
Shelve in
Mobile Computing

User level:
Beginning–Advanced

BOOKS FOR PROFESSIONALS BY PROFESSIONALS
®

Android on x86
Android on x86: an Introduction to Optimizing for Intel® Architecture serves two
main purposes. First, it makes the case for adapting your applications onto Intel’s
x86 architecture, including discussions of the business potential, the changing
landscape of the Android marketplace, and the unique challenges and opportunities
that arise from x86 devices. The fundamental idea is that extending your applications
to support x86 or creating new ones is not difficult, but it is imperative to know all
of the technicalities. This book is dedicated to providing you with an awareness of
these nuances and an understanding of how to tackle them.

Second, and most importantly, this book provides a one-stop detailed resource
for best practices and procedures associated with the installation issues, hardware
optimization issues, software requirements, programming tasks, and perfor-
mance optimizations that emerge when developers consider the x86 Android
devices. Optimization discussions dive into native code, hardware acceleration,
and advanced profiling of multimedia applications. The authors have collected
this information so that you can use the book as a guide for the specific require-
ments of each application project.

This book is not dedicated solely to code; instead it is filled with the information
you need in order to take advantage of x86 architecture. It will guide you through
installing the Android SDK for Intel Architecture, help you understand the differ-
ences and similarities between processor architectures available in Android
devices, teach you to create and port applications, debug existing x86 appli-
cations, offer solutions for NDK and C++optimizations, and introduce the Intel
Hardware Accelerated Execution Manager. This book provides the most useful
information to help you get the job done quickly while utilizing best practices.

Krajci
Cummings

2613087814309

ISBN 978-1-4302-6130-8
53999

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors ��� xxi

Acknowledgments �� xxiii

Introduction ��xxv

Chapter 1: History and Evolution of the Android OS ■ ����������������������� 1

Chapter 2: The Mobile Device and Operating System Landscape ■ ������ 9

Chapter 3: Beyond the Mobile App—A Technology Foundation ■ ��� 17

 Chapter 4: Android Development—Business Overview ■
and Considerations ��� 25

Chapter 5: The Intel Mobile Processor ■ ��� 33

 Chapter 6: Installing the Android SDK for Intel ■
Application Development �� 47

 Chapter 7: Creating and Porting NDK-Based ■
Android Applications �� 75

Chapter 8: Debugging Android ■ ��� 131

 Chapter 9: Performance Optimizations for Android ■
Applications on x86 �� 185

Chapter 10: x86 NDK and C/C++ Optimizations ■ ������������������������� 259

 Chapter 11: Using Intel Hardware Accelerated Execution ■
Manager on Windows, Mac OS, and Linux to Speed Up
Android on x86 Emulation �� 285

www.allitebooks.com

http://www.allitebooks.org

■ Contents at a GlanCe

vi

 Chapter 12: Performance Testing and Profiling Apps ■
with Platform Tuning �� 303

Appendix A: References ■ �� 331

Index �� 343

www.allitebooks.com

http://www.allitebooks.org

xxv

Introduction

We wrote Android on x86: an Introduction to Optimizing for Intel® Architecture to
provide a one-stop, detailed resource for the topic’s best practices and procedures.
The book encompasses the installation issues, hardware optimization issues, software
requirements, programming tasks, and performance optimizations that emerge when you
consider programming for x86-based Android devices. Having worked on related projects
ourselves, we committed to collecting our experience and information into one book
which could be used as a guide through any project’s specific requirements. We dove into
fine-tuned optimizations, native code adjustments, hardware acceleration, and advanced
profiling of multimedia applications.

The book is not dedicated solely to code, although you’ll find plenty of code samples
and case studies inside. Instead, we’ve filled Android on x86 with the information you
need in order to take advantage of the x86 architectures. We will guide you through
installing the Android Software Development Kit for Intel Architectures, help you
understand the differences and similarities between the processors available for
commercial Android devices, teach you to create and port applications, debug existing
x86 applications, offer solutions for NDK and C++ optimizations, and introduce the
Intel Hardware Accelerated Execution Manager. The information we’ve pulled together
provides the most useful help for getting your development job done quickly and well.

Why Android on x86?
In 2011, we experienced a paradigm shift in how we communicate. Smart device sales
outpaced personal computer sales for the first time. This changing of the guard emerged
from three sources:

Our increasing professional and social need for open, constant •	
communication

The lower cost and compelling new features of smartphones and •	
tablets

The increased ease of use and availability of mobile apps •	

In the next few years, mobile access to the Internet is likely to exceed access via
laptops and desktops; the hardware we use to communicate may change, but our passion
for connectivity anytime, anywhere is sure to continue.

www.allitebooks.com

http://www.allitebooks.org

■ IntroduCtIon

xxvi

Holding more than 80% of the market share for smartphone shipments worldwide,
Google’s Android operating system has proven to be the leader of this mobile revolution.
The key reasons for the success of Android are its open platform and flexible partnerships.
The wealth of open-source resources available for Android developers spurs the creation
of more apps, giving consumers more choices. In addition, the open platform supports a
competitive and diverse hardware environment.

As the market for high-performing mobile devices widens, Google has teamed up
with Intel to envision the next frontier for Android: getting the OS to run on devices with
Intel architectures inside. The journey towards Android on Intel architectures began
unofficially in 2009, when a group of developers started the open source Android-x86
initiative in order to port Android onto devices running on Intel x86 processors. Soon
after, with the official Android on Intel architecture project, Intel started contributing
code and resources to the Android Open Source Project (AOSP). In 2012, the first Android
smartphones featuring Intel processors were released to market worldwide; by late 2013,
Android smartphones and tablets with unprecedented processing power were entering
United States’ markets. Most recently, the two groups committed to getting Android to
run on 64-bit devices, including netbooks, laptops, and traditional desktop PCs, meaning
that in 2014, Android will break into a market historically dominated by Microsoft
Windows and Apple OSX. Android will bring its enormous, thriving community of
application developers forward to a wide range of devices and hardware architectures.

The collaboration brings a number of benefits from both groups. Intel’s x86
architecture comes with 35 years of well-documented processing excellence, a
mature developer ecosystem, and a sophisticated set of development tools. In terms
of performance, Intel’s latest chips strike a balance between high performance and
low power consumption that is ideal for smartphones, tablets, and netbooks. Native
x86 emulator support is a key feature of the latest Android SDK versions, and Intel is
dedicated to providing developers with a host of tools for optimizing Android application
performance for their chips.

By expanding onto both 32-bit and 64-bit architectures, the Android landscape is
opening wide. More Android-equipped mobile devices with Intel processors are hitting
shelves and our fingertips every day, and the upcoming addition of Intel-powered
netbooks and laptops will shape the environment into something amazing. A new
Android experience will take shape, one that remains diverse and becomes optimized for
larger screens, robust multi-windowing, and ever-faster processor speeds. It’s an exciting
time, and we hope that developers will seize this new opportunity to expand Android’s
horizons.

Who Is This Book For?
This book is aimed at two general categories of people: developers and those interested
in choosing Android x86 as a platform for their applications. With this in mind, the
beginning chapters focus on much more high-level, nontechnical questions, so that
people from all technical backgrounds can make informed choices. The later chapters
focus heavily on the developers’ side of the world, starting with a basic foundation of
microprocessor architectures and Android development environments and then building

www.allitebooks.com

http://www.allitebooks.org

■ IntroduCtIon

xxvii

to very advanced, performance-focused content. Our goal is to reach the entire spectrum
of people who are interested in Android on x86, and to do our best at getting you the
answers you need.

We really hope you enjoy the book. We certainly have enjoyed exploring this
topic, and look forward to seeing what will happen in this rapidly-expanding field in
the upcoming years. We would also like to note that while we may know a thing or
two about Android, we recognize that we are certainly not the most knowledgeable
about everything. Feel free to challenge any information that you find in this book – we
encourage you to use outside resources and really involve yourself in the communities
that surround this technology!

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1

History and Evolution of
the Android OS

I’m going to destroy Android, because it’s a stolen product. I’m willing to
go thermonuclear war on this.

—Steve Jobs, Apple Inc.

Android, Inc. started with a clear mission by its creators. According to Andy Rubin, one of
Android’s founders, Android Inc. was to develop “smarter mobile devices that are more
aware of its owner’s location and preferences.” Rubin further stated, “If people are smart,
that information starts getting aggregated into consumer products.” The year was 2003
and the location was Palo Alto, California. This was the year Android was born.

While Android, Inc. started operations secretly, today the entire world knows
about Android. It is no secret that Android is an operating system (OS) for modern day
smartphones, tablets, and soon-to-be laptops, but what exactly does that mean? What did
Android used to look like? How has it gotten where it is today? All of these questions and
more will be answered in this brief chapter.

Origins
Android first appeared on the technology radar in 2005 when Google, the multibillion-
dollar technology company, purchased Android, Inc. At the time, not much was known
about Android and what Google intended on doing with it. Information was sparse until
2007, when Google announced the world’s first truly open platform for mobile devices.

The First Distribution of Android
On November 5, 2007, a press release from the Open Handset Alliance set the stage for
the future of the Android platform. The alliance stated some of the goals of Android
as, “fostering innovation on mobile devices and giving consumers a far better user
experience than much of what is available on today’s mobile platforms.”

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ HisToRy And EvoluTion of THE AndRoid os

2

At that time, more than 2 billion mobile phones were used worldwide, compared to
the 4.6 billion used as of 2010. However, there was no coordination of platforms between
the various companies that provided mobile devices. With the introduction of Android,
a single operating system removed the need for reimplementation of phone applications
and middleware. The companies creating new devices could now focus much more
intently on the hardware and underlying components.

But these companies weren’t the only ones who benefited from the launch of
Android; software developers could now release applications to multiple devices with
very few changes to the underlying code base. This allowed developers to spend more
time working on the applications these phones were running and create the rich and
impressive applications that we are all used to. This was in part due to the open source
philosophy behind Android, and the Apache license, which is the license used on most of
the Android source code.

Open Source Apache License
The Apache License is just one of many different licenses that exist in the open source
community. While there are differences in all of these licenses, they all facilitate the same
open source mindset that is best summed up as follows:

“Free software” is a matter of liberty, not price. To understand the concept,
you should think of “free” as in “free speech,” not as in “free beer.”

—Richard M. Stallman

The Apache License specifically grants freedom to use the software for any
purpose, as well as the ability to distribute, modify, or distribute modified versions.
The Apache License is also permissive, meaning that modified versions do not have to
succumb to the Apache License. For more information about the Apache License, go to
http://www.apache.org/licenses/LICENSE-2.0.

What Is Android?
So what exactly is Android? Android OS is the open source technology stack that runs
on over 400 million devices worldwide. This technology stack consists of various
components that allow developers and device manufacturers to work independently.
This can be broken into five primary pieces—applications, application frameworks,
native libraries, Android runtime, and the Linux kernel—as shown in Figure 1-1.

www.allitebooks.com

http://www.apache.org/licenses/LICENSE-2.0
http://www.allitebooks.org

CHAPTER 1 ■ HisToRy And EvoluTion of THE AndRoid os

3

Applications
The applications exist at the highest level. These are the tools that everyone who uses
Android is most familiar with. Android comes with various robust applications that
support everyday phone needs, such as messaging, e-mail, Internet browsing, and
various third-party applications. These applications are primarily written in the Java
programming language. In a recent legal case with Oracle, Google’s Android chief Andy
Rubin explained why he chose Java as the language of use for developers. Rubin’s primary
points were that Java had a well-known brand name and that Java is taught in almost all
universities worldwide.

These applications are distributed through various means, most commonly from
the Google Play Store (formerly Android Marketplace); however, the Android OS also
supports installation of applications over a USB connection and from an SD card.

Figure 1-1. The Android System Architecture

Android OS (Wikipedia) http://en.wikipedia.org/wiki/File:Android-System-
Architecture.svg

www.allitebooks.com

http://en.wikipedia.org/wiki/File:Android-System-Architecture.svg
http://en.wikipedia.org/wiki/File:Android-System-Architecture.svg
http://www.allitebooks.org

CHAPTER 1 ■ HisToRy And EvoluTion of THE AndRoid os

4

Application Frameworks
Android provides developers the ability and tools to create extensive, interactive, rich
graphical applications to users, and is targeted to deploy these applications to the
Google Play Store. Developers have access to the same APIs that are used inside of core
applications, as well as access to almost all existing Java libraries. For the development
process of Android applications, consult Chapter 6: Installing the Android SDK for Intel
Application Development.

Native Libraries
The next level is where the road diverges. The native libraries and the Android runtime
exist in roughly the same space. The native libraries are compiled and preinstalled
C/C++ binaries that the Android system depends on. These include all of the libraries in
the green section of Figure 1-1. The following sections contain descriptions of some of the
more prominent native libraries and their functions inside of Android.

Surface Manager
This is often referred to as Android’s Window Manager. Surface Manager is used for
composing what any individual screen will look like. It also does some more subtle things
that help Android run smoothly, such as off-screen buffering and transitions.

SQLite
This is a database used to persist information across sessions of an Android device. On
Android, the SQLite database is stored inside of the device’s internal memory so SD cards
can be interchanged without losing device-specific information.

WebKit
WebKit allows for HTML to be rendered and displayed to Android very quickly and
efficiently. This is the default browser engine in the Android system and is available to
system and third-party applications.

OpenGL/ES
The OpenGL engine processes graphics in Android. OpenGL can render both 2D and 3D
objects on Android. This also supports hardware acceleration on devices with dedicated
graphic chips.

Android Runtime
Inside of the Android runtime are two primary components: the core Java libraries that
Android provides, and the Dalvik virtual machine. The Dalvik virtual machine is Google’s
implementation of Java that is optimized to be used on mobile devices. The more specific
differences within Dalvik are very technical and aren’t covered in this book.

CHAPTER 1 ■ HisToRy And EvoluTion of THE AndRoid os

5

Linux Kernel
The last of the layers is the Linux kernel. Android was initially based on the Linux 2.6
kernel, with some optimizations for mobile use. Current versions of Android are based
on the Linux 3.1 kernel. The Linux kernel provides access as close to the hardware as
possible. As a result, drivers are written in the kernel space to operate as fast and as
efficiently as possible. These include things like controlling the internal radios, turning
on the stereo and camera, dealing with power and battery charging, and operating the
physical keyboard or buttons on the device. The Linux kernel, like Android, is an open
source project and is used widely, particularly on servers in enterprise environments.

The Open Handset Alliance
In November 2007, the Open Handset Alliance (OHA) was established by 34 founding
members dedicated to development of open mobile standards, including Google,
mobile device manufacturers, application developers, embedded systems developers,
and commercialization companies. The goal of this alliance as described in the web site
is as follows:

The Open Handset Alliance™, a group of 84 technology and mobile
companies who have come together to accelerate innovation in mobile and
offer consumers a richer, less expensive, and better mobile experience.

As it stands today, OHA has 84 firms who are developing and working on the
consortium’s main and only project to date, Android. Thanks to the services and products
offered by members of the OHA, devices and related services are produced at higher
quality for a lower price.

Android Open Source Project
After the purchase of Android, Inc., the Android Open Source Project (AOSP) was
created and has since been led by Google. The AOSP is in charge of the development and
maintenance of the Android software stack. As stated by Google, the goal of the project is
as follows:

The goal of the Android Open Source Project is to create a successful real-
world product that improves the mobile experience for end users.

Android is designed and maintained with backward capability in mind. This
means that new devices can run applications developed all the way back to Android’s
Cupcake (1.5). Official support for the Android SDK only goes back to Cupcake (1.5),
so applications written for pre-Cupcake devices aren’t guaranteed to run on the latest
Android devices.

Through the course of the AOSP, there have been many different versions of Android
released for mobile devices. When new Android versions are released, mobile device

CHAPTER 1 ■ HisToRy And EvoluTion of THE AndRoid os

6

owners are allowed to choose whether to upgrade their OS. With every iteration of
Android, a new SDK is made available to developers and various new features are added
to supported devices. Software developers need to stay mindful of the legacy features
from previous versions when developing new applications.

Astro (1.0)
Astro is where Android started, released as a beta in November 2007, and released to the
public in September of 2008 on the HTC Dream. Astro showed off various core features
of the Android OS and included many of the apps that Android users now know and love.
These include Android Market, a web browser, e-mail/Gmail, Google Maps, Messaging,
Media Player, YouTube, and various others.

Cupcake (1.5)
Cupcake, released April 30, 2009, was the next major version of Android to hit the
commercial markets. Cupcake was based on the Linux kernel 2.6.27 and included
many new features to users and developers. The major changes were support for virtual
keyboards, support for widgets on the home screen, animations added in various places,
and auto-pairing and stereo support for Bluetooth-capable devices. On a humorous side
note, from Cupcake and onward all Android versions to date have been named after
desserts.

Donut (1.6)
On September 15, 2009, Google released Android version 1.6, named Donut. With Donut
came an updated Linux kernel from 2.6.27 to 2.6.29, as well as some new features and
supported devices. Major features included voice and text search of contacts/web/
bookmarks, support for WVGA screens, and improvements to camera functionality and
speed. Donut was the last version of Android in the 1.x series to be released.

Éclair (2.0/2.1)
Éclair was released October 26, 2009, which continued to be built on the Linux kernel
version 2.6.29. With SDK version 2.0 came many new features and capabilities for
both developers and consumers. Large changes were made to the way that Android
looked and felt on capable devices, including significant speed improvements in many
different applications. The premier device for Android 2.0 was Motorola’s Droid on
Verizon Wireless.

On December 3, 2009, Google updated Android to version 2.0.1 in efforts to fix
some small bugs and update the API for developers. It wasn’t until January 12, 2010
that Android was moved to version 2.1. Similar to the update in December, version 2.1
primarily included updates to the underlying API and bug fixes.

CHAPTER 1 ■ HisToRy And EvoluTion of THE AndRoid os

7

Froyo (2.2.x)
On May 20, 2010, the Android SDK version 2.2 (Froyo) was released with Linux kernel
2.6.32. Google’s Nexus One was the first device on the market to show off Froyo and its
new capabilities. Very significant features were added to Froyo, including Adobe Flash
support, Android Cloud to Device Messaging, Wi-Fi hotspot functionality, and significant
performance optimizations. It’s important to note that the Android SDK recommends
choosing Froyo as your base development version to hit the largest current user base of
Android users.

Three subsequent updates were released for the Android 2.2 SDK: 2.2.1 on January
18, 2011, 2.2.2 on January 22, and 2.2.3 on November 21. These updates were primarily
bug fixes and security updates to Android.

Gingerbread (2.3.x)
Gingerbread was released on the December 6, 2010 and was based on the Linux kernel
2.6.35. Similar to the Froyo release, Google’s Nexus S was introduced to show off
Gingerbread. Features of Gingerbread include support for WXGA and other extra-large
screen sizes, improvements to the virtual keyboard, support for more internal sensors
(namely gyroscopes and barometers), support for multiple and front-facing cameras, and
the ability to read Near Field Communication (NFC) tags.

Five updates were released to Gingerbread, 2.3.3–7, from February to September
of 2011. With these updates came various features, security updates, and bug fixes. One
of the most significant features introduced was Open Accessory support, which lets a
compatible device function as an USB peripheral to compatible software platforms.

Honeycomb (3.x)
In February of 2011, Honeycomb, the first tablet-only Android version, was released on
the Motorola Xoom. Because Honeycomb was created specifically for tablet devices,
Android was tweaked to allow for a more enjoyable experience with larger screen real
estate. This included a redesign of the onscreen keyboard, a system bar to allow for quick
access to notifications and navigation, multiple browser tabs to allow for easier use of the
web, and support for multi-core processors.

Honeycomb has had six updates, two of which were major, through its current life
cycle. The first update was Android SDK version 3.1 on May 10, 2011, and it namely
added support for USB accessories such as keyboards, joysticks, and other human
interface devices (HIDs). The second major SDK update was 3.2 on July 15, 2011. The
most significant feature of 3.2 was compatibility display mode for Android applications
that were not designed for tablets. The last four updates to Honeycomb have been minor
improvements, bug fixes, and security updates.

Ice Cream Sandwich (4.0.x)
Ice Cream Sandwich (ICS) was released on October 19, 2011 and was based on the
Linux kernel 3.0.1. Samsung’s Galaxy Nexus was the device released with ICS as it hit

CHAPTER 1 ■ HisToRy And EvoluTion of THE AndRoid os

8

public markets. ICS was packed with a multitude of features and improvements to the
Android user interface (UI). Some features include a customizable launcher, a tabbed
web browser, facial recognition to unlock the device, a built-in photo editor, hardware
acceleration of the UI, and software buttons originally introduced in 3.x (Honeycomb).
It is important to note that ICS merged version 3.x (Honeycomb) and 2.3.x (Gingerbread)
into a single OS supporting both phones and tablets.

Four minor updates have since been released for ICS devices from November
of 2011 to March of 2012. These updates focused on stability improvements, camera
performance, and bug fixes.

Jelly Bean (4.1.x)
Jelly Bean was released on July 9, 2012 and is based on the Linux kernel 3.1.10. Asus’
Nexus 7 tablet device was the flagship user of Jelly Bean. Jelly Bean released a number of
improvements and performance upgrades to the UI and audio within Android. Version
4.2, released on November 13, 2012 and based on Linux kernel 3.4.0, added accessibility
improvements. Version 4.3 was released on July 24, 2013, and added OpenGL ES 3.0
support for better game graphics, security enhancements, and upgraded digital rights
management APIs. Other features of the Jelly Bean versions include customizable
keyboard layouts, expandable notifications, application-specific notification filtering, and
multichannel audio.

KitKat (4.4.x)
The last version of Android as of this writing, KitKat, was released on September 3, 2013.
Its features included performance optimizations for devices with less RAM, expanded
accessibility APIs, wireless printing capability, and a new experimental runtime virtual
machine, called ART, which may come to replace Dalvik. KitKat debuted on Google’s own
Nexus 5 smartphone on October 31. 2013.

Overview
With all of these versions of Android, the features and changes to the OS have led to a rich
and user-centered experience. The average user, who knows little to nothing about the
technical aspects of the device, can operate the device like it is second nature. Now that
you have acquired more insight into the underlying systems and architectures that make
this possible, the only thing left to ask is, what’s next?

9

Chapter 2

The Mobile Device and
Operating System Landscape

50 billion connected devices by 2020.

—Ericsson, 2010

Networked computers. Connected devices. Mobile devices. Machine-to-machine
(M2M). On-the-Go (OTG). Portable computing. Smart services. The list goes on and on.
The terminology used to describe machines that send data to other machines seems to
change every day. With all of these different types of devices that are seemingly similar,
it’s easy to confuse them.

Android is certainly not the only operating system used on devices in today’s markets.
Various mobile operating systems have existed, and many are still in competition with
Android. Although the focus of this book is on the Android market, an understanding
of the competition—iOS, Windows Phone, and so on—is important for any successful
business venture and is therefore the focus of this chapter. This is best put into words by
the famous Chinese general and strategist Sun Tzu, in his The Art of War: “If you know the
enemy and know yourself, you need not fear the results of a hundred battles.”

Competition in the Mobile Space
The Android operating system is a very popular choice among consumers in the current
commercial market. Over 250 million Android devices are in use today. But Android is
not the only choice, nor was it the first mobile operating system implemented. There
are several additional mobile operating systems, including iOS from Apple, MeeGo from
Intel and Nokia, Windows Phone from Microsoft, and so on. There are many differences
in the implementation of these operating systems and many diverse reasons that these
platforms are used. This section provides a light overview of these other mobile operating
systems, by discussing their strengths and weaknesses.

CHAPTER 2 ■ THE MobilE DEviCE AnD oPERATing SySTEM lAnDSCAPE

10

iOS
Developed and distributed by Apple, Inc., iOS was originally released in 2007 on the
original iPhone and iPod Touch. Next to Android, iOS is currently the closest competitor
in market share for the mobile OS space. As of May 2012, Android held 50.9 percent of
subscribers as opposed to the iOS platform at 31.9 percent. It is important to note that iOS
was originally called iPhone OS, based on its primary launch device, the iPhone.

Overview
Unlike Android, iOS has been a closed source since its inception and has been released
on a limited number of platforms. Each new version of iOS includes new iOS devices
developed and manufactured primarily by Apple. iOS is based loosely on OS X, Apple’s
desktop operating system, which in turn is partially based on the UNIX operating system.
(OSX and Linux, and therefore iOS and Android, share a common developmental
ancestor in BSD Unix, an open-source UNIX operating system variant developed and
released by the University of California, Berkeley).

Applications
iOS comes with various system applications such as basic phone operations, a web
browser (Safari), a media player, and an e-mail client. iOS is also capable of running a
wide array of third-party applications created by developers using Apple’s iOS Software
Development Kit (SDK). Applications have access to all of the devices peripherals,
which typically include various cameras, accelerometers to detect device movement, a
microphone, onboard graphics chips for hardware acceleration, and a touch screen.

There are some significant differences in the supply of third-party applications for
the Android OS. In order to develop applications for iOS devices, you are required to
purchase a developer’s license for the SDK. Applications for iOS devices are typically
written in Objective-C and typically developed in Xcode, a development environment
for OS X platforms. Furthermore, applications created using the SDK are screened
and validated by Apple before being sold on iOS’s market. This allows Apple to stop
developers from releasing applications that could potentially hurt its user base, such as
malware or information stealers.

There have been situations where Apple stopped valid applications from being
released. In one case, a third-party application used the device’s volume buttons as an
alternative to pressing the onscreen button to take a photo with the camera. After realizing
this, Apple removed the application from the App Store, claiming that this feature was a
“violation of Apple’s policies.” The third-party company removed this feature, and Apple
eventually released an update to its onboard camera that included this feature.

Platforms
Devices that run iOS are developed and sold through Apple, and for this reason there is very
little variation. Although this may seem limiting, the lack of diversity of hardware enables
applications to be standardized. For example, since there are only a few possible screen

CHAPTER 2 ■ THE MobilE DEviCE AnD oPERATing SySTEM lAnDSCAPE

11

sizes and graphics hardware, application developers only have to deal with a few different
situations. iOS is featured on three main platforms—iPhone, iPad, and iPod Touch.

•	 iPhone—The iPhone is Apple’s version of a smartphone,
originally released in January of 2007. Each new version of the
iPhone includes incremental updates to the iOS as well as new
major features. The iPhone features a pocket-sized device, a
multitouch screen, a camera in the back (and on the front in
newer versions), and a microphone for audio.

•	 iPad—Released in April of 2010, the iPad is a tablet computer
created and sold by Apple. It’s about the size of a standard
magazine. The iPad features a much larger screen than the
iPhone, as well as some upgraded hardware. Each generation of
the iPad has added significant hardware upgrades as well as new
features. The iPad runs the same applications as the iPhone and
the iPod Touch; however, applications can be created specifically
for the iPad when desired.

•	 iPod Touch—Similar to the iPhone in almost every way, the first
generation of iPod Touch hit consumers’ fingers in September
of 2007. The primary difference between the iPod Touch and the
iPhone is the lack of cellular communications on the iPod Touch.
Most applications created for the iPhone run on the iPod Touch
with little to no code modifications on the developer’s side. The
iPod Touch offers an option to play with the iOS without having
to pay the subscription fee of iPhone’s cellular plan, or the added
cost of the iPad.

BlackBerry
Sometimes referred to as the original smartphone, the BlackBerry was introduced in
2003. BlackBerry as of Q3 2013 held three percent of the mobile smartphone market
share. The original BlackBerry featured a small color screen, a full QWERTY keyboard, a
trackball, and a camera. Similar to Apple’s practice, BlackBerry devices are developed and
manufactured in-house by Research in Motion (RIM), which was renamed BlackBerry in
early 2013. The original marketing goal of BlackBerry was to create devices for the average
businessperson. This focus included the ability to check e-mails, access the Internet, and
set up meetings easily and efficiently.

Windows Phone
Developed by Microsoft as the successor to Windows Mobile, Windows Phone is the
fourth major competitor in the mobile operating system space. Windows Phones hit the
consumer market in November of 2010, and unlike Windows Mobile, were aimed away
from the enterprise markets. As of Q3 2013, Windows Phone and Windows Mobile held
two percent of the mobile market share. Windows Phone has a much different layout than
the traditional smartphone user interface. Microsoft has placed a lot of focus on ease of
use, and connectivity with existing Windows services, such as Windows Live.

CHAPTER 2 ■ THE MobilE DEviCE AnD oPERATing SySTEM lAnDSCAPE

12

Symbian
Previously called Symbian OS, Symbian was developed by Accenture, one of the largest
consulting and technology services firms in the world, for Nokia. As of May 2012,
Symbian has dropped to 1.1 percent, from a massive 47 percent in February of 2009.
Symbian features include various applications, multitouch screen, Wi-Fi, Bluetooth, and
multitasking capabilities.

MeeGo
In February of 2010, Intel and Nokia at Mobile World Congress announced their latest
adventure, MeeGo. MeeGo is a Linux-based, open source operating system targeted at a
wide range of mobile devices. MeeGo was designed to run on lower performance devices
such as netbooks, tablets, in-vehicle infotainment devices, smart TVs, and various other
embedded systems. MeeGo featured a user interface very similar to Android with an
assortment of applications. In September of 2011, the MeeGo project was canceled and
the Intel team brought their experience and skills to Tizen, a new joint project between
Intel and Samsung.

Before Android
It may seem like an eternity since Android-enabled devices have been out in the world
and in our pockets. There was, however, extensive footwork and several predecessors that
lead to the creation and innovation that is Android. Although there was nothing quite like
Android prior to its existence, there are obvious inspirations for its common and sought-
after features.

Smartphone History
In the days before Open Handset Alliance mobile devices, the software that ran on them
was developed specifically for every new phone. Some of the decisions that were made
for the Android OS trace back to the phones of the early 21st Century.

Simon Personal Communicator
Many credit IBM and BellSouth’s Simon Personal Communicator (1994) with being the
first smartphone. Simon combined many of the features of personal digital assistants
(PDAs) with the features of existing cellular devices. In addition to being able to do
cellular communication, Simon had a touch screen and various applications such as a
calendar, games, a notepad, a calculator, and a touch-screen keyboard. Simon jump-
started the smartphone market during a computer trade show in Las Vegas where the
Simon prototype unit received notable interest. The Simon prototype was so popular it was
featured on the front page of USA Today’s Money section the day after the trade show.

CHAPTER 2 ■ THE MobilE DEviCE AnD oPERATing SySTEM lAnDSCAPE

13

Nokia 9000 (Nokia Communicator)
Similar in many ways to Simon, the Nokia 9000 introduced in 1996 continued the vision
and direction of the smartphone. The Nokia 9000 featured a twofold approach—it
looked like a bulky phone when closed, and revealed a full QWERTY keyboard and a
larger horizontal screen when opened. Like Simon, the Nokia 9000 featured various
applications that allowed for functionality beyond a regular cellular device.

Kyocera 6035
Released five years later in 2001, the Kyocera 6035 looked much more like the
modern-day smartphone. When closed, the Kyocera had physical buttons for use as a dial
pad. When opened, it had a much larger vertical screen that contained various applications
and tools. The Kyocera featured Palm OS, which enabled e-mail and web browsing.

BlackBerry 5810
The first BlackBerry phone released by Research In Motion (RIM) was the BlackBerry
5810 (2002). It featured a look that has stayed with BlackBerry to this day. Optimized
for e-mail and business use, the BlackBerry 5810 was marketed toward business
professionals. Features included a large touch screen, a full QWERTY keyboard, and an
internal antenna.

The Mobile Market: Success and Failure
In any developing market, new ideas and innovations can generate significant interest
or turn consumers off entirely. The mobile space is no exception. Although many mobile
devices have sold very well, just as many have lost significant amounts of money. This
section highlights some of the more recent successful and unsuccessful mobile devices to
hit commercial markets.

Motorola i1
The Motorola i1, released in June of 2010, is an example of a less-than-successful mobile
device. Although it was released on Boost Mobile with no contract necessary, the i1 only
managed to run Android OS v1.5 (Cupcake) and could handle only 2G data speeds. In
comparison to Motorola’s other devices of 2010, namely the Droid X, the i1 sold poorly.

Droid X
Released in July of 2010, the Droid X is far from a failure. The Droid X features Android
OS v2.1–2.3, a 4.3-inch multitouch screen, and 8GB of internal flash memory. With the
imminent release of the iPhone 4, Motorola took an aggressive marketing campaign with
the Droid X, announcing the device exactly one day before the iPhone 4 hit stores. It
appears to have paid off, because the Droid X sold out online and in many retail locations.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ THE MobilE DEviCE AnD oPERATing SySTEM lAnDSCAPE

14

BlackBerry Torch
The BlackBerry Torch, which featured BlackBerry OS 6, was described by Research In
Motion’s (RIM’s) CEO Jim Balsillie as “a quantum leap over anything that’s out there.”
However, the Torch sold a mere 150,000 units in the first three days of its launch. In
comparison, the Apple iPhone 3G and 3GS both sold over a million units. The Torch is
a prime example of a good product in a market of very good products. Although 150,000
units is a sizable number, it meant that the BlackBerry could not sustain its market share.

iPhone
One of the most successful devices of all time, selling millions of units on almost every
release, Apple’s iPhone device is a prime example of market success. Focusing on ease of
use and presentation, the iPhone offers a different mobile experience. Apple’s marketing
focus for the iPhone can be described as simple, using Apple’s logo as a means of
capturing past iPod fans.

The Mobile Market: Trends
Although no guarantee can be made for the future, visible trends can help predict where
the market will go next. The mobile space is no exception to these trends; in fact, in some
cases they are even more easily recognizable. The connection between mobile devices
and their users is an evolving situation that is creating a world of new possibilities. This
“cyber fiber” allows users to be connected to the world around them at all times.

Location
Most modern devices have some sort of GPS or other method of locating where you are in
the world. Many of the more popular applications have utilized this feature to encourage
users to use their devices on the go. Whether you are checking the current temperature,
tagging your location in a Facebook update, or trying to find your way back home,
location services are being used more and more frequently.

With the release of iOS 5, Apple introduced location to its core operating system. For
example, when you pass by a certain location, your mobile device can remind you that
you need to pick up groceries. The appeal of this feature is obvious—instead of having to
think of a specific time, you can now be reminded the next time you pass a drugstore that
you need to pick up more aspirin. Building location features into applications is a current
hot button for developers in all areas of smartphone development.

Current Mobile Uses
With Android, and all of the other operating systems, users have what feels like unlimited
options for what to do with their mobile devices. But how are consumers using their
devices, and how much time do they spend on them?

CHAPTER 2 ■ THE MobilE DEviCE AnD oPERATing SySTEM lAnDSCAPE

15

According to a Pew Internet & American Life study in May of 2013, 56 percent of
all American adults are now smartphone users. The two most common uses of mobile
phones are browsing the Web and searching for specific information, both of which
account for a solid majority of all time spent on the device. Facebook and YouTube hold a
very significant amount of this traffic, with Facebook having over 800 million mobile users
as of 2013.

Of all smartphone owners, about 59 percent spend more than 30 minutes every day
using web applications and utilities on their smartphones. However, the percentage of
people actually communicating over phone calls and texting during a 30-minute period
each day is much lower, at 32 percent. As our phones’ applications have gotten richer,
there has been a shift from old forms of communication like phone calls to newer social
messaging formats such as Facebook, Twitter, and MySpace.

Commerce
Since mobile devices can do practically anything a laptop or home computer can do, it
was only a matter of time until mobile devices were used directly for commerce. Whether
it’s buying new products from Amazon, purchasing applications from an App Store, or
buying tickets for the game on Sunday, mobile devices have become a way to purchase
goods and services on the go.

The mobile commerce market is in its infancy. Experts believe that the amount we
spend from our phones will increase from just under a billion U.S. dollars to well over
99 billion by 2015.

Overview
The “cyber fiber” that is connecting modern society is very evident. Our mobile devices
let us connect with the world at any time and in any place. The applications and
operating systems that let us access this rich environment so easily act as the glue holding
our world together. The next chapter discusses in detail how Android devices interact
with existing technologies and what kinds of interfaces developers can use.

17

Chapter 3

Beyond the Mobile App—A
Technology Foundation

In this business, by the time you realize you’re in trouble, it’s too late to
save yourself. Unless you’re running scared all the time, you’re gone.

—Bill Gates

Mobile devices are connected and involved in so much more of our life than just simple
communications. Connected devices are all around us: Wi-Fi photo frames, Bluetooth
receivers in automobiles, and even wireless headphones. These devices allow us to stay
up-to-date and engaged with all of our surroundings in a way that has never been seen
before. Mobile phones allow us to interact with the world in a whole new way.

Connected Devices
As predicted by Kirk Skaugen, Corporate Vice President of Intel, over 15 billion devices
will be connected to the Internet in the coming years. The Internet currently supports
more than 4 billion connected devices, allowing for practically nonstop communication.

The low prices of computer chips that power these connections have enabled a wave
of connected devices. Devices that previously did not have wireless functionality now
do, and that has changed how we interact with them. For example, modern televisions
include wireless chips that allow them to receive streamed television and movies directly
over the Internet.

Home Computing
It may feel like old news, but home computing is still a very legitimate and lucrative
business. In a study conducted by U.S. Energy Information Administration, just fewer
than 30 million Americans do not have a home computer of some kind. Compared to the
80 million Americans who have one or more personal computers, the United States is
more connected than ever before.

CHAPTER 3 ■ BEyond THE MoBilE APP—A TECHnology FoundATion

18

Applications on personal computers have come a long way since the creation and
induction of smartphones into the marketplace. The ability to use and control your home
computer from your smartphone, and vice versa, has taken off. You can view your desktop
on the go, sync files and contacts from your phone to your laptop, use your phone as a
remote control, or stream videos from your phone directly to your television.

Automotive
Modern cars are loaded with tons of new technologies. You can watch television in the
back seats, stream music over Bluetooth, or make a hands-free call to anyone in the world.

Smartphones have added even more functionality to the vehicles that we rely on
daily. The ability to make a hands-free call over Bluetooth is often included in modern
smartphones. This capability allows you to communicate with others while you are on
the road—legally. GPS is another application inside of vehicles that is being used on
smartphones. You no longer need a separate GPS device to map your route, which has
significantly hurt the standalone GPS device market. Porting all of the functionality of these
devices directly onto a smartphone adds convenience and ease of use. In addition, you can
stream music to your vehicle’s speaker over the auxiliary port, find the cheapest gas in the
city that you are passing through, and find things to do that are happening right now.

Applications that interact directly with automobiles are just starting to take off. As
mobile phones get more powerful and vehicles are released with more technological
interfaces, new smartphone applications will be created for this purpose.

Digital Entertainment
A new age of digital entertainment is upon us. The connected nature of the modern world
has created new possibilities and uses for entertainment devices and services. There are
now multiple ways to stream television, movies, and music over the Internet, whenever
you want. The entertainment industry embraces and encourages these services, often
offering on-demand content for a subscription fee.

With the addition of these capabilities, smartphone application developers created
new uses for mobile phones. You can use your mobile phone as a television remote, as
a media center that plays movies from the HDMI port on select devices, or as a portable
media player that streams music from the radio.

Special Requirements
The public side of the market is not the only place that smartphones are used. There are
many military and private-sector uses for modern communication devices. Whether they
are specially built hardened devices, extra-long range capabilities, or top-secret level
communications, there are many special requirements for these types of devices.

CHAPTER 3 ■ BEyond THE MoBilE APP—A TECHnology FoundATion

19

Ruggedization
Sometimes also called hardening, ruggedization involves altering a device so that it can
be used in more intense conditions than regular users might encounter. Used often in
military applications, these devices might be needed underwater, in sandstorms, or
in rain, or might need to survive impact after falling from great distances. Technical
specifications document exactly what these devices must be able to handle in order to be
licensed for military applications.

Ingress Protection Rating
The Ingress Protection (IP) Rating Code is a standard that classifies the degree of
protection against outside forces. The IP Code standard specifies that each classification
contain two characters representing its degree of physical and liquid protection. If there is
no protection, an X is placed in that spot.

The first digit is its protection against solid particles and objects. The highest rating
that you can get on the first character is a 6. Scoring a 6 means that the device has
complete protection against damage from contact, as well as no ingress to dust. The
second character describes the protection against liquids, specifically water. The highest
water rating is an 8, specifying that the device can be fully submersed beyond one meter
for any length of time without sustaining internal damage.

IP Codes are just one of the various standards for classifying protection. Inside of the
United States there also exists the National Electrical Manufacturers Association (NEMA),
which publishes protection ratings. Outside the United States, there are extensions of the
IP Code specification, as well as entirely new systems. For example, the German standard
called IP69K rates high-pressure and high-temperature situations.

Medical
The medical world has its own list of requirements. The information and use of medical
data must be confidential. In the United States, patient-doctor confidentiality is taken very
seriously and these devices must be protected. At select hospitals across the country, Android
tablets operate with and contain sensitive information. A patient’s electronic medical record
(EMR) contains the patient’s entire medical history, which is sensitive information.

To protect these devices, information is encrypted and locked. Password
authentication is required to use the device, as well as possible secondary forms of
authentication to ensure identity. These devices also feature screens and designs to make
the lives of medical professionals easier. This often means large, easy-to-read screens,
with applications specifically catered to medical situations.

Virtualized
Hardware is expensive and creating virtual platforms on a single hardware device has
become a common practice. This saves money and resources, because you can replace
virtual instances at any time without touching the hardware. Virtual instances also let you

CHAPTER 3 ■ BEyond THE MoBilE APP—A TECHnology FoundATion

20

interface with systems without needing any sort of specific hardware. For example, virtual
Android devices that run on the Android Emulator allow users to interact with it as if the
application were deployed on the actual device.

Secure Communications
Keeping military communications secure has always been a challenge. Sending and receiving
secure communications in the field is a very difficult problem. The ability to talk securely
is a powerful advantage over opposing forces. The difficulty of secure communication is a
multipart problem with few answers. You must establish a method of encrypting, decrypting,
and transmitting your communications with as little delay as possible. In addition, you must
offer some means for determining who to trust and who not to trust.

Because of all of these complications, the hardware and software used in the military
is often years behind consumer-grade products. On Android devices, companies have
been working to develop secure communications that will be used on the battlefield, as
well as in government buildings.

Type 1
The National Security Agency (NSA) has certified a Type 1 device, or system, for use
with secure information. Type 1 certification is a rigorous process that involves extensive
testing and formal analysis. Some of the areas of analysis include cryptographic security,
tamper resistance, manufacturing, and emissions testing.

Federal Information Processing Standard
A Federal Information Processing Standard (FIPS) certification grants software and
computer systems access to use sensitive and highly classified information. There are
different classifications of FIPS that deal with different standards. For example, FIPS 46-3
is the code for the United States Data Encryption Standard (DES), whereas FIPS 197 deals
with the Advanced Encryption Standard (AES).

The Cyber Fiber of Our Connected World
The modern world has become very dependent on constant connectivity, and it’s easy
to forget just how many forms of connection exist. These methods of connection all have
different benefits and restrictions. It is important to have a solid technical understanding
of how these methods operate, in order to find the correct match for your business’s needs.

Cellular Networks
Cellular networks are incredibly technical and complicated systems; even small networks
require specialized hardware and software. Cellular networks transfer data from point to
point through the use of cellular towers. There are two major communication protocols

CHAPTER 3 ■ BEyond THE MoBilE APP—A TECHnology FoundATion

21

of cellular networks—Global System for Mobile Communications (GSM) and Code
Division Multiple Access (CDMA). These protocols allow multiple types of data to be
streamed from one device to another. Their data includes voice calls, Short Message
Service (SMS), and Multimedia Messaging Service (MMS). The Open Mobile Alliance
(OMA) standardized the technical details and specifications for many of the protocols
and services provided on cellular networks.

Open Mobile Alliance
The Open Mobile Alliance was formed in June of 2002 and acts as a standards body for
the mobile phone industry. The OMA is responsible for the maintenance and creation
of many standards within the mobile space, and works with various standards bodies.
Some of the more notable are the 3rd Generation Partnership Project (3GPP), the 3rd
Generation Partnership Project 2 (3GPP2), the Internet Engineering Task Force (IETF),
and the World Wide Web Consortium (W3C).

Wireless Communications
Wireless communications transfer data between two or more endpoints that have no
physical connection. The distance of this connection can be as short as a few inches or as
far as hundreds of thousands of miles. Many forms of wireless communication exist, the
most popular of which are Wi-Fi, Bluetooth, and radio frequency (RF). Each method has
distinct benefits and issues.

Wi-Fi
Wi-Fi is available on almost every electronic communication device produced today; it
allows for data connections from a Wireless Access Point (WAP). Wi-Fi networks have
ranges of between 120 feet (36 meters) and 300 feet (91 meters), depending on the
environment. The two major types of Wi-Fi in common use are 802.11b and 802.11g. Most
Android devices support Wi-Fi that connects to the Internet and to local networks. When
using Wi-Fi on Android devices, any cellular data connection will be suspended until
connectivity is lost or until Wi-Fi is disabled. Using Wi-Fi on an Android device generally
means a much faster connection speed with less latency.

Bluetooth
Bluetooth is similar to Wi-Fi, but is a newer wireless technology created in 1994 by the
telecommunications vendor Ericsson. It’s good for transferring data over short distances
with high levels of security. Bluetooth devices operate primarily by pairing, focusing on
one-to-one communication. Security is increased by requiring physical intervention
during the pairing process to ensure that the user has access to both sides of the device.
Bluetooth supports direct data transfer, and because of the short range and the higher
data speeds, typical Bluetooth devices act as interfaces or controllers to existing systems.
These systems include headsets, keyboards, mice, and mobile devices.

CHAPTER 3 ■ BEyond THE MoBilE APP—A TECHnology FoundATion

22

Most modern Android devices are Bluetooth-enabled, with Bluetooth 2.0 or greater
support. These Android devices can stream music, chat from phone to phone, and even
create Internet hotspots using Bluetooth. When using Bluetooth, Android allows your
enabled device to act as either a server or a client.

Mobile Interfaces
The way we communicate with our mobile devices has changed over the years as new
technologies have been integrated into smartphones. Instead of just a simple physical dial
pad with some sort of display, modern phones contain multitouch screens, vibration motors,
LED notification lights, sophisticated noise detection, speakers, accelerometers, and physical
buttons. Android developers provide these technologies using the Android SDK.

Touch Screens
Full-color touch screens are a newer, popular technology that has taken over the
smartphone market. The best touch screens used in mobile devices support high
resolution, multiple touches, and non-scratch covers. There are two primary types of
touch screen currently used in the mobile space—capacitive and resistive.

Capacitive
The capacitive touch screen is composed of an insulator, typically glass, which is coated
in a conductive material. When a finger touches the surface, the electronic field is
distorted, and the capacitance is measured to find the location of the press. As a result
of this technology, the screen is quite accurate and requires only the slightest touch.
The most notable downside to capacitive screens is the requirement for some sort of
electronically conductive material to operate the screen. This means that styluses must be
conductively enabled in order to work (and so must your gloves)!

Resistive
Resistive touch screens, as the name implies, have two flexible sheets covered in a
resistive material. One of the sheets has sensors running horizontally and the other sheet
has sensors running vertically. When the screens make contact, the exact point is located
based on which lines crossed. Any object can operate resistive touch screens; however,
the amount of force required is much greater and precision is less accurate than with
capacitive touch screens.

Apple Inc. has chosen to use only capacitive touch screens for all of its products that
employ touch screens. Within the Android device market space, device manufacturers
have been split on their choices between capacitive and resistive.

CHAPTER 3 ■ BEyond THE MoBilE APP—A TECHnology FoundATion

23

Vibration Motors
The touch screen is only one of many methods for interacting with a mobile device.
Almost all modern smartphones have some sort of vibrating motor. The vibrating motor
consists of a smaller electric motor with a weight purposely attached in an unbalanced
fashion. When the motor attempts to spin, the off-balanced nature of the weight causes
the device to shake and vibrate. In Android, developers have full access to the motor and
can at any time turn it on and off.

LED Lights
Modern smartphones contain one or more lights that can be used as a secondary means
of notification. On the Droid 2 for example, the light is illuminated green after an unread
text message is received and blue for changes to the radio status. The light color and
status can be modified at will by any Android developer.

Accelerometer
Many modern smartphones include onboard-embedded accelerometers. An
accelerometer is an electronic chip that measures acceleration in one or many directions.
The Android OS uses the built-in accelerometer as a means of detecting screen
orientation. Third-party developers have expanded on this technology by developing
applications that use the measurements as a form of input.

Tilt Sensor
Similar in many ways to the accelerometer, the tilt sensor is an embedded device
contained in some modern smartphones. A tilt sensor is used in the Android OS as an
alternative to an accelerometer to determine the device’s current orientation.

Hardware Buttons
In addition to the touch screen, many phones have physical buttons that allow for quicker
access to tasks like adjusting the volume, putting the phone to sleep, returning to the
home screen, and using the camera. When an Android application has the focus of the
device, these buttons can generally be reprogrammed to act as input for the specified
application. For example, inside of many media applications, the volume buttons change
to adjust the volume of the media controller instead of the phone’s ring volume.

Overview
Android devices are much more than just communication and entertainment devices.
They are used in many different ways, such as interaction with standard personal
computers, control of our vehicles, interlacement with digital entertainment systems,

CHAPTER 3 ■ BEyond THE MoBilE APP—A TECHnology FoundATion

24

and much more. The potential extends beyond the general consumer market. To
accommodate all the possible situations that these devices can be used in, there
are special requirements that you must address. Devices can be hardened to work
in underwater and extreme duty environments, encrypted and protected for use in
sensitive areas, virtualized for testing and development, and even secured for use by
military forces. This is all possible because of the cyber fiber that allows devices to
remain connected at all times. It’s this very cyber fiber that has created the rich and
ever-changing digital world of the modern age. We can interact with our devices through
various mediums. The high-resolution touch screen provides responsive and accurate
control; the vibration motors can inform us about new events; and the built-in sensors
can detect real-time changes in device orientation. All of these interfaces, and more, are
available for Android developers to use in any and every way possible.

www.allitebooks.com

http://www.allitebooks.org

25

Chapter 4

Android Development—
Business Overview and
Considerations

Data is a precious thing and will last longer than the systems themselves.

—Tim Berners-Lee

The Android Industry has its own requirements for entry. It’s helpful to have a full
understanding of these requirements and specifications when you’re deciding whether to
pursue a business venture. As discussed in previous chapters, the Android OS is already
the industry leader for mobile devices, and its market share is growing with each passing
year. With the introduction of x86 to the Android software stack, applications written for
x86 systems are now supported, which expands the market even further.

The Android Market Share
According to International Data Corporation (IDC), Android’s second quarter 2013 sales
have reached 187 million units shipped. The previous record–100 million units sold–was
broken by Android in 2012. These numbers bring Android up to 79 percent market share
of smartphone operating systems. Compared to last year’s 136 million units, Android has
grown by over 74 percent. Much of Android’s growth can be counted from Samsung’s
success in the last quarter, with over 39 percent of the smartphone manufacturing market
share. IDC’s senior analyst Kevin Restivo had this to say about Android’s success:

The share decline of smartphone operating systems not named iOS since
Android’s introduction isn’t a coincidence. The smartphone operating
system isn’t an isolated product, it’s a crucial part of a larger technology
ecosystem. Google has a thriving, multifaceted product portfolio. Many of
its competitors, with weaker tie-ins to the mobile OS, do not. This factor
and others have led to loss of share for competitors with few exceptions.

CHAPTER 4 ■ AndRoid dEvEloPmEnT—BusinEss ovERviEw And ConsidERATions

26

The future of Android’s market share is a much more debated topic. Some industry
experts have made claims that this is the peak of Android’s dominance. Experts have
suggested that with the release of new iPhone models, and new iOS updates, Apple may
steal the market share back from Google over the coming years. Others claim that this is
just the start, best stated by John Koetsier:

Android is a train that has left the station, and it is stopping for no one. The
number of Android phones sold in this quarter alone is greater than the
total number of smartphones of all kinds sold in the entire year of 2007.

It is hard to say what the future of the smartphone operating system market looks like.
No one can say for sure, but how does success in market share translate of profits? With
Android being a free and open source platform, how is Google making money from it?

How Android Makes Money
Google is a giant successful company; there is no denying it. But how does Google make
money from the Android project? Apple charges not only for their operating system,
but also for upgrades and applications. Google’s strategy is in line with their primary
company revenue streams, advertisement.

Google has various avenues for collecting money from Android and its software
stack. To start with, Google collects money from Android through advertising in the
browser, and in its Google Play store. This advertising avenue may seem small; however,
this is where the majority of Google’s money is made. Google also takes royalties from
applications on Google Play, and charges for adding content to the Google Play store.

The industry leader makes billions of dollars in revenue each year from advertising
on Google sites, and on networked “partner” sites through AdSense. In Q3 of 2012,
Google’s total advertising revenue was over 14 billion dollars. Larry Page, Google’s CEO,
put Google’s mobile business on an 8 billion dollar run rate. This has grown by almost
three times the amount since last year’s 2.5 billion dollar run rate. Page did not further
break down what sections this revenue was coming from; he only commented on the
growth saying, “users paying for content and apps in Google Play.” Google’s SVP and
CFO Patrick Pichette commented on the growth saying, “clearly we don’t break down the
categories. Ads continue to be the bulk of the 8 billion—the vast majority of it.”

Why Android Is Successful
What is it exactly that makes Android so successful and commercially viable? Some
experts claim that it’s the powerful financial companies that sit behind its products;
others claim that it’s the backing of the open source community and the free sharing
mindset; and yet others claim it’s the features and the extensive development capabilities.
It is hard to find a single reason, but much easier to point out the areas of success.

CHAPTER 4 ■ AndRoid dEvEloPmEnT—BusinEss ovERviEw And ConsidERATions

27

Free
Android has always been, and will always be, free. This enables massive bonuses for all
parties involved. Manufacturers can build hardware with confidence that the Android
stack will be free, developers can write applications without needing to worry about
complex platform costs, and researchers can find flaws and improve the underlying
systems without needing to purchase licenses and agreements.

Open Source
The open source community is a gigantic collection of developers and likeminded
individuals who believe that sharing information can lead to stronger and better
products. Android is a child of this community, and has been open sourced thanks to
Google. This allows programmers from all over the world to contribute and extend the
software that they use every day.

Customization
The Android software stack allows you to personalize your device to the point that you feel
comfortable. You can change the colors, the way your phone responds to notifications,
remove and add applications, and even change the way you secure your device. This level
of customization allows users to enjoy and utilize the device to its fullest potential.

Application Base
The Google Play store has over 1 million Android applications available at various prices.
These applications can use the device in any way a developer can imagine. In comparison
to iOS’s App Store, the Google Play store consists of predominantly free applications. This
is a primary reason the Apple App Store generates higher revenue. With this in mind,
the Google Play store outpaced the Apple App Store for number of apps downloaded in
the second quarter of 2013. Developers can earn revenue from advertising inside of the
applications, which allows consumers to use the applications free of cost.

Hardware Choices
Unlike the other mobile operating system choices, Android has the largest selection of
devices to choose from. There are over 3,900 Android devices that exist in the market
right now. Consumers can find a device that has all of the features that they need. These
choices also cover all of the major cellular service providers in the United States, and
European countries, providing greater outreach.

Device Price
Android devices offer various price points for users. Consumers can choose how much
they want to pay for an Android device based on the features that are important to them.
Some third-party cellular service providers offer Android devices on pay-as-you-go plans.

CHAPTER 4 ■ AndRoid dEvEloPmEnT—BusinEss ovERviEw And ConsidERATions

28

For much higher prices and service contract packages, the latest and greatest Android
devices are available. The more money you spend, the greater the hardware and features
your device will contain.

Legacy and Future Platform Support
Android has been commercially available for five years, and has produced a multitude of
software versions and hardware platforms. With the robustness of the platform, Android
must make choices about how to deal with past versions, as well as future revisions.
Backward compatibility is a problem that all large platforms face.

Legacy Support
Android, from version 1.5 and upward, is packaged onto hardware platforms, and exists
in commercial markets. Software for Android is fully backward compatible. This means
that applications built for version 1.5 can be used to their full extent on version 4.2
devices. This alleviates some concerns that developers have about losing market share in
new devices. It is important to note, however, that this compatibility does not utilize the
new features of Android. For the best quality and functionality, applications should be
rewritten for new versions.

Android also has some interesting hardware requirements. In order to gain Google’s
Android stamp of approval, manufacturers must meet certain qualifications like having
a cellular radio, GPS capabilities, and Wi-Fi chips. However, many of the things users
take for granted are not mandated or regulated. This list includes screen size, screen
resolution, internal storage size, GPU speed, and even processor specifications. This
provides manufacturers the freedom to create high-powered devices, cheap consumer
friendly devices, and anything in between.

Future Support
Google’s strategy for Android’s future releases is catered toward backward compatibility and
engaging the largest market share. New versions of Android will have mechanisms for running
applications developed years before. It is important to note that new applications cannot run
on old systems. If you use the Android Software Development Kit version 4.1 to develop an
application, that application cannot run on a 2.3 Android device. However, an application that
is written for a 2.3 Android device will run without modification on a 4.1 device.

Why x86 and Android Are Right for You
Android and the x86 family is a business with low barriers to entry and significant
probability of success. These low entry requirements give even the smallest companies
the opportunity to be successful, mainly because startup costs are minimal. The question
is not whether Android and x86 are right for you, but rather what steps you need to take to
be successful.

CHAPTER 4 ■ AndRoid dEvEloPmEnT—BusinEss ovERviEw And ConsidERATions

29

Cross Compatibility
The x86 architecture offers a diverse network of systems deployed in many industries.
From cash registers, to televisions, to mobile devices, and even major utility control
systems, x86 platforms are everywhere. Few industries in the world exist that don’t have
the x86 architecture incorporated in some manner. With the combination of the Android
platform, the outreach is even larger.

Applications written for Android will run on all Android devices that are the same
version, regardless of the underlying processor. This means that applications written
and tested on ARM Android devices require little to no effort to be used to their full
capabilities on Intel x86 Android devices. The exception to this is applications that use
Android’s NDK. However, with a simple recompile, the application should be up and
running. For more information about software migration, refer to Chapter 7: Creating
and Porting NDK-based Android Applications.

Barrier to Entry
Economically speaking, to use Joe S. Bain’s classic definition, “a barrier to entry is an
advantage of established sellers in an industry over potential entrant sellers, which is
reflected in the extent to which established sellers can persistently raise their prices above
competitive levels without attracting new firms to enter the industry.”

Barrier to entry is the reason why many companies can aggressively dominate
certain industries. For example, the oil industry has an incredibly high barrier to entry.
The cost of starting a successful oil company is outrageously high, since you are required
to have so many resources and tools to compete with the existing leaders.

The Android industry has a very low barrier to entry. The costs and requirements
to create a successful business in the Android space are much lower than most other
technical industries. The largest challenges involve finding a product idea and building a
development team. With a strong idea and a foundational team, success is only a matter
of development and marketing. Indeed the costs are low enough that even individuals
can succeed in this marketplace.

Security of Android
Security, when it comes to software systems, is often of much deeper concern to the
provider than the customer. A good security system can be explained in depth, without
being compromised. Android is one of these systems. The security that surrounds the
platform and its components is well documented and researched. For more information
and technical details about the system, consult Android on x86 Security Guide.

Application Security
With the introduction of an application market, Android’s security model has grown
incredibly complex. Android must secure its own applications and also provide some
level of security for third-party applications. Its security system must be simple enough
that the average user can understand the applications, and it must allow the users to
decide whether or not to use them.

CHAPTER 4 ■ AndRoid dEvEloPmEnT—BusinEss ovERviEw And ConsidERATions

30

Android’s solution to the problem was to use permissions. In order to access certain
functions of a device, you must register for the related permission. For example, to use
data or Wi-Fi services in the application, you must register to use the Internet permission.
When the application is displayed to the users, the different permissions are displayed as
well. If an application attempts to use a feature without registering for the permission, the
application simply crashes.

Another major section of application security is the separation of information between
applications. If an application can freely interact with other applications on the phone,
malicious things can occur. There are various situations when users need applications to be
able to send messages to each other. Android’s inner-application messaging system uses the
concept of intents to relay information across the operating system.

An intent is simply a free-form message produced by an application and handed
to Android. These messages can have various types of data, and come in two primary
flavors. An implicit intent is a message that exists for any application that can access it.
For example, on many Android applications, when you click a link, a window appears,
letting you choose from all several applications that can view the site. In the background,
the application fired an implicit intent that was then relayed to all available applications.
Explicit intents, on the other hand, are directed at one very specific application. This
intent can be seen and handled only by the application for which it was crafted.

Third-party applications also operate as separate users on the underlying operating
system. This means that third-party applications cannot access files and resources that
another application owns. The exception to this is with system applications. System
applications can access all sections of the device that are required for operation.

Platform Security
The security surrounding the phone and its onboard features is a widely discussed topic.
Android provides many different security features to help secure users and their data.
Some of these features include screen locks, text and e-mail encryption, multiple types of
passwords, and extra password prompts when you access certain sections of the device.
These features verify authenticated users.

Third-party applications have also been created to aid this effort. Applications exist that
can help you find your device if it is stolen, remove data from your phone, lock the device
remotely, and add even more customization for the way you authenticate with the device.

Licensing
In the software development industry, licensing fees are very common. From library
licensing costs, to platform licensing costs, and even device licensing costs, there
are plenty of situations where you’ll need to spend a little money to develop and sell
products. Since Android is an open source and developer-friendly community, it aims to
keep these costs low.

CHAPTER 4 ■ AndRoid dEvEloPmEnT—BusinEss ovERviEw And ConsidERATions

31

Android Licensing Cost
There is none. Android is open sourced under the Apache 2.0 license, which permits
commercial usage, modification, and distribution absolutely free of any cost. This means
that anyone can play with the Android operating system’s source code, and create a whole
new product out of it.

Application Licensing Cost
Creating applications for Android is a slightly more involved process. The development
suite and software development kit are free to anyone who wants to download them.
With these tools you can build, test, and deploy to development devices, any Android
application from the source. Releasing your Android application is a different story.

Android devices can install third-party applications via USB and from the SD
card, provided the option is enabled, but these mediums are not very convenient for
consumers. Enter the Google Play Store, an Android application market where developers
can quickly and easily upload and update applications for the entire Android population
to see and purchase.

The process of selling applications in the Google Play Store is straight-forward.
The first step is setting up a Google account. This gives you access to the Android
development site, where you can manage your applications. Once you create your
account, Google requires a one-time $25 fee to distribute applications inside of the
Google Play market. You can then upload and configure your applications to distribute in
the market.

Now that you have an application you want to distribute, how do you earn money,
and what does that look like? To collect money from your Android application sales, you
need a Google Checkout Merchant Account. Purchases of your application in the Google
Play store will contribute to the your Google Wallet, which can be transferred to USD
using various methods. Google does take a percentage of all your profits, based on many
factors such as application sales and rate of sales.

Physical Development Costs
When you’re starting off in the software business, it is important to remember that there
are physical requirements for the virtual product you’ll create. Unlike in traditional
engineering, the thing that is being sold won’t necessarily have a physical component.
To create and fully test an Android application, there are a couple of physical platforms
that are required.

Software Development Systems
Developers use software development systems to write the code that will run on the
Android devices. The Android Software Development Kit (SDK) can run on Windows,
Linux, and Mac, so choosing an operating system is up to the developer. When it comes to
hardware choices, there are a couple of things to consider.

CHAPTER 4 ■ AndRoid dEvEloPmEnT—BusinEss ovERviEw And ConsidERATions

32

The Android SDK is a relatively large application, especially after it downloads the
files needed to run the different versions of Android. Getting a hard drive large enough
to hold all of the required tools and files is a must, but hard drive speed is also a serious
concern. With the price of solid state hard drives dropping, it’s worth considering one
for development. A solid state hard drive operates at read and write speeds often more
than double the speeds of a traditional hard drive. This translates to significant time
savings—the system will boot faster, Integrated Development Environments (IDEs) will
operate more quickly, and the applications will run faster.

If you plan to run the Android Emulator on a laptop, it is also worth investing in a
significant amount of RAM for the laptop. Anywhere from 4GB and higher should be
sufficient. If you have less than 2GB, you will have problems. With more memory on the
system, more applications can be run at the same time.

Finally, you need a processor powerful enough to run the SDK and the required
development tools. The choice is up to your development team; however, the newer the
better. Something with multiple cores is always a plus.

Android Testing Systems
The Android Emulator is capable of nearly all the functionality provided by physical
Android devices. Even so, it’s paramount that testing occur on true hardware. The
real hardware system will respond exactly as customers can expect, so testing on true
hardware allows for a much more natural experience.

A single Android device will not be enough. It is important to test on multiple
devices of the same Android version as your target version. If the application is being
developed for a previous version of Android, it is imperative to test on devices that have
newer versions as well. The greater variety of devices you use to test software and confirm
usability, the more bugs and problems you’ll identify pre-launch. Finding and fixing
problems before a customer deals with them will help establish your product.

Overview
Android and x86 are a powerful combination. With a low barrier to entry, a strong security
backing, low licensing costs, and an easy mechanism to deploy applications, Android
is an easy and profitable industry to get involved with. Thanks to Android’s success
and Google’s profits, the Android stack is something that has an ever-growing backing.
Android and x86 are the right choice for development. With careful consideration for the
development team and the product, a viable strategy, and successful management, there
is much money to be made from the Android ecosystem.

33

Chapter 5

The Intel Mobile Processor

If GM had kept up with technology like the computer industry has,
we would all be driving $25 cars that got 1,000 MPG.

—Bill Gates

Intel is the original microprocessor designer: the first commercially available microprocessor
was the Intel 4004 in 1971. Intel processors currently dominate the high-performance
market, capturing almost all modern high-end servers. Intel’s Pentium line of processors
were ubiquitous in personal computing during the 1990s, and their Core i-series are the
most popular central processing units for laptops and ultrabooks today. In addition, Intel has
entered the mobile marketplace with mobile specific microprocessor products competitive
with ARM Ltd., the market leader in the mobile space. Combined with the robustness and
flexibility of the Android OS, the power and compatibility of the x86 series of processors is
bringing a competitive new device family to the mobile market.

Intel’s x86 Line
x86 forms the base architecture of an enormous family of Intel processors, ranging from the
earliest Intel 8086 to the Pentium line, the i-series, recent virtualization hypervisor-equipped
server processors, low-power Atom and Haswell microprocessors designed for mobile
and embedded use, and the tiny Quark system-on-chip aimed at wearable computing.
Originally, the 8086 architecture was designed for embedded systems. But Intel’s early
implementations of the 8086 architectures were wildly successful and led to a long line of
revisions and upgrades adding power and rich features.

The x86 architecture is a Complex Instruction Set Computing (CISC) system, built
with more complex instructions facilitating ease of use and simpler implementations.
ARM, Intel’s main competitor for mobile processors, is a Reduced Instruction Set
Computing (RISC) system, without these features. For example, in a RISC system it
might take three to four instructions to load a given value into memory, whereas in
a CISC system there is one single instruction specifically written to do this. The x86
architecture is also register-to-memory based, meaning instructions can affect both
registers and memory.

CHAPTER 5 ■ THE InTEl MobIlE PRoCEssoR

34

History
Intel is one of the oldest semiconductor manufacturing companies in the world, and is
known for building innovative and functional technologies in the computer hardware
and related industries. The company was started by Bob Noyce and Gordon Moore in
1968. Venture Capitalist Arthur Rock solidified this company with an initial investment of
$10,000 and a later contribution of $2.5 million, resulting in his position as chairman.

Intel released their first two products in 1969: the 3101 Schottky bipolar random
access memory, and the 1101, the world’s first metal oxide semiconductor (MOS).
As mentioned, the first Intel processor was released in 1971, and it was called the 4004.

In 1978, Intel first released the 8086 series of processor architectures that would
change the world. Only five years after that, Intel could officially call itself a billion dollar
company. Intel is the largest semiconductor company in the world, and per the 2012
year-end reports, holds a market share of 15.7% and a revenue of 47.5 billion dollars.
The original x86 architecture has split, diversified, added new specifications, and been
reshaped into smaller form factors, continuing to be used in products around the world.
The incorporation of Android on x86 is just another step forward for Intel.

Because the x86 architecture has been used in so many technologies, from servers to
personal computers, mobile phones, laptops, and tablets, compiling a complete list of its
devices would be prohibitively difficult. Its wide use has resulted in the creation of tools,
applications, frameworks, and libraries specific to x86 platforms for developer use.

It all started in 1978 with the Intel 8086, originally built as an experimental 16-bit
extension to the Intel 8080 8-bit microprocessor. The 8086 was the processor that drove the
“IBM PC” and all of its clones. The term x86 was derived from the successors to the 8086,
all of which ended in “86.” In 1985, Intel continued the x86 architecture with the Intel 80386,
the first 32-bit processor. It wasn’t until 2005, with the release of the Pentium 4, that x86 64-bit
processors hit the market.

Intel’s latest home computing processor series based on x86 architectures is
nicknamed the Intel Core i-series. This series supports 64-bit operations and is focused on
performance and speed. All of the processors support hyperthreading and have multiple
cores, which allow for concurrent processing. Running parallel to the personal computing
Core i-series of microprocessors is the x86-based Atom series for mobile devices.

Strengths and Weaknesses
As industry leaders in the semiconductor market, Intel processors have distinct advantages.
First and foremost, Intel processors have the highest performance of any other processors.
This performance consists of both processor speed and the number of cores and virtual
cores. The x86 architecture also grants developers access to the largest collection of software
available. The last major advantage is the scalability of high-end systems that use Intel
CPUs; the addition of processors gives direct performance improvements.

Table 5-1 highlights some of the differences of the Intel Atom processor family,
which implement the x86 instruction set. The Intel Atom processor family consists of
many different varieties for each platform type, including tablets, smartphones, netbooks,
and other mobile consumer electronics, and Table 5-1 represents comparable high-end
models for each.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 ■ THE InTEl MobIlE PRoCEssoR

35

There are situations where the x86 family is not the right choice of microprocessor.
The Intel family is physically much larger than other brands of CPUs, taking more than an
inch of space in the Core series. Up until the Intel Atom series, the power consumption
of Intel’s processors was too demanding for embedded devices; however, leading Atom
processors compete with ARM for battery life. Lastly, Intel processors cost significant
amounts and there are systems in which a 4-core 3GHz processor is overkill. In these
situations using an ARM or some other lower performance CPU may be desirable.

Business Model
In its home computing efforts, Intel has continued to produce powerful and energy-efficient
processors for laptops, ultrabooks, and desktop platforms. The closest competitor is the
Semiconductor company Advanced Micro Devices, Inc. There was a point in 2006 when the
desktop market was close to being split between AMD and Intel, but that is no longer the
case. As of November 2012, Intel CPU’s hold roughly 71% of the market, to AMD’s 28%.

As laptops and tablets grew in popularity, Intel released the Atom series of
processors. The atom processor balances heat and power with performance aimed
specifically at items that will run on batteries for extended periods. The Atom series can
be found in over 100 million devices, and is now expanding to the mobile market place.

Clash of the Mobile Titans: ARM versus Intel
ARM entered the microprocessor market in 1983, and emerged as a strong competitor in
certain areas. Intel and their x86-based processors have managed to capture a majority of
the desktop and home computing market. ARM on the other hand is the current leader
in the mobile and embedded device market. This next section discusses in detail the
properties of each company’s processors, including its benefits and weaknesses.

ARM
If you look at per-unit sales, ARM is the current mobile-arena winner. With over 30 billion
units in the current market, and 16 million sold per day, ARM is generating revenues of
well over 900 million dollars a year. ARM’s history, business strategies, and future plans
are all relevant to the reason for ARM’s success.

Table 5-1. Intel Atom Processor Family Comparison

Name (Code Name) System Type Processor Speed Cores (Threads)

Intel Atom Z2480 (Medfield) Mobile 2GHz 1 (2)

Intel Atom D2700 (Cedarview) Desktop 2.13GHz 2 (4)

Intel Atom C2750 (Avoton) Server 2.40GHz 8 (8)

Note These are the top-of-the-line Atom processors for each system type.

CHAPTER 5 ■ THE InTEl MobIlE PRoCEssoR

36

History
The ARM story begins at the British personal computer company Acorn. The original
Acorn RISC machine was developed between the years of 1984 and 1985. In 1982, prior
to ARM, the British Broadcasting Company (BBC) signed with Acorn to develop a home
computer that would be later known as the BBC microcomputer. The BBC micro was
wildly successful, and lead to the growth of Acorn as a small company with a handful of
employees, to a medium-sized business with hundreds of employees.

Around the end of the BBC micro era, Acorn began looking for the next processor
to carry their new personal computer forward. Acorn tried a variety of 16- and 32-bit
processors, including the 65C816 used in the Apple IIGS, but couldn’t find one with the
performance that Acorn needed. Acorn’s solution to this problem was simply to develop a
new processor, the ARM1.

Despite its incredible power and performance, the ARM1 wasn’t largely used
until the release of Archimedes, the first true ARM-based platform. Archimedes was a
desktop computer, released in mid-1987, which primarily was used in schools and other
educational environments. Even with the mild success and response from consumers, the
ARM team pushed forward and created the ARMv3, focusing on increasing performance
to compete with Intel and Motorola workstations.

In 1990, the Acorn RISC machine became the Advanced RISC Machine, and
Advanced RISC Machines Ltd was created. With help of founding partners Apple,
Acorn, and VLSI Technology, the company was founded for the sole purpose of
continuing development of the ARM processor. From this foundation came the birth of
the ARMv6, released to licensees in October of 2002. The ARMv6 architecture is used
widely in embedded and mobile devices today, along with its more recent relatives,
ARMv7 and ARMv8.

Strengths and Weaknesses
ARM processors have some very attractive qualities. To start, they are incredibly small. In
fact the most modern ARM11 family of processors is under 2mm2. Because of the small
form factor, the heat generated from use is generally low enough to avoid any sort of heat
sink or cooling system. Even as small as it is, ARM chips can contain many core system
components inside of a single piece of silicon. These components include CPUs, GPUs,
and DSPs. The last major advantage is the minimal amount of power consumed relative
to competitors; some reports claim as much as a 66% savings. The less power used, the
longer batteries last and the cheaper the electricity bill.

Table 5-2 showcases some of the more popular ARM processors currently used in
the mobile market. This table is only a sample of the many options that ARM provides
for mobile devices, but comparison with Table 5-1 demonstrates the significant
differences from the Intel processor family. The comparable ARM mobile processors offer
significantly less processor speeds, even at the high-end of the spectrum with the A15.

CHAPTER 5 ■ THE InTEl MobIlE PRoCEssoR

37

For all of the strengths that ARM chips have, there are plenty of weaknesses. To start
with, ARM chips lack the serious performance required for any sort of heavy processing
situations. The ARM processors are also inherently less scalable, especially in comparison
to modern Intel CPUs. Software for ARM needs to be specifically created for the
architecture; luckily, some of the more common tools and utilities already exist for ARM.

Business Model
An analysis of ARM’s corporate decisions can help reveal their focus in the processor
market. It is obvious the primary values that are held—RISC architecture, high
performance, low power consumption, and low price point. These differentiations set
ARM up perfectly for the mobile market, and are the key reasons that ARM processors are
almost exclusively used in smartphones.

ARM processors however are not sold or manufactured by ARM Ltd. Instead, the
processor architecture is licensed to interested parties. ARM Ltd. offers a variety of terms,
and varying costs. With all its licensees, ARM provides in-depth documentation, a
complete software development toolset, and the right-to-sell manufactured silicon with
the licensed CPU.

This business model has done well for the company; in the second quarter of 2013,
ARM reports categorized 51% of their income from royalties, with 39% from licensing. The
report went on to detail the number of units for both royalties and licenses. The average
cost of royalties per unit was roughly $.07 cents, with over 2.6 billion units. On the other
hand, there were 25 new licenses signed that quarter, averaging about $1.84 million
dollars per license.

Future
The latest processor that ARM has publically released is the ARM7, with various modified
implementations. The ARM7 is used widely in the modern smartphone market. There
have been rumors in corporate waters that ARM will be pursuing additional directions
with its processors.

With the release of Windows 8 for x86, Microsoft has created a version of Windows
called Windows RT for ARM processors. Windows RT was written almost entirely from
scratch, and has managed to eliminate many, but not all, of the bottlenecks of modern
backward-compatible Windows versions. Tests have concluded that RT applications are
running as much as 20% faster than the same applications on competing Intel chips.

Table 5-2. ARM Cortex-A Series Comparison

Name (Architecture) System Type Processor Speed Cores

A15 (ARMv7) Mobile 1-2.5GHz 1-4 + clustering*

A7 (ARMv7) Mobile .8-1.5GHz 1-4

A5 (ARMv7) Mobile .3-.8GHz 1-4

Note *The A15 supports up to four clusters of processors with 1-4 cores each.

CHAPTER 5 ■ THE InTEl MobIlE PRoCEssoR

38

Experts have also projected ARM’s entry into the server and datacenter markets.
With support from ARM-based Linux server operating systems, this is becoming more of
a reality. The ability to run performance systems on ARM conceivably means lower power
costs. This has yet to be seen in the current performance of high-end ARM systems versus
the performance of high-end Intel systems.

Intel’s Atom Line of Microprocessors
Atom processors are featured in devices that are used on the go. Typical devices include
small laptops, netbooks, tablet computers, televisions, and new smartphones. The Atom
balances performance and power usage to enable much longer battery life for the device.

With over 100 million Atom CPUs shipped, the outreach of the Atom is apparent.
As with all Intel processors, the Atom is a member of the Intel Architecture (IA) family.
The distinct and cross portability of the IA family allows for quick and effortless
transitions between processors.

Intel Atom Evolution
The Intel Atom is the successor of the Intel A100 and A110, low-power processors primarily
used in notebook computers. The A100 and A110 were code-named Stealey and originally
built at the size of 90nm. Tables 5-3 and 5-4 highlight some of the iterations of Atom, for
tablets and for smartphones, from the processor family’s infancy in April of 2008 through its
modern releases.

Table 5-3. Intel Atom Smartphone Processors

Code Name GPU* Speed Processor Speed Cores (Size) Release

Silverthorne 200MHz 800MHz – 2.13GHz 1 (45nm) April 2008

Lincroft 400MHz 800MHz – 1.9GHz 1 (45nm) May 2010

Penwell 400MHz 1.2GHz – 2.0GHz 1-2 (32nm) 2012

Note *GPU stands for Graphics Processing Unit, the hardware responsible for producing
graphics for a given device.

Table 5-4. Intel Atom Tablet Processors

Code Name GPU* Speed Processor Speed Cores (Size) Release

Lincroft 400MHz 1.2GHz – 1.5GHz 1 (45nm) May 2010

Cloverview 300MHz – 533MHz 1.2GHz – 2.0GHz 2 (32nm) 2012

Bay Trail-T 311MHz – 688MHz 1.33GHz – 2.41 4 (22nm) 2013*

Note *Bay-Trail T devices are expected in the first half of 2014.

CHAPTER 5 ■ THE InTEl MobIlE PRoCEssoR

39

At first glance, the processors listed in Table 5-3 only seem to be getting marginally
better, but in order to truly understand what’s going on, you need to take into account
all of the variables. The Penwell is the forerunner for processors that Intel produces for
smartphones today, with a size of only 32nm, multi-core support, and top-of-the-line
operating frequency with embedded GPU support. It is the obvious choice from Intel for
modern device manufacturers.

In comparison to the existing processors in Table 5-3, the tablet processors listed in
Table 5-4 are much more capable. These tablet processors support even more cores, and
have faster GPU speeds, which help accommodate much larger and often high-resolution
display components.

Intel Atom Security
With technology in this modern day and age, security is always a concern. The Intel Atom
processor offers support for many security features. These include Secure Boot, Intel
Platform Trust Technology, hardware-enhanced encryption, and operating system-level
key storage. Secure Boot is part of the current Unified Extensible Firmware Interface
(UEFI) specifications, and is best described in Intel’s own words:

When enabled and fully configured, Secure Boot helps a computer resist
attacks and infection from malware. Secure Boot detects tampering
with boot loaders, key operating system files, and unauthorized option
ROMs, by validating their digital signatures. Detections are blocked from
running before they can attack or infect the system.

The Intel Platform Trust Technology, or PTT for short, is a virtual smartcard reader
on tablets that allows for certificate-based authentication through the CPU.

Intel Atom Features
The Intel Atom processor supports a significant amount of the features that exist in
other Intel processors. Energy efficiency is a new idea in the Intel world, and the Atom
brings this to the forefront. The Atom processor can be custom-tailored to bring the
correct balance of incredibly low power with varying performance scalability options.
Performance-wise, the Atom supports both Intel Hyper-Threading and Intel Burst
Technology to help deal with required performance and power efficiency. The last major
feature that Intel promotes with the Atom is the concept of mobility, supporting NFC,
advanced camera imaging, 3G, and 4G LTE.

Android and the Atom
The Atom processor is the current x86 processor of choice for Android platforms. The Atom
Android team brings a wardrobe packed with top-of-the-line features. This includes 3D
graphics with full 1080p HD support for multiple formats, screen sharing and device pairing,
optimized web page rendering, and simple cross computability. Android SDK applications
are supported out-of-the-box on Atom Android platforms. Android NDK applications

CHAPTER 5 ■ THE InTEl MobIlE PRoCEssoR

40

require only a recompile, in most cases, to be fully supported. More information about the
compatibility and conversion process can be found the following section titled Application
Compatibility and in Chapter 7: Creating and Porting NDK-Based Android Applications.

Inside the Medfield System-on-Chip
Intel’s Medfield platform is intended for smartphones and tablets running the Android
operating system. One model of Medfield, the Intel Atom Z2610 System-on-Chip (SOC), will
be discussed in greater detail shortly (in Figure 5-1). As stated earlier, Intel has recently started
producing standalone mobile processors, including one codenamed Penwell. Although the
Penwell processor contains some of the same segments as the Medfield SoC, namely
Saltwell-family microprocessor architectures, Penwell is a standalone processor primarily
targeted at smartphones as opposed to Medfield’s multiple-part and higher-performance
system targeting both smartphones and tablets.

Figure 5-1. Medfield Block Diagram

This Medfield model, the Z2610, is physically divided into two complexes, the North
Complex and the South Complex. The North Complex consists of a Saltwell-family si
ngle-core processor, a 32-bit dual channel LPDDR2 memory controller, a 3D graphics
core, video decode and encode engines, a 2D display controller that is capable of
supporting up to three displays, and an image processor for camera input. The South
Complex consists of all the necessary I/O interfaces to complete a smartphone design,
such as a security engine, a storage controller supporting SD/eMMC storage cards, a USB
OTG controller, a 3G modem, Complimentary Wireless Solution (CWS) interfaces, SPI,
and UART. See Figure 5-1.

CHAPTER 5 ■ THE InTEl MobIlE PRoCEssoR

41

Zooming In on the Saltwell CPU Architecture
The Saltwell CPU architecture is fairly simple. The idea of the design is to create a processor
with a balance between optimized performance and efficient power consumption. The
processor uses in-order architecture, which is different from most of the other processors in
the market, which instead use out of order execution. The processor has a 64-KB L1 cache
and a 512-KB L2 cache. This processor supports Intel Burst Performance technology, which
lets the processor dynamically increase the CPU speed. There are three frequency modes
in Saltwell: Low Frequency Mode (LFM) runs at 600MHz, High Frequency Mode (HFM)
runs at 900MHz, and Burst Frequency Mode (BFM) runs at 1.6GHz. Among the power
optimization features, Saltwell has an ultra-low power smart L2 cache that keeps data while
the CPU is in C6 states, in order to lower the latency during the resumption of C states.
In addition, Saltwell has separate power planes and clock inputs for the core and the rest
of the SoC, which makes power and clock gating easily configurable through Intel Smart
Idle Technology (Intel SIT). This technology enables the CPU to be switched off completely
while the SoC is still in the ON state (S0 state).

Architecture Differences between Intel’s Saltwell
and ARM’s Cortex A15
As listed in the book, Break Away with Intel Atom Processors: A Guide to Architecture
Migration,1 the Intel Atom architecture is very different from the ARM architecture in
every way. Table 5-5 shows a list of high-level differences between Saltwell and ARM
Cortex architecture.

1 Matassa, Lori and Max Domeika, Break Away with Intel® Atom™ Processors: A Guide to Architecture
Migration. Intel Press, 2010.

Table 5-5. High-Level Differences Between Saltwell and ARM (Cortex A15)

Feature Saltwell ARM Cortex

Technology 32nm 28nm

Architecture In-order Out-of-order

Integer pipelines 16 15

L1 cache 64KB Configurable up 64KB

L2 cache 512KB Max 4MB

Instruction set IA32, Intel Streaming SIMD Extensions, Intel
Supplemental Streaming SIMD Extensions 3

ARM, Thumb

Multi core/thread
support

Single core with Intel Hyper-Threading
Technology

Multi-core

Security
technology

Intel Smart & Secure Technology
(Intel S&ST)

TrustZone*
Technology

CHAPTER 5 ■ THE InTEl MobIlE PRoCEssoR

42

Architecture
As mentioned, Saltwell has an architecture similar to other processors in the Intel
Atom series. It uses an in-order execution design. With an in-order processor, all the
instructions are executed according to the order they are fetched, whereas out-of-order
processors are capable of executing multiple instructions simultaneously and reordering
them later in the pipeline. ARM processors use out-of-order architecture, which has the
advantage of executing instructions with minimal latency. However, this increases the
complexity of the core design. The elimination of the reordering logic is one of the power
reduction initiatives of the Intel Atom processor.

Integer Pipelines
There are six phases in Intel Atom pipelines; the details are listed in Table 5-6.

Table 5-6. Intel Atom Instruction Phases and Pipeline Stages

Phase Pipeline Stages

Instruction fetch 3

Instruction decode 3

Instruction issue 3

Data access 3

Execute 1

Write back 3

This instruction architecture results in a total of 16 integer pipelines in the Intel Atom
processor, and three extra stages are required to execute floating point instructions.
The latest ARM processor has 15 integer pipelines. The lengthy pipeline in the ARM
processor trades energy over performance. Saltwell can decode up to two instructions per
clock cycle while the latest ARM processor is a triple issue superscalar architecture.

Instruction Sets
ARM instruction sets are always 32-bit and aligned on a four-byte boundary, whereas
IA32 instruction sets vary in size and do not require any alignment. Another difference
between ARM instructions and IA32 instructions is how the instruction is executed.
For ARM, all the instructions are conditionally executed to reduce branch overhead
and mis-prediction during branching. There are condition flags that each instruction
needs to fulfill in order to take effect, otherwise the instruction will act as NOP and get
discarded. There are conditional instructions as well in Intel architecture; these are
called conditional MOV instructions. Other instructions in IA32 are not conditionally
executed.

CHAPTER 5 ■ THE InTEl MobIlE PRoCEssoR

43

Multi-Core/Thread Support
As mentioned previously, Saltwell supports Intel Hyper-Threading Technology (Intel HT
Technology), where tasks are completed by using shared resources. The details of the
technology are discussed further in the next section. ARM multi-core architecture has
unique resources to perform its tasks on each core. The coherency of the cores is handled
by AMBA 4 AXI, a compatible slave interface that is directly interfaced to the core.

Security Technology
There is a security subsystem in Medfield called Intel Smart & Secure Technology (Intel
S&ST). It is a complete hardware and software security architecture. This subsystem is
compliant with industry standards, supporting AES, DES, 3DES, RSA, ECC, SHA-1/2, and
DRM. It also supports 1,000 bits of OTP and enables SecureBoot. The implementation
in the ARM processor for a security system is different. There is no separate controller
for the security subsystem as Intel implemented. The ARM processor uses TrustZone
technology, where resources in the system such as processor and memory are divided
into two worlds: the normal world and the secure world. There are three motivations for
this Trust Zone architecture:

To provide a security framework that allows designers to •	
customize the functions needed depending on the use cases.

To save silicon area and power where there will be no need to •	
have a dedicated processor for secured tasks.

To prevent intrusion during debug to security-sensitive tasks in •	
the secure world or non-security-sensitive tasks in the normal
world, by providing a single debug component.

Intel Hyper-Threading Technology
Intel Hyper-Threading Technology (Intel HT Technology) enables software to have a
view of multiple logical processors in a physical processor package. The Saltwell CPU
architecture uses Intel Hyper-Threading Technology as a boost to its performance. Having
a second thread in a single in-order architecture processor enables Saltwell to execute
multiple instructions within a clock cycle sharing the execution resources among the two
threads, giving a 50% performance improvement compared to a single thread processor,
as shown in Figure 5-2.

CHAPTER 5 ■ THE InTEl MobIlE PRoCEssoR

44

In Intel HT technology, the processor has duplicates of the architecture state that
consists of general purpose registers, control registers, the advanced programmable
interrupt controller (APIC) registers, and some machine state registers. The duplication
of architecture states is the reason software can view a single core processor as two logical
processors. Caches, execution units, branch predictors, control logic, and buses are
shared between the two threads. This created a concern where there might be resource
contention and workload imbalance between the threads. However, most of the current
development kits such as Dalvik and JavaScript already have the capability to support
multi-threaded environments, giving developers an easy way to generate applications
that utilize the advantage of Intel HT technology. Applications developers on Android
can also utilize the Intel VTune performance tool to analyze the workload and perform
resource tuning on their applications.

Application Compatibility: Native Development
Kit and Binary Translator
Android has been ported to x86 and all further releases will be available in both the x86
and ARM architectures. It is not an issue to run the OS on an Intel Atom platform. However,
in some cases, existing Android applications may need to be recompiled with or without
source code modification.

It is believed that roughly 75–80% (commonly cited numbers) of Android applications
in the Google Play Store run on top of the Dalvik VM and use the Android Framework
(see Figure 5-3). The vast majority of Dalvik VM applications written in the Java language
using the Android Software Development Kit (SDK) are processor agnostic. They run

Figure 5-2. Benefits of the Intel Hyper-Threading Technology

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 ■ THE InTEl MobIlE PRoCEssoR

45

“as-is” on Intel Atom platforms transparently without requiring porting efforts. For the
subset of applications that include C and C++ code, developers need to recompile their
code using the latest Android Native Development Kit (NDK).

Figure 5-3. Android Framework

In most cases, NDK application developers simply need to recompile the project,
which supports x86 (x86), ARMv5 (armeabi), and ARMv7 (armeabi-v7a). Compiling for
x86 (by GCC with compiler flags -march=i686 –msse3 –mstackrealign –mfpmath=sse)
will generate code that is tailored exactly to the Intel Atom CPU feature sets. Only
applications that use an ARM vendor’s specific feature will require source code to be
rewritten and then recompiled.

The resulting APK application package may comprise three versions of machine
code for x86, ARMv5, and ARMv7. Upon installation, only the appropriate version of code
is unpacked and installed onto the target platform.

The rest of the applications are either Dalvik VM applications that use Java Native
Interface (JNI) libraries built for ARM, or Native Development Kit (NDK) applications
that haven’t been compiled for x86. These applications cannot run without alteration on
the Intel Atom platform due to the calls to native libraries (especially ARM-specific native
libraries).

Intel and Google have worked together to ensure native application execution on
Intel Atom platform “as-is” without porting efforts. Intel provides Binary Translation (BT)
that translates ARM code to x86 code on-the-fly during execution, as shown in Figure 5-4.

CHAPTER 5 ■ THE InTEl MobIlE PRoCEssoR

46

This translation mitigates the inconvenience of JNI libraries and NDK applications that
have not yet been ported to x86. It allows the device to expose itself as supporting two
applications binary interfaces (ABIs): x86 and ARMv5. This could be observed from the
build.prop, as shown in Figure 5-4.

ro.product.cpu.abi=x86
...
ro.product.cpu.abi2=armeabi

Figure 5-4. Binary Translation

If the NDK applications haven’t been rebuilt for the x86 platform, the binary
translator will locally translate the armeabi version into x86. The same applies for
Dalvik VM applications that request ARM-based JNI libraries. The translation process is
optimized and completely transparent to the end users.

The combination of all of these efforts should result in approximately 90% of
applications in the Google Play working right away. The other 10% of applications may
take some additional configuration and setup to be fully functional. In Chapter 7:
Creating and Porting NDK-Based Android Applications, we will cover some more
specifics about native code development with x86, and this should offer some general
suggestions to help with any applications that fit into this bucket.

Overview
This chapter covered a brief history of both Intel and ARM from a company and a
processor standpoint. You looked at some specific processors from Intel and Arm and
read about what each brings to the table. After a brief overview of each company,
we spent some time talking about the Intel Atom processor and which features and specifics
exist with the modern versions. Finally we jumped into a technical discussion about
Intel Atom’s Medfield architecture, which is being featured in the newest x86 phones
and tablets. We have discussed how the Integer pipeline flows, which security systems
are in place, and even how the Intel Hyper-Threading optimizes performance. Binary
translation was discussed at length, with an explanation of how NDK-based applications
have to be prepared to later be ported to the Intel platform.

47

Chapter 6

Installing the Android
SDK for Intel Application
Development

How could this Y2K be a problem in a country where we have Intel
and Microsoft?

—Al Gore

This chapter covers the information necessary to get started developing an Android
application on an Intel Architecture processor. The first step is installing the software
development kit (SDK) and setting up the appropriate environments for developing
applications running on Intel Architecture-based Android devices. The SDK includes
tools and platform components for developers to develop, build, test, debug, and
optimize their Android applications, and manage the Android platform component
installation. The SDK also provides easy ways to integrate with the build and
development environments, for examples, with Eclipse or Apache Ant.

Preparing for the SDK Installation
This next section is dedicated to setting up a development environment available so that
you can start producing Android applications on Intel platforms. If you already have an
Android development environment setup, you can skip this section.

Supported Operating Systems
The following operating systems are supported:

Windows XP (32-bit), Vista (32- or 64-bit), Windows 7 (32- or 64-bit), •	
and Windows 8 (32- or 64-bit)

Mac OS X (32- or 64-bit)•	

Linux (Ubuntu, Fedora); GNU C library (•	 glibc) 2.7 or later is
required

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

48

On Ubuntu Linux, version 8.04 or later is required•	

On Fedora, target versions are F-12 and higher•	

64-bit distributions must be capable of running 32-bit •	
applications

Hardware Requirements
The Android SDK requires disk storage for all of the components that you choose to
install. Additional disk space is required to run the emulator, for example, to create
SD cards for the Android Virtual Devices (AVDs).

Installing the JDK
At minimum, Java JDK 5 or JDK 6 is required by the SDK. JDK 7 is also supported. JRE
(Java Runtime Environment) alone is not sufficient. If your system does not have JDK 5, 6,
or 7 installed, you can download JDK SE 7 from http://www.oracle.com/technetwork/
java/javase/downloads/index.html and install it on your system.

Installing Eclipse
Using the SDK with Eclipse to develop Android applications is highly recommended. You
can go to http://www.eclipse.org/downloads/ to download or update Eclipse. We suggest
using the following Eclipse setups to develop Android applications for Intel Architecture:

Eclipse 3.5 (Galileo) or greater•	

Eclipse Classic (versions 3.5.1 and higher)•	

Android Development Tools plug-in (recommended)•	

Installing Apache Ant (Optional)
Developing Android applications using an integrated development environment such as
Eclipse is highly recommended. But as an alternative, you can use Apache Ant to work with
the SDK to build Android applications. You can visit http://ant.apache.org/ to download
the binary distributions and install Ant. To work with the SDK, Ant 1.8 or later is required.

Downloading the SDK Starter Package and
Adding SDK Components
You can download the SDK starter package at http://developer.android.com/sdk/
index.html. The SDK starter package does not include the platform-specific components
you need to develop Android applications. It only provides the core SDK tools for you to
download the rest of the platform components.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
http://ant.apache.org/
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

49

After installing the SDK starter package, run the Android SDK and AVD Manager.

On Windows, select Start •	 ➤ All Programs ➤ Android SDK Tools ➤
SDK Manager

On Linux, run •	 your-android-sdk-directory/tools/android

In the left panel of the Android SDK and AVD Manager dialog box, select Available
packages, and in the right panel, click and expand the Android Repository node and
select the packages to install, as shown in Figure 6-1.

Figure 6-1. Installing the Android SDK and AVD Manager in Linux

Note ■ You may see an error message displayed if you attempt to download from behind
a firewall. If this occurs, try again from outside the firewall. If you still see an error message,
close the sdK manager, then right-click it in the start menu and select Run as Administrator.
These two steps will resolve most error messages you’ll see when attempting to download.

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

50

Setting Up Eclipse to work with the SDK
If you use the Eclipse IDE to develop software, we highly recommend you install and set
up the Android Development Tool (ADT) plug-in.

Installing the ADT Plug-in for Eclipse
To install the ADT plug-in for Eclipse, follow these steps:

1. Start Eclipse, select Help ➤ Install New Software in the Install
dialog box, and click the Add button.

2. In the Add Repository dialog box, enter ADT Plugin in the
Name field and enter https://dl-ssl.google.com/android/
eclipse/ in the Location fields, as shown in Figure 6-2. Then
click OK.

Figure 6-2. Repository Dialog Box

3. It will go back to the Install dialog box, connect to the Google
repository server, and display the available ADT packages,
as shown in Figure 6-3.

https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

51

4. Select Next, accept the license agreement, and then
select Finish.

5. Restart Eclipse.

Configuring the ADT Plug-in
To configure the ADT plug-in, follow these steps:

1. Start Eclipse and select Windows ➤ Preferences.

2. In the Preferences dialog box, select Android from the left
panel. On the right panel, use the Browse button to navigate
to your Android SDK installation directory and click Apply.
A list of SDK targets you have installed will show up, as shown
in Figure 6-4. At this point, click OK.

Figure 6-3. ADT Package List

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

52

After going through these steps, you will have the necessary tools available to start
Android development. You now have everything you need to write your first app, but it
would probably be best to also install the Intel Architecture (x86) emulator at this time,
so that you can test your app as soon as it is ready. This next section takes you through
the Intel Architecture (x86) emulator install. We discuss building an emulator image with
AOSP sources, and emulating the resulting system images for x86.

The Android Developer Tools are updated regularly to include the latest APIs. When
building an emulator image, the tools to build the most up-to-date Android version are
at your fingertips. If you choose to download pre-built emulator system images, your
choices will be a few months out of date. For this chapter, we use case studies emulating
Android 2.3, codenamed Gingerbread and covering API levels 9 and 10, and Android 4.0,
codenamed Ice Cream Sandwich and covering API levels 14 and 15. Gingerbread was the
first Android release available on platforms other than ARM and its new features emerged
directly from the Android open source project’s efforts, which were discussed in Chapter 1:
History and Evolution of the Android OS.

Figure 6-4. ADT SDK Targets List

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

53

Overview of Android Virtual Device Emulation
Android runs on a variety of form factor devices with different screen sizes, hardware
capabilities, and features. A typical device has a multitude of software (Android API) and
hardware capabilities like sensors, GPS, camera, SD card, and a multitouch screen with
specific dimensions.

The emulator is quite flexible and configurable with different software and hardware
configuration options. Developers can customize the emulator using the emulator
configuration called Android Virtual Device (AVD). AVD is basically a set of configuration
files that specify different Android software and device hardware capabilities. The
Android emulator uses these AVD configurations to configure and start the appropriate
Android virtual image on the emulator.

As documented on the Android web site (see http://developer.android.com/
guide/developing/devices/index.html), a typical AVD configuration has:

A hardware profile that specifies all the device capabilities (such •	
as cameras and sensors).

A •	 system image, which is used by the emulator for this AVD
(designating which API level to target, such as 10 for Gingerbread
or 19 for KitKat).

A •	 data image that acts as the dedicated storage space for user’s
data, settings, and SD card.

Other options including emulator skin, the screen dimensions, •	
and SD card size.

Developers are encouraged to target different API levels, screen sizes, and hardware
capabilities (such as camera, sensors, and multitouch). The AVD configuration can
be used to customize the emulator as needed. Developers can create as many AVDs
as desired, each one targeting a different Intel architecture–based Android device.
For example, a developer can create an Intel architecture–based Gingerbread AVD
with a built-in skin like WVGA800, or a custom one that manually specifies the screen
resolution.

The Android SDK has supported Intel architecture–based Android emulation since
version r12. The SDK integrates this support into all developer tools, including the eclipse
ADT plug-in. Figure 6-5 is a sample screenshot of the Android emulator for x86 running
Gingerbread. The model number is highlighted, and shows Full Android on x86 emulator.

http://developer.android.com/guide/developing/devices/index.html
http://developer.android.com/guide/developing/devices/index.html

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

54

For detailed instructions on how to use the emulator, refer to the following Android
documentation: http://developer.android.com/tools/devices/emulator.html.

Which Emulator Should You Use
At the time of this writing, emulator images are available for Intel architecture (x86) for
Android 2.3.7 (Gingerbread), Android 4.0.4 (Ice Cream Sandwich), and Android 4.3
(Jelly Bean). You can find the most recent image at http://software.intel.com/en-us/
articles/android-43-jelly-bean-x86-emulator-system-image.

Although there are many advantages to developing for the latest Android operating
system release, many developers prefer to target Android 2.x or Android 4.x, as a majority
of Android phones run Android 4.x or higher. This percentage will change over time, so
it is strongly suggested that you keep market conditions in mind when determining your
target operating system.

For more Gingerbread-specific operating system information, the following article
may prove useful: http://blogs.computerworld.com/17479/android_gingerbread_faq.

For Ice Cream Sandwich information, use this article: http://www.computerworld.
com/s/article/9230152/Android_4.0_The_ultimate_guide_plus_cheat_sheet_.

Why Use the Emulator
First of all, it’s free. The Android SDK and its third-party add-ons cost absolutely nothing
and allow developers to emulate devices that they do not own and may not have access
to. This is important, as not all phones acquire the latest Android OS versions via

Figure 6-5. Android Emulator

www.allitebooks.com

http://developer.android.com/tools/devices/emulator.html
http://software.intel.com/en-us/articles/android-43-jelly-bean-x86-emulator-system-image
http://software.intel.com/en-us/articles/android-43-jelly-bean-x86-emulator-system-image
http://blogs.computerworld.com/17479/android_gingerbread_faq
http://www.computerworld.com/s/article/9230152/Android_4.0_The_ultimate_guide_plus_cheat_sheet_
http://www.computerworld.com/s/article/9230152/Android_4.0_The_ultimate_guide_plus_cheat_sheet_
http://www.allitebooks.org

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

55

over-the-air (OTA) updates, and it may not be feasible for developers to purchase every
device that is expected to support their software package(s).

•	 Development and testing. Developers can use the SDK to
create several Android Virtual Device (AVD) configurations for
development and testing purposes. Each AVD can have varying
screen dimensions, SD card sizes, or even versions of the Android
SDK (which is useful for testing backward compatibility with prior
Android builds).

•	 Playing with a new build. The emulator allows developers to just
have fun with a new build of Android and learn more about it.

Let’s now walk through the steps required to build and run an emulator image on
an x86 build. For simplicity’s sake, this section focuses on the Gingerbread emulator,
although most of this content applies to the Ice Cream Sandwich emulator as well.

Building an Emulator Image
The first step is to follow the setup instructions listed here: http://source.android.com/
source/initializing.html .

Google has made Gingerbread documentation available at http://source.android.
com/source/downloading.html.

Currently, the default repo initialization instructions are only for getting the latest
master branch or a specific branch, such as when using the command android-2.3.7_r1.
The repo and branch instructions for building Gingerbread x86 emulator images
were not given.

Use the branch labeled gingerbread to download the latest Android source branch,
as shown in Listing 6-1. This branch has the required build files and modules to build the
x86 SDK emulator images.

Listing 6-1. Set Up the Repository

$ repo init –u
https://android.googlesource.com/platform/manifest -b gingerbread
$ repo sync

Initialize the build environment, as shown in Listing 6-2.

Listing 6-2. Build Environment Initialization

$ source build/envsetup.sh
including device/htc/passion/vendorsetup.sh
including device/samsung/crespo4g/vendorsetup.sh
including device/samsung/crespo/vendorsetup.sh

Use the lunch command to configure the build for building the x86 SDK, as shown in
Listing 6-3. This will build the emulator images for x86, along with other SDK modules.

http://source.android.com/source/initializing.html
http://source.android.com/source/initializing.html
http://source.android.com/source/downloading.html
http://source.android.com/source/downloading.html
https://android.googlesource.com/platform/manifest

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

56

Listing 6-3. Lunch Command

$ lunch sdk_x86-eng
===
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.7
TARGET_PRODUCT=sdk_x86
TARGET_BUILD_VARIANT=eng
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=x86
TARGET_ARCH_VARIANT=x86_atom
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
===

Finally, issue the make sdk command in order to kick off the build, as shown in
Listing 6-4.

Listing 6-4. Make SDK

$ make sdk
===
PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=2.3.7
TARGET_PRODUCT=sdk_x86
TARGET_BUILD_VARIANT=eng
TARGET_SIMULATOR=false
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=x86
TARGET_ARCH_VARIANT=x86_atom
HOST_ARCH=x86
HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=GINGERBREAD
===

Additionally, you can specify the number of parallel jobs for make using the –j
parameter, to speed up the build process. (It is recommended that you use a value that is
at least greater than or equal to the total number of CPUs in the system.)

The build will create three images, including the QEMU Android kernel image:t
system.img (Android), userdata.img, and ramdisk.img.

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

57

When the build completes, the images will be in the build folder $ANDROID_BUILD_
TOP/out/target/product/generic_x86/, as shown in Figure 6-6.

$ ls $ANDROID_BUILD_TOP/out/target/product/generic_x86/ -Altr

Figure 6-6. Image Location

Figure 6-7. Kernel Image

The Android kernel image for QEMU (kernel-qemu) comes with Android Sources.
It is located under the prebuilt folder ($ANDROID_BUILD_TOP/prebuilt/android-x86/
kernel), as shown in Figure 6-7.

$ ls $ANDROID_BUILD_TOP/prebuilt/android-x86/kernel -Altr

You now have all the image files required for running an x86 Android Gingerbread
image on the Android x86 emulator. You need to set up the image files with the SDK,
which is covered in next section.

Setting Up the SDK to Use x86 Emulator Images
The Android SDK tools (Android and the AVD manager) expect the x86 emulator images
to be present in the default SDK folders for platform images, which is
/platforms/android-10/images.

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

58

The images that follow assume the $ANDROID_SDK_TOP environment variable is set to
the location of the Android SDK installation folder.

As in Figure 6-8, Android-10 comes with emulator images for ARM by default. In
order to set up the x86 emulator images in the SDK, you need to create an x86 folder and
copy the images you build into that folder. You can also move the ARM images to their
own folder, as shown in Listing 6-5.

$ cd $ANDROID_SDK_TOP/platforms/android-10/images/
$ls -l

Figure 6-8. Image Location

Listing 6-5. ARM Folder

$ mkdir arm
$ mv *.img kernel-qemu arm/

Listing 6-6 shows instructions for the x86 folder.

Listing 6-6. x86 Instructions

$ mkdir x86

$ cp $ANDROID_BUILD_TOP/out/target/product/generic_x86/*img x86/
$ cp $ANDROID_BUILD_TOP/prebuilt/android-x86/kernel/kernel-qemu x86/

$ cp NOTICE.txt arm/
$ cp NOTICE.txt x86/

The final images folder of the Android-10 platform is shown in Figure 6-9.

$ ls –l *

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

59

Before using the Gingerbread Intel architecture images with the x86 emulator, you
must create an AVD configuration that specifies the required software and hardware
customizations. More detailed information about AVDs can be found next, and in
the Intel Software Network article titled “Android Virtual Device Emulation for Intel
Architecture” (http://software.intel.com/en-us/articles/android-virtual-
device-emulation-for-intel-architecture).

At this point, your emulator and x86 image are ready to use. Note that the emulator
performance will see drastic improvements if you use Intel Hardware Acceleration
Execution Manager (Intel HAXM) with this system image—without it, performance
may vary. (Intel HAXM requires an Intel processor with Intel VT-x support. For more
information about Intel HAXM, see Chapter 11: Using Intel® Hardware Accelerated
Execution Manager to Speed-up Android on x86 Emulation.

It is now time to use the Gingerbread x86 emulator to emulate an x86 image.
Open the Android tool or bring up the AVD creation tool directly from Eclipse.
Figures 6-10 and 6-11 show the creation of an AVD for Gingerbread with an Intel

Atom (x86) CPU.

Figure 6-9. Final Images Folder

http://software.intel.com/en-us/articles/android-virtual-device-emulation-for-intel-architecture
http://software.intel.com/en-us/articles/android-virtual-device-emulation-for-intel-architecture
http://c/Users/sarah.yost/AppData/Roaming/Microsoft/Word/see

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

60

Figure 6-11. Success Dialog Box

Figure 6-10. New AVD Creation

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

61

Test the x86 Gingerbread AVD by selecting the AVD and clicking on Start, as shown
in Figure 6-12.

Figure 6-12. Launch Options

Figure 6-13 shows the home screen of the Gingerbread for Intel Atom (x86)
on emulator x86.

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

62

It is recommended that you use the x86 emulator with Intel VT hardware acceleration.
On Linux, you can do this using the Linux KVM. Ubuntu has further documentation on how
to configure and use it at https://help.ubuntu.com/community/KVM.

Listing 6-7. KVM

$ emulator-x86 –avd gbx86 –qemu –m 512 –enable-kvm

With KVM, shown in Listing 6-7 (-enable-kvm), users will likely notice performance
boosts during the Android boot, along with quicker emulator responsiveness.

Key Gingerbread Features
This next section highlights a few of the key features that Gingerbread supports. These
features are also supported in the latest release of Android, with full plans to have
continued support.

Figure 6-13. Home Screen

https://help.ubuntu.com/community/KVM

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

63

Battery Usage Stats
In About Phone, as seen in Figure 6-14 there is a Battery Use section. Battery stats will
vary based on the emulation device and build. In the case where the developer can
telnet into the emulated device, some simple commands can be used to mock battery
drain. Take a look at one such example at http://android-er.blogspot.com/2010/09/
how-to-set-battery-status-of-android.html.

Figure 6-14. About Phone View

Task Manager
From Settings ➤ Applications ➤ Running Services, choose the Running tab. It shows
what’s currently running, as you can see in Figure 6-15.

http://android-er.blogspot.com/2010/09/how-to-set-battery-status-of-android.html
http://android-er.blogspot.com/2010/09/how-to-set-battery-status-of-android.html

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

64

For example, the developer can close the Settings process by clicking on the item and
selecting Stop.

Cut and Paste Text
Opening the Messaging application and choosing New Message allows you to type a message
as if you’re sending an SMS. By clicking in the text field and typing on the host keyboard,
characters appear seamlessly on the Android screen. After typing Hello 2.3.5!, the screen
looks like Figure 6-16.

Figure 6-15. The Task Manager’s Running Tab

Figure 6-16. Messaging Fun

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

65

If you dragged the mouse into the text field where Hello 2.3.5! is found and then
held down the mouse button (or touchpad button) for about two seconds, a tooltip menu
appears to Edit Text. If you choose Select All and then repeat the mouse operation, you
can cut the text. After cutting the text, you can repeat the mouse operation again to paste
the text elsewhere.

Ice Cream Sandwich Emulation
The x86 Android 4.0.4 emulator system image enables you to run an emulation of
Android Ice Cream Sandwich on your development machine. In combination with the
Android SDK, you can test your Android applications on a virtual Android device based
on Intel architecture (x86).

In order to install the emulator system image, you can use the Android SDK Manager
(recommended method), or you can download the binary ZIP file and unzip and copy the
included directory into the add-ons directory of your Android SDK installation. (Note that
this method does not allow for automatic updates of the add-on.)

The following section provides a guide for ICS image installation.

Prerequisites
The Android x86 emulator image requires the Android SDK to be installed. For
instructions on installing and configuring the Android SDK, refer to the Android
developer website (see http://developer.android.com/sdk/).

Note ■ The x86 emulator image for Android can be accelerated using Intel Hardware
Accelerated Execution manager (Intel HAXm). for more information, refer to Chapter 11:
Using Intel® Hardware Accelerated Execution Manager to Speed-up Android on x86
Emulation.

Downloading Through the Android SDK Manager
1. Start the Android SDK Manager.

2. Under Android 4.0.4 (some screenshots may refer to older
versions), select Intel x86 Atom System Image, as shown in
Figure 6-17.

http://developer.android.com/sdk/

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

66

3. Once it’s selected, click the Install Package button.

4. Review the Intel Corporation license agreement. If you accept
the terms, select Accept and click Install.

5. The SDK Manager will download and extract the system
image to the appropriate location within the Android SDK
directory.

Using the System Image
1. Start the Android AVD Manager and create a new AVD, setting

Target to Android 4.0.X, and CPU/ABI to Intel Atom (x86),
as shown in Figure 6-18.

Figure 6-17. Intel x86 Atom System Image

Figure 6-18. Setting the Target

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

67

Note ■ If the Intel Atom (x86) CPU/ABI option is not available, make sure that the system
image is installed correctly.

2. Click the Create AVD button.

3. The AVD has been successfully created and is now ready to
use, as shown in Figure 6-19.

Downloading Manually
1. Go to http://www.intel.com/software/android.

2. Download the Intel x86 Atom System Image (found under the
Tools and Downloads tab).

3. Navigate to the directory containing the Android SDK,
as shown in Figure 6-20.

Figure 6-19. Image Ready

http://www.intel.com/software/android

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

68

4. The system-images directory contains Android’s system
images, separated by architecture, as shown in Figure 6-21.

5. Expand android-15 (this directory contains API level 15
system images), as shown in Figure 6-22.

Figure 6-20. Android SDK Directory

Figure 6-21. Separated Images

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

69

Figure 6-23. Expected Directory Structure

Figure 6-22. API Level 15

6. Extract the x86 directory contained in the downloaded system
image archive directly into the android-15 directory.

7. The directory structure should now look like Figure 6-23.

8. The system image is now installed and ready to be used.

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

70

CPU Acceleration
You can improve the performance of Intel Atom x86 Image for Android Ice Cream
Sandwich using hardware-based virtualization with Intel VT-x technology. If your
computer has an Intel processor with VT-x support, it is recommended that you use
Intel HAXM with this system image. For more information about Intel HAXM, visit
http://int-software.intel.com/en-us/android.

Note ■ Intel HAXm is for Windows and os X operating systems only. for linux hosts, you
can use Kernel-based virtual machine (Kvm) to accelerate emulation performance.
for information on installing and configuring Kvm on Ubuntu, refer to the following guide at
https://help.ubuntu.com/community/KVM/Installation.

GPU Acceleration
The Intel Atom x86 image for Android Ice Cream Sandwich can make use of hardware
GPU features to increase the performance of games, graphics-intensive programs,
and user interface elements.

Note ■ The functionality and performance of gPU acceleration is highly dependent on
your computer’s graphics card and graphics drivers.

To use hardware GPU acceleration, perform the following steps:

1. Open the Android AVD Manager.

2. Select the AVD and click Edit.

3. The AVD editor window will appear. In the Hardware section,
click New, as shown in Figure 6-24.

http://int-software.intel.com/en-us/android
https://help.ubuntu.com/community/KVM/Installation

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

71

4. In the Property drop-down box, select GPU Emulation,
as shown in Figure 6-25.

Figure 6-24. Hardware Section

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

72

5. Click OK.

6. After the GPU Emulation property has been added, change
the Value to Yes, as shown in Figure 6-26.

Figure 6-25. GPU Emulation Option

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

73

Figure 6-26. Value Changed to Yes

7. Click Edit AVD to save the AVD.

8. After the AVD has been modified, a dialog box will appear
confirming the AVD settings, shown in Figure 6-27.

CHAPTER 6 ■ InsTAllIng THE AndRoId sdK foR InTEl APPlICATIon dEvEloPmEnT

74

Figure 6-27. Confirmation Dialog Box

In the confirmation dialog box, the hw.gpu.enabled=yes line indicates that GPU
acceleration is enabled for that particular AVD.

Note ■ The gPU acceleration must be enabled on a per-Avd basis.

Overview
In this chapter, you set up a fully functioning Android development environment. You
also installed the prerequisites for Android and the SDK. The chapter discussed the
Android emulator in detail, and you created an x86 emulator for easy testing. You even
created a fully functioning Android 4.0.4 (Ice Cream Sandwich) emulator on a virtual
x86 platform, for testing the latest features of Android. In the next chapter, you will learn
how to install and use the Android Native Development Kit in order to create and port
applications for the Intel platform.

75

Chapter 7

Creating and porting NDK-
Based android applications

It has become appallingly obvious that our technology has exceeded our
humanity.

—Albert Einstein

Android applications can incorporate native code using the Native Development Kit
(NDK) toolset. It allows developers to reuse legacy code, program for low-level hardware,
and differentiate their applications by taking advantage of features otherwise not optimal
or possible.

This chapter provides an in-depth introduction on how to create NDK-based
applications for the Intel architecture. It also covers the cases of porting existing NDK-based
applications. It discusses in-depth the differences between the Intel compiler and the default
NDK compiler, and explains how to take full advantage of the Intel NDK environment.

JNI and NDK Introduction
JNI Introduction
We know that Java applications do not run directly on the hardware, but actually run in
a virtual machine. The source code of an application is not compiled to get the hardware
instructions, but is instead compiled to get the interpretation of a virtual machine to
execute code. For example, Android applications run in the Dalvik virtual machine;
its compiled code is executable code for the Dalvik virtual machine in DEX format.
This feature means that Java runs on the virtual machine and ensures its cross-platform
capability: that is its “compile once, run anywhere” feature. This cross-platform capability
of Java causes it to be less connected to and limits its interaction with the local machine’s
various internal components, making it difficult to use the local machine instructions to
utilize the performance potential of the machine. It is difficult to take advantage of locally
based instructions to run a huge existing software library, and thus functionality and
performance are limited.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

76

Is there a way to make Java code and native code software collaborate and share
resources? The answer is yes—by using the Java Native Interface (JNI), which is an
implementation method of a Java local operation. JNI is a Java platform defined as the
Java standard to interact with the code on the local platform. (It is generally known as
the host platform. But this chapter is for the mobile platform, and in order to distinguish
it from the mobile cross-development host, we call it the local platform.) The so-called
“interface” includes two directions—one is Java code to call native functions (methods),
and the other is local application calls to the Java code. Relatively speaking, the former
method is used more in Android application development. This chapter therefore focuses
on the approach in which Java code calls the native functions.

The way Java calls native functions through JNI is to store the local method in the
form of library files. For example, on a Windows platform, the files are in .DLL file format,
and on a UNIX/Linux machine the files are in .SO file format. By an internal method of
calling the local library file, Java can establish close contact with the local machine. This is
called the system-level approach for various interfaces.

JNI usually has two usage scenarios: first, to be able to use legacy code (for example
C/C++, Delphi, and other development tools); second, to more directly interact with the
hardware for better performance. You will see some of this as you go through the chapter.

JNI general workflow is as follows: Java initiates calls so that the local function’s
side code (such as a function written in C/C++) runs. This time the object is passed over
from the Java side, and run at a local function’s completion. After finishing running a
local function, the value of the result is returned to the Java code. Here JNI is an adapter,
mapping the variables and functions (Java methods) between the Java language and
the native compiled languages (such as C/C++). We know that Java and C/C++ are very
different in function prototype definitions and variable types. In order to make the two
match, JNI provides a jni.h file to complete the mapping between the two. This process
is shown in Figure 7-1.

C/C++
Codes

Java
App

Codes

.dll/.so
database

Java
Virtual

Machine

Class
Method

function

Call and parameters
transfer

Return
Results

JNI

Jni.h
header

file

Figure 7-1. JNI General Workflow

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

77

The general framework of a C/C++ function call via a JNI and Java program
(especially an Android application) is as follows:

1. The way of compiling native is declared in the Java class
(C/C++ function).

2. The .java source code file containing the native method is
compiled (build project in Android).

3. The javah command generates an .h file, which corresponds
to the native method according to the .class files.

4. C/C++ methods are used to achieve the local method.

5. The recommended method for this step is first to copy the
function prototypes into the .h file and then modify the
function prototypes and add the function body. In this
process, the following points should be noted:

The JNI function call must use the C function. If it is the •	
C++ function, do not forget to add the extern C keyword.

The format of the method name should follow the following •	
template: Java_package_class_method, namely the
Java_package name classname and function method name.

6. The C or C++ file is compiled into a dynamic library (under
Windows this is a .DLL file, under UNIX/Linux, it’s a .SO file).

Use the System.loadLibrary() or System.load() method in the Java class to load
the dynamic library generated.

These two functions are slightly different:

•	 System.loadLibrary(): Loads the default directory (for
Windows, for example, this is \System32, jre\bin, and so on)
under the local link library.

•	 System.load(): Depending on the local directory added to the
cross-link library, you must use an absolute path.

In the first step, Java calls the native C/C++ function; the format is not the same for
both C and C++. For example, for Java methods such as non-passing parameters and
returning a String class, C and C++ code differs in the following ways:

C code:

Call function:(*env) -> <jni function> (env, <parameters>)
Return jstring:return (*env)->NewStringUTF(env, "XXX");

C++ code:

Call function:env -> <jni function> (<parameters>)
Return jstring:return env->NewStringUTF("XXX");

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

78

in which both Java String object NewStringUTF functions are generated by the C/C++
provided by the JNI.

Java Methods and Their Corresponding Relationship with
the C Function Prototype Java
Recall that in order for Java programs to call a C/C++ function in the code framework,
you use the javah command, which will generate the corresponding .h file for native
methods according to the .class files. The .h file is generated in accordance with certain
rules, so as to make the correct Java code find the corresponding C function to execute.

For example, for the following Java code for Android:

public class HelloJni extends Activity

1. {
2. public void onCreate(Bundle savedInstanceState)
3. {
4. TextView tv.setText(stringFromJNI()); // Use C function Code
5. }
6. public native String stringFromJNI();
7. }

For the C function stringFromJNI() used in line 4, the function prototype in the .h
file generated by javah is:

1. JNIEXPORT jstring JNICALL Java_com_example_hellojni_HelloJni_
stringFromJNI
2. (JNIEnv *, jobject);

In this regard, C source code files for the definition of the function code are roughly:

1. /*
2. ...
3. Signature: ()Ljava/lang/String;
4. */
5. jstring Java_com_example_hellojni_HelloJni_stringFromJNI

(JNIEnv* env, jobject thiz)
6. {
7. ...
8. return (*env)->NewStringUTF(env, "...");
9. }

From this code you can see that the function name is quite long, but still very
regular, in full accordance with the naming convention: java_package_class_method.
The stringFromJNI() method in Hello.java corresponds to the Java_com_example_
hellojni_HelloJni_stringFromJNI() method in C/C++.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

79

Notice the comment for Signature: ()Ljava/lang/String;. The parentheses ()
of ()Ljava/lang/String; indicate that the function parameter is empty, which means,
beside the two parameters JNIEnv * and jobject, there are no other parameter.
JNIEnv * and jobject are two parameters that all JNI functions must have, respectively,
for the jni environment and for the corresponding Java class (or object) itself.
Ljava/lang/String; indicates that the function’s return value is a Java String object.

Java and C Data Type Mapping
As mentioned, Java and C/C++ variable types are very different. JNI provides a
mechanism to complete the mapping between Java and C/C++. The correspondence
between the main types is shown in Table 7-1.

Table 7-1. Java to C Type Mapping

Java type Native type Description

boolean jboolean C/C++ 8-bit integer

byte jbyte C/C++ unsigned 8-bit integer

char jchar C/C+ unsigned 16-bit integer

short jshort C/C++ signed 16-bit integer

int jint C/C++ signed 32-bit integer

long jlong C/C++ unsigned 64-bit integer

float jfloat C/C++ 32-bit floating point

double jdouble C/C++ 64-bit floating point

void void N/A

Object jobject Any Java object, or does not correspond to an
object of java type

Class jclass Class object

String jstring String objects

Object[] jobjectArray The array of any object

Boolean[] jbooleanArray Boolean array

byte[] jbyteArray Array of bits

char[] jcharArray Character array

short[] jshortArray Short integer array

(continued)

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

80

Note ■ The correspondence between Java types and the local (C/C++) type.

Java type Native type Description

int[] jintArray Integer array

long[] jlongArray Long integer array

float[] jfloatArray Floating point array

double[] jdoubleArray Double floating point array

Table 7-1. (continued)

When a Java parameter is passed, the idea of using C code is as follows:

Basic types can be used directly; for example, •	 double and
jdouble can be interoperable. Basic types are the types listed
from the line boolean through void in Table 7-1. In such a type,
if the user passes a boolean parameter into the method, there is
a local method called jboolean corresponding to the boolean
type. Similarly, if the local methods return a jint, then an int is
returned in Java.

Java object usage. An •	 Object object has String objects and a
generic object. The two objects are handled a little differently.

The •	 String object. The String object passed over by the Java
program is the corresponding jstring type in the local method.
The jstring type and char * in C are different. So if you just use
it as a char *, an error will occur. Therefore, you need to convert
jstring into a char * in C/C++ prior to use. Here we use the
JNIEnv method for conversion.

The •	 Object object. Use the following code to get the object
handler the class:

jclass objectClass = (env)->FindClass("com/ostrichmyself/jni/Structure");

Then use the following code to take required domain handler of the class:

jfieldID str = (env)->GetFieldID(objectClass,"nameString","Ljava/lang/
String;");
jfieldID ival = (env)->GetFieldID(objectClass,"number","I");

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

81

Then use the following similar code to assign value to the incoming fields of the
jobject object:

(env)->SetObjectField(theObjet,str,(env)->NewStringUTF("my name is D:"));
(env)->SetShortField(theObjet,ival,10);

If there is no incoming object, then C code can use the following •	
code to generate the new object:

jobject myNewObjet = env->AllocObject(objectClass);

Java array processing. For an array type, JNI provides some •	
operable functions. For example, GetObjectArrayElement can
take the incoming array and use NewObjectArray to create an
array structure.

The principle of resource release. Objects of C/C++ •	 new or objects
of malloc need to use the C/C++ to release memory.

If the new object of the •	 JNIEnv method is not used by Java, it must
be released.

To convert a string object from Java to get UTF by using •	
GetStringUTFChars, you need to open the memory, and you must
release the memory after you are finished using char *.
The method to use is ReleaseStringUTFChars.

These are brief descriptions of type mapping when Java exchanges data with C/C++.
For more information on Java and C/C++ data types, refer to related Java and JNI books,
documentation, and examples.

NDK Introduction
From the previous description, you know that the Java code can visit local functions (such
as C/C++) using JNI. To achieve this effect, you need development tools. There is a whole
set of development tools based on the core Android SDK that you can use to cross-compile
Java applications to applications that can run on the target Android device. Similarly, you
need cross-development tools to compile the C/C++ code into applications that can run
on an Android device. This tool is the Android Native Development Kit, or Android NDK.

Prior to the NDK, third-party applications on the Android platform were developed
on a special Java-based Dalvik virtual machine. The native SDK allows developers to
directly access the Android system resources and use traditional C or C++ programming
languages to create applications. The application package file (.apk) can be directly
embedded into the local library. In short, with the NDK, Android applications originally

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

82

run on a Dalvik virtual machine can now use native code languages like C/C++ for
program execution. This provides the following benefits:

Performance improvement. It uses native code to develop the •	
part of the program that requires high performance and directly
accesses the CPU and hardware.

The ability to reuse existing native code.•	

Of course, compared to the Dalvik virtual machine, using native SDK programming
also has some disadvantages, such as added program complexity, difficulty in
guaranteeing compatibility, the inability to access the Framework API, more difficult
debugging, decreased flexibility, and so on. In addition, access to JNI incurs some
additional performance overhead.

In short, NDK application development has its pros and cons. You need to use the
NDK at your own discretion. The best strategy is to use the NDK to develop parts of the
application for which native code will improve performance.

The NDK includes the following major components:

Tools and a build file generate the native code libraries from •	
C/C++. This includes a series of NDK commands, including javah
(use the .class files to generate the corresponding .h files), gcc
(to be described later), and other commands. It also includes the
ndk-build executable scripts, and so on, which are covered in
detail in the following sessions.

A consistent local library will be embedded in the application •	
package (application package files, that is, .apk files), which can
be deployed in Android devices.

Support for some native system header files and libraries for all •	
future Android platforms.

The process framework of the NDK application development is shown in Figure 7-2.
An Android application consists of three parts: Android application files, Java native
library files, and dynamic libraries. These three parts are generated from different sources
through the respective generation paths. For an ordinary Android application, the Android
SDK generates Android applications files and Java native library files. The Android NDK
generates the dynamic library files (the file with the .SO extension) using non-native code
(typically C source code files). Finally the Android application files, Java library files, and
native dynamic libraries are installed on the target machine, and complete collaborative
applications run.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

83

Android adds the NDK support in its key API version. Each version includes some
new NDK features, simple C/C++, a compatible STL, hardware expansion, and so on.
These features make Android more open and more powerful. The Android API and its
corresponding relationship with the NDK are shown in Table 7-2.

Applications projects developed by the NDK (referred to as NDK application
projects) have components, as shown in Figure 7-3. In contrast to typical applications
developed using the Android SDK, projects developed in the NDK add the Dalvik class
code, manifest files, common resources, and also the JNI and a shared library generated
by the NDK.

Android NDK Application

Dalvik
Application

App File

Makefile

Compile and Link
C Code

Use javah–jni
to Create Header File

Dynamic Libraries

C Source Code Head File

Java Local
Libraries

Documents

Javac Compile Java Compile

Java Local
Libraries

Java Codes

Android
Application
Documents

Figure 7-2. Flowchart of Android NDK Application Development

Android NDK Application

Android
manifest

Resource
bundle

Dalvik
classes

Libraries &
JNI

Figure 7-3. Application Components for an Android NDK Application

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

84

Tip ■ Each piece of native code generated using the Android ndK is given a matching
Application Binary interface (ABi). The ABi precisely defines how the application and its code
interact with the system at runtime. The ABi can be roughly understood as similar to an isA
(instruction set architecture) in computer architecture.

A typical ABI contains the following information:

Machine code the CPU instruction set should use.•	

A runtime memory access ranking.•	

The format of executable binary files (dynamic libraries, •	
programs, and so on) as well as what type of content is allowed
and supported.

Different conventions used in passing data between the •	
application code and systems (for example, when the function
call registers and/or how to use the stack, alignment restrictions,
and so on).

Alignment and size limits of enumerated types, structure fields, •	
and arrays.

The available list of function symbols for application machine •	
code at runtime usually comes from a very specific set of libraries.
Each supported ABI is identified by a unique name.

Table 7-2. Relationship Between Main Android API and NDK Version

apI Version Supported NDK Version

API Level 3 Android 1.5 NDK 1

API Level 4 Android 1.6 NDK 2

API Level 7 Android 2.1 NDK 3

API Level 8 Android 2.2 NDK 4

API Level 9 Android 2.3 NDK 5

API Level 12 Android 3.1 NDK 6

API Level 14 Android 4.0.1 NDK 7

API Level 15 Android 4.0.3 NDK 8

API Level 16 Android 4.1 NDK 8b

API Level 16 Android 4.2 NDK 8d

API Level 18 Android 4.3 NDK 9b

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

85

Android currently supports the following ABI types:

•	 armeabi–This is the ABI name for the ARM CPU, which supports
at least the ARMv5TE instruction set.

•	 armeabi-v7a–This is another ABI name for ARM-based CPUs;
it extends the armeabi CPU instruction set extensions, such as
Thumb-2 instruction set extensions and floating-point processing
unit directives for vector floating-point hardware.

•	 x86–This is ABI name generally known for the support of x86 or
IA-32 instruction set of the CPU. More specifically, its target is
often referred to in the following sessions as i686 or Pentium Pro
instruction set. Intel Atom processors belong to this ABI type.

These types have different compatibility. X86 is incompatible with armeabi and
armeabi-v7a. The armeabi-v7a machine is compatible with armeabi, which means
the armeabi framework instruction set can run on an armeabi-v7a machine, but not
necessarily the other way around, because some ARMv5 and ARMv6 machines do not
support armeabi-v7a code. Therefore, when you build the application, users should be
chosen carefully according to their corresponding ABI machine type.

NDK Installation
Here we use NDK Windows environment as an example to illustrate the NDK software
installation. The Windows NDK includes the following modules:

Cygwin runs Linux commands in the Windows command line.•	

Android NDK package, including •	 ndk-build and other key
commands, is the core of the NDK software; it compiles C/C++
files into .SO shared library files.

CDT (C/C++ Development Tooling, C/C++ development tools) is •	
an Eclipse plug-in and can compile C/C++ files into .SO shared
library in Eclipse. This means you can use it to ndk-build replace
the command-line commands.

The CDT module is not required, but does enable development in the familiar
Eclipse IDE. The Cygwin module must be installed in the Windows environment, but is
not required in the Linux environment. Of course, the entire development environment
needs to support the Java development environment. The following sections explain the
installation steps for each module separately.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

86

Android NDK Installation
This section describes how to install the Android NDK:

1. Visit the Android NDK official web site at http://developer.
android.com/sdk/ndk/index.html and download the latest
NDK package, as shown in Figure 7-4. In this case, you click
on the file android-ndk-r8d-windows.zip and download the
files to the local directory.

Figure 7-4. The NDK Package Download Page from the Android Official Web Site

2. Install the Android NDK.

Android NDK installation is relatively simple. All you need to do is to extract the
downloaded android-ndk-r4b-windows.zip to a specified directory. In this case,
we install Android NDK in the directory D:\Android\android-ndk-r8d. You need to
remember this location, as it is required for the following configuration to set up the
environment.

http://developer.android.com/sdk/ndk/index.html
http://developer.android.com/sdk/ndk/index.html

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

87

Install Cygwin
This section describes how to install Cygwin:

1. Visit Cygwin’s official web site (http://www.cygwin.com/).
Download the Cygwin software, as shown in Figure 7-5. Go
to the download page, and then click on the setup.exe file to
download and install packages.

Figure 7-5. Cygwin Download Page

2. Double-click the downloaded setup.exe file to start the
installation. The pop-up shown in Figure 7-6 appears.

http://www.cygwin.com/

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

88

3. The installation mode selection box is shown in Figure 7-7.
In this example, select Install from Internet mode.

Figure 7-7. Cygwin Install Mode Selection

Figure 7-6. Cygwin Initial Install Window

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

89

4. The display installation directory and user settings selection
box is shown in Figure 7-8.

Figure 7-8. Installation Directory and User Settings Selection

Figure 7-9. Cygwin Temporary Directory Setting for Downloaded Files

5. You are next prompted to enter a temporary directory to store
the downloaded files, as shown in Figure 7-9.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

90

6. Next you are prompted to select an Internet connection type, as
shown in Figure 7-10. For this example, select Direct Connection.

Figure 7-11. Cygwin Install: Prompt to Select Download Mirror Site

Figure 7-10. Cygwin Setup Internet Connection Type Selection

7. You are now prompted to select a download mirror site,
as shown in Figure 7-11.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

91

8. Start the download and install the basic parts, as shown in
Figure 7-12(a). During the setup, a Setup alert will indicate
that this is the first time you are installing Cygwin, as shown in
Figure 7-12(b). Click OK to continue.

Figure 7-12. Cygwin Installation Package Download and Install

Figure 7-13. Cygwin Packages Install Selection

9. Select the packages to install, as shown in Figure 7-13.
The default is to install all of the packages.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

92

If you download all components, the total size is more than
3GB. This requires a very long time on normal broadband
Internet speeds; it is actually not recommended to install all the
components. You need to install the NDK Devel component
and the Shells components, as shown in Figure 7-14.

Figure 7-15. Dependency Reminder After Selecting Cygwin Component Package

Figure 7-14. Cygwin Components Packages Required by NDK

There are some tricks to the selection of Devel and Shells
from the Install component packages. You can first click on
the loop icon next to All; it will loop among Install, Default,
and Uninstall. Set it to Uninstall State, and then click the loop
icon next to the Devel and Shells entries so that it stays in the
Install state. Finally, click Next to continue.

10. The contents of the selected components are displayed next,
as shown in Figure 7-15.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

93

12. Installation is complete. Message boxes appear, as shown in
Figure 7-17.

Figure 7-16. Cygwin Download and Install Selected Components

11. Start to download and install the selected components,
as shown in Figure 7-16.

Figure 7-17. Cygwin Reminder Boxes after Installation Is Complete

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

94

13. Configure the Cygwin Windows path environment variable.

Follow these steps to add the NDK package installation directory and Cygwin bin
directory to the path environment variable:

1. On the desktop, right-click My Computer and select the
\Properties\Advanced\Environment Variables menu item.

2. Click System Variables in the PATH variable. Then click the Edit
button in the dialog box of the [variable value] NDK package
added after the installation directory, in the subdirectory
build\tools\cygwin\bin.

For example, if the NDK is installed in the directory D:\Android\android-ndk-r8d
and Cygwin is installed in the D:\cygwin directory, you add the path after the PATH variable,
as follows:

PATH=...;D:\Android\android-ndk-r8d;D:\Android\android-ndk-r8d\build\
tools;D:\cygwin\bin

After this configuration is successful, you can use the console command cmd under
Linux commands. For example, Figure 7-18 shows a command-line window with the
Windows dir command and the Linux ls command.

Figure 7-18. Command-Line Window after Installing the NDK

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

95

You configure Cygwin’s internal environment variables for NDK as follows:

1. Before configuring the NDK Cygwin internal environment
variables, you must run Cygwin at least once, otherwise the
\cygwin\home directory will be empty. Click the Browse
button in Windows Explorer and select the mintty.exe
file under the bin subdirectory of the Cygwin installation
directory (in this example, it is located at D:\cygwin\bin).
The window is shown in Figure 7-19.

Figure 7-19. Initial Window when Starting Cygwin for the First Time

Figure 7-20. Cygwin Window if it Is Not Being Run for the First Time

2. Then select the Windows menu \programs\Cygwin\Cygwin
terminal. You can directly enter the Cygwin window, as shown
in Figure 7-20.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

96

This will create a username (in this case, the Windows logon username hlgu)
subdirectory under empty\cygwin\home and generate several files in the directory.

D:\cygwin\home\hlgu>dir
2013-01-30 00:42 6,054 .bashrc
2013-01-30 00:52 5 .bash_history
2013-01-30 01:09 1,559 .bash_profile
2013-01-30 00:42 1,919 .inputrc
2012-12-01 08:58 8,956 .mkshrc
2013-01-30 00:42 1,236 .profile

3. Find .bash_profile in the installation directory cygwin\
home\<username>\ file. In this case, it is D:\cygwin\
home\hlgu\.Bash_profile. To the end of the file, add the
following code:

NDK=<android-ndk-r4b unzipped_NDK_folder>
export NDK
ANDROID_NDK_ROOT=<android-ndk-r4b unzipped_NDK_folder >
export ANDROID_NDK_ROOT

The line <android-ndk-r4b unzipped_NDK_folder > corresponds to the installation
directory of the NDK package. (In this example, it’s D:\Android\android-ndk-r8d.)
Cygwin provides a directory-conversion mechanism. Add /cygdrive/DRIVELETTER/ in
front of the directory to refer to the designated directory in the drive. Here, DRIVELETTER is
the driver letter of the directory. Consider this example:

NDK= /cygdrive/d/Android/android-ndk-r8d
export NDK
ANDROID_NDK_ROOT=/cygdrive/d/Android/android-ndk-r8d
export ANDROID_NDK_ROOT

4. Determine whether the command can be run by testing the
make command.

C:\Documents and Settings\hlgu>make -v
GNU Make 3.82.90
Built for i686-pc-cygwin
Copyright (C) 2010 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/
licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

http://gnu.org/licenses/gpl.html
http://gnu.org/licenses/gpl.html

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

97

If you see this output, it means the make command is running normally. Make sure
the version of make is 3.8.1 or above, because all examples in this session need v3.8.1 or
above to be able to be compiled successfully.

Now you can test the gcc, g+, gcj, and gnat commands:

C:\Documents and Settings\hlgu>gcc -v
Access denied.
C:\Documents and Settings\hlgu>g++ -v
Access denied.
C:\Documents and Settings\hlgu>gcj
Access denied
C:\Documents and Settings\hlgu>gnat
Access denied.

If you get the Access denied message, you need to continue the following steps.
Otherwise, the installation is completed successfully.

5. Under the bin directory of Cygwin, delete the gcc.exe,
g++.exe, gcj.exe, and gnat.exe files.

6. Under the same directory, select the needed gcc, g++, gcj,
and gnat files that match the version. For example, version 4
corresponds to gcc-4.exe, g++-4.exe, gcj-4.exe, and
gnat-4.exe. Make copies of those files and rename the copied
files gcc.exe, g++.exe, gcj.exe, and gnat.exe.

7. Now test again to see if gcc and the other commands can run:

C:\Documents and Settings\hlgu> gcc -v

Using built-in specifications, you can see which commands are available:

COLLECT_GCC=gcc
COLLECT_LTO_WRAPPER=/usr/lib/gcc/i686-pc-cygwin/4.5.3/lto-wrapper.exe
Target: i686-pc-cygwin
Configured with: /gnu/gcc/releases/respins/4.5.3-3/gcc4-4.5.3-3/src/gcc-
4.5.3/co
nfigure --srcdir=/gnu/gcc/releases/respins/4.5.3-3/gcc4-4.5.3-3/src/gcc-
4.5.3 --
prefix=/usr --exec-prefix=/usr --bindir=/usr/bin --sbindir=/usr/sbin
--libexecdi
r=/usr/lib --datadir=/usr/share --localstatedir=/var --sysconfdir=/etc
--dataroo
tdir=/usr/share --docdir=/usr/share/doc/gcc4 -C --datadir=/usr/share
--infodir=/
usr/share/info --mandir=/usr/share/man -v --with-gmp=/usr --with-mpfr=/usr
--ena

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

98

ble-bootstrap --enable-version-specific-runtime-libs --libexecdir=/usr/lib
--ena
ble-static --enable-shared --enable-shared-libgcc --disable-__cxa_atexit
--with-
gnu-ld --with-gnu-as --with-dwarf2 --disable-sjlj-exceptions --enable-
languages=
ada,c,c++,fortran,java,lto,objc,obj-c++ --enable-graphite --enable-lto
--enable-
java-awt=gtk --disable-symvers --enable-libjava --program-suffix=-4
--enable-lib
gomp --enable-libssp --enable-libada --enable-threads=posix --with-arch=i686
--w
ith-tune=generic --enable-libgcj-sublibs CC=gcc-4 CXX=g++-4 CC_FOR_
TARGET=gcc-4
CXX_FOR_TARGET=g++-4 GNATMAKE_FOR_TARGET=gnatmake GNATBIND_FOR_
TARGET=gnatbind -
-with-ecj-jar=/usr/share/java/ecj.jar
Thread model: posix
gcc version 4.5.3 (GCC)

C:\Documents and Settings\hlgu>g++ -v

Using built-in specifications, like gcc, you can see which commands are available:

COLLECT_GCC=g++
COLLECT_LTO_WRAPPER=/usr/lib/gcc/i686-pc-cygwin/4.5.3/lto-wrapper.exe
Target: i686-pc-cygwin
Configured with: /gnu/gcc/releases/respins/4.5.3-3/gcc4-4.5.3-3/src/gcc-
4.5.3/co
nfigure --srcdir=/gnu/gcc/releases/respins/4.5.3-3/gcc4-4.5.3-3/src/gcc-
4.5.3 --
prefix=/usr --exec-prefix=/usr --bindir=/usr/bin --sbindir=/usr/sbin
--libexecdi
r=/usr/lib --datadir=/usr/share --localstatedir=/var --sysconfdir=/etc
--dataroo
tdir=/usr/share --docdir=/usr/share/doc/gcc4 -C --datadir=/usr/share
--infodir=/
usr/share/info --mandir=/usr/share/man -v --with-gmp=/usr --with-mpfr=/usr
--ena
ble-bootstrap --enable-version-specific-runtime-libs --libexecdir=/usr/lib
--ena
ble-static --enable-shared --enable-shared-libgcc --disable-__cxa_atexit
--with-
gnu-ld --with-gnu-as --with-dwarf2 --disable-sjlj-exceptions --enable-
languages=
ada,c,c++,fortran,java,lto,objc,obj-c++ --enable-graphite --enable-lto
--enable-

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

99

java-awt=gtk --disable-symvers --enable-libjava --program-suffix=-4
--enable-lib
gomp --enable-libssp --enable-libada --enable-threads=posix --with-arch=i686
--w
ith-tune=generic --enable-libgcj-sublibs CC=gcc-4 CXX=g++-4 CC_FOR_
TARGET=gcc-4
CXX_FOR_TARGET=g++-4 GNATMAKE_FOR_TARGET=gnatmake GNATBIND_FOR_
TARGET=gnatbind -
-with-ecj-jar=/usr/share/java/ecj.jar
Thread model: posix
gcc version 4.5.3 (GCC)

C:\Documents and Settings\hlgu>gcj
gcj: no input files

C:\Documents and Settings\hlgu>gnat
GNAT 4.5.3
Copyright 1996-2010, Free Software Foundation, Inc.

List of available commands

gnat bind gnatbind
gnat chop gnatchop
gnat clean gnatclean
gnat compile gnatmake -f -u -c
gnat check gnatcheck
gnat sync gnatsync
gnat elim gnatelim
gnat find gnatfind
gnat krunch gnatkr
gnat link gnatlink
gnat list gnatls
gnat make gnatmake
gnat metric gnatmetric
gnat name gnatname
gnat preprocess gnatprep
gnat pretty gnatpp
gnat stack gnatstack
gnat stub gnatstub
gnat xref gnatxref
Commands find, list, metric, pretty, stack, stub and xref accept project
file sw
itches -vPx, -Pprj and -Xnam=val

8. Finally, check out the NDK core command ndk-build script to
see if it can run.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

100

C:\Documents and Settings\hlgu>ndk-build
Android NDK: Your Android application project path contains spaces:
'C:/./ Settings/'
Android NDK: The Android NDK build cannot work here. Please move your
project to a different location.
D:\Android\android-ndk-r8d\build/core/build-local.mk:137: *** Android NDK:
Aborting. Stop.

If your output looks like this, it indicates that the Cygwin and NDK have been
installed and configured successfully.

Install CDT
CDT is an Eclipse plug-in that compiles C code into .SO shared libraries. In fact, after
installing the Cygwin and NDK module, you can compile C code into .SO shared libraries
at the command line, which means the core component of Windows NDK is already
installed. If you still like using the Eclipse IDE rather than a command-line compiler to
compile the local library, you need to install the CDT module; otherwise, skip this step
and move ahead to the NDK examples.

If you need to install CDT, use the following steps:

1. Visit Eclipse’s official web site at http://www.eclipse.org/
cdt/downloads.php to download the CDT package.
As shown on the download page in Figure 7-21, you can click
to download a version of the software. In this case, click
cdt-master-8.1.1.zip to start the download.

Figure 7-21. CDT Download Page

http://www.eclipse.org/cdt/downloads.php
http://www.eclipse.org/cdt/downloads.php

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

101

2. Start Eclipse. Select menu \HELP\Install new software and
start to install CDT.

3. In the pop-up Install dialog box, click Add, as shown in
Figure 7-22.

Figure 7-22. Eclipse Install Software Dialog Box

4. In the pop-up Add Repository dialog box, enter a name for
Name and a software download web site address in Location.
You can enter the local address or the Internet address. If
you’re using an Internet address, Eclipse will go to the Internet
to download and install the package, while the local address
will direct Eclipse to install the software from the local package.
Enter the local address; then you can click the Archive button
in the pop-up dialog box and enter the directory and filename
for the downloaded cdt-master-8.1.1.zip file, as shown
in Figure 7-23. If the file is downloaded from the Internet,
the address is http://download.eclipse.org/tools/cdt/
releases/galileo/.

http://download.eclipse.org/tools/cdt/releases/galileo/
http://download.eclipse.org/tools/cdt/releases/galileo/

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

102

5. After returning to the Install dialog box, click to select the
software components that need to be installed, as shown in
Figure 7-24.

Figure 7-24. Selection Box for CDT for Components to Install

Figure 7-23. Dialog Box of Eclipse Software Update Install Address

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

103

Of the components list, the CDT Main Feature is the required component.
In this example, we only select this component.

6. A list of detailed information about CDT components to
install is displayed, as shown in Figure 7-25.

Figure 7-25. Detailed Information for CDT Component Installation

7. Review the licenses dialog box. Click “I accept the terms of the
license agreement” to continue, as shown in Figure 7-26.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

104

8. The installation process starts, as shown in Figure 7-27.

Figure 7-26. CDT License Review Window

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

105

9. When the installation process is complete, restart Eclipse to
complete the installation.

NDK Examples
This section includes an example to illustrate the use of JNI and NDK. As described
previously, NDK can run from the command line and in the Eclipse IDE. We will use both
methods to generate the same NDK application.

Using the Command-Line Method to Generate a
Library File
The name of this example is jnitest, and it’s a simple example to demonstrate the JNI
code framework. The steps are outlined in the following sections.

Create an Android App Project
First, you need to create an Android app project, compile the code, and generate the .apk
package. Create a project in Eclipse, and name the project jnitest. Choose Build SDK to
support the x86 version of the API (in this case the Android 4.0.3), as shown in Figure 7-28.
Finally, you generate the project.

Figure 7-27. CDT Installation Progress

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

106

After the project is generated, the file structure is created as shown in Figure 7-29.
Note the directory where the library file (in this case, android.jar) is located, because
the following steps will use this parameter.

Figure 7-28. jnitest Project Parameters Setup

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

107

Modify the Java Files
Next you modify the Java files, creating code using a C function. In this case, the only Java
file is MainActivity.java. You need to modify its code as follows:

1. package com.example.jnitest;
2. import android.app.Activity;
3. import android.widget.TextView;
4. import android.os.Bundle;
5. public class MainActivity extends Activity
6. {
7. @Override
8. public void onCreate(Bundle savedInstanceState)
9. {
10. super.onCreate(savedInstanceState);
11. TextView tv = new TextView(this);
12. tv.setText(stringFromJNI()); // stringFromJNIas a C
function
13. setContentView(tv);
14. }

Figure 7-29. File Structure of jnitest Project

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

108

15. public native String stringFromJNI();
16.
17. static {
18. System.loadLibrary("jnitestmysharelib");
19. }
20. }

The code is very simple. In lines 11 through 13, you use a TextView to display a string
returned from the stringFromJNI() function. But unlike the Android application discussed
before, there is nowhere in the entire project that you can find the implementation code
of this function. So where has the implementation of the function occurred? In line 15 you
declare that the function is not a function written in Java, but is instead written by the local
(native) libraries, which means the function is outside of Java. Since it’s implemented in
the local library, the question is what libraries? The answers are described in lines 17–20.
The parameter of the static function LoadLibrary of System class describes the name of
the library. The library is a Linux shared library named libjnitestmysharelib.so. The
application code declared in the static area will be executed before Activity.onCreate.
The library will be loaded into memory when it’s first used.

Interestingly, when the loadLibrary function loads the library name, it will
automatically add the lib prefix before the parameters and the .SO suffix to the end.
Of course, if the name of the library file specified by the parameter starts with lib,
the function will not add the lib prefix to the filename.

Generate the Project in Eclipse
Only build (build), rather than run. This will compile the project, but the .apk file won’t
be deployed to the target machine.

When this step is completed, the corresponding .class files will be generated in
the project directory called bin\classes\com\example\jnitest. This step must be
completed before the next step, because the next step needs the appropriate .class files.

Create a Subdirectory in the Project Root Directory
Name this subdirectory jni. For example, if the project root directory is
E:\temp\AndroidDev\workspace\jnitest, you can use the md command to create
the jni subdirectory.

E:\temp\Android Dev\workspace\jnitest>mkdir jni

Then test whether the directory has been built:

E:\temp\Android Dev\workspace\jnitest>dir
...
2013-02-01 00:45 <DIR> jni

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

109

Create a C Interface File
The so-called C interface file is the C function prototype that works with the
local (external) function. Specific to this case are the C function prototypes of the
stringFromJNI function. You declare that you need to use the prototype of the external
function, but it is in Java format: you need to change it to C formatbuilding C-JNI interface
file. This step can be done with the javah command. The command format is:

$ javah -classpath <directory of jar and .class documents>
-d <directory of .h documents> <the package + class name of class>

Command parameters are described here:

•	 -classpath: Represents the classpath

•	 -d ...: Represents the storage directory for the generated header
file

•	 <class name>: The complete .class classname of a native
function being used, which consists of “the package + class name
of class” component.

For this example, follow these steps:

1. Enter the root directory from the command line (in this
example, it’s E:\temp\Android Dev\workspace\jnitest).

2. Then run the following command:

E:> javah -classpath "D:\Android\android-sdk\platforms\android-15\android.
jar";bin/classes com.example.jnitest.MainActivity

In this example, the stringFromJNI’s class of the native function used is MainActivity,
and the resulting file after compiling this class is MainActivity.class, which is located in
the root directory of the project bin \classes\com\example directory. The first line of the
source code file of its class MainActivity.java shows where the package of the class is:

package com.example.jnitest;

In the previous command, class name = package name.Class name (be careful
not to use the .class suffix), -classpath first needs to explain the Java library path of
the entire package (in this case the library file is android.jar; its location is shown in
Figure 7-30, namely D:\Android\android-sdk\ platforms\android-15\android.jar).
-classpath also needs to explain the target class (MainActivity.class) directory. In this
case, it is in the bin\classes directory, under bin\classes\com\example\ MainActivity.
class (both are separated by semicolons).

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

110

After the previous steps, the .h file is generated in the current directory (the project
root directory). The file defines the C language function interface.

You can test the output of the previous steps:

E:\temp\Android Dev\workspace\jnitest>dir
...
2013-01-31 22:00 3,556 com_example_jnitest_MainActivity.h

It is apparent that a new .h file has been generated. The document reads as follows:

1. /* DO NOT EDIT THIS FILE - it is machine generated */
2. #include <jni.h>
3. /* Header for class com_example_jnitest_MainActivity */
4.
5. #ifndef _Included_com_example_jnitest_MainActivity
6. #define _Included_com_example_jnitest_MainActivity
7. #ifdef __cplusplus
8. extern "C" {
9. #endif
10. #undef com_example_jnitest_MainActivity_MODE_PRIVATE
11. #define com_example_jnitest_MainActivity_MODE_PRIVATE 0L
12. #undef com_example_jnitest_MainActivity_MODE_WORLD_READABLE
13. #define com_example_jnitest_MainActivity_MODE_WORLD_READABLE 1L
14. #undef com_example_jnitest_MainActivity_MODE_WORLD_WRITEABLE
15. #define com_example_jnitest_MainActivity_MODE_WORLD_WRITEABLE 2L
16. #undef com_example_jnitest_MainActivity_MODE_APPEND

Figure 7-30. jnitest Application Running Interface

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

111

17. #define com_example_jnitest_MainActivity_MODE_APPEND 32768L
18. #undef com_example_jnitest_MainActivity_MODE_MULTI_PROCESS
19. #define com_example_jnitest_MainActivity_MODE_MULTI_PROCESS 4L
20. #undef com_example_jnitest_MainActivity_BIND_AUTO_CREATE
21. #define com_example_jnitest_MainActivity_BIND_AUTO_CREATE 1L
22. #undef com_example_jnitest_MainActivity_BIND_DEBUG_UNBIND
23. #define com_example_jnitest_MainActivity_BIND_DEBUG_UNBIND 2L
24. #undef com_example_jnitest_MainActivity_BIND_NOT_FOREGROUND
25. #define com_example_jnitest_MainActivity_BIND_NOT_FOREGROUND 4L
26. #undef com_example_jnitest_MainActivity_BIND_ABOVE_CLIENT
27. #define com_example_jnitest_MainActivity_BIND_ABOVE_CLIENT 8L
28. #undef com_example_jnitest_MainActivity_BIND_ALLOW_OOM_MANAGEMENT
29. #define com_example_jnitest_MainActivity_BIND_ALLOW_OOM_MANAGEMENT
16L
30. #undef com_example_jnitest_MainActivity_BIND_WAIVE_PRIORITY
31. #define com_example_jnitest_MainActivity_BIND_WAIVE_PRIORITY 32L
32. #undef com_example_jnitest_MainActivity_BIND_IMPORTANT
33. #define com_example_jnitest_MainActivity_BIND_IMPORTANT 64L
34. #undef com_example_jnitest_MainActivity_BIND_ADJUST_WITH_ACTIVITY
35. #define com_example_jnitest_MainActivity_BIND_ADJUST_WITH_ACTIVITY
128L
36. #undef com_example_jnitest_MainActivity_CONTEXT_INCLUDE_CODE
37. #define com_example_jnitest_MainActivity_CONTEXT_INCLUDE_CODE 1L
38. #undef com_example_jnitest_MainActivity_CONTEXT_IGNORE_SECURITY
39. #define com_example_jnitest_MainActivity_CONTEXT_IGNORE_SECURITY 2L
40. #undef com_example_jnitest_MainActivity_CONTEXT_RESTRICTED
41. #define com_example_jnitest_MainActivity_CONTEXT_RESTRICTED 4L
42. #undef com_example_jnitest_MainActivity_RESULT_CANCELED
43. #define com_example_jnitest_MainActivity_RESULT_CANCELED 0L
44. #undef com_example_jnitest_MainActivity_RESULT_OK
45. #define com_example_jnitest_MainActivity_RESULT_OK -1L
46. #undef com_example_jnitest_MainActivity_RESULT_FIRST_USER
47. #define com_example_jnitest_MainActivity_RESULT_FIRST_USER 1L
48. #undef com_example_jnitest_MainActivity_DEFAULT_KEYS_DISABLE
49. #define com_example_jnitest_MainActivity_DEFAULT_KEYS_DISABLE 0L
50. #undef com_example_jnitest_MainActivity_DEFAULT_KEYS_DIALER
51. #define com_example_jnitest_MainActivity_DEFAULT_KEYS_DIALER 1L
52. #undef com_example_jnitest_MainActivity_DEFAULT_KEYS_SHORTCUT
53. #define com_example_jnitest_MainActivity_DEFAULT_KEYS_SHORTCUT 2L
54. #undef com_example_jnitest_MainActivity_DEFAULT_KEYS_SEARCH_LOCAL
55. #define com_example_jnitest_MainActivity_DEFAULT_KEYS_SEARCH_LOCAL
3L
56. #undef com_example_jnitest_MainActivity_DEFAULT_KEYS_SEARCH_GLOBAL
57. #define com_example_jnitest_MainActivity_DEFAULT_KEYS_SEARCH_GLOBAL
4L

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

112

58. /*
59. * Class: com_example_jnitest_MainActivity
60. * Method: stringFromJNI
61. * Signature: ()Ljava/lang/String;
62. */
63. JNIEXPORT jstring JNICALL Java_com_example_jnitest_MainActivity_
stringFromJNI
64. (JNIEnv *, jobject);
65.
66. #ifdef __cplusplus
67. }
68. #endif
69. #endif

In the previous code, pay special attention to lines 63–64, which are C function
prototypes of a local function stringFromJNI.

Compile the Corresponding. C File
This is the true realization of a local function (stringFromJNI). The source code file is
obtained by modifying the .h file, according to the previous steps.

Create a new .C file under the jni subdirectory in the project. The filename can be
created randomly. In this case, it is named jnitestccode.c. The contents are as follows:

1. #include <string.h>
2. #include <jni.h>
3. jstring Java_com_example_hellojni_HelloJni_stringFromJNI(JNIEnv*
env, jobject thiz)
4. {
5. return (*env)->NewStringUTF(env, "Hello from JNI !");
// Newly added code
6. }

The previous code defines the function implementation and is very simple. Line 3
is the Java code used in the prototype definition of the function stringFromJNI. It is
basically a copy of the corresponding content of the .h file obtained from the previous
steps (lines 63–64 of com_example_jnitest_MainActivity.h), and slightly modified
to make the point. The prototype formats of this function are fixed—JNIEnv* env
and jobject thiz are inherent parameters of JNI. Because the parameter of the
stringFromJNI function is empty, there are only two parameters in the generated C
function. The role of the code in line 5 is to return the string "Hello fromJNI!" as the
return value.

The code in line 2 is the header file that contains the JNI function, which is required
for any functions that use JNI. As it relates to the string function, line 1 contains the
corresponding header file in this case. After you complete the previous steps, the .h file
has no further use and can be deleted.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

113

Create the NDK Makefile File in the jni Directory
These documents mainly include the Android.mk and Application.mk files, where
Android.mk is required. However, if you use the default configuration of the application,
you do not need Application.mk. The four specific steps are as follows:

1. Create a new Android.mk text file in the jni directory in the
project. This file tells the compiler about some requirements,
such as which C files to compile, the filename for compiled
code, and so on. Enter the following:

 LOCAL_PATH := $(call my-dir)
 include $(CLEAR_VARS)
 LOCAL_MODULE := jnitestmysharelib
 LOCAL_SRC_FILES := jnitestccode.c
 include $(BUILD_SHARED_LIBRARY)

The file contents are explained next.
Line 3 represents the generated .SO filename (identifying each module described

in your Android.mk file). It must be consistent with parameter values of the System.
loadLibrary function in the Java code. This name must be unique and may not contain
any spaces.

Note ■ The build system automatically generates the appropriate prefix and suffix.
in other words, if one is the shared library module named jnitestmysharelib, then a
libjnitestmysharelib.so file will be generated. if you name the library libhello-jni,
the compiler will not add the lib prefix and will generate libhello-jni.so too.

The LOCAL_SRC_FILES variable in line 4 must contain the C or C++ source code files
to be compiled and packaged into modules. The previous steps create a C filename.

Note ■ Users do not have to list the header files and include files here, because the
compiler will automatically identify the dependent files for you. Just list source code files
that are directly passed to the compiler. in addition, the default extension name of C++
source files is .CPP. it is possible to specify a different extension name, as long as you define
the LOCAL_DEFAULT_CPP_EXTENSION variable. don’t forget the small dot at the start
(.cxx, rather than cxx).

The code in Lines 3 through 4 is very important and must be modified for each NDK
application based on their actual configuration. The contents of the other lines can be
copied from the previous example.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

114

2. Create an Application.mk text file in the jni directory in the
project. This file tells the compiler the specific settings for this
application. Enter the following:

APP_ABI := x86

This file is very simple. You use the object code generated by the application
instructions for the x86 architecture, so you can run the application on Intel Atom
machines. For APP_ABI parameters, use x86, armeabi, or armeabi-v7a.

3. Next, compile the .c file to the .SO shared library file.

Go to project root directory (where AndroidManifest.xml is located) and run the
ndk-build command:

E:\temp\Android Dev\workspace\jnitest>ndk-build
D:/Android/android-ndk-r8d/build/core/add-application.mk:128: Android NDK:
WARNI
NG: APP_PLATFORM android-14 is larger than android:minSdkVersion 8 in
./AndroidM
anifest.xml
"Compile x86 : jnitestmysharelib <= jnitestccode.c
SharedLibrary : libjnitestmysharelib.so
Install : libjnitestmysharelib.so => libs/x86/libjnitestmysharelib.so

The previous command will add two subdirectories (libs and obj) in the project.
Include an execution version of the .SO file (the command execution information prompt
file named libjnitestmysharelib.so) under the obj directory, and it will eventually put
the final version under the libs directory.

If the previous steps do not define the Application.mk file of the specified ABI, using
the ndk-build command will generate object code of the ARM architecture (armeabi).
If you must generate the x86 architecture instructions, you can also use the ndk-build
APP_ABI = x86 command to remedy the situation. The architecture of the object code
generated by this command is still x86.

4. Deployment: run the project.

After you complete this step, you are almost ready to deploy and run the project.
The application running on the interface on the target device is shown in Figure 7-30.

Generating a Library File in the IDE
Recall from the steps described in the previous section the process of compiling the C
files into the dynamic library .SO files that can be run on the Android target device.
You run the ndk-build command in the command line to complete the process. In fact,
you can also complete this step within the Eclipse IDE.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

115

When generating the library files in the IDE, the code in the first four steps are
exactly the same as in the previous section. You just have to compile the .C files into .SO
shared library files instead. This is explained in detail as follows:

1. Compile the .C file into the .SO shared library file. Right-click
on the project name, and select Build Path, Configure Build
Path. In the pop-up dialog box, select the Builders branch.
Then click the New button in the dialog box. Double-click
Program in the prompt dialog box. This process is shown in
Figure 7-31.

Figure 7-31. Enter Parameters Settings for the Interface of Compiling C Code in Eclipse

2. In the Edit Configuration dialog box, enter the following for
the Main tab settings:

•	 Location: The path to the Cygwin bash.exe.

•	 Working Directory: The bin directory of Cygwin.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

116

•	 Arguments:

--login -c "cd '/cygdrive/E/temp/Android Dev/workspace/
jnitest' && $ANDROID_NDK_ROOT/ndk-build"

where E/temp/Android Dev/workspace/jnitest is the letter and path for the
project. The entire setting is shown in Figure 7-32.

Figure 7-32. Main Tab Setting in the Edit Configuration Window

3. Then configure the Refresh tab, ensuring that these items are
selected—The Entire Workspace and Recursively Include
Sub-Folders—as shown in Figure 7-33.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

117

4. Reconfigure the Build Options tab. Check the During Auto
Builds and Specify Working Set of Relevant Resources items,
as shown in Figure 7-34.

Figure 7-33. Edit Configuration Window Refresh Tab Settings

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

118

Figure 7-34. Edit Configuration Window Build Options Tab Settings

5. Click on the Specify Resources button. In the Edit Working Set
dialog box, select the jni directory, as shown in Figure 7-35.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

119

6. When the previous steps are correctly configured, the
configuration is saved. It will automatically compile C-related
code under the jni directory and output the corresponding
.SO library files to the project’s libs directory. The libs
directory is created automatically. In the Console window you
can see the output information for the build, as follows:

/cygdrive/d/Android/android-ndk-r8d/build/core/add-application.
mk:128: Android NDK: WARNING: APP_PLATFORM android-14 is larger than
android:minSdkVersion 8 in ./AndroidManifest.xml
Cygwin : Generating dependency file converter script
Compile x86 : jnitestmysharelib <= jnitestccode.c
SharedLibrary : libjnitestmysharelib.so
Install : libjnitestmysharelib.so => libs/x86/libjnitestmysharelib.so

Figure 7-35. Select Source Code Directories Where Related Files Are Located

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

120

Workflow Analysis for NDK Application Development
The process of generating an NDK project described previously works naturally to
achieve the C library integration with Java. In the final step, you compile .C files into the
.SO shared library files. The intermediate version of the libraries is placed into the obj
directory, and the final version is placed into the libs directory. The project file structure
is then created, as shown in Figure 7-36.

Figure 7-36. The jnitest Project Structure after NDK Library Files Generation

The shared library .SO files are in the directory of the project in the host machine
and will be packed in the generated .apk file. The .apk file is essentially a compressed
file. You can use compression software like WinRAR to view its contents. For this example,
you can find the .apk file in the bin subdirectory of the project directory. Open it with
WinRAR, and show the file structure.

The content of the lib subdirectory of .apk is a clone of the lib subdirectory of the
project. In Figure 7-36 the generated .SO file is shown in the lib\x86 subdirectory.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

121

When .apk is deployed to the target machine, it will be unpacked, in which case the
.SO files will be placed in the /data/dat/XXX/lib directory, where XXX is the application
package name. For example, for the previous example, the directory is /data/data/com.
example.jnitest/lib. You can view the file structure of the target machine under the
Eclipse DDMS; the file structure of the example is shown in Figure 7-37.

Figure 7-37. The jnitest Project Structure after NDK Library Files Generation

In Figure 7-37, you can find the .SO library file under the /data/data/XXX/lib
directory, such that when the application is running, the System.loadLibrary function
can be loaded into memory to run. Here you see the .SO file in a graphical display of
DDMS. Interested readers can try it on the command line, using the adb shell command
to view the corresponding contents in the target file directory.

In addition, if you run the jnitest application in an emulator (in this case the target
machine is a virtual machine), you’ll see the following output in the Eclipse Logcat
window:

1. 07-10 05:43:08.579: E/Trace(6263): error opening trace file: No such
file or directory (2)
2. 07-10 05:43:08.729: D/dalvikvm(6263): Trying to load lib /data/data/com.
example.jnitest/lib/libjnitestmysharelib.so 0x411e8b30
3. 07-10 05:43:08.838: D/dalvikvm(6263): Added shared lib /data/data/com.
example.jnitest/lib/libjnitestmysharelib.so 0x411e8b30
4. 07-10 05:43:08.838: D/dalvikvm(6263): No JNI_OnLoad found in /data/data/
com.example.jnitest/lib/libjnitestmysharelib.so 0x411e8b30, skipping init

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

122

5. 07-10 05:43:11.773: I/Choreographer(6263): Skipped 143 frames!
The application may be doing too much work on its main thread.
6. 07-10 05:43:12.097: D/gralloc_goldfish(6263): Emulator without GPU
emulation detected.

Lines 2–3 are reminders about the .SO shared library loaded into the application.

NDK Compiler Optimization
From the previous example, you can see that the NDK tool’s core role is to compile the
source code into the .SO library file that can run on an Android machine. The .SO library
file is placed into the lib subdirectory of the project directory, so that when you use
Eclipse to deploy applications, you can deploy the library files to the appropriate location
on a target device, and the application can run using the library function.

Note ■ The nature of the ndK application is to establish a code framework that complies
with the Jni standard. This will enable Java applications to use a local function beyond the
scope of the virtual machine.

The key NDK command used to compile the source code into a .SO library file is
ndk-build. It’s not actually a separate command, but an executable script. It calls the
make command in the GNU cross-development tools to compile a project, and make
calls, for example, to the gcc compiler to compile the source code to complete the whole
process, as shown in Figure 7-38. Of course, you can also directly use .SO shared libraries
developed by third parties already in Android applications, thus avoiding the need to
write your own library (function code).

Android
Application .so library file

gcc

C/C++
Code

Other
Compiler

Other
Source
Code

NDKTool

Other Libraries

Figure 7-38. The Working Mechanism of NDK Tools

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

123

As Figure 7-38 shows, core GNU compiler gcc is the core tool in the NDK to complete
C/C++ source code compilation. gcc is the standard compiler of Linux, and it can compile
and link C, C++, Object-C, FORTRAN, and other source code on the local machine. In
fact, the gcc compiler can not only do local compiling, but can also cross-compiling. This
feature has been used by the Android NDK and other embedded development tools.
In compiler usage, gcc cross-compiling is compatible with native compiling; that is,
command parameters and switches of locally compiled code can essentially be ported
without modification to cross-compiling code. Therefore, the gcc compiling method
described next is generic for both local and cross-compiling.

In Chapter 9: Performance Optimizations for Android Applications on x86, we
will discuss compiler optimizations in greater detail (that is, how some optimizations
can be done automatically by the compiler). For systems based on Intel x86 architecture
processors, in addition to the GNU gcc compiler, Intel C/C++ compiler is also a good
tool. Relatively speaking, because the Intel C/C ++ compiler fully utilizes the features of
the Intel processors, the code optimization results will be better. For Android NDK, both
Intel C/C++ compiler and gcc can complete the C/C++ code compilation. Currently,
the Intel C/C ++ compiler provides the appropriate usage mechanisms. Ordinary users
need a professional license, while gcc is open sourced, free software and is more readily
available. The following section uses gcc as an experimental tool to explain how to
perform C/C++ module compiler optimization for Android applications.

The gcc optimization is controlled by the optimization options of the compiler
switches. Some of these options are machine-independent, and some are associated with
the machine. Here we will discuss some important options. For machine-related options,
we will describe only the ones that are relevant to Intel processors.

Machine-Independent Compiler Switch Options
The machine-independent options for the gcc compiler switches are the -Ox options,
which correspond to different optimization levels. The details are as follows.

-0 or -01
Level 1 optimization, which is the default level of optimization, uses the -O option.
The compiler tries to reduce code size and execution time. For large functions, it
needs to spend more compiling time and use a large amount of memory resources for
optimizing compiling.

When the -O option is not used, the compiler’s goal is to reduce the overhead of
compiling, so that results can be debugged quickly. In this compilation mode, statements
are independent. By inserting a breakpoint interrupt program run between the two
statements, a user can reassign variables or modify the program counter to jump to other
currently executing statements, so you can precisely control the running process. The
user can also get results when they want to debug. In addition, if the -O option is not used,
only declared variables of a register can have register allocation.

When you specify the -O option, the -fthread-jumps and -fdefer-pop options are
turned on. On a machine with a delay slot, the -fdelayed-branch option is turned on. Even
for machines that support debugging without a frame pointer, the -fomit-frame-pointer
option is turned on. Some machines may also activate other options.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

124

-02
Optimizes even more. GCC performs nearly all supported optimizations that do not
involve a space-speed tradeoff. When compared to -O, this option increases compilation
time and the performance of the generated code.

-03
Optimizes yet more. The option -O3 turns on all optimizations specified by -O2 and
also turns on the -finline-functions, -funswitch-loops, -fpredictive-commoning,
-fgcse-after-reload, -ftree-vectorize, -fvect-cost-model, -ftree-partial-pre,
and -fipa-cp-clone options.

-00
Reduces compilation time and makes debugging produce the expected results. This is
the default.

An automatic inline function is often used as a function optimization measure. C99
(C language ISO standard developed in 1999) and C++ both support the inline keyword.
The inline function is a reflection of thinking of using inline space in exchange for time.
The compiler does not compile an inline-described function into a function, but directly
expands the code for the function body, thereby eliminating the function call, returning
the call ret instruction and the parameter’s push instruction execution. For example,
in the following function:

inline long factorial (int i)
{
 return factorial_table[i];
}

all occurrences of the factorial () call are replaced with the factorial_table [] array
references.

When in the optimizing state, some compilers will treat that function as an
inline function even if the function does not use inline instructions. It does this only if
appropriate in the circumstances (such as the body of the function code is relatively short
and the definition is in the header file), in exchange for execution time.

Loop unrolling is a classic speed optimization method and is considered by many
compilers as the automatic optimization strategy. For example, the following loop code
needs to loop 100 cycles:

for (i = 0; i < 100; i++)
{
 do_stuff(i);
}

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

125

In all 100 cycles, at the end of each cycle, the cycle conditions have to be checked
to do a comparative judgment. By using a loop-unrolling strategy, the code can be
transformed as follows:

for (i = 0; i < 100;)
{
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
 do_stuff(i); i++;
}

As you can see, the new code reduces the comparison instruction from 100 to 10
times, and the time used on conditions comparison can be reduced by 90 percent.

Both methods described previously will increase the optimization of the object code.
This is a typical space for time-optimization ideas.

Intel Processor-Related Compiler Switch Options
The m option of gcc is defined for the Intel i386 and x86 - 64 processors family. The main
command options are explained in Table 7-3.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

126

Table 7-3. Intel Processor-Related gcc Switch Options

Switch Options Note Description

-march=cpu-type
-mtune=cpu-type

Generated code for the specified type of
CPU. CPU type can be i386, i486, i586,
Pentium, i686, Pentium 4, and so on

-msse

The compiler automatic vectorization.
Use or not use MMX, SSE, SSE2
instructions. For example, -msse
represents programming into
instruction, and –mno-sse means not
programmed into the SSE instruction

-msse2

-msse3

-mssse3 gxx-4.3 new addition

-msse4.1 gcc-4.3 new addition

-msse4.2 gcc-4.3 new addition

-msse4 Include 4.1, 4.2
,gcc-4.3 new addition

-mmmx

-mno-sse

-mno-sse2

-mno-mmx
-m32
-m64

Generated 32/64 machine code

In Table 7-3, -march is the CPU type of the machine, and -mtune is the CPU type that
the compiler wants to optimize (by default it is the same as with -march). The -march
option is “tight constraint,” and -mtune is “loose constraint.” The -mtune option can
provide backward compatibility.

Compiler optimization options with -march = i686, -mtune = pentium4 is
optimized for the Pentium 4 processor, but can be run on any i686 as well.

For -mtune = pentium-mmx compiled procedures, the Pentium 4 processor can be run.

-march=cpu-type

This option will generate cpu-type instructions that specify the type of machine. The
-mtune = cpu-type option is available only for optimizing code generated for cpu-type. By
contrast, -march = cpu-type generates code not run on non-gcc for the specified type of
processor, which means that -march = cpu-type implies the -mtune = cpu-type option.

The cpu-type option values that are related to Intel processors are listed in Table 7-4.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

127

Table 7-4. The Main Optional Value of -march Parameters of gcc for cpu-type

cpu-type Value Description

native This selects the CPU to generate code at compilation time by
determining the processor type of the compiling machine. Using
-march=native enables all instruction subsets supported by
the local machine (hence the result might not run on different
machines). Using -mtune=native produces code optimized
for the local machine under the constraints of the selected
instruction set.

i386 Original Intel i386 CPU.

i486 Intel i486 CPU. (No scheduling is implemented for this chip.)

i586 Intel Pentium CPU with no MMX support.

pentium

pentium-mmx Intel Pentium MMX CPU, based on Pentium core with MMX
instruction set support.

pentiumpro Intel Pentium Pro CPU.

i686 When used with -march, the Pentium Pro instruction set is
used, so the code runs on all i686 family chips. When used with
-mtune, it has the same meaning as “generic.”

pentium2 Intel Pentium II CPU, based on Pentium Pro core with MMX
instruction set support.

pentium3 Intel Pentium III CPU, based on Pentium Pro core with MMX
and SSE instruction set support.

pentium3m

pentium-m Intel Pentium M; low-power version of Intel Pentium III CPU
with MMX, SSE, and SSE2 instruction set support. Used by
Centrino notebooks.

pentium4 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set
support.

pentium4m

prescott Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2,
and SSE3 instruction set support.

nocona Improved version of Intel Pentium 4 CPU with 64-bit extensions,
MMX, SSE, SSE2, and SSE3 instruction set support.

core2 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
and SSSE3 instruction set support.

(continued)

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

128

Traditional gcc is a local compiler. These command options can be added to gcc to
control gcc compiler options. For example, say you have an int_sin.c file.

$ gcc int_sin.c

The previous command uses the -O1 optimization level (default level) and will
compile int_sin.c into an executable file, called a.out by default.

$ gcc int_sin.c -o sinnorm

The previous command uses the -O1 optimization level (default level) to compile
int_sin.c into an executable file; the executable filename is specified as sinnorm.

$ gcc int_cos.c -fPIC -shared -o coslib.so

The previous command uses the -O1 optimization level (default level) to compile
int_cos.c into a shared library file called coslib.so. Unlike the previous source code
files compiled into an executable program, this command requires that the source code
file int_cos.c not contain the main function.

$ gcc -O0 int_sin.c

The previous command compiles int_sin.c into the executable file with the default
filename. The compiler does not perform any optimization.

$ gcc -O3 int_sin.c

The previous command uses the highest optimization level -O3 to compile the
int_sin.c file to the executable file with the default filename.

$ gcc -msse int_sin.c

cpu-type Value Description

corei7 Intel Core i7 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, and SSE4.2 instruction set support.

corei7-avx Intel Core i7 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, AVX, AES, and PCLMUL instruction set
support.

core-avx-i Intel Core CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
SSSE3, SSE4.1, SSE4.2, AVX, AES, PCLMUL, FSGSBASE, RDRND,
and F16C instruction set support.

atom Intel Atom CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3,
and SSSE3 instruction set support.

Table 7-4. (continued)

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

129

The previous command compiles int_sin.c into an executable file using SSE
instructions.

$ gcc -mno-sse int_sin.c

The previous command compiles int_sin.c into an executable file without any SSE
instructions.

$ gcc -mtune=atom int_sin.c

The previous command compiles int_sin.c into an executable file that can use the
Intel Atom processor instructions.

From the previous example compiled by gcc locally, you have some experience
using the compiler switch options for the gcc compiler optimizations. For the gcc
native compiler, the gcc command can be used directly in the switch options to achieve
compiler optimization. However, from the previous example, you know that the NDK
does not directly use the gcc command. Then how do you set the gcc compiler switch
option to achieve the NDK optimization?

Recall that using the NDK example, you used the ndk-build command to compile
C/C++ source code; the command first needed to read the makefile Android.mk. This
file actually contains the gcc command options. Android.mk uses LOCAL_CFLAGS to
control and complete the gcc command options. The ndk-build command will pass
LOCAL_CFLAGS runtime values to gcc, as its command option to run the gcc command.
LOCAL_CFLAGS passes the values to gcc and uses them as the command option to run gcc
command.

For example, you amended Android.mk as follows:

1. LOCAL_PATH := $(call my-dir)
2. include $(CLEAR_VARS)
3. LOCAL_MODULE := jnitestmysharelib
4. LOCAL_SRC_FILES := jnitestccode.c
5. LOCAL_CFLAGS := -O3
6. include $(BUILD_SHARED_LIBRARY)

Line 5 is newly added. It sets the LOCAL_CFLAGS variable script.
When you execute the ndk-build command, which is equivalent to adding a

gcc -O3 command option. It instructs gcc to compile the C source code at the highest
optimization level O3. Similarly, if you edit the line 5 to:

LOCAL_CFLAGS := -msse3

You instruct gcc to compile C source code into object code using SSE3 instructions.
Interested readers can set LOCAL_CFLAGS to a different value, comparing the target

library file size and content differences. Note that the previous example jnitest C code
is very simple and does not involve complex tasks. As a result, the size or content of the
library files are not very different when compiled from different LOCAL_CFLAGS values.

CHAPTER 7 ■ CREATing And PoRTing ndK-BAsEd AndRoid APPliCATions

130

So, can there ever be a significant difference in the size or content of the library file?
In fact, the answer is yes. In this regard, we will give practical examples in the following
chapters.

Overview
With this chapter behind you, you should have a comprehensive knowledge of the
Android native development kit and understand how it can be used to create Android
applications for the Intel platform. We also covered the Intel C++ compiler and its
options. It is important to remember that the Intel C++ compiler is just one of the
possible compilers that can be used for Intel Android applications. We talked at length
about the Java native interface that exists to interact with your NDK applications, and
how it operates. We also covered various code samples to best explain the various basic
optimizations that exist for the Intel C++ compiler.

131

Chapter 8

Debugging Android

Not all problems have a technological answer, but when they do, that is
the more lasting solution.

—Andy Grove, semiconductor manufacturing pioneer

The processes for identifying runtime issues and possible problematic code in an Android
OS–targeted application or in the Android system software stack are remarkably similar.
The challenges and approaches are the same, regardless of whether the underlying
platform architecture is based on Intel architecture and the latest-generation Atom
processor or on ARM architecture. This chapter provides an overview of the available
debug methodologies for Android-targeted software on Intel architectures. We will
also touch on the setup and configuration of application and system software debug
environments targeting Android and Intel architectures in the early part of the chapter.
In the process of doing so, we will also point out where the experience differs when
developing for ARM architecture.

Prerequisites
This chapter covers the Intel USB driver that is necessary to enable remote application
debugging on an Intel Atom processor-based device running Android OS. Additionally
we will also look at the Intel Atom x86 System Image for the Android Emulator. If no
physical debug target is available, having a virtual Intel Atom processor-based device
emulated inside the Android SDK’s device emulation layer is the next best option. These
two prerequisites in conjunction with the Android SDK build the foundation for cross-
development targeting an Intel Atom processor-based tablet or smartphone.

Intel USB Driver for Android Devices
This section looks at the Intel Android USB driver package, which enables you to connect
your host development machine to an Android device that contains an Intel Atom
processor inside. In this first example, we assume a Windows development host. Similar
principles apply to Linux or OS X host systems.

CHAPTER 8 ■ DEbugging AnDRoiD

132

1. Download the installer package from
http://www.intel.com/software/android.

2. Run the installer and accept the Windows User Account
Control (UAC) prompt, if applicable.

3. You will see the screen in Figure 8-1. Click Next to continue.
(If the installer detects an older version of the driver, accept to
uninstall it.)

Figure 8-1. USB Device Driver Installation Start Screen

4. Read and agree to the Intel Android USB Driver End-User
License Agreement (EULA).

5. You will be prompted to select components. Click the Next
button to proceed.

6. Choose the path for the installation and click Install.

7. The installer will proceed to install the Android USB drivers.
This may take a few minutes (see Figure 8-2).

http://www.intel.com/software/android

CHAPTER 8 ■ DEbugging AnDRoiD

133

8. After the driver installation is completed, click OK on the pop-up
note and then click on Finish to close the installation program.

Installing the Intel Atom x86 System Image for
Android Emulator
For the alternative of debugging on the development host using the Android Virtual
Device Manager, the first prerequisite is the availability of the appropriate system image.

Using the Android Emulator requires both an Intel Atom x86 System Image and the
Android SDK to be installed. Please refer to the Android developer web site
(http://developer.android.com/sdk/installing.html) for Android SDK installation
instructions, or refer to Chapter 6: Installing the Android SDK for Intel Application
Development. The Android SDK Manager allows you to download and install the Intel
Atom Android x86 Emulator Image add-on, and then the necessary Intel Atom x86
System Image.

Follow these steps:

1. Start the Android SDK Manager program.

2. Under Packages ➤ Android 4.x.x (API 1x), check the box to
select Intel Atom x86 System Image by Intel Corporation.

3. Once selected, click the Install Package button, as shown in
Figure 8-3.

Figure 8-2. USB Device Driver Installation Progress Screen

http://developer.android.com/sdk/installing.html

CHAPTER 8 ■ DEbugging AnDRoiD

134

Note ■ You may have more than one package to install, based on other packages that you
or the Android SDK Manager program selected.

4. Review the Intel Corporation license agreement. If you accept
the terms, select the Accept option and click the Install
button, as shown in Figure 8-4.

Figure 8-3. Android SDK Manager Selection for x86 System Image

CHAPTER 8 ■ DEbugging AnDRoiD

135

5. At this point, the Android SDK Manager will download
and install the add-on to your Android SDK add-ons folder
(<sdk>/add-ons/). The download and install will take several
minutes, depending on your connection speed.

6. Select Manage AVDs from the Tools menu (see Figure 8-5).

Figure 8-4. Android SDK Manager—Accepting Licensing Terms

Figure 8-5. Android SDK Manager—Manage Android Virtual Devices

CHAPTER 8 ■ DEbugging AnDRoiD

136

7. The Android Virtual Device Manager window should appear.
Click New (see Figure 8-6).

Figure 8-6. Adding a New Android Virtual Device

8. Enter a name for your virtual device in the Name field. Spaces
are not allowed in the name.

9. Select Intel Atom x86 System Image (Intel Corporation) – API
Level 10 from the Target field drop-down list (see Figure 8-7).

CHAPTER 8 ■ DEbugging AnDRoiD

137

Figure 8-7. The Intel Atom x86 System Image as a Virtual Device Target

10. Once you select your configuration settings, click the Create
AVD button.

11. The new virtual device should appear on the Android Virtual
Device Manager. Select the new device and click the Start
button, as shown in Figure 8-8.

CHAPTER 8 ■ DEbugging AnDRoiD

138

12. The Launch Options window should appear. Select the screen
size and DPI for your system. Otherwise, the emulator might
exceed the dimensions of your viewing screen. Click the
Launch button (see Figure 8-9).

Figure 8-8. Starting an Android Virtual Device

Figure 8-9. Virtual Device Launch Options

13. After a few moments, the emulator will launch and show you
the screen in Figure 8-10.

CHAPTER 8 ■ DEbugging AnDRoiD

139

Application Debugging Using the Android
Debug Bridge
The Android Debug Bridge (ADB) is a command-line tool that handles debug
communication between a debugger on the host—usually GDB, DDMS (Dalvik Debug
Monitor Server), or ADT—and an Android image running on the target. The target image
could be running on device emulation or running on a physical development device,
which you communicate with via a USB-OTG (on-the-go) or USB-to-Ethernet dongle.
In short, ADB is the glue that makes application debugging on Android possible.

The device you are connecting to or emulating could cover a wide range of form
factors. Typically it would be a smartphone or tablet. It could also be a medical tablet or
an embedded device in an industry setting, home energy management, warehousing, or
any number of intelligent systems applications.

Setting up the Android Debug Bridge to allow remote debugging of a platform
based on the Intel Atom processor does not differ very much from debugging on
other architectures.

Figure 8-10. AVD Emulation of Intel Architecture-Based Android Device

CHAPTER 8 ■ DEbugging AnDRoiD

140

Setting Up ADB
First you need the Android SDK, including ADB installed on the development host.
Instructions for this can be found at http://developer.android.com/sdk/installing.html.

If your target image is running on a physical device, you need to include USB-
OTG or USB-to-Ethernet support. For USB-to-Ethernet support, a kernel configuration
change and rebuild is required. Your OEM will provide you with the necessary
information if desired.

The standard method for remote application debug is to use the existing
USB-OTG interface of most Android devices. The setup is described in detail at the Android
developer web site at http://developer.android.com/guide/developing/device.html.

The key steps are:

1. Declare your application as “debuggable” in your Android
manifest.

2. Turn on USB Debugging on your device.

3. On the device, go to Settings ➤ Applications ➤ Development
and enable USB debugging (on an Android 4.x.x device, the
setting is located in Settings ➤ Developer Options).

4. Set up your system to detect your device.

If you’re developing on Windows, you need to install a USB driver for ADB—visit
 http://developer.android.com/tools/extras/oem-usb.html for driver downloads
and prerequisites.

If you’re developing on Ubuntu Linux, you need to add a udev rules file that
contains a USB configuration for each type of device you want to use for development. In
the rules file, each device manufacturer is identified by a unique vendor ID, as specified
by the ATTR{idVendor} property. For a list of vendor IDs, see http://developer.
android.com/tools/device.html#VendorIds.

To set up device detection on Ubuntu Linux, log in as root and create this file:

/etc/udev/rules.d/51-android.rules

Use this format to add each vendor to the file:

SUBSYSTEM=="usb", ATTR{idVendor}=="????", MODE="0666", GROUP="plugdev"

The MODE assignment specifies read/write permissions, and GROUP defines which
UNIX group owns the device node.

Execute:

chmod a+r /etc/udev/rules.d/51-android.rules

When plugged in over USB, you can verify that your device is connected by executing
ADB devices from your SDK platform-tools/directory. If connected, you’ll see the device
name listed as a device.

http://developer.android.com/sdk/installing.html
http://developer.android.com/guide/developing/device.html
http://developer.android.com/tools/extras/oem-usb.html
http://developer.android.com/tools/device.html#VendorIds
http://developer.android.com/tools/device.html#VendorIds

CHAPTER 8 ■ DEbugging AnDRoiD

141

With the Android OS booted on the SDK, connect a USB-OTG cable to the (USB mini b)
port on the SDK and connect the other end of the cable (USB A) to your development host.

If everything is working, you should be able to run the following command to see the
attached device:

$ adb devices
* daemon not running. starting it now *
* daemon started successfully *
List of devices attached
0123456789ABCDEF device

Note ■ To see which device name is assigned to this connection on the Linux dev. host,
you can look at dmesg to find the address of the usb-storage: device found at <num>
and then run an ls -l /dev/bus/usb/* listing to find that number.

ADB on Windows
Download and install Eclipse Classic from http://www.eclipse.org/downloads/.

Download the Android SDK package for Windows from http://developer.
android.com/sdk/index.html (android-sdk_r18-windows.zip or installer_r18-
windows.exe).

After installing the Android SDK, adb.exe will be located at <install-dir>\
android-sdk\platform-tools.

ADB Host-Client Communication
Thus far we focused on installing ADB on the development host. In reality, it is a client-
server program that includes three components:

A client that runs on your development machine. You can invoke •	
a client from a shell by issuing an ADB command. Other Android
tools, such as the ADT plug-in and DDMS, also create ADB
clients.

A server that runs as a background process on your development •	
machine. The server manages communication between the client
and the ADB daemon running on an emulator or device.

A daemon that runs as a background process on each emulator or •	
device instance.

When you start an ADB client, the client first checks whether there is an ADB server
process already running. If there isn’t, it starts the server process. When the server starts,
it binds to a local TCP port 5037 and listens for commands sent from ADB clients—all
ADB clients use port 5037 to communicate with the ADB server.

http://www.eclipse.org/downloads/
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

CHAPTER 8 ■ DEbugging AnDRoiD

142

The server then sets up connections to all running emulator/device instances. It
locates emulator/device instances by scanning odd-numbered ports in the range 5555
to 5585, which is the range used by emulators/devices. When the server finds an ADB
daemon, it sets up a connection to that port. Note that each emulator/device instance
acquires a pair of sequential ports—an even-numbered port for console connections and
an odd-numbered port for ADB connections. For example:

 Emulator 1, console: 5554
 Emulator 1, adb: 5555
 Emulator 2, console: 5556
 Emulator 2, adb: 5557 …

As shown, the emulator instance connected to ADB on port 5555 is the same as the
instance whose console listens on port 5554.

Once the server has set up connections to all emulator instances, you can use
ADB commands to control and access those instances. Because the server manages
connections to emulator/device instances and handles commands from multiple ADB
clients, you can control any emulator/device instance from any client (or from a script).

Starting ADB
Type adb shell. You will get a # sign to indicate that the connection was successful.

$ adb shell
#

Key ADB Device Commands
The commands listed in Table 8-1 help to transfer the debuggee application onto the
target device or emulation from the command line. This can be very helpful, especially if
no ssh terminal connection is available.

Table 8-1. Key ADB Device Commands

Command Description

adb push <local> <remote> Copies file/dir to device

adb pull <remote> [<local>] Copies file/dir from device

adb sync [<directory>] Copies host->device only if changed
(-l means list but don’t copy)
(See adb help all)

adb shell Runs the remote shell interactively

(continued)

CHAPTER 8 ■ DEbugging AnDRoiD

143

Command Description

adb shell <command> Run the remote shell command

adb emu <command> Runs the emulator console command

adb logcat [<filter-spec>] Views the device log

adb forward <local> <remote> Forwards socket connections
Forward specs are one of:

tcp:<port>

localabstract:<unix domain socket name>

localreserved:<unix domain socket name>

localfilesystem:<unix domain socket name>

dev:<character device name>

jdwp:<process pid> (remote only)

adb jdwp Lists PIDs of processes hosting a JDWP transport

adb install [-l] [-r] [-s]
<file>

Pushes this package file to the device and installs it
(-l means forward-lock the app)
(-r means reinstall the app, keeping its data)
(-s means install on SD card instead of internal
storage)

Table 1-5. (continued)

More details on ADB setup and usage can be found at http://developer.android.
com/guide/developing/tools/adb.html.

Using the Android Debug Tools Plug-in for Eclipse
For devices based on Intel architecture, the setup process does not vary significantly from
what is described at http://developer.android.com/sdk/eclipse-adt.html#installing.
The Android Debug Tools (ADT) plug-in provides full Eclipse IDE integrated application
debug for emulators based on Intel architecture as well as target devices. It provides two
different debug perspectives with different feature sets. You can switch between either one
as needed and they both provide different strengths when debugging applications.

The Debug Perspective in Eclipse
The Debug Perspective in Eclipse, shown in Figure 8-11, gives you access to the
following tabs:

•	 Debug. Displays previously and currently debugged Android
applications and its currently running threads.

•	 Variables. When breakpoints are set, displays variable values
during code execution.

http://developer.android.com/guide/developing/tools/adb.html
http://developer.android.com/guide/developing/tools/adb.html
http://developer.android.com/sdk/eclipse-adt.html#installing

CHAPTER 8 ■ DEbugging AnDRoiD

144

•	 Breakpoints. Displays a list of the set breakpoints in your
application code.

•	 LogCat. Allows you to view system log messages in real time.
The LogCat tab is also available in the DDMS perspective.

Figure 8-11. Debug Perspective in Eclipse

You can access the Debug Perspective by clicking Window ➤ Open Perspective ➤
Debug. Refer to the appropriate documentation for the Eclipse debugger for more
information.

The DDMS Perspective
The DDMS Perspective in Eclipse, shown in Figure 8-12, lets you access all of the features of
DDMS from within the Eclipse IDE. The following sections of DDMS are available to you:

•	 Devices. Shows the list of devices and AVDs that are connected to
ADB.

•	 Emulator Control. Lets you carry out device functions.

•	 LogCat. Lets you view system log messages in real time.

•	 Threads. Shows currently running threads within a VM.

•	 Heap. Shows heap usage for a VM.

•	 Allocation Tracker. Shows the memory allocation of objects.

•	 File Explorer. Lets you explore the device’s file system.

CHAPTER 8 ■ DEbugging AnDRoiD

145

Application Runtime Environment for Debugging
The difference when debugging an Android application targeted for a device based on
Intel architecture comes in when setting up the debug target device.

Selecting the target device using the Android Virtual Device Manager that is part
of the Android SDK, you go to Window ➤ AVD Manager in the Eclipse IDE’s pull-down
menu. There you need to make sure to select Intel Atom (x86) as the EABI target for the
OS image and the device emulation (see Figure 8-13).

Figure 8-12. DDMS Perspective in Eclipse

CHAPTER 8 ■ DEbugging AnDRoiD

146

If you followed the steps outlined at the beginning of the chapter for setting up ADB
and establishing a debug bridge to a physical device, you will see a device chooser entry in
the Eclipse IDE from which you can pick the target for application deployment and debug.

Otherwise, debugging an Android application targeted for Intel architecture is not
different from debugging an Android application that targets ARM architecture.

Intel Hardware Accelerated Execution Manager
The Intel Hardware Accelerated Execution Manager (HAXM) is a hardware-assisted
virtualization engine (hypervisor) that uses Intel Virtualization Technology (VT) to speed
up Android app emulation on a host machine. In combination with Android x86 emulator
images provided by Intel and the official Android SDK Manager, Intel HAXM allows
for faster Android emulation on Intel VT–enabled systems. For more information on
installing and using Intel HAXM, refer to Chapter 11: Using Intel Hardware Accelerated
Execution Manager to Speed-up Android on x86 Emulation.

Figure 8-13. Selection of a Device Based on the Intel Atom Processor in Android
Virtual Device Manager

CHAPTER 8 ■ DEbugging AnDRoiD

147

The x86 Android 4.0.4 (Ice Cream Sandwich) emulator system image enables you
to run an emulation of Android on your development machine. In combination with the
Android SDK, you can test your Android applications on a virtual Android device based
on Intel architecture, thereby taking full advantage of the underlying Intel architecture
and Intel Virtualization Technology.

In order to install the emulator system image, you use the Android SDK Manager.
Intel HAXM can be installed through the Android SDK Manager (see Figure 8-14).

Intel HAXM requires the Android SDK to be installed (version 17 or higher). For more
information, refer to the Android developer web site (http://developer.android.com/sdk/).

Figure 8-14. Intel Hardware Accelerated Execution Manager Download

Intel HAXM is available for Linux, Windows, and OS X host operating systems.
As an example we outline the installation on Ubuntu 64-bit OS, as this is Google’s main
validated and supported platform for Android builds.

The next section contains the quick steps for how to install KVM, enable it on the
Ubuntu host platform, and start the Intel Android x86 emulator with Intel hardware-
assisted virtualization (hypervisor). When the AVD takes advantage of Intel HAXM,
the operating system will run significantly faster and smoother than without hypervisor.

KVM Installation
1. To see if your processor supports hardware virtualization, you

can review the output from this command:

$ egrep -c '(vmx|svm)' /proc/cpuinfo

If this command returns 0, your CPU doesn’t support
hardware virtualization.

http://developer.android.com/sdk/

CHAPTER 8 ■ DEbugging AnDRoiD

148

2. Next, install CPU checker:

$ sudo apt-get install cpu-checker

3. Now you can check if your CPU supports KVM:

$kvm-ok

a. If you see:

"INFO: Your CPU supports KVM extensions
INFO: /dev/kvm exists
KVM acceleration can be used"

you can run your virtual machine faster with the KVM
extensions.

b. If you see:

"INFO: KVM is disabled by your BIOS
HINT: Enter your BIOS setup and enable Virtualization
Technology (VT),
and then hard poweroff/poweron your system
KVM acceleration can NOT be used"

you will need to go to BIOS setup and enable Intel VT.

Using a 64-Bit Kernel
Running a 64-bit kernel on the host operating system is recommended but not required.
To serve more than 2GB of RAM for your VMs, you must use a 64-bit kernel. On a 32-bit
kernel install, you’ll be limited to 2GB RAM at maximum for a given VM. Also, a 64-bit
system can host both 32-bit and 64-bit guests. A 32-bit system can only host 32-bit guests.

1. To see if your processor is 64-bit, you can run this command:

$ egrep -c ' lm ' /proc/cpuinfo

If 0 is printed, it means that your CPU is not 64-bit. If 1 or
higher is printed, it is. Note: lm stands for long mode, which
equates to a 64-bit CPU.

2. To see whether your running kernel is 64-bit, just issue the
following command:

$ uname -m

The return value x86_64 indicates a running 64-bit kernel.
If you see i386, i486, i586, or i686, you’re running a 32-bit
kernel.

CHAPTER 8 ■ DEbugging AnDRoiD

149

Install KVM
To install KVM, follow these steps:

1. For Ubuntu 12.04 or later:

$ sudo apt-get install qemu-kvm libvirt-bin ubuntu-vm-builder
bridge-utils

You can ignore the Postfix Configuration request shown in Figure 8-15 by selecting
No Configuration.

Figure 8-15. KVM Install Postfix Configuration Settings

2. Next, add your <username> account to the group kvm and
libvirtd:

$ sudo adduser your_user_name kvm
$ sudo adduser your_user_name libvirtd

After the installation, you need to log in again so that your user account becomes an
active member of the kvm and libvirtd user groups. The members of this group can run
virtual machines.

To verify installation, you can test whether your install has been successful with the
following command:

$ sudo virsh -c qemu:///system list

CHAPTER 8 ■ DEbugging AnDRoiD

150

Starting the Android Virtual Device
The Android for x86 Intel Emulator (see Figure 8-16) can be started using the following
command:

$ <SDK directory>/tools/emulator-x86 -avd Your_AVD_Name -qemu -m
2047 -enable-kvm

Figure 8-16. AVD Running Android in the Intel Architecture Emulation Layer

with Your_AVD_Name being a name of your choice; -qemu provides the options to
qemu, and -m specifies the amount of memory for the emulated Android (that is, guest).
If you use too small a value for your memory, it is possible that performance will suffer
because of frequent swapping activities.

CHAPTER 8 ■ DEbugging AnDRoiD

151

Using AVD Manager in Eclipse to Launch a Virtual Device
The following steps are recommended by Google to start debugging an application using
AVD from within the Eclipse IDE:

1. In Eclipse, click your Android project folder and then select
Run ➤ Run Configurations.

2. In the left panel of the Run Configurations dialog, select
your Android project run configuration or create a new
configuration.

3. Click the Target tab.

4. Select the Intel architecture–based AVD you created previously.

5. In the Additional Emulator Command Line Options field, enter:

-qemu -m 2047 -enable-kvm

6. Run your Android project using this run configuration.

Running Android Within Oracle VirtualBox
Running a full Android OS image on a desktop PC inside an Oracle VirtualBox virtual
machine can be a valuable alternative to KVM and QEMU on Windows host systems,
especially for those developers looking to develop and debug native code on Android.

In this section, we share some details about:

Building the Android 4.0.x VirtualBox installer for x86 from the •	
official Google x86 VirtualBox target vbox-x86-eng (included in
Android 4.0.1 source tree).

Using a Linux 2.6 kernel provided by Intel to add specific features •	
for VirtualBox.

How to use •	 installer.vdi to install Android ICS 4.0 into
VirtualBox.

In addition to Google’s AVD emulator supported by Intel Hardware Accelerated
Execution Manager (Intel HAXM) technology, Android for x86 VirtualBox is running a
true virtualized Intel architecture–based environment. It thus provides another fast,
high-performance tool for developers and partners for quick application development
and testing. Booting Android 4.0.x in VirtualBox on a typical Intel Core i5 host system
takes about 10 seconds. Speed, performance, and user experience account for the
popularity of VirtualBox among Android developers, especially when targeting
platforms based on Intel architecture. Availability of Android tablets and smartphones
on the market based on Intel architecture is still somewhat limited, and it can be more
convenient to start development using a virtual environment on the development
host system instead of relying on USB debug communication. Especially with both
the development host and the Android target device based on Intel architecture, this
becomes a valid and interesting alternative.

CHAPTER 8 ■ DEbugging AnDRoiD

152

Google x86 VirtualBox Build Targets for Android 4.x
If you have been using Google’s Android 4.0.x source repository before, you probably
noticed that Google provides an x86 version of the VirtualBox target vbox_x86-eng. Using
the lunch command before starting the build, the first three targets that Google provides
for Android 4.0.x are:

$ lunch
1. full-eng
2. full_x86-eng
3. vbox_x86-eng

With the vbox_x86-eng (#3) target, application developers and system developers
alike can create android_disk.vdi and android installer.vdi packages. These can
then be used to run Android 4.x inside VirtualBox for application development and
system integration on Windows, Linux, and OS X.

Downloading the Source Tree and Installing the Repository
To install, initialize, and configure the repository, follow these steps (you can find more
information at http://source.android.com/source/downloading.html):

$ mkdir ~/bin
$ PATH=~/bin:$PATH
$ curl https://dl-ssl.google.com/dl/googlesource/git-repo/repo > ~/bin/repo
$ chmod a+x ~/bin/repo
$ mkdir ANDROID_TOP_PATH
$ cd ANDROID_TOP_PATH

To get a list of available branches (from your Android repository checkout root), use
this command:

$ git --git-dir .repo/manifests/.git/ branch –a

Run repo init to obtain a current list of the available repository sub-branches with
all the most recent updates:

$ repo init -u https://android.googlesource.com/platform/manifest
-b android-4.0.1_r1

To use the Gerrit code-review tool, you will need an e-mail address that is connected
to a registered Google account. Make sure this is a live address at which you can receive
messages. The kernel version and build number will be assigned to your build, and
information will be displayed on the Android/Settings/About Phone/ page.

A successful initialization will end with a message stating that Repo is initialized in
your working directory. Your client directory should now contain a .repo directory where
files such as the manifest are stored.

http://source.android.com/source/downloading.html
https://dl-ssl.google.com/dl/googlesource/git-repo/repo
https://android.googlesource.com/platform/manifest

CHAPTER 8 ■ DEbugging AnDRoiD

153

To pull down files to your working directory from the repositories, as specified in the
default manifest, run

$ repo sync

By default, access to the Android source code is anonymous. To protect the servers
against excessive usage, each IP address is associated with a quota.

Building a Custom Kernel with Mouse Support
Since Android is meant for touch screen devices, it doesn’t include support for a mouse
pointer by default. Additionally it may not include a driver for hardwired Ethernet
support, as most Android devices are exclusively using wireless radios for network
communication. To add these capabilities, you need to rebuild the kernel with mouse
support as well as any additional features that you require. To do so, follow these steps:

1. Download the Android x86 Emulator Image add-on through
the Android SDK Manager.

2. Create a new folder and untar kernel_sdk_x86.tar.gz into it
to create a folder with the kernel source tree.

3. Switch to the directory that holds your kernel files.

4. Now that you have the kernel source, the configuration needs to
be modified to match the hardware being used as the VirtualBox
host system and rebuilt. The menuconfig graphical user interface
provided by the kernel sources will allow to do this conveniently:

$ cp ANDROID_TOP_PATH/your_kernel_path/arch/x86/configs/vbox_defconfig
.config
$ make CC=gcc-4.4 CXX=g++-4.4 ARCH=x86 menuconfig

This will take a few seconds to compile and load. Once it does load, you can use

Up/Down arrows to navigate•	

Enter to select (to expand)•	

Y (or space) to include•	

To enable mouse support, navigate to Device Driver ➤ Input Device Support ➤ Mice.

Note ■ menuconfig can be used to ensure that all features required to support your
application or system integration are available. For application developers, it is equally
important to test and validate the application on default Android builds. only then can
maximum compatibility with Android devices from multiple different device manufacturers
be guaranteed.

CHAPTER 8 ■ DEbugging AnDRoiD

154

Having made the necessary change to the kernel configuration, you can now compile
it. It doesn’t take too long, so I picked a low –j value. It is important to note that if you
omit the CC and CCX parameters, the compile will terminate prematurely (on this setup),
without an explicit error, as it will use version 4.6.

$ make CC=gcc-4.4 CXX=g++-4.4 ARCH=x86 –j8

The –j parameter provides the number of available cores for compilation. This
example assumes a quad-core system with Intel Hyper-Threading Technology enabled.

After the build is completed successfully, the last line of the build log will say

Kernel: arch/x86/boot/bzImage is ready

Add Patched Kernel
The kernel image bzImage needs to be renamed to kernel-vbox and copied to /ANDROID_
TOP_PATH/prebuilt/android-x86/kernel/kernel-vbox:

$ cp /ANDROID_TOP_PATH/kernel/arch/x86/boot/bzImage
/ANDROID_TOP_PATH/prebuilt/android-x86/kernel/kernel-vbox

Reduce Compile Time Using CCACHE
You can greatly reduce the compile time for subsequent compilations by using the
compiler cache. To set up a 50GB cache, do the following:

1. Install the CCcache program and create a directory for your
ccache:

$ sudo apt-get install ccache
$ sudo mkdir /ANDROID_TOP_PATH/ccache
$ sudo chown $LOGNAME /ANDROID_TOP_PATH/ccache

2. Set up your environment variables for ccache support by
modifying ~/.bashrc:

$ sudo gedit ~/.bashrc

3. Add the following:

export CCACHE_DIR=/ANDROID_TOP_PATH/ccache
export USE_CCACHE=1

4. Set the ccache sizes.

$ ccache -F 100000
$ ccache -M 50G

CHAPTER 8 ■ DEbugging AnDRoiD

155

Build Android 4.0.x with New Kernel
To set up the environment:

$ /ANDROID_TOP_PATH/> source build/envsetup.sh

For ICS 4.0.1, you will see:

including device/samsung/maguro/vendorsetup.sh
including device/samsung/tuna/vendorsetup.sh
including device/ti/panda/vendorsetup.sh
including sdk/bash_completion/adb.bash

To ensure you pick a valid target when using the lunch command, it is convenient to
simply do the following:

$ lunch

and pick the desired target from the list:

1. full-eng
2. full_x86-eng
3. vbox_x86-eng
4. full_maguro-userdebug
5. full_tuna-userdebug
6. full_panda-eng
Which would you like? [full-eng]

Note ■ Make sure you select 3. vbox_x86-eng.

PLATFORM_VERSION_CODENAME=REL
PLATFORM_VERSION=4.0.1
TARGET_PRODUCT=vbox_x86
TARGET_BUILD_VARIANT=eng
TARGET_BUILD_TYPE=release
TARGET_BUILD_APPS=
TARGET_ARCH=x86
TARGET_ARCH_VARIANT=x86
HOST_ARCH=x86 HOST_OS=linux
HOST_BUILD_TYPE=release
BUILD_ID=ITL41D

Run make:

$ make -j8

CHAPTER 8 ■ DEbugging AnDRoiD

156

Build the VirtualBox Disk and Android Installer
Finally, build the Android_disk.vdi and installer_vdi together:

$ make android_disk_vdi installer_vdi -j8

If the build is successful, you will see this output in the build log:

Done with VirtualBox bootable disk image -
[out/target/product/vbox_x86/android_disk.vdi]-
Done with VirtualBox bootable installer image -
[out/target/product/vbox_x86/installer.vdi]-

With android_disk.vdi, you can select New ➤ Create New Virtual Machine in
VirtualBox. You can use android_disk.vdi as an existing disk image to base the virtual
machine on, which will now automatically boot Android 4.0.x.

Setting up the start parameters for VirtualBox is straightforward. Go to
Settings ➤ About This Phone to see the build information shown in Figure 8-17.

Figure 8-17. Android 4.0.x Build Information Inside Oracle VirtualBox

CHAPTER 8 ■ DEbugging AnDRoiD

157

Using an Android Installer Disk to Create a Large
Virtual Partition
Even if the file size in VirtualBox is expanded to 550MB, it is still too small to load
applications for testing. An Android installer disk is needed to install Android into a much
larger partition (preferably larger than 4GB).

First select Machine ➤ New from the VirtualBox menu bar and use the Create New
Virtual Machine Wizard to create a larger disk under the IDE controller configuration entry.

Then in Settings ➤ Storage of your virtual machine, add the installer.vdi as the
primary IDE slave, as shown in Figure 8-18. Now you can install Android on the 4GB hard
disk you just created.

Figure 8-18. Configuring Storage Settings for Virtual Machine

1. Start the emulator.

2. Use F12 to get to the BIOS boot menu. Boot to the secondary
drive.

3. Use grub to select the Install option: 2. Boot from the primary
slave (see Figure 8-19).

CHAPTER 8 ■ DEbugging AnDRoiD

158

When you see Done processing installer config, type reboot.

Note ■ The first time you install on your target virtual disk, the install may fail. A message
will be printed that tells you to run the installer again. Do so by using the following command:

$ installer

After reboot, you can see that your Android is running from the larger disk that you
create, and you can safely remove installer.vdi from storage under the VirtualBox IDE
controller settings.

Serial Port
Serial port support in the virtual machine is enabled by default. However, the COM1
serial port needs to be initialized and configured before it can be used. The following
instructions cause VirtualBox to create a named pipe called .vbox_pipe in your home
directory. On the command line, enter:

$ VBoxManage modifyvm Android --uart1 0x03f8 4
$ VBoxManage modifyvm Android --uartmode1 server /home/user/.vbox_pipe

Figure 8-19. Booting Installer Image Inside VirtualBox

CHAPTER 8 ■ DEbugging AnDRoiD

159

Alternatively from in the VirtualBox GUI, use the Serial Ports tab in the Virtual
Machine Settings menu to enable COM1 as a host pipe. Select Create Pipe for it to be
created as /home/user/.vbox_pipe.

To connect to this named pipe, use:

$ socat unix-client:$HOME/.vbox_pipe stdout

Note ■ Virtualbox might not understand environment variables (such as $HOME), so you
will have to specify a full explicit path, such as /home/user/.vbox_pipe.

Ethernet
The Ethernet port (eth0) is enabled for DHCP in the image. To connect to it via ADB, you
will need to look up the DHCP address that has been assigned.

If you are using a bridged ethernet, you may obtain this address from a shell prompt,
either from the serial port or from Developer Tools ➤ Terminal Emulator using this
command:

$ netcfg

If you are using a host-only adapter, vboxnet0, you should use the address
192.168.56.101.

Final Notes
Now you have a VirtualBox image running Android 4.0.x completely built from Google’s
official vbox-x86 target (see Figure 8-20).

CHAPTER 8 ■ DEbugging AnDRoiD

160

Debugging with GDB, the GNU Project Debugger
The Android NDK includes the GDB, the GNU debugger, which allows you to start, pause,
examine, and alter a program. On Android devices and more generally on embedded
devices, GDB is configured in client/server mode. The program runs on a device as
a server and a remote client. The developer’s workstation connects to it and sends
debugging commands similar to a local application. GDB itself is a command-line utility.
You’ll first look at its basic usage model before looking at the Eclipse CDT integration.

When debugging with GDB, gdbserver running on the device handles debug
communication. However, you still might be using an underlying USB-to-Ethernet
dongle driver with ADB to communicate to the transport layer on which gdbserver
communicates via TCP/IP with GDB running on the development host.

There is a gdbclient application that sets up the debug communication
environment and launches gdbserver on the debuggee device.

usage: gdbclient EXECUTABLE :PORT [PROG_PATH]
EXECUTABLE executable name (default app_process)
PORT commection port (default :1234)
PROG_PATH executable full path on target (ex /system/bin/mediaserver)

Figure 8-20. Android OS Fully Booted Inside the VirtualBox Virtual Machine

CHAPTER 8 ■ DEbugging AnDRoiD

161

If PROG_PATH is set, gdclient tries to launch gdbserver and attach it to the running
PROG_PATH.

To launch gdbserver explicitly, you use the following command:

gdbserver :1234 --attach 269
Attached; pid = 269
Listening on port 1234

The step-by-step debug session launch instructions that follow illustrate how ADB
is still underlying the debug communication even if GDB (not ADT or DDMS) is used for
debugging. Assume that port 1234 is being used.

The lunch process is as follows:

gdbserver :1234 /system/bin/executable

To attach to an existing process:

gdbserver :1234 --attach pid

On your workstation, forward port 1234 to the device with adb:

adb forward tcp:1234 tcp:1234

Start a special version of gdb that lives in the “prebuilt” area of the source tree:
prebuilt/Linux/toolchain-eabi-4.x.x/bin/i686-android-linux-gdb (for Linux)

or
prebuilt/darwin-x86/toolchain-eabi-4.x.x/bin/i686-android-linux-gdb

(for Darwin).
If you can’t find either special version of GDB, run this

 $find prebuilt –name i686-android-linux-gdb

in your source tree to find and run the latest version. Make sure to use the copy of the
executable in the symbols directory, not the primary Android directory, because the one
in the primary directory has been stripped of its symbol information.

In GDB, tell GDB where to find the shared libraries that will be loaded:

set solib-absolute-prefix /absolute-source-path/out/target/product/product-name/
symbols
set solib-search-path /absolute-source-path/out/target/product/product-name/
symbols/system/lib

The path to your source tree is absolute-source-path. Make sure you specify the
correct directories—GDB might not tell you if you make a mistake. Connect to the device
by issuing the gdb command:

(gdb) target remote :1234

CHAPTER 8 ■ DEbugging AnDRoiD

162

The :1234 tells GDB to connect to the localhost port 1234, which is bridged to the
device by ADB.

Now you can start debugging native C/C++ code running on Android with GDB the
same way you are used to. If you also have Eclipse installed, which you probably do if
you are using the Android SDK for Dalvik/Java-based application development, Eclipse
and the GDB integration of Eclipse can be used directly to add breakpoints and inspect a
program.

Indeed, using Eclipse, you can insert breakpoints easily in Java as well as in C/C++
source files. You simply clicking in the left margin of the text editor. Java breakpoints work
out of the box thanks to the ADT plug-in, which manages debugging through the Android
Debug Bridge. This is not true for CDT, which is, of course, not Android-aware. Thus,
inserting a breakpoint will do nothing unless you configure CDT to use the NDK’s GDB,
which itself needs to be bound to the native Android application in order to debug it.
First, enable debugging mode in the application by following these steps:

1. An important thing to do, but something that is really
easy to forget, is to activate the debugging flag in your
Android project. This is done in the application manifest
AndroidManifest.xml. Do not forget to use the appropriate
SDK version for native code:

<?xml version="1.0" encoding="utf-8"?> <manifest ...>
<uses-sdk android:minSdkVersion="10"/> <application ...
android:debuggable="true"> ...

2. Enable the debug flag in the manifest. This automatically
activates debug mode in native code. However, the APP_OPTIM
flag also controls debug mode. If it has been manually set in
Android.mk, then check that its value is set to debug (and not
release) or simply remove it:

APP_OPTIM := debug

3. Now configure the GDB client that will connect to the device.
Recompile the project and plug your device in or launch
the emulator. Run and leave your application. Ensure the
application is loaded and its PID is available. You can check
it by listing processes using the following command (use
Cygwin in Windows):

$ adb shell ps |grep gl2jni

One line should be returned:

app_75 13178 1378 201108 68672 ffffffff 80118883 S com.android.
gl2jni

CHAPTER 8 ■ DEbugging AnDRoiD

163

4. Open a terminal window and go to your project directory. Run
the ndk-gdb command (located in the Android NDK folder, for
example android-ndk-r8\):

$ ndk-gdb

This command should not return a message, but will create
three files in the obj\local\x86 directory:

•	 gdb.setup. This is a configuration file generated for GDB
client.

•	 app_process. This file is retrieved directly from your device.
It is a system executable file, launched when the system
starts up and forked to start a new application. GBD needs
this reference file to find its marks. In some ways, it is the
binary entry point of your app.

•	 libc.so. This is also retrieved from your device. It is the
Android standard C library (commonly referred as bionic)
used by GDB to keep track of all the native threads created
during runtime.

5. In your project directory, copy obj\local\x86\gdb.setup and
name it gdb2.setup. Open it and remove the following line,
which requests the GDB client to connect to the GDB server
running on the device (to be performed by Eclipse):

(gdb) target remote :1234

6. In the Eclipse main menu, go to Run | Debug Configurations
and create a new debug configuration in the C/C++
application item called GL2JNIActivityDefault. This
configuration will start the GDB client on your computer and
connect to the GDB server running on the device.

7. In the Main tab (see Figure 8-21), set the project to your own
project directory. Set the C/C++ application to point to obj\
local\ x86\app_process using the Browse button (you can
use an absolute or relative path).

CHAPTER 8 ■ DEbugging AnDRoiD

164

8. Switch the launcher type to Standard Create Process Launcher
(see Figure 8-22) using the link Select Other link at the bottom
of the window.

Figure 8-21. Debug Configurations for C/C++ Application

CHAPTER 8 ■ DEbugging AnDRoiD

165

Figure 8-22. Select Preferred Launcher

9. Go to the debugger file and set the debugger type to
gdbserver. Set the GDB debugger to android-ndk-r8\
toolchains\x86-4.4.3\prebuilt\windows\bin\i686-
android-linux-gdb.exe. The GDB command file
(see Figure 8-23) needs to point to the gdb2.setup file located
in \obj\local\x86 (you can use an absolute or relative path).

CHAPTER 8 ■ DEbugging AnDRoiD

166

10. Go to the Connection tab (see Figure 8-24) and set Type to
TCP. Keep the default values for hostname or IP address and
port number (localhost, 5039).

Figure 8-23. Debugger Setting Panel

CHAPTER 8 ■ DEbugging AnDRoiD

167

Figure 8-24. Connection Settings on the Debugger Setting Panel

11. Now, let’s configure Eclipse to run a GDB server on the device.
Make a copy of android-ndk-r8\ndk-gdb and open it with a
text editor. Find the following line:

$GDBCLIENT -x 'native_path $GDBSETUP'

Comment it out because GDB client is going to be run by Eclipse itself:

#$GDBCLIENT -x 'native_path $GDBSETUP'

12. In the Eclipse main menu, go to Run | External Tools | External
Tools | Configurations (see Figure 8-25), and create a new
configuration GL2JNIActivity_GDB. This configuration will
launch GDB server on the device.

CHAPTER 8 ■ DEbugging AnDRoiD

168

13. On the Main tab, set the Location pointing to the modified
ndk-gdb in android-ndk-r8. Set the working directory to your
application directory location. Optionally, set the Arguments
text box:

Verbose: To see in detail what happens in the Eclipse •	
console.

Force: To automatically kill any previous session.•	

Start: To let the GDB server start the application instead of •	
getting attached to the application after it has been started.
This option is interesting if you debug native code only and
not Java.

14. Now, launch your application as usual.

Figure 8-25. External Tools Configurations

CHAPTER 8 ■ DEbugging AnDRoiD

169

Figure 8-26. Setting Breakpoints

15. Once the application starts, you could launch ndk-gdb by
console directly or launch the external tool configuration
GL2JNIActivity_GDB, which is going to start the GDB server
on the device. The GDB server receives debug commands sent
by the remote GDB client and debugs your application locally.

16. Open jni\gl_code.cpp and set a breakpoint (see Figure 8-26)
in setupgraphics by double-clicking the left margin of the text
editor (or right-clicking and selecting Toggle Breakpoint).

17. Finally, launch the GL2JNIActivity default C/C++ application
configuration to start the GDB client. It relays debug commands
from Eclipse CDT to the GDB server over a socket connection.
From the developer’s point of view, this is almost like
debugging a local application.

CHAPTER 8 ■ DEbugging AnDRoiD

170

The Intel Graphics Performance Analyzer (Intel GPA)
There are also some specific tools for debugging graphics performance. The Intel GPA
System Analyzer is one of the Intel Graphics Performance Analyzers (GPA) with new
support for Intel-based Android devices, and is intended for application and driver
engineers to optimize their OpenGL ES workloads.

This section provides instructions for how to configure and use Intel GPA with your
Android device over a USB connection. When connected to an Android device, the Intel
GPA System Analyzer provides OpenGL ES API, CPU, and GPU performance metrics,
and also provides multiple graphics pipeline state overrides to aid with your analysis of
OpenGL ES application performance.

To use the Intel GPA System Analyzer on Android x86-based devices, you need to
check the target machine and firmware version from the document.

To start collecting metrics, you need to install the Intel GPA System Analyzer on the
client system and connect it to the target device:

1. Install Intel GPA 2013 on the Windows/Linux client machine.

2. Launch the Intel GPA System Analyzer.

3. Make sure that the Android device(s) is connected to the
client system using a USB cable.

4. Wait up to 10 seconds while your client system is detecting the
target device(s). Found devices appear in the window. The list
of the target devices refreshes every five to six seconds.

5. Find the device you want to connect to and click Connect
(see Figure 8-27). The Intel GPA System Analyzer will copy the
required components to the target device and generate the
list of installed applications. You can interrupt the connection
process by clicking Stop.

CHAPTER 8 ■ DEbugging AnDRoiD

171

6. Select the desired application from the list of available ones.
The Application List screen (see Figure 8-28) displays all user
and system applications installed on the Android device.

Figure 8-27. Select the Connected Device

CHAPTER 8 ■ DEbugging AnDRoiD

172

Figure 8-28. Applications List

7. The application will be launched and you will see its data in
the Intel GPA System Analyzer window.

8. To switch to a different application, click Back. Note that the
running application will be forced to close.

9. To switch to a different target device, click Back. The PowerVR
graphics architecture consists of the following core modules
that convert the submitted 3D application data into a
rendered image—Tile Accelerator (TA), Image Synthesis
Processor (ISP), and the Texture & Shading Processor (TSP).
Intel GPA metrics in the “GPU” group correspond to one of
these core modules, and the order of metrics in the Metrics
List depends on the order of the core modules in the graphics
pipeline (see Figure 8-29).

CHAPTER 8 ■ DEbugging AnDRoiD

173

System Debug of Android OS Running on an Intel
Atom Processor
Until now this chapter has focused on developing and debugging applications, whether
they use Android’s Java runtime alone or run natively as x86 Intel Architecture binaries
and shared objects.

For the system integrator and device manufacturer it might be necessary to work
on the device driver and system software stack layer as well. This is especially true if
additional platform-specific peripheral device support needs to be implemented or if the
first operating system port to a new Intel Atom processor-based device is undertaken.

In the following chapters, you’ll look at the Joint Test Action Group IEEE 1149.1
(JTAG) standard-based debug solutions for this purpose as well as architectural
differences between the ARM and Intel architectures that can impact system-level
debugging.

Figure 8-29. Intel GPA System Analyzer Window

CHAPTER 8 ■ DEbugging AnDRoiD

174

JTAG Debugging
For true firmware, operating system-level, and device driver debugging, the most
commonly used method in the world is using a JTAG debug interface. Historically
speaking, the Joint Test Action Group was formed by industry leaders in the 1980s to
define a standard for testing access ports and printed circuit boards. The IEEE adopted
their standard in the 1990s as the IEEE 1149.1 Standard Test Access Port and Boundary-
Scan Architecture. For the sake of brevity, the testing standard is usually referred to as
JTAG. From its original use for circuit board testing, it has developed into the de facto
interface standard for OS-independent and OS-level platform debugging.

More background information on JTAG and its usage in modern system software
stack debugging is available in the article, “JTAG 101; IEEE 1149.x and Software Debug”
by Randy Johnson and Stewart Christie (see http://www.intel.com/content/www/us/
en/intelligent-systems/jtag-101-ieee-1149x-paper.html).

From the OEM’s perspective and that of their partner application and driver
developers, understanding the interaction between the driver and software stack
components running on the different parts of the system-on-chip (SoC) integrated
intelligent system or smartphone form factor device is critical for determining platform
stability. From a silicon validator’s perspective, the low-level software stack provides the
test environment that emulates the kind of stress factors the platform will be exposed
to in real-world use cases. In short, modern SoCs require understanding the complete
package and its complex real-world interactions, not just positive unit test results for
individual hardware components. This is the level of insight a JTAG-based system
software debug approach can provide. This can be achieved by merging the in-depth
hardware awareness JTAG inherently provides with the ability to export state information
of the Android OS running on the target.

Especially for device driver debug, it is important to understand both the exact state
of the peripheral device on the chipset and the interaction of the device driver with the
OS layer and the rest of the software stack.

If you are looking at Android from the perspective of system debugging—looking at
device drivers and the OS kernel—it is really just a specialized branch of Linux. Thus it
can be treated like any 2.6.3x or higher Linux.

The Intel Atom processor Z2460 supports IEEE-1149.1 and IEEE-1149.7 (JTAG)
Boundary Scan and MPI Parallel Trace Interface (PTI), as well as Branch Trace Storage
(BTS)-based instruction tracing through Intel’s JTAG-compliant eXtended Debug Port
(XDP).

Various JTAG vendors offer system debug solutions with Android support, including
the following:

Wind River (•	 http://www.windriver.com/products/JTAG-
debugging/)

Lauterbach (•	 http://www.lauterbach.com)

Intel (•	 http://software.intel.com/en-us/articles/embedded-
using-intel-tools)

http://www.intel.com/content/www/us/en/intelligent-systems/jtag-101-ieee-1149x-paper.html
http://www.intel.com/content/www/us/en/intelligent-systems/jtag-101-ieee-1149x-paper.html
http://www.windriver.com/products/JTAG-debugging/
http://www.windriver.com/products/JTAG-debugging/
http://www.lauterbach.com/
http://software.intel.com/en-us/articles/embedded-using-intel-tools
http://software.intel.com/en-us/articles/embedded-using-intel-tools

CHAPTER 8 ■ DEbugging AnDRoiD

175

Figure 8-30. Example of Debugger Views for Memory Configuration

Android OS Debugging,
What complicates debugging an Android-based platform is that Android aggressively
takes advantage of low power idle states and sleep states to optimize for power
consumption. Thus the real challenge becomes debugging through low power states and
either maintaining JTAG functionality through some of the low power states or, when
this is not possible, reattaching JTAG as soon as the chipset power domain for JTAG is
re-enabled.

Many OS-level issues on these types of platforms tend to center around power mode
changes and sleep/wake-up sequences.

A system debugger, whether debug agent-based or using a JTAG device interface, is a
very useful tool to help satisfy several of the key objectives of OS development.

The debugger can be used to validate the boot process and to analyze and correct
stability issues like runtime errors, segmentation faults, or services not being started
correctly during boot.

It can also be used to identify and correct OS configuration issues by providing
detailed access and representations of page tables, descriptor tables, and instruction
trace. The combination of instruction trace and memory table access can be a very
powerful tool to identify the root causes for stack overflow, memory leak, or even data
abort scenarios.

Figure 8-30 shows the detailed access to page translation attributes and descriptor
tables as provided by the Intel JTAG debugger. With the high level of flexibility that
is available on x86 in defining the depth of translation tables and granularity of the
addressed memory blocks, this level of easy access and visibility of the memory layout
becomes even more important for system development on the OS level.

CHAPTER 8 ■ DEbugging AnDRoiD

176

This highlights two key differences between developing and configuring the Android
OS software stack on Intel architecture and many other architectures. The selector base
and offset addressing model—combined with the local descriptor table (LDT) and global
descriptor table (GDT)—allow for deep, multilayered address translation from physical
to virtual memory with variable address chunk granularity as well. This is a powerful
capability for custom memory configuration in a compartmentalized environment with
protected isolated memory spaces. If used incorrectly it can, however, also increase
memory access times.

One other difference between Intel architecture and others is handling system
interrupts. On ARM, for instance, you have a predefined set of hardware interrupts
in the reserved address space from 0x0 through 0x20. These locations then contain
jump instructions to the interrupt handler. On Intel architecture, a dedicated hardware
interrupt controller is employed. The hardware interrupts are not accessed directly
through memory space, but by accessing the Intel 8529 interrupt controller. The
advantage of this approach is that the interrupt handler already allows for direct handling
of I/O interrupts for attached devices. In architectures that don’t use a dedicated
interrupt controller, the IRQ interrupt usually has to be overloaded with a more complex
interrupt handler routine to accomplish this.

Device Driver Debugging
A good JTAG debugger solution for OS-level debugging should furthermore provide
visibility of kernel threads and active kernel modules along with other information
exported by the kernel. To allow for debugging dynamically loaded services and device
drivers, a kernel patch or a kernel module that exports the memory location of a driver’s
initialization method and destruction method may be used.

Especially for system configuration and device driver debugging, it is also important
to be able to directly access and check the contents of device configuration registers. The
concept of bitfield editors, shown in Figure 8-31, can be very useful for this. A bitfield
editor is a bitwise visualization of SoC device registers that allows monitoring changes to
a device state in real time while the associated device driver is interacting with it.

CHAPTER 8 ■ DEbugging AnDRoiD

177

Analyzing the code after the Android-compressed zImage kernel image has been
unpacked into memory is possible by simply releasing run control in the debugger until
start_kernel is reached. This implies that the vmlinux file that contains the kernel
symbol information has been loaded. At this point the use of software breakpoints is
possible. Prior to this point in the boot process, only breakpoint-register–based hardware
breakpoints should be used, to avoid the debugger attempting to write breakpoint
instructions into uninitialized memory. The operating system is then successfully booted
once the idle loop mwait_idle has been reached.

Additionally, if your debug solution provides access to Branch Trace Store (BTS)
based instruction trace, this capability can, in conjunction with all the regular run control
features of a JTAG Debugger, be used to force execution stop at an exception. You can
then analyze the execution flow in reverse to identify the root cause of the runtime issues.

Hardware Breakpoints
Just as on ARM architecture, processors based on Intel architecture support breakpoint
instructions for software breakpoints as well as hardware breakpoints for data and code.
On ARM architecture, you usually have a set of dedicated registers for breakpoints and
data breakpoints (called watchpoints). The common implementation tends to provide
two of each. When these registers contain a value, the processor checks against accesses
to the set memory address by the program counter register or a memory read/write.
As soon as the access happens, execution is halted. This is different from software
breakpoints in that their execution is halted as soon as a breakpoint instruction is

Figure 8-31. Device Register Bitfield Editor View

CHAPTER 8 ■ DEbugging AnDRoiD

178

encountered. Since the breakpoint instruction replaces the assembly instruction that
would normally be at a given memory address, the execution effectively halts before the
instruction that normally would be at the breakpoint location is executed.

The implementation of hardware breakpoints on Intel architecture is very similar to
that on ARM, although it is a bit more flexible.

On all Intel Atom processor cores, there are four DR registers that store addresses,
which are compared against the fetched address on the memory bus before (sometimes
after) a memory fetch.

You can use all four of these registers to provide addresses that trigger any of the
following debug run control events:

00. Break on instruction execution•	

01. Break on data write only•	

10. Undefined •	 OR (if architecture allows it) break on I/O reads or
writes

11. Break on data reads or writes but not instruction fetch•	

Thus, all four hardware breakpoints can be used as breakpoints or watchpoints.
Watchpoints can be write-only or read-write (or I/O).

Cross-Debug: Intel Atom Processor and ARM
Architecture
Many developers targeting the Intel Atom processor have experience developing
primarily for RISC architectures with fixed instruction length. MIPS and ARM are prime
examples of ISAs with fixed lengths. In general, the cross-debug usage model between
an Intel Atom processor and ARM architecture processor is very similar. Many of the
conceptual debug methods and issues are the same.

Developing on an Intel architecture-based development host for an Intel Atom
processor target does, however, offer two big advantages, especially when the embedded
operating system of choice is a derivative of one of the common standard operating
systems like Linux or Windows. The first advantage is the rich ecosystem of performance,
power analysis, and debug tools available for the broader software development market
on Intel architecture. The second advantage is that debugging functional correctness and
multithreading behavior of the application may be accomplished locally. This advantage
will be discussed later in the chapter.

There are a few differences between Intel Atom processors and ARM processors that
developers should know. These differences are summarized in the next two subsections.

Variable Length Instructions
The IA-32 and Intel 64 instruction sets have variable instruction lengths. The debugger
cannot just inspect the code in fixed 32-bit intervals, but must interpret and disassemble
the machine instructions of the application based on the context of these instructions.
The location of the next instruction depends on the location, size, and correct decoding

CHAPTER 8 ■ DEbugging AnDRoiD

179

of the previous one. In contrast, on ARM architecture all the debugger needs to monitor
is the code sequence that switches from ARM mode to Thumb mode or enhanced Thumb
mode and back. Once in a specific mode, all instructions and memory addresses are
32-bit or 16-bit in size. Firmware developers and device driver developers who need to
precisely align calls to specific device registers and may want to rely on understanding the
debugger’s memory window printout should understand the potential impact of variable
length instructions.

Hardware Interrupts
One other architectural difference that may be relevant when debugging system code
is how hardware interrupts are handled. On ARM architecture the following exception
vectors are mapped from address 0x0 to address 0x20:

0. Reset•	

1. Abort•	

2. Data Abort•	

3. Prefetch Abort•	

4. Undefined Instruction•	

5. Interrupt (IRQ)•	

6. Fast Interrupt (FIRQ)•	

This memory area is protected and cannot normally be remapped. Commonly, all
of the vector locations at 0x0 through 0x20 contain jumps to the memory address where
the real exception handler code resides. For the reset vector that implies that at 0x0 will
be a jump to the location of the firmware or platform boot code. This approach makes
the implementation of hardware interrupts and OS signal handlers less flexible on ARM
architecture, but also more standardized. It is easy to trap an interrupt in the debugger by
simply setting a hardware breakpoint at the location of the vector in the 0x0 through 0x20
address range.

On Intel architecture, a dedicated hardware interrupt controller is employed. The
following interrupts cannot be accessed directly through the processor memory address
space, but are handled by accessing the Intel 8259 Interrupt Controller:

0. System timer•	

1. Keyboard•	

2. Cascaded second interrupt controller•	

3. COM2—serial interface•	

4. COM1—serial interface•	

5. LPT—parallel interface•	

6. Floppy disk controller•	

CHAPTER 8 ■ DEbugging AnDRoiD

180

7. Available•	

8. CMOS real-time clock•	

9. Sound card•	

10. Network adapter•	

11. Available•	

12. Available•	

13. Numeric processor•	

14. IDE—Hard disk interface•	

15. IDE—Hard disk interface•	

As you can see the list of interrupts, the controller already allows for direct handling
of hardware I/O interrupts of attached devices, which are handled through the IRQ
interrupt or fast interrupt on an ARM platform. This feature makes the implementation
of proper interrupt handling at the operating system level easier on Intel architecture
especially for device I/O. The mapping of software exceptions like data aborts or
segmentation faults is more flexible on Intel architecture as well and corresponds
to an interrupt controller port that is addressed via the Interrupt Descriptor Table
(IDT). The mapping of the IDT to the hardware interrupts is definable by the software
stack. In addition, trapping these exceptions cannot as easily be done from a software
stack agnostic debug implementation. In order to trap software events that trigger
hardware interrupts on Intel architecture, some knowledge of the OS layer is required.
It is necessary to know how the OS signals for these exceptions map to the underlying
interrupt controller. Most commonly, even in a system-level debugger, a memory
mapped signal table from the operating system will trap exceptions instead of attempting
to trap exceptions directly on the hardware level.

Single Step
ARM architecture does not have an explicit single-step instruction. On Intel architecture,
an assembly-level single step is commonly implemented in the debugger directly through
such an instruction. On ARM, a single instruction step is implemented as a “run until
break” command. The debugger is required to do some code inspection to ensure that all
possible code paths are covered (especially if it’s stepping away from a branch instruction
or such). From a debugger implementation standpoint, this does generate slight overhead
but is not excessive, since this “run until break” implementation will be frequently
needed for high-level language stepping anyway. Software developers in general should
be aware of this difference since this can lead to slightly different stepping behavior.

CHAPTER 8 ■ DEbugging AnDRoiD

181

Virtual Memory Mapping
The descriptor table and page translation implementation for virtual memory mapping
is surprisingly similar, at least conceptually. On Intel architecture, the Global Descriptor
Table (GDT) and Local Descriptor Table (LDT) enable nested coarseness adjustments
to memory pages to be mapped into the virtual address space. Figure 8-32 uses the page
translation feature of the debugger to graphically represent the linear-to-physical address
translation on Intel architecture.

Figure 8-32. Page Translation on Intel Architecture

On ARM, the first level and second level page tables define a more direct and at
maximum, a one- or two-level–deep page search for virtual memory. Figure 8-33 shows a
sample linear address to physical address translation.

CHAPTER 8 ■ DEbugging AnDRoiD

182

Intel architecture offers multiple levels of coarseness for the descriptor tables, page
tables, 32-bit address space access in real mode, and 64-bit addressing in protected
mode, which is dependent on the selector base:offset model. ARM does not employ
base:offset in its various modes. On Intel architecture, the page table search can
implicitly be deeper. On ARM, the defined set is two page tables. On Intel architecture,
the descriptor tables can actually mask nested tables and thus the true depth of a page
table run can easily reach twice or three times the depth on ARM.

The page translation mechanism on Intel architecture provides for greater flexibility
in the system memory layout and mechanisms used by the OS layer to allocate specific
memory chunks as protected blocks for application execution. However, it does add
challenges for the developer to have a full overview of the memory virtualization and
thus avoid memory leaks and memory access violations (segmentation faults). On a full
featured OS with plenty of memory, this issue is less of a concern. Real-time operating
systems with more visibility into memory handling may be more exposed to this issue.

Considerations for Intel Hyper-Threading
Technology
From a debugging perspective, there is really no practical difference between a physical
processor core and a logical core that has been enabled via Intel hyper-threading
technology. Enabling hyper-threading occurs as part of the platform-initialization process
in your BIOS. Therefore, there is no noticeable difference from the application standpoint
between a true physical processor core and an additional logical processor core. Since
this technology enables concurrent execution of multiple threads, the debugging
challenges are similar to a true multi-core debug.

Figure 8-33. Page Translation on ARM

CHAPTER 8 ■ DEbugging AnDRoiD

183

SoC and Interaction of Heterogeneous Multi-Core
Dozens of software components and hardware components interacting on SoCs increase
the amount of time it takes to root-cause issues during debug. Interactions between
the different software components are often time-sensitive. When trying to debug a
code base with many interactions between components, single-stepping through one
specific component is usually not a viable option. Traditional printf debugging is also
not effective in this context because the debugging changes can adversely affect timing
behavior and cause even worse problems (also known as “Heisenbugs”).

SVEN (System Visible Event Nexus)
SVEN is a software technology (and API) that collects real-time, full-system visible
software “event traces.” SVEN is currently built into all media/display drivers and is
the primary debug tool for the Intel media processor CE3100 and Intel Atom processor
CE4100 platforms. SVEN provides debug, performance measurement, and regression
testing capabilities.

Ultimately, SVEN is simply a list of software events with high-resolution
timestamps. The SVEN API provides developers a method for transmitting events from
any operating system context and firmware. The SVEN Debug infrastructure consists of
a small and fast “event transmit” (SVEN-TX) library and a verbose capture and analysis
(SVEN-RX) capability.

This so-called System Visible Event Nexus in the form of the SVEN-TX library
provides an instrumentation API with low and deterministic overhead. It does not cause
any additional timing-dependent effects. There are no changes in the behavior of the
system because of the instrumentation observation. In other words, there is no software
Heisenberg effect. The events to monitor can be issued by any software component on
the entire platform. These can be interrupt service routines (ISRs), drivers, applications,
and even firmware.

A real-time monitor interface named SVEN-RX provides real-time and offline
analysis of the data exported by the SVEN-TX API. SVEN-RX can monitor an executing
system and analyze failures on the executing application. In addition, it provides detailed
information for fine-grained performance tuning.

Lastly, the SVEN Debug console is a command-line utility that attaches to the Nexus
and observes all events being generated by the SVEN-TX instrumented code (drivers,
user apps, and libraries). A scriptable filter dynamically accepts or rejects any describable
event category (for example, only record events from MPEG decoder). Scriptable
“triggers” stop recording events to halt local capture of events leading up to a failure.
A Reverse Engineer feature transfers all register reads/writes from a physical address to the
unit and External Architecture Specification (EAS) registers.

The SVEN debug console can save the recorded events collected from the SoC to
a disk file for offline debugging.

CHAPTER 8 ■ DEbugging AnDRoiD

184

Signal Encode/Decode Debug
The SVEN Debug console has a built-in Streaming Media Decoder (SMD) buffer flow
monitor that checks on SMD ports/queues for data flow between drivers. It also samples
the SMD circular buffer utilization over time. Its health monitor is capable of triggering
an execution stop and data capture if, for example, it fails to detect video flip or an audio
decode within a specified period of time.

SVEN Benefits
SVEN enables an accelerated platform debug process providing the developers with
all of the required evidence for problem triage. The included automation tools can
diagnose most of the common system failures automatically. In short, it speeds up the
development cycle on complex Intel Atom processor–based SoC designs by reducing the
time it takes the developer to understand issues that occur in the data exchanges and
handshake between all of the system components.

Overview
This chapter covered the configuration and installation details of the necessary drivers
and debug tools. In addition, we highlighted some of the underlying architectural
differences that may impact debug, but usually only for those developers who are
interested in development very close to the system layer.

As you have seen in the overview of available debug solutions and debug
configurations, there is a full set of debug environments available covering the needs of
the Java application developer, the native C/C++ code developer, as well as the system
software stack developer.

Debugging on Intel architecture is supported with the standard Android SDK and
Android NDK toolsets provided by Google. In addition Intel as well as other ecosystem
players provide debug solutions that expand on these available debug tools and provide
solutions for system software stack debug as well as graphics performance debug.

If you are familiar with debugging and developing for Android running on ARM
architecture, the same debug methods apply to Intel architecture. The available debug
tools and development tools infrastructure is based on the Android SDK and extended by
solutions from Intel, as well as ecosystem partners that are often also familiar from ARM.
Thus there should be few surprises when debugging software on an Intel Atom processor-
based Android device versus ARM-based devices.

185

Chapter 9

Performance Optimizations
for Android Applications
on x86

Like so many other things in life, you rarely get only what you optimize for.

— Erik Naggum

Performance optimization is one of the important goals that every application developer
always wants to pursue, no matter if the application is for a general desktop Windows
computer or an Android device. Android is a resource-limited system and thus requires
very strict resource utilization in space and processing time. Compared with a desktop
system, the performance optimization for Android applications is therefore far more
critical.

Different applications require a different focus for optimization. Performance
optimization for an Android system generally falls into three categories:

Optimization of the application’s running speed•	

Code size•	

Optimization for lower power consumption•	

Generally speaking, storage space and cost for Android on Intel Atom is not a
bottleneck, so in this chapter, we will focus on performance optimization that makes an
application run faster.

We will first introduce the basic principles of SOC performance optimization.
We’ll follow that with an introduction of principles and methodologies of performance
optimization for Android applications running on Intel architectures. We will discuss
application development for Android using the Native Development Kit, and share
specific case studies using the certain tools such as the Intel Graphics Performance
Analyzers.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

186

Basic Concepts of Performance Optimization
Optimization aims at reducing the time needed to complete a specific task accurately and
according to specification. This is achieved by structural adjustments, or refactoring, of
the application based on the optimization of either hardware or software.

There are several basic principles related to the results of the performance
optimization of an application that need to be followed:

•	 Equal-value principle: There is no change in the result of
application execution after performance optimization.

•	 Efficacy principle: After performance optimization, the targeted
code runs faster.

•	 Combined-value principle: Sometimes, performance optimization
gains performance improvement in certain aspects, but degrades
performance in others. Combined overall performance needs
to be considered when deciding whether or not a performance
optimization is needed.

One of important considerations for performance optimization is trading time
with space. For example, in order to do a function calculation, the values of the function
can be pre-calculated and put into a program storage zone (memory) as a table. When
a program is running, instead of spending time on doing repetitive calculations of the
function to get the value, the program can directly get the value from the table in order
to reduce the execution time. For search operations, this could be done on a large space
using hash methods.

The approach picked most frequently for performance optimization is the reduction
of the instructions and executions frequency. For example, from the point of view of data
structures and algorithms, the instructions for comparison and exchange in bubbling
sequencing need to execute O(n2) times. However, by using a quick sort, the instruction
time reduces to O(n log n) times. In loop optimizations, code compilation can extract
irrelevant public code out of the loop and reduce the execution time of public code from
n to 1, thus dramatically reducing the execution frequency. In addition, in-line functions
supported by C and C++ can be used to change function calls, the instruction of function
calls, and the implementation of the return instructions.

Selection of a Faster Instruction
The same function can be realized by utilizing different instructions. Different
instructions take different machine clock cycles, and thus the execution times are quite
different. This gives us the opportunity to choose to use a faster instruction.

Reducing computational strength is a typical example of performance optimization
achieved by selecting a faster instruction set. For example, to multiply an integer by 4, the
operation can be done by shifting the operator two digits to the left to complete. The shift
instruction takes much fewer clock cycles and runs much faster than multiplication and
division instructions.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

187

Another example of this category of optimization is to use special instructions
provided by the hardware to replace the generic instructions for faster instruction
execution. For example, the Intel Atom processor provides Streaming SIMD Extensions
(SSE) instruction set support. For vector operations, SSE instructions should always be used
to accomplish the operation, as they run much faster due to the benefit of instruction-level
parallel processing. The ordinary addition instruction width for Intel Atom is 32 bits, while
SSE instructions are capable of four times 32-bit data processing. As a result, the optimized
codes using SSE instructions shorten the time consumed dramatically.

Improve the Degree of Parallelism
The degree of parallelism can be improved at multiple levels, including instruction,
expression, function, and threads.

Many modern embedded processors including the Intel Atom processor support
instruction pipeline execution. This enables an optimization method called instruction-level
parallelism. A code chain can be decomposed of several units of code that are not
dependent on the chain and can be executed in parallel in the pipeline.

In addition, many embedded system processors, such as the Intel Atom processor,
physically support the concurrent execution of threads. The use of an appropriate
number of concurrent threads rather than a single thread can increase running speed.
In order to take advantage of thread concurrency optimization, programmers need to
consciously adopt multithreading technology; sometimes optimization needs to be done
with compiler support.

Effective Use of the Register Cache
Writes and reads that go to and from the cache registers are much faster than those
that go to and from memory. The goal of cache optimization is to try to put data and
instructions that are being used and will be used often into the cache in order to improve
the cache hit rate and reduce cache conflicts. Cache optimization often appears in the
optimization process for a nested loop. Register optimization involves effectively using
the register and keeping frequently used data in the register as much as possible.

Cache is based on locality. That is, cache assumes the data to be used is located in
the most recent data that is already in use or is in the vicinity of their own register. This
is called the locality principle or principle of locality, and it deeply affects hardware,
software, and system design and performance. Instructions and data required by the
processor are always first read by cache access. If high-speed cache has the needed data,
the processor always accesses high-speed cache directly. In this situation, such an access
is called a high-speed cache hit. If high-speed cache does not contain the needed data,
this is referred to as a failed hit or cache miss.

If this happens, the processor needs to copy data from memory to high-speed cache.
If the corresponding location of high-speed cache already is already occupied by other
data, the data that are no longer needed in cache will need to be expelled and written
back to memory. Failed hits will result in a sharp rise in access time; therefore the goal
in increasing cache efficiency is used to improve the hit rate and lower failure rates. The
data exchange between cache and memory is performed via a block unit, which is used to
copy needed data or write-back blocks into memory.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

188

Locality describes the way that accessed or referenced data locations are collected
into predictable clusters for easy future reference by the processor. There are two
important cases of locality, explained briefly as follows:

•	 Spatial locality: When a particular data object is referenced, it is
statistically likely that nearby data will be referenced in the near
future. A section of adjacent data is marked off as a single block
for the processor to gain faster access to that location.

•	 Temporal locality: When a particular data object is referenced, it is
also statistically likely that the same data will be referenced again in
the near future. The referenced data is moved into cache memory
so that it can be referenced more quickly in its new location.

Methodology of Performance Optimizations
There are many methods and techniques for performance optimization. One or
more comprehensive optimization principles can be utilized simultaneously, such
as modifying the source code to run faster. According to the type of criteria for the
classification, optimization methods can be divided into different categories.

Machine-dependent optimization can be done only on specific hardware or
architecture. For example, the optimizations of switching ordinary vector instruction
computing to SSE instructions, which are dependent on many low-level details of
the Intel Atom processor, can only be used on the Intel processors that support SSE
instructions. It is difficult to use this optimization on other machines with different
architecture, such as ARM, or unspecified architectures. In general, the complexity of
a machine-independent optimization is higher than that of the machine-dependent
optimization and difficult to achieve.

Performance Optimization Approaches
In the ideal scenario, the compiler should be able to compile any code that we write and
optimize it into the most efficient machine code. But the reality is that the compiler can
actually automate only some of all possible optimizations because some optimizations
may be blocked by default by the compiler’s optimization blocker. In general, depending
on how much of a role the human or automated tools will play, the performance
optimization approaches can be divided into three main categories:

Performance optimizations done automatically by a compiler•	

Performance optimizations done with the assistance of •	
development tools

Performance optimizations done manually by a programmer•	

The following sections present several approaches and methods for developers to
achieve performance optimization.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

189

Performance Optimizations Automatically Done
by a Compiler
Modern compilers automatically complete the most common code optimizations. These
automatic optimizations done by a compiler are also known as compiler optimizations
or compiling optimizations. A compiler optimization needs to be triggered by the
appropriate extensions option or switch variable.

C/C++ code optimization for Android applications can be achieved by the GNU
Compiler Collection tools located in the Native Development Kit. We will cover this topic
in detail in the next chapter.

Performance Optimizations Assisted by
Development Tools
It is very difficult to achieve an overall comprehensive optimization of a large program.
Fortunately, for applications based on Intel architecture, many useful tools are available
to help the user complete the optimization. For example, Intel Profiler, Graphics
Performance Analyzer (GPA), Power Monitoring Tool, and other tools can help users to
analyze a program and guide them through complete optimization.

VTune and GPA are part of Intel’s product development tools and can only be used
for Intel processors such as the Intel Atom processor. Intel Profiler is a GNU chain tool
and can be used for all types of processors. It can be used to create a profiling process that
shows which areas of the program execute frequently and use more computing resources
and which areas are less frequently implemented. The profiling data provides valuable
information for developers to complete the optimization.

A typical example of profile-guided optimization (PGO) is the optimization of the
switch statement (such as the switch-case statement of C#). In this example, according to
the profile of the collected sample run, after getting the actual frequency of occurrence
of each case statement, the case statement is sorted in the switch statement by frequency
sequence. The most frequently occurring statements are moved to the front (the
performance of these statements require a minimum number of comparisons), so as to
achieve optimal results with the least number of comparisons. In GNU terminology, the
process is known as profile-guided optimization (PGO).

Like the GNU Profiler, Intel VTune is capable of locating hotspots in the program.
The hotspot zone refers to the segment of programming code that takes a long execution
time (which means more computing power). With VTune, programmers can find the
time-consuming code segment and then take measures to optimize that code. VTune
has a much higher resolution (fine granularity) and more functions for positioning the
hotspot than the GNU profiler, including displaying the assembly code of the program,
failed cache hits, and branch misprediction events for Intel processors.

Intel GPA was originally a development tool used for graphics processing unit (GPU)
analysis. It has now been developed into a comprehensive tool for CPU speed analysis,
customization, and device power consumption analysis. Intel GPA can be used to get
CPU load, operating frequency, and power consumption information. It can guide the
user to optimize the application, especially multithreaded optimization. Intel GPA is not
only a speed optimization tool but also a very handy power optimization tool.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

190

With optimization tools, developers no longer need to get disoriented and confused
when trying to find a starting point for optimization of a large program. These tools allow
you to easily locate the areas that are most in need of optimization, which are the codes
segments that are potentially the most problematic. Quickly finding the hotspot allows
you to achieve your optimization with less time and effort. Of course, typical performance
optimization is complicated. The tool only plays a guiding and supporting role—the real
optimization still needs to be completed by the compiler or developer manually.

Use of High-Performance Libraries
High-performance libraries are sets of software libraries that are usually developed by a
hardware original equipment manufacturer (OEM) and which provide some commonly
used operations and services. These library codes are carefully optimized based on a
combination of processor features and have higher computing speeds than ordinary
codes. In short, high-performance databases are libraries optimized through various
methods that utilize the full potential of the processor. For example, Intel Integrated
Performance Primitives (Intel IPP) libraries have been optimized based on SSE
instructions for the processor, hyper-/multithreaded parallel pipelined execution, and a
waterfall process. Compared with nonoptimized code, Intel IPP libraries can increase the
processing power of Intel processors and save power consumption. For some important
code and algorithms, using high-performance libraries is actually a simple, practical
optimization method and offers the benefit of “standing on the shoulders of giants.”
Intel IPP is one of Intel’s high-performance libraries. It is a library of functions for Intel
processors including the Intel Atom processor and Intel Chipsets. Intel IPP is powerful;
it can be used for mathematical calculations, signal processing, multimedia, image
and graphics processing, vector calculations, and other fields. Intel IPP uses a C/C++
programming interface.

Performance Optimizations Done Manually
In various stages of optimization, the human factor should not be ignored. Some high-level
global optimizations, such as the optimization of algorithms and data structures, cannot
be done by a compiler automatically. The optimization must be completed manually
by people. As a programmer, in order to write efficient code, it is necessary to learn the
various algorithms and optimization techniques to develop good programming habits

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

191

and style. Even if the compiler can automatically complete the optimization, additional
assistance from the programmers is still needed to write efficient code at the following
levels:

•	 Source code (that is, high-level language) level optimization: This
optimization is done by the programmers at the source code level.
The programmer uses the expression of a high-level language
source code to modify and transform the program.

•	 Assembly language level optimization: Sometimes using
high-level language is not enough to reach the optimal results,
and programmers may need to modify the codes to bring them
down to the assembly-language level. In some key computing
areas, although the process of assembly-level optimization is
cumbersome, the performance benefit of the outcome is worth it.

•	 Compiling instruction-level optimization: This is an optimization
accomplished by performers through additions and
modifications of compiler directives, such as the typical compiler
directive modification “pragma” and/or increasing the degree of
parallelism in OpenMP.

Program-interactive optimization is truly a reflection of the art of the programming,
and the level of accomplishment fulfills the ideal of the “unity of human and machine.”
This unity is the focus of this chapter. Relatively speaking, optimizations performed
at the compiling phase of the assembly-language level or the instruction level require
a programmer to have comprehensive expertise in processor architecture, hardware,
system, and so on. As a result, for Android systems on Intel architecture, we recommend
the performance optimization at the source-code level. In the following example, we
focus on the introduction of performance optimization on Android multithreaded design.

There is no doubt that optimization can be done in several ways that are related to
each other and structurally undividable, while each has its own unique function. The
overall process is shown in Figure 9-1.

Figure 9-1. Recommended User Optimization

Analysis Assisted
With Tools

Compiler
Optimization

Manual
Optimization

High Performance
Libraries

Source Code
Optimization

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

192

As Figure 9-1 shows, compiler optimization, manual optimization, and high-performance
library functions are tied together. They are final steps in optimization. The use of both
manual optimization and high-performance libraries is needed in order to modify
the source code. Before starting those optimizations, analyzing the programs using
optimization tools has proved to be very beneficial to developers and is a must-have step.

Performance Tuning with Intel VTune
For the Linux platform, profile analysis is the most important type of software
performance analysis. Profile analysis generally involves the user analyzing and
identifying the source code that needs to be optimized with the assistance of various
tools. The best tool for the analysis of the performance profile of software running on Intel
processors is the Intel VTune family of products.

Intel VTune Performance Amplifier (commonly referred to as VTune analyzer
or VTune) is performance analysis software and a useful optimization tool for Intel
processors. With the capability to analyze the program’s performance, VTune can assist
and guide the programmers and compiler to optimize various applications. VTune
provides a user-friendly graphical user interface that does not require you to recompile
the application. Performance analysis can be done directly on the executable application.
VTune is applicable to a wide range of applications from embedded systems to
supercomputers, has cross-platform capability, and can run on Android, Tizen, Windows,
Linux, Mac OS, and so on.

VTune is based on a hotspot area analysis to guide and support the performance
optimization of the application. Hotspots are code segments that require excessively
long execution times. In addition to the hotspot analysis, the user needs to consider what
causes the hotspot and how to resolve it. For advanced users, VTune can be used to track
key function calls, monitor special CPU events (such as a cache miss), and perform a
series of other advanced features.

Intel has continuously added features to VTune Performance Analyzer, and in 2012
it renamed the tool. Formerly known as Intel VTune Performance Analyzer with an Intel
Thread Profiler, the company changed its name to Intel VTune Amplifier XE. The updated
tool includes all of the features and functionality of the Intel Parallel amplifier and also
has some advanced features for programmers who need to explore issues in depth. Its
main functions are described in the following sections.

As shown in Figure 9-2, the VTune Performance Amplifier lists the entire elapsed
time of the program as well as information on the top five most time-consuming
functions (when the functions of the program are less than five, it lists only the actual
function number), such as the percentage of elapsed time of the total elapsed time of
entire program used by the top five functions.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

193

Figure 9-2. VTune Elapsed Time and Statistics

VTune provides run-time statistics that as specific as pointers to individual lines of code,
which can help users to locate which sections of code are the most time-consuming.
As shown in Figure 9-3, VTune displays the running time of the program source code
statements (ticks, clock ticks) occupied by the percentage of the total time consumed and
instructions completed (instructions retired).

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

194

Figure 9-3. VTune displays the most time-consuming lines of source codes

VTune shows the program function call relations in an intuitive way in a call graph
as shown in Figure 9-4, in which the function calls are displayed in graphical form.
Highlighted in the display, the function call relationship from the root to the current
function is called the critical path (also known as focus function).

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

195

Figure 9-4. VTune Call Graph for a Function Call Relationship

VTune can be displayed directly in an assembly code in the source code
corresponding to the target file. Figure 9-5 shows the assembly code corresponding to the
function of a program. With this feature, users can do a compilation analysis, locate the
time-consuming code, and perform assembly-level optimization.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

196

VTune provides a graphical interface that displays the statistics for time and other
processor events, including cache miss, branch misprediction, and other information.
Figure 9-6 shows the statistics for processor events corresponding to four threads of the
application. Each of the four threads includes three bars: the top bar, which represents
the average consumption of the number of clock ticks of executing instructions that
occurred (Clockticks per Instruction Retired); the middle bar, which shows the highest
number of clock ticks consumed (Clockticks); and the bottom bar, which indicates the
instruction that has been completed (Instructions Retired).

Figure 9-5. Assembly Codes and Source Codes in VTune

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

197

VTune can display the CPU usage of the application and the distribution of the
degree of concurrency for an application. Information can be used to analyze the degree
of parallelism. Figure 9-7 is a 1000HC screenshot of an application on a device using the
Intel Atom N270 processor.

Figure 9-6. VTune Display of Other Processor Events

Figure 9-7. Thread and CPU Usage Distribution

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

198

The Intel Atom N270 is a single-core processor, but it supports Intel Hyper-Threading
Technology. The application uses two threads to calculate a degree of parallelism of the
moment shown in Figure 9-7. The CPU utilization (CPU time) can be up to 200 percent.

By comparing the VTune features previously described, we can classify these
features by how the tuning is used (optimization analysis). In summary, the VTune
function tuning can be divided into the three levels described in the following sections.

System Tuning
System tuning is what VTune Amplifier XE is designed for but is not the main goal of
application optimization. The purpose of system tuning is to change the hardware
configuration, such as network bandwidth, disk read/write operations per second, and
hit failure, on the memory page. System tuning and optimization are mainly for the
original equipment manufacturer’s products. However, as an advanced tool, VTune can
also be used to reach certain auxiliary optimizations, such as the lock and wait analysis.
Here, VTune can measure the waiting time of the network socket object to complete
disk write I/O, which can be configured to reduce the thread-to-block waiting time.
Another use to run a hot spot analysis and find a hot spot. If the results are applicable,
you can parallelize your code by manually adding threaded tasks or you can use the
compiler to automatically parallelize the code using Intel Thread Building Blocks (Intel
TBB). Of course, you can also adjust or tune the algorithm by checking the function-call
relationship and removing duplicate computing to reduce the number of function calls.

In another scenario, where the program has been parallelized, you need VTune
to run parallel analysis to determine the degree of parallelism of the program and
hotspot analysis to find the hotspot as well as the degree of parallelism at the hotspot.
When the degree of parallelism at the hotspot is low (such as in the case of functions
consuming most of the CPU time where the thread is not parallel to the other threads),
the two possible causes are uneven distribution of the tasks of each thread, which can be
optimized by adjusting the algorithm, and thread blocking (wait time), which is caused
by shared resources or a “lock” held by another thread. You can use VTune to do lock
and wait for the analysis to find out the cause of obstruction. In this case, you need to
determine whether the possession of the shared resource in the other threads is needed
and time is optimized. The solution is to reduce the hot zone as much as possible to
reduce data dependencies or use the locks that are more “lightweight.”

Tuning Based on the Microarchitecture of the Processor
When the tuning is based on the processor’s microarchitecture, developers are often
required to have detailed knowledge of the processor. This often gives application
developers a hard time, but processor-specific tuning is necessary when too many
hotspots are found (or too many hotspot functions are called) in the hotspot analysis. Of
the two different levels of tuning previously described, algorithm tuning is the most useful
for application optimization.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

199

VTune’s two modes
When VTune is in local mode, the analysis of the program being tested and VTune itself
work on the same machine. In remote mode, the testing of the application takes place
on one machine and VTune is installed on another machine. For desktop machines,
VTune is generally used in local mode, which is relatively simple. The Android system
is commonly used in remote mode. Here, VTune is installed on an Ubuntu/Win/MAC
development system, where most development and the SDK are located, and the
Android device is connected to the development system by a USB network cable or a
Wi-Fi network.

Intel offers a free trial version of VTune for noncommercial use, which generally
lasts for one year. Special discount prices for student and academic institutions are also
available. Readers can go to Intel’s official web site (http://www.intel.com) to download
the Linux version of VTune Amplifier XE. Before downloading, Intel will let you fill in your
email information, and the serial number will be sent to you. The following is an excerpt
from the Intel VTune Amplifier XE 2011 download.

 You have registered Intel VTune Amplifier XE for Linux* (formerly VTune
Performance Analyzer for Linux*). You will be receiving an email which includes the
serial numbers listed below as well as the download links for your future reference:

... ...

Serial Number:XXXX-XXXXXXXX

File to download: Install Package for IA-32 and Intel 64 (143 MB)

... ...

Intel VTune Amplifier XE for Linux*

Download:

Install Package for IA-32 and Intel 64

......

When readers go to the download link, the serial number will be shown as XXXX-
XXXXXXXX. Download the software package entitled vtune_amplifier_xe_2011_update4.
tar.gz (file size about 150 MB) to your local drive and install.

Note that to install and use VTune on an Android device, you will need the
corresponding driver support. The driver needs to be compiled and generated using
Android course codes. Typical users rarely have access to or are familiar with the source
code of the Android devices. Driver preparation is generally produced by the Android
device OEM. Most manufacturers are reluctant to install related drivers to commercial-grade
devices (such as mobile phones), and even root privileges are not open. For non-OEM
users, using VTune locally on an Android device is still a challenge, as there are some
system-level configurations that only Android system engineers can handle. However,
Intel is stepping up development and improving the use of VTune on Android, and it is
estimated that in the near future, application developers, students, and the academic
world can get access to the powerful VTune tool and use it locally on an Android device.

http://www.intel.com/

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

200

Intel Graphics Performance Analyzers
Intel Graphics Performance Analyzers (Intel GPA) are a suite of optimization and
analysis tools used only for Intel processors that support Intel Core and Intel Atom
processor-based hardware platforms. Intel GPA provides a graphical user interface for
the CPU/GPU speed analysis and customization features. It enables developers to find
performance bottlenecks and optimize applications for devices based on the Intel chipset
platform. Intel GPA consists of the System Analyzer, Frame Analyzer, and the Software
Development Kit (SDK).

Introduction
Intel GPA supports all Android devices running on Intel Atom processors. The suite offers
the following features:

A real-time display of dozens of key indicators including CPU, •	
GPU, and OpenGL ES API

Several graphics pipeline tests, which are provided instantly to •	
isolate graphics bottlenecks

Compatibility with Microsoft Windows or Ubuntu OS as host •	
development systems

Intel GPA currently only supports real Android devices using Intel Atom processors – it
does not support analysis of the Android Virtual Device (AVD). Intel GPA for Android uses a
typical hardware deployment model often used in Android application cross-development,
in which the host system (Windows or Ubuntu) and the target device (Android Intel-based
devices) are connected via a USB connection to monitor Android applications. Android
GPA operates on the Android Debug Bridge utility (adb, here tied to a local server)
to achieve the monitoring of the application on the target Android devices. The adb
(server) runs on Android devices, and the GPA runs on the host system as the adb client
applications to achieve target machine monitoring. The GPA configuration is shown in
Figure 9-8.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

201

Figure 9-8. Intel GPA Configuration for Monitoring Applications on an Android Device

Hardware Configuration

Software Structure

(adb Client) adb (server)

Android Platform

Intel
Host System

adb
Target

USB Cable

Window/Ubuntu Platform

Developers should be cautious given that Intel GPA is based on adb to work. Since
both Eclipse and DDMS also use adb, Intel GPA may not work properly if GPA, DDMS,
and Eclipse are running at the same time due to a server conflict. It is best to turn off
other Android software development tools, such as Eclipse or DDMS, when using Intel
GPA. Figure 9-9 shows the Intel GPA graphic interface in the process of monitoring an app
running on an Android device.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

202

Figure 9-9. GPA Graphic Interface Monitoring an App Running on an Android Device

As shown in Figure 9-9, which is screenshot for a Lenovo K800 smartphone, the
GPA interface displays two frames and a toolbar pane. The Metrics toolbar displays the
indicators being measured, which are organized in a tree structure, as follows:

Under the CPU metric are the Aggregated CPU Load, the CPU •	
XX Load, the CPU XX Frequency, the Target App CPU Load, etc.
The CPU XX numbers are determined by how many CPUs are
monitored by Intel GPA. To get CPU information such as the
number of cores, model, and frequency, we can use the cat/
proc/cpuinfo command at a terminal window. The Lenovo
K800 smartphone in the figure uses a single-core Intel Atom
Z2460 processor. The figure shows two logical processors as
the processor supports for Intel Hyper Threading Technology
(Intel HTT). Thus, the two items shown in CPU Load and CPU
Frequency are indexed as 00 and 01. In CPU XX Load, XX is the
CPU number: it displays the load status for CPU XX, while CPU
XX Frequency displays the frequency status for CPU XX. The
Aggregated CPU Load is the total load of the CPU. The Target App
CPU Load is the CPU load of the app on the target device.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

203

Under the Device IO metric are the Disk Read, the Disk Write, the •	
Network RX, and the Network TX items, which list the statuses
and information for the disk read, disk write, and packets sent and
received over the network, respectively.

Under the Memory metric are App Resident Memory, Available •	
Memory, etc.

Under the Power metric are Current Charging and Current •	
Discharging, which provide the status of charging and
discharging.

By default, the right pane shows two real-time status display windows. These
windows display the oscilloscope-like status of the specified indicators. The horizontal
axis features the elapsed time and the vertical axis features the value of the corresponding
indicator. The user can drag and drop an index entry from the left pane to one of two
windows and the real-time indicator of the entry will be displayed in the window. In
Figure 9-9, in which the CPU 00 Load has been dragged and dropped to the top display
window and the CPU 01 Load onto the bottom display window, the vertical axis shows
the CPU utilization. The maximum utilization is 100 percent.

Above the real-time status display window is the toolbar, offering tools such as
taking a screenshots and pausing the display. Users can use these tools to achieve some
auxiliary functions.

Installation
Hosting Intel GPA can be done in Windows or Ubuntu. The following section gives
examples of the Intel GPA installation process for the Windows platform. Users can refer
to Intel GPA release notes or related Intel GPA web site for the installation process and
usage on the Ubuntu platform.

Intel GPA requires having version 4.0 or higher of the .NET Framework installed to
run on the Windows platform. The installation of Intel GPA on the Windows platform
consists of two major steps: the first step is to install the .Net Framework and the second
step is the real Intel GPA installation. Detailed step-by-step instructions for installing Intel
GPA on Windows host platform follow.

1. Install .Net Framework.

 .Net Framework v4.0 is used for these instructions.
Make sure the latest Windows service pack and critical
updates are installed on your computer. If the platform is a
64-bit version of XP or Windows 2003, you may need to install
the Windows Imaging Component. To install it, visit
http://www.microsoft.com/en-us/download/details.
aspx?id=17851 and download .Net Framework 4.0.

 Next, double click dotNetFx40_Full_setup.exe. The pop-up
window interface shown in Figure 9-10(a) appears to start the
installation. Follow the step-by-step installation prompts to
complete the installation.

http://www.microsoft.com/en-us/download/details.aspx?id=17851
http://www.microsoft.com/en-us/download/details.aspx?id=17851

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

204

Figure 9-10. Net Framework 4.0 Installation Interface

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

205

2. Install Intel GPA

 The installation prerequisites follow: Make sure the latest
Windows service pack and critical updates are installed
on your computer. Users can go directly to the official Intel
web site to download Intel GPA (here, version gpa_12.5_
release_187105_windows.exe is used for the test):
http://intel.com/software/gpa or http://software.
intel.com/en-us/vcsource/tools/intel-gpa, as shown
in Figure 9-11. Double click gpa_12.5_release_187105_
windows.exe to run the program. This is a self-extracting file.
Uncompressed files are saved into the same folder where
the original file is located. Double click the setup.exe in the
extracted folder to install.

Figure 9-11. Intel GPA Software Download Site

 Double click gpa_12.5_release_187105_windows.exe to run
the program, which is a self-extracting file; uncompressed
files are saved into the same folder where the original file is
located.

 Next, double click the setup.exe in the extracted folder as
shown above to install.

 If .Net Framework is not installed, the Intel GPA Prerequisite
Setup will appear and prompt users with the necessary
information, as shown in Figure 9-12.

http://intel.com/software/gpa
http://intel.com/software/gpa
http://software.intel.com/en-us/vcsource/tools/intel-gpa
http://software.intel.com/en-us/vcsource/tools/intel-gpa

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

206

Figure 9-12. Intel GPA Installation Pop-Up that Appears When .Net Framework Is
Not Found

 Click the Install button. The dialog box appears as shown in
Figure 9-13.

Figure 9-13. Installation Dialog Box

 One you have installed the prerequisites, you will be returned
to the first step to install Intel GPA. The installation progress
bar for Intel GPA is shown in Figure 9-14.

Figure 9-14. Progress Bar for the Installation of Intel GPA

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

207

 Once Intel GPA loads, as shown in Figure 9-15(a), click Next
to continue. Intel GPA will test for compatibility and hardware
support and remind you of the next step, as shown in
Figure 9-15(b). Click Confirm to continue.

Figure 9-15. Message Boxes for Intel GPA Installation

 Figure 9-16 shows the destination folder selection box (in this
example, you would choose D:\GPA\2012 R5).

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

208

Figure 9-16. Intel GPA Destination Folder Selection

 Follow the step-by-step instructions to complete the
installation.

Sample Usage of Intel GPA on Android
The following example demonstrates how to use Intel GPA to monitor an application on
an Android device. In this case, the target machine is a Lenovo K800 smartphone running
on an Intel Atom processor.

Before Intel GPA can monitor and control applications on Android devices, Eclipse
must be used to set specific application parameters. The applications can then be
generated and deployed by Eclipse, run, and monitored.

The application we will use here as an example for Intel GPA monitoring is
MoveCircle. The operation interface is shown in Figure 9-17(a).

The application is a simple drag-around game. The user interface is a simple circle.
When the user touches any point inside the circle and drags it around, a black circle will
follow the touch point and move around. When the user stops touching the spot in the
circle, the circle will become still. At this point, the circle does not move when the user
drags it outside the circle (that is, the initial touch point within that circle). If the user
presses the phone’s Back button, the Exit dialog box will pop up. Selecting Exit will allow
you to exit the application, as shown in Figure 9-17(b).

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

209

Figure 9-17. The MoveCircle Application

The major computing tasks of the application take place in the dragging of the circle.
You are required to constantly calculate the circle’s new location and refresh (redraw)
the display.

Following are the steps for Intel GPA monitoring of the sample application:

1. Build and deploy the application in Eclipse that will be
monitored by Intel GPA.

2. Use general procedures to create an application project.
Name the application MoveCircle.

3. Write the related code for the project. The document
framework is shown in Figure 9-18.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

210

Figure 9-18. Document Framework of the Application MoveCircle

4. Edit the AndroidManifest.xml file and add the following code:

1. <manifest xmlns:android="http://schemas.android.com/apk/
res/android"

2. package="com.example.movecircle"
3. android:versionCode="1"
4. android:versionName="1.0" >
5.
6. <uses-sdk
7. android:minSdkVersion="8"
8. android:targetSdkVersion="15" />
9. <uses-permission android:name="android.

permission.INTERNET"/>
10.
11. <application
12. android:icon="@drawable/ic_launcher"
13. android:debuggable="true"
14. android:label="@string/app_name"
15. android:theme="@style/AppTheme" >
16. <activity
17. android:name=".MainActivity"
18. android:label="@string/title_activity_main" >
19. <intent-filter>
20. <action
21. android:name="android.intent.action.MAIN" />

22. <category android:name="android.intent.

category.LAUNCHER" />
23. </intent-filter>
24. </activity>

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

211

25. </application>
26.
27. </manifest>

 In line 9, we add a description of uses-permission elements,
which is the same level of the application, and we grant the
application’s Internet write/read access. In line 13, we specify
that the application is debuggable.

5. Generate the application package and deploy the application
to the real target device. Be sure to close Eclipse before
starting the next step.

6. Start Intel GPA on the host machine to monitor the
application

a. Connect the Android phone to the PC. Make sure the
screen is not locked or you may get error the error
Unsuccessful Phone Connection.

b. Make sure to turn off all tools that use the adb server,
such as Eclipse and DDMS. Otherwise, you may get the
error Unsuccessful Phone Connection. (This step can be
skipped) Make sure the adb server is started and running
(See Figure 9-19).

Figure 9-19. ADB Server Displaying Our Medfield Device

7. Select the Windows menu “\start\program\Intel Graphics
Performance Analyzers 2012 RS\Intel GPA System Analyzer”
to start Intel GPA.

8. The Intel GPA initial window then pops up, suggesting the
machine that will be monitored, as shown in Figure 9-20.
Since the tuning target is a phone in this case, select the phone
(in this case the Medfield04749AFB) by clicking the Connect
button to the right of name of the phone.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

212

Figure 9-20. Intel GPA Interface for Connecting to the Monitored Device

9. Once you are connected, Intel GPA does an initial analysis
of the applications installed on the monitored smartphone,
dividing the apps into two groups: analyzable applications
and nonanalyzable applications, as shown in Figure 9-21.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

213

At the top of the window is an Analyzable applications category that can be tuned or
debugged by Intel GPA. Non-analyzable applications are listed in the bottom panel. In
the analyzable application list, you can see the MoveCircle application that we are using
as the example for the Intel GPA monitoring exercise. The reason that an application is
not analyzable by Intel GPA is usually because its parameters are not set in the way we
described in earlier in this session.

10. Click the name of the application that you want Intel GPA
to monitor in the Analyzable applications window (in this
case, MoveCircle). An icon of a rolling circle showing ongoing
progress appears on the left side of the app (MoveCircle). See
Figure 9-22.

Figure 9-21. Initial Interface (Apps List) After Intel GPA Is Connected to the Monitored
Phone Device

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

214

Figure 9-22. App Initialization Interface in Intel GPA

While this is happening, the application start-up screen is displayed on the phone. The
screen will prompt you with the message Waiting For Debugger, as shown in Figure 9-23.
Note that you should not click the Force Close button but instead wait until the message
box automatically closes in the interface.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

215

Figure 9-23. Initial Message Appearing on Target Phone When Intel GPA Starts Monitoring
the Application

11. Next, Intel GPA monitoring interface appears, as shown in
Figure 9-24.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

216

Figure 9-24. Initial Monitoring Interface Shown on Intel GPA when the Application
Is Started

While this takes place, the MoveCircle app starts to run on the phone, as shown in
Figure 9-25.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

217

Figure 9-25. The MoveCircle App That is Shown on the Target Phone Device

Drag and drop the CPU 00 Load to the top real-time status display panel in the
display window, and drag and drop the CPU 01 Load onto the bottom real-time status
display panel in the display window. Click and drag the MoveCircle around for a few
seconds and then stop the interaction for a few seconds. The corresponding Intel GPA
monitoring screen is shown in Figure 9-26.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

218

Figure 9-26. Intel GPA Monitoring the MoveCircle App and Displaying CPU Loads in
Real Time

In Figure 9-26, we can see a rule: when we drag the circle, the two CPU loads will
both rise to a certain height; when we do not interact with the app, the two CPU loads
will immediately drop to near 0 percent. The application’s main computing tasks are
concentrated in dragging and moving the circle, and there is no or low CPU load when
the circle is not being moved.

To end the Intel GPA analysis, exit the app, as shown in Figure 9-17(b). Intel GPA will
return to the starting interface shown in Figure 9-20.

The previous example only demonstrates monitoring of the CPU load. An interested
reader can try other app examples and other monitoring metrics. Using the MoveCircle
app as an example, we chose the Disk Read metric for the top display window and the
Disk Write metric for the bottom display window. We then switched apps and reviewed
some photo files. When we returned to the MoveCircle app, the instant action of disk read
shows the existence of Disk Read activity, as shown in Figure 9-27.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

219

Figure 9-27. Intel GPA Monitoring Window Showing Disk Read for the MoveCircle App and
Other Apps

Android Multithreaded Design
The Intel Atom processor supports hyperthreading and multicore configurations.
A multithreaded design is a good way to increase the degree of parallelism and improve
performance. The Intel Atom N-series processors support the parallel execution of
multiple threads. Although most Intel Atom Z series processors for mobile phones and
other mobile devices are single core, they support Intel Hyper-Threading Technology.
Thus the Z series processors form two or four logical CPUs and also physically support a
certain degree of parallel execution.

Note that the word used here is parallel rather than concurrent. For some tasks, we
can follow the classic methodology in parallel computing called “divide and conquer”
and divide them into two or more basic units. We assign those units to different threads
to be executed at the same time. In this way, the performance potential of the processor
is fully utilized, accelerating execution speed such that the software runs faster and
more efficiently.

Based on the Java multithreaded programming interface, Android extensions
provide a more powerful multithreaded programming interface for Android developers.
With the aid of this programming interface, developers can easily implement

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

220

multithreaded development and design at the Java language level without needing to use
the cumbersome underlying operating system called interface.

Android Framework or a Thread
The Android threaded programming framework is based on Java. There are two methods
to realize multithreaded programming in Java. The first is to inherit from the Thread class
and override the run method. The second is to implement the Runnable interface and
run method.

Java Thread Programming Interface
The general code framework for the first approach to realizing multithreaded
programming, to inherit from the thread, is as follows: first, define the thread class (in this
case, the thread class named MyThread) and its code as shown in Figure 9-28.

Figure 9-28. A Sample Custom Thread Class

Then, create an instance of our custom Thread class and start it, as shown in
Figure 9-29.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

221

Figure 9-29. Starting the Thread

Wait for the thread to finish, and handle the cases if something goes wrong, as shown
in Figure 9-30.

Figure 9-30. Waiting for the Thread to Finish

The second approach to realizing multithreaded programming in Java uses the
Runnable interface implementation. The following is the general code framework for
Runnable. The first step is to create a custom Runnable interface, as shown in Figure 9-31.

Figure 9-31. Custom Runnable

Next, you need to actually start the thread and give it a Runnable. This can be done
as shown in Figure 9-32.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

222

Figure 9-32. Starting the Thread

These two approaches have the same effects, but the occasions on which they are
used are different. Developers who are familiar with Java know that it does not have
multiple inheritance, so it uses Interface Implement instead. To separately implement a
thread, you can use the first approach, thread inheritance.

But some classes have themselves been inherited from another class. In such cases,
if you want the thread to run, you have to use the second method (the Runnable interface
method) to achieve thread implementation. In this method, you can declare that the class
implements the Runnable interface and then put the code that will be run as a thread into
the run function. In this way, it will not affect its previous inheritance hierarchy and can
also to run as a thread.

Note the following points about Java’s threading framework:

1. In Java runtime, the system implements a thread scheduler for
thread execution, which is used to determine a time by which
a thread will run on the CPU.

2. In Java technology, the thread is usually preemptive without
the need for a time slice allocation process (which assigns to
each thread the process of equal CPU time). In the preemptive
scheduling model, all threads are in a ready-to-run state
(waiting state), but in fact only one thread is running. The
thread continues to run until it terminates or a higher-priority
thread becomes runnable. In that case, the low-priority thread
terminates and gives the right to run to the high-priority thread.

3. The Java thread scheduler supports this preemptive scheme
for threads with different priorities, but the scheduler itself
does not support the time slice rotation of threads with the
same priority.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

223

4. If the operating system on which Java runtime is running
supports the rotation of the time slice, then the Java thread
scheduler supports the time slice rotation of the same
priority thread.

5. The system’s thread scheduler should not be excessively relied
upon. For example: the low-priority thread must also get a
chance to run.

For more detailed information on Java multithreaded programming methods for
Android applications, developers can refer to related Java programming books.

Threaded Programming Extensions and Support
When Android is running, the Dalvik virtual machine supports multiple concurrent
CPUs. That being said, if the machine has more than one logical processor, the Dalvik
virtual machine will follow certain strategies to automatically be assigned different
threads to run on different CPUs. In this way, Android can physically run different
threads in parallel. In addition to the thread programming interfaces provided by
Java, Android also provides important extensions and support. The first is the
Looper-Message mechanism.

Android’s interface, including a variety of activity, is running in the main thread
of the application (also known as the UI thread, the Interface thread, or the default
thread). By default, the application has only one thread, which is the main thread.
Thus the application is considered to be single-threaded. Some time-consuming tasks
(computing), if they are run on the main thread by default, will cause the interaction
of the main interface to fail to respond for a long time. To prevent the main interface
interaction from remaining at a standstill for a long time, those time-consuming tasks
should be allocated to the independent thread to execute.

The independent thread running behind the scenes (also known as the assistive
thread or background thread) often needs to communicate with the interface of the main
thread, such as by updating the display interface. If the behind-the-scenes thread calls
a function of an interface object to update the interface, Android will give the execution
error message CalledFromWrongThreadException.

For example, in an application (in this case GuiExam), if a worker thread directly
calls the setText function of the TextView object in the interface to update the display, the
system will immediately encounter an error and terminate the running application, as
shown in Figure 9-33.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

224

Figure 9-33. Running Error Message When Worker Thread Directly Calls a Function of the
UI object

In order to enable the worker thread and the main thread interface to communicate
well, you need to understand the Looper-Message mechanisms. In order to solve such
problems, Android has a mechanism called message queue, in which the threads can
be combined by the message queue, processing Handler and Looper components to
exchange information.

Message
The Java class Message defines the information exchanged between threads. When a
thread behind the scenes needs to update the interface, it sends a message containing the
data to the UI thread (the main thread).

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

225

Handler
The Handler class is the main processor of the Message class, and is responsible for
sending messages and the execution and processing of the message content. The
behind-the-scenes thread, making use of the processing object passed in, calls the
sendMessage function to send a message. To use the Handler class, you need a method
with which to implement the class handleMessage, which is responsible for handling the
message operation content, such as updating the interface. The handleMessage method
usually requires subclassing.

The Handler class itself is not used to open up a new thread. A Handler is more like the
secretary of the main thread, a flip-flop, and is responsible for managing the updated data from
the subthread and then updating the interface in the main thread. The behind-the-scenes
thread processes the sendMessage () method to send a message, and the Handler will call back
(which is automatically invoked) processing in the handleMessage method to process
the message.

Message Queue
The message queue is used to store the messages sent by a Handler, according to the
first-in/first-out rule for execution. For each message queue, there will be a corresponding
Handler. The Handler uses two methods to send messages to the message queue:
sendMessage or post. These two types of messages will be inserted at the end of message
queue according to the first-in/first-out rule. Messages sent by these two methods are
executed in slightly different ways: a Message sent by sendMessage is a message queue
object and will be processed by the handleMessage function of the Handler, whereas a
Message sent through the post method is a runnable object and will be implemented
automatically.

Android has no global message queue and automatically builds a message queue for
the main thread (one of the UI threads), but the message queue has not been established
in the subthread, so Looper.getMainLooper () must be called to get the Looper of the
main thread. The main thread loop will not go to NULL, but to call Looper.myLooper () to
get Looper of the current thread loop, it is possible for a NULL.

Looper
The Looper class is the housekeeper of each thread’s message queue. A Looper is a bridge
between the Handler and message queues. Program components first pass the message
to the Looper through the Handler, and then the Looper puts the Message in the queue.

For the main thread of default UI of the application, the system has established the
message queue and Looper, and there is no need to write the message queue and looper
operation code in the source code. Even having said that, both are “transparent” for the
default main thread. However, the Handler is not transparent to the default main thread.
In order to send messages to the main thread and handle them, users must establish their
own Handler object.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

226

AsyncTask
In addition to using the Looper-Message mechanisms to achieve the communication
between the worker thread and the main GUI thread, you can use a technique called
the asynchronous tasks (AsyncTask) mechanism to implement the communication. The
general procedure for using the AsyncTask framework is described as follows:

1. Implement the AsyncTask according one or several of the
following methods:

onPreExecute(): begin preparatory work before Execution.•	

doInBackground(Params...): start background execution, •	
inside this call the publishProgress method to update real-time
task progress.

onProgressUpdate(Progress...): after the publishProgress •	
method is called, the UI thread will call this method to show
the progress of the task interface; for example, by displaying
a progress bar.

onPostExecute(Result): after the completion of the •	
implementation of the operation, send the results to the UI
thread.

 Of these four functions, none may be manually called. In
addition to the doInBackground (Params...) method, the
other three are UI thread called, causing the following
requirements:

The AsyncTask instance must be created in the UI thread.•	

The AsyncTask.execute function must be called in the UI thread.•	

Keep in mind that the task can only be executed once. Multiple calls will result in
inconsistent and indeterminate results.

Thread Example
The running interface Application GuiExam is shown in Figure 9-34. Here we use an
example to illustrate the use of Android-threaded programming.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

227

Figure 9-34. Demo UI of Multithreaded Code Framework

As shown in Figure 9-34, the demo app has three main activities buttons: Start
Thread Run, Stop Thread Run, and Exit App; the first two buttons are used to control the
operation of the auxiliary thread. When you click the Start Thread Run button, the thread
starts running, as shown in Figure 9-34(b). When you click Stop Thread Run, the thread
run ends, as shown in Figure 9-34(c). The worker thread refreshes output text displays
TextView each period of time (in this case 0.5 s), displaying on screen “Done Step. X
increments from 0 to X. Click ‘Exit’ to close the activities and exit the application demo.”

The structure of the demo app and the procedures follow:

1. Edit the main activity file (in this example: activity_main.
xml), delete the originalTextView window component,
and then add three buttons and two TextView window
components. The properties of Button’s ID are respectively:
@+id/startTaskThread,@+id/stopTaskThread,@+id/
exitApp. The TextView property is respectively
startTaskThread, exitApp, taskThreadOutputInfo, and
stopTaskThread. There is one ID of TextView for which the
property is set as @+id/taskThreadOuputInfo to display the
text output of the worker thread. The TextView Outline for
the Demo App is shown in Figure 9-35.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

228

Figure 9-35. Multithreaded Code Framework in activity_main.xml of Demo App

2. Edit the source code MainActivity.java of activity_main class.
The content is listed below:

1. package com.example.guiexam;
2. import android.os.Bundle;
3. import android.app.Activity;
4. import android.view.Menu;
5. import android.widget.Button;
6. import android.view.View;
7. import android.view.View.OnClickListener;
8. import android.os.Process;
9. import android.widget.TextView;
10. import android.os.Handler;
11. import android.os.Message;

12. public class MainActivity extends Activity {
13. private Button btn_StartTaskThread;
14. private Button btn_StopTaskThread;
15. private Button btn_ExitApp;
16. private TextView threadOutputInfo;
17. private MyTaskThread myThread = null;
18. private Handler mHandler;;

19. @Override
20. public void onCreate(Bundle savedInstanceState) {

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

229

21. super.onCreate(savedInstanceState);
22. setContentView(R.layout.activity_main);
23. threadOutputInfo = (TextView)findViewById(R.

id.taskThreadOuputInfo);
24. threadOutputInfo.setText("Thread Not Run");

25. mHandler = new Handler() {
26. public void handleMessage(Message msg) {
27. switch (msg.what)
28. {
29. case MyTaskThread.MSG_REFRESHINFO:
30. threadOutputInfo.setText((String)(msg.obj));
31. break;
32. default:
33. break;
34. }
35. }
36. };

37. btn_ExitApp = (Button) findViewById(R.id.exitApp);

// Code for <Exit App>Button
38. btn_ExitApp.setOnClickListener(new /*View.*/OnClickListener()
{
39. public void onClick(View v) {
40. finish();
41. Process.killProcess(Process.myPid());
42. }
43. });

44. btn_StartTaskThread = (Button) findViewById(R.

id.startTaskThread);
45. // Code for<Start Thread Run>
46. btn_StartTaskThread.setOnClickListener(new /*View.*/

OnClickListener(){
47. public void onClick(View v) {
48. myThread = new MyTaskThread(mHandler);

// Create a thread
49. myThread.start(); // Start Thread
50. setButtonAvailable();
51. }
52. });

53. btn_StopTaskThread = (Button) findViewById(R.

id.stopTaskThread);
54. //code for <Stop Thread Run>
55. btn_StopTaskThread.setOnClickListener(new /*View.*/

OnClickListener(){

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

230

56. public void onClick(View v) {
57. if (myThread!=null && myThread.isAlive())
58. myThread.stopRun();
59. try {
60. if (myThread!=null){
61. myThread.join();
62. // Wait for Thread Run to end
63. myThread =null;
64. }
65. } catch (InterruptedException e) {
66. // Empty statement block, ignored forcibly

abort exception
67. }
68. setButtonAvailable();
69. }
70. });
71. setButtonAvailable();
72. }

73. @Override
74. public boolean onCreateOptionsMenu(Menu menu) {
75. getMenuInflater().inflate(R.menu.activity_main, menu);
76. return true;
77. }

78. private void setButtonAvailable() // New function is used to

set the button optional
79. {
80. btn_StartTaskThread.setEnabled(myThread==null);
81. btn_ExitApp.setEnabled(myThread==null);
82. btn_StopTaskThread.setEnabled(myThread!=null);
83. }
84. }

In lines 17 and 18 of the code just given, we define the variable myThread of the
defined thread class as MyTaskThread and the default main thread handler object as
mHandler, respectively. From line 25 to line 36, we define the Handler class. The What
attribute field of the message class indicates the type of message. The custom handler
class uses a switch-case statement for different handlers depending on the type of
message, of which MSG_REFRESHINFO is the message type of custom thread class
MyTaskThread, which means that the worker thread requires an updated interface
display message. The purpose of lines 29 to 31 is to process the message. The code is
very simple; it updates the widget display of TextView according to the message with the
parameter object.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

231

Lines 47 to 49 consist of the response code given when the start running
threads button is clicked. It first creates the custom thread object and then calls
the Thread.start function to make the self-defined thread class MyTaskThread run,
which runs execution code in the run function as a single thread. Line 49 calls the
custom setButtonAvailable function to set each button’s option (that is, grayed as not
selectable, or white, which is selectable).

Lines 55 to 65 are the code responsible for the Stop Thread Run button. Line 55 first
determines whether the thread already exists or is running, and then stops a thread run in
line 56 by calling the defined stop-the-thread prototype function from the custom thread
class MyTaskThread and then calling the Thread.join () function. It then waits for the
thread run to end. Finally, it sets the optional status of the interface buttons.

Lines 75 to 80 consist of a customized function, which is used to determine the
optional status of each button: white as selectable; gray as not selectable.

3. Create a new class MyTaskThread in the application. This
class inherits from Thread and is used to implement the
worker thread. The source code file MyTaskThread.java of this
class is as follows:

1. package com.example.guiexam;
2. import android.os.Handler;
3. import android.os.Message;
4.
5. public class MyTaskThread extends Thread {
6. private static final int stepTime = 500;
7. // Execution timeof each step(unite:ms)
8. private volatile boolean isEnded;
9. //mark if the thread is running. Used to stop thread run
10. private Handler mainHandler;
11. //Handler used to send message
12. public static final int MSG_REFRESHINFO = 1;

// Update message on interface
13.
14. public MyTaskThread(Handler mh)

// Define a constructor
15. {
16. super();
// Call the parent class builder to create objects
17. isEnded = false;
18. mainHandler = mh;
19. }
20.
21. @Override
22. public void run()

// Write run code in thread body run method
23. {
24. Message msg ;
25. for (int i = 0; !isEnded; i++)

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

232

26. {
27. try {
28. Thread.sleep(stepTime);

// designate time for every step of
the thread to sleep

29. String s = "Complete" + i +"step";
30. msg = new Message();
31. msg.what = MSG_REFRESHINFO;

// Define message type
32. msg.obj = s;

// attach data to message
33. mainHandler.sendMessage(msg);

// send message
34. } catch (InterruptedException e) {
35. e.printStackTrace();
36. }
37. }
38. }
39.
40. public void stopRun()

// Stop control function for stop thread run
41. {
42. isEnded = true;
43. }
42. }

This is the implementation code of the custom thread class MyTaskThread,
which is the key to this application. This application is using the first approach, thread
inheritance, to achieve threading. In line 5, let the customized class inherit from Thread,
and then from line 14 to line 39, let the threads run code on the rewrite run function.
To cope with the work of the thread, in line 6 to line 9 we define the relevant variables.
The constant stepTime represents the length of every step of the thread delay time,
measured in milliseconds. The mark isEnded controls whether to continue every step in
the body of the loop in the run function to continue. Note that the variable is preceded
by the volatile modifier: Volatile variables. Each time a thread accesses the variable, it
will read the final values in the memory after the variables have been modified. A write
request must be written to memory too. This avoids the copy that is in cache or in the
register not matching with the value in the memory variable, which causes an error. The
mainHandler is the variable that saves the main thread handler. MSG_REFRESHINFO is a
constant type that handles custom message.

Line 10 to line 15 is a constructor. In this function body, we initialize the value of the
thread-running control variables isEnded and then save mainHandler as the main thread
handler object passed as a parameter.

Line 16 to line 33 is the core thread code that rewrites the run function. The code is
composed of a loop to determine whether to continue to use the control variable isEnded.
Here, we call one loop as a step. Every step of the work is also simple: when the Thread
class static function sleep is called in line 28 after a specified time, a message is generated

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

233

and assembled in line 24 to line 27. Finally, in line 28, the message is sent to the specified
(message loop) handler.

Line 34 to line 37 is a custom control function to stop the thread from running. The
code is very simple; it changes the run loop control variable value.

Thread Synchronization
A multithreaded process inevitably involves a problem: how to deal with threads’
access to shared data, which relates to thread synchronization. Thread data sharing is
also known as critical section. Access to shared data is also known as the competition
for resource access. In general, in operating system textbooks, thread synchronization
includes not only the synchronization of this passive selected access to shared data
but also the active choice synchronization between threads in order to collaborate to
complete a task. Thread synchronization especially focuses on access to shared data. In
this section, we discuss synchronization issues on shared data access.

In multithreaded programming, if the access to shared data does not use certain
synchronization mechanisms, data consistency and integrity cannot be guaranteed.
There are two ways to do the Java thread synchronization: one is called an internal
lock data object and the other is just called synchronization. Both of these methods are
implemented with the synchronized keyword. Statements modified by the synchronized
block can guarantee the exclusivity of the operations between threads, considered unique
or atomic in the term of the operating system. In Java it is called synchronization. A
synchronized block is also known as Genlock.

In the first method of locking data objects, at any time, only one thread may access
the object that is locked. The code framework is shown in Figure 9-36.

Figure 9-36. Method One

In the above code, var must be the variable that each thread can access, so that it
becomes a synchronization variable. In practice, the synchronization variable and shared
variables can be either the same or different variables. The Object class in the code in the
figure can be replaced with the subclass of Object, because besides the simple classes in Java,
any class can be the Object offspring class. Object in the code can be replaced by any class.

Note that a primitive type (such as int and float, but not String class) cannot be the
synchronization variable, as shown in Figure 9-37.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

234

Figure 9-37. Invalid Synchronized Block

Figure 9-38. Synchronizing a Method

When you use the second method, the synchronization method, only one thread
visits a code segment at any time, such as in Figure 9-38.

Besides the synchronization for the general class (function) shown in the previous
figure, there is also synchronization for the static function of the class, as shown in
Figure 9-39.

Figure 9-39. Synchronizing a Static Method

In the synchronization method, what gets locked is the object that calls
the synchronization method. When an object of MyClass: obj1 implements the
synchronization method in a different thread, mutual exclusion will be formed to achieve
the synchronization result. But another object, obj2, generated by the class MyClass can
call this method with the synchronized keyword. As a result, the code in the previous
figure can be written in equivalent terms to those in Figure 9-40.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

235

Figure 9-40. Synchronizing General Method

The static synchronization method is shown in Figure 9-41.

Figure 9-41. Locking on a Class

In the second method, the static method, the class literally is treated as a lock. It
generates the same result as the synchronized static function. The timing to get a lock is
also special; the lock is acquired when calling the class that this object belongs to, and no
longer the specific object that this class generates.

The rules that Java uses to implement a lock by the synchronized function are
generalized in the following:

•	 Rule 1: When two parallel threads visit the synchronized(this)
synchronization code segment of the same object, there is only
one thread that can be run at any time. Another thread must wait
until the current thread finishes running the code segment to run
the same code segment.

•	 Rule 2: When a thread visits a synchronized(this) synchronization
code segment of an object, another thread can still visit a non-
synchronized(this) synchronization code segment of an object.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

236

•	 Rule 3: When a thread visits a synchronized(this) synchronization
code segment of an object, the visit of all other threads to all other
synchronized(this) synchronization code segments of the object
will be blocked.

•	 Rule 4: When a thread visits a synchronized(this) synchronization
code segment of an object, it acquires the object lock of
this object. As a result, all visits from other threads to all
synchronized(this) synchronization code segments of an object
will be temporally locked.

•	 Rule 5: The previously stated rules apply to all other object locks.

Although synchronization can guarantee granularity of the object or block of
statements executed, mutual exclusiveness of this granularity degrades the thread
concurrency, so that the code, which originally could run in parallel, has to run in serial
execution. Therefore, we need to be cautious and limit use the synchronized function to
cases where a synchronized lock is needed. On the other hand, we need to make the lock
granularity as small as possible in order to both ensure the correctness of the program
and improve operational efficiency. This is done by raising the degree of concurrency as
high as possible.

Thread Communication
In multithreaded design, with data exchange among threads, setting the signal
collaboration to complete a task is a common problem. Generalized threading issues
are a large part of the problem, similar to the typical example of the producer-consumer
problem. These are the threads that have to cooperate to accomplish a task.

It is generally recommended that a semaphore be used to achieve thread
synchronization primitives. Java does not directly provide the semaphore primitives or
programming interface but rather achieves the function of the semaphore with a class
function such as wait, notify, notifyAll, and so on.

The classes wait, notify, and notifyAll belong to the function of the Object class, and
are not part of the Thread class. Every object has a waiting queue (Wait Set) in Java. When
an object has just been created, its wait queue is empty.

The wait function can make the objects in the current thread wait until another
thread calls the notify or notifyAll method of this object. In other words, when a call
waits in the queue of the object, there is a thread where the thread enters a wait state.
Only when the notify method is called can we put the thread from the queue out to make
this thread become runnable. The notifyAll method waits for all threads in the queue to
become runnable. Notify and notifyAll are not much different in function.

The wait, notify, and notifyAll functions need to be used in conjunction with
synchronized to establish the synchronization model, which can guarantee the granularity
of the former functions. For example, before calling wait, we need to get the object’s
synchronization lock so that this function can be called. Otherwise the compiler can call
the wait function, but it will receive an IllegalMonitorStateException runtime exception.

Following are several examples of code frameworks of wait, notify, and notifyAll.
Figure 9-42 shows code to wait for a resource.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

237

Figure 9-43 shows the code for using notify and providing resources (an example of
which is the complete use of resources and returned to the system).

Figure 9-42. Locking on an Object

Figure 9-43. Using Notify

The previous figure is the stand-alone use case of synchronization object obj. We can
also write synchronization code in a class. The framework of this code can be written as
in Figure 9-44.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

238

Figure 9-44. A Class Example of Synchronized

The thread that is waiting for resources calls the myclass.func1 function, and the
thread that provides resources calls myclass.func2 function.

Principles of Multithreaded Optimization for Intel
Atom Processors
The multithreaded software design allows program code in different threads to run at
the same time. However, blind or excessive use of multithreaded programming may not
lead to performance improvement and may even downgrade the software performance.
Therefore, we need to look at the principles of multithreaded optimization on Android x86.

First of all, the start, or scheduling, of a thread requires a certain amount of overhead
and occupies a certain amount of processor time. For processors that do not support
hyperthreading and multicore processing, the system cannot physically let the threads
run at the same time. There is significant overhead if we split one physical processor into
multiple logical processors with virtualization technologies to have each thread run on
a logical core in an attempt to support multithreaded programs. Such a multithreading
strategy not only makes it difficult to achieve improvement in performance but may even
lead to the multithreaded execution speed being slower than a single-threaded program.
Therefore, to achieve multithreaded performance acceleration (a prerequisite to being
faster than single-threaded execution speed) using multithreaded design, the processor
must support hyperthreading, contain multicores, or have multiple processors.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

239

Second, for processors that support hyperthreading or multicore, it is not always true
that more threads will make the software run faster. There is a performance/price ratio
that needs to be considered. The physical basis for multithreaded design in performance
tuning can be explained as allowing multiple threads to run at the same time in parallel
on the physical layer. The maximum number of concurrently running threads supported
by the processor is therefore the optimum number of threads for multithreaded
optimization.

Intel Hyper-Threading Technology can support two threads running in parallel, and
also has multicore support for multiple threads running in parallel. For example, for a
dual-core Intel processor that supports Intel Hyper-Threading Technology, the maximum
number of threads supported to run in parallel is:

2 core × 2 (Intel HTT) = 4 threads

Therefore, this machine supports multithreaded optimization, and the maximum
number of threads (threads running concurrently) is equal to four.

For example, if the target machine is a Lenovo K800 phone, which uses a single-core
Intel Atom Z2460 processor, in accordance with the above formula, we can conclude
that running two threads can make the machine achieve optimal performance. For a
Motorola MT788 target machine, which uses a single-core Intel Atom Z2480 processor,
the optimal number of threads is two. If the target machine is a Lenovo K900 with a
dual-core processor, the Intel Atom Z2580 processor with Intel HTT, then the optimal
number of threads reached will be four.

In general, when we consider multithreaded optimization on the Android platform,
it is necessary to carefully look into the processor information to see if it supports
hyperthreading or multicore technology.

Case Study: Intel GPA–Assisted Multithreaded
Optimization for an Android Application
In the previous section, we explained several optimization techniques and principles.
In this section, we use a comprehensive example to explain the knowledge of the
optimization. In this case, the multithreaded optimization is combined with optimization
assisted by Intel GPA to optimize the application to make it run faster.

The app that we use as an example performs the calculation of Pi (π). We will now
introduce the background of this app. We know the mathematical formula to be as follows:

1

20

1
= arctan(1) - arctan(0) =

1 4x

π
+∫ dx

We know that the integration formula can be expressed using the infinitive:

s

In fact, ∆x cannot be infinitely small, so we only can make ∆x as small as possible.
Therefore, the result of the formula is closer to π. If we use step to represent ∆x, then

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

240

must be at maximum to get an accurate approximation of Pi. Consider that

1= stepnum_steps

2

1

1x
=

+
f (x)

is a raised function. Here, we take a median value to calculate the sum; that is, we use

0.5i +

f
num_steps

to replace

i
f

num_steps

to calculate the sum. The result calculated by this formula will not always be smaller than
the actual value of π. So eventually we get the final formula upon which this application
is based:

[]
0 0 0

0.5
() (0.5)

4

π
= =

 +
≈ × = × × + × ∑ ∑ ∑

i i

i
f x step f f i step

num_steps num_steps num_steps

i=

step = step
num_steps

Based on this formula, we can derive the equivalent computing source code.

Original Application and Intel GPA Analysis
We can derive the source code for our case study app from the formula we just came up
with in the previous section. The source code will not be optimized. We’ll refer to it as the
original application and name it SerialPi.

The design of this app is the same as the example given in the preceding Thread
Example section. The task of calculating π is put into a worker thread (here named a task
thread). A button is set on main application screen to control the running of the thread,
and a TextView is used to display the result of the task thread. The interface showing the
app’s single run is shown in Figure 9-45.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

241

Figure 9-45. App Run Interface of SerialPi

The interface that comes up after the application starts is shown in Figure 9-45(a).
When you click the Start Calculating button, all buttons on the interface gray out until the
computing of πthread is complete. The interface then displays the computation result of π
as well as the total running time of the thread. You can click the Exit App button, as shown
in Figure 9-45(b), which allows you to exit the application. From the interface shown, we
know it takes about 22 seconds for this app to calculate π. When running this application
repeatedly, the calculation time is about the same every time (22 seconds).

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

242

The structure of the application steps and key code is as follows:

1. New build SerialPi. The proposed project property is set to use
the default value. Note that the [Build SDK] is set to support
the x86 API.

2. Edit activity_main.xml; place two Buttons and two TextViews
in the layout, the ID attribute of a TextView is set as @+id/
taskOuputInfo, which is used to display the results of the task
thread, as shown in Figure 9-46.

Figure 9-46. Main Outline of SerialPi App

3. Create a new thread class MyTaskThread in the new project
and use it to calculate the value of π. Edit the source code file
MyTaskThread.java as follows:

1. package com.example.serialpi;
2. import android.os.Handler;
3. import android.os.Message;

4. public class MyTaskThread extends Thread {
5. private Handler mainHandler;
6. public static final int MSG_FINISHED = 1;
7. // Defined the message type for the end of the calculation

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

243

8. private static final long num_steps = 200000000;
9. // num_steps variables in Formula, the total number of steps
 private static final double step = 1.0 / num_steps;
10. // Step variable in formula, step length
11. public static double pi = 0.0;

12. // the calculation of results of π
13.
14. static String msTimeToDatetime(long msnum){
15. // The function converts the number of milliseconds into hours:

minutes: seconds. Milliseconds "format
16. long hh,mm,ss,ms, tt= msnum;
17. ms = tt % 1000; tt = tt / 1000;
18. ss = tt % 60; tt = tt / 60;
19. mm = tt % 60; tt = tt / 60;
20. hh = tt % 60;
21. String s = "" + hh +"hour "+mm+"minute "+ss + "秒 " + ms

+"Miliseconds";
22. return s;
23. }
24.
25. @Override
26. public void run()
27. {
28. double x, sum = 0.0;
 long i;
 for (i=0; i< num_steps; i++){
29. x = (i+0.5)*step;
30. sum = sum + 4.0/(1.0 + x*x);
31. }
32. pi = step * sum;

33. Message msg = new Message();
34. msg.what = MSG_FINISHED;

// Define message Type
35. mainHandler.sendMessage(msg);

// Send Message
36. }
37.
38. public MyTaskThread(Handler mh) // Constructor
39. {
40. super();
41. mainHandler = mh;
42. }
43. }

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

244

Similar to the framework and the example of code given in the preceding Thread
Example section, thread inheritance laws are used to achieve thread initialization. Pay
close attention to the code segments highlighted in gray. They are the ones most directly
related to the calculation of π. In lines 7 and 8, we define variables of the same name in
the formula for calculation of π in the form of a static variable. Line 9 defines the variable
for saving the results of the π calculation. Note that this variable is public, so that the main
thread can access it.

Lines 22 through 28 are the code for calculating π according to the formula. Where
the x variable is an independent variable x of function

2

1
()

1
=

+
f x

x

the sum is a cumulative variable of ∑. After the cumulative ∑, finally in line 28,
let π = step × ∑ to calculate the final results. Refer to the two long sections of code
framework in the preceding Thread Example section; it should not be difficult to
understand the mathematics behind the code.

Note that in the thread’s run function, once the calculation is complete, the message
is sent to the main thread (interface) in line 29.

4. Edit the source code of the main activity class file:
MainActivity.java. The code is allowed to control the run of
the thread and displays the calculated results as follows:

1. package com.example.serialpi;
2. import android.os.Bundle;
3. import android.app.Activity;
4. import android.view.Menu;
5. import android.widget.Button;
6. import android.view.View;
7. import android.view.View.OnClickListener;
8. import android.os.Process;
9. import android.widget.TextView;
10. import android.os.Handler;
11. import android.os.Message;

12. public class MainActivity extends Activity {
13. private MyTaskThread myThread = null;
14. private TextView tv_TaskOutputInfo;

// Display (Calculated) Task thread output
15. private Handler mHandler;;
16. private long end_time;
17. private long time;
18. private long start_time;

19. @Override
20. public void onCreate(Bundle savedInstanceState) {
21. super.onCreate(savedInstanceState);

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

245

22. setContentView(R.layout.activity_main);
23. tv_TaskOutputInfo = (TextView)findViewById(R.id.taskOuputInfo);
24. final Button btn_ExitApp = (Button) findViewById(R.id.exitApp);
25. btn_ExitApp.setOnClickListener(new /*View.*/OnClickListener(){
26. public void onClick(View v) {
27. exitApp();
28. }
29. });
30. final Button btn_StartTaskThread =

(Button) findViewById(R.id.startTaskThread);
31. btn_StartTaskThread.setOnClickListener(new

/*View.*/OnClickListener(){
32. public void onClick(View v) {
33. btn_StartTaskThread.setEnabled(false);
34. btn_ExitApp.setEnabled(false);
35. startTask();
36. }
37. });
38. mHandler = new Handler() {
39. public void handleMessage(Message msg) {
40. switch (msg.what)
41. {
42. case MyTaskThread.MSG_FINISHED:
43. end_time = System.currentTimeMillis();
44. time = end_time - start_time;
45. String s = " The end of the run,Pi=

"+ MyTaskThread.pi+ " Time consumed:"
46. +
47. MyTaskThread.msTimeToDatetime(time);
48. tv_TaskOutputInfo.setText(s);
49. btn_ExitApp.setEnabled(true);
50. break;
51. default:
52. break;
53. }
54. }
55. };
 }
56.
57. @Override
58. public boolean onCreateOptionsMenu(Menu menu) {
59. getMenuInflater().inflate(R.menu.activity_main, menu);
60. return true;
 }
61.
62. private void startTask() {
63. myThread = new MyTaskThread(mHandler); // Create a thread

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

246

64. if (! myThread.isAlive())
65. {
66. start_time = System.currentTimeMillis();
67. myThread.start();

// Start thread
68. }
 }
69.
70. private void exitApp() {
71. try {
72. if (myThread!=null)
73. {
74. myThread.join();
75. myThread = null;
76. }
77. } catch (InterruptedException e) {
78. }
79. finish();

// Exit the activity
80. Process.killProcess(Process.myPid());

// Exit the application process
81. }
}

The code listed here is similar to the code framework of the example MainActivity
class in the Thread Example section. The lines of code highlighted in gray are added to
estimate the running time of the task code. Three variables are first defined in line 16 to
line 18: start_time as the task’s start time, end_time as the end time of the task, and time
as the length of the task’s running time. These three variables are parts of the following
formula:

time = end_time - start_time

In line 65, when we start the task threads, the current time of the machine is
recorded in the start_time variable. In line 43 to line 44, when the message is received that
the task thread has finished running, the machine’s time is recorded in end_time. The
currentTimeMillis function is a static function provided by the Java System class in the
java.lang package. This function returns the current time in milliseconds.

5. With reference to the example given in the Sample Usage
of Intel GPA on Android section, modify the project
AndroidManifest.xml file to make it comply with the
requirements of Intel GPA monitoring.

After the coding is completed and the app is compiled and generated, we can deploy
applications to the actual target device. In this case, we use the Lenovo K800 mobile
phone as a test target.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

247

Now we use Intel GPA to analyze our SerialPi application. Specific steps can be
found in the Sample Usage of Intel GPA on Android section. The first step is to monitor
and analyze the case of the two CPU loads. Clicking the Intel GPA Start button will start
recording the CPU load. The results of the analysis are shown in Figure 9-47 (a), (b), and (c).

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

248

Figure 9-47. Intel GPA Analysis Screen for SerialPi

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

249

Figure 9-47 (a) shows the analysis of clicking on the Start button, with the task thread
running at the start. Figure 9-47(b) shows task threads running. Figure 9-47(c) shows
task threads at the end of the run. From these three screens, we can see that the load on
the CPU is at a low level before the app starts to run or after the end of the run. Once the
computing task threads start to run, the load on the CPU sharply rises to 100 percent
of the full load level. We can also see that during the running of the task threads, only
one of two CPUs is at full capacity, and the other is at a low load level. By analyzing the
graph, you will notice that the 100 percent-full load does not always occur on a specific
CPU. Instead, the 100 percent-full load is alternatively rotating between two CPUs, which
reflects the Java Runtime time support for task scheduling; the processor system itself is
transparent to applications. Although a two-CPU load rate is subject to rotation, the load
rate is in a “complementary” state: a rising load on one CPU means the load on the other
drops. That is, the total load (the sum of loads of two CPUs at any time) does not exceed
the 100 percent-full load of a single CPU, which is useful when running more than one
application.

Optimized Application and Intel GPA Analysis
The previous example is the code derived directly from the formula for calculating the
value of π. In this simple mathematical example, is there any room for optimization? The
answer is definitely yes! Optimizing requires us to look into the algorithm of the app and
to apply the principles we just learned, making full use of the hardware features of Intel’s
Atom processors to release the full performance potential.

How do you tap the performance potential of the Intel Atom processor? As
we explained earlier, multicore Intel Atom processors with Intel Hyper-Threading
Technology have support for multithreading running in parallel on multiple physical
cores. For example, the Lenovo K800 phone uses an Intel Atom Z2460 processor and
supports two threads running in parallel. This is the entry point of our algorithm
optimization in accordance with the previously mentioned strategy to divide and
conquer. By carefully analyzing the code of the Run function of the MyTaskThread class,
we managed to make computing tasks allocated to multiple threads run (in this case
two); the threads running in parallel can make the app run faster. In order to calculate
the cumulative value of the integral area for π, in line 24 we calculated the integral area
one step at a time and added the cumulative sum. Now we take a different approach
and divide the integral area into many blocks and let each thread be responsible for
calculating one such block. Finally, we get the π value by adding the cumulative area of
blocks calculated by each thread. In this way, we use a “divide and conquer” strategy
to complete the task distribution and get the final results. We call this algorithm
optimization approach ThreadPi. When ThreadPi is calculating the cumulative value
of the integral area (which is the π value), we let the calculation step of each thread
accumulate the step size to increase the total number of threads. This allows each of them
to be responsible for the cumulating sum of their own area of the block.

The UI of the app ThreadPi when running is shown in Figure 9-48.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

250

The interface of this optimized application (ThreadPi) is the same as in the original
application (SerialPi). In Figure 9-48(b), we can see that this application uses thirteen
seconds to complete the calculation of the π value. Its time is reduced to almost half
of that of the original application (twenty-two seconds). The only difference is that the
optimized application uses two threads to calculate π.

This application is based on modifying the original application code; the key changes
that were made are as follows:

1. The thread class of the computing tasks’ MyTaskThread source
code file was modified to MyTaskThread.java as follows:

1. package com.example.threadpi;
2. import android.os.Handler;
3. import android.os.Message;

Figure 9-48. User Interface of ThreadPi Running Separately

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

251

4. public class MyTaskThread extends Thread {
5. private Handler mainHandler;
6. public static final int MSG_FINISHED = 1;
7. private static final long num_steps = 200000000;
8. // num_steps variable in formula, total steps
9. private static final double step = 1.0 / num_steps;
10. // step variable in formula, step length
11. public static double pi = 0.0;

// Calculated result of π
12. public static final int num_threads = 2;

// Thread count
13. private int myNum; // Thread #
 private static Object sharedVariable = new Object();
14. // synchronization lock variable for Pi variable
15. private static int finishedThreadNum = 0;
16. // count of threads finishing calculation
17.
18. static String msTimeToDatetime(long msnum){
19. // The function to convert the number of milliseconds into hours:

minutes: seconds. Millis
20. long hh,mm,ss,ms, tt= msnum;
21. ms = tt % 1000; tt = tt / 1000;
22. ss = tt % 60; tt = tt / 60;
 mm = tt % 60; tt = tt / 60;
23. hh = tt % 60;
24. String s = "" + hh +"hour "+mm+"minute "+ss + "秒 " + ms

+"milliseconds";
25. return s;
26. }

27. public void setStepStartNum(int n)
28. // set thread # for thread, in response to startting position of i
29. {
30. myNum = n;
31. }
32.
33. @Override
34. public void run()
35. {

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

252

36. double x, partialSum = 0.0;
37. long i;
38. for (i = myNum; i < num_steps; i += num_threads) {
39. x = (i + 0.5) * step;
40. partialSum += 4.0 / (1.0 + x * x);
41. }
42. synchronized (sharedVariable) {
43. pi += partialSum * step;
44. finishedThreadNum++;
45. if (finishedThreadNum >= num_threads) {
 //waiting all threads finishing run and send message
46. Message msg = new Message();
47. msg.what = MSG_FINISHED;

//Define message type
48. mainHandler.sendMessage(msg);

//Send message
49. }
50. }
51. }

 public MyTaskThread(Handler mh)

// constructor
 {
 super();
 mainHandler = mh;
 }
 }

The code segments highlighted in gray in the preceding code represent the main

difference between the application (ThreadPi) and the original application (SerialPi). In
lines 10 through 13, we define the variables required for multithreaded computing tasks.
The variable num_threads computes the number of threads when a computing task
starts. In this case, the Lenovo K800 has an Intel Atom processor with two logical CPUs,
so the value is set to two. The myNum variable computes the thread number, which is
selected in the range of zero to num_threads-1. The variable sharedVariable is introduced
by a synchronization lock applied to the variable pi. Since pi is a simple variable, it cannot
be directly locked. The finishedThreadNum variable represents the number of threads
used to complete calculation. When the value of finishedThreadNum is equal to that of
num_threads, we consider all computing threads are at the end of the run.

In lines 23 through 26, there is a function we added specifically for the
MyTaskThread. It marks the index number of the thread.

Lines 30 through 44 are the prototype code of the computing thread. Lines 30
through 35 are the direct code to calculate π. Compared with the corresponding code for
the original application, we can see that the sum variable of the original application has
been replaced with partialSum instead, which reflects the fact that the area of this thread
is just part of the total area. The most important difference is in line 32: the step length
variable i is not 1, but num_threads, which means that every time the application is run,
the thread counter moves forward a number of steps. The initial position of variable

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

253

i is not 0, but derived from the thread number. This is a little like the track-and-field
competition, where each athlete (thread) starts at the beginning of their lane rather than
at the same starting point. Following thread computing is like athletes running in their
own lanes around the track.

When a thread calculates the cumulating sum and needs to add this data onto the
total cumulating sum (which is the pi variable), this is a variable shared by multithreads,
and therefore needs to add a synchronization lock. This step corresponds to lines 36
through 44. In line 36, we add a synchronization lock, while in line 37 the result of the
thread’s own calculations is added to the public results of pi. In line 38, we add 1 to the
number of threads at the end of the calculation. In line 39, by comparing the number
of threads finishing the calculation to the total number of threads, we determine if all
computing threads have run to completion. Only by the end of all threads is the message
sent to the main thread.

2. The source code file of the main activity class MainActivity
MainActivity.java was modified, as in the following:

1. package com.example.threadpi;
2. import android.os.Bundle;
3. import android.app.Activity;
4. import android.view.Menu;
5. import android.widget.Button;
6. import android.view.View;
7. import android.view.View.OnClickListener;
8. import android.os.Process;
9. import android.widget.TextView;
10. import android.os.Handler;
11. import android.os.Message;

12. public class MainActivity extends Activity {
13. private MyTaskThread thrd[] = null;
14. private TextView tv_TaskOutputInfo;
15. private Handler mHandler;;
16. private long end_time;
17. private long time;
18. private long start_time;

19. @Override
20. public void onCreate(Bundle savedInstanceState) {
21. super.onCreate(savedInstanceState);
22. setContentView(R.layout.activity_main);
23. tv_TaskOutputInfo = (TextView)findViewById(R.

id.taskOuputInfo);
24. TextView tv_Info = (TextView)findViewById(R.id.textView1);
25. String ts = "This example currently has"+ MyTaskThread.

num_threads + "threads on calculatingπvalue";
26. tv_Info.setText(ts);

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

254

27. final Button btn_ExitApp = (Button) findViewById(R.id.exitApp);
29. btn_ExitApp.setOnClickListener(new /*View.*/OnClickListener(){
30. public void onClick(View v) {
31. exitApp();
32. }
33. });
34. final Button btn_StartTaskThread =

(Button) findViewById(R.id.startTaskThread);
35. btn_StartTaskThread.setOnClickListener(new

/*View.*/OnClickListener(){
36. public void onClick(View v) {
37. btn_StartTaskThread.setEnabled(false);
38. btn_ExitApp.setEnabled(false);
39. startTask();
40. }
41. });
42. mHandler = new Handler() {
43. public void handleMessage(Message msg) {
44. switch (msg.what)
45. {
46. case MyTaskThread.MSG_FINISHED:
47. end_time = System.currentTimeMillis();
48. time = end_time - start_time;
49. String s = "Run End,Pi="+

MyTaskThread.pi+ " Time spent:"
50. + MyTaskThread.
msTimeToDatetime(time);
51. tv_TaskOutputInfo.setText(s);
52. btn_ExitApp.setEnabled(true);
53. break;
54. default:
55. break;
56. }
57. }
58. };
59. }
60.
61. @Override
62. public boolean onCreateOptionsMenu(Menu menu) {
63. getMenuInflater().inflate(R.menu.activity_main, menu);
 return true;
64. }
65.
66. private void startTask() {
67. thrd = new MyTaskThread[MyTaskThread.num_threads];
68. start_time = System.currentTimeMillis();

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

255

69. for(int i=0; i < MyTaskThread.num_threads; i++){
70. thrd[i] = new MyTaskThread(mHandler);

// Create a thread
71. thrd[i].setStepStartNum(i);
72. thrd[i].start();
 }
73. }
74.
75. private void exitApp() {
76. for (int i = 0; i < MyTaskThread.num_threads

&& thrd != null; i++) {
77. try {
78. thrd[i].join();

// Wait for thread running to end
79. } catch (InterruptedException e) {
80. }
81. }
82. finish();
83. Process.killProcess(Process.myPid());
 }
 }

The code segments highlighted in gray in the source code represent the main
difference between the optimized application and the original application. In line 13, the
single thread object variable of the original application changes to an array of threads. In
the section on starting computing tasks that goes from line 67 through line 71, starting
a single thread in the original application is changed to starting all threads in the array
and setting the index number of the thread when starting the app. As for the meaning of
the thread number, it has been introduced in the MyTaskThread code description. Other
changes include waiting for the end of a single thread in order to wait for the end of the
thread array (lines 74 through 79).

After these optimizations are completed, we need to compile, generate, and deploy
the application to the target device, the same way as we did with the original application.
We can run the application independently and measure the run time of this optimized
application. The computing time is reduced to almost half of its original length.

Figure 9-49 shows the results of using Intel GPA to analyze this optimized application
(ThreadPi). The analysis process is the same as the process we used for the original
application (SerialPi).

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

256

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

257

Figure 9-49. Screenshots for Intel GPA Analysis of ThreadPi

As can be seen in the diagram, when the Start button is clicked, the calculation (task)
thread starts running. Both CPU loads raise from a low load to 100 percent-full capacity.
When the calculation is complete, two CPU loads drop back down to the low-load
condition. Unlike the original application (SerialPi), during the time that the computing
task is running, both CPUs are 100 percent fully loaded. There is no longer any load
rotation. This indicates that the optimized application (ThreadPi) has two parallel CPUs
working at full capacity on the calculation task, which makes the application run an order
of magnitude faster.

Overview
In this chapter, we have done a deep dive into performance optimizations on the
Android x86 platform. Starting with a high-level overview of performance optimization
methodologies, we talked about the key points to remember: reducing instructions,
reducing frequency of execution, choosing the most efficient instructions, using
parallelism correctly, and optimizing the available caching features. We also discussed
optimizations that are done for us and common misconceptions with performance.

CHAPTER 9 ■ PERfoRmAnCE oPTimizATions foR AndRoid APPliCATions on x86

258

From here, we looked into Intel VTune, a performance-profiling tool for Android and
x86, with an in-depth installation and setup guide. Next, we covered Android-specific
multithreading and design and looked at how it is implemented from an in-depth, code-
centric point of view. Finally, we connected all of the dots and used Intel GPA to observe
our Android application and then performed a small case study on how a correct parallel
implementation should look.

259

Chapter 10

x86 NDK and C/C++
Optimizations

Technological progress has merely provided us with more efficient means
for going backwards.

—Aldous Leonard Huxley

In the previous chapter we introduced the basic principles of performance optimization,
optimization methodologies, and related tools for Android application development.
Since Java is the primary application development language for Android developers,
optimization tools presented in the previous chapter were mainly for Java. We know
that the Java application is running in a virtual machine, and its speed is inherently
slower than C/C++ applications, which are directly compiled and run on the hardware
instruction. In addition, due to the underlying and fundamental nature of C/C++,
developers for C/C++ applications have created more optimization tools.

Vectorization
The Intel compiler supports advanced code generation, including auto-vectorization.
For the Intel C/C++ compiler, vectorization is loop unrolling with the generation of single
instruction, multiple data (SIMD) instructions operating on several elements at the same
time. The developer can unroll loops manually and insert appropriate function calls
corresponding to SIMD instructions. This approach is not forward-scalable and incurs
high development costs. The work has to be redone when the new microprocessor with
advanced instruction support is released. For example, early Intel Atom microprocessors
did not benefit from vectorization of loops processing double-precision floating point
while single-precision was processed by SIMD instruction effectively.

Auto-vectorization simplifies programming tasks because the programmer doesn’t
have to learn the instruction sets for each particular microprocessor. For example, the
Intel compiler always supports the latest generations of Intel microprocessors.

The -vec options turn on vectorization at the default optimization level for
microprocessors supporting IA32 architecture—both Intel and non-Intel. To improve
the quality of vectorization, you need to specify the target microprocessor on which the

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

260

code will execute. For optimal performance on Android smartphones based on Intel
architecture, it’s best to use the –xSSSE3_ATOM option. Vectorization is enabled with the
Intel C++ compiler at optimization levels of -O2 and higher.

Many loops are vectorized automatically and most of the time the compiler
generates optimal code on its own. However, sometimes it may require guidance from
the programmer. The biggest problem with efficient vectorization is making the compiler
estimate data dependencies as precisely as possible.

To take full advantage of Intel compiler vectorization, the following techniques
are useful:

Generate and understand a vectorization report•	

Improve performance by pointer disambiguation•	

Improve performance using inter-procedural optimization•	

Use compiler pragmas•	

Vectorization Report
This section starts with the implementation of memory copying. The loop takes the
structure commonly used in Android source code:

Listing 10-1. Memory Copying Implementation

// It is assumed that the memory pointed to by dst
// does not intersect with the memory pointed to by src

void copy_int(int* dst, int* src, int num)
{
int left = num;
if (left <= 0) return;
do {
 left--;
 *dst++ = *src++;
} while (left > 0);
}

For experiments with vectorization, you’ll reuse the hello-jni project. To do so, add
the function to the new file called jni/copy_cpp.cpp. Add this file to the list of source files
in jni/Android.mk as follows:

Listing 10-2. Vectorization Failure

LOCAL_SRC_FILES := hello-jni.c copy_int.cpp

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

261

To enable a detailed vectorization report, add the –vec-report3 option to the APP_
CFLAGS variable in jni/Application.mk:

APP_CFLAGS := -O3 -xSSSE3_ATOM -vec-report3

If you rebuild libhello-jni.so, you will notice that several remarks are generated:

jni/copy_int.cpp(6): (col. 5) remark: loop was not vectorized: existence of
vector dependence.
jni/copy_int.cpp(9): (col. 10) remark: vector dependence: assumed ANTI
dependence between src line 9 and dst line 9.
jni/copy_int.cpp(9): (col. 10) remark: vector dependence: assumed FLOW
dependence between dst line 9 and src line 9.
...

Unfortunately auto-vectorization failed, because too little information was
available to the compiler. If the vectorization were successful, the assignment would be
replaced as follows:

*dst++ = *src++;
//The previous statement would be replaced with
*dst = *src;
*(dst + 1) = *(src + 1);
*(dst + 2) = *(src + 2);
*(dst + 3) = *(src + 3);
dst += 4; src += 4;

The first four assignments would be performed in parallel by SIMD instructions.
But parallel execution of assignments is invalid if the memory accessed on the left sides
is also accessed on the right sides of assignment. Consider, for example, the case when
dst+1 is equal to src+2. In this case the final value at dst+2 would be incorrect.

The remarks indicate which types of dependencies are conservatively assumed by
the compiler preventing vectorization:

•	 Flow dependence is a dependence between the earlier store and
the later load from the same memory location.

•	 Anti dependence is a dependence between an earlier load and
a later store to the same memory location.

•	 Output dependence is between two stores to the same memory
location.

From the code comment, it is safe to assume that the author required that the
memory pointed to by dst and src not overlap. To communicate information to the
compiler, it is sufficient to add restrict qualifiers to the dst and src arguments:

void copy_int(int * __restrict__ dst, int * __restrict__ src, int num)

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

262

The restrict qualifier was added to the C standard published in 1999. To enable support
of C99, you need to add –std=c99 to options. Alternatively, you may use the –restrict
option to enable it for C++ and other C dialects. In the previous code, the __restrict__
keyword has been inserted and is always recognized as a synonym for the
restrict keyword.

If you rebuild the library again, you will notice that the loops are vectorized:

jni/copy_int.cpp(6): (col. 5) remark: LOOP WAS VECTORIZED.

In this example, vectorization failed due to compiler conservative analysis. There are
other cases when the loop is not vectorized, including when:

The instruction set does not allow for efficient vectorization. The •	
following remarks indicate this type of issue:

“Non-unit stride used”•	

“Mixed data types”•	

“Operator unsuited for vectorization”•	

“Contains unvectorizable statement at line XX”•	

“Condition may protect exception”•	

Compiler heuristics prevent vectorization. Vectorization is •	
possible but may actually lead to a slow down. If this is the case,
the diagnostics will contain:

"Vectorization possible but seems inefficient"•	

“Low trip count”•	

“Not inner loop”•	

Vectorizer’s shortcomings:•	

“Condition too complex”•	

“Subscript too complex”•	

“Unsupported loop structure”•	

The amount of information produced by vectorizer is controlled by –vec-reportN.
You may find additional details in the compiler documentation.

Pragmas
As you saw, you can use the restrict pointer qualifier to avoid conservative assumptions
about data dependencies. But sometimes it’s tricky to insert restrict keywords. If many
arrays are accessed in the loop, it might also be too laborious to annotate all pointers. To
simplify vectorization in these cases, you can use the Intel-specific pragma simd. You can
use it to vectorize inner loops, assuming there are no dependencies between iterations.

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

263

Pragma simd applies only to for loops operating on native integer and floating-point
types:

The •	 for loop should be countable with the number of iterations
known before the loop starts.

The loop should be innermost.•	

All memory references in the loop should not fault (it is important •	
for masked indirect references).

To vectorize the loop with a pragma, you need to rewrite the code into a for loop, as
shown in Listing 10-3.

Listing 10-3. Memory Copying Implementation that Can Be Vectorized

 void copy_int(int* dst, int* src, int num)
{
#pragma simd
for (int i = 0; i < num; i++) {
*dst++ = *src++;
}
}

Rebuild the example and note that the loop is vectorized. Simple loop restructuring
for pragma simd and insertions of #pragma simd in Android OS sources allow you to
improve the performance of the Softweg benchmark by 1.4x without modifying the
benchmark itself.

Auto-Vectorization and Limits
The previous sections’ examples were based on the assumption that you had a good
understanding of the code before starting your optimization efforts. If you are not
familiar with the code, you can help the compiler to analyze it by extending the scope
of the analysis. In the example with copying, the compiler should make conservative
assumptions because it knows nothing about the copy_int routine’s parameters. If call
sites are available for analysis, the compiler can try to prove that the parameters are safe
for vectorization.

To extend the scope of the analysis, you need to enable interprocedural
optimizations. A few of these optimizations are enabled by default during single file
compilation. Interprocedural optimizations are described in a separate section.

Vectorization cannot be used to speed up the Linux kernel code, because SIMD
instructions are disabled in kernel mode with the –mno-sse option. This was done
intentionally by kernel developers.

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

264

Interprocedural Optimizations
The compiler can perform additional optimizations if it can optimize across function
boundaries. For example, if the compiler knows that some function call argument is
constant, then it can create a special version of the function specifically tailored to that
constant argument. This special version later can be optimized with knowledge of the
parameter value.

To enable optimization within a single file, specify the –ip option. When this option
is specified, the compiler generates a final object file that can be processed by the system
linker. The disadvantage of generating an object file is almost complete information loss;
the compiler does not even attempt to extract information from the object files.

Single file scope may be insufficient for the analysis due to the information loss.
In this case, you need to add the –ipo option. When you use this option, the compiler
compiles files into an intermediate representation that is later processed by special Intel
tools: xiar and xild.

You use the xiar tool for creating static libraries instead of the GNU archiver ar,
and you use xild instead of the GNU linker ld. It is only required when the linker and
archiver are called directly. A better approach is to use the compiler drivers icc or icpc
for final linking. The downside of the extended scope is that the advantage of separate
compilation is lost—each modification of the source requires relinking and relinking
causes complete recompilation.

There is an extensive list of advanced optimization techniques that benefit from
global analysis. Chapter 9: Performance Optimizations for Android Applications on
x86 introduced some of these techniques, and others will be discussed later this chapter.
Note that some optimizations are Intel-specific and are enabled with –x* options.

Unfortunately, things are slightly more complicated in Android with respect to
shared libraries. By default, all global symbols are preemptable. Preemptability is easy to
explain by example. Consider the instance where the following libraries are linked into
the same executable:

Listing 10-4. libone.so, a Linked Library Example

 int id(void) {
 return 1;
}

Listing 10-4 is the first library linked, and the second is described in Listing 10-5.

Listing 10-5. libtwo.so, a Second Linked Library Example

 int id(void) {
 return 2;
}
int foo(void) {
 return id();
}

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

265

Assume that the libraries were created simply by executing icc –fpic –shared –o
<libname>.so <libname>.c. Only the strictly required options, –fpic and –shared, are given.

If the system dynamic linker loads the library libone.so before the library libtwo.so,
the call to the function id() from the function foo() is resolved in the libone.so library.

When the compiler optimizes the function foo(), it cannot use its knowledge about
id() from the libtwo.so library. For example, it cannot inline the id() function. If the
compiler inlined the id() function, it would break the scenario involving libone.so and
libtwo.so.

As a consequence, when you write shared libraries you should carefully specify
which functions can be preempted. By default all global functions and variables
are visible outside a shared library and can be preempted. The default setup is not
convenient when you implement few native methods. In this case, you need to export
only symbols that are called directly by the Dalvik Java virtual machine.

A symbol’s visibility attribute specifies whether a symbol is visible outside the
module and whether it can be preempted:

“Default” visibility makes a global symbol visible outside the •	
shared library and able to be preempted.

“Protected” visibility makes a symbol visible outside the shared •	
library, but the symbol cannot be preempted.

“Hidden” visibility makes a global symbol visible only within the •	
shared library and forbids preemption.

Returning to the hello-jni application, it is necessary to specify that the default
visibility is hidden and that the functions exported for JVM have protected visibility.

To set default visibility to hidden, add -fvisibility=hidden to the APP_CFLAGS
variable in jni/Application.mk:

APP_CFLAGS := -O3 -xSSSE3_ATOM -vec-report3 -fvisibility=hidden -ipo

To override the visibility of Java_com_example_hellojni_HelloJni_stringFromJNI,
add the attribute to the function definition:

Jstring __attribute__((visibility("protected")))
 Java_com_example_hellojni_HelloJni_stringFromJNI(JNIEnv* env, jobject
thiz)

With this flag set, the default visibility is hidden. This is the extent of the
interprocedural optimizations that exist for the Intel NDK applications.

Optimization with Intel IPP
You know from Chapter 7 that Android applications can bypass NDK development tools
and use existing .so shared libraries developed by third parties. We use the Intel IPP
libraries as an example in this chapter. Typical applications that use this library include
multimedia and streaming applications, but any application where any time performance
is an issue would benefit from this tool.

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

266

Intel IPP (Integrated Performance Primitives) is one of the high-performance
libraries that Intel provides. It is a powerful function library for Intel processors and
chipsets, and it covers math, signal processing, multimedia, image and graphics
processing, vector computing, and other areas. A prominent feature of Intel IPP is that its
code has been extensively optimized based on the features of any Intel processor, using a
variety of methods. It can be said that it is a highly optimized, high-performance service
library associated with Intel processors. Intel IPP has cross-platform features; it provides a
set of cross-platform and operating system general APIs, which can be used for Windows,
Linux, and other operating systems, and supports embedded, desktop, server, and other
processor-scale systems.

In fact, Intel IPP is a set of libraries, each with different function areas within the
corresponding library, and the libraries within Intel IPP differ slightly by the number
of functions supported in different processor architectures. For example, Intel IPP 5.X
image processing functions can support 2,570 functions in the Intel Architecture, while it
supports only 1,574 functions in the IXP processor architecture.

The services provided by a variety of high-performance libraries, including Intel IPP,
are multifaceted and multilayered. Applications can use Intel IPP directly or indirectly.
Intel IPP provides support for applications, as well as for other components and libraries.

Applications using Intel IPP can be at two levels—they use the Intel IPP function
interface directly, or use sample code to indirectly use Intel IPP. In addition, using the
OpenCV library (a cross-platform Open Source Computer Vision Library) is equivalent to
indirectly using the Intel IPP library. Both the Intel IPP and Intel MKL libraries eventually
run on high-performance Intel processors on various architectures.

Taking into account the power of Intel IPP, and in accordance with the characteristics
of optimized features of the Intel processor, you could use the Intel IPP library to replace
some key source code that runs often and consumes a lot of time. You can obtain much
higher performance acceleration than with general code. This is simply a “standing on
the shoulders of giants” practical optimization method. Users can achieve optimization
without manually writing code in critical areas.

Intel recently released Intel Android development environment code named
Beacon Mountain. It provides both Intel IPP and Intel Threaded Building Blocks (TBB)
for Android application developers. The average user can easily use Intel IPP, Intel TBB,
Intel GPA, and other tools for Android application development. Examples of the Intel
IPP can be found at http://software.intel.com/en-us/articles/intel-integrated-
performance-primitives-intel-ipp-intel-ipp-sample-code.

NDK Integrated Optimization Examples
We have introduced optimization based on the knowledge and basic theory of NDK-
based optimization. This section uses a case study to demonstrate comprehensive
optimization techniques by integrating NDK with C/C++.

The case is divided into two steps. The first step demonstrates a technique used
on a local function compiled from C/C++ code to accelerate the computing tasks in a
traditional Java-based program. The second step demonstrates the use of NDK compiler
optimizations to achieve the C/C++ optimization task itself. We introduce each step in the
following two sections of the chapter, which are closely linked.

http://software.intel.com/en-us/articles/intel-integrated-performance-primitives-intel-ipp-intel-ipp-sample-code
http://software.intel.com/en-us/articles/intel-integrated-performance-primitives-intel-ipp-intel-ipp-sample-code

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

267

C/C++: The Original Application Acceleration
In the previous chapter, we introduced the use of Java code examples (SerialPi) to
calculate p. In this section, we will change the computing tasks from Java to C code, using
NDK to turn it into a local library. We then compare it with the original Java code tasks
and you’ll get some first-hand experience using C/C++ native library functions to achieve
the traditional Java-based tasks acceleration.

The application used for this case study is named NDKExp, and we are using the
Lenovo K800 as the target cell phone, which runs the interface shown in Figure 10-1.

Figure 10-1 (a) shows the application’s main interface, including three buttons—
Start Java Task, Start C Task, and Exit App. Clicking the Start Java Task button will start
a traditional Java task (as shown in the source code of SerialPi written in Java, which
calculates p). When the task is completed, the calculated results will be displayed below
the button with the time spent, as shown in Figure 10-1 (b). Clicking the Start C Task
button will start a computing task written in C using the same math formula to calculate p.
When the task is completed, the calculated results will be displayed below the button
with the time spent, as shown in Figure 10-1 (c).

As seen in Figure 10-1, for the same task, the application written in traditional Java
takes 12.565 seconds to complete; the application written in C and compiled by the NDK
development tool takes 6.378 seconds to complete. This example allows you to visually
experience the power of using the NDK to achieve performance optimization.

This example is implemented as follows.

Figure 10-1. Original Version of NDKExp Running Interface

(a) Application Started (b) App Running (c) After Running

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

268

Step 1: Create a New Android Application Project
1. Generate the project in Eclipse, name the project NDKExp,

and choose the Build SDK option to support the x86 version
of the API (in this case, the Android 4.0.3). Others are using
the default values. After you have completed all these steps,
generate the project.

2. Modify the main layout file. Put three text views and three
buttons in the layout, set their Text and ID attributes, and
adjust their size and position, as shown in Figure 10-2.

Figure 10-2. Layout of the Original Version NDKExp

3. Modify the main layout of the class source code file
MainActivity.java. It reads as follows:

1. package com.example.ndkexp;
2. import android.os.Bundle;
3. import android.app.Activity;
4. import android.view.Menu;
5. import android.widget.Button;
6. import android.view.View;
7. import android.view.View.OnClickListener;

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

269

8. import android.os.Process;
9. import android.widget.TextView;
10. import android.os.Handler;
11. import android.os.Message;
12.
13. public class MainActivity extends Activity {
14. private JavaTaskThread javaTaskThread = null;
15. private CCodeTaskThread cCodeTaskThread = null;
16. private TextView tv_JavaTaskOuputInfo;
17. private TextView tv_CCodeTaskOuputInfo;
18. private Handler mHandler;;
19. private long end_time;
20. private long time;
21. private long start_time;
22. @Override
23. public void onCreate(Bundle savedInstanceState) {
24. super.onCreate(savedInstanceState);
25. setContentView(R.layout.activity_main);
26. tv_JavaTaskOuputInfo = (TextView)findViewById
 (R.id.javaTaskOuputInfo);
27. tv_JavaTaskOuputInfo.setText("Java the task is not
 started ");
28. tv_CCodeTaskOuputInfo = (TextView)findViewById
 (R.id.cCodeTaskOuputInfo);
29. tv_CCodeTaskOuputInfo.setText("C code task is not
 start ");
30. final Button btn_ExitApp = (Button) findViewById
 (R.id.exitApp);
31. btn_ExitApp.setOnClickListener(new /*View.*/
 OnClickListener(){
32. public void onClick(View v) {
33. exitApp();
34. }
35. });
36. final Button btn_StartJavaTask = (Button)
 findViewById(R.id.startJavaTask);
37. final Button btn_StartCCodeTask = (Button)
 findViewById(R.id.startCCodeTask);
38. btn_StartJavaTask.setOnClickListener(new /*View.*/
 OnClickListener(){
39. public void onClick(View v) {
40. btn_StartJavaTask.setEnabled(false);
41. btn_StartCCodeTask.setEnabled(false);
42. btn_ExitApp.setEnabled(false);
43. startJavaTask();
44. }
45. });

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

270

46. btn_StartCCodeTask.setOnClickListener(new /*View.*/
 OnClickListener(){
47. public void onClick(View v) {
48. btn_StartJavaTask.setEnabled(false);
49. btn_StartCCodeTask.setEnabled(false);
50. btn_ExitApp.setEnabled(false);
51. startCCodeTask();
52. }
53. });
54. mHandler = new Handler() {
55. public void handleMessage(Message msg) {
56. String s;
57. switch (msg.what)
58. {
59. case JavaTaskThread.MSG_FINISHED:
60. end_time = System.currentTimeMillis();
61. time = end_time - start_time;
62. s = " The return value of the Java task "+
 (Double)(msg.obj) +" Time consumed:"
63. + JavaTaskThread.msTimeToDatetime(time);
64. tv_JavaTaskOuputInfo.setText(s);
65. btn_StartCCodeTask.setEnabled(true);
66. btn_ExitApp.setEnabled(true);
67. break;
68. case CCodeTaskThread.MSG_FINISHED:
69. end_time = System.currentTimeMillis();
70. time = end_time - start_time;
71. s = " The return value of the C code
 task"+ (Double)(msg.obj) +" time consumed:"
72. + JavaTaskThread.msTimeToDatetime(time);
73. tv_CCodeTaskOuputInfo.setText(s);
74. btn_StartJavaTask.setEnabled(true);
75. btn_ExitApp.setEnabled(true);
76. break;
77. default:
78. break;
79. }
80. }
81. };
82. }
83.
84. @Override
85. public boolean onCreateOptionsMenu(Menu menu) {
86. getMenuInflater().inflate(R.menu.activity_main, menu);
87. return true;
88. }
89.

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

271

90. private void startJavaTask() {
91. if (javaTaskThread == null)
92. javaTaskThread = new JavaTaskThread(mHandler);
93. if (! javaTaskThread.isAlive())
94. {
95. start_time = System.currentTimeMillis();
96. javaTaskThread.start();
97. tv_JavaTaskOuputInfo.setText("The Java task is
 running...");
98. }
99. }
100.
101. private void startCCodeTask() {
102. if (cCodeTaskThread == null)
103. cCodeTaskThread = new CCodeTaskThread(mHandler);
104. if (! cCodeTaskThread.isAlive())
105. {
106. start_time = System.currentTimeMillis();
107. cCodeTaskThread.start();
108. tv_CCodeTaskOuputInfo.setText("C codes task is
 running...");
109. }
110. }
111. private void exitApp() {
112. try {
113. if (javaTaskThread !=null)
114. {
115. javaTaskThread.join();
116. javaTaskThread = null;
117. }
118. } catch (InterruptedException e) {
119. }
120. try {
121. if (cCodeTaskThread !=null)
122. {
123. cCodeTaskThread.join();
124. cCodeTaskThread = null;
125. }
126. } catch (InterruptedException e) {
127. }
128. finish();
129. Process.killProcess(Process.myPid());
130. }
131.
132. static {
133. System.loadLibrary("ndkexp_extern_lib");
134. }
135. }

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

272

The preceding code is basically the same as the example code for SerialPi. The code
in lines 123 through 134 is the only new part. This code requires that the libndkexp_
extern_lib.so shared library file be loaded before the application is running. The
application needs to use local functions in this library.

4. The new threads task class JavaTaskThread in the project is
used to calculate p. The code is similar to the MyTaskThread
class code in the SerialPi example and is omitted here.

5. The thread task class CCodeTaskThread in the new project
calls the local function to calculate p; its source code files
CCodeTaskThread.java read as follows:

1. package com.example.ndkexp;
2. import android.os.Handler;
3. import android.os.Message;

4. public class CCodeTaskThread extends Thread {
5. private Handler mainHandler;
6. public static final int MSG_FINISHED = 2;
 // The message after the end of the task
7. private native double cCodeTask();
 // Calling external C functions to accomplish computing
 tasks
8. static String msTimeToDatetime(long msnum){
9. long hh,mm,ss,ms, tt= msnum;
10. ms = tt % 1000; tt = tt / 1000;
11. ss = tt % 60; tt = tt / 60;
12. mm = tt % 60; tt = tt / 60;
13. hh = tt % 60;
14. String s = "" + hh +" Hour "+mm+" Minute "+ss + " Second
 " + ms +" Millisecond ";
15. return s;
16. }
17. @Override
18. public void run()
19. {
20. double pi = cCodeTask();
 // Calling external C function to complete the calculation
21. Message msg = new Message();
22. msg.what = MSG_FINISHED;
23. Double dPi = Double.valueOf(pi);
24. msg.obj = dPi;
25. mainHandler.sendMessage(msg);
26. }

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

273

27. public CCodeTaskThread(Handler mh)
28. {
29. super();
30. mainHandler = mh;
31. }
32. }

The previous code is similar to the code framework of the MyTaskThread class of the
SerialPi example. The main difference is at line 20. The original Java code for calculating p
is replaced by calling a local function cCodeTask. To state that the cCodeTask function is a
local function, you must add the local declaration of the function in line 7.

6. Build the project in Eclipse. Similarly here we have just a
build, rather than run.

7. Create the jni subdirectory in the project’s root directory.

Step 2: Write the C Implementation Code of the
cCodeTask Function
According to the method described in the NDK Examples section of Chapter 7: Creating
and Porting NDK-based Android Applications, you need to compile the file into a .so
library file. The main steps are as follows:

1. Create a C interface file. Since the case is a CCodeTaskThread
class using a local function, you need to generate the class
header file according to the class file of this class. At the
command line, go to the project directory and then run the
following command:

E:\temp\Android Dev\workspace\NdkExp> javah -classpath "D:\
Android\android-sdk\platforms\android-15\android.jar";bin/classes
com.example.ndkexp.CCodeTaskThread

This command will generate a file in the project directory named com_example_
ndkexp_CCodeTaskThread.h. The main content of the document is as follows:

 ...
23. JNIEXPORT jdouble JNICALL Java_com_example_ndkexp_
 CCodeTaskThread_cCodeTask
24. (JNIEnv *, jobject);
 ...

In lines 23–24, the prototype of local function cCodeTask is defined.

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

274

2. Based on the previous header files, you create corresponding
C code files in the jni directory of the project. In this case, we
named it mycomputetask.c, which reads as follows:

1. #include <jni.h>
2. jdouble Java_com_example_ndkexp_CCodeTaskThread_cCodeTask
 (JNIEnv* env, jobject thiz)
3. {
4. const long num_steps = 100000000; // The total step length
5. const double step = 1.0 / num_steps;
6. double x, sum = 0.0;
7. long i;
8. double pi = 0;
9.
10. for (i=0; i< num_steps; i++){
11. x = (i+0.5)*step;
12. sum = sum + 4.0/(1.0 + x*x);
13. }
14. pi = step * sum;
15.
16. return (pi);
17. }

Lines 4 through 16 are the body of the function—the code calculating p, which is the code
that corresponds to the MyTaskThread class in the SerialPi example. Note that in line 4,
the value of the variable num_steps (the total step length) must be the same as the value
of the same step size that the JavaTaskThread class represents. Otherwise, there is no
significance in comparing.

The first line of each jni file must contain the headers. Line 2 is the cCodeTask
function prototype and is based on a slightly modified header files obtained in the
previous step.

Line 16 shows the return results. With the double type of Java, which corresponds to
the jdouble type of C, C can have a pi variable in type double returned directly to it. This
is something we discussed in the introduction to this chapter.

3. In the project jni directory, you must create the Android.mk
and Application.mk files. The content of Android.mk reads as
follows:

1. LOCAL_PATH := $(call my-dir)
2. include $(CLEAR_VARS)
3. LOCAL_MODULE := ndkexp_extern_lib
4. LOCAL_SRC_FILES := mycomputetask.c
5. include $(BUILD_SHARED_LIBRARY)

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

275

Line 4 specifies the C code in the case file. Line 3 indicates the filename of the
generated library, and its name must be consistent with the parameters of the System.
loadLibrary function in line 133 of the project file MainActivity.java.

4. According to the method described in Chapter 7’s section on
NDK Examples, you compile the C code into the .so library
file under the lib directory of the project.

5. Deployment: run the project.

The application running interface is shown in the Figure 10-3.

Compiler Optimization Extension Application
In the previous example, you witnessed the capabilities of NDK for application
acceleration. However, this application implemented only one local function and can’t
provide you with information to compare the effects of compiler optimizations. For this
purpose, you need to rebuild the application and use it to experiment with the effects of
compiler optimizations.

The application running the interface is shown in Figure 10-3.
The application has four buttons. When you click on the Start Java Task button, the

response code does not change.
When you click the Start C Task or Start Other C Task button, the application will

start a local function to run.

Figure 10-3. Extended Version of the NDKExp Running Interface

(c) App Optimized(a) Screen After Task (b) App Unoptimized

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

276

The code (the function body) of the two functions is the same. It calculates the
values of p, but with a different name. The first one calls the cCodeTask function, while
the second one calls the anotherCCodeTask function. These two functions are located in
the mycomputetask.c and anothertask.c files and they correspond to the library files
libndkexp_extern_lib.so and libndkexp_another_lib.so, respectively, after being
compiled. In this case, you compile libndkexp_extern_lib.so using the -O0 option and
compile libndkexp_another_lib.so using the -O3 option, so one is compiled
non-optimized and the other is compiled optimized.

Therefore, clicking Start C Task will run the unoptimized version of the C function, as
shown in Figure 10-3 (b), and clicking Start Other C Task will run the optimized version
of the C functions, such as in Figure 10-3 (c). After task execution, the system displays the
calculated results for the consumption of time.

As can be seen from the figure, whether or not the compiler optimizations are used,
the running time of the local function is always shorter than the running time (12.522
seconds) of Java functions. Relatively speaking, the execution time (5.632 seconds) of
the -O3 optimization function is shorter than the execution time (7.321 seconds) of the
unoptimized (-O0 compiler option) function.

From this comparison, you can see that using compiler optimizations actually
reduces application execution time. Not only that, it is even shorter than the original
application running time (6.378 seconds). This is because the original application
without compiler options defaults to the -O1 level of optimization, whereas the -O3
optimization level is even higher than the original application, so it’s not surprising that it
has the shortest running time.

The following application is a modified and extended version of the original
application NDKExp. The steps are as follows.

Step 1: Modify the Android Part of the Application
1. Modify the main layout file. Add a text view and a button in a

layout. Set their Text and ID properties, and adjust their size
and position, as shown in Figure 10-4.

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

277

2. Modify the class source code file MainActivity.java of the
main layout. The main changes are as follows:

 ...
13. public class MainActivity extends Activity {
14. private JavaTaskThread javaTaskThread = null;
15. private CCodeTaskThread cCodeTaskThread = null;
16. private AnotherCCodeTaskThread anotherCCodeTaskThread = null;
17. private TextView tv_JavaTaskOuputInfo;
18. private TextView tv_CCodeTaskOuputInfo;
19. private TextView tv_AnotherCCodeTaskOuputInfo;
 ...
182. static {
183. System.loadLibrary("ndkexp_extern_lib");
184. System.loadLibrary("ndkexp_another_lib");
185. }
186. }

Figure 10-4. Extended Version NDKExp Layout

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

278

In lines 16 and 19, add the required variables for the new Start Other C Task button.
The key change is in the line 184. In addition to loading the original shared library

files, those files are also added into another library file.

3. In the project, add a thread task class with the name
AnotherCCodeTaskThread that calls a local function to
calculate p. Its source code file AnotherCCodeTaskThread.
java reads as follows:

1. package com.example.ndkexp;
2. import android.os.Handler;
3. import android.os.Message;

4. public class AnotherCCodeTaskThread extends Thread {
5. private Handler mainHandler;
6. public static final int MSG_FINISHED = 3;
 // The message after the end of the task
7. private native double anotherCCodeTask();
 // Calling external C functions to complete computing tasks

8. static String msTimeToDatetime(long msnum){
9. long hh,mm,ss,ms, tt= msnum;
10. ms = tt % 1000; tt = tt / 1000;
11. ss = tt % 60; tt = tt / 60;
12. mm = tt % 60; tt = tt / 60;
13. hh = tt % 60;
14. String s = "" + hh +"Hour "+mm+"Minute "+ss + "Second " +
 ms +"Millisecond";
15. return s;
16. }

17. @Override
18. public void run()
19. {
20. double pi = anotherCCodeTask();
 // Calling external C function to complete the calculation
21. Message msg = new Message();
22. msg.what = MSG_FINISHED;
23. Double dPi = Double.valueOf(pi);
24. msg.obj = dPi;
25. mainHandler.sendMessage(msg);
26. }

27. public CCodeTaskThread(Handler mh)
28. {
29. super();
30. mainHandler = mh;
31. }
32. }

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

279

The previous code is almost transcribing the code of the CCodeTaskThread class. It only
does a little processing by calling another external C function called anotherCCodeTask to
complete computing tasks in line 20. In line 7 it provides appropriate instructions for local
functions and changes the value of the message type in line 6. In this way it distinguishes
itself with a completed message by the previous C function. Line 4 shows that the task class
is inherited from the thread class.

4. Build the project in Eclipse. Similarly here, you have just a
build, rather than a run.

Step 2: Modify the Makefile File of mycomputetask.c and
Rebuild the Library Files

1. Modify the Android.mk file under the jni directory of the
project, which reads as follows:

1. LOCAL_PATH := $(call my-dir)
2. include $(CLEAR_VARS)
3. LOCAL_MODULE := ndkexp_extern_lib
4. LOCAL_SRC_FILES := mycomputetask.c
5. LOCAL_CFLAGS := -O0
6. include $(BUILD_SHARED_LIBRARY)

Unlike the original application, in line 5 you add the parameters of the command
LOCAL_CFLAGS passed to gcc. The value -O0 means no optimization.

2. Compile the C code file into the .so library file in the lib
directory of the project.

3. Save the .so library files in the lib directory of the project
(in this example, the file is libndkexp_extern_lib.so) to
some other directory in the disk somewhere. The following
operations will delete this .so library file.

Step 2: Write the C Implementation Code for the
anotherCCodeTask Function
Copy the processing steps for the cCodeTask function from the previous section. Then
compile the file into the .so library file. The main steps are as follows:

1. Create a C interface file. At the command line, go to the
project directory, and then run the following command:

E:\temp\Android Dev\workspace\NdkExp> javah -classpath
"D:\Android\android-sdk\platforms\android-15\android.jar";bin/
classes com.example.ndkexp.AnotherCCodeTaskThread

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

280

This command will generate a directory named project com_example_ndkexp_
AnotherCCodeTaskThread.h file. The main contents of the file are:

 ...
23. JNIEXPORT jdouble JNICALL Java_com_example_ndkexp_
AnotherCCodeTaskThread_anotherCCodeTask
24. (JNIEnv *, jobject);
 ...

Lines 23–24 define the local function anotherCCodeTask prototype.

2. According to the previously mentioned header files in the project
jni directory, establish corresponding C code files, in this case
named anothertask.c, the content of which is based on the
mycomputetask.c modification. The modification as follows:

1. #include <jni.h>
2. jdouble Java_com_example_ndkexp_AnotherCCodeTaskThread_
anotherCCodeTask (JNIEnv* env, jobject thiz)
3. {
 ...
17. }

The second line of mycomputetask.c is replaced by the prototype of the
anotherCCodeTask function. This is the same function prototype copied from the
description about the function prototype of the .h file, which was created in the previous
step with minor revisions. The final form can be seen in code line 2.

3. Modify the Android.mk file under the jni directory in the
project, as follows:

1. LOCAL_PATH := $(call my-dir)
2. include $(CLEAR_VARS)
3. LOCAL_MODULE := ndkexp_another_lib
4. LOCAL_SRC_FILES := anothertask.c
5. LOCAL_CFLAGS := -O3
6. include $(BUILD_SHARED_LIBRARY)

In line 4, the value is replaced with the new C code file anothertask.c. In line 3,
the value is replaced with new library filename, which is consistent with the parameters
of the System.loadLibrary function (which is in line 184 of the MainActivity.java file
in the project). In line 5, the value of the LOCAL_CFLAGS parameter for the passed gcc
command is replaced with -O3, which represents the highest level of optimization.

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

281

4. Compile the C code file into the .so library file under the lib
directory of the project. Then you can see that the libndkexp_
extern_lib.so documents under the lib directory in the
project disappeared and were replaced by a newly generated
libndkexp_another_lib.so file. It is very important to save
library files.

5. Put the previously saved libndkexp_extern_lib.so library
file back into the libs directory in the project.

There are now two files in the directory. You can use the dir command to verify:

E:\temp\Android Dev\workspace\NdkExp>dir libs\x86
2013-02-28 00:31 5,208 libndkexp_another_lib.so
2013-02-28 00:23 5,208 libndkexp_extern_lib.so

6. You redeploy, and run the project.

The application running the interface is shown in Figure 10-3, earlier in this chapter.

Multiple Situations Comparison of Compiler
Optimization Extensions
Through the case studies in this chapter, you have first-hand experience about the effects
of compiler optimization. Task execution time was shortened from 7.321 seconds before
optimization to 5.632 seconds after optimization. We only compared the difference of the
gcc -O3 and -O0 command. You can extend this configuration by modifying the Android.
mk file when compiling the two files—mycomputetask.c and anothertask.c—and then
continue to compare the differences in the optimizing effects when using different
compiler command options. To modify the Android.mk file, you only need to modify the
value of the LOCAL_CFLAGS item. You can select many options of the gcc command to
compare. Here are a few examples to illustrate this process.

Example: Compare the Optimization Results by Using
SSE Instructions
You can have the Start C Task button correspond to the Android.mk file of
mycomputetask.c compile:

LOCAL_CFLAGS := -mno-sse

and have the Start Other C Task button correspond to the Android.mk file of the
anothertask.c compile:

LOCAL_CFLAGS := -msse3

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

282

The former tells the compiler not to compile SSE instructions; the latter allows the
compiler to program into SSE3 instructions. The reason to choose SSE3 instructions is
that SSE3 is the highest level of instructions that the Intel Atom processor supports.

The results of running the application are shown in Figure 10-5.

Figure 10-5. Optimization Comparison of Compiler SSE Instructions for Application NDKExp

Seen from Figure 10-5, the same task using an SSE instruction execution time is
shorter than not using an SSE instruction. The execution time is shortened from the
original 6.759 seconds to 5.703 seconds.

It needs to be noted that, in this example, we finished modifying Android.mk files
and reran ndk-build to generate the .so library file. We immediately deployed and ran
the NDKExp project, but found out that we could not reach the desired effect. The reason
is because only the .so library files are updated. The project manager of Eclipse does not

CHAPTER 10 ■ x86 NDK AND C/C++ OPTimizATiONs

283

detect that that the project needs to rebuild. As a result, the apk did not get updates, and
NDKExp application on the target machine code would not update the original code.
Considering this situation, you can use the following methods to avoid this problem:

1. Uninstall the application from the phone.

2. Delete the classes.dex, jarlist.cache, and NdkExp.apk
documents from the bin subdirectory of host project directory.

3. Delete the project in Eclipse.

4. In Eclipse, re-import the project.

5. Finally, redeploy and run projects, so you can have the
desired effect.

This example only compares the effect of the SSE instructions. Interested readers can
try other gcc compiler options and compare their operating results.

In addition, in the previous examples, what we are concerned with is the NDK effect
only, so the C functions still use single-threaded code. Interested readers could combine
the NDK optimization knowledge they learned from this chapter with the multithreading
optimization in the previous chapter and change the C function to multithreading to
implement along with the compiler optimization. Such a written set of optimization
techniques in a variety of applications will certainly allow the application to run faster.

Overview
Similar to Chapter 9, this chapter focused heavily on the code and technical aspects
of the Android NDK on Intel’s x86 architecture. We walked through creating a simple
Android NDK application to show off how all of these pieces connect and ran it on an
x86 emulator. The chapter also provided a high-level look at the optimizations that the
Android NDK compiler can provide its developers. We then looked at Intel’s Integrated
Performance Primitives library (IPP), a high-performance library provided to x86
developers. Finally, we wrapped the chapter up with some examples of how to use all of
the tools and tricks discussed.

285

Chapter 11

Using Intel Hardware
Accelerated Execution
Manager on Windows, Mac
OS, and Linux to Speed Up
Android on x86 Emulation

I do not fear computers. I fear the lack of them.

—Isaac Asimov

Once the Android SDK is installed, the Android emulator is running, and your
development environment is set up to your liking, there is still one frustration ahead: the
Android emulator can be extremely slow. Especially when testing and debugging larger
applications, the emulator’s speed is a noticeable bottleneck in development. The best
solution to this is the Intel Hardware Accelerated Execution Manager (Intel HAXM) with
Intel Virtualization Technology (Intel VT). If your development system uses one of the
supported Intel processors, this hardware-assisted virtualization engine, or hypervisor,
will enable lightning-fast Android emulation.

Introduction
This software:

Uses Intel VT, available on select Intel processors.•	

Provides hardware-accelerated emulation of Intel x86 Android •	
virtual devices.

Integrates with the Android SDK.•	

CHAPTER 11 ■ Using inTEl HARdwARE ACCElERATEd ExECUTion MAnAgER on windows, MAC os, And
linUx To sPEEd UP AndRoid on x86 EMUlATion

286

Intel HAXM requires the Android SDK to be installed (version 17 •	
or higher). For best performance, using SDK version 2.0 or higher
is recommended.

Recent Windows or Mac OS X (32/64-bit).•	

As an important note, Intel HAXM cannot be used on systems without an Intel
processor nor an Intel processor without the required hardware features. To determine
the capabilities of your Intel processor, please visit http://ark.intel.com/. Additionally,
Intel HAXM can only accelerate Android x86 system images for emulator x86. HAXM
has been validated with x86 system images provided by Intel at http://www.intel.com/
software/android.

Downloading Intel HAXM
Intel HAXM can be installed either through the Android SDK Manager (recommended),
or manually, by downloading the installer from Intel’s web site.

Note ■ intel HAxM does not automatically check for updates. To get the latest version,
download the intel HAxM package using the Android sdK Manager (recommended) or from
the intel software network Android developer site.

Downloading Through Android SDK Manager
1. Start the Android SDK Manager.

2. Under Extras, check the box next to Intel x86 Emulator
Accelerator (HAXM), as seen in Figure 11-1.

http://ark.intel.com/
http://www.intel.com/software/android
http://www.intel.com/software/android

CHAPTER 11 ■ Using inTEl HARdwARE ACCElERATEd ExECUTion MAnAgER on windows, MAC os, And
linUx To sPEEd UP AndRoid on x86 EMUlATion

287

3. Click the Install Package button.

4. Review the Intel Corporation license agreement. If you accept
the terms, select Accept and click Install.

5. The SDK Manager will download the installer to the Tools
directory, under the main SDK directory.

6. Extract the installer inside the Tools directory and follow the
installation instructions for your platform.

Figure 11-1. Downloading the Intel x86 Emulator Accelerator (HAXM)

CHAPTER 11 ■ Using inTEl HARdwARE ACCElERATEd ExECUTion MAnAgER on windows, MAC os, And
linUx To sPEEd UP AndRoid on x86 EMUlATion

288

Downloading Manually
1. Go to http://www.intel.com/software/android.

2. Choose the Intel HAXM installer package for your platform.

3. Extract the installer and follow the installation instructions for
your platform.

Installing Intel HAXM on Windows

Warning ■ intel HAxM installation will fail if your system does not meet the system
requirements, including support for intel processor features, such as intel Virtualization
Technology (intel VT).

1. Download the installer package from http://www.intel.com/software/android
or by using the SDK manager.

2. Run the installer (and accept the UAC prompt, if applicable).

3. If an older version Intel HAXM is installed, you will see
something like Figure 11-2.

Figure 11-2. Notification Dialog

4. Click Yes to upgrade Intel HAXM, or click No to exit the
installation and keep the currently installed version of Intel
HAXM.

5. You will see a screen like Figure 11-3.

http://www.intel.com/software/android
http://www.intel.com/software/android

CHAPTER 11 ■ Using inTEl HARdwARE ACCElERATEd ExECUTion MAnAgER on windows, MAC os, And
linUx To sPEEd UP AndRoid on x86 EMUlATion

289

Note ■ You can access the documentation at any time by clicking intel HAxM
documentation.

6. Click Next.

7. Read the Intel HAXM End-User License Agreement (EULA)
and, if you agree, accept the EULA and continue installing
Intel HAXM.

8. You will be prompted to adjust the amount of RAM allocated to Intel HAXM,
as shown in Figure 11-4.

Figure 11-3. HAXM Installation Screen

CHAPTER 11 ■ Using inTEl HARdwARE ACCElERATEd ExECUTion MAnAgER on windows, MAC os, And
linUx To sPEEd UP AndRoid on x86 EMUlATion

290

Note ■ The installer also functions as a configuration tool for intel HAxM. To change your
memory settings, run the installer again.

9. Figure 11-5 confirms your Intel HAXM memory allocation
settings.

Figure 11-4. HAXM RAM Adjustment Screen

CHAPTER 11 ■ Using inTEl HARdwARE ACCElERATEd ExECUTion MAnAgER on windows, MAC os, And
linUx To sPEEd UP AndRoid on x86 EMUlATion

291

10. When the Intel HAXM installation is finished, click Finish to exit the installer.

Intel HAXM is now installed and ready to use. To verify that Intel HAXM is running, open
a command prompt window and execute the following command:

sc query
intelhaxm

If Intel HAXM is working, the command will show a status message indicating that
the state is 4 RUNNING.

To stop Intel HAXM, use these commands:

sc stop
intelhaxm

To start Intel HAXM, use these commands:

sc start
intelhaxm

Figure 11-5. Intel HAXM Ready to Install

CHAPTER 11 ■ Using inTEl HARdwARE ACCElERATEd ExECUTion MAnAgER on windows, MAC os, And
linUx To sPEEd UP AndRoid on x86 EMUlATion

292

Adjusting Intel HAXM Memory Allocation
To change the amount of memory allocated to Intel HAXM, run the installer again.

Note ■ Changes to intel HAxM memory settings will take effect when intel HAxM is
restarted. Currently running emulators will continue to use the previous memory setting.

Intel Virtualization Technology (Intel VT-x)
Capability
When installing Intel HAXM, you may encounter an error regarding Intel VT-x support.
This error message can be triggered by the following conditions:

Intel VT-x is not supported by your computer’s processor.•	

Intel VT-x is not enabled.•	

Intel VT-x Is Not Supported
Intel HAXM requires an Intel processor with Intel VT-x functionality and cannot be used
on systems lacking this hardware feature. To determine the capabilities of your Intel
processor, visit http://ark.intel.com/.

Intel VT-x Is Not Enabled
In some cases, Intel VT-x may be disabled in the system BIOS and must be enabled within
the BIOS setup utility. To access the BIOS setup utility, you press a certain key during the
computer’s boot sequence. This key is dependent on which BIOS is used, but it is typically
F2, Delete, or the Esc key. Within the BIOS setup utility, Intel VT may be identified by
the terms “VT,” “Virtualization Technology,” or “VT-d.” Make sure to enable all of the
virtualization features. For specific information on entering BIOS setup and enabling Intel
VT, contact your hardware manufacturer.

Tips and Tricks
The following list contains some recommendations to get the best experience out of the
Android emulator using the Intel HAXM driver:

Enable the GPU acceleration in the AVD Manager for your image. •	
The HAXM driver executes most CPU instructions natively
through Intel Virtualization Technology in the processor and
the GPU acceleration offloads the OpenGL calls to the host
GPU. As of SDK release 19, the GPU acceleration is considered
“experimental” by Google.

CHAPTER 11 ■ Using inTEl HARdwARE ACCElERATEd ExECUTion MAnAgER on windows, MAC os, And
linUx To sPEEd UP AndRoid on x86 EMUlATion

293

Launch the emulator from the command line to get more •	
verbose output.

Use the following command to launch the emulator:•	

emulator-x86 –avd <avd name> -partition-size 1024 –gpu on –verbose

A partition size of 1024 allows 1GB of apps to be installed. This is •	
different from the SDCard size option in the AVD manager, which
specifies how much storage for storing media files is allotted
inside of the emulator. Setting the GPU to on will provide better
graphics performance.

Make sure the •	 Path environment variable to the GPU emulation
libraries is set in Control Panel ➤ System ➤ Advanced System
Settings ➤ Environment Variables. You can also set it manually
each time a new command prompt is launched. Setting it
manually is recommended if you are using multiple SDK installs.
The following <sdk install location> typically refers to:

"c:\Users\<your username>\android-sdk" set PATH=%PATH%;<sdk install
location>\tools\lib

When installing Intel HAXM, set the driver to use half of the •	
available RAM in the system. For example, if your system has 6GB
of installed memory, then use 3GB for the Intel HAXM driver.
This allows for a good balance of memory for the HAXM driver as
compared to the system memory.

When creating the image, don’t set the Device RAM Size option •	
larger than the amount of RAM allocated to the Intel HAXM
driver. In the previous example, the Device RAM Size should not
be larger than 3GB since only 3GB were allocated to Intel HAXM.

The maximum memory for the Intel HAXM driver that can be •	
chosen for a 32-bit system is 1.6 GB. For a 64-bit system, the
maximum is 8GB.

Sometimes, when booting an image for the first time, it will appear to be hung at the
boot screen. The boot process is completed, but the home screen doesn’t appear. Click on
the Home button on the emulator to show the home screen.

Mac OS
1. Download the installer package from http://www.intel.com/software/

android or by using the SDK Manager.

2. Open the DMG fil e, then run the installer contained inside.

http://www.intel.com/software/android
http://www.intel.com/software/android

CHAPTER 11 ■ Using inTEl HARdwARE ACCElERATEd ExECUTion MAnAgER on windows, MAC os, And
linUx To sPEEd UP AndRoid on x86 EMUlATion

294

3. If an older version Intel HAXM is installed, you will see a
notification dialog. Click OK to dismiss the dialog. Then you
can either exit the installer, to keep your current version of
Intel HAXM, or continue with the installation and upgrade
your version of Intel HAXM.

4. You will see a welcome screen, like Figure 11-6.

Figure 11-6. Intel HAXM Welcome Screen on Mac OS

5. Click Continue.

6. Read the Intel HAXM End-User License Agreement (EULA)
and, if you agree, accept the EULA and continue installing
Intel HAXM.

7. You will be prompted to adjust the amount of RAM that will be allocated to
Intel HAXM, as shown in Figure 11-7.

CHAPTER 11 ■ Using inTEl HARdwARE ACCElERATEd ExECUTion MAnAgER on windows, MAC os, And
linUx To sPEEd UP AndRoid on x86 EMUlATion

295

8. Figure 11-8 confirms your Intel HAXM memory allocation settings.

Figure 11-7. Intel HAXM RAM Adjustment Screen on Mac OS

Figure 11-8. Intel HAXM Finish Screen on Mac OS

CHAPTER 11 ■ Using inTEl HARdwARE ACCElERATEd ExECUTion MAnAgER on windows, MAC os, And
linUx To sPEEd UP AndRoid on x86 EMUlATion

296

9. Select the drive where Intel HAXM will be installed, then click
Continue.

10. Once Intel HAXM is installed, click Close to exit the installer.

11. Intel H AXM is now installed and ready to use.

To verify that Intel HAXM is running, open a terminal window and execute the
following command:

kextstat | grep
intel

If Intel HAXM is operating correctly, the command will show a status message
indicating that the kernel extension named com.intel.kext.intelhaxm is loaded.

To stop Intel HAXM, use the following commands:

sudo kextunload -b
com.intel.kext.intelhaxm

To start Intel HAXM, use the following commands:

sudo kextload -b
com.intel.kext.intelhaxm

Adjusting Intel HAXM Memory Allocation
To change the amount of memory allocated to Intel HAXM, run the installer again.

Note ■ Changes to intel HAxM memory settings will take effect when intel HAxM is
restarted. Currently running emulators will continue to use the previous memory setting.

Removing Intel HAXM
To uninstall Intel HAXM, open a terminal window and execute this command:

sudo
/System/Library/Extensions/intelhaxm.kext/Contents/Resources/uninstall.sh

You will be prompted for your current user password. Follow the uninstaller prompts
to remove Intel HAXM.

CHAPTER 11 ■ Using inTEl HARdwARE ACCElERATEd ExECUTion MAnAgER on windows, MAC os, And
linUx To sPEEd UP AndRoid on x86 EMUlATion

297

Important ■ Removing intel HAxM will disable acceleration of all intel x86 Android
emulators. Existing Android virtual devices will continue to function, but will no longer be
accelerated. installing intel HAxM again will re-enable Android emulator acceleration.

Troubleshooting
Intel HAXM requires an Android x86 system image provided by Intel. You can download
these images through the Android SDK manager or manually from the Intel Developer
Zone web site.

Intel Execute Disable (XD) Bit Capability Error
When installing Intel HAXM, you may encounter an error regarding Intel XD support.

This error message can be triggered by the following conditions:

Intel XD is not supported by your computer’s processor.•	

Intel XD is not enabled.•	

Intel XD Is Not Supported
Intel HAXM requires an Intel processor with Execute Disable (XD) bit functionality and
cannot be used on systems lacking this hardware feature. To determine the capabilities of
your Intel processor, visit http://ark.intel.com/.

Intel XD Is Not Enabled

Note ■ Apple computers have intel xd permanently enabled if supported by the
processor.

If you receive an error message indicating that Intel XD is not enabled, your
computer does not meet the minimum system requirements to use Intel HAXM.
To determine the capabilities of your Intel processor, visit http://ark.intel.com/.

Intel Virtualization Technology (VT-x) Capability
When installing Intel HAXM, you may encounter an error regarding Intel VT-x support.

http://ark.intel.com/
http://ark.intel.com/

CHAPTER 11 ■ Using inTEl HARdwARE ACCElERATEd ExECUTion MAnAgER on windows, MAC os, And
linUx To sPEEd UP AndRoid on x86 EMUlATion

298

This error message can be triggered by the following conditions:

Intel VT-x is not supported by your computer’s processor.•	

Intel VT-x is not enabled.•	

Intel VT-x Is Not Supported
Intel HAXM requires an Intel processor with Intel VT-x functionality and cannot be used
on systems lacking this hardware feature. To determine the capabilities of your Intel
processor, visit http://ark.intel.com/.

Intel VT-x Is Not Enabled

Note ■ Apple computers have intel VT-x permanently enabled if supported by the
processor.

If you receive an error message indicating that Intel VT is not enabled, your
computer does not meet the minimum system requirements to use Intel HAXM.
To determine the capabilities of your Intel processor, visit http://ark.intel.com/.

Tips and Tricks
The following list contains recommendations to get the best experience out of the
Android emulator using the Intel HAXM driver:

Enable the GPU acceleration in the AVD manager for your image. •	
The Intel HAXM driver executes most CPU instructions natively
through the Intel Virtualization Technology in the processor and
the GPU acceleration offloads the OpenGL calls to the host GPU.

Use the following command in the terminal to launch the •	
emulator:

./emulator-x86 –avd <avd name> -partition-size 1024 –gpu on

A partition-size of 1024 allows 1GB of apps to be installed. This is •	
different from the SDCard size option in the AVD manager, which
specifies how much storage for storing media files is allotted
inside of the emulator. Setting the GPU to on will provide better
graphics performance.

Make sure that the environment variables for the GL libraries •	
are set correctly. Set the LD_LIBRARY_PATH variable by using the
following command in the terminal. Modify the command to
point to your SDK installation.

http://ark.intel.com/
http://ark.intel.com/

CHAPTER 11 ■ Using inTEl HARdwARE ACCElERATEd ExECUTion MAnAgER on windows, MAC os, And
linUx To sPEEd UP AndRoid on x86 EMUlATion

299

export LD_LIBRARY_PATH=<sdk install location>/tools/lib

To automatically run this command whenever a new terminal •	
is started, you can add this command to your ~/.bash_profile
script.

When installing Intel HAXM, set the driver to use half of the •	
available RAM in the system. For example, if your system has 6GB
of installed memory, then use 3GB for the Intel HAXM driver. This
allows a good balance of memory for the Intel HAXM driver as
compared to the system memory.

When creating the image, don’t set the Device RAM Size option •	
larger than the amount of RAM allocated to the Intel HAXM
driver. In the previous example, the device RAM size should not
be larger than 3GB since only 3GB were allocated to Intel HAXM.

The maximum memory for the Intel HAXM driver on a 32-bit •	
system is 1.6GB. For a 64-bit system, the maximum is 8GB.

Sometimes, when booting an image for the first time, it will •	
appear to be hung at the boot screen. The boot process is
completed but the home screen doesn’t appear. Click on the
Home button on the emulator to show the home screen.

Linux
Since Google mainly supports Android builds on the Linux platform, and a lot of Android
developers are using AVD on Eclipse hosted by a Linux system, it is critical that Android
developers take advantage of Intel hardware-assisted KVM virtualization for Linux just
like Intel HAXM for Windows and IOS. To enable KVM on the Ubuntu host platform and
to begin using the Intel Android x86 emulator with Intel hardware-assisted virtualization
(hypervisor), use the following steps.

KVM Installation
The first step is to install the required KVM by following the instructions from the Ubuntu
community page (https://help.ubuntu.com/community/KVM/Installation). To check
if your system’s processor supports hardware virtualization, use this command:

$ egrep -c '(vmx|svm)' /proc/cpuinfo

If the output is 0, it means that your CPU doesn’t support hardware virtualization.
The next step is to install the CPU checker:

$ sudo apt-get install cpu-checker

https://help.ubuntu.com/community/KVM/Installation

CHAPTER 11 ■ Using inTEl HARdwARE ACCElERATEd ExECUTion MAnAgER on windows, MAC os, And
linUx To sPEEd UP AndRoid on x86 EMUlATion

300

Now you can check if your CPU supports KVM by issuing the following command:

$kvm-ok

If you see this message:

"INFO: Your CPU supports KVM extensions
INFO: /dev/kvm exists
KVM acceleration can be used"

It means you can run your virtual machine faster with the KVM extensions.
However, if you see this:

"INFO: KVM is disabled by your BIOS
HINT: Enter your BIOS setup and enable Virtualization Technology (VT),
and then hard poweroff/poweron your system
KVM acceleration can NOT be used"

You need to go to the BIOS setup and enable Intel VT.

Install KVM
For Ubuntu Lucid (10.04) or later, use the following command:

$ sudo apt-get install qemu-kvm libvirt-bin ubuntu-vm-builder bridge-utils

Next, add your <username> account to the kvm and libvirtd groups:

$ sudo adduser your_user_name kvm
$ sudo adduser your_user_name libvirtd

After the installation, you need to log in again so that your user account becomes an
effective member of the kvm and libvirtd user groups. The members of these groups can
run virtual machines. You can verify that your installation has been successful with the
following command:

$ sudo virsh -c qemu:///system list

Your screen will paint the following if the installation was successful:

Id Name State

CHAPTER 11 ■ Using inTEl HARdwARE ACCElERATEd ExECUTion MAnAgER on windows, MAC os, And
linUx To sPEEd UP AndRoid on x86 EMUlATion

301

Only a 64-bit Ubuntu can allow you to run allocated memory of 2GB or more. My
64-bit Ubuntu has 6GB of memory, so I used one third of it for Android AVD. My AVD
named Intel_Atom_gingerbread_2.3. '-qemu' provides the options to qemu, and the
-m specifies the amount of memory for the emulated Android (that is, guest). If you use
too small a value for that, it’s possible that performance will suffer because of frequent
swapping activities. Add -show-kernel to see the message from the kernel.

Figure 11-9. Intel HAXM on Linux

Start the AVD from Android SDK Directly from
Terminal
Now start the Android for x86 Intel emulator, shown in Figure 11-9, using the following
command:

$ <SDK directory>/tools/emulator-x86 -avd Your_AVD_Name -qemu -m 2047
-enable-kvm

CHAPTER 11 ■ Using inTEl HARdwARE ACCElERATEd ExECUTion MAnAgER on windows, MAC os, And
linUx To sPEEd UP AndRoid on x86 EMUlATion

302

Start the AVD by AVD Manager in Eclipse
The following procedures are recommended by Google. If you are running the emulator
from Eclipse, run your Android application with an x86-based AVD and include the KVM
options:

1. In Eclipse, click your Android project folder and then select Run ➤ Run
Configurations.

2. In the left panel of the Run Configurations dialog, select your
Android project to run a configuration or to create a new
configuration.

3. Click the Target tab.

4. Select the x86-based AVD you created previously.

5. In the Additional Emulator Command-Line Options field, enter:

-qemu -m 2047 -enable-kvm

6. Run your Android project using this run configuration.

Overview
This chapter covered the installation of the Intel Hardware Accelerated Execution
Manager (Intel HAXM) with Intel Virtualization Technology (Intel VT). These tools
provide you with the fastest and most efficient all-around experience as an Android x86
developer. This chapter included sections specific to each major operating system—
Windows, Mac OS, and Linux. These sections highlighted not only the install process, but
also tips and tricks for troubleshooting some common problems.

303

Chapter 12

Performance Testing
and Profiling Apps with
Platform Tuning

I have not failed. I’ve just found 10,000 ways that won’t work.

— Thomas Edison

In computing, hardware acceleration involves using computer hardware to perform
functions faster than would be possible with software running on the general-purpose
CPU. Normally, processors are sequential and instructions are executed one-by-
one. Various techniques are used to improve processing performance, and hardware
acceleration, as discussed in Chapter 11, is one of them. The main difference between
hardware and software optimization is arguably the level of abstraction. Due to the nature
of hardware optimization, they potentially provide much greater speed improvements
than software optimizations. Hardware accelerators are designed for computationally
intensive software code.

More and more developers use FFmpeg to develop Android video applications
and OpenCV to develop image processing software, which all have NDK adaptations.
Multimedia applications usually have high-performance requirements, and this chapter
describes some common optimization technology on x86 Android.

Start with Your First x86 Full Format Video Player
The built-in codec program on Android is very limited, so developers use the FFmpeg
free open source media framework to support full-format decoding. The FFmpeg project
includes libraries of audio/video codecs and a command-line program for transcoding
multimedia files, and enables cross-platform audio and video streaming using either
an LGPL or GPL license according to your choice of components. It provides recording,
conversion, and streaming audio and video functions. FFmpeg is the most popular open
source framework used for multimedia Android development; it’s a good starting point
for researching Intel architecture performance software tuning. For more information
about the FFmpeg project, visit http://www.ffmpeg.org/.

http://www.ffmpeg.org/

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

304

We’ll start by making a new, full-format x86 player. The open source tewilove_faplayer
is recommended for this project. It’s based on the VLC player, but tewilove_faplayer
includes all needed components, whereas the VLC player must first do a bootstrap to
download all components. The VLC player’s compiling script is also more complicated than
tewilove_faplayer. The project URL is https://github.com/shaobin0604/faplayer, where
project notes can be read and the ZIP file can be downloaded. The tewilove_faplayer can be
easily used as is on ARM platforms; for x86, there are some necessary modifications:

1. Modify vlc_fixups.h. Delete __cplusplus, as it will
otherwise lead to a compiling problem.

2. Modify \jni\vlc\config.h. Add the macro as defined here:

#define CAN_COMPILE_MMX 1
#define CAN_COMPILE_MMXEXT 1
#define CAN_COMPILE_SSE 1
#define CAN_COMPILE_SSE2 1
#define asm __asm__
#define MODULE_NAME_IS_i422_yuy2_sse2
#define MODULE_NAME_IS_i420_yuy2_sse2
#define MODULE_NAME_IS_i420_rgb_sse2

3. Modify libvlcjni.h. Delete yuv2rgb; it is ARM NEON code,
not x86 code.

4. Modify Application.mk as follows:

APP_ABI := x86
BUILD_WITH_NEON := 0
OPT_CPPFLAGS += -frtti –fexceptions

5. Delete Android.mk in ext\ffmpeg; you must replace it with
the x86 FFmpeg version.

Compile x86 FFmpeg: Cross-Compile
Broadly speaking, open source programs often support cross-compiling. FFmpeg is no
exception. Here is a script file that you can use to build FFmpeg on Linux and Android:

#!/bin/bash
NDK=$ANDROID_NDK_ROOT #your ndk root path
PLATFORM=$NDK/platforms/android-14/arch-x86
#PREBUILT=$NDK/toolchains/arm-linux-androideabi-4.4.3/prebuilt/linux-x86
PREBUILT=$NDK/toolchains/x86-4.4.3/prebuilt/linux-x86
function build_one
{
./configure --target-os=linux \
 --prefix=$PREFIX \

https://github.com/shaobin0604/faplayer

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

305

 --enable-cross-compile \
 --extra-libs="-lgcc" \
 --arch=x86 \
 --cc=$PREBUILT/bin/i686-android-linux-gcc \
 --cross-prefix=$PREBUILT/bin/i686-android-linux- \
 --nm=$PREBUILT/bin/i686-android-linux-nm \
 --sysroot=$PLATFORM \
 --extra-cflags=" -O3 -fpic -DANDROID -DHAVE_SYS_UIO_H=1 -Dipv6mr_
interface=ipv6mr_ifindex -fasm -Wno-psabi -fno-short-enums -fno-strict-
aliasing -finline-limit=300 $OPTIMIZE_CFLAGS " \
 --disable-shared --enable-static \
 --extra-ldflags="-Wl,-rpath-link=$PLATFORM/usr/lib -L$PLATFORM/usr/lib
-nostdlib -lc -lm" \
 --disable-ffplay --disable-avfilter --disable-avdevice --disable-ffprobe \
--disable-yasm \
 $ADDITIONAL_CONFIGURE_FLAG

make clean
make -j4 install
}

#x86
CPU=x86
OPTIMIZE_CFLAGS="-march=atom -ffast-math -msse3 -mfpmath=sse"
PREFIX=./android/$CPU
ADDITIONAL_CONFIGURE_FLAG=
build_one

After running this script, you can use libavcode.a, libavformat.a, libavutil.a, and
libswscale.a; link these libraries to your project as prelink static libraries.

Compile x86 FFmpeg: Android.mk
It’s best to cross-compile FFmpeg; it’s simple and quick. But if FFmpeg is needed to
compile the Android.mk, this can still be done. Havlenapetr FFmpeg can be used to build
this script.

Havlenapetr is an early Android FFmpeg project and therefore has relatively simple
audio and video synchronization features. It is suitable for beginners to learn how to
transplant FFmpeg on Android. Its project URL is https://github.com/havlenapetr.

When you have all of the tools downloaded and the preparation completed, it’s time
to make faplayer x86, which is a full format x86 player. You must first play a 1080p MP4
on the device—this will use the Android default player. For software tuning, modify the
selectMediaPlayer function in PlayerActivity.java and set useDefault to false.
Play the 1080p MP4 again on Android 2.3. As expected, the performance is suboptimal.
Luckily, with software tuning, you can improve the performance. (If you cannot display
an image on Android 4.0, see the section titled How to Display an Image Using the
Android 4.0 NDK later in this chapter.)

https://github.com/havlenapetr

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

306

How to Determine CPU Usage and Find Hotspots
Intel’s Graphics Performance Analyzers (GPA) and VTune amplifier are strongly
recommended as tuning tools, but if GPU usage is not the target, there are other tuning
tool options, such as OProfile (which will require building a system image).

Show CPU Usage Dynamically Onscreen
CPU usage can be inquired by /proc/stat, using the command cat /proc/stat on
Linux (and thus Android). The command will produce some strings like these:

cpu 4884 440 2841 75755 1681 320 121 0 0 0
cpu0 2211 212 1639 38296 462 223 90 0 0 0
cpu1 2673 228 1202 37459 1219 97 31 0 0 0

Here are some CPU usage functions written in Java. You can use them to show CPU
usage onscreen:

/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq
/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_min_freq
/sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq
/proc/stat
 public static long getCurCpuFreq() {
 String result = "N/A";
 try {
 FileReader fr = new FileReader(
 /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_
freq");
 BufferedReader br = new BufferedReader(fr);
 String text = br.readLine();
 br.close();
 fr.close();
 result = text.trim();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return Long.parseLong(result)/1000;
 }

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

307

 public static long getCurUsage() {
 try
 {
 BufferedReader reader = new BufferedReader(new
InputStreamReader(new FileInputStream("/proc/stat")), 1000);
 String load = reader.readLine();
 reader.close();
 String[] toks = load.split(" ");
 long currTotal = Long.parseLong(toks[2]) +
Long.parseLong(toks[3]) + Long.parseLong(toks[4])+Long.parseLong(toks[6])
+Long.parseLong(toks[7])+Long.parseLong(toks[8]);
 long currIdle =
Long.parseLong(toks[5]);

 usage =(long) ((currTotal - total) * 100.0f / (currTotal -
total + currIdle - idle));
 total = currTotal;
 idle = currIdle;
 }
 catch(IOException ex)
 {
 ex.printStackTrace();
 }
 return usage;
 }

Get Function Running Time
1. Use function clock() (you must include time.h).

2. Use register rdtsc.

static inline uint64_t read_time(void)
{
 uint32_t a, d;
 __asm__ volatile("rdtsc" : "=a" (a), "=d" (d));
 return ((uint64_t)d << 32) + a;
}

These two functions return the runtime of a function.

Use Yasm to Get the Best-Performing x86 Library
Yasm is an x86 ASM assembler. In the case of FFmpeg porting, it is generally
recommended that you add the -disable-yasm option, when you’re compiling the ARM
version. But if you’re compiling an x86 version, disable-yasm will discard a large amount
of optimization code, which will significantly reduce performance.

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

308

Yasm is a complete rewrite of the NASM assembler under the “new” BSD license
(some portions are under other licenses; see the Yasm site at http://yasm.tortall.net/
for details). Yasm currently supports the x86 and AMD64 instruction sets; accepts NASM
and GAS assembler syntax; outputs binary, ELF32, ELF64, 32- and 64-bit Mach-O,
RDOFF2, COFF, Win32, and Win64 object formats; and generates source debugging
information in STABS, DWARF 2, and CodeView 8 formats.

How to Use Yasm
If Yasm is cross-compiled, it is quite simple. After the Yasm source is downloaded on
Linux, and the make is installed, it is as simple as running configure, make, and make
install.

./configure --enable-shared --prefix=/usr/local
make
make install

Then you run delete -disable-yasm and run the build script again. But if you’re
using Android.mk directly, note that the Google NDK build script does not support .asm.
The following link is an improvement of the Google NDK build script. You can visit
http://software.intel.com/en-us/articles/using-yasm-compiler-on-android-ndkbuild
for more details.

The Result of Using Yasm
For 1080p mp4 software decoding, Figure 12-1 compares three configurations.

22761

39501

56821

0

10000

20000

30000

40000

50000

60000

YASM NO_YASM NO-SIMD

decode_average_time(us)

Figure 12-1. YASM Comparisons, in Nanoseconds

http://yasm.tortall.net/
http://software.intel.com/en-us/articles/using-yasm-compiler-on-android-ndkbuild

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

309

YASM: -enable yasm –enable asm
NO-YASM: -disable yasm -enable asm
NO-SIMD: -disable yasm -disable asm

Enabling Yasm can create significant performance improvements. In the previous
example, the average time drops by 57.6% just by enabling Yasm. (The average time drops
by 150% with both Yasm and ASM enabled; see the next section of this chapter for more
information about SIMD and ASM.) Downloading and installing Yasm can be a valuable
step for many kinds of open source optimization projects, including those on x264, Vp8,
and manifestly x86.

Use SSE (Intel’s Streaming SIMD Extensions) to
Optimize Color Space Transformation
The color space of an image represents the color in a machine-readable format. Just
as different people might describe Vincent van Gogh’s Irises as “purple” or “indigo,” a
plasma television represents the color in RGB format1 whereas the print file for a poster of
the painting uses the CMYK code.2 To translate the images between these different color
space formats, a color space transformation must occur. Video is generally YUV format;
LCD screens are RGB format; and camera output is generally nv21 format. FFmpeg
provides the swscale function to perform this transformation. For large image files, color
space transformation will consume much more CPU power, as you can see in Table 12-1.
Using Intel’s Streaming SIMD Extensions (SSE) instruction set can produce a 6-16 time
performance improvement.

SSE (SIMD technology) is the most important optimization technology on x86
Android (ARM has NEON—which is also a SIMD technology), especially for multimedia
apps. This is due to the performance optimization that it provides across the board.

Table 12-1. SSE Optimizations

3040*1824 NV21-RGB888 SWS_BILINEAR SWS_FAST_BILINEAR

Not Using Yasm 425 ms 158 ms

Using Yasm 179 ms 155 ms

Using SSE NV21-RGB888 27 ms 27 ms

1The red, green, blue (RGB) code is an additive color model based on the three primary colors of light.
The color of the irises is represented as 69, 102, 137.
2The subtractive color model known as CMYK represents the four ink colors used in most
commercial printing systems: cyan, magenta, yellow, and key or black. The CMYK values for the
irises are 50, 26, 0, 46.

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

310

What Is SIMD?
Single instruction, multiple data (SIMD) devices have multiple processing elements
that perform the same operation on multiple data points simultaneously. Most modern
CPU designs include SIMD instructions in order to improve multimedia performance.
Intel’s Medfield CPUs support MMX, MMX2, SSE, SSE2, SSE3, an SSSE3, but SSE4 and
AVX are not supported. SIMD support can also be checked dynamically at runtime (see
cpuid on FFmpeg 1.0—function ff_get_cpu_flags_x86 on cpu.c).

There are three ways to implement SIMD code.

C/C++ language-level intrinsic functions, defined with •	
emmintrin.h. Until now, few open source libraries have
used it except for WEBP. If SIMD code is implemented in this
way, it’s easy to adapt to all hardware platforms. (It becomes
interchangeable with NEON code for the ARM platform,
for example.)

Inline assembler (the most widely used). It doesn’t require •	
separate assembly and link steps and is more convenient than a
separate assembler.

Separate assembler. It has many styles (NASM, TASM, MASM, and •	
so on), and the file extension .s, .asm. (An assembler with the
file extension .asm cannot be compiled normally by the Android
NDK; you must use the patch that is provided in the earlier
section, “How to Use Yasm.”)

How SIMD Works
To add two 8-bit integer arrays, the generic C code looks like this:

Int s[16];
for(int i=0;i<16;i++){
 S[i]=data1[i]+data2[i]; //ensure s[i] is 0~255
}

But if you use SSE, you just need:

movups data1,xmm1
movups data2,xmm2
paddusb xmm1,xmm2
movntq xmm2,S

With the one instruction paddusb, you can perform 16 add operations at the
same time. This sounds fantastic, but it actually has limitations. All the data must be
well organized, and the algorithm can be vectorized. However, this indeed improves
performance, especially for multimedia apps.

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

311

SIMD has five types of instructions:

Data movement, such as •	 movd, movq, and movups

Boolean logic: •	 psllw and psrlw

Math: •	 paddb and pmulhw

Comparisons: •	 pcmpeqb

Data packing: •	 packssdw, punpcklbw, and pshufb

Data packing (see Figures 12-2 and 12-3) is the most difficult part for SIMD. In
the following two figures you can see two different operations, their organization and
structure, and how they perform the data packing procedure.

Packed shuffle bytes (pshufb) takes registers of bytes R = [R0 R1 R2 ... R15] and
M = [M0 M1 M2 ... M15] and replaces R with [R

M0
 R

M1
 R

M2
 ... R

M15
]; except that it replaces

the ith entry with 0 if the top bit of M
i
 is set. This is shown in the following code:

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15
M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

R0 := (mask0 & 0x80) ? 0 : SELECT(a, mask0 & 0x07)
R1 := (mask1 & 0x80) ? 0 : SELECT(a, mask1 & 0x07)
...
R15 := (mask15 & 0x80) ? 0 : SELECT(a, mask15 & 0x0f)

The pshufb instruction can put any 8-bit data to any place according to a 128-bit mask.

SRC DEST

DEST

Y7 Y6 Y5 Y5 Y3 Y2 Y1 Y0 X7 X6 X5 X5 X3 X2 X1 X0

Y3 X3 Y2 X2 Y1 X1 Y0 X0

Figure 12-2. Data Packing with Punpcklbw

64-Bit DEST

64-Bit DEST

D C B A

A’B’C’D’

64-Bit SRC

Figure 12-3. Data Packing with Packssdw

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

312

Implement NV21-RGB SSE Code
FFmpeg yuv2rgb is MMX2 code, so you must first modify it to SSE code, because MMX is
8-bit aligned and SSE is 16-bit aligned. You must enlarge the data to 16 bits:

1. Modify swscale_internal.h and yuv2rgb_mmx.c:

DECLARE_ALIGNED(8, uint64_t, redDither);
==>
DECLARE_ALIGNED(16, uint64_t, redDither);
DECLARE_ALIGNED(8, uint64_t, redDither1);

DECLARE_ASM_CONST(16, uint64_t, mmx_redmask) = 0xf8f8f8f8f8f8f8f8ULL;
==>
DECLARE_ASM_CONST(8, uint64_t, mmx_redmask1) = 0xf8f8f8f8f8f8f8f8ULL;
DECLARE_ASM_CONST(16, uint64_t, mmx_redmask) = 0xf8f8f8f8f8f8f8f8ULL;

Now redDither and mmx_redmask can be used as 8-bit data or 16-bit data.

2. Change the mov and mm instructions:

#if HAVE_SSE2
 #define MM1 "%xmm"
 #define MM "%%xmm"
 #define MOVD "movq"
 #define MOVQ "movups"
 #define MOVNTQ "movntps"
 #define SFENCE "sfence"
 #define SIMD8 "16"
#else
#if HAVE_MMX2
 #define MM1 "%mm"
 #define MM "%%mm"
 #define MOVD "movd"
 #define MOVQ "movq"
 #define MOVNTQ "movntq"
 #define SFENCE "sfence"
 #define SIMD8 "8"
#endif

MMX uses a mm register while SSE uses an xmm register. Because SSE has 128-bit data
length (16 bytes), the data offset is 16 when using SSE (SIMD 8 is 16).

3. RGB_PACK24 must be rewritten due to fact that the data length
of MMX and SSE are different.

DECLARE_ASM_CONST(16, uint8_t, rmask1[16]) = {0x00,0x80,0x80,0x01,
0x80,0x80,0x02,0x80,0x80,0x03,0x80,0x80,0x04,0x80,0x80,0x05};
...

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

313

MOVQ" "MM""red", "MM"5 \n"\
"pshufb "MANGLE(rmask1)", "MM"5 \n"\
MOVNTQ" "MM"5, (%1) \n"\

Here, pshufb is used. The key idea is to use pshufb to put each R, G, B value into
the right place and use it to get RGB888 data. The following code shows what each RGB
segment is composed of. For example RGB0 is R0, G0, and B0.

R0 R1 R2 R3 R4 R5

G0 G1 G2 G3 G4

B0 B1 B2 B3 B4

RGB0 RGB1 RGB2 RGB3 RGB4

R6 R7 R8 R9 R10

G5 G6 G7 G8 G9 G10

B5 B6 B7 B8 B9

RGB5 RGB6 RGB7 RGB8 RGB9 RGB10

R11 R12 R13 R14 R15

G11 G12 G13 G14 G15

B10 B11 B12 B13 B14 B15

RGB11 RGB12 RGB13 RGB14 RGB15

4. Add ff_nv2rgb_init_mmx, and add ff_nv2rgb_get_func_ptr
in the function ff_get_unscaled_swscale:

 /* yuv2bgr */
 if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P
|| srcFormat==PIX_FMT_YUVA420P) && isAnyRGB(dstFormat)
 && !(flags & SWS_ACCURATE_RND) && !(dstH&1)) {
 c->swScale= ff_yuv2rgb_get_func_ptr(c);
 }
 /* nv2bgr */
 if (srcFormat==PIX_FMT_NV21 && isAnyRGB(dstFormat)&& !(flags
& SWS_ACCURATE_RND) && !(dstH&1)) {
 c->swScale= ff_nv2rgb_get_func_ptr(c);
 }

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

314

How to Display an Image Using the Android 4.0
NDK
Surface_lock and Surface_unlockAndPost can be used on the NDK layer to display an
image on a device. These two functions move from libsurfaceflinger_client.so to
libgui.so, and to libui.so on Android 4.0.

Using nm (Windows is nm.exe), you can perform analysis on libui.so. For example,
on Windows, you can use nm.exe libui.so >>1.txt, and open 1.txt to find Surface_
lock. You can find the string "_ZN7android7Surface4lockEPNS0_11SurfaceInfoEPNS_6R
egionE", use it with dlsym, and then get the function handle from libui.so.

 clz = (*env)->GetObjectClass(env, s);
 f_Surface_mSurface = (*env)->GetFieldID(env, clz, "mSurface", "I");
 if (f_Surface_mSurface == 0)
 {
 jthrowable e = (*env)->ExceptionOccurred(env);
 if (e)
 {
 (*env)->DeleteLocalRef(env, e);
 (*env)->ExceptionClear(env);
 }
 f_Surface_mSurface = (*env)->GetFieldID(env, clz, "mNativeSurface",
"I");
 }
 (*env)->DeleteLocalRef(env, clz);
 surface = (*env)->GetIntField(env, s, f_Surface_mSurface);

With this, the code above the jni function can be added; it receives the Java layer
surface object and gets the surface handle from the object. The f_Surface_mSurface and
Surface_lock and Surface_unlockAndPost functions can be used to show an image on
the NDK layer.

The Common Cross-Compile Script
Open source configuration files can generally be used to cross-compile for Android. The
following is a common script for the x86 platform. It uses SSE to optimize JPEG encoding
and decoding.

#!/bin/bash

HOSTCONF=x86
BUILDCONF=i686-pc-linux-gnu
NDK=$ANDROID_NDK_ROOT

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

315

TOOLCHAIN=$NDK/toolchains/x86-4.4.3/prebuilt/linux-x86
PLATFORM=$NDK/platforms/android-14/arch-x86
PREFIX=/home/lym/libjpeg-turbo-1.2.1/android/x86
ELF=$TOOLCHAIN/i686-android-linux/lib/ldscripts/elf_i386.x

export ARCH=x86
export SYSROOT=$PLATFORM
export PATH=$PATH:$TOOLCHAIN/bin:$SYSROOT
export CROSS_COMPILE=i686-android-linux
export CC=${CROSS_COMPILE}-gcc
export CXX=${CROSS_COMPILE}-g++
export AR=${CROSS_COMPILE}-ar
export AS=${CROSS_COMPILE}-as
export LD=${CROSS_COMPILE}-ld
export RANLIB=${CROSS_COMPILE}-ranlib
export NM=${CROSS_COMPILE}-nm
export STRIP=${CROSS_COMPILE}-strip
export CFLAGS="-I$PLATFORM/usr/include -O3 -nostdlib -fpic -DANDROID -fasm
-Wno-psabi -fno-short-enums -fno-strict-aliasing -finline-limit=300 -fomit-
frame-pointer -march=i686 -msse3 -mfpmath=sse"
export CXXFLAGS=$CFLAGS
export LDFLAGS="-Wl,-T,$ELF -Wl,-rpath-link=$PLATFORM/usr/lib -L$PLATFORM/
usr/lib -nostdlib -lc -lm"

./configure --enable-shared --host=$HOSTCONF --build=$BUILDCONF --with-
sysroot=$SYSROOT --prefix=$PREFIX
make clean
make -j4 install

Benefitting from the long history of the x86 platform, nearly all open source projects
have done optimizations on the x86 platform, especially in the multimedia category.
A large number of arithmetic functions have been written to SIMD code

(FFmpeg), vp8, x264, and OpenCV). Generally, you need to choose the right source
and use the right compiling script. When necessary, debugging the NDK assembly code is
possible on Linux.

Testing and Profiling with Hardware Acceleration
With the Android 4.0 NDK, video and audio decoding are based on OpenMAX AL
1.0.1, which permits both software and hardware decoding. OpenMAX (Open Media
Acceleration), developed by the Khronos Group, is a royalty-free, cross-platform API.
Its set of C-language programming interfaces provides object abstractions for audio,
video, and still images. It allows these resources to be easily ported across a wide range of
platforms. It’s intended for devices that process or consume large amounts of multimedia
data, particularly embedded and mobile devices such as smartphones and tablets.
OpenMAX has three layers of interfaces, as shown in Figure 12-4—the Application layer
(AL), the Integration layer (IL), and the Development layer (DL).

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

316

Using the Integration Layer (IL) for Hardware
Encoding
Before Android 4.1, Google did not expose any hardware codec interfaces to developers,
so a large number of multimedia apps had to use FFmpeg, x264, and VP8 as the video
codec. Especially when video encoding, software encoding will use most of the CPU
resources (640×480 H.264 encoding will occupy nearly 90% of CPU resources for an ARM
v9 1.2-GHz dual-core). This is an enormous drain on the Android device’s performance.
So up until version 4.1, no wonderful video recording apps had been developed for
Android. Developer and user interest was certainly present, but such applications just
weren’t feasible. Now developers can use the OpenMAX Integration Layer (IL) to get a
hardware encoder interface. (To clarify, both ARM and Intel architecture can use this
method for hardware encoding, but ARM architectures will meet compatibility issues.)
The OpenMAX IL is implemented by various vendors and Google does not guarantee
its compatibility, so it’s not guaranteed to work well on all Android-enabled hardware
systems. But for Android on Intel architecture, specifically, the compatibility issues have
been resolved.

Figure 12-4. The OpenMAX Layers

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

317

How to Get the OMX-IL Interface on Android for Intel
Architecture
Libwrs_omxil_core_pvwrapped.so is the OMX-IL interface layer on the Medfield Intel
architecture platform. Developers can load this as follows to access the OMX-IL interface.

pf_init = dlsym(dll_handle, "OMX_Init");
pf_deinit = dlsym(dll_handle, "OMX_Deinit");
pf_get_handle = dlsym(dll_handle, "OMX_GetHandle");
pf_free_handle = dlsym(dll_handle, "OMX_FreeHandle");
pf_component_enum = dlsym(dll_handle, "OMX_ComponentNameEnum");
pf_get_roles_of_component = dlsym(dll_handle, "OMX_GetRolesOfComponent");

After getting these handles, you can call pf_component_enum and pf_get_roles_of_
component to get the right hardware encoding interface. All of the video codec interfaces
are listed here:

component OMX.Intel.VideoDecoder.AVC
 - role: video_decoder.avc
component OMX.Intel.VideoDecoder.H263
 - role: video_decoder.h263
component OMX.Intel.VideoDecoder.WMV
 - role: video_decoder.wmv
component OMX.Intel.VideoDecoder.MPEG4
 - role: video_decoder.mpeg4
component OMX.Intel.VideoDecoder.PAVC
 - role: video_decoder.pavc
component OMX.Intel.VideoDecoder.AVC.secure
 - role: video_decoder.avc
component OMX.Intel.VideoEncoder.AVC
 - role: video_encoder.avc
component OMX.Intel.VideoEncoder.H263
 - role: video_encoder.h263
component OMX.Intel.VideoEncoder.MPEG4
 - role: video_encoder.mpeg4

You can choose the right component according to your needs. For example, if you
want to do MP4 encoding, you can choose OMX.Intel.VideoEncoder.MPEG4, and call
pf_get_handle to get the hardware MP4 encoding handle.

How Does the OMX-IL Work?
In order to create or configure and connect the OpenMAX components, the application
is written as an Integration Layer (IL) client. This IL client is used to invoke OpenMAX
APIs for different components, as represented in Figure 12-5. In this application,

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

318

components allocate the video buffers in response to OMX APIs on the IL client. The
IL client is responsible for taking the buffers from one component and passing them to
other components. The functions OMX_GetParameter and OMX_SetParameter are used as
a parameter/configuration set and get. OMX_SendCommand is used to send commands to
a component, including an enable/disable port command and a state change command.
OMX_EmptyThisBuffer and OMX_FillThisBuffer pass the buffers to components.
OmxEventHandler, OmxEmptyBufferDone, and OmxFillBufferDone (OMX_CALLBACKTYPE)
must be registered when calling pf_get_handle.

After allocating the OMX buffer and calling OMX_SendCommand to set the
OMX_StateExecuting state, you can use FillThisBuffer and EmptyThisBuffer and their
callback functions to do hardware encoding. Figure 12-6 shows the call sequence.

IL Client
or other
component

Component
Handle Configuration

Structures

Command
Queue

Commands

Buffer Sent

Parameter/
Configuration

SET/GET

Port A Buffer
Header
Pointer
Queue

Port B Buffer
Header
Pointer
Queue

IL Client
Event
Handler

Component Event
Handler

Port
Callbacks
And Calls

Port
Callbacks
And Calls

Port B
Output

Port A
Input

Figure 12-5. The OpenMAX components and the Integration Layer Client

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

319

Call FillThisBuffer to fill one raw picture into the OMX local buffer and call
EmptyThisBuffer to make the OMX component do the hardware encoding; when
you’re finished encoding or when the local output buffer is full, the OMX component
will call OnEmptyThisBufferDone to tell the client to do EmptyThisBuffer again. So one
FillThisBuffer may make several instances of OnEmptyThisBufferDone. If the OMX
component finds that the input buffer is empty, it will call OnFillThisBufferDone to tell
the client to fill more buffer space.

Demo: Special Effects Video Recorder
In this section, you use a hardware video encoder to implement a special effects video
recorder. The idea is to get data from the camera and add a mark to the camera preview
image. When recoding, the mark should be recorded into the video file. It sounds like a
simple design, but before Android 4.1, the only choice was a software encoder (FFmpeg
or x264), which would waste lots of CPU resources. Starting with Android 4.1, a new class
MediaCodec has been introduced; it’s the same as OMX-IL, but implemented by Google,
and Google guarantees its compatibility.

Table 12-2 represents a demonstration of the CPU usage for three video recorders.
The recorder file format is .MP4, which uses an MPEG-4 encoder. Generally, VP8 video
encoding requires the least CPU usage, followed by MPEG-4 encoding, while H.264
encoding will cost the most CPU resources).

OMXRender OMXCodec OMXComponent

FillBuffer ()

FillBuffer ()

EmptyBuffer ()

EmptyBuffer ()

OnEmptyBufferDone

OnFillBufferDone()

SignalBufferReturn()

Read()

Figure 12-6. The OMX-IL Rendering Pipeline

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

320

If you’re using a hardware encoder, total CPU resources needed are just 3.7%
(hardware encoding – preview), whereas a software encoder will need 46.9%. The
resolution used in this example is 1024×576. If you want 1080P video recording, the
software solution is impossible!

Packaging a Hardware Video Encoder Library
The following code shows a dynamic library named libomx.so. It provides three simple
functions—EncInit, EncVideo, and EncRelease. The usage is also simple—you call
EncInit to initialize the hardware encoder, call EncVideo to do the hardware encoding,
and call EncRelease to release the hardware encoder. The two main structures are
stEncConfig and stEncPic:

– stEncConfig (use in EncInit)
– stcfg.id = ENC_MPEG4; //choose the encoder
– stcfg.type = ENC_DEFAULT; //for feature use, now must this value
– stcfg.w=1080; //encoding size
– stcfg.h=1920;
– stcfg.framerate = 15; //encoding framerate
– stcfg.controlrate = enum OMX_VIDEO_CONTROLRATETYPE;
– stcfg.bitrate = xxxx; //your bitrate

– stEncPic(use in EncVideo)
– pic.w=1080; //picture size
– pic.h=1920;
– pic.stride = 1080; //picture stride
– pic.pbuf[0]=pmem; //yuv420 image data
– pic.pbuf[1]=pmem+1920*1080;
– pic.pbuf[2]=pmem+1920*1080/4;

Implement Camera Preview
Because you cannot use the common Google Android API to develop this demo, you
must implement camera preview. I recommend using setPreviewCallbackWithBuffer
to get the camera preview data. Although setPreviewCallbackWithBuffer and
setPreviewCallback can both get the preview data, the first is more efficient and will
avoid Java garbage collection.

Table 12-2. Hardware vs. Software Encoders

Video Recorder Frequency CPU Usage Total Resource

1024x576 preview 600 MHz 35% 35% x 600/1600 = 13.125%

Hardware Encoder
Without Sound

600 MHz 45% 45% x 600/1600 = 16.875%

Software Encoder
Without Sound

1600 MHz 50% 50% x 1600/1600 = 50%

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

321

Guideline: Hold enough memory for frequent use. Doing so will avoid dummy Java
garbage collection.

In the preview callback, you should pass image data to the NDK layer; do not add
unnecessary code. I have added camera.getParameters().getPreviewSize().width as
an example to show that it costs a significant amount of CPU usage.

Guideline: Call any object function as seldom as possible. Assign its value to a variable
and use the variable instead.

In the NDK layer, transform the preview data from NV21 to RGB565 (or RGB88,
according to your screen configuration) and then display the data to the screen (use
Surface_lock and Surface_unlockAndPost).

Profiling Java Code with Traceview
You can use Traceview to analyze the performance of Java code. Traceview has been
integrated into Eclipse through a new plug-in. The plug-in integrates with the DDMS
plug-in so that using the start/stop profiling button will open traces in Eclipse directly
instead of launching the standalone tool. Additionally, if you Ctrl-click (Command-
click on a Mac) on a method it will open the source file in the editor (you must add
android:debuggable="true").

Choose the right package name, which is com.Filters, and Press Start Method
Profiling, as shown in Figure 12-7. Wait for a while and then stop the profiling: you can
see the trace result in Figure 12-8.

Figure 12-7. Using Filters in Eclipse

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

322

From the result, it is easy to see that Camera.getParameters will cost most of the
CPU resources (97%). That is camera.getParameters().getPreviewSize().width in
PreviewCallback. Traceview can only profile Java code. If you want to profile NDK code,
you can use the Intel tool VTune, which you can get from http://software.intel.com/
en-us/intel-vtune-amplifier-xe.

Start a Recording Thread
To reference output from -example.c in FFmpeg, you can use this as a base version.
The remaining work is determining how to get the video and sound data in a recording
thread. The general idea is that once you get one frame of video (or audio), you can lock
the buffer and invoke a recording thread to start working. However, this is very inefficient.
The parallelism of the camera preview thread, the audio thread, and the hardware
recording thread has been destroyed, and most of time, the CPU is just waiting. This is
where the CircleBuffer class comes in; the producer (camera preview thread, audio
thread) will cautiously fill the buffer into CircleBuffer (if the buffer is full, just overlap
the last buffer, so that the data will always refresh even when the recording thread is
slow), and the consumer will cautiously get the buffer from it (if the buffer is null, you can
choose getting the previous buffer or waiting).

Guideline: Keep the parallelism for all threads as much as possible. CircleBuffer is
generally a good choice.

Figure 12-8. Profiling the Camera Application

http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

323

Adding Special Effects
Now, video raw data has been processed on the NDK layer, so you can easily add special
effects such as a video mark. Simply alpha-blend your mark image (Y data, discard UV
data) into video raw data. This work can be done by the CPU and also by the GPU. In
fact, Google video recording also supports limited (very limited) video effects. It uses
the GPU instead of the CPU to decrease CPU load. GPU rendering (OpenGL-ES) is very
complicated and hard to understand. Even though the code is simple, developers should
have an in-depth understanding of OpenGL. Here I just explain a basic work flow for GPU
rendering.

1. Get and initialize the default EGL display.

EGLDisplay eglDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
eglInitialize(mEglDisplay, &majorVersion, &minorVersion);

2. Create an integer array with one element. It will hold
the return value that indicates the number of EGL
configurations that matched the attributes specified by the
configAttributes array. Create an EGLConfig array with
one element to store the first EGL configuration that matches
the attributes. Invoke eglChooseConfig() and provide, as
arguments, the EGLDisplay object that you initialized in
Step 1, the array that specifies the configuration attributes to
match, a placeholder for the first matching EGLConfig object,
the size of the EGLConfig placeholder, and the num_configs
array to store the number of configurations that matched.
Store the single configuration from the eglConfigs array in
the EGLConfig variable eglConfig.

EGLint configAttribs[] = {
 EGL_SURFACE_TYPE, EGL_WINDOW_BIT,
 EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
 EGL_RED_SIZE, 8,
 EGL_GREEN_SIZE, 8,
 EGL_BLUE_SIZE, 8,
 EGL_NONE
};
eglChooseConfig(mEglDisplay, configAttribs, &config, 1, &numConfigs);

3. Invoke eglCreateWindowSurface() to create an EGL surface
and provide, as arguments, eglDisplay and eglConfig,
which are the instances of EGLDisplay and EGLConfig that
you set up in Steps 1 and 2. In the following code sample,
eglCreateWindowSurface() is invoked from a class that is
derived from the Screen class, and this argument binds the
EGLSurface object to the current screen.

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

324

eglCreateWindowSurface(mEglDisplay, config,mNativeWindow.get(), NULL);

4. Invoke eglCreateContext() to create an EGL context.

eglCreateContext(mEglDisplay, config, EGL_NO_
CONTEXT,contextAttribs);

5. Invoke eglMakeCurrent() to bind the EGL context to the EGL
surface and EGL display.

eglMakeCurrent(mEglDisplay, mEglSurface, mEglSurface,
mEglContext);

6. Create the programs and load shader into EGL. Your special
effect function needs to be implemented as a shader.

loadShader(GL_FRAGMENT_SHADER, fSrc[i], &fShader);
createProgram(vShader, fShader, &mProgram[i]);

7. Do the rendering.

glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, mFrameWidth,
mFrameHeight, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, pixels);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_BYTE, 0);

8. If you want to read an image from EGL, you can call
glReadPixels.

Actually, you can also use GLSurfaceView. A GLSurfaceView provides the following
features:

Manages a surface, which is a special piece of memory that can be •	
composited into the Android view system.

Manages an EGL display, which enables OpenGL to render into a •	
surface.

Accepts a user-provided Renderer object that does the actual •	
rendering.

Renders on a dedicated thread to decouple rendering •	
performance from the UI thread.

Supports both on-demand and continuous rendering. •	

Optionally wraps, traces, and/or error-checks the renderer’s •	
OpenGL calls.

For more information about GLSurfaceView, check http://developer.android.
com/reference/android/opengl/GLSurfaceView.html. You can find a sample of it at
http://www.learnopengles.com/how-to-use-opengl-es-2-in-an-android-live-wallpaper.

http://developer.android.com/reference/android/opengl/GLSurfaceView.html
http://developer.android.com/reference/android/opengl/GLSurfaceView.html
http://www.learnopengles.com/how-to-use-opengl-es-2-in-an-android-live-wallpaper

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

325

Use OpenMAX AL on Android 4.0
The OpenMAX AL API provides application-level multimedia solutions with portability
across an array of platforms by providing a common abstraction for a system’s media
playback and recording functionality. The API organizes this abstraction around a set of
high-level objects. An application acquires all objects from one “engine” object, which
encapsulates an OpenMAX AL session and serves as an umbrella for all other objects.

The Advantage of Using Native Multimedia API
(OpenMAX AL)
Starting with Android 4.0, Google included the Android native multimedia APIs based
on the Khronos group OpenMAX AL 1.0.1 standard, as of Android API level 14 (Android
platform version 4.0) and higher. It provides a direct, efficient path for low-level streaming
multimedia. The new path is ideal for applications that need to maintain complete
control over media data before passing it to the platform for presentation.

For example, media applications can now retrieve data from any source, apply
proprietary encryption/decryption, and then send the data to the platform for display.
Applications can also now send processed data to the platform as a multiplexed stream
of audio/video content in MPEG-2 transport stream format. The platform demuxes,
decodes, and renders the content. The audio track is rendered to the active audio
device, while the video track is rendered to either a Surface or a SurfaceTexture. When
rendering to a SurfaceTexture stream format, the application can apply subsequent
graphics effects to each frame using OpenGL.

Note ■ Although it’s based on openmAX Al, the Android native multimedia APi is not
a conforming implementation of either openmAX Al 1.0.1 profile (media player or media
player/recorder). This is because Android does not implement all of the features required by
either of the profiles. Any known cases where Android behaves differently than
the specification are described in the section “Android Extensions” that follows. The Android
openmAX Al implementation has limited features and is intended primarily for certain
performance-sensitive native streaming multimedia applications, such as video players. Table 12-3
indicates objects and interfaces supported by Android’s openmAX Al implementation.
A shaded cell means the feature is supported.

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

326

Demo: Streaming Media Player
Google has provided a sample for a streaming media player. You can check the sample
in samples\native-media\jni \native-media-jni.c in your android-sdk folder. The
function Java_com_example_nativemedia_NativeMedia_createStreamingMediaPlayer
will create a native streaming media player.

The usage is very simple, but you should note two points:

The video source must be a NativeWindow. You can call •	
ANativeWindow_fromSurface to get the native window from
Surface, which passes from the Java layer. And the Surface must
be a GLSurfaceView to ensure hardware rendering.

Register •	 XA_ANDROIDBUFFERQUEUEEVENT_PROCESSED callback for
filling the streaming buffer. The demo is reading the buffer from a
file, but you can also read the buffer from the Internet, so that you
can implement a P2P streaming media player.

Use a Powerful Media API: MediaCodec on
Android 4.1
Android has a great media library that allows all sorts of powerful actions. Until recently,
there was no way to encode and decode audio/video, which gives developers the ability
to do almost anything. Fortunately, the Jelly Bean release introduced the android.
media.MediaCodec API. It is designed following the same principles and architecture
of OpenMAX (a well-known standard in the media industry), transitioning from a pure
high-level media player to the encoder/decoder level.

Table 12-3. Objects and Interfaces Supported by Android’s OpenMAX AL Implementation

Objects and Interfaces Engine Media Player Output Mix

Dynamic interface management

Engine

Object

Play

Prefetch status

Stream information

Video decoder capabilities

Volume

Native display data locator Video sink

Output mix data locator Audio sink

MIME data format source

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

327

Sample Code: Audio Decoder
This sample code shows how to implement a decoder. It uses two classes—MediaCodec
and MediaExtractor. MediaExtractor facilitates extraction of demuxed, typically
encoded, media data from a data source. MediaCodec, of course, is used as a
low-level codec.

First you should use MediaExtractor to get the media format:

MediaExtractor extractor = new MediaExtractor();
extractor.setDataSource(sampleFD.getFileDescriptor(),sampleFD.
getStartOffset(), sampleFD.getLength());
MediaFormat format = extractor.getTrackFormat(0);

Secondly, you can create MediaCodec and configure it.

MediaCodec codec;
ByteBuffer[] codecInputBuffers;
ByteBuffer[] codecOutputBuffers;

MediaCodec codec = MediaCodec.createByCodecName(name);
codec.configure(format, null,null,0); //no display, so surface is null
codec.start();

Finally, you do the decoding. Like OMX-IL, it has two ports. You should
call dequeueInputBuffer to send the decoding buffer to MediaCodec, and call
dequeueOutputBuffer to receive the outside buffer.

int inputBufIndex = codec.dequeueInputBuffer(TIMEOUT_US);
if (inputBufIndex >= 0) {
 ByteBuffer dstBuf = codecInputBuffers[inputBufIndex];
 int sampleSize = extractor.readSampleData(dstBuf, 0);
 long presentationTimeUs = 0;
 if (sampleSize < 0) {
 sawInputEOS = true; sampleSize = 0;
 } else {
 presentationTimeUs = extractor.getSampleTime();
 }
 codec.queueInputBuffer(inputBufIndex, 0, sampleSize,
 presentationTimeUs,
 sawInputEOS ? MediaCodec.BUFFER_FLAG_END_OF_STREAM : 0);
 if(!sawInputEOS){
 extractor.advance();
 }
}
final int res = codec.dequeueOutputBuffer(info, TIMEOUT_US);
if(res >= 0){
 int outputBufIndex = res;
 ByteBuffer buf = codecOutputBuffers[outputBufIndex];

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

328

 final byte[] chunk = new byte[info.size];
 buf.get(chunk);
 buf.clear();
 if(chunk.length > 0){
 audioTrack.write(chunk,0,chunk.length);
 }
 codec.releaseOutputBuffer(outputBufIndex, false);
 if((info.flags && MediaCodec.BUFFER_FLAG_END_OF_STREAM) != 0){
 sawOutputEOS = true;
 }
} else if(res == MediaCodec.INFO_OUTPUT_BUFFERS_CHANGED){
 codecOutputBuffers = codec.getOutputBuffers();

} else if(res == MediaCodec.INFO_OUTPUT_FORMAT_CHANGED){
 final MediaFormat offormat = codec.getOutputFormat();

mAudioTrack.setPlaybackRate(oformat.getInteger(MediaFormat.KEY_SAMPLE_
RATE));
}

Use MediaCodec in NDK
MediaCodec is a Java layer class, but you must do the decoding (or encoding) in C code,
which is in the NDK layer. Therefore, it is important to call the Java class in the NDK. This
can be done by using the jni function FindClass.

Sample code for FindClass is shown here:

jclass audio_record_class = jni_env->FindClass("android/media/AudioRecord");
int size = jni_env->CallStaticIntMethod(audio_record_class
,jni_env->GetStaticMethodID(audio_record_class,"getMinBufferSize", "(III)I")
 ,prefered_rate
 ,2/*CHANNEL_CONFIGURATION_MONO*/
 ,2/* ENCODING_PCM_16BIT */);

Configuring MediaCodec with a surface will provide the best performance, as it can
use hardware rendering. You can reference native media (for example, OpenMAX AL)
to add the surface (or GLSurfaceView). If you’re using a normal surface, you can use a
textview for subtitles, and an imageview for the play bar. If you’re using GLSurfaceView,
you can extend this class and implement your own renderer.

Overview
There are currently only two hardware acceleration technologies that can be used on
the Android app layer: OpenGL and OpenMAX. OpenGL includes GLSurfaceView
and OpenGL-ES 1.0 and 2.0 in the NDK, and it is generally used as a renderer or for
multimedia effects processing. OpenMAX includes OpenMAX AL in NDK, MediaCodec,
and OMX-IL (which is not Google code, but must be implemented by the author). Each

CHAPTER 12 ■ PERfoRmAnCE TEsTing And PRofiling APPs wiTH PlATfoRm Tuning

329

technology has a usage scenario and applicable Android version. Up until now, the
popular Android versions were 2.3 and 4.0, so this chapter has only covered the versions
from Android 2.3 through Android 4.1. Table 12-4 indicates which hardware accelerators
can be used with which version of Android.

OpenGL is complex but the usage scenario is relatively fixed (video effect and image
processing), so the table lists only the usage of OpenMAX.

The Android 4.1 MediaCodec is an important update for multimedia apps. It gives
apps the ability to process images before encoding or after decoding. Using Android
on Intel architecture grants this ability even before Android 4.1, and after 4.1, hardware
acceleration can still give better and better effects.

Table 12-4. Hardware Accelerators Compatibility with Android Versions

OMX-IL OMX-AL MediaCodec

2.3 audio

2.3 video decode

2.3 video encode Codec (Intel architecture only)

4.0 audio Player (NDK only)

4.0 video decode Player (NDK only)

4.0 video encode Codec (Intel architecture only)

4.1 audio Codec

4.1 video decode Codec

4.1 video encode Codec (Intel architecture only) Codec

331

Appendix A

References

Chapter 1: History and Evolution of the
Android OS
Origins

http://www.webcitation.org/5wk7sIvVb
http://en.wikipedia.org/wiki/Andy_Rubin

First Android Distribution in 2007
http://www.openhandsetalliance.com/press_110507.html
http://www.cbsnews.com/2100-500395_162-6209772.html
http://oxrep.oxfordjournals.org/content/17/2/248.short
http://www.google.com/intl/en/policies/terms/

What is Android?
http://en.wikipedia.org/wiki/Android_(operating_system)#cite_note-

AndroidInc-6
http://books.google.com/books?hl=en&lr=&id=h0lltXyJ8aIC&oi=fnd&pg=PT7&d

q=linux&ots=gN3lF-b7OW&sig=ticDFAx0zLF3ocyAyAZUtk8oink#v=onepage&q=linux&f=
false

http://developer.android.com/guide/basics/what-is-android.html
http://kebomix.wordpress.com/2010/08/17/android-system-architecture/
http://os.ibds.kit.edu/downloads/sa_2010_braehler-stefan_android-

architecture.pdf
http://www.scandevconf.se/db/Marakana-Android-Internals.pdf
http://en.wikipedia.org/wiki/WebKit
http://developer.android.com/about/versions/index.html

http://www.webcitation.org/5wk7sIvVb
http://en.wikipedia.org/wiki/Andy_Rubin
http://www.openhandsetalliance.com/press_110507.html
http://www.cbsnews.com/2100-500395_162-6209772.html
http://oxrep.oxfordjournals.org/content/17/2/248.short
http://www.google.com/intl/en/policies/terms/
http://en.wikipedia.org/wiki/Android_(operating_system)#cite_note-AndroidInc-6
http://en.wikipedia.org/wiki/Android_(operating_system)#cite_note-AndroidInc-6
http://books.google.com/books?hl=en&lr=&id=h0lltXyJ8aIC&oi=fnd&pg=PT7&dq=linux&ots=gN3lF-b7OW&sig=ticDFAx0zLF3ocyAyAZUtk8oink#v=onepage&q=linux&f=false
http://books.google.com/books?hl=en&lr=&id=h0lltXyJ8aIC&oi=fnd&pg=PT7&dq=linux&ots=gN3lF-b7OW&sig=ticDFAx0zLF3ocyAyAZUtk8oink#v=onepage&q=linux&f=false
http://books.google.com/books?hl=en&lr=&id=h0lltXyJ8aIC&oi=fnd&pg=PT7&dq=linux&ots=gN3lF-b7OW&sig=ticDFAx0zLF3ocyAyAZUtk8oink#v=onepage&q=linux&f=false
http://developer.android.com/guide/basics/what-is-android.html
http://kebomix.wordpress.com/2010/08/17/android-system-architecture/
http://os.ibds.kit.edu/downloads/sa_2010_braehler-stefan_android-architecture.pdf
http://os.ibds.kit.edu/downloads/sa_2010_braehler-stefan_android-architecture.pdf
http://www.scandevconf.se/db/Marakana-Android-Internals.pdf
http://en.wikipedia.org/wiki/WebKit
http://developer.android.com/about/versions/index.html

Appendix A ■ RefeRences

332

The Open Handset Alliance (OHA)
http://en.wikipedia.org/wiki/Open_Handset_Alliance
http://www.openhandsetalliance.com/oha_faq.html
http://www.openhandsetalliance.com/oha_overview.html
http://www.openhandsetalliance.com/oha_members.html
http://www.acronyms.net/terms/o/Open-Handset-Alliance/index.pdf

The Android Open Source Project (AOSP)
http://www.springerlink.com/content/m0136q318k2p4361/
http://source.android.com/about/index.html
http://source.android.com/about/philosophy.html
http://developer.android.com/about/dashboards/index.html

Android Versions
http://en.wikipedia.org/wiki/Astro_(operating_system)#Android_1.0
http://news.cnet.com/8301-30686_3-10385806-266.html
http://reviews.cnet.com/8301-19736_7-20016542-251/a-brief-history-of-

android-phones/
http://developer.android.com/about/dashboards/index.html

Chapter 2: The Mobile Device and Operating
System Landscape
Competition in Mobile Space

http://www.mobiledevicemanager.com/mobile-device-statistics/250-million-
android-devices-in-use/

http://www.engadget.com/2012/07/02/comscore-may-2012-smartphone/

iOS
http://en.wikipedia.org/wiki/IOS
http://downloadsquad.switched.com/2010/08/12/camera-out-of-app-store-

after-revealing-volume-button-snap-tric
http://www.iphonehacks.com/2010/12/quick-snap-camera-plus-app-pulled-

from-app-store-for-using-volume-buttons-to-activate-camera-shutter.html
http://en.wikipedia.org/wiki/IPod_Touch
http://en.wikipedia.org/wiki/IPhone
http://en.wikipedia.org/wiki/IPad

http://en.wikipedia.org/wiki/Open_Handset_Alliance
http://www.openhandsetalliance.com/oha_faq.html
http://www.openhandsetalliance.com/oha_overview.html
http://www.openhandsetalliance.com/oha_members.html
http://www.acronyms.net/terms/o/Open-Handset-Alliance/index.pdf
http://www.springerlink.com/content/m0136q318k2p4361/
http://source.android.com/about/index.html
http://source.android.com/about/philosophy.html
http://developer.android.com/about/dashboards/index.html
http://en.wikipedia.org/wiki/Astro_(operating_system)#Android_1.0
http://news.cnet.com/8301-30686_3-10385806-266.html
http://reviews.cnet.com/8301-19736_7-20016542-251/a-brief-history-of-android-phones/
http://reviews.cnet.com/8301-19736_7-20016542-251/a-brief-history-of-android-phones/
http://developer.android.com/about/dashboards/index.html
http://www.mobiledevicemanager.com/mobile-device-statistics/250-million-android-devices-in-use/
http://www.mobiledevicemanager.com/mobile-device-statistics/250-million-android-devices-in-use/
http://www.engadget.com/2012/07/02/comscore-may-2012-smartphone/
http://en.wikipedia.org/wiki/IOS
http://downloadsquad.switched.com/2010/08/12/camera-out-of-app-store-after-revealing-volume-button-snap-tric
http://downloadsquad.switched.com/2010/08/12/camera-out-of-app-store-after-revealing-volume-button-snap-tric
http://www.iphonehacks.com/2010/12/quick-snap-camera-plus-app-pulled-from-app-store-for-using-volume-buttons-to-activate-camera-shutter.html
http://www.iphonehacks.com/2010/12/quick-snap-camera-plus-app-pulled-from-app-store-for-using-volume-buttons-to-activate-camera-shutter.html
http://en.wikipedia.org/wiki/IPod_Touch
http://en.wikipedia.org/wiki/IPhone
http://en.wikipedia.org/wiki/IPad

Appendix A ■ RefeRences

333

Meego
http://en.wikipedia.org/wiki/MeeGo
http://en.wikipedia.org/wiki/Tizen

BlackBerry
http://en.wikipedia.org/wiki/BlackBerry

Windows Phone
http://en.wikipedia.org/wiki/Windows_Phone
http://en.wikipedia.org/wiki/Windows_Mobile

Symbian
http://en.wikipedia.org/wiki/Symbian

Before Android
http://www.hongkiat.com/blog/evolution-of-mobile-phones/
http://en.wikipedia.org/wiki/Smartphone
http://en.wikipedia.org/wiki/IBM_Simon
http://en.wikipedia.org/wiki/Nokia_9000
http://en.wikipedia.org/wiki/Kyocera_6035
http://www.bitrebels.com/technology/the-evolution-of-smartphones-

infographic/
http://researchinmotion.wikia.com/wiki/BlackBerry_5810

The Mobile Market
http://www.eweek.com/c/a/Mobile-and-Wireless/10-Smartphones-That-Failed-

to-Inspire-Buyers-In-2010-696525/
http://blog.pricesbolo.com/index.php/tag/10-smartphones-that-failed-

in-2010/
http://timesofindia.indiatimes.com/tech/itslideshow/7010501.cms
http://timesofindia.indiatimes.com/tech/itslideshow/7010503.cms
http://timesofindia.indiatimes.com/tech/itslideshow/6519089.cms
http://en.wikipedia.org/wiki/List_of_best-selling_mobile_phones#2010

http://en.wikipedia.org/wiki/MeeGo
http://en.wikipedia.org/wiki/Tizen
http://en.wikipedia.org/wiki/BlackBerry
http://en.wikipedia.org/wiki/Windows_Phone
http://en.wikipedia.org/wiki/Windows_Mobile
http://en.wikipedia.org/wiki/Symbian
http://www.hongkiat.com/blog/evolution-of-mobile-phones/
http://en.wikipedia.org/wiki/Smartphone
http://en.wikipedia.org/wiki/IBM_Simon
http://en.wikipedia.org/wiki/Nokia_9000
http://en.wikipedia.org/wiki/Kyocera_6035
http://www.bitrebels.com/technology/the-evolution-of-smartphones-infographic/
http://www.bitrebels.com/technology/the-evolution-of-smartphones-infographic/
http://researchinmotion.wikia.com/wiki/BlackBerry_5810
http://www.eweek.com/c/a/Mobile-and-Wireless/10-Smartphones-That-Failed-to-Inspire-Buyers-In-2010-696525/
http://www.eweek.com/c/a/Mobile-and-Wireless/10-Smartphones-That-Failed-to-Inspire-Buyers-In-2010-696525/
http://blog.pricesbolo.com/index.php/tag/10-smartphones-that-failed-in-2010/
http://blog.pricesbolo.com/index.php/tag/10-smartphones-that-failed-in-2010/
http://timesofindia.indiatimes.com/tech/itslideshow/7010501.cms
http://timesofindia.indiatimes.com/tech/itslideshow/7010503.cms
http://timesofindia.indiatimes.com/tech/itslideshow/6519089.cms
http://en.wikipedia.org/wiki/List_of_best-selling_mobile_phones#2010

Appendix A ■ RefeRences

334

Motorola i1
http://www.intomobile.com/2010/08/02/review-boost-mobile-motorola-i1-

does-prepaid-android-work-well/
http://en.wikipedia.org/wiki/Motorola_i1
http://reviews.cnet.com/smartphones/motorola-i1-boost-

mobile/4505-6452_7-34117412-2.html
http://www.slashgear.com/motorola-i1-set-to-crash-onto-sprint-on-july-

25th-1994629/
http://www.engadget.com/2010/01/20/motorola-launching-20-30-android-

phones-in-2010/

Droid X
http://sparxoo.com/2010/06/21/motorola-droid-x-heats-up-competition-

with-apple/
http://en.wikipedia.org/wiki/Droid_X
http://www.pcworld.com/article/201259/Droid_X_Sells_Out_Despite_Verizon_

Preparation.html
http://www.androidcentral.com/verizon-stores-selling-out-droid-xs

BlackBerry Torch
http://dvice.com/archives/2011/01/why-the-blackbe.php
http://gizmodo.com/5614843/the-blackberry-torchs-biggest-failure-rims-

ridiculous-expectations
http://www.ixibo.com/balckberry-torch-a-failure-against-iphone-and-

android/
http://www.zdnet.com/blog/btl/blackberry-torch-best-blackberry-ever-

fails-to-generate-buzz/37573
http://business.financialpost.com/2010/08/17/rim-slides-on-sluggish-

blackberry-torch-sales/
http://www.thestar.com/business/companies/rim/article/862297--torch-

ignites-research-in-motion

iPhone
http://www.slideshare.net/bkiprin/apples-iphone-launch-marketing-

strategy-analysis-2858373
http://www.scribd.com/doc/21275028/Apple-iPhone-Marketing-Plan
http://ezinearticles.com/?iPhone-Marketing-Strategy&id=4718557
http://en.wikipedia.org/wiki/IPhone
http://www.techiewww.com/marketing/apple-iphone-marketing-strategy

http://www.intomobile.com/2010/08/02/review-boost-mobile-motorola-i1-does-prepaid-android-work-well/
http://www.intomobile.com/2010/08/02/review-boost-mobile-motorola-i1-does-prepaid-android-work-well/
http://en.wikipedia.org/wiki/Motorola_i1
http://reviews.cnet.com/smartphones/motorola-i1-boost-mobile/4505-6452_7-34117412-2.html
http://reviews.cnet.com/smartphones/motorola-i1-boost-mobile/4505-6452_7-34117412-2.html
http://www.slashgear.com/motorola-i1-set-to-crash-onto-sprint-on-july-25th-1994629/
http://www.slashgear.com/motorola-i1-set-to-crash-onto-sprint-on-july-25th-1994629/
http://www.engadget.com/2010/01/20/motorola-launching-20-30-android-phones-in-2010/
http://www.engadget.com/2010/01/20/motorola-launching-20-30-android-phones-in-2010/
http://sparxoo.com/2010/06/21/motorola-droid-x-heats-up-competition-with-apple/
http://sparxoo.com/2010/06/21/motorola-droid-x-heats-up-competition-with-apple/
http://en.wikipedia.org/wiki/Droid_X
http://www.pcworld.com/article/201259/Droid_X_Sells_Out_Despite_Verizon_Preparation.html
http://www.pcworld.com/article/201259/Droid_X_Sells_Out_Despite_Verizon_Preparation.html
http://www.androidcentral.com/verizon-stores-selling-out-droid-xs
http://dvice.com/archives/2011/01/why-the-blackbe.php
http://gizmodo.com/5614843/the-blackberry-torchs-biggest-failure-rims-ridiculous-expectations
http://gizmodo.com/5614843/the-blackberry-torchs-biggest-failure-rims-ridiculous-expectations
http://www.ixibo.com/balckberry-torch-a-failure-against-iphone-and-android/
http://www.ixibo.com/balckberry-torch-a-failure-against-iphone-and-android/
http://www.zdnet.com/blog/btl/blackberry-torch-best-blackberry-ever-fails-to-generate-buzz/37573
http://www.zdnet.com/blog/btl/blackberry-torch-best-blackberry-ever-fails-to-generate-buzz/37573
http://business.financialpost.com/2010/08/17/rim-slides-on-sluggish-blackberry-torch-sales/
http://business.financialpost.com/2010/08/17/rim-slides-on-sluggish-blackberry-torch-sales/
http://www.thestar.com/business/companies/rim/article/862297--torch-ignites-research-in-motion
http://www.thestar.com/business/companies/rim/article/862297--torch-ignites-research-in-motion
http://www.slideshare.net/bkiprin/apples-iphone-launch-marketing-strategy-analysis-2858373
http://www.slideshare.net/bkiprin/apples-iphone-launch-marketing-strategy-analysis-2858373
http://www.scribd.com/doc/21275028/Apple-iPhone-Marketing-Plan
http://ezinearticles.com/?iPhone-Marketing-Strategy&id=4718557
http://en.wikipedia.org/wiki/IPhone
http://www.techiewww.com/marketing/apple-iphone-marketing-strategy

Appendix A ■ RefeRences

335

The Mobile Market: Trends
http://socialmediatoday.com/gonzogonzo/495583/great-trends-mobile-

infographic
http://smallbiztrends.com/2012/05/mobile-trend-key-things.html
http://mashable.com/2012/04/30/mobile-trends-brands-marketing/
http://mashable.com/2012/08/22/mobile-trends-ecommerce/
http://www.clickz.com/clickz/column/2168103/mobile-trends-watch
http://memeburn.com/2011/12/five-mobile-trends-to-look-out-for-in-2012/

Location
http://blogs.jpost.com/content/2012-mobile-trends-commerce-product-

ecosystems-location-integration
https://discussions.apple.com/thread/3374979?start=0&tstart=0
http://www.itbusinessedge.com/slideshows/show.aspx?c=87261&slide=2

Average Use
http://thenextweb.com/us/2010/05/04/twitter-facebook-soar-myspace-sags-

market-share/

Commerce
http://mashable.com/2012/08/22/mobile-trends-ecommerce/
http://www.itbusinessedge.com/slideshows/show.aspx?c=87261&slide=5
http://www.oracle.com/us/products/applications/web-commerce/ecommerce-

trends-2012-1504949.pdf
http://www.fortune3.com/blog/2012/01/us-m-commerce-sales-2010-2015-

statistics/

Chapter 3: Beyond the Mobile App—A Technology
Foundation
Connected Devices

http://www.intel.com/p/en_US/embedded/innovation/connectivity/johnson-
article-connectivity

http://www.intel.com/content/www/us/en/home-users/get-more-from-your-
devices-with-connecting-apps-from-intel.html

http://newsroom.intel.com/community/intel_newsroom/blog/2012/03/06/new-
intel-server-technology-powering-the-cloud-to-handle-15-billion-connected-
devices

http://venturebeat.com/2011/10/17/intel-execs-predicts-15b-devices-will-
be-connected-to-the-internet/

http://socialmediatoday.com/gonzogonzo/495583/great-trends-mobile-infographic
http://socialmediatoday.com/gonzogonzo/495583/great-trends-mobile-infographic
http://smallbiztrends.com/2012/05/mobile-trend-key-things.html
http://mashable.com/2012/04/30/mobile-trends-brands-marketing/
http://mashable.com/2012/08/22/mobile-trends-ecommerce/
http://www.clickz.com/clickz/column/2168103/mobile-trends-watch
http://memeburn.com/2011/12/five-mobile-trends-to-look-out-for-in-2012/
http://blogs.jpost.com/content/2012-mobile-trends-commerce-product-ecosystems-location-integration
http://blogs.jpost.com/content/2012-mobile-trends-commerce-product-ecosystems-location-integration
https://discussions.apple.com/thread/3374979?start=0&tstart=0
http://www.itbusinessedge.com/slideshows/show.aspx?c=87261&slide=2
http://thenextweb.com/us/2010/05/04/twitter-facebook-soar-myspace-sags-market-share/
http://thenextweb.com/us/2010/05/04/twitter-facebook-soar-myspace-sags-market-share/
http://mashable.com/2012/08/22/mobile-trends-ecommerce/
http://www.itbusinessedge.com/slideshows/show.aspx?c=87261&slide=5
http://www.oracle.com/us/products/applications/web-commerce/ecommerce-trends-2012-1504949.pdf
http://www.oracle.com/us/products/applications/web-commerce/ecommerce-trends-2012-1504949.pdf
http://www.fortune3.com/blog/2012/01/us-m-commerce-sales-2010-2015-statistics/
http://www.fortune3.com/blog/2012/01/us-m-commerce-sales-2010-2015-statistics/
http://www.intel.com/p/en_US/embedded/innovation/connectivity/johnson-article-connectivity
http://www.intel.com/p/en_US/embedded/innovation/connectivity/johnson-article-connectivity
http://www.intel.com/content/www/us/en/home-users/get-more-from-your-devices-with-connecting-apps-from-intel.html
http://www.intel.com/content/www/us/en/home-users/get-more-from-your-devices-with-connecting-apps-from-intel.html
http://newsroom.intel.com/community/intel_newsroom/blog/2012/03/06/new-intel-server-technology-powering-the-cloud-to-handle-15-billion-connected-devices
http://newsroom.intel.com/community/intel_newsroom/blog/2012/03/06/new-intel-server-technology-powering-the-cloud-to-handle-15-billion-connected-devices
http://newsroom.intel.com/community/intel_newsroom/blog/2012/03/06/new-intel-server-technology-powering-the-cloud-to-handle-15-billion-connected-devices
http://venturebeat.com/2011/10/17/intel-execs-predicts-15b-devices-will-be-connected-to-the-internet/
http://venturebeat.com/2011/10/17/intel-execs-predicts-15b-devices-will-be-connected-to-the-internet/

Appendix A ■ RefeRences

336

Home Computing
http://www.apartmenttherapy.com/how-many-americans-have-multip-143096

Automotive
http://www.wired.com/autopia/2012/06/gps-devices-are-dead/
http://lifehacker.com/5626711/the-best-android-apps-for-your-car

Special Requirements
Ruggedized

http://en.wikipedia.org/wiki/Rugged_computer
http://en.wikipedia.org/wiki/IP_Code

Medical
http://medicalconnectivity.com/2011/04/03/emr-integration-for-

medical-devices-the-basics/
http://en.wikipedia.org/wiki/Electronic_medical_record

Secure Communications
http://en.wikipedia.org/wiki/Type_1_product
http://en.wikipedia.org/wiki/Federal_Information_Processing_Standard

The Cyber-Fiber of our Connected World
Cellular Networks

http://en.wikipedia.org/wiki/Cellular_network
http://en.wikipedia.org/wiki/GSM
http://en.wikipedia.org/wiki/Code_division_multiple_access
http://en.wikipedia.org/wiki/Multimedia_Messaging_Service
http://en.wikipedia.org/wiki/Short_Message_Service

Open Mobile Alliance
http://en.wikipedia.org/wiki/Open_Mobile_Alliance

Wireless
http://en.wikipedia.org/wiki/Wi-Fi
http://en.wikipedia.org/wiki/Bluetooth#Pairing_and_bonding

http://www.apartmenttherapy.com/how-many-americans-have-multip-143096
http://www.wired.com/autopia/2012/06/gps-devices-are-dead/
http://lifehacker.com/5626711/the-best-android-apps-for-your-car
http://en.wikipedia.org/wiki/Rugged_computer
http://en.wikipedia.org/wiki/IP_Code
http://medicalconnectivity.com/2011/04/03/emr-integration-for-medical-devices-the-basics/
http://medicalconnectivity.com/2011/04/03/emr-integration-for-medical-devices-the-basics/
http://en.wikipedia.org/wiki/Electronic_medical_record
http://en.wikipedia.org/wiki/Type_1_product
http://en.wikipedia.org/wiki/Federal_Information_Processing_Standard
http://en.wikipedia.org/wiki/Cellular_network
http://en.wikipedia.org/wiki/GSM
http://en.wikipedia.org/wiki/Code_division_multiple_access
http://en.wikipedia.org/wiki/Multimedia_Messaging_Service
http://en.wikipedia.org/wiki/Short_Message_Service
http://en.wikipedia.org/wiki/Open_Mobile_Alliance
http://en.wikipedia.org/wiki/Wi-Fi
http://en.wikipedia.org/wiki/Bluetooth#Pairing_and_bonding

Appendix A ■ RefeRences

337

Mobile Interfaces
Touch Screens

http://www.knowyourmobile.com/features/392511/touchscreen_lowdown_
capacitive_vs_resistive.html

http://www.goodgearguide.com.au/article/355922/capacitive_vs_resistive_
touchscreens/

http://www.knowyourcell.com/features/687370/touchscreen_lowdown_
capacitive_vs_resistive.html

http://en.wikipedia.org/wiki/Touchscreen

Resistive
http://en.wikipedia.org/wiki/Resistive_touchscreen

Vibration Sensors (Haptics)
http://en.wikipedia.org/wiki/Haptic_technology
http://en.wikipedia.org/wiki/Vibrating_alert

Accelerometer
http://en.wikipedia.org/wiki/Accelerometer

Tilt Sensor
http://en.wikipedia.org/wiki/Tilt_sensor

Hardware Buttons

Chapter 4: Android Development—Business
Overview and Considerations
Market Share

http://techcrunch.com/2012/11/02/idc-android-market-share-reached-
75-worldwide-in-q3-2012/

http://www.businessinsider.com/android-market-share-2012-11

http://www.knowyourmobile.com/features/392511/touchscreen_lowdown_capacitive_vs_resistive.html
http://www.knowyourmobile.com/features/392511/touchscreen_lowdown_capacitive_vs_resistive.html
http://www.goodgearguide.com.au/article/355922/capacitive_vs_resistive_touchscreens/
http://www.goodgearguide.com.au/article/355922/capacitive_vs_resistive_touchscreens/
http://www.knowyourcell.com/features/687370/touchscreen_lowdown_capacitive_vs_resistive.html
http://www.knowyourcell.com/features/687370/touchscreen_lowdown_capacitive_vs_resistive.html
http://en.wikipedia.org/wiki/Touchscreen
http://en.wikipedia.org/wiki/Resistive_touchscreen
http://en.wikipedia.org/wiki/Haptic_technology
http://en.wikipedia.org/wiki/Vibrating_alert
http://en.wikipedia.org/wiki/Accelerometer
http://en.wikipedia.org/wiki/Tilt_sensor
http://techcrunch.com/2012/11/02/idc-android-market-share-reached-75-worldwide-in-q3-2012/
http://techcrunch.com/2012/11/02/idc-android-market-share-reached-75-worldwide-in-q3-2012/
http://www.businessinsider.com/android-market-share-2012-11

Appendix A ■ RefeRences

338

http://www.huffingtonpost.com/2012/09/18/android-market-share-q3-
2012_n_1893292.html

http://www.huffingtonpost.com/2012/11/02/android-market-share_n_2066986.html
http://www.t-gaap.com/2012/5/24/can-google-make-money-with-android?site_

locale=en
http://www.wired.com/business/2012/10/profit-or-no-profit/?pid=707
http://venturebeat.com/2012/11/01/as-android-grabs-75-market-share-can-

anyone-tell-me-why-this-is-not-mac-vs-pc-all-over-again/
http://film.wapka.mobi/site_342.xhtml
http://en.wikipedia.org/wiki/International_Data_Corporation
http://androidandme.com/2012/04/opinions/the-future-of-android-in-2012/
http://www.tapscape.com/smartphone-war-android-market-share-hits-75-share/
http://openceo.blogspot.com/2012/11/android-75-market-share-future-is-

open.html
http://www.forbes.com/sites/darcytravlos/2012/08/22/five-reasons-why-

google-android-versus-apple-ios-market-share-numbers-dont-matter/
http://techpinions.com/android-v-ios-part-6-the-future/9687
http://www.wired.com/business/2012/10/google-ad-prices/
http://www.splatf.com/2011/10/google-revenue/
http://hellboundbloggers.com/2012/04/28/why-android-is-popular/
http://www.nascentstuff.com/why-android-os-is-getting-so-popular/
http://forum.xda-developers.com/showthread.php?t=865371
http://artinandroid.blogspot.com/2011/11/why-android-is-so-successful.html
http://techcrunch.com/2012/05/15/3997-models-android-fragmentation-as-

seen-by-the-developers-of-opensignalmaps/
https://play.google.com/store/apps
http://authors.library.caltech.edu/11284/1/MCAaer04.pdf
http://nick.typepad.com/blog/2012/01/androids-legacy-nonsense.html
http://www.phonearena.com/news/The-Update-Battle-Innovation-vs-legacy-

support_id23282

Security
http://www.cs.rice.edu/~sc40/pubs/enck-sec11.pdf

Licensing
http://pandodaily.com/2012/01/28/how-google-can-save-android-close-

it-license-it-swim-in-the-profits/
http://www.unwiredview.com/2011/07/13/the-real-cost-of-android-

potentially-60-per-device-in-patent-fees/
http://www.quora.com/Mobile-Software-Development/What-is-the-licensing-

royalty-cost-of-Android-OS
http://www.techrepublic.com/blog/app-builder/app-store-fees-percentages-

and-payouts-what-developers-need-to-know/1205
http://developer.android.com/distribute/googleplay/publish/register.html

http://www.huffingtonpost.com/2012/09/18/android-market-share-q3-2012_n_1893292.html
http://www.huffingtonpost.com/2012/09/18/android-market-share-q3-2012_n_1893292.html
http://www.huffingtonpost.com/2012/11/02/android-market-share_n_2066986.html
http://www.t-gaap.com/2012/5/24/can-google-make-money-with-android?site_locale=en
http://www.t-gaap.com/2012/5/24/can-google-make-money-with-android?site_locale=en
http://www.wired.com/business/2012/10/profit-or-no-profit/?pid=707
http://venturebeat.com/2012/11/01/as-android-grabs-75-market-share-can-anyone-tell-me-why-this-is-not-mac-vs-pc-all-over-again/
http://venturebeat.com/2012/11/01/as-android-grabs-75-market-share-can-anyone-tell-me-why-this-is-not-mac-vs-pc-all-over-again/
http://film.wapka.mobi/site_342.xhtml
http://en.wikipedia.org/wiki/International_Data_Corporation
http://androidandme.com/2012/04/opinions/the-future-of-android-in-2012/
http://www.tapscape.com/smartphone-war-android-market-share-hits-75-share/
http://openceo.blogspot.com/2012/11/android-75-market-share-future-is-open.html
http://openceo.blogspot.com/2012/11/android-75-market-share-future-is-open.html
http://www.forbes.com/sites/darcytravlos/2012/08/22/five-reasons-why-google-android-versus-apple-ios-market-share-numbers-dont-matter/
http://www.forbes.com/sites/darcytravlos/2012/08/22/five-reasons-why-google-android-versus-apple-ios-market-share-numbers-dont-matter/
http://techpinions.com/android-v-ios-part-6-the-future/9687
http://www.wired.com/business/2012/10/google-ad-prices/
http://www.splatf.com/2011/10/google-revenue/
http://hellboundbloggers.com/2012/04/28/why-android-is-popular/
http://www.nascentstuff.com/why-android-os-is-getting-so-popular/
http://forum.xda-developers.com/showthread.php?t=865371
http://artinandroid.blogspot.com/2011/11/why-android-is-so-successful.html
http://techcrunch.com/2012/05/15/3997-models-android-fragmentation-as-seen-by-the-developers-of-opensignalmaps/
http://techcrunch.com/2012/05/15/3997-models-android-fragmentation-as-seen-by-the-developers-of-opensignalmaps/
https://play.google.com/store/apps
http://authors.library.caltech.edu/11284/1/MCAaer04.pdf
http://nick.typepad.com/blog/2012/01/androids-legacy-nonsense.html
http://www.phonearena.com/news/The-Update-Battle-Innovation-vs-legacy-support_id23282
http://www.phonearena.com/news/The-Update-Battle-Innovation-vs-legacy-support_id23282
http://www.cs.rice.edu/~sc40/pubs/enck-sec11.pdf
http://pandodaily.com/2012/01/28/how-google-can-save-android-close-it-license-it-swim-in-the-profits/
http://pandodaily.com/2012/01/28/how-google-can-save-android-close-it-license-it-swim-in-the-profits/
http://www.unwiredview.com/2011/07/13/the-real-cost-of-android-potentially-60-per-device-in-patent-fees/
http://www.unwiredview.com/2011/07/13/the-real-cost-of-android-potentially-60-per-device-in-patent-fees/
http://www.quora.com/Mobile-Software-Development/What-is-the-licensing-royalty-cost-of-Android-OS
http://www.quora.com/Mobile-Software-Development/What-is-the-licensing-royalty-cost-of-Android-OS
http://www.techrepublic.com/blog/app-builder/app-store-fees-percentages-and-payouts-what-developers-need-to-know/1205
http://www.techrepublic.com/blog/app-builder/app-store-fees-percentages-and-payouts-what-developers-need-to-know/1205
http://developer.android.com/distribute/googleplay/publish/register.html

Appendix A ■ RefeRences

339

Chapter 5: The Intel Mobile Processor
Clash of the Mobile Titans: ARM versus Intel

http://beta.fool.com/iamgreatness/2012/07/25/mobile-vs-desktop-
intel-ready-crush-arm/7757/

http://seekingalpha.com/article/874181-arm-s-david-vs-intel-s-goliath-
outcome-uncertain

http://techland.time.com/2012/07/16/arm-vs-intel-how-the-processor-wars-
will-benefit-consumers-most/

http://en.wikipedia.org/wiki/Acorn_Computers
http://www.ot1.com/arm/armchap1.html
http://www.techulator.com/resources/7489-The-All-time-Processor-War-ARM-

Intel.aspx
http://en.wikipedia.org/wiki/ARM_architecture
http://media.corporate-ir.net/media_files/irol/19/197211/reports/ar06.pdf

“ARM Holdings PLC Reports Results For The Second Quarter And Half Year Ended
30 June 201.” http://www.arm.com/about/newsroom/arm-holdings-plc-reports-
results-for-the-second-quarter-and-half-year-ended-30-june-2013.php

http://it.bentley.edu/dommara_prud/arm/index.html
http://www.zdnet.com/amd-arms-power-advantages-could-wane-in-the-coming-

years-7000006597/

Intel
http://www.intel.com/content/www/us/en/history/historic-timeline.html
http://en.wikipedia.org/wiki/Semiconductor_sales_leaders_by_

year#Ranking_for_year_2011
http://www.intel.com/support/motherboards/desktop/sb/CS-033869.htm
http://en.wikipedia.org/wiki/Handheld_game_console
http://www.extremetech.com/wp-content/uploads/2011/11/Chart_

USportableGameRevenue_MarketShare_2009-2011-resized-600.png
http://appleinsider.com/articles/10/03/22/iphone_ipod_touch_carve_19_

gaming_share_from_sony_nintendo

Android Atom Platforms
http://www.pcworld.com/article/259737/intel_porting_android_41_to_

work_on_atom_tablets_smartphones.html
http://www.phonearena.com/news/Android-Intel-Atom-powered-Phones-Hands-

on-Reviews-Lenovo-K800-Orange-Santa-Clara-Lava-Xolo-X900_id27528
http://www.tomshardware.com/news/intel-tablet-medfield-soc-cpu,14389.

html

http://beta.fool.com/iamgreatness/2012/07/25/mobile-vs-desktop-intel-ready-crush-arm/7757/
http://beta.fool.com/iamgreatness/2012/07/25/mobile-vs-desktop-intel-ready-crush-arm/7757/
http://seekingalpha.com/article/874181-arm-s-david-vs-intel-s-goliath-outcome-uncertain
http://seekingalpha.com/article/874181-arm-s-david-vs-intel-s-goliath-outcome-uncertain
http://techland.time.com/2012/07/16/arm-vs-intel-how-the-processor-wars-will-benefit-consumers-most/
http://techland.time.com/2012/07/16/arm-vs-intel-how-the-processor-wars-will-benefit-consumers-most/
http://en.wikipedia.org/wiki/Acorn_Computers
http://www.ot1.com/arm/armchap1.html
http://www.techulator.com/resources/7489-The-All-time-Processor-War-ARM-Intel.aspx
http://www.techulator.com/resources/7489-The-All-time-Processor-War-ARM-Intel.aspx
http://en.wikipedia.org/wiki/ARM_architecture
http://media.corporate-ir.net/media_files/irol/19/197211/reports/ar06.pdf
http://www.arm.com/about/newsroom/arm-holdings-plc-reports-results-for-the-second-quarter-and-half-year-ended-30-june-2013.php
http://www.arm.com/about/newsroom/arm-holdings-plc-reports-results-for-the-second-quarter-and-half-year-ended-30-june-2013.php
http://it.bentley.edu/dommara_prud/arm/index.html
http://www.zdnet.com/amd-arms-power-advantages-could-wane-in-the-coming-years-7000006597/
http://www.zdnet.com/amd-arms-power-advantages-could-wane-in-the-coming-years-7000006597/
http://www.intel.com/content/www/us/en/history/historic-timeline.html
http://en.wikipedia.org/wiki/Semiconductor_sales_leaders_by_year#Ranking_for_year_2011
http://en.wikipedia.org/wiki/Semiconductor_sales_leaders_by_year#Ranking_for_year_2011
http://www.intel.com/support/motherboards/desktop/sb/CS-033869.htm
http://en.wikipedia.org/wiki/Handheld_game_console
http://www.extremetech.com/wp-content/uploads/2011/11/Chart_USportableGameRevenue_MarketShare_2009-2011-resized-600.png
http://www.extremetech.com/wp-content/uploads/2011/11/Chart_USportableGameRevenue_MarketShare_2009-2011-resized-600.png
http://appleinsider.com/articles/10/03/22/iphone_ipod_touch_carve_19_gaming_share_from_sony_nintendo
http://appleinsider.com/articles/10/03/22/iphone_ipod_touch_carve_19_gaming_share_from_sony_nintendo
http://www.pcworld.com/article/259737/intel_porting_android_41_to_work_on_atom_tablets_smartphones.html
http://www.pcworld.com/article/259737/intel_porting_android_41_to_work_on_atom_tablets_smartphones.html
http://www.phonearena.com/news/Android-Intel-Atom-powered-Phones-Hands-on-Reviews-Lenovo-K800-Orange-Santa-Clara-Lava-Xolo-X900_id27528
http://www.phonearena.com/news/Android-Intel-Atom-powered-Phones-Hands-on-Reviews-Lenovo-K800-Orange-Santa-Clara-Lava-Xolo-X900_id27528
http://www.tomshardware.com/news/intel-tablet-medfield-soc-cpu,14389.html
http://www.tomshardware.com/news/intel-tablet-medfield-soc-cpu,14389.html

Appendix A ■ RefeRences

340

Chapter 6: Installing the Android SDK for Intel
Application Development
Installation and Setup
Java Development Kit

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Eclipse
http://www.eclipse.org/downloads/

Apache Ant
http://ant.apache.org/

Software Development Kit
http://developer.android.com/sdk/index.html

Emulation
http://developer.android.com/guide/developing/devices/index.html
http://developer.android.com/tools/devices/emulator.html

Ice Cream Sandwich Emulation
http://software.intel.com/en-us/articles/android-43-jelly-bean-x86-

emulator-system-image
http://www.computerworld.com/s/article/9230152/Android_4.0_The_ultimate_

guide_plus_cheat_sheet_
http://source.android.com/source/initializing.html

Gingerbread Emulation
http://blogs.computerworld.com/17479/android_gingerbread_faq

KVM
https://help.ubuntu.com/community/KVM/Installation
https://help.ubuntu.com/community/KVM
http://android-er.blogspot.com/2010/09/how-to-set-battery-status-of-

android.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
http://ant.apache.org/
http://developer.android.com/sdk/index.html
http://developer.android.com/guide/developing/devices/index.html
http://developer.android.com/tools/devices/emulator.html
http://software.intel.com/en-us/articles/android-43-jelly-bean-x86-emulator-system-image
http://software.intel.com/en-us/articles/android-43-jelly-bean-x86-emulator-system-image
http://www.computerworld.com/s/article/9230152/Android_4.0_The_ultimate_guide_plus_cheat_sheet_
http://www.computerworld.com/s/article/9230152/Android_4.0_The_ultimate_guide_plus_cheat_sheet_
http://source.android.com/source/initializing.html
http://blogs.computerworld.com/17479/android_gingerbread_faq
https://help.ubuntu.com/community/KVM/Installation
https://help.ubuntu.com/community/KVM
http://android-er.blogspot.com/2010/09/how-to-set-battery-status-of-android.html
http://android-er.blogspot.com/2010/09/how-to-set-battery-status-of-android.html

Appendix A ■ RefeRences

341

Intel Tools
http://www.intel.com/software/android
http://int-software.intel.com/en-us/android
http://software.intel.com/en-us/articles/android-virtual-device-

emulation-for-intel-architecture

Chapter 7: Creating and Porting NDK-Based
Android Applications

http://www.cygwin.com/
http://developer.android.com/sdk/ndk/index.html
http://www.eclipse.org/cdt/downloads.php
http://download.eclipse.org/tools/cdt/releases/galileo/

Chapter 8: Debugging Android
http://www.intel.com/software/android
http://developer.android.com/sdk/installing.html
http://developer.android.com/guide/developing/device.html
http://developer.android.com/tools/extras/oem-usb.html
http://developer.android.com/tools/device.html#VendorIds.
http://developer.android.com/guide/developing/tools/adb.html
http://developer.android.com/sdk/eclipse-adt.html#installing
http://source.android.com/source/downloading.html
http://www.windriver.com/products/JTAG-debugging/
http://www.lauterbach.com
http://software.intel.com/en-us/articles/embedded-using-intel-tools
http://developer.android.com/guide/developing/device.html
http://www.eclipse.org/downloads/
http://developer.android.com/sdk/index.html

Johnson, Randy and Stewart Christie. “JTAG 101: IEEE 1149.x and Software Debug.”
http://www.intel.com/content/www/us/en/intelligent-systems/jtag-101-ieee-
1149x-paper.html

Chapter 9: Performance Optimizations for
Android Applications on x86

http://intel.com/software/gpa
http://software.intel.com/en-us/vcsource/tools/intel-gpa

http://www.intel.com/software/android
http://int-software.intel.com/en-us/android
http://software.intel.com/en-us/articles/android-virtual-device-emulation-for-intel-architecture
http://software.intel.com/en-us/articles/android-virtual-device-emulation-for-intel-architecture
http://www.cygwin.com/
http://developer.android.com/sdk/ndk/index.html
http://www.eclipse.org/cdt/downloads.php
http://download.eclipse.org/tools/cdt/releases/galileo/
http://www.intel.com/software/android
http://developer.android.com/sdk/installing.html
http://developer.android.com/guide/developing/device.html
http://developer.android.com/tools/extras/oem-usb.html
http://developer.android.com/tools/device.html#VendorIds
http://developer.android.com/guide/developing/tools/adb.html
http://developer.android.com/sdk/eclipse-adt.html#installing
http://source.android.com/source/downloading.html
http://www.windriver.com/products/JTAG-debugging/
http://www.lauterbach.com/
http://software.intel.com/en-us/articles/embedded-using-intel-tools
http://developer.android.com/guide/developing/device.html
http://www.eclipse.org/downloads/
http://developer.android.com/sdk/index.html
http://www.intel.com/content/www/us/en/intelligent-systems/jtag-101-ieee-1149x-paper.html
http://www.intel.com/content/www/us/en/intelligent-systems/jtag-101-ieee-1149x-paper.html
http://intel.com/software/gpa
http://software.intel.com/en-us/vcsource/tools/intel-gpa

Appendix A ■ RefeRences

342

Chapter 10: x86 NDK and C/C++ Optimizations
http://software.intel.com/en-us/articles/intel-integrated-

performance-primitives-intel-ipp-intel-ipp-sample-code
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Locality_of_

reference.html

Chapter 11: Using Intel Hardware Accelerated
Execution Manager on Windows, Mac OS, and
Linux to Speed Up Android on x86 Emulation
“Installation Instructions for Intel® Hardware Accelerated Execution Manager -
Microsoft Windows.” http://software.intel.com/en-us/articles/installation-
instructions-for-intel-hardware-accelerated-execution-manager-windows

“Installation Instructions for Intel® Hardware Accelerated Execution Manager - Mac
OS X.” http://software.intel.com/en-us/articles/installation-instructions-
for-intel-hardware-accelerated-execution-manager-macosx

“How to Start Intel Hardware-assisted Virtualization (hypervisor) on Linux to
Speed-up Intel Android x86 Gingerbread Emulator.” http://software.intel.com/
en-us/blogs/2012/03/12/how-to-start-intel-hardware-assisted-virtualization-
hypervisor-on-linux-to-speed-up-intel-android-x86-gingerbread-emulator

Chapter 12: Performance Testing and Profiling
Apps with Platform Tuning

http://elinux.org/images/e/e0/The_OpenMAX_Integration_Layer_
standard.pdf

http://www.ffmpeg.org/.
https://github.com/shaobin0604/faplayer
https://github.com/havlenapetr
http://yasm.tortall.net/
http://software.intel.com/en-us/articles/using-yasm-compiler-on-android-

ndkbuild
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://developer.android.com/reference/android/opengl/GLSurfaceView.html
http://www.learnopengles.com/how-to-use-opengl-es-2-in-an-android-live-

wallpaper

http://software.intel.com/en-us/articles/intel-integrated-performance-primitives-intel-ipp-intel-ipp-sample-code
http://software.intel.com/en-us/articles/intel-integrated-performance-primitives-intel-ipp-intel-ipp-sample-code
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Locality_of_reference.html
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Locality_of_reference.html
http://software.intel.com/en-us/articles/installation-instructions-for-intel-hardware-accelerated-execution-manager-windows
http://software.intel.com/en-us/articles/installation-instructions-for-intel-hardware-accelerated-execution-manager-windows
http://software.intel.com/en-us/articles/installation-instructions-for-intel-hardware-accelerated-execution-manager-macosx
http://software.intel.com/en-us/articles/installation-instructions-for-intel-hardware-accelerated-execution-manager-macosx
http://software.intel.com/en-us/blogs/2012/03/12/how-to-start-intel-hardware-assisted-virtualization-hypervisor-on-linux-to-speed-up-intel-android-x86-gingerbread-emulator
http://software.intel.com/en-us/blogs/2012/03/12/how-to-start-intel-hardware-assisted-virtualization-hypervisor-on-linux-to-speed-up-intel-android-x86-gingerbread-emulator
http://software.intel.com/en-us/blogs/2012/03/12/how-to-start-intel-hardware-assisted-virtualization-hypervisor-on-linux-to-speed-up-intel-android-x86-gingerbread-emulator
http://elinux.org/images/e/e0/The_OpenMAX_Integration_Layer_standard.pdf
http://elinux.org/images/e/e0/The_OpenMAX_Integration_Layer_standard.pdf
http://www.ffmpeg.org/
https://github.com/shaobin0604/faplayer
https://github.com/havlenapetr
http://yasm.tortall.net/
http://software.intel.com/en-us/articles/using-yasm-compiler-on-android-ndkbuild
http://software.intel.com/en-us/articles/using-yasm-compiler-on-android-ndkbuild
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://developer.android.com/reference/android/opengl/GLSurfaceView.html
http://www.learnopengles.com/how-to-use-opengl-es-2-in-an-android-live-wallpaper
http://www.learnopengles.com/how-to-use-opengl-es-2-in-an-android-live-wallpaper

 A���������
ADB. See Android Debug Bridge (ADB)
ADT. See Android Debug Tools (ADT)
Advanced Encryption Standard (AES), 20
Advanced programmable interrupt

controller (APIC) registers, 44
AES. See Advanced Encryption

Standard (AES)
Android, Oracle VirtualBox

custom kernel, mouse support, 153
Ethernet, 159
Google x86 VirtualBox, 152
large virtual partition, 157
Serial Port, 158
VirtualBox Disk and Android

installer, 156
Android Debug Bridge (ADB)

definition, 139
device commands, 142
host-client communication, 141
setting up, 140
starting, 142
on Windows, 141

Android Debug Tools (ADT)
DDMS perspective, 145
debug perspective, Eclipse, 144
runtime environment,

debugging, 145
Android development

and x86 family (see x86 Family and
android development)

application base, 27
customization, 27
description, 25
device price, 27
experts, 26
free service, 27

future support, 28
Google, 26
hardware choices, 27
International Data

Corporation (IDC), 25
legacy support, 28
licensing, 30
Open Source, 27
physical development costs, 31
security, 29

Android, Inc.
android runtime, 4
AOSP (see Android Open Source

Project (AOSP))
applications, 3
architecture, 3
description, 1
Google Play Store, 4
Linux Kernel, 5
native libraries (see Native libraries)
OHA (see Open Handset

Alliance (OHA))
origins

first distribution, 1
for mobile devices, 1
open source Apache License, 2

Android licensing cost, 31
Android multithreaded design

communication
class, 238
code frameworks, 236
notify and resources, 237
wait function, 236

description, 219
Java thread programming interface

(see Java thread programming
interface)

principles, 238

Index

343

■ index

344

synchronization
code framework, 233
critical section, 233
general method, 235
invalid synchronized block, 234
locking class, 235
method, 234
rules, 235–236
static method, 234
unique/atomic, 233

threaded programming
activity_main.xml, 228
asynchronous tasks, 226
handler, 225
framework, 220
looper, 225
message queue, 224–225
multithreaded code

framework, 226–227
MyTaskThread class, 231–233
running error message, 223–224
source code, 228–230
structure, 227

Android Native Development Kit
Application Binary Interface (ABI), 84
application components, 83
application development flowchart, 83
components, 82
Dalvik virtual machine, 81
installation, 86

Android Open Source Project (AOSP)
Astro (1.0), 6
Cupcake (1.5), 6
Donut (1.6), 6
Éclair (2.0/2.1), 6
Froyo (2.2.x), 7
Gingerbread (2.3.x), 7
goal, 5
Honeycomb (3.x), 7
Ice Cream Sandwich (4.0.x), 7
Jelly Bean (4.1.x), 8
KitKat (4.4.x), 8
mobile devices, 5
software developers, 6

Android operating system, 9
Android testing systems, 32
Android Virtual Device (AVD) emulation

Android SDK, 53
configuration, 53
description, 53

developers, 53
development and testing, 55
emulator image

build environment
initialization, 55

Image Location, 57
Kernel image, 57
Lunch Command, 56
SDK, 56
set up repository, 55

uses, 54
x86 emulator images

ARM folder, 58
final images folder, 59
home screen, 62
Image Location, 58
instructions, 58
KVM, 62
launch options, 61
new AVD creation, 60
success dialog box, 60

AOSP. See Android Open Source
Project (AOSP)

Application licensing cost, 31
Application security, 29
ARM

business model, 37
history, 36
Linux server operating systems, 38
in market, 35
Windows RT, 37

Assembly language level
optimization, 191

Astro (1.0), 6
Auto-vectorization, 259, 263

B���������
BlackBerry, 11
BlackBerry 13, 5810
BlackBerry Torch, 14
Bluetooth technology, 21
British Broadcasting Company (BBC), 36
Burst frequency mode (BFM), 41

C���������
Capacitive touch screens, 22
cCodeTask function, 273
CDMA. See Code Division Multiple

Access (CDMA)

344

Android multithreaded design (cont.)

■ index

345

C/C++ Development Tooling (CDT)
installation

download page, 100
eclipse install software dialog box, 101
eclipse install software update

install address, 102
installation progress, 105
license review window, 104
selection box, 102

Cellular networks
communication protocols,

GSM and CDMA, 20
description, 20
OMA, 21

CISC system. See Complex Instruction
Set Computing (CISC) system

Code Division Multiple Access (CDMA), 21
Compiler optimization extensions

SSE instructions, 281
task execution time, 281

Compiling instruction-level
optimization, 191

Complex Instruction Set Computing
(CISC) system, 33

Complimentary wireless solution (CWS)
interfaces, 40

Connected devices
automotive, 18
description, 17
digital entertainment, 18
home computing, 17
requirements

medical, 19
ruggedization (see Ruggedization)
secure communications, 20
virtualized, 19

Cross-debug
hardware interrupts, 179
single instruction step, 180
variable length instructions, 178
virtual memory mapping, 181

Cupcake (1.5), 6
Cygwin

access denied message, 97
bin directory, 97
components packages, by NDK, 92
dependency reminder, 92
directory-conversion mechanism, 96
download and install selected

components, 93
download page, 87
initial install window, 88

initial window, 95
installation directory and user

settings selection, 89
installation package download

and install, 91
install mode selection, 88
packages install selection, 91
path environment variable, 94
prompt to select download

mirror site, 90
reminder boxes, 93
setup internet connection type

selection, 90
temporary directory setting,

downloaded files, 89
window, not running first time, 95

D���������
Debugging Android

ADB (see Android Debug
Bridge (ADB))

ADT (see Android Debug
Tools (ADT))

Android OS debugging, 175
cross-debug (see Cross-debug)
device driver debugging, 176
GDB, GNU Project debugger

absolute-source-path, 161
APP_OPTIM flag, 162
C/C++ application, 164
connection settings, 167
debugging flag activation, 162
Eclipse main menu, 163
external tools configurations, 168
gdbclient application, 160
gdbserver, 160
GL2JNIActivity default C/C++

application configuration, 169
GL2JNIActivity_GDB

configuration, 167
ndk-gdb command, 163
preferred launcher, 165
setting breakpoints, 169
setting panel, 166

hardware breakpoints, 177
HAXM

AVD Manager, Eclipse, 151
64-bit kernel, 148
description, 146
KVM installation, 147, 149
x86 Intel Emulator, 150

345

■ index

346

Intel Atom x86 System Image
installation (see Intel Atom
Android x86 System Image)

Intel GPA (see Intel Graphics
Performance Analyzer
(Intel GPA))

Intel hyper-threading
technology, 182

Intel USB driver, 131
JTAG debugging, 174
SoC and heterogeneous multi-core

interaction, 183
DES. See United States Data Encryption

Standard (DES)
Device driver debugging, 176
Donut (1.6), 6
Droid X, 13

E���������
Éclair (2.0/2.1), 6
Electronic medical record (EMR), 19
EMR. See Electronic medical

record (EMR)

F���������
Federal Information Processing Standard

(FIPS) certification, 20
Focus function, 194
Froyo (2.2.x), 7

G���������
3rd Generation Partnership

Project (3GPP), 21
Gingerbread (2.3.x), 7
Global System for Mobile

Communications (GSM), 21
Graphics Performance

Analyzers (GPA), 189, 306
GSM. See Global System for Mobile

Communications (GSM)

H���������
Hardware Accelerated Execution

Manager (HAXM)
definition, 146
download, 147
x86 emulation, 146

Haswell microprocessors, 33
HAXM. See Hardware Accelerated

Execution Manager (HAXM)
High frequency mode (HFM), 41
High-performance libraries, 190
Honeycomb (3.x), 7

I���������
Ice Cream Sandwich (ICS)

CPU acceleration, 70
description, 1
downloading manually, 67
downloading through Android

SDK manager, 65
GPU acceleration, 70
requirement, 65
system image, 66

ICS. See Ice Cream Sandwich (ICS)
IETF. See Internet Engineering Task

Force (IETF)
Ingress Protection (IP) Rating Code, 19
Integrated Development

Environments (IDEs), 32
Integration Layer (IL), 316
Intel Architecture (IA) family, 38
Intel Atom x86 System Image

Android SDK Manager program
selection, 134

AVD emulation, 139
Launch Options window, 138
license agreement, 134
manage AVDs, tools menu, 135
Virtual Device, 136–138

Intel Core i-series, 34
Intel Graphics Performance

Analyzers (Intel GPA)
applications list, 172
app running, 201
case study, original

application, 239–240
configuration, 200
connected device selection, 171
definition, 170
features, 200
installation

destination folder selection, 208
dialog box, 206
message boxes, 207
prerequisite setup, 205
progress bar, 206
software download site, 205

346

Debugging Android (cont.)

■ index

347

Intel GPA 2013, 170
MoveCircle application, 209
.Net framework 4.0 installation

interface, 204
optimized application

MainActivity class, 253
MyTaskThread source code, 250
screenshots, 257
user interface, 250

original application
analysis screen results, 247
MainActivity.java, 244
MyTaskThread, 242
SerialPi, 240–241
steps and key code, 242
<Symbol>p</Symbol>thread, 241
task thread, 240

PowerVR graphics architecture, 172
sample application

analyzable and nonanalyzable
applications, 212–213

AndroidManifest.xml file, 210
app initialization

interface, 213–214
connect button, 211–212
disk read activity, 219
document framework, 209
initial message appears, 214–215
Medfield device, 211
monitoring interface

appears, 215–216
monitoring screen, 217–218
MoveCircle app, 216–217

System Analyzer Window, 173
target devices, 170
tree structure, 202
usage, 208

Intel Hardware Accelerated Execution
Manager (Intel HAXM)

downloading, 286
Linux

AVD starting by AVD manager,
eclipse, 302

AVD starting from Android SDK
Directly from Terminal, 301

KVM installation, 299
Mac OS

Finish Screen, 295
Intel Execute Disable (XD) Bit

Capability Error, 297
Intel Virtualization Technology

(VT-x) Capability, 297

memory allocation
adjustment, 296

RAM Adjustment Screen, 295
removing, 296
tips and tricks, 298
troubleshooting, 297
Welcome Screen, 294

on Windows
installation, 288
Intel Virtualization Technology

(Intel VT-x) capability, 292
memory allocation adjustment, 292
tips and tricks, 292

Intel HAXM. See Intel Hardware
Accelerated Execution Manager
(Intel HAXM)

Intel Hyper-Threading Technology
(Intel HT Technology), 43, 182

Intel IPP optimization
Android development

environment code, 266
definition, 266
features, 266
services, 266

Intel mobile processor
application compatibility, 44
Intel’s Atom line of microprocessors

Android and, 39
evolution, 38
features, 39
Intel Architecture (IA) family, 38
security, 39

Intel’s x86 line
business model, 35
CISC system, 33
Haswell microprocessors, 33
history, 34
RISC system, 33
strengths and weaknesses, 34

Medfield SOC, 40
Saltwell CPU architecture, 41

Intel processor-related compiler
switch options, 125

Intel Smart Idle Technology
(Intel SIT), 41

Intel’s Saltwell and ARM’s Cortex A15
architecture, 42
high-level differences, 41
instruction sets, 42
integer pipelines, 42
multi-core/thread support, 43
security technology, 43

347

■ index

348

Intel USB driver, android devices
Driver Installation Start Screen, 132
Installation Progress Screen, 133

Intel VTune performance amplifier
assembly codes and

source codes, 196
critical path, 194
elapsed time and statistics, 193
processor events, 197
processor microarchitecture

modes, 198–199
run-time statistics, 193
system tuning, 198
thread and CPU, 197

Internet Engineering Task
Force (IETF), 21

iOS, Apple, Inc.
applications, 10
description, 10
OS X, Apple’s desktop operating

system, 10
platforms, 10

IP. See Ingress Protection (IP)
Rating Code

iPad, 11
iPhone, 11, 14
iPod Touch, 11

J���������
Java thread programming interface

class and start, 220
custom runnable, 221
finishing code, 221
framework, 222
multiple inheritances, 222
sample custom thread class, 220
start, 221–222

Jave Native Interface (JNI)
C/C++ function call, 77
definition, 76
general workflow, 76
Java and C data type

mapping, 79
Java methods and C function

prototype Java, 78
local method, 76
usage scenarios, 76

Jelly Bean (4.1.x), 8
Joint Test Action Group IEEE 1149.1

(JTAG) debugging, 173

K���������
Key Gingerbread features

battery usage stats, 63
cut and paste text, 64
task manager, 63

KitKat (4.4.x), 8
Kyocera 13, 6035

L���������
Library File generation

command-line method
Android App project, 105
C file compilation, 112
C interface file creation, 109
Java files modification, 107
NDK makefile file,

jni directory, 113
project in eclipse, 108
subdirectory creation, Project

Root Directory, 108
IDE, 114

Linux Kernel, 5
Locality principle, 187
Low frequency mode (LFM), 41

M���������
Medfield block diagram, 40
MediaPlayer function, 305
MeeGo from Intel and Nokia, 12
Metal oxide semiconductor (MOS), 34
MMS. See Multimedia Messaging

Service (MMS)
Mobile interfaces

accelerometer, 23
description, 22
hardware buttons, 23
LED lights, 23
tilt sensor, 23
touch screens, 22
vibration motors, 23

Mobile market
BlackBerry Torch, 14
commerce, 15
current mobile uses, 14
Droid X, 13
iPhone, 14
location, 14
Motorola i1, 13

348

■ index

349

MoveCircle application, 209
Multimedia Messaging

Service (MMS), 21
Multithreaded programming. See Android

multithreaded design

N���������
National Electrical Manufacturers

Association (NEMA), 19
National Security Agency (NSA), 20
Native Development Kit (NDK)

Android NDK (see Android Native
Development Kit(NDK))

and binary translator, 44
compiler optimization, 122
intel processor-related compiler

switch options, 125
JNI (see Java Native Interface (JNI))
toolset, 75
workflow analysis, application

development, 120
Native libraries

description, 4
OpenGL/ES, 4
SQLite, 4
surface manager, 4
WebKit, 4

NDK integrated optimization
C/C++

computing tasks acceleration,
java, 268

NDK compiler, 273
NDKExp Running Interface, 267
Start C Task button, 267
Start Java Task, 267

compiler optimization
Android part, 276
cCodeTask function, 276
C implementation code, 279
execution time, 276
Makefile File, 279
NDKExp Running Interface,

extended version, 275
NEMA. See National Electrical

Manufacturers Association
(NEMA)

Nokia 9000 (Nokia Communicator), 13
NSA. See National Security

Agency (NSA)

O���������
OHA. See Open Handset Alliance (OHA)
OMA. See Open Mobile Alliance (OMA)
OpenGL engine process, 4
Open Handset Alliance (OHA), 5
Open Mobile Alliance (OMA), 21
Open Source Apache License, 2
Operating systems (OS)

BlackBerry, 11
iOS, 10
MeeGo, 12
Symbian, 12
Windows Phone, 11

Optimizations. See Performance
optimizations

P���������
Parallel analysis, 198
PDAs. See Personal digital assistants (PDAs)
Performance optimizations

Android multithreaded design
Android-threaded

programming, 226
communication, 236
description, 219
Java thread programming

interface (see Java thread
programming interface)

principles, 238
threaded programming

framework, 220, 223
thread synchronization, 233

approaches
categories, 188
compilers, 189
development tools, 189–190
levels, 191
overall process, 191

categories, 185
concepts

cache registers, 187
degree of parallelism, 187
faster instruction, 186
hash methods, 186
locality principle, 187
methodology, 188
principles, 186

development tools
GPA, 189–190
high-performance libraries, 190

349

■ index

350

Intel GPA (see Intel Graphics
Performance Analyzers
(Intel GPA))

Intel VTune performance amplifier
(see Intel VTune performance
amplifier)

overview, 257–258
Performance testing

Android video applications, 303
cpu usage and hotspots, 306
full-format x86 player

Android.mk, 305
built-in code program, 303
FFmpeg cross-compile, 304
FFmpeg project, 303
prelink static libraries, 305
tewilove_faplayer, 304

SSE
color space, 309
MMX2 code, 312
Optimizations, 309
RGB segment, 313
SIMD code, 310
SIMD works, 310

techniques, 303
YASM

comparisons, 308
NASM assembler, 308
optimization projects, 309
usage, 308

Personal digital assistants (PDAs), 12
Platform security, 30
Profile-guided optimization (PGO), 189
Profiling Apps

Android 4.0 image displaying, 314
common cross-compile script

JPEG encoding,decoding, 314
SIMD code, 315

hardware acceleration, OpenMAX
Layers, 316

IL
buffer space, 319
camera application, 322
DDMS plug-in, 321
Eclipse filter usage, 321
features, 316
Google video recording, 323
GPU rendering work flow, 323, 324
hardware vs. software Encoders, 320
implement camera preview, 320

medfield Intel architecture
platform, 317

MediaCodec class, 319
MPEG-4 encoder, 319
NDK layer, 323
OMX-IL Rendering Pipeline, 319
OpenMAX components, 317
packaging hardware video

encoder library, 320
recording thread, 322
video codec interfaces, 317

OpenMAX AL
MPEG-2 transport, 325
multimedia solutions, 325
Objects and Interfaces

Supported, 326
streaming media player, 326
surface texture, 325

overview
hardware accelerators

compatibility, 329
MediaCodec, 329
OpenGL, 329

Powerful Media API
dequeueOutputBuffer, 326–327
MediaCodec,NDK, 327–328
MediaExtractor, 327

R���������
Reduced Instruction Set Computing

(RISC) system, 33
Research in Motion (RIM), 11, 13–14
Resistive touch screens, 22
RIM. See Research in Motion (RIM)
RISC system. See Reduced Instruction

Set Computing (RISC) system
Ruggedization

“hardening”, 19
IP Rating Code, 19
military applications, 19

S���������
Saltwell CPU architecture, 41
Schottky bipolar random

access memory, 34
SDK. See Software Development Kit (SDK)
Secure communications

complications, 20
description, 20

350

Performance optimizations (cont.)

■ index

351

FIPS, 20
type 1 device, NSA, 20

Short Message Service (SMS), 21
Simon Personal Communicator, 12
Single instruction, multiple data (SIMD)

instructions, 259, 261, 263, 310
SMS. See Short Message Service (SMS)
SOC. See System-on-Chip (SOC)
Software development kit (SDK)

Apache Ant (optional), 48
description, 10, 31
eclipse installation, 48
hardware requirements, 48
JDK installation, 48
starter package and components

ADT plug-in for eclipse, 50, 51
Android developer tools, 52
Android SDK and AVD Manager,

Linux, 49
Intel Architecture (x86) emulator, 52

supported operating systems, 47
Software development systems, 31
Source code level optimization, 191
Spatial locality, 188
SQLite database, 4
Streaming SIMD Extensions (SSE), 309
Surface Manager, 4
SVEN. See System Visible Event

Nexus (SVEN)
Symbian OS from Accenture, 12
System.load(), 77
System.loadLibrary(), 77
System-on-Chip (SOC), 40
System Visible Event

Nexus (SVEN), 183–184

T���������
Temporal locality, 188
Thread blocking, 198
Threaded programming. See Android

multithreaded design
Touch screens, 22

U���������
Unified Extensible Firmware Interface

(UEFI) specifications, 39
United States Data Encryption

Standard (DES), 20

V���������
Vectorization

auto-vectorization, 259
dependencies, 261
failure, 260
Intel compiler, 259–260
interprocedural optimizations

hello-jni application, 265
icc/icpc compiler drivers, 264
–ip option, 264
libone.so, 264
libtwo.so, 264
symbol’s visibility

attribute, 265
loops, 262
memory copying implementation, 260
pragmas

auto-vectorization and
limits, 263

memory copying
implementation, 263

simple loop restructuring, 263
-vec options, 259

“Violation of Apple’s policies”, 10
Virtual memory mapping

GDT and LDT, 181
page translation

ARM, 182
Intel architecture, 181

W���������
W3C. See World Wide Web

Consortium (W3C)
WebKit, 4
Wi-Fi technology, 21
Windows Phone, 11
Wireless communications

Bluetooth, 21
description, 21
Wi-Fi, 21

World Wide Web Consortium (W3C), 21

X���������
x86 Family and android development

barrier to entry, 29
cross compatibility, 29
description, 28

351

Android on x86
An Introduction to Optimizing for

Intel® Architecture

Iggy Krajci

Darren Cummings

Android on x86: An Introduction to Optimizing for Intel® Architecture

Iggy Krajci and Darren Cummings

Copyright © 2013 by Apress Media, LLC, all rights reserved

ApressOpen Rights: You have the right to copy, use and distribute this Work in its entirety, electronically
without modification, for non-commercial purposes only. However, you have the additional right to use
or alter any source code in this Work for any commercial or non-commercial purpose which must be
accompanied by the licenses in (2) and (3) below to distribute the source code for instances of greater than
5 lines of code. Licenses (1), (2) and (3) below and the intervening text must be provided in any use of the
text of the Work and fully describes the license granted herein to the Work.

(1) License for Distribution of the Work: This Work is copyrighted by Apress Media, LLC, all rights
reserved. Use of this Work other than as provided for in this license is prohibited. By exercising any of the
rights herein, you are accepting the terms of this license. You have the non-exclusive right to copy, use and
distribute this English language Work in its entirety, electronically without modification except for those
modifications necessary for formatting on specific devices, for all non-commercial purposes, in all media
and formats known now or hereafter. While the advice and information in this Work are believed to be true
and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express
or implied, with respect to the material contained herein.

If your distribution is solely Apress source code or uses Apress source code intact, the following licenses
(2) and (3) must accompany the source code. If your use is an adaptation of the source code provided by
Apress in this Work, then you must use only license (3).

(2) License for Direct Reproduction of Apress Source Code: This source code, from Android on x86,
ISBN 978-1-4302-6130-8 is copyrighted by Apress Media, LLC, all rights reserved. Any direct reproduction
of this Apress source code is permitted but must contain this license. The following license must be
provided for any use of the source code from this product of greater than 5 lines wherein the code is
adapted or altered from its original Apress form. This Apress code is presented AS IS and Apress makes no
claims to, representations or warrantees as to the function, usability, accuracy or usefulness of this code.

(3) License for Distribution of Adaptation of Apress Source Code: Portions of the source code provided
are used or adapted from Android on x86, ISBN 978-1-4302-6130-8 copyright Apress Media LLC. Any use
or reuse of this Apress source code must contain this License. This Apress code is made available at
Apress.com/9781430261308 as is and Apress makes no claims to, representations or warrantees as to the
function, usability, accuracy or usefulness of this code.

ISBN-13 (pbk): 978-1-4302-6130-8

ISBN-13 (electronic): 978-1-4302-6131-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

President and Publisher: Paul Manning
Lead Editors: Jeffrey Pepper (Apress); Stuart Douglas (Intel)
Contributing Editor: Sarah Yost (Intel)
Coordinating Editor: Mark Powers
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress.com/9781430261308
orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
www.apress.com

iii

About ApressOpen

What Is ApressOpen?
ApressOpen is an open access book program that publishes •	
high-quality technical and business information.

ApressOpen eBooks are available for global, free, •	
noncommercial use.

ApressOpen eBooks are available in PDF, ePub, and Mobi formats.•	

The user friendly ApressOpen free eBook license is presented on •	
the copyright page of this book.

I’d like to dedicate this book to my mother Julie. I can never thank you enough for
making me into the man that I am today. Thank you.

—Iggy

I dedicate this book to my SAIFE team - you guys are awesome!

—Darren

vii

Contents

About the Authors ��� xxi

Acknowledgments �� xxiii

Introduction ��xxv

Chapter 1: History and Evolution of the Android OS ■ ����������������������� 1

Origins ��� 1

The First Distribution of Android ��� 1

Open Source Apache License ��� 2

What Is Android? ��� 2

Applications �� 3

Application Frameworks ��� 4

Native Libraries �� 4

Android Runtime ��� 4

Linux Kernel �� 5

The Open Handset Alliance�� 5

Android Open Source Project �� 5

Astro (1�0) ��� 6

Cupcake (1�5) �� 6

Donut (1�6) �� 6

Éclair (2�0/2�1) �� 6

Froyo (2�2�x) �� 7

Gingerbread (2�3�x) ��� 7

Honeycomb (3�x) ��� 7

■ Contents

viii

Ice Cream Sandwich (4�0�x) �� 7

Jelly Bean (4�1�x) �� 8

KitKat (4�4�x) ��� 8

Overview ��� 8

Chapter 2: The Mobile Device and Operating System Landscape ■ ������ 9

Competition in the Mobile Space �� 9

iOS �� 10

BlackBerry �� 11

Windows Phone �� 11

Symbian �� 12

MeeGo��� 12

Before Android ��� 12

Smartphone History �� 12

The Mobile Market: Success and Failure �� 13

Motorola i1 ��� 13

Droid X �� 13

BlackBerry Torch��� 14

iPhone ��� 14

The Mobile Market: Trends �� 14

Location �� 14

Current Mobile Uses ��� 14

Commerce �� 15

Overview ��� 15

Chapter 3: Beyond the Mobile App—A Technology Foundation ■ ��� 17

Connected Devices �� 17

Home Computing �� 17

Automotive ��� 18

Digital Entertainment �� 18

■ Contents

ix

Special Requirements ��� 18

Ruggedization ��� 19

Medical ��� 19

Virtualized ��� 19

Secure Communications ��� 20

The Cyber Fiber of Our Connected World �� 20

Cellular Networks ��� 20

Wireless Communications �� 21

Mobile Interfaces ��� 22

Touch Screens �� 22

Vibration Motors ��� 23

LED Lights ��� 23

Accelerometer �� 23

Tilt Sensor ��� 23

Hardware Buttons ��� 23

Overview ��� 23

 Chapter 4: Android Development—Business Overview ■
and Considerations ��� 25

The Android Market Share ��� 25

How Android Makes Money �� 26

Why Android Is Successful ��� 26

Free �� 27

Open Source ��� 27

Customization ��� 27

Application Base ��� 27

Hardware Choices �� 27

Device Price �� 27

■ Contents

x

Legacy and Future Platform Support��� 28

Legacy Support ��� 28

Future Support �� 28

Why x86 and Android Are Right for You �� 28

Cross Compatibility ��� 29

Barrier to Entry ��� 29

Security of Android �� 29

Application Security �� 29

Platform Security �� 30

Licensing ��� 30

Android Licensing Cost ��� 31

Application Licensing Cost ��� 31

Physical Development Costs ��� 31

Software Development Systems��� 31

Android Testing Systems �� 32

Overview ��� 32

Chapter 5: The Intel Mobile Processor ■ ��� 33

Intel’s x86 Line �� 33

History �� 34

Strengths and Weaknesses �� 34

Business Model �� 35

Clash of the Mobile Titans: ARM versus Intel �� 35

ARM �� 35

Intel’s Atom Line of Microprocessors �� 38

Intel Atom Evolution �� 38

Intel Atom Security ��� 39

Intel Atom Features �� 39

Android and the Atom ��� 39

■ Contents

xi

Inside the Medfield System-on-Chip ��� 40

Zooming In on the Saltwell CPU Architecture ��� 41

Architecture Differences between Intel’s Saltwell and
ARM’s Cortex A15 �� 41

Architecture �� 42

Integer Pipelines ��� 42

Instruction Sets �� 42

Multi-Core/Thread Support ��� 43

Security Technology �� 43

Intel Hyper-Threading Technology ��� 43

Application Compatibility: Native Development Kit and
Binary Translator ��� 44

Overview ��� 46

 Chapter 6: Installing the Android SDK for Intel ■
Application Development �� 47

Preparing for the SDK Installation ��� 47

Supported Operating Systems �� 47

Hardware Requirements ��� 48

Installing the JDK �� 48

Installing Eclipse ��� 48

Installing Apache Ant (Optional) �� 48

Downloading the SDK Starter Package and Adding
SDK Components ��� 48

Setting Up Eclipse to work with the SDK �� 50

Overview of Android Virtual Device Emulation �������������������������������������� 53

Which Emulator Should You Use ��� 54

Why Use the Emulator �� 54

■ Contents

xii

Building an Emulator Image ��� 55

Setting Up the SDK to Use x86 Emulator Images ��� 57

Key Gingerbread Features ��� 62

Battery Usage Stats �� 63

Task Manager ��� 63

Cut and Paste Text �� 64

Ice Cream Sandwich Emulation �� 65

Prerequisites��� 65

Downloading Through the Android SDK Manager ��� 65

Using the System Image ��� 66

Downloading Manually ��� 67

CPU Acceleration �� 70

GPU Acceleration �� 70

Overview ��� 74

 Chapter 7: Creating and Porting NDK-Based ■
Android Applications �� 75

JNI and NDK Introduction �� 75

JNI Introduction �� 75

Java Methods and Their Corresponding Relationship with the
C Function Prototype Java �� 78

Java and C Data Type Mapping ��� 79

NDK Introduction �� 81

NDK Installation ��� 85

Android NDK Installation ��� 86

Install Cygwin ��� 87

Install CDT �� 100

■ Contents

xiii

NDK Examples ��� 105

Using the Command-Line Method to Generate a Library File ������������������������������� 105

Generating a Library File in the IDE �� 114

Workflow Analysis for NDK Application Development �� 120

NDK Compiler Optimization ��� 122

Machine-Independent Compiler Switch Options �� 123

Intel Processor-Related Compiler Switch Options �� 125

Overview ��� 130

Chapter 8: Debugging Android ■ ��� 131

Prerequisites ��� 131

Intel USB Driver for Android Devices �� 131

Installing the Intel Atom x86 System Image for Android Emulator ����������������������� 133

Application Debugging Using the Android Debug Bridge �������������������� 139

Setting Up ADB ��� 140

ADB on Windows �� 141

ADB Host-Client Communication �� 141

Starting ADB ��� 142

Key ADB Device Commands ��� 142

Using the Android Debug Tools Plug-in for Eclipse ��� 143

Intel Hardware Accelerated Execution Manager ��������������������������������� 146

KVM Installation �� 147

Using a 64-Bit Kernel �� 148

Install KVM �� 149

Starting the Android Virtual Device ��� 150

Using AVD Manager in Eclipse to Launch a Virtual Device ����������������������������������� 151

Running Android Within Oracle VirtualBox ��� 151

Google x86 VirtualBox Build Targets for Android 4�x ��� 152

Building a Custom Kernel with Mouse Support �� 153

■ Contents

xiv

Build the VirtualBox Disk and Android Installer �� 156

Using an Android Installer Disk to Create a Large Virtual Partition ������������������� 157

Serial Port ��� 158

Ethernet �� 159

Debugging with GDB, the GNU Project Debugger �������������������������������� 160

The Intel Graphics Performance Analyzer (Intel GPA) �������������������������� 170

System Debug of Android OS Running on an Intel Atom Processor ���� 173

JTAG Debugging ��� 174

Android OS Debugging, ��� 175

Device Driver Debugging �� 176

Hardware Breakpoints �� 177

Cross-Debug: Intel Atom Processor and ARM Architecture ����������������� 178

Variable Length Instructions ��� 178

Hardware Interrupts ��� 179

Single Step ��� 180

Virtual Memory Mapping �� 181

Considerations for Intel Hyper-Threading Technology ������������������������� 182

SoC and Interaction of Heterogeneous Multi-Core ������������������������������ 183

SVEN (System Visible Event Nexus) �� 183

Signal Encode/Decode Debug �� 184

SVEN Benefits ��� 184

Overview ��� 184

 Chapter 9: Performance Optimizations for Android ■
Applications on x86 �� 185

Basic Concepts of Performance Optimization ������������������������������������� 186

Selection of a Faster Instruction ��� 186

Improve the Degree of Parallelism ��� 187

Effective Use of the Register Cache ��� 187

■ Contents

xv

Methodology of Performance Optimizations ��������������������������������������� 188

Performance Optimization Approaches ��� 188

Performance Optimizations Automatically Done by a Compiler ��������������������������� 189

Performance Optimizations Assisted by Development Tools �������������������������������� 189

Performance Optimizations Done Manually ��� 190

Performance Tuning with Intel VTune �� 192

System Tuning �� 198

Tuning Based on the Microarchitecture of the Processor ������������������������������������� 198

Intel Graphics Performance Analyzers ��� 200

Introduction �� 200

Installation �� 203

Sample Usage of Intel GPA on Android ��� 208

Android Multithreaded Design ��� 219

Android Framework or a Thread ��� 220

Java Thread Programming Interface �� 220

Threaded Programming Extensions and Support ��� 223

Thread Example �� 226

Thread Synchronization �� 233

Thread Communication �� 236

Principles of Multithreaded Optimization for Intel Atom Processors �������������������� 238

Case Study: Intel GPA–Assisted Multithreaded Optimization for an
Android Application ��� 239

Original Application and Intel GPA Analysis �� 240

Optimized Application and Intel GPA Analysis��� 249

Overview ��� 257

Chapter 10: x86 NDK and C/C++ Optimizations ■ ������������������������� 259

Vectorization �� 259

Vectorization Report ��� 260

Pragmas ��� 262

■ Contents

xvi

Auto-Vectorization and Limits �� 263

Interprocedural Optimizations �� 264

Optimization with Intel IPP �� 265

NDK Integrated Optimization Examples��� 266

C/C++: The Original Application Acceleration ��� 267

Step 1: Create a New Android Application Project �� 268

Step 2: Write the C Implementation Code of the cCodeTask Function ������������������ 273

Compiler Optimization Extension Application ��� 275

Step 1: Modify the Android Part of the Application ��� 276

Step 2: Modify the Makefile File of mycomputetask�c and Rebuild
the Library Files �� 279

Step 2: Write the C Implementation Code for the
anotherCCodeTask Function ��� 279

Multiple Situations Comparison of Compiler
Optimization Extensions �� 281

Example: Compare the Optimization Results by Using SSE Instructions �������������� 281

Overview ��� 283

 Chapter 11: Using Intel Hardware Accelerated Execution ■
Manager on Windows, Mac OS, and Linux to Speed Up
Android on x86 Emulation �� 285

Introduction ��� 285

Downloading Intel HAXM ��� 286

Downloading Through Android SDK Manager ������������������������������������� 286

Downloading Manually �� 288

Installing Intel HAXM on Windows ��� 288

Adjusting Intel HAXM Memory Allocation �� 292

Intel Virtualization Technology (Intel VT-x) Capability �������������������������� 292

Intel VT-x Is Not Supported ��� 292

Intel VT-x Is Not Enabled ��� 292

■ Contents

xvii

Tips and Tricks��� 292

Mac OS �� 293

Adjusting Intel HAXM Memory Allocation �� 296

Removing Intel HAXM �� 296

Troubleshooting ��� 297

Intel Execute Disable (XD) Bit Capability Error ������������������������������������ 297

Intel XD Is Not Supported�� 297

Intel XD Is Not Enabled ��� 297

Intel Virtualization Technology (VT-x) Capability ���������������������������������� 297

Intel VT-x Is Not Supported ��� 298

Intel VT-x Is Not Enabled ��� 298

Tips and Tricks��� 298

Linux �� 299

KVM Installation �� 299

Install KVM �� 300

Start the AVD from Android SDK Directly from Terminal ���������������������� 301

Start the AVD by AVD Manager in Eclipse �� 302

Overview ��� 302

 Chapter 12: Performance Testing and Profiling Apps ■
with Platform Tuning �� 303

Start with Your First x86 Full Format Video Player ������������������������������ 303

Compile x86 FFmpeg: Cross-Compile ��� 304

Compile x86 FFmpeg: Android�mk �� 305

How to Determine CPU Usage and Find Hotspots ������������������������������ 306

Show CPU Usage Dynamically Onscreen �� 306

Get Function Running Time ��� 307

■ Contents

xviii

Use Yasm to Get the Best-Performing x86 Library ������������������������������ 307

How to Use Yasm �� 308

The Result of Using Yasm ��� 308

Use SSE (Intel’s Streaming SIMD Extensions) to Optimize
Color Space Transformation �� 309

What Is SIMD? �� 310

How SIMD Works �� 310

Implement NV21-RGB SSE Code ��� 312

How to Display an Image Using the Android 4�0 NDK ������������������������� 314

The Common Cross-Compile Script �� 314

Testing and Profiling with Hardware Acceleration ������������������������������ 315

Using the Integration Layer (IL) for Hardware Encoding ���������������������� 316

How to Get the OMX-IL Interface on Android for Intel Architecture ���������������������� 317

How Does the OMX-IL Work? �� 317

Demo: Special Effects Video Recorder �� 319

Packaging a Hardware Video Encoder Library �� 320

Implement Camera Preview ��� 320

Profiling Java Code with Traceview �� 321

Start a Recording Thread �� 322

Adding Special Effects �� 323

Use OpenMAX AL on Android 4�0 ��� 325

The Advantage of Using Native Multimedia API (OpenMAX AL) ���������������������������� 325

Demo: Streaming Media Player �� 326

Use a Powerful Media API: MediaCodec on Android 4�1 ���������������������� 326

Sample Code: Audio Decoder ��� 327

Use MediaCodec in NDK ��� 328

Overview ��� 328

■ Contents

xix

Appendix A: References ■ �� 331

Chapter 1: History and Evolution of the Android OS ���������������������������� 331

Origins �� 331

First Android Distribution in 2007 �� 331

What is Android? �� 331

The Open Handset Alliance (OHA) ��� 332

The Android Open Source Project (AOSP) ��� 332

Android Versions ��� 332

Chapter 2: The Mobile Device and Operating System Landscape ������� 332

Competition in Mobile Space �� 332

The Mobile Market �� 333

The Mobile Market: Trends ��� 335

Chapter 3: Beyond the Mobile App—A Technology Foundation ���������� 335

Connected Devices ��� 335

Special Requirements ��� 336

The Cyber-Fiber of our Connected World �� 336

Mobile Interfaces �� 337

Chapter 4: Android Development—Business Overview and
Considerations �� 337

Market Share �� 337

Security �� 338

Licensing ��� 338

Chapter 5: The Intel Mobile Processor ��� 339

Clash of the Mobile Titans: ARM versus Intel �� 339

Intel ��� 339

Android Atom Platforms �� 339

■ Contents

xx

Chapter 6: Installing the Android SDK for Intel
Application Development �� 340

Installation and Setup ��� 340

Emulation �� 340

Chapter 7: Creating and Porting NDK-Based Android Applications ����� 341

Chapter 8: Debugging Android��� 341

Chapter 9: Performance Optimizations for Android
Applications on x86 �� 341

Chapter 10: x86 NDK and C/C++ Optimizations ��������������������������������� 342

Chapter 11: Using Intel Hardware Accelerated Execution
Manager on Windows, Mac OS, and Linux to Speed Up
Android on x86 Emulation ��� 342

Chapter 12: Performance Testing and Profiling Apps with
Platform Tuning ��� 342

Index �� 343

xxi

About the Authors

Iggy Krajci earned his Bachelor of Science degree in computer science from the University of
Advancing Technology in Tempe, Arizona. He currently is employed as a software engineer at
Go Daddy in North Scottsdale, AZ, where he works on Java development. Previously,
Krajci worked with SAIFE Inc. on the Android platform and its incorporation in the x86
ecosystem. In his free time, Krajci supports the open source and information technology
communities by attending related conferences and releasing open source projects.

Darren Cummings is the CEO and founder of Cummings Engineering and SAIFE® Inc., with a
mission to seamlessly and pervasively protect and connect the world’s data, bringing security
to any device, across any network, for any mission. His companies leverage their Secure Agile
Interoperable Framework for the Enterprise (SAIFE) security-as-a-service to provide holistic
solutions for secure communications, software and systems architecture, defense projects,
secure wireless, and real-time embedded systems. Cummings holds undergraduate degrees
in electrical engineering and math from Iowa State University and a Master’s degree in
software engineering from Walden University. Before founding SAIFE Inc., Cummings served
in senior systems and software engineering roles with ViaSat, General Dynamics and the
Motorola Government Group where he gained substantial telecommunications and real-time
embedded project experience.

xxiii

Acknowledgments

I would like to thank Sarah Yost, Jeffrey Pepper, and Javier Leija for their help with this
book! I’d also like to thank Sarah’s team at SAIFE Inc.: Jen Haldaman, Tayler “Pickles”
Nichols, and John Curtis.

—Iggy

Thank you to my team at SAIFE Inc. Your support during the writing process has been
invaluable - this book would not be a reality without you! Many thanks to Sarah Yost, for
being the most dedicated editor, champion, and author-wrangler ever.

We would both like to acknowledge the Intel® Industry Education division for
assisting with content architecture for this book project. Some material was provided by
Intel and is used with permission. We would like to thank Ryan Cohen, Stephen Farmer,
Eng Kean Lee, Robert Mueller, Dmitry Shkurko, Tao Wang, Keng Lai Yap, and Li Yuming
in particular for their contributions!

—Darren

	Contents at a Glance
	Contents
	About the Authors
	Acknowledgments
	Introduction
	Chapter 1: History and Evolution of the Android OS
	Origins
	The First Distribution of Android
	Open Source Apache License

	What Is Android?
	Applications
	Application Frameworks
	Native Libraries
	Surface Manager
	SQLite
	WebKit
	OpenGL/ES

	Android Runtime
	Linux Kernel

	The Open Handset Alliance
	Android Open Source Project
	Astro (1.0)
	Cupcake (1.5)
	Donut (1.6)
	Éclair (2.0/2.1)
	Froyo (2.2.x)
	Gingerbread (2.3.x)
	Honeycomb (3.x)
	Ice Cream Sandwich (4.0.x)
	Jelly Bean (4.1.x)
	KitKat (4.4.x)

	Overview

	Chapter 2: The Mobile Device and Operating System Landscape
	Competition in the Mobile Space
	iOS
	Overview
	Applications
	Platforms

	BlackBerry
	Windows Phone
	Symbian
	MeeGo

	Before Android
	Smartphone History
	Simon Personal Communicator
	Nokia 9000 (Nokia Communicator)
	Kyocera 6035
	BlackBerry 5810

	The Mobile Market: Success and Failure
	Motorola i1
	Droid X
	BlackBerry Torch
	iPhone

	The Mobile Market: Trends
	Location
	Current Mobile Uses
	Commerce

	Overview

	Chapter 3: Beyond the Mobile App—A Technology Foundation
	Connected Devices
	Home Computing
	Automotive
	Digital Entertainment

	Special Requirements
	Ruggedization
	Ingress Protection Rating

	Medical
	Virtualized
	Secure Communications
	Type 1
	Federal Information Processing Standard

	The Cyber Fiber of Our Connected World
	Cellular Networks
	Open Mobile Alliance

	Wireless Communications
	Wi-Fi
	Bluetooth

	Mobile Interfaces
	Touch Screens
	Capacitive
	Resistive

	Vibration Motors
	LED Lights
	Accelerometer
	Tilt Sensor
	Hardware Buttons

	Overview

	Chapter 4: Android Development— Business Overview and Considerations
	The Android Market Share
	How Android Makes Money
	Why Android Is Successful
	Free
	Open Source
	Customization
	Application Base
	Hardware Choices
	Device Price

	Legacy and Future Platform Support
	Legacy Support
	Future Support

	Why x86 and Android Are Right for You
	Cross Compatibility
	Barrier to Entry

	Security of Android
	Application Security
	Platform Security

	Licensing
	Android Licensing Cost
	Application Licensing Cost

	Physical Development Costs
	Software Development Systems
	Android Testing Systems

	Overview

	Chapter 5: The Intel Mobile Processor
	Intel’s x86 Line
	History
	Strengths and Weaknesses
	Business Model

	Clash of the Mobile Titans: ARM versus Intel
	ARM
	History
	Strengths and Weaknesses
	Business Model
	Future

	Intel’s Atom Line of Microprocessors
	Intel Atom Evolution
	Intel Atom Security
	Intel Atom Features
	Android and the Atom

	Inside the Medfield System-on-Chip
	Zooming In on the Saltwell CPU Architecture

	Architecture Differences between Intel’s Saltwell and ARM’s Cortex A15
	Architecture
	Integer Pipelines
	Instruction Sets
	Multi-Core/Thread Support
	Security Technology

	Intel Hyper-Threading Technology
	Application Compatibility: Native Development Kit and Binary Translator
	Overview

	Chapter 6: Installing the Android SDK for Intel Application Development
	Preparing for the SDK Installation
	Supported Operating Systems
	Hardware Requirements
	Installing the JDK
	Installing Eclipse
	Installing Apache Ant (Optional)

	Downloading the SDK Starter Package and Adding SDK Components
	Setting Up Eclipse to work with the SDK
	Installing the ADT Plug-in for Eclipse
	Configuring the ADT Plug-in

	Overview of Android Virtual Device Emulation
	Which Emulator Should You Use
	Why Use the Emulator
	Building an Emulator Image
	Setting Up the SDK to Use x86 Emulator Images

	Key Gingerbread Features
	Battery Usage Stats
	Task Manager
	Cut and Paste Text

	Ice Cream Sandwich Emulation
	Prerequisites
	Downloading Through the Android SDK Manager
	Using the System Image
	Downloading Manually
	CPU Acceleration
	GPU Acceleration

	Overview

	Chapter 7: Creating and Porting NDK-Based Android Applications
	JNI and NDK Introduction
	JNI Introduction
	Java Methods and Their Corresponding Relationship with the C Function Prototype Java
	Java and C Data Type Mapping
	NDK Introduction

	NDK Installation
	Android NDK Installation
	Install Cygwin
	Install CDT

	NDK Examples
	Using the Command-Line Method to Generate a Library File
	Create an Android App Project
	Modify the Java Files
	Generate the Project in Eclipse
	Create a Subdirectory in the Project Root Directory
	Create a C Interface File
	Compile the Corresponding. C File
	Create the NDK Makefile File in the jni Directory

	Generating a Library File in the IDE
	Workflow Analysis for NDK Application Development

	NDK Compiler Optimization
	Machine-Independent Compiler Switch Options
	-0 or -01
	-02
	-03
	-00

	Intel Processor-Related Compiler Switch Options

	Overview

	Chapter 8: Debugging Android
	Prerequisites
	Intel USB Driver for Android Devices
	Installing the Intel Atom x86 System Image for Android Emulator
	Application Debugging Using the Android Debug Bridge
	Setting Up ADB
	ADB on Windows
	ADB Host-Client Communication
	Starting ADB
	Key ADB Device Commands
	Using the Android Debug Tools Plug-in for Eclipse
	The Debug Perspective in Eclipse
	The DDMS Perspective
	Application Runtime Environment for Debugging

	Intel Hardware Accelerated Execution Manager
	KVM Installation
	Using a 64-Bit Kernel
	Install KVM
	Starting the Android Virtual Device
	Using AVD Manager in Eclipse to Launch a Virtual Device

	Running Android Within Oracle VirtualBox
	Google x86 VirtualBox Build Targets for Android 4.x
	Downloading the Source Tree and Installing the Repository

	Building a Custom Kernel with Mouse Support
	Add Patched Kernel
	Reduce Compile Time Using CCACHE
	Build Android 4.0.x with New Kernel

	Build the VirtualBox Disk and Android Installer
	Using an Android Installer Disk to Create a Large Virtual Partition
	Serial Port
	Ethernet
	Final Notes

	Debugging with GDB, the GNU Project Debugger
	The Intel Graphics Performance Analyzer (Intel GPA)
	System Debug of Android OS Running on an Intel Atom Processor
	JTAG Debugging
	Android OS Debugging,
	Device Driver Debugging
	Hardware Breakpoints

	Cross-Debug: Intel Atom Processor and ARM Architecture
	Variable Length Instructions
	Hardware Interrupts
	Single Step
	Virtual Memory Mapping

	Considerations for Intel Hyper-Threading Technology
	SoC and Interaction of Heterogeneous Multi-Core
	SVEN (System Visible Event Nexus)
	Signal Encode/Decode Debug
	SVEN Benefits

	Overview

	Chapter 9: Performance Optimizations for Android Applications on x86
	Basic Concepts of Performance Optimization
	Selection of a Faster Instruction
	Improve the Degree of Parallelism
	Effective Use of the Register Cache

	Methodology of Performance Optimizations
	Performance Optimization Approaches
	Performance Optimizations Automatically Done by a Compiler
	Performance Optimizations Assisted by Development Tools
	Use of High-Performance Libraries

	Performance Optimizations Done Manually

	Performance Tuning with Intel VTune
	System Tuning
	Tuning Based on the Microarchitecture of the Processor
	VTune’s two modes

	Intel Graphics Performance Analyzers
	Introduction
	Installation
	Sample Usage of Intel GPA on Android

	Android Multithreaded Design
	Android Framework or a Thread
	Java Thread Programming Interface
	Threaded Programming Extensions and Support
	Message
	Handler
	Message Queue
	Looper
	AsyncTask

	Thread Example
	Thread Synchronization
	Thread Communication
	Principles of Multithreaded Optimization for Intel Atom Processors

	Case Study: Intel GPA–Assisted Multithreaded Optimization for an Android Application
	Original Application and Intel GPA Analysis
	Optimized Application and Intel GPA Analysis

	Overview

	Chapter 10: x86 NDK and C/C++ Optimizations
	Vectorization
	Vectorization Report
	Pragmas
	Auto-Vectorization and Limits
	Interprocedural Optimizations

	Optimization with Intel IPP
	NDK Integrated Optimization Examples
	C/C++: The Original Application Acceleration
	Step 1: Create a New Android Application Project
	Step 2: Write the C Implementation Code of the cCodeTask Function
	Compiler Optimization Extension Application
	Step 1: Modify the Android Part of the Application
	Step 2: Modify the Makefile File of mycomputetask.c and Rebuild the Library Files
	Step 2: Write the C Implementation Code for the anotherCCodeTask Function

	Multiple Situations Comparison of Compiler Optimization Extensions
	Example: Compare the Optimization Results by Using SSE Instructions

	Overview

	Chapter 11: Using Intel Hardware Accelerated Execution Manager on Windows, Mac OS, and Linux to Speed Up Android on x86 Emu...
	Introduction
	Downloading Intel HAXM
	Downloading Through Android SDK Manager
	Downloading Manually
	Installing Intel HAXM on Windows
	Adjusting Intel HAXM Memory Allocation
	Intel Virtualization Technology (Intel VT-x) Capability
	Intel VT-x Is Not Supported
	Intel VT-x Is Not Enabled

	Tips and Tricks
	Mac OS
	Adjusting Intel HAXM Memory Allocation
	Removing Intel HAXM
	Troubleshooting
	Intel XD Is Not Supported
	Intel XD Is Not Enabled
	Intel VT-x Is Not Supported
	Intel VT-x Is Not Enabled

	Tips and Tricks
	The following list contains recommendations to get the best experience out of the Android emulator using the Intel HAXM dri...
	Linux
	KVM Installation
	Install KVM

	Overview

	Chapter 12: Performance Testing and Profiling Apps with Platform Tuning
	Start with Your First x86 Full Format Video Player
	Compile x86 FFmpeg: Cross-Compile
	Compile x86 FFmpeg: Android.mk

	How to Determine CPU Usage and Find Hotspots
	Show CPU Usage Dynamically Onscreen
	Get Function Running Time

	Use Yasm to Get the Best-Performing x86 Library
	How to Use Yasm
	The Result of Using Yasm

	Use SSE (Intel’s Streaming SIMD Extensions) to Optimize Color Space Transformation
	What Is SIMD?
	How SIMD Works
	Implement NV21-RGB SSE Code

	How to Display an Image Using the Android 4.0 NDK
	The Common Cross-Compile Script
	Testing and Profiling with Hardware Acceleration
	Using the Integration Layer (IL) for Hardware Encoding
	How to Get the OMX-IL Interface on Android for Intel Architecture
	How Does the OMX-IL Work?
	Demo: Special Effects Video Recorder
	Packaging a Hardware Video Encoder Library
	Implement Camera Preview
	Profiling Java Code with Traceview
	Start a Recording Thread
	Adding Special Effects

	Use OpenMAX AL on Android 4.0
	The Advantage of Using Native Multimedia API (OpenMAX AL)
	Demo: Streaming Media Player

	Use a Powerful Media API: MediaCodec on Android 4.1
	Sample Code: Audio Decoder
	Use MediaCodec in NDK

	Overview

	Appendix A: References
	Chapter 1: History and Evolution of the Android OS
	Origins
	First Android Distribution in 2007
	What is Android?
	The Open Handset Alliance (OHA)
	The Android Open Source Project (AOSP)
	Android Versions

	Chapter 2: The Mobile Device and Operating System Landscape
	Competition in Mobile Space
	iOS
	Meego
	BlackBerry
	Windows Phone
	Before Android

	The Mobile Market
	Motorola i1
	Droid X
	BlackBerry Torch
	iPhone

	The Mobile Market: Trends
	Location
	Average Use
	Commerce

	Chapter 3: Beyond the Mobile App—A Technology Foundation
	Connected Devices
	Home Computing
	Automotive

	Special Requirements
	Ruggedized
	Medical
	Secure Communications

	The Cyber-Fiber of our Connected World
	Cellular Networks
	Wireless

	Mobile Interfaces
	Touch Screens
	Resistive
	Vibration Sensors (Haptics)
	Accelerometer
	Tilt Sensor
	Hardware Buttons

	Chapter 4: Android Development—Business Overview and Considerations
	Market Share
	Security
	Licensing

	Chapter 5: The Intel Mobile Processor
	Clash of the Mobile Titans: ARM versus Intel
	Intel
	Android Atom Platforms

	Chapter 6: Installing the Android SDK for Intel Application Development
	Installation and Setup
	Java Development Kit
	Eclipse
	Apache Ant
	Software Development Kit

	Emulation
	Ice Cream Sandwich Emulation
	Gingerbread Emulation
	KVM
	Intel Tools

	Chapter 7: Creating and Porting NDK-Based Android Applications
	Chapter 8: Debugging Android
	Chapter 9: Performance Optimizations for Android Applications on x86
	Chapter 10: x86 NDK and C/C++ Optimizations
	Chapter 11: Using Intel Hardware Accelerated Execution Manager on Windows, Mac OS, and Linux to Speed Up Android on x86 Emu...
	Chapter 12: Performance Testing and Profiling Apps with Platform Tuning

	Index

