Mathematical	Society	65,	no.	213	(1996):	373–381.

Cabell,	James	Branch.	The	Silver	Stallion.	New	York:	Robert	M.	McBride,	1926.

Campbell,	Donald	T.	“Blind	Variation	and	Selective	Retention	in	Creative	Thought	as	in	Other
Knowledge	Processes.”	Psychological	Review	67	(1960):	380–400.

Carpenter,	Brian,	and	Robert	Hinden.	Adaptation	of	RFC	1149	for	IPv6.	Technical	report.	RFC	6214,
April	2011.

Carroll,	Lewis.	Sylvie	and	Bruno	Concluded.	London:	Macmillan,	1893.

Carstensen,	Laura	L.	“Social	and	Emotional	Patterns	in	Adulthood:	Support	for	Socioemotional
Selectivity	Theory.”	Psychology	and	Aging	7	(1992):	331–338.

Cassady,	C.	Richard,	and	John	E.	Kobza.	“A	Probabilistic	Approach	to	Evaluate	Strategies	for	Selecting
a	Parking	Space.”	Transportation	Science	32,	no.	1	(1998):	30–42.

Cawdrey,	Robert.	A	Table	Alphabeticall,	conteyning	and	teaching	the	true	writing,	and	vnderstanding	of
hard	vsuall	English	wordes,	borrowed	from	the	Hebrew,	Greeke,	Latine,	or	French,	&c.	With	the
interpretation	thereof	by	plaine	English	words,	gathered	for	the	benefit	&	helpe	of	ladies,
gentlewomen,	or	any	other	vnskilfull	persons.	Whereby	they	may	the	more	easilie	and	better
vnderstand	many	hard	English	wordes,	which	they	shall	heare	or	read	in	Scriptures,	Sermons,	or
elswhere,	and	also	be	made	able	to	vse	the	same	aptly	themselues.	London:	Edmund	Weaver,	1604.

Cayley,	Arthur.	“Mathematical	Questions	with	Their	Solutions.”	Educational	Times	23	(1875):	18–19.

______.	The	Collected	Mathematical	Papers	of	Arthur	Cayley	10:	587–588.	Cambridge,	UK:
Cambridge	University	Press,	1896.

Cerf,	Vinton	G.,	and	Robert	E.	Kahn.	“A	Protocol	for	Packet	Network	Intercommunication.”	IEEE
Transactions	on	Communications	22,	no.	5	(1974):	637–648.

Chabert,	Jean-Luc,	Evelyne	Barbin,	and	Christopher	John	Weeks.	A	History	of	Algorithms:	From	the
Pebble	to	the	Microchip.	Berlin:	Springer,	1999.

Charles,	Susan	T.,	and	Laura	L.	Carstensen.	“Social	and	Emotional	Aging.”	Annual	Review	of
Psychology	61	(2010):	383–409.

Chen,	Stanley	F.,	and	Joshua	Goodman.	“An	Empirical	Study	of	Smoothing	Techniques	for	Language
Modeling.”	In	Proceedings	of	the	34th	Annual	Meeting	of	the	Association	for	Computational
Linguistics,	1996,	310–318.

Chen,	Xi,	and	Xiaotie	Deng.	“Settling	the	Complexity	of	Two-Player	Nash	Equilibrium.”	In
Foundations	of	Computer	Science,	2006,	261–272.

Chow,	Y.	S.,	and	Herbert	Robbins.	“A	Martingale	System	Theorem	and	Applications.”	In	Proceedings

of	the	Fourth	Berkeley	Symposium	on	Mathematical	Statistics	and	Probability.	Berkeley:	University
of	California	Press,	1961.

______.	“On	Optimal	Stopping	Rules.”	Probability	Theory	and	Related	Fields	2	(1963):	33–49.

Chow,	Y.	S.,	Sigaiti	Moriguti,	Herbert	Robbins,	and	S.	M.	Samuels.	“Optimal	Selection	Based	on
Relative	Rank	(the	‘Secretary	Problem’).”	Israel	Journal	of	Mathematics	2	(1964):	81–90.

Christian,	Brian.	“The	A/B	Test:	Inside	the	Technology	That’s	Changing	the	Rules	of	Business.”	Wired
Magazine	20,	no.	5	(2012).

Christofides,	Nicos.	Worst-Case	Analysis	of	a	New	Heuristic	for	the	Travelling	Salesman	Problem.
Technical	report	388.	Pittsburgh:	Graduate	School	of	Industrial	Administration,	Carnegie	Mellon
University,	1976.

Churchill,	Winston.	Winston	S.	Churchill:	His	Complete	Speeches,	1897–1963.	Edited	by	Robert
Rhodes	James.	London:	Chelsea	House,	1974.

Cirillo,	Francesco.	The	Pomodoro	Technique.	Raleigh,	NC:	Lulu,	2009.

Clarke,	Donald	D.,	and	Louis	Sokoloff.	“Circulation	and	Energy	Metabolism	of	the	Brain.”	In	Basic
Neurochemistry:	Molecular,	Cellular	and	Medical	Aspects,	6th	ed.,	edited	by	George	J.	Siegel,
Bernard	W.	Agranoff,	R.	Wayne	Albers,	Stephen	K.	Fisher,	and	Michael	D.	Uhler.	Philadelphia:
Lippincott-Raven,	1999,	637–669.

Clauset,	Aaron,	Cosma	Rohilla	Shalizi,	and	Mark	E.	J.	Newman.	“Power-Law	Distributions	in
Empirical	Data.”	SIAM	Review	51,	no.	4	(2009):	661–703.

Cobham,	Alan.	“The	Intrinsic	Computational	Difficulty	of	Functions.”	In	Proceedings	of	the	1964
Congress	on	Logic,	Methodology	and	Philosophy	of	Science.	Amsterdam:	North	Holland,	1964.

Conan	Doyle,	Arthur.	“A	Study	in	Scarlet:	The	Reminiscences	of	John	H.	Watson.”	In	Beeton’s
Christmas	Annual,	vol.	29.	London:	Ward,	Lock,	1887.

Connor,	James	A.	Kepler’s	Witch:	An	Astronomer’s	Discovery	of	Cosmic	Order	Amid	Religious	War,
Political	Intrigue,	and	the	Heresy	Trial	of	His	Mother.	New	York:	HarperCollins,	2004.

Conti,	Carl	J.,	Donald	H.	Gibson,	and	Stanley	H.	Pitkowsky.	“Structural	Aspects	of	the	System/360
Model	85,	I:	General	Organization.”	IBM	Systems	Journal	7	(1968):	2–14.

Cook,	Stephen	A.	“The	Complexity	of	Theorem-Proving	Procedures.”	In	Proceedings	of	the	Third
Annual	ACM	Symposium	on	Theory	of	Computing,	1971,	151–158.

Cook,	William.	In	Pursuit	of	the	Traveling	Salesman:	Mathematics	at	the	Limits	of	Computation.
Princeton,	NJ:	Princeton	University	Press,	2012.

Covey,	Stephen	R.	How	to	Succeed	with	People.	Salt	Lake	City:	Shadow	Mountain,	1971.

Craig,	J.	V.	Aggressive	Behavior	of	Chickens:	Some	Effects	of	Social	and	Physical	Environments.
Presented	at	the	27th	Annual	National	Breeder’s	Roundtable,	May	11,	Kansas	City,	MO,	1978.

Dale,	Andrew	I.	A	History	of	Inverse	Probability:	From	Thomas	Bayes	to	Karl	Pearson.	New	York:
Springer,	1999.

Daly,	Lloyd	W.	Contributions	to	a	History	of	Alphabetization	in	Antiquity	and	the	Middle	Ages.
Brussels:	Latomus,	1967.

Damgård,	Ivan,	Peter	Landrock,	and	Carl	Pomerance.	“Average	Case	Error	Estimates	for	the	Strong
Probable	Prime	Test.”	Mathematics	of	Computation	61,	no.	203	(1993):	177–194.

Daniels,	Bryan	C.,	David	C.	Krakauer,	and	Jessica	C.	Flack.	“Sparse	Code	of	Conflict	in	a	Primate
Society.”	Proceedings	of	the	National	Academy	of	Sciences	109,	no.	35	(2012):	14259–14264.

Darwin,	Charles.	The	Correspondence	of	Charles	Darwin,	Volume	2:	1837–1843.	Edited	by	Frederick
Burkhardt	and	Sydney	Smith.	Cambridge,	UK:	Cambridge	University	Press,	1987.

Daskalakis,	Constantinos,	Paul	W.	Goldberg,	and	Christos	H.	Papadimitriou.	“The	Complexity	of
Computing	a	Nash	Equilibrium.”	ACM	Symposium	on	Theory	of	Computing,	2006,	71–78.

______.	“The	Complexity	of	Computing	a	Nash	Equilibrium.”	SIAM	Journal	on	Computing	39,	no.	1
(2009):	195–259.

Davis,	Lydia.	Almost	No	Memory:	Stories.	New	York:	Farrar,	Straus	&	Giroux,	1997.

Dawkins,	Richard.	The	Evidence	for	Evolution,	the	Greatest	Show	on	Earth.	New	York:	Free	Press,
2009.

DeDeo,	Simon,	David	C.	Krakauer,	and	Jessica	C.	Flack.	“Evidence	of	Strategic	Periodicities	in
Collective	Conflict	Dynamics.”	Journal	of	The	Royal	Society	Interface,	2011.

DeGroot,	Morris	H.	Optimal	Statistical	Decisions.	New	York:	McGraw-Hill,	1970.

Demaine,	Erik	D.,	Susan	Hohenberger,	and	David	Liben-Nowell.	“Tetris	Is	Hard,	Even	to
Approximate.”	In	Computing	and	Combinatorics,	351–363.	New	York:	Springer,	2003.

DeMillo,	Richard	A.,	and	Richard	J.	Lipton.	“A	Probabilistic	Remark	on	Algebraic	Program	Testing.”
Information	Processing	Letters	7,	no.	4	(1978):	193–195.

Denning,	Peter	J.	“Thrashing:	Its	Causes	and	Prevention.”	In	Proceedings	of	the	December	9–11,	1968,
Fall	Joint	Computer	Conference,	Part	I,	1968,	915–922.

Diffie,	Whitfield,	and	Martin	E.	Hellman.	“New	Directions	in	Cryptography.”	Information	Theory,
IEEE	Transactions	on	22,	no.	6	(1976):	644–654.

Dillard,	Annie.	Pilgrim	at	Tinker	Creek.	New	York:	Harper’s	Magazine	Press,	1974.

______.	The	Writing	Life.	New	York:	Harper	&	Row,	1989.

Dodgson,	Charles	Lutwidge.	“Lawn	Tennis	Tournaments:	The	True	Method	of	Assigning	Prizes	with	a
Proof	of	the	Fallacy	of	the	Present	Method.”	St.	James’s	Gazette,	August	1,	1883:	5–6.

Durant,	Will.	The	Story	of	Philosophy:	The	Lives	and	Opinions	of	the	Greater	Philosophers.	New	York:
Simon	&	Schuster,	1924.

Edmonds,	Jack.	“Optimum	Branchings.”	Journal	of	Research	of	the	National	Bureau	of	Standards	71B,
no.	4	(1967):	233–240.

______.	“Paths,	Trees,	and	Flowers.”	Canadian	Journal	of	Mathematics	17,	no.	3	(1965):	449–467.

Erlang,	Agner	Krarup.	“Solution	of	Some	Problems	in	the	Theory	of	Probabilities	of	Significance	in
Automatic	Telephone	Exchanges.”	Elektrotkeknikeren	13	(1917):	5–13.

______.	“The	Theory	of	Probabilities	and	Telephone	Conversations.”	Nyt	Tidsskrift	for	Matematik	B	20,
nos.	33–39	(1909):	16.

Everett	III,	Hugh.	“Generalized	Lagrange	Multiplier	Method	for	Solving	Problems	of	Optimum
Allocation	of	Resources.”	Operations	Research	11,	no.	3	(1963):	399–417.

Feldman,	Dorian.	“Contributions	to	the	‘Two-Armed	Bandit’	Problem.”	Annals	of	Mathematical
Statistics	33	(1962):	847–856.

Ferguson,	Thomas	S.	Optimal	Stopping	and	Applications.	Available	at
http://www.math.ucla.edu/~tom/Stopping/.

______.	“Stopping	a	Sum	During	a	Success	Run.”	Annals	of	Statistics	4	(1976):	252–264.

http://www.math.ucla.edu/~tom/Stopping/

______.	“Who	Solved	the	Secretary	Problem?”	Statistical	Science	4	(1989):	282–289.

Ferguson,	Thomas	S.,	Janis	P.	Hardwick,	and	Mitsushi	Tamaki.	“Maximizing	the	Duration	of	Owning	a
Relatively	Best	Object.”	In	Strategies	for	Sequential	Search	and	Selection	in	Real	Time,	37–57.
Providence:	American	Mathematical	Society,	1992.

Ferriss,	Timothy.	The	4-Hour	Workweek.	New	York:	Crown,	2007.

Fiore,	Neil	A.	The	Now	Habit:	A	Strategic	Program	for	Overcoming	Procrastination	and	Enjoying
Guilt-Free	Play.	New	York:	Penguin,	2007.

Fisher,	Marshall	L.	“The	Lagrangian	Relaxation	Method	for	Solving	Integer	Programming	Problems.”
Management	Science	27,	no.	1	(1981):	1–18.

Fitzgerald,	F.	Scott.	“The	Crack-Up.”	Esquire	5,	nos.	2–4	(1936).

______.	The	Crack-Up	with	Other	Uncollected	Pieces.	New	York:	New	Directions,	1956.

Flood,	Merrill	M.	“Soft	News.”	Datamation	30,	no.	20	(1984):	15–16.

______.	“Some	Experimental	Games.”	In	Research	Memorandum	RM-789.	Santa	Monica,	CA:	RAND,
1952.

______.	“The	Traveling-Salesman	Problem.”	Operations	Research	4,	no.	1	(1956):	61–75.

______.	“What	Future	Is	There	for	Intelligent	Machines?”	Audio	Visual	Communication	Review	11,	no.
6	(1963):	260–270.

Forster,	Edward	M.	Howards	End.	London:	Edward	Arnold,	1910.

Fortnow,	Lance.	The	Golden	Ticket:	P,	NP,	and	the	Search	for	the	Impossible.	Princeton,	NJ:	Princeton
University	Press,	2013.

Fraker,	Guy	C.	“The	Real	Lincoln	Highway:	The	Forgotten	Lincoln	Circuit	Markers.”	Journal	of	the
Abraham	Lincoln	Association	25	(2004):	76–97.

Frank,	Robert	H.	“If	Homo	Economicus	Could	Choose	His	Own	Utility	Function,	Would	He	Want	One
with	a	Conscience?”	American	Economic	Review	1987,	593–604.

______.	Passions	within	Reason:	The	Strategic	Role	of	the	Emotions.	New	York:	Norton,	1988.

Fredrickson,	Barbara	L.,	and	Laura	L.	Carstensen.	“Choosing	Social	Partners:	How	Old	Age	and
Anticipated	Endings	Make	People	More	Selective.”	Psychology	and	Aging	5	(1990):	335–347.

Freeman,	P.	R.	“The	Secretary	Problem	and	Its	Extensions:	A	Review.”	International	Statistical	Review
51	(1983):	189–206.

Fung,	Helene	H.,	Laura	L.	Carstensen,	and	Amy	M.	Lutz.	“Influence	of	Time	on	Social	Preferences:
Implications	for	Life-Span	Development.”	Psychology	and	Aging	14	(1999):	595–604.

Gal,	David,	and	Blakeley	B.	McShane.	“Can	Small	Victories	Help	Win	the	War?	Evidence	from
Consumer	Debt	Management.”	Journal	of	Marketing	Research	49	(2012):	487–501.

Gallagher,	P.,	and	C.	Kerry.	Digital	Signature	Standard.	FIPS	PUB	186-4,	2013.

Garey,	Michael	R.,	and	David	S.	Johnson.	Computers	and	Intractability:	A	Guide	to	NP-Completeness.
New	York:	W.	H.	Freeman,	1979.

Garfield,	Eugene.	“Recognizing	the	Role	of	Chance.”	Scientist	2,	no.	8	(1988):	10.

Garrett,	A.	J.	M.,	and	P.	Coles.	“Bayesian	Inductive	Inference	and	the	Anthropic	Cosmological
Principle.”	Comments	on	Astrophysics.	17	(1993):	23–47.

Gasarch,	William	I.	“The	P	=?	NP	Poll.”	SIGACT	News	33,	no.	2	(2002):	34–47.

Gauthier,	David	P.	Morals	by	Agreement.	New	York:	Oxford	University	Press,	1985.

Geman,	Stuart,	Elie	Bienenstock,	and	René	Doursat.	“Neural	Networks	and	the	Bias/Variance
Dilemma.”	Neural	Computation	4,	no.	1	(1992):	1–58.

Geoffrion,	Arthur	M.	“Lagrangean	Relaxation	for	Integer	Programming.”	Mathematical	Programming
Study	2	(1974):	82–114.

______.	“Lagrangian	Relaxation	for	Integer	Programming.”	In	50	Years	of	Integer	Programming	1958–
2008:	From	Early	Years	to	State	of	the	Art.	Edited	by	Michael	Juenger,	Thomas	M.	Liebling,	Denis
Naddef,	George	L.	Nemhauser,	William	R.	Pulleyblank,	Gerhard	Reinelt,	Giovanni	Rinaldi,	and
Laurence	A.	Wolsey.	Berlin:	Springer,	2010,	243–281.

Gigerenzer,	Gerd,	and	Henry	Brighton.	“Homo	Heuristicus:	Why	Biased	Minds	Make	Better
Inferences.”	Topics	in	Cognitive	Science	1,	no.	1	(2009):	107–143.

Gilbert,	Daniel.	Stumbling	on	Happiness.	New	York:	Knopf,	2006.

Gilbert,	John	P.	and	Frederick	Mosteller.	“Recognizing	the	Maximum	of	a	Sequence.”	Journal	of	the
American	Statistical	Association	61	(1966):	35–75.

Gilboa,	Itzhak,	and	Eitan	Zemel.	“Nash	and	Correlated	Equilibria:	Some	Complexity	Considerations.”
Games	and	Economic	Behavior	1,	no.	1	(1989):	80–93.

Gillispie,	Charles	Coulston.	Pierre-Simon	Laplace,	1749–1827:	A	Life	in	Exact	Science.	Princeton,	NJ:
Princeton	University	Press,	2000.

Gilmore,	Paul	C.,	and	Ralph	E.	Gomory.	“A	Linear	Programming	Approach	to	the	Cutting	Stock
Problem,	Part	II.”	Operations	Research	11,	no.	6	(1963):	863–888.

Gilovich,	Thomas.	How	We	Know	What	Isn’t	So.	New	York:	Simon	&	Schuster,	2008.

Ginsberg,	Allen.	Howl	and	Other	Poems.	San	Francisco:	City	Lights	Books,	1956.

Gittins,	John	C.	“Bandit	Processes	and	Dynamic	Allocation	Indices.”	Journal	of	the	Royal	Statistical
Society,	Series	B	(Methodological)	41	(1979):	148–177.

Gittins,	John	C.,	Kevin	Glazebrook,	and	Richard	Weber.	Multi-Armed	Bandit	Allocation	Indices,	2nd
ed.	Chichester,	UK:	Wiley,	2011.

Gittins,	John	C.,	and	D.	Jones.	“A	Dynamic	Allocation	Index	for	the	Sequential	Design	of
Experiments.”	In	Progress	in	Statistics.	Amsterdam:	North	Holland,	1974,	241–266.

Glassner,	Barry.	“Narrative	Techniques	of	Fear	Mongering.”	Social	Research	71	(2004):	819–826.

Goldberg,	Paul	W.,	and	Christos	H.	Papadimitriou.	“Reducibility	Between	Equilibrium	Problems.”
ACM	Symposium	on	Theory	of	Computing	2006,	62–70.

Good,	Irving	John.	Good	Thinking:	The	Foundations	of	Probability	and	Its	Applications.	Minneapolis,
MN:	University	of	Minnesota	Press,	1983.

Gopnik,	Alison,	Andrew	N.	Meltzoff,	and	Patricia	K.	Kuhl.	The	Scientist	in	the	Crib.	New	York:
Morrow,	1999.

Gordon,	Deborah	M.	“Control	Without	Hierarchy.”	Nature	446,	no.	7132	(2007):	143.

Gott,	J.	R.	“Future	Prospects	Discussed.”	Nature	368	(1994):	108.

______.	“Implications	of	the	Copernican	Principle	for	Our	Future	Prospects.”	Nature	363	(1993):	315–
319.

Gould,	Stephen	Jay.	“The	Median	Isn’t	the	Message.”	Discover	6,	no.	6	(1985):	40–42.

Graham,	Ronald	L.,	Eugene	L.	Lawler,	Jan	Karel	Lenstra,	and	Alexander	H.	G.	Rinnooy	Kan.
“Optimization	and	Approximation	in	Deterministic	Sequencing	and	Scheduling:	A	Survey.”	Annals
of	Discrete	Mathematics	5	(1979):	287–326.

Grenander,	Ulf.	“On	Empirical	Spectral	Analysis	of	Stochastic	Processes.”	Arkiv	för	Matematik	1,	no.	6
(1952):	503–531.

Gridgeman,	T.	“Geometric	Probability	and	the	Number	π.”	Scripta	Mathematika	25,	no.	3	(1960):	183–
195.

Griffiths,	Thomas	L.,	Charles	Kemp,	and	Joshua	B.	Tenenbaum.	“Bayesian	Models	of	Cognition.”	In
The	Cambridge	Handbook	of	Computational	Cognitive	Modeling.	Edited	by	Ron	Sun.	Cambridge,
UK:	Cambridge	University	Press,	2008.

Griffiths,	Thomas	L.,	Falk	Lieder,	and	Noah	D.	Goodman.	“Rational	Use	of	Cognitive	Resources:
Levels	of	Analysis	Between	the	Computational	and	the	Algorithmic.”	Topics	in	Cognitive	Science	7
(2015):	217–229.

Griffiths,	Thomas	L.,	David	M.	Sobel,	Joshua	B.	Tenenbaum,	and	Alison	Gopnik.	“Bayes	and	Blickets:
Effects	of	Knowledge	on	Causal	Induction	in	Children	and	Adults.”	Cognitive	Science	35	(2011):
1407–1455.

Griffiths,	Thomas	L.,	Mark	Steyvers,	and	Alana	Firl.	“Google	and	the	Mind:	Predicting	Fluency	with
PageRank.”	Psychological	Science	18	(2007):	1069–1076.

Griffiths,	Thomas	L.,	and	Joshua	B.	Tenenbaum.	“Optimal	Predictions	in	Everyday	Cognition.”
Psychological	Science	17	(2006):	767–773.

Grossman,	Dave,	and	L.	W.	Christensen.	On	Combat.	Belleville,	IL:	PPCT	Research	Publications,	2004.

Haggstrom,	Gus	W.	“Optimal	Sequential	Procedures	When	More	Than	One	Stop	Is	Required.”	Annals
of	Mathematical	Statistics	38	(1967):	1618–1626.

Halevy,	Alon,	Peter	Norvig,	and	Fernando	Pereira.	“The	Unreasonable	Effectiveness	of	Data.”
Intelligent	Systems,	IEEE	24,	no.	2	(2009):	8–12.

Hardin,	Garrett.	“The	Tragedy	of	the	Commons.”	Science	162,	no.	3859	(1968):	1243–1248.

Hardy,	G.	H.	Collected	Works.	Vol.	II.	Oxford,	UK:	Oxford	University	Press,	1967.

______.	“Prime	Numbers.”	British	Association	Report	10	(1915):	350–354.

Harmenberg,	J.	Epee	2.0:	The	Birth	of	the	New	Fencing	Paradigm.	New	York:	SKA	Swordplay	Books,
2007.

Harsanyi,	John	C.	“Can	the	Maximin	Principle	Serve	as	a	Basis	for	Morality?	A	Critique	of	John
Rawls’s	Theory.”	The	American	Political	Science	Review	69,	no.	2	(1975):	594–606.

Harvey,	Jerry	B.	“The	Abilene	Paradox:	The	Management	of	Agreement.”	Organizational	Dynamics	3,
no.	1	(1974):	63–80.

Hastings,	W.	K.	“Monte	Carlo	Methods	Using	Markov	Chains	and	Their	Applications.”	Biometrika	57
(1970):	97–109.

Hawken,	Angela,	and	Mark	Kleiman.	Managing	Drug	Involved	Probationers	with	Swift	and	Certain
Sanctions:	Evaluating	Hawaii’s	HOPE.	Report	submitted	to	the	National	Institute	of	Justice.	2009.
http://www.ncjrs.gov/pdffiles1/nij/grants/229023.pdf.

Held,	Michael,	and	Richard	M.	Karp.	“The	Traveling-Salesman	Problem	and	Minimum	Spanning
Trees.”	Operations	Research	18,	no.	6	(1970):	1138–1162.

______.	“The	Traveling-Salesman	Problem	and	Minimum	Spanning	Trees:	Part	II.”	Mathematical

http://www.ncjrs.gov/pdffiles1/nij/grants/229023.pdf

Programming	1,	no.	1	(1971):	6–25.

Henderson,	T.	Discrete	Relaxation	Techniques.	Oxford,	UK:	Oxford	University	Press,	1989.

Hennessy,	John	L.,	and	David	A.	Patterson.	Computer	Architecture:	A	Quantitative	Approach.	New
York:	Elsevier,	2012.

Herrmann,	Jeffrey	W.	“The	Perspectives	of	Taylor,	Gantt,	and	Johnson:	How	to	Improve	Production
Scheduling.”	International	Journal	of	Operations	and	Quality	Management	16	(2010):	243–254.

Heyde,	C.	C.	“Agner	Krarup	Erlang.”	In	Statisticians	of	the	Centuries.	Edited	by	C.	C.	Heyde,	E.
Seneta,	P.	Crepel,	S.	E.	Fienberg,	and	J.	Gani,	328–330.	New	York:	Springer,	2001.

Hill,	Theodore.	“Knowing	When	to	Stop.”	American	Scientist	97	(2009):	126–131.

Hillis,	W.	Daniel.	The	Pattern	on	the	Stone:	The	Simple	Ideas	That	Make	Computers	Work.	New	York:
Basic	Books,	1998.

Hirshleifer,	Jack.	“On	the	Emotions	as	Guarantors	of	Threats	and	Promises.”	In	The	Latest	on	the	Best:
Essays	in	Evolution	and	Optimality.	Edited	by	John	Dupre,	307–326.	Cambridge,	MA:	MIT	Press,
1987.

Hoffman,	David.	The	Oligarchs:	Wealth	and	Power	in	the	New	Russia.	New	York:	PublicAffairs,	2003.

Horvitz,	Eric,	and	Shlomo	Zilberstein.	“Computational	Tradeoffs	Under	Bounded	Resources.”	Artificial
Intelligence	126	(2001):	1–4.

Hosken,	James	C.	“Evaluation	of	Sorting	Methods.”	In	Papers	and	Discussions	Presented	at	the
November	7–9,	1955,	Eastern	Joint	AIEE-IRE	Computer	Conference:	Computers	in	Business	and
Industrial	Systems,	39–55.

Hurd,	Cuthbert	C.	“A	Note	on	Early	Monte	Carlo	Computations	and	Scientific	Meetings.”	IEEE	Annals
of	the	History	of	Computing	7,	no.	2	(1985):	141–155.

Impagliazzo,	Russell,	and	Avi	Wigderson.	“P	=	BPP	if	E	Requires	Exponential	Circuits:
Derandomizing	the	XOR	Lemma.”	In	Proceedings	of	the	Twenty-Ninth	Annual	ACM	Symposium	on
Theory	of	Computing,	1997,	220–229.

______.	“Randomness	vs.	Time:	De-Randomization	Under	a	Uniform	Assumption.”	In	Proceedings	of
the	39th	Annual	Symposium	on	Foundations	of	Computer	Science,	1998,	734–743.

Ingram,	Wendy	Marie,	Leeanne	M.	Goodrich,	Ellen	A.	Robey,	and	Michael	B.	Eisen.	“Mice	Infected
with	Low-Virulence	Strains	of	Toxoplasma	Gondii	Lose	Their	Innate	Aversion	to	Cat	Urine,	Even
After	Extensive	Parasite	Clearance.”	PLOS	ONE,	no.	9	(2013):	e75246.

Jackson,	James	R.	Scheduling	a	Production	Line	to	Minimize	Maximum	Tardiness.	Technical	report	43.
Management	Science	Research	Project,	University	of	California,	Los	Angeles,	1955.

Jacobson,	Van.	“Congestion	Avoidance	and	Control.”	In	ACM	SIGCOMM	Computer	Communication
Review	18,	no.	4	(1988):	314–329.

______.	“A	New	Way	to	Look	at	Networking.”	Lecture	at	Google,	Mountain	View,	CA,	August	2006.
https://www.youtube.com/watch?v=oCZMoY3q2uM.

James,	William.	“Great	Men,	Great	Thoughts,	and	the	Environment.”	Atlantic	Monthly	46	(1880):	441–
459.

______.	Psychology:	Briefer	Course.	New	York:	Holt,	1892.

Jay,	Francine.	The	Joy	of	Less:	A	Minimalist	Living	Guide:	How	to	Declutter,	Organize,	and	Simplify
Your	Life.	Medford,	NJ:	Anja	Press,	2010.

https://www.youtube.com/watch?v=oCZMoY3q2uM

Jeffreys,	Harold.	“An	Invariant	Form	for	the	Prior	Probability	in	Estimation	Problems.”	Proceedings	of
the	Royal	Society	of	London.	Series	A.	Mathematical	and	Physical	Sciences	186	(1946):	453–461.

______.	Theory	of	Probability,	3rd	ed.	Oxford,	UK:	Oxford	University	Press,	1961.

Johnson,	Selmer	Martin.	“Optimal	Two-	and	Three-Stage	Production	Schedules	with	Setup	Times
Included.”	Naval	Research	Logistics	Quarterly	1,	no.	1	(1954):	61–68.

Johnson,	Theodore,	and	Dennis	Shasha.	“2Q:	A	Low	Overhead	High	Performance	Buffer	Management
Replacement	Algorithm.”	VLDB	’94	Proceedings	of	the	20th	International	Conference	on	Very
Large	Data	Bases,	1994,	439–450.

Jones,	Thomas	B.,	and	David	H.	Ackley.	“Comparison	Criticality	in	Sorting	Algorithms.”	In	2014	44th
Annual	IEEE/IFIP	International	Conference	on	Dependable	Systems	and	Networks	(DSN),	June
2014,	726–731.

Jones,	William.	Keeping	Found	Things	Found:	The	Study	and	Practice	of	Personal	Information
Management.	Burlington,	MA:	Morgan	Kaufmann,	2007.

Kaelbling,	Leslie	Pack.	Learning	in	Embedded	Systems.	Cambrige,	MA:	MIT	Press,	1993.

Kaelbling,	Leslie	Pack,	Michael	L.	Littman,	and	Andrew	W.	Moore.	“Reinforcement	Learning:	A
Survey.”	Journal	of	Artificial	Intelligence	Research	4	(1996):	237–285.

Kanigel,	Robert.	The	One	Best	Way:	Frederick	Winslow	Taylor	and	the	Enigma	of	Efficiency.	New
York:	Viking	Penguin,	1997.

Kant,	Immanuel.	Grundlegung	zur	Metaphysik	der	Sitten.	Riga:	Johann	Friedrich	Hartknoch,	1785.

______.	Kritik	der	praktischen	Vernunft.	Riga:	Johann	Friedrich	Hartknoch,	1788.

Karmarkar,	Narendra.	“A	New	Polynomial-Time	Algorithm	for	Linear	Programming.”	In	Proceedings
of	the	Sixteenth	Annual	ACM	Symposium	on	Theory	of	Computing,	1984,	302–311.

Karp,	Richard	M.	“An	Introduction	to	Randomized	Algorithms.”	Discrete	Applied	Mathematics	34,	no.
1	(1991):	165–201.

______.	“Reducibility	Among	Combinatorial	Problems.”	In	Complexity	of	Computer	Computations,
85–103.	New	York:	Plenum,	1972.

Katajainen,	Jyrki,	and	Jesper	Larsson	Träff.	“A	Meticulous	Analysis	of	Mergesort	Programs.”	In
Algorithms	and	Complexity:	Third	Italian	Conference	CIAC	’97.	Berlin:	Springer,	1997.

Katehakis,	Michael	N.,	and	Herbert	Robbins.	“Sequential	Choice	from	Several	Populations.”
Proceedings	of	the	National	Academy	of	Sciences	92	(1995):	8584–8585.

Kelly,	F.	P.	“Multi-Armed	Bandits	with	Discount	Factor	Near	One:	The	Bernoulli	Case.”	Annals	of
Statistics	9	(1981):	987–1001.

Kelly,	John	L.	“A	New	Interpretation	of	Information	Rate.”	Information	Theory,	IRE	Transactions	on	2,
no.	3	(1956):	185–189.

Khachiyan,	Leonid	G.	“Polynomial	Algorithms	in	Linear	Programming.”	USSR	Computational
Mathematics	and	Mathematical	Physics	20,	no.	1	(1980):	53–72.

Khot,	Subhash,	and	Oded	Regev.	“Vertex	Cover	Might	Be	Hard	to	Approximate	to	Within	2-ε.”	Journal
of	Computer	and	System	Sciences	74,	no.	3	(2008):	335–349.

Kidd,	Celeste,	Holly	Palmeri,	and	Richard	N.	Aslin.	“Rational	Snacking:	Young	Children’s	Decision-
Making	on	the	Marshmallow	Task	Is	Moderated	by	Beliefs	About	Environmental	Reliability.”
Cognition	126,	no.	1	(2013):	109–114.

Kilburn,	Tom,	David	B.	G.	Edwards,	M.	J.	Lanigan,	and	Frank	H.	Sumner.	“One-Level	Storage
System.”	IRE	Transactions	on	Electronic	Computers	(1962):	223–235.

Kinsbourne,	Marcel.	“Somatic	Twist:	A	Model	for	the	Evolution	of	Decussation.”	Neuropsychology	27,
no.	5	(2013):	511.

Kirby,	Kris	N.	“Bidding	on	the	Future:	Evidence	Against	Normative	Discounting	of	Delayed	Rewards.”
Journal	of	Experimental	Psychology:	General	126,	no.	1	(1997):	54–70.

Kirkpatrick,	Scott,	C.	D.	Gelatt,	and	M.	P.	Vecchi.	“Optimization	by	Simulated	Annealing.”	Science
220,	no.	4598	(1983):	671–680.

Knuth,	Donald	E.	“Ancient	Babylonian	Algorithms.”	Communications	of	the	ACM	15,	no.	7	(1972):
671–677.

______.	The	Art	of	Computer	Programming,	Volume	1:	Fundamental	Algorithms,	3rd	ed.	Boston:
Addison-Wesley,	1997.

______.	The	Art	of	Computer	Programming,	Volume	3:	Sorting	and	Searching,	3rd	ed.	Boston:
Addison-Wesley,	1997.

______.	“A	Terminological	Proposal.”	ACM	SIGACT	News	6,	no.	1	(1974):	12–18.

______.	“The	TeX	Tuneup	of	2014.”	TUGboat	35,	no.	1	(2014).

______.	Things	a	Computer	Scientist	Rarely	Talks	About.	Stanford,	CA:	Center	for	the	Study	of
Language/Information,	2001.

______.	“Von	Neumann’s	First	Computer	Program.”	ACM	Computing	Surveys	(CSUR)	2,	no.	4
(December	1970):	247–260.

Koestler,	Arthur.	The	Watershed:	A	Biography	of	Johannes	Kepler.	Garden	City,	NY:	Doubleday,	1960.

Kozen,	Dexter,	and	Shmuel	Zaks.	“Optimal	Bounds	for	the	Change-Making	Problem.”	In	Automata,
Languages	and	Programming,	700:	150–161.	Edited	by	Andrzej	Lingas,	Rolf	Karlsson,	and	Svante
Carlsson.	Berlin:	Springer,	1993.

Lai,	Tze	Leung,	and	Herbert	Robbins.	“Asymptotically	Efficient	Adaptive	Allocation	Rules.”	Advances
in	Applied	Mathematics	6	(1985):	4–22.

Lamport,	Leslie,	Robert	Shostak,	and	Marshall	Pease.	“The	Byzantine	Generals	Problem.”	ACM
Transactions	on	Programming	Languages	and	Systems	(TOPLAS)	4,	no.	3	(1982):	382–401.

Laplace,	Pierre-Simon.	A	Philosophical	Essay	on	Probabilities.	1812.	Reprint,	New	York:	Dover,	1951.

______.	“Memoir	on	the	Probability	of	the	Causes	of	Events.”	Statistical	Science	1	(1774/1986):	364–
378.

______.	Théorie	analytique	des	probabilités.	Paris:	Mme	Ve	Courcier,	1812.

Lawler,	Eugene	L.	“Old	Stories.”	In	History	of	Mathematical	Programming.	A	Collection	of	Personal
Reminiscences,	97–106.	Amsterdam:	CWI/North-Holland,	1991.

______.	“Optimal	Sequencing	of	a	Single	Machine	Subject	to	Precedence	Constraints.”	Management
Science	19,	no.	5	(1973):	544–546.

______.	Scheduling	a	Single	Machine	to	Minimize	the	Number	of	Late	Jobs.	Technical	report.	Berkeley:
University	of	California,	1983.

______.	“Scheduling	a	Single	Machine	to	Minimize	the	Number	of	Late	Jobs,”	no.	UCB/CSD-83-139

(1983).	http://www.eecs.berkeley.edu/Pubs/TechRpts/1983/6344.html.

______.	“Sequencing	Jobs	to	Minimize	Total	Weighted	Completion	Time	Subject	to	Precedence
Constraints.”	Annals	of	Discrete	Mathematics	2	(1978):	75–90.

Lawler,	Eugene	L.,	Jan	Karel	Lenstra,	and	Alexander	H.	G.	Rinnooy	Kan.	“A	Gift	for	Alexander!:	At
Play	in	the	Fields	of	Scheduling	Theory.”	Optima	7	(1982):	1–3.

Lawler,	Eugene	L.,	Jan	Karel	Lenstra,	Alexander	H.	G.	Rinnooy	Kan,	and	David	B.	Shmoys.
“Sequencing	and	Scheduling:	Algorithms	and	Complexity.”	In	Handbooks	in	Operations	Research
and	Management	Science,	Volume	4:	Logistics	of	Production	and	Inventory,	edited	by	S.	S.	Graves,
A.	H.	G.	Rinnooy	Kan,	and	P.	Zipkin,	445–522.	Amsterdam:	North	Holland,	1993.

______.	The	Traveling	Salesman	Problem:	A	Guided	Tour	of	Combinatorial	Optimization.	New	York:
Wiley,	1985.

Lazzarini,	Mario.	“Un’applicazione	del	calcolo	della	probabilità	alla	ricerca	sperimentale	di	un	valore
approssimato	di	π.”	Periodico	di	Matematica	4	(1901):	140–143.

Lee,	Donghee,	S.	H.	Noh,	S.	L.	Min,	J.	Choi,	J.	H.	Kim,	Yookun	Cho,	and	Chong	Sang	Kim.	“LRFU:	A
Spectrum	of	Policies	That	Subsumes	the	Least	Recently	Used	and	Least	Frequently	Used	Policies.”
IEEE	Transactions	on	Computers	50	(2001):	1352–1361.

Le	Guin,	Ursula	K.	“The	Ones	Who	Walk	Away	from	Omelas.”	In	New	Dimensions	3.	Edited	by	Robert
Silverberg.	New	York:	Signet,	1973.

Lenstra,	Jan	Karel.	“The	Mystical	Power	of	Twoness:	In	Memoriam	Eugene	L.	Lawler.”	Journal	of
Scheduling	1,	no.	1	(1998):	3–14.

Lenstra,	Jan	Karel,	Alexander	H.	G.	Rinnooy	Kan,	and	Peter	Brucker.	“Complexity	of	Machine
Scheduling	Problems.”	Annals	of	Discrete	Mathematics	1	(1977):	343–362.

Lerner,	Ben.	The	Lichtenberg	Figures.	Port	Townsend,	WA:	Copper	Canyon	Press,	2004.

Lindley,	Denis	V.	“Dynamic	Programming	and	Decision	Theory.”	Applied	Statistics	10	(1961):	39–51.

Lippman,	Steven	A.,	and	John	J.	McCall.	“The	Economics	of	Job	Search:	A	Survey.”	Economic	Inquiry
14	(1976):	155–189.

Lorie,	James	H.,	and	Leonard	J.	Savage.	“Three	Problems	in	Rationing	Capital.”	Journal	of	Business
28,	no.	4	(1955):	229–239.

Lowe,	Christopher	J.,	Mark	Terasaki,	Michael	Wu,	Robert	M.	Freeman	Jr.,	Linda	Runft,	Kristen	Kwan,
Saori	Haigo,	Jochanan	Aronowicz,	Eric	Lander,	Chris	Gruber,	et	al.	“Dorsoventral	Patterning	in
Hemichordates:	Insights	into	Early	Chordate	Evolution.”	PLoS	Biology	4,	no.	9	(2006):	e291.

Lucas,	Richard	E.,	Andrew	E.	Clark,	Yannis	Georgellis,	and	Ed	Diener.	“Reexamining	Adaptation	and
the	Set	Point	Model	of	Happiness:	Reactions	to	Changes	in	Marital	Status.”	Journal	of	Personality
and	Social	Psychology	84,	no.	3	(2003):	527–539.

Lueker,	George	S.	“Two	NP-Complete	Problems	in	Nonnegative	Integer	Programming.”	Technical
Report	TR-178,	Computer	Science	Laboratory,	Princeton	University,	1975.

Luria,	Salvador	E.	A	Slot	Machine,	a	Broken	Test	Tube:	An	Autobiography.	New	York:	Harper	&	Row,
1984.

MacQueen,	J.,	and	R.	G.	Miller.	“Optimal	Persistence	Policies.”	Operations	Research	8	(1960):	362–
380.

Malthus,	Thomas	Robert.	An	Essay	on	the	Principle	of	Population.	London:	J.	Johnson,	1798.

Marcus,	Gary.	Kluge:	The	Haphazard	Evolution	of	the	Human	Mind.	New	York:	Houghton	Mifflin

http://www.eecs.berkeley.edu/Pubs/TechRpts/1983/6344.html

Harcourt,	2009.

Markowitz,	Harry.	“Portfolio	Selection.”	Journal	of	Finance	7,	no.	1	(1952):	77–91.

______.	Portfolio	Selection:	Efficient	Diversification	of	Investments.	New	York:	Wiley,	1959.

Martin,	Thomas	Commerford.	“Counting	a	Nation	by	Electricity.”	Electrical	Engineer	12,	no.	184
(1891):	521–530.

McCall,	John.	“Economics	of	Information	and	Job	Search.”	Quarterly	Journal	of	Economics	84	(1970):
113–126.

McGrayne,	Sharon	Bertsch.	The	Theory	That	Would	Not	Die:	How	Bayes’	Rule	Cracked	the	Enigma
Code,	Hunted	Down	Russian	Submarines,	&	Emerged	Triumphant	from	Two	Centuries	of
Controversy.	New	Haven,	CT:	Yale	University	Press,	2011.

McGuire,	Joseph	T.,	and	Joseph	W.	Kable.	“Decision	Makers	Calibrate	Behavioral	Persistence	on	the
Basis	of	Time-Interval	Experience.”	Cognition	124,	no.	2	(2012):	216–226.

______.	“Rational	Temporal	Predictions	Can	Underlie	Apparent	Failures	to	Delay	Gratification.”
Psychological	Review	120,	no.	2	(2013):	395.

Megiddo,	Nimrod,	and	Dharmendra	S.	Modha.	“Outperforming	LRU	with	an	Adaptive	Replacement
Cache	Algorithm.”	Computer	37,	no.	4	(2004):	58–65.

Mellen,	Andrew.	Unstuff	Your	Life!	Kick	the	Clutter	Habit	and	Completely	Organize	Your	Life	for
Good.	New	York:	Avery,	2010.

Menezes,	Alfred	J.,	Paul	C.	Van	Oorschot,	and	Scott	A	Vanstone.	Handbook	of	Applied	Cryptography.
Boca	Raton,	FL:	CRC	Press,	1996.

Menger,	Karl.	“Das	botenproblem.”	Ergebnisse	eines	mathematischen	kolloquiums	2	(1932):	11–12.

Metropolis,	Nicholas,	Arianna	W.	Rosenbluth,	Marshall	N.	Rosenbluth,	Augusta	H.	Teller,	and	Edward
Teller.	“Equation	of	State	Calculations	by	Fast	Computing	Machines.”	Journal	of	Chemical	Physics
21,	no.	6	(1953):	1087–1092.

Meyer,	Robert	J.,	and	Yong	Shi.	“Sequential	Choice	Under	Ambiguity:	Intuitive	Solutions	to	the
Armed-Bandit	Problem.”	Management	Science	41	(1995):	817–834.

Millard-Ball,	Adam,	Rachel	R.	Weinberger,	and	Robert	C.	Hampshire.	“Is	the	Curb	80%	Full	or	20%
Empty?	Assessing	the	Impacts	of	San	Francisco’s	Parking	Pricing	Experiment.”	Transportation
Research	Part	A:	Policy	and	Practice	63	(2014):	76–92.

Mischel,	Walter,	Ebbe	B.	Ebbesen,	and	Antonette	Raskoff	Zeiss.	“Cognitive	and	Attentional
Mechanisms	in	Delay	of	Gratification.”	Journal	of	Personality	and	Social	Psychology	21,	no.	2
(1972):	204.

Mischel,	Walter,	Yuichi	Shoda,	and	Monica	I.	Rodriguez.	“Delay	of	Gratification	in	Children.”	Science
244,	no.	4907	(1989):	933–938.

Mitzenmacher,	Michael,	and	Eli	Upfal.	Probability	and	Computing:	Randomized	Algorithms	and
Probabilistic	Analysis.	Cambridge,	UK:	Cambridge	University	Press,	2005.

Monsell,	Stephen.	“Task	Switching.”	Trends	in	Cognitive	Sciences	7,	no.	3	(2003):	134–140.

Moore,	Gordon	E.	“Cramming	More	Components	onto	Integrated	Circuits.”	Electronics	Magazine	38
(1965):	114–117.

______.	“Progress	in	Digital	Integrated	Electronics.”	In	International	Electronic	Devices	Meeting	1975
Technical	Digest,	1975,	11–13.

Moore,	J.	Michael.	“An	N	Job,	One	Machine	Sequencing	Algorithm	for	Minimizing	the	Number	of	Late
Jobs.”	Management	Science	15,	no.	1	(1968):	102–109.

Morgenstern,	Julie.	Organizing	from	the	Inside	Out:	The	Foolproof	System	for	Organizing	Your	Home,
Your	Office	and	Your	Life.	New	York:	Macmillan,	2004.

Moser,	L.	“On	a	Problem	of	Cayley.”	Scripta	Mathematica	22	(1956):	289–292.

Motwani,	Rajeev,	and	Prabhakar	Raghavan.	Randomized	Algorithms.	Cambridge,	UK:	Cambridge
University	Press,	1995.

______.	“Randomized	Algorithms.”	ACM	Computing	Surveys	(CSUR)	28,	no.	1	(1996):	33–37.

Mucci,	A.	G.	“On	a	Class	of	Secretary	Problems.”	Annals	of	Probability	1	(1973):	417–427.

Murray,	David.	Chapters	in	the	History	of	Bookkeeping,	Accountancy	and	Commercial	Arithmetic.
Glasgow,	UK:	Jackson,	Wylie,	1930.

Myerson,	Roger	B.	“Nash	Equilibrium	and	the	History	of	Economic	Theory.”	Journal	of	Economic
Literature	1999,	1067–1082.

______.	“Optimal	Auction	Design.”	Mathematics	of	Operations	Research	6,	no.	1	(1981):	58–73.

Nash,	John	F.	“Equilibrium	Points	in	N-Person	Games.”	Proceedings	of	the	National	Academy	of
Sciences	36,	no.	1	(1950):	48–49.

______.	“Non-Cooperative	Games.”	Annals	of	Mathematics	54,	no.	2	(1951):	286–295.

______.	“The	Bargaining	Problem.”	Econometrica	18,	no.	2	(1950):	155–162.

Navarro,	Daniel	J.,	and	Ben	R.	Newell.	“Information	Versus	Reward	in	a	Changing	World.”	In
Proceedings	of	the	36th	Annual	Conference	of	the	Cognitive	Science	Society,	2014,	1054–1059.

Neumann,	John	von,	and	Oskar	Morgenstern.	Theory	of	Games	and	Economic	Behavior.	Princeton,	NJ:
Princeton	University	Press,	1944.

Neyman,	Jerzy.	“Outline	of	a	Theory	of	Statistical	Estimation	Based	on	the	Classical	Theory	of
Probability.”	Philosophical	Transactions	of	the	Royal	Society	of	London.	Series	A,	Mathematical	and
Physical	Sciences	236,	no.	767	(1937):	333–380.

Nichols,	Kathleen,	and	Van	Jacobson.	“Controlling	Queue	Delay:	A	Modern	AQM	Is	Just	One	Piece	of
the	Solution	to	Bufferbloat.”	ACM	Queue	Networks	10,	no.	5	(2012):	20–34.

Nisan,	Noam,	and	Amir	Ronen.	“Algorithmic	Mechanism	Design.”	In	Proceedings	of	the	Thirty-First
Annual	ACM	Symposium	on	Theory	of	Computing,	1999,	129–140.

Olshausen,	Bruno	A.,	and	David	J.	Field.	“Emergence	of	Simple-Cell	Receptive	Field	Properties	by
Learning	a	Sparse	Code	for	Natural	Images.”	Nature	381	(1996):	607–609.

O’Neil,	Elizabeth	J.,	Patrick	E.	O’Neil,	and	Gerhard	Weikum.	“The	LRU-K	Page	Replacement
Algorithm	for	Database	Disk	Buffering,”	ACM	SIGMOD	Record	22,	no.	2	(1993):	297–306.

Papadimitriou,	Christos.	“Foreword.”	In	Algorithmic	Game	Theory.	Edited	by	Noam	Nisan,	Tim
Roughgarden,	Éva	Tardos,	and	Vijay	V.	Vazirani.	Cambridge,	UK:	Cambridge	University	Press,
2007.

Papadimitriou,	Christos	H.,	and	John	N.	Tsitsiklis.	“The	Complexity	of	Optimal	Queuing	Network
Control.”	Mathematics	of	Operations	Research	24	(1999):	293–305.

Papadimitriou,	Christos	H.,	and	Mihalis	Yannakakis.	“On	Complexity	as	Bounded	Rationality.”	In
Proceedings	of	the	Twenty-Sixth	Annual	ACM	Symposium	on	Theory	of	Computing,	1994,	726–733.

Pardalos,	Panos	M.,	and	Georg	Schnitger.	“Checking	Local	Optimality	in	Constrained	Quadratic

Programming	is	NP-hard.”	Operations	Research	Letters	7	(1988):	33–35.

Pareto,	Vilfredo.	Cours	d’économie	politique.	Lausanne:	F.	Rouge,	1896.

Parfit,	Derek.	Reasons	and	Persons.	Oxford,	UK:	Oxford	University	Press,	1984.

Partnoy,	Frank.	Wait:	The	Art	and	Science	of	Delay.	New	York:	PublicAffairs,	2012.

Pascal,	Blaise.	Pensées	sur	la	religion	et	sur	quelques	autres	sujets.	Paris:	Guillaume	Desprez,	1670.

Peter,	Laurence	J.,	and	Raymond	Hull.	The	Peter	Principle:	Why	Things	Always	Go	Wrong.	New	York:
Morrow,	1969.

Petruccelli,	Joseph	D.	“Best-Choice	Problems	Involving	Uncertainty	of	Selection	and	Recall	of
Observations.”	Journal	of	Applied	Probability	18	(1981):	415–425.

Pettie,	Seth,	and	Vijaya	Ramachandran.	“An	Optimal	Minimum	Spanning	Tree	Algorithm.”	Journal	of
the	ACM	49,	no.	1	(2002):	16–34.

Pinedo,	Michael.	Scheduling:	Theory,	Algorithms,	and	Systems.	New	York:	Springer,	2012.

______.	“Stochastic	Scheduling	with	Release	Dates	and	Due	Dates.”	Operations	Research	31,	no.	3
(1983):	559–572.

Pirsig,	Robert	M.	Zen	and	the	Art	of	Motorcycle	Maintenance.	New	York:	Morrow,	1974.

Poundstone,	William.	Fortune’s	Formula:	The	Untold	Story	of	the	Scientific	Betting	System	That	Beat
the	Casinos	and	Wall	Street.	New	York:	Macmillan,	2005.

______.	Prisoner’s	Dilemma:	John	von	Neumann,	Game	Theory,	and	the	Puzzle	of	the	Bomb.	New
York:	Doubleday,	1992.

Prabhakar,	Balaji,	Katherine	N.	Dektar,	and	Deborah	M.	Gordon.	“The	Regulation	of	Ant	Colony
Foraging	Activity	Without	Spatial	Information.”	PLoS	Computational	Biology	8,	no.	8	(2012):
e1002670.

Presman,	Ernst	L’vovich,	and	Isaac	Mikhailovich	Sonin.	“The	Best	Choice	Problem	for	a	Random
Number	of	Objects.”	Teoriya	Veroyatnostei	i	ee	Primeneniya	17	(1972):	695–706.

Production	and	Operations	Management	Society.	“James	R.	Jackson.”	Production	and	Operations
Management	17,	no.	6	(2008):	i–ii.

Rabin,	Michael	O.	“Probabilistic	Algorithm	for	Testing	Primality.”	Journal	of	Number	Theory	12,	no.	1
(1980):	128–138.

Rabin,	Michael	O.,	and	Dana	Scott.	“Finite	Automata	and	Their	Decision	Problems.”	IBM	Journal	of
Research	and	Development	3	(1959):	114–125.

Raichle,	Marcus	E.,	and	Debra	A.	Gusnard.	“Appraising	the	Brain’s	Energy	Budget.”	Proceedings	of	the
National	Academy	of	Sciences	99,	no.	16	(2002):	10237–10239.

Ramakrishnan,	Kadangode,	and	Sally	Floyd.	A	Proposal	to	Add	Explicit	Congestion	Notification	(ECN)
to	IP.	Technical	report.	RFC	2481,	January	1999.

Ramakrishnan,	Kadangode,	Sally	Floyd,	and	David	Black.	The	Addition	of	Explicit	Congestion
Notification	(ECN)	to	IP.	Technical	report.	RFC	3168,	September	2001.

Ramscar,	Michael,	Peter	Hendrix,	Cyrus	Shaoul,	Petar	Milin,	and	Harald	Baayen.	“The	Myth	of
Cognitive	Decline:	Non-Linear	Dynamics	of	Lifelong	Learning.”	Topics	in	Cognitive	Science	6,	no.
1	(2014):	5–42.

Rasmussen,	Willis	T.,	and	Stanley	R.	Pliska.	“Choosing	the	Maximum	from	a	Sequence	with	a	Discount
Function.”	Applied	Mathematics	and	Optimization	2	(1975):	279–289.

Rawls,	John.	A	Theory	of	Justice.	Cambridge,	MA:	Harvard	University	Press,	1971.

Revusky,	Samuel	H.,	and	Erwin	W.	Bedarf.	“Association	of	Illness	with	Prior	Ingestion	of	Novel
Foods.”	Science	155,	no.	3759	(1967):	219–220.

Reynolds,	Andy	M.	“Signatures	of	Active	and	Passive	Optimized	Lévy	Searching	in	Jellyfish.”	Journal
of	the	Royal	Society	Interface	11,	no.	99	(2014):	20140665.

Ridgway,	Valentine	F.	“Dysfunctional	Consequences	of	Performance	Measurements.”	Administrative
Science	Quarterly	1,	no.	2	(1956):	240–247.

Riley,	John	G.,	and	William	F.	Samuelson.	“Optimal	Auctions.”	American	Economic	Review	71,	no.	3
(1981):	381–392.

Rittaud,	Benoît,	and	Albrecht	Heeffer.	“The	Pigeonhole	Principle,	Two	Centuries	Before	Dirichlet.”
Mathematical	Intelligencer	36,	no.	2	(2014):	27–29.

Rivest,	Ronald	L.,	Adi	Shamir,	and	Leonard	Adleman.	“A	Method	for	Obtaining	Digital	Signatures	and
Public-Key	Cryptosystems.”	Communications	of	the	ACM	21,	no.	2	(1978):	120–126.

Robbins,	Herbert.	“Some	Aspects	of	the	Sequential	Design	of	Experiments.”	Bulletin	of	the	American
Mathematical	Society	58	(1952):	527–535.

Robinson,	Julia.	On	the	Hamiltonian	Game	(a	Traveling	Salesman	Problem).	Technical	report
RAND/RM-303.	Santa	Monica,	CA:	RAND,	1949.

Rogerson,	Richard,	Robert	Shimer,	and	Randall	Wright.	Search-Theoretic	Models	of	the	Labor	Market:
A	Survey.	Technical	report.	Cambridge,	MA:	National	Bureau	of	Economic	Research,	2004.

Rose,	John	S.	“A	Problem	of	Optimal	Choice	and	Assignment.”	Operations	Research	30	(1982):	172–
181.

Rosenbaum,	David	A.,	Lanyun	Gong,	and	Cory	Adam	Potts.	“Pre-Crastination:	Hastening	Subgoal
Completion	at	the	Expense	of	Extra	Physical	Effort.”	Psychological	Science	25,	no.	7	(2014):	1487–
1496.

Rosenbluth,	Marshall.	Marshall	Rosenbluth,	interviewed	by	Kai-Henrik	Barth.	August	11,	2003,
College	Park,	MD.

Rostker,	Bernard	D.,	Harry	J.	Thie,	James	L.	Lacy,	Jennifer	H.	Kawata,	and	Susanna	W.	Purnell.	The
Defense	Officer	Personnel	Management	Act	of	1980:	A	Retrospective	Assessment.	Santa	Monica,
CA:	RAND,	1993.

Roughgarden,	Tim,	and	Éva	Tardos.	“How	Bad	Is	Selfish	Routing?”	Journal	of	the	ACM	49,	no.	2
(2002):	236–259.

Russell,	Bertrand.	“The	Elements	of	Ethics.”	In	Philosophical	Essays,	13–59.	London:	Longmans,
Green,	1910.

Russell,	Stuart,	and	Peter	Norvig.	Artificial	Intelligence:	A	Modern	Approach,	3rd	ed.	Upper	Saddle
River,	NJ:	Pearson,	2009.

Russell,	Stuart,	and	Eric	Wefald.	Do	the	Right	Thing.	Cambridge,	MA:	MIT	Press,	1991.

Sagan,	Carl.	Broca’s	Brain:	Reflections	on	the	Romance	of	Science.	New	York:	Random	House,	1979.

Sakaguchi,	Minoru.	“Bilateral	Sequential	Games	Related	to	the	No-Information	Secretary	Problem.”
Mathematica	Japonica	29	(1984):	961–974.

______.	“Dynamic	Programming	of	Some	Sequential	Sampling	Design.”	Journal	of	Mathematical
Analysis	and	Applications	2	(1961):	446–466.

Sakaguchi,	Minoru,	and	Mitsushi	Tamaki.	“On	the	Optimal	Parking	Problem	in	Which	Spaces	Appear

Randomly.”	Bulletin	of	Informatics	and	Cybernetics	20	(1982):	1–10.

Sartre,	Jean-Paul.	No	Exit:	A	Play	in	One	Act.	New	York:	Samuel	French,	1958.

Schelling,	Thomas	C.	“Altruism,	Meanness,	and	Other	Potentially	Strategic	Behaviors.”	American
Economic	Review	68,	no.	2	(1978):	229–230.

______.	The	Strategy	of	Conflict.	Cambridge,	MA:	Harvard	University	Press,	1960.

Schneier,	Bruce.	Applied	Cryptography.	New	York:	Wiley,	1994.

Schrage,	Linus.	“A	Proof	of	the	Optimality	of	the	Shortest	Remaining	Processing	Time	Discipline.”
Operations	Research	16,	no.	3	(1968):	687–690.

Schrijver,	Alexander.	“On	the	History	of	Combinatorial	Optimization	(Till	1960).”	In	Handbooks	in
Operations	Research	and	Management	Science:	Discrete	Optimization.	Edited	by	Karen	Aardal,
George	L.	Nemhauser,	and	Robert	Weismantel.	Amsterdam:	Elsevier,	2005,	1–68.

Schwartz,	Jacob	T.	“Fast	Probabilistic	Algorithms	for	Verification	of	Polynomial	Identities.”	Journal	of
the	ACM	27,	no.	4	(1980):	701–717.

Seale,	Darryl	A.,	and	Amnon	Rapoport.	“Sequential	Decision	Making	with	Relative	Ranks:	An
Experimental	Investigation	of	the	‘Secretary	Problem.’”	Organizational	Behavior	and	Human
Decision	Processes	69	(1997):	221–236.

Sen,	Amartya.	“Goals,	Commitment,	and	Identity.”	Journal	of	Law,	Economics,	and	Organization	1
(1985):	341–355.

Sethi,	Rajiv.	“Algorithmic	Trading	and	Price	Volatility.”	Rajiv	Sethi	(blog),	May	7,	2010,
http://rajivsethi.blogspot.com/2010/05/algorithmic-trading-and-price.html.

Sevcik,	Kenneth	C.	“Scheduling	for	Minimum	Total	Loss	Using	Service	Time	Distributions.”	Journal
of	the	ACM	21,	no.	1	(1974):	66–75.

Shallit,	Jeffrey.	“What	This	Country	Needs	Is	an	18¢	Piece.”	Mathematical	Intelligencer	25,	no.	2
(2003):	20–23.

Shasha,	Dennis,	and	Cathy	Lazere.	Out	of	Their	Minds:	The	Lives	and	Discoveries	of	15	Great
Computer	Scientists.	New	York:	Springer,	1998.

Shasha,	Dennis,	and	Michael	Rabin.	“An	Interview	with	Michael	Rabin.”	Communications	of	the	ACM
53,	no.	2	(2010):	37–42.

Shaw,	Frederick	S.	An	Introduction	to	Relaxation	Methods.	New	York:	Dover,	1953.

Shaw,	George	Bernard.	Man	and	Superman:	A	Comedy	and	a	Philosophy.	Cambridge,	MA:	Harvard
University	Press,	1903.

Shoup,	Donald.	The	High	Cost	of	Free	Parking.	Chicago:	APA	Planners	Press,	2005.

Simon,	Herbert	A.	“A	Behavioral	Model	of	Rational	Choice.”	Quarterly	Journal	of	Economics	69,	no.	1
(1955):	99–118.

______.	Models	of	Man.	New	York:	Wiley,	1957.

______.	“On	a	Class	of	Skew	Distribution	Functions.”	Biometrika,	1955,	425–440.

Siroker,	Dan.	“How	Obama	Raised	$60	Million	by	Running	a	Simple	Experiment.”	The	Optimizely
Blog:	A/B	Testing	You’ll	Actually	Use	(blog),	November	29,	2010,
https://blog.optimizely.com/2010/11/29/how-obama-raised-60-million-by-running-a-simple-
experiment/.

Siroker,	Dan,	and	Pete	Koomen.	A/B	Testing:	The	Most	Powerful	Way	to	Turn	Clicks	into	Customers.

http://rajivsethi.blogspot.com/2010/05/algorithmic-trading-and-price.html
https://blog.optimizely.com/2010/11/29/how-obama-raised-60-million-by-running-a-simple-experiment/

New	York:	Wiley,	2013.

Sleator,	Daniel	D.,	and	Robert	E.	Tarjan.	“Amortized	Efficiency	of	List	Update	and	Paging	Rules.”
Communications	of	the	ACM	28	(1985):	202–208.

Smith,	Adam.	The	Theory	of	Moral	Sentiments.	Printed	for	A.	Millar,	in	the	Strand;	and	A.	Kincaid	and
J.	Bell,	in	Edinburgh,	1759.

Smith,	M.	H.	“A	Secretary	Problem	with	Uncertain	Employment.”	Journal	of	Applied	Probability	12,
no.	3	(1975):	620–624.

Smith,	Wayne	E.	“Various	Optimizers	for	Single-Stage	Production.”	Naval	Research	Logistics
Quarterly	3,	nos.	1–2	(1956):	59–66.

Solovay,	Robert,	and	Volker	Strassen.	“A	Fast	Monte-Carlo	Test	for	Primality.”	SIAM	Journal	on
Computing	6	(1977):	84–85.

Starr,	Norman.	“How	to	Win	a	War	if	You	Must:	Optimal	Stopping	Based	on	Success	Runs.”	Annals	of
Mathematical	Statistics	43,	no.	6	(1972):	1884–1893.

Stephens,	David	W.,	and	John	R.	Krebs.	Foraging	Theory.	Princeton,	NJ:	Princeton	University	Press,
1986.

Stewart,	Martha.	Martha	Stewart’s	Homekeeping	Handbook:	The	Essential	Guide	to	Caring	for
Everything	in	Your	Home.	New	York:	Clarkson	Potter,	2006.

Steyvers,	Mark,	Michael	D.	Lee,	and	Eric-Jan	Wagenmakers.	“A	Bayesian	Analysis	of	Human
Decision-Making	on	Bandit	Problems.”	Journal	of	Mathematical	Psychology	53	(2009):	168–179.

Stigler,	George	J.	“The	Economics	of	Information.”	Journal	of	Political	Economy	69	(1961):	213–225.

______.	“Information	in	the	Labor	Market.”	Journal	of	Political	Economy	70	(1962):	94–105.

Stigler,	Stephen	M.	“Stigler’s	Law	of	Eponymy.”	Transactions	of	the	New	York	Academy	of	Sciences	39
(1980):	147–157.

Tamaki,	Mitsushi.	“Adaptive	Approach	to	Some	Stopping	Problems.”	Journal	of	Applied	Probability	22
(1985):	644–652.

______.	“An	Optimal	Parking	Problem.”	Journal	of	Applied	Probability	19	(1982):	803–814.

______.	“Optimal	Stopping	in	the	Parking	Problem	with	U-Turn.”	Journal	of	Applied	Probability	25
(1988):	363–374.

Thomas,	Helen.	Front	Row	at	the	White	House:	My	Life	and	Times.	New	York:	Simon	&	Schuster,
2000.

Thompson,	William	R.	“On	the	Likelihood	That	One	Unknown	Probability	Exceeds	Another	in	View	of
the	Evidence	of	Two	Samples.”	Biometrika	25	(1933):	285–294.

Thoreau,	Henry	David.	“Walking.”	Atlantic	Monthly	9	(1862):	657–674.

Tibshirani,	Robert.	“Regression	Shrinkage	and	Selection	via	the	Lasso.”	Journal	of	the	Royal	Statistical
Society.	Series	B	(Methodological)	58,	no.	1	(1996):	267–288.

Tikhonov,	A.	N.,	and	V.	Y.	Arsenin.	Solution	of	Ill-Posed	Problems.	Washington,	DC:	Winston,	1977.

Todd,	Peter	M.	“Coevolved	Cognitive	Mechanisms	in	Mate	Search.”	Evolution	and	the	Social	Mind:
Evolutionary	Psychology	and	Social	Cognition	(New	York)	9	(2007):	145–159.

Todd,	Peter	M.,	and	G.	F.	Miller.	“From	Pride	and	Prejudice	to	Persuasion:	Satisficing	in	Mate	Search.”
In	Simple	Heuristics	That	Make	Us	Smart.	Edited	by	G.	Gigerenzer	and	P.	M.	Todd.	New	York:
Oxford	University	Press,	1999,	287–308.

Tolins,	Jackson,	and	Jean	E.	Fox	Tree.	“Addressee	Backchannels	Steer	Narrative	Development.”
Journal	of	Pragmatics	70	(2014):	152–164.

Tracy,	Brian.	Eat	That	Frog!	21	Great	Ways	to	Stop	Procrastinating	and	Get	More	Done	in	Less	Time.
Oakland,	CA:	Berrett-Koehler,	2007.

Turing,	Alan	M.	“On	Computable	Numbers,	with	an	Application	to	the	Entscheidungsproblem.”	Read
November	12,	1936.	Proceedings	of	the	London	Mathematical	Society	s2-42,	no.	1	(1937):	230–265.

______.	“On	Computable	Numbers,	with	an	Application	to	the	Entscheidungsproblem:	A	Correction.”
Proceedings	of	the	London	Mathematical	Society	s2-43,	no.	1	(1938):	544–546.

Tversky,	Amos,	and	Ward	Edwards.	“Information	Versus	Reward	in	Binary	Choices.”	Journal	of
Experimental	Psychology	71	(1966):	680–683.

Ulam,	Stanislaw	M.	Adventures	of	a	Mathematician.	New	York:	Scribner,	1976.

Ullman,	Ellen.	“Out	of	Time:	Reflections	on	the	Programming	Life.”	Educom	Review	31	(1996):	53–59.

UK	Collaborative	ECMO	Group.	“The	Collaborative	UK	ECMO	Trial:	Follow-up	to	1	Year	of	Age.”
Pediatrics	101,	no.	4	(1998):	e1.

Vazirani,	Vijay	V.	Approximation	Algorithms.	New	York:	Springer,	2001.

Vickrey,	William.	“Counterspeculation,	Auctions,	and	Competitive	Sealed	Tenders.”	Journal	of	Finance
16,	no.	1	(1961):	8–37.

Waitzman,	David.	A	Standard	for	the	Transmission	of	IP	Datagrams	on	Avian	Carriers.	Technical
report.	RFC	1149,	April	1990.

______.	IP	Over	Avian	Carriers	with	Quality	of	Service.	Technical	report.	RFC	2549,	April	1999.

Ware,	James	H.	“Investigating	Therapies	of	Potentially	Great	Benefit:	ECMO.”	Statistical	Science	4
(1989):	298–306.

Ware,	James	H.,	and	Michael	F.	Epstein.	“Comments	on	‘Extracorporeal	Circulation	in	Neonatal
Respiratory	Failure:	A	Prospective	Randomized	Study’	by	R.	H.	Bartlett	et	al.”	Pediatrics	76,	no.	5
(1985):	849–851.

Warhol,	Andy.	The	Philosophy	of	Andy	Warhol	(from	A	to	B	and	Back	Again).	New	York:	Harcourt
Brace	Jovanovich,	1975.

Weiss,	Yair,	Eero	P.	Simoncelli,	and	Edward	H.	Adelson.	“Motion	Illusions	as	Optimal	Percepts.”
Nature	Neuroscience	5	(2002):	598–604.

Whittaker,	Steve,	and	Candace	Sidner.	“Email	Overload:	Exploring	Personal	Information	Management
of	Email.”	In	Proceedings	of	the	SIGCHI	Conference	on	Human	Factors	in	Computing	Systems,
1996,	276–283.

Whittaker,	Steve,	Tara	Matthews,	Julian	Cerruti,	Hernan	Badenes,	and	John	Tang.	“Am	I	Wasting	My
Time	Organizing	Email?	A	Study	of	Email	Refinding.”	In	Proceedings	of	the	SIGCHI	Conference	on
Human	Factors	in	Computing	Systems,	2011,	3449–3458.

Whittle,	Peter.	Optimization	over	Time:	Dynamic	Programming	and	Stochastic	Control.	New	York:
Wiley,	1982.

______.	“Restless	Bandits:	Activity	Allocation	in	a	Changing	World.”	Journal	of	Applied	Probability
25	(1988):	287–298.

Wigderson,	Avi.	“Knowledge,	Creativity,	and	P	versus	NP.”
http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/AW09/AW09.pdf,	2009.

http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/AW09/AW09.pdf

Wilkes,	Maurice	V.	“Slave	Memories	and	Dynamic	Storage	Allocation.”	IEEE	Transactions	on
Electronic	Computers	14	(1965):	270–271.

Wright,	J.	W.	“The	Change-Making	Problem.”	Journal	of	the	Association	of	Computing	Machinery	22
(1975):	125–128.

Wulf,	William	Allan,	and	Sally	A.	McKee.	“Hitting	the	Memory	Wall:	Implications	of	the	Obvious.”
ACM	SIGARCH	Computer	Architecture	News	23,	no.	1	(1995):	20–24.

Xu,	Fei,	and	Joshua	B.	Tenenbaum.	“Word	Learning	as	Bayesian	Inference.”	Psychological	Review	114
(2007):	245–272.

Yang,	Mark	C.	K.	“Recognizing	the	Maximum	of	a	Random	Sequence	Based	on	Relative	Rank	with
Backward	Solicitation.”	Journal	of	Applied	Probability	11	(1974):	504–512.

Yato,	Takayuki,	and	Takahiro	Seta.	“Complexity	and	Completeness	of	Finding	Another	Solution	and	Its
Application	to	Puzzles.”	IEICE	Transactions	on	Fundamentals	of	Electronics,	Communications	and
Computer	Sciences	86,	no.	5	(2003):	1052–1060.

Yngve,	Victor	H.	“On	Getting	a	Word	in	Edgewise.”	In	Chicago	Linguistics	Society,	6th	Meeting,	1970,
567–578.

Zahniser,	Rick.	“Timeboxing	for	Top	Team	Performance.”	Software	Development	3,	no.	3	(1995):	34–
38.

Zapol,	Warren	M.,	Michael	T.	Snider,	J.	Donald	Hill,	Robert	J.	Fallat,	Robert	H.	Bartlett,	L.	Henry
Edmunds,	Alan	H.	Morris,	E.	Converse	Peirce,	Arthur	N.	Thomas,	Herbert	J.	Proctor,	et	al.
“Extracorporeal	Membrane	Oxygenation	in	Severe	Acute	Respiratory	Failure:	A	Randomized
Prospective	Study.”	Journal	of	the	American	Medical	Association	242,	no.	20	(1979):	2193–2196.

Zelen,	Marvin.	“Play	the	Winner	Rule	and	the	Controlled	Clinical	Trial.”	Journal	of	the	American
Statistical	Association	64,	no.	325	(1969):	131–146.

Zippel,	Richard.	“Probabilistic	Algorithms	for	Sparse	Polynomials.”	In	EUROSAM	’79	Proceedings	of
the	International	Symposium	on	Symbolic	and	Algebraic	Computation.	London:	Springer,	1979,
216–226.

	

Index
The	index	that	appeared	in	the	print	version	of	this	title	does	not	match	the
pages	in	your	e-book.	Please	use	the	search	function	on	your	e-reading	device
to	search	for	terms	of	interest.	For	your	reference,	the	terms	that	appear	in	the
print	index	are	listed	below.
Aalsmeer	Flower	Auction

Aaronson,	Scott

Abramson,	Norman

A/B	testing

Ackley,	Dave

acknowledgment	packets	(ACKs)

“Adaptive	Design	Clinical	Trials”

Additive	Increase,	Multiplicative	Decrease	(AIMD)

Additive	Rule

aging

Agrawal,	Manindra

air	travel

Akamai

algorithmic	game	theory.	See	also	game	theory

algorithms.	See	also	specific	algorithms	and	problems

defined

deterministic	vs.	randomized

everyday	problems	and

Alice’s	Adventures	in	Wonderland	(Carroll)

al-Jabr	wa’l-Muqābala	(al-Khwārizmī)

Allen,	Nick

Alm,	Steven

almond	milk

ALOHAnet

Altman,	Sam

Amazon

“Am	I	Wasting	My	Time	Organizing	Email?”	(Whittaker)

anarchy,	price	of

Anderson,	John

anecdotes,	statistics	vs.

anger

annealing

Annie	(musical)

Annie	Get	Your	Gun	(musical)

Ansari,	Aziz

anticipatory	package	shipping

ants

apartment	hunting

applicant	pool

Archimedes

architects

Aristotle

ARPANET

artificial	neural	networks

“Association	of	Illness	with	Prior	Ingestion	of	Novel	Foods”	(Revusky	and	Bedarf)

Astley,	Rick

AT&T

Atlantic	Monthly

Atlas	supercomputer

atomic	bomb

auctions

Dutch	or	descending

English	or	ascending

information	cascades	and

sealed-bid	first-price

sealed-bid	second-price	or	Vickrey

Austen,	Jane

Average	Rule

AvtoVAZ	company

backchannels

background	noise

bacterial	mutations

bandwidth,	latency	vs.

bandwidth	drops

Baran,	Paul

Barnard,	Chester

Bartlett,	Robert

basketball

batch	processing

Bavelas,	Janet

Bayes,	Rev.	Thomas

Bayes’s	Rule

defined

BBC

BBC	News

Beautiful	Mind,	A	(Nasar)

beauty

Bedarf,	Erwin

Bélády,	László	“Les”

Bélády’s	Algorithm

Belew,	Rik

Bell,	Alexander	Graham

bell	curve

Bellman,	Richard

Bellows,	Meghan

Belmont	Report

benchmarks

Berezovsky,	Boris

Berkeley,	Bishop	George

Berlin	Wall

Bernard,	Claude

Berry,	Don

best-case	performance

Bezos,	Jeff

big	data

Big-O	notation.	See	also	constant	time;	exponential	time;	factorial	time;	linearithmic	time;	linear	time;
polynomial	time;	quadratic	time

Big	Ten	conference

Bikhchandani,	Sushil

bill-paying	schedule

Bing

Binmore,	Ken

births,	male	vs.	female

Bitcoin

“Blind	Variation	and	Selective	Retention”	(Campbell)

blocking

Bloom,	Burton	H.

Bloomberg	Businessweek

Bloom	filter

Blum,	Avrim

Boguslavsky,	Leonid

bookbinding

Booker,	Christopher

bracket	tournaments

Bradáč,	Zdeněk

breaking	symmetry

Brighton,	Henry

bubbles,	financial

Bubble	Sort

Bucket	Sort

bufferbloat

buffers

Buffon,	George-Louis	Leclerc,	Comte	de

burglar	problem

Burks,	Arthur

business.	See	also	secretary	problem

overfitting	and

promotions

weekly	meetings

Buxtun,	Peter

Byzantine	generals	problem

Cabell,	James	Branch

cache	eviction

cache	misses

caches

defined

hierarchies	of,	and	multitasking

speed	of

caching

caching	algorithms	(replacement	or	eviction	policies)

calculus

Callimachus

Campbell,	Donald

cardinal	numbers

career	choices

Carroll,	Lewis.	See	Dodgson,	Charles	Lutwidge

cars

accidents	and

parking

self-driving

traffic	and

Carstensen,	Laura

Casino	Royale

categorical	imperative

Cawdrey,	Robert

cell	phone

Cerf,	Vinton	“Vint”

certainty.	See	also	uncertainty

charity

Cheshire,	Stuart

chess

childhood

Chomsky,	Noam

Churchill,	Winston

circuit	switching

clairvoyance

clinical	trials

closet,	organizing

Cobham,	Alan

Cobham-Edmonds	thesis

Cockcroft,	George	(Luke	Rhinehart)

coconut	water

cognitive	decline

coincidences

coins

denominations

two-headed	tosses

collators

commitment	problem

communications.	See	also	language;	networking;	storytelling

confirmation

priors	and

community-supported	agriculture	(CSA)

Comparison	Counting	Sort

comparison-shopping	websites

complexity

penalizing

computation,	defined	by	Turing

computational	kindness

confidence	interval

confirmation

congestion

avoidance	of

price	of	anarchy	and

Connection	Machine

constant-time	(O(1))

constrained	optimization	problems

constrained	problem,	preferences	for

Constraint	Relaxation

construction	projects

content	distribution	networks	(CDNs)

context	switching

continuous	optimization	problems

Continuous	Relaxation

control	without	hierarchy

Cooper,	Martin

cooperation

Copernican	Principle

Copernicus,	Nicolaus

corporate	marketing

cost-benefit	analysis

Cramer,	Jim

Cravath	system

creativity

crêpe	stand	queue

Cross-Validation

cryptography

customer	service	hold	times

Darwin,	Charles

data.	See	also	big	data;	small	data

idolatry	of

overfitting	and

predicting	from	single	point

dating.	See	love;	marriage

Davis,	Lydia

Dawkins,	Richard

deadlines

Dead	Poets	Society	(film)

Deal	or	No	Deal	(TV	show)

debt	avalanche

debt	snowball

decentralized	systems

decision-making

computational	kindness	and

Early	Stopping	and

overfitting	and

real-world	shortcuts

when	to	think	less

decryption

decussation

defection

Defense	Officer	Personnel	Management	Act

denial	of	service	attack

Denning,	Peter

device	buffers

Dice	Man,	The	(Rhinehart)

dictionary	attack

Dillard,	Annie

discount	function

discrete	optimization

Discrete	Relaxation	Techniques	(Henderson)

displacement

distributions.	See	also	specific	types

Dodgson,	Charles	Lutwidge	(Lewis	Carroll)

dominance	hierarchies

dominant	strategies

honesty	as

prisoner’s	dilemma	and	defection	as

dropped	balls

drug	addiction

drug	trials

Dupuis,	Beth

Duvall,	Bill

Dwan,	Tom

dynamic	allocation.	See	Gittins	Index

dynamic	hierarchies

“Dysfunctional	Consequences	of	Performance	Measurements”	(Ridgway)

ear

Earliest	Due	Date

Early	Stopping

Eat	That	Frog!	(Tracy)

Ebbinghaus,	Hermann

ECMO	(extracorporeal	membrane	oxygenation)

economics.	See	also	auctions;	investment	strategies;	market	behavior

bubbles

Nash	equilibrium	and

tragedy	of	commons	and

Economist

Edmonds,	Jack

educational	evaluation

Edwards,	Ward

efficient	algorithm

efficient	or	tractable	problem,	defined

Egyptian	pharaohs’	reigns

electrical	memory	organ

elevator	pitch

email

emotions

Engel,	Joel

Eno,	Brian

environmental	movement

epidemiology

equality

equilibrium

Erlang,	Agner	Krarup

Erlang	distribution

error	bars

error	tradeoff	space

ethics

Evernote

eviction	policies

evolution

constraints	and

expected	value

Explicit	Congestion	Notification	(ECN)

explore/exploit	tradeoff

Exponential	Backoff

exponential	time	(O(2n))

Facebook

factorial	time	(O(n!))

fads

false	positives

FBI

FCC	spectrum	auctions

FDA

feedback

fencing

filing

Finkel,	Larry

Firefox

fire	truck	problem

First-In,	First-Out	(FIFO)

fitness

Fitzgerald,	F.	Scott

Flack,	Jessica

flash	memory

flat	hierarchies

Flood,	Merrill

flow	control

food

fads

minimizing	rotten

overfitting	and

Forbes

forgetting	curve

forgiveness

Forster,	E.	M.

Fortune	500	list

Frank,	Robert

Franklin,	Benjamin

Fredrickson,	Barbara

Fried,	Jason

full-information	games

optimal	stopping	and

fundamental	investors

future,	discounted

Galileo

gambling

game	theory

gaming

Gantt,	Henry

Gantt	charts

Gardner,	Martin

Gaskell,	R.	E.

Gauss,	Carl	Friedrich

Gelatt,	Dan

geography

geometric	discounting

George,	Sammy

German	tanks	problem

getting	important	things	done

getting	things	done

Getting	Things	Done	(Allen)

Gettys,	Jim

Gigerenzer,	Gerd

Gilbert,	Daniel

Ginsberg,	Allen

Gittins,	John

Gittins	index

GiveDirectly

Glassner,	Barry

Gleason,	Andrew

global	maximum

goals,	explicit

Godfather

Godfather,	The	(film)

Goethe,	Johann	Wolfgang	von

Goldstine,	Herman

“good	enough”	solutions

Google

Gopnik,	Alison

Gordon,	Deborah

Gott,	J.	Richard,	III

Gould,	Stephen	Jay

government

“Great	Men,	Great	Thoughts,	and	the	Environment”	(James)

greedy	algorithm

Grellet,	Stephen

Grossman,	Dave

Guardian

Guinness	Book	of	World	Records,	The

gun	violence

halting	problem

Hammerbacher,	Jeff

Hansson,	David	Heinemeier

Hardin,	Garrett

Hardy,	G.	H.

Haxton,	Isaac

health	care	reform

Hedberg,	Mitch

Hennessy,	John

herd	behavior

heuristics

hierarchies.	See	dominance	hierarchies;	dynamic	hierarchies;	flat	hierarchies

High	Cost	of	Free	Parking,	The	(Shoup)

Hill	Climbing

Random-Restart	or	Shotgun

Hillis,	Danny

Hirshleifer,	David

Ho,	Jordan

Hoffman,	David

Hollerith,	Herman

Hollerith	Machine

home,	caching	and

honesty

Hoover	Dam

HOPE

Hosken,	J.	C.

hourly	rate

house	selling

housing	bubble

humans

complexity	penalty	and

creativity	and

ear	design

explore/exploit	and

fads	vs.	tradition	and

flow	control	and

life	spans	of

memory	and

nervous	system	design

time	costs	and

Hume,	David

IBM

Ice-T

“If—”	(Kipling)

IKEA

importance,	prioritizing	tasks	by

impossibilities,	turned	into	penalties

impossibility	result

inaction,	irrevocability	of

incentive	structures

income	distributions

industrial	accidents

information.	See	also	full-information	games;	no-information	games

information	cascades

information	hierarchies

information	processing

Insertion	Sort

International	Business	Times

Internet.	See	also	bandwidth,	latency	vs.;	networking;	websites

fast	connections

geography	of

infrastructure	of

protocols	and

security	and

interrupt	coalescing

interruptions

intractable	problems

defined

equilibrium	and

relaxation	and

scheduling	and

Introduction	to	Relaxation	Methods,	An	(Shaw)

intuitive	hunches

investment	strategies

invitations

involuntary	selflessness

Jacobson,	Van

Jain,	Kamal

James,	William

Jarvis,	Richard

Jaws	(film)

Jay,	Francine

Jeffreys,	Harold

Jet	Propulsion	Laboratory	(JPL)

jitter

Jobs,	Steve

job	search

Johnson,	Selmer

Jones,	William

Joy	of	Less,	The	(Jay)

judgment

“just	play	the	game”	approach

just	society

Kaelbling,	Leslie

Kahn,	Robert	“Bob”

Kant,	Immanuel

Karels,	Michael

Karp,	Richard

Kaushik,	Avinash

Kayal,	Neeraj

Keats,	John

Keeping	Found	Things	Found	(Jones)

Kenney,	Richard

Kepler,	Johannes

Kerr,	Clark

Keynes,	John	Maynard

al-Khwārizmī

King	County	Library	System	(KCLS)

king	of	the	hill

Kipling,	Rudyard

Kirkpatrick,	Scott

Kleinrock,	Leonard

Kline,	Charley

knapsack	problem

Knuth,	Donald

Koomen,	Pete

Ladder	tournaments

Lagrange,	Joseph-Louis

Lagrangian	Relaxation

Lai,	Tze	Leung

lancet	liver	fluke

Lange,	Rebecca

language

Lao	Tzu

Laplace,	Pierre-Simon

Laplace’s	Law

Lasso

latency

lateness,	minimizing	maximum

laundry

law	enforcement

Lawler,	Eugene	“Gene”

“Lawn	Tennis	Tournaments”	(Dodgson)

Law	of	Gross	Tonnage

Lawrence,	Peter	A.

Lawrence	Berkeley	Laboratory	(LBL)

lawsuits

Lazzarini,	Mario

Least	Recently	Used	(LRU)

Lee,	Michael

left-side	insertion	rule

Le	Guin,	Ursula	K.

Lenstra,	Jan	Karel

Lerner,	Ben

leveling

liberty

Libin,	Phil

libraries

likelihood

like-with-like	grouping

Lincoln,	Abraham

linearithmic	time	(O(n	log	n))

linear	time	(O(n))

linguistics

Linux

lobster	trap

local	maximum

logarithmic	rates

outsmarting

Look-Then-Leap	Rule

Los	Alamos

Los	Angeles	Times

love.	See	also	marriage

dating	and

game	theory	and

gold	digging	vs.

recall	scenario

rejection	scenario

Ludin,	Stephen

Luria,	Salvador

Mach,	Ernst

Magaddino,	Salvatore

Major	League	Baseball

Making	of	a	Fly,	The	(Lawrence)

Malthus,	Thomas

Manhattan	Project

manning	control

marathon

March	Madness

maritime	right-of-way

market	behavior.	See	also	auctions;	bubbles,	financial;	economics;	investment	strategies

Markowitz,	Harry

marriage.	See	also	love

Cross-Validation	and

Darwin’s	pro-con	list	and

life	satisfaction	models

prisoner’s	dilemma	and

marshmallow	test

Mars	Pathfinder

matching	algorithms

McLay,	Laura	Albert

mean-variance	portfolio	optimization

mechanical	reproduction

mechanism	design

honesty	as	goal	of

media

Mellen,	Andrew

memory	hierarchy

memoryless	distributions

memory	management

memory	wall

Menger,	Karl

Mergesort

Mertes,	Micah

mess

search-sort	tradeoff

self-organizing

sorting	and

metabolism

metawork

metrics

overfitting	and

proxy

scheduling	and

Metropolis,	Nicholas

Metropolis	Algorithm

Meyer,	Mathias

Meyer,	Robert

Milgrom,	Paul

military

communications	and

training	scars	and

Mill,	John	Stuart

Miller,	Gary

Miller-Rabin	primality	test

minimum	slice

minimum	spanning	tree

Mintzberg,	Henry

Mischel,	Walter

Mitzenmacher,	Michael

Monte	Carlo	Method

Moore,	Gordon

Moore’s	Algorithm

Moore’s	Law

Morgenstern,	Julie

Morse,	Samuel	F.	B.

mortgage	crisis	of

Moser,	Leo

Mosteller,	Frederick

movies

box-office	grosses	and

running	times	and

sequels	and

Mozart,	Wolfgang	Amadeus

multi-armed	bandits

Multiplicative	Rule

multitasking

murder	rate

Murphy,	Tom

Myerson,	Roger

myopic	algorithm

Nakamura,	Hikaru

Nash,	John

Nash	equilibrium

National	Library	Sorting	Champion

Nature

NBA

NCAA

nervous	system

Netflix

networking.	See	also	Internet

network	queues

Neumann,	Christof

neural	networks

news	reports

Newton,	Isaac

New	York	Public	Library	(NYPL)

New	York	Times

Nichols,	Kathleen

Nietzsche,	Friedrich

nine-factor	models

Nisan,	Noam

Noguchi,	Yukio

Noguchi	Filing	System

no-information	games

noise

normal	distribution

Norvig,	Peter

not	giving	up,	ever

Now	Habit,	The	(Fiore)

nuclear	reactions

nuclear	war

Obama,	Barack

Oblique	Strategies

Occam’s	razor

occupancy	rate

oil	rights	auctions

Oligarchs,	The	(Hoffman)

Olympics

one-factor	models

one-way	function

On	the	Origin	of	Species	(Darwin)

optimal	stopping

“triple-or-nothing”	and

optimism

optimization	problems

intractable,	defined

randomness	and

relaxation	and

order,	cost	of.	See	also	sorting

ordinal	numbers

Organizing	from	the	Inside	Out	(Morgenstern)

Ortega	y	Gasset,	José

outcome,	process	vs.

overfitting

packet	acknowledgment.	See	also	acknowledgment	packets	(ACKs)

packet	drops

packet	routing

packet	switching

page	faults

page	views,	measuring

Palmer,	T.	H.

Papadimitriou,	Christos

Papworth,	Neil

parasites

parking	lots

parking	meters

parking	spot	hunt

Pascal,	Blaise

password	failures

pecking	orders

Penicillium	mold

pen	size

perfect	solution

performance	measurements

Perry,	Katy

Peter,	Laurence	J.

Peter	Principle

Philosophical	Essay	on	Probabilities

pi	(π),	estimating	value	of

pigeons

piles,	self-organizing

ping	attack

Pinkham,	Roger

Pirsig,	Robert

Pitchfork

Pizza	Hut

Plagenhoef,	Scott

play-the-winner	algorithms

poetry

Poincaré,	Henri

poker

heads-up

no-limit

political	campaigns

polynomial	identity	testing

polynomial	time	(O(n2),	O(n3),	etc.)

pomodoros

popularity

portfolio	management

postal	mail

postal	messenger	problem

power-law	distributions

Prabhakar,	Balaji

Pratt,	Vaughan

precedence	constraints

prediction.	See	also	Bayes’s	Rule;	Copernican	Principle

decision	making	as

Early	Stopping	and

idolatry	of	data	and

influence	of	media	on

overfitting	and

prior	distributions	and

preemption

preexisting	beliefs

preferences

preferential	attachment

Preston	Sort	Center

Price,	Richard

price	of	anarchy

primality	testing

witness	against

prime	numbers

Princess	Bride,	The	(film)

Principles	of	Psychology	(James)

priority	inheritance

priority	inversion

prior	probabilities	or	priors

normal

power-law

reverse-engineering

uniform

uninformative

Prisoner’s	Dilemma

probation	violations

problems.	See	also	intractable	problems

defining	intractable

picking

process,	outcome	vs.

processor	cycles

procrastination

project	management

pros	and	cons	list

protocols

proverbs

Pruhs,	Kirk

punch	cards

purchasing	choices

Putin,	Vladimir

quadratic	time	(O(n2))

breaking	barrier

queueing

quitting	while	you’re	ahead

Rabin,	Michael

race	vs.	fight

raffle	problem

Ramscar,	Michael

“Random	article”	link

Random	Eviction

randomized	algorithms

randomness

how	much	to	use

networking	and	breaking	symmetry	and

random	restarts

Rapoport,	Amnon

Raskin,	Aza

Rawls,	John

real-time	analytics

recall	scenario

recipes

recursion

luring	opponent	into

strategies	that	cut

Reddit

redwood	forest

Reeves,	Glenn

regret,	minimizing

Regularization

rejection

relaxation

randomness	vs.

religious	laws

replacement	policies

responsiveness-throughput	tradeoff

restaurant

choice	of

open	seating	and

restless	bandit

Reuttinger,	Susanna

revelation	principle

revenge

revenue	equivalence	principle

reverse-engineering	prior	distributions

reverse	game	theory

Revusky,	Samuel

Rhinehart,	Luke.	See	Cockcroft,	George

Ridgway,	V.	F.

Rivest,	Ron

Robbins,	Herbert

Robinson,	Julia

robustness

rock	band	set	list

rock-paper-scissors

Rogers,	Kenny

Romney,	Mitt

Rosenbaum,	David

Roughgarden,	Tim

Round-Robin

Rousso,	Vanessa

route	planning.	See	also	traveling	salesman	problem;	vacation,	itinerary	of

rule	bending

Rush,	Barbara

Russell,	Bertrand

Russian	oligarchs

Rybka	chess	program

Sagan,	Carl

sampling.	See	also	randomness

San	Francisco

Sartre,	Jean-Paul

Saxena,	Nitin

saying	no

scale,	sorting	and

scale-free	distributions

scheduling

Schmidt,	Eric

Schmidt,	Peter

Schooler,	Lael

Science

Scientific	American

Scientific	Management

Scientist	in	the	Crib,	The	(Gopnik)

Seale,	Darryl

search,	gap	between	verification	and

search	engines

search-sort	tradeoff

self-organizing	lists

second-chance	scenario

secretary	problem

burglar	variant

full-information	variant

recall	variant

rejection	variant

seeding

selfish	routing

self-organizing	lists

sequential	information	processing

serendipity

Shallit,	Jeffrey

Shaw,	George	Bernard

Shi,	Yong

Shoenfield,	Joseph

shop	hours

Shortest	Processing	Time

unweighted

weighted

Shoup,	Donald

Sibneft	oil	company

Sieve	of	Erastothenes

Silicon	Valley

Simulated	Annealing

Sinatra,	Frank

Single	Elimination

single-machine	scheduling

Siroker,	Dan

size

dominance	hierarchies	and

memory	hierarchy	and

sorting	and

Skype

Sleator,	Daniel

slot	machines

small	data

as	big	data	in	disguise

Smith,	Adam

Smith,	Dan

soccer

social	media

Social	Network,	The	(film)

social	networks

social	policy

socks,	sorting

software,	term	coined

solid-state	drives

solitaire

sorting

Sorting	and	Searching	(Knuth)

sort-search	tradeoff

soy	milk

space-time	tradeoffs

SpaceX

spinning

sports

league	commissioner

overfitting	and

season	scheduling

tournament	structures

Sports	Scheduling	Group

squirrels

SRAM

standardized	tests

Statistical	Science

status

pecking	order	and

races	vs.	fights	and

Stewart,	Martha

Steyvers,	Mark

stock	market.	See	also	investment	strategies

algorithmic	trading	and

flash	crash	of	2010

storage

storytelling

Stucchio,	Chris

sum	of	completion	times

sum	of	weighted	completion	times

sum	of	weighted	lateness	of	jobs

super	filing	system

Tail	Drop

Tardos,	Éva

Tarjan,	Robert

task	switching

Taylor,	Frederick

TCP	sawtooth.	See	also	Transmission	Control	Protocol	(TCP)

teaching	to	the	test

technical	investors

telegraph

telephone

temperature

temporal	locality

Tenenbaum,	Josh

tennis	tournaments

Texas	Hold	’Em

text	messages

“TeX	Tuneup	of	2012,	The”	(Knuth)

Thanksgiving	commerce

theft,	irrational	responses	and

Things	a	Computer	Scientist	Rarely	Talks	About	(Knuth)

37%	rule

Thoreau,	Henry	David

thrashing

threading

Three	Princes	of	Serendip,	The

Threshold	Rule

throughput

Tibshirani,	Robert

Tikhonov,	Andrey

time

interval	of

timeboxing

time	costs

time	management

time-space	tradeoffs

Tolins,	Jackson

Tomlinson,	Ray

town	size	distributions

Toxoplasma	gondii

traffic

tragedy	of	the	commons

training	scars

transit	systems

Transmission	Control	Protocol	(TCP)

ACKs	and

backchannels	and

flow	control	and

price	of	anarchy	and

traveling	salesman	problem

Treat,	Tyler

“Treatise	on	the	Probability	of	the	Causes	of	Events”	(Laplace)

Tree,	Jean	Fox

Trick,	Michael

triple	handshake

triple-or-nothing	game

trip	planning.	See	also	traveling	salesman	problem

Turing,	Alan

Turing	machine

turn-taking

Tuskegee	Syphilis	Study

Tversky,	Amos

Twain,	Mark

twin	primes

Twitter

two-factor	models

two-machine	scheduling

UC	Berkeley

Ulam,	Stanislaw	“Stan”

Ullman,	Ellen

uncertainty

Unilever

“Unreasonable	Effectiveness	of	Data,	The”	(Norvig)

“up	or	out”	system

Upper	Confidence	Bound

urban	planners

US	Armed	Forces

US	Census

US	House	of	Representatives

US	Public	Health	Service

U-turns

vacation

email	and

itinerary	of

policy	on

vaccination

Vail,	Alfred

valet	stand

veil	of	ignorance

verification,	gap	between	search	and

Vickrey,	William

Vickrey	auction

Vita	Coco

voicemail

voice	transmission,	Internet

Voltaire

Von	Neumann,	John

Wagenmakers,	E.-J.

Wagner,	Richard

waiting,	cost-benefit	of

“Walking”	(Thoreau)

Walpole,	Horace

war

Ware,	Jim

Warhol,	Andy

Washington	Star

wealth

web	design

websites.	See	also	Internet

advertising	and

“Akamaized”

Exponential	Backoff	and

malicious

wedding	seating	plan

Wedgwood,	Emma

weighted	strategies

Welch,	Ivo

Whitney,	Hassler

Whittaker,	Steve

Whittle,	Peter

Wikipedia

Wilkes,	Maurice

Williams,	Robin

Win-Stay,	Lose-Shift

wireless	networking

wisdom

wishful	thinking

Wittgenstein,	Ludwig

work	hours

World	War	II

worst-case	analysis

Wright,	Steven

X-Files,	The	(TV	show)

Yeltsin,	Boris

Yngve,	Victor

Young,	Dean

Zelen,	Marvin

Zelen	algorithm

Zen	and	the	Art	of	Motorcycle	Maintenance	(Pirsig)

Zen	of	Python,	The

zero-sum

zero-zero	option

Zijlstra,	Peter

Z-order

	

Acknowledgments
Thank	you,	first,	to	the	researchers,	practitioners,	and	experts	who	made	time
to	sit	down	with	us	and	discuss	their	work	and	broader	perspectives:	to	Dave
Ackley,	Steve	Albert,	John	Anderson,	Jeff	Atwood,	Neil	Bearden,	Rik	Belew,
Donald	Berry,	Avrim	Blum,	Laura	Carstensen,	Nick	Chater,	Stuart	Cheshire,
Paras	Chopra,	Herbert	Clark,	Ruth	Corbin,	Robert	X.	Cringely,	Peter
Denning,	Raymond	Dong,	Elizabeth	Dupuis,	Joseph	Dwyer,	David	Estlund,
Christina	Fang,	Thomas	Ferguson,	Jessica	Flack,	James	Fogarty,	Jean	E.	Fox
Tree,	Robert	Frank,	Stuart	Geman,	Jim	Gettys,	John	Gittins,	Alison	Gopnik,
Deborah	Gordon,	Michael	Gottlieb,	Steve	Hanov,	Andrew	Harbison,	Isaac
Haxton,	John	Hennessy,	Geoff	Hinton,	David	Hirshliefer,	Jordan	Ho,	Tony
Hoare,	Kamal	Jain,	Chris	Jones,	William	Jones,	Leslie	Kaelbling,	David
Karger,	Richard	Karp,	Scott	Kirkpatrick,	Byron	Knoll,	Con	Kolivas,	Michael
Lee,	Jan	Karel	Lenstra,	Paul	Lynch,	Preston	McAfee,	Jay	McClelland,	Laura
Albert	McLay,	Paul	Milgrom,	Anthony	Miranda,	Michael	Mitzenmacher,
Rosemarie	Nagel,	Christof	Neumann,	Noam	Nisan,	Yukio	Noguchi,	Peter
Norvig,	Christos	Papadimitriou,	Meghan	Peterson,	Scott	Plagenhoef,	Anita
Pomerantz,	Balaji	Prabhakar,	Kirk	Pruhs,	Amnon	Rapoport,	Ronald	Rivest,
Ruth	Rosenholtz,	Tim	Roughgarden,	Stuart	Russell,	Roma	Shah,	Donald
Shoup,	Steven	Skiena,	Dan	Smith,	Paul	Smolensky,	Mark	Steyvers,	Chris
Stucchio,	Milind	Tambe,	Robert	Tarjan,	Geoff	Thorpe,	Jackson	Tolins,
Michael	Trick,	Hal	Varian,	James	Ware,	Longhair	Warrior,	Steve	Whittaker,
Avi	Wigderson,	Jacob	Wobbrock,	Jason	Wolfe,	and	Peter	Zijlstra.

Thanks	to	the	King	County	Public	Library,	the	Seattle	Public	Library,	the
Northern	Regional	Library	Facility,	and	the	UC	Berkeley	libraries	for
backstage	passes	into	their	operations.

Thanks	to	those	with	whom	we	corresponded,	who	pointed	us	in	the
direction	of	research	worth	knowing,	including	Sharon	Goetz,	Mike	Jones,
Tevye	Krynski,	Elif	Kuş,	Falk	Lieder,	Steven	A.	Lippman,	Philip	Maughan,
Sam	McKenzie,	Harro	Ranter,	Darryl	A.	Seale,	Stephen	Stigler,	Kevin
Thomson,	Peter	Todd,	Sara	M.	Watson,	and	Sheldon	Zedeck.

Thanks	to	many	of	those	with	whom	conversation	led	in	short	order	to

many	of	the	insights	herein,	and	of	whom	the	following	is	an	incomplete	list:
Elliot	Aguilar,	Ben	Backus,	Liat	Berdugo,	Dave	Blei,	Ben	Blum,	Joe	Damato,
Eva	de	Valk,	Emily	Drury,	Peter	Eckersley,	Jesse	Farmer,	Alan	Fineberg,
Chrix	Finne,	Lucas	Foglia,	John	Gaunt,	Lee	Gilman,	Martin	Glazier,	Adam
Goldstein,	Sarah	Greenleaf,	Graff	Haley,	Ben	Hjertmann,	Greg	Jensen,	Henry
Kaplan,	Sharmin	Karim,	Falk	Lieder,	Paul	Linke,	Rose	Linke,	Tania
Lombrozo,	Brandon	Martin-Anderson,	Sam	McKenzie,	Elon	Musk,	the
Neuwrite	group	at	Columbia	University,	Hannah	Newman,	Abe	Othman,	Sue
Penney,	Dillon	Plunkett,	Kristin	Pollock,	Diego	Pontoriero,	Avi	Press,	Matt
Richards,	Annie	Roach,	Felicity	Rose,	Anders	Sandberg,	Claire	Schreiber,
Gayle	and	Rick	Shanley,	Max	Shron,	Charly	Simpson,	Najeeb	Tarazi,	Josh
Tenenbaum,	Peter	Todd,	Peter	van	Wesep,	Shawn	Wen,	Jered	Wierzbicki,
Maja	Wilson,	and	Kristen	Young.

Thank	you	to	some	of	the	fine	free	and	open-source	software	that	made	the
work	possible:	Git,	LaTeX,	TeXShop,	and	TextMate	2,	for	starters.

Thanks	to	those	who	lent	their	skills	and	efforts	on	various	fronts:	to
Lindsey	Baggette,	David	Bourgin,	and	Tania	Lombrozo	for	bibliographic	and
archival	sleuthing.

Thanks	to	the	Cambridge	University	Library	for	permission	to	print
Darwin’s	wonderful	diary	page,	and	to	Michael	Langan	for	a	crisp	restoration
thereof.

Thanks	to	Henry	Young	for	a	sharp	portrait.

Thanks	to	those	who	read	drafts	and	offered	invaluable	feedback	along	the
way:	to	Ben	Blum,	Vint	Cerf,	Elizabeth	Christian,	Randy	Christian,	Peter
Denning,	Peter	Eckersley,	Chrix	Finne,	Rick	Fletcher,	Adam	Goldstein,
Alison	Gopnik,	Sarah	Greenleaf,	Graff	Haley,	Greg	Jensen,	Charles	Kemp,
Raphael	Lee,	Rose	Linke,	Tania	Lombrozo,	Rebekah	Otto,	Diego	Pontoriero,
Daniel	Reichman,	Matt	Richards,	Phil	Richerme,	Melissa	Riess	James,	Katia
Savchuk,	Sameer	Shariff,	Janet	Silver,	Najeeb	Tarazi,	and	Kevin	Thomson.
The	book	is	immeasurably	better	for	their	saccades	and	thoughts.

Thanks	to	our	agent,	Max	Brockman,	and	the	team	at	Brockman	Inc.	for
being	astute	and	exuberant	champions	of	the	work.

Thanks	to	our	editor,	Grigory	Tovbis,	and	the	team	at	Henry	Holt	for	their
perspicacious,	tireless,	enthusiastic	work	at	making	the	book	the	best	it	could

be	and	for	bugling	it	forth	proudly	into	the	world.

Thank	you	to	Tania	Lombrozo,	Viviana	Lombrozo,	Enrique	Lombrozo,
Judy	Griffiths,	Rod	Griffiths,	and	Julieth	Moreno,	who	picked	up	the	slack	on
the	childcare	front	on	multiple	occasions,	and	to	the	Lombrozo	Griffiths
family,	and	the	members	of	the	UC	Berkeley	Computational	Cognitive
Science	lab,	and	to	all	who	exhibited	grace	and	patience	with	book-induced
scheduling	constraints.

Thanks	to	the	various	institutions	who	offered	direct	and	indirect	support.
Thank	you	first	to	the	University	of	California,	Berkeley:	to	the	Visiting
Scholar	Program	in	the	Institute	of	Cognitive	and	Brain	Sciences	for	a
productive	two-year	stint,	and	to	the	Department	of	Psychology	for	its
ongoing	support.	Thank	you	to	the	Free	Library	of	Philadelphia,	the
University	of	California,	Berkeley	Library,	the	Mechanics’	Institute	Library,
and	the	San	Francisco	Public	Library	for	both	space	and	tomes.	Thank	you	to
the	University	of	Pennsylvania	Fisher	Fine	Arts	Library	for	allowing	a
nonstudent	in	off	the	streets	day	after	day.	Thank	you	to	the	Corporation	of
Yaddo,	the	MacDowell	Colony,	and	the	Port	Townsend	Writers’	Conference
for	beautiful,	inspirational,	and	fertile	residencies.	Thank	you	to	the	USPS
Media	Mail	rate	for	making	a	peripatetic	ink-and-pulp	lifestyle	possible.
Thank	you	to	the	Cognitive	Science	Society	and	the	Association	for	the
Advancement	of	Artificial	Intelligence	for	invitations	to	attend	their	annual
conferences,	at	which	many	connections	were	made:	interpersonal,
interdisciplinary,	and	interhemispheric.	Thank	you	to	Borderlands	Cafe	for
being	the	one	place	we	know	in	San	Francisco	that	serves	coffee	without
music.	May	you	always	prosper.

Thank	you	to	Rose	Linke—

Thank	you	to	Tania	Lombrozo—

—as	readers,	as	partners,	as	supporters,	as	inspirations,	as	ever.

	
ALSO	BY	BRIAN	CHRISTIAN

The	Most	Human	Human:	What	Artificial	Intelligence	Teaches	Us	About
Being	Alive

http://us.macmillan.com/author/brianchristian?utm_source=ebook&utm_medium=adcard&utm_term=ebookreaders&utm_content=brianchristian_authorpage_macdotcom&utm_campaign=9781627790376

	

About	the	Authors

BRIAN	CHRISTIAN	is	the	author	of	The	Most	Human	Human,	a	Wall	Street
Journal	bestseller,	New	York	Times	editors’	choice,	and	a	New	Yorker	favorite
book	of	the	year.	His	writing	has	appeared	in	The	New	Yorker,	The	Atlantic,
Wired,	The	Wall	Street	Journal,	The	Guardian,	and	The	Paris	Review,	as	well
as	in	scientific	journals	such	as	Cognitive	Science,	and	has	been	translated
into	eleven	languages.	He	lives	in	San	Francisco.

TOM	GRIFFITHS	is	a	professor	of	psychology	and	cognitive	science	at	UC
Berkeley,	where	he	directs	the	Computational	Cognitive	Science	Lab.	He	has
published	more	than	150	scientific	papers	on	topics	ranging	from	cognitive
psychology	to	cultural	evolution,	and	has	received	awards	from	the	National
Science	Foundation,	the	Sloan	Foundation,	the	American	Psychological
Association,	and	the	Psychonomic	Society,	among	others.	He	lives	in
Berkeley.

http://us.macmillan.com/author/brianchristian?utm_source=ebook&utm_medium=adcard&utm_term=ebookreaders&utm_content=brianchristian_authorpage_macdotcom&utm_campaign=9781627790376
http://us.macmillan.com/author/tomgriffiths?utm_source=ebook&utm_medium=adcard&utm_term=ebookreaders&utm_content=tomgriffiths_authorpage_macdotcom&utm_campaign=9781627790376

	

About	the	Publisher
Australia

HarperCollins	Publishers	(Australia)	Pty.	Ltd.

Level	13,	201	Elizabeth	Street

Sydney,	NSW	2000,	Australia

http://www.harpercollins.com.au

Canada

HarperCollins	Canada

2	Bloor	Street	East	-	20th	Floor

Toronto,	ON,	M4W,	1A8,	Canada

http://www.harpercollins.ca

New	Zealand

HarperCollins	Publishers	(New	Zealand)	Limited

P.O.	Box	1

Auckland,	New	Zealand

http://www.harpercollins.co.nz

United	Kingdom

HarperCollins	Publishers	Ltd.

1	London	Bridge	Street

London,	SE1	9GF,	UK

http://www.harpercollins.co.uk

United	States

http://www.harpercollins.com.au
http://www.harpercollins.ca
http://www.harpercollins.co.nz
http://www.harpercollins.co.uk

HarperCollins	Publishers	Inc.

195	Broadway

New	York,	NY	10007

http://www.harpercollins.com

http://www.harpercollins.com

	Title Page
	Copyright
	Dedication
	Contents
	Introduction: Algorithms to Live By
	1. Optimal Stopping: When to Stop Looking
	2. Explore/Exploit: The Latest vs. the Greatest
	3. Sorting: Making Order
	4. Caching: Forget About It
	5. Scheduling: First Things First
	6. Bayes’s Rule: Predicting the Future
	7. Overfitting: When to Think Less
	8. Relaxation: Let It Slide
	9. Randomness: When to Leave It to Chance
	10. Networking: How We Connect
	11. Game Theory: The Minds of Others
	Conclusion: Computational Kindness
	Notes
	Bibliography
	Index
	Acknowledgments
	Also by Brian Christian
	About the Authors
	About the Publisher

