
 COMPANION eBOOK

Shelve in
Mobile Computing

User level:
Intermediatewww.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

SOURCE CODE ONLINE

Companion

eBook
Available

M
acLean

Kom
atineni

Android Fragm
ents

Harness the power of fragments to build pro-level Android UIs

Android
Fragments

Dave MacLean | Satya Komatineni

Android Fragments is a 100-page quick start accelerated guide to learning and
quickly using Android fragments. You’ll learn how to code for fragments;

deal with config changes; code for regular vs. fragmented dialogs; work with
preferences and saving state; work with the compatibility library; and handle
advanced async tasks and progress dialogs.

After reading and using this book, which is based on material from the best-
selling Pro Android, you’ll be an Android UI savant. At the very least, your
apps’ user interfaces and event handling will be more competitive and better
performing, especially for tablet-optimized UIs and events.

You’ll learn:

• What Android fragments are
• How to work and code for fragments
• How to respond to configuration changes
• How to do regular and fragmented dialogs
• How to work with preferences and saving state
• How to work with the compatibility library
• How to handle advanced async tasks and progress dialogs

9 781484 208540

52999
ISBN 978-1-4842-0854-0

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a
Glance

About the Authors�� xi

About the Technical Reviewer��� xiii

Acknowledgments�� xv

Introduction�� xvii

Chapter 1: Fragments Fundamentals■■ �� 1

Chapter 2: Responding to Configuration Changes■■ ������������������������� 35

Chapter 3: Working with Dialogs■■ ��� 45

Chapter 4: Working with Preferences and Saving State■■ ���������������� 61

Chapter 5: Using the Compatibility Library for Older Devices■■ ������� 83

Chapter 6: Advanced AsyncTask and Progress Dialogs■■ ���������������� 91

Index��� 115

www.allitebooks.com

http://www.allitebooks.org

xvii

Introduction

Mobile application development is as hot a topic as ever. Consumers have
been benefiting from smartphones for years, and now more and more
companies are getting into the game. Some developers are learning mobile
development brand new, while others are coming from backgrounds in web
development or PC programming. No matter, making mobile applications
that work well requires learning some new concepts and skills. With Android
in particular, fragments are one of those topics that are critical to an Android
application, but are not that easy to master. Once you understand the inner
details of how fragments work, and the ways in which they can be used, you
will find it much easier to design and build Android applications.

Fragments are conceptual containers of user interface and logic that can be
easily combined as building blocks into your mobile application. Android has
not abandoned the Activity class, but activities are now often composed
from fragments. This makes it much easier to build applications to support
different device types, sizes and orientations.

This book, Android Fragments, is our sixth book on Android. In the first
four books, published under the Pro Android name, we covered many of
the Android APIs, from basic Views to broadcast receivers, touchscreens,
services and animations. In Expert Android we tackled more advanced
Android APIs as well as the advanced debugging capabilities of Android.

Android Fragments is actually a subset of the Pro Android book. It focuses
specifically on fragments, providing you with the detail you won’t find
in other books. It covers not only the basic fragment, but also dialog
fragments, preference fragments, and progress dialog fragments. It covers
the compatibility library so you can use fragments with the older versions of
Android that originally did not support fragments. After reading this book,
you should have no fear incorporating all manner of fragments into your
applications.

www.allitebooks.com

http://www.allitebooks.org

Introductionxviii

Is This Book for You?
This book was written for the mobile developer who has a good
understanding of Android, and the basics of an Android application, but who
needs or wants an in-depth understanding of fragments. A good architect
knows the materials. To build great mobile applications, the great mobile
developer needs to know fragments. If you don’t know, or if you’re not sure
you understand fragments well, then this book is for you.

What You Need to Know Before You Begin
Android Fragments assumes that you are familiar with Java and basic
Android and that you have developed Android applications, using Eclipse or
another IDE. You do not need to be an Android expert.

With that said, here’s a brief, quick overview of what is in Android
Fragments, chapter by chapter.

What’s in This Book
We start Android Fragments by documenting in depth the Fragment class
and its life cycle. We cover the careful integration dance between the
activities and the fragments of an application. You’ll see how to incorporate
fragments into the UI, but also how to encapsulate functionality into
fragments.

Chapter 2 helps you understand what happens to a fragment during a
configuration change, such as the rotation of a device. You’ll see how
fragments make this easier than it has been in the past.

Dialogs are very common in applications, and now you’ll be using fragments
to display them. Find out how in Chapter 3.

Preferences also went through some major UI changes when fragments
came along. Chapter 4 covers everything you need to know about using
Android’s preference framework for preferences or for just a quick and easy
way to store some application state from one invocation to the next.

Android fragmentation has to do with the many different versions of Android
that exist in the world at the same time. And while it is not about fragments,
you’ll want to know how to use fragments on older versions of Android that
pre-date the introduction of fragments. Google has made it possible through
the use of compatibility libraries, so Chapter 5 shows you how to use
them. After reading this chapter you’ll be able to write one application, with
fragments, and have it supported on devices as old as Froyo (Android 2.2).

www.allitebooks.com

http://www.allitebooks.org

Introduction

xix

This mini book wraps up with a chapter on AsyncTask, an extremely useful
construct for doing work in the background of an application, while at the
same time being able to update a UI that’s rendered in, you guessed it,
fragments.

All throughout the book, numerous sample programs are explained with
code listings. The complete sample programs are all downloadable from
our website, so you’ll be able to easily follow along, and have a great starter
set of working applications for experimentation and for starting your own
applications.

How to Prepare for Android Fragments
Although we have used the latest Android release (5.0) to write and test
Android Fragments, the contents of this book are fairly independent of
any Android release. Most, if not all, sample programs and code should
work even in future releases. To heighten the readability of these chapters,
among other improvements we have reduced the typical pages and pages
of source code. Instead, the source code for each chapter is available both
on apress.com and at our supporting site, androidbook.com. We still include
source code in the text, but it will be the important code that you want to
see to understand the concepts.

You will be able to download each chapter’s source code and load it into
Eclipse directly. If you are using IntelliJ or another editor, you can unzip each
chapter and build the code by importing the projects manually into your
favorite IDE.

If you are programming using any of the topics that we have covered in any
of our books, including Android Fragments, remember that our websites
androidbook.com and satyakomatineni.com have dedicated knowledge
folders for each topic. These knowledge folders document various items in
each topic. For example, you will see in this book the Android API links you
will need as you develop code in that context. In short, we use these sites
often to grab code snippets and also quickly get to the Android API links.

How to Reach Us
We can be reached readily via our respective e-mail addresses: Dave
MacLean at davemac327@gmail.com and Satya Komatineni at
satya.komatineni@gmail.com. Also, keep this URL in your bookmarks:
http://www.androidbook.com. Here you will find links to source code, links to
downloadable projects, key feedback from readers, full contact information,
future notifications, errata, news on our future projects, a reading guide, and
additional resources.

We truly hope that you enjoy our book, and we welcome your feedback.

www.allitebooks.com

http://androidbook.com
http://androidbook.com
http://SatyaKomatineni.com
http://davemac327@gmail.com
http://satya.komatineni@gmail.com
http://www.androidbook.com
http://www.allitebooks.org

1

Chapter 1
Fragments
Fundamentals

For the first two major releases of Android, small screens were it. Then came
the Android tablets: devices with screen sizes of 10”. And that complicated
things. Why? Because now there was so much screen real estate that
a simple activity had a hard time filling a screen while at the same time
keeping to a single function. It no longer made sense to have an e-mail
application that showed only headers in one activity (filling a large screen),
and a separate activity to show an individual e-mail (also filling a large
screen). With that much room to work with, an application could show a list
of e-mail headers down the left side of the screen and the selected e-mail
contents on the right side of the screen. Could it be done in a single activity
with a single layout? Well, yes, but you couldn’t reuse that activity or layout
for any of the smaller-screen devices.

One of the core classes introduced in Android 3.0 was the Fragment class,
especially designed to help developers manage application functionality
so it would provide great usability as well as lots of reuse. This chapter will
introduce you to the fragment, what it is, how it fits into an application’s
architecture, and how to use it. Fragments make a lot of interesting things
possible that were difficult before. At about the same time, Google released
a fragment SDK that works on old Androids. So even if you weren’t
interested in writing applications for tablets, you may have found that
fragments made your life easier on non-tablet devices. Now it’s easier than
ever to write great applications for smartphones and tablets and even TVs
and other devices.

Let’s get started with Android fragments.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Fragments Fundamentals2

What Is a Fragment?
This first section will explain what a fragment is and what it does. But first,
let’s set the stage to see why we need fragments. As you learned earlier, an
Android application on small-screen devices uses activities to show data
and functionality to a user, and each activity has a fairly simple, well-defined
purpose. For example, an activity might show the user a list of contacts from
their address book. Another activity might allow the user to type an e-mail.
The Android application is the series of these activities grouped together
to achieve a larger purpose, such as managing an e-mail account via the
reading and sending of messages. This is fine for a small-screen device,
but when the user’s screen is very large (10” or larger), there’s room on the
screen to do more than just one simple thing. An application might want to
let the user view the list of e-mails in their inbox and at the same time show
the currently selected e-mail text next to the list. Or an application might
want to show a list of contacts and at the same time show the currently
selected contact in a detail view.

As an Android developer, you know that this functionality could be
accomplished by defining yet another layout for the xlarge screen with
ListViews and layouts and all sorts of other views. And by “yet another
layout” we mean layouts in addition to those you’ve probably already defined
for the smaller screens. Of course, you’ll want to have separate layouts
for the portrait case as well as the landscape case. And with the size of an
xlarge screen, this could mean quite a few views for all the labels and fields
and images and so on that you’ll need to lay out and then provide code for. If
only there were a way to group these view objects together and consolidate
the logic for them, so that chunks of an application could be reused across
screen sizes and devices, minimizing how much work a developer has to do
to maintain their application. And that is why we have fragments.

One way to think of a fragment is as a sub-activity. And in fact, the
semantics of a fragment are a lot like an activity. A fragment can have
a view hierarchy associated with it, and it has a life cycle much like an
activity’s life cycle. Fragments can even respond to the Back button like
activities do. If you were thinking, “If only I could put multiple activities
together on a tablet’s screen at the same time,” then you’re on the right
track. But because it would be too messy to have more than one activity of
an application active at the same time on a tablet screen, fragments were
created to implement basically that thought. This means fragments are
contained within an activity. Fragments can only exist within the context
of an activity; you can’t use a fragment without an activity. Fragments can
coexist with other elements of an activity, which means you do not need to
convert the entire user interface of your activity to use fragments. You can
create an activity’s layout as before and only use a fragment for one piece of
the user interface.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Fragments Fundamentals

3

Fragments are not like activities, however, when it comes to saving state
and restoring it later. The fragments framework provides several features to
make saving and restoring fragments much simpler than the work you need
to do on activities.

How you decide when to use a fragment depends on a few considerations,
which are discussed next.

When to Use Fragments
One of the primary reasons to use a fragment is so you can reuse a chunk
of user interface and functionality across devices and screen sizes. This is
especially true with tablets. Think of how much can happen when the screen
is as large as a tablet’s. It’s more like a desktop than a phone, and many of
your desktop applications have a multipane user interface. As described
earlier, you can have a list and a detail view of the selected item on screen at
the same time. This is easy to picture in a landscape orientation with the list
on the left and the details on the right. But what if the user rotates the device
to portrait mode so that now the screen is taller than it is wide? Perhaps
you now want the list to be in the top portion of the screen and the details
in the bottom portion. But what if this application is running on a small
screen and there’s just no room for the two portions to be on the screen at
the same time? Wouldn’t you want the separate activities for the list and for
the details to be able to share the logic you’ve built into these portions for
a large screen? We hope you answered yes. Fragments can help with that.
Figure 1-1 makes this a little clearer.

Figure 1-1.  Fragments used for a tablet UI and for a smartphone UI

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Fragments Fundamentals4

In landscape mode, two fragments may sit nicely side by side. In portrait
mode, we might be able to put one fragment above the other. But if we’re
trying to run the same application on a device with a smaller screen, we
might need to show either fragment 1 or fragment 2 but not both at the
same time. If we tried to manage all these scenarios with layouts, we’d be
creating quite a few, which means difficulty trying to keep everything correct
across many separate layouts. When using fragments, our layouts stay
simple; each activity layout deals with the fragments as containers, and the
activity layouts don’t need to specify the internal structure of each fragment.
Each fragment will have its own layout for its internal structure and can be
reused across many configurations.

Let’s go back to the rotating orientation example. If you’ve had to code for
orientation changes of an activity, you know that it can be a real pain to save
the current state of the activity and to restore the state once the activity has
been re-created. Wouldn’t it be nice if your activity had chunks that could
be easily retained across orientation changes, so you could avoid all the
tearing down and re-creating every time the orientation changed? Of course
it would. Fragments can help with that.

Now imagine that a user is in your activity, and they’ve been doing some
work. And imagine that the user interface has changed within the same
activity, and the user wants to go back a step, or two, or three. In an old-
style activity, pressing the Back button will take the user out of the activity
entirely. With fragments, the Back button can step backward through a stack
of fragments while staying inside the current activity.

Next, think about an activity’s user interface when a big chunk of content
changes; you’d like to make the transition look smooth, like a polished
application. Fragments can do that, too.

Now that you have some idea of what a fragment is and why you’d want to
use one, let’s dig a little deeper into the structure of a fragment.

The Structure of a Fragment
As mentioned, a fragment is like a sub-activity: it has a fairly specific
purpose and almost always displays a user interface. But where an activity
is subclassed from Context, a fragment is extended from Object in package
android.app. A fragment is not an extension of Activity. Like activities,
however, you will always extend Fragment (or one of its subclasses) so you
can override its behavior.

A fragment can have a view hierarchy to engage with a user. This view
hierarchy is like any other view hierarchy in that it can be created (inflated)
from an XML layout specification or created in code. The view hierarchy
needs to be attached to the view hierarchy of the surrounding activity if it

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Fragments Fundamentals

5

is to be seen by the user, which you’ll get to shortly. The view objects that
make up a fragment’s view hierarchy are the same sorts of views that are
used elsewhere in Android. So everything you know about views applies to
fragments as well.

Besides the view hierarchy, a fragment has a bundle that serves as its
initialization arguments. Similar to an activity, a fragment can be saved
and later restored automatically by the system. When the system restores
a fragment, it calls the default constructor (with no arguments) and
then restores this bundle of arguments to the newly created fragment.
Subsequent callbacks on the fragment have access to these arguments and
can use them to get the fragment back to its previous state. For this reason,
it is imperative that you

Ensure that there’s a default constructor for your 	
fragment class.

Add a bundle of arguments as soon as you create a new 	
fragment so these subsequent methods can properly
set up your fragment, and so the system can restore
your fragment properly when necessary.

An activity can have multiple fragments in play at one time; and if a fragment
has been switched out with another fragment, the fragment-switching
transaction can be saved on a back stack. The back stack is managed by
the fragment manager tied to the activity. The back stack is how the Back
button behavior is managed. The fragment manager is discussed later in
this chapter. What you need to know here is that a fragment knows which
activity it is tied to, and from there it can get to its fragment manager. A
fragment can also get to the activity’s resources through its activity.

Also similar to an activity, a fragment can save state into a bundle object
when the fragment is being re-created, and this bundle object gets given
back to the fragment’s onCreate() callback. This saved bundle is also
passed to onInflate(), onCreateView(), and onActivityCreated().
Note that this is not the same bundle as the one attached as initialization
arguments. This bundle is one in which you are likely to store the current
state of the fragment, not the values that should be used to initialize it.

A Fragment’s Life Cycle
Before you start using fragments in sample applications, you need
understand the life cycle of a fragment. Why? A fragment’s life cycle is
more complicated than an activity’s life cycle, and it’s very important to
understand when you can do things with fragments. Figure 1-2 shows the
life cycle of a fragment.

CHAPTER 1: Fragments Fundamentals6

If you compare this to the life cycle for an activity, you’ll notice several
differences, due mostly to the interaction required between an activity and a
fragment. A fragment is very dependent on the activity in which it lives and
can go through multiple steps while its activity goes through one.

At the very beginning, a fragment is instantiated. It now exists as an
object in memory. The first thing that is likely to happen is that initialization
arguments will be added to your fragment object. This is definitely true in the
situation where the system is re-creating your fragment from a saved state.
When the system is restoring a fragment from a saved state, the default
constructor is invoked, followed by the attachment of the initialization
arguments bundle. If you are doing the creation of the fragment in code,
a nice pattern to use is that in Listing 1-1, which shows a factory type of
instantiator within the MyFragment class definition.

Figure 1-2.  Life cycle of a fragment

CHAPTER 1: Fragments Fundamentals

7

Listing 1-1.  Instantiating a Fragment Using a Static Factory Method

public static MyFragment newInstance(int index) {
 MyFragment f = new MyFragment();
 Bundle args = new Bundle();
 args.putInt("index", index);
 f.setArguments(args);
 return f;
}
 
From the client’s point of view, they get a new instance by calling the static
newInstance() method with a single argument. They get the instantiated
object back, and the initialization argument has been set on this fragment
in the arguments bundle. If this fragment is saved and reconstructed later,
the system will go through a very similar process of calling the default
constructor and then reattaching the initialization arguments. For your
particular case, you would define the signature of your newInstance()
method (or methods) to take the appropriate number and type of arguments,
and then build the arguments bundle appropriately. This is all you want your
newInstance() method to do. The callbacks that follow will take care of the
rest of the setup of your fragment.

The onInflate( ) Callback
The next thing that happens is layout view inflation. If your fragment is
defined by a <fragment> tag in a layout, your fragment’s onInflate() callback
will be called. This passes in a reference to the surrounding activity, an
AttributeSet with the attributes from the <fragment> tag, and a saved bundle.
The saved bundle is the one with the saved state values in it, put there by
onSaveInstanceState() if this fragment existed before and is being re-created.
The expectation of onInflate() is that you’ll read attribute values and save
them for later use. At this stage in the fragment’s life, it’s too early to actually
do anything with the user interface. The fragment is not even associated to its
activity yet. But that’s the next event to occur to your fragment.

The onAttach( ) Callback
The onAttach() callback is invoked after your fragment is associated with
its activity. The activity reference is passed to you if you want to use it. You
can at least use the activity to determine information about your enclosing
activity. You can also use the activity as a context to do other operations.
One thing to note is that the Fragment class has a getActivity() method
that will always return the attached activity for your fragment should
you need it. Keep in mind that all during this life cycle, the initialization
arguments bundle is available to you from the fragment’s getArguments()

CHAPTER 1: Fragments Fundamentals8

method. However, once the fragment is attached to its activity, you can’t
call setArguments() again. Therefore, you can’t add to the initialization
arguments except in the very beginning.

The onCreate( ) Callback
Next up is the onCreate() callback. Although this is similar to the activity’s
onCreate(), the difference is that you should not put code in here that relies
on the existence of the activity’s view hierarchy. Your fragment may be
associated to its activity by now, but you haven’t yet been notified that the
activity’s onCreate() has finished. That’s coming up. This callback gets the
saved state bundle passed in, if there is one. This callback is about as early
as possible to create a background thread to get data that this fragment will
need. Your fragment code is running on the UI thread, and you don’t want
to do disk input/output (I/O) or network accesses on the UI thread. In fact, it
makes a lot of sense to fire off a background thread to get things ready. Your
background thread is where blocking calls should be. You’ll need to hook up
with the data later, perhaps using a handler or some other technique.

The onCreateView( ) Callback
The next callback is onCreateView(). The expectation here is that you will
return a view hierarchy for this fragment. The arguments passed into this
callback include a LayoutInflater (which you can use to inflate a layout
for this fragment), a ViewGroup parent (called container in Listing 1-2), and
the saved bundle if one exists. It is very important to note that you should
not attach the view hierarchy to the ViewGroup parent passed in. That
association will happen automatically later. You will very likely get exceptions
if you attach the fragment’s view hierarchy to the parent in this callback—or
at least odd and unexpected application behavior.

Listing 1-2.  Creating a Fragment View Hierarchy in on CreateView()

@Override
public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 if(container == null)
 return null;
 
 View v = inflater.inflate(R.layout.details, container, false);
 TextView text1 = (TextView) v.findViewById(R.id.text1);
 text1.setText(myDataSet[getPosition()]);
 return v;
}
 

CHAPTER 1: Fragments Fundamentals

9

The parent is provided so you can use it with the inflate() method of the
LayoutInflater. If the parent container value is null, that means this particular
fragment won’t be viewed because there’s no view hierarchy for it to attach to.
In this case, you can simply return null from here. Remember that there may
be fragments floating around in your application that aren’t being displayed.
Listing 1-2 shows a sample of what you might want to do in this method.

Here you see how you can access a layout XML file that is just for this
fragment and inflate it to a view that you return to the caller. There are
several advantages to this approach. You could always construct the view
hierarchy in code, but by inflating a layout XML file, you’re taking advantage
of the system’s resource-finding logic. Depending on which configuration
the device is in, or for that matter which device you’re on, the appropriate
layout XML file will be chosen. You can then access a particular view within
the layout—in this case, the text1 TextView field—to do what you want
with. To repeat a very important point: do not attach the fragment’s view
to the container parent in this callback. You can see in Listing 1-2 that you
use a container in the call to inflate(), but you also pass false for the
attachToRoot parameter.

The onViewCreated( ) Callback
This one is called right after onCreateView() but before any saved state has
been put into the UI. The view object passed in is the same view object that
got returned from onCreateView().

The onActivityCreated( ) Callback
You’re now getting close to the point where the user can interact with your
fragment. The next callback is onActivityCreated(). This is called after the
activity has completed its onCreate() callback. You can now trust that the
activity’s view hierarchy, including your own view hierarchy if you returned
one earlier, is ready and available. This is where you can do final tweaks to
the user interface before the user sees it. It’s also where you can be sure
that any other fragment for this activity has been attached to your activity.

The onViewStateRestored( ) Callback
This one is relatively new, introduced with JellyBean 4.2. Your fragment
will have this callback called when the view hierarchy of this fragment has
all state restored (if applicable). Previously you had to make decisions in
onActivityCreated() about tweaking the UI for a restored fragment. Now
you can put that logic in this callback knowing definitely that this fragment is
being restored from a saved state.

CHAPTER 1: Fragments Fundamentals10

The onStart( ) Callback
The next callback in your fragment life cycle is onStart(). Now your
fragment is visible to the user. But you haven’t started interacting with
the user just yet. This callback is tied to the activity’s onStart(). As such,
whereas previously you may have put your logic into the activity’s onStart(),
now you’re more likely to put your logic into the fragment’s onStart(),
because that is also where the user interface components are.

The onResume( ) Callback
The last callback before the user can interact with your fragment is
onResume(). This callback is tied to the activity’s onResume(). When this
callback returns, the user is free to interact with this fragment. For example,
if you have a camera preview in your fragment, you would probably enable it
in the fragment’s onResume().

So now you’ve reached the point where the app is busily making the
user happy. And then the user decides to get out of your app, either by
Back’ing out, or by pressing the Home button, or by launching some other
application. The next sequence, similar to what happens with an activity,
goes in the opposite direction of setting up the fragment for interaction.

The onPause( ) Callback
The first undo callback on a fragment is onPause(). This callback is tied to
the activity’s onPause(); just as with an activity, if you have a media player
in your fragment or some other shared object, you could pause it, stop it, or
give it back via your onPause() method. The same good-citizen rules apply
here: you don’t want to be playing audio if the user is taking a phone call.

The onSaveInstanceState( ) Callback
Similar to activities, fragments have an opportunity to save state for later
reconstruction. This callback passes in a Bundle object for this fragment to
be used as the container for whatever state information you want to hang
onto. This is the saved-state bundle passed to the callbacks covered earlier.
To prevent memory problems, be careful about what you save into this
bundle. Only save what you need. If you need to keep a reference to another
fragment, don’t try to save or put the other fragment, rather just save the
identifier for the other fragment such as its tag or ID. When this fragment
runs onViewStateRestored(), then you could re-establish connections to the
other fragments that this fragment depends on.

CHAPTER 1: Fragments Fundamentals

11

Although you may see this method usually called right after onPause(),
the activity to which this fragment belongs calls it when it feels that
the fragment’s state should be saved. This can occur any time before
onDestroy().

The onStop( ) Callback
The next undo callback is onStop(). This one is tied to the activity’s
onStop() and serves a purpose similar to an activity’s onStop(). A fragment
that has been stopped could go straight back to the onStart() callback,
which then leads to onResume().

The onDestroyView( ) Callback
If your fragment is on its way to being killed off or saved, the next callback
in the undo direction is onDestroyView(). This will be called after the view
hierarchy you created on your onCreateView() callback earlier has been
detached from your fragment.

The onDestroy( ) Callback
Next up is onDestroy(). This is called when the fragment is no longer in use.
Note that it is still attached to the activity and is still findable, but it can’t do
much.

The onDetach( ) Callback
The final callback in a fragment’s life cycle is onDetach(). Once this is
invoked, the fragment is not tied to its activity, it does not have a view
hierarchy anymore, and all its resources should have been released.

Using setRetainInstance( )
You may have noticed the dotted lines in the diagram in Figure 1-2. One of
the cool features of a fragment is that you can specify that you don’t want
the fragment completely destroyed if the activity is being re-created and
therefore your fragments will be coming back also. Therefore, Fragment
comes with a method called setRetainInstance(), which takes a boolean
parameter to tell it “Yes; I want you to hang around when my activity
restarts” or “No; go away, and I’ll create a new fragment from scratch.”
A good place to call setRetainInstance() is in the onCreate() callback of a
fragment, but in onCreateView() works, as does onActivityCreated().

CHAPTER 1: Fragments Fundamentals12

If the parameter is true, that means you want to keep your fragment object
in memory and not start over from scratch. However, if your activity is going
away and being re-created, you’ll have to detach your fragment from this
activity and attach it to the new one. The bottom line is that if the retain
instance value is true, you won’t actually destroy your fragment instance,
and therefore you won’t need to create a new one on the other side. The
dotted lines on the diagram mean you would skip the onDestroy() callback
on the way out, you’d skip the onCreate() callback when your fragment is
being re-attached to your new activity, and all other callbacks would fire.
Because an activity is re-created most likely for configuration changes,
your fragment callbacks should probably assume that the configuration has
changed, and therefore should take appropriate action. This would include
inflating the layout to create a new view hierarchy in onCreateView(), for
example. The code provided in Listing 1-2 would take care of that as it is
written. If you choose to use the retain-instance feature, you may decide not
to put some of your initialization logic in onCreate() because it won’t always
get called the way the other callbacks will.

Sample Fragment App Showing the Life Cycle
There’s nothing like seeing a real example to get an appreciation for a
concept. You’ll use a sample application that has been instrumented so you
can see all these callbacks in action. You’re going to work with a sample
application that uses a list of Shakespearean titles in one fragment; when
the user clicks one of the titles, some text from that play will appear in a
separate fragment. This sample application will work in both landscape and
portrait modes on a tablet. Then you’ll configure it to run as if on a smaller
screen so you can see how to separate the text fragment into an activity.
You’ll start with the XML layout of your activity in landscape mode in Listing 1-3,
which will look like Figure 1-3 when it runs.

Listing 1-3.  Your Activity’s Layout XML for Landscape Mode

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout-land/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 
 <fragment class="com.androidbook.fragments.bard.TitlesFragment"
 android:id="@+id/titles" android:layout_weight="1"
 android:layout_width="0px"
 android:layout_height="match_parent" />
 

CHAPTER 1: Fragments Fundamentals

13

Figure 1-3.  The user interface of your sample fragment application

Note  At the end of the chapter is the URL you can use to download the
projects in this chapter. This will allow you to import these projects into
your IDE (such as Eclipse or Android Studio) directly.

This layout looks like a lot of other layouts you’ve seen throughout the book,
horizontally left to right with two main objects. There’s a special new tag,
though, called <fragment>, and this tag has a new attribute called class.
Keep in mind that a fragment is not a view, so the layout XML is a little

 <FrameLayout
 android:id="@+id/details" android:layout_weight="2"
 android:layout_width="0px"
 android:layout_height="match_parent" />
  
</LinearLayout> 

CHAPTER 1: Fragments Fundamentals14

different for a fragment than it is for everything else. The other thing to keep
in mind is that the <fragment> tag is just a placeholder in this layout. You
should not put child tags under <fragment> in a layout XML file.

The other attributes for a fragment look familiar and serve a purpose similar
to that for a view. The fragment tag’s class attribute specifies your extended
class for the titles of your application. That is, you must extend one of the
Android Fragment classes to implement your logic, and the <fragment> tag
must know the name of your extended class. A fragment has its own view
hierarchy that will be created later by the fragment itself. The next tag is
a FrameLayout—not another <fragment> tag. Why is that? We’ll explain in
more detail later, but for now, you should be aware that you’re going to be
doing some transitions on the text, swapping out one fragment with another.
You use the FrameLayout as the view container to hold the current text
fragment. With your titles fragment, you have one—and only one—fragment
to worry about: no swapping and no transitions. For the area that displays
the Shakespearean text, you’ll have several fragments.

The MainActivity Java code is in Listing 1-4. Actually, the listing only shows
the interesting code. The code is instrumented with logging messages so
you can see what’s going on through LogCat. Please review the source code
files for ShakespeareInstrumented from the web site to see all of it.

Listing 1-4.  Interesting Source Code from MainActivity

public boolean isMultiPane() {
 return getResources().getConfiguration().orientation
 == Configuration.ORIENTATION_LANDSCAPE;
}
 
/**
 * Helper function to show the details of a selected item, either by
 * displaying a fragment in-place in the current UI, or starting a
 * whole new activity in which it is displayed.
 */
public void showDetails(int index) {
 Log.v(TAG, "in MainActivity showDetails(" + index + ")");
 
 if (isMultiPane()) {
 // Check what fragment is shown, replace if needed.
 DetailsFragment details = (DetailsFragment)
 getFragmentManager().findFragmentById(R.id.details);
 if ((details == null) ||
 (details.getShownIndex() != index)) {
 // Make new fragment to show this selection.
 details = DetailsFragment.newInstance(index);
 

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Fragments Fundamentals

15

 // Execute a transaction, replacing any existing
 // fragment with this one inside the frame.
 Log.v(TAG, "about to run FragmentTransaction...");
 FragmentTransaction ft
 = getFragmentManager().beginTransaction();
 ft.setTransition(
 FragmentTransaction.TRANSIT_FRAGMENT_FADE);
 //ft.addToBackStack("details");
 ft.replace(R.id.details, details);
 ft.commit();
 }
 
 } else {
 // Otherwise you need to launch a new activity to display
 // the dialog fragment with selected text.
 Intent intent = new Intent();
 intent.setClass(this, DetailsActivity.class);
 intent.putExtra("index", index);
 startActivity(intent);
 }
}
 
This is a very simple activity to write. To determine multipane mode (that is,
whether you need to use fragments side by side), you just use the orientation
of the device. If you’re in landscape mode, you’re multipane; if you’re in
portrait mode, you’re not. The helper method showDetails() is there to figure
out how to show the text when a title is selected. The index is the position
of the title in the title list. If you’re in multipane mode, you’re going to use a
fragment to show the text. You’re calling this fragment a DetailsFragment,
and you use a factory-type method to create one with the index. The
interesting code for the DetailsFragment class is shown in Listing 1-5 (minus
all of the logging code). As we did before in TitlesFragment, the various
callbacks of DetailsFragment have logging added so we can watch what
happens via LogCat. You’ll come back to your showDetails() method later.

Listing 1-5.  Source Code for DetailsFragment

public class DetailsFragment extends Fragment {
  
 private int mIndex = 0;
 
 public static DetailsFragment newInstance(int index) {
 Log.v(MainActivity.TAG, "in DetailsFragment newInstance(" +
 index + ")");
 

CHAPTER 1: Fragments Fundamentals16

 DetailsFragment df = new DetailsFragment();
 
 // Supply index input as an argument.
 Bundle args = new Bundle();
 args.putInt("index", index);
 df.setArguments(args);
 return df;
 }
  
 public static DetailsFragment newInstance(Bundle bundle) {
 int index = bundle.getInt("index", 0);
 return newInstance(index);
 }
 
 @Override
 public void onCreate(Bundle myBundle) {
 Log.v(MainActivity.TAG,
 "in DetailsFragment onCreate. Bundle contains:");
 if(myBundle != null) {
 for(String key : myBundle.keySet()) {
 Log.v(MainActivity.TAG, " " + key);
 }
 }
 else {
 Log.v(MainActivity.TAG, " myBundle is null");
 }
 super.onCreate(myBundle);
 
 mIndex = getArguments().getInt("index", 0);
 }
 
 public int getShownIndex() {
 return mIndex;
 }
 
 @Override
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState) {
 Log.v(MainActivity.TAG,
 "in DetailsFragment onCreateView. container = " +
 container);
 
 // Don't tie this fragment to anything through the inflater.
 // Android takes care of attaching fragments for us. The
 // container is only passed in so you can know about the
 // container where this View hierarchy is going to go.
 View v = inflater.inflate(R.layout.details, container, false);

CHAPTER 1: Fragments Fundamentals

17

 TextView text1 = (TextView) v.findViewById(R.id.text1);
 text1.setText(Shakespeare.DIALOGUE[mIndex]);
 return v;
 }
}
 
The DetailsFragment class is actually fairly simple as well. Now you
can see how to instantiate this fragment. It’s important to point out that
you’re instantiating this fragment in code because your layout defines the
ViewGroup container (a FrameLayout) that your details fragment is going to
go into. Because the fragment is not itself defined in the layout XML for the
activity, as your titles fragment was, you need to instantiate your details
fragments in code.

To create a new details fragment, you use your newInstance() method. As
discussed earlier, this factory method invokes the default constructor and
then sets the arguments bundle with the value of index. Once newInstance()
has run, your details fragment can retrieve the value of index in any of its
callbacks by referring to the arguments bundle via getArguments(). For
your convenience, in onCreate() you can save the index value from the
arguments bundle to a member field in your DetailsFragment class.

You might wonder why you didn’t simply set the mIndex value in
newInstance(). The reason is that Android will, behind the scenes, re-create
your fragment using the default constructor. Then it sets the arguments
bundle to what it was before. Android won’t use your newInstance()
method, so the only reliable way to ensure that mIndex is set is to read the
value from the arguments bundle and set it in onCreate(). The convenience
method getShownIndex() retrieves the value of that index. Now the only
method left to describe in the details fragment is onCreateView(). And this is
very simple, too.

The purpose of onCreateView() is to return the view hierarchy for your
fragment. Remember that based on your configuration, you could want all
kinds of different layouts for this fragment. Therefore, the most common
thing to do is utilize a layout XML file for your fragment. In your sample
application, you specify the layout for the fragment to be details.xml using
the resource R.layout.details. The XML for details.xml is in Listing 1-6.

Listing 1-6.  The details.xml Layout File for the Details Fragment

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout/details.xml -->
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

CHAPTER 1: Fragments Fundamentals18

 <ScrollView android:id="@+id/scroller"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <TextView android:id="@+id/text1"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
 </ScrollView>
</LinearLayout>
 
For your sample application, you can use the exact same layout file for
details whether you’re in landscape mode or in portrait mode. This layout is
not for the activity, it’s just for your fragment to display the text. Because it
could be considered the default layout, you can store it in the /res/layout
directory and it will be found and used even if you’re in landscape mode.
When Android goes looking for the details XML file, it tries the specific
directories that closely match the device’s configuration, but it will end up
in the /res/layout directory if it can’t find the details.xml file in any of
the other places. Of course, if you want to have a different layout for your
fragment in landscape mode, you could define a separate details.xml
layout file and store it under /res/layout-land. Feel free to experiment with
different details.xml files.

When your details fragment’s onCreateView() is called, you will simply
grab the appropriate details.xml layout file, inflate it, and set the text to
the text from the Shakespeare class. The entire Java code for Shakespeare
is not shown here, but a portion is in Listing 1-7 so you understand how it
was done. For the complete source, access the project download files, as
described in the “References” section at the end of this chapter.

Listing 1-7.  Source Code for Shakespeare.java

public class Shakespeare {
 public static String TITLES[] = {
 "Henry IV (1)",
 "Henry V",
 "Henry VIII",
 "Romeo and Juliet",
 "Hamlet",
 "The Merchant of Venice",
 "Othello"
 };
 public static String DIALOGUE[] = {
 "So shaken as we are, so wan with care,\n...
... and so on ...
 

CHAPTER 1: Fragments Fundamentals

19

Now your details fragment view hierarchy contains the text from the
selected title. Your details fragment is ready to go. And you can return to
MainActivity’s showDetails() method to talk about FragmentTransactions.

FragmentTransactions and the Fragment
Back Stack
The code in showDetails() that pulls in your new details fragment (partially
shown again in Listing 1-8) looks rather simple, but there’s a lot going on
here. It’s worth spending some time to explain what is happening and
why. If your activity is in multipane mode, you want to show the details in
a fragment next to the title list. You may already be showing details, which
means you may have a details fragment visible to the user. Either way, the
resource ID R.id.details is for the FrameLayout for your activity, as shown
in Listing 1-3. If you have a details fragment sitting in the layout because
you didn’t assign any other ID to it, it will have this ID. Therefore, to find out
if there’s a details fragment in the layout, you can ask the fragment manager
using findFragmentById(). This will return null if the frame layout is empty
or will give you the current details fragment. You can then decide if you
need to place a new details fragment in the layout, either because the layout
is empty or because there’s a details fragment for some other title. Once
you make the determination to create and use a new details fragment, you
invoke the factory method to create a new instance of a details fragment.
Now you can put this new fragment into place for the user to see.

Listing 1-8.  Fragment Transaction Example

public void showDetails(int index) {
 Log.v(TAG, "in MainActivity showDetails(" + index + ")");
 
 if (isMultiPane()) {
 // Check what fragment is shown, replace if needed.
 DetailsFragment details = (DetailsFragment)
 getFragmentManager().findFragmentById(R.id.details);
 if (details == null || details.getShownIndex() != index) {
 // Make new fragment to show this selection.
 details = DetailsFragment.newInstance(index);
 
 // Execute a transaction, replacing any existing
 // fragment with this one inside the frame.
 Log.v(TAG, "about to run FragmentTransaction...");
 FragmentTransaction ft
 = getFragmentManager().beginTransaction();
 ft.setTransition(
 FragmentTransaction.TRANSIT_FRAGMENT_FADE);

CHAPTER 1: Fragments Fundamentals20

 //ft.addToBackStack("details");
 ft.replace(R.id.details, details);
 ft.commit();
 }
 // The rest was left out to save space.
}
 
A key concept to understand is that a fragment must live inside a view
container, also known as a view group. The ViewGroup class includes such
things as layouts and their derived classes. FrameLayout is a good choice
as the container for the details fragment in the main.xml layout file of your
activity. A FrameLayout is simple, and all you need is a simple container for
your fragment, without the extra baggage that comes with other types of
layouts. The FrameLayout is where your details fragment is going to go.
If you had instead specified another <fragment> tag in the activity’s layout
file instead of a FrameLayout, you would not be able to replace the current
fragment with a new fragment (i.e., swap fragments).

The FragmentTransaction is what you use to do your swapping. You tell
the fragment transaction that you want to replace whatever is in your frame
layout with your new details fragment. You could have avoided all this by
locating the resource ID of the details TextView and just setting the text of
it to the new text for the new Shakespeare title. But there’s another side to
fragments that explains why you use FragmentTransactions.

As you know, activities are arranged in a stack, and as you get deeper and
deeper into an application, it’s not uncommon to have a stack of several
activities going at once. When you press the Back button, the topmost
activity goes away, and you are returned to the activity below, which
resumes for you. This can continue until you’re at the home screen again.

This was fine when an activity was just single-purpose, but now that an
activity can have several fragments going at once, and because you can go
deeper into your application without leaving the topmost activity, Android
really needed to extend the Back button stack concept to include fragments
as well. In fact, fragments demand this even more. When there are several
fragments interacting with each other at the same time in an activity, and
there’s a transition to new content across several fragments at once,
pressing the Back button should cause each of the fragments to roll back
one step together. To ensure that each fragment properly participates in the
rollback, a FragmentTransaction is created and managed to perform that
coordination.

Be aware that a back stack for fragments is not required within an activity.
You can code your application to let the Back button work at the activity
level and not at the fragment level at all. If there’s no back stack for your
fragments, pressing the Back button will pop the current activity off the

CHAPTER 1: Fragments Fundamentals

21

stack and return the user to whatever was underneath. If you choose to take
advantage of the back stack for fragments, you will want to uncomment
in Listing 1-8 the line that says ft.addToBackStack("details"). For this
particular case, you’ve hardcoded the tag parameter to be the string
"details". This tag should be an appropriate string name that represents
the state of the fragments at the time of the transaction. The tag is not
necessarily a name for a specific fragment but rather for the fragment
transaction and all the fragments in the transaction. You will be able to
interrogate the back stack in code using the tag value to delete entries, as
well as pop entries off. You will want meaningful tags on these transactions
to be able to find the appropriate ones later.

Fragment Transaction Transitions and Animations
One of the very nice things about fragment transactions is that you can
perform transitions from an old fragment to a new fragment using transitions
and animations. Let’s use a fragment transaction transition to add special
effects when you swap out the old details fragment with a new details
fragment. This can add polish to your application, making the switch from
the old to the new fragment look smooth.

One method to accomplish this is setTransition(), as shown in Listing 1-8.
However, there are a few different transitions available. You used a fade in
your example, but you can also use the setCustomAnimations() method to
describe other special effects, such as sliding one fragment out to the right
as another slides in from the left. The custom animations use the new object
animation definitions, not the old ones. The old anim XML files use tags
such as <translate>, whereas the new XML files use <objectAnimator>.
The old standard XML files are located in the /data/res/anim directory
under the appropriate Android SDK platforms directory (such as platforms/
android-11 for Honeycomb). There are some new XML files located in the
/data/res/animator directory here, too. Your code could be something like
 
ft.setCustomAnimations(android.R.animator.fade_in, android.R.animator.
fade_out);
 
which will cause the new fragment to fade in as the old fragment fades
out. The first parameter applies to the fragment entering, and the second
parameter applies to the fragment exiting. Feel free to explore the Android
animator directory for more stock animations. The other very important bit
of knowledge you need is that the transition calls need to come before the
replace() call; otherwise, they will have no effect.

CHAPTER 1: Fragments Fundamentals22

Using the object animator for special effects on fragments can be a fun way
to do transitions. There are two other methods on FragmentTransaction
you should know about: hide() and show(). Both of these methods take
a fragment as a parameter, and they do exactly what you’d expect. For
a fragment in the fragment manager associated to a view container, the
methods simply hide or show the fragment in the user interface. The
fragment does not get removed from the fragment manager in the process,
but it certainly must be tied into a view container in order to affect its visibility.
If a fragment does not have a view hierarchy, or if its view hierarchy is not tied
into the displayed view hierarchy, then these methods won’t do anything.

Once you’ve specified the special effects for your fragment transaction,
you have to tell it the main work that you want done. In your case, you’re
replacing whatever is in the frame layout with your new details fragment.
That’s where the replace() method comes in. This is equivalent to calling
remove() for any fragments that are already in the frame layout and then
add() for your new details fragment, which means you could just call
remove() or add() as needed instead.

The final action you must take when working with a fragment transaction
is to commit it. The commit() method does not cause things to happen
immediately but rather schedules the work for when the UI thread is ready
to do it.

Now you should understand why you need to go to so much trouble
to change the content in a simple fragment. It’s not just that you want
to change the text; you might want a special graphics effect during the
transition. You may also want to save the transition details in a fragment
transaction that you can reverse later. That last point may be confusing, so
we’ll clarify.

This is not a transaction in the truest sense of the word. When you pop
fragment transactions off the back stack, you are not undoing all the data
changes that may have taken place. If data changed within your activity, for
example, as you created fragment transactions on the back stack, pressing
the Back button does not cause the activity data changes to revert back
to their previous values. You are merely stepping back through the user
interface views the way you came in, just as you do with activities, but in
this case it’s for fragments. Because of the way fragments are saved and
restored, the inner state of a fragment that has been restored from a saved
state will depend on what values you saved with the fragment and how you
manage to restore them. So your fragments may look the same as they did
previously but your activity will not, unless you take steps to restore activity
state when you restore fragments.

CHAPTER 1: Fragments Fundamentals

23

In your example, you’re only working with one view container and bringing
in one details fragment. If your user interface were more complicated, you
could manipulate other fragments within the fragment transaction. What
you are actually doing is beginning the transaction, replacing any existing
fragment in your details frame layout with your new details fragment,
specifying a fade-in animation, and committing the transaction. You
commented out the part where this transaction is added to the back stack,
but you could certainly uncomment it to take part in the back stack.

The FragmentManager
The FragmentManager is a component that takes care of the fragments
belonging to an activity. This includes fragments on the back stack and
fragments that may just be hanging around. We’ll explain.

Fragments should only be created within the context of an activity. This
occurs either through the inflation of an activity’s layout XML or through
direct instantiation using code like that in Listing 1-1. When instantiated
through code, a fragment usually gets attached to the activity using a
fragment transaction. In either case, the FragmentManager class is used to
access and manage these fragments for an activity.

You use the getFragmentManager() method on either an activity or an
attached fragment to retrieve a fragment manager. You saw in Listing 1-8
that a fragment manager is where you get a fragment transaction. Besides
getting a fragment transaction, you can also get a fragment using the
fragment’s ID, its tag, or a combination of bundle and key. The fragment’s
ID will either be the fragment’s resource ID if the fragment was inflated from
XML, or it will be the container’s resource ID if the fragment was placed
into a view using a fragment transaction. A fragment’s tag is a String that
you can assign in the fragment’s XML definition, or when the fragment is
placed in a view via a fragment transaction. The bundle and key method of
retrieving a fragment only works for fragments that were persisted using the
putFragment() method.

For getting a fragment, the getter methods include findFragmentById(),
findFragmentByTag(), and getFragment(). The getFragment() method
would be used in conjunction with putFragment(), which also takes a
bundle, a key, and the fragment to be put. The bundle is most likely
going to be the savedState bundle, and putFragment() will be used in the
onSaveInstanceState() callback to save the state of the current activity
(or another fragment). The getFragment() method would probably be called
in onCreate() to correspond to putFragment(), although for a fragment, the
bundle is available to the other callback methods, as described earlier.

CHAPTER 1: Fragments Fundamentals24

Obviously, you can’t use the getFragmentManager() method on a fragment
that has not been attached to an activity yet. But it’s also true that you
can attach a fragment to an activity without making it visible to the user
yet. If you do this, you should associate a String tag to the fragment
so you can get to it in the future. You’d most likely use this method of
FragmentTransaction to do this:
 
public FragmentTransaction add (Fragment fragment, String tag)
 
In fact, you can have a fragment that does not exhibit a view hierarchy.
This might be done to encapsulate certain logic together such that it
could be attached to an activity, yet still retain some autonomy from
the activity’s life cycle and from other fragments. When an activity
goes through a re-create cycle due to a device-configuration change,
this non-UI fragment could remain largely intact while the activity goes
away and comes back again. This would be a good candidate for the
setRetainInstance() option.

The fragment back stack is also the domain of the fragment manager.
Whereas a fragment transaction is used to put fragments onto the back
stack, the fragment manager can take fragments off the back stack. This
is usually done using the fragment’s ID or tag, but it can be done based on
position in the back stack or just to pop the topmost fragment.

Finally, the fragment manager has methods for some debugging
features, such as turning on debugging messages to LogCat using
enableDebugLogging() or dumping the current state of the fragment
manager to a stream using dump(). Note that you turned on fragment
manager debugging in the onCreate() method of your activity in Listing 1-4.

Caution When Referencing Fragments
It’s time to revisit the earlier discussion of the fragment’s life cycle and
the arguments and saved-state bundles. Android could save one of your
fragments at many different times. This means that at the moment your
application wants to retrieve that fragment, it’s possible that it is not
in memory. For this reason, we caution you not to think that a variable
reference to a fragment is going to remain valid for a long time. If fragments
are being replaced in a container view using fragment transactions, any
reference to the old fragment is now pointing to a fragment that is possibly
on the back stack. Or a fragment may get detached from the activity’s view
hierarchy during an application configuration change such as a screen
rotation. Be careful.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Fragments Fundamentals

25

If you’re going to hold onto a reference to a fragment, be aware of when it
could get saved away; when you need to find it again, use one of the getter
methods of the fragment manager. If you want to hang onto a fragment
reference, such as when an activity is going through a configuration
change, you can use the putFragment() method with the appropriate
bundle. In the case of both activities and fragments, the appropriate
bundle is the savedState bundle that is used in onSaveInstanceState()
and that reappears in onCreate() (or, in the case of fragments, the other
early callbacks of the fragment’s life cycle). You will probably never store a
direct fragment reference into the arguments bundle of a fragment; if you’re
tempted to do so, please think very carefully about it first.

The other way you can get to a specific fragment is by querying for it using a
known tag or known ID. The getter methods described previously will allow
retrieval of fragments from the fragment manager this way, which means
you have the option of just remembering the tag or ID of a fragment so that
you can retrieve it from the fragment manager using one of those values, as
opposed to using putFragment() and getFragment().

Saving Fragment State
Another interesting class was introduced in Android 3.2: Fragment.
SavedState. Using the saveFragmentInstanceState() method of
FragmentManager, you can pass this method a fragment, and it returns an
object representing the state of that fragment. You can then use that object
when initializing a fragment, using Fragment’s setInitialSavedState()
method. Chapter 2 discusses this in more detail.

ListFragments and <fragment>
There are still a few more things to cover to make your sample application
complete. The first is the TitlesFragment class. This is the one that is
created via the main.xml file of your main activity. The <fragment> tag serves
as your placeholder for where this fragment will go and does not define
what the view hierarchy will look like for this fragment. The interesting code
for your TitlesFragment is in Listing 1-9. For all of the code please refer
to the source code files. TitlesFragment displays the list of titles for your
application.

CHAPTER 1: Fragments Fundamentals26

Listing 1-9.  TitlesFragment Java Code

public class TitlesFragment extends ListFragment {
 private MainActivity myActivity = null;
 int mCurCheckPosition = 0;
 
 @Override
 public void onAttach(Activity myActivity) {
 Log.v(MainActivity.TAG,
 "in TitlesFragment onAttach; activity is: " + myActivity);
 super.onAttach(myActivity);
 this.myActivity = (MainActivity)myActivity;
 }
   
 @Override
 public void onActivityCreated(Bundle savedState) {
 Log.v(MainActivity.TAG,
 "in TitlesFragment onActivityCreated. savedState contains:");
 if(savedState != null) {
 for(String key : savedState.keySet()) {
 Log.v(MainActivity.TAG, " " + key);
 }
 }
 else {
 Log.v(MainActivity.TAG, " savedState is null");
 }
 super.onActivityCreated(savedState);
 
 // Populate list with your static array of titles.
 setListAdapter(new ArrayAdapter<String>(getActivity(),
 android.R.layout.simple_list_item_1,
 Shakespeare.TITLES));
 
 if (savedState != null) {
 // Restore last state for checked position.
 mCurCheckPosition = savedState.getInt("curChoice", 0);
 }
 
 // Get your ListFragment's ListView and update it
 ListView lv = getListView();
 lv.setChoiceMode(ListView.CHOICE_MODE_SINGLE);
 lv.setSelection(mCurCheckPosition);
 
 // Activity is created, fragments are available
 // Go ahead and populate the details fragment
 myActivity.showDetails(mCurCheckPosition);
 }

CHAPTER 1: Fragments Fundamentals

27

 @Override
 public void onSaveInstanceState(Bundle outState) {
 Log.v(MainActivity.TAG, "in TitlesFragment onSaveInstanceState");
 super.onSaveInstanceState(outState);
 outState.putInt("curChoice", mCurCheckPosition);
 }
 
 @Override
 public void onListItemClick(ListView l, View v, int pos, long id) {
 Log.v(MainActivity.TAG,
 "in TitlesFragment onListItemClick. pos = "
 + pos);
 myActivity.showDetails(pos);
 mCurCheckPosition = pos;
 }
 
 @Override
 public void onDetach() {
 Log.v(MainActivity.TAG, "in TitlesFragment onDetach");
 super.onDetach();
 myActivity = null;
 }
}
 
Unlike DetailsFragment, for this fragment you don’t do anything in the
onCreateView() callback. This is because you’re extending the ListFragment
class, which contains a ListView already. The default onCreateView() for
a ListFragment creates this ListView for you and returns it. It’s not until
onActivityCreated() that you do any real application logic. By this time
in your application, you can be sure that the activity’s view hierarchy, plus
this fragment’s, has been created. The resource ID for that ListView is
android.R.id.list1, but you can always call getListView() if you need
to get a reference to it, which you do in onActivityCreated(). Because
ListFragment manages the ListView, do not attach the adapter to the
ListView directly. You must use the ListFragment’s setListAdapter()
method instead. The activity’s view hierarchy is now set up, so you’re safe
going back into the activity to do the showDetails() call.

At this point in your sample activity’s life, you’ve added a list adapter to
your list view, you’ve restored the current position (if you came back from
a restore, due perhaps to a configuration change), and you’ve asked the
activity (in showDetails()) to set the text to correspond to the selected
Shakespearean title.

Your TitlesFragment class also has a listener on the list so when the user
clicks another title, the onListItemClick() callback is called, and you switch
the text to correspond to that title, again using the showDetails() method.

CHAPTER 1: Fragments Fundamentals28

Another difference between this fragment and the earlier details fragment is
that when this fragment is being destroyed and re-created, you save state in
a bundle (the value of the current position in the list), and you read it back in
onCreate(). Unlike the details fragments that get swapped in and out of the
FrameLayout on your activity’s layout, there is just one titles fragment to think
about. So when there is a configuration change and your titles fragment is
going through a save-and-restore operation, you want to remember where
you were. With the details fragments, you can re-create them without having
to remember the previous state.

Invoking a Separate Activity When Needed
There’s a piece of code we haven’t talked about yet, and that is in
showDetails() when you’re in portrait mode and the details fragment won’t
fit properly on the same page as the titles fragment. If the screen real estate
won’t permit feasible viewing of a fragment that would otherwise be shown
alongside the other fragments, you will need to launch a separate activity to
show the user interface of that fragment. For your sample application, you
implement a details activity; the code is in Listing 1-10.

Listing 1-10.  Showing a New Activity When a Fragment Doesn’t Fit

public class DetailsActivity extends Activity {
 
 @Override
 public void onCreate(Bundle savedInstanceState) {
 Log.v(MainActivity.TAG, "in DetailsActivity onCreate");
 super.onCreate(savedInstanceState);
 
 if (getResources().getConfiguration().orientation
 == Configuration.ORIENTATION_LANDSCAPE) {
 // If the screen is now in landscape mode, it means
 // that your MainActivity is being shown with both
 // the titles and the text, so this activity is
 // no longer needed. Bail out and let the MainActivity
 // do all the work.
 finish();
 return;
 }
 
 if(getIntent() != null) {
 // This is another way to instantiate a details
 // fragment.
 DetailsFragment details =
 DetailsFragment.newInstance(getIntent().getExtras());
 

CHAPTER 1: Fragments Fundamentals

29

 getFragmentManager().beginTransaction()
 .add(android.R.id.content, details)
 .commit();
 }
 }
}
 
There are several interesting aspects to this code. For one thing, it is
really easy to implement. You make a simple determination of the device’s
orientation, and as long as you’re in portrait mode, you set up a new details
fragment within this details activity. If you’re in landscape mode, your
MainActivity is able to display both the titles fragment and the details
fragment, so there is no reason to be displaying this activity at all. You
may wonder why you would ever launch this activity if you’re in landscape
mode, and the answer is, you wouldn’t. However, once this activity has been
started in portrait mode, if the user rotates the device to landscape mode,
this details activity will get restarted due to the configuration change. So
now the activity is starting up, and it’s in landscape mode. At that moment, it
makes sense to finish this activity and let the MainActivity take over and do
all the work.

Another interesting aspect about this details activity is that you never
set the root content view using setContentView(). So how does the user
interface get created? If you look carefully at the add() method call on the
fragment transaction, you will see that the view container to which you add
the fragment is specified as the resource android.R.id.content. This is
the top-level view container for an activity, and therefore when you attach
your fragment view hierarchy to this container, your fragment view hierarchy
becomes the only view hierarchy for the activity. You used the very same
DetailsFragment class as before with the other newInstance() method to
create the fragment (the one that takes a bundle as a parameter), then you
simply attached it to the top of the activity’s view hierarchy. This causes the
fragment to be displayed within this new activity.

From the user’s point of view, they are now looking at just the details
fragment view, which is the text from the Shakespearean play. If the user
wants to select a different title, they press the Back button, which pops this
activity to reveal your main activity (with the titles fragment only). The other
choice for the user is to rotate the device to get back to landscape mode.
Then your details activity will call finish() and go away, revealing the also-
rotated main activity underneath.

When the device is in portrait mode, if you’re not showing the details
fragment in your main activity, you should have a separate main.xml layout
file for portrait mode like the one in Listing 1-11.

CHAPTER 1: Fragments Fundamentals30

Listing 1-11.  The Layout for a Portrait Main Activity

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is res/layout/main.xml -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 
 <fragment class="com.androidbook.fragments.bard.TitlesFragment"
 android:id="@+id/titles"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />
 
</LinearLayout>
 
Of course, you could make this layout whatever you want it to be. For your
purposes here, you simply make it show the titles fragment by itself. It’s very
nice that your titles fragment class doesn’t need to include much code to
deal with the device reconfiguration.

Take a moment to view this application’s manifest file. In it you find the main
activity with a category of LAUNCHER so that it will appear in the device’s list
of apps. Then you have the separate DetailsActivity with a category of
DEFAULT. This allows you to start the details activity from code but will not
show the details activity as an app in the App list.

Persistence of Fragments
When you play with this sample application, make sure you rotate the
device (pressing Ctrl+F11 rotates the device in the emulator). You will see
that the device rotates, and the fragments rotate right along with it. If you
watch the LogCat messages, you will see a lot of them for this application.
In particular, during a device rotation, pay careful attention to the messages
about fragments; not only does the activity get destroyed and re-created,
but the fragments do also.

So far, you only wrote a tiny bit of code on the titles fragment to remember
the current position in the titles list across restarts. You didn’t do anything
in the details fragment code to handle reconfigurations, and that’s because
you didn’t need to. Android will take care of hanging onto the fragments
that are in the fragment manager, saving them away, then restoring them
when the activity is being re-created. You should realize that the fragments
you get back after the reconfiguration is complete are very likely not the
same fragments in memory that you had before. These fragments have
been reconstructed for you. Android saved the arguments bundle and the

CHAPTER 1: Fragments Fundamentals

31

knowledge of which type of fragment it was, and it stored the saved-state
bundles for each fragment that contain saved-state information about the
fragment to use to restore it on the other side.

The LogCat messages show you the fragments going through their life
cycles in sync with the activity. You will see that your details fragment gets
re-created, but your newInstance() method does not get called again.
Instead, Android uses the default constructor, attaches the arguments
bundle to it, and then starts calling the callbacks on the fragment. This is
why it is so important not to do anything fancy in the newInstance() method:
when the fragment gets re-created, it won’t do it through newInstance().

You should also appreciate by now that you’ve been able to reuse your
fragments in a few different places. The titles fragment was used in two
different layouts, but if you look at the titles fragment code, it doesn’t worry
about the attributes of each layout. You could make the layouts rather
different from each other, and the titles fragment code would look the same.
The same can be said of the details fragment. It was used in your main
landscape layout and within the details activity all by itself. Again, the layout
for the details fragment could have been very different between the two, and
the code of the details fragment would be the same. The code of the details
activity was very simple, also.

So far, you’ve explored two of the fragment types: the base Fragment
class and the ListFragment subclass. Fragment has other subclasses: the
DialogFragment, PreferenceFragment, and WebViewFragment. We’ll cover
DialogFragment and PreferenceFragment in Chapters 3 and 4, respectively.

Communications with Fragments
Because the fragment manager knows about all fragments attached to
the current activity, the activity or any fragment in that activity can ask for
any other fragment using the getter methods described earlier. Once the
fragment reference has been obtained, the activity or fragment could cast
the reference appropriately and then call methods directly on that activity
or fragment. This would cause your fragments to have more knowledge
about the other fragments than might normally be desired, but don’t forget
that you’re running this application on a mobile device, so cutting corners
can sometimes be justified. A code snippet is provided in Listing 1-12 to
show how one fragment might communicate directly with another fragment.
The snippet would be part of one of your extended Fragment classes, and
FragmentOther is a different extended Fragment class.

CHAPTER 1: Fragments Fundamentals32

Listing 1-12.  Direct Fragment-to-Fragment Communication

FragmentOther fragOther =
 (FragmentOther)getFragmentManager().findFragmentByTag("other");
fragOther.callCustomMethod(arg1, arg2);
 
In Listing 1-12, the current fragment has direct knowledge of the class of
the other fragment and also which methods exist on that class. This may
be okay because these fragments are part of one application, and it can
be easier to simply accept the fact that some fragments will know about
other fragments. We’ll show you a cleaner way to communicate between
fragments in the DialogFragment sample application in Chapter 3.

Using startActivity( ) and setTargetFragment( )
A feature of fragments that is very much like activities is the ability of a
fragment to start an activity. Fragment has a startActivity() method
and startActivityForResult() method. These work just like the ones for
activities; when a result is passed back, it will cause the onActivityResult()
callback to fire on the fragment that started the activity.

There’s another communication mechanism you should know about. When
one fragment wants to start another fragment, there is a feature that lets the
calling fragment set its identity with the called fragment. Listing 1-13 shows
an example of what it might look like.

Listing 1-13.  Fragment-to-Target-Fragment Setup

mCalledFragment = new CalledFragment();
mCalledFragment.setTargetFragment(this, 0);
fm.beginTransaction().add(mCalledFragment, "work").commit();
 
With these few lines, you’ve created a new CalledFragment object, set the
target fragment on the called fragment to the current fragment, and added
the called fragment to the fragment manager and activity using a fragment
transaction. When the called fragment starts to run, it will be able to call
getTargetFragment(), which will return a reference to the calling fragment. With
this reference, the called fragment could invoke methods on the calling fragment
or even access view components directly. For example, in Listing 1-14,
the called fragment could set text in the UI of the calling fragment directly.

CHAPTER 1: Fragments Fundamentals

33

Listing 1-14.  Target Fragment-to-Fragment Communication

TextView tv = (TextView)
 getTargetFragment().getView().findViewById(R.id.text1);
tv.setText("Set from the called fragment"); 

References
Here are some helpful references to topics you may wish to explore further:

	www.androidbook.com/androidfragments/projects: A list
of downloadable projects related to this book. The file
called AndroidFragments_Ch01_Fragments.zip contains
all projects from this chapter, listed in separate root
directories. There is also a README.TXT file that describes
exactly how to import projects into an IDE from one of
these zip files. It includes some projects that use the
Fragment Compatibility SDK for older Androids as well.

	http://developer.android.com/guide/components/
fragments.html: The Android Developer’s Guide page to
fragments.

	http://developer.android.com/design/patterns/
multi-pane-layouts.html: Android design guidelines for
multipane layouts.

	http://developer.android.com/training/basics/
fragments/index.html: Android training page for
fragments.

Summary
This chapter introduced the Fragment class and its related classes for the
manager, transactions, and subclasses. This is a summary of what’s been
covered in this chapter:

The 	 Fragment class, what it does, and how to use it.

Why fragments cannot be used without being attached 	
to one and only one activity.

That although fragments can be instantiated with a 	
static factory method such as newInstance(), you
must always have a default constructor and a way to
save initialization values into an initialization arguments
bundle.

http://www.androidbook.com/androidfragments/projects
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/components/fragments.html
http://developer.android.com/design/patterns/multi-pane-layouts.html
http://developer.android.com/design/patterns/multi-pane-layouts.html
http://developer.android.com/training/basics/fragments/index.html
http://developer.android.com/training/basics/fragments/index.html

CHAPTER 1: Fragments Fundamentals34

The life cycle of a fragment and how it is intertwined 	
with the life cycle of the activity that owns the fragment.

	FragmentManager and its features.

Managing device configurations using fragments.	

Combining fragments into a single activity, or splitting 	
them between multiple activities.

Using fragment transactions to change what’s displayed 	
to a user, and animating those transitions using cool
effects.

New behaviors that are possible with the Back button 	
when using fragments.

Using the 	 <fragment> tag in a layout.

Using a 	 FrameLayout as a placeholder for a fragment
when you want to use transitions.

	ListFragment and how to use an adapter to populate
the data (very much like a ListView).

Launching a new activity when a fragment can’t fit 	
onto the current screen, and how to adjust when a
configuration change makes it possible to see multiple
fragments again.

Communicating between fragments, and between a 	
fragment and its activity.

www.allitebooks.com

http://www.allitebooks.org

35

Chapter 2
Responding to
Configuration Changes

When an application is running on a device, and the device’s configuration
changes (for example, is rotated 90 degrees), your application needs to
respond accordingly. The new configuration will most likely look different
from the previous configuration. For example, switching from portrait
to landscape mode means the screen went from being tall and narrow to
being short and wide. The UI elements (buttons, text, lists, and so on) will
need to be rearranged, resized, or even removed to accommodate the new
configuration.

In Android, a configuration change by default causes the current activity
to go away and be re-created. The application itself keeps on running,
but it has the opportunity to change how the activity is displayed in
response to the configuration change. In the rare case that you need to
handle a configuration change without destroying and re-creating your
activity, Android provides a way to handle that as well.

Be aware that configuration changes can take on many forms, not
just device rotation. If a device gets connected to a dock, that’s also a
configuration change. So is changing the language of the device. Whatever
the new configuration is, as long as you’ve designed your activity for that
configuration, Android takes care of most everything to transition to it, giving
the user a seamless experience.

This chapter will take you through the process of a configuration change,
from the perspectives of both activities and fragments. We’ll show you how
to design your application for those transitions and how to avoid traps that
could cause your application to crash or misbehave.

CHAPTER 2: Responding to Configuration Changes36

The Default Configuration Change Process
The Android operating system keeps track of the current configuration of
the device it’s running on. Configuration includes lots of factors, and new
ones get added all the time. For example, if a device is plugged into a
docking station, that represents a change in the device configuration. When
a configuration change is detected by Android, callbacks are invoked in
running applications to tell them a change is occurring, so an application
can properly respond to the change. We’ll discuss those callbacks a little
later, but for now let’s refresh your memory with regard to resources.

One of the great features of Android is that resources get selected for your
activity based on the current configuration of the device. You don’t need
to write code to figure out which configuration is active; you just access
resources by name, and Android gets the appropriate resources for you.
If the device is in portrait mode and your application requests a layout,
you get the portrait layout. If the device is in landscape mode, you get the
landscape layout. The code just requests a layout without specifying which
one it should get. This is powerful because as new configuration factors get
introduced, or new values for configuration factors, the code stays the same.
All a developer needs to do is decide if new resources need to be created,
and create them as necessary for the new configuration. Then, when the
application goes through a configuration change, Android provides the new
resources to the application, and everything continues to function as desired.

Because of a great desire to keep things simple, Android destroys the
current activity when the configuration changes and creates a new one in its
place. This might seem rather harsh, but it’s not. It is a bigger challenge to
take a running activity and figure out which parts would stay the same and
which would not, and then only work with the pieces that need to change.

An activity that’s about to be destroyed is properly notified first, giving you a
chance to save anything that needs to be saved. When the new activity gets
created, it has the opportunity to restore state using data from the previous
activity. For a good user experience, obviously you do not want this save
and restore to take very long.

It’s fairly easy to save any data that you need saved and then let Android
throw away the rest and start over, as long as the design of the application
and its activities is such that activities don’t contain a lot of non-UI stuff that
would take a long time to re-create. Therein lies the secret to successful
configuration change design: do not put “stuff” inside an activity that cannot
be easily re-created during a configuration change.

Keep in mind that our application is not being destroyed, so anything that
is in the application context, and not a part of our current activity, will still
be there for the new activity. Singletons will still be available, as well as any

CHAPTER 2: Responding to Configuration Changes

37

background threads we might have spun off to do work for our application.
Any databases or content providers that we were working with will also still
be around. Taking advantage of these makes configuration changes quick
and painless. Keep data and business logic outside of activities if you can.

The configuration change process is somewhat similar between activities
and fragments. When an activity is being destroyed and re-created, the
fragments within that activity get destroyed and re-created. What we need
to worry about then is state information about our fragments and activity,
such as data currently being displayed to the user, or internal values that we
want to preserve. We will save what we want to keep, and pick it up again
on the other side when the fragments and activities are being re-created.
You’ll want to protect data that can’t easily be re-created by not letting it get
destroyed in the default configuration change process.

The Destroy/Create Cycle of Activities
There are three callbacks to be aware of when dealing with default
configuration changes in activities:

	onSaveInstanceState()

	onCreate()

	onRestoreInstanceState()

The first is the callback that Android will invoke when it detects that a
configuration change is happening. The activity has a chance to save state
that it wants to restore when the new activity gets created at the end of the
configuration change. The onSaveInstanceState() callback will be called
prior to the call to onStop(). Whatever state exists can be accessed and
saved into a Bundle object. This object will get passed in to both of the other
callbacks (onCreate() and onRestoreInstanceState()) when the activity is
re-created. You only need to put logic in one or the other to restore your
activity’s state.

The default onSaveInstanceState() callback does some nice things for you.
For example, it goes through the currently active view hierarchy and saves
the values for each view that has an android:id. This means if you have an
EditText view that has received some user input, that input will be available
on the other side of the activity destroy/create cycle to populate the
EditText before the user gets control back. You do not need to go through
and save this state yourself. If you do override onSaveInstanceState(), be
sure to call super.onSaveInstanceState() with the bundle object so it can
take care of this for you. It’s not the views that are saved, only the attributes
of their state that should persist across the destroy/create boundary.

CHAPTER 2: Responding to Configuration Changes38

To save data in the bundle object, use methods such as putInt() for
integers and putString() for strings. There are quite a few methods in the
android.os.Bundle class; you are not limited to integers and strings. For
example, putParcelable() can be used to save complex objects. Each put
is used with a string key, and you will retrieve the value later using the same
key used to put the value in. A sample onSaveInstanceState() might look
like Listing 2-1.

Listing 2-1.  Sample on SaveInstanceState()

@Override
public void onSaveInstanceState(Bundle icicle) {
 super.onSaveInstanceState(icicle);
 icicle.putInt("counter", 1);
}
 
Sometimes the bundle is called icicle because it represents a small frozen
piece of an activity. In this sample, you only save one value, and it has a
key of counter. You could save more values by simply adding more put
statements to this callback. The counter value in this example is somewhat
temporary because if the application is completely destroyed, the current
value will be lost. This could happen if the user turned off their device,
for example. In Chapter 4, you’ll learn about ways to save values more
permanently. This instance state is only meant to hang onto values while the
application is running this time. Do not use this mechanism for state that is
important to keep for a longer term.

To restore activity state, you access the bundle object to retrieve values that
you believe are there. Again, you use methods of the Bundle class such as
getInt() and getString() with the appropriate key passed to tell which
value you want back. If the key does not exist in the Bundle, a value of 0 or
null is passed back (depending on the type of the object being requested).
Or you can provide a default value in the appropriate getter method.
Listing 2-2 shows a sample onRestoreInstanceState() callback.

Listing 2-2.  Sample on RestoreInstanceState()

@Override
public void onRestoreInstanceState(Bundle icicle) {
 super.onRestoreInstanceState(icicle);
 int someInt = icicle.getInt("counter", -1);
 // Now go do something with someInt to restore the
 // state of the activity. -1 is the default if no
 // value was found.
}
 

CHAPTER 2: Responding to Configuration Changes

39

It’s up to you whether you restore state in onCreate() or in
onRestoreInstanceState(). Many applications will restore state in
onCreate() because that is where a lot of initialization is done. One reason
to separate the two would be if you’re creating an activity class that could
be extended. The developers doing the extending might find it easier to
just override onRestoreInstanceState() with the code to restore state, as
compared to having to override all of onCreate().

What’s very important to note here is that you need to be very concerned
with references to activities and views and other objects that need to be
garbage-collected when the current activity is fully destroyed. If you put
something into the saved bundle that refers back to the activity being
destroyed, that activity can’t be garbage collected. This is very likely a
memory leak that could grow and grow until your application crashes.
Objects to avoid in bundles include Drawables, Adapters, Views, and
anything else that is tied to the activity context. Instead of putting a
Drawable into the bundle, serialize the bitmap and save that. Or better yet,
manage the bitmaps outside of the activity and fragment instead of inside.
Add some sort of reference to the bitmap to the bundle. When it comes
time to re-create any Drawables for the new fragment, use the reference to
access the outside bitmaps to regenerate your Drawables.

The Destroy/Create Cycle of Fragments
The destroy/create cycle for fragments is very similar to that of activities.
A fragment in the process of being destroyed and re-created will have its
onSaveInstanceState() callback called, allowing the fragment to save values
in a Bundle object for later. One difference is that six fragment callbacks
receive this Bundle object when a fragment is being re-created: onInflate(),
onCreate(), onCreateView(), onActivityCreated(), onViewCreated(),
and onViewStateRestored(). The last two callbacks are more recent,
from Honeycomb 3.2 and JellyBean 4.2 respectively. This gives us lots of
opportunities to rebuild the internal state of our reconstructed fragment from
its previous state.

Android guarantees only that onSaveInstanceState() will be called
for a fragment sometime before onDestroy(). That means the view
hierarchy may or may not be attached when onSaveInstanceState() is
called. Therefore, don’t count on traversing the view hierarchy inside of
onSaveInstanceState(). For example, if the fragment is on the fragment
back stack, no UI will be showing, so no view hierarchy will exist. This is OK
of course because if no UI is showing, there is no need to attempt to capture
the current values of views to save them. You need to check if a view exists
before trying to save its current value, and not consider it an error if the view
does not exist.

CHAPTER 2: Responding to Configuration Changes40

Just like with activities, be careful not to include items in the bundle object
that refer to an activity or to a fragment that might not exist later when
this fragment is being re-created. Keep the size of the bundle as small
as possible, and as much as possible store long-lasting data outside of
activities and fragments and simply refer to it from your activities and
fragments. Then your destroy/create cycles will go that much faster, you’ll
be much less likely to create a memory leak, and your activity and fragment
code should be easier to maintain.

Using FragmentManager to Save Fragment State
Fragments have another way to save state, in addition to, or
instead of, Android notifying the fragments that their state should
be saved. With Honeycomb 3.2, the FragmentManager class got a
saveFragmentInstanceState() method that can be called to generate an
object of the class Fragment.SavedState. The methods mentioned in the
previous sections for saving state do so within the internals of Android.
While we know that the state is being saved, we do not have any direct
access to it. This method of saving state gives you an object that represents
the saved state of a fragment and allows you to control if and when a
fragment is created from that state.

The way to use a Fragment.SavedState object to restore a fragment is
through the setInitialSavedState() method of the Fragment class. In
Chapter 1, you learned that it is best to create new fragments using a static
factory method (for example, newInstance()). Within this method, you
saw how a default constructor is called and then an arguments bundle is
attached. You could instead call the setInitialSavedState() method to set
it up for restoration to a previous state.

There are a few caveats you should know about this method of saving
fragment state:

The fragment to be saved must currently be attached to 	
the fragment manager.

A new fragment created using this saved state must 	
be the same class type as the fragment it was created
from.

The saved state cannot contain dependencies on other 	
fragments. Other fragments may not exist when the
saved fragment is re-created.

CHAPTER 2: Responding to Configuration Changes

41

Using setRetainInstance on a Fragment
A fragment can avoid being destroyed and re-created on a configuration
change. If the setRetainInstance() method is called with an argument of
true, the fragment will be retained in the application when its activity is
being destroyed and re-created. The fragment’s onDestroy() callback will
not be called, nor will onCreate(). The onDetach() callback will be called
because the fragment must be detached from the activity that’s going
away, and onAttach() and onActivityCreated() will be called because the
fragment is attached to a new activity. This only works for fragments that
are not on the back stack. It is especially useful for fragments that do not
have a UI.

This feature is very powerful in that you can use a non-UI fragment to
handle references to your data objects and background threads, and call
setRetainInstance(true) on this fragment so it won’t get destroyed and
re-created on a configuration change. The added bonus is that during
the normal configuration change process, the non-UI fragment callbacks
onDetach() and onAttach() will switch the activity reference from the old
to the new.

Deprecated Configuration Change Methods
A couple of methods on Activity have been deprecated, so you should no
longer use them:

	getLastNonConfigurationInstance()

	onRetainNonConfigurationInstance()

These methods previously allowed you to save an arbitrary object from
an activity that was being destroyed, to be passed to the next instance of
the activity that was being created. Although they were useful, you should
now use the methods described earlier instead to manage data between
instances of activities in the destroy/create cycle.

Handling Configuration Changes Yourself
So far, you’ve seen how Android handles configuration changes for you. It
takes care of destroying and re-creating activities and fragments, pulling
in the best resources for the new configuration, retaining any user-entered
data, and giving you the opportunity to execute some extra logic in some
callbacks. This is usually going to be your best option. But when it isn’t,
when you have to handle a configuration change yourself, Android provides

CHAPTER 2: Responding to Configuration Changes42

a way out. This isn’t recommended because it is then completely up to you
to determine what needs to change due to the change, and then for you to
take care of making all the changes. As mentioned before, there are many
configuration changes besides just an orientation change. Luckily, you don’t
necessarily have to handle all configuration changes yourself.

The first step to handling configuration changes yourself is to declare in the
<activity> tag in AndroidManifest.xml file which changes you’re going to
handle using the android:configChanges attribute. Android will handle the
other configuration changes using the previously described methods. You
can specify as many configuration change types as needed by or’ing them
together with the ‘|’ symbol, like this:
 
<activity ... android:configChanges="orientation|keyboardHidden" ... >
 
The complete list of configuration change types can be found on the
reference page for R.attr. Be aware that if you target API 13 or higher and
you need to handle orientation, you also need to handle screenSize.

The default process for a configuration change is the invoking of callbacks
to destroy and re-create the activity or fragment. When you’ve declared
that you will handle the specific configuration change, the process changes
so only the onConfigurationChanged() callback is invoked instead, on the
activity and its fragments. Android passes in a Configuration object so the
callback knows what the new configuration is. It is up to the callback to
determine what might have changed; however, since you likely handle only a
small number of configuration changes yourself, it shouldn’t be too hard to
figure this out.

You’d really only want to handle a configuration change yourself when there
is very little to be done, when you could skip destroying and re-creating. For
example, if the activity layout for portrait and landscape is the same layout
and all image resources are the same, destroying and re-creating the activity
doesn’t really accomplish anything. In this case it would be fairly safe to
declare that you will handle the orientation configuration change. During
an orientation change of your activity, the activity would remain intact and
simply re-render itself in the new orientation using the existing resources
such as the layout, images, strings, etc. But it’s really not that big a deal to
just let Android take care of things if you can.

CHAPTER 2: Responding to Configuration Changes

43

References
Here are some helpful references to topics you may wish to explore further:

	www.androidbook.com/androidfragments/projects: A
list of downloadable projects related to this book. For
this chapter, look for a ZIP file called AndroidFragments_
Ch02_ConfigChanges.zip. This ZIP file contains all
the projects from this chapter, listed in separate root
directories. There is also a README.TXT file that describes
exactly how to import projects into your IDE from one of
these ZIP files.

	http://developer.android.com/guide/topics/
fundamentals/activities.html#SavingActivityState:
The Android Developer’s Guide, which discusses saving
and restoring state.

	http://developer.android.com/guide/topics/
resources/runtime-changes.html: The Android API
Guide for Handling Runtime Changes.

Summary
Let’s conclude this chapter by quickly enumerating what you have learned
about handling configuration changes:

Activities by default get destroyed and re-created during 	
configuration changes. So do fragments.

Avoid putting lots of data and logic into activities so 	
configuration changes occur quickly.

Let Android provide the appropriate resources.	

Use singletons to hold data outside of activities to 	
make it easier to destroy and re-create activities during
configuration changes.

Take advantage of the default 	 onSaveInstanceState()
callback to save UI state on views with android:ids.

If a fragment can survive with no issues across 	
an activity destroy-and-create cycle, use
setRetainInstance() to tell Android it doesn’t need to
destroy and create the fragment.

http://www.androidbook.com/androidfragments/projects
http://developer.android.com/guide/topics/fundamentals/activities.html#SavingActivityState
http://developer.android.com/guide/topics/fundamentals/activities.html#SavingActivityState
http://developer.android.com/guide/topics/resources/runtime-changes.html
http://developer.android.com/guide/topics/resources/runtime-changes.html

45

Chapter 3
Working with Dialogs

The Android SDK offers extensive support for dialogs. A dialog is a smaller
window that pops up in front of the current window to show an urgent
message, to prompt the user for a piece of input, or to show some sort
of status like the progress of a download. The user is generally expected
to interact with the dialog and then return to the window underneath to
continue with the application. Technically, Android allows a dialog fragment
to also be embedded within an activity’s layout, and we’ll cover that as well.

Dialogs that are explicitly supported in Android include the alert, prompt,
pick-list, single-choice, multiple-choice, progress, time-picker, and date-
picker dialogs. (This list could vary depending on the Android release.)
Android also supports custom dialogs for other needs. The primary purpose
of this chapter is not to cover every single one of these dialogs but to cover
the underlying architecture of Android dialogs with a sample application.
From there you should be able to use any of the Android dialogs.

It’s important to note that Android 3.0 added dialogs based on fragments.
The expectation from Google is that developers will only use fragment
dialogs, even in the versions of Android before 3.0. This can be done with
the fragment-compatibility library. For this reason, this chapter focuses on
DialogFragment.

Using Dialogs in Android
Dialogs in Android are asynchronous, which provides flexibility. However,
if you are accustomed to a programming framework where dialogs are
primarily synchronous (such as Microsoft Windows, or JavaScript dialogs in
web pages), you might find asynchronous dialogs a bit unintuitive.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3: Working with Dialogs46

With a synchronous dialog, the line of code after the dialog is shown does
not run until the dialog has been dismissed. This means the next line of
code could interrogate which button was pressed, or what text was typed
into the dialog. In Android however, dialogs are asynchronous. As soon as
the dialog has been shown, the next line of code runs, even though the user
hasn’t touched the dialog yet. Your application has to deal with this fact
by implementing callbacks from the dialog, to allow the application to be
notified of user interaction with the dialog.

This also means your application has the ability to dismiss the dialog from
code, which is powerful. If the dialog is displaying a busy message because
your application is doing something, as soon as your application has
completed that task, it can dismiss the dialog from code.

Understanding Dialog Fragments
In this section, you learn how to use dialog fragments to present a simple
alert dialog and a custom dialog that is used to collect prompt text.

DialogFragment Basics
Before we show you working examples of a prompt dialog and an alert
dialog, we would like to cover the high-level idea of dialog fragments.
Dialog-related functionality uses a class called DialogFragment.
A DialogFragment is derived from the class Fragment and behaves much like
a fragment. You will then use the DialogFragment as the base class for your
dialogs. Once you have a derived dialog from this class such as
 
public class MyDialogFragment extends DialogFragment { ... }
 
you can then show this dialog fragment MyDialogFragment as a dialog using
a fragment transaction. Listing 3-1 shows a code snippet to do this.

Listing 3-1.  Showing a Dialog Fragment

public class SomeActivity extends Activity
{
 //....other activity functions
 public void showDialog()
 {
 //construct MyDialogFragment
 MyDialogFragment mdf = MyDialogFragment.newInstance(arg1,arg2);
 FragmentManager fm = getFragmentManager();

CHAPTER 3: Working with Dialogs

47

From Listing 3-1, the steps to show a dialog fragment are as follows:

1.	 Create a dialog fragment.

2.	 Get a fragment transaction.

3.	 Show the dialog using the fragment transaction
from step 2.

Let’s talk about each of these steps.

Constructing a Dialog Fragment
When constructing a dialog fragment, the rules are the same as when
building any other kind of fragment. The recommended pattern is to use
a factory method such as newInstance() as you did before. Inside that
newInstance() method, you use the default constructor for your dialog
fragment, and then you add an arguments bundle that contains your
passed-in parameters. You don’t want to do other work inside this method
because you must make sure that what you do here is the same as what
Android does when it restores your dialog fragment from a saved state.
And all that Android does is to call the default constructor and re-create the
arguments bundle on it.

Overriding onCreateView
When you inherit from a dialog fragment, you need to override one of two
methods to provide the view hierarchy for your dialog. The first option is to
override onCreateView() and return a view. The second option is to override
onCreateDialog() and return a dialog (like the one constructed by an
AlertDialog.Builder, which we’ll get to shortly).

Note  We provide a link to a downloadable project at the end of this
chapter in the “References” section. You can use this download to
experiment with the code and the concepts presented in this chapter.

 FragmentTransaction ft = fm.beginTransaction();
 mdf.show(ft,"my-dialog-tag");
 }
 //....other activity functions
} 

CHAPTER 3: Working with Dialogs48

Listing 3-2 shows an example of overriding the onCreateView().

Listing 3-2.  Overriding onCreateView() of a DialogFragment

public class MyDialogFragment extends DialogFragment
 implements View.OnClickListener
{
 other functions
 public View onCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState)
 {
 //Create a view by inflating desired layout
 View v =
 inflater.inflate(R.layout.prompt_dialog, container, false);
  
 //you can locate a view and set values
 TextView tv = (TextView)v.findViewById(R.id.promptmessage);
 tv.setText(this.getPrompt());
  
 //You can set callbacks on buttons
 Button dismissBtn = (Button)v.findViewById(R.id.btn_dismiss);
 dismissBtn.setOnClickListener(this);
  
 Button saveBtn = (Button)v.findViewById(R.id.btn_save);
 saveBtn.setOnClickListener(this);
 return v;
 }
 other functions
}
 
In Listing 3-2, you are loading a view identified by a layout. Then you look
for two buttons and set up callbacks on them. This is very similar to how
you created the details fragment in Chapter 1. However, unlike the earlier
fragments, a dialog fragment has another way to create the view hierarchy.

Overriding onCreateDialog
As an alternate to supplying a view in onCreateView(), you can override
onCreateDialog() and supply a dialog instance. Listing 3-3 supplies sample
code for this approach.

CHAPTER 3: Working with Dialogs

49

Listing 3-3.  Overriding onCreateDialog() of a DialogFragment

public class MyDialogFragment extends DialogFragment
 implements DialogInterface.OnClickListener
{
 other functions
 @Override
 public Dialog onCreateDialog(Bundle icicle)
 {
 AlertDialog.Builder b = new AlertDialog.Builder(getActivity())
 .setTitle("My Dialog Title")
 .setPositiveButton("Ok", this)
 .setNegativeButton("Cancel", this)
 .setMessage(this.getMessage());
 return b.create();
 }
 other functions
}
 
In this example, you use the alert dialog builder to create a dialog object
to return. This works well for simple dialogs. The first option of overriding
onCreateView() is equally easy and provides much more flexibility.

AlertDialog.Builder is actually a carryover from pre-3.0 Android. This is
one of the old ways to create a dialog, and it’s still available to you to create
dialogs within DialogFragments. As you can see, it’s fairly easy to build a
dialog by calling the various methods available, as we’ve done here.

Displaying a Dialog Fragment
Once you have a dialog fragment constructed, you need a fragment
transaction to show it. Like all other fragments, operations on dialog
fragments are conducted through fragment transactions.

The show() method on a dialog fragment takes a fragment transaction as an
input. You can see this in Listing 3-1. The show() method uses the fragment
transaction to add this dialog to the activity and then commits the fragment
transaction. However, the show() method does not add the transaction
to the back stack. If you want to do this, you need to add this transaction
to the back stack first and then pass it to the show() method. The show()
method of a dialog fragment has the following signatures:
 
public int show(FragmentTransaction transaction, String tag)
public int show(FragmentManager manager, String tag)
 
The first show() method displays the dialog by adding this fragment to the
passed-in transaction with the specified tag. This method then returns the
identifier of the committed transaction.

CHAPTER 3: Working with Dialogs50

The second show() method automates getting a transaction from the
transaction manager. This is a shortcut method. However, when you use this
second method, you don’t have an option to add the transaction to the back
stack. If you want that control, you need to use the first method. The second
method could be used if you wanted to simply display the dialog, and you
had no other reason to work with a fragment transaction at that time.

A nice thing about a dialog being a fragment is that the underlying fragment
manager does the basic state management. For example, even if the device
rotates when a dialog is being displayed, the dialog is reproduced without
you performing any state management.

The dialog fragment also offers methods to control the frame in which the
dialog’s view is displayed, such as the title and the appearance of the frame.
Refer to the DialogFragment class documentation to see more of these
options; this URL is provided at the end of this chapter.

Dismissing a Dialog Fragment
There are two ways you can dismiss a dialog fragment. The first is to
explicitly call the dismiss() method on the dialog fragment in response to a
button or some action on the dialog view, as shown in Listing 3-4.

Listing 3-4.  Calling dismiss()

if (someview.getId() == R.id.btn_dismiss)
{
 //use some callbacks to advise clients
 //of this dialog that it is being dismissed
 //and call dismiss
 dismiss();
 return;
}
 
The dialog fragment’s dismiss() method removes the fragment from the
fragment manager and then commits that transaction. If there is a back stack
for this dialog fragment, then the dismiss() pops the current dialog out of
the transaction stack and presents the previous fragment transaction state.
Whether there is a back stack or not, calling dismiss() results in calling the
standard dialog fragment destroy callbacks, including onDismiss().

One thing to note is that you can’t rely on onDismiss() to conclude that a
dismiss() has been called by your code. This is because onDismiss() is
also called when a device configuration changes and hence is not a good
indicator of what the user did to the dialog itself. If the dialog is being

CHAPTER 3: Working with Dialogs

51

displayed when the user rotates the device, the dialog fragment sees
onDismiss() called even though the user did not press a button in the dialog.
Instead, you should always rely on explicit button clicks on the dialog view.

If the user presses the Back button while the dialog fragment is displayed,
this causes the onCancel() callback to fire on the dialog fragment. By
default, Android makes the dialog fragment go away, so you don’t need to
call dismiss() on the fragment yourself. But if you want the calling activity
to be notified that the dialog has been cancelled, you need to invoke logic
from within onCancel() to make that happen. This is a difference between
onCancel() and onDismiss() with dialog fragments. With onDismiss(), you
can’t be sure exactly what happened that caused the onDismiss() callback
to fire. You might also have noticed that a dialog fragment does not have a
cancel() method, just dismiss(); but as we said, when a dialog fragment
is being cancelled by pressing the Back button, Android takes care of
cancelling/dismissing it for you.

The other way to dismiss a dialog fragment is to present another dialog
fragment. The way you dismiss the current dialog and present the new one
is slightly different than just dismissing the current dialog. Listing 3-5 shows
an example.

Listing 3-5.  Setting Up a Dialog for a Back Stack

if (someview.getId() == R.id.btn_invoke_another_dialog)
{
 Activity act = getActivity();
 FragmentManager fm = act.getFragmentManager();
 FragmentTransaction ft = fm.beginTransaction();
 ft.remove(this);
 
 ft.addToBackStack(null);
 //null represents no name for the back stack transaction
 
 HelpDialogFragment hdf =
 HelpDialogFragment.newInstance(R.string.helptext);
 hdf.show(ft, "HELP");
 return;
}
 
Within a single transaction, you’re removing the current dialog fragment and
adding the new dialog fragment. This has the effect of making the current
dialog disappear visually and making the new dialog appear. If the user
presses the Back button, because you’ve saved this transaction on the back
stack, the new dialog is dismissed and the previous dialog is displayed. This
is a handy way of displaying a help dialog, for example.

CHAPTER 3: Working with Dialogs52

Implications of a Dialog Dismiss
When you add any fragment to a fragment manager, the fragment manager
does the state management for that fragment. This means when a device
configuration changes (for example, the device rotates), the activity is
restarted and the fragments are also restarted. You saw this earlier when
you rotated the device while running the Shakespeare sample application
in chapter 1.

A device-configuration change doesn’t affect dialogs because they are also
managed by the fragment manager. But the implicit behavior of show() and
dismiss() means you can easily lose track of a dialog fragment if you’re not
careful. The show() method automatically adds the fragment to the fragment
manager; the dismiss() method automatically removes the fragment from
the fragment manager. You may have a direct pointer to a dialog fragment
before you start showing the fragment. But you can’t add this fragment to
the fragment manager and later call show(), because a fragment can only be
added once to the fragment manager. You may plan to retrieve this pointer
through restore of the activity. However, if you show and dismiss this dialog,
this fragment is implicitly removed from the fragment manager, thereby
denying that fragment’s ability to be restored and repointed (because the
fragment manager doesn’t know this fragment exists after it is removed).

If you want to keep the state of a dialog after it is dismissed, you need to
maintain the state outside of the dialog either in the parent activity or in a
non-dialog fragment that hangs around for a longer time.

DialogFragment Sample Application
In this section, you review a sample application that demonstrates these
concepts of a dialog fragment. You also examine communication between
a fragment and the activity that contains it. To make it all happen, you need
five Java files:

	MainActivity.java: The main activity of your
application. It displays a simple view with help text in it
and a menu from which dialogs can be started.

	PromptDialogFragment.java: An example of a dialog
fragment that defines its own layout in XML and allows
input from the user. It has three buttons: Save, Dismiss
(cancel), and Help.

	AlertDialogFragment.java: An example of a dialog
fragment that uses the AlertBuilder class to create a
dialog within this fragment. This is the old-school way of
creating a dialog.

CHAPTER 3: Working with Dialogs

53

	HelpDialogFragment.java: A very simple fragment
that displays a help message from the application’s
resources. The specific help message is identified when
a help dialog object is created. This help fragment can
be shown from both the main activity and the prompt
dialog fragment.

	OnDialogDoneListener.java: An interface that you
require your activity to implement in order to get
messages back from the fragments. Using an interface
means your fragments don’t need to know much
about the calling activity, except that it must have
implemented this interface. This helps encapsulate
functionality where it belongs. From the activity’s point
of view, it has a common way to receive information
back from fragments without needing to know too much
about them.

There are three layouts for this application: for the main activity, for the
prompt dialog fragment, and for the help dialog fragment. Note that you
don’t need a layout for the alert dialog fragment because the AlertBuilder
takes care of that layout for you internally. When you’re done, the application
looks like Figure 3-1.

Figure 3-1.  The user interface for the dialog fragment sample application

CHAPTER 3: Working with Dialogs54

Dialog Sample: MainActivity
Let’s get to the source code, which you can download from the book’s web
site (see the “References” section). We’ll use the DialogFragmentDemo
project. Open up the source code for MainActivity.java before we continue.

The code for the main activity is very straightforward. You display a simple
page of text and set up a menu. Each menu item invokes an activity
method, and each method does basically the same thing: gets a fragment
transaction, creates a new fragment, and shows the fragment. Note that
each fragment has a unique tag that’s used with the fragment transaction.
This tag becomes associated with the fragment in the fragment manager, so
you can locate these fragments later by tag name. The fragment can also
determine its own tag value with the getTag() method on Fragment.

The last method definition in the main activity is onDialogDone(), which is a
callback that is part of the OnDialogDoneListener interface that your activity
is implementing. As you can see, the callback supplies a tag of the fragment
that is calling you, a boolean value indicating whether the dialog fragment
was cancelled, and a message. For your purposes, you merely want to log
the information to LogCat; you also show it to the user using Toast. Toast
will be covered later in this chapter.

Dialog Sample: OnDialogDoneListener
So that you can know when a dialog has gone away, create a listener
interface that your dialog callers implement. The code of the interface is in
OnDialogDoneListener.java.

This is a very simple interface, as you can see. You choose only one
callback for this interface, which the activity must implement. Your
fragments don’t need to know the specifics of the calling activity, only that
the calling activity must implement the OnDialogDoneListener interface;
therefore the fragments can call this callback to communicate with the
calling activity. Depending on what the fragment is doing, there could
be multiple callbacks in the interface. For this sample application, you’re
showing the interface separately from the fragment class definitions.
For easier management of code, you could embed the fragment listener
interface inside of the fragment class definition itself, thus making it easier to
keep the listener and the fragment in sync with each other.

Dialog Sample: PromptDialogFragment
Now let’s look at your first fragment, PromptDialogFragment, whose
layout is in /res/layout/prompt_dialog.xml and Java code is under /src in
PromptDialogFragment.java.

CHAPTER 3: Working with Dialogs

55

This prompt dialog layout looks like many you’ve seen previously. There
is a TextView to serve as the prompt; an EditText to take the user’s input;
and three buttons for saving the input, dismissing (cancelling) the dialog
fragment, and popping a help dialog.

The PromptDialogFragment Java code starts out looking just like your earlier
fragments. You have a newInstance() static method to create new objects,
and within this method you call the default constructor, build an arguments
bundle, and attach it to your new object. Next, you have something new
in the onAttach() callback. You want to make sure the activity you just got
attached to has implemented the OnDialogDoneListener interface. In order
to test that, you cast the activity passed in to the OnDialogDoneListener
interface. Here’s that code:
 
try {
 OnDialogDoneListener test = (OnDialogDoneListener)act;
}
catch(ClassCastException cce) {
 // Here is where we fail gracefully.
 Log.e(MainActivity.LOGTAG, "Activity is not listening");
}
 
If the activity does not implement this interface, a ClassCastException is
thrown. You could handle this exception and deal with it more gracefully, but
this example keeps the code as simple as possible.

Next up is the onCreate() callback. As is common with fragments, you don’t
build your user interface here, but you can set the dialog style. This is unique
to dialog fragments. You can set both the style and the theme yourself, or
you can set just style and use a theme value of zero (0) to let the system
choose an appropriate theme for you. Here’s that code:
 
int style = DialogFragment.STYLE_NORMAL, theme = 0;
setStyle(style,theme);
 
In onCreateView() you create the view hierarchy for your dialog fragment.
Just like other fragments, you do not attach your view hierarchy to the
view container passed in (that is, by setting the attachToRoot parameter
to false). You then proceed to set up the button callbacks, and you
set the dialog prompt text to the prompt that was passed originally to
newInstance(). Finally, you check to see whether any values are being
passed in through the saved state bundle (icicle). This would indicate that
your fragment is being re-created, most likely due to a configuration change,
and it’s possible that the user has already typed some text. If so, you need
to populate the EditText with what the user has done so far. Remember that
because your configuration has changed, the actual view object in memory

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3: Working with Dialogs56

is not the same as before, so you must locate it and set the text accordingly.
The very next callback is onSaveInstanceState(); it’s where you save any
current text typed by the user into the saved state bundle.

The onCancel() and onDismiss() callbacks are not shown because all they
do is logging; you’ll be able to see when these callbacks fire during the
fragment’s lifecycle.

The final callback in the prompt dialog fragment is for the buttons. Once
again, you grab a reference to your enclosing activity and cast it to the
interface you expect the activity to have implemented. If the user pressed
the Save button, you grab the text as entered and call the interface’s
callback onDialogDone(). This callback takes the tag name of this fragment,
a boolean indicating whether this dialog fragment was cancelled, and a
message, which in this case is the text typed by the user. Here it is from the
MainActivity:
 
public void onDialogDone(String tag, boolean cancelled,
 CharSequence message) {
 String s = tag + " responds with: " + message;
 if(cancelled)
 s = tag + " was cancelled by the user";
 Toast.makeText(this, s, Toast.LENGTH_LONG).show();
 Log.v(LOGTAG, s);
}
 
To finish handling a click on the Save button, you then call dismiss() to get
rid of the dialog fragment. Remember that dismiss() not only makes the
fragment go away visually, but also pops the fragment out of the fragment
manager so it is no longer available to you.

If the button pressed is Dismiss, you again call the interface callback, this
time with no message, and then you call dismiss(). And finally, if the user
pressed the Help button, you don’t want to lose the prompt dialog fragment,
so you do something a little different. We described this earlier. In order to
remember the prompt dialog fragment so you can come back to it later, you
need to create a fragment transaction to remove the prompt dialog fragment
and add the help dialog fragment with the show() method; this needs to go
onto the back stack. Notice, too, how the help dialog fragment is created
with a reference to a resource ID. This means your help dialog fragment can
be used with any help text available to your application.

Dialog Sample: HelpDialogFragment
You created a fragment transaction to go from the prompt dialog fragment
to the help dialog fragment, and you placed that fragment transaction on
the back stack. This has the effect of making the prompt dialog fragment

CHAPTER 3: Working with Dialogs

57

disappear from view, but it’s still accessible through the fragment manager
and the back stack. The new help dialog fragment appears in its place
and allows the user to read the help text. When the user dismisses the
help dialog fragment, the fragment back stack entry is popped, with the
effect of the help dialog fragment being dismissed (both visually and from
the fragment manager) and the prompt dialog fragment restored to view.
This is a pretty easy way to make all this happen. It is very simple yet very
powerful; it even works if the user rotates the device while these dialogs are
being displayed.

Look at the source code of the HelpDialogFragment.java file and its layout
(help_dialog.xml). The point of this dialog fragment is to display help text.
The layout is a TextView and a Close button. The Java code should be
starting to look familiar to you. There’s a newInstance() method to create a
new help dialog fragment, an onCreate() method to set the style and theme,
and an onCreateView() method to build the view hierarchy. In this particular
case, you want to locate a string resource to populate the TextView, so you
access the resources through the activity and choose the resource ID that
was passed in to newInstance(). Finally, onCreateView() sets up a button-
click handler to capture the clicks of the Close button. In this case, you
don’t need to do anything interesting at the time of dismissal.

This fragment is called two ways: from the activity and from the prompt
dialog fragment. When this help dialog fragment is shown from the main
activity, dismissing it simply pops the fragment off the top and reveals the
main activity underneath. When this help dialog fragment is shown from the
prompt dialog fragment, because the help dialog fragment was part of a
fragment transaction on the back stack, dismissing it causes the fragment
transaction to be rolled back, which pops the help dialog fragment but
restores the prompt dialog fragment. The user sees the prompt dialog
fragment reappear.

Dialog Sample: AlertDialogFragment
We have one last dialog fragment to show you in this sample application:
the alert dialog fragment. Although you could create an alert dialog fragment
in a way similar to the help dialog fragment, you can also create a dialog
fragment using the old AlertBuilder framework that has worked for many
releases of Android. Look at the source code in AlertDialogFragment.java.

You don’t need a layout for this one because the AlertBuilder takes care
of that for you. Note that this dialog fragment starts out like any other,
but instead of an onCreateView() callback, you have a onCreateDialog()
callback. You implement either onCreateView() or onCreateDialog() but
not both. The return from onCreateDialog() is not a view; it’s a dialog.
Of interest here is that to get parameters for the dialog, you should be

CHAPTER 3: Working with Dialogs58

accessing your arguments bundle. In this example application, you only do
this for the alert message, but you could access other parameters through
the arguments bundle as well.

Notice also that with this type of dialog fragment, you need your fragment
class to implement the DialogInterface.OnClickListener, which means
your dialog fragment must implement the onClick() callback. This callback
is fired when the user acts on the embedded dialog. Once again, you get
a reference to the dialog that fired and an indication of which button was
pressed. As before, you should be careful not to depend on an onDismiss()
because this could fire when there is a device configuration change.

Dialog Sample: Embedded Dialogs
There’s one more feature of a DialogFragment that you may have noticed. In
the main layout for the application, under the text, is a FrameLayout that can
be used to hold a dialog. In the application’s menu, the last item causes a
fragment transaction to add a new instance of a PromptDialogFragment to the
main screen. Without any modifications, the dialog fragment can be displayed
embedded in the main layout, and it functions as you would expect.

One thing that is different about this technique is that the code to show the
embedded dialog is not the same as the code to do a pop-up dialog. The
embedded dialog code looks like this:
 
ft.add(R.id.embeddedDialog, pdf, EMBED_DIALOG_TAG);
ft.commit();
 
This looks just the same as in Chapter 1, when we displayed a fragment in a
FrameLayout. This time, however, you make sure to pass in a tag name, which
is used when the dialog fragment notifies your activity of the user’s input.

Dialog Sample: Observations
When you run this sample application, make sure you try all the menu
options in different orientations of the device. Rotate the device while the
dialog fragments are displayed. You should be pleased to see that the
dialogs go with the rotations; you do not need to worry about a lot of code
to manage the saving and restoring of fragments due to configuration
changes.

The other thing we hope you appreciate is the ease with which you can
communicate between the fragments and the activity. Of course, the activity
has references, or can get references, to all the available fragments, so it
can access methods exposed by the fragments themselves. This isn’t the
only way to communicate between fragments and the activity. You can

CHAPTER 3: Working with Dialogs

59

always use the getter methods on the fragment manager to retrieve an
instance of a managed fragment, and then cast that reference appropriately
and call a method on that fragment directly. You can even do this from within
another fragment. The degree to which you isolate your fragments from
each other with interfaces and through activities, or build in dependencies
with fragment-to-fragment communication, is based on how complex your
application is and how much reuse you want to achieve.

Working with Toast
A Toast is like a mini alert dialog that has a message and displays for a
certain amount of time and then goes away automatically. It does not have
any buttons. So it can be said that it is a transient alert message. It’s called
Toast because it pops up like toast out of a toaster.

Listing 3-6 shows an example of how you can show a message using Toast.

Listing 3-6.  Using Toast for Debugging

//Create a function to wrap a message as a toast
//show the toast
public void reportToast(String message)
{
 String s = MainActivity.LOGTAG + ":" + message;
 Toast.makeText(activity, s, Toast.LENGTH_SHORT).show();
}
 
The makeText() method in Listing 3-6 can take not only an activity but any
context object, such as the one passed to a broadcast receiver or a service,
for example. This extends the use of Toast outside of activities.

References
	www.androidbook.com/androidfragments/projects:

This chapter’s test project. The name of the ZIP file is
AndroidFragments_ch03_Dialogs.zip. The download
includes an example of the date- and time-picker
dialogs in PickerDialogFragmentDemo.

	http://developer.android.com/guide/topics/ui/
dialogs.html: Android SDK document that provides an
excellent introduction to working with Android dialogs.
You will find here an explanation of how to use managed
dialogs and various examples of available dialogs.

http://www.androidbook.com/androidfragments/projects
http://developer.android.com/guide/topics/ui/dialogs.html
http://developer.android.com/guide/topics/ui/dialogs.html

CHAPTER 3: Working with Dialogs60

	http://developer.android.com/reference/android/
content/DialogInterface.html: The many constants
defined for dialogs.

	http://developer.android.com/reference/android/
app/AlertDialog.Builder.html: API documentation for
the AlertDialog builder class.

	http://developer.android.com/reference/android/
app/ProgressDialog.html: API documentation for
ProgressDialog.

	http://developer.android.com/guide/topics/ui/
controls/pickers.html: An Android tutorial for using
the date-picker and time-picker dialogs.

Summary
This chapter discussed asynchronous dialogs and how to use dialog
fragments, including the following topics:

What a dialog is and why you use one	

The asynchronous nature of a dialog in Android	

The three steps of getting a dialog to display 	
on the screen

Creating a fragment	

Two methods for how a dialog fragment can create 	
a view hierarchy

How a fragment transaction is involved in displaying 	
a dialog fragment, and how to get one

What happens when the user presses the Back button 	
while viewing a dialog fragment

The back stack, and managing dialog fragments	

What happens when a button on a dialog fragment is 	
clicked, and how you deal with it

A clean way to communicate back to the calling activity 	
from a dialog fragment

How one dialog fragment can call another dialog fragment 	
and still get back to the previous dialog fragment

The 	 Toast class and how it can be used as a simple
alert pop-up

http://developer.android.com/reference/android/content/DialogInterface.html
http://developer.android.com/reference/android/content/DialogInterface.html
http://developer.android.com/reference/android/app/AlertDialog.Builder.html
http://developer.android.com/reference/android/app/AlertDialog.Builder.html
http://developer.android.com/reference/android/app/ProgressDialog.html
http://developer.android.com/reference/android/app/ProgressDialog.html
http://developer.android.com/guide/topics/ui/controls/pickers.html
http://developer.android.com/guide/topics/ui/controls/pickers.html

61

Chapter 4
Working with
Preferences and
Saving State

Android offers a robust and flexible framework for dealing with settings, also
known as preferences. And by settings, we mean those feature choices that
a user makes and saves to customize an application to their liking. (In this
chapter, the terms settings and preferences will be used interchangeably.) For
example, if the user wants a notification via a ringtone or vibration or not at all,
that is a preference the user saves; the application remembers the choice until
the user changes it. Android provides simple APIs that hide the management
and persisting of preferences. It also provides prebuilt user interfaces that you
can use to let the user make preference selections. Because of the power
built into the Android preferences framework, we can also use preferences for
more general-purpose storing of application state, to allow our application to
pick up where it left off, should our application go away and come back later.
As another example, a game’s high scores could be stored as preferences,
although you’ll want to use your own UI to display them.

This chapter covers how to implement your own settings screens for your
application, how to interact with Android system settings, and how to use
settings to secretly save application state, and it also provides best-practice
guidance. You’ll discover how to make your settings look good on small
screens as well as larger screens such as those found on tablets.

CHAPTER 4: Working with Preferences and Saving State 62

Exploring the Preferences Framework
Android’s preferences framework builds from the individual settings choices,
to a hierarchy of screens that contain settings choices. Settings could be
binary settings such as on/off, or text input, or a numeric value, or could
be a selection from a list of choices. Android uses a PreferenceManager
to provide settings values to applications. The framework takes care of
making and persisting changes, and notifying the application when a
setting changes or is about to change. While settings are persisted in files,
applications don’t deal directly with the files. The files are hidden away, and
you’ll see shortly where they are.

Preferences can be specified with XML, or by writing code. For this chapter,
you’ll work with a sample application that demonstrates the different types
of choices. XML is the preferred way to specify a preference, so that is how
the application was written. XML specifies the lowest-level settings, plus
how to group settings together into categories and screens. For reference,
the sample application for this chapter presents the following settings as
shown in Figure 4-1.

Figure 4-1.  The main settings from the sample app preference UI. Due to the screen’s height,
it has been shown with the top on the left and the bottom on the right. Notice the overlap
between the two images

CHAPTER 4: Working with Preferences and Saving State

63

Android provides an end-to-end preferences framework. This means the
framework lets you define your preferences, display the setting(s) to the
user, and persist the user’s selection to the data store. You define your
preferences in XML under /res/xml/. To show preferences to the user,
you write an activity class that extends a predefined Android class called
android.preference.PreferenceActivity and use fragments to handle the
screens of preferences. The framework takes care of the rest (displaying and
persisting). Within your application, your code will get references to specific
preferences. With a preference reference, you can get the current value of
the preference.

In order for preferences to be saved across user sessions, the current values
must be saved somewhere. The Android framework takes care of persisting
preferences in an XML file within the application’s /data/data directory on
the device (see Figure 4-2).

Figure 4-2.  Path to an application’s saved preferences

Note  You will be able to inspect shared preferences files in the emulator
only. On a real device, the shared preferences files are not readable due to
Android security (unless you have root privileges, of course).

The default preferences file path for an application is /data/data/
[PACKAGE_NAME]/shared_prefs/[PACKAGE_NAME]_preferences.xml, where
[PACKAGE_NAME] is the package of the application. Listing 4-1 shows the
com.androidbook.preferences.main_preferences.xml data file for this
example.

CHAPTER 4: Working with Preferences and Saving State 64

Listing 4-1.  Saved Preferences for Our Example

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
<boolean name="notification_switch" value="true" />
<string name="package_name_preference">com.androidbook.win</string>
<boolean name="potato_selection_pref" value="true" />
<boolean name="show_airline_column_pref" value="true" />
<string name="flight_sort_option">2</string>
<boolean name="alert_email" value="false" />
<set name="pizza_toppings">
<string>pepperoni</string>
<string>cheese</string>
<string>olive</string>
</set>
<string name="alert_email_address">davemac327@gmail.com</string>
</map>
 
As you can see, values are stored in a map, with preference keys as
names to the data values. Some of the values look cryptic and do not
match what is displayed to the user. For example, the value for flight_sort_
option is 2. Android does not store the displayed text as the value of the
preference; rather, it stores a value that the user won’t see, that you can
use independently of what the user sees. You want the freedom to change
the displayed text based on the user’s language, and you also want the
ability to tweak the displayed text while keeping the same stored value in
the preferences file. You might even be able to do simpler processing of the
preference if the value is an integer instead of some display string. What you
don’t have to worry about is parsing this data file. The Android preferences
framework provides a nice API for dealing with preferences, which will be
described in more detail later in this chapter.

If you compare the preferences map in Listing 4-1 with the screenshots in
Figure 4-1, you will notice that not all preferences are listed with values in
the preferences XML data file. This is because the preference data file does
not automatically store a default value for you. You’ll see shortly how to deal
with default values.

Now that you’ve seen where the values are saved, you need to see how
to define the screens to display to the user so they can make selections.
Before you see how to collect preferences together into screens, you’ll learn
about the different types of preferences you can use, and then you’ll see
how to put them together into screens. Each persisted value in the /data/
data XML file is from a specific preference. So let’s understand what each of
these means.

CHAPTER 4: Working with Preferences and Saving State

65

Understanding CheckBoxPreference and
SwitchPreference
The simplest of the preferences are the CheckBoxPreference and
SwitchPreference. These share a common parent class (TwoStatePreference)
and are either on (value is true) or off (value is false). For the sample application,
a screen was created with five CheckBoxPreferences, as shown in Figure 4-3.
Listing 4-2 shows what the XML looks like for a CheckBoxPreference.

Note  We will give you a URL at the end of the chapter that you can
use to download projects from this chapter. This will allow you to import
these projects into your IDE directly. The main sample application is called
PrefDemo. You should refer to that project until you come to the Saving
State section.

Figure 4-3.  The user interface for the check box preference

Listing 4-2.  Using CheckBoxPreference

<CheckBoxPreference
 android:key="show_airline_column_pref"
 android:title="Airline"
 android:summary="Show Airline column" /> 

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4: Working with Preferences and Saving State 66

This example shows the minimum that’s required to specify a preference.
The key is the reference to, or name of, the preference, the title is the title
displayed for the preference, and summary is a description of what the
preference is for or a status of the current setting. Looking back on the
saved values in Listing 4-1, you will see a <boolean> tag for “show_airline_
column_pref” (the key), and it has an attribute value of true, which indicates
that the preference is checked on.

With CheckBoxPreference, the state of the preference is saved when the
user sets the state. In other words, when the user checks or unchecks the
preference control, its state is saved immediately.

The SwitchPreference is very similar except that the visual display is
different. Instead of a check box in the user interface, the user sees an
on-off switch, as shown in Figure 4-1 next to “Notifications are.”

One other useful feature of CheckBoxPreference and SwitchPreference is
that you can set different summary text depending on whether it’s checked.
The XML attributes are summaryOn and summaryOff. If you look in the main.
xml file for the CheckBoxPreference called “potato_selection_pref” you will
see an example of this.

Before you learn the other preference types, now would be a good time to
understand how to access this preference to read its value and perform
other operations.

Accessing a Preference Value in Code
Now that you have a preference defined you need to know how to access
the preference in code so you can read the value. Listing 4-3 shows code to
access the SharedPreferences object in Android where the preferences exist.
This code is from the MainActivity.java file in the setOptionText() method.

Listing 4-3.  Accessing the CheckBoxPreference

 SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(this);
// This is the other way to get to the shared preferences:
// SharedPreferences prefs = getSharedPreferences(
// "com.androidbook.preferences.main_preferences", 0);
 boolean showAirline = prefs.getBoolean("show_airline_column_pref",
 false);
 
Using the reference to preferences, it is straightforward to read the current
value of the show_airline_column_pref preference. As shown in Listing 4-3,
there are two ways to get to the preferences. The first way shown is to get

CHAPTER 4: Working with Preferences and Saving State

67

the default preferences for the current context. In this case, the context
is that of the MainActivity of our application. The second case, which is
shown commented out, retrieves the preferences using a package name.
You could use whatever package name you want in case you need to store
different sets of preferences in different files.

Once you have a reference to the preferences, you call the appropriate
getter method with the key of the preference and a default value. Since
show_airline_column_pref is a TwoStatePreference, the value returned is a
boolean. The default value for show_airline_column_pref is hard-coded here
as false. If this preference has not yet been set at all, the hard-coded value
(false) will be assigned to showAirline. However, that by itself does not
persist the preference to false for future use, nor does it honor any default
value that might have been set in the XML specification for this preference.
If the XML specification uses a resource value to specify the default value,
then the same resource could be referred to in code to set the default value,
as shown in the following for a different preference:
 
String flight_option = prefs.getString(
 resources.getString(R.string.flight_sort_option),
 resources.getString(R.string.flight_sort_option_default_value));
 
Notice here that the key for the preference is also using a string resource
value (R.string.flight_sort_option). This can be a wise choice since it
makes typos less likely. If the resource name is typed wrong you’ll very likely
get a build error. If you use just simple strings, it is possible for a typo to go
unnoticed, except that your preferences won’t work.

We showed one way to read a default value for a preference in code.
Android provides another way that is a bit more elegant. In onCreate(), you
can do the following instead:
 
PreferenceManager.setDefaultValues(this, R.xml.main, false);
 
Then, in setOptionText(), you would have done this to read the option
value:
 
String option = prefs.getString(
 resources.getString(R.string.flight_sort_option), null);
 
The first call will use main.xml to find the default values and generate the
preferences XML data file for us using the default values. If we already have
an instance of the SharedPreferences object in memory, it will update that
too. The second call will then find a value for flight_sort_option, because
we took care of loading defaults first.

CHAPTER 4: Working with Preferences and Saving State 68

After running this code the first time, if you look in the shared_prefs folder,
you will see the preferences XML file even if the preferences screen has not
yet been invoked. You will also see another file called _has_set_default_
values.xml. This file tells your application that the preferences XML file
has already been created with the default values. The third argument to
setDefaultValues()—that is, false—indicates that you want the defaults
set in the preferences XML file only if it hasn’t been done before. Android
remembers this information through the existence of this new XML file.
However, Android remembers even if you upgrade your application and add
new settings with new default values, which means this trick won’t set those
new defaults. Your best option is to always use a resource for the default
value, and always provide that resource as the default value when getting
the current value of a preference.

Understanding ListPreference
A list preference contains radio buttons for each option, and the default (or
current) selection is preselected. The user is expected to select one and
only one of the choices. When the user chooses an option, the dialog is
immediately dismissed and the choice is saved in the preferences XML file.
Figure 4-4 shows what this looks like.

Figure 4-4.  The user interface for the ListPreference

CHAPTER 4: Working with Preferences and Saving State

69

Listing 4-4.  Specifying a ListPreference in XML

<ListPreference
 android:key="@string/flight_sort_option"
 android:title="@string/listTitle"
 android:summary="@string/listSummary"
 android:entries="@array/flight_sort_options"
 android:entryValues="@array/flight_sort_options_values"
 android:dialogTitle="@string/dialogTitle"
 android:defaultValue="@string/flight_sort_option_default_value" />
 
Listing 4-4 contains an XML fragment that represents the flight-option
preference setting. This time the file contains references to strings and to
arrays, which would be the more common way to specify these rather than
hard-coding the strings. As mentioned before, the value of a list preference
as stored in the XML data file under the /data/data/{package} directory is
not the same as what the user sees in the user interface. The name of the
key is stored in the data file, along with a hidden value that the user does
not see. Therefore, to get a ListPreference to work, there needs to be two
arrays: the values displayed to the user and the strings used as key values.
This is where you can easily get tripped up. The entries array holds the
strings displayed to the user, and the entryValues array holds the strings
that will be stored in the preferences data XML file.

The elements between the two arrays correspond to each other positionally.
That is, the third element in the entryValues array corresponds to the third
element in the entries array. It is tempting to use 0, 1, 2, etc., as entryValues
but it is not required, and it could cause problems later when the arrays
must be modified. If our option were numeric in nature (for example, a
countdown timer starting value), then we could have used values such as
60, 120, 300, and so on. The values don’t need to be numeric at all as long
as they make sense to the developer; the user doesn’t see these values
unless you choose to expose them. The user only sees the text from the first
string array flight_sort_options. The example application for this chapter
shows it both ways.

A word of caution here: because the preferences XML data file is storing
only the value and not the text, should you ever upgrade your application
and change the text of the options or add items to the string arrays, any
value stored in the preferences XML data file should still line up with the
appropriate text after the upgrade. The preferences XML data file is kept
during the application upgrade. If the preferences XML data file had a “1” in
it, and that meant “# of Stops” before the upgrade, it should still mean “# of
Stops” after the upgrade.

CHAPTER 4: Working with Preferences and Saving State 70

Since the entryValues array is not seen by the end user, it is best practice
to store it once and only once within your application. Therefore, make one
and only one /res/values/prefvaluearrays.xml file to contain these arrays.
The entries array is very likely to be created multiple times per application,
for different languages or perhaps different device configurations. Therefore,
make separate prefdisplayarrays.xml files for each variation that you need.
For example, if your application will be used in English and in French, there
will be separate prefdisplayarrays.xml files for English and French. You
do not want to include the entryValues array in each of these other files.
It is imperative though that there are the same numbers of array elements
between entryValues and entries arrays. The elements must line up. When
you make changes, be careful to keep everything in alignment. Listing 4-5
contains the source of ListPreference files for the example.

Listing 4-5.  Other ListPreference Files from Our Example

<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/values/prefvaluearrays.xml -->
<resources>
<string-array name="flight_sort_options_values">
 <item>0</item>
 <item>1</item>
 <item>2</item>
</string-array>
<string-array name="pizza_toppings_values">
 <item>cheese</item>
 <item>pepperoni</item>
 <item>onion</item>
 <item>mushroom</item>
 <item>olive</item>
 <item>ham</item>
 <item>pineapple</item>
</string-array>
<string-array name="default_pizza_toppings">
 <item>cheese</item>
 <item>pepperoni</item>
</string-array>
</resources>
 
<?xml version="1.0" encoding="utf-8"?>
<!-- This file is /res/values/prefdisplayarrays.xml -->
<resources>
<string-array name="flight_sort_options">
 <item>Total Cost</item>
 <item># of Stops</item>
 <item>Airline</item>
</string-array>
<string-array name="pizza_toppings">

CHAPTER 4: Working with Preferences and Saving State

71

 <item>Cheese</item>
 <item>Pepperoni</item>
 <item>Onions</item>
 <item>Portobello Mushrooms</item>
 <item>Black Olives</item>
 <item>Smoked Ham</item>
 <item>Pineapple</item>
</string-array>
</resources>
 
Also, don’t forget that your default value as specified in the XML source file
must match an entryValue in the array from prefvaluearrays.xml.

For a ListPreference, the value of the preference is a String. If you are using
number strings (e.g., 0, 1, 1138) as entryValues, you could convert those
to integers or whatever you need in your code, as is used in the flight_sort_
options_values array.

Your code is likely going to want to display the user-friendly text from the
preference’s entries array. This example took a shortcut, because array
indices were used for the elements in flight_sort_options_values. By
simply converting the value to an int, you know which string to read from
flight_sort_options. Had you used some other set of values for flight_
sort_options_values, you would need to determine the index of the element
that is your preference and then turn around and use that index to grab the
text of your preference from flight_sort_options. ListPreference’s helper
method findIndexOfValue() can help with this, by providing the index into
the values array so you can then easily get the corresponding display text
from the entries array.

Returning now to Listing 4-4, there are several strings for titles, summaries,
and more. The string called flight_sort_option_default_value sets the
default value to 1 to represent “# of Stops” in the example. It is usually a
good idea to choose a default value for each option. If you don’t choose a
default value and no value has yet been chosen, the methods that return the
value of the option will return null. Your code would have to deal with null
values in this case.

Understanding EditTextPreference
The preferences framework also provides a free-form text preference called
EditTextPreference. This preference allows you to capture raw text rather
than ask the user to make a selection. To demonstrate this, let’s assume
you have an application that generates Java code for the user. One of the
preference settings of this application might be the default package name
to use for the generated classes. Here, you want to display a text field to

CHAPTER 4: Working with Preferences and Saving State 72

the user for setting the package name for the generated classes. Figure 4-5
shows the UI, and Listing 4-6 shows the XML.

Figure 4-5.  Using the EditTextPreference

Listing 4-6.  An Example of an EditTextPreference

<EditTextPreference
 android:key="package_name_preference"
 android:title="Set Package Name"
 android:summary="Set the package name for generated code"
 android:dialogTitle="Package Name" />
 
When Set Package Name is selected, the user is presented with a dialog to
input the package name. When the OK button is clicked, the preference is
saved to the preference store.

As with the other preferences, you can obtain the value of the preference by
calling the appropriate getter method, in this case getString().

Understanding MultiSelectListPreference
And finally, a preference called MultiSelectListPreference was introduced
in Android 3.0. The concept is somewhat similar to a ListPreference,
but instead of only being able to select one item in the list, the user can
select several or none. In Listing 4-1, the MultiSelectListPreference
stores a <set name=“pizza_toppings”> tag in the preferences XML data
file, instead of a single value. The other significant difference with a
MultiSelectListPreference is that the default value is an array just like the
entryValues array. That is, the array for the default values must contain zero

CHAPTER 4: Working with Preferences and Saving State

73

or more of the elements from the entryValues array for this preference. This
can also be seen in the sample application for this chapter; just view the end
of the main.xml file in the /res/xml directory.

To get the current value of a MultiSelectListPreference, use the
getStringSet() method of SharedPreferences. To retrieve the display strings
from the entries array, you would need to iterate through the set of strings
that is the value of this preference, determine the index of the string, and
use the index to access the proper display string from the entries array.

Updating AndroidManifest.xml
Because there are two activities in the sample application, we need two
activity tags in AndroidManifest.xml. The first one is a standard activity
of category LAUNCHER. The second one is for a PreferenceActivity, so
set the action name according to convention for intents, and set the
category to PREFERENCE as shown in Listing 4-7. You probably don’t want
the PreferenceActivity showing up on the Android page with all our other
applications, which is why you don’t use LAUNCHER for it. You would need
to make similar changes to AndroidManifest.xml if you were to add other
preference activities.

Listing 4-7.  PreferenceActivity Entry in AndroidManifest.xml

<activity android:name=".MainPreferenceActivity"
 android:label="@string/prefTitle">
 <intent-filter>
 <action android:name=
 "com.androidbook.preferences.main.intent.action.MainPreferences" />
 <category
 android:name="android.intent.category.PREFERENCE" />
 </intent-filter>
</activity>

Using PreferenceCategory
The preferences framework provides support for you to organize your
preferences into categories. If you have a lot of preferences, for example,
you can use PreferenceCategory, which groups preferences under a
separator label. Figure 4-6 shows what this could look like. Notice the
separators called “MEATS” and “VEGETABLES.” You can find the specifications
for these in /res/xml/main.xml.

CHAPTER 4: Working with Preferences and Saving State 74

Creating Child Preferences with Dependency
Another way to organize preferences is to use a preference dependency.
This creates a parent-child relationship between preferences. For example,
you might have a preference that turns on alerts; and if alerts are on, there
might be several other alert-related preferences to choose from. If the main
alerts preference is off, the other preferences are not relevant and should be
disabled. Listing 4-8 shows the XML, and Figure 4-7 shows what it looks like.

Listing 4-8.  Preference Dependency in XML

<PreferenceScreen>
 <PreferenceCategory
 android:title="Alerts">
  
 <CheckBoxPreference
 android:key="alert_email"
 android:title="Send email?" />
  

Figure 4-6.  Using PreferenceCategory to organize preferences

CHAPTER 4: Working with Preferences and Saving State

75

 <EditTextPreference
 android:key="alert_email_address"
 android:layout="?android:attr/preferenceLayoutChild"
 android:title="Email Address"
 android:dependency="alert_email" />
  
 </PreferenceCategory>
</PreferenceScreen> 

Figure 4-7.  Preference dependency

Preferences with Headers
Android 3.0 introduced a new way to organize preferences. You see this
on tablets under the main Settings app. Because tablet screen real estate
offers much more room than a smartphone does, it makes sense to display
more preference information at the same time. To accomplish this, you use
preference headers. Take a look at Figure 4-8.

Figure 4-8.  Main Settings page with preference headers

CHAPTER 4: Working with Preferences and Saving State 76

Notice that headers appear down the left side, like a vertical tab bar. As you
click each item on the left, the screen to the right displays the preferences
for that item. In Figure 4-8, Sound is chosen, and the sound preferences
are displayed at right. The right side is a PreferenceScreen object, and this
setup uses fragments. Obviously, we need to do something different than
what has been discussed so far in this chapter.

The big change from Android 3.0 was the addition of headers to
PreferenceActivity. This also means using a new callback within
PreferenceActivity to do the headers setup. Now, when you extend
PreferenceActivity, you’ll want to implement this method:
 
public void onBuildHeaders(List<Header> target) {
 loadHeadersFromResource(R.xml.preferences, target);
}
 
Please refer to the PrefDemo sample application for the complete source
code. The preferences.xml file contains some new tags that look like this:
 
<preference-headers
 xmlns:android="http://schemas.android.com/apk/res/android">
 <header android:fragment="com.example.PrefActivity$Prefs1Fragment"
 android:icon="@drawable/ic_settings_sound"
 android:title="Sound"
 android:summary="Your sound preferences" />
 ...
 
Each header tag points to a class that extends PreferenceFragment. In
the example just given, the XML specifies an icon, the title, and summary
text (which acts like a subtitle). Prefs1Fragment is an inner class of
PreferenceActivity that could look something like this:
 
public static class Prefs1Fragment extends PreferenceFragment {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 addPreferencesFromResource(R.xml.sound_preferences);
 }
}
 
All this inner class needs to do is pull in the appropriate preferences
XML file, as shown. That preferences XML file contains the types of
preference specifications we covered earlier, such as ListPreference,
CheckBoxPreference, PreferenceCategory, and so on. What’s very nice
is that Android takes care of doing the right thing when the screen
configuration changes and when the preferences are displayed on a
small screen. Headers behave like old preferences when the screen is too

CHAPTER 4: Working with Preferences and Saving State

77

small to display both headers and the preference screen to the right. That is,
you only see the headers; and when you click a header, you then see only
the appropriate preference screen.

PreferenceScreens
The top-level container for preferences is a PreferenceScreen. Before tablets
and PreferenceFragments, you could nest PreferenceScreens, and when the
user clicked on a nested PreferenceScreen item, the new PreferenceScreen
would replace the currently displayed PreferenceScreen. This worked fine
on a small screen, but doesn’t look as good on a tablet, especially if you
started with headers and fragments. What you probably want is for the new
PreferenceScreen to appear where the current fragment is.

To make a PreferenceScreen work inside of a fragment, all you need to do is
specify a fragment class name for that PreferenceScreen. Listing 4-9 shows
the XML from the sample application.

Listing 4-9.  PreferenceScreen invoked via a PreferenceFragment

<PreferenceScreen
 android:title="Launch a new screen into a fragment"
 android:fragment="com.androidbook.preferences.main.BasicFrag" />
 
When the user clicks on this item, the current fragment is replaced with
BasicFrag, which then loads a new XML layout for a PreferenceScreen as
specified in nested_screen_basicfrag.xml. In this case, we chose not to
make the BasicFrag class an inner class of the MainPreferenceActivity
class, mainly because there is no sharing needed from the outer class, and
to show you that you can do it this way if you prefer.

Dynamic Preference Summary Text
You’ve probably seen preferences where the preference summary
contains the current value. This is actually a little harder to implement than
you might think. To accomplish this feat, you create a listener callback
that detects when a preference value is about to change, and you then
update the preference summary accordingly. The first step is for your
PreferenceFragment to implement the OnPreferenceChangeListener
interface. You then need to implement the onPreferenceChange() callback.
Listing 4-10 shows an example. The pkgPref object in the callback was set
earlier to the preference in the onCreate() method.

CHAPTER 4: Working with Preferences and Saving State 78

Listing 4-10.  Setting Up a Preference Listener

public boolean onPreferenceChange(Preference preference,
 Object newValue) {
 final String key = preference.getKey();
 if ("package_name_preference".equals(key)) {
 pkgPref.setSummary(newValue.toString());
 }
 ...
 return true;
}
 
You have to register the fragment as a listener in onResume() using setOnPre
ferenceChangeListener(this) on each preference you want to listen on, and
unregister in onPause() by calling it again with null. Now every time there is
a pending change to a preference you’ve registered for, this callback will be
invoked passing in the preference and the potential new value. The callback
returns a boolean indicating whether to proceed with setting the preference
to the new value (true) or not (false). Assuming you would return true to
allow the new setting, this is where you can update the summary value as
well. You could also validate the new value and reject the change. Perhaps
you want a MultiSelectListPreference to have a maximum number of
checked items. You could count the selected items in the callback and reject
the change if there are too many.

Saving State with Preferences
Preferences are great for allowing users to customize applications to their
liking, but we can use the Android preference framework for more than
that. When your application needs to keep track of some data between
invocations of the application, preferences are one way to accomplish the
task even if the user can’t see the data in preference screens. Please find
the sample application called SavingStateDemo to follow along with the
complete source code.

The Activity class has a getPreferences(int mode) method. This, in
reality, simply calls getSharedPreferences() with the class name of the
activity as the tag plus the mode as passed in. The result is an activity-
specific shared preferences file that you can use to store data about this
activity across invocations. A simple example of how you could use this is
shown in Listing 4-11.

CHAPTER 4: Working with Preferences and Saving State

79

Listing 4-11.  Using Preferences to Save State for an Activity

 final String INITIALIZED = "initialized";
 private String someString;
 
[...]
 
 SharedPreferences myPrefs = getPreferences(MODE_PRIVATE);
 
 boolean hasPreferences = myPrefs.getBoolean(INITIALIZED, false);
 if(hasPreferences) {
 Log.v("Preferences", "We've been called before");
 // Read other values as desired from preferences file...
 someString = myPrefs.getString("someString", "");
 }
 else {
 Log.v("Preferences", "First time ever being called");
 // Set up initial values for what will end up
 // in the preferences file
 someString = "some default value";
 }
 
[...]
 
 // Later when ready to write out values
 Editor editor = myPrefs.edit();
 editor.putBoolean(INITIALIZED, true);
 editor.putString("someString", someString);
 // Write other values as desired
 editor.commit();
 
What this code does is acquire a reference to preferences for our activity
class and check for the existence of a boolean “preference” called
initialized. We write “preference” in double quotation marks because this
value is not something the user is going to see or set; it’s merely a value
that we want to store in a shared preferences file for use next time. If we
get a value, the shared preferences file exists, so the application must have
been called before. You could then read other values out of the shared
preferences file. For example, someString could be an activity variable that
should be set from the last time this activity ran or set to the default value if
this is the first time.

To write values to the shared preferences file, you must first get a
preferences Editor. You can then put values into preferences and commit
those changes when you’re finished. Note that, behind the scenes, Android
is managing a SharedPreferences object that is truly shared. Ideally, there is
never more than one Editor active at a time. But it is very important to call

CHAPTER 4: Working with Preferences and Saving State 80

the commit() method so that the SharedPreferences object and the shared
preferences XML file get updated. In the example, the value of someString is
written out to be used the next time this activity runs.

You can access, write, and commit values any time to your preferences
file. Possible uses for this include writing out high scores for a game
or recording when the application was last run. You can also use the
getSharedPreferences() call with different names to manage separate sets
of preferences, all within the same application or even the same activity.

MODE_PRIVATE was used for mode in our examples thus far. Because the
shared preferences files are always stored within your application’s /
data/data/{package} directory and therefore are not accessible to other
applications, you only need to use MODE_PRIVATE.

Using DialogPreference
So far, you’ve seen how to use the out-of-the-box capabilities of
the preferences framework, but what if you want to create a custom
preference? What if you want something like the slider of the Brightness
preference under Screen Settings? This is where DialogPreference comes
in. DialogPreference is the parent class of EditTextPreference and
ListPreference. The behavior is a dialog that pops up, displays choices to
the user, and is closed with a button or via the Back button. But you can
extend DialogPreference to set up your own custom preference. Within your
extended class, you provide your own layout, your own click handlers, and
custom code in onDialogClosed() to write the data for your preference to
the shared preferences file.

Reference
Here are helpful references to topics you may wish to explore further:

	http://developer.android.com/design/patterns/
settings.html: Android’s Design Guide to Settings.
Some good advice about laying out Settings screens
and options.

	http://developer.android.com/guide/topics/ui/
settings.html: Android’s API Guide to Settings. This
page describes the Settings framework.

	http://developer.android.com/reference/android/
provider/Settings.html: Reference page that lists the
settings constants for calling a system settings activity.

http://developer.android.com/design/patterns/settings.html
http://developer.android.com/design/patterns/settings.html
http://developer.android.com/guide/topics/ui/settings.html
http://developer.android.com/guide/topics/ui/settings.html
http://developer.android.com/reference/android/provider/Settings.html
http://developer.android.com/reference/android/provider/Settings.html

CHAPTER 4: Working with Preferences and Saving State

81

	www.androidbook.com/androidfragments/projects:
A list of downloadable projects related to this book. For
this chapter, look for the file AndroidFragments_Ch04_
Preferences.zip. This ZIP file contains all the projects
from this chapter, listed in separate root directories.
There is also a README.TXT file that describes how to
import projects into your IDE from one of these ZIP files.

Summary
This chapter talked about managing preferences in Android:

Types of preferences available	

Reading the current values of preferences into your 	
application

Setting default values from embedded code and by 	
writing the default values from the XML file to the saved
preferences file

Organizing preferences into groups, and defining 	
dependencies between preferences

Callbacks on preferences to validate changes and to set 	
dynamic summary text

Using the preferences framework to save and restore 	
information from an activity across invocations

Creating a custom preference	

http://www.androidbook.com/androidfragments/projects

83

Chapter 5
Using the Compatibility
Library for Older Devices

The Android platform has gone through an impressive evolution since it
was first introduced several years ago. While the intention has always been
for Android to power lots of different types of devices, it wasn’t architected
from the beginning to meet that goal. Instead, the Google engineers have
added, removed, and changed APIs in order to provide new features. One of
the biggest changes was the creation of fragments in order to handle larger
screen sizes such as on tablets and TVs. But there have been other changes
such as with ActionBar and Menus.

The new APIs created a difficult problem for developers who wanted
their applications to run on the new devices with the new APIs, as well
as older devices that did not have those APIs. Many older devices do
not get Android upgrades. Even if Google added the new APIs to a
revision of the old Android OS, the old devices aren’t going to get that
new revision, because of the testing and support required from both the
device manufacturer and the cellular carrier. The solution that Google came
up with was to create compatibility libraries that could be linked into an
application so it could take advantage of the new API functionality yet still
run on an older version of Android. The library figures out how to use the
older APIs to implement the new features. If the same application runs
on a newer version of Android that already has those new features, the
compatibility library calls through to the underlying APIs present in that
newer version of Android.

This chapter will dive into the compatibility libraries and explain how to use
them and what to watch out for. If you aren’t developing applications for
older versions of Android, you could safely skip this chapter as you won’t

CHAPTER 5: Using the Compatibility Library for Older Devices84

need the libraries. The libraries are only useful if you want to include the
functionality of a new API in an application that will run on an old version of
Android that doesn’t have that new API.

It All Started with Tablets
The Android operating system was doing fine until it came time to support
tablets. The basic building block of an application was the activity, meant
to perform a single task for the user and to fill the screen of the device.
But tablets offered more real estate so the user could see and do a few
things at a time on one screen. So with Honeycomb (Android 3.0), Google
introduced fragments. This was a whole new concept, which changed
how developers created UIs and the logic that ran behind them. And this
would have been fine, except that there were still plenty of Android devices
(e.g., smartphones) in the wild which did not support fragments. What
Google figured out is that a compatibility library could be written to provide
comparable implementations of Fragment, etc., that used the existing APIs
in the older versions of Android. If an application linked in the compatibility
library, it could work with fragments even though the older version of
Android didn’t support fragments in the OS.

The Google engineers then looked at other features and APIs in new
Android and provided compatibility library features and APIs to match, so
that these features could also be used in older versions of Android without
having to release updates to those older versions of Android. In addition to
support for Fragments, compatibility libraries provide support for Loaders,
RenderScript, ActionBar, and others.

The compatibility library doesn’t always make things perfectly the same
between old and new. For example, the new Activity class is aware
of fragments. To use the compatibility library, you must extend the
FragmentActivity class instead of Activity; it is the FragmentActivity class
that works with fragments in old Android versions.

When you use the compatibility library, you will use those classes for your
application regardless of which version of Android it will run on. In other
words, you would only use FragmentActivity in your application and it
will do the right thing in all versions of Android, including Android 3.0 and
later. You would not try to include in the same application both Activity
for Android 3.0+ and FragmentActivity for Android below 3.0. When
FragmentActivity is executing on Android 3.0 and above, it can pretty
much call straight through to the underlying Activity class. There is no real
penalty to using a compatibility library on a recent Android version.

CHAPTER 5: Using the Compatibility Library for Older Devices

85

Adding the Library to Your Project
As of this writing, there are four compatibility libraries; together the
collection is called the Android Support Library, revision 21:

v4—contains 	 FragmentActivity, Fragment, Loader, and
quite a few other classes introduced after Android 3.0.
The number 4 represents Android API version 4
(i.e., Donut 1.6). It means this library can be used for
applications that run on Android API version 4 and above.

v7—makes available the 	 ActionBar, CardView,
GridLayout, MediaRouter, Palette and RecyclerView
classes. This library can be used with Android API
version 7 (i.e., Eclair 2.1) and above. There are actually
six libraries here: appcompat, cardview, gridlayout,
mediarouter, palette and recyclerview.

v8—adds RenderScipt capability to Android API version 	
8 (i.e., Froyo 2.2) and above. RenderScript allows for
parallelization of work across device processors (CPU
cores, GPUs, DSPs) and was introduced in Android API
version 11 (i.e., Honeycomb 3.0).

v13—adds some special 	 Fragment functionality for
things like tabbed and pager interfaces. This library
also contains many of the classes from v4 so it can
be included in your application without requiring other
libraries.

For a complete list of all compatibility functionality by version number,
please see the references at the end of this chapter.

To download the Android Support Library to your computer, use the Android
SDK Manager and look for it at the bottom of the list under Extras. If you’re
using Android Studio, download the Android Support Repository and Google
Repository. Otherwise, download Android Support Library instead. The
files will be placed under your Android SDK directory. The Android Support
Library can be found in extras/android/support/, the Android Support
Repository can be found in extras/android/m2repository, and the Google
Repository can be found in extras/google/m2repository. As of this writing,
the RenderScript compatibility library is not supported in Android Studio.

As you can see from the preceding bullet list, not all features of the Android
Support Library are available on all older versions of Android. Therefore you
must properly set android:minSdkVersion in your AndroidManifest.xml file.
If you are using a compatibility library feature from v7,
android:minSdkVersion should not be lower than 7.

CHAPTER 5: Using the Compatibility Library for Older Devices86

Including the v7 Support Library
There’s very little chance that you’d ever want to include the v4 library and not
the v7 library. Since the v7 library requires that the v4 library also be included
to provide the necessary classes for v7 to function properly, you’ll want to
include both. If you are using Eclipse, the ADT plug-in makes all of this pretty
easy. When you create a new Android project in Eclipse, you specify the
minimum version of Android that it will run on. If ADT thinks that you might
want the compatibility library included, it will automatically include it.

For example, if you specify a target SDK of 16 (JellyBean 4.1) but a minimum
SDK of 8 (Froyo 2.2), ADT will automatically set up an appcompat v7 library
project, include that library project in your new application, and also include
the v4 library as well in your application. The resources from the v7 library are
therefore available to your application without you having to do extra work.
However, if you want to use either of the other two v7 libraries (gridlayout and/
or mediarouter), those will require a little extra work, as will now be explained.
By creating a library project and including that in your application, it will
include the compatibility library resources that your application will need.

You will manually do something similar to what ADT did to automatically
include the v7 appcompat library into your project. To start, you will choose
File ➤ Import, then Existing Android Code Into Workspace, then navigate to
the extras folder where the Android SDK is on your workstation. Locate the
v7 gridlayout or mediarouter folder and choose that. See Figure 5-1.

Figure 5-1.  Importing the v7 mediarouter compatibility library

CHAPTER 5: Using the Compatibility Library for Older Devices

87

Click Finish and you will get a new library project. If you chose to create
a library project for v7 mediarouter, you will see that it is missing some
functionality so it has errors. You need to add in the v7 appcompat library
to clear that up. Right-click the mediarouter library project in Eclipse and
choose Properties. In the list on the left choose Android. Now click the
Add… button in the Library section. See Figure 5-2.

Figure 5-2.  Adding appcompat_v7 to the v7 mediarouter compatibility library

Select the appcompat_v7 library and click OK. That should clear up the
errors in mediarouter. Now when you want to include mediarouter in your
application project, simply follow the same procedure but right-click your
application project, and when you click the Add… button for Library, chose
the mediarouter library.

Including the v8 Support Library
If you want to use the v8 renderscript compatibility library, you simply add
the following two lines to the application project’s project.properties file
regardless of the target version of your application:
 
renderscript.target=19
renderscript.support.mode=true
 
If you see errors in the Eclipse Console regarding version numbers, try using
a later version as indicated by the error. However, the very latest version of
Android may not work for you either. The other thing you likely need to do

CHAPTER 5: Using the Compatibility Library for Older Devices88

is add the renderscript-v8.jar file as an external jar file to the project’s Build
Path. You will find this jar file under the SDK build-tools directory. Use the
latest version available.

Within your code, make sure you import from android.support.
v8.renderscript rather than android.renderscript. If you are modifying an
existing RenderScript application for the v8 library, make sure to clean your
project; the Java files that are generated from your .rs files need to be
regenerated to also use the v8 library. You can now use RenderScript as
usual and deploy your application to older versions of Android.

Including the v13 Support Library
Finally, to include the v13 compatibility library into your application, navigate
to the SDK extras directory and find the v13 jar file. Copy this file to the /
libs directory of your application project. Once the v13 jar file is in place,
right-click it to pull up the menu, and then choose Build Path ➤ Add to Build
Path. There’s a good chance you already have the v4 and v7 appcompat
libraries in your application courtesy of ADT. You may choose to get rid of
those if you don’t need the functionality from either one. For example, if the
minimum SDK for your application is v11, you can use the native ActionBar
class without the need for the v7 appcompat support library.

The v13 jar file contains many of the same classes as v4, so you don’t want
to cause any problems by having the same classes in twice. If you’re going
to have all three libraries in your application (i.e., v4, v7, and v13), then at
least ensure that v13 is ordered before v4. This can be done in the Configure
Build Path dialog box.

Including Just the v4 Support Library
If you really must have the v4 support library and none of the others, you
would follow the same procedure as for the v13 library.

Retrofitting an App with the Android Support
Library
To get a better feel for how this all works, you’re going to bring back a
fragment app you worked on in Chapter 1 and will make it work for older
versions of Android that don’t natively support fragments.

CHAPTER 5: Using the Compatibility Library for Older Devices

89

Use File ➤ Import, choose General, then Existing Projects into Workspace.
Navigate to the ShakespeareInstrumented project from Chapter 1 and
choose that. Check “Copy projects into workspace” before hitting Finish.

Now you’re going to retrofit this application to work on versions of Android
lower than API version 11. The following works when you don’t need
resources from the compatibility library, since it worries only about copying
in the JAR file.

1.	 Right-click your project and choose Android
Tools ➤ Add Support Library.... Accept the license
and click OK.

2.	 Now go into MainActivity.java and change the
base class from Activity to FragmentActivity.
You need to fix the import line from android.
app.Activity to android.support.v4.app.
FragmentActivity. Also fix the imports for Fragment,
FragmentManager, and FragmentTransaction to use
the ones from the support library.

3.	 Find the method calls for getFragmentManager() and
change these to getSupportFragmentManager().
Do this also for DetailsActivity.java.

4.	 For DetailsFragment.java, change the import for
Fragment to the one for the support library Fragment
(i.e., android.support.v4.app.Fragment).

5.	 In TitlesFragment.java, change the import for
ListFragment to the one for the support library
ListFragment (i.e., android.support.v4.app.
ListFragment).

The newer versions of Android use different animators from old Android.
You may need to fix animations in MainActivity.java in the showDetails()
method. Pick one of the commented out calls to setCustomAnimations(),
then play with the in and out animations. Anything that relies on an
ObjectAnimator class will not work on older devices since this class was
introduced with API version 11 (i.e., Honeycomb 3.0). It will compile but
since that class has not been implemented in older Android and has not
been included in the compatibility libraries, you will get a runtime exception.
In other words, avoid R.animator. Try using R.anim instead. You can copy
into your project anim resource files that you’d like to use, or you can try
referring to android.R.anim files.

CHAPTER 5: Using the Compatibility Library for Older Devices90

Now you can go into AndroidManifest.xml and change the minSdkVersion
from 11 to 8. That should be all you need to do. Try running this application
on a Froyo device or emulator. If all went well you should now be seeing a
fragment-based application running on a pre–Android 3.0 OS.

References
Here are some helpful references to topics you may wish to explore further:

	http://developer.android.com/tools/support-
library/index.html: The Android Developer’s Guide on
the Support Library package.

	http://developer.android.com/tools/support-
library/features.html: Android documentation on the
main features of each compatibility library.

	http://developer.android.com/tools/support-
library/setup.html: Android documentation on
setting up a compatibility library for your project, for
both Eclipse and Android Studio. At the time of this
writing, these pages were not as current as this chapter.
However, things change. If you experience trouble,
check the online documentation or contact the book’s
authors.

Summary
Let’s conclude this chapter by quickly enumerating what you have learned
about the Android compatibility libraries:

To get your application working on the broadest array of 	
devices, use the compatibility libraries and code to their
APIs rather than the latest and greatest APIs.

The v7 support libraries come with resources that must 	
be included in your application for the APIs to work
properly.

http://developer.android.com/tools/support-library/index.html
http://developer.android.com/tools/support-library/index.html
http://developer.android.com/tools/support-library/features.html
http://developer.android.com/tools/support-library/features.html
http://developer.android.com/tools/support-library/setup.html
http://developer.android.com/tools/support-library/setup.html

91

Chapter 6
Advanced AsyncTask
and Progress Dialogs

In many Android applications, you will need to perform work behind the UI
in a separate thread. While the work is going on, you might want to display
some sort of progress indicator to the user. While it is possible to create
your own threads, manage them, and coordinate UI updates from your
thread, Android provides a couple of classes that take care of a lot of this
for you automatically. Then you can focus on the actual work that you want
to do, instead of the code for threads and messaging to the UI. The classes
that do this are AsyncTask and ProgressDialog.

This chapter will start with the basics of an AsyncTask and move to the code
needed to present progress dialogs and progress bars that show the status
of an AsyncTask correctly even if the device changes its configuration.

Introducing the AsyncTask
Let’s start by introducing the AsyncTask through pseudocode in Listing 6-1.

Listing 6-1.  Usage Pattern for an AsyncTask by an Activity

public class MyActivity {
 void respondToMenuItem( ) { //menu handler
 performALongTask( );
 }

CHAPTER 6: Advanced AsyncTask and Progress Dialogs92

 void performALongTask( ) { //using an AsyncTask
 //Derive from an AsyncTask, and Instantiate this AsyncTask
 MyLongTask myLongTask = new MyLongTask(...CallBackObjects...);
 �myLongTask.execute(...someargs...); //start the work on a worker

thread
 //have the main thread get back to its UI business
 }

 //Hear back from the AsyncTask
 void someCallBackFromAsyncTask(SomeParameterizedType x) {
 �//Although invoked by the AsyncTask this code runs on the main

thread.
 //report back to the user of the progress
 }
}
 
Use of an AsyncTask starts with extending from AsyncTask first like the
MyLongTask in Listing 6-1. Once you have the AsyncTask object instantiated,
you can call execute( ) method on that object. The execute( ) method
internally starts a separate thread to do the actual work. The AsyncTask
implementation will in turn invoke a number of callbacks to report the
beginning of the task, the progress of the task, and the end of the task.
Listing 6-2 shows pseudocode to extend an AsyncTask and the methods
that need to be overridden. (Please note that this is pseudocode and not
intended to be compiled. The @Override annotation is added to explicitly
state that they are overridden from the base class).

Listing 6-2.  Extending an AsyncTask: An Example

public class MyLongTask extends AsyncTask<String,Integer,Integer> {
 //... constructors stuff
 //Calling execute( ) will result in calling all of these methods
 @Override
 void onPreExecute( ){} //Runs on the main thread
 
 //This is where you do all the work and runs on the worker thread
 @Override
 Integer doInBackground(String... params){}
 
 //Runs on the main thread again once it finishes
 @Override
 void onPostExecute(Integer result){}
 
 //Runs on the main thread
 @Override
 void onProgressUpdate(Integer... progressValuesArray){}
 //....other methods
}
 

CHAPTER 6: Advanced AsyncTask and Progress Dialogs

93

execute( ) method in Listing 6-1 is called on the main thread. This call will
trigger a series of methods in Listing 6-2, starting with onPreExecute( ). The
onPreExecute( ) is called on the main thread as well. You can use this method
to set up your environment to execute the task. You can also use this
method to set up a dialog box or initiate a progress bar to indicate to the
user that the work has started. After the completion of the onPreExecute( ),
execute( ) method will return and the main thread of the activity continues
with its UI responsibilities. By that time the execute( ) would have spawned
a new worker thread so that doInBackground( ) method is scheduled to be
executed on that worker thread. You will do all your heavy lifting in this
doInBackground( ) method. As this method runs on a worker thread, the main
thread is not affected and you will not get the “application not responding”
message. From the doInBackground( ) method you have a facility (you will
see this shortly) to call the onProgressUpdate( ) to report the progress. This
onProgressUpdate( ) method runs on the main thread so that you can affect
the UI on the main thread.

Implementing a Simple AsyncTask
Let’s get into the details of extending the AsyncTask. The AsyncTask class
uses generics to provide type safety to its methods, including the overridden
methods. You can see these generics when you look at the partial definition
(Listing 6-3) of the AsyncTask class. (Please note that Listing 6-3 is an
extremely pruned-down version of the AsyncTask class. It’s really just the
elements of its interface most commonly used by client code.)

Listing 6-3.  A Quick Look at the AsyncTask Class Definition

public class AsyncTask<Params, Progress, Result> {
 //A client will call this method
 AsyncTask<Params, Progress, Result> execute(Params... params);
  
 //Do your work here. Frequently triggers onProgressUpdate( )
 Result doInBackground(Params... params);
  
 //Callback: After the work is complete
 void onPostExecute(Result result);
 
 //Callback: As the work is progressing
 void onProgressUpdate(Progress... progressValuesArray);
}
 

CHAPTER 6: Advanced AsyncTask and Progress Dialogs94

Studying Listing 6-3, you can see that the AsyncTask (through generics)
needs the following three parameterized types (Params, Progress, and
Result) when you extend it. Let’s explain these types briefly:

	Params (The type of parameters to the execute( )
method): When extending AsyncTask, you will need
to indicate the type of parameters that you will pass
to the execute( ) method. If you say your Params
type is String, then the execute( ) method will
expect any number of strings separated by commas
in its invocation such as execute(s1,s2,s3) or
execute(s1,s2,s3,s4,s5).

	Progress (Parameter types to the progress callback
method): This type indicates the array of values
passed back to the caller while reporting progress
through the callback onProgressUpdate(Progress...
progressValuesArray). The ability to pass an array
of progress values allows situations where multiple
aspects of a task can be monitored and reported on.
For example, this feature could be used if an AsyncTask
is working on multiple subtasks.

	Result (Type used to report the result through
onPostExecute( ) method): This type indicates the type
of the data returned by doInBackground(), which is
ultimately passed to onPostExecute() for handling in a
thread-safe manner.

Knowing now the needed generic types for an AsyncTask, suppose we
decide on the following parameters for our specific AsyncTask: Params:
A String, Result: An Integer, Progress: An Integer. Then, we can declare
an extended AsyncTask class as shown in Listing 6-4.

Listing 6-4.  Extending the Generic AsyncTask Through Concrete Types

public class MyLongTask
extends AsyncTask<String,Integer,Integer>
{
 //...other constructors stuff
 //...other methods
 //Concrete methods based on the parameterized types
 protected Integer doInBackground(String... params){}
 protected void onPostExecute(Integer result){}
 protected void onProgressUpdate(Integer... progressValuesArray){}

 //....other methods
}
 

CHAPTER 6: Advanced AsyncTask and Progress Dialogs

95

Notice how this concrete class in Listing 6-4, MyLongTask, has
disambiguated the type names and arrived at function signatures that are
type safe.

Implementing Your First AsyncTask
Let’s now look at a simple, but complete, implementation of MyLongTask.
We have amply commented the code in Listing 6-5 inline to indicate which
methods run on which thread. Also pay attention to the constructor of
MyLongTask where it receives object references of the calling context (usually
an activity) and also a specific simple interface such as IReportBack to log
progress messages.

The IReportBack interface is not critical to your understanding because it
is merely a wrapper to a log. Same is true with the Utils class as well. You
can see these additional classes in both of the downloadable projects for
this chapter. The URL for the downloadable projects is in the references
section at the end of this chapter. Listing 6-5 shows the complete code for
MyLongTask.

Listing 6-5.  Complete Source Code for Implementing an AsyncTask

//The following code is in MyLongTask.java (AndroidFragments_Ch06_
TestAsyncTask.zip)
//Use menu item: Test Async1 to invoke this code
public class MyLongTask extends AsyncTask<String,Integer,Integer>
{
 IReportBack r; // an interface to report back log messages
 Context ctx; //The activity to start a dialog
 public String tag = null; //Debug tag
 �ProgressDialog pd = null; //To start, report, and stop a progress

dialog
 
 //Constructor now
 MyLongTask(IReportBack inr, Context inCtx, String inTag) {
 r = inr; ctx = inCtx; tag = inTag;
 }
 //Runs on the main ui thread
 protected void onPreExecute( ) {
 Utils.logThreadSignature(this.tag);
 pd = ProgressDialog.show(ctx, "title", "In Progress...",true);
 }

CHAPTER 6: Advanced AsyncTask and Progress Dialogs96

 �//Runs on the main ui thread. Triggered by publishProgress called
multiple times

 protected void onProgressUpdate(Integer... progress) {
 Utils.logThreadSignature(this.tag);
 Integer i = progress[0];
 r.reportBack(tag, "Progress:" + i.toString( ));
 }
 protected void onPostExecute(Integer result) {
 //Runs on the main ui thread
 Utils.logThreadSignature(this.tag);
 r.reportBack(tag, "onPostExecute result:" + result);
 pd.cancel( );
 }
 //Runs on a worker thread. May even be a pool if there are more tasks.
 protected Integer doInBackground(String...strings) {
 Utils.logThreadSignature(this.tag);
 for(String s :strings) {
 Log.d(tag, "Processing:" + s);
 }
 for (int i=0;i<3;i++) {
 Utils.sleepForInSecs(2);
 publishProgress(i); //this calls onProgressUpdate
 }
 return 1; //this value is then passed to the onPostExecute as input
 }
}
 
We will go into the details of each of the methods highlighted in Listing 6-5
after covering briefly how a client would make use of (or call) MyLongTask.

Calling an AsyncTask
Once we have the class MyLongTask implemented, a client will utilize this
class as shown in Listing 6-6.

Listing 6-6.  Calling an AsyncTask

//You will find this class AsyncTester.java(AndroidFragments_Ch06_
TestAsyncTask.zip)
//Use menu item: Test Async1 to invoke this code
void respondToMenuItem( ) {
 //An interface to log some messages back to the activity
 //See downloadable project if you need the details.
 IReportBack reportBackObject = this;
 Context ctx = this; //activity
 String tag = "Task1"; //debug tag
 

CHAPTER 6: Advanced AsyncTask and Progress Dialogs

97

 //Instantiate and execute the long task
 MyLongTask mlt = new MyLongTask(reportBackObject,ctx,tag);
 mlt.execute("String1","String2","String3");
}
 
Notice how the execute( ) method is called in Listing 6-6. Because we
have indicated one of the generic types as a String and that the execute( )
method takes a variable number of arguments for this type, we can pass any
number of strings to the execute( ) method. In the example in Listing 6-6, we
have passed three string arguments. You can pass more or less as you need.

Once we call the execute( ) method on the AsyncTask, this will result in a call
to the onPreExecute( ) method followed by a call to the doInBackground( )
method. The system will also call the onPostExecute( ) callback once the
doInBackground( ) method finishes. Refer to Listing 6-5 for how these
methods are implemented.

Understanding the onPreExecute( ) Callback and
Progress Dialog
Going back to MyLongTask implementation in Listing 6-5, in the
onPreExecute( ) method we started a progress dialog to indicate that
the task is in progress. Figure 6-1 shows an image of that dialog.
(Use menu item Test Async1 to invoke this view from project download
AndroidFragments_Ch06_TestAsyncTask.zip.)

Figure 6-1.  A simple progress dialog interacting with an AsyncTask

CHAPTER 6: Advanced AsyncTask and Progress Dialogs98

The code segment (taken from Listing 6-5) that shows the progress dialog is
reproduced in Listing 6-7.

Listing 6-7.  Showing an Indeterminate Progress Dialog

pd = ProgressDialog.show(ctx, "title", "In Progress...",true);
 
The variable pd was already declared in the constructor (see Listing 6-5).
This call in Listing 6-7 will create a progress dialog and display it as shown in
Figure 6-1. The last argument to the show( ) method in Listing 6-7 indicates if
the dialog is indeterminate (whether the dialog can estimate beforehand how
much work there is). We will cover the deterministic case in a later section.

Note  Showing progress of an AsyncTask reliably is quite involved. This
is because an activity can come and go, because of either a configuration
change or another UI taking precedence. We will cover this essential need
and solution later in the chapter.

Understanding the doInBackground( ) Method
All the background work carried out by the AsyncTask is done in the
doInBackground( ) method. This method is orchestrated by the AsyncTask to
run on a worker thread. As a result, this work is allowed to take more than
five seconds, unlike the work done on a main thread.

In our example from Listing 6-5, in the doInBackground( ) method we simply
retrieve each of the input strings to the task as if they are an array. In this
method definition we haven’t defined an explicit string array. However, the
single argument to this function is defined as a variable-length argument, as
shown in Listing 6-8.

Listing 6-8.  doInBackground( ) Method Signature

protected Integer doInBackground(String...strings)
 
Java then treats the argument as if it is an array inside the function. So in
our code in the doInBackground( ) method, we read each of the strings and
log them to indicate that we know what they are. We then wait long enough
to simulate a long-running operation. Because this method is running in a
worker thread, we should not access the UI functionality of Android from
this worker thread. For instance, you should not update any Views directly
even if you have access to them from this thread. You cannot even send a
Toast from here. The next two methods allow us to overcome this.

CHAPTER 6: Advanced AsyncTask and Progress Dialogs

99

Triggering onProgressUpdate( ) through
publishProgress( )
In the doInBackground( ) method, you can trigger onProgressUpdate( ) by
calling the publishProgress( ) method. The triggered onProgressUpdate( )
method then runs on the main thread. This allows the onProgressUpdate( )
method to update UI elements such as Views appropriately. You can also send
a Toast from here. In Listing 6-5, we simply log a message. Once all the work
is done, we return from the doInBackground( ) method with a result code.

Understanding the onPostExecute( ) Method
The result code from the doInBackground( ) method is then passed to the
onPostExecute( ) callback method. This callback is also executed on the
main thread. In this method, we tell the progress dialog to close. Being on
the main thread, you can access any UI elements in this method with no
restrictions.

Upgrading to a Deterministic Progress Dialog
In the previous example in Listing 6-5, we used a progress dialog
(Figure 6-1) that doesn’t tell us what portion of the work is complete. This
progress dialog is called an indeterminate progress dialog. If you set the
indeterminate property to false on this progress dialog, you will see a
progress dialog that tracks progress in steps. This is shown in Figure 6-2.
(Use menu item “Test Async 2” to invoke this view from project download
AndroidFragments_Ch06_TestAsyncTask.zip.)

CHAPTER 6: Advanced AsyncTask and Progress Dialogs100

Listing 6-9 shows the previous task from Listing 6-5 rewritten to change the
behavior of the progress dialog to a deterministic progress dialog. We have
also added an onCancelListener to see if we need to cancel the task on
cancelling the dialog. A user can click the back button in Figure 6-2 to cancel
the dialog. Key portions of the code are given in Listing 6-9 (for the full code,
see the download file AndroidFragments_Ch06_TestAsyncTask.zip).

Listing 6-9.  A Long Task Utilizing a Deterministic Progress Dialog

//Following code is in MyLongTask1.java(AndroidFragments_Ch06_TestAsyncTask.zip)
//Use menu item: Test Async2 to invoke this code
public class MyLongTask1 extends AsyncTask<String,Integer,Integer>
implements OnCancelListener
{
 //..other code taken from Listing 6-5
 //Also refer to the java class MyLongTask1.java in the downloadable project
 //for full code listing.
 protected void onPreExecute( ) {
 //....other code
 pd = new ProgressDialog(ctx);
 pd.setTitle("title");
 pd.setMessage("In Progress...");
 pd.setCancelable(true);
 pd.setOnCancelListener(this);
 pd.setIndeterminate(false);

Figure 6-2.  A progress dialog showing explicit progress, interacting with an AsyncTask

CHAPTER 6: Advanced AsyncTask and Progress Dialogs

101

 pd.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL);
 pd.setMax(5);
 pd.show( );
 }
 public void onCancel(DialogInterface d) {
 r.reportBack(tag,"Cancel called on the dialog");
 this.cancel(true);
 }
 //..other code taken from Listing 6-5
}
 
Notice how we have prepared the progress dialog in Listing 6-9. In this case
we haven’t used the static method show( ), in contrast to what we did in
Listing 6-5, on the progress dialog. Instead, we explicitly instantiated the
progress dialog. The variable ctx stands for the context (or activity) in which
this UI progress dialog operates. Then we individually set the properties on
the dialog, including its deterministic or indeterminate behavior. The method
setMax( ) indicates how many steps the progress dialog has. We have also
passed the self reference (the AsyncTask itself) as a listener when a dialog
cancel is triggered. In the cancel callback, we explicitly issue a cancel on
the AsyncTask. The cancel( ) method with a boolean argument of false
will set a flag on the AsyncTask which can be queried with isCancelled().
The doInBackground() method should periodically check isCancelled() to
gracefully end early if cancelled. A boolean argument of true will force-stop
the worker thread.

AsyncTask and Thread Pools
Consider the code in Listing 6-10, where a menu item is invoking two
AsyncTasks one after the other.

Listing 6-10.  Invoking Two Long-Running Tasks

void respondToMenuItem( ) {
 MyLongTask mlt = new MyLongTask(this.mReportTo,this.mContext,"Task1");
 mlt.execute("String1","String2","String3");

 MyLongTask mlt1 = new MyLongTask(this.mReportTo,this.mContext,"Task2");
 mlt1.execute("String1","String2","String3");
}
 
Here we are executing two tasks on the main thread. You may expect
that both the tasks get started close to each other. The default behavior,
however, is that these tasks run sequentially using a single thread drawn
out of a pool of threads. If you want a parallel execution, you can use

CHAPTER 6: Advanced AsyncTask and Progress Dialogs102

the executeOnExecutor( ) method on the AsyncTask. See the reference
documentation of AsyncTask for details on this method. Also as per the SDK
documentation, it is not valid to call the execute( ) method more than once
on a single AsyncTask. If you want that behavior, you have to instantiate a
new task and call the execute( ) method again.

Issues and Solutions for Correctly Showing
the Progress of an AsyncTask
If your primary goal with this chapter is to learn just the essentials of
AsyncTask, then what we have covered so far is sufficient. However, there
are some issues when an AsyncTask is paired with a progress dialog
as shown in the previous listings so far. One of those issues is that an
AsyncTask will lose the correct activity reference when the device is rotated,
thereby also losing its reference to the progress dialog. The other issue is
that the progress dialog we used earlier in the code is not a managed dialog.
Let’s understand these issues now.

Dealing with Activity Pointers and Device Rotation
The activity pointer that is held by the AsyncTask becomes stale when the
activity is re-created because of a configuration change. This is because
Android has created a new activity and the old activity is no longer shown
on the screen. So holding on to the old activity and its corresponding dialog
is bad for a couple of reasons. The first is that the user is not seeing that
activity or dialog that the AsyncTask is trying to update. The second reason
is that the old activity needs to be garbage collected and you are stopping
it from getting garbage collected because the AsyncTask is holding on to its
reference. If you were to be smart and use a Java weak reference for the
old activity, then you wouldn’t leak memory but you would get a null pointer
exception. The case of a stale pointer is true not only of the activity pointer
but any other pointer that indirectly points to the activity.

The recommended way to address the stale activity reference issue is to use
headless retained fragments. (Fragments are covered in Chapter 1. Retained
fragments are fragments that stay around while the activity is re-created
due to a configuration change. These fragments are also called headless
because they don’t necessarily have to hold any UI.)

CHAPTER 6: Advanced AsyncTask and Progress Dialogs

103

Dealing with Managed Dialogs
Even if we are able to solve the stale activity reference issue and
reestablish the connectivity to the current activity, there is a flaw in the way
progress dialogs were used so far in this chapter. We have instantiated a
ProgressDialog directly. A ProgressDialog created in this manner is not a
“managed” dialog. If it is not a managed dialog, the activity will not re-create
the dialog when the device undergoes rotation or any other configuration
change. So, when the device rotates the AsyncTask is still running
uninterrupted but the dialog will not show up. There are a couple of ways
to solve this problem as well. The recommended way is not to use progress
dialogs but instead use an embedded UI control in the activity itself, such as
a progress bar. Because a progress bar is part of the activity view hierarchy,
the hope is that it will be re-created. Although a progress bar sounds good,
there are times when a modal progress dialog makes more sense. For
example, that would be the case if you don’t want the user to interact with
any other part of the activity while the AsyncTask is running. In those cases,
we see little contradiction in using fragment dialogs instead of progress bars.

The solution you will see next uses a retained non-UI fragment plus a progress
dialog that is recreated as necessary if and when the activity is recreated due
to a configuration change. There are other ways that you might choose to
implement a progress indicator, and they could use a similar technique.

Testing Scenarios for a Well-Behaved Progress
Dialog
Whichever solution you use to correctly display a progress dialog for an
AsyncTask, the solution should work in all of the following test scenarios:

1.	 Without an orientation change the progress dialog
must start, show its progress, end, and also clean
up the reference to the AsyncTask. This must work
repeatedly to show that there are no vestiges left
from the previous run.

2.	 The solution should handle the orientation changes
while the task is in the middle of its execution.
The rotation should re-create the dialog and show
progress where it left off. The dialog should properly
finish and clean up the AsyncTask reference. This
must work repeatedly to show that there are no
vestiges left behind.

CHAPTER 6: Advanced AsyncTask and Progress Dialogs104

3.	 Going Home should be allowed even when the task
is in the middle of execution.

4.	 Going Home and revisiting the activity should show
the dialog and correctly reflect the current progress,
and the progress should never be less than the
one before.

5.	 Going Home and revisiting the activity also should
work when the task finishes before returning.
The dialog should be properly dismissed and the
AsyncTask reference removed.

This set of test cases should always be performed for all activities dealing
with AsyncTasks. Now that we have laid out how a solution should satisfy,
let’s show one that uses a retained fragment and progress dialog.

Using a Retained Fragment and a Progress Dialog
In this solution, let’s show you how to use a retained fragment and a
progress dialog for displaying progress correctly for an AsyncTask. This
solution involves the following steps:

1.	 The activity must keep track of non-UI fragment.
This external fragment must stick around and its
reference validated as the activity is closed and
brought back. This retained fragment holds a
reference to the AsyncTask.

2.	 A retained fragment then will have a pointer to the
AsyncTask and can set and reset the activity pointer
on AsyncTask as the activity comes and goes. So,
this retained fragment acts as an intermediary
between the activity and the AsyncTask.

3.	 The AsyncTask then will instantiate a progress dialog.
The AsyncTask will use the activity pointer that is set
by the retained fragment to accomplish this, as you
will need an activity to create a progress dialog.

4.	 The AsyncTask will re-create the dialog as the device
rotates and keeps its state properly.

CHAPTER 6: Advanced AsyncTask and Progress Dialogs

105

5.	 A user can go Home by tapping Home and use other
apps. This will push our activity, and the dialog with
it, into the background. This must be handled. When
the user returns to the activity or app, the dialog can
continue to show the progress. The AsyncTask must
know how to dismiss the dialog if the task finishes
while the activity is hidden.

Exploring Key Code Snippets
We will present now the key pieces of code that are used to implement
the outlined approach. The rest of the implementation can be found in the
downloadable project AndroidFragments_Ch06_TestAsyncTask2.zip for this
chapter. Listing 6-11 presents the source code of the retained fragment first.
This fragment manages the AsyncTask on behalf of the activity.

Listing 6-11.  Managing an AsyncTask with a Retained non-UI Fragment

public class AsyncTaskFragment extends Fragment {
 private static final String tag = "AsyncTaskFragment";
 private TestAsyncTaskDriverActivity ctx = null;
 private MyLongTask mlt = null;
  
 public static AsyncTaskFragment newInstance(String... params) {
 AsyncTaskFragment myMF = new AsyncTaskFragment( );
 Bundle bundle = new Bundle( );
 bundle.putStringArray("params", params);
 myMF.setArguments(bundle);
 return myMF;
 }
 
 @Override
 public void onAttach(Activity activity) {
 super.onAttach(activity);
 ctx = (TestAsyncTaskDriverActivity) activity;
 if(mlt != null &&
 mlt.getStatus( ) != AsyncTask.Status.FINISHED) {
 // we must have an incomplete task, make
 // sure it has the correct activity
 mlt.setActivity(activity);
 }

CHAPTER 6: Advanced AsyncTask and Progress Dialogs106

 else {
 mlt = new MyLongTask(ctx, ctx, "Task1");
 String[] params = this.getArguments( )
 .getStringArray("params");
 mlt.execute(params);
 }
 }
  
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 }
  
 // When the activity is going away, make sure
 // to dismiss the dialog if it's there.
 @Override
 public void onDetach( ) {
 super.onDetach( );
 Log.d(tag, "calling for dismissal of the dialog");
 if(mlt != null) {
 mlt.dismissDialog( );
 }
 }
}
 
Code in Listing 6-11 shows how to set up a non-UI fragment as a
go-between from the activity to the AsyncTask. By setting the fragment to be
retained, it will survive configuration changes. It also takes the list of strings
from the activity and easily passes those on to the AsyncTask. However,
the AsyncTask is going to invoke UI changes on the activity and not on this
fragment. Since the fragment will get notified when the activity is going
away (i.e., via the onDetach( ) callback), it can let the AsyncTask know to
dismiss the dialog. The fragment also knows when the activity gets attached
to this fragment, and if there is an already-running AsyncTask. It means the
activity has been recreated due to a configuration change. Therefore, this
fragment can notify the AsyncTask of the new activity so it can re-generate
the progress dialog. If there is not a running AsyncTask, this fragment creates
a new one and executes it.

Let’s see now how an AsyncTask can create and control this progress
dialog. Listing 6-12 presents the code for the AsyncTask in order to aid this
understanding.

CHAPTER 6: Advanced AsyncTask and Progress Dialogs

107

Listing 6-12.  AsyncTask That Uses a Progress Dialog

public class MyLongTask
extends AsyncTask<String,Integer,Integer>
implements OnCancelListener
{
 private IReportBack r;
 private Context ctx;
 private String tag = null;
 private ProgressDialog pd = null;
 final private int PDMAX = 5;
 private int pd_progress = 0;
 MyLongTask(IReportBack inr, Context inCtx, String inTag)
 {
 r = inr;
 ctx = inCtx;
 tag = inTag;
 }
 protected void onPreExecute( )
 {
 //Runs on the main ui thread
 Utils.logThreadSignature(this.tag);
 pd = newPDinstance(0);
 pd.show( );
 }
 protected void onProgressUpdate(Integer... progress)
 {
 //Runs on the main ui thread
 Utils.logThreadSignature(this.tag);
 this.reportThreadSignature( );

 //will be called multiple times
 //triggered by onPostExecute
 Integer i = progress[0];
 r.reportBack(tag, "Progress:" + i.toString( ));
 pd.setProgress(i);
 }
 protected void onPostExecute(Integer result)
 {
 //Runs on the main ui thread
 Utils.logThreadSignature(this.tag);
 r.reportBack(tag, "onPostExecute result:" + result);
 pd.cancel( );
 r.allDone(0);
 }

CHAPTER 6: Advanced AsyncTask and Progress Dialogs108

 protected Integer doInBackground(String...strings)
 {
 //Runs on a worker thread
 //May even be a pool if there are
 //more tasks.
 Utils.logThreadSignature(this.tag);

 for(String s :strings)
 {
 Log.d(tag, "Processing:" + s);
 }
 for (int i=0;i<PDMAX;i++)
 {
 Utils.sleepForInSecs(2);
 publishProgress(i+1);
 if(isCancelled( )) {
 Log.e(tag, "*** This task has been cancelled");
 break;
 }
 }
 return 1;
 }
  
 public void onCancelled(Integer result) {
 Log.d(tag, "AsyncTask was cancelled");
 r.allDone(1);
 }
  
 protected void reportThreadSignature( )
 {
 String s = Utils.getThreadSignature( );
 r.reportBack(tag,s);
 }
 
 public void onCancel(DialogInterface d)
 {
 r.reportBack(tag,"Cancel called on the dialog");
 // Therefore, cancel the AsyncTask
 this.cancel(false);
 }
  
 // Must detach the progress dialog from the
 // activity before it's gone away, otherwise
 // we'll get a window leaked exception.
 public void dismissDialog( ) {
 if(pd != null) {
 pd_progress = pd.getProgress( );
 pd.dismiss( );
 }
 }
  

CHAPTER 6: Advanced AsyncTask and Progress Dialogs

109

 // When there's a new activity, need to kill the
 // old dialog and create a new one, but with the
 // latest progress.
 public void setActivity(Context newCtx) {
 r = (IReportBack)newCtx;
 ctx = newCtx;
 pd = newPDinstance(pd_progress);
 pd.show( );
 }
  
 private ProgressDialog newPDinstance(int progress) {
 ProgressDialog newPD = new ProgressDialog(ctx);
 newPD.setTitle("title");
 newPD.setMessage("In progress...");
 newPD.setCancelable(true);
 newPD.setOnCancelListener(this);
 newPD.setIndeterminate(false);
 newPD.setProgressStyle(ProgressDialog.STYLE_HORIZONTAL);
 newPD.setMax(PDMAX);
 newPD.setProgress(progress);
 return newPD;
 }
}
 
This AsyncTask in Listing 6-12 looks a lot like the earlier one from the
beginning of this chapter. It handles the management of its progress
dialog so that it acts like a cohesive unit and thereby doesn’t contaminate
the main activity with the details of this AsyncTask. It does, however, use
a new method in the IReportBack interface, to allow this AsyncTask to
tell the activity when it is finished. You will see in Listing 6-13 that the
activity uses the allDone( ) method to get rid of the retained fragment that
managed this AsyncTask. This is how the cleanup is done. You should notice
that the progress dialog gets instantiated in two different places: in the
onPreExecute( ) callback when the AsyncTask is starting up for the first time,
and in setActivity( ) when there’s a new activity and therefore a new dialog
is required.

When creating the progress dialog in setActivity( ), the last known
progress value is used to start the dialog where it left off. To ensure no
memory leaks, the dismissDialog( ) method is provided to the retained
fragment so the dialog can be removed before the activity is destroyed.
The retained fragment knows the activity is going away because of its
onDetach( ) callback.

Listing 6-13 shows the activity that calls the retained fragment to setup the
AsyncTask. You should notice that there are no references to an AsyncTask
within the activity code, only the fragment is known to the activity.

CHAPTER 6: Advanced AsyncTask and Progress Dialogs110

Listing 6-13.  Activity that calls the Retained Fragment

public class TestAsyncTaskDriverActivity extends Activity
implements IReportBack
{
 public static final String tag="TestAsyncTaskDriverActivity";
 private static final String ASYNCTASKFRAG = "ASYNCTASKFRAG";
  
 private AsyncTaskFragment atf = null;
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 if ((atf = (AsyncTaskFragment) getFragmentManager( )
 .findFragmentByTag(ASYNCTASKFRAG)) != null) {
 // we found an incomplete AsyncTask in the background
 Log.d(tag, "Found an incomplete AsyncTask");
 }
 }
 
 @Override
 public boolean onCreateOptionsMenu(Menu menu){
 super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater( );
 inflater.inflate(R.menu.main_menu, menu);
 return true;
 }
 @Override
 public boolean onOptionsItemSelected(MenuItem item){
 appendMenuItemText(item);
 if (item.getItemId( ) == R.id.menu_clear){
 this.emptyText( );
 return true;
 }
 if (item.getItemId( ) == R.id.menu_test_async1){
 if(atf == null) {
 atf = AsyncTaskFragment
 .newInstance("String1","String2","String3");
 getFragmentManager( ).beginTransaction( )
 .add(atf, ASYNCTASKFRAG).commit( );
 }
 return true;
 }
 return true;
 }
 private TextView getTextView( ){
 return (TextView)this.findViewById(R.id.text1);
 }

CHAPTER 6: Advanced AsyncTask and Progress Dialogs

111

 private void appendMenuItemText(MenuItem menuItem){
 String title = menuItem.getTitle( ).toString( );
 TextView tv = getTextView( );
 tv.setText(tv.getText( ) + "\n" + title);
 }
 private void emptyText( ){
 TextView tv = getTextView( );
 tv.setText("");
 }
 private void appendText(String s){
 TextView tv = getTextView( );
 tv.setText(tv.getText( ) + "\n" + s);
 Log.d(tag,s);
 }
 public void reportBack(String tag, String message)
 {
 this.appendText(tag + ":" + message);
 Log.d(tag,message);
 }
 public void reportTransient(String tag, String message)
 {
 String s = tag + ":" + message;
 Toast.makeText(this, s, Toast.LENGTH_SHORT).show( );
 reportBack(tag,message);
 Log.d(tag,message);
 }
 
 public void allDone(int status) {
 // Could do various things based on the returned status
 // but need to throw away the fragment so we can do this
 // again if needed.
 Log.d(tag, "AsyncTask returned: " + status);
 getFragmentManager( ).beginTransaction( )
 .remove(atf).commitAllowingStateLoss( );
 atf = null;
 }
}
 
There are really just three places that the activity deals with the fragment.
In the onCreate( ) callback, the activity checks to see if there is an existing
retained fragment and if it exists, Android will automatically re-attach it to
the activity.

The menu click code will create a new retained fragment (and therefore the
associated AsyncTask) if one is not already there. We do not want more than
one at a time. And finally, in the allDone( ) callback, the retained fragment
will be destroyed when it is finished performing its duties. Notice the

CHAPTER 6: Advanced AsyncTask and Progress Dialogs112

commitAllowingStateLoss( ) method in allDone( ). This is used because the
activity may not be visible, but we still want to attempt to remove the retained
fragment. If regular commit( ) is used, an exception will be thrown.

There are further considerations if the AsyncTask were doing updates and
changing state. If that is the case, you may want to use a background
service so that it can be restarted if the process is to be reclaimed and
restarted later. You could also consider using a notification to track progress
of some background task related to your application, similar to how the
Google Play Store shows you the progress of applications that are being
downloaded and installed/upgraded. The approaches presented here are
adequate for quick- to medium-level reads as you are expecting the user
to wait. However, for longer-time reads or writes, you may want to adapt a
service-based solution.

References
The following references will help you learn more about the topics discussed
in this chapter:

	http://developer.android.com/reference/android/
os/AsyncTask.html: A key resource that definitively
documents the behavior of AsyncTask.

	www.shanekirk.com/2012/04/asynctask-missteps/:
Another look at a well-behaved AsyncTask.

	www.androidbook.com/item/3536: Research notes on
AsyncTask that we gathered in preparing this chapter.

	www.androidbook.com/item/3537: Android uses Java
generics often in its API. This URL documents a few
basics on Java generics to get you started.

	www.androidbook.com/fragments: As this chapter
has demonstrated, to work with an AsyncTask
authoritatively you need to know a lot about activity life
cycle, fragments, their life cycle, headless fragments,
configuration changes, fragment dialogs, AsyncTask,
and more. This URL has a number of articles focusing
on all these areas.

	www.androidbook.com/item/4660: ADO is an abstraction
that one of our authors espoused as a handy tool to
deal with configuration change. This URL documents
what ADOs are and how they could be used, and it also
provides a preliminary implementation.

http://developer.android.com/reference/android/os/AsyncTask.html
http://developer.android.com/reference/android/os/AsyncTask.html
http://www.shanekirk.com/2012/04/asynctask-missteps/
http://www.androidbook.com/item/3536
http://www.androidbook.com/item/3537
http://www.androidbook.com/fragments
http://www.androidbook.com/item/4660

CHAPTER 6: Advanced AsyncTask and Progress Dialogs

113

	www.androidbook.com/item/4674: This URL documents
the background, helpful URLs, code snippets, and
helpful hints to work with a ProgressBar.

	www.androidbook.com/item/4680: This URL has a good
bit of research on activity life cycle in the event of
configuration changes.

	www.androidbook.com/item/4665: It is quite hard to write
programs that work well when devices rotate. This URL
outlines some basic test cases you must successfully
run for validating AsyncTask.

	www.androidbook.com/item/4673: This URL suggests an
enhanced pattern for constructing inherited fragments.

	www.androidbook.com/item/4629: The best way to
understand a fragment, including a retained fragment,
is to study its callbacks diligently. This URL provides
documented sample code for all the important callbacks
of a fragment.

	www.androidbook.com/item/4668: The best way to
understand an activity life cycle is study its callbacks
diligently. This URL provides documented sample code
for all the important activity callbacks.

	www.androidbook.com/item/3634: This URL outlines our
research on fragment dialogs.

	www.androidbook.com/AndroidFragments/projects:
A list of downloadable projects from this book is at
this URL. For this chapter, look for a zip file named
AndroidFragments_Ch06_AsyncTask.zip.

Summary
In this chapter, in addition to covering AsyncTask, we have introduced
you to progress dialogs, and headless retained fragments. Reading this
chapter, you not only understood AsyncTask but also got to apply your
understanding of activity life cycle and a deep understanding of fragments.
We have also documented a set of key test cases that must be satisfied for
a well-behaved Android application.

http://www.androidbook.com/item/4674
http://www.androidbook.com/item/4680
http://www.androidbook.com/item/4665
http://www.androidbook.com/item/4673
http://www.androidbook.com/item/4629
http://www.androidbook.com/item/4668
http://www.androidbook.com/item/3634
http://www.androidbook.com/AndroidFragments/projects

A, B■■
Application programming

interface (API), 83–84
AsyncTask

execute( ) method, 92
implementation

class definition, 93
coding, 95–96
doInBackground( ) method, 98
IReportBack interface, 95
MyLongTask class, 96
onPostExecute( ) method, 99
onPreExecute( ) method, 97
onProgressUpdate( )

method, 99
params, 94
progress, 94
result, 94

onPreExecute( ) method, 93
progress dialogs, 99

(see also Progress dialogs)
pseudocode, 91–92
and Thread Pools, 101

C■■
cancel( ) method, 101
commit( ) method, 80
Compatibility library

APIs, 83–84
retrofitting, 88
tablets, 84
v4 support library, 85, 88
v7 support library, 85–86
v8 support library, 85, 87–88
v13 support library, 85, 88

Configuration changes
AndroidManifest.xml file, 42
databases/content, 37
destroy/create cycle of

FragmentManager, 40
fragments, 39
onCreate( ) callback, 39
onRestoreInstanceState( )

callback, 38
onSaveInstanceState( )

callback, 37–38
saveFragment

InstanceState( ), 40
setInitialSavedState( ), 40
setRetainInstance( ), 41

factors, 36
features, 36
getLastNonConfiguration

Instance( ), 41
onConfigurationChanged( )

callback, 42
onRetainNon

ConfigurationInstance( ), 41
UI elements, 35

D■■
DetailsFragment.java, 89
DialogFragment

AlertDialogFragment, 52, 57
communication, 58
dismiss( ) method, 50
embedded dialogs, 58
HelpDialogFragment, 53, 56
implications of, 52
MainActivity, 52, 54
MyDialogFragment, 46

Index

115

newInstance( ) method, 47
onCreateDialog( ), 48–49
onCreateView( ), 47–48
OnDialogDoneListener, 53–54
PromptDialogFragment, 52, 55
show( ) method, 49–50

DialogPreference, 80
Dialogs

Android, 45
dialog fragments

(see DialogFragment)
toast, 59

dismissDialog( ) method, 109
doInBackground( ) method, 98

E■■
EditTextPreference, 71–72
execute( ) method, 92, 94, 97, 102

F■■
findFragmentById( ) method, 19
findIndexOfValue( ) method, 71
Fragment class, 1

Back button, 2
communications, 31

setTargetFragment( )
method, 32

startActivity( ) method, 32
FragmentManager

definition, 23
getFragmentManager( )

method, 23–24
persistence of, 30–31
putFragment( ) method, 25
saveFragmentInstanceState( )

method, 25
showDetails( ) method, 28–30
TitlesFragment

Java Code, 25
landscape mode, 4
life cycle (see Life cycle,

fragment)

portrait mode, 4
small-screen devices uses, 2
structure of, 4
tablet UI and smartphone UI, 3
transactions

activities, 20
back stack, 20–21
FrameLayout, 19–20
setCustomAnimations( )

method, 21
setTransition( ) method, 21
ViewGroup class, 20

G, H■■
getFragmentManager( ) method, 89
getSharedPreferences( )

method, 78, 80
getSupportFragmentManager( )

method, 89

I, J, K■■
inflate( ) method, 9
IReportBack interface, 95

L■■
Life cycle, fragment

landscape mode, 12–13
layout XML, 14
MainActivity Java code, 14–15
MyFragment class, 6
onActivityCreated( ) Callback, 9
onAttach( ) callback method, 7
onCreate( ) callback, 8
onCreateView( ) Callback, 8
onDestroy( ) Callback, 11
onDestroyView( ) Callback, 11
onDetach( ) Callback, 11
onInflate( ) callback method, 7
onPause( ) Callback, 10
onResume( ) Callback, 10
onSaveInstanceState( )

Callback, 10

Index116

DialogFragment (cont.)

Index

117

onStart( ) Callback, 10
onStop( ) Callback, 11
onViewCreated( ) Callback, 9
onViewStateRestored( )

Callback, 9
setRetainInstance( ) method, 11
Shakespeare class, 18
showDetails( ) method, 15–16
ViewGroup container, 17
xml Layout File, 17–18

List preference, 68
prefdisplayarrays.xml files, 70–71
string array flight_sort_options, 69
in XML, 69

M■■
MultiSelectListPreference, 72–73

N■■
newInstance( )

method, 7, 17, 29, 31, 47

O■■
onActivityCreated( )

Callback method, 5, 9
onAttach( ) callback method, 7
onCancel( ) callback, 51
onCreate( ) callback method, 5, 8, 39
onCreateView( )

Callback method, 5, 8
onDestroy( ) Callback, 11
onDestroyView( ) Callback, 11
onDetach( ) Callback, 11
onDismiss( ) callback, 50–51
onInflate( ) callback method, 5, 7
onPause( ) Callback, 10
onPostExecute( ) method, 94, 99
onPreExecute( ) method, 93, 97, 109
onPreferenceChange( ) callback, 77
onProgressUpdate( ) method, 99
onRestoreInstanceState( )

callback, 38

onResume( ) Callback, 10
onSaveInstanceState( ) callback

method, 7, 10, 37–38
onStart( ) Callback, 10
onStop( ) Callback, 11
onViewCreated( ) Callback, 9
onViewStateRestored( ) Callback, 9

P, Q, R■■
Preferences framework, 61

AndroidManifest.xml, 73
android.preference.

PreferenceActivity, 63
CheckBoxPreference, 65–67
default preferences file path, 63
definition, 63
dependency creation, 74
DialogPreference, 80
EditTextPreference, 71–72
with headers, 75
list preference, 68

prefdisplayarrays.xml
files, 70–71

string array flight_
sort_options, 69

in XML, 69
MultiSelectListPreference, 72–73
onPreferenceChange( )

callback, 77
PreferenceCategory, 73
PreferenceScreen, 77
Saving State, 78
setting up, 62
SwitchPreference, 65–66

Progress dialogs, 91, 99
activity pointer, 102
AsyncTask code, 107
device rotation, 102
management, 103
non-UI Fragment

coding, 105–106
retained fragment, 104, 110
testing scenarios, 103

Index118

S■■
Saving State, 61, 78
setCustomAnimations( )

method, 21, 89
setMax( ) method, 101
setOptionText( ) method, 66
setRetainInstance( )

method, 11
setTransition( ) method, 21
showDetails( ) method, 89
show( ) method, 101

T, U■■
Thread Pools, 101
TitlesFragment.java, 89
Toast, 59

V, W, X, Y■■
ViewGroup class, 20

Z■■
ZIP file, 113

Android Fragments

Dave MacLean

Satya Komatineni

Android Fragments

Copyright © 2014 by Dave MacLean, Satya Komatineni

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0854-0

ISBN-13 (electronic): 978-1-4842-0853-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Shane Kirk
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan,

James T. DeWolf, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson,
Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Steve Weiss

Coordinating Editor: Mark Powers
Copy Editor: Brendan Frost
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available
to readers at www.apress.com/9781484208540. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/.

http:\\orders-ny@springer-sbm.com
www.springeronline.com
http:\\rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484208540
www.apress.com/source-code/

To my dog Artoo who, like this book, is a wonderful little new addition
to the family.

—Dave

To my 10-year-old son Narayan Komatineni, who teaches me
to think fearlessly on a daily basis.

—Satya

vii

Contents

About the Authors�� xi

About the Technical Reviewer��� xiii

Acknowledgments�� xv

Introduction�� xvii

Chapter 1: Fragments Fundamentals■■ �� 1

What Is a Fragment?�� 2

When to Use Fragments�� 3

The Structure of a Fragment��� 4

A Fragment’s Life Cycle��� 5

Sample Fragment App Showing the Life Cycle��� 12

FragmentTransactions and the Fragment Back Stack��������������������������� 19

Fragment Transaction Transitions and Animations��� 21

The FragmentManager��� 23

Caution When Referencing Fragments�� 24

Saving Fragment State�� 25

ListFragments and <fragment>�� 25

Invoking a Separate Activity When Needed��� 28

Persistence of Fragments�� 30

Contentsviii

Communications with Fragments�� 31

Using startActivity( ) and setTargetFragment( )�� 32

References��� 33

Summary�� 33

Chapter 2: Responding to Configuration Changes■■ ������������������������� 35

The Default Configuration Change Process�� 36

The Destroy/Create Cycle of Activities�� 37

The Destroy/Create Cycle of Fragments�� 39

Using FragmentManager to Save Fragment State�� 40

Using setRetainInstance on a Fragment�� 41

Deprecated Configuration Change Methods��� 41

Handling Configuration Changes Yourself�� 41

References��� 43

Summary�� 43

Chapter 3: Working with Dialogs■■ ��� 45

Using Dialogs in Android�� 45

Understanding Dialog Fragments��� 46

DialogFragment Basics�� 46

DialogFragment Sample Application��� 52

Working with Toast��� 59

References��� 59

Summary�� 60

Chapter 4: Working with Preferences and Saving State■■ ���������������� 61

Exploring the Preferences Framework��� 62

Understanding CheckBoxPreference and SwitchPreference����������������������������������� 65

Accessing a Preference Value in Code�� 66

Understanding ListPreference��� 68

Understanding EditTextPreference�� 71

Contents

ix

Understanding MultiSelectListPreference��� 72

Updating AndroidManifest.xml�� 73

Using PreferenceCategory��� 73

Creating Child Preferences with Dependency��� 74

Preferences with Headers��� 75

PreferenceScreens�� 77

Dynamic Preference Summary Text��� 77

Saving State with Preferences�� 78

Using DialogPreference��� 80

Reference��� 80

Summary�� 81

Chapter 5: Using the Compatibility Library for Older Devices■■ ������� 83

It All Started with Tablets��� 84

Adding the Library to Your Project�� 85

Including the v7 Support Library��� 86

Including the v8 Support Library��� 87

Including the v13 Support Library��� 88

Including Just the v4 Support Library��� 88

Retrofitting an App with the Android Support Library���������������������������� 88

References��� 90

Summary�� 90

Chapter 6: Advanced AsyncTask and Progress Dialogs■■ ���������������� 91

Introducing the AsyncTask��� 91

Implementing a Simple AsyncTask�� 93

Implementing Your First AsyncTask�� 95

Calling an AsyncTask��� 96

Understanding the onPreExecute( ) Callback and Progress Dialog�������������������������� 97

Understanding the doInBackground( ) Method�� 98

Contentsx

Triggering onProgressUpdate( ) through publishProgress( )������������������������������������� 99

Understanding the onPostExecute( ) Method��� 99

Upgrading to a Deterministic Progress Dialog��� 99

AsyncTask and Thread Pools�� 101

Issues and Solutions for Correctly Showing the Progress of
an AsyncTask�� 102

Dealing with Activity Pointers and Device Rotation��� 102

Dealing with Managed Dialogs�� 103

Testing Scenarios for a Well-Behaved Progress Dialog��� 103

Using a Retained Fragment and a Progress Dialog��� 104

Exploring Key Code Snippets��� 105

References��� 112

Summary�� 113

Index��� 115

xi

About the Authors

Dave MacLean is a software engineer and architect living and working
in Orlando, Florida. Since 1980, he has programmed in many languages,
developing solutions ranging from robot automation systems to
data warehousing, from web self-service applications to electronic
data interchange transaction processors. Dave has worked for Sun
Microsystems, IBM, Trimble Navigation, General Motors, Blue Cross Blue
Shield of Florida and several small companies. He has written several books
on Android and a few magazine articles. He graduated from the University
of Waterloo in Canada with a degree in systems design engineering.
Visit his blog at http://davemac327.blogspot.com or contact him at
davemac327@gmail.com.

Satya Komatineni has been programming for more than 20 years in the IT
and Web space. He has had the opportunity to work with Assembly, C, C++,
Rexx, Java, C#, Lisp, HTML, JavaScript, CSS, SVG, relational databases,
object databases and related technologies. He has published more than
30 articles touching many of these areas, both in print and online. He has
been a frequent speaker at O’Reilly Open Source Conference, speaking on
innovations around Java and Web. Satya has done a considerable amount
of original work in creating Aspire, a comprehensive open-source
Java-based web framework, and has explored personal web
productivity and collaboration tools through his open-source work
for KnowledgeFolders.com. Satya holds a master’s degree in electrical
engineering from Indian Institute of Technology and a bachelor’s degree in
electrical engineering from Andhra University, India. You can find his website
at SatyaKomatineni.com.

http://davemac327.blogspot.com
mailto:davemac327@gmail.com
http://KnowledgeFolders.com
http://SatyaKomatineni.com

xiii

About the Technical
Reviewer

Shane Kirk earned a B.S. in Computer Science from the University of
Kentucky in 2000. He’s currently a Senior Software Engineer for IDEXX
Laboratories in Westbrook, Maine, where he spends his days working on
communication solutions for embedded systems. Shane’s foray into
mobile development began in 2010, shortly after purchasing his first
smartphone - a Droid X running Eclair (Android 2.1). He’s been hooked on
Android ever since.

xv

Acknowledgments

Writing a technical book is a team effort, and we’d like to thank this team in
particular. The folks at Apress were great, including Steve Anglin, Mark Powers,
Brendan Frost and Anna Ishchenko. We’d also like to graciously thank our
technical reviewer Shane Kirk, who worked hard to catch our slips and who
made this book so much better.

We have also been ably assisted by the various Android forums that have
provided answers to our questions as well as valuable advice. We extend our
thanks to our readers. We greatly appreciate your picking up our books, asking
us questions, and keeping us on our toes. We are better for it, and we hope our
work can somehow help you achieve your goals. We work very hard to stay
abreast of all things Android, in a way that allows us to explain it to you so it’s
easy to understand. We really hope you will learn a lot from it, as we did.

We especially want to thank our families, for letting us go off to do research, buy
gadgets, vent our frustrations, and ultimately create this work you now hold. We
are forever indebted to you.

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Fragments Fundamentals
	What Is a Fragment?
	When to Use Fragments
	The Structure of a Fragment
	A Fragment’s Life Cycle
	The onInflate( ) Callback
	The onAttach( ) Callback
	The onCreate( ) Callback
	The onCreateView( ) Callback
	The onViewCreated( ) Callback
	The onActivityCreated( ) Callback
	The onViewStateRestored( ) Callback
	The onStart( ) Callback
	The onResume( ) Callback
	The onPause( ) Callback
	The onSaveInstanceState( ) Callback
	The onStop( ) Callback
	The onDestroyView( ) Callback
	The onDestroy( ) Callback
	The onDetach( ) Callback
	Using setRetainInstance( )

	Sample Fragment App Showing the Life Cycle

	FragmentTransactions and the Fragment Back Stack
	Fragment Transaction Transitions and Animations

	The FragmentManager
	Caution When Referencing Fragments
	Saving Fragment State
	ListFragments and <fragment>
	Invoking a Separate Activity When Needed
	Persistence of Fragments

	Communications with Fragments
	Using startActivity( ) and setTargetFragment( )

	References
	Summary

	Chapter 2: Responding to Configuration Changes
	The Default Configuration Change Process
	The Destroy/Create Cycle of Activities
	The Destroy/Create Cycle of Fragments
	Using FragmentManager to Save Fragment State
	Using setRetainInstance on a Fragment

	Deprecated Configuration Change Methods
	Handling Configuration Changes Yourself
	References
	Summary

	Chapter 3: Working with Dialogs
	Using Dialogs in Android
	Understanding Dialog Fragments
	DialogFragment Basics
	Constructing a Dialog Fragment
	Overriding onCreateView
	Overriding onCreateDialog

	Displaying a Dialog Fragment
	Dismissing a Dialog Fragment
	Implications of a Dialog Dismiss

	DialogFragment Sample Application
	Dialog Sample: MainActivity
	Dialog Sample: OnDialogDoneListener
	Dialog Sample: PromptDialogFragment
	Dialog Sample: HelpDialogFragment
	Dialog Sample: AlertDialogFragment
	Dialog Sample: Embedded Dialogs
	Dialog Sample: Observations

	Working with Toast
	References
	Summary

	Chapter 4: Working with Preferences and Saving State
	Exploring the Preferences Framework
	Understanding CheckBoxPreference and SwitchPreference
	Accessing a Preference Value in Code
	Understanding ListPreference
	Understanding EditTextPreference
	Understanding MultiSelectListPreference
	Updating AndroidManifest.xml
	Using PreferenceCategory
	Creating Child Preferences with Dependency
	Preferences with Headers
	PreferenceScreens

	Dynamic Preference Summary Text
	Saving State with Preferences
	Using DialogPreference

	Reference
	Summary

	Chapter 5: Using the Compatibility Library for Older Devices
	It All Started with Tablets
	Adding the Library to Your Project
	Including the v7 Support Library
	Including the v8 Support Library
	Including the v13 Support Library
	Including Just the v4 Support Library

	Retrofitting an App with the Android Support Library
	References
	Summary

	Chapter 6: Advanced A syncTask and Progress Dialogs
	Introducing the AsyncTask
	Implementing a Simple AsyncTask
	Implementing Your First AsyncTask
	Calling an AsyncTask
	Understanding the onPreExecute( ) Callback and Progress Dialog
	Understanding the doInBackground( ) Method
	Triggering onProgressUpdate( ) through publishProgress( )
	Understanding the onPostExecute( ) Method
	Upgrading to a Deterministic Progress Dialog

	AsyncTask and Thread Pools
	Issues and Solutions for Correctly Showing the Progress of an AsyncTask
	Dealing with Activity Pointers and Device Rotation
	Dealing with Managed Dialogs
	Testing Scenarios for a Well-Behaved Progress Dialog
	Using a Retained Fragment and a Progress Dialog
	Exploring Key Code Snippets

	References
	Summary

	Index

