
CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 488

•
•
•
•
•
•
•

Android Recipes
A Problem-Solution Approach

Dave Smith | Jeff Friesen

Your reference guide for rapidly understanding Android

and rapidly developing Android apps

ompanion

ook
ailable

A
ndroid Recipes

•
•
•
•
•
•
•

Android Recipes
A Problem-Solution Approach

Dave Smith | Jeff Friesen

Your reference guide for rapidly understanding Android

and rapidly developing Android appsA
ndroid Recipes

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 9: Super Jumper: A 2D OpenGL ES Game 488

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iii

Contents at a Glance

Contents ... iv

Foreword ... viii

About the Authors .. ix

About the Technical Reviewer .. x

Acknowledgments ... xi

Preface ... xii

■Chapter 1: Getting Started with Android ... 1

■Chapter 2: User Interface Recipes ... 75

■Chapter 3: Communications and Networking .. 155

■Chapter 4: Interacting with Device Hardware and Media 201

■Chapter 5: Persisting Data .. 257

■Chapter 6: Interacting with the System .. 309

■Chapter 7: Working with Libraries .. 353

■Appendix A: Scripting Layer for Android ... 385

■Appendix B: Android NDK .. 397

■Appendix C: App Design Guidelines ... 411

Index ... 419

www.allitebooks.com

http://www.allitebooks.org

1

1

 Chapter

Getting Started with
Android

Android is hot, and many people are developing Android applications (apps for short).

Perhaps you would also like to develop apps, but are unsure about how to get started.

Although you could study Google’s online Android Developer’s Guide

(http://developer.android.com/guide/index.html) to acquire the needed knowledge,

you might be overwhelmed by the vast amount of information that this guide presents. In

contrast, this chapter provides just enough theory to help you understand the basics of

Android. This theory is followed by several recipes that teach you how to develop apps

and prepare them for publication to Google’s Android Market.

What Is Android?
The Android Developer’s Guide defines Android as a software stack – a set of software

subsystems needed to deliver a fully functional solution – for mobile devices. This stack

includes an operating system (a modified version of the Linux kernel), middleware

(software that connects the low-level operating system to high-level apps) that’s partly

based on Java, and key apps (written in Java) such as a web browser (known as

Browser) and a contact manager (known as Contacts).

Android offers the following features:

 Application framework enabling reuse and replacement of app

components (discussed later in this chapter)

 Bluetooth, EDGE, 3G, and WiFi support (hardware dependent)

 Camera, GPS, compass, and accelerometer support (hardware

dependent)

 Dalvik Virtual Machine (DVM) optimized for mobile devices

 GSM Telephony support (hardware dependent)

1

www.allitebooks.com

http://developer.android.com/guide/index.html
http://www.allitebooks.org

CHAPTER 1: Getting Started with Android 2

 Integrated browser based on the open source WebKit engine

 Media support for common audio, video, and still image formats

(MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, GIF)

 Optimized graphics powered by a custom 2D graphics library; 3D

graphics based on the OpenGL ES 1.0 specification (hardware

acceleration optional)

 SQLite for structured data storage

Although not part of an Android device’s software stack, Android’s rich development

environment (including a device emulator and a plugin for the Eclipse IDE) could also be

considered an Android feature.

History of Android
Contrary to what you might expect, Android did not originate with Google. Instead,

Android was initially developed by Android, Inc., a small Palo Alto, California-based

startup company. Google bought this company in July 2005 and released a preview

version of the Android SDK in November 2007.

In mid-August, 2008, Google released the Android 0.9 SDK beta, and subsequently

released the Android 1.0 SDK one month later. Table 1–1 outlines subsequent SDK

update releases. (Starting with version 1.5, each major release comes under a code

name that’s based on a dessert item.)

Table 1–1. Android Update Releases

SDK Update Release Date and Changes

1.1 Google released SDK 1.1 on February 9, 2009. Changes included paid apps

(via Android Market) and “search by voice” support.

1.5 (Cupcake)

Based on Linux

Kernel 2.6.27

Google released SDK 1.5 on April 30, 2009. Changes included the ability to

record and watch videos through camcorder mode, the ability to upload

videos to YouTube and pictures to Picasa, the ability to populate the home

screen with widgets, and animated screen transitions.

1.6 (Donut)

Based on Linux

Kernel 2.6.29

Google released SDK 1.6 on September 15, 2009. Changes included an

improved Android Market experience, an integrated

camera/camcorder/gallery interface, updated “search by voice” with speed

and other improvements, and an updated search experience.

2.0/2.1 (Eclair)

Based on Linux

Kernel 2.6.29

Google released SDK 2.0 on October 26, 2009. Changes included a

revamped user interface, a new contacts list, support for Microsoft

Exchange, digital zoom, improved Google Maps (version 3.1.2), HTML5

support for the Browser app, live wallpapers, and Bluetooth 2.1 support.

Google subsequently released SDK update 2.0.1 on December 3, 2009, and

SDK update 2.1 on January 12, 2010.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Getting Started with Android 3

SDK Update Release Date and Changes

2.2 (Froyo)

Based on Linux

Kernel 2.6.32

Google released SDK 2.2 on May 20, 2009. Changes included the

integration of Chrome’s V8 JavaScript engine into the Browser app, voice

dialing and contact sharing over Bluetooth, Adobe Flash 10.1 support,

additional app speed improvements courtesy of a JIT implementation, and

USB tethering and WiFi hotspot functionality.

2.3 (Gingerbread)

Based on Linux

Kernel 2.6.35.7

Google released SDK 2.3 on December 6, 2010. Changes included a new

concurrent garbage collector that improves an app’s responsiveness,

support for gyroscope sensing, support for WebM video playback and other

video improvements, support for near field communication, and improved

social networking features. This book focuses on Android 2.3.

Google subsequently released SDK 2.3.1 to fix some bugs, and SDK 2.3.3,

a small feature release that adds several improvements and APIs to the

Android 2.3 platform.

3.0 (Honeycomb)

Based on Linux

2.6.36

Google released SDK 3.0 on February 22, 2011. Unlike previous releases,

version 3.0 focuses exclusively on tablets, such as Motorola Zoom, the first

tablet to be released (on February 24, 2011). In addition to an improved

user interface, version 3.0 improves multitasking, supports multicore

processors, supports hardware acceleration, and provides a 3D desktop

with redesigned widgets.

Android Architecture
The Android software stack consists of apps at the top, middleware (consisting of an

application framework, libraries, and the Android runtime) in the middle, and a Linux

kernel with various drivers at the bottom. Figure 1–1 shows this layered architecture.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Getting Started with Android 4

Figure 1–1. Android’s layered architecture consists of several major parts.

Users care about apps, and Android ships with a variety of useful core apps, which

include Browser, Contacts, and Phone. All apps are written in the Java programming

language. Apps form the top layer of Android’s architecture.

Directly beneath the app layer is the application framework, a set of high-level building

blocks for creating apps. The application framework is preinstalled on Android devices

and consists of the following components:

 Activity Manager: This component provides an app’s lifecycle and

maintains a shared activity stack for navigating within and among

apps. Both topics are discussed later in this chapter.

 Content Providers: These components encapsulate data (such as the

Browser app’s bookmarks) that can be shared among apps.

 Location Manager: This component makes it possible for an Android

device to be aware of its physical location.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Getting Started with Android 5

 Notification Manager: This component lets an app notify the user of a
significant event (such as a message’s arrival) without interrupting
what the user is currently doing.

 Package Manager: This component lets an app learn about other app
packages that are currently installed on the device. (App packages are
discussed later in this chapter.)

 Resource Manager: This component lets an app access its resources,
a topic that’s briefly discussed in Recipe 1–5.

 Telephony Manager: This component lets an app learn about a
device’s telephony services. It also handles making and receiving
phone calls.

 View System: This component manages user interface elements and
user interface-oriented event generation. (These topics are briefly
discussed in Recipe 1–5.)

 Window Manager: This component organizes the screen’s real estate
into windows, allocates drawing surfaces, and performs other window-
related jobs.

The components of the application framework rely on a set of C/C++ libraries to perform
their jobs. Developers interact with the following libraries by way of framework APIs:

 FreeType: This library supports bitmap and vector font rendering.

 libc: This library is a BSD-derived implementation of the standard C
system library, tuned for embedded Linux-based devices.

 LibWebCore: This library offers a modern and fast web browser engine
that powers the Android browser and an embeddable web view. It’s
based on WebKit (http://en.wikipedia.org/wiki/WebKit) and is also
used by the Google Chrome and Apple Safari browsers.

 Media Framework: These libraries, which are based on PacketVideo’s
OpenCORE, support the playback and recording of many popular
audio and video formats, as well as working with static image files.
Supported formats include MPEG4, H.264, MP3, AAC, AMR, JPEG,
and PNG.

 OpenGL | ES: These 3D graphics libraries provide an OpenGL
implementation based on OpenGL | ES 1.0 APIs. They use hardware
3D acceleration (where available) or the included (and highly
optimized) 3D software rasterizer.

 SGL: This library provides the underlying 2D graphics engine.

 SQLite: This library provides a powerful and lightweight relational
database engine that’s available to all apps, and that’s also used by
Mozilla Firefox and Apple’s iPhone for persistent storage.

www.allitebooks.com

http://en.wikipedia.org/wiki/WebKit
http://www.allitebooks.org

CHAPTER 1: Getting Started with Android 6

 SSL: This library provides secure sockets layer-based (SSL-based)

security for network communication.

 Surface Manager: This library manages access to the display

subsystem, and seamlessly composites 2D and 3D graphic layers from

multiple apps.

Android provides a runtime environment that consists of core libraries (implementing a

subset of the Apache Harmony Java version 5 implementation) and the Dalvik Virtual

Machine (DVM), a non-Java virtual machine that’s based on processor registers instead

of being stack-based.

NOTE: Google’s Dan Bornstein created Dalvik and named this virtual machine after an Icelandic

fishing village where some of his ancestors lived.

Each Android app defaults to running in its own Linux process, which hosts an instance

of Dalvik. This virtual machine has been designed so that devices can run multiple virtual

machines efficiently. This efficiency is largely due to Dalvik executing Dalvik Executable

(DEX)-based files – DEX is a format that’s optimized for a minimal memory footprint.

NOTE: Android starts a process when any of part of the app needs to execute, and shuts down

the process when it’s no longer needed and system resources are required by other apps.

Perhaps you’re wondering how it’s possible to have a non-Java virtual machine run Java

code. The answer is that Dalvik doesn’t run Java code. Instead, Android transforms

compiled Java classfiles into the DEX format, and it’s this resulting code that gets

executed by Dalvik.

Finally, the libraries and Android runtime rely on the Linux kernel (version 2.6) for

underlying core services such as threading, low-level memory management, a network

stack, process management, and a driver model. Furthermore, the kernel acts as an

abstraction layer between the hardware and the rest of the software stack.

ANDROID SECURITY MODEL

Android’s architecture includes a security model that prevents apps from performing operations considered
harmful to other apps, Linux, or users. This security model, which is mostly based on process level
enforcement via standard Linux features (such as user and group IDs), places processes in a security
sandbox.

By default, the sandbox prevents apps from reading or writing the user’s private data (such as contacts or
emails), reading or writing another app’s files, performing network access, keeping the device awake,
accessing the camera, and so on. Apps that need to access the network or perform other sensitive
operations must first obtain permission to do so.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Getting Started with Android 7

Android handles permission requests in various ways, typically by automatically allowing or disallowing the
request based upon a certificate, or by prompting the user to grant or revoke the permission. Permissions
required by an app are declared in the app’s manifest file (discussed later in this chapter) so that they are
known to Android when the app is installed. These permissions won’t subsequently change.

App Architecture
The architecture of an Android app differs from desktop application architecture. App

architecture is based upon components that communicate with each other by using

intents that are described by a manifest and that are stored in an app package.

Components

An app is a collection of components (activities, services, content providers, and

broadcast receivers) that run in a Linux process and that are managed by Android.

These components share a set of resources, including databases, preferences, a

filesystem, and the Linux process.

NOTE: Not all of these components need to be present in an app. For example, one app might

consist of activities only, whereas another app might consist of activities and a service.

This component-oriented architecture lets an app reuse the components of other apps,

provided that those other apps permit reuse of their components. Component reuse

reduces overall memory footprint, which is very important for devices with limited

memory.

To make the reuse concept concrete, suppose you’re creating a drawing app that lets

users choose a color from a palette, and suppose that another app has developed a

suitable color chooser and permits this component to be reused. In this scenario, the

drawing app can call upon that other app’s color chooser to have the user select a color

rather than provide its own color chooser. The drawing app doesn’t contain the other

app’s color chooser or even link to this other app. Instead, it starts up the other app’s

color chooser component when needed.

Android starts a process when any part of the app (such as the aforementioned color

chooser) is needed, and instantiates the Java objects for that part. This is why Android’s

apps don’t have a single entry point (no C-style main() function, for example). Instead,

apps use components that are instantiated and run as needed.

Activities

An activity is a component that presents a user interface so that the user can interact

with an app. For example, Android’s Contacts app includes an activity for entering a

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Getting Started with Android 8

new contact, its Phone app includes an activity for dialing a phone number, and its

Calculator app includes an activity for performing basic calculations (see Figure 1–2).

Figure 1–2. The main activity of Android’s Calculator app lets the user perform basic calculations.

Although an app can include a single activity, it’s more typical for apps to include

multiple activities. For example, Calculator also includes an “advanced panel” activity

that lets the user calculate square roots, perform trigonometry, and carry out other

advanced mathematical operations.

Services

A service is a component that runs in the background for an indefinite period of time,

and which doesn’t provide a user interface. As with an activity, a service runs on the

process’s main thread; it must spawn another thread to perform a time-consuming

operation. Services are classified as local or remote.

 A local service runs in the same process as the rest of the app. Such

services make it easy to implement background tasks.

 A remote service runs in a separate process. Such services let you

perform interprocess communications.

NOTE: A service is not a separate process, although it can be specified to run in a separate

process. Also, a service is not a thread. Instead, a service lets the app tell Android about

something it wants to be doing in the background (even when the user is not directly interacting

with the app), and lets the app expose some of its functionality to other apps.

Consider a service that plays music in response to a user’s music choice via an activity.

The user selects the song to play via this activity, and a service is started in response to

the selection. The service plays the music on another thread to prevent the Application

Not Responding dialog box (discussed in Appendix C) from appearing.

NOTE: The rationale for using a service to play the music is that the user expects the music to

keep playing even after the activity that initiated the music leaves the screen.

3

CHAPTER 1: Getting Started with Android 9

Broadcast Receivers

A broadcast receiver is a component that receives and reacts to broadcasts. Many

broadcasts originate in system code; for example, an announcement is made to indicate

that the timezone has been changed or the battery power is low.

Apps can also initiate broadcasts. For example, an app may want to let other apps know

that some data has finished downloading from the network to the device and is now

available for them to use.

Content Providers

A content provider is a component that makes a specific set of an app’s data available

to other apps. The data can be stored in the Android filesystem, in an SQLite database,

or in any other manner that makes sense.

Content providers are preferable to directly accessing raw data because they decouple

component code from raw data formats. This decoupling prevents code breakage when

formats change.

Intents

Intents are messages that describe operations to perform (such as “send an email” or

“choose a photo”), or in the case of broadcasts, provide descriptions of external events

that have occurred (a device’s camera being activated, for example) and are being

announced.

Because nearly everything in Android involves intents, there are many opportunities to

replace existing components with your own components. For example, Android

provides the intent for sending an email. Your app can send that intent to activate the

standard mail app, or it can register an activity that responds to the “send an email”

intent, effectively replacing the standard mail app with its own activity.

These messages are implemented as instances of the android.content.Intent class. An

Intent object describes a message in terms of some combination of the following items:

 Action: A string naming the action to be performed or, in the case of

broadcast intents, the action that took place and is being reported.

Actions are described by Intent constants such as ACTION_CALL
(initiate a phone call), ACTION_EDIT (display data for the user to edit),

and ACTION_MAIN (start up as the initial activity). You can also define

your own action strings for activating the components in your app.

These strings should include the app package as a prefix

("com.example.project.SELECT_COLOR", for example).

CHAPTER 1: Getting Started with Android 10

 Category: A string that provides additional information about the kind

of component that should handle the intent. For example,

CATEGORY_LAUNCHER means that the calling activity should appear in the

device’s app launcher as a top-level app. (The app launcher is briefly

discussed in Recipe 1–4.)

 Component name: A string that specifies the fully qualified name

(package plus name) of a component class to use for the intent. The

component name is optional. If set, the Intent object is delivered to an

instance of the designated class. If not set, Android uses other

information in the Intent object to locate a suitable target.

 Data: The uniform resource identifier of the data on which to operate

(such as a person record in a contacts database).

 Extras: A set of key-value pairs providing additional information that

should be delivered to the component handling the intent. For

example, given an action for sending an email, this information could

include the message’s subject, body, and so on.

 Flags: Bit values that instruct Android on how to launch an activity (for

example, which task the activity should belong to – tasks are

discussed later in this chapter) and how to treat the activity after

launch (for example, whether the activity can be considered a recent

activity). Flags are represented by constants in the Intent class; for

example, FLAG_ACTIVITY_NEW_TASK specifies that this activity will

become the start of a new task on this activity stack. The activity stack

is discussed later in this chapter.

 Type: The MIME type of the intent data. Normally, Android infers a

type from the data. By specifying a type, you disable that inference.

Intents can be classified as explicit or implicit. An explicit intent designates the target

component by its name (the previously mentioned component name item is assigned a

value). Because component names are usually unknown to the developers of other

apps, explicit intents are typically used for app-internal messages (such as an activity

that launches another activity located within the same app). Android delivers an explicit

intent to an instance of the designated target class. Only the Intent object’s component

name matters for determining which component should get the intent.

An implicit intent doesn’t name a target (the component name is not assigned a value).

Implicit intents are often used to start components in other apps. Android searches for

the best component (a single activity or service to perform the requested action) or

components (a set of broadcast receivers to respond to the broadcast announcement)

to handle the implicit intent. During the search, Android compares the contents of the

Intent object to intent filters, manifest information associated with components that can

potentially receive intents.

Filters advertise a component’s capabilities and identify only those intents that the

component can handle. They open up the component to the possibility of receiving

CHAPTER 1: Getting Started with Android 11

implicit intents of the advertised type. If a component has no intent filters, it can receive

only explicit intents. In contrast, a component with filters can receive explicit and implicit

intents. Android consults an Intent object’s action, category, data, and type when

comparing the intent against an intent filter. It doesn’t take extras and flags into

consideration.

Manifest

Android learns about an app’s various components (and more) by examining the app’s

XML-structured manifest file, AndroidManifest.xml. For example, Listing 1–1 shows how

this file might declare an activity component.

Listing 1–1. A Manifest File Declaring an Activity

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.project" android:versionCode="1"
 android:versionName="1.0">
 <application android:label="@string/app_name" android:icon="@drawable/icon">
 <activity android:name=".MyActivity" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Listing 1–1 begins with the necessary <?xml version="1.0" encoding="utf-8"?> prolog,

which identifies this file as an XML version 1.0 file, whose content is encoded according

to the UTF-8 encoding standard.

Listing 1–1 next presents a <manifest> tag, which is this XML document’s root element;

android identifies the Android namespace, package identifies the app’s Java package,

and versionCode/versionName identify version information.

Nested within <manifest> is <application>, which is the parent of app component tags.

The icon and label attributes refer to icon and label resources that Android devices

display to represent the app. (Resources are briefly discussed in Recipe 1–5.)

NOTE: Resources are identified by the @ prefix, followed by a resource category name (such as

string or drawable), /, and the resource ID (such as app_name or icon).

The <application> tag’s icon and label attributes specify defaults that are inherited by

components whose tags don’t specify these attributes.

Nested within <application> is <activity>, which describes an activity component. This

tag’s name attribute identifies a class (MyActivity) that implements the activity. This

name begins with a period character to imply that it’s relative to com.example.project.

http://schemas.android.com/apk/res/android

CHAPTER 1: Getting Started with Android 12

NOTE: The period is not present when AndroidManifest.xml is created at the command

line. However, this character is present when this file is created from within Eclipse (discussed in

Recipe 1–10). Regardless, MyActivity is relative to <manifest>’s package value

(com.example.project).

Nested within <activity> is <intent-filter>. This tag declares the capabilities of the

component described by the enclosing tag. For example, it declares the capabilities of

the activity component via its nested <action> and <category> tags.

 <action> identifies the action to perform. This tag’s android:name

attribute is assigned "android.intent.action.MAIN" to identify the

activity as the app’s entry point.

 <category> identifies a component category. This tag’s android:name

attribute is assigned "android.intent.category.LAUNCHER" to identify

the activity as needing to be displayed in the app launcher.

NOTE: Other components are similarly declared. For example, services are declared via

<service> tags, broadcast receivers are declared via <receiver> tags, and content providers

are declared via <provider> tags. Except for broadcast receivers, which can be created at

runtime, components not declared in the manifest are not created by Android.

The manifest may also contain <uses-permission> tags to identify permissions that the

app needs. For example, an app that needs to use the camera would specify the

following tag: <uses-permission android:name="android.permission.CAMERA" />.

NOTE: <uses-permission> tags are nested within <manifest> tags. They appear at the

same level as the <application> tag.

At app-install time, permissions requested by the app (via <uses-permission>) are

granted to it by Android’s package installer, based upon checks against the digital

signatures of the apps declaring those permissions and/or interaction with the user.

No checks with the user are done while an app is running. It was granted a specific

permission when installed and can use that feature as desired, or the permission was

not granted and any attempt to use the feature will fail without prompting the user.

NOTE: AndroidManifest.xml provides additional information, such as naming any libraries

that the app needs to be linked against (besides the default Android library), and identifying all

app-enforced permissions (via <permission> tags) to other apps, such as controlling who can

start the app’s activities.

CHAPTER 1: Getting Started with Android 13

App Package

Android apps are written in Java. The compiled Java code for an app’s components is

further transformed into Dalvik’s DEX format. The resulting code files along with any

other required data and resources are subsequently bundled into an App PacKage

(APK), a file identified by the .apk suffix.

An APK is not an app, but is used to distribute an app and install it on a mobile device.

It’s not an app because its components may reuse another APK’s components, and (in

this situation) not all of the app would reside in a single APK. However, it’s common to

refer to an APK as representing a single app.

An APK must be signed with a certificate (which identifies the app’s author) whose

private key is held by its developer. The certificate doesn’t need to be signed by a

certificate authority. Instead, Android allows APKs to be signed with self-signed

certificates, which is typical. (APK signing is discussed in Recipe 1–8.)

APK FILES, USER IDS, AND SECURITY

Each APK installed on an Android device is given its own unique Linux user ID, and this user ID remains
unchanged for as long as the APK resides on that device.

Security enforcement occurs at the process level, so the code contained in any two APKs cannot normally
run in the same process, because each APK’s code needs to run as a different Linux user.

However, you can have the code in both APKs run in the same process by assigning the same name of a
user ID to the <manifest> tag’s sharedUserId attribute in each APK’s AndroidManifest.xml file.

When you make these assignments, you tell Android that the two packages are to be treated as being the
same app, with the same user ID and file permissions.

In order to retain security, only two APKs signed with the same signature (and requesting the same
sharedUserId value in their manifests) will be given the same user ID.

Activities in Depth
Activities are described by subclasses of the android.app.Activity class, which is an

indirect subclass of the abstract android.content.Context class.

NOTE: Context is an abstract class whose methods let apps access global information about

their environments (such as their resources and filesystems), and allow apps to perform

contextual operations, such as launching activities and services, broadcasting intents, and

opening private files.

Activity subclasses override various Activity lifecycle callback methods that Android

calls during the life of an activity. For example, the SimpleActivity class in Listing 1–2

CHAPTER 1: Getting Started with Android 14

extends Activity and also overrides the void onCreate(Bundle bundle) and void
onDestroy() lifecycle callback methods.

Listing 1–2. A Skeletal Activity

import android.app.Activity;
import android.os.Bundle;

public class SimpleActivity extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState); // Always call superclass method first.
 System.out.println("onCreate(Bundle) called");
 }
 @Override
 public void onDestroy()
 {
 super.onDestroy(); // Always call superclass method first.
 System.out.println("onDestroy() called");
 }
}

The overriding onCreate(Bundle) and onDestroy() methods in Listing 1–2 first invoke

their superclass counterparts, a pattern that must be followed when overriding the void
onStart(), void onRestart(), void onResume(), void onPause(), and void onStop()

lifecycle callback methods.

 onCreate(Bundle) is called when the activity is first created. This

method is used to create the activity’s user interface, create

background threads as needed, and perform other global initialization.

onCreate() is passed an android.os.Bundle object containing the

activity’s previous state, if that state was captured; otherwise, the null

reference is passed. Android always calls the onStart() method after

calling onCreate(Bundle).

 onStart() is called just before the activity becomes visible to the user.

Android calls the onResume() method after calling onStart() when the

activity comes to the foreground, and calls the onStop() method after

onStart() when the activity becomes hidden.

 onRestart() is called after the activity has been stopped, just prior to it

being started again. Android always calls onStart() after calling

onRestart().

 onResume() is called just before the activity starts interacting with the

user. At this point, the activity has the focus and user input is directed

to the activity. Android always calls the onPause() method after calling

onResume(), but only when the activity must be paused.

CHAPTER 1: Getting Started with Android 15

 onPause() is called when Android is about to resume another activity.

This method is typically used to persist unsaved changes, stop

animations that might be consuming processor cycles, and so on. It

should perform its job quickly, because the next activity won’t be

resumed until it returns. Android calls onResume() after calling

onPause() when the activity starts interacting with the user, and calls

onStop() when the activity becomes invisible to the user.

 onStop() is called when the activity is no longer visible to the user.

This may happen because the activity is being destroyed, or because

another activity (either an existing one or a new one) has been

resumed and is covering the activity. Android calls onRestart() after

calling onStop(), when the activity is coming back to interact with the

user, and calls the onDestroy() method when the activity is going

away.

 onDestroy() is called before the activity is destroyed, unless memory

is tight and Android is forced to kill the activity’s process. In this

scenario, onDestroy() is never called. If onDestroy() is called, it will be

the final call that the activity ever receives.

NOTE: Android can kill the process hosting the activity at any time after onPause(),

onStop(), or onDestroy() returns. An activity is in a killable state from the time onPause()

returns until the time onResume() is called. The activity won’t again be killable until

onPause() returns.

These seven methods define an activity’s entire lifecycle and describe the following

three nested loops:

 The entire lifetime of an activity is defined as everything from the first

call to onCreate(Bundle) through to a single final call to onDestroy().

An activity performs all of its initial setup of “global” state in

onCreate(Bundle), and releases all remaining resources in

onDestroy(). For example, if the activity has a thread running in the

background to download data from the network, it might create that

thread in onCreate(Bundle) and stop the thread in onDestroy().

 The visible lifetime of an activity is defined as everything from a call to

onStart() through to a corresponding call to onStop(). During this

time, the user can see the activity onscreen, although it might not be in

the foreground interacting with the user. Between these two methods,

the activity can maintain resources that are needed to show itself to

the user. For example, it can register a broadcast receiver in onStart()

to monitor for changes that impact its user interface, and unregister

this object in onStop() when the user can no longer see what the

activity is displaying. The onStart() and onStop() methods can be

CHAPTER 1: Getting Started with Android 16

called multiple times, as the activity alternates between being visible to

and being hidden from the user.

 The foreground lifetime of an activity is defined as everything from a

call to onResume() through to a corresponding call to onPause().

During this time, the activity is in front of all other activities onscreen

and is interacting with the user. An activity can frequently transition

between the resumed and paused states; for example, onPause() is

called when the device goes to sleep or when a new activity is started,

and onResume() is called when an activity result or a new intent is

delivered. The code in these two methods should be fairly lightweight.

NOTE: Each lifecycle callback method is a hook that an activity can override to perform

appropriate work. All activities must implement onCreate(Bundle) to carry out the initial

setup when the activity object is first instantiated. Many activities also implement onPause() to

commit data changes and otherwise prepare to stop interacting with the user.

Figure 1–3 illustrates an activity’s lifecycle in terms of these seven methods.

Figure 1–3. The lifecycle of an activity reveals that there’s no guarantee of onDestroy() being called.

CHAPTER 1: Getting Started with Android 17

Because onDestroy() might not be called, you should not count on using this method as

a place for saving data. For example, if an activity is editing a content provider’s data,

those edits should typically be committed in onPause().

In contrast, onDestroy() is usually implemented to free resources (such as threads) that

are associated with an activity so that a destroyed activity doesn’t leave such things

around while the rest of its app is still running.

Figure 1–3 reveals that an activity is started by calling startActivity(). More

specifically, the activity is started by creating an Intent object describing an explicit or

implicit intent, and by passing this object to Context’s void startActivity(Intent
intent) method (launch a new activity; no result is returned when it finishes).

Alternatively, the activity could be started by calling Activity’s void
startActivityForResult(Intent intent, int requestCode) method. The specified int

result is returned to Activity’s void onActivityResult(int requestCode, int
resultCode, Intent data) callback method as an argument.

NOTE: The responding activity can look at the initial intent that caused it to be launched by

calling Activity’s Intent getIntent() method. Android calls the activity’s void

onNewIntent(Intent intent) method (also located in the Activity class) to pass any

subsequent intents to the activity.

Suppose that you’ve created an app named SimpleActivity, and that this app consists

of SimpleActivity (described in Listing 1–2) and SimpleActivity2 classes. Now

suppose that you want to launch SimpleActivity2 from SimpleActivity’s

onCreate(Bundle) method. The following code fragment shows you how to start

SimpleActivity2:

Intent intent = new Intent(SimpleActivity.this, SimpleActivity2.class);
SimpleActivity.this.startActivity(intent);

The first line creates an Intent object that describes an explicit intent. It initializes this

object by passing the current SimpleActivity instance’s reference and

SimpleActivity2’s Class instance to the Intent(Context packageContext, Class<?>
cls) constructor.

The second line passes this Intent object to startActivity(Intent), which is

responsible for launching the activity described by SimpleActivity2.class. If

startActivity(Intent) was unable to find the specified activity (which shouldn’t

happen), it would throw an android.content.ActivityNotFoundException instance.

Activities must be declared in the app’s AndroidManifest.xml file or they cannot be

started (because they are invisible to Android). For example, the AndroidManifest.xml

file in Listing 1–3 declares SimpleActivity and SimpleActivity2 – the ellipsis refers to

content not relevant to this discussion.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Getting Started with Android 18

Listing 1–3. SimpleActivity’s Manifest File

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.project" ...>
 <application ...>
 <activity android:name=".SimpleActivity" ...>
 <intent-filter ...>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".SimpleActivity2" ...>
 <intent-filter ...>
 <action android:name="android.intent.action.VIEW" />
 <data android:mimeType="image/jpeg" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>
 ...
 </application>
</manifest>

Listing 1–3 reveals that each of SimpleActivity and SimpleActivity2 is associated with

an intent filter via an <intent-filter> tag that’s nested within <activity>.

SimpleActivity2’s <intent-filter> tag helps Android determine that this activity is to

be launched when the Intent object’s values match the following tag values:

 <action>’s android:name attribute is assigned
"android.intent.action.VIEW"

 <data>’s android:mimeType attribute is assigned "image/jpeg" MIME

type – additional attributes (such as android:path) would typically be

present to locate the data to be viewed

 <category>’s android:name attribute is assigned

"android.intent.category.DEFAULT" to allow the activity to be

launched without explicitly specifying its component.

The following code fragment shows you how to start SimpleActivity2 implicitly:

Intent intent = new Intent();
intent.setAction("android.intent.action.VIEW");
intent.setType("image/jpeg");
intent.addCategory("android.intent.category.DEFAULT");
SimpleActivity.this.startActivity(intent);

The first four lines create an Intent object describing an implicit intent. Values passed to

Intent’s Intent setAction(String action), Intent setType(String type), and Intent
addCategory(String category) methods specify the intent’s action, MIME type, and

category. They help Android identify SimpleActivity2 as the activity to be launched.

http://schemas.android.com/apk/res/android

CHAPTER 1: Getting Started with Android 19

ACTIVITIES, TASKS, AND THE ACTIVITY STACK

Android refers to a sequence of related activities as a task and provides an activity stack (also known as
history stack or back stack) to remember this sequence. The activity starting the task is the initial activity
pushed onto the stack and is known as the root activity. This activity is typically the activity selected by the
user via the device’s app launcher. The activity that’s currently running is located at the top of the stack.

When the current activity starts another, the new activity is pushed onto the stack and takes focus
(becomes the running activity). The previous activity remains on the stack, but is stopped. When an activity
stops, the system retains the current state of its user interface.

When the user presses the device’s BACK key, the current activity is popped from the stack (the activity is
destroyed), and the previous activity resumes operation as the running activity (the previous state of its
user interface is restored).

Activities in the stack are never rearranged, only pushed and popped from the stack. Activities are pushed
onto the stack when started by the current activity, and popped off the stack when the user leaves them
using the BACK key. As such, the stack operates as a “last in, first out” object structure.

Each time the user presses BACK, an activity in the stack is popped off to reveal the previous activity. This
continues until the user returns to the home screen or to whichever activity was running when the task
began. When all activities are removed from the stack, the task no longer exists.

Check out the “Tasks and Back Stack” section in Google’s online Android documentation to learn more
about activities and tasks:
http://developer.android.com/guide/topics/fundamentals/tasks-and-back-
stack.html.

Services in Depth
Services are described by subclasses of the abstract android.app.Service class, which

is an indirect subclass of Context.

Service subclasses override various Service lifecycle callback methods that Android

calls during the life of a service. For example, the SimpleService class in Listing 1–4

extends Service and also overrides the void onCreate() and void onDestroy() lifecycle

callback methods.

Listing 1–4. A Skeletal Service, Version 1

import android.app.Service;

public class SimpleService extends Service
{
 @Override
 public void onCreate()
 {
 System.out.println("onCreate() called");
 }
 @Override
 public void onDestroy()
 {

http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html
http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html
http://developer.android.com/guide/topics/fundamentals/tasks-and-back-stack.html

CHAPTER 1: Getting Started with Android 20

 System.out.println("onDestroy() called");
 }
 @Override
 public IBinder onBind(Intent intent)
 {
 System.out.println("onBind(Intent) never called");
 return null;
 }
}

onCreate() is called when the service is initially created, and onDestroy() is called when

the service is being removed. Because it is abstract, the IBinder onBind(Intent
intent) lifecycle callback method (described later in this section) must always be

overridden, even if only to return null, which indicates that this method is ignored.

NOTE: Service subclasses typically override onCreate() and onDestroy() to perform

initialization and cleanup. Unlike Activity’s onCreate(Bundle) and onDestroy()

methods, Service’s onCreate() method isn’t repeatedly called and its onDestroy() method

is always called.

A service’s lifetime happens between the time onCreate() is called and the time

onDestroy() returns. As with an activity, a service initializes in onCreate() and cleans up in

onDestroy(). For example, a music playback service could create the thread that plays music

in onCreate() and stop the thread in onDestroy().

Local services are typically started via Context’s ComponentName startService(Intent
intent) method, which returns an android.content.ComponentName instance that

identifies the started service component, or the null reference if the service doesn’t exist.

Furthermore, startService(Intent) results in the lifecycle shown in Figure 1–4.

Figure 1–4. The lifecycle of a service that’s started by startService(Intent) features a call to
onStartCommand(Intent, int, int).

The call to startService(Intent) results in a call to onCreate(), followed by a call to

int onStartCommand(Intent intent, int flags, int startId). This latter lifecycle

callback method, which replaces the deprecated void onStart(Intent intent, int
startId) method, is called with the following arguments:

CHAPTER 1: Getting Started with Android 21

 intent is the Intent object passed to startService(Intent).

 flags can provide additional data about the start request, but are often

set to 0.

 startID is a unique integer that describes this start request. A service

can pass this value to Service’s boolean stopSelfResult(int
startId) method to stop itself.

onStartCommand(Intent, int, int) processes the Intent object, and typically returns

the constant Service.START_STICKY to indicate that the service is to continue running

until explicitly stopped. At this point, the service is running and will continue to run until

one of the following events occurs:

 Another component stops the service by calling Context’s boolean
stopService(Intent intent) method. Only one stopService(Intent)

call is needed no matter how often startService(Intent) was called.

 The service stops itself by calling one of Service’s overloaded

stopSelf() methods, or by calling Service’s stopSelfResult(int)

method.

After stopService(Intent), stopSelf(), or stopSelfResult(int) has been called,

Android calls onDestroy() to let the service perform cleanup tasks.

NOTE: When a service is started by calling startService(Intent), onBind(Intent) is not

called.

Listing 1–5 presents a skeletal service class that could be used in the context of the

startService(Intent) method.

Listing 1–5. A Skeletal Service, Version 2

import android.app.Service;

public class SimpleService extends Service
{
 @Override
 public void onCreate()
 {
 System.out.println("onCreate() called");
 }
 @Override
 public int onStartCommand(Intent intent, int flags, int startId)
 {
 System.out.println("onStartCommand(Intent, int, int) called");
 return START_STICKY;
 }
 @Override
 public void onDestroy()
 {
 System.out.println("onDestroy() called");
 }

CHAPTER 1: Getting Started with Android 22

 @Override
 public IBinder onBind(Intent intent)
 {
 System.out.println("onBind(Intent) never called");
 return null;
 }
}

The following code fragment, which is assumed to be located in the onCreate() method

of Listing 1–2’s SimpleActivity class, employs startService(Intent) to start an

instance of Listing 1–5’s SimpleService class via an explicit intent:

Intent intent = new Intent(SimpleActivity.this, SimpleService.class);
SimpleActivity.this.startService(intent);

Remote services are started via Context’s boolean bindService(Intent service,
ServiceConnection conn, int flags) method, which connects to a running service,

creating the service if necessary, and which returns ‘true’ when successfully connected.

bindService(Intent, ServiceConnection, int) results in the lifecycle illustrated by

Figure 1–5.

Figure 1–5. The lifecycle of a service started by bindService(Intent, ServiceConnection, int) doesn’t
include a call to onStartCommand(Intent, int, int).

The call to bindService(Intent, ServiceConnection, int) results in a call to

onCreate() followed by a call to onBind(Intent), which returns the communications

channel (an instance of a class that implements the android.os.IBinder interface) that

clients use to interact with the service.

CHAPTER 1: Getting Started with Android 23

The client interacts with the service as follows:

1. The client subclasses android.content.ServiceConnection and

overrides this class’s abstract void onServiceConnected(ComponentName

className, IBinder service) and void

onServiceDisconnected(ComponentName name) methods in order to

receive information about the service as the service is started and

stopped. When bindService(Intent, ServiceConnection, int) returns

true, the former method is called when a connection to the service has

been established; the IBinder argument passed to this method is the

same value returned from onBind(Intent). The latter method is called

when a connection to the service has been lost.

Lost connections typically occur when the process hosting the service has

crashed or has been killed. The ServiceConnection instance itself is not removed

– the binding to the service will remain active, and the client will receive a call to

onServiceConnected(ComponentName, IBinder) when the service is next running.

2. The client passes the ServiceConnection subclass object to

bindService(Intent, ServiceConnection, int).

A client disconnects from a service by calling Context’s void
unbindService(ServiceConnection conn) method. This component no longer receives

calls as the service is restarted. If no other components are bound to the service, the

service is allowed to stop at any time.

Before the service can stop, Android calls the service’s boolean onUnbind(Intent
intent) lifecycle callback method with the Intent object that was passed to

unbindService(ServiceConnection). Assuming that onUnbind(Intent) doesn’t return

‘true,’ which tells Android to call the service’s void onRebind(Intent intent) lifecycle

callback method each time a client subsequently binds to the service, Android calls

onDestroy() to destroy the service.

Listing 1–6 presents a skeletal service class that could be used in the context of the

bindService(Intent, ServiceConnection, int) method.

Listing 1–6. A Skeletal Service, Version 3

import android.app.Service;

public class SimpleService extends Service
{
 public class SimpleBinder extends Binder
 {
 SimpleService getService()
 {
 return SimpleService.this;
 }
 }
 private final IBinder binder = new SimpleBinder();
 @Override

CHAPTER 1: Getting Started with Android 24

 public IBinder onBind(Intent intent)
 {
 return binder;
 }
 @Override
 public void onCreate()
 {
 System.out.println("onCreate() called");
 }
 @Override
 public void onDestroy()
 {
 System.out.println("onDestroy() called");
 }
}

Listing 1–6 first declares a SimpleBinder inner class that extends the android.os.Binder

class. SimpleBinder declares a single SimpleService getService() method that returns

an instance of the SimpleService subclass.

NOTE: Binder works with the IBinder interface to support a remote procedure call

mechanism for communicating between processes. Although this example assumes that the

service is running in the same process as the rest of the app, Binder and IBinder are still

required.

Listing 1–6 next instantiates SimpleBinder and assigns the instance’s reference to the

private binder field. This field’s value is returned from the subsequently overriding

onBind(Intent) method.

Let’s assume that the SimpleActivity class in Listing 1–2 declares a private

SimpleService field named ss (private SimpleService ss;). Continuing, let’s assume

that the following code fragment is contained in SimpleActivity’s onCreate(Bundle)

method:

ServiceConnection sc = new ServiceConnection()
{
 public void onServiceConnected(ComponentName className, IBinder service)
 {
 ss = ((SimpleService.SimpleBinder) service).getService();
 System.out.println("Service connected");
 }
 public void onServiceDisconnected(ComponentName className)
 {
 ss = null; System.out.println("Service disconnected");
 }
};
bindService(new Intent(SimpleActivity.this, SimpleService.class), sc,
 Context.BIND_AUTO_CREATE);

This code fragment first instantiates a ServiceConnection subclass. The overriding

onServiceConnected(ComponentName, IBinder) method concerns itself with using the

service argument to call SimpleBinder’s getService() method and save the result.

v

CHAPTER 1: Getting Started with Android 25

Although it must be present, the overriding onServiceDisconnected(ComponentName)

method should never be called, because SimpleService runs in the same process as

SimpleActivity.

The code fragment next passes the ServiceConnection subclass object, along with an

intent identifying SimpleService as the intent’s target and Context.BIND_AUTO_CREATE

(create a persistent connection), to bindService(Intent, ServiceConnection, int).

NOTE: A service can be started (with startService(Intent)) and have connections bound

to it (with bindService(Intent, ServiceConnection, int). In this situation, Android

keeps the service running as long as it’s started, or one or more connections with the

BIND_AUTO_CREATE flag have been made to the service. Once neither of these situations holds,

the service's onDestroy() method is called and the service is terminated. All cleanup work,

such as stopping threads or unregistering broadcast receivers, should be finished upon returning

from onDestroy().

Regardless of how you start the service, the app’s AndroidManifest.xml file must have

an entry for this component. The following entry declares SimpleService:

<service android:name=".SimpleService">
</service>

NOTE: Although the previous example used bindService(Intent, ServiceConnection,

int) to start a local service, it’s more typical to use this method to start a remote service.

Chapter 5 introduces you to remote services.

Broadcast Receivers in Depth
Broadcast receivers are described by classes that subclass the abstract

android.content.BroadcastReceiver class and override BroadcastReceiver’s abstract

void onReceive(Context context, Intent intent) method. For example, the

SimpleBroadcastReceiver class in Listing 1–7 extends BroadcastReceiver and overrides

this method.

Listing 1–7. A Skeletal Broadcast Receiver

public class SimpleBroadcastReceiver extends BroadcastReceiver
{
 @Override
 public void onReceive(Context context, Intent intent)
 {
 System.out.println("onReceive(Context, Intent) called");
 }
}

CHAPTER 1: Getting Started with Android 26

You start a broadcast receiver by creating an Intent object and passing this object to

any of Context’s broadcast methods (such as Context’s overloaded sendBroadcast()

methods), which broadcast the message to all interested broadcast receivers.

The following code fragment, which is assumed to be located in the onCreate() method

of Listing 1–2’s SimpleActivity class, starts an instance of Listing 1–7’s

SimpleBroadcastReceiver class:

Intent intent = new Intent(SimpleActivity.this, SimpleBroadcastReceiver.class);
intent.putExtra("message", "Hello, broadcast receiver!");
SimpleActivity.this.sendBroadcast(intent);

Intent’s Intent putExtra(String name, String value) method is called to store the

message as a key/value pair. As with Intent’s other putExtra() methods, this method

returns a reference to the Intent object so that method calls can be chained together.

Unless you create a broadcast receiver dynamically, AndroidManifest.xml must have an

entry for this component. The following entry declares SimpleBroadcastReceiver:

<receiver android:name=".SimpleBroadcastReceiver">
</receiver>

Content Providers in Depth
Content providers are described by classes that subclass the abstract

android.content.ContentProvider class and override ContentProvider’s abstract

methods (such as String getType(Uri uri)). For example, the SimpleContentProvider

class in Listing 1–8 extends ContentProvider and overrides these methods.

Listing 1–8. A Skeletal Content Provider

public class SimpleContentProvider extends ContentProvider
{
 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs)
 {
 System.out.println("delete(Uri, String, String[]) called");
 return 0;
 }
 @Override
 public String getType(Uri uri)
 {
 System.out.println("getType(Uri) called");
 return null;
 }
 @Override
 public Uri insert(Uri uri, ContentValues values)
 {
 System.out.println("insert(Uri, ContentValues) called");
 return null;
 }
 @Override
 public boolean onCreate()
 {
 System.out.println("onCreate() called");

CHAPTER 1: Getting Started with Android 27

 return false;
 }
 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder)
 {
 System.out.println("query(Uri, String[], String, String[], String) called");
 return null;
 }
 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs)
 {
 System.out.println("update(Uri, ContentValues, String, String[]) called");
 return 0;
 }
}

Clients don’t instantiate SimpleContentProvider and call these methods directly. Rather,

they instantiate a subclass of the abstract android.content.ContentResolver class and

call its methods (such as public final Cursor query(Uri uri, String[] projection,
String selection, String[] selectionArgs, String sortOrder)).

NOTE: A ContentResolver instance can talk to any content provider; it cooperates with the

provider to manage any interprocess communication that’s involved.

AndroidManifest.xml must have to an entry for this component. The following entry

declares SimpleContentProvider:

<provider android:name=".SimpleContentProvider">
</provider>

1–1. Installing the Android SDK

Problem

You’ve read the previous introduction to Android and are eager to develop your first

Android app. However, you must install Android SDK 2.3 before you can develop apps.

Solution

Google provides an Android SDK 2.3 distribution file for each of the Windows, Intel-

based Mac OS X, and Linux operating systems. Download and unarchive the

appropriate file for your platform and move its unarchived home directory to a

convenient location. You might also want to update your PATH environment variable so

that you can access the SDK’s command-line tools from anywhere in your filesystem.

Before downloading and installing this file, you must be aware of SDK requirements. You

cannot use the SDK if your development platform doesn’t meet these requirements.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Getting Started with Android 28

Android SDK 2.3 supports the following operating systems:

 Windows XP (32-bit), Vista (32- or 64-bit), or Windows 7 (32- or 64-bit)

 Mac OS X 10.5.8 or later (x86 only)

 Linux (tested on Ubuntu Linux, Lucid Lynx): GNU C Library (glibc)

2.11 or later is required. 64-bit distributions must be able to run 32-bit

applications. To learn how to add support for 32-bit applications, see

the Ubuntu Linux installation notes at http://developer.android.com/
sdk/installing.html#troubleshooting.

You’ll quickly discover that Android SDK 2.3 is organized into various components: SDK

tools, SDK Platform tools, different versions of the Android platform (also known as the

Android software stack), SDK add-ons, USB driver for Windows, samples, and offline

documentation. Each component requires a minimum amount of disk storage space; the

total required amount of space depends upon which components you choose to install:

 SDK Tools: The SDK’s tools require approximately 35MB of disk

storage space and must be installed.

 SDK Platform Tools: The SDK’s platform tools require approximately

6MB of disk storage space and must be installed.

 Android platform: Each Android platform corresponds to a specific

version of Android and requires approximately 150MB of disk storage

space. At least one Android platform must be installed.

 SDK Add-on: Each optional SDK add-on (such as Google APIs or a

third-party vendor’s API libraries) requires approximately 100MB of

disk storage space.

 USB Driver for Windows: The optional USB driver for the Windows

platform requires approximately 10MB of disk storage space. If you’re

developing on Mac OS X or Linux, you don’t need to install the USB

driver.

 Samples: Each Android platform’s optional app examples require

approximately 10MB of disk storage space.

 Offline documentation: Instead of having to be online to access the

Android documention, you can choose to download the

documentation so that you can view it even when not connected to

the Internet. The offline documentation requires approximately 250MB

of disk storage space.

Finally, you should ensure that the following additional software is installed:

 JDK 5 or JDK 6: You need to install one of these Java Development

Kits (JDKs) to compile Java code. It’s not sufficient to have only a Java

Runtime Environment (JRE) installed.

http://developer.android.com/

CHAPTER 1: Getting Started with Android 29

 Apache Ant: You need to install Ant version 1.6.5 or later for Linux and

Mac, and Ant version 1.7 or later for Windows so that you can build

Android projects.

NOTE: If a JDK is already installed on your development platform, take a moment to ensure that

it meets the previously listed version requirement (5 or 6). Some Linux distributions may include

JDK 1.4, which is not supported for Android development. Also, Gnu Compiler for Java is not

supported.

How It Works

Point your browser to http://developer.android.com/sdk/index.html and download one

of android-sdk_r08-windows.zip (Windows), android-sdk_r08-mac_86.zip (Mac OS X),

and android-sdk_r08-linux_86.tgz (Linux).

NOTE: Windows developers have the option of downloading and running installer_r08-

windows.exe. This tool automates must of the installation process.

For example, if you run Windows XP, download android-sdk_r08-windows.zip. After

unarchiving this file, move the unarchived android-windows-sdk home directory to a

convenient location in your filesystem; for example, you might move the unarchived

C:\unzipped\android-sdk_r08-windows\android-sdk-windows home directory to the root

directory on your C: drive, resulting in C:\android-sdk-windows.

NOTE: To complete installation, add the tools subdirectory to your PATH environment variable

so that you can access the SDK’s command-line tools from anywhere in your filesystem.

A subsequent examination of android-windows-sdk shows that this home directory

contains the following subdirectories and files:

 add-ons: This initially empty directory stores add-ons from Google and

other vendors; for example, the Google APIs add-on is stored here.

 platforms: This initially empty directory stores Android platforms in

separate subdirectories. For example, Android 2.3 would be stored in

one platforms subdirectory, whereas Android 2.2 would be stored in

another platforms subdirectory.

 tools: This directory contains a set of platform-independent

development and profiling tools. The tools in this directory may be

updated at any time, independent of Android platform releases.

 SDK Manager.exe: A special tool that launches the Android SDK and

AVD Manager tool, which you use to add components to your SDK.

http://developer.android.com/sdk/index.html

CHAPTER 1: Getting Started with Android 30

 SDK Readme.txt: Tells you how to perform the initial setup of your SDK,

including how to launch the Android SDK and AVD Manager tool on all

platforms.

The tools directory contains a variety of useful tools, including the following:

 android: Creates and updates Android projects; updates the Android

SDK with new platforms, add-ons, and documentation; and creates,

deletes, and views Android Virtual Devices (discussed in Recipe 1–3).

 emulator: Runs a full Android software stack down to the kernel level,

and includes a set of preinstalled apps (such as Browser) that you can

access.

 sqlite3: Manages SQLite databases created by Android apps.

 zipalign: Performs archive alignment optimization on APK files.

1–2. Installing an Android Platform

Problem

Installing the Android SDK is insufficient for developing Android apps; you must also

install at least one Android platform.

Solution

Use the SDK Manager tool to install an Android platform.

How It Works

Run SDK Manager. This tool presents the Android SDK and AVD Manager dialog box,

followed by the Refresh Sources and Choose Packages to Install dialog boxes.

Android SDK and AVD Manager identifies virtual devices, installed packages, and

available packages. It also lets you configure proxy server and other settings.

When this dialog box appears, the Installed packages entry in the list appearing on the

right side of the dialog box is highlighted, and the pane to the right of that list identifies

all packages that have been installed. If you’re installing Android for the first time, this

pane reveals that only the Android SDK tools (revision 8) component has been installed.

NOTE: You can also use the android tool to display the Android SDK and AVD Manager dialog

box. Accomplish this task by specifying android by itself on the command line. When displayed

in this manner, Android SDK and AVD Manager highlights Virtual devices instead of Installed

packages.

CHAPTER 1: Getting Started with Android 31

After presenting this dialog box, SDK Manager scans Google’s servers for available

component packages to install. The Refresh Sources dialog box reveals its progress.

After SDK Manager finishes its scan, it presents the Choose Packages to Install dialog box

(see Figure 1–6) to let you choose those SDK components you want to install.

Figure 1–6. The Packages list identifies those packages that can be installed.

NOTE: Google recommends that you disable any active antivirus software before installing SDK

components. Otherwise, you’ll probably encounter an SDK Manager: failed to install dialog box

telling you that a folder could not be renamed or moved, and telling you to momentarily disable

your antivirus software before clicking the dialog box’s Yes button to try again.

The Choose Packages to Install dialog box shows a Packages list that identifies those

packages that can be installed. It displays checkmarks beside packages that have been

accepted for installation, and displays Xs beside those packages that have been

rejected for installation.

For the highlighted package, Package Description & License presents a package

description, a list of other packages that are dependent on this package being installed,

information about the archive that houses the package, and additional information. Also,

you can select a radio button to accept or reject the package.

CHAPTER 1: Getting Started with Android 32

NOTE: In some cases, an SDK component may require a specific minimum revision of another

component or SDK tool. In addition to Package Description & License documenting these

dependencies, the development tools will notify you with debug warnings if there’s a dependency

that you need to address.

Because this book focuses on Android 2.3, the only packages that you need to install

are Android SDK Platform-tools, revision 1 and SDK Platform Android 2.3, API 9,

revision 1. All other checked package entries can be unchecked by clicking the Reject

radio button on their respective panes.

NOTE: If you plan to develop apps that will run on devices with earlier versions of Android, you

might want to leave the checkmarks beside those versions. However, it’s not necessary to do so

at this point; you can always come back later and add those versions via SDK Manager.

After making sure that only these entries are checked, click the Install button to begin

installation. Figure 1–7 shows you the resulting Installing Archives dialog box.

Figure 1–7. The Installing Archives dialog box reveals the progress of downloading and installing each selected
package archive.

You’ll probably encounter the ADB Restart dialog box, which tells you that a package

dependent on Android Debug Bridge (ADB) has been updated, and asking you whether

you want to restart ADB now. Click the Yes button, which closes ADB Restart, then click

Close on the Installing Archives dialog box.

You should now observe the Android SDK and AVD Manager’s Installed packages pane

also displaying Android SDK Platform-tools, revision 1 and SDK Platform Android 2.3,

CHAPTER 1: Getting Started with Android 33

API 9, revision 1 in addition to Android SDK Tools, revision 8. You should also observe

the following new subdirectories:

 platform-tools (in android-sdk-windows)

 android-9 (in android-sdk-windows/platforms)

platform-tools contains development tools that may be updated with each platform

release. Its tools include aapt (Android Asset Packaging Tool – view, create, and update

Zip-compatible archives (.zip, .jar, .apk); and compile resources into binary assets),

adb (Android Debug Bridge – manage the state of an emulator instance or an Android-

powered device), and dx (Dalvik Executable – generate Android bytecode from Java

.class files). android-9 stores Android 2.3 data and user interface-oriented files.

TIP You might want to add platform-tools to your PATH environment variable so that you

can access these tools from anywhere in your filesystem.

AVAILABLE PACKAGES AND COMPONENT UPDATES DETECTION

The pane corresponding to Available packages presents packages that are available for installation. It
defaults to offering packages from Google’s Android respository and third-party add-ons (from Google and
Samsung), but you can add other websites that host their own Android SDK add-ons, and then download
the SDK add-ons from those websites.

For example, suppose that a mobile carrier or device manufacturer offers additional API libraries that are
supported by their own Android-powered devices. In order to use its libraries to assist in developing apps,
you must install the carrier’s/device manufacturer’s Android SDK add-on.

If the carrier or device manufacturer has hosted an SDK add-on repository file on its website, you must
follow these steps to add the website to SDK Manager:

1. Select Available packages from the listbox.

2. Click the Add Add-on Site button on the resulting pane and enter the URL of the
website’s repository.xml file into the resulting dialog box’s textfield. Click OK.

Any SDK components that are available from the website will appear under Available Packages.

New revisions of existing SDK components are occasionally released and made available through the SDK
repository. In most cases, assuming that you have those components installed in your environment, you’ll
want to download the new revisions as soon as possible.

The easiest way to learn about component updates is to visit the Available Packages pane. When you
discover that a new revision is available, use SDK Manager to download and install it to your environment,
and in the same manner as used to install the Android 2.3 platform. The new component is installed in
place of the old component, but in such a manner as to not impact your apps.

CHAPTER 1: Getting Started with Android 34

1–3. Creating an Android Virtual Device

Problem

After installing the Android SDK and an Android platform, you’re ready to start creating

Android apps. However, you won’t be able to run those apps via the emulator tool until

you create an Android Virtual Device (AVD), a device configuration that represents an

Android device.

Solution

Use the SDK Manager tool to create an AVD.

How It Works

Run SDK Manager if necessary. Click the Android SDK and AVD Manager dialog box’s

Virtual devices entry in the list on the left. You should see the pane shown in Figure 1–8.

Figure 1–8. No AVDs are initially installed.

Click the New button. Figure 1–9 shows you the resulting Create new Android Virtual

Device (AVD) dialog box.

CHAPTER 1: Getting Started with Android 35

Figure 1–9. An AVD consists of a name, a target platform, an SD Card, a skin, and hardware properties.

Figure 1–9 reveals that an AVD has a name, targets a specific Android platform, can

emulate an SD card, and provides a skin with a certain screen resolution. Enter test_AVD

for the name, select Android 2.3 – API Level 9 for the target platform, and enter 100

into the Size field for the SD card. Selecting Android 2.3 – API Level 9 results in

Default (HVGA) being selected for the skin with an Abstracted LCD density property set

to 160 dots per inch (dpi).

NOTE: If you’ve installed Android 2.3.1, selecting Android 2.3.1 – API Level 9 results in

Default (WVGA800) being selected for the skin with an Abstracted LCD density

property set to 240 dpi. Furthermore, a Max VM application heap size property set to 24

megabytes is also present.

After entering the previous values and keeping the screen defaults, finish AVD creation

by clicking Create AVD. The AVD pane in Figure 1–8 will now include an entry for

test_AVD.

CAUTION: When creating an AVD that you plan to use to test compiled apps, make sure that the

target platform has an API level greater than or equal to the API level required by your app. In

other words, if you plan to test your app on the AVD, your app cannot access platform APIs that

are more recent than those APIs supported by the AVD’s API level.

CHAPTER 1: Getting Started with Android 36

Although it’s easier to use SDK Manager to create an AVD, you can also accomplish this

task via the android tool by specifying android create avd -n name -t targetID [-
option value].... Given this syntax, name identifies the device configuration (such as

target_AVD), targetID is an integer ID that identifies the targeted Android platform (you

can obtain this integer ID by executing android list targets), and [-option value]...

identifies a series of options (such as SD card size).

If you don’t specify sufficient options, android prompts to create a custom hardware

profile. Press the Enter key if you don’t want a custom hardware profile and prefer to use

the default hardware emulation options. For example, the android create avd -n
test_AVD -t 1 command line causes an AVD named test_AVD to be created. This

command line assumes that 1 corresponds to the Android 2.3 platform and prompts to

create a custom hardware profile.

NOTE: Each AVD functions as an independent device with its own private storage for user data,

its own SD card, and so on. When you launch the emulator tool with an AVD, this tool loads

user data and SD card data from the AVD’s directory. By default, emulator stores user data, SD

card data, and a cache in the directory assigned to the AVD.

1–4. Starting the AVD

Problem

You must start the AVD, which can take a few minutes to get started, before you can

install and run apps on it, and want to know how to accomplish this task.

Solution

Use the SDK Manager tool to start the AVD. Or, start the AVD by using the emulator tool.

How It Works

Refer to Figure 1–8 and you’ll notice a disabled Start button. This button is no longer

disabled after an AVD entry is created. Click Start to run the emulator tool with the

highlighted AVD entry as the emulator’s device configuration.

A Launch Options dialog box appears. This dialog box identifies the AVD’s skin and

screen density. It also provides unchecked checkboxes for scaling the resolution of the

emulator’s display to match the physical device’s screen size, and for wiping user data.

CHAPTER 1: Getting Started with Android 37

NOTE: As you update your apps, you’ll periodically package and install them on the emulator,

which preserves the apps and their state data across AVD restarts in a user-data disk partition.

To ensure that an app runs properly as you update it, you might need to delete the emulator’s

user-data partition, which is accomplished by checking Wipe user data.

Click the Launch button to launch the emulator with the AVD. SDK Manager responds by

briefly displaying a Starting Android Emulator dialog box, followed by command

windows (on Windows XP), and by finally displaying the emulator window.

The emulator window is divided into a left pane that displays the Android logo on a

black background followed by the home screen, and a right pane that displays phone

controls and a keyboard. Figure 1–10 shows these panes for the test_AVD device.

Figure 1–10. The emulator window presents the home screen on the left, and phone controls and a keyboard on
the right.

If you’ve previously used an Android device, you’re probably familiar with the home

screen, the phone controls, and the keyboard. If not, there are a few items to keep in

mind:

 The home screen is a special app that serves as a starting point for

using an Android device.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Getting Started with Android 38

 A status bar appears above the home screen (and every app screen).

The status bar presents the current time, amount of battery power

remaining, and other information; and also provides access to

notifications.

 The home screen presents a wallpaper background. Click the MENU

button in the phone controls followed by Wallpaper in the popup menu

to change the wallpaper.

 The home screen presents the Google Search widget near the top. A

widget is a miniature app view that can be embedded in the home

screen and other apps, and receives periodic updates.

 The home screen presents the app launcher near the bottom. The

launcher presents icons for launching the commonly used Phone and

Browser apps, and for displaying a rectangular grid of all installed

apps, which are subsequently launched by double-clicking their icons.

 The home screen consists of multiple panes. Click the dots on either

side of the app launcher to replace the current pane with the next

pane to the left or right – the number of dots indicate the number of

panes remaining to be visited to the left or right. Or, press and hold

down the mouse pointer over the middle icon on the app launcher to

bring up a list of miniature pane icons; click one of these icons to

display the corresponding home screen pane.

 The house icon phone control button takes you from wherever you are

to the home screen.

 The MENU phone control button presents a menu of app-specific

choices for the currently running app.

 The curved arrow icon phone control button takes you back to the

previous activity in the activity stack.

While the AVD is running, you can interact with it by using your mouse to “touch” the

touchscreen and your keyboard to “press” the AVD keys. Table 1–2 shows you the

mappings between AVD keys and keyboard keys.

CHAPTER 1: Getting Started with Android 39

Table 1–2. Mappings Between AVD Keys and Keyboard Keys

AVD Key Keyboard Key

Home HOME

Menu (left softkey) F2 or Page Up

Star (right softkey) Shift-F2 or Page Down

Back ESC

Call/dial button F3

Hangup/end call button F4

Search F5

Power button F7

Audio volume up button KEYPAD_PLUS, Ctrl-5

Audio volume down button KEYPAD_MINUS, Ctrl-F6

Camera button Ctrl-KEYPAD_5, Ctrl-F3

Switch to previous layout orientation

(portrait or landscape)

KEYPAD_7, Ctrl-F11

Switch to next layout orientation KEYPAD_9, Ctrl-F12

Toggle cell networking on/off F8

Toggle code profiling F9 (only with -trace startup option)

Toggle fullscreen mode Alt-Enter

Toggle trackball mode F6

Enter trackball mode temporarily (while

key is pressed)

Delete

DPad left/up/right/down KEYPAD_4/8/6/2

DPad center click KEYPAD_5

Onion alpha increase/decrease KEYPAD_MULTIPLY(*) / KEYPAD_DIVIDE(/)

CHAPTER 1: Getting Started with Android 40

TIP: You must first disable NumLock on your development computer before you can use keypad

keys.

Table 1–2 refers to the -trace startup option in the context of toggle code profiling. This

option lets you store profiling results in a file when starting the AVD via the emulator

tool.

For example, emulator -avd test_AVD -trace results.txt starts the emulator for

device configuration test_AVD, and also stores profiling results in results.txt when you

press F9. Press F9 again to stop code profiling.

Figure 1–10 displays 5554:test_AVD in the titlebar. The 5554 value identifies a console

port that you can use to dynamically query and otherwise control the environment of the

AVD.

NOTE: Android supports up to 16 concurrently executing AVDs. Each AVD is assigned an even-

numbered console port number starting with 5554.

You can connect to the AVD’s console by specifying telnet localhost console-port.

For example, specify telnet localhost 5554 to connect to test_AVD’s console. Figure

1–11 shows you the resulting command window on Windows XP.

Figure 1–11. Type a command name by itself for command-specific help.

CHAPTER 1: Getting Started with Android 41

1–5. Introducing UC

Problem

Now that you’ve installed the Android SDK, installed an Android platform, and created

and started an AVD, you’re ready to create an app, and install and run this app on the

AVD. Although you could create an app based on Listing 1–2’s SimpleActivity class,

you’ll probably find this recipe’s UC app to be more interesting (and useful).

Solution

UC (an acronym for Units Converter) is an app that lets you convert between types of

units. For example, you can convert a specific number of degrees Celsius to its

equivalent number of degrees Fahrenheit, a specific number of pounds to its equivalent

number of kilograms, and so on.

How It Works

UC consists of a single activity (also named UC) that presents a user interface (revealed in

Recipe 1–7) consisting of an input/output textfield for entering the number of units to

convert and displaying the conversion result, a spinner for choosing a conversion, and

buttons for clearing the textfield, performing the conversion, and closing the app.

Listing 1–9 presents the UC activity’s source code.

Listing 1–9. An Activity for Performing Unit Conversions

// UC.java

package com.apress.uc;

import android.app.Activity;

import android.os.Bundle;

import android.text.Editable;
import android.text.TextWatcher;

import android.view.View;

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Spinner;

public class UC extends Activity
{
 private int position = 0;

 private double[] multipliers =

CHAPTER 1: Getting Started with Android 42

 {
 0.0015625, // Acres to square miles
 101325.0, // Atmospheres to Pascals
 100000.0, // Bars to Pascals
 0, // Degrees Celsius to Degrees Fahrenheit (placeholder)
 0, // Degrees Fahrenheit to Degrees Celsius (placeholder)
 0.00001, // Dynes to Newtons
 0.3048, // Feet/Second to Metres/Second
 0.0284130625, // Fluid Ounces (UK) to Litres
 0.0295735295625, // Fluid Ounces (US) to Litres
 746.0, // Horsepower (electric) to Watts
 735.499, // Horsepower (metric) to Watts
 1/1016.0469088, // Kilograms to Tons (UK or long)
 1/907.18474, // Kilograms to Tons (US or short)
 1/0.0284130625, // Litres to Fluid Ounces (UK)
 1/0.0295735295625, // Litres to Fluid Ounces (US)
 331.5, // Mach Number to Metres/Second
 1/0.3048, // Metres/Second to Feet/Second
 1/331.5, // Metres/Second to Mach Number
 0.833, // Miles/Gallon (UK) to Miles/Gallon (US)
 1/0.833, // Miles/Gallon (US) to Miles/Gallon (UK)
 100000.0, // Newtons to Dynes
 1/101325.0, // Pascals to Atmospheres
 0.00001, // Pascals to Bars
 640.0, // Square Miles to Acres
 1016.0469088, // Tons (UK or long) to Kilograms
 907.18474, // Tons (US or short) to Kilograms
 1/746.0, // Watts to Horsepower (electic)
 1/735.499 // Watts to Horsepower (metric)
 };

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 final EditText etUnits = (EditText) findViewById(R.id.units);

 final Spinner spnConversions = (Spinner) findViewById(R.id.conversions);
 ArrayAdapter<CharSequence> aa;
 aa = ArrayAdapter.
 createFromResource(this, R.array.conversions,
 android.R.layout.simple_spinner_item);
 aa.setDropDownViewResource(android.R.layout.simple_spinner_item);
 spnConversions.setAdapter(aa);

 AdapterView.OnItemSelectedListener oisl;
 oisl = new AdapterView.OnItemSelectedListener()
 {
 @Override
 public void onItemSelected(AdapterView<?> parent, View view,
 int position, long id)
 {
 UC.this.position = position;
 }

CHAPTER 1: Getting Started with Android 43

 @Override
 public void onNothingSelected(AdapterView<?> parent)
 {
 System.out.println("nothing");
 }
 };
 spnConversions.setOnItemSelectedListener(oisl);

 final Button btnClear = (Button) findViewById(R.id.clear);
 AdapterView.OnClickListener ocl;
 ocl = new AdapterView.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 etUnits.setText("");
 }
 };
 btnClear.setOnClickListener(ocl);
 btnClear.setEnabled(false);

 final Button btnConvert = (Button) findViewById(R.id.convert);
 ocl = new AdapterView.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 String text = etUnits.getText().toString();
 double input = Double.parseDouble(text);
 double result = 0;
 if (position == 3)
 result = input*9.0/5.0+32; // Celsius to Fahrenheit
 else
 if (position == 4)
 result = (input-32)*5.0/9.0; // Fahrenheit to Celsius
 else
 result = input*multipliers[position];
 etUnits.setText(""+result);
 }
 };
 btnConvert.setOnClickListener(ocl);
 btnConvert.setEnabled(false);

 Button btnClose = (Button) findViewById(R.id.close);
 ocl = new AdapterView.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 finish();
 }
 };
 btnClose.setOnClickListener(ocl);

 TextWatcher tw;
 tw = new TextWatcher()
 {

CHAPTER 1: Getting Started with Android 44

 @Override
 public void afterTextChanged(Editable s)
 {
 }

 @Override
 public void beforeTextChanged(CharSequence s, int start, int count,
 int after)
 {
 }

 @Override
 public void onTextChanged(CharSequence s, int start, int before,
 int count)
 {
 if (etUnits.getText().length() == 0)
 {
 btnClear.setEnabled(false);
 btnConvert.setEnabled(false);
 }
 else
 {
 btnClear.setEnabled(true);
 btnConvert.setEnabled(true);
 }
 }
 };
 etUnits.addTextChangedListener(tw);
 }
}

Listing 1–9 begins with a comment that conveniently identifies the source file (UC.java)

describing the activity. This listing next presents a package statement that names the

package (com.apress.uc), in which the source file’s UC class is stored, followed by a

series of import statements that import various Android API types.

TIP: You should familiarize yourself with the Android API’s package organization so that you can

quickly find API types in Google’s Android API reference

(http://developer.android.com/reference/packages.html). You’ll want to locate

documentation on these types quickly as you dig deeper into Android app development.

Listing 1–9 next describes the UC class, which extends Activity. This class first declares

position and multipliers fields:

 position stores the zero-based index of the conversion selected via

the spinner, and defaults to 0 (the first conversion displayed by the

spinner). Storing the spinner’s position in this field simplifies choosing

an appropriate conversion to perform.

http://developer.android.com/reference/packages.html

CHAPTER 1: Getting Started with Android 45

 multipliers stores an array of multiplier values, with each entry

corresponding to a spinner value. A conversion is performed by

multiplying the input value by multipliers[position]. However, there

are two exceptions: Celsius-to-Fahrenheit and Fahrenheit-to-Celsius.

These conversions are handled separately, because they also require

an addition or a subtraction operation.

All of the app’s work takes place in the overriding onCreate(Bundle) method: no other

methods are required, which helps to keep this app simple.

onCreate(Bundle) first invokes its same-named superclass method, a rule that must be

followed by all overriding activity methods.

This method then executes setContentView(R.layout.main) to establish the app’s user

interface.

R.layout.main identifies a resource, a piece of data required by an app’s code, and

which you maintain independently of the code by storing it in a separate file.

NOTE: Resources simplify app maintenance, make it easier to adapt a user interface to different

screen sizes, and facilitate adapting an app to different languages.

You interpret this resource ID as follows:

 R is the name of a class that’s generated (by the aapt tool) when the

app is being built. This class is named R because its content identifies

various kinds of resources (such as layouts, images, strings, and

colors).

 layout is the name of a class that’s nested within R. All resources

whose IDs are stored in this class describe specific layout resources.

Each kind of resource is associated with a nested class that’s named

in a similar fashion. For example, string identifies string resources.

 main is the name of an int constant declared within layout. This

resource ID identifies the main layout resource. Specifically, main

refers to a main.xml file that stores the main screen’s layout

information. main is UC’s only layout resource.

R.layout.main is passed to Activity’s void setContentView(int layoutResID) method

to tell Android to create a user interface screen using the layout information stored in

main.xml. Behind the scenes, Android creates the user interface components described

in main.xml and positions them on the screen as specified by main.xml’s layout data.

This user interface is based on views (abstractions of user interface components) and

view groups (views that group related user interface components). Views are instances

of classes that subclass the android.view.View class and are analogous to Java

components. View groups are instances of classes that subclass the abstract

android.view.ViewGroup class and are analogous to Java containers. Android refers to

specific views (such as buttons or spinners) as widgets.

CHAPTER 1: Getting Started with Android 46

NOTE: Don’t confuse widget in this context with widgets shown on the Android home screen.

Although the same term is used, user interface widgets and home screen widgets are different.

Continuing, onCreate(Bundle) executes final EditText etUnits = (EditText)
findViewById(R.id.units);. This statement first calls View’s View findViewById(int
id) method to find the EditText view declared in main.xml and identified as units, and

instantiate android.widget.EditText and initialize it to this view’s declarative

information, and then saves this object’s reference in local variable etUnits. This

variable is final because it’s subsequently accessed from an anonymous inner class.

In a similar manner, final Spinner spnConversions = (Spinner)
findViewById(R.id.conversions); instantiates the android.widget.Spinner class using

the declarative information that’s stored in main.xml, and saves the resulting object

reference for subsequent access.

NOTE: Although it’s preferable from a maintenance perspective to declare user interface

screens via layout resources and let Android take care of creating widgets and adding them to

layouts on your behalf, Android gives you the option of creating widgets and laying them out

programmatically when you need to do so.

onCreate(Bundle) next addresses the spinner object having no text to display, by first

calling the android.widget.ArrayAdapter class’s ArrayAdapter<CharSequence>
createFromResource(Context context, int textArrayResId, int textViewResId)

method, which returns an array adapter that supplies text messages to the spinner:

 context requires a Context instance that identifies the current app

component, which happens to be the current activity as specified by

keyword this.

 textArrayResId requires the ID of an array resource that stores strings

(such as "Degrees Celsius to Degrees Fahrenheit"), which happen

to identify different kinds of conversions. The R.array.conversions

argument passed to this parameter identifies conversions as the name

of an array resource containing conversion strings and specified in a

file named arrays.xml (described later in this recipe).

 textViewResId requires the ID of the layout resource used to create

the spinner’s look. The android.R.layout.simple_spinner_item

argument passed to this parameter is a predefined ID stored in the

android package’s R class’s nested layout class.

simple_spinner_item describes a spinner that looks something like a

Java Swing combobox.

After calling createFromResource(Context, int, int), onCreate(Bundle) calls

ArrayAdapter’s void setDropDownViewResource(int resource) method with

CHAPTER 1: Getting Started with Android 47

android.R.layout.simple_spinner_item as the argument. This method call creates the

dropdown view portion of the spinner.

Now that the array adapter has been created and initialized with the appropriate unit

conversion strings and layout information, onCreate(Bundle) attaches this information to

the spinner by calling spnConversions.setAdapter(aa);. This method call allows the

spinner widget to access this information and present a list of conversions to the user.

NOTE: Spinner inherits the void setAdapter(T) method from its abstract

android.widget.AdapterView<T extends Adapter> ancestor class.

UC needs to keep track of the currently selected spinner item so that it can perform the

appropriate conversion. onCreate(Bundle) makes this possible by registering a listener

with the spinner that responds to item-selected events by assigning the spinner’s

position to the (previously mentioned) position variable.

onCreate(Bundle) first instantiates an anonymous class that implements ArrayAdapter’s

nested OnItemSelectedListener interface, and then registers this instance with the

spinner by calling AdapterView’s void
setOnItemSelectedListener(AdapterView.OnItemSelectedListener listener) method.

OnItemSelectedListener’s void onItemSelected(AdapterView<?> parent, View view,
int position, long id) method is invoked whenever the user selects a new item, and

is the perfect place to save the position. Although not needed, the companion void
onNothingSelected(AdapterView<?> parent) method must also be implemented.

With the spinner out of the way, onCreate(Bundle) turns its attention to creating the

Clear, Convert, and Close buttons. For each button, it invokes findByViewId(int) to

obtain the button information from main.xml, and then instantiate the

android.widget.Button class.

AdapterView’s nested onClickListener interface is then employed to create listener

objects, whose void onClick(View v) methods are invoked whenever the user clicks a

button. Each listener is registered with its Button object by calling AdapterView’s void
setOnItemClickListener(AdapterView.OnItemClickListener listener) method.

The Clear button’s click listener simply executes etUnits.setText("") to clear user

input or a conversion result from the etUnits textfield. The Close button’s click listener

is equally simple; it invokes finish() to terminate the current activity and UC app. In

contrast, the Convert button’s click listener has more work to accomplish:

1. Obtain the contents of the etUnits textfield as a String object: String

text = etUnits.getText().toString();.

2. Parse this String object into a double precision floating-point value:

double input = Double.parseDouble(text);.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Getting Started with Android 48

3. Perform the conversion and save the result based on position’s value:

result = input*9.0/5.0+32;, result = (input-32)*5.0/9.0;, or result

= input*multipliers[position];.

4. Update etUnits with the result: etUnits.setText(""+result);.

There’s one more task for onCreate(Bundle) to perform: make sure that the Clear and

Convert buttons are disabled when etUnits is empty. After all, there’s no point clearing

an empty textfield, and parseDouble() throws an exception when attempting to parse an

empty textfield.

onCreate(Bundle) accomplishes this task by registering a textwatcher (an object whose

class implements the android.text.TextWatcher interface) with the etUnits textfield, via

android.widget.TextView’s void addTextChangedListener(TextWatcher watcher)

method. TextView is EditText’s superclass.

TextWatcher declares void afterTextChanged(Editable s), void
beforeTextChanged(CharSequence s, int start, int count, int after), and void
onTextChanged(CharSequence s, int start, int before, int count) methods. Only

the latter method is overridden to enable or disable the Clear and Convert buttons.

onTextChanged(s, int, int, int) first evaluates etUnits.getText().length(), which

returns the textfield’s length. If the length is 0 (empty textfield), the buttons are disabled

via btnClear.setEnabled(false); and btnConvert.setEnabled(false);. Otherwise,

they’re enabled via btnClear.setEnabled(true); and btnConvert.setEnabled(true);.

Most of UC’s resources are stored in XML files. For example, UC’s widget and layout

information is stored in main.xml, which Listing 1–10 presents.

Listing 1–10. The main.xml File Storing Widget and Layout Information

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center_vertical"
 android:background="@drawable/gradientbg"
 android:padding="5dip">
 <LinearLayout android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginRight="10dip"
 android:text="@string/units"
 android:textColor="#000000"
 android:textSize="15sp"
 android:textStyle="bold"/>
 <EditText android:id="@+id/units"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:hint="type a number"
 android:inputType="numberDecimal|numberSigned"
 android:maxLines="1"/>
 </LinearLayout>

http://schemas.android.com/apk/res/android

CHAPTER 1: Getting Started with Android 49

 <Spinner android:id="@+id/conversions"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:prompt="@string/prompt"/>
 <LinearLayout android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <Button android:id="@+id/clear"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="@string/clear"/>
 <Button android:id="@+id/convert"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="@string/convert"/>
 <Button android:id="@+id/close"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="@string/close"/>
 </LinearLayout>
</LinearLayout>

Listing 1–10 begins by declaring a <LinearLayout> tag that specifies a layout (a view

group that arranges contained views on an Android device’s screen in some manner) for

arranging contained widgets and nested layouts either horizontally or vertically across

the screen.

The <LinearLayout> tag specifies several attributes for controlling this linear layout.

These attributes include the following:

 orientation identifies the linear layout as horizontal or vertical. The

default orientation is horizontal. "horizontal" and "vertical" are the

only legal values that can be assigned to this attribute.

 layout_width identifies the width of the layout. Legal values include

"fill_parent" (occupy the entire width) and "wrap_content" (occupy

only the width required by the view). fill_parent was renamed to

match_parent in Android 2.2, but is still supported and widely used.

 layout_height identifies the height of the layout. Legal values include

"fill_parent" (occupy the entire height) and "wrap_content" (occupy

only the height required by the view). fill_parent was renamed to

match_parent in Android 2.2, but is still supported and widely used.

 gravity identifies how the layout is positioned relative to the screen.

For example, "center_vertical" specifies that the layout should be

centered vertically on the screen.

 background identifies a background image or gradient via a resource

reference (special syntax beginning with the @ character). For example,

"@drawable/gradientbg" references a drawable resource (an image or

a graphic) named gradientbg.

CHAPTER 1: Getting Started with Android 50

 padding identifies space to add to the layout to provide a boundary

between itself and the screen’s edges. "5dip" refers to five density-

independent pixels, virtual pixel units that apps can use to express

layout dimensions/positions in a screen density-independent way.

NOTE: A density-independent pixel is equivalent to one physical pixel on a 160-dpi screen, the

baseline density assumed by Android. At run time, Android transparently handles any scaling of

the required dip units, based on the actual density of the screen in use. Dip units are converted

to screen pixels via equation pixels = dips * (density / 160). For example, on a 240-dpi screen, 1

dip equals 1.5 physical pixels. Google recommends using dip units to define your app’s user

interface to ensure proper display of the UI on different screens.

A second linear layout has been nested inside the first linear layout. Because no

orientation attribute is specified, this layout lays out its widgets horizontally. As with

the parent layout, layout_width is assigned "fill_parent". However, layout_height is

assigned "wrap_content" to prevent this nested layout from occupying the entire screen.

The nested linear layout encapsulates textview and edittext elements. The textview

element describes a widget that serves as a label for the widget described by the

edittext element. The <textview> tag presents the following attributes in addition to

layout_width and layout_height:

 layout_marginRight specifies the amount of space to reserve on the

right side of the textview widget; 10 density-independent pixels have

been selected as the space amount.

 text identifies the text that this widget displays. The text is identified

via @string/units, a string resource reference to the units entry in the

standard strings.xml resource file (see Listing 1–12). This entry’s

value is the text.

 textColor identifies the color of the text. The color is specified in

#RRGGBB format – #00000 identifies black.

 textSize identifies the text’s size. The size is specified as "15sp",

which is interpreted as 15 scale-independent pixels (the user selects

the scaling via a device setting). Google recommends specifying

scale-independent pixels (to let the user scale text) or device-

independent pixels (to prevent the user from scaling text).

 textStyle identifies the text styling, such as bold or italic. The style is

set to "bold" to emphasize the text so that it stands out on the screen.

CHAPTER 1: Getting Started with Android 51

The <edittext> tag provides the following attributes:

 id identifies this widget element so that it can be referenced from

code. The resource identifier is specifed by using a special syntax that

begins with the @+id prefix. For example, "@+id/units" identifies this

edittext widget as units; this widget resource is referenced from code

by specifying R.id.units.

 hint identifies a string that appears in the textfield when nothing has

been entered. It serves as a hint to the user about what kind of data to

enter into the textfield. Instead of assigning a string resource reference

to this attribute, the "type a number" literal string was assigned to

make the following point: although you can embed literal string values

in the resources (or even code), you really should store them in the

separate strings.xml resource file to facilitate localization of the app

to a different language, such as French or German.

 inputType identifies the kind of data that you want the user to enter.

By default, any character can be entered. Because this is

unacceptable when a number is required,

"numberDecimal|numberSigned" is assigned to inputType. This string

specifies that only decimal numbers can be entered. Furthermore,

these numbers can be negative.

 maxLines restricts the number of lines of text that can be entered into a

textfield. The "1" assignment indicates that only a single line of text

can be entered.

Below the linear layout element lies a spinner element named conversions. This element

is declared to fill the screen’s width, but not the screen’s height. Futhermore, its prompt

attribute is assigned "@string/prompt" to prompt the user (on the dropdown view, which

is shown in Figure 1–15) to select a conversion.

Below the spinner element lies another nested linear layout, encapsulating the Clear,

Convert, and Close buttons. Each button is assigned a unique ID so it can be referenced

from code. Its layout_weight attribute is assigned the same value as the other buttons’

layout_weight attributes so that each button has the same width (it looks nicer).

Android let you declare shape resources (such as rectangles or ovals) as XML files.

These shapes can be declared with straight or rounded corners, with gradient

backgrounds, and with other attributes. For example, Listing 1–11 introduces a

rectangle shape with a gradient background.

Listing 1–11. The gradientbg.xml File Storing a Gradient Shape to Color the Activity’s Background

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android">
 <gradient android:startColor="#fccb06"
 android:endColor="#fd6006"
 android:angle="270"/>
 <corners android:radius="10dp"/>
</shape>

http://schemas.android.com/apk/res/android

CHAPTER 1: Getting Started with Android 52

The <shape> tag introduces a shape via its shape attribute. If this attribute is not present,

the shape defaults to a rectangle.

The nested <gradient> tag defines the shape’s color in terms of a gradient, which is

specified via startColor, endColor, and angle attributes. The angle attribute specifies

the direction that the gradient sweeps across the rectangle. If angle is not present, the

angle defaults to 0 degrees.

The nested <corners> tag determines whether or not a rectangle shape has corners. If

this tag is present, its attributes identify the degree of roundness for each or all corners.

For example, the radius attribute in Listing 1–11 specifies that each corner has a radius

of 10 density-independent pixels – dp is a synonym for dip.

Strings should be stored separately to facilitate localization of text. Android mandates

that strings be stored in a file named strings.xml, which Listing 1–12 presents.

Listing 1–12. The strings.xml File Storing the App’s Strings

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">Units Converter</string>
 <string name="clear">Clear</string>
 <string name="close">Close</string>
 <string name="convert">Convert</string>
 <string name="prompt">Select a conversion</string>
 <string name="units">Units</string>
</resources>

The strings.xml file stores its strings as a sequence of string elements that are nested

in a resources element. Each <string> tag requires a unique name attribute whose

content identifies the string, and which is referenced from code or some other resource.

The string text is placed between the <string> and </string> tags.

Finally, the array of conversion strings is stored in arrays.xml. Listing 1–13 reveals this

standard file’s contents.

Listing 1–13. The arrays.xml File Storing an Array of Conversion Strings

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="conversions">
 <item>Acres to Square Miles</item>
 <item>Atmospheres to Pascals</item>
 <item>Bars to Pascals</item>
 <item>Degrees Celsius to Degrees Fahrenheit</item>
 <item>Degrees Fahrenheit to Degrees Celsius</item>
 <item>Dynes to Newtons</item>
 <item>Feet/Second to Metres/Second</item>
 <item>Fluid Ounces (UK) to Litres</item>
 <item>Fluid Ounces (US) to Litres</item>
 <item>Horsepower (electric) to Watts</item>
 <item>Horsepower (metric) to Watts</item>
 <item>Kilograms to Tons (UK or long)</item>
 <item>Kilograms to Tons (US or short)</item>
 <item>Litres to Fluid ounces (UK)</item>
 <item>Litres to Fluid ounces (US)</item>

CHAPTER 1: Getting Started with Android 53

 <item>Mach Number to Metres/Second</item>
 <item>Metres/Second to Feet/Second</item>
 <item>Metres/Second to Mach Number</item>
 <item>Miles/Gallon (UK) to Miles/Gallon (US)</item>
 <item>Miles/Gallon (US) to Miles/Gallon (UK)</item>
 <item>Newtons to Dynes</item>
 <item>Pascals to Atmospheres</item>
 <item>Pascals to Bars</item>
 <item>Square Miles to Acres</item>
 <item>Tons (UK or long) to Kilograms</item>
 <item>Tons (US or short) to Kilograms</item>
 <item>Watts to Horsepower (electric)</item>
 <item>Watts to Horsepower (metric)</item>
 </string-array>
</resources>

Android lets you store arrays with different types of data in arrays.xml. For example,

<string-array> indicates that the array contains strings. This tag requires a name

attribute whose value uniquely identifies this array. Each array item is specified by

placing its content between <item> and </item> tags.

1–6. Creating UC

Problem

You want to learn how to create UC using the Android SDK’s command-line tools, but

are not sure how to accomplish this task.

Solution

Use the android tool to create UC, and then use ant to build this project.

How It Works

Your first step in creating UC is to use the android tool to create a project. When used in

this way, android requires you to adhere to the following syntax (which is spread across

multiple lines for readability):

android create project --target target_ID
 --name your_project_name
 --path /path/to/your/project/project_name
 --activity your_activity_name
 --package your_package_namespace

Except for --name (or –n), which specifies the project’s name (if provided, this name will

be used for the resulting .apk filename when you build your app), all of the following

options are required:

CHAPTER 1: Getting Started with Android 54

 The --target (or -t) option specifies the app’s build target. The

target_ID value is an integer value that identifies an Android platform.

You can obtain this value by invoking android list targets. If you’ve

only installed the Android 2.3 platform, this command should output a

single Android 2.3 platform target identified as integer ID 1.

 The --path (or -p) option specifies the project directory’s location. The

directory is created if it doesn’t exist.

 The --activity (or -a) option specifies the name for the default activity

class. The resulting classfile is created inside

/path/to/your/project/project_name/src/your_package_namespace/,

and is used as the .apk filename if --name (or -n) isn't specified.

 The --package (or -k) option specifies the project’s package

namespace, which must follow the rules for packages that are

specified in the Java language.

Assuming a Windows XP platform, and assuming a C:\prj\dev hierarchy where the UC

project is to be stored in C:\prj\dev\UC, invoke the following command from anywhere

in the filesystem to create UC:

android create project -t 1 -p C:\prj\dev\UC -a UC -k com.apress.uc

This command creates various directories and adds files to some of these directories. It

specifically creates the following file and directory structure within C:\prj\dev\UC:

 AndroidManifest.xml is the manifest file for the app being built. This

file is synchronized to the Activity subclass previously specified via

the --activity or -a option.

 bin is the output directory for the Apache Ant build script.

 build.properties is a customizable properties file for the build

system. You can edit this file to override default build settings used by

Apache Ant, and provide a pointer to your keystore and key alias so

that the build tools can sign your app when built in release mode

(discussed in Recipe 1–8).

 build.xml is the Apache Ant build script for this project.

 default.properties is the default properties file for the build system.

Don’t modify this file.

 libs contains private libraries, when required.

 local.properties contains the location of the Android SDK home

directory.

 proguard.cfg contains configuration data for ProGuard, an SDK tool

that lets developers obfuscate their code (making it very difficult to

reverse engineer the code) as an integrated part of a release build.

 res contains project resources.

CHAPTER 1: Getting Started with Android 55

 src contains the project’s source code.

res contains the following directories:

 drawable-hdpi contains drawable resources (such as icons) for high-

density screens.

 drawable-ldpi contains drawable resources for low-density screens.

 drawable-mdpi contains drawable resources for medium-density

screens. The gradientbg.xml file in Listing 1–11 is stored in this

directory.

 layout contains layout files. The main.xml file in Listing 1–10 is stored

in this directory.

 values contains value files. Listing 1–12’s strings.xml and Listing 1–

13’s arrays.xml files are stored in this directory.

Also, src contains the com\apress\uc directory structure, and the final uc subdirectory

contains a skeletal UC.java source file. This skeletal file’s contents are replaced with

Listing 1–9.

Assuming that C:\prj\dev\UC is current, build this app with the help of Apache’s ant

tool, which defaults to processing this directory’s build.xml file. At the command line,

specify ant followed by debug or release to indicate the build mode:

 Debug mode: Build the app for testing and debugging. The build tools

sign the resulting APK with a debug key and optimize the APK with

zipalign. Specify ant debug.

 Release mode: Build the app for release to users. You must sign the

resulting APK with your private key, and then optimize the APK with

zipalign. (I discuss these tasks later in this chapter.) Specify ant
release.

Build UC in debug mode by invoking ant debug from the C:\prj\dev\UC directory. This

command creates a gen subdirectory containing the ant-generated R.java file (in a

com\apress\uc directory hierarchy), and stores the created UC-debug.apk file in the bin

subdirectory.

1–7. Installing and Running UC

Problem

You want to install the UC-debug.apk package file that you just created on the previously

started AVD and run this app.

CHAPTER 1: Getting Started with Android 56

Solution

Use the adb tool to install UC. Navigate to the app launcher screen to run UC.

How It Works

Assuming that the AVD is still running, execute adb install C:\prj\dev\UC\bin\UC-
debug.apk to install UC-debug.apk on the AVD. After a few moments, you should see

several messages similar to the following:

411 KB/s (19770 bytes in 0.046s)
 pkg: /data/local/tmp/UC-debug.apk
Success

From the home screen, click the app launcher icon (the rectangular grid icon centered at

the bottom of the home screen) and scroll down on the result screen’s list of app icons.

Figure 1–12 shows you the Units Converter app entry.

Figure 1–12. The highlighted Units Converter app entry displays a custom icon (in an icon.png file, which is
included in this book’s code) that’s also stored in drawable-mdpi.

Click the Units Converter icon and you should see the screen shown in Figure 1–13.

CHAPTER 1: Getting Started with Android 57

Figure 1–13. The Units textfield prompts the user to type a number.

Enter 37 into the Units textfield and you’ll see the screen shown in Figure 1–14.

Figure 1–14. The Clear and Convert buttons are no longer disabled.

Click the spinner and you’ll see the screen shown in Figure 1–15.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Getting Started with Android 58

Figure 1–15. The spinner displays the prompt at the top of its drop-down list of conversion names.

Select “Degrees Celsius to Degrees Fahrenheit” and you’ll see a screen similar to Figure

1–16.

Figure 1–16. The Units textfield displays the conversion result after clicking Convert.

Click Close to terminate the app and return to the launcher screen shown in Figure 1–12.

NOTE: Although UC appears to run correctly, its (and any other app’s) code should be unit tested

to verify that the code is correct before publishing the app. Google’s online Android Developer’s

Guide delves into this topic in its “Testing” section at

http://developer.android.com/guide/topics/testing/index.html.

http://developer.android.com/guide/topics/testing/index.html

CHAPTER 1: Getting Started with Android 59

1–8. Preparing UC for Publishing

Problem

You’re satisfied that UC works properly, and now you want to prepare it for publishing to

Google’s Android Market or another publishing service.

Solution

Before you can publish an app such as UC, you should version the app. You then build

the app in release mode, and sign and align its app package.

How It Works

Google’s online Android Developer’s Guide

(http://developer.android.com/guide/index.html) provides extensive information on

publishing an app. Rather than repeat the guide’s information, this recipe presents the

steps that are necessary to prepare UC for publishing.

Version UC

Android lets you add version information to your app by specifying this information in

AndroidManifest.xml’s <manifest> tag via its versionCode and versionName attributes.

versionCode is assigned an integer value that represents the version of the app’s code.

The value is an integer so that other apps can programmatically evaluate it to check an

upgrade or downgrade relationship, for example. Although you can set the value to any

desired integer, you should ensure that each successive release of your app uses a

greater value. Android doesn’t enforce this behavior, but increasing the value in

successive releases is normative.

versionName is assigned a string value that represents the release version of the app’s

code, and should be shown to users (by the app). This value is a string so that you can

describe the app version as a <major>.<minor>.<point> string, or as any other type of

absolute or relative version identifier. As with android:versionCode, Android doesn’t use

this value for any internal purpose. Publishing services may extract the versionName
value for display to users.

The <manifest> tag in UC’s AndroidManifest.xml file includes a versionCode attribute

initialized to "1" and a versionName attribute initialized to "1.0".

Build UC in Release Mode

Assuming Windows XP, the previous C:\prj\dev\UC directory, and that this directory is

current, execute the following command line:

ant release

http://developer.android.com/guide/index.html

CHAPTER 1: Getting Started with Android 60

This command line generates UC-unsigned.apk and stores this file in the bin directory. It

also outputs a message stating that this APK must be signed and aligned with zipalign.

Sign UC’s App Package

Android requires that all installed apps be digitally signed with a certificate whose

private key is held by the app’s developer. Android uses the certificate as a means of

identifying the app’s author and establishing trust relationships between apps; it doesn’t

use the certificate to control which apps can be installed by the user. Certificates don’t

need to be signed by certificate authorities: it’s perfectly allowable, and typical, for

Android apps to use self-signed certificates.

NOTE: Android tests a signer certificate’s expiration date only at install time. If an app’s signer

certificate expires after the app is installed, the app will continue to function normally.

Before you can sign UC-unsigned.apk, you must obtain a suitable private key. A private

key is suitable if it meets the following criteria:

 The key represents the personal, corporate, or organizational entity to

be identified with the app.

 The key has a validity period that exceeds the expected lifespan of the

app. Google recommends a validity period of more than 25 years. If

you plan to publish the app on Android Market, keep in mind that a

validity period ending after October 22, 2033 is a requirement. You

cannot upload an app if it’s signed with a key whose validity expires

before that date.

 The key is not the debug key generated by the Android SDK tools.

The JDK’s keytool tool is used to create a suitable private key. The following command

line (split over two lines for readability) uses keytool to generate this key:

keytool -genkey -v -keystore uc-release-key.keystore -alias uc_key -keyalg RSA
 -keysize 2048 -validity 10000

The following command-line arguments are specified:

 -genkey causes keytool to generate a public and a private key (a key

pair).

 -v enables verbose output.

 -keystore identifies the keystore (a file) that stores the private key; the

keystore is named uc-release-key.keystore in the command line.

 -alias identifies an alias for the key (only the first eight characters are

used when the alias is specified during the actual signing operation);

the alias is named uc_key in the command line.

CHAPTER 1: Getting Started with Android 61

 -keyalg specifies the encryption algorithm to use when generating the

key; although DSA and RSA are supported, RSA is specified in the

command line.

 -keysize specifies the size of each generated key (in bits); 2048 is

specified in the command line because Google recommends using a

key size of 2048 bits or higher (the default size is 1024 bits).

 -validity specifies the period (in days) in which the key remains valid

(Google recommends a value of 10000 or greater); 10000 is specified in

the command line.

keytool prompts you for a password (to protect access to the keystore), and to reenter

the same password. It then prompts for your first and last name, your organizational unit

name, the name of your organization, the name of your city or locality, the name of your

state or province, and a two-letter country code for your organizational unit.

keytool subsequently prompts you to indicate whether or not this information is correct

(by typing yes and pressing Enter, or by pressing Enter for no). Assuming you entered

yes, keytool lets you choose a different password for the key, or use the same

password as that of the keystore.

CAUTION: Keep your private key secure. Fail to do so, and your app authoring identity and user

trust could be compromised. Here are some tips for keeping your private key secure:

* Select strong passwords for the keystore and key.

* When you generate your key with keytool, don’t supply the -storepass and -keypass

options at the command line. If you do so, your passwords will be available in your shell history,

which any user on your computer could access.

* When signing your apps with jarsigner, don’t supply the -storepass and -keypass

options at the command line (for the same reason as mentioned in the previous tip).

* Don’t give or lend anyone your private key, and don’t let unauthorized persons know your

keystore and key passwords.

keytool creates uc-release-key.keystore in the current directory. You can view this

keystore’s information by executing the following command line:

keytool -list -v -keystore uc-release-key.keystore

After requesting the keystore password, keytool outputs the number of entries in the

keystore (which should be one) and certificate information.

The JDK’s jarsigner tool is used to sign UC-unsigned.apk. Assuming that

C:\prj\dev\UC is the current directory, this directory contains the keytool-created uc-
release-key.keystore file, and this directory contains a bin subdirectory that contains

UC-unsigned.apk, execute the following command line to sign this file:

CHAPTER 1: Getting Started with Android 62

jarsigner -verbose -keystore uc-release-key.keystore bin/UC-unsigned.apk uc_key

The following command-line arguments are specified:

 -verbose enables verbose output.

 -keystore identifies the keystore that stores the private key; uc-
release-key.keystore is specified in the command line.

 bin/UC-unsigned.apk identifies the location and name of the APK

being signed.

 uc-key identifies the previously created alias for the private key.

jarsigner prompts you to enter the keystore password that you previously specified via

keytool. This tool then outputs messages similar to the following:

 adding: META-INF/MANIFEST.MF
 adding: META-INF/UC_KEY.SF
 adding: META-INF/UC_KEY.RSA
 signing: res/layout/main.xml
 signing: AndroidManifest.xml
 signing: resources.arsc
 signing: res/drawable-hdpi/icon.png
 signing: res/drawable-ldpi/icon.png
 signing: res/drawable-mdpi/gradientbg.xml
 signing: res/drawable-mdpi/icon.png
 signing: classes.dex

Execute jarsigner -verify bin/UC-unsigned.apk to verify that UC-unsigned.apk has

been signed.

Assuming success, you should notice a single “jar verified.” message. Assuming

failure, you should notice the following messages:

no manifest.
jar is unsigned. (signatures missing or not parsable)

Align UC’s App Package

As a performance optimization, Android requires that a signed APK’s uncompressed

content be aligned relative to the start of the file, and supplies the zipalign SDK tool for

this task. According to Google’s documentation, all uncompressed data within the APK,

such as images or raw files, is aligned on 4-byte boundaries.

zipalign requires the following syntax to align an input APK to an output APK:

zipalign [-f] [-v] <alignment> infile.apk outfile.apk

The following command-line arguments are specified:

 -f forces outfile.apk to be overwritten if it exists.

 -v enables verbose output.

CHAPTER 1: Getting Started with Android 63

 alignment specifies that the APK content is to be aligned on this

number of bytes boundary; it appears that zipalign ignores any value

other than 4.

 infile.apk identifies the signed APK file to be aligned.

 outfile.apk identifies the resulting signed and aligned APK file.

Assuming that C:\prj\dev\UC\bin is the current directory, execute the following

command line to align UC-unsigned.apk to UC.apk:

zipalign –f –v 4 UC-unsigned.apk UC.apk

zipalign requires the following syntax to verify that an existing APK is aligned:

zipalign -c -v <alignment> existing.apk

The following command-line arguments are specified:

 -c confirms the alignment of existing.apk.

 -v enables verbose output.

 alignment specifies that the APK content is aligned on this number of

bytes boundary; it appears that zipalign ignores any value other than
4.

 infile.apk identifies the signed APK file to be aligned.

Execute the following command line to verify that UC.apk is aligned:

zipalign –c –v 4 UC.apk

zipalign presents a list of APK entries, indicating which are compressed and which are

not, followed by a verification successful or a verification failed message.

1–9. Migrating to Eclipse

Problem

You prefer to develop apps using the Eclipse IDE.

Solution

To develop apps with Eclipse, you need to install an IDE such as Eclipse Classic 3.6.1.

Furthermore, you need to install the ADT Plugin.

How It Works

Before you can develop Android apps with Eclipse, you must complete at least the first

two of the following three tasks:

CHAPTER 1: Getting Started with Android 64

1. Install the Android SDK and at least one Android platform (see Recipes

1–1 and 1–2). JDK 5 or JDK 6 must also be installed.

2. Install a version of Eclipse that’s compatible with the Android SDK and

the Android Development Tools (ADT) Plugin for the Eclipse IDE.

3. Install the ADT Plugin.

You should complete these tasks in the order presented. You cannot install the ADT

Plugin before installing Eclipse, and you cannot configure or use the ADT Plugin before

installing the Android SDK and at least one Android platform.

THE BENEFICIAL ADT PLUGIN

Although you can develop Android apps in Eclipse without using the ADT Plugin, it’s much faster and easier
to create, debug, and otherwise develop these apps with this plugin.

The ADT Plugin offers the following features:

 It gives you access to other Android development tools from inside the Eclipse IDE. For
example, ADT lets you access the many capabilities of the Dalvik Debug Monitor
Server (DDMS) tool, allowing you to take screenshots, manage port-forwarding, set
breakpoints, and view thread and process information directly from Eclipse.

 It provides a New Project Wizard, which helps you quickly create and setup all of the
basic files you'll need for a new Android app.

 It automates and simplifies the process of building your Android app.

 It provides an Android code editor that helps you write valid XML for your Android
manifest and resource files.

 It lets you export your project into a signed APK, which can be distributed to users.

You’ll learn how to install the ADT Plugin after learning how to install Eclipse.

The Eclipse.org website makes available for download several IDE packages that meet

different requirements. Google places several stipulations and recommendations on

which IDE package you should download and install:

 Install an Eclipse 3.4 (Ganymede) or greater IDE package.

 Make sure that the Eclipse package being downloaded includes the

Eclipse JDT (Java Development Tools) Plugin. Most packages include

this plugin.

 You should install one of the Eclipse Classic (versions 3.5.1 and

higher), Eclipse IDE for Java Developers, or Eclipse IDE for Java EE

Developers packages.

CHAPTER 1: Getting Started with Android 65

Complete the following steps to install Eclipse Classic 3.6.1:

1. Point your browser to the Eclipse Classic 3.6.1 page at

www.eclipse.org/downloads/packages/eclipse-classic-361/heliossr1.

2. Select the appropriate distribution file by clicking one of the links in the

Download Links box on the right side of this page. For example, you

might click Windows 32-bit platform.

3. Click a download link and save the distribution file to your harddrive. For

example, you might save eclipse-SDK-3.6.1–win32.zip to your

harddrive.

4. Unarchive the distribution file and move the eclipse home directory to a

convenient location. For example, you might move eclipse to your

C:\Program Files directory.

5. You might also want to create a desktop shortcut to the eclipse

application located in the eclipse home directory.

Complete the following steps to install the latest revision of the ADT Plugin:

1. Start Eclipse.

2. The first time you start Eclipse, you will discover a Workspace Launcher

dialog box following the splash screen. You can use this dialog box to

select a workspace folder in which to store your projects. You can also

tell Eclipse to not display this dialog box on subsequent startups.

Change or keep the default folder setting and click OK.

3. Once Eclipse displays its main window, select Install New Software from

the Help menu.

4. Click the Add button on the resulting Install dialog box’s Available

Software pane.

5. On the resulting Add Repository dialog box, enter a name for the remote

site (for example, Android Plugin) in the Name field, and enter

https://dl-ssl.google.com/android/eclipse/ into the Location field.

Click OK.

6. You should now see Developer Tools in the list that appears in the

middle of the Install dialog box.

7. Check the checkbox next to Developer Tools, which will automatically

check the nested Android DDMS, Android Development Tools, and

Android Hierarchy Viewer checkboxes. Click Next.

http://www.eclipse.org/downloads/packages/eclipse-classic-361/heliossr1
https://dl-ssl.google.com/android/eclipse/

CHAPTER 1: Getting Started with Android 66

8. The resulting Install Details pane lists Android DDMS, Android

Development Tools, and Android Hierarchy Viewer. Click Next to read

and accept the license agreement and install any dependencies, and

then click Finish.

9. An Installing Software dialog box appears and takes care of installation.

If you encounter a Security Warning dialog box, click OK.

10. Finally, Eclipse presents a Software Updates dialog box that prompts

you to restart this IDE. Click the Restart Now button to restart.

TIP: If you have trouble acquiring the plugin in Step 5, try specifying http instead of https

(https is preferred for security reasons) in the Location field.

To complete the installation of the ADT Plugin, you must configure this plugin by

modifying the ADT preferences in Eclipse to point to the Android SDK home directory.

Accomplish this task by completing the following steps:

1. Select Preferences from the Window menu to open the Preferences

panel. For Mac OS X, select Preferences from the Eclipse menu.

2. Select Android from the left panel.

3. Click the Browse button beside the SDK Location textfield and locate

your downloaded SDK’s home directory (such as C:\android-sdk-

windows, for example).

4. Click Apply followed by OK.

NOTE: For more information on installing the ADT Plugin, along with helpful information in case

of difficulty, please review the ADT Plugin for Eclipse page

(http://developer.android.com/sdk/eclipse-adt.html) in Google’s online Android

Developer’s Guide.

1–10. Developing UC with Eclipse

Problem

Now that you’ve installed Eclipse Classic 3.6.1 and the ADT Plugin, you want to learn

how to use this IDE/Plugin to develop UC.

http://developer.android.com/sdk/eclipse-adt.html

CHAPTER 1: Getting Started with Android 67

Solution

You first need to create an Android Eclipse project named UC. You then introduce

various source files and drag resources to various directories. Finally, you execute UC by

selecting Run from the menubar.

How It Works

The first task in developing UC with Eclipse is to create a new Android project. Complete

the following steps to create this project:

1. Start Eclipse if not running.

2. Select New from the File menu, and select Project from the resulting

popup menu.

3. On the New Project dialog box, expand the Android node in the wizard

tree, select the Android Project branch below this node, and click the

Next button.

4. On the resulting New Android Project dialog box, enter UC into the

Project name textfield. This entered name identifies the folder in which

the UC project is stored.

5. Select the Create new project in workspace radio button if not selected.

6. Under Build Target, select the checkbox of the appropriate Android

target to be used as UC’s build target. This target specifies which

Android platform you’d like your application to be built against.

Assuming that you’ve installed only the Android 2.3 platform, only this

build target should appear and should already be checked.

7. Under Properties, enter Units Converter into the Application name

textfield. This human-readable title will appear on the Android device.

Continuing, enter com.apress.uc into the Package name textfield. This

value is the package namespace (following the same rules as for

packages in the Java programming language) where all your source

code will reside. Check the Create Activity checkbox if not checked and

enter UC as the name of the app’s starting activity in the textfield that

appears beside this checkbox. The textfield is disabled when this

checkbox is not checked. Finally, enter integer 9 into the Min SDK

Version textfield to identify the minimum API Level required to properly

run UC on the Android 2.3 platform.

8. Click Finish.

Eclipse responds by creating a UC directory with the following subdirectories and files

within your Eclipse workspace directory:

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Getting Started with Android 68

 .settings: This directory contains an org.eclipse.jdt.core.prefs file

that records project-specific settings.

 assets: This directory is used to store an unstructured hierarchy of

files. Anything stored in this directory can later be retrieved by an app

via a raw byte stream.

 bin: Your APK file is stored here.

 gen: The generated R.java file is stored within a subdirectory structure

that reflects the package hierarchy (such as com\apress\uc).

 res: App resources are stored in various subdirectories.

 src: App source code is stored according to a package hierarchy.

 .classpath: This file stores the project’s classpath information so that

external libraries on which the project depends can be located.

 .project: This file contains important project information such as the

kind of project it is, what builders it contains, and what linked

resources are attached to the project.

 AndroidManifest.xml: This file contains UC’s manifest information.

 default.properties: This file contains project settings.

 Proguard.cfg: This file contains ProGuard configuration data.

Close the Welcome tab. Eclipse presents the user interface that’s shown in Figure 1–17.

CHAPTER 1: Getting Started with Android 69

Figure 1–17. Eclipse’s user interface is organized around a menubar, a toolbar, several windows (such as
Package Explorer and Outline), a statusbar, and a blank area that’s reserved for editor windows.

This user interface is known as the workbench. The Package Explorer window appears

on the left and presents an expandable list of nodes that identify the various projects in

the current workspace and their components. Figure 1–17 reveals that UC is the only

project in the workspace.

To learn how Eclipse organizes the UC project, click the + icon to the left of this node.

Figure 1–18 reveals an expanded project hierarchy.

CHAPTER 1: Getting Started with Android 70

Figure 1–18. Additional + icons have been clicked to reveal more of UC’s file organization.

Double-click the UC.java node. Eclipse responds by presenting the UC.java window

that’s revealed in Figure 1–19.

Figure 1–19. UC.java reveals skeletal content.

Replace UC.java’s skeletal content with Listing 1–9 and disregard the errors that Eclipse

reports. You’ll correct these errors later.

Complete the following steps to introduce the necessary resources to this project:

1. Double-click the main.xml node. Eclipse presents a main.xml editor

window in graphical layout mode.

2. Click the main.xml tab below the window to switch to text mode.

Replace window content with Listing 1–10.

CHAPTER 1: Getting Started with Android 71

3. Double-click the strings.xml node. Eclipse presents a strings.xml

editor window in resources mode.

4. Click the strings.xml tab below the window to switch to text mode.

Replace window content with Listing 1–12.

5. Right-click the values node and select New followed by Other from the

popup menus. A New dialog box appears.

6. Expand the XML node in the wizards list, select XML File, and click

Next. On the next pane, replace NewFile.xml with arrays.xml in the File

Name field; click Finish.

7. Eclipse presents an arrays.xml editor window in design mode. Click the

Source tab below the window to switch to text mode. Replace window

content with Listing 1–13.

8. Right-click the drawable-mdpi node and select New followed by Other

from the popup menus. A New dialog box appears.

9. Expand the XML node in the wizards list, select XML File, and click

Next. On the next pane, replace NewFile.xml with gradientbg.xml in the

File Name field; click Finish.

10. Eclipse presents a gradientbg.xml editor window in design mode. Click

the Source tab below the window to switch to text mode. Replace

window content with Listing 1–11.

11. Right-click the icon.png node underneath drawable-mdpi. Select Delete

from the popup menu and delete this node.

12. Copy the icon.png file from this chapter’s section in this book’s code

archive to the clipboard. Right-click drawable-mdpi and select Paste

from the popup menu.

Select Run from the menubar, and select Run from the resulting dropdown menu. On

the resulting Run As dialog box, select Android Application and click OK.

If all goes well, Eclipse launches the emulator tool with the test_AVD device, installs the

UC app, and causes this app to start running (see Figure 1–13).

CHAPTER 1: Getting Started with Android 72

NOTE: Eclipse provides much more support for Android app development than can be covered in

this recipe. For example, if you need to debug a failing Android app, you can start the Dalvik

Debug Monitor Service by selecting Open Perspective from the Window menu, followed by Other

from the popup menu, followed by DDMS from the Open Perspective dialog box. To learn about

DDMS, check out J Beer’s “How-to use Dalvik Debug Monitor Service (DDMS) Tool With Google

Android” tutorial (www.brighthub.com/mobile/google-

android/articles/25023.aspx) and James Sugrue’s “Debugging Android: Using DDMS To

Look Under The Hood” tutorial (http://java.dzone.com/articles/debugging-

android-using-ddms).

For additional insight into developing Android apps via Eclipse/ADT Plugin, check out Lars Vogel’s

“Android Development Tutorial – Gingerbread” tutorial

(www.vogella.de/articles/Android/article.html).

Summary
Android has excited many people who are developing (and even selling) apps for this

platform. It’s not too late to join in the fun, and this chapter showed you how by taking

you on a rapid tour of key Android concepts and development tools.

You first learned that Android is a software stack for mobile devices, and that this stack

consists of apps, middleware, and the Linux operating system. You then learned about

Android’s history, including the various SDK updates that have been made available.

You next encountered Android’s layered architecture, which includes apps at the top; an

application framework, C/C++ libraries, and the Dalvik virtual machine as middleware;

and a modified version of the Linux kernel at the bottom.

Continuing, you encountered app architecture, which is based upon components

(activities, services, broadcast receivers, and content providers) that communicate with

each other by using intents, that are described by a manifest, and that are stored in an

app package.

You then learned how to implement activities by subclassing the android.app.Activity

class, services by subclassing the abstract android.app.Service class, broadcast

receivers by subclassing the abstract android.content.BroadcastReceiver class, and

content providers by subclassing the abstract android.content.ContentProvider class.

At this point, Chapter 1 moved away from this essential theory and focused on practical

matters via a series of recipes. Initial recipes focused on installing the Android SDK and

an Android platform, creating an AVD, and starting the emulator with this AVD.

The next batch of recipes introduced you to a sample Units Converter app. They also

showed you how to create this app, install it on the emulator, run it from the emulator,

and how to prepare a release version for publication to Google’s Android Market.

http://www.brighthub.com/mobile/google-android/articles/25023.aspx
http://www.brighthub.com/mobile/google-android/articles/25023.aspx
http://www.brighthub.com/mobile/google-android/articles/25023.aspx
http://java.dzone.com/articles/debugging-android-using-ddms
http://java.dzone.com/articles/debugging-android-using-ddms
http://java.dzone.com/articles/debugging-android-using-ddms
http://www.vogella.de/articles/Android/article.html

CHAPTER 1: Getting Started with Android 73

Working with command-line tools in a command-line environment can be tedious. For

this reason, the final two recipes focused on migrating to the Eclipse IDE, and showed

you how to develop Units Converter in the context of this graphical environment.

While exploring the Units Converter app, you were introduced to some user interface

concepts. Chapter 2 builds upon these concepts by presenting recipes that focus on

various Android user interface technologies.

75

75

 Chapter

User Interface Recipes

The Android platform is designed to operate on a variety of different device types,

screen sizes, and screen resolutions. To assist developers in meeting this challenge,

Android provides a rich toolkit of user interface components to utilize and customize to

the needs of their specific application. Android also relies very heavily on an extensible

XML framework and set resource qualifiers to create liquid layouts that can adapt to

these environmental changes. In this chapter, we take a look at some practical ways to

shape this framework to fit your specific development needs.

2–1. Customizing the Window

Problem

The default window elements are not satisfactory for your application.

Solution

(API Level 1)

Customize the window attributes and features using themes and the WindowManager.

Without any customization, an Activity in an Android application will load with the default

system theme, looking something like Figure 2–1.

The window color will be black, with a title bar (often grey) at the top of the Activity. The

status bar is visible above everything, with a slight shadow effect underneath it. These

are all customizable aspects of the application that are controlled by the Window, and

can be set for the entire application or for specific Activities.

2

CHAPTER 2: User Interface Recipes 76

Figure 2–1. A bare-bones Activity

How It Works

Customize Window Attributes with a Theme

A Theme in Android is a type of appearance style that is applicable to an entire

application or Activity. There are two choices when applying a theme: use a system

theme or create a custom one. In either case, a theme is applied in the

AndroidManifest.xml file as shown in Listing 2–1.

Listing 2–1. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 …>
 <!—Apply to the application tag for a global theme -->
 <application android:theme="THEME_NAME"
 …>
 <!—Apply to the activity tag for an individual theme -->
 <activity android:name=".Activity" android:theme="THEME_NAME"
 …>
 <intent-filter>
 …
 </intent-filter>
 </activity>
 </application>
</manifest>

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 77

System Themes

The styles.xml packaged with the Android framework includes a few options for themes

with some useful custom properties set. Referencing R.style in the SDK documentation

will provide the full list, but here are a few useful examples:

 Theme.NoTitleBar: Remove the title bar from components with this

theme applied.

 Theme.NoTitleBar.Fullscreen: Remove the title bar and status bar,

filling the entire screen.

 Theme.Dialog: A useful theme to make an Activity look like a dialog.

 Theme.Wallpaper (API Level 5): Apply the user’s wallpaper choice as

the window background.

Listing 2–2 is an example of a system theme applied to the entire application by setting

the android:theme attribute in the AndroidManifest.xml file:

Listing 2–2. Manifest with Theme Set on Application

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 …>
 <!—Apply to the application tag for a global theme -->
 <application android:theme="Theme.NoTitleBar"
 …>
 …
 </application>
</manifest>

Custom Themes

Sometimes the provided system choices aren’t enough. After all, some of the

customizable elements in the window are not even addressed in the system options.

Defining a custom theme to do the job is simple.

If there is not one already, create a styles.xml file in the res/values path of the project.

Remember, themes are just styles applied on a wider scale, so they are defined in the

same place. Theme aspects related to window customization can be found in the R.attr

reference of the SDK, but here are the most common items:

 android:windowNoTitle

 Governs whether to remove the default title bar.

 Set to true to remove the title bar.

 android:windowFullscreen

 Governs whether to remove the system status bar.

 Set to true to remove the status bar and fill the entire screen.

 android:windowBackground

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 78

 Color or drawable resource to apply as a background

 Set to color or drawable value or resource

 android:windowContentOverlay

 Drawable placed over the window content foreground. By default,

this is a shadow below the status bar.

 Set to any resource to use in place of the default status bar

shadow, or null (@null in XML) to remove it.

 android:windowTitleBackgroundStyle

 Style to apply to the window’s title view

 Set to any style resource.

 android:windowTitleSize

 Height of the window’s title view

 Set to any dimension or dimension resource

 android:windowTitleStyle

 Style to apply to the window’s title text

 Set to any style resource

Listing 2–3 is an example of a styles.xml file that creates two custom themes:

 MyTheme.One: No title bar and the default status bar shadow
removed

 MyTheme.Two: Fullscreen with a custom background image

Listing 2–3. res/values/styles.xml with Two Custom Themes

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <style name="MyTheme.One" parent="@android:style/Theme">
 <item name="android:windowNoTitle">true</item>
 <item name="android:windowContentOverlay">@null</item>
 </style>
 <style name="MyTheme.Two" parent="@android:style/Theme">
 <item name="android:windowBackground">@drawable/window_bg</item>
 <item name="android:windowFullscreen">true</item>
 </style>
</resources>

Notice that a theme (or style) may also indicate a parent from which to inherit properties,

so the entire theme need not be created from scratch. In the example, we chose to

inherit from Android’s default system theme, customizing only the properties that we

needed to differentiate. All platform themes are defined in res/values/themes.xml of the

Android package. Refer to the SDK documentation on styles and themes for more

details.

CHAPTER 2: User Interface Recipes 79

Listing 2–4 shows how to apply these themes to individual Activity instances in the

AndroidManifest.xml:

Listing 2–4. Manifest with Themes Set on Each Activity

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 …>
 <!—Apply to the application tag for a global theme -->
 <application
 …>
 <!—Apply to the activity tag for an individual theme -->
 <activity android:name=".ActivityOne" android:theme="MyTheme.One"
 …>
 <intent-filter>
 …
 </intent-filter>
 </activity>
 <activity android:name=".ActivityTwo" android:theme="MyTheme.Two"
 …>
 <intent-filter>
 …
 </intent-filter>
 </activity>

 </application>
</manifest>

Customizing Window Features in Code

In addition to using style XML, window properties may also be customized from the Java

code in an Activity. This method opens up a slightly different feature set to the developer

for customization, although there is some overlap with the XML styling.

Customizing the window through code involves making requests of the system using the

Activity.requestWindowFeature() method for each feature change prior to setting the

content view for the Activity.

NOTE: All requests for extended window features with

Activity.requestWindowFeature() must be made PRIOR to calling

Activity.setContentView(). Any changes made after this point will not take place.

The features you can request from the window, and their meanings, are defined in the

following:

 FEATURE_CUSTOM_TITLE: Set a custom layout resource as the Activity

title view.

 FEATURE_NO_TITLE: Remove the title view from Activity.

 FEATURE_PROGRESS: Utilize a determinate (0–100%) progress bar in the

title.

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 80

 FEATURE_INDETERMINATE_PROGRESS: Utilize a small indeterminate

(circular) progress indicator in the title view.

 FEATURE_LEFT_ICON: Include a small title icon on the left side of the

title view.

 FEATURE_RIGHT_ICON: Include a small title icon on the right side of the

title view.

FEATURE_CUSTOM_TITLE

Use this window feature to replace the standard title with a completely custom layout

resource (see Listing 2–5).

Listing 2–5. Activity Setting a Custom TitleLlayout

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Request window features before setContentView
 requestWindowFeature(Window.FEATURE_CUSTOM_TITLE);
 setContentView(R.layout.main);

 //Set the layout resource to use for the custom title
 getWindow().setFeatureInt(Window.FEATURE_CUSTOM_TITLE, R.layout.custom_title);

}

NOTE: Because this feature completely replaces the default title view, it cannot be combined

with any of the other window feature flags.

FEATURE_NO_TITLE

Use this window feature to remove the standard title view (see Listing 2–6).

Listing 2–6. Activity Removing the Standard Title View

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Request window features before setContentView
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 setContentView(R.layout.main);

}

NOTE: Because this feature completely removes the default title view, it cannot be combined

with any of the other window feature flags.

CHAPTER 2: User Interface Recipes 81

FEATURE_PROGRESS

Use this window feature to access a determinate progress bar in the window title. The

progress can be set to any value from 0 (0%) to 10000 (100%) (see Listing 2–7.)

Listing 2–7. Activity Using Window’s Progress Bar

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Request window features before setContentView
 requestWindowFeature(Window.FEATURE_PROGRESS);
 setContentView(R.layout.main);

 //Set the progress bar visibility
 setProgressBarVisibility(true);
 //Control progress value with setProgress
 setProgress(0);
 //Setting progress to 100% will cause it to disappear
 setProgress(10000);

}

FEATURE_INDETERMINATE_PROGRESS

Use this window feature to access an indeterminate progress indicator to show

background activity. Since this indicator is indeterminate, it can only be shown or

hidden (see Listing 2–8).

Listing 2–8. Activity Using Window’s Indeterminate Progress Bar

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Request window features before setContentView
 requestWindowFeature(Window.FEATURE_INDETERMINATE_PROGRESS);
 setContentView(R.layout.main);

 //Show the progress indicator
 setProgressBarIndeterminateVisibility(true);

 //Hide the progress indicator
 setProgressBarIndeterminateVisibility(false);
}

FEATURE_LEFT_ICON

Use this window feature to place a small drawable icon on the left side of the title view

(see Listing 2–9).

Listing 2–9. Activity Using Feature Icon

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Request window features before setContentView
 requestWindowFeature(Window.FEATURE_LEFT_ICON);
 setContentView(R.layout.main);

 //Set the layout resource to use for the custom title

CHAPTER 2: User Interface Recipes 82

 setFeatureDrawableResource(Window.FEATURE_LEFT_ICON, R.drawable.icon);
}

FEATURE_RIGHT_ICON

Use this window feature to place a right-aligned small drawable icon (see Listing 2–10).

Listing 2–10. Activity Using Feature Icon

protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Request window features before setContentView
 requestWindowFeature(Window.FEATURE_RIGHT_ICON);
 setContentView(R.layout.main);

 //Set the layout resource to use for the custom title
 setFeatureDrawableResource(Window.FEATURE_RIGHT_ICON, R.drawable.icon);
}

NOTE: FEATURE_RIGHT_ICON does NOT necessarily mean the icon will be placed on the right

side of the title text.

Figure 2–2 shows an Activity with all the icon and progress features enabled

simultaneously. Note the locations of all the elements relative to each other in this view.

Figure 2–2. Window features enabled in a pre-Froyo Activity (left) and an Activity from Froyo and later (right)

CHAPTER 2: User Interface Recipes 83

Notice that in API Levels prior to 8 (Froyo), the layout of the RIGHT feature icon was still

on the left-hand side of the title text. API Levels 8 and higher corrected this issue, and

now display the icon on the right side of the view, although still to the left of the

indeterminate progress indicator, if it is visible.

2–2. Creating and Displaying Views

Problem

The application needs view elements to display information and interact with the user.

Solution

(API Level 1)

Whether using one of the many views and widgets available in the Android SDK or

creating a custom display, all applications need views to interact with the user. The

preferred method for creating user interfaces in Android is to define them in XML and

inflate them at runtime.

The view structure in Android is a tree, with the root typically being the Activity or

Window’s content view. ViewGroups are special views that manage the display of one

or more child views, of which could be another ViewGroup, and the tree continues to

grow. All the standard layout classes descend from ViewGroup, and are the most

common choices for the root node of the XML layout file.

How It Works

Let’s define a layout with two Button instances, and an EditText to accept user input.

We can define a file in res/layout/ called main.xml with the following contents (see

Listing 2–11).

Listing 2–11. res/layout/main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical">
 <EditText
 android:id="@+id/editText"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <LinearLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <Button
 android:id="@+id/save"
 android:layout_width="wrap_content"

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 84

 android:layout_height="wrap_content"
 android:text="Save"
 />
 <Button
 android:id="@+id/cancel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Cancel"
 />
 </LinearLayout>
</LinearLayout>

LinearLayout is a ViewGroup that lays out its elements one after the other in either a

horizontal or vertical fashion. In main.xml, the EditText and inner LinearLayout are laid

out vertically in order. The contents of the inner LinearLayout (the buttons) are laid out

horizontally. The view elements with an android:id value are elements that will need to

be referenced in the Java code for further customization or display.

To make this layout the display contents of an Activity, it must be inflated at runtime.

The Activity.setContentView() method is overloaded with a convenience method to

do this for you, only requiring the layout ID value. In this case, setting the layout in the

Activity is as simple as this:

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 //Continue Activity initialization
}

Nothing beyond supplying the ID value (main.xml automatically has an ID of

R.layout.main) is required. If the layout needs a little more customization before it is

attached to the window, you can inflate it manually and do some work before adding it

as the content view. Listing 2–12 inflates the same layout and adds a third button

before displaying it.

Listing 2–12. Layout Modification Prior to Display

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Inflate the layout file
 LinearLayout layout = (LinearLayout)getLayoutInflater().inflate(R.layout.main,
null);
 //Add a new button
 Button reset = new Button(this);
 reset.setText("Reset Form");
 layout.addView(reset,
 new LinearLayout.LayoutParams(LayoutParams.FILL_PARENT,
LayoutParams.WRAP_CONTENT));

 //Attach the view to the window
 setContentView(layout);
}

In this instance the XML layout is inflated in the Activity code using a LayoutInflater,

whose inflate() method returns a handle to the inflated View. Since

CHAPTER 2: User Interface Recipes 85

LayoutInflater.inflate() returns a View, we must cast it to the specific subclass in the

XML in order to do more than just attach it to the window.

NOTE: The root element in the XML layout file is the View element returned from

LayoutInflater.inflate().

2–3. Monitoring Click Actions

Problem

The Application needs to do some work when the user taps on a View.

Solution

(API Level 1)

Ensure that the view object is clickable, and attach a View.OnClickListener to handle the

event. By default, many widgets in the SDK are already clickable, such as Button,

ImageButton, and CheckBox. However, any View can be made to receive click events

by setting android:clickable="true" in XML or by calling View.setClickable(true)

from code.

How It Works

To receive and handle the click events, create an OnClickListener and attach it to the

view object. In this example, the view is a button defined in the root layout like so:

<Button
 android:id="@+id/myButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="My Button"
/>

In the Activity code, the button is retrieved by its android:id value and the listener

attached (see Listing 2–13).

Listing 2–13. Setting Listener on a Button

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Retrieve the button object
 Button myButton = (Button)findViewById(R.id.myButton);
 //Attach the listener
 myButton.setOnClickListener(clickListener);
}

//Listener object to handle the click events
View.OnClickListener clickListener = new View.OnClickListener() {

CHAPTER 2: User Interface Recipes 86

 public void onClick(View v) {
 //Code to handle the click event
 {
};

(API Level 4)

Starting with API Level 4, there is a more efficient way to attach basic click listeners to

view widgets. View widgets can set the android:onClick attribute in XML, and the

runtime will user Java Reflection to call the required method when events occur. If we

modify the previous example to use this method, the button’s XML will become the

following:

<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="My Button"
 android:onClick="onMyButtonClick"
/>

The android:id attribute is no longer required in this example since the only reason we

referenced it in code was to add the listener. This simplifies the Java code as well to

look like Listing 2–14.

Listing 2–14. Listener Attached in XML

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //No code required here to attach the listener
}

public void onMyButtonClick(View v) {
 //Code to handle the click event
}

2–4. Resolution-Independent Assets

Problem

Your application uses graphic assets that do not scale well using Android’s traditional

mechanism for scaling images up on higher resolution screens.

Solution

(API Level 4)

Use resource qualifiers and supply multiple sizes of each asset. The Android SDK has

defined four types of screen resolutions, or densities, listed here:

 Low (ldpi): 120dpi

 Medium (mdpi): 160dpi

CHAPTER 2: User Interface Recipes 87

 High (hdpi): 240dpi

 Extra High (xhdpi): 320dpi (Added in API Level 8)

By default, an Android project may only have one res/drawable/ directory where all

graphic assets are stored. In this case, Android will take those images to be 1:1 in size

on medium resolution screens. When the application is run on a higher resolution

screen, Android will scale up the image to 150% (200% for xhdpi), which can result in

loss of quality.

How It Works

To avoid this issue, it is recommended that you provide multiple copies of each image

resource at different resolutions and place them into resource qualified directory paths.

 res/drawable-ldpi/

 75% of the size at mdpi

 res/drawable-mdpi/

 Noted as the original image size

 res/drawable-hdpi/

 150% of the size at mdpi

 res/drawable-xhdpi/

 200% of the size at mdpi

 Only if application supports API Level 8 as the minimum target

The image must have the same file name in all directories. For example, if you had left

the default icon value in AndroidManifest.xml (i.e. android:icon="@drawable/icon"), then

you would place the following resource files in the project.

res/drawable-ldpi/icon.png (36x36 pixels)

res/drawable-mdpi/icon.png (48x48 pixels)

res/drawable-hdpi/icon.png (72x72 pixels)

res/drawable-xhdpi/icon.png (96x96 pixels, if supported)

Android will select the asset that fits the device resolution and display it as the

application icon on the Launcher screen, resulting in no scaling and no loss of image

quality.

As another example, a logo image is to be displayed several places throughout an

application, and is 200x200 pixels on a medium-resolution device. That image should be

provided in all supported sizes using resource qualifiers.

res/drawable-ldpi/logo.png (150x150 pixels)

res/drawable-mdpi/logo.png (200x200 pixels)

CHAPTER 2: User Interface Recipes 88

res/drawable-hdpi/logo.png (300x300 pixels)

This application doesn’t support extra-high resolution displays, so we only provide three

images. When the time comes to reference this resource, simply use @drawable/logo

(from XML) or R.drawable.logo (from Java code), and Android will display the

appropriate resource.

2–5. Locking Activity Orientation

Problem

A certain Activity in your application should not be allowed to rotate, or rotation requires

more direct intervention from the application code.

Solution

(API Level 1)

Using static declarations in the AndroidManifest.xml file, each individual Activity can be

modified to lock into either portrait or landscape orientation. This can only be applied to

the <activity> tag, so it cannot be done once for the entire application scope. Simply

add android:screenOrientation="portrait" or

android:screenOrientation="landscape" to the <activity> element and they will

always display in the specified orientation, regardless of how the device is positioned.

There is also an option you can pass in the XML entitled “behind.” If an Activity element

has android:screenOrientation="behind" set, it will take it’s settings from the previous

Activity in the stack. This can be a useful way for an Activity to match the locked

orientation of its originator for some slightly more dynamic behavior.

How It Works

The example AndroidManifest.xml depicted in Listing 2–15 has three Activities. Two of

them are locked into portrait orientation (MainActivity and ResultActivity), while the

UserEntryActivity is allowed to rotate, presumably because the user may want to rotate

and use a physical keyboard.

Listing 2–15. Manifest with Some Activities Locked in Portrait

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.rotation"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".MainActivity"
 android:label="@string/app_name"
 android:screenOrientation="portrait">
 <intent-filter>

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 89

 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".ResultActivity"
 android:screenOrientation="portrait" />
 <activity android:name=".UserEntryActivity" />
 </application>
</manifest>

2–6. Dynamic Orientation Locking

Problem

Conditions exist during which the screen should not rotate, but the condition is

temporary, or dependant on user wishes.

Solution

(API Level 1)

Using the requested orientation mechanism in Android, an application can adjust the

screen orientation used to display the Activity, fixing it to a specific orientation or

releasing it to the device to decide. This is accomplished through the use of the

Activity.setRequestedOrientation() method, which takes an integer constant from

the ActivityInfo.screenOrientation attribute grouping.

By default, the requested orientation is set to SCREEN_ORIENTATION_UNSPECIFIED, which

allows the device to decide for itself which orientation should be used. This is a decision

typically based on the physical orientation of the device. The current requested

orientation can be retrieved at any time as well using

Activity.getRequestedOrientation().

How It Works

User Rotation Lock Button

As an example of this, let’s create a ToggleButton instance that controls whether or not

to lock the current orientation, allowing the user to control at any point whether or not

the Activity should change orientation.

Somewhere in the main.xml layout, a ToggleButton instance is defined:

<ToggleButton
 android:id="@+id/toggleButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textOff="Lock"
 android:textOn="LOCKED"
/>

CHAPTER 2: User Interface Recipes 90

In the Activity code, we will create a listener to the button’s state that locks and releases

the screen orientation based on its current value (see Listing 2–16).

Listing 2–16. Activity to Dynamically Lock/Unlock Screen Orientation

public class LockActivity extends Activity {

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //Get handle to the button resource
 ToggleButton toggle = (ToggleButton)findViewById(R.id.toggleButton);
 //Set the default state before adding the listener
 if(getRequestedOrientation() != ActivityInfo.SCREEN_ORIENTATION_UNSPECIFIED) {
 toggle.setChecked(true);
 } else {
 toggle.setChecked(false);
 }
 //Attach the listener to the button
 toggle.setOnCheckedChangeListener(listener);
 }

 OnCheckedChangeListener listener = new OnCheckedChangeListener() {
 public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
 int current = getResources().getConfiguration().orientation;
 if(isChecked) {
 switch(current) {
 case Configuration.ORIENTATION_LANDSCAPE:
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);
 break;
 case Configuration.ORIENTATION_PORTRAIT:
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);
 break;
 default:
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_UNSPECIFIED);
 }
 } else {
 setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_UNSPECIFIED);
 }
 }
 }

}

The code in the listener is the key ingredient to this recipe. If the user presses the button

and it toggles to the ON state, the current orientation is read by storing the orientation
parameter from Resources.getConfiguration(). The Configuration object and the

requested orientation use different constants to map the states, so we switch on the

current orientation and call setRequestedOrientation() with the appropriate constant.

NOTE: If an orientation is requested that is different from the current state, and your Activity is in

the foreground, the Activity will change immediately to accommodate the request.

CHAPTER 2: User Interface Recipes 91

If the user presses the button and it toggles to the OFF state, we no longer want to lock

the orientation, so setRequestedOrientation() is called with the

SCREEN_ORIENTATION_UNSPECIFIED constant again to return control back to the device.

This may also cause an immediate change to occur if the device orientation dictates that

the Activity be different than where the application had it locked.

NOTE: Setting a request orientation does not keep the default Activity lifecycle from occurring. If

a device configuration change occurs (keyboard slides out or device orientation changes), the

Activity will still be destroyed and recreated, so all rules about persisting Activity state still apply.

2–7. Manually Handling Rotation

Problem

The default behavior destroying and recreating an Activity during rotation causes an

unacceptable performance penalty in the application.

Without customization, Android will respond to configuration changes by finishing the

current Activity instance and creating a new one in its place, appropriate for the new

configuration. This can cause undue performance penalties since the UI state must be

saved, and the UI completely rebuilt.

Solution

(API Level 1)

Utilize the android:configChanges manifest parameter to instruct Android that a certain

Activity will handle rotation events without assistance from the runtime. This not only

reduces the amount of work required from Android, destroying and recreating the

Activity instance, but also from your application. With the Activity instance intact, the

application does not have to necessarily spend time to save and restore the current

state in order to maintain consistency to the user.

An Activity that registers for one or more configuration changes will be notified via the

Activity.onConfigurationChanged() callback method, where it can perform any

necessary manual handling associated with the change.

There are two configuration change parameters the Activity should register for in order

to handle rotation completely: orientation and keyboardHidden. The orientation

parameter registers the Activity for any event when the device orientation changes. The

keyboardHidden parameter registers the Activity for the event when the user slides a

physical keyboard in or out. While the latter may not be directly of interest, if you do not

register for these events Android will recreate your Activity when they occur, which may

subvert your efforts in handling rotation in the first place.

CHAPTER 2: User Interface Recipes 92

How It Works

These parameters are added to any <activity> element in AndroidManifest.xml like so:

<activity android:name=".MyActivity" android:configChanges="orientation|keyboardHidden"
/>

Multiple changes can be registered in the same assignment statement, using a pipe “|”
character between them. Because these parameters cannot be applied to an
<application> element, each individual Activity must register in the
AndroidManifest.xml.

With the Activity registered, a configuration change results in a call to the Activity’s
onConfigurationChanged() method. Listing 2–17 is a simple Activity definition that can
be used to handle the callback received when the changes occur.

Listing 2–17. Activity to Manage Rotation Manually

public class MyActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 //Calling super is required
 super.onCreate(savedInstanceState);
 //Load view resources
 loadView();
 }

 @Override
 public void onConfigurationChanged(Configuration newConfig) {
 //Calling super is required
 super.onConfigurationChanged(newConfig);
 //Store important UI state
 saveState();
 //Reload the view resources
 loadView();
 }

 private void saveState() {
 //Implement any code to persist the UI state
 }

 private void loadView() {
 setContentView(R.layout.main);

 //Handle any other required UI changes upon a new configuration
 //Including restoring and stored state
 }
}

NOTE: Google does not recommend handling rotation in this fashion unless it is necessary for

the application’s performance. All configuration-specific resources must be loaded manually in

response to each change event.

CHAPTER 2: User Interface Recipes 93

It is worth noting that Google recommends allowing the default recreation behavior on

Activity rotation unless the performance of your application requires circumventing it.

Primarily, this is because you lose all assistance Android provides for loading alternative

resources if you have them stored in resource qualified directories (such as res/layout-
land/ for landscape layouts).

In the example Activity, all code dealing with the view layout is abstracted to a private

method, loadView(), called from both onCreate() and onConfigurationChanged(). In this

method, code like setContentView() is placed to ensure that the appropriate layout is

loaded to match the configuration.

Calling setContentView() will completely reload the view, so any UI state that is

important still needs to be saved, and without the assistance of lifecycle callbacks like

onSaveInstanceState() and onRestoreInstanceState(). The example implements a

method called saveState() for this purpose.

2–8. Creating Pop-Up Menu Actions

Problem

You want to provide the user with multiple actions to take as a result of them selecting

some part of the user interface.

Solution

(API Level 1)

Display a ContextMenu or AlertDialog in response to the user action.

How It Works

ContextMenu

Using a ContextMenu is a useful solution, particularly when you want to provide a list of

actions based on an item click in a ListView or other AdapterView. This is because the

ContextMenu.ContextMenuInfo object provides useful information about the specific item

that was selected, such as id and position, which may be helpful in constructing the

menu.

First, create an XML file in res/menu/ to define the menu itself; we’ll call this one

contextmenu.xml (see Listing 2–18).

Listing 2–18. res/menu/contextmenu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/menu_delete"

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 94

 android:title="Delete Item"
 />
 <item
 android:id="@+id/menu_copy"
 android:title="Copy Item"
 />
 <item
 android:id="@+id/menu_edit"
 android:title="Edit Item"
 />
</menu>

Then, utilize onCreateContextMenu() and onContextItemSelected() in the Activity to

inflate the menu and handle user selection (see Listing 2–19).

Listing 2–19. Activity Utilizing Custom Menu

@Override
public void onCreateContextMenu(ContextMenu menu, View v, ContextMenu.ContextMenuInfo
menuInfo) {
 super.onCreateContextMenu(menu, v, menuInfo);
 getMenuInflater().inflate(R.menu.contextmenu, menu);
 menu.setHeaderTitle("Choose an Option");
}

@Override
public boolean onContextItemSelected(MenuItem item) {
 //Switch on the item’s ID to find the action the user selected
 switch(item.getItemId()) {
 case R.id.menu_delete:
 //Perform delete actions
 return true;
 case R.id.menu_copy:
 //Perform copy actions
 return true;
 case R.id.menu_edit:
 //Perform edit actions
 return true;
 }
 return super.onContextItemSelected(item);
}

In order for these callback methods to fire, you must register the view that will trigger the

menu. In effect, this sets the View.OnCreateContextMenuListener for the view to the

current Activity:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Register a button for context events
 Button button = new Button(this);
 registerForContextMenu(button);

 setContentView(button);
}

The key ingredient to this recipe is calling the Activity.openContextMenu() method to

manually trigger the menu at any time. The default behavior in Android is for many views

CHAPTER 2: User Interface Recipes 95

to show a ContextMenu when a long-press occurs as an alternate to the main click

action. However, in this case we want the menu to be the main action, so we call

openContextMenu() from the action listener method:

public void onClick(View v) {
 openContextMenu(v);
}

Tying all the pieces together, we have a simple Activity that registers a button to show

our menu when tapped (see Listing 2–20).

Listing 2–20. Activity Utilizing Context Action Menu

public class MyActivity extends Activity {

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Register a button for context events
 Button button = new Button(this);
 button.setText("Click for Options");
 button.setOnClickListener(listener);
 registerForContextMenu(button);

 setContentView(button);
 }

 View.OnClickListener listener = new View.OnClickListener() {
 public void onClick(View v) {
 openContextMenu(v);
 }
 };

 @Override
 public void onCreateContextMenu(ContextMenu menu, View v,
 ContextMenu.ContextMenuInfo menuInfo) {
 super.onCreateContextMenu(menu, v, menuInfo);
 getMenuInflater().inflate(R.menu.contextmenu, menu);
 menu.setHeaderTitle("Choose an Option");
 }

 @Override
 public boolean onContextItemSelected(MenuItem item) {
 //Switch on the item’s ID to find the action the user selected
 switch(item.getItemId()) {
 case R.id.menu_delete:
 //Perform delete actions
 return true;
 case R.id.menu_copy:
 //Perform copy actions
 return true;
 case R.id.menu_edit:
 //Perform edit actions
 return true;
 }
 return super.onContextItemSelected(item);
 }

}

CHAPTER 2: User Interface Recipes 96

The resulting application is shown in Figure 2–3.

Figure 2–3. Context action menu

AlertDialog

Using an AlertDialog.Builder a similar AlertDialog can be constructed, but with some

additional options. AlertDialog is a very versatile class for creating simple pop-ups to get

feedback from the user. With AlertDialog.Builder, a single or multi-choice list, buttons,

and a message string can all be easily added into one compact widget.

To illustrate this, let’s create the same pop-up selection as before using an AlertDialog.

This time, we will add a cancel button to the bottom of the options list (see Listing 2–21).

Listing 2–21. Action Menu Using AlertDialog

public class MyActivity extends Activity {

 AlertDialog actions;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setTitle("Activity");
 Button button = new Button(this);
 button.setText("Click for Options");
 button.setOnClickListener(buttonListener);

 AlertDialog.Builder builder = new AlertDialog.Builder(this);

CHAPTER 2: User Interface Recipes 97

 builder.setTitle("Choose an Option");
 String[] options = {"Delete Item","Copy Item","Edit Item"};
 builder.setItems(options, actionListener);
 builder.setNegativeButton("Cancel", null);
 actions = builder.create();

 setContentView(button);
 }

 //List selection action handled here
 DialogInterface.OnClickListener actionListener =
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 switch(which) {
 case 0: //Delete
 break;
 case 1: //Copy
 break;
 case 2: //Edit
 break;
 default:
 break;
 }
 }
 };

 //Button action handled here (pop up the dialog)
 View.OnClickListener buttonListener = new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 actions.show();
 }
 };
}

In this example, we create a new AlertDialog.Builder instance and use its convenience

methods to add:

 A title, using setTitle()

 The selectable list of options, using setItems() with an array of strings

(also works with array resources)

 A Cancel button, using setNegativeButton()

The listener that we attach to the list items returns which list item was selected as a

zero-based index into the array we supplied, so the switch statement checks for each of

the three cases that apply. We pass in null for the Cancel button’s listener, because in

this instance we just want cancel to dismiss the dialog. If there is some important work

to be done on cancel, another listener could be passed in to the setNegativeButton()

method.

The resulting application now looks like Figure 2–4 when the button is pressed.

CHAPTER 2: User Interface Recipes 98

Figure 2–4. AlertDialog action menu

2–9. Customizing Options Menu

Problem

Your application needs to do something beyond displaying a standard menu when the

user presses the hardware MENU button.

Solution

(API Level 1)

Intercept the KeyEvent for the menu button and present a custom view instead.

How It Works

Intercepting this event can be done inside of an Activity or View by overriding the

onKeyDown() or onKeyUp() method:

@Override
public boolean onKeyUp(int keyCode, KeyEvent event) {
 if(keyCode == KeyEvent.KEYCODE_MENU) {
 //Create and display a custom menu view

CHAPTER 2: User Interface Recipes 99

 //Return true to consume the event
 return true;
 }
 //Pass other events along their way up the chain
 return super.onKeyUp(keyCode, event);
}

NOTE: Activity.onKeyDown() and Activity.onKeyUp() are only called if none if its child

views handle the event first. It is important that you return a true value when consuming these

events so they don’t get improperly handed up the chain.

The next example illustrates an Activity that displays a custom set of buttons wrapped

in a simple AlertDialog in place of the traditional options menu when the user presses

the MENU key. In Listing 2–22, we will create a layout for our buttons in res/layout/ and

call it custommenu.xml.

Listing 2–22. res/layout/custommenu.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal">
 <ImageButton
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@android:drawable/ic_menu_send"
 />
 <ImageButton
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@android:drawable/ic_menu_save"
 />
 <ImageButton
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@android:drawable/ic_menu_search"
 />
 <ImageButton
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:src="@android:drawable/ic_menu_preferences"
 />
</LinearLayout>

This is a layout with four buttons of equal weight (so the space evenly across the

screen), displaying some of the default menu images in Android. In Listing 2–23, we can

inflate this layout and apply it as the view to an AlertDialog.

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 100

Listing 2–23. Activity Overriding Menu Action

public class MyActivity extends Activity {

MenuDialog menuDialog;
private class MenuDialog extends AlertDialog {

 public MenuDialog(Context context) {
 super(context);
 setTitle("Menu");
 View menu = getLayoutInflater().inflate(R.layout.custommenu, null);
 setView(menu);
 }

 @Override
 public boolean onKeyUp(int keyCode, KeyEvent event) {
 if(keyCode == KeyEvent.KEYCODE_MENU) {
 dismiss();
 return true;
 }
 return super.onKeyUp(keyCode, event);
 }
}

@Override
public boolean onKeyUp(int keyCode, KeyEvent event) {
 if(keyCode == KeyEvent.KEYCODE_MENU) {
 if(menuDialog == null) {
 menuDialog = new MenuDialog(this);
 }
 menuDialog.show();
 return true;
 }
 return super.onKeyUp(keyCode, event);
}

}

Here we choose to monitor the Activity.onKeyUp() method, and handle the event if it

was a MENU press by creating and displaying a custom subclass of AlertDialog.

This example creates a custom class for the dialog so we can extend the

AlertDialog.onKeyUp() method to dismiss the custom menu when the user presses the

MENU button again. We cannot handle this event in the Activity, because the

AlertDialog consumes all key events while it is in the foreground. We do this so we

match the existing functionality of Android’s standard menu, and thus don’t disrupt the

user’s expectation of how the application should behave.

When the previous Activity is loaded, and the MENU button pressed, we get something

like Figure 2–5.

CHAPTER 2: User Interface Recipes 101

Figure 2–5. Custom Options menu

2–10. Customizing Back Button

Problem

Your application needs to handle the user pressing the hardware BACK button in a

custom manner.

Solution

(API Level 1)

Similar to overriding the function of the MENU button, the hardware BACK button sends

a KeyEvent to your Activity that can be intercepted and handled in your application

code.

How It Works

In the same fashion as Recipe 2–9, overriding onKeyDown() will give you the control:

@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
 if(keyCode == KeyEvent.KEYCODE_BACK) {
 //Implement a custom back function

CHAPTER 2: User Interface Recipes 102

 //Return true to consume the event
 return true;
 }
 //Pass other events along their way up the chain
 return super.onKeyDown(keyCode, event);
}

CAUTION: Overriding hardware button events should be done with care. All hardware buttons

have consistent functionality across the Android system, and adjusting the functionality to work

outside these bounds will be confusing and upsetting to users.

Unlike the previous example, you can not reliably use onKeyUp(),because the default

behavior (such as finishing the current Activity) occurs when the key is pressed, as

opposed to when it is released. For this reason, onKeyUp() will often never get called for

the BACK key.

(API Level 5)

Starting with Eclair, the SDK included the Activity.onBackPressed() callback method.

This method can be overridden to perform custom processing if your application is

targeting SDK Level 5 or higher.

@Override
public void onBackPressed() {
 //Custom back button processing
 //Must manually finish when complete
 finish();
}

The default implementation of this method simply calls finish() for you, so if you want

the Activity to close after your processing is complete, the implementation will need to

call finish() directly.

2–11. Emulating the Home Button

Problem

Your application needs to take the same action as if the user pressed the hardware

HOME button.

Solution

(API Level 1)

The act of the user hitting the HOME button sends an Intent to the system telling it to

load the Home Activity. This is no different from starting any other Activity in your

application; you just have to construct the proper Intent to get the effect.

CHAPTER 2: User Interface Recipes 103

How It Works

Add the following lines wherever you want this action to occur in your Activity:

Intent intent = new Intent(Intent.ACTION_MAIN);
intent.addCategory(Intent.CATEGORY_HOME);
startActivity(intent);

A common use of this function is to override the back button to go home instead of to

the previous Activity. This is useful in cases where everything underneath the foreground

Activity may be protected (a login screen, for instance), and letting the default back

button behavior occur could allow unsecured access to the system. Here is an example

of using the two in concert to make a certain Activity bring up the home screen when

back is pressed:

@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
 if(keyCode == KeyEvent.KEYCODE_BACK) {
 Intent intent = new Intent(Intent.ACTION_MAIN);
 intent.addCategory(Intent.CATEGORY_HOME);
 startActivity(intent);
 return true;
 }
 return super.onKeyDown(keyCode, event);
}

2–12. Monitoring TextView Changes

Problem

Your application needs to continuously monitor for text changes in a TextView widget

(like EditText).

Solution

(API Level 1)

Implement the android.text.TextWatcher interface. TextWatcher provides three callback

methods during the process of updating text:

public void beforeTextChanged(CharSequence s, int start, int count, int after);
public void onTextChanged(CharSequence s, int start, int before, int count);
public void afterTextChanged(Editable s);

The beforeTextChanged() and onTextChanged() methods are provided mainly as

notifications, as you cannot actually make changes to the CharSequence in either of

these methods. If you are attempting to intercept the text entered into the view, changes

may be made when afterTextChanged() is called.

CHAPTER 2: User Interface Recipes 104

How It Works

To register a TextWatcher instance with a TextView, call the

TextView.addTextChangedListener() method. Notice from the syntax that more than

one TextWatcher can be registered with a TextView.

Character Counter Example

A simple use of TextWatcher is to create a live character counter that follows an EditText

as the user types or deletes information. Listing 2–24 is an example Activity that

implements TextWatcher for this purpose, registers with an EditText widget, and prints

the character count in the Activity title.

Listing 2–24. Character Counter Activity

public class MyActivity extends Activity implements TextWatcher {

EditText text;
int textCount;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Create an EditText widget and add the watcher
 text = new EditText(this);
 text.addTextChangedListener(this);

 setContentView(text);
 }

 /* TextWatcher Implemention Methods */
 public void beforeTextChanged(CharSequence s, int start, int count, int after) { }

 public void onTextChanged(CharSequence s, int start, int before, int end) {
 textCount = text.getText().length();
 setTitle(String.valueOf(textCount));
 }

 public void afterTextChanged(Editable s) { }

}

Because our needs do not include modifying the text being inserted, we can read the

count from onTextChanged(), which happens as soon as the text change occurs. The

other methods are unused and left empty.

Currency Formatter Example

The SDK has a handful of predefined TextWatcher instances to format text input;

PhoneNumberFormattingTextWatcher is one of these. Their job is to apply standard

formatting for the user while they type, reducing the number of keystrokes required to

enter legible data.

CHAPTER 2: User Interface Recipes 105

In Listing 2–25, we create a CurrencyTextWatcher to insert the currency symbol and

separator point into a TextView.

Listing 2–25. Currency Formatter

public class CurrencyTextWatcher implements TextWatcher {

 boolean mEditing;

 public CurrencyTextWatcher() {
 mEditing = false;
 }

 public synchronized void afterTextChanged(Editable s) {
 if(!mEditing) {
 mEditing = true;

 //Strip symbols
 String digits = s.toString().replaceAll("\\D", "");
 NumberFormat nf = NumberFormat.getCurrencyInstance();
 try{
 String formatted = nf.format(Double.parseDouble(digits)/100);
 s.replace(0, s.length(), formatted);
 } catch (NumberFormatException nfe) {
 s.clear();
 }

 mEditing = false;
 }
 }

 public void beforeTextChanged(CharSequence s, int start, int count, int after) { }

 public void onTextChanged(CharSequence s, int start, int before, int count) { }

}

NOTE: Making changes to the Editable value in afterTextChanged() will cause the

TextWatcher methods to be called again (after all, you just changed the text). For this reason,

custom TextWatcher implementations that edit should use a boolean or some other tracking

mechanism to track where the editing is coming from, or you may create an infinite loop.

We can apply this custom text formatter to an EditText in an Activity (see Listing 2–26).

Listing 2–26. Activity Using Currency Formatter

public class MyActivity extends Activity {

 EditText text;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 text = new EditText(this);
 text.addTextChangedListener(new CurrencyTextWatcher());

CHAPTER 2: User Interface Recipes 106

 setContentView(text);
 }

}

It is very handy if you are formatting user input with this formatter to define the EditText

in XML so you can apply the android:inputType and android:digits constraints to

easily protect the field against entry errors. In particular, adding

android:digits="0123456789." (notice the period at the end for a decimal point) to the

EditText will protect this formatter as well as the user.

2–13. Scrolling TextView Ticker

Problem

You want to create a “ticker” view that continuously scrolls its contents across the

screen.

Solution

(API Level 1)

Use the built-in marquee feature of TextView. When the content of a TextView is too

large to fit within it bounds, the text is truncated by default. This truncation can be

configured using the android:ellipsize attribute, which can be set to one of the

following options:

 none

 Default.

 Truncate the end of the text with no visual indicator.

 start

 Truncate the start of the text with an ellipsis at the beginning of the

view.

 middle

 Truncate the middle of the text with an ellipsis in the middle of the

view.

 end

 Truncate the end of the text with an ellipsis at the end of the view.

 marquee

 Do not ellipsize; animate and scroll the text while selected.

CHAPTER 2: User Interface Recipes 107

NOTE: The marquee feature is designed to only animate and scroll the text when the TextView

is selected. Setting the android:ellipsize attribute to marquee alone will not animate the

view.

How It Works

In order to create an automated ticker that repeats indefinitely, we add a TextView to an

XML layout that looks like this:

<TextView
 android:id="@+id/ticker"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:singleLine="true"
 android:scrollHorizontally="true"
 android:ellipsize="marquee"
 android:marqueeRepeatLimit="marquee_forever"
/>

The key attributes to configuring this view are the last four. Without android:singleLine

and android:scrollHorizontally, the TextView will not properly lay itself out to allow for

the text to be longer than the view (a key requirement for ticker scrolling). Setting the

android:ellipsize and android:marqueeRepeatLimit allow the scrolling to occur, and

for an indefinite amount of time. The repeat limit can be set to any integer value as well,

which will repeat the scrolling animation that many times and then stop.

With the TextView attributes properly set in XML, the Java code must set the selected

state to true, which enables the scrolling animation:

TextView ticker = (TextView)findViewById(R.id.ticker);
ticker.setSelected(true);

If you need to have the animation start and stop based on certain events in the user

interface, just call setSelected() each time with either true or false, respectively.

2–14. Animating a View

Problem

Your application needs to animate a view object, either as a transition or for effect.

Solution

(API Level 1)

An Animation object can be applied to any view and run using the

View.startAnimation() method; this will run the animation immediately. You may also

CHAPTER 2: User Interface Recipes 108

use View.setAnimation() to schedule an animation and attach the object to a view but

not run it immediately. In this case, the Animation must have its start time parameter set.

How It Works

System Animations

For convenience, the Android SDK provides a handful of transition animations that you

can apply to views, which can be loaded at runtime using the AnimationUtils class:

 Slide and Fade In

 AnimationUtils.makeInAnimation()

 Use the boolean parameter to determine if the slide is left or right.

 Slide Up and Fade In

 AnimationUtils.makeInChildBottomAnimation()

 View always slides up from the bottom.

 Slide and Fade Out

 AnimationUtils.makeOutAnimation()

 Use the boolean parameter to determine if the slide is left or right.

 Fade Out

 AnimationUtils.loadAnimation()

 Set the int parameter to android.R.anim.fade_out.

 Fade In

 AnimationUtils.loadAnimation()

 Set the int parameter to android.R.anim.fade_in.

NOTE: These transition animations only temporarily change how the view is drawn. The visibility

parameter of the view must also be set if you mean to permanently add or remove the object.

Listing 2–27 animates the appearance and disappearance of a View with each Button

click event.

Listing 2–27. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button
 android:id="@+id/toggleButton"

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 109

 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Click to Toggle"
 />
 <View
 android:id="@+id/theView"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:background="#AAA"
 />
</LinearLayout>

In Listing 2–28 each user action on the Button toggles the visibility of the grey View

below it with an animation.

Listing 2–28. Activity Animating View Transitions

public class AnimateActivity extends Activity implements View.OnClickListener {

 View viewToAnimate;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button button = (Button)findViewById(R.id.toggleButton);
 button.setOnClickListener(this);

 viewToAnimate = findViewById(R.id.theView);
 }

 @Override
 public void onClick(View v) {
 if(viewToAnimate.getVisibility() == View.VISIBLE) {
 //If the view is visible already, slide it out to the right
 Animation out = AnimationUtils.makeOutAnimation(this, true);
 viewToAnimate.startAnimation(out);
 viewToAnimate.setVisibility(View.INVISIBLE);
 } else {
 //If the view is hidden, do a fade_in in-place
 Animation in = AnimationUtils.loadAnimation(this, android.R.anim.fade_in);
 viewToAnimate.startAnimation(in);
 viewToAnimate.setVisibility(View.VISIBLE);
 }
 }
}

The view is hidden by sliding off to the right and fading out simultaneously, whereas the

view simple fades into place when it is shown. We chose a simple View as the target

here to demonstrate that any UI element (since they all subclass from View) can be

animated in this way.

CHAPTER 2: User Interface Recipes 110

Custom Animations

Creating custom animations to add effect to views by scaling, rotation, and transforming

them can provide invaluable additions to a user interface as well. In Android, we can

create the following Animation elements:

 AlphaAnimation

 Animate changes to a view’s transparency.

 RotateAnimation

Animate changes to a view’s rotation.

The point about which rotation occurs is configurable. The top, left

corner is chosen by default.

 ScaleAnimation

Animate changes to a view’s scale (size).

The center point of the scale change is configurable. The top, left

corner is chosen by default.

 TranslateAnimation

 Animate changes to a view’s position.

Let’s illustrate how to construct and add a custom animation object by creating a

sample application that creates a “coin flip” effect on an image (see Listing 2–30).

Listing 2–29. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <ImageView
 android:id="@+id/flip_image"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true"
 />
</RelativeLayout>

Listing 2–30. Activity with Custom Animations

public class Flipper extends Activity {

 boolean isHeads;
 ScaleAnimation shrink, grow;
 ImageView flipImage;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 flipImage = (ImageView)findViewById(R.id.flip_image);

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 111

 flipImage.setImageResource(R.drawable.heads);
 isHeads = true;

 shrink = new ScaleAnimation(1.0f, 0.0f, 1.0f, 1.0f,
 ScaleAnimation.RELATIVE_TO_SELF, 0.5f,
 ScaleAnimation.RELATIVE_TO_SELF, 0.5f);
 shrink.setDuration(150);
 shrink.setAnimationListener(new Animation.AnimationListener() {
 @Override
 public void onAnimationStart(Animation animation) {}

 @Override
 public void onAnimationRepeat(Animation animation) {}

 @Override
 public void onAnimationEnd(Animation animation) {
 if(isHeads) {
 isHeads = false;
 flipImage.setImageResource(R.drawable.tails);
 } else {
 isHeads = true;
 flipImage.setImageResource(R.drawable.heads);
 }
 flipImage.startAnimation(grow);
 }
 });
 grow = new ScaleAnimation(0.0f, 1.0f, 1.0f, 1.0f,
 ScaleAnimation.RELATIVE_TO_SELF, 0.5f,
 ScaleAnimation.RELATIVE_TO_SELF, 0.5f);
 grow.setDuration(150);
 }

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 if(event.getAction() == MotionEvent.ACTION_DOWN) {
 flipImage.startAnimation(shrink);
 return true;
 }
 return super.onTouchEvent(event);
 }
}

This example includes the following pertinent components:

 Two image resources for the coin’s head and tail (we named them

heads.png and tails.png).

 These images may be any two-image resources placed in

res/drawable. The ImageView defaults to displaying the heads

image.

 Two ScaleAnimation objects

 Shrink: Reduce the image width from full to nothing about the

center.

CHAPTER 2: User Interface Recipes 112

 Grow: Increase the image width from nothing to full about the

center.

 Anonymous AnimationListener to link the two animations in sequence

Custom animation objects can be defined either in XML or in code. In the next section

we will look at making the animations as XML resources. Here we created the two

ScaleAnimation objects using the following constructor:

ScaleAnimation(
 float fromX,
 float toX,
 float fromY,
 float toY,
 int pivotXType,
 float pivotXValue,
 int pivotYType,
 float pibotYValue
)

The first four parameters are the horizontal and vertical scaling factors to apply. Notice

in the example the X went from 100–0% to shrink and 0–100% to grow, while leaving

the Y alone at 100% always.

The remaining parameters define an anchor point for the view while the animation

occurs. In this case, we are telling the application to anchor the midpoint of the view,

and bring both sides in toward the middle as the view shrinks. The reverse is true for

expanding the image: the center stays in place and the image grows outward towards

its original edges.

Android does not inherently have a way to link multiple animation objects together in a

sequence, so we use an Animation.AnimationListener for this purpose. The listener has

methods to notify when an animation begins, repeats, and completes. In this case, we

are only interested in the latter so that when the shrink animation is done, we can

automatically start the grow animation after it.

The final method used in the example is to setDuration() method to set the animation

duration of time. The value supplied here is in milliseconds, so our entire coin flip would

take 300ms to complete, 150ms apiece for each ScaleAnimation.

AnimationSet

Many times the custom animation you are searching to create requires a combination of

the basic types described previously; this is where AnimationSet becomes useful.

AnimationSet defines a group of animations that should be run simultaneously. By

default, all animations will be started together, and complete at their respective

durations.

In this section we will also expose how to define custom animations using Android’s

preferred method of XML resources. XML animations should be defined in the res/anim/

folder of a project. The following tags are supported, and all of them can be either the

root or child node of an animation:

CHAPTER 2: User Interface Recipes 113

 <alpha>: An AlphaAnimation object

 <rotate>: A RotateAnimation object

 <scale>: A ScaleAnimation object

 <translate>: A TranslateAnimation object

 <set>: An AnimationSet

Only the <set> tag, however, can be a parent and contain other animation tags.

In this example, let’s take our coin flip animations and add another dimension. We will

pair each ScaleAnimation with a TranslateAnimation as a set. The desired effect will be

for the image to slide up and down the screen as it “flips.” To do this, in Listings 2–31

and 2–32 we will define our animations in two XML files and place them in res/anim/.

The first will be grow.xml.

Listing 2–31. res/anim/grow.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
 <scale
 android:duration="150"
 android:fromXScale="0.0"
 android:toXScale="1.0"
 android:fromYScale="1.0"
 android:toYScale="1.0"
 android:pivotX="50%"
 android:pivotY="50%"
 />
<translate
 android:duration="150"
 android:fromXDelta="0%"
 android:toXDelta="0%"
 android:fromYDelta="50%"
 android:toYDelta="0%"
 />
</set>

Followed by shrink.xml:

Listing 2–32. res/anim/shrink.xml

<?xml version="1.0" encoding="utf-8"?>
<set xmlns:android="http://schemas.android.com/apk/res/android">
<scale
 android:duration="150"
 android:fromXScale="1.0"
 android:toXScale="0.0"
 android:fromYScale="1.0"
 android:toYScale="1.0"
 android:pivotX="50%"
 android:pivotY="50%"
 />
 <translate
 android:duration="150"
 android:fromXDelta="0%"
 android:toXDelta="0%"

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 114

 android:fromYDelta="0%"
 android:toYDelta="50%"
 />
</set>

Defining the scale values isn’t any different than previously when using the constructor

in code. One thing to make note of, however, is the definition style of units for the pivot

parameters. All animation dimensions that can be defined as ABSOULUTE,

RELATIVE_TO_SELF, or RELATIVE_TO_PARENT use the following XML syntax:

 ABSOLUTE: Use a float value to represent an actual pixel value (e.g.,

"5.0").

 RELATIVE_TO_SELF: Use a percent value from 0–100 (e.g., "50%").

 RELATIVE_TO_PARENT: Use a percent value with a ‘p’ suffix (e.g.,

"25%p").

With these animation files defined, we can modify the previous example to now load

these sets (see Listings 2–33 and 2–34).

Listing 2–33. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <ImageView
 android:id="@+id/flip_image"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true"
 />
</RelativeLayout>

Listing 2–34. Activity Using Animation Sets

public class Flipper extends Activity {

 boolean isHeads;
 Animation shrink, grow;
 ImageView flipImage;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 flipImage = (ImageView)findViewById(R.id.flip_image);
 flipImage.setImageResource(R.drawable.heads);
 isHeads = true;

 shrink = AnimationUtils.loadAnimation(this, R.anim.shrink);
 shrink.setAnimationListener(new Animation.AnimationListener() {
 @Override
 public void onAnimationStart(Animation animation) {}

 @Override

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 115

 public void onAnimationRepeat(Animation animation) {}

 @Override
 public void onAnimationEnd(Animation animation) {
 if(isHeads) {
 isHeads = false;
 flipImage.setImageResource(R.drawable.tails);
 } else {
 isHeads = true;
 flipImage.setImageResource(R.drawable.heads);
 }
 flipImage.startAnimation(grow);
 }
 });
 grow = AnimationUtils.loadAnimation(this, R.anim.grow);
 }

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 if(event.getAction() == MotionEvent.ACTION_DOWN) {
 flipImage.startAnimation(shrink);
 return true;
 }
 return super.onTouchEvent(event);
 }
}

The result is a coin that flips, but also slides down and up the y-axis of the screen

slightly with each flip.

2–15. Creating Drawables as Backgrounds

Problem

Your application needs to create custom backgrounds with gradients and rounded

corners, and you don’t want to waste time scaling lots of image files.

Solution

(API Level 1)

Use Android’s most powerful implementation of the XML resources system: creating

shape drawables. When you are able to do so, creating these views as an XML resource

makes sense because they are inherently scalable, and they will fit themselves to the

bounds of the view when set as a background.

When defining a drawable in XML using the <shape> tag, the actual result is a

GradientDrawable object. You may define objects in the shape of a rectangle, oval, line,

or ring; although the rectangle is the most commonly used for backgrounds. In

particular, when working with the rectangle the following parameters can be defined for

the shape:

CHAPTER 2: User Interface Recipes 116

 Corner radius

 Define the radius to use for rounding all four corners, or individual

radii to round each corner differently

 Gradient

 Linear, radial, or sweep

 Two or Three color values

 Orientation on any multiple of 45 degrees (0 is left to right, 90

bottom to top, and so on.)

 Solid Color

 Single color to fill the shape

 Doesn’t play nice with gradient also defined

 Stroke

 Border around shape

 Define width and color

 Size and Padding

How It Works

Creating static background images for views can be tricky, given that the image must

often be created in multiple sizes to display properly on all devices. This issue is

compounded if it is expected that the size of the view may dynamically change based

on its contents.

To avoid this problem, we create an XML file in res/drawable to describe a shape that

we can apply as the android:background attribute of any View.

Gradient ListView Row

Our first example for this technique will be to create a gradient rectangle that is suitable

to be applied as the background of individual rows inside of a ListView. The XML for

this shape is defined in Listing 2–35.

Listing 2–35. res/drawable/backgradient.xml

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
 <gradient
 android:startColor="#EFEFEF"
 android:endColor="#989898"
 android:type="linear"
 android:angle="270"
 />
</shape>

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 117

Here we chose a linear gradient between two shades of grey, moving from top to

bottom. If we wanted to add a third color to the gradient, we would add an

android:middleColor attribute to the <gradient> tag.

Now, this drawable can be referenced by any view or layout used to create the custom

items of your ListView (we will discusss more about creating these views in Recipe 2–

23). The drawable would be added as the background by including the attribute

android:background="@drawable/backgradient" to the view’s XML, or calling

View.setBackgroundResource(R.drawable.backgradient) in Java code.

ADVANCED TIP: The limit on colors in XML is three, but the constructor for

GradientDrawable takes an int[] parameter for colors, and you may pass as many as you

like.

When we apply this drawable as the background to rows in a ListView, the result will be

similar to Figure 2–6.

Figure 2–6. Gradient drawable as row background

Rounded View Group

Another popular use of XML drawables is to create a background for a layout that

visually groups a handful of widgets together. For style, rounded corners and a thin

border are often applied as well. This shape defined in XML would look like Listing 2–36.

CHAPTER 2: User Interface Recipes 118

Listing 2–36. res/drawable/roundback.xml

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
 <solid
 android:color="#FFF"
 />
 <corners
 android:radius="10dip"
 />
 <stroke
 android:width="5dip"
 android:color="#555"
 />
</shape>

In this case, we chose white for the fill color and grey for the border stroke. As

mentioned in the previous example, this drawable can be referenced by any view or

layout as the background by including the attribute

android:background="@drawable/roundback" to the view’s XML, or calling

View.setBackgroundResource(R.drawable.roundback) in Java code.

When applied as the background to a view, the result is shown in Figure 2–7.

Figure 2–7. Rounded rectangle with border as view background

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 119

2–16. Creating Custom State Drawables

Problem

You want to customize an element such as a Button or CheckBox that has multiple states

(default, pressed, selected, and so on).

Solution

(API Level 1)

Create a state-list drawable to apply to the element. Whether you have defined your

drawable graphics yourself in XML, or you are using images, Android provides the

means via another XML element, the <selector>, to create a single reference to multiple

images and the conditions under which they should be visible.

How It Works

Let’s take a look at an example state-list drawable, and the discuss its parts:

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_enabled="false" android:drawable="@drawable/disabled" />
 <item android:state_pressed="true" android:drawable="@drawable/selected" />
 <item android:state_focused="true" android:drawable="@drawable/selected" />
 <item android:drawable="@drawable/default" />
</selector>

NOTE: The <selector> is order specific. Android will return the drawable of the first state it

matches completely as it traverses the list. Bear this in mind when determining which state

attributes to apply to each item.

Each item in the list identifies the state(s) that must be in effect for the referenced

drawable to be the one chosen. Multiple state parameters can be added for one item if

multiple state values need to be matched. Android will traverse the list and pick the first

state that matches all criteria of the current view the drawable is attached to. For this

reason, it is considered good practice to put your normal, or default state at the bottom

of the list with no criteria attached.

Here is a list of the most commonly useful state attributes. All of these are boolean

values:

 state_enabled

 Value the view would return from isEnabled().

 state_pressed

 View is pressed by the user on the touch screen.

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 120

state_focused

 View has focus.

state_selected

 View is selected by the user using keys or a D-pad.

state_checked

 Value a checkable view would return from isChecked().

Now, let’s look at how to apply these state-list drawables to different views.

Button and Clickable Widgets

Widgets like Button are designed to have their background drawable change when the

view moves through the above states. As such, the android:background attribute in

XML, or the View.setBackgroundDrawable() method are the proper method for attaching

the state-list. Listing 2–37 is an example with a file defined in res/drawable/ called

button_states.xml:

Listing 2–37. res/drawable/button_states.xml

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_enabled="false" android:drawable="@drawable/disabled" />
 <item android:state_pressed="true" android:drawable="@drawable/selected" />
 <item android:drawable="@drawable/default" />
</selector>

The three @drawable resources listed here are images in the project that the selector is

meant to switch between. As we mentioned in the previous section, the last item will be

returned as the default if no other items include matching states to the current view,

therefore we do not need to include a state to match on that item. Attaching this to a

view defined in XML looks like the following:

<Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="My Button"
 android:background="@drawable/button_states"
/>

CheckBox and Checkable Widgets

Many of the widgets that implement the Checkable interface, like CheckBox and other

subclasses of CompoundButton, have a slightly different mechanism for changing state.

In these cases, the background is not associated with the state, and customizing the

drawable to represent the “checked” states is done through another attribute called the

button. In XML, this is the android:button attribute, and in code the

CompoundButton.setButtonDrawable() method should do the trick.

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 121

Listing 2–38 is an example with a file defined in res/drawable/ called check_states.xml.

Again, the @drawable resources listed are meant to reference images in the project to be

switched.

Listing 2–38. res/drawable/check_states.xml

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_enabled="false" android:drawable="@drawable/disabled" />
 <item android:state_checked="true" android:drawable="@drawable/checked" />
 <item android:drawable="@drawable/unchecked" />
</selector>

And attached to a CheckBox in XML:

<CheckBox
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:button="@drawable/check_states"
/>

2–17. Applying Masks to Images

Problem

You need to apply one image or shape as a clipping mask to define the visible

boundaries of second image in your application.

Solution

(API Level 1)

Using 2D Graphics and a PorterDuffXferMode, you can apply any arbitrary mask (in the

form of another Bitmap) to a Bitmap image. The basic steps to this recipe are as follows:

1. Create a mutable Bitmap (blank), and a Canvas to draw into it.

2. Draw the mask pattern into onto the Canvas first.

3. Apply a PorterDuffXferMode to the Paint.

4. Draw the source image on the Canvas using the transfer mode.

They key ingredient being the PorterDuffXferMode, which considers the current state of

both the source and destination objects during a paint operation. The destination is the

existing Canvas data, and the source is the graphic data being applied in the current

operation.

There are many mode parameters that can be attached to this, which create varying

effects on the result, but for masking we are interested in using the

PorterDuff.Mode.SRC_IN mode. This mode will only draw at locations where the source

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 122

and destination overlap, and the pixels drawn will be from the source; in other words,

the source is clipped by the bounds of the destination.

How It Works

Rounded Corner Bitmap

One extremely common use of this technique is to apply rounded corners to a Bitmap

image before displaying it in an ImageView. For this example, Figure 2–8 is the original

image we will be masking.

Figure 2–8. Original source image

We will first create a rounded rectangle on our canvas with the required corner radius,

and this will serve as our “mask” for the image. Then, applying the

PorterDuff.Mode.SRC_IN transform as we paint the source image into the same canvas,

the result will be the source image with rounded corners.

This is because the SRC_IN transfer mode tells the paint object to only paint pixels on

the canvas locations where there is overlap between the source and destination (the

rounded rectangle we already drew), and the pixels that get drawn come from the

source. Listing 2–39 is the code inside an Activity.

Listing 2–39. Activity Applying Rounded Rectangle Mask to Bitmap

public class MaskActivity extends Activity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ImageView iv = new ImageView(this);

 //Create and load images (immutable, typically)
 Bitmap source = BitmapFactory.decodeResource(getResources(), R.drawable.dog);

 //Create a *mutable* location, and a canvas to draw into it
 Bitmap result = Bitmap.createBitmap(source.getWidth(), source.getHeight(),
 Config.ARGB_8888);

CHAPTER 2: User Interface Recipes 123

 Canvas canvas = new Canvas(result);
 Paint paint = new Paint(Paint.ANTI_ALIAS_FLAG);

 //Create and draw the rounded rectangle "mask" first
 RectF rect = new RectF(0,0,source.getWidth(),source.getHeight());
 float radius = 25.0f;
 paint.setColor(Color.BLACK);
 canvas.drawRoundRect(rect, radius, radius, paint);
 //Switch over and paint the source using the transfer mode
 paint.setXfermode(new PorterDuffXfermode(Mode.SRC_IN));
 canvas.drawBitmap(source, 0, 0, paint);
 paint.setXfermode(null);

 iv.setImageBitmap(result);
 setContentView(iv);
 }
}

The result for your efforts are shown in Figure 2–9.

Figure 2–9. Image with rounded rectangle mask applied

Arbitrary Mask Image

Let’s looks at an example that’s a little more interesting. Here we take two images, the

source image and an image representing the mask we want to apply – in this case, and

upside-down triangle (see Figure 2–10).

CHAPTER 2: User Interface Recipes 124

Figure 2–10. Original source image (left) and arbitrary mask image to apply (right)

The chosen mask image does not have to conform to the style chosen here, with black

pixels for the mask and transparent everywhere else. However, it is the best choice to

guarantee that the system draws the mask exactly as you expect it to be. Listing 2–40 is

the simple Activity code to mask the image and display it in a view.

Listing 2–40. Activity Applying Arbitrary Mask to Bitmap

public class MaskActivity extends Activity {

@Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ImageView iv = new ImageView(this);

 //Create and load images (immutable, typically)
 Bitmap source = BitmapFactory.decodeResource(getResources(), R.drawable.dog);
 Bitmap mask = BitmapFactory.decodeResource(getResources(), R.drawable.triangle);

 //Create a *mutable* location, and a canvas to draw into it
 Bitmap result = Bitmap.createBitmap(source.getWidth(), source.getHeight(),
 Config.ARGB_8888);
 Canvas canvas = new Canvas(result);
 Paint paint = new Paint(Paint.ANTI_ALIAS_FLAG);

 //Draw the mask image first, then paint the source using the transfer mode
 canvas.drawBitmap(mask, 0, 0, paint);
 paint.setXfermode(new PorterDuffXfermode(Mode.SRC_IN));
 canvas.drawBitmap(source, 0, 0, paint);
 paint.setXfermode(null);

 iv.setImageBitmap(result);
 setContentView(iv);
 }
}

As with before, we draw the mask onto the canvas first and then draw the source image

in using the PorterDuff.Mode.SRC_IN mode to only paint the source pixels where they

overlap the existing mask pixels. The result looks something like Figure 2–11.

CHAPTER 2: User Interface Recipes 125

Figure 2–11. Image with mask applied

Please Try This At Home

Applying the PorterDuffXferMode in this fashion to blend two images can create lots of

interesting results. Try taking this same example code, but changing the

PorterDuff.Mode parameter to one of the many other options. Each of the modes will

blend the two Bitmaps in a slightly different way. Have fun with it!

2–18. Creating Dialogs that Persist

Problem

You want to create a user dialog that has multiple input fields or some other set of

information that needs to be persisted if the device is rotated.

Solution

(API Level 1)

Don’t use a dialog at all; create an Activity with the Dialog theme. Dialogs are managed

objects that must be handled properly when the device rotates while they are visible,

otherwise they will cause a leaked reference in the window manager. You can mitigate

this issue by having your Activity manage the dialog for you using methods like

CHAPTER 2: User Interface Recipes 126

Activity.showDialog() and Activity.dismissDialog() to present it, but that only

solves one problem.

The Dialog does not have any mechanism of its own to persist state through a rotation,

and this job (by design) falls back to the Activity that presented it. This results in extra

required effort to ensure that the Dialog can pass back or persist any values entered into

it before it is dismissed.

If you have an interface to present to the user that will need to persist state and stay

front facing through rotation, a better solution is to make it an Activity. This allows that

object access to the full set of lifecycle callback methods for saving/restoring state.

Plus, as an Activity, it does not have to be managed to dismiss and present again during

rotation, which removes the worry of leaking references. You can still make the Activity

behave like a Dialog from the user’s perspective using the Theme.Dialog system theme.

How It Works

Listing 2–41 is an example of a simple Activity that has a title and some text in a TextView.

Listing 2–41. Activity to be Themed As a Dialog

public class DialogActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setTitle("Activity");
 TextView tv = new TextView(this);
 tv.setText("I'm Really An Activity!");
 //Add some padding to keep the dialog borders away
 tv.setPadding(15, 15, 15, 15);
 setContentView(tv);
 }
}

We can apply the Dialog theme to this Activity in the AndroidManifest.xml file for the

application (see Figure 2–42).

Listing 2–42. Manifest Setting the Above Activity with the Dialog Theme

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.dialogs"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".DialogActivity"
 android:label="@string/app_name"
 android:theme="@android:style/Theme.Dialog">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 127

Note the android:theme="@android:style/Theme.Dialog" parameter, which creates the

look and feel of a Dialog, with all the benefits of a full-blown Activity. When you run this

application, you will see a screen like that shown in Figure 2–12.

Figure 2–12. Applying Dialog theme to an Activity

Notice that, even though this is an Activity for all intents and purposes, it can act as a

Dialog inside of your user interface, partially covering the Activity underneath it (in this

case, the Home screen).

2–19. Implementing Situation-Specific Layouts

Problem

Your application must be universal, running on different screen sizes and orientations.

You need to provide different layout resources for each of these instances.

Solution

(API Level 4)

Build multiple layout files, and use resource qualifiers to let Android pick what’s

appropriate. We will look at using resources to create resources specific for different

screen orientations and sizes.

CHAPTER 2: User Interface Recipes 128

How It Works

Orientation-Specific

In order to create different resources for an Activity to use in portrait versus landscape,

use the following qualifiers:

 resource-land

 resource-port

This works for all resource types, but the most common in this case is to do this with

layouts. Therefore, instead of a res/layout/ directory in the project, there would be a

res/layout-port/ and a res/layout-land/ directory.

NOTE: It is good practice to include a default resource directory without a qualifier. This gives

Android something to fall back on if it is running on a device that doesn’t match any of the

specific criteria you list.

Size-Specific

There are also screen size qualifiers (physical size, not to be confused with pixel density)

that we can use to target large screen devices like tablets. In most cases, a single layout

will suffice for all physical screen sizes of mobile phone. However, you may want to add

more features to a tablet layout to assist in filling the noticeably more screen real estate

the user has to operate. The following resource qualifiers are acceptable for physical

screen size:

 resource-small

 resource-medium

 resource-large

So, to include a tablet-only layout to a universal application we could add a res/layout-

large/directory as well.

Example

Let’s look at a quick example that puts this into practice. We’ll define a single Activity,

that loads a single layout resource in code. However, this layout will be define three

times in the resources to produce different results in portrait, landscape, and on a tablet.

First, the Activity, which is shown in Listing 2–43.

CHAPTER 2: User Interface Recipes 129

Listing 2–43. Simple Activity Loading One Layout

public class UniversalActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

We’ll now define a default/portrait layout in res/layout/main.xml (see Listing 2–44).

Listing 2–44. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- PORTRAIT/DEFAULT LAYOUT -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is a vertical layout for PORTRAIT"
 />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button One"
 />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button Two"
 />
</LinearLayout>

And a landscape version in res/layout-land/main.xml (see Figure 2–45).

Listing 2–45. res/layout-land/main.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- LANDSCAPE LAYOUT -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="The is a horizontal layout for LANDSCAPE"
 />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button One"
 />
 <Button
 android:layout_width="wrap_content"

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 130

 android:layout_height="wrap_content"
 android:text="Button Two"
 />
</LinearLayout>

We have now reordered our layout to be horizontal on a landscape screen.

The tablet version in res/layout-large/main.xml (see Figure 2–46).

Listing 2–46. res/layout-large/main.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- LARGE LAYOUT -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="This is the layout for TABLETS"
 />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button One"
 />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button Two"
 />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button Three"
 />
 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button Four"
 />
</LinearLayout>

Since we have more screen real estate to work with, there are a couple extra buttons for

the user to interact with.

Now, when we run the application, you can see how Android selects the appropriate

layout to match our configuration, whether it is portrait and landscape on the phone (see

Figure 2–13), or running on a larger tablet screen (see Figure 2–14).

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 131

Figure 2–13. Portrait and Landscape layouts

CHAPTER 2: User Interface Recipes 132

Figure 2–14. Large (Tablet) layout

Late Additions

In API Level 9 (Android 2.3), one more resource qualifier was added to support “extra

large” screens:

 resource-xlarge

According to the SDK documentation, a traditionally “large” screen is one in the range of

approximately 5 to 7 inches. The new qualifier for “extra large” covers screens roughly 7

to 10+ inches in size.

If your application is built against API Level 9, you should include your tablet layouts in

the res/layout-xlarge/ directory as well. Keeping in mind that tables running Android 2.2

or earlier will only recognize res/layout-large/ as a valid qualifier.

2–20. Customizing Keyboard Actions

Problem

You want to customize the appearance of the soft keyboard’s enter key, the action that

occurs when a user tap it, or both.

CHAPTER 2: User Interface Recipes 133

Solution

(API Level 3)

Customize the Input Method (IME) options for the widget in which the keyboard is

entering data.

How It Works

Custom Enter Key

When the keyboard is visible on screen, the text on the return key typically has an action

based on the order of focusable items in the view. While unspecified, the keyboard will

display a “next” action if there are more focusables in the view to move to, or a “done”

action if the last item is currently focused on. This value is customizable, however, for

each input view by setting the android:imeOptions value in the view’s XML. The values

you may set to customize the return key are listed here:

 actionUnspecified: Default. Display action of the device’s choice

 Action event will be IME_NULL

 actionGo: Display “Go” as the return key

 Action event will be IME_ACTION_GO

 actionSearch: Display a search glass as the return key

 Action event will be IME_ACTION_SEARCH

 actionSend: Display “Send” as the return key

 Action event will be IME_ACTION_SEND

 actionNext: Display “Next” as the return key

 Action event will be IME_ACTION_NEXT

 actionDone: Display “Done” as the return key

 Action event will be IME_ACTION_DONE

Let’s look at an example layout with two editable text fields, shown in Listing 2–47. The

first will display the search glass on the return key, and the second will display “Go.”

Listing 2–47. Layout with Custom Input Options on EditText Widgets

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical">
 <EditText
 android:id="@+id/text1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 134

 android:imeOptions="actionSearch"
 />
 <EditText
 android:id="@+id/text2"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:imeOptions="actionGo"
 />
</LinearLayout>

The resulting display of the keyboard will vary somewhat as some manufacturer specific

UI kits include different keyboards, but the results on a pure Google UI will show up like

in Figure 2–15.

Figure 2–15. Result of custom input options on enter key

NOTE: Custom editor options only apply to the soft input methods. Changing this value will not

affect the events that get generated when the user presses return on a physical hardware

keyboard.

CHAPTER 2: User Interface Recipes 135

Custom Action

Customizing what happens when the user presses the enter key can be just as

important as adjusting its display. Overriding the default behavior of any action simply

requires that a TextView.OnEditorActionListener be attached to the view of interest.

Let’s continue with the example layout above, and this time add a custom action to both

views (see Listing 2–48).

Listing 2–48. Activity Implementing a Custom Keyboard Action

public class MyActivity extends Activity implements OnEditorActionListener {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //Add the listener to the views
 EditText text1 = (EditText)findViewById(R.id.text1);
 text1.setOnEditorActionListener(this);
 EditText text2 = (EditText)findViewById(R.id.text2);
 text2.setOnEditorActionListener(this);
 }

 @Override
 public boolean onEditorAction(TextView v, int actionId, KeyEvent event) {
 if(actionId == IME_ACTION_SEARCH) {
 //Handle search key click
 return true;
 }
 if(actionId == IME_ACTION_GO) {
 //Handle go key click
 return true;
 }
 return false;
 }
}

The boolean return value of onEditorAction() tells the system whether your

implementation has consumed the event or whether it should be passed on to the next

possible responder, if any. It is important for you to return true when your

implementation handles the event so no other processing occurs. However, it is just as

important for you to return false when you are not handling the event so your application

does not steal key events from the rest of the system.

2–21. Dismissing Soft Keyboard

Problem

You need an event on the user interface to hide or dismiss the soft keyboard from the

screen.

CHAPTER 2: User Interface Recipes 136

Solution

(API Level 3)

Tell the Input Method Manager explicitly to hide any visible Input Methods using the

InputMethodManager.hideSoftInputFromWindow() method.

How It Works

Here is an example of how to call this method inside of a View.OnClickListener:

public void onClick(View view) {
 InputMethodManager imm = (InputMethodManager)getSystemService(
 Context.INPUT_METHOD_SERVICE);
 imm.hideSoftInputFromWindow(view.getWindowToken(), 0);
}

Notice the hideSoftInputFromWindow() take an IBinder window token as a parameter.

This can be retrieved from any View object currently attached to the window via

View.getWindowToken(). In most cases, the callback method for the specific event will

either have a reference to the TextView where the editing is taking place, or the View

that was tapped to generate the event (like a Button). These views are the most

convenient objects to call on to get the window token and pass it to the

InputMethodManager.

2–22. Customizing AdapterView Empty Views

Problem

You want to display a custom view when an AdapterView (ListView, GridView, and the

like) has an empty data set.

Solution

(API Level 1)

Lay out the view you would like displayed in the same tree as the AdapterView and call

AdapterView.setEmptyView() to have the AdapterView manage it. The AdapterView will

switch the visibility parameters between itself and its empty view based on the result of

the attached ListAdapter’s isEmpty() method.

IMPORTANT: Be sure to include both the AdapterView and the empty view in your layout. The

AdapterView ONLY changes the visibility parameters on the two objects; it does not insert or

remove them in the layout tree.

CHAPTER 2: User Interface Recipes 137

How It Works

Here is how this would look with a simple TextView used as the empty. First, a layout

that includes both views, shown in Listing 2–49.

Listing 2–49. Layout Containing AdapterView and an Empty View

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:id="@+id/myempty"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="No Items to Display"
 />
 <ListView
 android:id="@+id/mylist"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</FrameLayout>

Then, in the Activity, give the ListView a reference to the empty view so it can be

managed (see Listing 2–50).

Listing 2–50. Activity Connecting the Empty View to the List

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ListView list = (ListView)findViewById(R.id.mylist);
 TextView empty = (TextView)findViewById(R.id.myempty);
 //Attach the reference
 list.setEmptyView(empty);

 //Continue adding adapters and data to the list

}

Make Empty Interesting

Empty views don’t have to be simple and boring like the single TextView. Let’s try to

make things a little more useful for the user and add a refresh button when the list is

empty (see Listing 2–51).

Listing 2–51. Interactive Empty Layout

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <LinearLayout
 android:id="@+id/myempty"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 138

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="No Items to Display"
 />
 <Button
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Tap Here to Refresh"
 />
 </LinearLayout>
 <ListView
 android:id="@+id/mylist"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</FrameLayout>

Now, with the same Activity code from before, we have set an entire layout as the empty

view, and added the ability for the user to do something about their lack of data.

2–23. Customizing ListView Rows

Problem

Your application needs to use a more customized look for each row in a ListView.

Solution

(API Level 1)

Create a custom XML layout and pass it to one of the common adapters, or extend your

own. You can then apply custom state drawables for overriding the background and

selected states of each row.

How It Works

Simply Custom

If your needs are simple, create a layout that can connect to an existing ListAdapter for

population; we’ll use ArrayAdapter as an example. The ArrayAdapter can take

parameters for a custom layout resource to inflate and the ID of one TextView in that

layout to populate with data. Let’s create some custom drawables for the background

and a layout that meets these requirements (see Listings 2–52 through 2–54).

Listing 2–52. res/drawable/row_background_default.xml

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 139

 <gradient
 android:startColor="#EFEFEF"
 android:endColor="#989898"
 android:type="linear"
 android:angle="270"
 />
</shape>

Listing 2–53. res/drawable/row_background_pressed.xml

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
 <gradient
 android:startColor="#0B8CF2"
 android:endColor="#0661E5"
 android:type="linear"
 android:angle="270"
 />
</shape>

Listing 2–54. res/drawable/row_background.xml

<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_pressed="true" android:drawable="@drawable/row_background_pressed"/>
 <item android:drawable="@drawable/row_background_default"/>
</selector>

Listing 2–55 shows a custom layout with the text fully centered in the row instead of

aligned to the left.

Listing 2–55. res/layout/custom_row.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="10dip"
 android:background="@drawable/row_background">
 <TextView
 android:id="@+id/line1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center"
 />
</LinearLayout>

This layout has the custom gradient state-list set as its background; setting up the

default and pressed states for each item in the list. Now, since we have defined a layout

that matches up with what an ArrayAdapter expects, we can create one and set it on our

list without any further customization (see Listing 2–56).

Listing 2–56. Activity Using the Custom Row Layout

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ListView list = new ListView(this);
 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 140

 R.layout.custom_row,
 R.id.line1,
 new String[] {"Bill","Tom","Sally","Jenny"});
 list.setAdapter(adapter);

 setContentView(list);
}

Adapting to a More Complex Choice

Sometimes customizing the list rows means extending a ListAdapter as well. This is

usually the case if you have multiple pieces of data in a single row, or if any of them are

not text. In this example, let’s utilize the custom drawables again for the background,

but make the layout a little more interesting (see Listing 2–57).

Listing 2–57. res/layout/custom_row.xml Modified

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
 android:padding="10dip">
 <ImageView
 android:id="@+id/leftimage"
 android:layout_width="32dip"
 android:layout_height="32dip"
 />
 <ImageView
 android:id="@+id/rightimage"
 android:layout_width="32dip"
 android:layout_height="32dip"
 android:layout_alignParentRight="true"
 />

 <TextView
 android:id="@+id/line1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_toLeftOf="@id/rightimage"
 android:layout_toRightOf="@id/leftimage"
 android:layout_centerVertical="true"
 android:gravity="center_horizontal"
 />
</RelativeLayout>

This layout contains the same centered TextView, but bordered with an ImageView on

each side. In order to apply this layout to the ListView, we will need to extend one of the

ListAdapters in the SDK. Which one you extend is dependent on the data source you are

presenting in the list. If the data is still just a simple array of strings, and extension of

ArrayAdapter is sufficient. If the data is more complex, a full extension of the abstract

BaseAdapter may be necessary. The only required method to extend is getView(),

which governs how each row in the list is presented.

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 141

In our case, the data is a simple array of strings, so we will create a simple extension of

ArrayAdapter (see Listing 2–58).

Listing 2–58. Activity and Custom ListAdapter to Display the New Layout

public class MyActivity extends Activity {

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ListView list = new ListView(this);
 setContentView(list);

 CustomAdapter adapter = new CustomAdapter(this,
 R.layout.custom_row,
 R.id.line1,
 new String[] {"Bill","Tom","Sally","Jenny"});
 list.setAdapter(adapter);

 }

 private class CustomAdapter extends ArrayAdapter<String> {

 public CustomAdapter(Context context, int layout, int resId, String[] items) {
 //Call through to ArrayAdapter implementation
 super(context, layout, resId, items);
 }

 @Override
 public View getView(int position, View convertView, ViewGroup parent) {
 View row = convertView;
 //Inflate a new row if one isn’t recycled
 if(row == null) {
 row = getLayoutInflater().inflate(R.layout.custom_row, parent, false);
 }

 String item = getItem(position);
 ImageView left = (ImageView)row.findViewById(R.id.leftimage);
 ImageView right = (ImageView)row.findViewById(R.id.rightimage);
 TextView text = (TextView)row.findViewById(R.id.line1);

 left.setImageResource(R.drawable.icon);
 right.setImageResource(R.drawable.icon);
 text.setText(item);

 return row;
 }
 }
}

Notice that we use the same constructor to create an instance of the adapter as before,

since it is inherited from ArrayAdapter. Because we are overriding the view display

mechanism of the adapter, the only reason the R.layout.custom_row and R.id.line1 are

now passed into the constructor is that they are required parameters of the constructor;

they don’t serve a useful purpose in this example anymore.

Now, when the ListView wants to display a row it will call getView() on its adapter,

which we have customized so we can control how each row returns. The getView()

CHAPTER 2: User Interface Recipes 142

method is passed a parameter called the convertView, which is very important for

performance. Layout inflation from XML is an expensive process, and to minimize its

impact on the system, ListView recycles views as the list scrolls. If a recycled view is

available to be reused, it is passed into getView() as the convertView. Whenever

possible, reuse these views instead of inflating new ones to keep the scrolling

performance of the list fast and responsive.

In this example, call getItem() to get the current value at that position in the list (our

array of Strings), and then later on set that value on the TextView for that row. We can

also set the images in each row to something significant for the data, although here they

are set to the app icon for simplicity.

2–24. Making ListView Section Headers

Problem

You want to create a list with multiple sections, each with a header at the top.

Solution

(API Level 1)

Use the SimplerExpandableListAdapter code defined here and an ExpandableListView.

Android doesn’t officially have an extensible way to create sections in a list, but it does

offer the ExpandableListView widget and associated adapters designed to handle a two-

dimensional data structure in a sectioned list. The drawback is that the adapters

provided with the SDK to handle this data are cumbersome to work with for simple data

structures.

How It Works

Enter the SimplerExpandableListAdapter (see Listing 2–59), an extension of the

BaseExpandableListAdapter that, as an example, handles an Array of string arrays, with

a separate string array for the section titles.

Listing 2–59. SimplerExpandableListAdapter

public class SimplerExpandableListAdapter extends BaseExpandableListAdapter {
 private Context mContext;
 private String[][] mContents;
 private String[] mTitles;

 public SimplerExpandableListAdapter(Context context, String[] titles, String[][]
contents) {
 super();
 //Check arguments
 if(titles.length != contents.length) {
 throw new IllegalArgumentException("Titles and Contents must be the same
size.");

CHAPTER 2: User Interface Recipes 143

 }

 mContext = context;
 mContents = contents;
 mTitles = titles;
 }

 //Return a child item
 @Override
 public String getChild(int groupPosition, int childPosition) {
 return mContents[groupPosition][childPosition];
 }

 //Return a item's id
 @Override
 public long getChildId(int groupPosition, int childPosition) {
 return 0;
 }

 //Return view for each item row
 @Override
 public View getChildView(int groupPosition, int childPosition,
 boolean isLastChild, View convertView, ViewGroup parent) {
 TextView row = (TextView)convertView;
 if(row == null) {
 row = new TextView(mContext);
 }
 row.setText(mContents[groupPosition][childPosition]);
 return row;
 }

 //Return number of items in each section
 @Override
 public int getChildrenCount(int groupPosition) {
 return mContents[groupPosition].length;
 }

 //Return sections
 @Override
 public String[] getGroup(int groupPosition) {
 return mContents[groupPosition];
 }

 //Return the number of sections
 @Override
 public int getGroupCount() {
 return mContents.length;
 }

 //Return a section's id
 @Override
 public long getGroupId(int groupPosition) {
 return 0;
 }

 //Return a view for each section header
 @Override

CHAPTER 2: User Interface Recipes 144

 public View getGroupView(int groupPosition, boolean isExpanded,
 View convertView, ViewGroup parent) {
 TextView row = (TextView)convertView;
 if(row == null) {
 row = new TextView(mContext);
 }
 row.setTypeface(Typeface.DEFAULT_BOLD);
 row.setText(mTitles[groupPosition]);
 return row;
 }

 @Override
 public boolean hasStableIds() {
 return false;
 }

 @Override
 public boolean isChildSelectable(int groupPosition, int childPosition) {
 return true;
 }

}

Now we can create a simple data structure and use it to populate an

ExpandableListView in an example Activity (see Listing 2–60).

Listing 2–60. Activity Using the SImplerExpandableListAdapter

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Set up an expandable list
 ExpandableListView list = new ExpandableListView(this);
 list.setGroupIndicator(null);
 list.setChildIndicator(null);
 //Set up simple data and the new adapter
 String[] titles = {"Fruits","Vegetables","Meats"};
 String[] fruits = {"Apples","Oranges"};
 String[] veggies = {"Carrots","Peas","Broccoli"};
 String[] meats = {"Pork","Chicken"};
 String[][] contents = {fruits,veggies,meats};
 SimplerExpandableListAdapter adapter = new SimplerExpandableListAdapter(this,
 titles, contents);

 list.setAdapter(adapter);
 setContentView(list);
}

That Darn Expansion

There is one catch to utilizing ExpandableListView in this fashion: it expands.

ExpandableListView is designed to expand and collapse the child data underneath the

group heading when the heading it tapped. Also, by default all the groups are collapsed,

so you can only see the header items.

In some cases this may be desirable behavior, but often it is not if you just want to add

section headers. In that case, there are two addition steps to take:

CHAPTER 2: User Interface Recipes 145

1. In the Activity code, expand all the groups. Something like

for(int i=0; i < adapter.getGroupCount(); i++) {
 list.expandGroup(i);
}

2. In the Adapter, override onGroupCollapsed() to force re-expansion. This

will require adding a reference to the list widget to the adapter.

@Override
public void onGroupCollapsed(int groupPosition) {
 list.expandGroup(groupPosition);
}

2–25. Creating Compound Controls

Problem

You need to create a custom widget that is a collection of existing elements.

Solution

(API Level 1)

Create a custom widget by extending a common ViewGroup and adding functionality.

One of the simplest, and most powerful ways to create custom or reusable user

interface elements is to create compound controls leveraging the existing widgets

provided by the Android SDK.

How It Works

ViewGroup, and its subclasses LinearLayout, RelativeLayout, and so on, give you the

tools to make this simple by assisting you with component placement, so you can be

more concerned with the added functionality.

TextImageButton

Let’s create an example by making a widget that the Android SDK does not have

natively: a button containing either an image or text as its content. To do this, we are

going to create the TextImageButton class, which is an extension of FrameLayout. It will

contain a TextView to handle text content, and an ImageView for image content (see

Listing 2–61).

Listing 2–61. Custom TextImageButton Widget

public class TextImageButton extends FrameLayout {

 private ImageView imageView;
 private TextView textView;

CHAPTER 2: User Interface Recipes 146

 /* Constructors */
 public TextImageButton(Context context) {
 this(context, null);
 }

 public TextImageButton(Context context, AttributeSet attrs) {
 this(context, attrs, 0);
 }

 public TextImageButton(Context context, AttributeSet attrs, int defaultStyle) {
 super(context, attrs, defaultStyle);
 imageView = new ImageView(context, attrs, defaultStyle);
 textView = new TextView(context, attrs, defaultStyle);
 //create layout parameters
 FrameLayout.LayoutParams params = new FrameLayout.LayoutParams(
 LayoutParams.FILL_PARENT, LayoutParams.FILL_PARENT);
 //Add the views
 this.addView(imageView, params);
 this.addView(textView, params);

 //Make this view interactive
 setClickable(true);
 setFocusable(true);
 //Set the default system button background
 setBackgroundResource(android.R.drawable.btn_default);

 //If image is present, switch to image mode
 if(imageView.getDrawable() != null) {
 textView.setVisibility(View.GONE);
 imageView.setVisibility(View.VISIBLE);
 } else {
 textView.setVisibility(View.VISIBLE);
 imageView.setVisibility(View.GONE);
 }
 }

 /* Accessors */
 public void setText(CharSequence text) {
 //Switch to text
 textView.setVisibility(View.VISIBLE);
 imageView.setVisibility(View.GONE);
 //Apply text
 textView.setText(text);
 }

 public void setImageResource(int resId) {
 //Switch to image
 textView.setVisibility(View.GONE);
 imageView.setVisibility(View.VISIBLE);
 //Apply image
 imageView.setImageResource(resId);
 }

 public void setImageDrawable(Drawable drawable) {
 //Switch to image
 textView.setVisibility(View.GONE);
 imageView.setVisibility(View.VISIBLE);

CHAPTER 2: User Interface Recipes 147

 //Apply image
 imageView.setImageDrawable(drawable);
 }
}

All of the widgets in the SDK have three constructors. The first constructor takes only

Context as a parameter and is generally used to create a new view in code. The

remaining two are used when a view is inflated from XML, where the attributes defined in

the XML file are passed in as the AttributeSet parameter. Here we use Java’s this()

notation to drill the first two constructors down to the one that really does all the work.

Building the custom control in this fashion ensures that we can still define this view in

XML layouts. Without implementing the attributed constructors, this would not be

possible.

The constructor creates a TextView and ImageView, and places them inside the layout.

FrameLayout is not an interactive view by default, so the constructor makes the control

clickable and focusable so it can handle user interaction events; we also set the

system’s default button background on the view as a cue to the user that this widget is

interactive. The remaining code sets the default display mode (either text or image)

based on the data that was passed in as attributes.

The accessor functions are added as a convenience to later switch the button contents.

These functions are also tasked with switching between text and image mode if the

content change warrants it.

Because this custom control is not in the android.view or android.widget packages, we

must use the fully qualified name when it is used in an XML layout. Listings 2–62 and 2–63

show an example Activity display the custom widget.

Listing 2–62. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical">
 <com.examples.customwidgets.TextImageButton
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textColor="#000"
 android:text="Click Me!"
 />
 <com.examples.customwidgets.TextImageButton
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/icon"
 />
</LinearLayout>

Listing 2–63. Activity Using the New Custom Widget

public class MyActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 148

 setContentView(R.layout.main);
 }
}

Notice that we can still use traditional attributes to define properties like the text or

image to display. This is due to the fact that we construct each item (the FrameLayout,

TextView, and ImageView) with the attributed constructors, so each view sets the

parameters it is interested in, and ignores the rest.

If we define an Acitivity to use this layout, the results look like Figure 2–16.

Figure 2–16. TextImageButton displayed in both text and image modes

Useful Tools to Know: DroidDraw
Chapter 1 introduced a units-conversion Android app named UC. In addition to exploring

UC’s source code, this chapter explored this app’s resources, starting with the main.xml

layout file that describes how the app’s main screen is laid out.

Coding layout and other resource files by hand is at best a tedious undertaking, even for

advanced developers. For this reason, Professor Brendan Burns created a tool named

DroidDraw.

DroidDraw is a Java-based tool that facilitates building an Android app’s user interface.

This tool does not generate app logic. Instead, it generates XML layout and other

resource information that can be merged into another development tool’s app project.

CHAPTER 2: User Interface Recipes 149

Obtaining and Launching DroidDraw

DroidDraw is hosted at the droiddraw.org web site. From this web site’s main page, you

can try out DroidDraw as a Java applet, or you can download the DroidDraw application

for the Mac OS X, Windows, and Linux platforms.

For example, click the main page’s Windows link and download droiddraw-r1b18.zip to

obtain DroidDraw for Windows. (Release 1, Build 18 is the latest DroidDraw version at

time of writing.)

Unarchive droiddraw-r1b18.zip and you’ll discover droiddraw.exe and droiddraw.jar

(an executable JAR file) for launching DroidDraw. From the Windows Explorer, double-

click either filename to launch this tool.

TIP: Specify java -jar droiddraw.jar to launch DroidDraw at the command line via the

JAR file.

Figure 2–17 presents DroidDraw’s user interface.

Figure 2–17. DroidDraw’s user interface reveals a mockup of an Android device screen.

CHAPTER 2: User Interface Recipes 150

Exploring DroidDraw’s User Interface

Figure 2–17 reveals a simple user interface consisting of a menubar, a screen area, a

tabbed area, and an output area. You can drag each area’s border by a small amount to

enlarge or shrink that area.

The menubar consists of File, Edit, Properties, and Help menus. File presents the

following menu items:

Open: Open an Android layout file (such as main.xml)

Save: Save the current layout information to the last opened layout file.

A dialog box is displayed if no layout file has been opened.

Save As: Display a dialog box that prompts the user for the name of a

layout file and saves the current layout information to this file.

Quit: Exit DroidDraw. Unsaved changes will be lost.

The Edit menu presents the following menu items:

Cut: Remove the selected text plus the character to the right of the

selected text from the output area.

Copy: Copy the selected text from the output area to the clipboard.

Paste: Paste the contents of the clipboard over the current selection or

at the current caret position in the output area.

Select All: Select the entire contents of the output area.

Clear Screen: Remove all widgets and layout information from the user

interface displayed in the screen area.

Set Ids from Labels: Instead of assigning text such as "@+id/widget29"
to a widget’s android:id XML attribute, assign a widget’s value (such

as a button’s OK text) to android:id; "@+id/Ok", for example. This text

is displayed in the output area the next time the XML layout

information is generated.

Unlike the File and Edit menus, the menu items for the Project menu don’t appear to be

fully implemented.

The Help menu presents the following menu items:

Tutorial: Point the default browser to

http://www.droiddraw.org/tutorial.html to explore some interesting

DroidDraw tutorials.

About: Present a simple about dialog box without any version

information.

Donate: Point the default browser to the PayPal web site to make a

donation that supports continued DroidDraw development.

http://www.droiddraw.org/tutorial.html

CHAPTER 2: User Interface Recipes 151

The screen area presents visual feedback for the Android screen being built. It also

provides Root Layout and Screen Size dropdown listboxes for choosing which layout

serves as the ultimate parent layout (choices include AbsoluteLayout, LinearLayout,

RelativeLayout, ScrollView, and TableLayout), and for choosing the target screen size so

you’ll know what the user interface looks like when displayed on that screen (choices

include QVGA Landscape, QVGA Portrait, HVGA Landscape, and HVGA Portrait).

The tabbed area provides a Widgets tab whose widgets can be dragged to the screen, a

Layouts tab whose layouts can be dragged to the screen, a Properties tab for entering

values for the selected widget’s/layout’s properties, Strings/Colors/Arrays tabs for

entering these resources, and a Support tab for making a donation.

Finally, the output area presents a textarea that displays the XML equivalent of the

displayed screen when you click its Generate button. The Load button doesn’t appear to

accomplish anything useful (althought it appears to undo a clear screen operation).

Creating a Simple Screen

Suppose you’re building an app that displays (via a textview component) a randomly

selected famous quotation in response to a button click. You decide to use DroidDraw

to build the app’s single screen.

Start DroidDraw, leave HVGA Portrait as the screen size, and replace AbsoluteLayout

with LinearLayout as the root layout in order to present the textview and button

components in a vertical column.

NOTE: Unlike Android, which chooses horizontal as the default orientation for LinearLayout,

DroidDraw chooses vertical as the default orientation.

On the Widgets tab, select TextView and drag it to the screen. Select the Properties tab,

and enter fill_parent into the Width textfield, 100px into the Height textfield, and

Quotation into the Text textfield. Click Apply; Figure 2–18 shows the resulting screen.

Figure 2–18. The textview component appears at the top of the screen.

CHAPTER 2: User Interface Recipes 152

On the Widgets tab, select Button and drag it to the screen. Select the Properties tab,

and enter fill_parent into the Width textfield and Get Quote into the Text textfield. Click

Apply; Figure 2–19 shows the resulting screen.

Figure 2–19. The button component appears underneath the textview component.

Select Save As from the File menu to save this screen’s XML to a resource file named

main.xml. As you learned in Chapter 1, this file is ultimately placed in the layout

subdirectory of an Android project’s res directory.

Alternatively, you could click the Generate button (at the bottom of the Output area) to

generate the screen’s XML (see Listing 2–64), select this text (via Edit’s Select All menu

item), and copy it to the clipboard (via Edit’s Copy menu item) for later use.

Listing 2–64. main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 android:id="@+id/widget27"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 >
<TextView
 android:id="@+id/widget29"
 android:layout_width="fill_parent"
 android:layout_height="100px"
 android:text="Quotation"
 >
</TextView>
<Button
 android:id="@+id/widget30"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Get Quote"
 >
</Button>
</LinearLayout>

http://schemas.android.com/apk/res/android

CHAPTER 2: User Interface Recipes 153

DroidDraw assigns text to XML properties rather than employing resource references.

For example, Listing 2–64 assigns “Quotation” instead of "@string/quotation" to the

TextView element’s android:text property.

Although embedding strings is inconvenient from a maintenance perspective, you can

use the Strings tab to enter string resource name/value pairs and click the Save button

to save these resources to a strings.xml file, and manually enter the references later.

Summary
As you have seen, Android provides some very flexible and extensible user interface

tools in the provided SDK. Properly leveraging these tools means you can be free of

worrying whether or not your application will look and feel the same across the broad

range of devices running Android today.

In this chapter, we have explored how to use Android’s resource framework to supply

resources for multiple devices. You saw techniques for manipulating static images as

well as creating drawables of your own. We looked at overriding the default behavior of

the window decorations as well as system input methods. We looked at ways to add

user value through animating views. Finally we extended the default toolkit by creating

new custom controls and customizing the AdapterViews used to display sets of data.

In the next chapter, we will look at using the SDK to communicate with the outside

world; accessing network resources and talking to other devices.

155

155

 Chapter

Communications and
Networking

The key to many successful mobile applications is their ability to connect and interact

with remote data sources. Web services and APIs are abundant in today’s world,

allowing an application to interact with just about any service, from weather forecasts to

personal financial information. Bringing this data into the palm of a user’s hand and

making it accessible from anywhere is one of the greatest powers of the mobile

platform. Android builds on the Web foundations that Google is known for and provides

a rich toolset for communicating with the outside world.

3–1. Displaying Web Information

Problem

HTML or image data from the Web needs to be presented in the application without any

modification or processing.

Solution

(API Level 1)

Display the information in a WebView. WebView is a view widget that can be embedded in

any layout to display Web content, both local and remote, in your application. WebView is

based on the same open source WebKit technology that powers the Android Browser

application; affording applications the same level of power and capability.

How It Works

WebView has some very desirable properties when displaying assets downloaded from

the Web , not the least of which are two-dimensional scrolling (horizontal and vertical at

3

CHAPTER 3: Communications and Networking 156

the same time), and zoom controls. A WebView can be the perfect place to house a large

image, such as a stadium map, that the user may want to pan and zoom around. Here

we will discuss how to do this with assets both local and remote.

Display a URL

The simplest case is displaying an HTML page or image by supplying the URL of the

resource to the WebView. The following are a handful of practical uses for this technique

in your applications:

 Provide access to your corporate site without leaving the application

 Display a page of live content from a web server, such as an FAQ

section, that can be changed without requiring an upgrade to the

application.

 Display a large image resource that the user would want to interact

with using pan/zoom.

Let’s take a look at a simple example that loads a very popular web page, but inside the

content view of an Activity instead of opening the Browser (see Listings 3–1 and 3–2).

Listing 3–1. Activity Containing a WebView

public class MyActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 WebView webview = new WebView(this);
 //Enable JavaScript support
 webview.getSettings().setJavaScriptEnabled(true);
 webview.loadUrl("http://www.google.com/");

 setContentView(webview);
 }
}

NOTE: By default, WebView has JavaScript support disabled. Be sure to enable JavaScript in the

WebView.WebSettings object if the content you are displaying requires it.

Listing 3–2. AndroidManifest.xml Setting Required Permissions

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.webview"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".MyActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>

http://www.google.com/
http://schemas.android.com/apk/res/android

CHAPTER 3: Communications and Networking 157

 </activity>
 </application>
 <uses-permission android:name="android.permission.INTERNET" />
</manifest>

IMPORTANT: If the content you are loading into WebView is remote, AndroidManifest.xml must

declare that it uses the android.permission.INTERNET permission.

The result displays the HTML page in your Activity (see Figure 3–1).

Figure 3–1. HTML Page in a WebView

Local Assets

WebView is also quite useful in displaying local content to take advantage of either

HTML/CSS formatting or the pan/zoom behavior it provides to its contents. You may

use the assets directory of your Android project to store resources you would like to

display in a WebView, such as large images or HTML files. To better organize the assets,

you may also create directories under assets to store files in.

WebView.loadUrl() can display stored under assets by using the

file:///android_asset/<resource path> URL schema. For example, if the file android.jpg

was placed into the assets directory, it could be loaded into a WebView using

file:///android_asset/android.jpg

CHAPTER 3: Communications and Networking 158

If that same file were placed in a directory named images under assets, WebView could

load it with the URL

file:///android_asset/images/android.jpg

In addition, WebView.loadData() will load raw HTML stored in a String resource or

variable into the view. Using this technique, preformatted HTML text could be stored in

res/values/strings.xml or downloaded from a remote API and displayed in the

application.

Listings 3–3 and 3–4 show an example Activity with two WebView widgets stacked

vertically on top of one another. The upper view is displaying a large image file stored in

the assets directory, and the lower view is displaying an HTML string stored in the

applications string resources.

Listing 3–3. res/layout/main.xml

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical">
 <WebView
 android:id="@+id/upperview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 />
 <WebView
 android:id="@+id/lowerview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 />
</LinearLayout>

Listing 3–4. Activity to Display Local Web Content

public class MyActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 WebView upperView = (WebView)findViewById(R.id.upperview);
 //Zoom feature must be enabled
 upperView.getSettings().setBuiltInZoomControls(true);
 upperView.loadUrl("file:///android_asset/android.jpg");

 WebView lowerView = (WebView)findViewById(R.id.lowerview);
 String htmlString =
 "<h1>Header</h1><p>This is HTML text
<i>Formatted in italics</i></p>";
 lowerView.loadData(htmlString, "text/html", "utf-8");
 }
}

http://schemas.android.com/apk/res/android

CHAPTER 3: Communications and Networking 159

When the Activity is displayed, each WebView occupies half of the screen’s vertical

space. The HTML string is formatted as expected, while the large image can be scrolled

both horizontally and vertically; the user may even zoom in or out (see Figure 3–2).

Figure 3–2. Two WebViews displaying local resources

3–2. Intercepting WebView Events

Problem

Your application is using a WebView to display content, but also needs to listen and

respond to users clicking links on the page.

Solution

(API Level 1)

Implement a WebViewClient and attach it to the WebView. WebViewClient and

WebChromeClient are two WebKit classes that allow an application to get event callbacks

and customize the behavior of the WebView. By default, WebView will pass a URL to the

ActivityManager to be handled if no WebViewClient is present, which usually results in

any clicked link loading in the Browser application instead of the current WebView.

CHAPTER 3: Communications and Networking 160

How It Works

In Listing 3–5, we create an Activity with a WebView that will handle its own URL loading.

Listing 3–5. Activity with a WebView That Handles URLs

public class MyActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 WebView webview = new WebView(this);
 webview.getSettings().setJavaScriptEnabled(true);
 //Add a client to the view
 webview.setWebViewClient(new WebViewClient());
 webview.loadUrl("http://www.google.com");
 setContentView(webview);
 }
}

In this example, simply providing a plain vanilla WebViewClient to WebView allows it to

handle any URL requests itself, instead of passing them up to the ActivityManager, so

clicking on a link will load the requested page inside the same view. This is because the

default implementation simply returns false for shouldOverrideUrlLoading(), which tells

the client to pass the URL to the WebView and not the application.

In this next case, we will take advantage of the

WebViewClient.shouldOverrideUrlLoading() callback to intercept and monitor user

activity (see Listing 3–6).

Listing 3–6. Activity That Intercepts WebView URLs

public class MyActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 WebView webview = new WebView(this);
 webview.getSettings().setJavaScriptEnabled(true);
 //Add a client to the view
 webview.setWebViewClient(mClient);
 webview.loadUrl("http://www.google.com");
 setContentView(webview);
 }

 private WebViewClient mClient = new WebViewClient() {
 @Override
 public boolean shouldOverrideUrlLoading(WebView view, String url) {
 Uri request = Uri.parse(url);

 if(TextUtils.equals(request.getAuthority(), "www.google.com")) {
 //Allow the load
 return false;
 }

 Toast.makeText(MyActivity.this, "Sorry, buddy", Toast.LENGTH_SHORT).show();
 return true;

http://www.google.com
http://www.google.com
http://www.google.com

CHAPTER 3: Communications and Networking 161

 }
 };
}

In this example, shouldOverrideUrlLoading() determines whether to load the content

back in this WebView based on the url it was passed, keeping the user from leaving

Google’s site. Uri.getAuthority() returns the hostname portion of a URL, and we use

that to check if the link the user clicked is on Google’s domain (www.google.com). If we

can verify the link is to another Google page, returning false allows the WebView to load

the content. If not, we notify the user and returning true tell the WebViewClient that the

application has taken care of this URL, and not to allow the WebView to load it.

This technique can be more sophisticated, where the application actually handles the

URL by doing something interesting. A custom schema could even be developed to

create a full interface between your application and the WebView content.

3–3. Accessing WebView with JavaScript

Problem

Your application needs access to the raw HTML of the current contents displayed in a

WebView, either to read or modify specific values.

Solution

(API Level 1)

Create a JavaScript interface to bridge between the WebView and application code.

How It Works

WebView.addJavascriptInterface() binds a Java object to JavaScript so that its

methods can then be called within the WebView. Using this interface, JavaScript can be

used to marshal data between your application code and the WebView’s HTML.

CAUTION: Allowing JavaScript to control your application can inherently present a security

threat, allowing remote execution of application code. This interface should be utilized with that

possibility in mind.

Let’s look at an example of this in action. Listing 3–7 presents a simple HTML form to be

loaded into the WebView from local assets. Listing 3–8 is an Activity that uses two

JavaScript functions to exchange data between the Activity preferences and content in a

WebView.

http://www.google.com

CHAPTER 3: Communications and Networking 162

Listing 3–7. assets/form.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<form name="input" action="form.html" method="get">
Enter Email: <input type="text" id="emailAddress" />
<input type="submit" value="Submit" />
</form>
</html>

Listing 3–8. Activity with JavaScript Bridge Interface

public class MyActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 WebView webview = new WebView(this);
 webview.getSettings().setJavaScriptEnabled(true);
 webview.setWebViewClient(mClient);
 //Attach the custom interface to the view
 webview.addJavascriptInterface(new MyJavaScriptInterface(), "BRIDGE");

 setContentView(webview);
 //Load the form
 webview.loadUrl("file:///android_asset/form.html");
 }

 private static final String JS_SETELEMENT =
 "javascript:document.getElementById('%s').value='%s'";
 private static final String JS_GETELEMENT =
 "javascript:window.BRIDGE.storeElement('%s',document.getElementById('%s').value)";
 private static final String ELEMENTID = "emailAddress";

 private WebViewClient mClient = new WebViewClient() {
 @Override
 public boolean shouldOverrideUrlLoading(WebView view, String url) {
 //Before leaving the page, attempt to retrieve the email using JavaScript
 view.loadUrl(String.format(JS_GETELEMENT, ELEMENTID, ELEMENTID));
 return false;
 }

 @Override
 public void onPageFinished(WebView view, String url) {
 //When page loads, inject address into page using JavaScript
 SharedPreferences prefs = getPreferences(Activity.MODE_PRIVATE);
 view.loadUrl(String.format(JS_SETELEMENT, ELEMENTID,
 prefs.getString(ELEMENTID, "")));
 }
 };

 private class MyJavaScriptInterface {
 //Store an element in preferences
 @SuppressWarnings("unused")
 public void storeElement(String id, String element) {
 SharedPreferences.Editor edit =
 getPreferences(Activity.MODE_PRIVATE).edit();
 edit.putString(id, element);

http://www.w3.org/TR/html4/strict.dtd

CHAPTER 3: Communications and Networking 163

 edit.commit();
 //If element is valid, raise a Toast
 if(!TextUtils.isEmpty(element)) {
 Toast.makeText(MyActivity.this, element, Toast.LENGTH_SHORT).show();
 }
 }
 }
}

In this somewhat contrived example, a single element form is created in HTML and

displayed in a WebView. In the Activity code, we look for a form value in the WebView

with the id of "emailAddress," and save its value to SharedPreferences every time a link

is clicked on the page (in this case, the submit button of the form) through the

shouldOverrideUrlLoading() callback. Whenever the page finished loading (i.e.,

onPageFinished() is called), we attempt to inject the current value from

SharedPreferences back into the web form.

A Java class is created called MyJavaScriptInterface, which defines the method

storeElement(). When the view is created, we call the

WebView.addJavascriptInterface() method to attach this object to the view, and give it

the name BRIDGE. When calling this method, the String parameter is a name used to

reference the interface inside of JavaScript code.

We have defined two JavaScript methods as constant Strings here, JS_GETELEMENT and

JS_SETELEMENT. These methods are executed on the WebView by being passed to.

loadUrl() Notice that JS_GETELEMENT is a reference to calling our custom interface

function (referenced as BRIDGE.storeElement), which will call that method on

MyJavaScripInterface and store the form element’s value in preferences. If the value

retrieved from the form is not blank, a Toast will also be raised.

Any JavaScript may be executed on the WebView in this manner, and it does not need

to be a method included as part of the custom interface. JS_SETELEMENT, for example,

uses pure JavaScript to set the value of the form element on the page.

One popular application of this technique is to remember form data that a user may

need to enter in the application, but the form must be Web-based, such as a reservation

form or payment form for a Web application that doesn’t have a lower-level API to

access.

3–4. Downloading an Image File

Problem

Your application needs to download and display an image from the Web or other remote

server.

CHAPTER 3: Communications and Networking 164

Solution

(API Level 3)

Use AsyncTask to download the data in a background thread. AsyncTask is a wrapper

class that makes threading long-running operations into the background painless and

simple; as well as managing concurrency with an internal thread pool. In addition to

handling the background threading, callback methods are also provided before, during,

and after the operation executes, allowing you to make any updates required on the

main UI thread.

How It Works

In the context of downloading an image, let’s create a subclass of ImageView called

WebImageView, which will lazily load an image from a remote source and display it as

soon as it is available. The downloading will be performed inside of an AsyncTask

operation (see Listing 3–9).

Listing 3–9. WebImageView

public class WebImageView extends ImageView {

 private Drawable mPlaceholder, mImage;

 public WebImageView(Context context) {
 this(context, null);
 }

 public WebImageView(Context context, AttributeSet attrs) {
 this(context, attrs, 0);
 }

 public WebImageView(Context context, AttributeSet attrs, int defaultStyle) {
 super(context, attrs, defaultStyle);
 }

 public void setPlaceholderImage(Drawable drawable) {
 mPlaceholder = drawable;
 if(mImage == null) {
 setImageDrawable(mPlaceholder);
 }
 }

 public void setPlaceholderImage(int resid) {
 mPlaceholder = getResources().getDrawable(resid);
 if(mImage == null) {
 setImageDrawable(mPlaceholder);
 }
 }

 public void setImageUrl(String url) {
 DownloadTask task = new DownloadTask();
 task.execute(url);

CHAPTER 3: Communications and Networking 165

 }

 private class DownloadTask extends AsyncTask<String, Void, Bitmap> {
 @Override
 protected Bitmap doInBackground(String... params) {
 String url = params[0];
 try {
 URLConnection connection = (new URL(url)).openConnection();
 InputStream is = connection.getInputStream();
 BufferedInputStream bis = new BufferedInputStream(is);

 ByteArrayBuffer baf = new ByteArrayBuffer(50);
 int current = 0;
 while ((current = bis.read()) != -1) {
 baf.append((byte)current);
 }
 byte[] imageData = baf.toByteArray();
 return BitmapFactory.decodeByteArray(imageData, 0, imageData.length);
 } catch (Exception exc) {
 return null;
 }
 }

 @Override
 protected void onPostExecute(Bitmap result) {
 mImage = new BitmapDrawable(result);
 if(mImage != null) {
 setImageDrawable(mImage);
 }
 }
 };
}

As you can see, WebImageView is a simple extension of the Android ImageView widget.

The setPlaceholderImage() methods allow a local drawable to be set as the display

image until the remote content is finished downloading. The bulk of the interesting work

begins once the view has been given a remote URL using setImageUrl(), at which point

the custom AsyncTask begins work.

Notice that an AsyncTask is strongly typed with three values for the input parameter,

progress value, and result. In this case, a String is passed in to the task’s execute

method and the background operation should return a Bitmap. The middle value, the

progress, we are not using in this example, so it is set as Void. When extending

AsyncTask, the only required method to implement is doInBackground(), which defines

the chunk of work to be run on a background thread. In the previous example, this is

where a connection is made to the remote URL provided and the image data is

downloaded. Upon completion, we attempt to create a Bitmap from the downloaded

data. If an error occurs at any point, the operation will abort and return null.

The other callback methods defined in AsyncTask, such as onPreExecute(),

onPostExecute(), and onProgressUpdate(), are called on the main thread for the

purposes of updating the user interface. In the previous example, onPostExecute() is

used to update the view’s image with the result data.

CHAPTER 3: Communications and Networking 166

IMPORTANT: Android UI classes are not thread-safe. Be sure to use one of the callback

methods that occur on the main thread to make any updates to the UI. Do not update views from

within doInBackground().

Listings 3–10 and 3–11 show a simple example of using this class in an Activity. Since

this class is not part of the android.widget or android.view packages, we must user the

fully qualified package name when using it in XML.

Listing 3–10. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical">
 <com.examples.WebImageView
 android:id="@+id/webImage"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />
</LinearLayout>

Listing 3–11. Example Activity

public class WebImageActivity extends Activity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 WebImageView imageView = (WebImageView)findViewById(R.id.webImage);
 imageView.setPlaceholderImage(R.drawable.icon);
 imageView.setImageUrl("http://apress.com/resource/weblogo/Apress_120x90.gif");
 }
}

In this example we first set a local image (the application icon) as the WebImageView

placeholder. This image is displayed immediately to the user. We then tell the view to

fetch an image of the Apress logo from the Web. As noted previously, this downloads

the image in the background and, when it is complete, replaces the placeholder image

in the view. It is this simplicity in creating background operations that had lead the

Android team to refer to AsyncTask as “Painless Threading”.

3–5. Downloading Completely in the Background

Problem

The application must download a large resource to the device, such as a movie file, that

must not require the user to keep the application active.

http://schemas.android.com/apk/res/android
http://apress.com/resource/weblogo/Apress_120x90.gif

CHAPTER 3: Communications and Networking 167

Solution

(API Level 9)

Use the DownloadManager API. The DownloadManager is a service added to the SDK with

API Level 9 that allows a long-running downloads to be handed off and managed

completely by the system. The primary advantage of using this service is that

DownloadManager will continue attempting to download the resource through failures,

connection changes, and even device reboots.

How It Works

Listing 3–12 is a sample Activity that makes use of DownloadManager to handle the

download of a large image file. When complete, the image is displayed in an ImageView.

Whenever you utilize DownloadManager to access content from the Web , be sure to

declare you are using the android.permission.INTERNET in the application’s manifest.

Listing 3–12. DownloadManager Sample Activity

public class DownloadActivity extends Activity {

 private static final String DL_ID = "downloadId";
 private SharedPreferences prefs;

 private DownloadManager dm;
 private ImageView imageView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 imageView = new ImageView(this);
 setContentView(imageView);

 prefs = PreferenceManager.getDefaultSharedPreferences(this);
 dm = (DownloadManager)getSystemService(DOWNLOAD_SERVICE);
 }

 @Override
 public void onResume() {
 super.onResume();

 if(!prefs.contains(DL_ID)) {
 //Start the download
 Uri resource = Uri.parse("http://www.bigfoto.com/dog-animal.jpg");
 DownloadManager.Request request = new DownloadManager.Request(resource);
 request.setAllowedNetworkTypes(Request.NETWORK_MOBILE |
 Request.NETWORK_WIFI);
 request.setAllowedOverRoaming(false);
 //Display in the notification bar
 request.setTitle("Download Sample");
 long id = dm.enqueue(request);
 //Save the unique id
 prefs.edit().putLong(DL_ID, id).commit();
 } else {
 //Download already started, check status

http://www.bigfoto.com/dog-animal.jpg

CHAPTER 3: Communications and Networking 168

 queryDownloadStatus();
 }

 registerReceiver(receiver,
 new IntentFilter(DownloadManager.ACTION_DOWNLOAD_COMPLETE));
 }

 @Override
 public void onPause() {
 super.onPause();
 unregisterReceiver(receiver);
 }

 private BroadcastReceiver receiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 queryDownloadStatus();
 }
 };

 private void queryDownloadStatus() {
 DownloadManager.Query query = new DownloadManager.Query();
 query.setFilterById(prefs.getLong(DL_ID, 0));
 Cursor c = dm.query(query);
 if(c.moveToFirst()) {
 int status = c.getInt(c.getColumnIndex(DownloadManager.COLUMN_STATUS));
 switch(status) {
 case DownloadManager.STATUS_PAUSED:
 case DownloadManager.STATUS_PENDING:
 case DownloadManager.STATUS_RUNNING:
 //Do nothing, still in progress
 break;
 case DownloadManager.STATUS_SUCCESSFUL:
 //Done, display the image
 try {
 ParcelFileDescriptor file =
 dm.openDownloadedFile(prefs.getLong(DL_ID, 0));
 FileInputStream fis =
 new ParcelFileDescriptor.AutoCloseInputStream(file);
 imageView.setImageBitmap(BitmapFactory.decodeStream(fis));
 } catch (Exception e) {
 e.printStackTrace();
 }
 break;
 case DownloadManager.STATUS_FAILED:
 //Clear the download and try again later
 dm.remove(prefs.getLong(DL_ID, 0));
 prefs.edit().clear().commit();
 break;
 }
 }
 }

}

CHAPTER 3: Communications and Networking 169

IMPORTANT: As of this book’s publishing date, there is a bug in the SDK that throws an

Exception claiming android.permission.ACCESS_ALL_DOWNLOADS is required to use

DownloadManager. This Exception is actually thrown when

android.permission.INTERNET is not in your manifest.

This example does all of its useful work in the Activity.onResume() method so the

application can determine the status of the download each time the user returns to the

Activity. Downloads within the manager can be references using a long ID value that is

returned when DownloadManager.enqueue() is called. In the example, we persist that

value in the application’s preferences in order to monitor and retrieve the downloaded

content at any time.

On first launch of the example application, a DownloadManager.Request object is created

to represent the content to download. At a minimum, this request needs the Uri of the

remote resource. However, there are many useful properties to set on the request as

well to control its behavior. Some of the useful properties include:

 Request.setAllowedNetworkTypes()

 Set specific network types over which the download may be retrieved.

 Request.setAllowedOverRoaming()

 Set if the download is allowed to occur while the device is on a

roaming connection.

 Request.setTitle()

 Set a title to be displayed in the system notification for the download.

 Request.setDescription()

 Set a description to be displayed in the system notification for the

download.

Once an ID has been obtained, the application uses that value to check the status of the

download. By registering a BroadcastReceiver to listen for the

ACTION_DOWNLOAD_COMPLETE broadcast, the application will react to the download

finishing by setting the image file on the Activity’s ImageView. If the Activity is paused

while the download completes, upon the next resume the status will be checked and the

ImageView content will be set.

It is important to note that the ACTION_DOWNLOAD_COMPLETE is a broadcast sent by the

DownloadManager for every download it may be managing. Because of this, we still much

check that the download ID we are interested in is really ready.

Destinations

In the Listing 3–12 example, we never told the DownloadManager where to place the file.

Instead, when we wanted to access the file we used the

CHAPTER 3: Communications and Networking 170

DownloadManager.openDownloadedFile() method with the ID value stored in preferences

to get a ParcelFileDescriptor, which can be turned into a stream the application can

read from. This is a simple and straightforward way to gain access to the downloaded

content, but it has some caveats to be aware of.

Without a specific destination, files are downloaded to the shared download cache,

where the system retains the right to delete them at any time to reclaim space. Because

of this, downloading in this fashion is a convenient way to get data quickly, but if your

needs for the download are more long term, a permanent destination should be specific

on external storage using one of the DownloadManager.Request methods:

 Request.setDestinationUri()

 Set the destination to a file Uri located on external storage.

 Request.setDestinationInExternalFilesDir()

 Set the destination to a hidden directory on external storage.

 Request.setDestinationInExternalPublicDir()

 Set the destination to a public directory on external storage.

NOTE: All destination methods writing to external storage will require your application to declare

use of android.permission.WRITE_EXTERNAL_STORAGE in the manifest.

Files without an explicit destination also often get removed when

DownloadManager.remove() gets called to clear the entry from the manager list or the

user clears the downloads list; files downloaded to external storage will not be removed

by the system under these conditions.

3–6. Accessing a REST API

Problem

Your application needs to access a RESTful API over HTTP to interact with the web

services of a remote host.

Solution

(API Level 3)

Use the Apache HTTP classes inside of an AsyncTask. Android includes the Apache

HTTP components library, which provides a robust method of creating connections to

remote APIs. The Apache library includes classes to create GET, POST, PUT, and

DELETE requests with ease, as well as providing support for SSL, cookie storage,

authentication, and other HTTP requirements that your specific API may have in its

HttpClient.

CHAPTER 3: Communications and Networking 171

REST stands for Representational State Transfer, and is a common architectural style

for web services today. RESTful APIs are typically built using standard HTTP verbs to

create requests of the remote resource and the responses are typically returned in a

structured document format, such as XML, JSON, or comma separated values (CSV).

How It Works

Listing 3–13 is an AsyncTask that can process any HttpUriRequest and return the string

response.

Listing 3–13. AsyncTask Processing HttpRequest

public class RestTask extends AsyncTask<HttpUriRequest, Void, String> {

 public static final String HTTP_RESPONSE = "httpResponse";

 private Context mContext;
 private HttpClient mClient;
 private String mAction;

 public RestTask(Context context, String action) {
 mContext = context;
 mAction = action;
 mClient = new DefaultHttpClient();
 }

 public RestTask(Context context, String action, HttpClient client) {
 mContext = context;
 mAction = action;
 mClient = client;
 }

 @Override
 protected String doInBackground(HttpUriRequest... params) {
 try{
 HttpUriRequest request = params[0];
 HttpResponse serverResponse = mClient.execute(request);

 BasicResponseHandler handler = new BasicResponseHandler();
 String response = handler.handleResponse(serverResponse);
 return response;
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 }

 @Override
 protected void onPostExecute(String result) {
 Intent intent = new Intent(mAction);
 intent.putExtra(HTTP_RESPONSE, result);
 //Broadcast the completion
 mContext.sendBroadcast(intent);
 }

}

CHAPTER 3: Communications and Networking 172

The RestTask can be constructed with or without an HttpClient parameter. The reason

for allowing this is so multiple requests can use the same client object. This is extremely

useful if your API requires cookies to maintain a session or if there is a specific set of

required parameters that are easier to set up once (like SSL stores). The task takes an

HttpUriRequest parameter to process (of which HttpGet, HttpPost, HttpPut, and

HttpDelete are all subclasses) and executes it.

A BasicResponseHandler processes the response, which is a convenience class that

abstracts our task from needing to check the response for errors. BasicResponseHandler

will return the HTTP response as a string if the response code is 1XX or 2XX, but throw

an HttpResponseException if the response code was 300 or greater.

The final important piece of this class exists in onPostExecute(), after the interaction

with the API is complete. When constructed, the RestTask takes a String parameter to

be the action of an Intent that is broadcast back to all listeners with the API response

encapsulated as an extra. This broadcast is the notification mechanism back to the

caller of the API that the data is ready for processing.

Now let’s use this powerful new tool to create some basic API requests. In the following

examples we utilize the Yahoo! Search REST API. This API only has two required

parameters for each request:

 appid

 Unique value to identify that application making the request

 query

 String representing the search query you want to execute

Visit http://developer.yahoo.com/search to find more information about this API.

GET Example

A GET request is the simplest and most common request in many public APIs.

Parameters that must be sent with the request are encoded into the URL string itself, so

no additional data must be provided. Let’s create a GET request to search for “Android”

(see Listing 3–14).

Listing 3–14. Activity Executing API GET Request

public class SearchActivity extends Activity {

 private static final String SEARCH_ACTION = "com.examples.rest.SEARCH";
 private static final String SEARCH_URI =
 "http://search.yahooapis.com/WebSearchService/V1/webSearch?appid=%s&query=%s";

 private TextView result;
 private ProgressDialog progress;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

http://developer.yahoo.com/search
http://search.yahooapis.com/WebSearchService/V1/webSearch?appid=%s&query=%s

CHAPTER 3: Communications and Networking 173

 result = new TextView(this);
 setContentView(result);

 //Create the search request
 try{
 String url = String.format(SEARCH_URI, "YahooDemo","Android");
 HttpGet searchRequest = new HttpGet(new URI(url));

 RestTask task = new RestTask(this,SEARCH_ACTION);
 task.execute(searchRequest);
 //Display progress to the user
 progress = ProgressDialog.show(this, "Searching", "Waiting For Results...",
 true);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 public void onResume() {
 super.onResume();
 registerReceiver(receiver, new IntentFilter(SEARCH_ACTION));
 }

 @Override
 public void onPause() {
 super.onPause();
 unregisterReceiver(receiver);
 }

 private BroadcastReceiver receiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 //Clear progress indicator
 if(progress != null) {
 progress.dismiss();
 }
 String response = intent.getStringExtra(RestTask.HTTP_RESPONSE);
 //Process the response data (here we just display it)
 result.setText(response);
 }
 };
}

In the example, we create the type of HTTP request that we need with the URL that we

want to connect to (in this case, a GET request to search.yahooapis.com). The URL is

stored as a constant format string, and the required parameters for the Yahoo! API

(appid and query) are added at runtime just before the request is created.

A RestTask is created with a unique action string to be broadcast upon completion, and

the task is executed. The example also defines a BroadcastReceiver and registers it for

the same action that was sent to the RestTask. When the task is complete, this receiver

will catch the broadcast and the API response can be unpacked and processed. We will

discuss parsing structured XML and JSON responses like this one in Recipes 3–7 and

3–8, so for now the example simply displays the raw response to the user interface.

CHAPTER 3: Communications and Networking 174

POST Example

Many times, APIs require that you provide some data as part of the request, perhaps an

authentication token or the contents of a search query. The API will require you to send

the request over HTTP POST so these values may be encoded into the request body

instead of the URL. Let’s run our search for “Android” again, but using a POST this time

(see Listing 3–15).

Listing 3–15. Activity Executing API POST Request

public class SearchActivity extends Activity {

 private static final String SEARCH_ACTION = "com.examples.rest.SEARCH";
 private static final String SEARCH_URI =
 "http://search.yahooapis.com/WebSearchService/V1/webSearch";
 private static final String SEARCH_QUERY = "Android";

 private TextView result;
 private ProgressDialog progress;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setTitle("Activity");
 result = new TextView(this);
 setContentView(result);

 //Create the search request
 try{
 HttpPost searchRequest = new HttpPost(new URI(SEARCH_URI));
 List<NameValuePair> parameters = new ArrayList<NameValuePair>();
 parameters.add(new BasicNameValuePair("appid","YahooDemo"));
 parameters.add(new BasicNameValuePair("query",SEARCH_QUERY));
 searchRequest.setEntity(new UrlEncodedFormEntity(parameters));

 RestTask task = new RestTask(this,SEARCH_ACTION);
 task.execute(searchRequest);
 //Display progress to the user
 progress = ProgressDialog.show(this, "Searching", "Waiting For Results...",
true);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 public void onResume() {
 super.onResume();
 registerReceiver(receiver, new IntentFilter(SEARCH_ACTION));
 }

 @Override
 public void onPause() {
 super.onPause();
 unregisterReceiver(receiver);
 }

http://search.yahooapis.com/WebSearchService/V1/webSearch

CHAPTER 3: Communications and Networking 175

 private BroadcastReceiver receiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 //Clear progress indicator
 if(progress != null) {
 progress.dismiss();
 }
 String response = intent.getStringExtra(RestTask.HTTP_RESPONSE);
 //Process the response data (here we just display it)
 result.setText(response);
 }
 };
}

Notice in this example that the required parameters passed to the API to execute the

search are encoded into an HttpEntity instead of passed directly in the request URL.

The request created in this case was an HttpPost instance, which is still a subclass of

HttpUriRequest (like HttpGet), so we can use the same RestTask to run the operation. As

with the GET example, we will discuss parsing structured XML and JSON responses like

this one in Recipes 3–7 and 3–8, so for now the example simply displays the raw

response to the user interface.

NOTE: The Apache library bundled with the Android SDK does not include support for Multipart

HTTP POSTs. However, MultipartEntity, from the publicly available

org.apache.http.mime library, is compatible and can be brought in to your project as an

external source.

Basic Authentication

Another common requirement for working with an API is some form of authentication.

Standards are emerging for REST API authentication such as OAuth 2.0, but the most

common authentication method is still basic username and password authentication

over HTTP. In Listing 3–16, we modify the RestTask to enable authentication in the HTTP

header per request.

Listing 3–16. RestTask with Basic Authentication

public class RestAuthTask extends AsyncTask<HttpUriRequest, Void, String> {

 public static final String HTTP_RESPONSE = "httpResponse";

 private static final String AUTH_USER = "user@mydomain.com";
 private static final String AUTH_PASS = "password";

 private Context mContext;
 private AbstractHttpClient mClient;
 private String mAction;

 public RestAuthTask(Context context, String action, boolean authenticate) {
 mContext = context;
 mAction = action;

mailto:user@mydomain.com

CHAPTER 3: Communications and Networking 176

 mClient = new DefaultHttpClient();
 if(authenticate) {
 UsernamePasswordCredentials creds =
 new UsernamePasswordCredentials(AUTH_USER, AUTH_PASS);
 mClient.getCredentialsProvider().setCredentials(AuthScope.ANY, creds);
 }
 }

 public RestAuthTask(Context context, String action, AbstractHttpClient client) {
 mContext = context;
 mAction = action;
 mClient = client;
 }

 @Override
 protected String doInBackground(HttpUriRequest... params) {
 try{
 HttpUriRequest request = params[0];
 HttpResponse serverResponse = mClient.execute(request);

 BasicResponseHandler handler = new BasicResponseHandler();
 String response = handler.handleResponse(serverResponse);
 return response;
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 }

 @Override
 protected void onPostExecute(String result) {
 Intent intent = new Intent(mAction);
 intent.putExtra(HTTP_RESPONSE, result);
 //Broadcast the completion
 mContext.sendBroadcast(intent);
 }

}

Basic authentication is added to the HttpClient in the Apache paradigm. Since our

example task allows for a specific client object to be passed in for use, which may

already have the necessary authentication credentials, we have only modified the case

where a default client is created. In this case, a UsernamePasswordCredentials instance

is created with the username and password strings, and then set on the client’s

CredentialsProvider.

3–7. Parsing JSON

Problem

Your application needs to parse responses from an API or other source that are

formatted in JavaScript Object Notation (JSON).

CHAPTER 3: Communications and Networking 177

Solution

(API Level 1)

Use the org.json parser classes that are baked into Android. The SDK comes with a very

efficient set of classes for parsing JSON formatted strings in the org.json package.

Simply create a new JSONObject or JSONArray from the formatted string data and you’ll

be armed with a set of accessor methods to get primitive data or nested JSONObjects

and JSONArrays from within.

How It Works

This JSON parser is strict by default, meaning that it will halt with an Exception when

encountering invalid JSON data or an invalid key. Accessor methods that prefix with

”get” will throw a JSONException if the requested value is not found. In some cases this

behavior is not ideal, and for the there is a companion set of methods that are prefixed

with ”opt”. These methods will return null instead of throwing an exception when a value

for the requested key is not found. In addition, many of them have an overloaded version

that also takes a fallback parameter to return instead of null.

Let’s look at an example of how to parse a JSON string into useful pieces. Consider the

JSON in Listing 3–17.

Listing 3–17. Example JSON

{
 "person": {
 "name": "John",
 "age": 30,
 "children": [
 {
 "name": "Billy"
 "age": 5
 },
 {
 "name": "Sarah"
 "age": 7
 },
 {
 "name": "Tommy"
 "age": 9
 }
]
 }
}

This defines a single object with three values: name (String), age (Integer), and children.

The parameter entitled ”children” is an array of three more objects, each with their own

name and age. If we were to use org.json to parse this data and display some elements

in TextViews, it would look like the examples in Listings 3–18 and 3–19.

CHAPTER 3: Communications and Networking 178

Listing 3–18. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical">
 <TextView
 android:id="@+id/line1"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <TextView
 android:id="@+id/line2"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <TextView
 android:id="@+id/line3"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"T
 />
</LinearLayout>

Listing 3–19. Sample JSON Parsing Activity

public class MyActivity extends Activity {
 private static final String JSON_STRING =
 "{\"person\":{\"name\":\"John\",\"age\":30,\"children\":
 [{\"name\":\"Billy\",\"age\":5}," + "\"name\":\"Sarah\",\"age\":7},
 {\"name\":\"Tommy\",\"age\":9}]}}";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TextView line1 = (TextView)findViewById(R.id.line1);
 TextView line2 = (TextView)findViewById(R.id.line2);
 TextView line3 = (TextView)findViewById(R.id.line3);
 try {
 JSONObject person = (new JSONObject(JSON_STRING)).getJSONObject("person");
 String name = person.getString("name");
 line1.setText("This person's name is " + name);
 line2.setText(name + " is " + person.getInt("age") + " years old.");
 line3.setText(name + " has " + person.getJSONArray("children").length()
 + " children.");
 } catch (JSONException e) {
 e.printStackTrace();
 }
 }
}

For this example, the JSON string has been hard-coded as a constant. When the

Activity is created, the string is turned into a JSONObject, at which point all its data can

be accessed as key-value pairs, just as if it were stored in a Map or Dictionary. All the

business logic is wrapped in a try/catch statement since we are using the strict methods

for accessing data.

http://schemas.android.com/apk/res/android

CHAPTER 3: Communications and Networking 179

Functions like JSONObject.getString() and JSONObject.getInt() are used to reads

primitive data out and place it in the TextView; the getJSONArray() method pulls out the

nested ”children” array. JSONArray has the same set of accessor methods as JSONObject

to read data, but they take an index into the array as a parameter instead of the name of

the key. In addition, a JSONArray can return its length, which we used in the example to

display how many children the person had.

The result of the sample application is shown in Figure 3–3.

Figure 3–3. Display of parsed JSON data in Activity

Debugging Trick

JSON is a very efficient notation; however, it can be difficult for humans to read a raw

JSON string, which can make it hard to debug parsing issues. Quite often the JSON you

are parsing is coming from a remote source or is not completely familiar to you, and you

need to display it for debugging purposes. Both JSONObject and JSONArray have an

overloaded toString() method that takes an integer parameter for pretty-printing the

data in a returned and indented fashion, making it easier to decipher. Often adding

something like myJsonObject.toString(2) to a troublesome section can save time and

headache.

CHAPTER 3: Communications and Networking 180

3–8. Parsing XML

Problem

Your application needs to parse responses from an API or other source that are

formatted as XML.

Solution

(API Level 1)

Implement a subclass of org.xml.sax.helpers.DefaultHandler to parse the data using

event-based SAX. Android has three primary methods you can use to parse XML data:

DOM, SAX, and Pull. The simplest to implement, and most memory-efficient, of these is

the SAX parser. SAX parsing works by traversing the XML data and generating callback

events at the beginning and end of each element.

How It Works

To describe this further, let’s look at the format of the XML that is returned when

requesting an RSS/ATOM news feed (see Listing 3–20).

Listing 3–20. RSS Basic Structure

<rss version="2.0">
 <channel>
 <item>
 <title></title>
 <link></link>
 <description></description>
 </item>
 <item>
 <title></title>
 <link></link>
 <description></description>
 </item>
 <item>
 <title></title>
 <link></link>
 <description></description>
 </item>
 …
 </channel>
</rss>

Between each of the <title>, <link>, and <description> tags is the value associated

with each item. Using SAX, we can parse this data out into an array of items that the

application could then display to the user in a list (see Listing 3–21).

CHAPTER 3: Communications and Networking 181

Listing 3–21. Custom Handler to Parse RSS

public class RSSHandler extends DefaultHandler {

 public class NewsItem {
 public String title;
 public String link;
 public String description;

 @Override
 public String toString() {
 return title;
 }
 }

 private StringBuffer buf;
 private ArrayList<NewsItem> feedItems;
 private NewsItem item;

 private boolean inItem = false;

 public ArrayList<NewsItem> getParsedItems() {
 return feedItems;
 }

 //Called at the head of each new element
 @Override
 public void startElement(String uri, String name, String qName, Attributes atts) {
 if("channel".equals(name)) {
 feedItems = new ArrayList<NewsItem>();
 } else if("item".equals(name)) {
 item = new NewsItem();
 inItem = true;
 } else if("title".equals(name) && inItem) {
 buf = new StringBuffer();
 } else if("link".equals(name) && inItem) {
 buf = new StringBuffer();
 } else if("description".equals(name) && inItem) {
 buf = new StringBuffer();
 }
 }

 //Called at the tail of each element end
 @Override
 public void endElement(String uri, String name, String qName) {
 if("item".equals(name)) {
 feedItems.add(item);
 inItem = false;
 } else if("title".equals(name) && inItem) {
 item.title = buf.toString();
 } else if("link".equals(name) && inItem) {
 item.link = buf.toString();
 } else if("description".equals(name) && inItem) {
 item.description = buf.toString();
 }

 buf = null;
 }

CHAPTER 3: Communications and Networking 182

 //Called with character data inside elements
 @Override
 public void characters(char ch[], int start, int length) {
 //Don't bother if buffer isn't initialized
 if(buf != null) {
 for (int i=start; i<start+length; i++) {
 buf.append(ch[i]);
 }
 }
 }
}

The RSSHandler is notified at the beginning and end of each element via startElement()

and endElement(). In between, the characters that make up the element’s value are

passed into the characters() callback.

1. When the parser encounters the first element, the list of items is

initialized.

2. When each item element is encountered a new NewsItem model is

initialized.

3. Inside of each item element, data elements are captured in a

StringBuffer and inserted into the members of the NewsItem.

4. When the end of each item is reached, the NewsItem is added to the

list.

5. When parsing is complete, feedItems is a complete list of all the items in

the feed.

Let’s look at this in action by using some of the tricks from the API example in Recipe 3–

6 to download the latest Google News in RSS form (see Listing 3–22).

Listing 3–22. Activity That Parses the XML and Displays the Items

public class FeedActivity extends Activity {
 private static final String FEED_ACTION = "com.examples.rest.FEED";
 private static final String FEED_URI = "http://news.google.com/?output=rss";

 private ListView list;
 private ArrayAdapter<NewsItem> adapter;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 list = new ListView(this);
 adapter = new ArrayAdapter<NewsItem>(this, android.R.layout.simple_list_item_1,
 android.R.id.text1);
 list.setAdapter(adapter);
 list.setOnItemClickListener(new AdapterView.OnItemClickListener() {
 @Override
 public void onItemClick(AdapterView<?> parent, View v, int position,
 long id) {

http://news.google.com/?output=rss

CHAPTER 3: Communications and Networking 183

 NewsItem item = adapter.getItem(position);
 //Launch the link in the browser
 Intent intent = new Intent(Intent.ACTION_VIEW);
 intent.setData(Uri.parse(item.link));
 startActivity(intent);
 }
 });

 setContentView(list);
 }

 @Override
 public void onResume() {
 super.onResume();
 registerReceiver(receiver, new IntentFilter(FEED_ACTION));
 //Retrieve the RSS feed
 try{
 HttpGet feedRequest = new HttpGet(new URI(FEED_URI));
 RestTask task = new RestTask(this,FEED_ACTION);
 task.execute(feedRequest);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 public void onPause() {
 super.onPause();
 unregisterReceiver(receiver);
 }

 private BroadcastReceiver receiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 String response = intent.getStringExtra(RestTask.HTTP_RESPONSE);

 try {
 //Parse the response data using SAX
 SAXParserFactory factory = SAXParserFactory.newInstance();
 SAXParser p = factory.newSAXParser();
 RSSHandler parser = new RSSHandler();
 //Run the parsing operation
 p.parse(new InputSource(new StringReader(response)), parser);
 //Clear all current items from the list
 adapter.clear();
 //Add all items from the parsed XML
 for(NewsItem item : parser.getParsedItems()) {
 adapter.add(item);
 }
 //Tell adapter to update the view
 adapter.notifyDataSetChanged();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 };
}

CHAPTER 3: Communications and Networking 184

The example has been modified to display a ListView, which will be populated by the

parsed items from the RSS feed. In the example, we add an OnItemClickListener to the

list that will launch the news item’s link in the browser.

Once the data is returned from the API in the BroadcastReceiver, Android’s built-in

SAXParser handles the job of traversing the XML string. SAXParser.parse() uses an

instance of our RSSHandler to process the XML, which results in the handler’s feedItems

list being populated. The receiver then iterates through all the parsed items and adds

them to an ArrayAdapter for display in the ListView.

3–8. Receiving SMS

Problem

Your application must react to incoming SMS messages, commonly called text

messages.

Solution

(API Level 1)

Register a BroadcastReceiver to listen for incoming messages, and process them in

onReceive(). The operating system will fire a broadcast Intent with the

android.provider.Telephony.SMS_RECEIVED action whenever there is an incoming SMS

message. Your application can register a BroadcastReceiver to filter for this Intent and

process the incoming data.

NOTE: Receiving this broadcast does not prevent the rest of the system’s applications from

receiving it as well. The default messaging application will still receive and display any incoming

SMS.

How It Works

In previous recipes, we have defined BroadcastReceivers as private internal members to

an Activity. In this case, it is probably best to define the receiver separately and register

it in AndroidManifest.xml using the <receiver> tag. This will allow your receiver to

process the incoming events even when your application is not active. Listings 3–23 and

3–24 show an example receiver that monitors all incoming SMS, and raises a Toast

when one arrives from the interesting party.

Listing 3–23. Incoming SMS BroadcastReceiver

public class SmsReceiver extends BroadcastReceiver {
 private static final String SHORTCODE = "55443";

 @Override

CHAPTER 3: Communications and Networking 185

 public void onReceive(Context context, Intent intent) {
 Bundle bundle = intent.getExtras();

 Object[] messages = (Object[])bundle.get("pdus");
 SmsMessage[] sms = new SmsMessage[messages.length];
 //Create messages for each incoming PDU
 for(int n=0; n < messages.length; n++) {
 sms[n] = SmsMessage.createFromPdu((byte[]) messages[n]);
 }
 for(SmsMessage msg : sms) {
 //Verify if the message came from our known sender
 if(TextUtils.equals(msg.getOriginatingAddress(), SHORTCODE)) {
 Toast.makeText(context,
 "Received message from the mothership: "+msg.getMessageBody(),
 Toast.LENGTH_SHORT).show();
 }
 }
 }
}

Listing 3–24. Partial AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest …>
 <application …>
 <receiver android:name=".SmsReceiver">
 <intent-filter>
 <action android:name="android.provider.Telephony.SMS_RECEIVED" />
 </intent-filter>
 </receiver>
 </application>
 <uses-permission android:name="android.permission.RECEIVE_SMS" />
</manifest>

IMPORTANT: Receiving SMS requires the android.permission.RECEIVE_SMS permission

be declared in the manifest!

Incoming SMS messages are passed via the extras of the broadcast Intent as an Object

array of byte arrays, each byte array representing an SMS packet data unit (PDU).

SmsMessage.createFromPdu() is a convenience method allowing us to create SmsMessage

objects from the raw PDU data. With the setup work complete, we can inspect each

message to determine if there is something interesting to handle or process. In the

example, we compare the originating address of each message against a known short

code, and notify the user when one arrives.

At the point in the example where the Toast is raised, you may wish to provide

something more useful to the user. Perhaps the SMS message includes an offer code

for your application, and you could launch the appropriate Activity to display this

information to the user within the application.

CHAPTER 3: Communications and Networking 186

3–9. Sending an SMS Message

Problem

Your application must issue outgoing SMS messages.

Solution

(API Level 4)

Use the SMSManager to send text and data SMS messages. SMSManager is a system

service that handles sending SMS and providing feedback to the application about the

status of the operation. SMSManager provides methods to send text messages using

SmsManager.sendTextMessage() and SmsManager.sendMultipartTextMessage(), or data

messages using SmsManager.sendDataMessage(). Each of these methods takes

PendingIntent parameters to deliver status for the send operation and the message

delivery back to a requested destination.

How It Works

Let’s take a look at a simple example Activity that sends an SMS message and monitors

its status (see Listing 3–25).

Listing 3–25. Activity to Send SMS Messages

public class SmsActivity extends Activity {
 private static final String SHORTCODE = "55443";
 private static final String ACTION_SENT = "com.examples.sms.SENT";
 private static final String ACTION_DELIVERED = "com.examples.sms.DELIVERED";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 Button sendButton = new Button(this);
 sendButton.setText("Hail the Mothership");
 sendButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 sendSMS("Beam us up!");
 }
 });

 setContentView(sendButton);
 }

 private void sendSMS(String message) {
 PendingIntent sIntent = PendingIntent.getBroadcast(this, 0,
 new Intent(ACTION_SENT), 0);
 PendingIntent dIntent = PendingIntent.getBroadcast(this, 0,
 new Intent(ACTION_DELIVERED), 0);
 //Monitor status of the operation

CHAPTER 3: Communications and Networking 187

 registerReceiver(sent, new IntentFilter(ACTION_SENT));
 registerReceiver(delivered, new IntentFilter(ACTION_DELIVERED));
 //Send the message
 SmsManager manager = SmsManager.getDefault();
 manager.sendTextMessage(SHORTCODE, null, message, sIntent, dIntent);
 }

 private BroadcastReceiver sent = new BroadcastReceiver(){
 @Override
 public void onReceive(Context context, Intent intent) {
 switch (getResultCode()) {
 case Activity.RESULT_OK:
 //Handle sent success
 break;
 case SmsManager.RESULT_ERROR_GENERIC_FAILURE:
 case SmsManager.RESULT_ERROR_NO_SERVICE:
 case SmsManager.RESULT_ERROR_NULL_PDU:
 case SmsManager.RESULT_ERROR_RADIO_OFF:
 //Handle sent error
 break;
 }

 unregisterReceiver(this);
 }
 };

 private BroadcastReceiver delivered = new BroadcastReceiver(){
 @Override
 public void onReceive(Context context, Intent intent) {
 switch (getResultCode()) {
 case Activity.RESULT_OK:
 //Handle delivery success
 break;
 case Activity.RESULT_CANCELED:
 //Handle delivery failure
 break;
 }

 unregisterReceiver(this);
 }
 };
}

IMPORTANT: Sending SMS messages requires the android.permission.SEND_SMS

permission be declared in the manifest!

In the example, an SMS message is sent out via the SMSManager whenever the user taps

the button. Because SMSManager is a system service, the static SMSManager.getDefault()

method must be called to get a reference to it. sendTextMessage() takes the destination

address (number), service center address, and message as parameters. The service

center address should be null to allow SMSManager to use the system default.

Two BroadcastReceivers are registered to receive the callback Intents that will be sent:

one for status of the send operation and the other for status of the delivery. The

CHAPTER 3: Communications and Networking 188

receivers are registered only while the operations are pending, and they unregister

themselves as soon as the Intent is processed.

3–10. Communicating over Bluetooth

Problem

You want to leverage Bluetooth communication to transmit data between devices in

your application.

Solution

(API Level 5)

Use the Bluetooth APIs introduced in API Level 5 to create a peer-to-peer connection.

Bluetooth is a very popular wireless radio technology that is in almost all mobile devices

today. Many users think of Bluetooth as a way for their mobile device to connect with a

wireless headset or integrate with their vehicles stereo system. However, Bluetooth can

also be a simple and effective way for developers to create peer-to-peer connections in

their applications.

How It Works

IMPORTANT: Bluetooth is not currently supported in the Android emulator. In order to execute

the code in this example, it must be run on an Android device. Furthermore, to appropriately test

the functionality, two devices running the application simultaneously is required.

Bluetooth Peer-To-Peer

Listings 3–26 through 3–28 illustrate an example that uses Bluetooth to find other users

nearby and quickly exchange contact information (in this case, just an email address).

Connections are made over Bluetooth by discovering available ”services” and

connecting to them by referencing their unique 128-bit UUID value. This means that the

UUID of the service you want to use must either be discovered or known ahead of time.

In this example, the same application is running on both devices on each end of the

connection, so we have the freedom to define the UUID in code as a constant because

both devices will have a reference to it.

NOTE: To ensure that the UUID you choose is unique, use one of the many free UUID generators

available on the Web .

CHAPTER 3: Communications and Networking 189

Listing 3–26. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0" package="com.examples.bluetooth">
 <application android:icon="@drawable/icon" android:label="@string/app_name"
 <activity android:name=".ExchangeActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="5" />

 <uses-permission android:name="android.permission.BLUETOOTH"/>
 <uses-permission android:name="android.permission.BLUETOOTH_ADMIN"/>
</manifest>

IMPORTANT: Remember that android.permission.BLUETOOTH must be declared in the

manifest to use these APIs. In addition, android.permission.BLUETOOTH_ADMIN must be

declared to make changes to preferences like discoverability, and enable/disable the adapter.

Listing 3–27. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:text="Enter Your Email:"
 />
 <EditText
 android:id="@+id/emailField"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_below="@id/label"
 android:singleLine="true"
 android:inputType="textEmailAddress"
 />
 <Button
 android:id="@+id/scanButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:text="Connect and Share"
 />
 <Button

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 3: Communications and Networking 190

 android:id="@+id/listenButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_above="@id/scanButton"
 android:text="Listen for Sharers"
 />
</RelativeLayout>

The user interface for this example consists of an EditText for the user to enter their

email address, and two buttons to initiate communication. The button titled “Listen for

Sharers” puts the device into Listen Mode. In this mode, the device will accept and

communicate with any device that attempts to connect with it. The button titled

”Connect and Share” puts the device into Search Mode. In this mode, the device

searches for any device that is currently listening and makes a connection (see Listing

3–28).

Listing 3–28. Bluetooth Exchange Activity

public class ExchangeActivity extends Activity {

 // Unique UUID for this application (generated from the web)
 private static final UUID MY_UUID =
 UUID.fromString("321cb8fa-9066-4f58-935e-ef55d1ae06ec");
 //Friendly name to match while discovering
 private static final String SEARCH_NAME = "bluetooth.recipe";

 BluetoothAdapter mBtAdapter;
 BluetoothSocket mBtSocket;
 Button listenButton, scanButton;
 EditText emailField;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 requestWindowFeature(Window.FEATURE_INDETERMINATE_PROGRESS);
 setContentView(R.layout.main);

 //Check the system status
 mBtAdapter = BluetoothAdapter.getDefaultAdapter();
 if(mBtAdapter == null) {
 Toast.makeText(this, "Bluetooth is not supported.",
 Toast.LENGTH_SHORT).show();
 finish();
 return;
 }
 if (!mBtAdapter.isEnabled()) {
 Intent enableIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);
 startActivityForResult(enableIntent, REQUEST_ENABLE);
 }

 emailField = (EditText)findViewById(R.id.emailField);
 listenButton = (Button)findViewById(R.id.listenButton);
 listenButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 //Make sure the device is discoverable first
 if (mBtAdapter.getScanMode() !=

CHAPTER 3: Communications and Networking 191

 BluetoothAdapter.SCAN_MODE_CONNECTABLE_DISCOVERABLE) {
 Intent discoverableIntent = new
 Intent(BluetoothAdapter.ACTION_REQUEST_DISCOVERABLE);
 discoverableIntent.putExtra(BluetoothAdapter.
 EXTRA_DISCOVERABLE_DURATION, 300);
 startActivityForResult(discoverableIntent, REQUEST_DISCOVERABLE);
 return;
 }
 startListening();
 }
 });
 scanButton = (Button)findViewById(R.id.scanButton);
 scanButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mBtAdapter.startDiscovery();
 setProgressBarIndeterminateVisibility(true);
 }
 });
 }

 @Override
 public void onResume() {
 super.onResume();
 //Register the activity for broadcast intents
 IntentFilter filter = new IntentFilter(BluetoothDevice.ACTION_FOUND);
 registerReceiver(mReceiver, filter);
 filter = new IntentFilter(BluetoothAdapter.ACTION_DISCOVERY_FINISHED);
 registerReceiver(mReceiver, filter);
 }

 @Override
 public void onPause() {
 super.onPause();
 unregisterReceiver(mReceiver);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 try {
 if(mBtSocket != null) {
 mBtSocket.close();
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 private static final int REQUEST_ENABLE = 1;
 private static final int REQUEST_DISCOVERABLE = 2;

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 switch(requestCode) {
 case REQUEST_ENABLE:
 if(resultCode != Activity.RESULT_OK) {

CHAPTER 3: Communications and Networking 192

 Toast.makeText(this, "Bluetooth Not Enabled.",
 Toast.LENGTH_SHORT).show();
 finish();
 }
 break;
 case REQUEST_DISCOVERABLE:
 if(resultCode == Activity.RESULT_CANCELED) {
 Toast.makeText(this, "Must be discoverable.",
 Toast.LENGTH_SHORT).show();
 } else {
 startListening();
 }
 break;
 default:
 break;
 }
 }

 //Start a server socket and listen
 private void startListening() {
 AcceptTask task = new AcceptTask();
 task.execute(MY_UUID);
 setProgressBarIndeterminateVisibility(true);
 }

 //AsyncTask to accept incoming connections
 private class AcceptTask extends AsyncTask<UUID,Void,BluetoothSocket> {

 @Override
 protected BluetoothSocket doInBackground(UUID... params) {
 String name = mBtAdapter.getName();
 try {
 //While listening, set the discovery name to a specific value
 mBtAdapter.setName(SEARCH_NAME);
 BluetoothServerSocket socket =
 mBtAdapter.listenUsingRfcommWithServiceRecord("BluetoothRecipe",
 params[0]);
 BluetoothSocket connected = socket.accept();
 //Reset the BT adapter name
 mBtAdapter.setName(name);
 return connected;
 } catch (IOException e) {
 e.printStackTrace();
 mBtAdapter.setName(name);
 return null;
 }
 }

 @Override
 protected void onPostExecute(BluetoothSocket socket) {
 if(socket == null) {
 return;
 }
 mBtSocket = socket;
 ConnectedTask task = new ConnectedTask();
 task.execute(mBtSocket);
 }

CHAPTER 3: Communications and Networking 193

}

 //AsyncTask to receive a single line of data and post
 private class ConnectedTask extends AsyncTask<BluetoothSocket,Void,String> {

 @Override
 protected String doInBackground(BluetoothSocket... params) {
 InputStream in = null;
 OutputStream out = null;
 try {
 //Send your data
 out = params[0].getOutputStream();
 out.write(emailField.getText().toString().getBytes());
 //Receive the other's data
 in = params[0].getInputStream();
 byte[] buffer = new byte[1024];
 in.read(buffer);
 //Create a clean string from results
 String result = new String(buffer);
 //Close the connection
 mBtSocket.close();
 return result.trim();
 } catch (Exception exc) {
 return null;
 }
 }

 @Override
 protected void onPostExecute(String result) {
 Toast.makeText(ExchangeActivity.this, result, Toast.LENGTH_SHORT).show();
 setProgressBarIndeterminateVisibility(false);
 }
 }

 // The BroadcastReceiver that listens for discovered devices
 private BroadcastReceiver mReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 String action = intent.getAction();

 // When discovery finds a device
 if (BluetoothDevice.ACTION_FOUND.equals(action)) {
 // Get the BluetoothDevice object from the Intent
 BluetoothDevice device =
 intent.getParcelableExtra(BluetoothDevice.EXTRA_DEVICE);
 if(TextUtils.equals(device.getName(), SEARCH_NAME)) {
 //Matching device found, connect
 mBtAdapter.cancelDiscovery();
 try {
 mBtSocket = device.createRfcommSocketToServiceRecord(MY_UUID);
 mBtSocket.connect();
 ConnectedTask task = new ConnectedTask();
 task.execute(mBtSocket);
 } catch (IOException e) {
 e.printStackTrace();
 }

CHAPTER 3: Communications and Networking 194

 }
 //When discovery is complete
 } else if (BluetoothAdapter.ACTION_DISCOVERY_FINISHED.equals(action)) {
 setProgressBarIndeterminateVisibility(false);
 }

 }
 };
}

When the application first starts up, it runs some basic checks on the Bluetooth status

of the device. If BluetoothAdapter.getDefaultAdapter() returns null, it is an indication

that the device does not have Bluetooth support and the application will go no further.

Even with Bluetooth on the device, it must be enabled for the application to use it. If

Bluetooth is disabled, the preferred method for enabling the adapter is to send an Intent

to the system with BluetoothAdapter.ACTION_REQUEST_ENABLE as the action. This notifies

the user of the issue, and allows them to enable Bluetooth. A BluetoothAdapter can be

manually enabled with the enable() method, but we strongly discourage you from doing

this unless you have requested the user’s permission another way.

With Bluetooth validated, the application waits for user input. As mentioned previously,

the example can be put into one of two modes on each device, Listen Mode or Search

Mode. Let’s look at the path each mode takes.

Listen Mode

Tapping the ”Listen for Sharers” button starts the application listening for incoming

connections. In order for a device to accept incoming connections from devices it may

not know, it must be set as discoverable. The application verifies this by checking if the

adapter’s scan mode is equal to SCAN_MODE_CONNECTABLE_DISCOVERABLE. If the adapter

does not meet this requirement, another Intent is sent to the system to notify the user

that they should allow the device to be discoverable, similar to the method used to

request Bluetooth be enabled. If the user accepts this request, the Activity will return a

result equal to the length of time they allowed the device to be discoverable; if they

cancel the request, the Activity will return Activity.RESULT_CANCELED. Our example

monitors for a user canceling in onActivityResult(), and finishes under those

conditions.

If the user allows discovery, or if the device was already discoverable, an AcceptTask is

created and executed. This task creates a listener socket for the specified UUID of the

service we defined, and blocks while waiting for an incoming connection request. Once

a valid request is received, it is accepted and the application moves into Connected

Mode.

During the period of time while the device is listening, its Bluetooth name is set to a

known unique value (SEARCH_NAME) to speed up the discovery process (we’ll see more

about why in the ”Search Mode” section). Once the connection is established, the

default name given to the adapter is restored.

CHAPTER 3: Communications and Networking 195

Search Mode

Tapping the ”Connect and Share” button tells the application to begin searching for

another device to connect with. It does this by starting a Bluetooth discovery process

and handling the results in a BroadcastReceiver. When a discovery is started via

BluetoothAdapter.startDiscovery(), Android will asynchronously call back with

broadcasts under two conditions: when another device is found, and when the process

is complete.

The private receiver mReceiver is registered at all times when the Activity is visible to the

user, and will receive a broadcast with each new discovered device. Recall from the

discussion on Listen Mode that the device name of a listening device was set to a

unique value. Upon each discovery made, the receiver checks if the device name

matches our known value, and attempts to connect when one is found. This is important

to the speed of the discovery process because otherwise the only way to validate each

device is to attempt a connection to the specific service UUID and see if the operation is

successful. The Bluetooth connection process is heavyweight and slow, and should only

be done when necessary to keep things performing well.

This method of matching devices also relieves the user of the need to select manually

which device they want to connect to. The application is smart enough to find another

device that is running the same application and in a listening mode to complete the

transfer. Removing the user also means that this value should be unique and obscure so

as to avoid finding other devices that may accidentally have the same name.

With a matching device found, we cancel the discovery process (as it is also

heavyweight and will slow down the connection) and make a connection to the service’s

UUID. With a successful connection made, the application moves into Connected Mode.

Connected Mode

Once connected, the application on both devices will create a ConnectedTask to send

and receive the user contact information. The connected BluetoothSocket has an

InputStream and an OutputStream available to do data transfer. First, the current value of

the email text field is packaged up and written to the OutputStream. Then, the

InputStream is read to receive the remote device’s information. Finally, each device

takes the raw data it received and packages it into a clean String to display for the user.

The ConnectedTask.onPostExecute() method is tasked with displaying the results of the

exchange to the user; currently, this is done by raising a Toast with the received

contents. After the transaction, the connection is closed and both devices are in the

same mode and ready to execute another exchange.

For more information on this topic, take a look at the BluetoothChat sample application

provided with the Android SDK. This application provides a great demonstration of

making a long-lived connection for users to send chat messages between devices.

CHAPTER 3: Communications and Networking 196

Bluetooth Beyond Android

As we mentioned in the beginning of this section, Bluetooth is found in many wireless

devices besides mobile phones and tablets. RFCOMM interfaces also exist in devices

like Bluetooth modems and serial adapters. The same APIs that were used to create the

peer-to-peer connection between Android devices can also be used to connect to other

embedded Bluetooth devices for the purposes of monitoring and control.

The key to establishing a connection with these embedded devices is obtaining the

UUID of the RFCOMM services they support. As with the previous example, with the

proper UUID we can create a BluetoothSocket and transmit data. However, since the

UUID is not known as it was in the last example, we must have a way to discover and

obtain it.

The capability to do this exists in the SDK, although it is not documented and is subject

to change in future versions.

Discover a UUID

A quick glance at the source code for BluetoothDevice (thanks to Android’s open source

roots) points out that there are a couple hidden methods that return UUID information for

a remote device. The simplest to use is a synchronous (blocking) method called

getUuids(), which returns an array of ParcelUuid objects referring to each service.

However, since the method is currently hidden, it must be called using Java reflection.

Here is an example method for reading the UUIDs of service records from a remote

device using reflection:

public ParcelUuid servicesFromDevice(BluetoothDevice device) {
 try {
 Class cl = Class.forName("android.bluetooth.BluetoothDevice");
 Class[] par = {};
 Method method = cl.getMethod("getUuids", par);
 Object[] args = {};
 ParcelUuid[] retval = (ParcelUuid[])method.invoke(device, args);
 return retval;
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
}

There is also an asynchronous version of this process named fetchUuidsWithSdp(),

which can be called in the same fashion. Because it is asynchronous, the results are

returned through a broadcast Intent. Register a BroadcastReceiver for

android.bleutooth.device.action.UUID (note the misspelling of Bluetooth) to get a

callback with the UUIDs discovered for that device. The ParcelUuid array obtained is an

extra passed with the Intent referenced by android.bluetooth.device.extra.UUID, and

it is the same as the result of the synchronous example.

CHAPTER 3: Communications and Networking 197

3–11. Querying Network Reachability

Problem

Your application needs to be aware of changes in network connectivity.

Solution

(API Level 1)

Keep tabs on the device’s connectivity with ConnectivityManager. One of the paramount

issues to consider in mobile application design is that the network is not always available

for use. As people move about, the speed and capabilities of the network are subject to

change. Because of this, an application that uses network resources should always be

able to detect if those resources are reachable, and notify the user when they are not.

In addition to reachability, ConnectivityManager can provide the application with

information about the connection type. This allows you to make decisions like whether

to download a large file because the user is currently roaming and it may cost them a

fortune.

How It Works

Listing 3–29 creates a wrapper method you can place in your code to check for network

connectivity.

Listing 3–29. ConnectivityManager Wrapper

public boolean isNetworkReachable() {
 ConnectivityManager mManager =
 (ConnectivityManager)context.getSystemService(Context.CONNECTIVITY_SERVICE);
 NetworkInfo current = mManager.getActiveNetworkInfo();
 if(current == null) {
 return false;
 }
 return (current.getState() == NetworkInfo.State.CONNECTED);
}

ConnectivityManager does pretty much all of the work in checking the network status,

and this wrapper method is more to simplify having to check all possible network paths

each time. Note that ConnectivityManager.getActiveNetworkInfo() will return null if

there is no active data connection available, so we must check for that case first. If there

is an active network, we can inspect its state, which will return one of the following:

 DISCONNECTED

 CONNECTING

 CONNECTED

 DISCONNECTING

CHAPTER 3: Communications and Networking 198

When the state returns as CONNECTED, the network is considered stable and we can

utilize it to access remote resources.

It is considered good practice to call a reachability check whenever a network

request fails, and notify the user that their request failed due to a lack of

connectivity. Listing 3–30 is an example of doing this when a network access fails.

Listing 3–30. Notify User of Connectivity Failure

try {
 //Attempt to access network resource
 //May throw HttpResponseException or some other IOException on failure
} catch (Exception e) {
 if(!isNetworkReachable()) {
 AlertDialog.Builder builder = new AlertDialog.Builder(context);
 builder.setTitle("No Network Connection");
 builder.setMessage("The Network is unavailable. Please try your request again later.");
 builder.setPositiveButton("OK",null);
 builder.create().show();
 }
}

Determining Connection Type

In cases where it is also essential to know whether the user is connected to a network

that charges for bandwidth, we can call NetworkInfo.getType() on the active network

connection (see Listing 3–31).

Listing 3–31. ConnectivityManager Bandwidth Checking

public boolean isWifiReachable() {
 ConnectivityManager mManager =
 (ConnectivityManager)context.getSystemService(Context.CONNECTIVITY_SERVICE);
 NetworkInfo current = mManager.getActiveNetworkInfo();
 if(current == null) {
 return false;
 }
 return (current.getType() == ConnectivityManager.TYPE_WIFI);
}

This modified version of the reachability check determines if the users is attached to a

WiFi connection, typically indicating that they have a faster connection where bandwidth

isn’t tariffed.

Summary
Connecting an Android application to the Web and web services is a great way to add

user value in today’s connected world. Android’s framework for connecting to the Web

and other remote hosts makes adding this functionality straightforward. We’ve

explored how to bring the standards of the Web into your application, using HTML and

JavaScript to interact with the user, but within a native context. You also saw how to

use Android to download content from remote servers and consume it in your

application. We also exposed that a web server is not the only host worth connecting

CHAPTER 3: Communications and Networking 199

to, using Bluetooth and SMS to communicate directly from one device to another. In

the next chapter, we will look at using the tools Android provides to interact with a

device’s hardware resources.

201

201

 Chapter

Interacting with Device
Hardware and Media

Integrating application software with device hardware presents opportunities to create

unique user experiences that only the mobile platform can provide. Capturing media

using the microphone and camera allows applications to incorporate a personal touch

through a photo or recorded greeting. Integration of sensor and location data can help

you develop applications to answer relevant questions such as, “Where am I?” and,

“What am I looking at?”

In this chapter, we are going to investigate how the location, media, and sensor APIs

provided by Android can be used to add that unique value the mobile brings into your

applications.

4–1. Integrating Device Location

Problem

You want to leverage the device’s ability to report its current physical position in an

application.

Solution

(API Level 1)

Utilize the background services provided by the Android LocationManager. One of the

most powerful benefits that a mobile application can often provide to the user is the

ability to add context by including information based on where they are currently

located. Applications may ask the LocationManager to provide updates of a device’s

location either regularly, or just when it is detected that the device has moved a

significant distance.

4

CHAPTER 4: Interacting with Device Hardware and Media 202

When working with the Android location services, some care should be taken to respect

both the device battery and the user’s wishes. Obtaining a fine-grained location fix using

a device’s GPS is a power-intensive process, and can quickly drain the battery in the

user’s device if left on continuously. For this reason, among others, Android allows the

user to disable certain sources of location data, such as the device’s GPS. These

settings must be observed when your application decides how it will obtain location.

Each location source also comes with a tradeoff degree of accuracy. The GPS will return

a more exact location (within a few meters), but take longer to fix and use more power;

whereas the Network location will usually be accurate to a few kilometers, but is

returned much faster and uses less power. Consider the requirements of the application

when deciding which sources to access; if your application only wishes to display

information about the local city, perhaps GPS fixes are not necessary.

IMPORTANT: When using location services in an application, keep in mind that

android.permission.ACCESS_COARSE_LOCATION or

android.permission.ACCESS_FINE_LOCATION must be declared in the application

manifest. If you declare android.permission.ACCESS_FINE_LOCATION, you do not need

both as it includes coarse permissions as well.

How It Works

When creating a simple monitor for user location in an Activity or Service, there are a

few actions that we need to consider:

1. Determine if the source we want to use is enabled. If it’s not, decide

whether to ask the user to enable it or try another source.

2. Register for updates using reasonable values for minimum distance and

update interval.

3. Unregister for updates when they are no longer needed to conserve

device power.

In Listing 4–1, we register an Activity to listen for location updates while it is visible to

the user, and display that location onscreen.

Listing 4–1. Activity Monitoring Location Updates

public class MyActivity extends Activity {

 LocationManager manager;
 Location currentLocation;

 TextView locationView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

CHAPTER 4: Interacting with Device Hardware and Media 203

 locationView = new TextView(this);
 setContentView(locationView);

 manager = (LocationManager)getSystemService(Context.LOCATION_SERVICE);
 }

 @Override
 public void onResume() {
 super.onResume();
 if(!manager.isProviderEnabled(LocationManager.GPS_PROVIDER)) {
 //Ask the user to enable GPS
 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setTitle("Location Manager");
 builder.setMessage("We want to use your location, but GPS is currently disabled.\n"
 +"Would you like to change these settings now?");
 builder.setPositiveButton("Yes", new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 //Launch settings, allowing user to make a change
 Intent i = new Intent(Settings.ACTION_LOCATION_SOURCE_SETTINGS);
 startActivity(i);
 }
 });
 builder.setNegativeButton("No", new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 //No location service, no Activity
 finish();
 }
 });
 builder.create().show();
 }

 //Get a cached location, if it exists
 currentLocation = manager.getLastKnownLocation(LocationManager.GPS_PROVIDER);
 updateDisplay();
 //Register for updates
 int minTime = 5000;
 float minDistance = 0;
 manager.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 minTime, minDistance, listener);
 }

 @Override
 public void onPause() {
 super.onPause();
 manager.removeUpdates(listener);
 }

 //Update text view
 private void updateDisplay() {
 if(currentLocation == null) {
 locationView.setText("Determining Your Location...");
 } else {
 locationView.setText(String.format("Your Location:\n%.2f, %.2f",
 currentLocation.getLatitude(),

CHAPTER 4: Interacting with Device Hardware and Media 204

 currentLocation.getLongitude()));
 }
 }

 //Handle location callback events
 private LocationListener listener = new LocationListener() {

 @Override
 public void onLocationChanged(Location location) {
 currentLocation = location;
 updateDisplay();
 }

 @Override
 public void onProviderDisabled(String provider) { }

 @Override
 public void onProviderEnabled(String provider) { }

 @Override
 public void onStatusChanged(String provider, int status, Bundle extras) { }

 };
}

This example chooses to work strictly with the device’s GPS to get location updates.

Because it is a key element to the functionality of this Activity, the first major task

undertaken after each resume is to check if the LocationManager.GPS_PROVIDER is still

enabled. If, for any reason, the user has disabled this feature, we give them the

opportunity to rectify this by asking if they would like to enable GPS. An application

does not have the ability to do this for the user, so if they agree we launch an Activity

using the Intent action Settings.ACTION_LOCATION_SOURCE_SETTINGS, which brings up the

device settings so the user may enable GPS.

Once GPS is active and available, the Activity registers a LocationListener to be

notified of location updates. The LocationManager.requestLocationUpdates() method

takes two major parameters of interest in addition to the provider type and destination

listener:

 minTime

 The minimum time interval between updates, in milliseconds.

 Setting this to non-zero allows the location provider to rest for

approximately the specified period before updating again.

 This is a parameter to conserver power, and should not be set to

a value any lower than the minimum acceptable update rate.

 minDistance

 The distance the device must move before another update will

be sent, in meters.

CHAPTER 4: Interacting with Device Hardware and Media 205

 Setting this to non-zero will block updates until it is determined

that the device has moved at least this much.

In the example, we request that updates be sent no more often than every five seconds,

with no regard for whether the location has changed significantly or not. When these

updates arrive, the onLocationChanged() method of the registered listener is called.

Notice that a LocationListener will also be notified when the status of different providers

changes, although we are not utilizing those callbacks here.

NOTE: If you are receiving updates in a Service or other background operation, Google

recommends that the minimum time interval should be no less than 60,000 (60 seconds).

The example keeps a running reference to the latest location it received. Initially, this

value is set to the last known location that the provider has cached by calling

getLastKnownLocation(), which may return null if the provider does not have a cached

location value. With each incoming update, the location value is reset and the user

interface display is updated to reflect the new change.

4–2. Mapping Locations

Problem

You would like to display one or more locations on a map for the user.

Solution

(API Level 1)

The simplest way to show the user a map is to create an Intent with the location data

and pass it to the Android system to launch in a mapping application. We’ll look more

in-depth at this method for doing a number of different tasks in a later chapter. In

addition, maps can be embedded within your application using the MapView and

MapActivity provided by the Google Maps API SDK add-on.

The Maps API is an add-on module to the core SDK, although they are still bundled

together. If you do not already have the Google APIs SDK, open the SDK manager and

you will find a package for each API level listed under “Third-party Add-ons.”

In order to use the Maps API in your application, an API key must first be obtained from

Google. This key is built using the private key that your application is signed with.

Without an API key, the mapping classes may be utilized, but no map tiles will be

returned to the application.

CHAPTER 4: Interacting with Device Hardware and Media 206

NOTE: For more information on the SDK, and to obtain an API key, visit

http://code.google.com/android/add-ons/google-apis/mapkey.html.

Notice also that Android uses the same signing key for all applications run in debug mode (such

as when they are run from the IDE), so one key can serve for all applications you develop while in

the testing phase.

If you are running code in an emulator to test, that emulator must be built with an SDK

target that includes the Google APIs for mapping to operate properly. If you create

emulators from the command line, these targets are named “Google Inc.:Google

APIs:X,” where “X” is the API version indicator. If you create emulators from inside an

IDE (such as Eclipse), the target has a similar naming convention of “Google APIs

(Google Inc.) – X,” where “X” is the API version indicator.

With the API key in hand and a suitable test platform in place, you are ready to begin.

How It Works

To display a map, simply create an instance of MapView inside a MapActivity. One of the

required attributes that must be passed to the MapView in your XML layout is the API key

that you obtained from Google. See Listing 4–2.

Listing 4–2. Typical MapView in a Layout

<com.google.android.maps.MapView
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:enabled="true"
 android:clickable="true"
 android:apiKey="API_KEY_STRING_HERE"
/>

NOTE: When adding MapView to an XML layout, the fully qualified package name must be

included, because the class does not exist in android.view or android.widget.

Although, MapView may be instantiated from code as well, the API key is still required

as a constructor parameter:

MapView map = new MapView(this, "API_KEY_STRING_HERE");

In addition, the application manifest must declare its use of the Maps library, which

dually acts as an Android Market filter to remove the application from devices that don’t

have this capability.

Now, let’s look at an example that puts the last known user location on a map and

displays it. See Listing 4–3.

http://code.google.com/android/add-ons/google-apis/mapkey.html

CHAPTER 4: Interacting with Device Hardware and Media 207

Listing 4–3. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.mapper"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="3" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.INTERNET" />

 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".MyActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 <uses-library android:name="com.google.android.maps"></uses-library>

 </application>
</manifest>

Notice the permissions declared for INTERNET and ACCESS_FINE_LOCATION. The

latter is only required because this example is hooking back up to the LocationManager

to get the cached location value. The other key ingredient that must be present in the

manifest is the <uses-library> tag referencing the Google Maps API. Android requires

this item to properly link the external library into your application build, but it also serves

another purpose. The library declaration is used by Android Market to filter out the

application so it cannot be installed on devices that are not equipped with the proper

mapping library. See Listing 4–4.

Listing 4–4. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal"
 android:text="Map Of Your Location"
 />
 <com.google.android.maps.MapView
 android:id="@+id/map"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:enabled="true"
 android:clickable="true"
 android:apiKey="YOUR_API_KEY_HERE"
 />
</LinearLayout>

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 4: Interacting with Device Hardware and Media 208

Note the location of the required API key that you must enter. Also, notice that the

MapView does not have to be the only thing in the Activity layout, despite the fact that it

must be inflated inside of a MapActivity. See Listing 4–5.

Listing 4–5. MapActivity Displaying Cached Location

public class MyActivity extends MapActivity {

 MapView map;
 MapController controller;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 map = (MapView)findViewById(R.id.map);
 controller = map.getController();

 LocationManager manager =
 (LocationManager)getSystemService(Context.LOCATION_SERVICE);
 Location location = manager.getLastKnownLocation(LocationManager.GPS_PROVIDER);
 int lat, lng;
 if(location != null) {
 //Convert to microdegrees
 lat = (int)(location.getLatitude() * 1000000);
 lng = (int)(location.getLongitude() * 1000000);
 } else {
 //Default to Google HQ
 lat = 37427222;
 lng = -122099167;
 }
 GeoPoint mapCenter = new GeoPoint(lat,lng);
 controller.setCenter(mapCenter);
 controller.setZoom(15);
 }

 //Required abstract method, return false
 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }
}

This Activity takes the latest user location, and centers the map on that point. All control

of the map is done through a MapController instance, which we obtain by calling

MapView.getController(); the controller can be used to pan, zoom, and otherwise

adjust the map on screen. In this example, we use the controller’s setCenter() and

setZoom() methods to adjust the map display.

MapController.setCenter() takes a GeoPoint as its parameter, which is slightly different

than the Location we receive from the Android services. The primary difference is that

GeoPoint expresses latitude and longitude in terms of microdegrees (or degrees * 1E6)

instead of a decimal value representing whole degrees. Therefore, we must convert the

Location values before applying them to the map.

CHAPTER 4: Interacting with Device Hardware and Media 209

MapController.setZoom() allows the map to be programmatically zoomed to a specified

level, between 1 and 21. By default, the map will zoom to level 1, which the SDK

documentation defines as being a global view, with each increasing level magnifying the

map by two. See Figure 4–1.

Figure 4–1. Map of user location

The first thing you will probably notice is that the map doesn’t display any indicator on

the location point (such as a pin). In Recipe 4–3 we will create these annotations, and

describe how to customize them.

4–3. Annotating Maps

Problem

In addition to displaying a map centered on a specific location, your application needs to

put an annotation down to more visibly mark the location.

Solution

(API Level 1)

Create a custom ItemizedOverlay for the map, which includes all of the points to mark.

ItemizedOverlay is an abstract base class that handles all the drawing of the individual

CHAPTER 4: Interacting with Device Hardware and Media 210

items on a MapView. The items themselves are instances of OverlayItem, which is a

model class that defines the name, subtitle, and drawable marker to describe the point

on the map.

How It Works

Let’s create an implementation of ItemizedOverlay that will take an array of GeoPoints

and draw them on the map using the same drawable marker for each. See Listing 4–6.

Listing 4–6. Basic ItemizedOverlay Implementation

public class LocationOverlay extends ItemizedOverlay<OverlayItem> {
 private List<GeoPoint> mItems;

 public LocationOverlay(Drawable marker) {
 super(boundCenterBottom(marker));
 }

 public void setItems(ArrayList<GeoPoint> items) {
 mItems = items;
 populate();
 }

 @Override
 protected OverlayItem createItem(int i) {
 return new OverlayItem(mItems.get(i), null, null);
 }

 @Override
 public int size() {
 return mItems.size();
 }

 @Override
 protected boolean onTap(int i) {
 //Handle a tap event here
 return true;
 }
}

In this implementation, the constructor takes a Drawable to represent the marker placed

on the map at each location. Drawables that are used in overlays must have proper

bounds applied to them, and boundCenterBottom() is a convenience method that

handles this for us. Specifically, it applies bounds, such that the point on the Drawable

that touches the map location will be in the center of the bottom row of pixels.

ItemizedOverlay has two abstract methods that must be overridden: createItem(),

which must return an object of the declared type, and size(), which returns the number

of items managed. This example takes a list of GeoPoints and wraps them all into

OverlayItems. The populate() method should be called on the overlay as soon as all the

data is present and ready for display, which in this case is at the end of setItems().

Let’s apply this overlay to a map to draw three custom locations around Google HQ,

using the default app icon as the marker. See Listing 4–7.

CHAPTER 4: Interacting with Device Hardware and Media 211

Listing 4–7. Activity Using Custom Map Overlay

public class MyActivity extends MapActivity {

 MapView map;
 MapController controller;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 map = (MapView)findViewById(R.id.map);
 controller = map.getController();

 ArrayList<GeoPoint> locations = new ArrayList<GeoPoint>();
 //Google HQ @ 37.427,-122.099
 locations.add(new GeoPoint(37427222,-122099167));
 //Subtract 0.01 degrees
 locations.add(new GeoPoint(37426222,-122089167));
 //Add 0.01 degrees
 locations.add(new GeoPoint(37428222,-122109167));

 LocationOverlay myOverlay =
 new LocationOverlay(getResources().getDrawable(R.drawable.icon));
 myOverlay.setItems(locations);
 map.getOverlays().add(myOverlay);
 controller.setCenter(locations.get(0));
 controller.setZoom(15);

 }
 //Required abstract method, return false
 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }

}

When run, this Activity produces the display shown in Figure 4–2.

CHAPTER 4: Interacting with Device Hardware and Media 212

Figure 4–2. Map with ItemizedOverlay

Notice how the drawing of the drop shadow on the marker was handled for us by

MapView and the ItemizedOverlay.

But, what if we want to customize each item so it displays a different marker image?

How would we do that? By explicitly setting the item’s marker, a custom Drawable can

be returned for each item. In this case, the Drawable provided to the ItemizedOverlay
constructor is just a default value to be used if no custom override exists. Consider a

modification to the implementation, shown in Listing 4–8.

Listing 4–8. ItemizedOverlay with Custom Markers

public class LocationOverlay extends ItemizedOverlay<OverlayItem> {
 private List<GeoPoint> mItems;
 private List<Drawable> mMarkers;

 public LocationOverlay(Drawable marker) {
 super(boundCenterBottom(marker));
 }

 public void setItems(ArrayList<GeoPoint> items, ArrayList<Drawable> drawables) {
 mItems = items;
 mMarkers = drawables;
 populate();
 }

 @Override
 protected OverlayItem createItem(int i) {
 OverlayItem item = new OverlayItem(mItems.get(i), null, null);

CHAPTER 4: Interacting with Device Hardware and Media 213

 item.setMarker(boundCenterBottom(mMarkers.get(i)));
 return item;
 }

 @Override
 public int size() {
 return mItems.size();
 }

 @Override
 protected boolean onTap(int i) {
 //Handle a tap event here
 return true;
 }
}

With this modification, the OverlayItems created now receive a custom marker image in

the form of a bounded Drawable matching the item’s index in a list of images. If the

Drawable that you set has states, the pressed and focused states will display when the

item is selected or touched. Our example modified to use the new implementation looks

like Listing 4–9.

Listing 4–9. Example Activity Providing Custom Markers

public class MyActivity extends MapActivity {

 MapView map;
 MapController controller;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 map = (MapView)findViewById(R.id.map);
 controller = map.getController();

 ArrayList<GeoPoint> locations = new ArrayList<GeoPoint>();
 ArrayList<Drawable> images = new ArrayList<Drawable>();

 //Google HQ 37.427,-122.099
 locations.add(new GeoPoint(37427222,-122099167));
 images.add(getResources().getDrawable(R.drawable.logo));
 //Subtract 0.01 degrees
 locations.add(new GeoPoint(37426222,-122089167));
 images.add(getResources().getDrawable(R.drawable.icon));
 //Add 0.01 degrees
 locations.add(new GeoPoint(37428222,-122109167));
 images.add(getResources().getDrawable(R.drawable.icon));

 LocationOverlay myOverlay =
 new LocationOverlay(getResources().getDrawable(R.drawable.icon));
 myOverlay.setItems(locations, images);
 map.getOverlays().add(myOverlay);
 controller.setCenter(locations.get(0));
 controller.setZoom(15);

CHAPTER 4: Interacting with Device Hardware and Media 214

 }

 //Required abstract method, return false
 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }
}

Now our example provides a discrete image for each item it wants to display on the

map. Specifically, we have decided to represent the actual Google HQ location by a

version of the Google logo, while keeping the other two points with the same marker.

See Figure 4–3.

Figure 4–3. Map overlay with custom markers

Make Them Interactive

Perhaps you noticed the onTap() method that was defined in the LocationOverlay, but

never mentioned. Another nice feature of the ItemizedOverlay base implementation is

that it handles hit testing and has a convenience method when a specific item it tapped,

referencing that item’s index. From this method, you can raise a toast, show a dialog,

start a new Activity, or any other action that fits the context of the user tapping on the

annotation for more information.

CHAPTER 4: Interacting with Device Hardware and Media 215

What About Me?

The Maps API for Android also includes a special overlay to draw the user location, the

MyLocationOverlay. This overlay is very straightforward to use, but it should only be

enabled while the Activity it is present on is visible. Otherwise, unnecessary resource

usage will cause poor performance and battery life on the device. See Listing 4–10.

Listing 4–10. Adding a MyLocationOverlay

public class MyActivity extends MapActivity {

 MapView map;
 MyLocationOverlay myOverlay;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 map = (MapView)findViewById(R.id.map);
 myOverlay = new MyLocationOverlay(this, map);
 map.getOverlays().add(myOverlay);
 }

 @Override
 public void onResume() {
 super.onResume();
 myOverlay.enableMyLocation();
 }

 @Override
 public void onPause() {
 super.onResume();
 myOverlay.disableMyLocation();
 }

 //Required abstract method, return false
 @Override
 protected boolean isRouteDisplayed() {
 return false;
 }
}

This will display a standard dot or arrow marker (depending on whether the compass is

in use) on the user’s latest location, and will track as the user moves as long as the

overlay is enabled.

They key to using the MyLocationOverlay is to disable its features when they are not in

use (when the Activity is not visible), and re-enable them when they are needed. Just as

with using the LocationManager, this ensures these services are not draining

unnecessary power.

CHAPTER 4: Interacting with Device Hardware and Media 216

4–4. Capturing Images and Video

Problem

Your application needs to make use of the device’s camera in order to capture media,

whether it be still images or short video clips.

Solution

(API Level 3)

Send an Intent to Android to transfer control to the Camera application, and return the

image the user captured. Android does contain APIs for directly accessing the camera

hardware, previewing, and taking snapshots or videos. However, if your only goal is to

simply get the media content using the camera with an interface the user is familiar with,

there is not better solution than a handoff.

How It Works

Let's take a look at how to use the Camera application to take both still images and

video clips.

Image Capture

Let’s take a look at an example Activity that will activate the camera application when

the “Take a Picture” button is pressed, and receive the result of this operation as a

Bitmap. See Listings 4–11 and 4–12.

Listing 4–11. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button
 android:id="@+id/capture"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Take a Picture"
 />
 <ImageView
 android:id="@+id/image"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:scaleType="centerInside"
 />
</LinearLayout>

http://schemas.android.com/apk/res/android

CHAPTER 4: Interacting with Device Hardware and Media 217

Listing 4–12. Activity to Capture an Image

public class MyActivity extends Activity {

 private static final int REQUEST_IMAGE = 100;

 Button captureButton;
 ImageView imageView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 captureButton = (Button)findViewById(R.id.capture);
 captureButton.setOnClickListener(listener);

 imageView = (ImageView)findViewById(R.id.image);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if(requestCode == REQUEST_IMAGE && resultCode == Activity.RESULT_OK) {
 //Process and display the image
 Bitmap userImage = (Bitmap)data.getExtras().get("data");
 imageView.setImageBitmap(userImage);
 }
 }

 private View.OnClickListener listener = new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 startActivityForResult(intent, REQUEST_IMAGE);
 }
 };
}

This method captures the image and returns a scaled-down Bitmap as an extra in the

“data” field. If you need to capture an image and need the full-sized image to be saved

somewhere, insert a Uri for the image destination into the MediaStore.EXTRA_OUTPUT

field of the Intent before starting the capture. See Listing 4–13.

Listing 4–13. Full-Size Image Capture to File

public class MyActivity extends Activity {

 private static final int REQUEST_IMAGE = 100;

 Button captureButton;
 ImageView imageView;
 File destination;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

CHAPTER 4: Interacting with Device Hardware and Media 218

 captureButton = (Button)findViewById(R.id.capture);
 captureButton.setOnClickListener(listener);

 imageView = (ImageView)findViewById(R.id.image);

 destination = new File(Environment.getExternalStorageDirectory(),"image.jpg");
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if(requestCode == REQUEST_IMAGE && resultCode == Activity.RESULT_OK) {
 try {
 FileInputStream in = new FileInputStream(destination);
 BitmapFactory.Options options = new BitmapFactory.Options();
 options.inSampleSize = 10; //Downsample by 10x

 Bitmap userImage = BitmapFactory.decodeStream(in, null, options);
 imageView.setImageBitmap(userImage);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 private View.OnClickListener listener = new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 //Add extra to save full-image somewhere
 intent.putExtra(MediaStore.EXTRA_OUTPUT, Uri.fromFile(destination));
 startActivityForResult(intent, REQUEST_IMAGE);
 }
 };
}

This method will instruct the camera application to store the image elsewhere (in this

case, on the device’s SD card as “image.jpg”) and the result will not be scaled down.

When going to retrieve the image after the operation returns, we now go directly to the

file location where we told the camera to store.

Using BitmapFactory.Options, however, we do still scale the image down prior to

displaying to the screen to avoid from loading the full-size Bitmap into memory at once.

Also note that this example chose a file location that was on the device’s external

storage, which requires the android.permission.WRITE_EXTERNAL_STORAGE permission to

be declared in API Levels 4 and above. If your final solution writes the file elsewhere, this

may not be necessary.

Video Capture

Capturing video clips using this method is just as straightforward, although the results

produced are slightly different. There is no case under which the actual video clip data is

returned directly in the Intent extras, and it is always saved to a destination file location.

The following two parameters may be passed along as extras:

CHAPTER 4: Interacting with Device Hardware and Media 219

1. MediaStore.EXTRA_VIDEO_QUALITY

a. Integer value to describe the quality level used to capture the

video.

b. Allowed values are 0 for low quality and 1 for high quality.

2. MediaStore.EXTRA_OUTPUT

a. Uri destination of where to save the video content.

b. If this is not present, the video will be saved in a standard location

for the device.

When the video recording is complete, the actual location where the data was saved is

returned as a Uri in the data field of the result Intent. Let’s take a look at a similar

example that allows the user to record and save their video, and then displays the saved

location back to the screen. See Listings 4–14 and 4–15.

Listing 4–14. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button
 android:id="@+id/capture"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Take a Video"
 />
 <TextView
 android:id="@+id/file"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</LinearLayout>

Listing 4–15. Activity to Capture a Video Clip

public class MyActivity extends Activity {

 private static final int REQUEST_VIDEO = 100;

 Button captureButton;
 TextView text;
 File destination;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 captureButton = (Button)findViewById(R.id.capture);
 captureButton.setOnClickListener(listener);

 text = (TextView)findViewById(R.id.file);

http://schemas.android.com/apk/res/android

CHAPTER 4: Interacting with Device Hardware and Media 220

 destination = new File(Environment.getExternalStorageDirectory(),"myVideo");
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if(requestCode == REQUEST_VIDEO && resultCode == Activity.RESULT_OK) {
 String location = data.getData().toString();
 text.setText(location);
 }
 }

 private View.OnClickListener listener = new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Intent intent = new Intent(MediaStore.ACTION_VIDEO_CAPTURE);
 //Add (optional) extra to save video to our file
 intent.putExtra(MediaStore.EXTRA_OUTPUT, Uri.fromFile(destination));
 //Optional extra to set video quality
 intent.putExtra(MediaStore.EXTRA_VIDEO_QUALITY, 0);
 startActivityForResult(intent, REQUEST_VIDEO);
 }
 };
}

This example, like the previous example saving an image, puts the recorded video on

the device’s SD card (which requires the android.permission.WRITE_EXTERNAL_STORAGE

permission for API Levels 4+). To initiate the process, we send an Intent with the

MediaStore.ACTION_VIDEO_CAPTURE action string to the system. Android will launch

the default camera application to handle recording the video and return with an OK

result when recording is complete. We retrieve the location where the data was stored

as a Uri by calling Intent.getData() in the onActivityResult() callback method, and

then display that location to the user.

This example requests explicitly that the video be shot using the low quality setting, but

this parameter is optional. If MediaStore.EXTRA_VIDEO_QUALITY is not present in the

request Intent, the device will usually choose to shoot using high quality.

In cases where MediaStore.EXTRA_OUTPUT is provided, the Uri returned should match the

location you requested, unless an error occurs that keeps the application from writing to

that location. If this parameter is not provided, the returned value will be a content://

Uri to retrieve the media from the system’s MediaStore Content Provider.

Later on, in Recipe 4–8, we will look at practical ways to play this media back in your

application.

CHAPTER 4: Interacting with Device Hardware and Media 221

4–5. Making a Custom Camera Overlay

Problem

Many applications need more direct access to the camera, either for the purposes of

overlaying a custom UI for controls or to display metadata about what is visible through

information based on location and direction sensors (augmented reality).

Solution

(API Level 5)

Attach directly to the camera hardware in a custom Activity. Android provides APIs to

directly access the device’s camera for the purposes of obtaining the preview feed and

taking photos. We can access these when the needs of the application grow beyond

simply snapping and returning a photo for display.

NOTE: Because we are taking a more direct approach to the camera here, it is required that the

android.permission.CAMERA permission be declared in the manifest.

How It Works

We start by creating a SurfaceView, a dedicated view for live drawing where we will

attach the camera’s preview stream. This provides us with a live preview inside a view

that we can lay out any way we choose inside an Activity. From there, it’s simply a

matter of adding other views and controls that suit the context of the application. Let’s

take a look at the code (see Listings 4–16 and 4–17).

NOTE: The Camera class used here is android.hardware.Camera, not to be confused with

android.graphics.Camera. Ensure you have imported the correct reference in your

application.

Listing 4–16. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <SurfaceView
 android:id="@+id/preview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</RelativeLayout>

http://schemas.android.com/apk/res/android

CHAPTER 4: Interacting with Device Hardware and Media 222

Listing 4–17. Activity Displaying Live Camera Preview

import android.hardware.Camera;

public class PreviewActivity extends Activity implements SurfaceHolder.Callback {

 Camera mCamera;
 SurfaceView mPreview;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mPreview = (SurfaceView)findViewById(R.id.preview);
 mPreview.getHolder().addCallback(this);
 mPreview.getHolder().setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

 mCamera = Camera.open();
 }

 @Override
 public void onPause() {
 super.onPause();
 mCamera.stopPreview();
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 mCamera.release();
 }

 //Surface Callback Methods
 @Override
 public void surfaceChanged(SurfaceHolder holder, int format, int width, int height)
 {
 Camera.Parameters params = mCamera.getParameters();
 //Get all the devices’s supported sizes and pick the first (largest)
 List<Camera.Size> sizes = params.getSupportedPreviewSizes();
 Camera.Size selected = sizes.get(0);
 params.setPreviewSize(selected.width,selected.height);
 mCamera.setParameters(params);

 mCamera.startPreview();
 }

 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 try {
 mCamera.setPreviewDisplay(mPreview.getHolder());
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) { }
}

CHAPTER 4: Interacting with Device Hardware and Media 223

NOTE: If you are testing on an emulator, there is no camera to preview. What the emulator

displays to fake a preview depends on the version you are running. To verify that this code is

working properly, open the Camera application on your specific emulator and take note of what

the preview looks like. The same display should appear in this sample.

In the example, we create a SurfaceView that fills the window, and tell it that our Activity

is to be notified of all the SurfaceHolder callbacks. The camera cannot begin displaying

preview information on the surface until it is fully initialized, so we wait until

surfaceCreated() gets called to attach the SurfaceHolder of our view to the Camera

instance. Similarly, we wait to size the preview and start drawing until the surface has

been given its size, which occurs when surfaceChanged() is called.

Calling Parameters.getSupportedPreviewSizes() returns a list of all the sizes the device

will accept, and they are typically ordered largest to smallest. In the example, we pick

the first (and, thus, largest) preview resolution and use it to set the size.

NOTE: In versions earlier than 2.0 (API Level 5), it was acceptable to directly pass the height and

width parameters from this method as to Parameters.setPreviewSize(); but in 2.0, and

later, the Camera will only set its preview to one of the supported resolutions of the device.

Attempts otherwise will result in an Exception.

Camera.startPreview() begins the live drawing of camera data on the surface. Notice

that the preview always displays in a landscape orientation. Prior to Android 2.2 (API

Level 8), there was no official way to adjust the rotation of the preview display. For that

reason, it is recommended that an Activity using the camera preview have its orientation

fixed with android:screenOrientation="landscape" in the manifest to match.

The Camera service can only be accessed by one application at a time. For this reason,

it is important that you call Camera.release() as soon as the camera is no longer

needed. In the example, we no longer need the camera when the Activity is finished, so

this call takes place in onDestroy().

Later Additions

There were two additions to later versions of the API that can also be made useful if your

application targets them:

 Camera.setDisplayOrientation(int degrees)

 Available with API Level 8 (Android 2.2).

 Enables the live preview to be set to 0, 90, 180, or 270 degrees.

0 maps to the default landscape orientation.

CHAPTER 4: Interacting with Device Hardware and Media 224

 Camera.open(int which)

 Available with API Level 9 (Android 2.3).

 Enabled support of multiple cameras (mainly front and back-

facing).

 Takes a parameter from 0 to getNumberOfCameras()-1.

Photo Overlay

We can now add on to the previous example any controls or views that are appropriate

to display on top of the camera preview. Let’s modify the preview to include a Cancel

and Snap Photo button. See Listings 4–18 and 4–19.

Listing 4–18. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <SurfaceView
 android:id="@+id/preview"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
 <RelativeLayout
 android:layout_width="fill_parent"
 android:layout_height="100dip"
 android:layout_alignParentBottom="true"
 android:gravity="center_vertical"
 android:background="#A000">
 <Button
 android:layout_width="100dip"
 android:layout_height="wrap_content"
 android:text="Cancel"
 android:onClick="onCancelClick"
 />
 <Button
 android:layout_width="100dip"
 android:layout_height="wrap_content"
 android:layout_alignParentRight="true"
 android:text="Snap Photo"
 android:onClick="onSnapClick"
 />
 </RelativeLayout>
</RelativeLayout>

Listing 4–19. Activity with Photo Controls Added

public class PreviewActivity extends Activity implements
 SurfaceHolder.Callback, Camera.ShutterCallback, Camera.PictureCallback {

 Camera mCamera;
 SurfaceView mPreview;

 @Override

http://schemas.android.com/apk/res/android

CHAPTER 4: Interacting with Device Hardware and Media 225

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mPreview = (SurfaceView)findViewById(R.id.preview);
 mPreview.getHolder().addCallback(this);
 mPreview.getHolder().setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);

 mCamera = Camera.open();
 }

 @Override
 public void onPause() {
 super.onPause();
 mCamera.stopPreview();
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 mCamera.release();
 Log.d("CAMERA","Destroy");
 }

 public void onCancelClick(View v) {
 finish();
 }

 public void onSnapClick(View v) {
 //Snap a photo
 mCamera.takePicture(this, null, null, this);
 }

 //Camera Callback Methods
 @Override
 public void onShutter() {
 Toast.makeText(this, "Click!", Toast.LENGTH_SHORT).show();
 }

 @Override
 public void onPictureTaken(byte[] data, Camera camera) {

 //Store the picture off somewhere
 //Here, we chose to save to internal storage
 try {
 FileOutputStream out = openFileOutput("picture.jpg", Activity.MODE_PRIVATE);
 out.write(data);
 out.flush();
 out.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 //Must restart preview
 camera.startPreview();

CHAPTER 4: Interacting with Device Hardware and Media 226

 }

 //Surface Callback Methods
 @Override
 public void surfaceChanged(SurfaceHolder holder, int format, int width, int height) {
 Camera.Parameters params = mCamera.getParameters();
 List<Camera.Size> sizes = params.getSupportedPreviewSizes();
 Camera.Size selected = sizes.get(0);
 params.setPreviewSize(selected.width,selected.height);
 mCamera.setParameters(params);

 mCamera.setDisplayOrientation(90);
 mCamera.startPreview();
 }

 @Override
 public void surfaceCreated(SurfaceHolder holder) {
 try {
 mCamera.setPreviewDisplay(mPreview.getHolder());
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 public void surfaceDestroyed(SurfaceHolder holder) { }
}

Here we have added a simple, partially transparent overlay to include a pair of controls

for camera operation. The action taken by cancel is nothing to speak of; we simply finish

the Activity. However, Snap Photo introduces more of the Camera API in manually

taking a returning a photo to the application. A user action will initiate the

Camera.takePicture() method, which takes a series of callback pointers.

Notice that the Activity in this example implements two more interfaces:

Camera.ShutterCallback and Camera.PictureCallback. The former is called as near as

possible to the moment when the image is captured (when the “shutter” closes), while

the latter can be called at multiple instances when different forms of the image are

available.

The parameters of takePicture() are a single ShutterCallback, and up to three

PictureCallback instances. The PictureCallbacks will be called at the following times

(in the order they appear as parameters):

1. After the image is captured with RAW image data

a. This may return null on devices with limited memory.

2. After the image is processed with scaled image data (known as the

POSTVIEW image)

a. This may return null on devices with limited memory.

3. After the image is compressed with JPEG image data

CHAPTER 4: Interacting with Device Hardware and Media 227

This example only cares to be notified when the JPEG is ready. Consequently, that is

also the last callback made and the point in time when the preview must be started back

up again. If startPreview() is not called again after a picture is taken, then preview on

the surface will remain frozen at the captured image.

4–6. Recording Audio

Problem

You have an application that needs to make use of the device microphone to record

audio input.

Solution

(API Level 1)

Use the MediaRecorder to capture the audio and store it out to a file.

How It Works

MediaRecorder is quite simple to use. All you need to provide is some basic information

about the file format to use for encoding and where to store the data. Listings 4–20 and

4–21 provide an example that records an audio file to the device’s SD card monitoring

user actions for when to start and stop.

IMPORTANT: In order to use MediaRecorder to record audio input, you must also declare the

android.permission.RECORD_AUDIO permission in the application manifest.

Listing 4–20. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button
 android:id="@+id/startButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Start Recording"
 />
 <Button
 android:id="@+id/stopButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Stop Recording"
 android:enabled="false"
 />
</LinearLayout>

http://schemas.android.com/apk/res/android

CHAPTER 4: Interacting with Device Hardware and Media 228

Listing 4–21. Activity for Recording Audio

public class RecordActivity extends Activity {

 private MediaRecorder recorder;
 private Button start, stop;
 File path;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 start = (Button)findViewById(R.id.startButton);
 start.setOnClickListener(startListener);
 stop = (Button)findViewById(R.id.stopButton);
 stop.setOnClickListener(stopListener);

 recorder = new MediaRecorder();
 path = new File(Environment.getExternalStorageDirectory(),"myRecording.3gp");

 resetRecorder();
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 recorder.release();
 }

 private void resetRecorder() {
 recorder.setAudioSource(MediaRecorder.AudioSource.MIC);
 recorder.setOutputFormat(MediaRecorder.OutputFormat.THREE_GPP);
 recorder.setAudioEncoder(MediaRecorder.AudioEncoder.DEFAULT);
 recorder.setOutputFile(path.getAbsolutePath());
 try {
 recorder.prepare();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 private View.OnClickListener startListener = new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 try {
 recorder.start();

 start.setEnabled(false);
 stop.setEnabled(true);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 };

 private View.OnClickListener stopListener = new View.OnClickListener() {
 @Override

CHAPTER 4: Interacting with Device Hardware and Media 229

 public void onClick(View v) {
 recorder.stop();
 resetRecorder();

 start.setEnabled(true);
 stop.setEnabled(false);
 }
 };
}

The user interface for this example is very basic. There are two buttons, which alternate

which the user can access based on the recording state. When the user presses start,

we enable the stop button and begin recording. When the user presses stop, we re-

enable the start button and reset the recorder to run again.

MediaRecorder setup is just about as straightforward. We create a file on the SD card

entitled “myRecording.3gp” and pass the path in setOutputFile(). The remaining setup

methods tell the recorder to use the device microphone as input (AudioSource.MIC), and

create a 3GP file format for the output using the default encoder.

For now, you could play this audio file using any of the device’s file browser or media

player application. Later on, in Recipe 4–8, we will point out how to play audio back

through the application as well.

4–7. Adding Speech Recognition

Problem

Your application needs speech recognition technology to interpret voice input.

Solution

(API Level 3)

Use the classes of the android.speech package to leverage the built-in speech

recognition technology of every Android device. Every Android device that is equipped

with voice search (available since Android 1.5) provides applications the ability to use

the built-in SpeechRecognizer to process voice input.

To activate this process, the application need only to send a RecognizerIntent to the

system, where the recognition service will handle recording the voice input and

processing it; returning to you a list of strings indicating what the recognizer thought it

heard.

How It Works

Let’s examine this technology in action. See Listing 4–22.

CHAPTER 4: Interacting with Device Hardware and Media 230

Listing 4–22. Activity Launching and Processing Speech Recognition

public class RecognizeActivity extends Activity {

 private static final int REQUEST_RECOGNIZE = 100;

 TextView tv;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 tv = new TextView(this);
 setContentView(tv);

 Intent intent = new Intent(RecognizerIntent.ACTION_RECOGNIZE_SPEECH);
 intent.putExtra(RecognizerIntent.EXTRA_LANGUAGE_MODEL,
 RecognizerIntent.LANGUAGE_MODEL_FREE_FORM);
 intent.putExtra(RecognizerIntent.EXTRA_PROMPT, "Tell Me Your Name");
 try {
 startActivityForResult(intent, REQUEST_RECOGNIZE);
 } catch (ActivityNotFoundException e) {
 //If no recognizer exists, download one from Android Market
 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setTitle("Not Available");
 builder.setMessage("There is currently no recognition application installed. "
 +" Would you like to download one?");
 builder.setPositiveButton("Yes", new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 //Download, for example, Google Voice Search
 Intent marketIntent = new Intent(Intent.ACTION_VIEW);
 marketIntent.setData
 (Uri.parse("market://details?id=com.google.android.voicesearch"));
 }
 });
 builder.setNegativeButton("No", null);
 builder.create().show();
 }
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if(requestCode == REQUEST_RECOGNIZE && resultCode == Activity.RESULT_OK) {
 ArrayList<String> matches =
 data.getStringArrayListExtra(RecognizerIntent.EXTRA_RESULTS);
 StringBuilder sb = new StringBuilder();
 for(String piece : matches) {
 sb.append(piece);
 sb.append('\n');
 }
 tv.setText(sb.toString());
 } else {
 Toast.makeText(this, "Operation Canceled", Toast.LENGTH_SHORT).show();
 }
 }
}

CHAPTER 4: Interacting with Device Hardware and Media 231

NOTE: If you are testing your application in the emulator, beware that neither Android Market

nor any voice recognizers are likely installed. It is best to test the operation of this example on a

device.

This example automatically starts the speech recognition Activity on launch of the

application and asks the user to “Tell Me Your Name”. Upon receiving speech from the

user and processing the result, the Activity returns with a list of possible items the user

could have said. This list is in order of probability, and so in many cases it would be

prudent to simply call matches.get(0) as the best possible choice and move on.

However, this activity takes all the returned values and displays them on the screen for

entertainment purposes.

When starting up the SpeechRecognizer, there are a number of extras that can be

passed in the Intent to customize the behavior. This example uses the two that are most

common:

 EXTRA_LANGUAGE_MODEL

 A value to help fine tune the results from the speech processor.

 Typical speech-to-text queries should use the

LANGUAGE_MODEL_FREE_FORM option.

 If shorter request-type queries are being made,

LANGUAGE_MODEL_WEB_SEARCH may produce better

results.

 EXTRA_PROMPT

 A string value that displays as the prompt for user speech.

In addition to these, a handful of other parameters may be useful to pass along:

 EXTRA_MAX_RESULTS

 Integer to set the maximum number of returned results.

 EXTRA_LANGUAGE

 Request that results be returned in a language other than the

current system default.

 String value of a valid IETF tag, such as “en-US” or “es”

4–8. Playing Back Audio/Video

Problem

An application needs to play audio or video content, either local or remote, on the

device.

CHAPTER 4: Interacting with Device Hardware and Media 232

Solution

(API Level 1)

Use the MediaPlayer to play local or streamed media. Whether the content is audio or

video, local or remote, MediaPlayer will connect, prepare, and play the associated media

efficiently. In this recipe, we will also explore using MediaController and VideoView as

simple ways to include interaction and video play into an Acitivity layout.

How It Works

NOTE: Before expecting a specific media clip or stream to play, please read the “Android

Supported Media Formats” section of the developer documentation to verify support.

Audio Playback

Let’s look at a simple example of just using MediaPlayer to play a sound. See

Listing 4–23.

Listing 4–23. Activity Playing Local Sound

public class PlayActivity extends Activity implements MediaPlayer.OnCompletionListener {

 Button mPlay;
 MediaPlayer mPlayer;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mPlay = new Button(this);
 mPlay.setText("Play Sound");
 mPlay.setOnClickListener(playListener);

 setContentView(mPlay);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 if(mPlayer != null) {
 mPlayer.release();
 }
 }

 private View.OnClickListener playListener = new View.OnClickListener() {

 @Override
 public void onClick(View v) {
 if(mPlayer == null) {
 try {
 mPlayer = MediaPlayer.create(PlayActivity.this, R.raw.sound);

CHAPTER 4: Interacting with Device Hardware and Media 233

 mPlayer.start();
 } catch (Exception e) {
 e.printStackTrace();
 }
 } else {
 mPlayer.stop();
 mPlayer.release();
 mPlayer = null;
 }
 }
 };

 //OnCompletionListener Methods
 @Override
 public void onCompletion(MediaPlayer mp) {
 mPlayer.release();
 mPlayer = null;
 }

}

This example uses a Button to start and stop playback of a local sound file that is stored

in the res/raw directory of a project. MediaPlayer.create() is a convenience method

with several forms, intended to construct and prepare a player object in one step. The

form used in this example takes a reference to a local resource ID, but create() can also

be used to access and play a remote resource using

MediaPlayer.create(Context context, Uri uri);

Once created, the example starts playing the sound immediately. While the sound is

playing, the user may press the button again to stop play. The Activity also implements

the MediaPlayer.OnCompletionListener interface, so it receives a callback when the

playing operation completes normally.

In either case, once play is stopped, the MediaPlayer instance is released. This method

allows the resources to be retained only as long as they are in use, and the sound may

be played multiple times. To be sure resources are not unnecessarily retained, the player

is also released when the Activity is destroyed if it still exists.

If your application has a need to playing many different sounds, you may consider

calling reset() instead of release() when playback is over. Remember, though, to still

call release() when the player is no longer needed (or the Activity goes away).

Audio Player

Beyond just simple playback, what if the application needs to create an interactive

experience for the user to be able to play, pause, and seek through the media? There

are methods available on MediaPlayer to implement all these functions with custom UI

elements, but Android also provides the MediaController view so you don’t have to. See

Listings 4–24 and 4–25.

CHAPTER 4: Interacting with Device Hardware and Media 234

Listing 4–24. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/root"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:text="Now Playing..."
 />
 <ImageView
 android:id="@+id/coverImage"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:scaleType="centerInside"
 />
</LinearLayout>

Listing 4–25. Activity Playing Audio with a MediaController

public class PlayerActivity extends Activity implements
 MediaController.MediaPlayerControl, MediaPlayer.OnBufferingUpdateListener {

 MediaController mController;
 MediaPlayer mPlayer;
 ImageView coverImage;

 int bufferPercent = 0;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 coverImage = (ImageView)findViewById(R.id.coverImage);

 mController = new MediaController(this);
 mController.setAnchorView(findViewById(R.id.root));
 }

 @Override
 public void onResume() {
 super.onResume();
 mPlayer = new MediaPlayer();
 //Set the audio data source
 try {
 mPlayer.setDataSource(this, Uri.parse("URI_TO_REMOTE_AUDIO"));
 mPlayer.prepare();
 } catch (Exception e) {
 e.printStackTrace();
 }
 //Set an image for the album cover
 coverImage.setImageResource(R.drawable.icon);

http://schemas.android.com/apk/res/android

CHAPTER 4: Interacting with Device Hardware and Media 235

 mController.setMediaPlayer(this);
 mController.setEnabled(true);
 }

 @Override
 public void onPause() {
 super.onPause();
 mPlayer.release();
 mPlayer = null;
 }

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 mController.show();
 return super.onTouchEvent(event);
 }

 //MediaPlayerControl Methods
 @Override
 public int getBufferPercentage() {
 return bufferPercent;
 }

 @Override
 public int getCurrentPosition() {
 return mPlayer.getCurrentPosition();
 }

 @Override
 public int getDuration() {
 return mPlayer.getDuration();
 }

 @Override
 public boolean isPlaying() {
 return mPlayer.isPlaying();
 }

 @Override
 public void pause() {
 mPlayer.pause();
 }

 @Override
 public void seekTo(int pos) {
 mPlayer.seekTo(pos);
 }

 @Override
 public void start() {
 mPlayer.start();
 }

 //BufferUpdateListener Methods
 @Override
 public void onBufferingUpdate(MediaPlayer mp, int percent) {
 bufferPercent = percent;

CHAPTER 4: Interacting with Device Hardware and Media 236

 }

 //Android 2.0+ Target Callbacks
 public boolean canPause() {
 return true;
 }

 public boolean canSeekBackward() {
 return true;
 }

 public boolean canSeekForward() {
 return true;
 }
}

This example creates a simple audio player that displays an image for artist or cover art

associated with the audio being played (we just set it to the application icon here). The

example still uses a MediaPlayer instance, but this time we are not creating it using the

create() convenience method. Instead we use setDataSource() after the instance is

created to set the content. When attaching the content in this manner, the player is not

automatically prepared so we must also call prepare() to ready the player for use.

At this point, the audio is ready to start. We would like the MediaController to handle all

playback controls, but MediaController can only attach to objects that implement the

MediaController.MediaPlayerControl interface. Strangely, MediaPlayer alone does not

implement this interface so we appoint the Activity to do that job instead. Six of the

seven method included in the interface are actually implemented by MediaPlayer, so we

just call down to those directly.

LATE ADDITIONS: If your application is targeting API Level 5 or later, there are three additional

methods to implement in the MediaController.MediaPlayerControl interface:

canPause()

canSeekBackward()

canSeekForward()

These methods simply tell the system whether we want to allow these operations to occur inside

of this control, so our example returns true for all three. These methods are not required if you

target a lower API Level (which is why we didn’t provide @Override annotations above them),

but you may implement them for best results when running on later versions.

The final method required to use MediaController is getBufferPercentage(). To obtain

this data, the Activity is also tasked with implementing

MediaPlayer.OnBufferingUpdateListener, which updates the buffer percentage as it

changes.

MediaController has one trick to its implementation. It is designed as a widget that floats

above an active view in its own Window and is only visible for a few seconds at a time.

As a result, we do not instantiate the widget in the XML layout of the content view, but

CHAPTER 4: Interacting with Device Hardware and Media 237

rather in code. The link is made between the MediaController and the content view by

calling setAnchorView(), which also determines where the controller will show up

onscreen. In this example, we anchor it to the root layout object, so it will display at the

bottom of the screen when visible. If the MediaController is anchored to a child view in

the hierarchy, it will display next to that child instead.

Also, due to the controller’s separate window, MediaController.show() must not be

called from within onCreate(), and doing so will cause a fatal exception.

MediaController is designed to be hidden by default and activated by the user. In this

example, we override the onTouchEvent() method of the Activity to show the controller

whenever the user taps the screen. Unless show() is called with a parameter of 0, it will

fade out after the amount of time noted by the parameter. Calling show() without any

parameter tells it to fade out after the default timeout, which is around three seconds.

See Figure 4–4.

Figure 4–4. Activity using MediaController

Now all features of the audio playback are handled by the standard controller widget.

The version of setDataSource() used in this example takes a Uri, making is suitable for

loading audio from a ContentProvider or a remote location. Keep in mind that all of this

works just as well with local audio files and resources using the alternate forms of

setDataSource().

CHAPTER 4: Interacting with Device Hardware and Media 238

Video Player

When playing video, typically a full set of playback controls is required to play, pause, and

seek the content. In addition, MediaPlayer must have a reference to a SurfaceHolder onto

which it can draw the frames of the video. As we mentioned in the example previous,

Android provides APIs to do all of this and create a custom video playing experience.

However, in many cases the most efficient path forward is to let the classes provided with

the SDK, namely MediaController and VideoView, do all the heavy lifting.

Let’s take a look at an example of creating a video player in an Activity. See Listing 4–26.

Listing 4–26. Activity to Play Video Content

public class VideoActivity extends Activity {

 VideoView videoView;
 MediaController controller;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 videoView = new VideoView(this);

 videoView.setVideoURI(Uri.parse("URI_TO_REMOTE_VIDEO"));
 controller = new MediaController(this);
 videoView.setMediaController(controller);
 videoView.start();

 setContentView(videoView);
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 videoView.stopPlayback();
 }
}

This example passes the URI of a remote video location to VideoView and tells it to

handle the rest. VideoView can be embedded in larger XML layout hierarchies as well,

although often it is the only thing and is displayed full-screen, so setting is in code as the

only view in the layout tree is not uncommon.

With VideoView, interaction with MediaController is much simpler. VideoView

implements the MediaController.MediaPlayerControl interface, so no additional glue

logic is required to make the controls functional. VideoView also internally handles the

anchoring of the controller to itself, so it displays on screen in the proper location.

Handling Redirects

We have one final note about using the MediaPlayer classes to handle remote content.

Many media content servers on the Web today do not publicly expose a direct URL to

the video container. Either for the purposes of tracking or security, public media URLs

can often redirect one or more times before ending up at the true media content.

CHAPTER 4: Interacting with Device Hardware and Media 239

MediaPlayer does not handle this redirect process, and will return an error when

presented with a redirected URL.

If you are unable to directly retrieve locations of the content you want to display in an

application, that application must trace the redirect path before handing the URL to

MediaPlayer. Listing 4–27 is an example of a simple AsyncTask tracer that will do the job.

Listing 4–27. RedirectTracerTask

public class RedirectTracerTask extends AsyncTask<Uri, Void, Uri> {

 private VideoView mVideo;
 private Uri initialUri;

 public RedirectTracerTask(VideoView video) {
 super();
 mVideo = video;
 }

 @Override
 protected Uri doInBackground(Uri... params) {
 initialUri = params[0];
 String redirected = null;
 try {
 URL url = new URL(initialUri.toString());
 HttpURLConnection connection = (HttpURLConnection)url.openConnection();
 //Once connected, see where you ended up
 redirected = connection.getHeaderField("Location");

 return Uri.parse(redirected);
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 }

 @Override
 protected void onPostExecute(Uri result) {
 if(result != null) {
 mVideo.setVideoURI(result);
 } else {
 mVideo.setVideoURI(initialUri);
 }
 }

}

This helper class tracks down the final location by retrieving it out of the HTTP headers.

If there were no redirects in the supplied Uri, the background operation will end up

returning null, in which case the original Uri is passed to the VideoView. With this helper

class, you can now pass the locations to the view as follows:

VideoView videoView = new VideoView(this);
RedirectTracerTask task = new RedirectTracerTask(videoView);
Uri location = Uri.parse("URI_TO_REMOTE_VIDEO");

task.execute(location);

CHAPTER 4: Interacting with Device Hardware and Media 240

4–9. Creating a Tilt Monitor

Problem

Your application requires feedback from the device’s accelerometer that goes beyond

just understanding whether the device is oriented in portrait or landscape.

Solution

(API Level 3)

Use SensorManager to receive constant feedback from the accelerometer sensor.

SensorManager provides a generic abstracted interface for working with sensor hardware

on Android devices. The accelerometer is just one of many sensors that an application

can register to receive regular updates from.

How It Works

IMPORTANT: Device sensors, such as the accelerometer, do not exist in the emulator. If you

cannot test SensorManager code on an Android device, you will need to use a tool such as

SensorSimulator to inject sensor events into the system. SensorSimulator requires modifying this

example to use a different SensorManager interface for testing; see “Useful Tools To Know:

SensorSimulator” at the end of this chapter for more information.

This example Activity registers with SensorManager for accelerometer updates and

displays the data on screen. The raw X/Y/Z data is displayed in a TextView at the bottom

of the screen, but in addition the device’s “tilt” is visualized through a simple graph of

four views in a TableLayout. See Listings 4–28 and 4–29.

NOTE: It is also recommended that you add android:screenOrientation="portrait" or

android:screenOrientation="landscape" to the application’s manifest to keep the

Activity from trying to rotate as you move and tilt the device.

Listing 4–28. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TableLayout
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="0,1,2">
 <TableRow
 android:layout_weight="1">

http://schemas.android.com/apk/res/android

CHAPTER 4: Interacting with Device Hardware and Media 241

 <View
 android:id="@+id/top"
 android:layout_column="1"
 />
 </TableRow>
 <TableRow
 android:layout_weight="1">
 <View
 android:id="@+id/left"
 android:layout_column="0"
 />
 <View
 android:id="@+id/right"
 android:layout_column="2"
 />
 </TableRow>
 <TableRow
 android:layout_weight="1">
 <View
 android:id="@+id/bottom"
 android:layout_column="1"
 />
 </TableRow>
 </TableLayout>
 <TextView
 android:id="@+id/values"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 />
</RelativeLayout>

Listing 4–29. Tilt Monitoring Activity

public class TiltActivity extends Activity implements SensorEventListener {

 private SensorManager mSensorManager;
 private Sensor mAccelerometer;
 private TextView valueView;
 private View mTop, mBottom, mLeft, mRight;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
 mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

 valueView = (TextView)findViewById(R.id.values);
 mTop = findViewById(R.id.top);
 mBottom = findViewById(R.id.bottom);
 mLeft = findViewById(R.id.left);
 mRight = findViewById(R.id.right);
 }

 protected void onResume() {
 super.onResume();

CHAPTER 4: Interacting with Device Hardware and Media 242

 mSensorManager.registerListener(this, mAccelerometer,
 SensorManager.SENSOR_DELAY_UI);
 }

 protected void onPause() {
 super.onPause();
 mSensorManager.unregisterListener(this);
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) { }

 public void onSensorChanged(SensorEvent event) {
 float[] values = event.values;
 float x = values[0] / 10;
 float y = values[1] / 10;
 int scaleFactor;

 if(x > 0) {
 scaleFactor = (int)Math.min(x * 255, 255);
 mRight.setBackgroundColor(Color.TRANSPARENT);
 mLeft.setBackgroundColor(Color.argb(scaleFactor, 255, 0, 0));
 } else {
 scaleFactor = (int)Math.min(Math.abs(x) * 255, 255);
 mRight.setBackgroundColor(Color.argb(scaleFactor, 255, 0, 0));
 mLeft.setBackgroundColor(Color.TRANSPARENT);
 }

 if(y > 0) {
 scaleFactor = (int)Math.min(y * 255, 255);
 mTop.setBackgroundColor(Color.TRANSPARENT);
 mBottom.setBackgroundColor(Color.argb(scaleFactor, 255, 0, 0));
 } else {
 scaleFactor = (int)Math.min(Math.abs(y) * 255, 255);
 mTop.setBackgroundColor(Color.argb(scaleFactor, 255, 0, 0));
 mBottom.setBackgroundColor(Color.TRANSPARENT);
 }
 //Display the raw values
 valueView.setText(String.format("X: %1$1.2f, Y: %2$1.2f, Z: %3$1.2f",
 values[0], values[1], values[2]));
 }
}

The orientation of the three axes on the device accelerometer are as follows, from the

perspective of looking at the device screen, upright in portrait:

X: Horizontal axis with positive pointing to the right

Y: Vertical axis with positive pointing up

Z: Perpendicular axis with positive pointing back at you

When the Activity is visible to the user (between onResume() and onPause()), it registers

with SensorManager to receive updates about the acclerometer. When registering, the

last parameter to registerListener() defines the update rate. The chosen value,

SENSOR_DELAY_UI, is the fastest recommended rate to receive updates and still directly

modify the user interface with each update.

CHAPTER 4: Interacting with Device Hardware and Media 243

With each new sensor value, the onSensorChanged() method of our registered listener is

called with a SensorEvent value; this event contains the X/Y/Z acceleration values.

QUICK SCIENCE NOTE: An accelerometer measures the acceleration due to forces applied.

When a device is at rest, the only force operating on it is the force of gravity (~9.8 m/s2). The

output value on each axis is the product of this force (pointing down to the ground), and each

orientation vector. When the two are parallel, the value will be at its maximum (~9.8-10). When

the two are perpendicular, the value will be at its minimum (~0.0). Therefore, a device laying flat

on a table will read ~0.0 for both X and Y, and ~9.8 for Z.

The example application displays the raw acceleration values for each axis in the

TextView at the bottom of the screen. In addition, there is a grid of four Views arranged

in a top/bottom/left/right pattern, and we proportionally adjust the background color of

this grid based on the orientation. When the device is perfectly flat, both X and Y should

be close to zero and the entire screen will be black. As the device tilts, the squares on

the low side of the tilt will start to glow red until they are completely red once the device

orientation reaches upright in either position.

TIP: Try modifying this example with some of the other rate values, like

SENSOR_DELAY_NORMAL. Notice how the change affects the update rate in the example.

In addition, you can shake the device and see alternating grid boxes highlight as the

device accelerates in each direction.

4–10. Monitoring Compass Orientation

Problem

Your application wants to know which major direction the user is facing by monitoring

the device’s compass sensor.

Solution

(API Level 3)

SensorManager comes to the rescue once again. Android doesn’t provide a “compass”

sensor exactly, but rather includes the necessary methods to gather where the device is

pointing based on other sensor data. In this case, the device’s magnetic field sensor will

be used in conjunction with the accelerometer to ascertain where the user is facing.

We can then ask SensorManager for the user’s orientation with respect to the Earth

using getOrientation().

CHAPTER 4: Interacting with Device Hardware and Media 244

How It Works

IMPORTANT: Device sensors such as the accelerometer do not exist in the emulator. If you

cannot test SensorManager code on an Android device, you will need to use a tool such as

SensorSimulator to inject sensor events into the system. SensorSimulator requires modifying this

example to use a different SensorManager interface for testing; see “Useful Tools to Know:

SensorSimulator” at the end of this chapter for more information.

As with the previous accelerometer example, we use SensorManager to register for

updates on all sensors of interest (in this case, there are two), and process the results in

onSensorChanged(). This example calculates and displays the user orientation from the

device camera’s point-of-view, as it would be required for an application such as

augmented reality. See Listings 4–30 and 4–31.

Listing 4–30. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:id="@+id/direction"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerInParent="true"
 android:textSize="64dip"
 android:textStyle="bold"
 />
 <TextView
 android:id="@+id/values"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 />
</RelativeLayout>

Listing 4–31. Activity Monitoring User Orientation

public class CompassActivity extends Activity implements SensorEventListener {

 private SensorManager mSensorManager;
 private Sensor mAccelerometer, mField;
 private TextView valueView, directionView;

 private float[] mGravity;
 private float[] mMagnetic;

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mSensorManager = (SensorManager)getSystemService(SENSOR_SERVICE);
 mAccelerometer = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

http://schemas.android.com/apk/res/android

CHAPTER 4: Interacting with Device Hardware and Media 245

 mField = mSensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);

 valueView = (TextView)findViewById(R.id.values);
 directionView = (TextView)findViewById(R.id.direction);
 }

 protected void onResume() {
 super.onResume();
 mSensorManager.registerListener(this, mAccelerometer,
 SensorManager.SENSOR_DELAY_UI);
 mSensorManager.registerListener(this, mField, SensorManager.SENSOR_DELAY_UI);
 }

 protected void onPause() {
 super.onPause();
 mSensorManager.unregisterListener(this);
 }

 private void updateDirection() {
 float[] temp = new float[9];
 float[] R = new float[9];
 //Load rotation matrix into R
 SensorManager.getRotationMatrix(temp, null, mGravity, mMagnetic);
 //Map to camera's point-of-view
 SensorManager.remapCoordinateSystem(temp, SensorManager.AXIS_X,
 SensorManager.AXIS_Z, R);
 //Return the orientation values
 float[] values = new float[3];
 SensorManager.getOrientation(R, values);
 //Convert to degrees
 for (int i=0; i < values.length; i++) {
 Double degrees = (values[i] * 180) / Math.PI;
 values[i] = degrees.floatValue();
 }
 //Display the compass direction
 directionView.setText(getDirectionFromDegrees(values[0]));
 //Display the raw values
 valueView.setText(String.format("Azimuth: %1$1.2f, Pitch: %2$1.2f, Roll: %3$1.2f",
 values[0], values[1], values[2]));
 }

private String getDirectionFromDegrees(float degrees) {
 if(degrees >= -22.5 && degrees < 22.5) { return "N"; }
 if(degrees >= 22.5 && degrees < 67.5) { return "NE"; }
 if(degrees >= 67.5 && degrees < 112.5) { return "E"; }
 if(degrees >= 112.5 && degrees < 157.5) { return "SE"; }
 if(degrees >= 157.5 || degrees < -157.5) { return "S"; }
 if(degrees >= -157.5 && degrees < -112.5) { return "SW"; }
 if(degrees >= -112.5 && degrees < -67.5) { return "W"; }
 if(degrees >= -67.5 && degrees < -22.5) { return "NW"; }

 return null;
 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) { }

CHAPTER 4: Interacting with Device Hardware and Media 246

 public void onSensorChanged(SensorEvent event) {
 switch(event.sensor.getType()) {
 case Sensor.TYPE_ACCELEROMETER:
 mGravity = event.values.clone();
 break;
 case Sensor.TYPE_MAGNETIC_FIELD:
 mMagnetic = event.values.clone();
 break;
 default:
 return;
 }

 if(mGravity != null && mMagnetic != null) {
 updateDirection();
 }
 }
}

This example Activity displays the three raw values returned by the sensor calculation at

the bottom of the screen in real time. In addition, the compass direction associated with

where the user is currently facing is converted and displayed center-stage. As updates

are received from the sensors, local copies of the latest values from each is maintained.

As soon as we have received at least one reading from both sensors of interest, we

allow the UI to begin updating.

updateDirection() is where all the heavy lifting takes place.

SensorManager.getOrientation() provides the output information we require to display

direction. The method returns no data, and instead an empty float array is passed in for

the method to fill in three angle values, and they represent (in order):

 Azimuth

 Angle of rotation about an axis pointing directly into the Earth.

 This is the value of interest to the example.

 Pitch

 Angle of rotation about an axis pointing West.

 Roll

 Angle of rotation about and axis pointing at magnetic North.

One of the parameters passed to getOrientation() is a float array representing a

rotation matrix. The rotation matrix is a representation of how the current coordinate

system of the devices is oriented, so the method may provide appropriate rotation

angles based on its references coordinates. The rotation matrix for the device orientation

is obtained using getRotationMatrix(), which takes the latest values from the

accelerometer and magnetic field sensor as input. Like getOrientation(), it also returns

void; and empty float array of length 9 or 16 (to represent a 3x3 or 4x4 matrix) must be

passed in as the first parameter for the method to fill in.

CHAPTER 4: Interacting with Device Hardware and Media 247

Finally, we want the output of the orientation calculation to be specific to the camera’s

point-of-view. To further transform the obtained rotation, we use the

remapCoordinateSystem() method. This method takes four parameters (in order):

1. Input array representing the matrix to transform

2. How to transform the device’s X-axis with respect to world coordinates

3. How to transform the device’s Y-axis with respect to world coordinates

4. Empty array to fill in the result

In our example, we want to leave the X-axis untouched, so we map X to X. However, we

would like to align the device’s Y-axis (vertical axis) to the world’s Z-axis (the one

pointing into the Earth). This orients the rotation matrix we receive to match up with the

device being held vertically upright as if the user is using the camera and looking at the

preview on the screen.

With the angular data calculated, we do some data conversion and display the result on

the screen. The unit output of getOrientation() is radians, so we first have to convert

each result to degrees before displaying it. In addition, we need to convert the azimuth

value to a compass direction; getDirectionFromDegrees() is a helper method to return

the proper direction based on the range the current reading falls within. Going full-circle

clockwise, the azimuth will read from 0 to 180 degrees from North to South. Continuing

around the circle, the azimuth will read -180 to 0 degrees rotating from South to North.

Useful Tools to Know: SensorSimulator
Google’s Android emulator doesn’t support sensors because most computers don’t

have compasses, accelerometers, or even light sensors that the emulator can leverage.

Although this limitation is problematic for apps that need to interact with sensors, and

where the emulator is the only viable testing option, it can be overcome by working with

Sensor Simulator.

Sensor Simulator (http://code.google.com/p/openintents/wiki/SensorSimulator) is an

open source tool that lets you simulate sensor data and make this data available to your

apps for testing purposes. It currently supports accelerometer, magnetic field

(compass), orientation, temperature, and barcode reader sensors; the behavior of these

sensors can be customized through various configuration settings.

NOTE: Sensor Simulator is one of several projects made available to Android developers by

OpenIntents (http://code.google.com/p/openintents/wiki/OpenIntents), a Google-

hosted project for creating reusable components and tools for the Android platform.

http://code.google.com/p/openintents/wiki/SensorSimulator
http://code.google.com/p/openintents/wiki/OpenIntents

CHAPTER 4: Interacting with Device Hardware and Media 248

Obtaining Sensor Simulator

Sensor Simulator is distributed in a single ZIP archive. Point your browser to

http://code.google.com/p/openintents/downloads/list?q=sensorsimulator and click

the sensorsimulator-1.1.0-rc1.zip link followed by the sensorsimulator-1.1.0-
rc1.zip link on the subsequent page to download this 284Kb file.

After unzipping this archive, you’ll discover a sensorsimulator-1.1.0-rc1 home

directory with the following subdirectories:

 bin: Contains the sensorsimulator-1.1.0-rc1.jar (Sensor Simulator

standalone Java application that lets you generate test data) and

SensorSimulatorSettings-1.1.0-rc1.apk (Android app to set default

IP address/port settings and to test the connection to the Sensor

Simulator Java application) executables along with readme files for

these executables.

 lib: Contains the sensorsimulator-lib-1.1.0-rc1.jar library, which

your Android apps use to access sensor settings from the Sensor

Simulator Java application.

 release: Contains the Apache Ant build script to assemble the

sensorsimulator-1.1.0-rc1.zip release.

 samples: Contains a SensorDemo Android app example on how to

access Sensor Simulator from an Android app.

 SensorSimulator: Contains the source code for the Sensor Simulator

Java application.

 SensorSimulatorSettings: Contains the source code for the Sensor

Simulator Settings Android app and project settings for building its

APK and the library file.

Launching Sensor Simulator Settings and Sensor Simulator

Now that you’ve downloaded and unarchived the Sensor Simulator distribution, you’ll

want to launch this software. Complete the following steps to accomplish this task:

1. Start the Android emulator if not already running; for example, execute

emulator -avd test_AVD at the command line. This example assumes

that you’ve previously created test_AVD in Chapter 1.

2. Install SensorSimulatorSettings-1.1.0-rc1.apk on the emulator; for

example, execute adb install SensorSimulatorSettings-1.1.0-

rc1.apk. This example assumes that the adb tool is accessible via your

PATH environment variable, and that the bin directory is current. It

outputs a success message when the APK is successfully installed on

the emulator.

http://code.google.com/p/openintents/downloads/list?q=sensorsimulator

CHAPTER 4: Interacting with Device Hardware and Media 249

3. Click the app launcher screen’s Sensor Simulator icon to start the

Sensor Simulator app.

4. Start the bin directory’s Sensor Simulator Java application, which is

located in sensorsimulator-1.1.0-rc1.jar. For example, under

Windows, double-click this filename.

Figure 4–5 reveals the emulator’s app launcher screen with the Sensor Simulator icon

highlighted.

Figure 4–5. The Sensor Simulator icon is highlighted on the app launcher screen.

Click the Sensor Simulator icon. Figure 4–6 reveals the Sensor Simulator Settings

screen divided into two activities: Settings and Testing.

CHAPTER 4: Interacting with Device Hardware and Media 250

Figure 4–6. The default Settings activity prompts for the IP address and socket port.

The Settings activity prompts you to enter the IP address and socket port number of the

Sensor Simulator Java application, whose user interface appears in Figure 4–7.

Figure 4–7. Use the Sensor Simulator application’s user interface to send sensor data to Sensor Simulator
Settings and your own apps.

CHAPTER 4: Interacting with Device Hardware and Media 251

Sensor Simulator presents a tabbed user interface, where each tab lets you send test

data to a different emulator instance. At present, there is only a single default Sensor

Simulator tab, but you can add more tabs and remove them by selecting the New Tab

and Close Tab menu items from the File menu.

Each tab is divided into three panes:

 The left-hand pane displays a graphic of a device that shows its

orientation and position. It also lets you select a socket port and Telnet

socket port, displays connection information, and (by default) displays

only accelerometer, magnetic field, and orientation sensor data.

 The middle pane lets you adjust the device’s yaw, pitch, and roll,

choose which sensors are supported, enable appropriate sensors for

testing, and choose additional sensor data (such as choosing the

current temperature value) as well as how often sensor data is sent to

the emulator.

 The right-hand pane lets you communicate with the emulator instance

via Telnet. You can communicate battery state (such as whether a

battery is present and the battery’s health – is it overheating?) along

with GPS data to the emulator instance.

The left-hand pane displays the IP address (192.168.100.100 in this example) that’s to

be entered in the Settings activity’s IP address textfield. Because Sensor Simulator uses

the same port number (8010) as the number appearing in the Settings activity’s Socket

textfield, you don’t need to change this field’s value.

NOTE: You might need to change the port number in both the Settings activity’s Socket textfield

and Sensor Simulator’s Socket textfield if 8010 is being used by some other application running

on your computer.

After entering this IP address in the Settings activity’s IP address field (see Figure 4–6),

select the Testing activity by clicking the Testing tab. Figure 4–8 shows the results.

CHAPTER 4: Interacting with Device Hardware and Media 252

Figure 4–8. Click Connect to connect to the Sensor Simulator app and to start receiving test data.

According to this screen, you must click the Connect button to establish a connection

with the Sensor Simulator Java application, which must be running at this point. (You

later click Disconnect to break the connection.)

After clicking Connect, the Testing tab reveals accelerometer, magnetic field, and

orientation checkboxes with labels underneath to show test values. It doesn’t show

checkboxes for temperature and barcode reader because these sensors are not

supported nor enabled (see the Sensor Simulator application’s middle panel).

Check the acclerometer checkbox and, as Figure 4–9 shows, the label underneath the

checkbox reveals to you the current yaw, pitch, and roll values obtained from Sensor

Simulator.

CHAPTER 4: Interacting with Device Hardware and Media 253

Figure 4–9. The Sensor Simulator Settings app is now receiving accelerometer data from the Sensor Simulator
application.

Accessing Sensor Simulator from Your Apps

Although Sensor Simulator Settings helps you learn how to use Sensor Simulator to

send test data to an app, it’s no substitute for your own apps. At some point, you’ll want

to incorporate code into your activities that accesses this tool. Google provides the

following guidelines for modifying your app to access Sensor Simulator:

1. Add the lib directory’s JAR file (sensorsimulator-lib-1.1.0-rc1.jar,

for example) to your project.

2. Import the following Sensor Simulator types from this library into your

source code:

import org.openintents.sensorsimulator.hardware.Sensor;
import org.openintents.sensorsimulator.hardware.SensorEvent;
import org.openintents.sensorsimulator.hardware.SensorEventListener;
import org.openintents.sensorsimulator.hardware.SensorManagerSimulator;

CHAPTER 4: Interacting with Device Hardware and Media 254

3. Replace your activity’s onCreate() method’s existing

SensorManager.getSystemService() method calls with equivalent

SensorManagerSimulator.getSystemService() method calls. For

example, you might replace mSensorManager = (SensorManager)

getSystemService(SENSOR_SERVICE); with mSensorManager =

SensorManagerSimulator.getSystemService(this, SENSOR_SERVICE);.

4. Connect to the Sensor Simulator Java application using the settings that

have been set previously with SensorSimulatorSettings:

mSensorManager.connectSimulator();, for example.

5. All other code remains untouched. However, remember to register the

sensors in onResume() and unregister them in onStop():

@Override
protected void onResume()
{
 super.onResume();
 mSensorManager.registerListener(this,
 mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),
 SensorManager.SENSOR_DELAY_FASTEST);
 mSensorManager.registerListener(this,
 mSensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD),
 SensorManager.SENSOR_DELAY_FASTEST);
 mSensorManager.registerListener(this,
 mSensorManager.getDefaultSensor(Sensor.TYPE_ORIENTATION),
 SensorManager.SENSOR_DELAY_FASTEST);
 mSensorManager.registerListener(this,
 mSensorManager.getDefaultSensor(Sensor.TYPE_TEMPERATURE),
 SensorManager.SENSOR_DELAY_FASTEST);
}
@Override
protected void onStop()
{
 mSensorManager.unregisterListener(this);
 super.onStop();
}

6. Finally, you must implement the SensorEventListener interface:

class MySensorActivity extends Activity implements SensorEventListener
{
 public void onAccuracyChanged(Sensor sensor, int accuracy)
 {
 }

 public void onSensorChanged(SensorEvent event)
 {
 int sensor = event.type;
 float[] values = event.values;
 // do something with the sensor data
 }
}

CHAPTER 4: Interacting with Device Hardware and Media 255

NOTE: OpenIntents’ SensorManagerSimulator class is derived from the Android

SensorManager class, and implements exactly the same functions as SensorManager. For

the callback, the new SensorEventListener interface has been implemented to resemble the

standard Android SensorEventListener interface.

Whenever you are not connected to the Sensor Simulator Java application, you’ll get real device

sensor data: the org.openintents.hardware.SensorManagerSimulator class

transparently calls the SensorManager instance that’s returned by the system service to make

this happen.

Summary
This collection of recipes exposed how to use Android to use maps, user location, and

device sensor data to integrate information about the user’s surroundings into your

applications. We also discussed how to utilize the device’s camera and microphone,

allowing the user to capture, and sometimes interpret, what’s around them. Finally,

using the media APIs you learned how to take media content, either captured locally by

the user or downloaded remotely from the Web, and play it back from within your

applications. In the next chapter, we will discuss how to use Android’s many persistence

techniques to store nonvolatile data on the device.

257

257

 Chapter

Persisting Data

Even in the midst of grand architectures put in place to shift as much user data into the

cloud as possible, the transient nature of mobile applications will always require that at

least some user data be persisted locally on the device. This data may range from

cached responses from a web service guaranteeing offline access to preferences the

user has set for specific application behaviors. Android provides a series of helpful

frameworks to take the pain out of using files and databases to persist information.

5–1. Making a Preference Screen

Problem

You need to create a simple way to store, change, and display user preferences and

settings within your application.

Solution

(API Level 1)

Use the PreferenceActivity and an XML Preference hierarchy to provide the user

interface, key/value combinations, and persistence all at once. Using this method will

create a user interface that is consistent with the Settings application on Android

devices, keep the user’s experience consistent with what they expect.

Within the XML, an entire set of one or more screens can be defined with the associated

settings displayed and grouped into categories using the PreferenceScreen,

PreferenceCategory, and associated Preference elements. The Activity can then load

this hierarchy for the user using very little code.

How It Works

Listings 5–1 and 5–2 provide a sample of basic settings for an Android application. The

XML defines two screens with a variety of all the common preference types that this

5

CHAPTER 5: Persisting Data 258

framework supports. Notice that one screen is nested inside of the other; the internal

screen will be displayed when the user clicks on its associated list item from the root

screen.

Listing 5–1.res/xml/settings.xml

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">
 <EditTextPreference
 android:key="namePref"
 android:title="Name"
 android:summary="Tell Us Your Name"
 android:defaultValue="Apress"
 />
 <CheckBoxPreference
 android:key="morePref"
 android:title="Enable More Settings"
 android:defaultValue="false"
 />
 <PreferenceScreen
 android:key="moreScreen"
 android:title="More Settings"
 android:dependency="morePref">
 <ListPreference
 android:key="colorPref"
 android:title="Favorite Color"
 android:summary="Choose your favorite color"
 android:entries="@array/color_names"
 android:entryValues="@array/color_values"
 android:defaultValue="GRN"
 />
 <PreferenceCategory
 android:title="Location Settings">
 <CheckBoxPreference
 android:key="gpsPref"
 android:title="Use GPS Location"
 android:summary="Use GPS to Find You"
 android:defaultValue="true"
 />
 <CheckBoxPreference
 android:key="networkPref"
 android:title="Use Network Location"
 android:summary="Use Network to Find You"
 android:defaultValue="true"
 />
 </PreferenceCategory>
 </PreferenceScreen>
</PreferenceScreen>

Listing 5–2. res/values/arrays.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="color_names">
 <item>Black</item>
 <item>Red</item>
 <item>Green</item>
 </string-array>

http://schemas.android.com/apk/res/android

CHAPTER 5: Persisting Data 259

 <string-array name="color_values">
 <item>BLK</item>
 <item>RED</item>
 <item>GRN</item>
 </string-array>
</resources>

Notice first the convention used to create the XML file. Although this resource could be

inflated from any directory (such as res/layout), convention is to put them into a generic

directory of the project titled simply “xml.”

Also, notice that we provide an android:key attribute for each Preference object

instead of android:id. When each stored value is referenced elsewhere in the

application through a SharedPreferences object, it will be accessed using the key. In

addition, PreferenceActivity includes the findPreference() method for obtaining a

reference to an inflated Preference in Java code, which is more efficient than using

findViewById(); and findPreference() also takes the key as a parameter.

When inflated, the root PreferenceScreen presents a list with the following three options

(in order):

1. An item titled “Name”

a. Instance of EditTextPreference, which stores a string value.

b. Tapping this item will present a text box for the user to type a new

preference value.

2. An item titled “Enable More Settings” with a checkbox beside it

a. Instance of CheckBoxPreference, which stores a boolean value.

b. Tapping this item will toggle the checked status of the checkbox.

3. An item titled “More Settings”

a. Tapping this item will load another PreferenceScreen with more

items.

When the user taps the “More Settings” item, a second screen is displayed with three

more items: a ListPreference item and two more CheckBoxPreferences grouped

together by a PreferenceCategory. PreferenceCategory is simply a way to create section

breaks and headers in the list for grouping actual preference items.

The ListPreference is the final preference type used in the example. This item requires

two array parameters (although they can both be set to the same array) that represent a

set of choices the user may pick from. The android:entries array is the list of human-

readable items to display, while the android:entryValues array represents the actual

value to be stored.

All the preference items may optionally have a default value set for them as well. This

value is not automatically loaded, however. It will load the first time this XML file is

inflated when the PreferenceActivity is displayed OR when a call to

PreferenceManager.setDefaultValues() is made.

CHAPTER 5: Persisting Data 260

Now let’s take a look at how a PreferenceActivity would load and manage this. See

Listing 5–3.

Listing 5–3. PreferenceActivity in Action

public class SettingsActivity extends PreferenceActivity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 //Load preference data from XML
 addPreferencesFromResource(R.xml.settings);
 }
}

All that is required to display the preferences to the user and allow them to make

changes is a call to addPreferencesFromResource(). There is no need to call

setContentView() with PreferenceActivity, as addPreferencesFromResource() inflates

the XML and displays it as well. However a custom layout may be provided as long as it

contains a ListView with the android:id="@android:id/list" attribute set, which is

where PreferenceActivity will load the preference items.

Preference items can also be placed in the list for the sole purpose of controlling

access. In the example, we put the “Enable More Settings” item in the list just to allow

the user to enable or disable access to the second PreferenceScreen. In order to

accomplish this, our nested PreferenceScreen includes the android:dependency

attribute, which links its enabled state to the state of another preference. Whenever the

referenced preference is either not set or false, this preference will be disabled.

When this Activity loads, you see something like Figure 5–1.

Figure 5–1. PreferenceScreen in action

CHAPTER 5: Persisting Data 261

The root PreferenceScreen (left) displays first. If the user taps on “More Settings,” the

secondary screen (right) displays.

Loading Defaults and Accessing Preferences

Typically, a PreferenceActivity such as this one is not the root of an application. Often,

if default values are set they may need to be accessed by the rest of the application

before the user ever visits Settings (the first case under which the defaults will load).

Therefore, it can be helpful to put a call to the following method elsewhere in your

application to ensure that the defaults are loaded prior to being used.

PreferenceManager.setDefaultValues(Context context, int resId, boolean readAgain);

This method may be called multiple times, and the defaults will not get loaded over

again. It may be placed in the main Activity so it is called on first launch, or perhaps in a

common place where it is called before any access to shared preferences.

Preferences stored using this mechanism are put into the default shared preferences

object, which can be accessed with any Context pointer using

PreferenceManager.getDefaultSharedPreferences(Context context);

An example Activity that would load the defaults set in our previous example and access

some of the current values stored would look like Listing 5–4.

Listing 5–4. Activity Loading Preference Defaults

public class HomeActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //Load the preference defaults
 PreferenceManager.setDefaultValues(this, R.xml.settings, false);
 }

 @Override
 public void onResume() {
 super.onResume();
 //Access the current settings
 SharedPreferences settings =
 PreferenceManager.getDefaultSharedPreferences(this);

 String name = settings.getString("namePref", "");
 boolean isMoreEnabled = settings.getBoolean("morePref", false);
 }
}

Calling setDefaultValues() will create a value in the preference store for any item in the

XML file that includes an android:defaultValue attribute. This will make them

accessible to the application, even if the user has not yet visited the settings screen.

CHAPTER 5: Persisting Data 262

These values can then be accessed using a set of typed accessor functions on the

SharedPreferences object. Each of these accessor methods requires both the name of

the preference key and a default value to be returned if a value for preference key does

not yet exist.

5–2. Persisting Simple Data

Problem

Your application needs a simple, low-overhead method of storing basic data, such as

numbers and strings, in persistent storage.

Solution

(API Level 1)

Using SharedPreferences objects, applications can quickly create one or more

persistent stores where data can be saved and retrieved at a later time. Underneath the

hood, these objects are actually stored as XML files in the application’s user data area.

However, unlike directly reading and writing data from files, SharedPreferences provide

an efficient framework for persisting basic data types.

Creating multiple SharedPreferences as opposed to dumping all your data in the default

object can be a good habit to get into, especially if the data you are storing has a shelf

life. Keeping in mind that all preferences stored using the XML and PreferenceActivity

framework are also stored in the default location – what if you wanted to store a group

of items related to, say, a logged in user? When that user logs out, you will need to

remove all the persisted data that goes along with that. If you store all that data in

default preferences, you will most likely need to remove each item individually. However,

if you create a preference object just for those settings, logging out can be as simple as

calling SharedPreferences.clear().

How It Works

Let’s look at a practical example of using SharedPreferences to persist simple data.

Listings 5–5 and 5–6 create a data entry form for the user to send a simple message to a

remote server. To aid the user, we will remember all the data they enter for each field

until a successful request is made. This will allow the user to leave the screen (or be

interrupted by a text message or phone call) without having to enter all their information

again.

Listing 5–5. res/layout/form.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

http://schemas.android.com/apk/res/android

CHAPTER 5: Persisting Data 263

 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Email:"
 android:padding="5dip"
 />
 <EditText
 android:id="@+id/email"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:singleLine="true"
 />
 <CheckBox
 android:id="@+id/age"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Are You Over 18?"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Message:"
 android:padding="5dip"
 />
 <EditText
 android:id="@+id/message"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:minLines="3"
 android:maxLines="3"
 />
 <Button
 android:id="@+id/submit"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Submit"
 />
</LinearLayout>

Listing 5–6. Entry Form with Persistence

public class FormActivity extends Activity implements View.OnClickListener {

 EditText email, message;
 CheckBox age;
 Button submit;

 SharedPreferences formStore;

 boolean submitSuccess = false;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.form);

 email = (EditText)findViewById(R.id.email);
 message = (EditText)findViewById(R.id.message);

CHAPTER 5: Persisting Data 264

 age = (CheckBox)findViewById(R.id.age);

 submit = (Button)findViewById(R.id.submit);
 submit.setOnClickListener(this);

 //Retrieve or create the preferences object
 formStore = getPreferences(Activity.MODE_PRIVATE);
 }

 @Override
 public void onResume() {
 super.onResume();
 //Restore the form data
 email.setText(formStore.getString("email", ""));
 message.setText(formStore.getString("message", ""));
 age.setChecked(formStore.getBoolean("age", false));
 }

 @Override
 public void onPause() {
 super.onPause();
 if(submitSuccess) {
 //Editor calls can be chained together
 formStore.edit().clear().commit();
 } else {
 //Store the form data
 SharedPreferences.Editor editor = formStore.edit();
 editor.putString("email", email.getText().toString());
 editor.putString("message", message.getText().toString());
 editor.putBoolean("age", age.isChecked());
 editor.commit();
 }
 }

 @Override
 public void onClick(View v) {

 //DO SOME WORK SUBMITTING A MESSAGE

 //Mark the operation successful
 submitSuccess = true;
 //Close
 finish();
 }
}

We start with a typical user form, two simple EditText entry fields and a CheckBox. When

the Activity is created, we gather a SharedPreferences object using

Activity.getPreferences(), and this is where all the persisted data will be stored. If at

any time the Activity is paused for a reason other than a successful submission

(controlled by the boolean member), the current state of the form will be quickly loaded

into the preferences and persisted.

CHAPTER 5: Persisting Data 265

NOTE: When saving data into SharedPreferences using an Editor, always remember to call

commit() or apply() after the changes are made. Otherwise your changes will not be saved.

Conversely, whenever the Activity becomes visible, onResume() loads the user interface

with the latest information stored in the preferences object. If no preferences exist, either

because they were cleared or never created (first launch), then the form is set to blank.

When a user presses Submit and the fake form submits successfully, the subsequent

call to onPause() will clear any stored form data in preferences. Because all these

operations were done on a private preferences object, clearing the data does not affect

any user settings that may have been stored using other means.

NOTE: Methods called from an Editor always return the same Editor object, allowing them

to be chained together in places where doing so makes your code more readable.

Sharing SharedPreferences

The previous example illustrated using a single SharedPreferences object within the

context of a single Activity with an object obtained from Activity.getPreferences().

Truth be told, this method is really just a convenience wrapper for

Context.getSharedPreferences(), in which it passes the Activity name as the preference

store name. If the data you are storing is best shared between two or more Activity

instances, it might make sense to call getSharedPreferences() instead and pass a more

common name so it can be accessed easily from different places in code. See Listing 5–7.

Listing 5–7. Two Activities Using the Same Preferences

public class ActivityOne extends Activity {
 public static final String PREF_NAME = "myPreferences";
 private SharedPreferences mPreferences;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mPreferences = getSharedPreferences(PREF_NAME, Activity.MODE_PRIVATE);
 }
}

public class ActivityTwo extends Activity {

 private SharedPreferences mPreferences;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mPreferences = getSharedPreferences(ActivityOne.PREF_NAME,
 Activity.MODE_PRIVATE);
 }

}

CHAPTER 5: Persisting Data 266

In this example, both Activity classes retrieve the SharedPreferences object using the

same name (defined as a constant string), thus they will be accessing the same set of

preference data. Furthermore, both references are even pointing at the same instance of

preferences, as the framework creates a singleton object for each set of

SharedPreferences (a set being defined by its name). This means that changes made on

one side will immediately be reflected on the other.

A Note About Mode

Context.getSharedPreferences() also takes a mode parameter. Passing 0 or

MODE_PRIVATE provides the default behavior of allowing only the application that created

the preferences (or another application with the same user ID) to gain read and write

access. This method supports two more mode parameters; MODE_WORLD_READABLE and

MODE_WORLD_WRITEABLE. These modes allow other applications to gain access to these

preferences by setting the user permissions on the file it creates appropriately. However,

the external application still requires a valid Context pointing back to the package where

the preference file was created.

For example, let’s say you created SharedPreferences with world readable
permission in an application with the package com.examples.myfirstapplication. In

order to access those preferences from a second application, the second application

would obtain them using the following code:

Context otherContext = createPackageContext("com.examples.myfirstapplication", 0);
SharedPreferences externalPreferences = otherContext.getSharedPreferences(PREF_NAME, 0);

CAUTION: If you choose to use the mode parameter to allow external access, be sure that you

are consistent in the mode you provide everywhere getSharedPreferences() is called. This

mode is only used the first time the preference file gets created, so calling up

SharedPreferences with different mode parameters at different times will only lead to

confusion on your part.

5–3. Reading and Writing Files

Problem

Your application needs to read data in from an external file or write more complex data

out for persistence.

Solution

(API Level 1)

Sometimes, there is no substitute for working with a file system. Android supports all the

standard Java File I/O for create, read, update, and delete (CRUD) operations, along

CHAPTER 5: Persisting Data 267

with some additional helpers to make accessing those files in specific locations a little

more convenient. There are three main locations in which an application can work with

files:

 Internal storage

 Protected directory space to read and write file data.

 External storage

 Externally mountable space to read and write file data.

 Requires the WRITE_EXTERNAL_STORAGE permission in API Level 4+.

 Often, this is a physical SD Card in the device.

 Assets

 Protected read-only space inside the APK bundle.

 Good for local resources that can’t/shouldn’t be compiled.

While the underlying mechanism to work with file data remains the same, we will look at

the details that make working with each destination slightly different.

How It Works

As we stated earlier, the traditional Java FileInputStream and FileOutputStream classes

constitute the primary method of accessing file data. In fact, you can create a File

instance at any time with an absolute path location and start streaming data. However,

with root paths varying on different devices and certain directories being protected from

your application, we recommend some slightly more efficient ways to work with files.

Internal Storage

In order to create or modify a file’s location on internal storage, utilize the

Context.openFileInput() and Context.openFileOutput() methods. These methods

require only the name of the file as parameters, instead of the entire path, and will

reference the file in relation to the application’s protected directory space, regardless of

the exact path on the specific device. See Listing 5–8.

Listing 5–8. CRUD a File on Internal Storage

public class InternalActivity extends Activity {

 private static final String FILENAME = "data.txt";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 setContentView(tv);

 //Create a new file and write some data

CHAPTER 5: Persisting Data 268

 try {
 FileOutputStream mOutput = openFileOutput(FILENAME, Activity.MODE_PRIVATE);
 String data = "THIS DATA WRITTEN TO A FILE";
 mOutput.write(data.getBytes());
 mOutput.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 //Read the created file and display to the screen
 try {
 FileInputStream mInput = openFileInput(FILENAME);
 byte[] data = new byte[128];
 mInput.read(data);
 mInput.close();

 String display = new String(data);
 tv.setText(display.trim());
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 //Delete the created file
 deleteFile(FILENAME);
 }
}

This example uses Context.openFileOutput() to write some simple string data out to a

file. When using this method, the file will be created if it does not already exist. It takes

two parameters, a file name and an operating mode. In this case, we use the default

operation by defining the mode as MODE_PRIVATE. This mode will overwrite the file with

each new write operation; use MODE_APPEND if you prefer that each write tack on to the

end of the existing file.

After the write is complete, the example uses Context.openFileInput(), which only

requires the file name again as a parameter, to open an InputStream and read the file

data. The data is read into a byte array and displayed to the user interface through a

TextView. Upon completing the operation, Context.deleteFile() is used to remove the

file from storage.

NOTE: Data is written to the file streams as bytes, so higher level data (even strings) must be

converted into and out of this format.

This example leaves no traces of the file behind, but we encourage you to try the same

example without running deleteFile() at the end to keep the file in storage. Using

DDMS with an emulator or unlocked device, you may view the file system and can find

the file this application creates in its respective application data folder.

CHAPTER 5: Persisting Data 269

Because these methods are a part of Context, and not bound to Activity, this type of file

access can occur anywhere in an application that you require, such as a

BroadcastReceiver or even a custom class. Many system constructs either are a

subclass of Context, or pass a reference to one in their callbacks. This allows the same

open/close/delete operations to take place anywhere.

External Storage

The key differentiator between internal and external storage lies in the fact that external

storage is mountable. This means that the user can connect their device to a computer

and have the option of mounting that external storage as a removable disk on the PC.

Often, the storage itself is physically removable (such as an SD card), but this is not a

requirement of the platform.

IMPORTANT: Writing to the external storage of the device will require that you add a declaration

for android.permission.WRITE_EXTERNAL_STORAGE to the application manifest.

During periods where the device’s external storage is either mounted externally or

physically removed, it is not accessible to an application. Because of this, it is always

prudent to check whether or not external storage is ready by checking

Environment.getExternalStorageState().

Let’s modify the file example to do the same operation with the device’s external

storage. See Listing 5–9.

Listing 5–9. CRUD a File on External Storage

public class ExternalActivity extends Activity {

 private static final String FILENAME = "data.txt";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 setContentView(tv);

 //Create the file reference
 File dataFile = new File(Environment.getExternalStorageDirectory(), FILENAME);

 //Check if external storage is usable
 if(!Environment.getExternalStorageState().equals(Environment.MEDIA_MOUNTED)) {
 Toast.makeText(this, "Cannot use storage.", Toast.LENGTH_SHORT).show();
 finish();
 return;
 }

 //Create a new file and write some data
 try {
 FileOutputStream mOutput = new FileOutputStream(dataFile, false);
 String data = "THIS DATA WRITTEN TO A FILE";
 mOutput.write(data.getBytes());

CHAPTER 5: Persisting Data 270

 mOutput.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 //Read the created file and display to the screen
 try {
 FileInputStream mInput = new FileInputStream(dataFile);
 byte[] data = new byte[128];
 mInput.read(data);
 mInput.close();

 String display = new String(data);
 tv.setText(display.trim());
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 //Delete the created file
 dataFile.delete();
 }
}

With external storage, we utilize a little more of the traditional Java File I/O. The key to

working with external storage is calling Environment.getExternalStorageDirectory() to

retrieve the root path to the device’s external storage location.

Before any operations can take place, the status of the device’s external storage is first

checked with Environment.getExternalStorageState(). If the value returned is anything

other than Environment.MEDIA_MOUNTED, we wil not proceed because the storage cannot

be written to, so the Activity is closed. Otherwise, a new file can be created and the

operations may commence.

The input and output streams must now use default Java constructors, as opposed to

the Context convenience methods. The default behavior of the output stream will be to

overwrite the current file, or create it if it does not exist. If your application must append

to the end of the exiting file with each write, change the boolean parameter in the

FileOutputStream constructor to true.

Often, it makes sense to create a special directory on the external storage for your

application’s files. We can accomplish this simply using more of Java’s File API. See

Listing 5–10.

Listing 5–10. CRUD a File Inside New Directory

public class ExternalActivity extends Activity {

 private static final String FILENAME = "data.txt";
 private static final String DNAME = "myfiles";

 @Override
 public void onCreate(Bundle savedInstanceState) {

CHAPTER 5: Persisting Data 271

 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 setContentView(tv);

 //Create a new directory on external storage
 File rootPath = new File(Environment.getExternalStorageDirectory(), DNAME);
 if(!rootPath.exists()) {
 rootPath.mkdirs();
 }
 //Create the file reference
 File dataFile = new File(rootPath, FILENAME);

 //Create a new file and write some data
 try {
 FileOutputStream mOutput = new FileOutputStream(dataFile, false);
 String data = "THIS DATA WRITTEN TO A FILE";
 mOutput.write(data.getBytes());
 mOutput.close();
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 //Read the created file and display to the screen
 try {
 FileInputStream mInput = new FileInputStream(dataFile);
 byte[] data = new byte[128];
 mInput.read(data);
 mInput.close();

 String display = new String(data);
 tv.setText(display.trim());
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 //Delete the created file
 dataFile.delete();
 }
}

In this example we create a new directory path within the external storage directory and

use that new location as the root location for the data file. Once the file reference is

created using the new directory location, the remainder of the example is the same.

5–4. Using Files as Resources

Problem

Your application must utilize resource files that are in a format Android cannot compile

into a resource ID.

CHAPTER 5: Persisting Data 272

Solution

(API Level 1)

Use the Assets directory to house files your application needs to read from, such as

local HTML, CSV, or proprietary data. The assets directory is a protected resource

location for files in an Android application. The files placed in this directory will be

bundled with the final APK, but will not be processed or compiled. Like all other

application resources, the files in Assets are read-only.

How It Works

There are a few specific instances that we’ve seen already in this book where Assets

can be used to load content directly into widgets, like WebView and MediaPlayer.

However, in most cases, Assets is best accessed using a traditional InputStream.

Listings 5–11 and 5–12 provide an example in which a private Comma Separated Values

(CSV) file is read from Assets and displayed onscreen.

Listing 5–11. assets/data.csv

John,38,Red
Sally,42,Blue
Rudy,31,Yellow

Listing 5–12. Reading from an Asset File

public class AssetActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 setContentView(tv);

 try {
 //Access application assets
 AssetManager manager = getAssets();
 //Open our data file
 InputStream mInput = manager.open("data.csv");
 //Read data in
 byte[] data = new byte[128];
 mInput.read(data);
 mInput.close();

 //Parse the CSV data and display
 String raw = new String(data);
 ArrayList<Person> cooked = parse(raw.trim());
 StringBuilder builder = new StringBuilder();
 for(Person piece : cooked) {
 builder.append(String.format("%s is %s years old, and likes the color %s",
 piece.name, piece.age, piece.color));
 builder.append('\n');
 }
 tv.setText(builder.toString());

CHAPTER 5: Persisting Data 273

 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }

 }

 /* Simple CSV Parser */
 private static final int COL_NAME = 0;
 private static final int COL_AGE = 1;
 private static final int COL_COLOR = 2;

 private ArrayList<Person> parse(String raw) {
 ArrayList<Person> results = new ArrayList<Person>();
 Person current = null;

 StringTokenizer st = new StringTokenizer(raw,",\n");
 int state = COL_NAME;
 while(st.hasMoreTokens()) {
 switch(state) {
 case COL_NAME:
 current = new Person();
 current.name = st.nextToken();
 state = COL_AGE;
 break;
 case COL_AGE:
 current.age = st.nextToken();
 state = COL_COLOR;
 break;
 case COL_COLOR:
 current.color = st.nextToken();
 results.add(current);
 state = COL_NAME;
 break;
 }
 }

 return results;
 }

 private class Person {
 public String name;
 public String age;
 public String color;

 public Person() { }
 }
}

The key to accessing files in Assets lies in using AssetManager, which will allow the

application to open any resource currently residing in the Assets directory. Passing the

name of the file we are interested in to AssetManager.open() returns an InputStream for

us to read the file data. Once the stream is read into memory, the example passes the

raw data off to a parsing routine and displays the results to the user interface.

CHAPTER 5: Persisting Data 274

Parsing the CSV

This example also illustrates a simple method of taking data from a CSV file and parsing

it into a model object (called Person in this case). The method used here takes the entire

file and reads it into a byte array for processing as a single string. This method is not the

most memory efficient when the amount of data to be read is quite large, but for small

files like this one it works just fine.

The raw string is passed into a StringTokenizer instance, along with the required

characters to use as breakpoints for the tokens: comma and new line. At this point, each

individual chunk of the file can be processed in order. Using a basic state machine

approach, the data from each line is inserted into new Person instances and loaded into

the resulting list.

5–5. Managing a Database

Problem

Your application needs to persist data that can later be queried or modified later as

subsets or individual records.

Solution

(API Level 1)

Create an SQLiteDatabase with the assistance of an SQLiteOpenHelper to manage your

data store. SQLite is a fast and lightweight database technology that utilizes SQL syntax

to build queries and manage data. Support for SQLite is baked in to the Android SDK,

making it very easy to set up and use in your applications.

How It Works

Customizing SQLiteOpenHelper allows you to manage the creation and modification of

the database schema itself. It is also an excellent place to insert any initial or default

values you may want into the database while it is created. Listing 5–13 is an example

customizing the helper to create a database with a single table to store basic

information about people.

Listing 5–13. Custom SQLiteOpenHelper

public class MyDbHelper extends SQLiteOpenHelper {

 private static final String DB_NAME = "mydb";
 private static final int DB_VERSION = 1;

 public static final String TABLE_NAME = "people";
 public static final String COL_NAME = "pName";
 public static final String COL_DATE = "pDate";
 private static final String STRING_CREATE =

CHAPTER 5: Persisting Data 275

 "CREATE TABLE "+TABLE_NAME+" (_id INTEGER PRIMARY KEY AUTOINCREMENT, "
 +COL_NAME+" TEXT, "+COL_DATE+" DATE);";

 public MyDbHelper(Context context) {
 super(context, DB_NAME, null, DB_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 //Create the database table
 db.execSQL(STRING_CREATE);

 //You may also load initial values into the database here
 ContentValues cv = new ContentValues(2);
 cv.put(COL_NAME, "John Doe");
 //Create a formatter for SQL date format
 SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
 cv.put(COL_DATE, dateFormat.format(new Date())); //Insert 'now' as the date
 db.insert(TABLE_NAME, null, cv);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 //For now, clear the database and re-create
 db.execSQL("DROP TABLE IF EXISTS "+TABLE_NAME);
 onCreate(db);
 }
}

They key pieces of information you will need for your database are a name and version

number. Creating and upgrading an SQLiteDatabase does require a light knowledge of

SQL, so we recommend glancing at an SQL reference briefly if you are unfamiliar with

some of the syntax. The helper will call onCreate() any time this particular database is

accessed, using either SQLiteOpenHelper.getReadableDatabase() or

SQLiteOpenHelper.getWritableDatabase(), if it does not already exist.

The example abstracts the table and column names as constants for external use (a

good practice to get into). Here is the actual SQL create string that is used in onCreate()

to make our table:

CREATE TABLE people (_id INTEGER PRIMARY KEY AUTOINCREMENT, pName TEXT, pAge INTEGER,
pDate DATE);

When using SQLite in Android, there is a small amount of formatting that the database

must have in order for it to work properly with the framework. Most of it is created for

you, but one piece that the tables you create must have is a column for _id. The

remainder of this string creates two more columns for each record in the table:

 A text field for the person’s name

 A date field for the date this record was entered

Data is inserted into the database using ContentValues objects. The example illustrates

how to use ContentValues to insert some default data into the database when it is

created. SQLiteDatabase.insert() takes a table name, null column hack, and

ContentValues representing the record to insert as parameters.

CHAPTER 5: Persisting Data 276

The null column hack is not used here, but serves a purpose that may be vital to your

application. SQL cannot insert an entirely empty value into the database, and attempting

to do so will cause an error. If there is a chance that your implementation may pass an

empty ContentValues to insert(), the null column hack is used to instead insert a

record where the value of the referenced column is NULL.

A Note About Upgrading

SQLiteOpenHelper also does a great job of assisting you with migrating your database

schema in future versions of the application. Whenever the database is accessed, but

the version on disk does not match the current version (meaning the version passed in

the constructor), onUpgrade() will be called.

In our example, we took the lazy man’s way out and simply dropped the existing

database and recreated it. In practice, this may not be a suitable method if the database

contains user entered data; they probably won’t be too happy to see it disappear. So

let’s digress for a moment and look at an example of onUpgrade() that may be more

useful. Take, for example, the following three databases used throughout the lifetime of

an application:

 Version 1: First release of the application

 Version 2: Application upgrade to include phone number field

 Version 3: Application upgrade to include date entry inserted

We can leverage onUpgrade() to alter the existing database instead of erasing all the

current information in place. See Listing 5–14.

Listing 5–14. Sample of onUpgrade()

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 //Upgrade from v1. Adding phone number
 if(oldVersion <= 1) {
 db.execSQL("ALTER TABLE "+TABLE_NAME+" ADD COLUMN phone_number INTEGER;");
 }
 //Upgrade from v2. Add entry date
 if(oldVersion <= 2) {
 db.execSQL("ALTER TABLE "+TABLE_NAME+" ADD COLUMN entry_date DATE;");
 }
}

In this example, if the user’s existing database version is 1, both statements will be

called to add columns to the database. If they already have version 2, just the latter

statement is called to add the entry date column. In both cases, any existing data in the

application database is preserved.

Using the Database

Looking back to our original sample, let’s take a look at how an Activity would utilize the

database we’ve created. See Listings 5–15 and 5–16.

CHAPTER 5: Persisting Data 277

Listing 5–15. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <EditText
 android:id="@+id/name"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <Button
 android:id="@+id/add"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Add New Person"
 />
 <ListView
 android:id="@+id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</LinearLayout>

Listing 5–16. Activity to View and Manage Database

public class DbActivity extends Activity implements View.OnClickListener,
 AdapterView.OnItemClickListener {

 EditText mText;
 Button mAdd;
 ListView mList;

 MyDbHelper mHelper;
 SQLiteDatabase mDb;
 Cursor mCursor;
 SimpleCursorAdapter mAdapter;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 mText = (EditText)findViewById(R.id.name);
 mAdd = (Button)findViewById(R.id.add);
 mAdd.setOnClickListener(this);
 mList = (ListView)findViewById(R.id.list);
 mList.setOnItemClickListener(this);

 mHelper = new MyDbHelper(this);
 }

 @Override
 public void onResume() {
 super.onResume();
 //Open connections to the database
 mDb = mHelper.getWritableDatabase();

http://schemas.android.com/apk/res/android

CHAPTER 5: Persisting Data 278

 String[] columns = new String[] {"_id", MyDbHelper.COL_NAME, MyDbHelper.COL_DATE};
 mCursor = mDb.query(MyDbHelper.TABLE_NAME, columns, null, null, null, null, null);
 //Refresh the list
 String[] headers = new String[] {MyDbHelper.COL_NAME, MyDbHelper.COL_DATE};
 mAdapter = new SimpleCursorAdapter(this, android.R.layout.two_line_list_item,
 mCursor, headers, new int[]{android.R.id.text1, android.R.id.text2});
 mList.setAdapter(mAdapter);
 }

 @Override
 public void onPause() {
 super.onPause();
 //Close all connections
 mDb.close();
 mCursor.close();
 }

 @Override
 public void onClick(View v) {
 //Add a new value to the database
 ContentValues cv = new ContentValues(2);
 cv.put(MyDbHelper.COL_NAME, mText.getText().toString());
 //Create a formatter for SQL date format
 SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
 cv.put(MyDbHelper.COL_DATE, dateFormat.format(new Date())); //Insert 'now' as the date
 mDb.insert(MyDbHelper.TABLE_NAME, null, cv);
 //Refresh the list
 mCursor.requery();
 mAdapter.notifyDataSetChanged();
 //Clear the edit field
 mText.setText(null);
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View v, int position, long id) {
 //Delete the item from the database
 mCursor.moveToPosition(position);
 //Get the id value of this row
 String rowId = mCursor.getString(0); //Column 0 of the cursor is the id
 mDb.delete(MyDbHelper.TABLE_NAME, "_id = ?", new String[]{rowId});
 //Refresh the list
 mCursor.requery();
 mAdapter.notifyDataSetChanged();
 }
}

In this example, we utilize our custom SQLiteOpenHelper to give us access to a database

instance, and display each record in that database as a list to the user interface.

Information from the database if returned in the form of a Cursor, an interface designed

to read, write, and traverse the results of a query.

When the Activity becomes visible, a database query is made to return all records in the

“people” table. An array of column names must be passed to the query to tell the

database which values to return. The remaining parameters of query() are designed to

narrow the selection data set, and we will investigate this further in the next recipe. It is

CHAPTER 5: Persisting Data 279

important to close all database and cursor connections when they are no longer needed.

In the example, we do this in onPause(), when the Activity is no longer in the foreground.

SimpleCursorAdapter is used to map the data from the database to the standard

Android two-line list item view. The string and int array parameters constitute the

mapping; the data from each item in the string array will be inserted into the view with

the corresponding id value in the int array. Notice that the list of column names passed

here is slightly different than the array passed to the query. This is because we will need

to know the record id for other operations, but it is not necessary in mapping the data to

the user interface.

The user may enter a name in the text field and then press the “Add New Person” button

to create new ContentValues and insert it into the database. At that point, in order for

the UI to display the change we call Cursor.requery() and

ListAdapter.notifyDataSetChanged().

Conversely, tapping on an item in the list will remove that specified item from the

database. In order to accomplish this, we must construct a simple SQL statement telling

the database to remove only records where the _id value matches this selection. At that

point, the cursor and list adapter are refreshed again.

The _id value of the selection is obtained by moving the cursor to the selected position

and calling getString(0) to get the value of column index zero. This request returns the

_id because the first parameter (index 0) passed in the columns list to the query was

“_id.” The delete statement is comprised of two parameters: the statement string and

the arguments. An argument from the passed array will be inserted in the statement for

each question mark that appears in the string.

5–6. Querying a Database

Problem

Your application uses an SQLiteDatabase, and you need to return specific subsets of

the data contained therein.

Solution

(API Level 1)

Using fully structured SQL queries, it is very simple to create filters for specific data and

return those subsets from the database. There are several overloaded forms of

SQLiteDatabase.query() to gather information from the database. We’ll examine the

most verbose of them here.

public Cursor query(String table, String[] columns, String selection, String[]
selectionArgs, String groupBy, String having, String orderBy, String limit)

CHAPTER 5: Persisting Data 280

The first two parameters simply define the table in which to query data, and the columns

for each record that we would like to have access to. The remaining parameters define

how we will narrow the scope of the results.

 selection

 SQL WHERE clause for the given query.

 selectionArgs

 If question marks are in selection, these items fill in those fields.

 groupBy

 SQL GROUP BY clause for the given query.

 having

 SQL ORDER BY clause for the given query.

 orderBy

 SQL ORDER BY clause for the given query.

 limit

 Maximum number of results returned from the query.

As you can see, all of these parameters are designed to provide the full power of SQL to

the database queries.

How It Works

Let’s look at some example queries that can be constructed to accomplish some

common practical queries.

 Return all rows where the value matches a given parameter.

String[] COLUMNS = new String[] {COL_NAME, COL_DATE};
String selection = COL_NAME+" = ?";
String[] args = new String[] {"NAME_TO_MATCH"};
Cursor result = db.query(TABLE_NAME, COLUMNS, selection, args, null, null, null, null);

This query is fairly straightforward. The selection statement just tells the database to

match any data in the name column with the argument supplied (which is inserted in

place of “?” in the selection string).

 Return the last 10 rows inserted into the database.

String orderBy = "_id DESC";
String limit = "10";
Cursor result = db.query(TABLE_NAME, COLUMNS, null, null, null, null, orderBy, limit);

This query has no special selection criteria, but instead tells the database to order the

results by the auto-incrementing _id value, with the newest (highest _id) records first.

The limit clause sets the maximum number of returned results to ten.

CHAPTER 5: Persisting Data 281

 Return rows where a date field is within a specified range (within the

year 2000, in this example).

String[] COLUMNS = new String[] {COL_NAME, COL_DATE};
String selection = "datetime("+COL_DATE+") > datetime(?)"+
 " AND datetime("+COL_DATE+") < datetime(?)";
String[] args = new String[] {"2000-1-1 00:00:00","2000-12-31 23:59:59"};
Cursor result = db.query(TABLE_NAME, COLUMNS, selection, args, null, null, null, null);

SQLite does not reserve a specific data type for dates, although they allow DATE as a

declaration type when creating a table. However, the standard SQL date and time

functions can be used to create representations of the data as TEXT, INTEGER, or

REAL. Here, we compare the return values of datetime() for both the value in the

database and a formatted string for the start and end dates of the range.

 Return rows where an integer field is within a specified range (between

7 and 10 in the example).

String[] COLUMNS = new String[] {COL_NAME, COL_AGE};
String selection = COL_AGE+" > ? AND "+COL_AGE+" < ?";
String[] args = new String[] {"7","10"};
Cursor result = db.query(TABLE_NAME, COLUMNS, selection, args, null, null, null, null);

This is similar to the previous example, but much less verbose. Here, we simply have to

create the selection statement to return values greater than the low limit, but less than

the high limit. Both limits are provided as arguments to be inserted so they can be

dynamically set in the application.

5–7. Backing Up Data

Problem

Your application persists data on the device, and you need to provide the user with a

way to back up and restore this data in cases where they change devices or are forced

to reinstall the application.

Solution

(API Level 1)

Use the device’s external storage as a safe location to copy databases and other files.

External storage is often physically removable, allowing the user to place it in another

device and do a restore. Even in cases where this is not possible, external storage can

always be mounted when the user connects their device to a computer, allowing data

transfer to take place.

CHAPTER 5: Persisting Data 282

How It Works

Listing 5–17 shows an implementation of AsyncTask that copies a database file back and

forth between the device’s external storage and its location in the application’s data

directory. It also defines an interface for an Activity to implement to get notified when the

operation is complete.

Listing 5–17. AsyncTask for Backup and Restore

public class BackupTask extends AsyncTask<String,Void,Integer> {

 public interface CompletionListener {
 void onBackupComplete();
 void onRestoreComplete();
 void onError(int errorCode);
 }

 public static final int BACKUP_SUCCESS = 1;
 public static final int RESTORE_SUCCESS = 2;
 public static final int BACKUP_ERROR = 3;
 public static final int RESTORE_NOFILEERROR = 4;

 public static final String COMMAND_BACKUP = "backupDatabase";
 public static final String COMMAND_RESTORE = "restoreDatabase";

 private Context mContext;
 private CompletionListener listener;

 public BackupTask(Context context) {
 super();
 mContext = context;
 }

 public void setCompletionListener(CompletionListener aListener) {
 listener = aListener;
 }

 @Override
 protected Integer doInBackground(String... params) {

 //Get a reference to the database
 File dbFile = mContext.getDatabasePath("mydb");
 //Get a reference to the directory location for the backup
 File exportDir = new File(Environment.getExternalStorageDirectory(), "myAppBackups");
 if (!exportDir.exists()) {
 exportDir.mkdirs();
 }
 File backup = new File(exportDir, dbFile.getName());

 //Check the required operation
 String command = params[0];
 if(command.equals(COMMAND_BACKUP)) {
 //Attempt file copy
 try {
 backup.createNewFile();
 fileCopy(dbFile, backup);

CHAPTER 5: Persisting Data 283

 return BACKUP_SUCCESS;
 } catch (IOException e) {
 return BACKUP_ERROR;
 }
 } else if(command.equals(COMMAND_RESTORE)) {
 //Attempt file copy
 try {
 if(!backup.exists()) {
 return RESTORE_NOFILEERROR;
 }
 dbFile.createNewFile();
 fileCopy(backup, dbFile);
 return RESTORE_SUCCESS;
 } catch (IOException e) {
 return BACKUP_ERROR;
 }
 } else {
 return BACKUP_ERROR;
 }
 }

 @Override
 protected void onPostExecute(Integer result) {

 switch(result) {
 case BACKUP_SUCCESS:
 if(listener != null) {
 listener.onBackupComplete();
 }
 break;
 case RESTORE_SUCCESS:
 if(listener != null) {
 listener.onRestoreComplete();
 }
 break;
 case RESTORE_NOFILEERROR:
 if(listener != null) {
 listener.onError(RESTORE_NOFILEERROR);
 }
 break;
 default:
 if(listener != null) {
 listener.onError(BACKUP_ERROR);
 }
 }
 }

 private void fileCopy(File source, File dest) throws IOException {
 FileChannel inChannel = new FileInputStream(source).getChannel();
 FileChannel outChannel = new FileOutputStream(dest).getChannel();
 try {
 inChannel.transferTo(0, inChannel.size(), outChannel);
 } finally {
 if (inChannel != null)
 inChannel.close();
 if (outChannel != null)
 outChannel.close();

CHAPTER 5: Persisting Data 284

 }
 }
}

As you can see, BackupTask operates by copying the current version of a named

database to a specific directory in external storage when COMMAND_BACKUP is passed to

execute(), and copies the file back when COMMAND_RESTORE is passed.

Once executed, the task uses Context.getDatabasePath() to retrieve a reference to the

database file we need to backup. This line could easily be replaced with a call to

Context.getFilesDir(), accessing a file on the system’s internal storage to back up

instead. A reference to a backup directory we’ve created on external storage is also

obtained.

The files are copied using traditional Java File I/O, and if all is successful the registered

listener is notified. During the process, any exceptions thrown are caught and an error is

returned to the listener instead. Now let’s take a look at an Activity that utilizes this task

to back up a database – see Listing 5–18.

Listing 5–18. Activity Using BackupTask

public class BackupActivity extends Activity implements BackupTask.CompletionListener {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 //Dummy example database
 SQLiteDatabase db = openOrCreateDatabase("mydb", Activity.MODE_PRIVATE, null);
 db.close();
 }

 @Override
 public void onResume() {
 super.onResume();
 if(Environment.getExternalStorageState().equals(Environment.MEDIA_MOUNTED)) {
 BackupTask task = new BackupTask(this);
 task.setCompletionListener(this);
 task.execute(BackupTask.COMMAND_RESTORE);
 }
 }

 @Override
 public void onPause() {
 super.onPause();
 if(Environment.getExternalStorageState().equals(Environment.MEDIA_MOUNTED)) {
 BackupTask task = new BackupTask(this);
 task.execute(BackupTask.COMMAND_BACKUP);
 }
 }

 @Override
 public void onBackupComplete() {
 Toast.makeText(this, "Backup Successful", Toast.LENGTH_SHORT).show();
 }

CHAPTER 5: Persisting Data 285

 @Override
 public void onError(int errorCode) {
 if(errorCode == BackupTask.RESTORE_NOFILEERROR) {
 Toast.makeText(this, "No Backup Found to Restore",
 Toast.LENGTH_SHORT).show();
 } else {
 Toast.makeText(this, "Error During Operation: "+errorCode,
 Toast.LENGTH_SHORT).show();
 }
 }

 @Override
 public void onRestoreComplete() {
 Toast.makeText(this, "Restore Successful", Toast.LENGTH_SHORT).show();
 }
}

The Activity implements the CompletionListener defined by BackupTask, so it may be

notified when operations are finished or an error occurs. For the purposes of the

example, a dummy database is created in the application’s database directory. We call

openOrCreateDatabase() only to allow a file to be created, so the connection is

immediately closed afterward. Under normal circumstances, this database would

already exist and these lines would not be necessary.

The example does a restore operation each time the Activity is resumed, registering

itself with the task so it can be notified and raise a toast to the user of the status result.

Notice that the task of checking whether external storage is usable falls to the Activity as

well, and no tasks are executed if external storage is not accessible. When the Activity is

paused a backup operation is executed, this time without registering for callbacks. This

is because the Activity is no longer interesting to the user, so we won’t need to raise a

toast to point out the operation results.

Extra Credit

This background task could be extended to save the data to a cloud-based service for

maximum safety and data portability. There are many options available to accomplish

this, including Google’s own set of web APIs, and we recommend you give this a try.

Android, as of API Level 8, also includes an API for backing up data to a cloud-based

service. This API may suit your purposes, however we will not discuss it here. The

Android framework cannot guarantee that this service will be available on all Android

devices, and there is no API as of this writing to determine whether the device the user

has will support the Android backup, so it is not recommended for critical data.

CHAPTER 5: Persisting Data 286

5–8. Sharing Your Database

Problem

Your application would like to provide the database content it maintains to other

applications on the device.

Solution

(API Level 1)

Create a ContentProvider to act as an external interface for your application’s data.

ContentProvider exposes an arbitrary set of data to external requests through a

database-like interface of query(), insert(), update(), and delete(); though the

implementer is free to design how the interface maps to the actual data model. Creating

a ContentProvider to expose the data from an SQLiteDatabase is straightforward and

simple. With some minor exceptions, the developer needs only to pass calls from the

provider down to the database.

Arguments about which data set to operate on are typically encoded in the Uri passed

to the ContentProvider. For example, sending a query Uri such as

content://com.examples.myprovider/friends

would tell the provider to return information from the “friends” table within its data set,

while

content://com.examples.myprovider/friends/15

would instruct just the record id 15 to return from the query. It should be noted that

these are only the conventions used by the rest of the system, and that you are

responsible for making the ContentProvider you create behave in this manner. There is

nothing inherent about ContentProvider that provide this functionality for you.

How It Works

First of all, to create a ContentProvider that interacts with a database, we must have a

database in place to interact with. Listing 5–19 is a sample SQLiteOpenHelper

implementation that we will use to create and access the database itself.

Listing 5–19. Sample SQLiteOpenHelper

public class ShareDbHelper extends SQLiteOpenHelper {

 private static final String DB_NAME = "frienddb";
 private static final int DB_VERSION = 1;

 public static final String TABLE_NAME = "friends";
 public static final String COL_FIRST = "firstName";
 public static final String COL_LAST = "lastName";
 public static final String COL_PHONE = "phoneNumber";

CHAPTER 5: Persisting Data 287

 private static final String STRING_CREATE =
 "CREATE TABLE "+TABLE_NAME+" (_id INTEGER PRIMARY KEY AUTOINCREMENT, "
 +COL_FIRST+" TEXT, "+COL_LAST+" TEXT, "+COL_PHONE+" TEXT);";

 public ShareDbHelper(Context context) {
 super(context, DB_NAME, null, DB_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 //Create the database table
 db.execSQL(STRING_CREATE);

 //Inserting example values into database
 ContentValues cv = new ContentValues(3);
 cv.put(COL_FIRST, "John");
 cv.put(COL_LAST, "Doe");
 cv.put(COL_PHONE, "8885551234");
 db.insert(TABLE_NAME, null, cv);
 cv = new ContentValues(3);
 cv.put(COL_FIRST, "Jane");
 cv.put(COL_LAST, "Doe");
 cv.put(COL_PHONE, "8885552345");
 db.insert(TABLE_NAME, null, cv);
 cv = new ContentValues(3);
 cv.put(COL_FIRST, "Jill");
 cv.put(COL_LAST, "Doe");
 cv.put(COL_PHONE, "8885553456");
 db.insert(TABLE_NAME, null, cv);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 //For now, clear the database and re-create
 db.execSQL("DROP TABLE IF EXISTS "+TABLE_NAME);
 onCreate(db);
 }
}

Overall this helper is fairly simple, creating a single table to keep a list of our friends with

just three columns for housing text data. For the purposes of this example, three row

values are inserted. Now let’s take a look at a ContentProvider that will expose this

database to other applications – see Listings 5–20 and 5–21.

Listing 5–20. Manifest Declaration for ContentProvider

<manifest xmlns:android="http://schemas.android.com/apk/res/android" …>
 <application …>
 <provider android:name=".FriendProvider"
 android:authorities="com.examples.sharedb.friendprovider">
 </provider>
 </application>
</manifest>

http://schemas.android.com/apk/res/android

CHAPTER 5: Persisting Data 288

Listing 5–20. ContentProvider for a Database

public class FriendProvider extends ContentProvider {

 public static final Uri CONTENT_URI =
 Uri.parse("content://com.examples.sharedb.friendprovider/friends");

 public static final class Columns {
 public static final String _ID = "_id";
 public static final String FIRST = "firstName";
 public static final String LAST = "lastName";
 public static final String PHONE = "phoneNumber";
 }

 /* Uri Matching */
 private static final int FRIEND = 1;
 private static final int FRIEND_ID = 2;

 private static final UriMatcher matcher = new UriMatcher(UriMatcher.NO_MATCH);
 static {
 matcher.addURI(CONTENT_URI.getAuthority(), "friends", FRIEND);
 matcher.addURI(CONTENT_URI.getAuthority(), "friends/#", FRIEND_ID);
 }

 SQLiteDatabase db;

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {
 int result = matcher.match(uri);
 switch(result) {
 case FRIEND:
 return db.delete(ShareDbHelper.TABLE_NAME, selection, selectionArgs);
 case FRIEND_ID:
 return db.delete(ShareDbHelper.TABLE_NAME, "_ID = ?",
 new String[]{uri.getLastPathSegment()});
 default:
 return 0;
 }
 }

 @Override
 public String getType(Uri uri) {
 return null;
 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {
 long id = db.insert(ShareDbHelper.TABLE_NAME, null, values);
 if(id >= 0) {
 return Uri.withAppendedPath(uri, String.valueOf(id));
 } else {
 return null;
 }
 }

 @Override
 public boolean onCreate() {
 ShareDbHelper helper = new ShareDbHelper(getContext());

CHAPTER 5: Persisting Data 289

 db = helper.getWritableDatabase();
 return true;
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {
 int result = matcher.match(uri);
 switch(result) {
 case FRIEND:
 return db.query(ShareDbHelper.TABLE_NAME, projection, selection,
 selectionArgs, null, null, sortOrder);
 case FRIEND_ID:
 return db.query(ShareDbHelper.TABLE_NAME, projection, "_ID = ?",
 new String[]{uri.getLastPathSegment()}, null, null, sortOrder);
 default:
 return null;
 }
 }

 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {
 int result = matcher.match(uri);
 switch(result) {
 case FRIEND:
 return db.update(ShareDbHelper.TABLE_NAME, values, selection,
 selectionArgs);
 case FRIEND_ID:
 return db.update(ShareDbHelper.TABLE_NAME, values, "_ID = ?",
 new String[]{uri.getLastPathSegment()});
 default:
 return 0;
 }
 }

}

A ContentProvider must be declared in the application’s manifest with the authority

string that it represents. This allows the provider to be accessed from external

applications, but is still required even if you only use the provider internally within your

application. The authority is what Android uses to match Uri requests to the provider, so

it should match the authority portion of the public CONTENT_URI.

The six required methods to override when extending ContentProvider are query(),

insert(), update(), delete(), getType(), and onCreate(). The first four of these

methods have direct counterparts in SQLiteDatabase, so the database method is simply

called with the appropriate parameters. The primary difference between the two is that

the ContentProvider method passes in a Uri, which the provider should inspect to

determine which portion of the database to operate on.

These four primary CRUD methods are called on the provider when an Activity or other

system component calls the corresponding method on its internal ContentResolver (you

see this in action in Listing 5–21) or, in the case of Activity, when managedQuery() is called.

CHAPTER 5: Persisting Data 290

To adhere to the Uri convention mentioned in the first part of this recipe, insert()

returns a Uri object created by appending the newly created record id onto the end of

the path. This Uri should be considered by its requester to be a direct reference back to

the record that was just created.

The remaining methods (query(), update(), and delete()) adhere to the convention by

inspecting the incoming Uri to see if it refers to a specific record, or the whole table.

This task is accomplished with the help of the UriMatcher convenience class. The

UriMatcher.match() method compares a Uri to a set of supplied patterns and returns

the matching pattern as an int, or UriMatcher.NO_MATCH if one is not found. If a Uri is

supplied with a record id appended, the call to the database is modified to affect only

that specific row.

A UriMatcher should be initialized by supplying a set of patterns with

UriMatcher.addURI(); Google recommends that this all be done in a static context

within the ContentProvider. Each pattern added is also given a constant identifier that

will be the return value when matches are made. There are two wildcard characters that

may be placed in the supplied patterns: the pound (#) character will match any number,

and the asterisk (*) will match any text.

Our example has created two patterns to match. The initial pattern matches the supplied

CONTENT_URI directly, and is taken to reference the entire database table. The second

pattern looks for an appended number to the path, which will be taken to reference just

the record at that id.

Access to the database is obtained through a reference given by the ShareDbHelper in

onCreate(). The size of the database used should be considered when deciding if this

method is applicable to your application. Our database is quite small when it is created,

but larger databases may take a long time to create, in which case the main thread

should not be tied up while this operation is taking place; getWritableDatabase() may

need to be wrapped in an AsyncTask and done in the background in these cases. Now

let’s take a look at a sample Activity accessing the data – see Listings 5–23 and 5–24.

Listing 5–23. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.sharedb" android:versionCode="1" android:versionName="1.0">
 <uses-sdk android:minSdkVersion="1" />
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".ShareActivity" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <provider android:name=".FriendProvider"
 android:authorities="com.examples.sharedb.friendprovider">
 </provider>
 </application>
</manifest>

http://schemas.android.com/apk/res/android

CHAPTER 5: Persisting Data 291

Listing 5–24. Activity Accessing the ContentProvider

public class ShareActivity extends ListActivity implements
AdapterView.OnItemClickListener {

 Cursor mCursor;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 //List of column names to return from the query for each record
 String[] projection = new String[]{FriendProvider.Columns._ID,
 FriendProvider.Columns.FIRST};
 mCursor = managedQuery(FriendProvider.CONTENT_URI, projection, null, null,
 null);

 SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1,
 mCursor,
 new String[]{FriendProvider.Columns.FIRST},
 new int[]{android.R.id.text1});

 ListView list = getListView();
 list.setOnItemClickListener(this);
 list.setAdapter(adapter);
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View v, int position, long id) {
 mCursor.moveToPosition(position);

 Uri uri = Uri.withAppendedPath(FriendProvider.CONTENT_URI,
 mCursor.getString(0));
 String[] projection = new String[]{FriendProvider.Columns.FIRST,
 FriendProvider.Columns.LAST,
 FriendProvider.Columns.PHONE};
 //Get the full record
 Cursor cursor = getContentResolver().query(uri, projection, null, null, null);
 cursor.moveToFirst();

 String message = String.format("%s %s, %s", cursor.getString(0),
 cursor.getString(1), cursor.getString(2));
 Toast.makeText(this, message, Toast.LENGTH_SHORT).show();
 }
}

This example queries the FriendsProvider for all its records and places them into a list,

displaying only the first name column. In order for the Cursor to adapt properly into a

list, our projection must include the ID column, even though it is not displayed.

If the user taps any of the items in the list, another query is made of the provider using a

Uri constructed with the record ID appended to the end, forcing the provider to only

return that one record. In addition, an expanded projection is provided to get all the

column data about this friend.

CHAPTER 5: Persisting Data 292

The returned data is placed into a Toast and raised for the user to see. Individual fields

from the cursor are accessed by their column index, corresponding to the index in the

projection passed to the query. The Cursor.getColumnIndex() method may also be used

to query the cursor for the index associated with a given column name.

A Cursor should always be closed when it is no longer needed, as we do with the Cursor

created on user click. The member mCursor is never closed explicitly because it is

managed by the Activity. Whenever a Cursor is created using managedQuery(), the

Activity will open, close, and refresh the data along with its own normal lifecycle.

Figure 5–2 shows the result of running this sample to display the provider content.

Figure 5–2. Information from a ContentProvider

5–9. Sharing Your Other Data

Problem

You would like your application to provide the files or other data it maintains to other

applications on the device.

CHAPTER 5: Persisting Data 293

Solution

(API Level 3)

Create a ContentProvider to act as an external interface for your application’s data.

ContentProvider exposes an arbitrary set of data to external requests through a

database-like interface of query(), insert(), update(), and delete(), though the

implementation is free to design how the data passes to the actual model from these

methods.

ContentProvider can be used to expose any type of application data, including the

application’s resources and assets, to external requests.

How It Works

Let’s take a look at a ContentProvider implementation that exposes two data sources:

an array of strings located in memory, and a series of image files stored in the

application’s assets directory. As before, we must declare our provider to the Android

system using a <provider> tag in the manifest. See Listings 5–25 and 5–26.

Listing 5–25. Manifest Declaration for ContentProvider

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" …>
 <application …>
 <provider android:name=".ImageProvider"
 android:authorities="com.examples.share.imageprovider">
 </provider>
 </application>
</manifest>

Listing 5–26. Custom ContentProvider Exposing Assets

public class ImageProvider extends ContentProvider {

 public static final Uri CONTENT_URI =
 Uri.parse("content://com.examples.share.imageprovider");

 public static final String COLUMN_NAME = "nameString";
 public static final String COLUMN_IMAGE = "imageUri";

 private String[] mNames;

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs) {
 throw new UnsupportedOperationException("This ContentProvider is read-only");
 }

 @Override
 public String getType(Uri uri) {
 return null;
 }

 @Override

http://schemas.android.com/apk/res/android

CHAPTER 5: Persisting Data 294

 public Uri insert(Uri uri, ContentValues values) {
 throw new UnsupportedOperationException("This ContentProvider is read-only");
 }

 @Override
 public boolean onCreate() {
 mNames = new String[] {"John Doe", "Jane Doe", "Jill Doe"};
 return true;
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {
 MatrixCursor cursor = new MatrixCursor(projection);
 for(int i = 0; i < mNames.length; i++) {
 //Insert only the columns they requested
 MatrixCursor.RowBuilder builder = cursor.newRow();
 for(String column : projection) {
 if(column.equals("_id")) {
 //Use the array index as a unique id
 builder.add(i);
 }
 if(column.equals(COLUMN_NAME)) {
 builder.add(mNames[i]);
 }
 if(column.equals(COLUMN_IMAGE)) {
 builder.add(Uri.withAppendedPath(CONTENT_URI, String.valueOf(i)));
 }
 }
 }
 return cursor;
 }

 @Override
 public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {
 throw new UnsupportedOperationException("This ContentProvider is read-only");
 }

 @Override
 public AssetFileDescriptor openAssetFile(Uri uri, String mode) throws
 FileNotFoundException {
 int requested = Integer.parseInt(uri.getLastPathSegment());
 AssetFileDescriptor afd;
 AssetManager manager = getContext().getAssets();
 //Return the appropriate asset for the requested item
 try {
 switch(requested) {
 case 0:
 afd = manager.openFd("logo1.png");
 break;
 case 1:
 afd = manager.openFd("logo2.png");
 break;
 case 2:
 afd = manager.openFd("logo3.png");
 break;

CHAPTER 5: Persisting Data 295

 default:
 afd = manager.openFd("logo1.png");
 }
 return afd;
 } catch (IOException e) {
 e.printStackTrace();
 return null;
 }
 }
}

As you may have guessed, the example exposes three logo image assets. The images

we have chosen for this example are shown in Figure 5–3.

Figure 5–3. Example logo1.png (left), logo2.png (center), and logo3.png (right) stored in assets

Notice first that, because we are exposing read-only content in the assets directory,

there is no need to support the inherited methods insert(), update(), or delete(), so

we have these methods simply throw an UnsupportedOperationException.

When the provider is created, the string array that holds people’s names is created and

onCreate() returns true; this signals to the system that the provider was created

successfully. The provider exposes constants for its Uri and all readable column names.

These values will be used by external applications to make requests for data.

This provider only supports a query for all the data within it. To support conditional

queries for specific records or a subset of all the content, an application can process the

values passed in to query() for selection and selectionArgs. In this example, any call

to query() will build a cursor with all three elements contained within.

The cursor implementation used in this provider is a MatrixCursor, which is a cursor

designed to be built around data not held inside a database. The example iterates

through the list of columns requested (the projection) and builds each row according to

these columns it contains. Each row is created by calling MatrixCursor.newRow(), which

also returns a Builder instance that will be used to add the column data. Care should

always be taken to match the order of the column data is added to the order of the

requested projection. They should always match.

The value in the name column is the respective string in the local array, and the _id

value, which Android requires to utilize the returned cursor with most ListAdapters, is

simply returned as the array index. The data presented in the image column for each row

is actually a content Uri representing the image file for each row, created with the

provider’s content Uri as the base, with the array index appended to it.

When an external application actually goes to retrieve this content, through

ContentResolver.openInputStream(), a call will be made to openAssetFile(), which has

been overridden to return an AssetFileDescriptor pointing to one of the image files in

CHAPTER 5: Persisting Data 296

the assets directory. This implementation determines which image file to return by

deconstructing the content Uri once again and retrieving the appended index value from

the end.

Usage Example

Let’s take a look at how this provider should be implemented and accessed in the

context of the Android application. See Listing 5–27.

Listing 5–27. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.share"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="3" />

 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".ShareActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <provider android:name=".ImageProvider"
 android:authorities="com.examples.share.imageprovider">
 </provider>
 </application>
</manifest>

To implement this provider, the manifest of the application that owns the content must

declare a <provider> tag pointing out the ContentProvider name and the authority to

match when requests are made. The authority value should match the base portion of

the exposed content Uri. The provider must be declared in the manifest so the system

can instantiate and run it, even when the owning application is not running. See Listings

5–28 and 5–29.

Listing 5–28. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TextView
 android:id="@+id/name"
 android:layout_width="wrap_content"
 android:layout_height="20dip"
 android:layout_gravity="center_horizontal"
 />
 <ImageView
 android:id="@+id/image"
 android:layout_width="wrap_content"
 android:layout_height="50dip"

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

CHAPTER 5: Persisting Data 297

 android:layout_gravity="center_horizontal"
 />
 <ListView
 android:id="@+id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</LinearLayout>

Listing 5–29. Activity Reading from ImageProvider

public class ShareActivity extends Activity implements AdapterView.OnItemClickListener {

 Cursor mCursor;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 String[] projection = new String[]{"_id", ImageProvider.COLUMN_NAME,
 ImageProvider.COLUMN_IMAGE};
 mCursor = managedQuery(ImageProvider.CONTENT_URI, projection, null, null, null);

 SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1, mCursor, new String[]{ImageProvider.COLUMN_NAME},
 new int[]{android.R.id.text1});

 ListView list = (ListView)findViewById(R.id.list);
 list.setOnItemClickListener(this);
 list.setAdapter(adapter);
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View v, int position, long id) {
 //Seek the cursor to the selection
 mCursor.moveToPosition(position);

 //Load the name column into the TextView
 TextView tv = (TextView)findViewById(R.id.name);
 tv.setText(mCursor.getString(1));

 ImageView iv = (ImageView)findViewById(R.id.image);
 try {
 //Load the content from the image column into the ImageView
 InputStream in =
 getContentResolver().openInputStream(Uri.parse(mCursor.getString(2)));
 Bitmap image = BitmapFactory.decodeStream(in);
 iv.setImageBitmap(image);
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }

 }
}

CHAPTER 5: Persisting Data 298

In this example a managed cursor is obtained from the custom ContentProvider,

referencing the exposed Uri and column names for the data. The data is then connected

to a ListView using a SimpleCursorAdapter to display only the name value.

When the user taps any of the items in the list, the cursor is moved to that position and

the respective name and image are displayed above. This is where the Activity calls

ContentResolver.openInputStream() to access the asset images through the Uri that

was stored in the column field.

Figure 5–4 displays the result of running this application and selecting the last item in

the list (Jill Doe).

Figure 5–4. Activity drawing resources from ContentProvider

Note that the connection to the Cursor is not closed explicitly because it was created

using managedQuery(), which means the Activity will manage the cursor as part of its

normal lifecycle, including closing it when the Activity leaves the foreground.

Useful Tools to Know: SQLite3
Android provides the sqlite3 tool (in the tools subdirectory of the Android SDK’s home

directory) for creating new databases and managing existing databases on your hosting

platform or (when used in conjunction with adb, the Android Debug Bridge tool) on an

Android device. If you’re not familiar with sqlite3, point your browser to

http://sqlite.org/sqlite.html and read the short tutorial on this command-line tool.

http://sqlite.org/sqlite.html

CHAPTER 5: Persisting Data 299

You can specify sqlite3 with a database filename argument (sqlite3 employees, for

example) to create the database file if it doesn’t exist or open the existing file, and enter

this tool’s shell from where you can execute sqlite3-specific dot-prefixed commands

and SQL statements. As Figure 5–5 shows, you can also specify sqlite3 without an

argument and enter the shell.

Figure 5–5. Invoking sqlite3 without a database filename argument

Figure 5–5 reveals the prologue that greets you after entering the sqlite3 shell, which is

indicated by the sqlite> prompt from where you enter commands. It also reveals part of

the help text that’s presented when you type the sqlite3-specific “.help” command.

TIP: You can create a database after specifying sqlite3 without an argument by entering the

appropriate SQL statements to create and populate desired tables (and possibly create indexes)

and then invoking .backup filename (where filename identifies the file that stores the

database) before exiting sqlite3.

After you’ve created the database on your hosting platform, you’ll want to upload it to

your Android device. You can accomplish this task by invoking the adb tool with its push

command according to the following command-line syntax:

adb [-s <serialNumber>] push local.db /data/data/<application
package>/databases/remote.db

This command pushes the locally hosted database identified as local.db to a file named

remote.db that’s located in the /data/data/<application package>/databases directory

on the connected Android device.

CHAPTER 5: Persisting Data 300

NOTE: Local and remote are placeholders for the actual database filenames. By convention,

the filename is associated with a .db file extension (although an extension isn’t mandatory).

Also, /data/data/<application package> refers to the application’s own private storage

area, and application package refers to an application’s unique package name.

If only one device is connected to the hosting platform, -s <serialNumber> isn’t

required, and the local database is pushed onto that device. If multiple devices are

connected, -s <serialNumber> is required to identify a specific device (-s emulator-
5556, for example).

Alternatively, you might want to download a device’s database to your hosting platform,

perhaps to use with a desktop version of the device’s application. You can accomplish

this task by invoking adb with its pull command according to the following syntax:

adb [-s <serialNumber>] pull /data/data/<application package>/databases/remote.db
local.db

If you want to use sqlite3 to manage SQLite databases that are stored on a device,

you’ll need to invoke this tool from within an adb remote shell for that device. You can

accomplish this task by invoking adb and sqlite3 according to the following syntax:

adb [-s <serialNumber>] shell
sqlite3 /data/data/<application package>/databases/remote.db

The adb shell is indicated by the # prompt. Enter sqlite3 followed by the path and name

of the existing device-hosted database file to manipulate the database, or of the new

database to create. Alternatively, you can enter sqlite3 without an argument.

The sqlite3 command presents the same prologue that you saw in Figure 5–1. Enter

sqlite3 commands and issue SQL statements to manage remote.db (or create a new

database), and then exit sqlite3 (.exit or .quit) followed by the adb shell (exit).

SQLite3 and UC

Chapter 1 introduced you to an application named UC. This units-conversion application

lets you perform conversions between various units (degrees Fahrenheit to degrees

Celsius, for example).

Although useful, UC is flawed in that it must be rebuilt each time a new conversion is

added to its list of conversions. We can eliminate this flaw by storing UC’s conversions in

a database, and that is what we’ll do in this section.

We’ll first create a database for storing the list of conversions. The database will consist

of a single conversions table with conversion and multiplier columns. Furthermore, the

database will be stored in a conversions.db file.

Table 5–1 lists the values that will be stored in the conversion and multiplier columns.

CHAPTER 5: Persisting Data 301

Table 5–1. Values for the Conversion and Multiplier Columns

Conversion Multiplier

Acres to Square Miles 0.0015625

Atmospheres to Pascals 101325.0

Bars to Pascals 100000.0

Degrees Celsius to Degrees Fahrenheit 0 (placeholder)

Degrees Fahrenheit to Degrees Celsius 0 (placeholder)

Dynes to Newtons 0.00001

Feet/Second to Meters/Second 0.3048

Fluid Ounces (UK) to Liters 0.0284130625

Fluid Ounces (US) to Liters 0.0295735295625

Horsepower (electric) to Watts 746.0

Horsepower (metric) to Watts 735.499

Kilograms to Tons (UK or long) 1/1016.0469088

Kilograms to Tons (US or short) 1/907.18474

Liters to Fluid Ounces (UK) 1/0.0284130625

Liters to Fluid Ounces (US) 1/0.0295735295625

Mach Number to Meters/Second 331.5

Meters/Second to Feet/Second 1/0.3048

Meters/Second to Mach Number 1/331.5

Miles/Gallon (UK) to Miles/Gallon (US) 0.833

Miles/Gallon (US) to Miles/Gallon (UK) 1/0.833

Newtons to Dynes 100000.0

Pascals to Atmospheres 1/101325.0

Pascals to Bars 0.00001

Square Miles to Acres 640.0

Tons (UK or long) to Kilograms 1016.0469088

Tons (US or short) to Kilograms 907.18474

Watts to Horsepower (electic) 1/746.0

Watts to Horsepower (metric) 1/735.499

CHAPTER 5: Persisting Data 302

At the command line, execute sqlite3 conversions.db to create conversions.db and

enter the shell, and then execute SQL statement create table conversions(conversion
varchar(50), mutliplier float); to create this database’s conversions table.

Continuing, enter a sequence of insert statements to insert Table 5–1’s rows of values

into conversions. For example, SQL statement insert into conversions values('Acres
to square miles', 0.0015625); inserts the first row’s values into the table.

CAUTION: You must insert the rows in the same order as they appear in Table 5–1, because

Degrees Celsius to Degrees Fahrenheit and Degrees Fahrenheit to Degrees

Celsius must appear at zero-based positions 3 and 4 due to hardcoding these positions in

UC2.java.

We’ll next create a UC2 application that’s similar to UC but obtains its conversions from

conversions.db. Accomplish this task by following the instructions that are presented in

Chapter 1’s Recipe 1-10 (Developing UC with Eclipse), but with the following changes

(see Listing 5–30):

 Change the package name from com.apress.uc to com.apress.uc2.

 Ignore the arrays.xml file. UC2 doesn’t need this file.

 Replace the skeletal UC2.java source code with Listing 5–26.

Listing 5–30. Activity for Performing Unit conversions Obtained from Conversions.db

public class UC2 extends Activity {
 private int position = 0;
 private String[] conversions;
 private double[] multipliers;

 private class DBHelper extends SQLiteOpenHelper
 {
 private final static String DB_PATH = "data/data/com.apress.uc2/databases/";
 private final static String DB_NAME = "conversions.db";
 private final static int CONVERSIONS_COLUMN_ID = 0;
 private final static int MULTIPLIERS_COLUMN_ID = 1;

 private SQLiteDatabase db;

 public DBHelper(Context context)
 {
 super(context, DB_NAME, null, 1);
 }

 @Override
 public void onCreate(SQLiteDatabase db)
 {
 // Do nothing ... we don't create a new database.
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldver, int newver)

CHAPTER 5: Persisting Data 303

 {
 // Do nothing ... we don't upgrade a database.
 }

 public boolean populateArrays()
 {
 try
 {
 String path = DB_PATH+DB_NAME;
 db = SQLiteDatabase.openDatabase(path, null, SQLiteDatabase.OPEN_READONLY|
 SQLiteDatabase.NO_LOCALIZED_COLLATORS);
 Cursor cur = db.query("conversions", null, null, null, null, null, null);
 if (cur.getCount() == 0)
 {
 Toast.makeText(UC2.this, "conversions table is empty",
 Toast.LENGTH_LONG).show();
 return false;
 }
 conversions = new String[cur.getCount()];
 multipliers = new double[cur.getCount()];
 int i = 0;
 while (cur.moveToNext())
 {
 conversions[i] = cur.getString(CONVERSIONS_COLUMN_ID);
 multipliers[i++] = cur.getFloat(MULTIPLIERS_COLUMN_ID);
 }
 return true;
 }
 catch (SQLException sqle)
 {
 Toast.makeText(UC2.this, sqle.getMessage(), Toast.LENGTH_LONG).show();
 }
 finally
 {
 if (db != null)
 db.close();
 }
 return false;
 }
 }

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 DBHelper dbh = new DBHelper(this);
 if (!dbh.populateArrays())
 finish();

 final EditText etUnits = (EditText) findViewById(R.id.units);

 final Spinner spnConversions = (Spinner) findViewById(R.id.conversions);
 ArrayAdapter<CharSequence> aa;
 aa = new ArrayAdapter<CharSequence>(this, android.R.layout.simple_spinner_item,
 conversions);

CHAPTER 5: Persisting Data 304

 aa.setDropDownViewResource(android.R.layout.simple_spinner_item);
 spnConversions.setAdapter(aa);

 AdapterView.OnItemSelectedListener oisl;
 oisl = new AdapterView.OnItemSelectedListener()
 {
 @Override
 public void onItemSelected(AdapterView<?> parent, View view,
 int position, long id)
 {
 UC2.this.position = position;
 }

 @Override
 public void onNothingSelected(AdapterView<?> parent)
 {
 System.out.println("nothing");
 }
 };
 spnConversions.setOnItemSelectedListener(oisl);

 final Button btnClear = (Button) findViewById(R.id.clear);
 AdapterView.OnClickListener ocl;
 ocl = new AdapterView.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 etUnits.setText("");
 }
 };
 btnClear.setOnClickListener(ocl);
 btnClear.setEnabled(false);

 final Button btnConvert = (Button) findViewById(R.id.convert);
 ocl = new AdapterView.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 String text = etUnits.getText().toString();
 double input = Double.parseDouble(text);
 double result = 0;
 if (position == 3)
 result = input*9.0/5.0+32; // Celsius to Fahrenheit
 else
 if (position == 4)
 result = (input-32)*5.0/9.0; // Fahrenheit to Celsius
 else
 result = input*multipliers[position];
 etUnits.setText(""+result);
 }
 };
 btnConvert.setOnClickListener(ocl);
 btnConvert.setEnabled(false);

 Button btnClose = (Button) findViewById(R.id.close);

CHAPTER 5: Persisting Data 305

 ocl = new AdapterView.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 finish();
 }
 };
 btnClose.setOnClickListener(ocl);

 TextWatcher tw;
 tw = new TextWatcher()
 {
 public void afterTextChanged(Editable s)
 {
 }
 public void beforeTextChanged(CharSequence s, int start, int count,
 int after)
 {
 }
 public void onTextChanged(CharSequence s, int start, int before,
 int count)
 {
 if (etUnits.getText().length() == 0)
 {
 btnClear.setEnabled(false);
 btnConvert.setEnabled(false);
 }
 else
 {
 btnClear.setEnabled(true);
 btnConvert.setEnabled(true);
 }
 }
 };
 etUnits.addTextChangedListener(tw);
 }
}

UC2 differs from UC mainly by relying on the DBHelper inner class to obtain the values for

its conversions and multipliers arrays from the conversion and multiplier columns in

the conversions.db database’s conversions table.

DBHelper extends android.database.sqlite.SQLiteOpenHelper and overrides its

abstract onCreate() and onUpgrade() methods. The overriding methods do nothing; all

that’s important is whether or not the database can be opened.

The database is opened in the populateArrays() method. If successfully opened, the

conversions table is queried to return all rows. If the returned android.database.Cursor

object contains at least one row, the arrays are populated from Cursor values.

If something goes wrong, a toast message is displayed. Although convenient for this

simple example, you probably would want to display a dialog box and store its strings in

a resources file. The database is closed whether or not a toast message is displayed.

CHAPTER 5: Persisting Data 306

UC2 also differs from UC in that it directly instantiates android.widget.ArrayAdapter

instead of invoking this class’s createFromResource() method. It does this so that it can

pass the conversions array of string names to the ArrayAdapter instance.

Assuming that you’ve built this application, launch it from Eclipse. UC2 will briefly present

a blank screen and then display a toast message before finishing. Figure 5–6 reveals

that this toast appears on the app launcher screen.

Figure 5–6. A toast is displayed because the conversions.db database is not yet present on the device.

The toast appears because no conversions.db database exists in the

/data/data/com.apress.uc2/databases/ path. We can rectify this situation by uploading

the previously created conversions.db file to this path, as follows:

adb push conversions.db /data/data/com.apress.uc2/databases/conversions.db

This time, when you launch this application, you should see the screen that appears in

Figure 5–7.

CHAPTER 5: Persisting Data 307

Figure 5–7. Units Converter’s solitary screen lets you perform various kinds of unit conversions.

UC2.java suffers from the following pair of flaws – consider fixing these flaws to be

exercises to accomplish:

 The Degrees Celsius to Degrees Fahrenheit and Degrees
Fahrenheit to Degrees Celsius conversions must appear at zero-

based positions 3 and 4, due to hardcoding these positions in

UC2.java. This hardcoding is located in the following excerpt from the

onClick() method in the click listener assigned to the click button in

Lising 5–30:

if (position == 3)
 result = input*9.0/5.0+32; // Celsius to Fahrenheit
else
if (position == 4)
 result = (input-32)*5.0/9.0; // Fahrenheit to Celsius
else
 result = input*multipliers[position];

 DBHelper’s populateArrays() method populates the conversions and

multipliers arrays on the application’s main thread. This shouldn’t be

a problem, because the conversions table contains only 28 rows.

However, if you add many more rows to this table, it’s possible that

the main thread would be tied up long enough for the dreaded

Application Not Responding dialog box to appear (see Appendix C).

Furthermore, this is the reason why the Android documentation states

that SQLiteOpenHelper’s getReadableDatabase() and

getWritableDatabase() methods shouldn’t be called on the main

CHAPTER 5: Persisting Data 308

thread. However, for small databases, calling these methods on the

main thread shouldn’t be a problem.

Summary
In this chapter, you have investigated a number of practical methods to persist data on

Android devices. You learned how to quickly create a preferences screen as well as use

preferences and a simple method for persisting basic data types. You saw how and

where files can be placed, for reference as well as storage. You even learned how to

share your persisted data with other applications. In the next chapter, we will investigate

how to leverage the operating system’s services to do background operations and

communicate between applications.

309

309

 Chapter

Interacting with the
System

The Android operating system provides a number of useful services that applications

can leverage. Many of these services are designed to allow your application to function

within the mobile system in ways beyond just interacting briefly with a user. Applications

can schedule themselves for alarms, run background services, and send messages to

each other; all of which allows an Android application to integrate to the fullest extent

with the mobile device. In addition, Android provides a set of standard interfaces

designed to expose all the data collected by its core applications to your software.

Through these interfaces, any application may integrate with, add to, and improve upon

the core functionality of the platform, thereby enhancing the experience for the user.

6–1. Notifying from the Background

Problem

Your application is running in the background, with no currently visible interface to the

user, but must notify the user of an important event that has occurred.

Solution

(API Level 1)

Use NotificationManager to post a status bar notification. Notifications are an

unobtrusive way of telling the user that you want their attention. Perhaps new messages

have arrived, an update is available, or a long-running job is complete; Notifications

are perfect for accomplishing all of these tasks.

6

CHAPTER 6: Interacting with the System 310

How It Works

A Notification can be posted to the NotificationManager from just about any system

component, such as a Service, BroadcastReceiver, or Activity. In this example, we’ll

look at an Activity that uses a delay to simulate a long-running operation, resulting in a

Notification when it is complete.

Listing 6–1. Activity Firing a Notification

public class NotificationActivity extends Activity implements View.OnClickListener {

 private static final int NOTE_ID = 100;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Button button = new Button(this);
 button.setText("Post New Notification");
 button.setOnClickListener(this);
 setContentView(button);
 }

 @Override
 public void onClick(View v) {
 //Run 10 seconds after click
 handler.postDelayed(task, 10000);
 Toast.makeText(this, "Notification will post in 10 seconds",
 Toast.LENGTH_SHORT).show();
 }

 private Handler handler = new Handler();
 private Runnable task = new Runnable() {
 @Override
 public void run() {
 NotificationManager manager =
 (NotificationManager)getSystemService(Context.NOTIFICATION_SERVICE);
 Intent launchIntent = new Intent(getApplicationContext(),
 NotificationActivity.class);
 PendingIntent contentIntent =
 PendingIntent.getActivity(getApplicationContext(), 0, launchIntent, 0);

 //Create notification with the time it was fired
 Notification note = new Notification(R.drawable.icon, "Something Happened",
 System.currentTimeMillis());
 //Set notification information
 note.setLatestEventInfo(getApplicationContext(), "We're Finished!",
 "Click Here!", contentIntent);
 note.defaults |= Notification.DEFAULT_SOUND;
 note.flags |= Notification.FLAG_AUTO_CANCEL;

 manager.notify(NOTE_ID, note);
 }
 };
}

This example makes use of a Handler to schedule a task to post the Notification ten

seconds after the button is clicked by calling Handler.postDelayed() in the button

CHAPTER 6: Interacting with the System 311

listener. This task will execute regardless of whether the Activity is in the foreground, so

if the user gets bored and leaves the application, they will still get notified.

When the scheduled task executes, a new Notification is created. An icon resource and

title string may be provided, and these items will display in the status bar at the time the

notification occurs. In addition, we pass a time value (in milliseconds) to display in the

notification list as the event time. Here, we are setting that value to the time the

notification fired, but it may take on a different meaning in your application.

Once the Notification is created, we fill it out with some useful parameters. Using

Notification.setLatestEventInfo(), we provide more detailed text to be displayed in

the Notifications list when the user pulls down the status bar.

One of the parameters passed to this method is a PendingIntent that points back to our

Activity. This Intent makes the Notification interactive, allowing the user to tap the

Notification in the list and have the Activity launched.

NOTE: This Intent will launch a new Activity with each event. If you would rather an existing

instance of the Activity respond to the launch, if one exists in the stack, be sure to include Intent

flags and manifest parameters appropriately to accomplish this, such as

Intent.FLAG_ACTIVITY_CLEAR_TOP and android:launchMode="singleTop."

To enhance the Notification beyond the visual animation in the status bar, the

Notification.defaults bitmask is modified to include that the system’s default

notification sound be played when the Notification fires. Values such as

Notification.DEFAULT_VIBRATION and Notification.DEFAULT_LIGHTS may also be

added.

TIP: If you would like to customize the sound played with a Notification, set the

Notification.sound parameter to a Uri that references a file or ContentProvider to read

from.

Adding a series of flags to the Notification.flags bitmask allows further customization

of a Notification. This example enables Notification.FLAG_AUTO_CANCEL to signify that

the notification should be canceled, or removed from the list, as soon as the user selects

it. Without this flag, the notification remains in the list until manually canceled by calling

NotificationManager.cancel() or NotificationManager.cancelAll().

The following are some other useful flags to apply:

 FLAG_INSISTENT

 Repeats the Notification sounds until the user responds.

 FLAG_NO_CLEAR

 Does not allow the Notification to be cleared with the user’s

“Clear Notifications” button; only through a call to cancel().

CHAPTER 6: Interacting with the System 312

Once the Notification is prepared, it is posted to the user with

NotificationManager.notify(), which takes an ID parameter as well. Each

Notification type in your application should have a unique ID. The manager will only

allow one Notification with the same ID in the list at a time, and new instances with the

same ID will take the place of those existing. In addition, the ID is required to cancel a

specific Notification manually.

When we run this example, an Activity like Figure 6–1 displays a Button to the user.

Upon pressing the button, you can see the Notification post some time later, even if the

Activity is no longer visible (see Figure 6–2).

Figure 6–1. Notification Posted from button press

CHAPTER 6: Interacting with the System 313

Figure 6–2. Notification occurring (left), and displayed in the list (right)

6–2. Creating Timed and Periodic Tasks

Problem

Your application needs to run an operation on a timer, such as updating the UI on a

scheduled basis.

Solution

(API Level 1)

Use the timed operations provided by a Handler. With Handler, operations can efficiently

be scheduled to occur at a specific time, or after a specified delay.

How It Works

Let’s look at an example Activity that displays the current time in a TextView. See Listing 6–2.

Listing 6–2. Activity Updated with a Handler

public class TimingActivity extends Activity {

 TextView mClock;

CHAPTER 6: Interacting with the System 314

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mClock = new TextView(this);
 setContentView(mClock);
 }

 private Handler mHandler = new Handler();
 private Runnable timerTask = new Runnable() {
 @Override
 public void run() {
 Calendar now = Calendar.getInstance();
 mClock.setText(String.format("%02d:%02d:%02d",
 now.get(Calendar.HOUR),
 now.get(Calendar.MINUTE),
 now.get(Calendar.SECOND)));
 //Schedule the next update in one second
 mHandler.postDelayed(timerTask,1000);
 }
 };

 @Override
 public void onResume() {
 super.onResume();
 mHandler.post(timerTask);
 }

 @Override
 public void onPause() {
 super.onPause();
 mHandler.removeCallbacks(timerTask);
 }
}

Here we’ve wrapped up the operation of reading the current time and updating the UI

into a Runnable named timerTask, which will be triggered by the Handler that has also

been created. When the Activity becomes visible, the task is executed as soon as

possible with a call to Handler.post(). After the TextView has been updated, the final

operation of timerTask is to invoke the Handler to schedule another execution one

second (1,000 milliseconds) from now using Handler.postDelayed().

As long as the Activity remains uninterrupted, this cycle will continue, with the UI being

updated every second. As soon as the Activity is paused (the user leaves or something

else grabs their attention), Handler.removeCallbacks() removes all pending operations

and ensures the task will not be called further until the Activity becomes visible once

more.

TIP: In this example, we are safe to update the UI because the Handler was created on the

main thread. Operations will always execute on the same thread as the Handler that posted

them is attached to.

CHAPTER 6: Interacting with the System 315

6–3. Scheduling a Periodic Task

Problem

Your application needs to register to run a task periodically, such as checking a server

for updates or reminding the user to do something.

Solution

(API Level 1)

Utilize the AlarmManager to manage and execute your task. AlarmManager is useful for

scheduling future single or repeated operations that need to occur even if your

application is not running. AlarmManager is handed a PendingIntent to fire whenever an

alarm is scheduled. This Intent can point to any system component, such as an

Activity, BroadcastReceiver, or Service, to be executed when the alarm triggers.

It should be noted that this method is best suited to operations that need to occur even

when the application code may not be running. The AlarmManager requires too much

overhead to be useful for simple timing operations that may be needed while an

application is in use. These are better handled using the postAtTime() and

postDelayed() methods of a Handler.

How It Works

Let’s take a look at how AlarmManager can be used to trigger a BroadcastReceiver on a

regular basis. See Listings 6–3 through 6–5.

Listing 6–3. BroadcastReceiver to Be Triggered

public class AlarmReceiver extends BroadcastReceiver {
 @Override
 public void onReceive(Context context, Intent intent) {
 //Perform an interesting operation, we'll just display the current time
 Calendar now = Calendar.getInstance();
 DateFormat formatter = SimpleDateFormat.getTimeInstance();
 Toast.makeText(context, formatter.format(now.getTime()),
 Toast.LENGTH_SHORT).show();
 }
}

CHAPTER 6: Interacting with the System 316

REMINDER: A BroadcastReceiver (AlarmReceiver, in this case) must be declared in the manifest

with a <receiver> tag in order for AlarmManager to be able to trigger it. Be sure to include one

within your <application> tag like so:

<application>

 …

 <receiver android:name=".AlarmReceiver"></receiver>

</application>

Listing 6–4. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button
 android:id="@+id/start"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Start Alarm"
 />
 <Button
 android:id="@+id/stop"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Cancel Alarm"
 />
</LinearLayout>

Listing 6–5. Activity to Register/Unregister Alarms

public class AlarmActivity extends Activity implements View.OnClickListener {

 private PendingIntent mAlarmIntent;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 //Attach the listener to both buttons
 findViewById(R.id.start).setOnClickListener(this);
 findViewById(R.id.stop).setOnClickListener(this);
 //Create the launch sender
 Intent launchIntent = new Intent(this, AlarmReceiver.class);
 mAlarmIntent = PendingIntent.getBroadcast(this, 0, launchIntent, 0);
 }

 @Override
 public void onClick(View v) {
 AlarmManager manager = (AlarmManager)getSystemService(Context.ALARM_SERVICE);
 long interval = 5*1000; //5 seconds

 switch(v.getId()) {
 case R.id.start:

http://schemas.android.com/apk/res/android

CHAPTER 6: Interacting with the System 317

 Toast.makeText(this, "Scheduled", Toast.LENGTH_SHORT).show();
 manager.setRepeating(AlarmManager.ELAPSED_REALTIME,
 SystemClock.elapsedRealtime()+interval,
 interval,
 mAlarmIntent);
 break;
 case R.id.stop:
 Toast.makeText(this, "Canceled", Toast.LENGTH_SHORT).show();
 manager.cancel(mAlarmIntent);
 break;
 default:
 break;
 }
 }
}

In this example, we have provided a very basic BroadcastReceiver that, when triggered,

will simply display the current time as a Toast. That receiver must be registered in the

application’s manifest with a <receiver> tag. Otherwise, AlarmManager—which is

external to your application—will not be aware of how to trigger it. The sample Activity

presents two buttons: one to begin firing regular alarms, and the other to cancel them.

The operation to trigger is referenced by a PendingIntent, which will be used to both set

and cancel the alarms. We create an Intent referencing the application’s

BroadcastReceiver directly, and then a PendingIntent from that using getBroadcast()

(since we are creating a reference to a BroadcastReceiver).

REMINDER: PendingIntent has creator methods getActivity() and getService() as

well. Be sure to reference the correct application component you are triggering when creating

this piece.

When the start button is pressed, the Activity registers a repeating alarm using

AlarmManager.setRepeating(). In addition to the PendingIntent, this method takes some

parameters to determine when to trigger the alarms. The first parameter defines the

alarm type, in terms of the units of time to use and whether or not the alarm should

occur when the device is in sleep mode. In the example, we chose ELAPSED_REALTIME,

which indicates a value (in milliseconds) since the last device boot. In addition, there are

three other modes that may be used:

 ELAPSED_REALTIME_WAKEUP

 Alarms times referenced to time elapsed, and will wake the

device to trigger if it is asleep.

 RTC

 Alarm times referenced to UTC time.

 RTC_WAKEUP

 Alarm times referenced to UTC time, and will wake the device to

trigger if it is asleep.

CHAPTER 6: Interacting with the System 318

The following parameters (respectively) refer to the first time the alarm will trigger and

the interval on which it should repeat. Since the chosen alarm type is

ELAPSED_REALTIME, the start time must also be relative to elapsed time;

SystemClock.elapsedRealtime() provides the current time in this format.

The alarm in the example is registered to trigger five seconds after the button is pressed,

and then every five seconds after that. Every five seconds, a Toast will come onscreen

with the current time value, even if the application is no longer running or in front of the

user. When the user displays the Activity and presses the stop button, any pending

alarms matching our PendingIntent are immediately canceled… stopping the flow of

Toasts.

A More Precise Example

What if we wanted to schedule an alarm to occur at a specific time? Perhaps once per

day at 9:00AM? Setting AlarmManager with some slightly different parameters could

accomplish this. See Listing 6–6.

Listing 6–6. Precision Alarm

 long oneDay = 24*3600*1000; //24 hours
 long firstTime;

 //Get a Calendar (defaults to today)
 //Set the time to 09:00:00
 Calendar startTime = Calendar.getInstance();
 startTime.set(Calendar.HOUR_OF_DAY, 9);
 startTime.set(Calendar.MINUTE, 0);
 startTime.set(Calendar.SECOND, 0);

 //Get a Calendar at the current time
 Calendar now = Calendar.getInstance();

 if(now.before(startTime)) {
 //It's not 9AM yet, start today
 firstTime = startTime.getTimeInMillis();
 } else {
 //Start 9AM tomorrow
 startTime.add(Calendar.DATE, 1);
 firstTime = startTime.getTimeInMillis();
 }

 //Set the alarm
 manager.setRepeating(AlarmManager.RTC_WAKEUP,
 firstTime,
 oneDay,
 mAlarmIntent);

This example uses an alarm that is referenced to real time. A determination is made

whether the next occurrence of 9:00AM will be today or tomorrow, and that value is

returned as the initial trigger time for the alarm. The calculated value of 24 hours in terms

of milliseconds is then passed as the interval so that the alarm triggers once per day

from that point forward.

CHAPTER 6: Interacting with the System 319

IMPORTANT: Alarms do not persist through a device reboot. If a device is powered off and then

back on, any previously registered alarms must be rescheduled.

6–4. Creating Sticky Operations

Problem

Your application needs to execute one or more background operations that will run to

completion even if the user suspends the application.

Solution

(API Level 3)

Create an Implementation of IntentService to handle the work. IntentService is a

wrapper around Android’s base Service implementation, the key component to doing

work in the background without interaction from the user. IntentService queues

incoming work (expressed using Intents), processing each request in turn, and then

stops itself when the queue is empty.

IntentService also handles creation of the worker thread needed to do the work in the

background, so it is not necessary to use AsyncTask or Java Threads to ensure the

operation is properly in the background.

This recipe examines an example of using IntentService to create a central manager of

background operations. In the example, the manager will be invoked externally with calls

to Context.startService(). The manager will queue up all requests received, and

process them individually with a call to onHandleIntent().

How It Works

Let’s take a look at how to construct a simple IntentService implementation to handle a

series of background operations. See Listing 6–7.

Listing 6–7. IntentService Handling Operations

public class OperationsManager extends IntentService {

 public static final String ACTION_EVENT = "ACTION_EVENT";
 public static final String ACTION_WARNING = "ACTION_WARNING";
 public static final String ACTION_ERROR = "ACTION_ERROR";
 public static final String EXTRA_NAME = "eventName";

 private static final String LOGTAG = "EventLogger";

 private IntentFilter matcher;

CHAPTER 6: Interacting with the System 320

 public OperationsManager() {
 super("OperationsManager");
 //Create the filter for matching incoming requests
 matcher = new IntentFilter();
 matcher.addAction(ACTION_EVENT);
 matcher.addAction(ACTION_WARNING);
 matcher.addAction(ACTION_ERROR);
 }

 @Override
 protected void onHandleIntent(Intent intent) {
 //Check for a valid request
 if(!matcher.matchAction(intent.getAction())) {
 Toast.makeText(this, "OperationsManager: Invalid Request", Toast.LENGTH_SHORT).show();
 return;
 }

 //Handle each request directly in this method. Don't create more threads.
 if(TextUtils.equals(intent.getAction(), ACTION_EVENT)) {
 logEvent(intent.getStringExtra(EXTRA_NAME));
 }
 if(TextUtils.equals(intent.getAction(), ACTION_WARNING)) {
 logWarning(intent.getStringExtra(EXTRA_NAME));
 }
 if(TextUtils.equals(intent.getAction(), ACTION_ERROR)) {
 logError(intent.getStringExtra(EXTRA_NAME));
 }
 }

 private void logEvent(String name) {
 try {
 //Simulate a long network operation by sleeping
 Thread.sleep(5000);
 Log.i(LOGTAG, name);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 private void logWarning(String name) {
 try {
 //Simulate a long network operation by sleeping
 Thread.sleep(5000);
 Log.w(LOGTAG, name);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 private void logError(String name) {
 try {
 //Simulate a long network operation by sleeping
 Thread.sleep(5000);
 Log.e(LOGTAG, name);
 } catch (InterruptedException e) {
 e.printStackTrace();

CHAPTER 6: Interacting with the System 321

 }
 }
}

Notice that IntentService does not have a default constructor (one that takes no

parameters), so a custom implementation must implement a constructor that calls

through to super with a service name. This name is of little technical importance, as it is

only useful for debugging; Android uses the name provided to name the worker thread

that it creates.

All requests are processed by the service through the onHandleIntent() method. This

method is called on the provided worker thread, so all work should be done directly

here; no new threads or operations should be created. When onHandleIntent() returns,

this is the signal to the IntentService to begin processing the next request in the queue.

This example provides three logging operations that can be requested using different

action strings on the request Intents. For demonstration purposes, each operation writes

the provided message out to the device log using a specific logging level (INFO,

WARNING, or ERROR). Note that the message itself is passed as an extra of the request

Intent. Use the data and extra fields of each Intent to hold any parameters for the

operation, leaving the action field to define the operation type.

The example service maintains an IntentFilter, which is used for convenience to

determine whether a valid request has been made. All of the valid actions are added to

the filter when the service is created, allowing us to call IntentFilter.matchAction() on

any incoming request to determine if it includes an action we can process here.

Listing 6–8 is an example of an Activity calling into this service to perform work.

Listing 6–8. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.sticky"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="3" />

 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".ReportActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <service android:name=".OperationsManager"></service>
 </application>
</manifest>

http://schemas.android.com/apk/res/android

CHAPTER 6: Interacting with the System 322

REMINDER: The package attribute in AndroidManifest.xml must match the package you have

chosen for your application; "com.examples.sticky" is simply the chosen package for our

example here.

NOTE: Since IntentService is invoked as a Service, it must be declared in the application

manifest using a <service> tag.

Listing 6–9. Activity Calling IntentService

public class ReportActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 logEvent("CREATE");
 }

 @Override
 public void onStart() {
 super.onStart();
 logEvent("START");
 }

 @Override
 public void onResume() {
 super.onResume();
 logEvent("RESUME");
 }

 @Override
 public void onPause() {
 super.onPause();
 logWarning("PAUSE");
 }

 @Override
 public void onStop() {
 super.onStop();
 logWarning("STOP");
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 logWarning("DESTROY");
 }

 private void logEvent(String event) {
 Intent intent = new Intent(this, OperationsManager.class);
 intent.setAction(OperationsManager.ACTION_EVENT);

CHAPTER 6: Interacting with the System 323

 intent.putExtra(OperationsManager.EXTRA_NAME, event);

 startService(intent);
 }

 private void logWarning(String event) {
 Intent intent = new Intent(this, OperationsManager.class);
 intent.setAction(OperationsManager.ACTION_WARNING);
 intent.putExtra(OperationsManager.EXTRA_NAME, event);

 startService(intent);
 }
}

This Activity isn’t much to look at, as all the interesting events are sent out through the

device log instead of to the user interface. Nevertheless, it helps illustrate the queue

processing behavior of the service we created in the previous example. As the Activity

becomes visible, it will call through all of its normal life-cycle methods, resulting in three

requests made of the logging service. As each request is processed, a line will output to

the log and the service will move on.

TIP: These log statements are visible through the logcat tool provided with the SDK. The

logcat output from a device or emulator is visible from within most development environments

(including Eclipse), or from the command line by typing adb logcat.

Notice also that when the service is finished with all three requests, a notification is sent

out the log by the system that the service has been stopped. IntentServices are only

around in memory for as long as is required to complete the job; a very useful feature for

your services to have, making them a good citizen of the system.

Pressing either the HOME or BACK buttons will cause more of the life-cycle methods to

generate requests of the service, and notice that the Pause/Stop/Destroy portion calls a

separate operation in the service, causing their messages to be logged as warnings;

simply setting the action string of the request intent to a different value controls this.

Notice that messages continue to be output to the log, even after the application is no

longer visible (or even if another application is opened instead). This is the power of the

Android Service component at work. These operations are protected from the system

until they are complete, regardless of user behavior.

Possible Drawback

In each of the operation methods, a five-second delay has been placed to simulate the

time required for an actual request to be made of a remote API or some similar

operation. When running this example, it also helps to illustrate that IntentService
handles all requests sent to it in a serial fashion with a single worker thread. The

example queues multiple requests in succession from each life-cycle method, however

the result will still be a log message every five seconds, since IntentService does not

CHAPTER 6: Interacting with the System 324

start a new request until the current one is complete (essentially, when

onHandleIntent() returns).

If your application requires concurrency from sticky background tasks, you may need to

create a more customized Service implementation that uses a pool of threads to execute

work. The beauty of Android being open source is that you can go directly to the source

code for IntentService and use it as a starting point for such an implementation if it is

required, minimizing the amount of time and custom code required.

6–5. Running Persistent Background Operations

Problem

Your application has a component that must be running in the background indefinitely,

performing some operation or monitoring certain events to occur.

Solution

(API Level 1)

Build the component into a Service. Services are designed as background components

that an application may start and leave running for an indefinite amount of time. Services

are also given elevated status above other background processes in terms of protection

from being killed in low memory conditions.

Services may be started and stopped explicitly for operations that do not require a direct

connection to another component (like an Activity). However, if the application must

interact directly with the Service, a binding interface is provided to pass data. In these

instances, the service may be started and stopped implicitly by the system as is

required to fulfill its requested bindings.

The key thing to remember with Service implementations is to always be user-friendly.

An indefinite operation most likely should not be started unless the user explicitly

requests it. The overall application should probably contain an interface or setting that

allows the user to control enabling or disabling such a Service.

How It Works

Listing 6–10 is an example of a persisted service that is used to track and log the user’s

location over a certain period.

Listing 6–10. Persistent Tracking Service

public class TrackerService extends Service implements LocationListener {

 private static final String LOGTAG = "TrackerService";

 private LocationManager manager;
 private ArrayList<Location> storedLocations;

CHAPTER 6: Interacting with the System 325

 private boolean isTracking = false;

 /* Service Setup Methods */
 @Override
 public void onCreate() {
 manager = (LocationManager)getSystemService(LOCATION_SERVICE);
 storedLocations = new ArrayList<Location>();
 Log.i(LOGTAG, "Tracking Service Running...");
 }

 @Override
 public void onDestroy() {
 manager.removeUpdates(this);
 Log.i(LOGTAG, "Tracking Service Stopped...");
 }

 public void startTracking() {
 if(!manager.isProviderEnabled(LocationManager.GPS_PROVIDER)) {
 return;
 }
 Toast.makeText(this, "Starting Tracker", Toast.LENGTH_SHORT).show();
 manager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 30000, 0, this);

 isTracking = true;
 }

 public void stopTracking() {
 Toast.makeText(this, "Stopping Tracker", Toast.LENGTH_SHORT).show();
 manager.removeUpdates(this);
 isTracking = false;
 }

 public boolean isTracking() {
 return isTracking;
 }

 /* Service Access Methods */
 public class TrackerBinder extends Binder {
 TrackerService getService() {
 return TrackerService.this;
 }
 }

 private final IBinder binder = new TrackerBinder();

 @Override
 public IBinder onBind(Intent intent) {
 return binder;
 }

 public int getLocationsCount() {
 return storedLocations.size();
 }

 public ArrayList<Location> getLocations() {
 return storedLocations;

CHAPTER 6: Interacting with the System 326

 }

 /* LocationListener Methods */
 @Override
 public void onLocationChanged(Location location) {
 Log.i("TrackerService", "Adding new location");
 storedLocations.add(location);
 }

 @Override
 public void onProviderDisabled(String provider) { }

 @Override
 public void onProviderEnabled(String provider) { }

 @Override
 public void onStatusChanged(String provider, int status, Bundle extras) { }
}

This Service’s job is to monitor and track the updates it receives from the

LocationManager. When the Service is created, it prepares a blank list of Location items

and waits to begin tracking. An external component, such as an Activity, can call

startTracking() and stopTracking() to enable and disable the flow of location updates

to the Service. In addition, methods are exposed to access the list of locations that the

Service has logged.

Because this Service requires direct interaction from an Activity or other component, a

Binder interface is required. The Binder concept can get complex when Services have to

communicate across process boundaries, but for instances like this, where everything is

local to the same process, a very simple Binder is created with one method,

getService(), to return the Service instance itself to the caller. We’ll look at this in more

detail from the Activity’s perspective in a moment.

When tracking is enabled on the service, it registers for updates with LocationManager,

and stores every update received in its locations list. Notice that

requestLocationUpdates() was called with a minimum time of 30 seconds. Since this

Service is expected to be running for a long time, it is prudent to space out the updates

to give the GPS (and consequently the battery) a little rest.

Now let’s take a look at a simple Activity that allows the user access into this Service.

See Listings 6–11 through 6–13.

Listing 6–11. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.examples.service"
 android:versionCode="1"
 android:versionName="1.0">
 <uses-sdk android:minSdkVersion="1" />
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".ServiceActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

http://schemas.android.com/apk/res/android

CHAPTER 6: Interacting with the System 327

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <service android:name=".TrackerService"></service>
 </application>
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
</manifest>

REMINDER: The Service must be declared in the application manifest using a <service> tag

so Android knows how and where to call on it. Also, for this example the permission

android.permission.ACCESS_FINE_LOCATION is required since we are working with the

GPS.

Listing 6–12. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button
 android:id="@+id/enable"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Start Tracking"
 />
 <Button
 android:id="@+id/disable"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Stop Tracking"
 />
 <TextView
 android:id="@+id/status"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
</LinearLayout>

Listing 6–13. Activity Interacting with Service

public class ServiceActivity extends Activity implements View.OnClickListener {

 Button enableButton, disableButton;
 TextView statusView;

 TrackerService trackerService;
 Intent serviceIntent;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

http://schemas.android.com/apk/res/android

CHAPTER 6: Interacting with the System 328

 enableButton = (Button)findViewById(R.id.enable);
 enableButton.setOnClickListener(this);
 disableButton = (Button)findViewById(R.id.disable);
 disableButton.setOnClickListener(this);
 statusView = (TextView)findViewById(R.id.status);

 serviceIntent = new Intent(this, TrackerService.class);
 }

 @Override
 public void onResume() {
 super.onResume();
 //Starting the service makes it stick, regardless of bindings
 startService(serviceIntent);
 //Bind to the service
 bindService(serviceIntent, serviceConnection, Context.BIND_AUTO_CREATE);
 }

 @Override
 public void onPause() {
 super.onPause();
 if(!trackerService.isTracking()) {
 //Stopping the service let's it die once unbound
 stopService(serviceIntent);
 }
 //Unbind from the service
 unbindService(serviceConnection);
 }

 @Override
 public void onClick(View v) {
 switch(v.getId()) {
 case R.id.enable:
 trackerService.startTracking();
 break;
 case R.id.disable:
 trackerService.stopTracking();
 break;
 default:
 break;
 }
 updateStatus();
 }

 private void updateStatus() {
 if(trackerService.isTracking()) {
 statusView.setText(
 String.format("Tracking enabled. %d locations
 logged.",trackerService.getLocationsCount()));
 } else {
 statusView.setText("Tracking not currently enabled.");
 }
 }

 private ServiceConnection serviceConnection = new ServiceConnection() {
 public void onServiceConnected(ComponentName className, IBinder service) {
 trackerService = ((TrackerService.TrackerBinder)service).getService();

CHAPTER 6: Interacting with the System 329

 updateStatus();
 }

 public void onServiceDisconnected(ComponentName className) {
 trackerService = null;
 }
 };
}

Figure 6–3 displays the basic Activity with two buttons for the user to enable and disable

location tracking behavior, and a text display for the current service status.

Figure 6–3. ServiceActivity Layout

While the Activity is visible, it is bound to the TrackerService. This is done with the help

of the ServiceConnection interface, which provides callback methods when the binding

and unbinding operations are complete. With the Service bound to the Activity, we can

now make direct calls on all the public methods exposed by the Service.

However, bindings alone will not allow the Service to stay running long-term; accessing

the Service solely through its Binder interface causes it to be created and destroyed

automatically along with the lifecycle of this Activity. In this case, we want the Service to

persist beyond when this Activity is in memory. In order to accomplish this, the Service

is explicitly started via startService() before it is bound. There is no harm in sending

start commands to a service that is already running, so we can safely do this in

onResume() as well.

r

CHAPTER 6: Interacting with the System 330

The Service will now continue running in memory, even after the Activity unbinds itself.

In onPause() the example always checks whether the user has activated tracking, and if

not it stops the service first. This allows the Service to die if it is not required for

tracking, which keeps the Service from perpetually hanging out in memory if it has no

real work to do.

Running this example, and pressing the Start Tracking button will spin up the persisted

service and the LocationManager. The user may leave the application at this point and

the service will remain running, all the while logging all incoming location updates from

the GPS. When the user returns to this application, they can see that the Service is still

running and the current number of stored location points is displayed. Pressing Stop

Tracking will end the process and allow the Service to die as soon as the user leaves the

Activity once more.

6–6. Launching Other Applications

Problem

Your application requires a specific function that another application on the device is

already programmed to do. Instead of overlapping functionality, you would like to launch

the other application for the job instead.

Solution

(API Level 1)

Use an implicit Intent to tell the system what you are looking to do, and determine if any

applications exist to meet the need. Most often, developers use Intents in an explicit

fashion to start another Activity or Service, like so:

Intent intent = new Intent(this, NewActivity.class);
startActivity(intent);

By declaring the specific component we want to launch, the Intent is very explicit in its

delivery. We also have the power to define an Intent in terms of its action, category,

data, and type to define a more implicit requirement of what task we want to

accomplish.

External applications are always launched within the same Android task as your

application when fired in this fashion, so once the operation is complete (or if the user

backs out) the user is returned to your application. This keeps the experience seamless,

allowing multiple applications to act as one from the user’s perspective.

How It Works

When defining Intents in this fashion, it can be unclear what information you must

include, because there is no published standard and it is possible for two applications

CHAPTER 6: Interacting with the System 331

offering the same service (reading a PDF file, for example) to define slightly different

filters to listen for incoming Intents. You want to make sure and provide enough

information for the system (or the user) to pick the best application to handle the

required task.

The core piece of data to define on almost any implicit Intent is the action; a string value

passed either in the constructor or via Intent.setAction(). This value tells Android what

you want to do, whether it is to view a piece of content, send a message, select a

choice, or what have you. From there, the fields provided are scenario specific, and

often multiple combinations can arrive at the same result. Let’s take a look at some

useful examples.

Read a PDF File

Components to display PDF documents are not included in the core SDK, although

almost every consumer Android device on the market today ships with a PDF reader

application, and many more are available on Android Market. Because of this, it may not

make sense to go through the trouble of embedding PDF display capabilities in your

application.

Instead, the following Listing 6–14 illustrates how to find and launch another app to view

the PDF.

Listing 6–14. Method to View PDF

private void viewPdf(Uri file) {
 Intent intent;
 intent = new Intent(Intent.ACTION_VIEW);
 intent.setDataAndType(file, "application/pdf");
 try {
 startActivity(intent);
 } catch (ActivityNotFoundException e) {
 //No application to view, ask to download one
 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setTitle("No Application Found");
 builder.setMessage("We could not find an application to view PDFs."
 +" Would you like to download one from Android Market?");
 builder.setPositiveButton("Yes, Please",
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 Intent marketIntent = new Intent(Intent.ACTION_VIEW);
 marketIntent.setData(Uri.parse("market://details?id=com.adobe.reader"));
 startActivity(marketIntent);
 }
 });
 builder.setNegativeButton("No, Thanks", null);
 builder.create().show();
 }
 }

CHAPTER 6: Interacting with the System 332

This example method will open any local PDF file on the device (internal or external

storage) using the best application found. If no application is found on the device to view

PDFs, we encourage the user to go to Android Market and download one.

The Intent we create for this is constructed using the generic Intent.ACTION_VIEW action

string, telling the system we want to view the data provided in the Intent. The data file

itself, and its MIME type are also set to tell the system what kind of data we want to

view.

TIP: Intent.setData() and Intent.setType() clear each other’s previous values when

used. If you need to set both simultaneously, use Intent.setDataAndType(), as in the

example.

If startActivity() fails with an ActivityNotFoundException, it means the user does not

have an application installed on their device that can view PDFs. We want our users to

have the full experience, so if this happens, we present a dialog telling them the problem,

and asking if they would like to go to Market and get a reader. If the user presses Yes, we

use another implicit Intent to request that Android Market be opened directly to the

application page for Adobe Reader, a free application the user may download to view PDF

files. We’ll discuss the Uri scheme used for this Intent in the next recipe.

Notice that the example method takes a Uri parameter to the local file. Here is an

example of how to retrieve a Uri for files located on internal storage:

String filename = NAME_OF YOUR_FILE;
File internalFile = getFileStreamPath(filename);
Uri internal = Uri.fromFile(internalFile);

The method getFileStreamPath() is called from a Context, so if this code is not in an

Activity you must have reference to a Context object to call on. Here’s how to create a

Uri for files located on external storage:

String filename = NAME_OF YOUR_FILE;
File externalFile = new File(Environment.getExternalStorageDirectory(), filename);
Uri external = Uri.fromFile(externalFile);

This same example will work for any other document type as well by simply changing

the MIME type attached to the Intent.

Share with Friends

Another popular feature for developers to include in their applications is a method of

sharing the application content with others; through e-mail, text messaging, and

prominent social networks. All Android devices include applications for e-mail and text

messaging, and most users who wish to share via a social network (like Facebook or

Twitter) also have those mobile applications on their device.

As it turns out, this task can also be accomplished using an implicit Intent because most

all of these applications respond to the Intent.ACTION_SEND action string in some way.

CHAPTER 6: Interacting with the System 333

Listing 6–15 is an example of allowing a user to post to any medium they wish with a

single Intent request.

Listing 6–15. Sharing Intent

private void shareContent(String update) {
 Intent intent = new Intent(Intent.ACTION_SEND);
 intent.setType("text/plain");
 intent.putExtra(Intent.EXTRA_TEXT, update);
 startActivity(Intent.createChooser(intent, "Share..."));
 }

Here, we tell the system that we have a piece of text that we would like to send, passed

in as an extra. This is a very generic request, and we expect more than one application

to be able to handle it. By default, Android will present the user with a list of applications

to select which they’d like to open. In addition, some devices provide the user with a

checkbox to set their selection as a default so the list is never shown again!

We would prefer to have a little more control over this process because we also expect

multiple results every time. Therefore, instead of passing the Intent directly to

startActivity(), we first pass it through Intent.createChooser(), which allows us to

customize the title and guarantee the selection list will always be displayed.

When the user selects a choice, that specific application will launch with the EXTRA_TEXT
prepopulated into the message entry box, ready for sharing!

6–7. Launching System Applications

Problem

Your application requires a specific function that one of the system applications on the

device is already programmed to do. Instead of overlapping functionality, you would like

to launch the system application for the job instead.

Solution

(API Level 1)

Use an implicit Intent to tell the system which application you are interested in. Each

system application subscribes to a custom Uri scheme that can be inserted as data into

an implicit Intent to signify the specific application you need to launch.

External applications are always launched in the same task as your application when

fired in this fashion, so once the task is complete (or if the user backs out) the user is

returned to your application. This keeps the experience seamless, allowing multiple

applications to act as one from the user’s perspective.

CHAPTER 6: Interacting with the System 334

How It Works

All of the following examples will construct Intents that can be used to launch system

applications in various states. Once constructed, you should launch these applications

by passing said Intent to startActivity().

Browser

The browser application may be launched to display a web page or run a web search.

To display a web page, construct and launch the following Intent:

Intent pageIntent = new Intent();
pageIntent.setAction(Intent.ACTION_VIEW);
pageIntent.setData(Uri.parse(“http://WEB_ADDRESS_TO_VIEW”));

This replaces the Uri in the data field with the page you would like to view. To launch a

web search inside the browser, construct and launch the following Intent:

Intent searchIntent = new Intent();
searchIntent.setAction(Intent.ACTION_WEB_SEARCH);
searchIntent.putExtra(SearchManager.QUERY, STRING_TO_SEARCH);

This places the search query you want to execute as an extra in the Intent.

Phone Dialer

The dialer application may be launched to place a call to a specific number using the

following Intent:

Intent dialIntent = new Intent();
dialIntent.setAction(Intent.ACTION_DIAL);
dialIntent.setData(Uri.Parse(“tel:8885551234”);

This replaces the phone number in the data Uri with the number to call.

NOTE: This action just brings up the dialer; it does not actually place the call.

Intent.ACTION_CALL can be used to actually place the call directly, although Google

discourages using this in most cases. Using ACTION_CALL will also require that the

android.permission.CALL_PHONE permission be declared in the manifest.

Maps

The maps application on the device can be launched to display a location or to provide

directions between two points. If you know the latitude and longitude of the location you

want to map, then create the following Intent:

Intent mapIntent = new Intent();
mapIntent.setAction(Intent.ACTION_VIEW);
mapIntent.setData(Uri.parse(“geo:latitude,longitude”));

CHAPTER 6: Interacting with the System 335

This replaces the coordinates for latitude and longitude of your location. For example,

the Uri

”geo:37.422,122.084”

would map the location of Google headquarters. If you know the address of the location

to display, then create the following Intent:

Intent mapIntent = new Intent();
mapIntent.setAction(Intent.ACTION_VIEW);
mapIntent.setData(Uri.parse(“geo:0,0?q=ADDRESS”));

This inserts the address you would like to map. For example, the Uri

”geo:0,0?q=1600 Amphitheatre Parkway, Mountain View, CA 94043”

would map the address of Google headquarters.

TIP: The Maps application will also accept a Uri where spaces in the Address query are

replaced with the “+” character. If you are having trouble encoding a String with spaces in it, try

replacing them with “+” instead.

If you would like to display directions between to locations, create the following Intent:

Intent mapIntent = new Intent();
mapIntent.setAction(Intent.ACTION_VIEW);
mapIntent.setData(Uri.parse(“http://maps.google.com/maps?saddr=lat,lng&daddr=lat,lng”));

This inserts the locations for the start and end address.

It is also allowed for only one of the parameters to be included if you would like to open

the maps application with one address open ended. For example, the Uri

“http://maps.google.com/maps?&daddr=37.422,122.084”

would display the maps application with the destination location prepopulated, but

allowing the user to enter their own start address.

E-mail

Any e-mail application on the device can be launched into compose mode using the

following Intent:

Intent mailIntent = new Intent();
mailIntent.setAction(Intent.ACTION_SEND);
mailIntent.setType(“message/rfc822”);
mailIntent.putExtra(Intent.EXTRA_EMAIL, new String[] {"recipient@gmail.com"});
mailIntent.putExtra(Intent.EXTRA_CC, new String[] {"carbon@gmail.com"});
mailIntent.putExtra(Intent.EXTRA_BCC, new String[] {"blind@gmail.com"});
mailIntent.putExtra(Intent.EXTRA_SUBJECT, "Email Subject");
mailIntent.putExtra(Intent.EXTRA_TEXT, "Body Text");
mailIntent.putExtra(Intent.EXTRA_STREAM, URI_TO_FILE);

In this scenario, the action and type fields are the only required pieces to bring up a

blank e-mail message. All the remaining extras prepopulate specific fields of the e-mail

http://maps.google.com/maps?saddr=lat
http://maps.google.com/maps?&daddr=37.422,122.084%E2%80%9D
mailto:recipient@gmail.com
mailto:carbon@gmail.com
mailto:blind@gmail.com

CHAPTER 6: Interacting with the System 336

message. Notice that EXTRA_EMAIL (which fills the To: field), EXTRA_CC, and EXTRA_BCC are

passed String arrays, even if there is only one recipient to be placed there. File

attachments may also be specified in the Intent using EXTRA_STREAM. The value passed

here should be a Uri pointing to the local file to be attached.

If you need to attach more than one file to an e-mail, the requirements change slightly to

the following:

Intent mailIntent = new Intent();
mailIntent.setAction(Intent.ACTION_SEND_MULTIPLE);
mailIntent.setType(“message/rfc822”);
mailIntent.putExtra(Intent.EXTRA_EMAIL, new String[] {"recipient@gmail.com"});
mailIntent.putExtra(Intent.EXTRA_CC, new String[] {"carbon@gmail.com"});
mailIntent.putExtra(Intent.EXTRA_BCC, new String[] {"blind@gmail.com"});
mailIntent.putExtra(Intent.EXTRA_SUBJECT, "Email Subject");
mailIntent.putExtra(Intent.EXTRA_TEXT, "Body Text");

ArrayList<Uri> files = new ArrayList<Uri>();
files.add(URI_TO_FIRST_FILE);
files.add(URI_TO_SECOND_FILE);
//...Repeat add() as often as necessary to add all the files you need
mailIntent.putParcelableArrayListExtra(Intent.EXTRA_STREAM, files);

Notice that the Intent’s action string is now ACTION_SEND_MULTIPLE. All the primary fields

remain the same as before, except for the data that gets added as the EXTRA_STREAM.

This example creates a list of Uris pointing to the files you want to attach and adds them

using putParcelableArrayListExtra().

It is not uncommon for users to have multiple applications on their device that can

handle this content, so it is usually prudent to wrap either of these constructed Intents

with Intent.createChooser() before passing it on to startActivity().

SMS (Messages)

The messages application can be launched into compose mode for a new SMS

message using the following Intent:

Intent smsIntent = new Intent();
smsIntent.setAction(Intent.ACTION_VIEW);
smsIntent.setType(“vnd.android-dir/mms-sms”);
smsIntent.putExtra(“address”, “8885551234”);
smsIntent.putExtra(“sms_body”, “Body Text”);

As with composing e-mail, you must set the action and type at a minimum to launch the

application with a blank message. Including the address and sms_body extras allows

the application to prepopulate the recipient (address) and body text (sms_body) of the

message.

Notice that neither of these keys has a constant defined in the Android framework,

which means that they are subject to change in the future. However, as of this writing,

the keys behave as expected on all versions of Android.

mailto:recipient@gmail.com
mailto:carbon@gmail.com
mailto:blind@gmail.com

CHAPTER 6: Interacting with the System 337

Contact Picker

An application may launch the default contact picker for the user to make a selection

from their contacts database using the following Intent:

Intent pickIntent = new Intent();
pickIntent.setAction(Intent.ACTION_PICK);
pickIntent.setData(URI_TO_CONTACT_TABLE);

This Intent requires the CONTENT_URI of the Contacts table you are interested in to be

passed in the data field. Because of the major changes to the Contacts API in API Level

5 (Android 2.0) and later, this may not be the same Uri if you are supporting versions

across that boundary.

For example, to pick a person from the contacts list on a device previous to 2.0, we

would pass

android.provider.Contacts.People.CONTENT_URI

However, in 2.0 and later, similar data would be gathered by passing

android.provider.ContactsContract.Contacts.CONTENT_URI

Be sure to consult the API documentation with regards to the contact data you need to

access.

Android Market

Android Market can be launched from within an application to display a specific

application’s details page or to run a search for specific keywords. To launch a specific

applications market page, use the following Intent:

Intent marketIntent = new Intent();
marketIntent.setAction(Intent.ACTION_VIEW);
marketIntent.setData(Uri.parse(“market://details?id=PACKAGE_NAME_HERE”));

This inserts the unique package name (such as “com.adobe.reader”) of the application

you want to display. If you would like to open the market with a search query, use this

Intent:

Intent marketIntent = new Intent();
marketIntent.setAction(Intent.ACTION_VIEW);
marketIntent.setData(Uri.parse(“market://search?q=SEARCH_QUERY”));

Inserting the query string you would like to search on. The search query itself can take

one of three main forms:

 q=<simple text string here>

 In this case, the search will be a keyword style search of the market.

 q=pname:<package name here>

 In this case, the package names will be searched, and only exact

matches will return.

 q=pub:<developer name here>

CHAPTER 6: Interacting with the System 338

 In this case, the developer name field will be searched, and only

exact matches will return.

6–8. Letting Other Applications Launch Yours

Problem

You’ve created an application that is absolutely the best at doing a specific task, and

you would like to expose an interface for other applications on the device to be able to

run your application.

Solution

(API Level 1)

Create an IntentFilter on the Activity or Service you would like to expose, then

publicly document the actions, data types, and extras required to access it properly.

Recall that the action, category and data/type of an Intent can all be used as criteria to

match requests to your application. Any additional required or optional parameters

should be passed in as extras.

How It Works

Let’s say that you have created an application that includes an Activity to play a video

and marquee the video’s title at the top of the screen during playback. You want to

allow other applications to play video using your application, so we need to define a

useful Intent structure for applications to pass in the required data and then create an

IntentFilter on the Activity in the applications manifest to match.

This hypothetical Activity requires two pieces of data to do its job:

1. The Uri of a video, either local or remote

2. A String representing the video’s title

If the application specializes in a certain type of video, we could define that a generic

action (such as ACTION_VIEW) be used and filter more specifically on the data type of

the video content we want to handle. Listing 6–16 is an example of how the Activity

would be defined in the manifest to filter Intents in this manner.

Listing 6–16. AndroidManifest.xml <activity> Element with Data Type Filter

 <activity android:name=".PlayerActivity">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="video/h264" />
 </intent-filter>
 </activity>

CHAPTER 6: Interacting with the System 339

This filter will match any Intent with Uri data that is either explicitly declared as an H.264

video clip, or determined to be H.264 upon inspecting the Uri file. An external

application would then be able to call on this Activity to play a video using the following

lines of code:

Uri videoFile = A_URI_OF_VIDEO_CONTENT;
Intent playIntent = new Intent(Intent.ACTION_VIEW);
playIntent.setDataAndType(videoFile, “video/h264”);
playIntent.putExtra(Intent.EXTRA_TITLE, “My Video”);
startActivity(playIntent);

In some cases, it may be more useful for an external application to directly reference this

player as the target, regardless of the type of video they want to pass in. In this case, we

would create a unique custom action string for Intents to implement. The filter attached

to the Activity in the manifest would then only need to match the custom action string.

See Listing 6–17.

Listing 6–17. AndroidManifest.xml <activity> Element with Custom Action Filter

 <activity android:name=".PlayerActivity">
 <intent-filter>
 <action android:name="com.examples.myplayer.PLAY" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>

An external application could call on this Activity to play a video using the following

code:

Uri videoFile = A_URI_OF_VIDEO_CONTENT;
Intent playIntent = new Intent(“com.examples.myplayer.PLAY”);
playIntent.setData(videoFile);
playIntent.putExtra(Intent.EXTRA_TITLE, “My Video”);
startActivity(playIntent);

Processing a Successful Launch

Regardless of how the Intent is matched to the Activity, once it is launched, we want to

inspect the incoming Intent for the two pieces of data the Activity needs to complete its

intended purpose. See Listing 6–18.

Listing 6–18. Activity Inspecting Intent

public class PlayerActivity extends Activity {

 public static final String ACTION_PLAY = "com.examples.myplayer.PLAY";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 //Inspect the Intent that launched us
 Intent incoming = getIntent();
 //Get the video URI from the data field
 Uri videoUri = incoming.getData();

CHAPTER 6: Interacting with the System 340

 //Get the optional title extra, if it exists
 String title;
 if(incoming.hasExtra(Intent.EXTRA_TITLE)) {
 title = incoming.getStringExtra(Intent.EXTRA_TITLE);
 } else {
 title = "";
 }

 /* Begin playing the video and displaying the title */
 }

 /* Remainder of the Activity Code */

}

When the Activity is launched, the calling Intent can be retrieved with

Activity.getIntent(). Since the Uri for the video content is passed in the data field of

the Intent, it is unpacked by calling Intent.getData(). We have determined that the

video’s title is an optional value for calling Intents, so we check the extras bundle to first

see if the caller decided to pass it in; if it exists, that value is unpacked from the Intent as

well.

Notice that the PlayerActivity in this example did define the custom action string as a

constant, but it was not referenced in the sample Intent we constructed above to launch

the Activity. Since this call is coming from an external application, it does not have

access to the shared public constants defined in this application.

For this reason, it is also a good idea to reuse the Intent extra keys already in the SDK

whenever possible, as opposed to defining new constants. In this example, we chose

the standard Intent.EXTRA_TITLE to define the optional extra to be passed instead of

creating a custom key for this value.

6–9. Interacting with Contacts

Problem

Your application needs to interact directly with the ContentProvider exposed by Android

to the user’s contacts to add, view, change, or remove information from the database.

Solution

(API Level 5)

Use the interface exposed by ContactsContract to access the data. ContactsContract is

a vast ContentProvider API that attempts to aggregate the contact information stored in

the system from multiple user accounts into a single data store. The result is a maze of

Uris, tables, and columns, from which data may be accessed and modified.

The Contact structure is a hierarchy with three tiers: Contacts, RawContacts, and Data.

CHAPTER 6: Interacting with the System 341

 A Contact conceptually represents a person, and is an aggregation of

all RawContacts believed by Android to represent that same person.

 A RawContacts represents a collection of Data stored in the device

from a specific device account, such as the user’s e-mail address

book, Facebook account, or otherwise.

 Data elements are the specific pieces of information attached to each

RawContacts, such as an e-mail address, phone number, or postal address.

The complete API has too many combinations and options for us to cover them all here,

so consult the SDK documentation for all the possibilities. We will investigate how to

construct the basic building blocks for performing queries and making changes to the

contacts data set.

How It Works

The Android Contacts API boils down to a complex database with multiple tables and

joins. Therefore, the methods for accessing the data are no different than those used to

access any other SQLite database from an application.

Listing/Viewing Contacts

Let’s look at an example Activity that lists all contact entries in the database, and the

displays more detail when an item is selected. See Listing 6–19.

IMPORTANT: In order to display information from the Contacts API in your application, you will

need to declare android.permission.READ_CONTACTS in the application manifest.

Listing 6–19. Activity Displaying Contacts

public class ContactsActivity extends ListActivity implements
AdapterView.OnItemClickListener {

 Cursor mContacts;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // Return all contacts, ordered by name
 String[] projection = new String[] { ContactsContract.Contacts._ID,
 ContactsContract.Contacts.DISPLAY_NAME };
 mContacts = managedQuery(ContactsContract.Contacts.CONTENT_URI,
 projection, null, null, ContactsContract.Contacts.DISPLAY_NAME);

 // Display all contacts in a ListView
 SimpleCursorAdapter mAdapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1, mContacts,
 new String[] { ContactsContract.Contacts.DISPLAY_NAME },
 new int[] { android.R.id.text1 });
 setListAdapter(mAdapter);

CHAPTER 6: Interacting with the System 342

 // Listen for item selections
 getListView().setOnItemClickListener(this);
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View v, int position, long id) {
 if (mContacts.moveToPosition(position)) {
 int selectedId = mContacts.getInt(0); // _ID column
 // Gather email data from email table
 Cursor email = getContentResolver().query(
 CommonDataKinds.Email.CONTENT_URI,
 new String[] { CommonDataKinds.Email.DATA },
 ContactsContract.Data.CONTACT_ID + " = " + selectedId, null, null);
 // Gather phone data from phone table
 Cursor phone = getContentResolver().query(
 CommonDataKinds.Phone.CONTENT_URI,
 new String[] { CommonDataKinds.Phone.NUMBER },
 ContactsContract.Data.CONTACT_ID + " = " + selectedId, null, null);
 // Gather addresses from address table
 Cursor address = getContentResolver().query(
 CommonDataKinds.StructuredPostal.CONTENT_URI,
 new String[] { CommonDataKinds.StructuredPostal.FORMATTED_ADDRESS },
 ContactsContract.Data.CONTACT_ID + " = " + selectedId, null, null);

 //Build the dialog message
 StringBuilder sb = new StringBuilder();
 sb.append(email.getCount() + " Emails\n");
 if (email.moveToFirst()) {
 do {
 sb.append("Email: " + email.getString(0));
 sb.append('\n');
 } while (email.moveToNext());
 sb.append('\n');
 }
 sb.append(phone.getCount() + " Phone Numbers\n");
 if (phone.moveToFirst()) {
 do {
 sb.append("Phone: " + phone.getString(0));
 sb.append('\n');
 } while (phone.moveToNext());
 sb.append('\n');
 }
 sb.append(address.getCount() + " Addresses\n");
 if (address.moveToFirst()) {
 do {
 sb.append("Address:\n" + address.getString(0));
 } while (address.moveToNext());
 sb.append('\n');
 }

 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setTitle(mContacts.getString(1)); // Display name
 builder.setMessage(sb.toString());
 builder.setPositiveButton("OK", null);
 builder.create().show();

 // Finish temporary cursors

CHAPTER 6: Interacting with the System 343

 email.close();
 phone.close();
 address.close();
 }
 }
}

As you can see, referencing all the tables and columns in this API can result in very

verbose code. All of the references to Uris, tables, and columns in this example are

inner classes stemming off of ContactsContract. It is important to verify when interacting

with the Contacts API that you are referencing the proper classes, as any Contacts

classes not stemming from ContactsContract are deprecated and incompatible.

When the Activity is created, we make a simple query on the core Contacts table by

calling Activity.managedQuery() with Contacts.CONTENT_URI, requesting only the

columns we need to wrap the cursor in a ListAdapter. The resulting cursor is displayed

in a list on the user interface. The example leverages the convenience behavior of

ListActivity to provide a ListView as the content view so that we do not have to

manage these components.

At this point, the user may scroll through all the contact entries on the device, and tap

on one to get more information. When a list item is selected, the _ID value of that

particular contact is recorded and the application goes out to the other

ContactsContract.Data tables to gather more detailed information. Notice that the data

for this single contact is spread across multiple tables (e-mails in an e-mail table, phone

numbers in a phone table, and so on), requiring multiple queries to obtain.

Each CommonDataKinds table has a unique CONTENT_URI for the query to reference, and a

unique set of column aliases for requesting the data. All of the rows in these data tables

are linked to the specific contact through the Data.CONTACT_ID, so each cursor asks to

only return rows where the values match.

With all the data collected for the selected contact, we iterate through the results to

display in a dialog to the user. Since the data in these tables is an aggregation of

multiple sources, it is not uncommon for all of these queries to return multiple results.

With each cursor, we display the number of results, and then append each value

included. When all the data is composed, the dialog is created and shown to the user.

As a final step, all temporary and unmanaged cursors are closed as soon as they are no

longer required.

Running the Application

The first thing that you may notice when running this application on a device that has

any number of accounts set up is that the list seems insurmountably long, certainly

much longer than what shows up when running the Contacts application bundled with

the device. The Contacts API allows for storage of grouped entries that may be hidden

from the user and are used for internal purposes. Gmail often uses this to store incoming

e-mail addresses for quick access, even if the address is not associated with a true

contact.

CHAPTER 6: Interacting with the System 344

In the next example, we will show how to filter this list, but for now marvel at the amount

of data truly stored in the Contacts table.

Changing/Adding Contacts

Now let’s look at an example Activity that manipulates the data for a specific contact.

See Listing 6–20.

IMPORTANT: In order to interact with the Contacts API in your application, you must declare

android.permission.READ_CONTACTS and android.permission.WRITE_CONTACTS in

the application manifest.

Listing 6–20. Activity Writing to Contacts API

public class ContactsEditActivity extends ListActivity implements
 AdapterView.OnItemClickListener, DialogInterface.OnClickListener {

 private static final String TEST_EMAIL = "test@email.com";

 private Cursor mContacts, mEmail;
 private int selectedContactId;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // Return all contacts, ordered by name
 String[] projection = new String[] { ContactsContract.Contacts._ID,
 ContactsContract.Contacts.DISPLAY_NAME };
 //List only contacts visible to the user
 mContacts = managedQuery(ContactsContract.Contacts.CONTENT_URI,
 projection,
 ContactsContract.Contacts.IN_VISIBLE_GROUP+" = 1",
 null, ContactsContract.Contacts.DISPLAY_NAME);

 // Display all contacts in a ListView
 SimpleCursorAdapter mAdapter = new SimpleCursorAdapter(this,
 android.R.layout.simple_list_item_1, mContacts,
 new String[] { ContactsContract.Contacts.DISPLAY_NAME },
 new int[] { android.R.id.text1 });

 setListAdapter(mAdapter);
 // Listen for item selections
 getListView().setOnItemClickListener(this);
 }

 @Override
 public void onItemClick(AdapterView<?> parent, View v, int position, long id) {
 if (mContacts.moveToPosition(position)) {
 selectedContactId = mContacts.getInt(0); // _ID column
 // Gather email data from email table
 String[] projection = new String[] { ContactsContract.Data._ID,
 ContactsContract.CommonDataKinds.Email.DATA };
 mEmail = getContentResolver().query(

mailto:test@email.com

CHAPTER 6: Interacting with the System 345

 ContactsContract.CommonDataKinds.Email.CONTENT_URI,
 projection,
 ContactsContract.Data.CONTACT_ID+" = "+selectedContactId, null, null);
 AlertDialog.Builder builder = new AlertDialog.Builder(this);
 builder.setTitle("Email Addresses");
 builder.setCursor(mEmail, this, ContactsContract.CommonDataKinds.Email.DATA);
 builder.setPositiveButton("Add", this);
 builder.setNegativeButton("Cancel", null);
 builder.create().show();
 }
 }

 @Override
 public void onClick(DialogInterface dialog, int which) {
 //Data must be associated with a RAW contact, retrieve the first raw ID
 Cursor raw = getContentResolver().query(
 ContactsContract.RawContacts.CONTENT_URI,
 new String[] { ContactsContract.Contacts._ID },
 ContactsContract.Data.CONTACT_ID+" = "+selectedContactId, null, null);
 if(!raw.moveToFirst()) {
 return;
 }

 int rawContactId = raw.getInt(0);
 ContentValues values = new ContentValues();
 switch(which) {
 case DialogInterface.BUTTON_POSITIVE:
 //User wants to add a new email
 values.put(ContactsContract.CommonDataKinds.Email.RAW_CONTACT_ID, rawContactId);
 values.put(ContactsContract.Data.MIMETYPE,
 ContactsContract.CommonDataKinds.Email.CONTENT_ITEM_TYPE);
 values.put(ContactsContract.CommonDataKinds.Email.DATA, TEST_EMAIL);
 values.put(ContactsContract.CommonDataKinds.Email.TYPE,
 ContactsContract.CommonDataKinds.Email.TYPE_OTHER);
 getContentResolver().insert(ContactsContract.Data.CONTENT_URI, values);
 break;
 default:
 //User wants to edit selection
 values.put(ContactsContract.CommonDataKinds.Email.DATA, TEST_EMAIL);
 values.put(ContactsContract.CommonDataKinds.Email.TYPE,
 ContactsContract.CommonDataKinds.Email.TYPE_OTHER);
 getContentResolver().update(ContactsContract.Data.CONTENT_URI, values,
 ContactsContract.Data._ID+" = "+mEmail.getInt(0), null);
 break;
 }

 //Don't need the email cursor anymore
 mEmail.close();
 }
}

In this example, we start out as before, performing a query for all entries in the Contacts

database. This time, we provide a single piece of selection criteria:

ContactsContract.Contacts.IN_VISIBLE_GROUP+" = 1"

CHAPTER 6: Interacting with the System 346

The effect of this line is to limit the returned entries to only those that include entries

visible to the user through the Contacts user interface. This will (drastically, in some

cases) reduce the size of the list displayed in the Activity, and make it more closely

match the list displayed in the Contacts application.

When the user selects a contact from this list, a dialog is displayed with a list of all the e-

mail entries attached to that contact. If a specific address is selected from the list, that

entry is edited; and if the add button is pressed a new e-mail address entry is added.

For the purposes of simplifying the example, we do not provide an interface to enter a

new e-mail address. Instead, a constant value is inserted, either as a new record or an

update to the selected one.

Data elements, such as e-mail addresses, can only be associated with a RawContact.

Therefore, when we want to add a new e-mail address, we must obtain the ID of one of

the RawContacts represented by the higher-level contact that the user selected. For the

purposes of the example we aren’t terribly interested in which one, so we retrieve the ID

of the first RawContact that matches. This value is only required for doing an insert,

since the update references the distinct row ID of the e-mail record already present in

the table.

Notice also that the Uri provided in CommonDataKinds that was used as an alias to read

this data cannot be used to make updates and changes. Inserts and updates must be

called directly on the ContactsContract.Data Uri. What this means (besides referencing

a different Uri in the operation method) is that an extra piece of metadata, the MIMETYPE,

must also be specified. Without setting the MIMETYPE field for inserted data, subsequent

queries made may not recognize it as a Contact’s e-mail address.

Aggregation at Work

Because this example updates records by adding or editing e-mail addresses with the

same value, it offers a unique opportunity to see Android’s aggregation operations in

real-time. As you run this example application you may take notice of the fact that

adding or editing contacts to give them the same e-mail address often triggers Android

to start thinking that previously separate Contacts are now the same person. Even in this

sample application, as the managed query attached to the core Contacts table updates,

notice that certain contacts will disappear as they become aggregated together.

NOTE: Contact aggregation behavior is not fully implemented on the Android emulator. To see

this effect in full you will need to run the code on a real device.

Maintaining a Reference

The Android Contacts API introduces one more concept that can be important

depending on the scope of the application. Because of this aggregation process that

occurs, the distinct row ID that refers to a contact becomes quite volatile; a certain

contact may receive a new _ID when it is aggregated together with another one.

7

CHAPTER 6: Interacting with the System 347

If your application requires a long-standing reference to a specific contact, it is

recommended that your application persist the ContactsContract.Contacts.LOOKUP_KEY,

instead of the row ID. When querying for a Contact using this key, a special Uri is also

provided as the ContactsContract.Contacts.CONTENT_LOOKUP_URI. Using these values to

query records long-term will protect your application from getting confused by the

automatic aggregation process.

6–10. Picking Device Media

Problem

Your application needs to import a user-selected media item (audio, video, or image) for

display or playback.

Solution

(API Level 1)

Use an implicit Intent targeted with Intent.ACTION_GET_CONTENT to bring up a system

media picker interface. Firing this Intent with a matching content type for the media of

interest (audio, video, or image) will present the user with a picker interface to select an

item, and the Intent result will include a Uri pointing to the selection they made.

How It Works

Let’s take a look at this technique used in the context of an example Activity. See

Listings 6–21 and 6–22.

Listing 6–21. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button
 android:id="@+id/imageButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Images"
 />
 <Button
 android:id="@+id/videoButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Video"
 />

http://schemas.android.com/apk/res/android

CHAPTER 6: Interacting with the System 348

 <Button
 android:id="@+id/audioButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Audio"
 />
</LinearLayout>

Listing 6–22. Activity to Pick Media

public class MediaActivity extends Activity implements View.OnClickListener {

 private static final int REQUEST_AUDIO = 1;
 private static final int REQUEST_VIDEO = 2;
 private static final int REQUEST_IMAGE = 3;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button images = (Button)findViewById(R.id.imageButton);
 images.setOnClickListener(this);
 Button videos = (Button)findViewById(R.id.videoButton);
 videos.setOnClickListener(this);
 Button audio = (Button)findViewById(R.id.audioButton);
 audio.setOnClickListener(this);

 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {

 if(resultCode == Activity.RESULT_OK) {
 //Uri to user selection returned in the Intent
 Uri selectedContent = data.getData();

 if(requestCode == REQUEST_IMAGE) {
 //Display the image
 }
 if(requestCode == REQUEST_VIDEO) {
 //Play the video clip
 }
 if(requestCode == REQUEST_AUDIO) {
 //Play the audio clip
 }
 }
 }

 @Override
 public void onClick(View v) {
 Intent intent = new Intent();
 intent.setAction(Intent.ACTION_GET_CONTENT);
 switch(v.getId()) {
 case R.id.imageButton:
 intent.setType("image/*");
 startActivityForResult(intent, REQUEST_IMAGE);
 return;

CHAPTER 6: Interacting with the System 349

 case R.id.videoButton:
 intent.setType("video/*");
 startActivityForResult(intent, REQUEST_VIDEO);
 return;
 case R.id.audioButton:
 intent.setType("audio/*");
 startActivityForResult(intent, REQUEST_AUDIO);
 return;
 default:
 return;
 }
 }
}

This example has three buttons for the user to press, each targeting a specific type of

media. When the user presses any one of these buttons, an Intent with the

Intent.ACTION_GET_CONTENT action string is fired to the system, launching the proper

picker Activity. If the user selects a valid item, a content Uri pointing to that item is

returned in the result Intent with a status of RESULT_OK. If the user cancels or otherwise

backs out of the picker, the status will be RESULT_CANCELED and the Intent’s data field will

be null.

With the Uri of the media received, the application is now free to play or display the

content as is deemed appropriate. Classes like MediaPlayer and VideoView will take a

Uri directly to play media content, and the Uri.getPath() method will return a file path

for images that can be passed to BitmapFactory.decodeFile().

6–11. Saving to the MediaStore

Problem

Your application would like to store media and insert it into the device’s global

MediaStore so that it is visible to all applications.

Solution

(API Level 1)

Utilize the ContentProvider interface exposed by MediaStore to perform inserts. In

addition to the media content itself, this interface allows you to insert metadata to tag

each item, such as a title, description, or time created. The result of the ContentProvider

insert operation is a Uri that the application may use as a destination for the new media.

How It Works

Let’s take a look at an example of inserting an image or video clip into MediaStore. See

Listings 6–23 and 6–24.

CHAPTER 6: Interacting with the System 350

Listing 6–23. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <Button
 android:id="@+id/imageButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Images"
 />
 <Button
 android:id="@+id/videoButton"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Video"
 />
</LinearLayout>

Listing 6–24. Activity Saving Data in the MediaStore

public class StoreActivity extends Activity implements View.OnClickListener {

 private static final int REQUEST_CAPTURE = 100;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button images = (Button)findViewById(R.id.imageButton);
 images.setOnClickListener(this);
 Button videos = (Button)findViewById(R.id.videoButton);
 videos.setOnClickListener(this);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if(requestCode == REQUEST_CAPTURE && resultCode == Activity.RESULT_OK) {
 Toast.makeText(this, "All Done!", Toast.LENGTH_SHORT).show();
 }
 }

 @Override
 public void onClick(View v) {
 ContentValues values;
 Intent intent;
 Uri storeLocation;

 switch(v.getId()) {
 case R.id.imageButton:
 //Create any metadata for image
 values = new ContentValues(2);
 values.put(MediaStore.Images.ImageColumns.DATE_TAKEN, System.currentTimeMillis());
 values.put(MediaStore.Images.ImageColumns.DESCRIPTION, "Sample Image");
 //Insert metadata and retrieve Uri location for file

http://schemas.android.com/apk/res/android

CHAPTER 6: Interacting with the System 351

 storeLocation = getContentResolver().insert(
 MediaStore.Images.Media.EXTERNAL_CONTENT_URI, values);
 //Start capture with new location as destination
 intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
 intent.putExtra(MediaStore.EXTRA_OUTPUT, storeLocation);
 startActivityForResult(intent, REQUEST_CAPTURE);
 return;
 case R.id.videoButton:
 //Create any metadata for video
 values = new ContentValues(2);
 values.put(MediaStore.Video.VideoColumns.ARTIST, "Yours Truly");
 values.put(MediaStore.Video.VideoColumns.DESCRIPTION, "Sample Video Clip");
 //Insert metadata and retrieve Uri location for file
 storeLocation = getContentResolver().insert(
 MediaStore.Video.Media.EXTERNAL_CONTENT_URI, values);
 //Start capture with new location as destination
 intent = new Intent(MediaStore.ACTION_VIDEO_CAPTURE);
 intent.putExtra(MediaStore.EXTRA_OUTPUT, storeLocation);
 startActivityForResult(intent, REQUEST_CAPTURE);
 return;
 default:
 return;
 }
 }
}

NOTE: Since this example interacts with the Camera hardware, you should run it on a real

device to get the full effect. In fact, there is a known bug in emulators running Android 2.2 or

later that will cause this example to crash if the Camera is accessed. Earlier emulators will

execute the code appropriately, but without real hardware the example is less interesting.

In this example, when the user clicks on either button, metadata that is to be associated

with the media itself is inserted into a ContentValues instance. Some of the more

common metadata columns that are common to both image and video are:

 TITLE: String value for the content title

 DESCRIPTION: String value for the content description

 DATE_TAKEN: Integer value describing the date the media was captured.

Fill this field with System.currentTimeMillis() to indicate a time of

“now”

The ContentValues are then inserted into the MediaStore using the appropriate

CONTENT_URI reference. Notice that the metadata is inserted before the media itself is

actually captured. The return value from a successful insert is a fully qualified Uri that the

application may use as the destination for the media content.

In the previous example, we are using the simplified methods from Chapter 4 of

capturing audio and video by requesting that the system applications handle this

process. Recall from Chapter 4 that both the audio and video capture Intent can be

CHAPTER 6: Interacting with the System 352

passed with an extra declaring the destination for the result. This is where we pass the

Uri that was returned from insert.

Upon a successful return from the capture Activity, there is nothing more for the

application to do. The external application has saved the captured image or video into

the location referenced by our MediaStore insert. This data is now visible to all

applications, including the system’s Gallery application.

Summary
In this chapter, you learned how your application can interact directly with the Android

operating system. We discussed several methods of placing operations into the

background for various lengths of time. You learned how applications can share

responsibility, launching each other to best accomplish the task at hand. Finally, we

presented how the system exposes the content gathered by its core application suite for

your application’s use. In the next and final chapter, we will look at how you can

leverage the wide array of publicly available Java libraries to further enhance your

application.

353

353

 Chapter

Working with Libraries

Smart Android developers deliver their apps to market faster by taking advantage of

libraries, which reduce development time by providing previously created and tested

code. Developers may create and use their own libraries, use libraries created by others,

or do both.

This chapter’s initial recipes introduce you to creating and using your own libraries.

Subsequent recipes introduce you to Kidroid’s kiChart charting library for presenting bar

charts and line charts, and to IBM’s MQTT library for implementing lightweight push

messaging in your apps.

TIP: OpenIntents.org publishes a list of libraries from various vendors that you might find helpful

in your app development (www.openintents.org/en/libraries).

7–1. Creating Java Library JARs

Problem

You want to create a library that stores Android-agnostic code, and which can be used

in your Android and non-Android projects.

Solution

Create a JAR-based library that accesses only Java 5 (and earlier) APIs via JDK

command-line tools or Eclipse.

7

http://www.openintents.org/en/libraries

CHAPTER 7: Working with Libraries 354

How It Works

Suppose you plan to create a simple library of math-oriented utilities. This library will

consist of a single MathUtils class with various static methods. Listing 7–1 presents an

early version of this class.

Listing 7–1. MathUtils Implementing Math-Oriented Utilities via static Methods

// MathUtils.java

package com.apress.mathutils;

public class MathUtils
{
 public static long factorial(long n)
 {
 if (n <= 0)
 return 1;
 else
 return n*factorial(n-1);
 }
}

MathUtils currently consists of a single static factorial() method for computing and

returning factorials (perhaps for use in calculating permutations and combinations). You

might eventually expand this class to support fast Fourier transforms and other math

operations not supported by the java.lang.Math class.

CAUTION: When creating a library that stores Android-agnostic code, make sure to access only

standard Java APIs (such as the collections framework) that are supported by Android – don’t

access unsupported Java APIs (such as Swing) or Android-specific APIs (such as Android

widgets). Also, don’t access any standard Java APIs more recent than Java version 5.

Creating MathUtils with the JDK

Developing a JAR-based library with the JDK is trivial. Perform the following steps to

create a mathutils.jar file that contains the MathUtils class:

1. Within the current directory, create a package directory structure

consisting of a com subdirectory that contains an apress subdirectory

that contains a mathutils subdirectory.

2. Copy Listing 7–1’s MathUtils.java source code to a MathUtils.java file

stored in mathutils.

3. Assuming that the current directory contains the com subdirectory,

execute javac com/apress/mathutils/MathUtils.java to compile

MathUtils.java. A MathUtils.class file is stored in

com/apress/mathutils.

CHAPTER 7: Working with Libraries 355

4. Create mathutils.jar by executing jar cf mathutils.jar

com/apress/mathutils/*.class. The resulting mathutils.jar file

contains a com/apress/mathutils/MathUtils.class entry.

Creating MathUtils with Eclipse

Developing a JAR-based library with Eclipse is a bit more involved. Perform the

following steps to create a mathutils.jar file that contains the MathUtils class:

1. Assuming that you’ve installed the Eclipse version discussed in Chapter

1, start this IDE if not already running.

2. Select New from the File menu and Java Project from the resulting pop-

up menu.

3. On the resulting New Java Project dialog box, enter mathutils into the

Project name textfield and click the Finish button.

4. Expand Package Explorer’s mathutils node.

5. Right-click the src node (underneath mathutils) and select New, followed

by Package from the resulting pop-up menus.

6. On the resulting New Java Package dialog box, enter

com.apress.mathutils into the Name field and click Finish.

7. Right-click the resulting com.apress.mathutils node and select New,

followed by Class on the resulting pop-up menus.

8. On the resulting New Java Class dialog box, enter MathUtils into the

Name field and click Finish.

9. Replace the skeletal contents in the resulting MathUtils.java editor

window with Listing 7–1.

10. Right-click the mathutils project node and select Build Project from the

resulting pop-up menu. (You might have to deselect Build Automatically

from the project menu first.)

11. Right-click the mathutils project node and select Export from the

resulting pop-up menu.

12. On the resulting Export dialog box, select JAR file under the Java node

and click the Next button.

13. On the resulting JAR Export pane, keep the defaults but enter

mathutils.jar in the JAR file textfield. Click Finish. The resulting

mathutils.jar file is created in your Eclipse workspace’s root directory.

CHAPTER 7: Working with Libraries 356

7–2. Using Java Library JARs

Problem

You’ve successfully built mathutils.jar and want to learn how to integrate this JAR file

into your Eclipse-based Android projects.

Solution

You’ll create your Eclipse-based Android project with a libs directory and copy

mathutils.jar into this directory.

NOTE: It’s common practice to store libraries (.jar files and Linux shared object libraries, .so

files) in a libs subdirectory of the Android project directory. The Android build system

automatically takes files found in libs and integrates them into APKs. If the library is a shared

object library, it is stored in the .apk file with an entry starting with lib (not libs).

How It Works

Now that you’ve created mathutils.jar, you’ll need an Android app to try out this

library. Listing 7–2 presents the source code to a UseMathUtils single-activity-based

app that computes 5-factorial, which the activity subsequently outputs.

Listing 7–2. UseMathUtils Invoking MathUtil’s factorial() Method to Compute 5-factorial

// UseMathUtils.java

package com.apress.usemathutils;

import android.app.Activity;

import android.os.Bundle;

import android.widget.TextView;

import com.apress.mathutils.MathUtils;

public class UseMathUtils extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 tv.setText("5! = "+MathUtils.factorial(5));
 setContentView(tv);
 }
}

CHAPTER 7: Working with Libraries 357

Assuming that Eclipse is running, complete the following steps to create a UseMathUtils

project:

1. Select New from the File menu, and select Project from the resulting

pop-up menu.

2. On the New Project dialog box, expand the Android node in the wizard

tree, select the Android Project branch below this node, and click the

Next button.

3. On the resulting New Android Project dialog box, enter UseMathUtils

into the Project name textfield. This entered name identifies the

folder/directory in which the UseMathUtils project is stored.

4. Select the “Create new project in workspace” radio button if it’s not

selected.

5. Under Build Target, check the checkbox of the appropriate Android

target to be used as UseMathUtils's build target. This target specifies

which Android platform you'd like your application to be built against.

Assuming that you’ve installed only the Android 2.3 platform, only this

build target should appear and should already be checked.

6. Under Properties, enter Use MathUtils into the Application name

textfield. This human-readable title will appear on the Android device.

Continuing, enter com.apress.usemathutils into the Package name

textfield. This value is the package namespace (following the same rules

as for packages in the Java programming language) where all your

source code will reside. Check the Create Activity checkbox if it’s not

checked, and enter UseMathUtils as the name of the app’s starting

activity in the textfield that appears beside this checkbox. The textfield

is disabled when this checkbox is not checked. Finally, enter integer 9

into the Min SDK Version textfield to identify the minimum API Level

required to properly run UseMathUtils on the Android 2.3 platform.

7. Click Finish.

Eclipse creates a UseMathUtils node in the Package Explorer window. Complete the

following steps to set up all files:

1. Expand the UseMathUtils node, followed by the src node, followed by

the com.apress.usemathutils node.

2. Double-click the UseMathUtils.java node (underneath

com.apress.usemathutils) and replace the skeletal contents in the

resulting window with Listing 7–2.

CHAPTER 7: Working with Libraries 358

3. Right-click the UseMathUtils node and select New followed by Folder

on the resulting pop-up menu. On the resulting New Folder dialog box,

enter libs into the Folder name textfield and click the Finish button.

4. Use your platform’s file manager program (such as Windows XP’s

Windows Explorer) to select and drag the previously created

mathutils.jar file to the libs node. If a File Operation dialog box

appears, keep the Copy files radio button selected and click the OK

button.

5. Right-click mathutils.jar and select Build Path followed by Configure

Build Path on the resulting pop-up menus.

6. On the resulting Properties for UseMathUtils dialog box, select the

Libraries tab and click the Add Jars button.

7. On the resulting JAR Selection dialog box, expand the UseMathUtils

node followed by the libs node. Select mathutils.jar and click OK to

close JAR Selection. Click OK a second time to close Properties for

UseMathUtils.

You’re now ready to run this project. Select Run from the menubar followed by Run from

the dropdown menu. If a Run As dialog box appears, select Android Application and

click OK. Eclipse starts the emulator, installs this project’s APK, and runs the app,

whose output appears in Figure 7–1.

Figure 7–1. UseMathUtils’s simple user interface could be expanded to let the user enter an arbitrary number.

NOTE: Examine this application’s UseMathUtils.apk file (jar tvf UseMathUtils.apk),

and you won’t find a mathutils.jar entry. Instead, you’ll find classes.dex, which contains

the app’s Dalvik-executable bytecode. classes.dex also contains the Dalvik equivalent of the

MathUtils classfile, because the Android build system unpacks JAR files, processes their

contents with the dx tool to convert their Java bytecodes to Dalvik bytecodes, and merges the

equivalent Dalvik code into classes.dex.

CHAPTER 7: Working with Libraries 359

7–3. Creating Android Library Projects

Problem

You want to create a library that stores Android-specific code, such as custom widgets

or activities with or without resources.

Solution

Android 2.2 and successors let you create Android library projects, which are Eclipse

projects describing libraries that incorporate Android-specific code and even resources.

How It Works

Suppose you want to create a library that contains a single reusable custom widget

describing a game board (for playing chess, checkers, or even tic-tac-toe). Listing 7–3

reveals this library’s GameBoard class.

Listing 7–3. GameBoard Describing a Reusable Custom Widget for Drawing Different Game Boards

// GameBoard.java

package com.apress.gameboard;

import android.content.Context;

import android.graphics.Canvas;
import android.graphics.Paint;

import android.view.View;

public class GameBoard extends View
{
 private int nSquares, colorA, colorB;

 private Paint paint;
 private int squareDim;

 public GameBoard(Context context, int nSquares, int colorA, int colorB)
 {
 super(context);
 this.nSquares = nSquares;
 this.colorA = colorA;
 this.colorB = colorB;
 paint = new Paint();
 }

 @Override
 protected void onDraw(Canvas canvas)
 {
 for (int row = 0; row < nSquares; row++)
 {

CHAPTER 7: Working with Libraries 360

 paint.setColor(((row & 1) == 0) ? colorA : colorB);
 for (int col = 0; col < nSquares; col++)
 {
 int a = col*squareDim;
 int b = row*squareDim;
 canvas.drawRect(a, b, a+squareDim, b+squareDim, paint);
 paint.setColor((paint.getColor() == colorA) ? colorB : colorA);
 }
 }
 }

 @Override
 protected void onMeasure(int widthMeasuredSpec, int heightMeasuredSpec)
 {
 // keep the view squared
 int width = MeasureSpec.getSize(widthMeasuredSpec);
 int height = MeasureSpec.getSize(heightMeasuredSpec);
 int d = (width == 0) ? height : (height == 0) ? width :
 (width < height) ? width : height;
 setMeasuredDimension(d, d);
 squareDim = width/nSquares;
 }
}

Android custom widgets are based on views that subclass android.view.View or one of

its subclasses (such as android.widget.TextView). GameBoard subclasses View directly

because it doesn’t need any subclass functionality.

GameBoard provides several fields, including the following:

 nSquares stores the number of squares on each side of the game

board. Typical values include 3 (for a 3-by-3 board) and 8 (for an 8-by-

8 board).

 colorA stores the color of even-numbered squares on even-numbered

rows, and the color of odd-numbered squares on odd-numbered rows

– row and column numbering starts at 0.

 colorB stores the color of odd-numbered squares on even-numbered

rows, and the color of even-numbered squares on odd-numbered

rows.

 paint stores a reference to an android.graphics.Paint object that is

used to specify the square color (colorA or colorB) when the game

board is drawn.

 squareDim stores the dimension of a square – the number of pixels on

each side.

GameBoard’s constructor initializes this widget by storing its nSquares, colorA, and colorB

arguments in same-named fields, and also instantiates the Paint class. Before doing so,

however, it passes its context argument to its View superclass.

CHAPTER 7: Working with Libraries 361

NOTE: View subclasses are required to pass an android.content.Context instance to their

View superclass. Doing so identifies the context (an activity, for example) in which the custom

widget is running. Custom widget subclasses can subsequently call View’s Context

getContext() method to return this Context object, so that they can call Context methods

to access the current theme, resources, and so on.

Android tells a custom widget to draw itself by calling the widget’s overriding protected
void onDraw(Canvas canvas) method. GameBoard’s onDraw(Canvas) method responds by

invoking android.graphics.Canvas’s void drawRect(float left, float top, float
right, float bottom, Paint paint) method to paint each square for each row/column

intersection. The final paint argument determines the color of that square.

Before Android invokes onDraw(Canvas), it must measure the widget. It accomplishes

this task by invoking the widget’s overriding protected void onMeasure(int
widthMeasureSpec, int heightMeasureSpec) method, where the passed arguments

specify the horizontal and vertical space requirements that are imposed by the parent

view. The widget typically passes these arguments to the View.MeasureSpec nested

class’s static int getSize(int measureSpec) method to return the exact width or

height of the widget based on the passed measureSpec argument. The returned values or

a modified version of these values must then be passed to View’s void
setMeasuredDimension(int measuredWidth, int measuredHeight) method to store the

measured width and height. Failure to call this method results in a thrown exception at

runtime. Because game boards should be square, GameBoard’s onMeasure(int, int)

method passes the minimum of the width and height to setMeasuredDimension(int,
int) to ensure a square game board.

Now that you know how GameBoard works, you’re ready to create a library that stores

this class. You’ll create this library by creating an Android library project. The nice thing

about such a project is that it’s a standard Android project, so you can create a new

Android library project in the same way as you would create a new app project.

Complete the following steps to create the GameBoard project:

1. Select New from the File menu, and select Project from the resulting

pop-up menu.

2. On the New Project dialog box, expand the Android node in the wizard

tree, select the Android Project branch below this node, and click the

Next button.

3. On the resulting New Android Project dialog box, enter GameBoard into

the Project name textfield. This entered name identifies the folder in

which the GameBoard project is stored.

4. Select the “Create new project in workspace” radio button if it’s not

selected.

CHAPTER 7: Working with Libraries 362

5. Under Build Target, check the checkbox of the appropriate Android

target to be used as the GameBoard build target. This target specifies

which Android platform you'd like your application to be built against.

Assuming that you’ve installed only the Android 2.3 platform, only this

build target should appear and it should already be checked.

6. Under Properties, leave the Application name textfield blank – the library

isn’t an app, so there’s no point in entering a value in this field.

Continuing, enter com.apress.gameboard into the Package name

textfield. This value is the package namespace (following the same rules

as for packages in the Java programming language) where all your

library source code will reside. Uncheck the Create Activity checkbox if

it’s checked. The textfield is disabled when this checkbox is not

checked. Finally, enter integer 9 into the Min SDK Version textfield to

identify the minimum API Level required to properly run GameBoard on

the Android 2.3 platform.

7. Click Finish.

Although you create an Android library project in the same fashion as creating a regular

app project, you must adjust some of GameBoard’s project properties to indicate that it is

a library project:

1. In Package Explorer, right-click GameBoard and select Properties from

the pop-up menu.

2. On the resulting Properties for GameBoard dialog box, select the

Android properties group and check the Is Library check box.

3. Click the Apply button, followed by OK.

The new GameBoard project is now marked as an Android library project. However, it

doesn’t yet contain a GameBoard.java source file containing Listing 7–3’s contents.

Create this source file under Package Explorer’s

GameBoard/src/com/apress/gameboard node.

You can build this library if you want to (right-click the GameBoard node and select

Build Project from the pop-up menu, for example). However, it isn’t necessary to do so.

The project will be built automatically when you build a project that uses this library.

You’ll learn how to do this in the next recipe.

NOTE: If you build the GameBoard library, you’ll discover a com/apress/gameboard directory

structure where gameboard contains GameBoard.class and several resource-oriented

classfiles (even though GameBoard.java doesn’t reference resources). This is the essence of

what constitutes a library based on an Android library project.

CHAPTER 7: Working with Libraries 363

7–4. Using Android Library Projects

Problem

You’ve successfully built the GameBoard library and want to learn how to integrate this

library into your Eclipse-based Android projects.

Solution

Identify the GameBoard library to Eclipse in the properties of the app project being built,

and build the app.

How It Works

Now that you’ve created GameBoard, you’ll need an Android app to try out this library.

Listing 7–4 presents the source code to a UseGameBoard single-activity-based app that

instantiates this library’s GameBoard class and places it in the activity’s view hierarchy.

Listing 7–4. UseGameBoard Placing the GameBoard Widget into the Activity’s View Hierarchy

// UseGameBoard.java

package com.apress.usegameboard;

import android.app.Activity;

import android.graphics.Color;

import android.os.Bundle;

import com.apress.gameboard.GameBoard;

public class UseGameBoard extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 GameBoard gb = new GameBoard(this, 8, Color.BLUE, Color.WHITE);
 setContentView(gb);
 }
}

Assuming that Eclipse is running, complete the following steps to create a UseGameBoard
project:

1. Select New from the File menu, and select Project from the resulting

pop-up menu.

CHAPTER 7: Working with Libraries 364

2. On the New Project dialog box, expand the Android node in the wizard

tree, select the Android Project branch below this node, and click the

Next button.

3. On the resulting New Android Project dialog box, enter UseGameBoard

into the Project name textfield. This entered name identifies the folder in

which the UseGameBoard project is stored.

4. Select the “Create new project in workspace” radio button if it’s not

selected.

5. Under Build Target, check the checkbox of the appropriate Android

target to be used as UseGameBoard's build target. This target specifies

which Android platform you'd like your app to be built against.

Assuming that you’ve installed only the Android 2.3 platform, only this

build target should appear and it should already be checked.

6. Under Properties, enter Use GameBoard into the Application name

textfield. This human-readable title will appear on the Android device.

Continuing, enter com.apress.usegameboard into the Package name

textfield. This value is the package namespace (following the same rules

as for packages in the Java programming language) where all your

source code will reside. Check the Create Activity checkbox if it’s not

checked, and enter UseGameBoard as the name of the app’s starting

activity in the textfield that appears beside this checkbox. The textfield

is disabled when this checkbox is not checked. Finally, enter integer 9

into the Min SDK Version textfield to identify the minimum API Level

required to properly run UseGameBoard on the Android 2.3 platform.

7. Click Finish.

Eclipse creates a UseGameBoard node in the Package Explorer window. Complete the

following steps to set up all files:

1. Expand the UseGameBoard node, followed by the src node, followed by

the com.apress.usegameboard node.

2. Double-click the UseGameBoard.java node (underneath

com.apress.usegameboard) and replace the skeletal contents in the

resulting window with Listing 7–4.

3. Right-click the UseGameBoard node and select Properties from the

resulting pop-up menu.

4. On the resulting Properties for UseGameBoard dialog box, select the

Android category and click the Add button.

CHAPTER 7: Working with Libraries 365

5. On the resulting Project Selection dialog box, select GameBoard and

click OK.

6. Click Apply, and then OK to close Properties for UseGameBoard.

You’re now ready to run this project. Select Run from the menubar, followed by Run

from the dropdown menu. If a Run As dialog box appears, select Android Application

and click OK. Eclipse starts the emulator, installs this project’s APK, and runs the app,

whose output appears in Figure 7–2.

Figure 7–2. UseGameBoard reveals a blue-and-white checkered game board that could be used as the
background for a game such as checkers or chess.

NOTE: If you’re interested in creating and using an Android library project-based library that

incorporates an activity, check out Google’s TicTacToe example library project

(http://developer.android.com/guide/developing/projects/projects-

eclipse.html#SettingUpLibraryProject).

http://developer.android.com/guide/developing/projects/projects-eclipse.html#SettingUpLibraryProject
http://developer.android.com/guide/developing/projects/projects-eclipse.html#SettingUpLibraryProject
http://developer.android.com/guide/developing/projects/projects-eclipse.html#SettingUpLibraryProject

CHAPTER 7: Working with Libraries 366

7–5. Charting

Problem

You’re looking for a simple library that lets your app generate bar charts or line charts.

Solution

Although several Android libraries exist for generating charts, you might prefer the

simplicity of Kidroid.com’s kiChart product (www.kidroid.com/kichart/). Version 0.1

supports bar charts and line charts, and Kidroid promises to add new chart types in

subsequent releases.

The link to kiChart’s home page presents links for downloading kiChart-0.1.jar (the

library) and kiChart-Help.pdf (documentation describing the library).

How It Works

kiChart’s documentation states that bar and line charts support multiple series of data.

Furthermore, it states that charts can be exported to image files, and that you can define

chart parameters (such as font color, font size, margin, and so on).

The documentation then presents a pair of screenshots to the sample line and bar

charts rendered by a demo app. These screenshots are followed by a code exert from

this demo – specifically, the LineChart chart activity class.

LineChart’s source code reveals the basics of establishing a chart, explained here:

1. Create an activity that extends the com.kidroid.kichart.ChartActivity

class. This activity renders either a bar chart or a line chart.

2. Within the activity’s onCreate(Bundle) method, create a String array of

horizontal axis labels, and create a floating-point array of data for each

set of bars or each line.

3. Create an array of com.kidroid.kichart.model.Aitem (axis item)

instances and populate this array with Aitem objects that store the data

arrays. Each Aitem constructor call requires you to pass an

android.graphics.Color value to identify the color associated with the

data array (whose displayed values and bars or lines are displayed in

that color), a String value that associates a label with the color and data

array, and the data array itself.

4. Instantiate the com.kidroid.kichart.view.BarView class if you want to

display a bar chart, or the com.kidroid.kichart.view.LineView class if

you want to display a line chart.

http://www.kidroid.com/kichart/

CHAPTER 7: Working with Libraries 367

5. Call the class’s public void setTitle(String title) method to specify

a title for the chart.

6. Call the class’s public void setAxisValueX(String[] labels) method

to specify the chart’s horizontal labels.

7. Call the class’s public void setItems(Aitem[] items) method to

specify the chart’s arrays of data items.

8. Call setContentView() with the chart instance as its argument to display

the chart.

9. You don’t have to worry about selecting a range of values for the vertical axis

because kiChart takes care of this task on your behalf.

A class diagram that presents kiChart’s classes and shows their relationships follows the

source code. For example, com.kidroid.kichart.view.ChartView is the superclass of

com.kidroid.kichart.view.AxisView, which superclasses BarView and LineView.

Each class’s properties and ChartView’s public boolean exportImage(String
filename) method are then documented. This method lets you output a chart to a file,

returning true if successful and false if unsuccessful.

TIP: To influence the range of values displayed on the vertical axis, you will need to work with

AxisView’s intervalCount, intervalValue, and valueGenerate properties.

In practice, you’ll find kiChart easy to use. For example, consider a ChartDemo app

whose main activity (also named ChartDemo) presents a user interface that lets the user

enter quarterly sales figures for each of the years 2010 and 2011 via its eight textfields.

The main activity also presents a pair of buttons that let the user view this data in the

context of a bar chart or in the context of a line chart via separate BarChart and

LineChart activities.

Listing 7–5 presents ChartDemo’s source code.

Listing 7–5. ChartDemo Describing an Activity for Entering Chart Data Values and Launching the Bar Chart or
Line Chart Activity

// ChartDemo.java

package com.apress.chartdemo;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;
import android.widget.Button;

CHAPTER 7: Working with Libraries 368

import android.widget.EditText;

public class ChartDemo extends Activity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button btnViewBC = (Button) findViewById(R.id.viewbc);
 AdapterView.OnClickListener ocl;
 ocl = new AdapterView.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 final float[] data2010 = new float[4];
 int[] ids = { R.id.data2010_1, R.id.data2010_2, R.id.data2010_3,
 R.id.data2010_4 };
 for (int i = 0; i < ids.length; i++)
 {
 EditText et = (EditText) findViewById(ids[i]);
 String s = et.getText().toString();
 try
 {
 float input = Float.parseFloat(s);
 data2010[i] = input;
 }
 catch (NumberFormatException nfe)
 {
 data2010[i] = 0;
 }
 }
 final float[] data2011 = new float[4];
 ids = new int[] { R.id.data2011_1, R.id.data2011_2,
 R.id.data2011_3, R.id.data2011_4 };
 for (int i = 0; i < ids.length; i++)
 {
 EditText et = (EditText) findViewById(ids[i]);
 String s = et.getText().toString();
 try
 {
 float input = Float.parseFloat(s);
 data2011[i] = input;
 }
 catch (NumberFormatException nfe)
 {
 data2011[i] = 0;
 }
 }
 Intent intent = new Intent(ChartDemo.this, BarChart.class);
 intent.putExtra("2010", data2010);
 intent.putExtra("2011", data2011);
 startActivity(intent);
 }
 };

CHAPTER 7: Working with Libraries 369

 btnViewBC.setOnClickListener(ocl);

 Button btnViewLC = (Button) findViewById(R.id.viewlc);
 ocl = new AdapterView.OnClickListener()
 {
 @Override
 public void onClick(View v)
 {
 final float[] data2010 = new float[4];
 int[] ids = { R.id.data2010_1, R.id.data2010_2, R.id.data2010_3,
 R.id.data2010_4 };
 for (int i = 0; i < ids.length; i++)
 {
 EditText et = (EditText) findViewById(ids[i]);
 String s = et.getText().toString();
 try
 {
 float input = Float.parseFloat(s);
 data2010[i] = input;
 }
 catch (NumberFormatException nfe)
 {
 data2010[i] = 0;
 }
 }
 final float[] data2011 = new float[4];
 ids = new int[] { R.id.data2011_1, R.id.data2011_2,
 R.id.data2011_3, R.id.data2011_4 };
 for (int i = 0; i < ids.length; i++)
 {
 EditText et = (EditText) findViewById(ids[i]);
 String s = et.getText().toString();
 try
 {
 float input = Float.parseFloat(s);
 data2011[i] = input;
 }
 catch (NumberFormatException nfe)
 {
 data2011[i] = 0;
 }
 }
 Intent intent = new Intent(ChartDemo.this, LineChart.class);
 intent.putExtra("2010", data2010);
 intent.putExtra("2011", data2011);
 startActivity(intent);
 }
 };
 btnViewLC.setOnClickListener(ocl);
 }
}

ChartDemo implements all of its logic in its onCreate(Bundle) method. This method

largely concerns itself with setting its content view and attaching a click listener to each

of the view’s two buttons.

CHAPTER 7: Working with Libraries 370

Because these listeners are nearly identical, we’ll consider only the code for the listener

attached to the viewbc (view bar chart) button. In response to this button being clicked,

the listener’s onClick(View) method is called to perform the following tasks:

1. Populate a data2010 floating-point array with the values from the four

textfields corresponding to 2010 data.

2. Populate a data2011 floating-point array with the values from the four

textfields corresponding to 2011 data.

3. Create an Intent object that specifies BarChart.class as the classfile of

the activity to launch.

4. Store the data2010 and data2011 arrays in this object so that they can

be accessed from the BarChart activity.

5. Launch the BarChart activity.

Listing 7–6 presents BarChart’s source code.

Listing 7–6. BarChart Describing the Bar Chart Activity

// BarChart.java

package com.apress.chartdemo;

import com.kidroid.kichart.ChartActivity;

import com.kidroid.kichart.model.Aitem;

import com.kidroid.kichart.view.BarView;

import android.graphics.Color;

import android.os.Bundle;

public class BarChart extends ChartActivity
{
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 Bundle bundle = getIntent().getExtras();
 float[] data2010 = bundle.getFloatArray("2010");
 float[] data2011 = bundle.getFloatArray("2011");
 String[] arrX = new String[4];
 arrX[0] = "2010.1";
 arrX[1] = "2010.2";
 arrX[2] = "2010.3";
 arrX[3] = "2010.4";
 Aitem[] items = new Aitem[2];
 items[0] = new Aitem(Color.RED, "2010", data2010);
 items[1] = new Aitem(Color.GREEN, "2011", data2011);
 BarView bv = new BarView(this);
 bv.setTitle("Quarterly Sales (Billions)");
 bv.setAxisValueX(arrX);

CHAPTER 7: Working with Libraries 371

 bv.setItems(items);
 setContentView(bv);
 }
}

BarChart first obtains a reference to the Intent object passed to it by calling its inherited

Intent getIntent() method. It then uses this method to retrieve a reference to the

Intent object’s Bundle object, which stores the floating-point arrays of data items. Each

array is retrieved by invoking Bundle’s float[] getFloatArray(String key) method.

BarChart next builds a String array of labels for the chart’s X-axis and creates an Aitem

array populated with two Aitem objects. The first object stores the 2010 data values and

associates these values with the color red and 2010 as the legend value; the second

object stores 2011 data values with color green and legend value 2011.

After instantiating BarView, BarChart calls this object’s setTitle(String) method to

establish the chart’s title, setAxisValueX(String[]) method to pass the array of X-axis

labels to the object, and setItems(Aitem[]) method to pass the Aitem array to the

object. The BarView object is then passed to setContentView() to display the bar chart.

NOTE: Because LineChart is nearly identical to BarChart, this class’s source code isn’t

presented in this chapter. You can easily create LineChart by changing the line that reads

BarView bv = new BarView(this); to LineView bv = new LineView(this); Also,

you should probably rename the variable bv to lv for best practices. And don’t forget to change

import com.kidroid.kichart.view.BarView; to import

com.kidroid.kichart.view.LineView;.

Listing 7–7 presents main.xml, which describes the layout and widgets that comprise

ChartDemo’s user interface.

Listing 7–7. main.xml Describing the Chart Demo Activity’s Layout

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width = "fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="*">
 <TableRow>
 <TextView android:text=""/>
 <TextView android:text="2010"
 android:layout_gravity="center"/>
 <TextView android:text="2011"
 android:layout_gravity="center"/>
 </TableRow>

 <TableRow>
 <TextView android:text="1st Quarter"/>
 <EditText android:id="@+id/data2010_1"
 android:inputType="numberDecimal"
 android:maxLines="1"/>

http://schemas.android.com/apk/res/android

CHAPTER 7: Working with Libraries 372

 <EditText android:id="@+id/data2011_1"
 android:inputType="numberDecimal"
 android:maxLines="1"/>
 </TableRow>

 <TableRow>
 <TextView android:text="2nd Quarter"/>
 <EditText android:id="@+id/data2010_2"
 android:inputType="numberDecimal"
 android:maxLines="1"/>
 <EditText android:id="@+id/data2011_2"
 android:inputType="numberDecimal"
 android:maxLines="1"/>
 </TableRow>

 <TableRow>
 <TextView android:text="3rd Quarter"/>
 <EditText android:id="@+id/data2010_3"
 android:inputType="numberDecimal"
 android:maxLines="1"/>
 <EditText android:id="@+id/data2011_3"
 android:inputType="numberDecimal"
 android:maxLines="1"/>
 </TableRow>

 <TableRow>
 <TextView android:text="4th Quarter"/>
 <EditText android:id="@+id/data2010_4"
 android:inputType="numberDecimal"
 android:maxLines="1"/>
 <EditText android:id="@+id/data2011_4"
 android:inputType="numberDecimal"
 android:maxLines="1"/>
 </TableRow>

 <TableRow>
 <TextView android:text=""/>
 <Button android:id="@+id/viewbc"
 android:text="View Barchart"/>
 <Button android:id="@+id/viewlc"
 android:text="View Linechart"/>
 </TableRow>
</TableLayout>

main.xml describes a tabular layout via the <TableLayout> tag, where the user interface

is laid out in six rows and three columns. The "fill_parent" assignment to each of this

tag’s layout_width and layout_height attributes tells this layout to occupy the activity’s

entire screen. The "*" assignment to this tag’s stretchColumns attribute tells this layout

to give each column an identical width.

CHAPTER 7: Working with Libraries 373

NOTE: A stretchable column is a column that can expand in width to fit any available space. To

specify which columns are stretchable, assign a comma-delimited list of 0-based integers to

stretchColumns. For example, "0, 1" specifies that column 0 (the leftmost column) and

column 1 are stretchable. The "*" assignment indicates that all columns are equally stretchable,

which gives them identical widths.

Nested inside <TableLayout> and its </TableLayout> partner are a series of <TableRow>
tags. Each <TableRow> tag describes the contents of a single row in the tabular layout,

and these contents are a variety of zero or more views (such as TextView and EditText),

where each view constitutes one column.

NOTE: For brevity, string values are stored directly in main.xml instead of being stored in a

separate strings.xml file. Consider it an exercise to introduce strings.xml and replace

these literal strings with references to strings stored in strings.xml.

Listing 7–8 presents this app’s AndroidManifest.xml file, which describes the app and

its activities.

Listing 7–8. AndroidManifest.xml Pulling Everything Together for the ChartDemo App

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.apress.chartdemo"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".ChartDemo"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".BarChart"/>
 <activity android:name=".LineChart"/>
 </application>
 <uses-sdk android:minSdkVersion="9" />
</manifest>

It’s important to include <activity> tags for each of the BarChart and LineChart
activities in the manifest. Failure to do so results in a runtime dialog box that displays the

following message: “The application Chart Demo (process com.apress.chartdemo)
has stopped unexpectedly. Please try again.”

Figure 7–3 reveals ChartDemo’s main activity with sample values entered for each

quarter.

http://schemas.android.com/apk/res/android

CHAPTER 7: Working with Libraries 374

Figure 7–3. ChartDemo lets you enter eight data values and choose to display these values via a bar chart or a
line chart.

Clicking the View Barchart button after entering the aforementioned data values

launches the BarChart activity, which displays the bar chart shown in Figure 7–4.

Figure 7–4. BarChart displays each array’s data values via a series of colored bars.

CHAPTER 7: Working with Libraries 375

In addition to presenting a barchart, Figure 7–4 reveals that a trial version of kiChart is

being used. You’ll need to contact Kidroid.com and find out about licensing and how to

obtain a version of kiChart that doesn’t display this message.

7–6. Practical Push Messaging

Problem

Google’s Cloud-To-Device Messaging (C2DM) framework

(http://code.google.com/android/c2dm/index.html), which is designed to implement

push messaging to the device, has a number of drawbacks that can impact it as a

practical solution for push messaging. Your app needs a more universal push solution.

THE LIMITATIONS OF GOOGLE’S C2DM

C2DM is a technology fostered by Google to run on Android devices over the Extensible Messaging and
Presence Protocol (XMPP), a common implementation for chat clients. Upon further inspection, there are a
number of required attributes for C2DM that often diminish its usefulness in apps:

 Requires a minimum of API Level 8: While this restriction will not remain a
significant limitation forever, apps looking to support push messaging now on Android
devices running versions earlier than 2.2 will not be able to use C2DM.

 Requires a Google account and Google APIs on the device: C2DM runs over the
XMPP channel created by the GTalk chat service. If the user is running on an Android
device that does not include the Google APIs (and, thus, the GTalk application), or if
they have not entered a valid Google account into the device, your app will be unable
to register for C2DM messaging on that device.

 Utilizes HTTP POST for transactions between host app and C2DM servers: From
the server side of the app, messages that are to be sent down to devices are handed
over to the C2DM servers using individual HTTP POST requests for each message. As
the required number of messages to be sent increases, this mechanism becomes
increasingly slow, to the point where C2DM may not be a viable option in certain time-
critical apps.

Solution

Utilize IBM’s MQTT library to implement lightweight push messaging in your apps. The

MQTT client library is offered from IBM in a pure Java implementation, meaning it can be

utilized on any Android device, without limitation on specific API Levels.

An MQTT system consists of three main components:

 Client app: Runs on the device, and registers with the message broker

for a given set of “topics” on which to receive messages.

http://code.google.com/android/c2dm/index.html

CHAPTER 7: Working with Libraries 376

 Message broker: Handles registration of clients, and distributes

incoming messages from the server app to each client based on its

“topic.”

 Server application: Responsible for publishing messages to the

broker.

Messages are filtered by topic. Topics are defined in a tree format, represented by a

path string. Clients may subscribe to specific topics, or sub-topic groups by providing

the appropriate path. For example, suppose we define two topics for our app like so:

examples/one
examples/two

A client may subscribe to either topic by subscribing to the exact full path string.

However, if the client prefers to subscribe to both topics (and any others that may be

created later in this group), it may conveniently do so by subscribing as follows:

examples/#

The ‘#’ wildcard character indicates that all topics in the examples group are of interest

to this client.

In this recipe we’ll focus on implementing the client app using the MQTT library on the

Android device. IBM provides excellent tools for development and testing of the other

components, which we’ll expose here as well.

How It Works

The MQTT Java library may be freely downloaded from IBM at the following location:

www-01.ibm.com/support/docview.wss?uid=swg24006006. The download archive contains

sample code, API Javadoc, and usage documentation, in addition to the library JAR.

Locate the wmqtt.jar file from within the download archive. This is the library that must

be included into the Android project. By convention, this means a /libs directory should

be created in your project directory, and this JAR should be inserted there.

For testing your client implementation, IBM provides the Really Small Message Broker

(RSMB). RSMB may be downloaded at the following location:

www.alphaworks.ibm.com/tech/rsmb.

RSMB is a multi-platform download that includes command-line tools for both the

message broker and an application to publish messages. The license provided by IBM

for this tool forbids it from being used in a production environment; at that point you will

need to roll your own or use one of the many open source implementations available.

However, for development of the mobile client, RSMB couldn’t be more perfect.

Client Sample

Since monitoring for incoming push messages is an indefinite, long-standing operation,

let’s take a look at an example that puts the basic functionality into a service.

http://www.alphaworks.ibm.com/tech/rsmb

CHAPTER 7: Working with Libraries 377

NOTE: As a reminder, you should have libs/wmqtt.jar in your project directory and

referenced in your project build path.

Listing 7–9 presents the source code to an example MQTT service.

Listing 7–9. MQTT Example Service

//ClientService.java
package com.apress.pushclient;

import android.app.AlarmManager;
import android.app.PendingIntent;
import android.app.Service;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.os.Handler;
import android.os.IBinder;
import android.os.Message;
import android.widget.Toast;
//Imports required from the MQTT Library JAR
import com.ibm.mqtt.IMqttClient;
import com.ibm.mqtt.MqttClient;
import com.ibm.mqtt.MqttException;
import com.ibm.mqtt.MqttPersistenceException;
import com.ibm.mqtt.MqttSimpleCallback;

public class ClientService extends Service implements MqttSimpleCallback {

 //Location where broker is running
 private static final String HOST = HOSTNAME_STRING_HERE;
 private static final String PORT = "1883";
 //30 minute keep-alive ping
 private static final short KEEP_ALIVE = 60 * 30;
 //Unique identifier of this device
 private static final String CLIENT_ID = "apress/"+System.currentTimeMillis();
 //Topic we want to watch for
 private static final String TOPIC = "apress/examples";

 private static final String ACTION_KEEPALIVE =
"com.examples.pushclient.ACTION_KEEPALIVE";

 private IMqttClient mClient;
 private AlarmManager mManager;
 private PendingIntent alarmIntent;

 @Override
 public void onCreate() {
 super.onCreate();
 mManager = (AlarmManager)getSystemService(Context.ALARM_SERVICE);

 Intent intent = new Intent(ACTION_KEEPALIVE);
 alarmIntent = PendingIntent.getBroadcast(this, 0, intent, 0);

CHAPTER 7: Working with Libraries 378

 registerReceiver(mReceiver, new IntentFilter(ACTION_KEEPALIVE));

 try {
 //Format: tcp://hostname@port
 String connectionString = String.format("%s%s@%s", MqttClient.TCP_ID, HOST,
PORT);
 mClient = MqttClient.createMqttClient(connectionString, null);
 } catch (MqttException e) {
 e.printStackTrace();
 //Can't continue without a client
 stopSelf();
 }
 }

 @Override
 public void onStart(Intent intent, int startId) {
 //Callback on Android devices prior to 2.0
 handleCommand(intent);
 }

 @Override
 public int onStartCommand(Intent intent, int flags, int startId) {
 //Callback on Android devices 2.0 and later
 handleCommand(intent);
 //If Android kills this service, we want it back when possible
 return START_STICKY;
 }

 private void handleCommand(Intent intent) {
 try {
 //Make a connection
 mClient.connect(CLIENT_ID, true, KEEP_ALIVE);
 //Target MQTT callbacks here
 mClient.registerSimpleHandler(this);
 //Subscribe to a topic
 String[] topics = new String[] { TOPIC };
 //QoS of 0 indicates fire once and forget
 int[] qos = new int[] { 0 };
 mClient.subscribe(topics, qos);

 //Schedule a ping
 scheduleKeepAlive();
 } catch (MqttException e) {
 e.printStackTrace();
 }
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 unregisterReceiver(mReceiver);
 unscheduleKeepAlive();

 if(mClient != null) {
 try {
 mClient.disconnect();
 mClient.terminate();

CHAPTER 7: Working with Libraries 379

 } catch (MqttPersistenceException e) {
 e.printStackTrace();
 }
 mClient = null;
 }
 }

 //Handle incoming message from remote
 private Handler mHandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 String incoming = (String)msg.obj;
 Toast.makeText(ClientService.this, incoming, Toast.LENGTH_SHORT).show();
 }
 };

 //Handle ping alarms to keep the connection alive
 private BroadcastReceiver mReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 if(mClient == null) {
 return;
 }
 //Ping the MQTT service
 try {
 mClient.ping();
 } catch (MqttException e) {
 e.printStackTrace();
 }
 //Schedule the next alarm
 scheduleKeepAlive();
 }
 };

 private void scheduleKeepAlive() {
 long nextWakeup = System.currentTimeMillis() + (KEEP_ALIVE * 1000);
 mManager.set(AlarmManager.RTC_WAKEUP, nextWakeup, alarmIntent);
 }

 private void unscheduleKeepAlive() {
 mManager.cancel(alarmIntent);
 }

 /* MqttSimpleCallback Methods */

 @Override
 public void connectionLost() throws Exception {
 mClient.terminate();
 mClient = null;
 stopSelf();
 }

 @Override
 public void publishArrived(String topicName, byte[] payload, int qos, boolean
retained) throws Exception {
 //Be wary of UI related code here!
 //Best to use a Handler for UI or Context operations

CHAPTER 7: Working with Libraries 380

 StringBuilder builder = new StringBuilder();
 builder.append(topicName);
 builder.append('\n');
 builder.append(new String(payload));
 //Pass the message up to our handler
 Message receipt = Message.obtain(mHandler, 0, builder.toString());
 receipt.sendToTarget();
 }

 /*Unused method*/
 //We are not using this service as bound
 //It is explicitly started and stopped with no direct connection
 @Override
 public IBinder onBind(Intent intent) { return null; }
}

IMPORTANT: This Service will most likely be communicating with a remote server, so you

must declare android.permission.INTERNET in the application manifest, as well as the

Service itself with a <service> tag.

In order to subclass Service, an implementation of onBind() must be provided. In this

case, our example does not need to provide a Binder interface because activities will

never need to hook directly into call methods. Therefore, this required method simply

returns null. This Service is designed to receive explicit instructions to start and stop,

running for an indeterminate amount of time in between.

When the Service is created, an MqttClient object is also instantiated using

createMqttClient(); this client takes the location of the message broker host as a

string. The connection string is in the format of tcp://hostname@port. In the example,

the chosen port number is 1883, which is the default port number for MQTT

communication. If you choose a different port number, you should verify that your server

implementation is running on a port to match.

From this point forward, the Service remains idle until a start command is issued. Upon

receipt of a start command (issued externally by a call to Context.startService()),

either onStart() or onStartCommand() will be called (depending on the version of

Android running on the device). In the latter case, the service returns START_STICKY, a

constant telling the system that it should leave this service running, and restart it if it’s

prematurely killed for memory reasons.

Once started, the service will register with the MQTT message broker, passing a unique

client ID and a keep-alive time. For simplicity, this example defines the client ID in terms

of the current time when the service was created. In production, a more unique identifier

such as the Wi-Fi MAC Address or TelephonyManager.getDeviceId() might be more

appropriate, keeping in mind that neither of those choices is guaranteed to appear on all

devices.

CHAPTER 7: Working with Libraries 381

The keep-alive parameter is the time (in seconds) that the broker should use to time-out

the connection to this client. In order to avoid this time-out, clients should post a

message or regularly ping the broker. We will shortly discuss this task more fully.

During startup, the client is also subscribed to a single topic. Notice that the

subscribe() method takes arrays as parameters; a client may subscribe to multiple

topics within a single method call. Each topic is also subscribed with a requested quality

of service (QoS) value. The most tactful value to request for mobile devices is zero,

telling the broker to only send a message once without requiring confirmation. Doing so

reduces the amount of handshaking required between the broker and the device.

With the connection live and registered, any incoming messages from the remote broker

will result in a call to publishArrived(), with the data about the message passed in. This

method may be called on any of the background threads that MqttClient creates and

maintains, so it’s important to not do anything related to the main thread directly here. In

the example’s case, all incoming messages are passed to a local Handler, to guarantee

that the resulting Toast is posted on the main thread for display.

There’s one upkeep task required when implementing an MQTT client, and that is

pinging the broker to keep the connection alive. To accomplish this task, the Service

registers with the AlarmManager to trigger a broadcast on a schedule matching the keep-

alive parameter. This task must be done even if the device is currently asleep, so the

alarm is set each time with AlarmManager.RTC_WAKEUP. When each alarm triggers, the

Service simply calls MqttClient.ping() and schedules the next keep-alive update.

Due to the persistent nature of this requirement, it is prudent to select a low-frequency

interval for the keep-alive timer; we chose 30 minutes in this example. This timer value

represents a balance between reducing the frequency of required updates on the device

(to save power and bandwidth), and the latency before the remote broker becomes

aware that a remote device is no longer there and times it out.

When the push service is no longer required, an external call to Context.stopService()

will result in a call to onDestroy(). Here, the Service tears down the MQTT connection,

removes any pending alarms, and releases all resources. The second callback

implemented as part of the MqttSimpleCallback interface is onConnectionLost(),

indicating an unexpected disconnect. In these cases, the Service stops itself much in

the same way as a manual stop request.

Testing the Client

In order to test messaging with the device, you will need to start up an instance of

RSMB on your machine. From the command line, navigate into the location where you

unarchived the download, and then into the directory that matches your computer’s

platform (Windows, Linux, Mac OS X). From here, simply execute the broker command

and the broker service will begin running on your machine, located at localhost:1883:

CWNAN9999I Really Small Message Broker
CWNAN9997I Licensed Materials - Property of IBM
CWNAN9996I Copyright IBM Corp. 2007, 2010 All Rights Reserved
…

CHAPTER 7: Working with Libraries 382

CWNAN0014I MQTT protocol starting, listening on port 1883

At this point, you may connect to the service and publish messages or register to

receive messages. To put this Service to the test, Listings 7–10 and 7–11 create a

simple Activity that may be used to start and stop the service.

Listing 7–10. res/menu/home.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item
 android:id="@+id/menu_start"
 android:title="Start Service" />
 <item
 android:id="@+id/menu_stop"
 android:title="Stop Service" />
</menu>

Listing 7–11. Activity Controlling MQTT Service

//ClientActivity.java
package com.apress.pushclient;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;

public class ClientActivity extends Activity {

 private Intent serviceIntent;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 serviceIntent = new Intent(this, ClientService.class);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.home, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch(item.getItemId()) {
 case R.id.menu_start:
 startService(serviceIntent);
 return true;
 case R.id.menu_stop:
 stopService(serviceIntent);
 return true;
 }

http://schemas.android.com/apk/res/android

CHAPTER 7: Working with Libraries 383

 return super.onOptionsItemSelected(item);
 }
}

Listing 7–11 creates an Intent that will be used by two menu options to start and stop

the service at will (see Figure 7–5). By pressing the MENU button and selecting “Start

Service,” the MQTT connection will start up and register the device for messages with

the topic “apress/examples.”

Figure 7–5. Activity to Control Service

NOTE: The HOST value in the example service needs to point to the machine where your RSMB

instance is running. Even if you are testing in the emulator on the same machine, this value is

NOT localhost! At the very least, you must point the emulator or device to the IP address of

the machine where your broker is running.

With the Android device successfully registered for push messages from the broker,

open up another command line window and navigate to the same directory from where

broker was executed. Another command, stdinpub, can be used to connect to the

broker instance and publish messages down to the device. From the command line type

the following command:

stdinpub apress/examples

This command will register a client to publish messages with a topic matching our

example. You will see the following as a result:

CHAPTER 7: Working with Libraries 384

Using topic apress/examples
Connecting

Now you may type any message you like, followed by Enter. Upon pressing Enter, the

message will be sent to the broker, and pushed out to the registered device. Do this as

many times as you like, and then use CTRL-C to break out of the program. CTRL-C will

also work to terminate the broker service.

TIP: RSMB also includes a third command, stdoutsub, to subscribe to a set of topics with your

local broker service. This command lets you completely close the loop, and test whether

problems are occurring in the test suite or in your Android app.

Summary
Smart Android developers deliver their apps to market faster by taking advantage of

libraries, which reduce development time by providing previously created and tested

code.

This chapter’s initial recipes introduced you to the topics of creating and using your own

libraries. Specifically, you learned how to create and use Java library JARs whose code

was restricted to Java 5 (or earlier) APIs, and Android library projects.

Although you’ll probably create your own libraries to save yourself from reinventing the

wheel, you might also need to use someone else’s library. For example, if you need a

simple charting library, you might want to look at kiChart, which facilitates the display of

bar and line charts.

If you’re working with the cloud, you might decide to use Google’s C2DM framework.

However, because this framework has a number of drawbacks (such as requiring a

minimum of API level 8), you might consider utilizing IBM’s MQTT library to implement

lightweight push messaging in your apps.

385

385

 Appendix

Scripting Layer for
Android

Scripting Layer for Android (SL4A), which was previously known as Android Scripting

Environment, is a platform for installing scripting language interpreters on Android

devices and running scripts via these interpreters. Scripts can access many of the APIs

that are available to Android apps, but with a greatly simplified interface that makes it

easier to get things done.

NOTE: SL4A currently supports only the Python, Perl, JRuby, Lua, BeanShell, Rhino JavaScript,

and Tcl scripting languages.

You can run scripts interactively in a terminal window (command window), in the background, or

via Locale (www.twofortyfouram.com/). Locale is an Android app that lets you run scripts at

predetermined times, or when other criteria are met (running a script to change your phone’s

ringer mode to vibrate when you enter a theater or a courtroom, for example).

Installing SL4A
Before you can use SL4A, you must install it. You can download the latest release’s APK

file (sl4a_r3.apk at time of writing) from its Google-hosted project website

(http://code.google.com/p/android-scripting) to your device. Do so by using your

barcode reader app to scan the website’s displayed barcode image.

If you’re using the Android emulator, click the barcode image to download sl4a_r3.apk.

Then execute adb install sl4a_r3.apk to install this app on the currently running

emulated device. (You might have to make several attempts if you receive a device

offline message.) Figure A–1 reveals SL4A’s icon on the app launcher screen.

A

http://www.twofortyfouram.com/
http://code.google.com/p/android-scripting

APPENDIX A: Scripting Layer for Android 386

Figure A–1. Click the SL4A icon to start exploring the Scripting Layer for Android app.

Exploring SL4A
Now that you’ve installed SL4A, you’ll want to learn how to use this app. Click the SL4A

icon, and you’ll be taken to a Scripts screen that presents a list of installed scripts (and

other items). Click the MENU button and SL4A will reveal the Scripts menu. Figure A–2

shows you an initially empty list and this menu’s choices.

Figure A–2. SL4A’s Scripts screen shows that no scripts have yet been installed.

The Scripts menu is organized into the following six categories:

 Add: Add folders (for organizing scripts and other items), HTML pages

with embedded JavaScript code, shell scripts, and scripts obtained by

scanning barcode images to the Scripts screen. Folders and other

items are stored in the device’s /sdcard/sl4a/scripts directory.

 APPENDIX A: Scripting Layer for Android 387

 View: View installed interpreters (such as the Python interpreter),

triggers (a kind of intent for running scripts repeatedly whether or not

the device is sleeping, or for running scripts conditionally based on

ringer mode changes), and logcat (a tool for viewing system debug

output). SL4A comes with only the shell interpreter and HTML and

JavaScript. Also, the Android emulator doesn’t appear to support

triggers.

 Search: Create and display a list of only those scripts and other items

that match entered search text. The search logic outputs “No matches

found” when there are no matches.

 Preferences: Configure general, script manager, script editor, and

terminal options.

 Refresh: Redisplay the Scripts screen to reveal any changes; perhaps

a script running in the background has updated this list.

 Help: Get help on using SL4A from SL4A’s wiki documentation

(http://code.google.com/p/android-
scripting/wiki/TableOfContents?tm=6), YouTube screencasts, and

terminal help documentation.

Adding a Shell Script

Let’s add a simple shell script to the Scripts screen. Accomplish this task by completing

the following steps:

1. Click the MENU button in the phone controls.

2. Click the Add menu item in the menu that appears at the bottom of the

screen.

3. Click Shell from the pop-up Add menu.

4. Enter hw.sh into the single-line textfield at the top of the resulting script

editor screen; this is the shell script’s filename.

5. Enter #! /system/bin/sh followed by echo "hello, world" into the

multiline textfield on separate lines. The former line tells Android where

to find sh (the shell program), but doesn’t appear to be essential; and

the second line tells Android to output some text to the standard output

device.

6. Click the MENU button in the phone controls.

7. Click the Save & Exit menu item from the resulting menu.

Figure A–3 shows you what the edit screen looks like prior to clicking Save & Exit.

http://code.google.com/p/android-scripting/wiki/TableOfContents?tm=6
http://code.google.com/p/android-scripting/wiki/TableOfContents?tm=6
http://code.google.com/p/android-scripting/wiki/TableOfContents?tm=6

APPENDIX A: Scripting Layer for Android 388

Figure A–3. SL4A’s script editor screen prompts for a filename and a script.

The Scripts screen should now present a single hw.sh item. Click this item and you’ll see
the icon menu that appears in Figure A–4.

Figure A–4. The icon menu lets you run a script in a terminal window, run a script in the background, edit the
script, rename the script, or delete the script.

You have the option of running the script in a terminal window (the leftmost icon) or in
the background (the next-to-leftmost “gear” icon). Click either icon to run this shell
script. However, it’s possible that you won’t see any output should you run this script on
a Windows platform with the Android emulator (possibly due to a bug in SL4A itself).

Accessing the Linux Shell

If you cannot observe hw.sh’s output by running this script in the previously mentioned
fashion, you can still observe its output by running this script via the Linux shell. Follow
these steps to accomplish this task:

1. Select View from the Scripts screen’s menu.

2. Select Interpreters from the pop-up list of viewables.

3. Select Shell from the Interpreters screen to present a terminal window.

4. Execute cd /sdcard/sl4a/scripts at the terminal window’s $ prompt to

switch to the directory containing hw.sh.

 APPENDIX A: Scripting Layer for Android 389

5. Execute sh hw.sh at the $ prompt to run hw.sh.

Figure A–5 shows you how to run hw.sh from the shell. It also reveals what happens
when you click the BACK button in the phone controls.

Figure A–5. Click the BACK button to get a “Confirm exit. Kill process?” message, and click the Yes button to exit
the shell.

Installing the Python Interpreter
Although you can’t do much with SL4A, you can use this special app to install Python or
another scripting language. Complete the following steps to install Python:

1. Select View from the main menu.

2. Select Interpreters from the pop-up list of viewables.

3. Press the MENU phone control button.

4. Select Add from the menu. Figure A–6 reveals the Add interpreters list.

Figure A–6. The Add menu lets you choose the scripting language interpreter that you want to install.

APPENDIX A: Scripting Layer for Android 390

5. Click Python 2.6.2. SL4A will start to download this interpreter from the

SL4A website. When the download finishes, SL4A presents Figure A–7’s

notification.

Figure A–7. Click the notification to tell SL4A that you want to install Python.

Click the notification and SL4A responds by presenting a dialog box (see Figure A–8)

that asks you if you really want to install the Python app.

Figure A–8. Click Install to begin installation.

Click the Install button. SL4A presents Figure A–9’s installing screen.

 APPENDIX A: Scripting Layer for Android 391

Figure A–9. The installing screen keeps you entertained during the install.

Finally, when installation finishes, SL4A presents the application-installed screen shown

in Figure A–10.

Figure A–10. Click the Open button to download supporting files.

Although the Python app is installed, supporting archives containing items such as

sample scripts have not been installed. Click the Open button to download these

archives. Figure A–11 reveals part of the resulting screen, which contains only a single

Install button.

Figure A–11. Click the Install button to begin downloading and installing supporting files.

APPENDIX A: Scripting Layer for Android 392

After clicking Install, SL4A begins the task of downloading these archives and extracting

their files. For example, Figure A–12 reveals the contents of the python_r7.zip file being

extracted.

Figure A–12. It takes a couple of minutes to download and extract all of the supporting files on the Android
emulator.

When this process finishes, you will see a screen similar to that shown in Figure A–11,

but with an Uninstall button. Don’t click Uninstall at this point. However, if you click the

BACK button, you should now see Python 2.6.2 appearing in the Interpreters list, as in

Figure A–13.

Figure A–13. Click Python 2.6.2 to run the Python interpreter.

If you now click Python 2.6.2, you can run the Python interpreter. Figure A–14 reveals

the introductory screen.

Figure A–14. Go ahead and enter some Python code. Type help if you’re new to Python.

 APPENDIX A: Scripting Layer for Android 393

INSTALLING INTERPRETERS INDEPENDENTLY OF SL4A

When you visit SL4A’s project website (http://code.google.com/p/android-scripting), you’ll
discover several standalone interpreter APKs, such as PythonForAndroid_r4.apk. These APKs contain
newer versions of their respective interpreters than what you obtain when you install interpreters from
within SL4A.

For example, click the PythonForAndroid_r4.apk link if you want to install the latest Python release
(at the time of writing). On the resulting web page, scan the barcode with your Android device, or (for the
Android emulator) click the PythonForAndroid_r4.apk link to save this APK to your hard drive, and
then execute adb install PythonForAndroid_r4.apk to install this APK on the emulated device.
Figure A–15 shows the resulting icon.

Figure A–15. Click the Python for Android icon to install supporting files and perform other operations.

Click the Python for Android icon and this app presents buttons for installing supporting files and
performing other tasks (see Figure A–16).

Figure A–16. Python for Android’s screen lets you install supporting files and perform other operations. It also
presents version information and more.

You can install the other standalone interpreter APKs in a similar manner.

http://code.google.com/p/android-scripting

APPENDIX A: Scripting Layer for Android 394

Scripting with Python
Now that you’ve installed Python 2.6.2, you’ll want to try out this interpreter. Figure A–17

reveals a sample session with Python, which consists of printing the version number

(obtained from the sys module’s version member), printing the math module’s pi

constant, and executing the exit() function to terminate the Python interpreter.

Figure A–17. One way to terminate the Python interpreter is to execute Python’s exit() function.

You’ll also want to access the Android API from this interpreter. You can accomplish this

task by importing the android module, instantiating this module’s Android class, and

invoking this class’s methods. Figure A–18 presents a session that follows this approach

in order to present a toast message.

Figure A–18. Android methods return Result objects with identifier, result, and error information.

The Android class’s methods return Result objects. Each object provides id, result,

and error fields: id uniquely identifies the object, result contains the method’s return

value (or None if the method doesn’t return a value), and error identifies any error that

may have occurred (or None if no error occurred).

 APPENDIX A: Scripting Layer for Android 395

If you’re interested in a more ambitious Python script, you’ll want to check out the

sample scripts that are installed with the Python interpreter, and which can be accessed

from the Scripts screen (see Figure A–2). For example, the say_time.py script, whose

code is shown in the following code, uses Android’s ttsSpeak() function to speak the

current time:

import android; import time
droid = android.Android()
droid.ttsSpeak(time.strftime("%_I %M %p on %A, %B %_e, %Y "))

397

397

 Appendix

Android NDK

The Android Native Development Kit (NDK) helps you boost an app’s performance by

converting C/C++ source code (in which you write the app’s performance-critical

sections) to native code libraries that run on Android devices. The NDK provides

headers and libraries for building activities, handling user input, using hardware sensors,

and more. Your app’s files (including any native code libraries that you create) are

packaged into APKs; they execute inside of an Android device’s Dalvik virtual machine.

NOTE: Think carefully about whether you need to integrate native code into your app. Basing

even part of an app on native code increases its complexity and makes it harder to debug. Also,

not every app experiences a performance boost (apart from that already provided by Dalvik’s

Just-In-Time compiler, introduced in Android 2.2). Native code is often best used with processor-

intensive apps, but only where performance profiling has revealed a bottleneck that could be

solved by recoding that portion of the app in native code. For example, a game app with a

computationally intensive physics simulation that profiling shows to run poorly would benefit

from having these computations carried out natively.

Installing the NDK
If you believe that your app can benefit from being partly expressed in C/C++, you’ll

need to install the NDK. Before doing so, complete the following preparatory tasks:

 Verify that your development platform is one of Windows XP (32-bit) or

Vista (32- or 64-bit), Mac OS X 10.4.8 or later (x86 only), or Linux (32-

or 64-bit, tested on Linux Ubuntu Dapper Drake). The NDK officially

supports only these development platforms.

 Install the Android SDK (version 1.5 or later is supported by the NDK) if

this software isn’t already installed.

B

APPENDIX B: Android NDK 398

 Verify that your platform contains GNU Make 3.81 or later and a recent

version of GNU Awk. To run Make and Awk on a Windows platform,

you must first install Cygwin, which is a command-line-based and

Unix-like shell tool for running Linux-like programs on Windows.

INSTALLING CYGWIN

Cygwin 1.7 or higher must be installed to run Make and Awk on Windows platforms. Complete the
following steps to install Cygwin:

1. Point your browser to http://cygwin.com/.

2. Click the setup.exe link and save this file to your harddrive.

3. Run this program on your Windows platform to begin installing Cygwin version 1.7.8-1
(the latest version at time of writing). If you choose a different install location, make
sure that the directory path contains no spaces.

4. When you reach the Select Packages screen, select the Devel category and look for an
entry in this category whose Package column presents make: The GNU version of the
‘make’ utility. In the entry’s New column, click the word Skip; this word should change
to 3.81-2. Also, the Bin? column’s checkbox should be checked – see Figure B–1.

Figure B–1. Make sure that 3.81-2 appears in the New column and that the check box in the Bin? column is
checked before clicking Next.

5. Click the Next button and continue the installation.

Cygwin installs an entry in the start menu and an icon on the desktop. Click this icon and you’ll see the
Cygwin console (which is based on the Bash shell) shown in Figure B–2.

http://cygwin.com/

 APPENDIX B: Android NDK 399

Figure B–2. Cygwin’s console displays initialization messages the first time it starts running.

If you want to verify that Cygwin provides access to GNU Make 3.81 or later and GNU Awk, accomplish this
task by entering the commands shown in Figure B–3.

Figure B–3. The awk tool doesn’t display a version number.

You can learn more about Cygwin by checking out cygwin.com as well as Wikipedia’s Cygwin entry
(http://en.wikipedia.org/wiki/Cygwin).

Continuing, point your browser to http://developer.android.com/sdk/ndk/index.html

and download one of the following NDK packages for your platform – Revision 5b

(January 2011) is the latest version at time of writing:

 android-ndk-r5B–windows.zip (Windows)

 android-ndk-r5B–darwin-x86.tar.bz2 (Mac OS X: Intel)

 android-ndk-r5B–linux-x86.tar.bz2 (Linux 32/64-bit: x86)

After downloading your chosen package, unarchive it and move its android-ndk-r5b

home directory to a more suitable location, perhaps to the same directory that contains

the Android SDK’s home directory.

http://en.wikipedia.org/wiki/Cygwin
http://developer.android.com/sdk/ndk/index.html

APPENDIX B: Android NDK 400

Exploring the NDK
Now that you’ve installed the NDK on your platform, you might want to explore its home

directory to discover what the NDK offers. The following list describes those directories

and files that are located in the home directory for the Windows-based NDK:

 build contains the files that comprise the NDK’s build system.

 docs contains the NDK’s HTML-based documentation files.

 Platforms contains subdirectories that contain header files and shared

libraries for each of the Android SDK’s installed Android platforms.

 samples contains various sample apps that demonstrate different

aspects of the NDK.

 sources contains the source code and prebuilt binaries for various

shared libraries, such as cpufeatures (detect the target device's CPU

family and the optional features it supports) and stlport (multiplatform

C++ standard library). Android NDK 1.5 required that developers

organize their native code library projects under this directory. Starting

with Android NDK 1.6, native code libraries are stored in jni

subdirectories of their Android SDK project directories.

 tests contains scripts and sources to perform automated testing of

the NDK. They are useful for testing a custom-built NDK.

 toolchains contains compilers, linkers, and other tools for generating

native ARM (Advanced Risc Machine, the CPU used by Android, see

http://en.wikipedia.org/wiki/ARM_architecture) binaries on Linux,

OS X, and Windows (with Cygwin) platforms.

 documentation.html is the entry-point into the NDK’s documentation.

 GNUmakefile is the default make file used by GNU Make.

 ndk-build is a shell script that simplifies building machine code.

 ndk-gdb is a shell script for easily launching a native debugging

session for your NDK-generated machine code.

 README.TXT welcomes you to the NDK, and identifies various

documentation files that inform you about changes in the current

release, provide an overview of the NDK, and so on.

 RELEASE.TXT contains the NDK’s release number.

Each of the platforms directory’s subdirectories contains header files and shared

libraries that target stable native APIs. Google guarantees that the following APIs will be

supported in all later releases of the platform:

 Android logging (liblog)

 Android native app APIs

http://en.wikipedia.org/wiki/ARM_architecture

 APPENDIX B: Android NDK 401

 C library (libc)

 C++ minimal support (stlport)

 JNI interface APIs

 Math library (libm)

 OpenGL ES 1.1 and OpenGL ES 2.0 (3D graphics libraries) APIs

 OpenSL ES native audio library APIs

 Pixel buffer access for Android 2.2 and above (libjnigraphics)

 Zlib compression (libz)

CAUTION: Native system libraries not present in this list are not stable and may change in future

versions of the Android platform. Do not use them.

Greetings from the NDK
Perhaps the easiest way to become familiar with NDK programming is to create a small

app that calls a native function that returns a Java String object. For example, Listing

B–1’s NDKGreetings single-activity-based app calls a native getGreetingMessage()

method to return a greeting message, which it displays via a dialog box.

Listing B–1. NDKGreetings.java

// NDKGreetings.java

package com.apress.ndkgreetings;

import android.app.Activity;
import android.app.AlertDialog;

import android.os.Bundle;

public class NDKGreetings extends Activity
{
 static
 {
 System.loadLibrary("NDKGreetings");
 }
 private native String getGreetingMessage();
 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 String greeting = getGreetingMessage();
 new AlertDialog.Builder(this).setMessage(greeting).show();
 }
}

APPENDIX B: Android NDK 402

Listing B–1’s NDKGreetings class reveals the following three important features of every

app that incorporates native code:

 Native code is stored in an external library that must be loaded before

its code can be invoked. Libraries are typically loaded at class-loading

time via a call to the System.loadLibrary() method. This method

takes a single String argument that identifies the library without its lib

prefix and .so suffix. In this example, the actual library file is named

libNDKGreetings.so.

 One or more native methods are declared that correspond to functions

located within the library. A native method is identified to Java by

prefixing its return type with keyword native.

 A native method is invoked like any other Java method. Behind the

scenes, Dalvik makes sure that the corresponding native function

(expressed in C/C++) is invoked in the library.

Listing B–2 presents the C source code to a native code library that implements

getGreetingMessage() via the Java Native Interface (JNI).

Listing B–2. NDKGreetings.c

// NDKGreetings.c

#include <jni.h>

jstring
 Java_com_apress_ndkgreetings_NDKGreetings_getGreetingMessage(JNIEnv* env,
 jobject this)
{
 return (*env)->NewStringUTF(env, "Greetings from the NDK!");
}

This listing first specifies an #include preprocessor directive that includes the contents

of the jni.h header file when the source code is compiled.

The listing then declares the native function equivalent of Java’s getGreetingMessage()

method. This native function’s header reveals several important items:

 The native function’s return type is specified as jstring. This type is

defined in jni.h and represents Java’s String object type at the native

code level.

 The function’s name must begin with the Java package and class

names that identify where the associated native method is declared.

 The type of the function’s first parameter, env, is specified as a JNIEnv

pointer. JNIEnv, which is defined in jni.h, is a C struct that identifies

JNI functions that can be called to interact with Java.

 APPENDIX B: Android NDK 403

 The type of the function’s second parameter, this, is specified as

jobject. This type, which is defined in jni.h, identifies an arbitrary

Java object at the native code level. The argument passed to this

parameter is the implicit this instance that the JVM passes to any

Java instance method.

The function’s single line of code dereferences its env parameter in order to call the

NewStringUTF() JNI function. NewStringUTF() converts it second argument, a C string, to

its jstring equivalent (where the string is encoded via the Unicode UTF encoding

standard), and returns this equivalent Java string, which is then returned to Java.

NOTE: When working with the JNI in the context of the C language, you must dereference the

JNIEnv parameter (*env, for example) in order to call a JNI function. Also, you must pass the

JNIEnv parameter as the first argument to the JNI function. In contrast, C++ doesn’t require this

verbosity: you don’t have to dereference the JNIEnv parameter, and you don’t have to pass this

parameter as the first argument to the JNI function. For example, Listing B–2’s C-based

(*env)->NewStringUTF(env, "Greetings from the NDK!") function call is expressed

as env->NewStringUTF("Greetings from the NDK!") in C++.

Building and Running NDKGreetings with the Android SDK

To build NDKGreetings with the Android SDK, first use the SDK’s android tool to create

an NDKGreetings project. Assuming a Windows XP platform, a C:\prj\dev hierarchy in

which the NDKGreetings project is to be stored (in C:\prj\dev\NDKGreetings), and that

the Android 2.3 platform target corresponds to integer ID 1, invoke the following

command (split across two lines for readability) from anywhere in the filesystem to

create NDKGreetings:

android create project -t 1 -p C:\prj\dev\NDKGreetings -a NDKGreetings
 -k com.apress.ndkgreetings

This command creates various directories and files within C:\prj\dev\NDKGreetings. For

example, the src directory contains the com\apress\ndkgreetings directory structure,

and the final ndkgreetings directory contains a skeletal NDKGreetings.java source file.

Replace this skeletal file’s contents with Listing B–1.

Continuing, create a jni directory within C:\prj\dev\NDKGreetings, and copy Listing B–

2 to C:\prj\dev\NDKGreetings\jni. Also, copy Listing B–3 to

C:\prj\dev\NDKGreetings\jni\Android.mk, which is a GNU make file (explained in the

NDK documentation) that’s used to create the libNDKGreetings.so library.

Listing B–3. Android.mk

LOCAL_PATH := ./jni

include $(CLEAR_VARS)

LOCAL_MODULE := NDKGreetings

APPENDIX B: Android NDK 404

LOCAL_SRC_FILES := NDKGreetings.c

include $(BUILD_SHARED_LIBRARY)

If you’re working on a Windows platform, run Cygwin (if not running) and, from within

Cygwin, set the current directory to C:\prj\dev\NDKGreetings. See Figure B–4.

Figure B–4. The path to /prj/dev/NDKGreetings begins with a /cygdrive/c prefix.

Assuming that the NDK home directory is android-ndk-r5b, and that it’s located in the

root directory of drive C, execute the following command to build the library:

../../../android-ndk-r5b/ndk-build

If Cygwin succeeds in building the library, it displays the following messages:

Compile thumb : NDKGreetings <= NDKGreetings.c
SharedLibrary : libNDKGreetings.so
Install : libNDKGreetings.so => libs/armeabi/libNDKGreetings.so

This output indicates that libNDKGreetings.so is located in the armeabi subdirectory of

your NDKGreetings project directory’s libs subdirectory.

TIP: If this command outputs a message that includes the phrase No rule to make target,

edit Android.mk to remove extraneous space characters and try again.

Assuming that C:\prj\dev\NDKGreetings is current, execute ant debug (from Cygwin’s

shell or the normal Windows command window) to create NDKGreetings-debug.apk.

This APK file is placed in the NDKGreetings project directory’s bin subdirectory. To verify

that libNDKGreetings.so is part of this APK, run the following command from bin:

jar tvf NDKGreetings-debug.apk

You should observe a line containing lib/armeabi/libNDKGreetings.so among the jar
command’s output.

 APPENDIX B: Android NDK 405

To verify that the app works, start the emulator, which you can accomplish at the

command line by executing the following command:

emulator -avd test_AVD

This command assumes that you’ve created the test_AVD device configuration as

specified in Chapter 1.

Continuing, install NDKGreetings-debug.apk on the emulated device via the following

command:

adb install NDKGreetings-debug.apk

This command assumes that adb is located in your path. It also assumes that bin is the

current directory.

When adb indicates that NDKGreetings-debug.apk has been installed, navigate to the app

launcher screen and click the NDKGreetings icon. Figure B–5 shows you the result.

Figure B–5. Press the Esc key (on Windows) to make the dialog box go away.

The dialog box displays the “Greetings from the NDK!” message that was obtained by

calling the native function in the native code library. It also reveals a faint “Hello World,

NDKGreetings” message near the top of the screen. This message originates in the

project’s default main.xml file that’s created by the android tool.

APPENDIX B: Android NDK 406

Building and Running NDKGreetings with Eclipse

To build NDKGreetings with Eclipse, first create a new Android project as described in

Chapter 1’s Recipe 1-10. For your convenience, the steps that you need to follow to

accomplish this task are presented in the following:

1. Select New from the File menu, and select Project from the resulting

pop-up menu.

2. On the New Project dialog box, expand the Android node in the wizard

tree, select the Android Project branch below this node, and click the

Next button.

3. On the resulting New Android Project dialog box, enter NDKGreetings

into the Project name textfield, uncheck Use Default Location, and enter

a path without spaces into the Location textfield;

C:\prj\dev\NDKGreetings (assuming Windows), for example. This

entered name identifies the folder in which the NDKGreetings project is

stored.

4. Select the Create new project in workspace radio button if not selected.

5. Under Build Target, check the checkbox of the appropriate Android

target to be used as NDGreetings's build target. This target specifies

which Android platform you'd like your application to be built against.

Assuming that you’ve installed only the Android 2.3 platform, only this

build target should appear and should already be checked.

6. Under Properties, enter NDK Greetings into the Application name

textfield. This human-readable title will appear on the Android device.

Continuing, enter com.apress.ndkgreetings into the Package name

textfield. This value is the package namespace (following the same rules

as for packages in the Java programming language) where all your

source code will reside. Check the Create Activity checkbox if not

checked and enter NDKGreetings as the name of the app’s starting

activity in the textfield that appears beside this check box. The textfield

is disabled when this checkbox is not checked. Finally, enter integer 9

into the Min SDK Version textfield to identify the minimum API Level

required to properly run NDKGreetings on the Android 2.3 platform.

7. Click Finish.

Continuing, use Eclipse’s Package Explorer to locate the NDKGreetings.java source file

node. Double-click this node and replace the skeletal contents shown in the resulting

edit window with Listing B–1.

 APPENDIX B: Android NDK 407

Using Package Explorer, create a jni node below the NDKGreetings project node, add

an NDKGreetings.c subnode of jni, replace this node’s empty contents with Listing B–2,

add a new Android.mk subnode of jni, and replace its empty contents with Listing B–3.

Launch Cygwin and use the cd command to change to the project’s folder; for example,

cd /cygdrive/c/prj/dev/NDKGreetings. Then, execute ndk-build as demonstrated in

the previous section; for example, ../../../android-ndk-r5b/ndk-build. If all goes well,

the NDKGreetings project directory’s libs subdirectory should contain an armeabi

subdirectory, which should contain a libNDKGreetings.so library file.

Finally, select Build Project from the Project menu; the bin subdirectory should contain

an NDKGreetings.apk file (if successful). You might want to execute jar tvf
NDKGreetings.apk to verify that this file contains lib/armeabi/libNDKGreetings.so.

To run NDKGreetings from Eclipse, select Run from the menubar, and Run from the

dropdown menu. If a Run As dialog box appears, select Android Application and click

OK. Eclipse launches emulator with the test_AVD device, installs NDKGreetings.apk, and

runs this app, whose output appears in Figure B–5.

Sampling the NDK
The samples subdirectory of the NDK installation’s home directory contains several

sample apps that demonstrate different aspects of the NDK:

 bitmap-plasma: An app that demonstrates how to access the pixel

buffers of Android android.graphics.Bitmap objects from native code,

and uses this capability to generate an old-school “plasma” effect.

 hello-gl2: An app that renders a triangle using OpenGL ES 2.0 vertex

and fragment shaders. (If you run this app on the Android emulator,

you’ll probably receive an error message stating that the app has

stopped unexpectedly, because the emulator doesn’t support OpenGL

ES 2.0 hardware emulation.)

 hello-jni: An app that loads a string from a native method

implemented in a shared library and then displays it in the app’s user

interface. This app is very similar to NDKGreetings.

 hello-neon: An app that shows how to use the cpufeatures library to

check CPU capabilities at runtime, and then uses NEON (a marketing

name of a SIMD instruction set for the ARM architecture) intrinsics if

supported by the CPU. Specifically, the app implements two versions

of a tiny benchmark for a FIR filter loop

(http://en.wikipedia.org/wiki/Finite_impulse_response), a C

version and a NEON-optimized version for devices that support it.

 native-activity: An app that demonstrates how to use the native-
app-glue static library to create a native activity (an activity

implemented entirely in native code).

http://en.wikipedia.org/wiki/Finite_impulse_response

APPENDIX B: Android NDK 408

 native-audio: An app that demonstrates how to use native methods

to play sounds via OpenSL ES.

 native-plasma: A version of bitmap-plasma implemented with a native

activity.

 san-angeles: An app that renders 3D graphics through the native

OpenGL ES APIs, while managing activity lifecycle with an

android.opengl.GLSurfaceView object.

 two-libs: An app that loads a shared library dynamically and calls a

native method provided by the library. In this case, the method is

implemented in a static library imported by the shared library.

You can use Eclipse to build these apps in a similar manner to NDKGreetings. For

example, carry out the following steps to build san-angeles:

1. Select New from the File menu, and select Project from the resulting

pop-up menu.

2. On the New Project dialog box, expand the Android node in the wizard

tree, select the Android Project branch below this node, and click the

Next button.

3. On the resulting New Android Project dialog box, enter san-angeles into

the Project name textfield, and select the Create project from existing

source radio button.

4. Click the Browse button beside the Location field and, via the Browse

For Folder dialog box, select the san-angeles subdirectory under the

samples subdirectory of the NDK installation’s home directory. Click Ok.

5. Check the Android 2.3 target checkbox (or the Android 2.3.1 or 2.3.3

checkbox, if this is your version) in the Build Target area. Click Finish.

Eclipse responds by creating a DemoActivity project that incorporates this sample app’s

files and displays this project name in its Package Explorer.

Launch Cygwin and change to the project’s folder; for example, cd
/cygdrive/c/android-ndk-r5b/samples/san-angeles. Then, execute ndk-build; for

example, ../../ndk-build. If all goes well, the san-angeles project directory’s libs

subdirectory should contain an armeabi subdirectory containing libsanangeles.so.

Finally, select DemoActivity from Package Explorer and select Build Project from the

Project menu; the bin subdirectory should contain a DemoActivity.apk file (if

successful). You might want to execute jar tvf DemoActivity.apk to verify that this file

contains lib/armeabi/libsanangeles.so.

Select Run from the menubar, and Run from the dropdown menu. If a Run As dialog box

appears, select Android Application and click OK. Eclipse launches emulator with the

test_AVD device, installs DemoActivity.apk, and runs this app. If successful, you should

see a screen similar to that shown in Figure B–6.

 APPENDIX B: Android NDK 409

Figure B–6. DemoActivity takes you on a tour of a three-dimensional city.

411

411

 Appendix

App Design Guidelines

This book focuses on the mechanics of developing apps using various Android

technologies. However, knowing how to create an app is not enough if you want to

succeed as an Android developer. You must also know how to design apps that are only

available to users with compatible devices, that perform well, that are responsive to their

users, and that interact properly with other apps. This appendix’s recipes give you the

necessary design knowledge so your apps shine.

C–1. Designing Filtered Apps

Problem

When you publish your app to Google’s Android Market, you don’t want the app to be

visible to incompatible devices. You want Android Market to filter your app so that users

of these incompatible devices cannot download the app.

Solution

Android runs on many devices, which gives developers a huge potential market.

However, not all devices contain the same features (for example, some devices have

cameras, whereas other devices don’t), so certain apps might not run properly on some

devices.

Recognizing this problem, Google provides various market filters that are triggered

whenever a user visits Android Market via an Android device. If an app doesn’t satisfy a

filter, the app isn’t made visible to the user. Table C–1 identifies three market filters that

are triggered when specific elements are present in an app’s manifest file.

C

APPENDIX C: App Design Guidelines 412

Table C–1. Market Filters Based on Manifest Elements

Filter Name Manifest Element How the Filter Works

Minimum

Framework

Version

<uses-sdk> An app requires a minimum API level. Devices that

don’t support that level won’t be able to run the app.

API levels are expressed as integers. For example,

integer 9 corresponds to Android 2.3 (API Level 9).

Example: <uses-sdk android:minSdkVersion="9"/>

tells Android Market that the app only supports

Android 2.3 and later.

If you don’t declare this attribute, Android Market

assumes a default value of "1," which indicates that

the app is compatible with all versions of Android.

Device Features <uses-feature> An app can require certain device features to be

present on the device. This functionality was

introduced in Android 2.0 (API Level 5).

Example: <uses-feature
android:name="android.hardware.sensor.compass"/>

tells Android Market that the device must have a

compass.

The abstract android.content.pm.PackageManager

class defines Java constants for

"android.hardware.sensor.compass" and other

feature IDs.

Screen Size <supports-screens> An app indicates the screen sizes that it’s capable of

supporting by setting attributes of the <supports-
screens> element. When the app is published,

Android Market uses those attributes to determine

whether to show the app to users, based on the

screen sizes of their devices.

Example: <supports-screens
android:smallScreens="false"/> tells Android

Market that the app won’t run on devices with QVGA

(240-by-320-pixel) screens.

Apps using API Level 4 or higher default

smallScreens to "true;" previous levels default this

attribute to "false."

Android Market generally assumes that the device

can adapt smaller layouts to larger screens, but

cannot adapt larger layouts to smaller screens. As a

result, if an app declares support for “normal” screen

size only, Android Market makes the app available to

normal- and large-screen devices, but filters the app

so that it’s not available to small-screen devices.

 APPENDIX C: App Design Guidelines 413

Android Market also uses other app characteristics (such as the country in which the

user with the device is currently located) to determine whether to show or hide an app.

Table C–2 identifies three market filters that are triggered when some of these additional

characteristics are present.

Table C–2. Market Filters Based on Manifest Elements

Filter Name How the Filter Works

Publishing Status Only published apps will appear in searches within Android Market. Even if an

app is unpublished, it can be installed if users can see it in their Downloads

area among their purchased, installed, or recently uninstalled apps. If an app

has been suspended, users won’t be able to reinstall or update it, even if it

appears in their Downloads.

Priced Status Not all users can see paid apps. To show paid apps, a device must have a

SIM card and be running Android 1.1 or later, and it must be in a country (as

determined by the SIM carrier) in which paid apps are available.

Country / Carrier

Targeting

When you upload your app to Android Market, you can select specific

countries to target. The app will only be visible to the countries (carriers) that

you select, as follows:

 A device's carrier (when available) determines its country.

If no carrier can be determined, Android Market tries to

determine the country based on IP.

 The carrier is determined based on the device’s SIM (for

GSM devices), not the current roaming carrier.

C–2. Designing High-Performance Apps

Problem

Apps should perform well, especially on devices with limited amounts of memory.

Furthermore, better-performing apps provide less drain on battery power. You want to

know how to design your app to have good performance.

Solution

Android devices differ in significant ways. Some devices may have a faster processor

than others, some devices may have more memory than others, and some devices may

include a Just-In-Time (JIT) compiler, whereas other devices don’t have this technology

for speeding up executable code by converting sequences of bytecode instructions to

equivalent native code sequences on the fly. The following list identifies some things to

consider when writing code so that your apps will perform well on any device:

APPENDIX C: App Design Guidelines 414

 Optimize your code carefully: Strive to write apps with a solid

architecture that doesn’t impede performance before thinking about

optimizing the code. Once the app is running correctly, profile its code

on various devices and look for bottlenecks that slow the app down.

Keep in mind that the emulator will give you a false impression of your

app’s performance. For example, its network connection is based on

your development platform’s network connection, which is much

faster than what you’ll probably encounter on many Android devices.

 Minimize object creation: Object creation impacts performance,

especially where garbage collection is concerned. You should try to

reuse existing objects as much as possible to minimize garbage

collection cycles that can temporarily slow down an app. For example,

use a java.lang.StringBuilder object (or a java.lang.StringBuffer

object when multiple threads might access this object) to build strings

instead of using the string concatenation operator in a loop, which

results in unnecessary intermediate String objects being created.

 Minimize floating-point operations: Floating-point operations are

about twice as slow as integer operations on Android devices; for

example, the floating-point-unit-less and JIT-less G1 device. Also,

keep in mind that some devices lack a hardware-based integer

division instruction, which means that integer division is performed in

software. The resulting slowness is especially bothersome where

hashtables (that rely on the remainder operator) are concerned.

 Use System.arraycopy() wherever you need to perform a copy: The

java.lang.System class’s static void arraycopy(Object src, int
srcPos, Object dest, int destPos, int length) method is around

nine times faster than a hand-coded loop on a Nexus One with the JIT.

 Avoid enums: Although convenient, enums add to the size of a .dex

file and can impact speed. For example, public enum Directions {
UP, DOWN, LEFT, RIGHT } adds several hundred bytes to a .dex file,

compared to the equivalent class with four public static final ints.

 Use the enhanced for loop syntax: In general, the enhanced for loop

(such as for (String s: strings) {}) is faster than the regular for

loop (such as for (int i = 0; i < strings.length; i++)) on a

device without a JIT and no slower then a regular for loop when a JIT

is involved. Because the enhanced for loop tends to be slower when

iterating over a java.util.ArrayList instance, however, a regular for

loop should be used instead for arraylist traversal.

You’ll also want to choose algorithms and data structures carefully. For example, the

linear search algorithm (which searches a sequence of items from start to finish,

comparing each item to a search value) examines half of the items on average, whereas

the binary search algorithm uses a recursive division technique to locate the search

 APPENDIX C: App Design Guidelines 415

value with few comparisons. For example, where a linear search of 4 billion items

averages 2 billion comparisons, binary search performs 32 comparisons at most.

C–3. Designing Responsive Apps

Problem

Apps that are slow to respond to users, or that appear to hang or freeze, risk triggering

the Application Not Responding dialog box (see Figure C–1), which gives the user the

opportunity to kill the app (and probably uninstall it) or keep waiting in the hope that the

app will eventually respond.

Figure C–1. The dreaded Application Not Responding dialog box may result in users uninstalling the app.

You want to know how to design responsive apps so that you can avoid this dialog box

(and quite likely a bad reputation from unimpressed users).

Solution

Android displays the Application Not Responding dialog box when an app cannot

respond to user input. For example, an app blocking on an I/O operation (often a

network access) prevents the main app thread from processing incoming user input

events. After an Android-determined length of time, Android concludes that the app is

frozen, and displays this dialog box to give the user the option to kill the app.

Similarly, when an app spends too much time building an elaborate in-memory data

structure, or perhaps the app is performing an intensive computation (such as

calculating the next move in chess or some other game), Android concludes that the

app has hung. Therefore, it’s always important to make sure these computations are

efficient by using techniques such as those described in Recipe C–2.

In these situations, the app should create another thread and perform most of its work

on that thread. This is especially true for activities, which should do as little work as

possible in key lifecycle callback methods, such as onCreate(Bundle) and onResume().

As a result, the main thread (which drives the user interface event loop) keeps running

and Android doesn’t conclude that the app has frozen.

APPENDIX C: App Design Guidelines 416

NOTE: The activity manager and window manager (see Chapter 1, Figure 1-1) monitor app

responsiveness. When they detect no response to an input event (a key press or a screen touch,

for example) within 5 seconds, or that a broadcast receiver has not finished executing within 10

seconds, they conclude that the app has frozen and display the Application Not Responding

dialog box.

C–4. Designing Seamless Apps

Problem

You want to know how to design your apps to interact properly with other apps.

Specifically, you want to know what things your app should avoid doing so that it

doesn’t cause problems for the user (and face the possibility of being uninstalled).

Solution

Your apps must play fair with other apps so that they don’t disrupt the user by doing

something such as popping up a dialog box when the user is interacting with some

activity. Also, you don’t want one of your app’s activities to lose state when it’s paused,

leaving the user confused as to why previously entered data is missing when the user

returns to the activity. In other words, you want your app to work well with other apps so

that it doesn’t disrupt the user’s experience.

An app that achieves a seamless experience must take the following rules into account:

 Don’t drop data: Because Android is a mobile platform, another

activity can pop up over your app’s activity (perhaps an incoming

phone call has triggered the Phone app). When this happens, your

activity’s void onSaveInstanceState(Bundle outState) and onPause()

callback methods are called, and your app will probably be killed. If

the user was editing data at the time, the data will be lost unless saved

via onSaveInstanceState(). The data is later restored in the

onCreate() or void onRestoreInstanceState(Bundle
savedInstanceState) method.

 Don’t expose raw data: It’s not a good idea to expose raw data,

because other apps must understand your data format. If you change

the format, these other apps will break unless updated to take the

format changes into account. Instead, you should create a

ContentProvider instance that exposes the data via a carefully

designed API.

 APPENDIX C: App Design Guidelines 417

 Don’t interrupt the user: When the user is interacting with an activity,

the user won’t be happy when interrupted by a pop-up dialog box

(perhaps activated via a background service as a result of a

startActivity(Intent) method call). The preferred way to notify the

user is to send a message via the android.app.NotificationManager

class. The message appears on the status bar and the user can view

the message at the user’s convenience.

 Use threads for lengthy activities: Components that perform lengthy

computations or are involved with other time-consuming activities

should move this work to another thread. Doing so prevents the

Application Not Responding dialog box from appearing, and reduces

the chance of the user uninstalling your app from the device.

 Don’t overload a single activity screen: Apps with complex user

interfaces should present their user interfaces via multiple activities.

That way, the user is not overwhelmed with many items appearing on

the screen. Furthermore, your code becomes more maintainable and it

also plays nicely with Android's activity stack model.

 Design your user interfaces to support multiple screen

resolutions: Different Android devices often support different screen

resolutions. Some devices can even change screen resolutions on the

fly, such as switching to landscape mode. It’s therefore important to

make sure your layouts and drawables have the flexibility to display

themselves properly on various device screens. This task can be

accomplished by providing different versions of your artwork (if you

use any) for key screen resolutions, and then designing your layout to

accommodate various dimensions. (For example, avoid using hard-

coded positions and instead use relative layouts.) Do this much and

the system handles other tasks; the result is an app that looks great on

any device.

 Assume a slow network: Android devices come with a variety of

network-connectivity options, and some devices are faster than

others. However, the lowest common denominator is GPRS (the non-

3G data service for GSM networks). Even 3G-capable devices spend

lots of time on non3G networks so slow networks will remain a reality

for a long time to come. For this reason, always code your apps to

minimize network accesses and bandwidth. Don’t assume that the

network is fast; plan for it to be slow. If your users happen to be on

faster networks, their experience only improves.

APPENDIX C: App Design Guidelines 418

 Don’t assume a touchscreen or a keyboard: Android supports

various kinds of input devices: some Android devices have full

“QWERTY” keyboards, whereas other devices have 40-key, 12-key, or

other key configurations. Similarly, some devices have touchscreens,

but many won't. Keep these differences in mind when designing your

apps. Don't assume specific keyboard layouts unless you want to

restrict your app for use only on certain devices.

 Conserve the device’s battery: Mobile devices are battery powered,

and it’s important to minimize battery drain. Two of the biggest battery

power consumers are the processor and the radio, which is why it's

important to write apps that use as few processor cycles, and as little

network activity, as possible. Minimizing the amount of processor time

occupied by an app comes down to writing efficient code. Minimizing

the power drain from using the radio comes down to handling error

conditions gracefully and fetching only the data that’s needed. For

example, don't constantly retry a network operation if one attempt

failed. If it failed once, another immediate attempt is likely to fail

because the user has no reception; all you'll accomplish is to waste

battery power. Keep in mind that users will notice a power-hungry app

and most likely uninstall the app.

419

419

Index

■ Special Characters
prompt, adb shell, 300
#include directive, 402
$ prompt, 388–389

■ A
a option, 54
aapt (Android Asset Packaging Tool),

33, 45
About menu item, DroidDraw, 150
Abstracted LCD density property, 35
accelerometer feedback, 240–243
acclerometer checkbox, 252
Action item, 9
ACTION_SEND_MULTIPLE action, 336
<action> tag, 12, 18, 88, 92
actions, for soft keyboard, 133–135
activities, 7–8, 13–25
Activity class, 17
Activity Manager component, 4
activity option, 54
activity stack, 19
<activity> tag, 11–12, 18, 88, 373
Activity.dismissDialog() method, 126
Activity.getIntent() method, 340
Activity.getPreferences() method, 264–

265
Activity.getRequestedOrientation()

method, 89
ActivityInfo.screenOrientation attribute,

89
Activity.managedQuery() method, 343
ActivityNotFoundException, 332
Activity.onBackPressed() method, 102

Activity.onConfigurationChanged()
method, 91

Activity.onKeyDown() method, 99
Activity.onKeyUp() method, 99–100
Activity.onResume() method, 169
Activity.openContextMenu() method,

94
Activity.requestWindowFeature()

method, 79–80
Activity.setContentView() method, 80,

85
Activity.setRequestedOrientation()

method, 89
Activity.showDialog() method, 126
AdapterView, customizing empty views,

136–138
AdapterView.setEmptyView() method,

136
ADB (Android Debug Bridge), 32
adb install sl4a_r3.apk command, 385
adb shell, 300
adb tool, 62, 299, 405
Add category, 386
Add interpreters list, 389
Add Jars button, Properties for

UseMathUtils dialog box, 358
Add menu item, 389
Add New Person button, 279
Add Repository dialog box, Eclipse IDE,

65
add-ons directory, 29
addPreferencesFromResource()

method, 260
ADT (Android Development Tools), 64
ADT Plugin, Eclipse IDE, 64, 66
Advanced Risc Machine (ARM), 400

Index 420

afterTextChanged() method, 103, 105

age parameter, 177

aggregation operations, changing and

adding contacts, 346

AlarmManager.setRepeating() method,

317

AlertDialog, 96–97

AlertDialog.onKeyUp() method, 100

alias option, 60

<alpha> tag, 113

AlphaAnimation element, 110

Android

architecture of, 3–7

history of, 2–3

Android 2.3 target check box, 408

Android Asset Packaging Tool (aapt),

33, 45

Android class, 394

Android DDMS checkbox, 65

Android Debug Bridge (ADB), 32

Android Debug Bridge tool, 298

Android Development Tools. See ADT

Android Hierarchy Viewer checkbox, 65

Android library projects, 359–365

Android Market, 337

Android node, 361, 364, 406

Android SDK and AVD Manager dialog

box, 30, 34

Android Virtual Devices. See AVDs

android-9 directory, 33, 36

android.app.Activity class, 13

android.app.NotificationManager class,

417

android.app.Service class, 19

android:background attribute, 116, 120

android:background="@drawable/back

gradient" attribute, 120

android:background="@drawable/round

back" attribute, 118

android:button attribute, 120

android:configChanges parameter, 91

android.content.BroadcastReceiver

class, 25

android.content.ContentProvider class,

26

android.content.ContentResolver class,

27

android.content.Context class, 13

android.content.Intent class, 9

android.content.pm.PackageManager

class, 412

android.content.ServiceConnection

class, 23

android.database.sqlite.SQLiteOpenHel

per class, 305

android:dependency attribute, 260

android:digits constraint, 106

android:ellipsize attribute, 106–107

android.graphics.Camera class, 221

android.graphics.Canvas's void

drawRect(float left, float top,

float right, float bottom, Paint

paint) method, 361

android.hardware.Camera class, 221

android:id attribute, 86, 259

android:id XML attribute, DroidDraw,

150

android:id="@android:id/list" attribute,

260

android:inputType constraint, 106

android:key attribute, 259

AndroidManifest.xml file, 11, 13, 25, 27,

76, 79, 89, 126, 184, 373

android:marqueeRepeatLimit attribute,

107

android:middleColor attribute, 117

android:mimeType attribute, 18

Android.mk subnode, 407

android:name attribute, 12, 18

android-ndk-r5b directory, 399, 404

android:onClick attribute, 86

android.os.Binder class, 24

android.os.IBinder interface, 22

android.permission.ACCESS_ALL_DO

WNLOADS attribute, 169

android.permission.ACCESS_COARSE_

LOCATION permission, 202

android.permission.ACCESS_FINE_LO

CATION permission, 202, 327

android.permission.BLUETOOTH

permission, 189

Index 421

android.permission.BLUETOOTH_ADMI

N permission, 189

android.permission.CALL_PHONE

permission, 334

android.permission.CAMERA

permission, 221

android.permission.INTERNET attribute,

167, 169

android.permission.INTERNET

permission, 380

android.permission.READ_CONTACTS

permission, 341, 344

android.permission.RECEIVE_SMS

permission, 185

android.permission.RECORD_AUDIO

permission, 227

android.permission.SEND_SMS

permission, 187

android.permission.WRITE_CONTACTS

permission, 344

android.permission.WRITE_EXTERNAL_

STORAGE attribute, 170

android.permission.WRITE_EXTERNAL_

STORAGE permission, 218, 220

android.provider.Telephony.SMS_RECE

IVED action, 184

android:scrollHorizontally attribute, 107

android-sdk_r08-linux_86.tgz file, 29

android-sdk_r08-mac_86.zip file, 29

android-sdk_r08-windows.zip file, 29

android:singleLine attribute, 107

android:text property, 153

android.text.TextWatcher interface, 48,

103

android:theme attribute, 77

android:theme="@android:style/Theme.

Dialog" parameter, 127

android.view package, 147, 166, 206,

360

android.view.View class, 45

android.view.ViewGroup class, 45

android.widget package, 147, 166, 206

android.widget.AdapterView<T extends

Adapter> ancestor class, 47

android.widget.ArrayAdapter class, 46,

306

android.widget.Button class, 47

android.widget.Spinner class, 46

android:windowBackground attribute,

77

android:windowContentOverlay

attribute, 78

android:windowFullscreen attribute, 77

android:windowNoTitle attribute, 77

android-windows-sdk directory, 29

android:windowTitleBackgroundStyle

attribute, 78

android:windowTitleSize attribute, 78

android:windowTitleStyle attribute, 78

angle attribute, 52

AnimationSet, animating views using,

112–115

AnimationUtils class, 108

AnimationUtils.loadAnimation() method,

108

AnimationUtils.makeInAnimation()

method, 108

AnimationUtils.makeInChildBottomAnim

ation() method, 108

AnimationUtils.makeOutAnimation()

method, 108

annotating maps, 209–215

current location, 215

making interactive, 214

ant debug command, 55

ant tool, 55

ant-generated R.java file, 55

API (application programming interface)

Level 1

applications, 330

backing up data, 281

launching applications by other

applications, 338

managing databases, 274

notifying from background, 309

periodic tasks, 313

persistent background

operations, 324

persisting simple data, 262

picking device media, 347

preference screen, 257

querying databases, 279–280

Index 422

reading and writing files, 266–267

saving to MediaStore class, 349

scheduling periodic tasks, 315

sharing databases, 286

system applications, 333

timed tasks, 313

using files as resources, 272

Level 3

sharing data, 293

sticky operations, 319

Level 5-contacts, 340–341

APK (Application Package) files

aligning, 62–63

overview, 13

signing, 60–62

appid parameter, 174

Application name textfield, 67, 357,

362, 364, 406

Application Not Responding dialog box,

8, 307, 415–417

Application Package files. See APK files

<application> tag, 11–12, 92, 316

applications

architecture of, 7–13

APK file, 13

components, 7–9

intents, 9–11

manifest file, 11–12

design guidelines for, 411–418

filtered apps, 411–413

high-performance apps, 413–414

responsive apps, 415–416

seamless apps, 416–418

launching by other applications,

338–340

NDKGreetings, 401–407

problem, 330

reading PDF files, 331–332

running contacts, 343–344

sample NDK, 407–408

sharing application content, 332–333

sharing content, 332–333

solution, API Level 1, 330

system, 333–337

apply() method, 265

ARM (Advanced Risc Machine), 400

armeabi directory, 404, 407–408

ArrayAdapter<CharSequence>

createFromResource(Context

context, int textArrayResId, int

textViewResId) method, 46

arrays.xml editor window, Eclipse IDE,

71

arrays.xml file, 46, 52–53, 71, 302

AssetManager.open() method, 273

assets directory, 68

AsyncTask class, 164

audio

playback of, 232–237

recording, 227–229

authentication, for REST API, 175–176

Available Packages pane, 33

Available Software pane, Eclipse IDE, 65

AVD pane, 35

AVDs (Android Virtual Devices)

creating, 34–36

starting, 36–40

Awk command, 398

■ B
BACK button, 101–102, 323, 389, 392

back stack, 19

backgrounds

downloading in, 166–170

drawables as, 115–118

gradient ListView row, 116–117

rounded view group, 117–118

notifications from, 309–313

persistent operations, 324–330

backing up data, 281–285

BarChart activity, 370, 373–374

BarChart.class file, 370

beforeTextChanged() method, 106

bin directory, 54–55, 60, 68, 248–249,

405, 408

BIND_AUTO_CREATE flag, 25

binder field, 24

bindService(Intent, ServiceConnection,

int) method, 22–23, 25

BitmapFactory.decodeFile() method,

349

Index 423

bitmap-plasma app, 407

Bluetooth, 188–196

Connected Mode for, 195

discovering UUID, 196

Listen Mode for, 194

with other types of devices, 196

peer-to-peer, 188–194

Search Mode for, 195

BluetoothAdapter.ACTION_REQUEST_

ENABLE attribute, 194

BluetoothAdapter.getDefaultAdapter()

method, 194

BluetoothAdapter.startDiscovery()

method, 195

boolean bindService(Intent service,

ServiceConnection conn, int

flags) method, 22

boolean onUnbind(Intent intent)

method, 23

boolean parameter, 108

boolean stopSelfResult(int startId)

method, 21

boolean stopService(Intent intent)

method, 21

Bornstein, Dan, 6

boundCenterBottom() method, 210

broadcast receivers, 9, 25–26

Browse For Folder dialog box, 408

browsers, 334

Build directory, 400

build mode, 55

Build Project context menu item, 355

build.properties file, 54

build.xml file, 54–55

button_states.xml file, 120

buttons

custom state drawables, 120

for dynamic orientation locking,

89–91

■ C
c option, 63

C2DM (Cloud-To-Device Messaging),

375

calling getString(0) method, 279

camera

custom overlay for, 221–227

image capture, 216–218

video capture, 218–220

Camera class, 221

Camera service, 223

Camera.open(int which) method, 224

Camera.PictureCallback interface, 226

Camera.release() method, 223

Camera.setDisplayOrientation(int

degrees) method, 223

Camera.ShutterCallback interface, 226

Camera.startPreview() method, 223

Camera.takePicture() method, 226

cancel() method, 311

canPause() method, 236

canSeekBackward() method, 236

canSeekForward() method, 236

capturing, from camera

images, 216–218

video, 218–220

Category item, 10

<category> tag, 12, 18

cd /sdcard/sl4a/scripts command, 388

character counter example, 104

characters() method, 182

charting, 366–375

check_states.xml file, 121

Checkable interface, 120

CheckBox, custom state drawables,

120–121

children parameter, 177

Choose Packages to Install dialog box,

30–31

.classpath directory, 68

Clear Notifications button, 311

Clear Screen menu item, DroidDraw,

150

click actions, monitoring, 85–86

clients, testing, 381–384

Close Tab menu item, 251

cloud-based services, 285

Cloud-To-Device Messaging (C2DM),

375

colorA field, 360

colorB field, 360

Index 424

com/apress/gameboard directory, 362

com/apress/mathutils directory, 354

com.apress.mathutils node, 355

com.apress.uc package, 67

com.apress.uc2 package, 302

com.apress.usegameboard node, 364

com.apress.usemathutils node, 357

com.kidroid.kichart.ChartActivity class,

366

com.kidroid.kichart.view.BarView class,

366

com.kidroid.kichart.view.LineView

class, 366

COMMAND_BACKUP parameter, 284

COMMAND_RESTORE parameter, 284

comma-separated values (CSV) files,

274

commit() method, 265

CommonDataKinds table, 343

communications

over Bluetooth, 188–196

Connected Mode for, 195

discovering UUID, 196

Listen Mode for, 194

with other types of devices, 196

peer-to-peer, 188–194

Search Mode for, 195

SMS messages

receiving, 184–185

sending, 186–188

communications channel, 22

compass orientation, 243–247

Component name item, 10

ComponentName startService(Intent

intent) method, 20

components, 7–9

activities, 7–8

broadcast receivers, 9

content providers, 9

services, 8

compound controls, 145–148

CompoundButton.setButtonDrawable()

method, 120

Configure Build Path context menu

item, 358

Connect and Share button, 190, 195

Connect button, 252

Connected Mode, for Bluetooth, 195

CONNECTED state, 197–198

ConnectedTask.onPostExecute()

method, 195

CONNECTING state, 197

connections, monitoring for device,

197–199

ConnectivityManager.getActiveNetworkI

nfo() method, 197

contact pickers, 337

contacts, 340–347

API Level 5, 340–341

changing and adding contacts, 344–

346

listing and viewing contacts, 341–

343

maintaining references, 346–347

running application, 343–344

Contacts application, 346

Contacts table, 336

ContactsContract.Data table, 343

Content Provider components, 4

content providers, 26–73

AVDs

creating, 34–36

starting, 36–40

Eclipse IDE

developing UC with, 66–73

overview, 63–66

installing platforms, 30–33

installing SDK, 27–30

overview, 9

UC app, 41–53

creating, 53–55

installing and running, 55–58

preparing for publishing, 59–63

ContentProvider API, 340

ContentProvider interface, 349

ContentProvider method, 289

ContentResolver.openInputStream()

method, 295, 298

Context.deleteFile() method, 268

Context.getDatabasePath() method,

284

Context.getFilesDir() method, 284

Index 425

Context.getSharedPreferences()

method, 265–266

ContextMenu, 93–96

contextmenu.xml file, 93

Context.openFileInput() method, 267–

268

Context.openFileOutput() method, 267

Context.startService() method, 319

Context.stopService() method, 381

conversion column, 300–301, 305

conversions table, 300, 302, 305, 307

conversions.db file, 300, 302, 305–306

convertView parameter, 142

Copy files radio button, 358

Copy menu item, DroidDraw, 150

<corners> tag, 52

Country / Carrier Targeting filter, 413

C:\prj\dev\NDKGreetings directory,

403–404

C:\prj\dev\NDKGreetings\jni directory,

403

C:\prj\dev\NDKGreetings\jni\Android.m

k file, 403

create, read, update, and delete

(CRUD), 266

create() method, 233, 236

Create Activity check box, 67, 357, 362,

364, 406

Create AVD button, 35

Create new Android Virtual Device

dialog box, 34

Create new project in workspace radio

button, 357, 361, 364

Create project from existing source

radio button, 408

create table conversions(conversion

varchar(50), mutliplier float);

statement, 302

createFromResource() method, 306

createItem() method, 210

createMqttClient() method, 380

CRUD (create, read, update, and

delete), 266

CSV (comma-separated values) files,

274

currency formatter example, 104–106

Cursor.getColumnIndex() method, 292

Cursor.requery() method, 279

custom animations, 110–112

custom themes, 77–79

custommenu.xml file, 99

Cut menu item, DroidDraw, 150

Cygwin console, 398

Cygwin tool, installing, 398–399

■ D
Dalvik Debug Monitor Server (DDMS),

64

Dalvik Executable (DEX), 6, 33

Dalvik Virtual Machine (DVM), 1, 6

data element, 182

data field, 217

Data item, 10

<data> tag, 18

databases

managing, 274–279

querying, 279–281

sharing, 286–292

/data/data/<application package>

directory, 299–300

/data/data/com.apress.uc2/databases/

directory, 306

DATE type, 281

DATE_TAKEN column, 351

datetime() method, 281

DBHelper class, 305, 307

DDMS (Dalvik Debug Monitor Server),

64

debug command, 404

Debug mode, 55

debugging trick, for when parsing

JSON, 179

default.properties file, 54, 68

defaults, loading and accessing

preferences, 261–262

delete() method, 286, 289, 293, 295

Delete context menu item, 71

deleteFile() method, 268

DemoActivity project, 408

DemoActivity.apk file, 408

DESCRIPTION column, 351

Index 426

<description> tag, 180

design mode, 71

destinations, for downloaded content,

169–170

Devel category, 398

Developer Tools checkbox, Eclipse IDE,

65

Device Features filter, 412

device media, picking, 347–349

DEX (Dalvik Executable), 6, 33

dialogs, that persist, 125–127

DISCONNECTED state, 197

DISCONNECTING state, 197

dismissing soft keyboard, 135–136

Docs directory, 400

Documentation.html file, 400

doInBackground() method, 165–166

DOM method, 180

Donate menu item, DroidDraw, 150

downloading

in background, 166–170

and destinations for content,

169–170

image file, 163–166

DownloadManager API, 167, 169, 171

DownloadManager.enqueue() method,

169

DownloadManager.openDownloadedFil

e() method, 170

DownloadManager.remove() method,

170

drawable-hdpi directory, 55

drawable-ldpi directory, 55

drawable-mdpi directory, 55

drawable-mdpi node, 71

drawables

as backgrounds, 115–118

gradient ListView row, 116–117

rounded view group, 117–118

custom state, 119–121

Button and clickable widgets,

120

CheckBox and checkable

widgets, 120–121

DroidDraw, 148–153

creating simple screen with, 151

obtaining, 149

user interface of, 150–151

droiddraw.exe file, 149

droiddraw.jar file, 149

droiddraw-r1b18.zip file, 149

DVM (Dalvik Virtual Machine), 1, 6

dynamic orientation locking, 89–91

■ E
Eclipse Classic 3.6.1 page, 65

eclipse directory, 65

Eclipse IDE

building and running NDKGreetings

app with, 406–407

creating MathUtils class with, 355

developing UC with, 66–73

overview, 63–66

Edit menu, DroidDraw, 150

EditText view, 46

EditText widget, 104

<edittext> tag, 51

ELAPSED_REALTIME mode, 317–318

ELAPSED_REALTIME_WAKEUP mode,

317

e-mail, 335–336

emulator tool, 30, 36, 40, 71

enable() method, 194

Enable More Settings checkbox, 259

endColor attribute, 52

endElement() method, 182

entire lifetime, 15

env parameter, 402

Environment.getExternalStorageDirecto

ry() method, 270

Environment.getExternalStorageState()

method, 269–270

etUnits variable, 46

events, for WebView, 159–161

execute() method, 284

exit() function, 394

ExpandableListView widget, 142

Export context menu item, 355

Export dialog box, 355

extensible markup language (XML),

parsing, 180–184

Index 427

Extensible Messaging and Presence

Protocol (XMPP), 375

external storage, 269–271

EXTRA_LANGUAGE parameter, 231

EXTRA_LANGUAGE_MODEL

parameter, 231

EXTRA_MAX_RESULTS parameter, 231

EXTRA_PROMPT parameter, 231

Extras item, 10

■ F
f option, 62

factorial() method, MathUtils class, 354

FEATURE_CUSTOM_TITLE feature,

79–80

FEATURE_INDETERMINATE_PROGRE

SS feature, 80–81

FEATURE_LEFT_ICON feature, 80–81

FEATURE_NO_TITLE feature, 79–80

FEATURE_PROGRESS feature, 79, 81

FEATURE_RIGHT_ICON feature, 80,

82–83

fetchUuidsWithSdp() method, 196

File menu, 150, 152, 251

File Operation dialog box, 358

FileInputStream class, 267

FileOutputStream class, 267

files

reading and writing, 266–271

using as resources, 271–274

filtered apps, 411–413

findPreference() method, 259

findViewById() method, 259

finish() method, 102

FLAG_INSISTENT flag, 311

FLAG_NO_CLEAR flag, 311

Flags item, 10

float[] getFloatArray(String key) method,

371

Folder name textfield, New Folder

dialog box, 358

foreground lifetime, 16

FreeType library, 5

■ G
GameBoard class, 359–361, 363

GameBoard library, 363

GameBoard project, 361

GameBoard.class file, 362

GameBoard.java file, 362

GameBoard's onMeasure(int, int)

method, 361

GameBoard/src/com/apress/gameboar

d node, 362

gen directory, 55, 68

Generate button, DroidDraw, 152

genkey option, 60

GeoPoint parameter, 208

GET method, accessing REST API

using, 172–173

getActivity() method, 317

getBroadcast() method, 317

getBufferPercentage() method, 236

getContext() method, 361

getDirectionFromDegrees() method, 247

getFileStreamPath() method, 332

getGreetingMessage() method, 402

getItem() method, 142

getJSONArray() method, 179

getLastKnownLocation() method, 205

getOrientation() method, 243, 246–247

getReadableDatabase() method, 307

getRotationMatrix() method, 246

getService() method, 27, 317, 326

getSharedPreferences() method,

265–266

getSize(int measureSpec) method, 361

getType() method, 289

getUuids() method, 196

getView() method, 140–141

getWritableDatabase() method, 290,

307

GNUmakefile file, 400

Google Maps API, 207

Google Search widget, 38

<gradient> tag, 52, 117

gradientbg.xml editor window, Eclipse

IDE, 71

gradientbg.xml file, 71

graphical layout mode, 70

Index 428

gravity attribute, 49

GROUP BY clause, 280

groupBy parameter, 280

grow.xml file, 113

■ H
Handler.post() method, 314

Handler.postDelayed() method, 310,

314

Handler.removeCallbacks() method,

314

hardware interactions

accelerometer feedback, 240–243

audio playback, 232–237

compass orientation, 243–247

custom camera overlay, 221–227

image capture, 216–218

location of device, 201–205

recording audio, 227–229

and SensorSimulator, 247–255

accessing from apps, 253–255

launching, 248–253

obtaining, 248

speech recognition, 229–231

video capture, 218–220

video playback

handling redirects for, 238–239

overview, 238

having parameter, 280

Height textfield, DroidDraw, 151

hello-gl2 app, 407

hello-jni app, 407

hello-neon app, 407

Help category, 387

.help command, sqlite3 shell, 299

Help menu, DroidDraw, 150

hideSoftInputFromWindow() method,

136

high-performance apps, 413–414

hint attribute, 51

history stack, 19

Home Activity, 102

HOME button, 102–103, 323

home screen, 37

HttpClient parameter, 172

HttpUriRequest class, 175

HttpUriRequest parameter, 172

■ I
IBinder interface, 24

IBinder onBind(Intent intent) method, 20

IBinder window token, 136

icon.png file, 71

icon.png node, 71

id attribute, 51

ID parameter, 312

IETF tag, 231

image capture, from camera, 216–218

image files, downloading, 163–166

images, applying masks to, 121–125

arbitrary mask image, 123–125

rounded corner Bitmap, 122–123

ImageView class, 164

ImageView widget, 165

IME (Input Method), 137

inflate() method, 84

Input Method (IME), 137

InputMethodManager.hideSoftInputFro

mWindow() method, 136

inputType attribute, 51

insert() method, 276, 286, 289, 292,

295

Install dialog box, Eclipse IDE, 65

Install New Software menu item, 65

Installed packages pane, 32

installer_r08-windows.exe file, 29

Installing Archives dialog box, 32

Installing Software dialog box, Eclipse

IDE, 66

int onStartCommand(Intent intent, int

flags, int startId) method, 20

int parameter, 108, 117

INTEGER type, 281

Intent addCategory(String category)

method, 18

Intent class, 10

Intent getIntent() method, 19, 371

Intent putExtra(String name, String

value) method, 26

Index 429

Intent setAction(String action) method,

18

Intent setType(String type) method, 18

Intent.ACTION_CALL action, 334

Intent.ACTION_GET_CONTENT action,

346, 349

Intent.ACTION_SEND action, 332

Intent.ACTION_VIEW action, 332

Intent.createChooser() method, 333,

336

<intent-filter> tag, 12, 18

IntentFilter.matchAction() method, 321

Intent.getData() method, 220, 340

intents, 9–11

Intent.setAction() method, 331

Intent.setData() method, 332

Intent.setDataAndType() method, 332

Intent.setType() method, 332

internal storage, 267–269

INTERNET permission, 157

interpreters

installing independently of SL4A,

393

Python

installing, 389–393

scripting with, 394–395

Interpreters list, 392

Interpreters menu item, 388–389

Interpreters screen, 388

Is Library check box, 362

isChecked() method, 120

isEmpty() method, 136

isEnabled() method, 119

item element, 182

ItemizedOverlay class, 209–210, 214

■ J
JAR (Java ARchive)-based libraries,

353–358

jar cf mathutils.jar

com/apress/mathutils/*.class

command, 355

JAR Export pane, Export dialog box,

355

JAR file textfield, Export dialog box, 355

JAR Selection dialog box, 358

jar tvf DemoActivity.apk command, 408

jar tvf NDKGreetings.apk command,

407

jarsigner tool, 61–62

Java ARchive (JAR)-based libraries,

353–358

Java Development Kits (JDKs), 28,

354–355

Java Development Tools (JDT), 64

java -jar droiddraw.jar command, 149

Java language, JAR-based libraries,

353–358

Java Native Interface (JNI), 402

Java node, Export dialog box, 355

Java Runtime Environment (JRE), 28

javac

com/apress/mathutils/MathUtils

.java command, 354

java.lang.Math class, 354

java.lang.System class, 414

JavaScript, displaying WebView with,

161–163

JavaScript Object Notation (JSON),

parsing, 176–179

JDKs (Java Development Kits), 28,

354–355

JDT (Java Development Tools), 64

JDT Plugin, Eclipse IDE, 64

JIT (Just-In-Time), 413

JNI (Java Native Interface), 402

jni directory, 403

jni node, 407

JNIEnv parameter, 403

jni.h file, 402–403

JRE (Java Runtime Environment), 28

JS_GETELEMENT method, 163

JS_SETELEMENT method, 163

JSON (JavaScript Object Notation),

parsing, 176–179

JSONObject.getInt() function, 179

JSONObject.getString() function, 179

Just-In-Time (JIT), 413

Index 430

■ K
k option, 54

keyalg option, 61

keyboardHidden parameter, 93

keypass option, 61

keysize option, 61

keystore option, 60, 62

keytool tool, 60–62

■ L
LANGUAGE_MODEL_FREE_FORM

option, 231

LANGUAGE_MODEL_WEB_SEARCH

option, 231

Launch button, 37

Launch Options dialog box, 36

launching applications, by other

applications, 338–340

layout class, 45–46

layout directory, 55, 152

layout_height attribute, 49, 372

layout_marginRight attribute, 50

layout_width attribute, 49, 372

LayoutInflater.inflate() method, 85

layouts, 127–132

orientation-specific, 128

size-specific, 128–132

lib directory, 248, 253

lib/armeabi/libNDKGreetings.so file, 407

lib/armeabi/libsanangeles.so file, 408

libc library, 5

libNDKGreetings.so library, 403–404,

407

libraries, 353–384

Android projects, 359–365

charting, 366–375

Java language JAR-based, 353–358

push messaging, 375–384

Libraries tab, Properties for

UseMathUtils dialog box, 358

libs directory, 54, 356, 404, 407–408

libs node, 358

libsanangeles.so file, 408

libs/wmqtt.jar file, 377

LibWebCore library, 5

lifecycle callback methods, 13

limit parameter, 280

LinearLayout class, 145

LinearLayout ViewGroup, 84

<LinearLayout> tag, 49

LineChart activity, 373

LineChart class, 366

<link> tag, 180

Linux shell, accessing, 388–389

ListAdapter.notifyDataSetChanged()

method, 279

Listen for Sharers button, 190, 197

Listen Mode, for Bluetooth, 194

ListView

customizing rows in, 138–142

gradient rows for, 116–117

making section headers in, 142–145

loadUrl() method, 164

local service, 8

local.db database, 299

Locale app, 385

local.properties file, 54

Location field, 408

Location Manager component, 4

location of device

hardware interactions for, 201–205

on map, 205–209

Location textfield, 406

LocationManager.GPS_PROVIDER

feature, 204

LocationManager.requestLocationUpda

tes() method, 204

LocationOverlay class, 214

■ M
main constant, 45

main.xml editor window, Eclipse IDE, 70

main.xml file, 45–47, 83–84, 89, 148,

152, 372, 405

main.xml node, 70

main.xml tab, Eclipse IDE, 70

Make command, 398

managedQuery() method, 289, 292,

298

Index 431

manifest files, 11–12

<manifest> tag, 11–13, 59

MapController.setCenter() method, 208

MapController.setZoom() method, 209

maps, 334–335

annotating, 209–215

current location, 215

making interactive, 214

location of device, 205–209

Maps API, 206–207, 215

Maps application, 335

MapView class, 206, 210

MapView.getController() method, 208

Market, Android, 337

masks, applying to images, 121–125

arbitrary mask image, 123–125

rounded corner Bitmap, 122–123

matches.get(0) method, 231

math module, 394

MathUtils class

creating with Eclipse, 355

creating with JDK, 354–355

mathutils node, 355

MathUtils.class file, 355

mathutils.jar file, 354–356, 358

MathUtils.java editor window, 355

MathUtils.java file, 354

MatrixCursor.newRow() method, 295

Max VM application heap size property,

35

maxLines attribute, 51

media, picking for device, 347–349

Media Framework libraries, 5

MediaController class, 238

MediaController view, 233

MediaController.MediaPlayerControl

interface, 236, 238

MediaController.show() method, 237

MediaPlayer.create() method, 233

MediaPlayer.OnCompletionListener

interface, 233

MediaStore class, saving to, 349–352

MediaStore.ACTION_VIDEO_CAPTURE

action, 220

MediaStore.EXTRA_OUTPUT field, 217

MediaStore.EXTRA_OUTPUT

parameter, 219–220

MediaStore.EXTRA_VIDEO_QUALITY

parameter, 219–220

MENU button, 38, 98, 100–101, 383,

386–387, 389

messaging, push, 375–384

microphone, recording audio, 227–229

MIMETYPE field, 346

minDistance parameter, 205

Minimum Framework Version filter, 412

minTime parameter, 204

mode parameter, 266

MODE_APPEND parameter, 268

MODE_PRIVATE parameter, 266, 268

MODE_WORLD_READABLE parameter,

266

MODE_WORLD_WRITEABLE

parameter, 266

MQTT library, 376

MqttClient.ping() method, 381

MqttSimpleCallback interface, 381

multiplier column, 300–301, 305

multipliers field, 44–45

MyJavaScriptInterface class, 163

myJsonObject.toString(2) method, 179

myRecording.3gp file, 229

MyTheme.One theme, 78

MyTheme.Two theme, 78

■ N
name attribute, 11

Name field, 355

name parameter, 177

Native Development Kit. See NDK

native keyword, 402

native-activity app, 407

native-app-glue library, 407

native-audio app, 408

native-plasma app, 408

NDK (Native Development Kit), 397–408

apps

NDKGreetings, 401–407

sample, 407–408

Index 432

exploring, 400–401

installing, 397–399

ndk-build script, 400, 407–408

ndk-gdb script, 400

NDKGreetings app

building and running

with Eclipse, 406–407

with SDK, 403–405

overview, 401–403

NDKGreetings class, 402

ndkgreetings directory, 403

NDKGreetings icon, 405

NDKGreetings project node, 407

NDKGreetings.apk file, 407

NDKGreetings-debug.apk file, 404–405

NDKGreetings.java file, 403, 406

NetworkInfo.getType() method, 198

networking, monitoring device

connectivity, 197–199

New Android Project dialog box, 67,

357, 361, 364, 406, 408

New dialog box, Eclipse IDE, 71

New Folder dialog box, 358

New Java Class dialog box, 355

New Java Package dialog box, 355

New Java Project dialog box, 355

New Project dialog box, 67, 357, 361,

364, 406, 408

New Tab menu item, 251

NewStringUTF() function, 403

Notification Manager component, 5

NotificationManager.cancel() method,

311

NotificationManager.cancelAll()

method, 311

NotificationManager.notify() method,

312

notifications, from background,

309–313

Notification.setLatestEventInfo()

method, 311

Notification.sound parameter, 311

nSquares field, 360

■ O
OFF state, 91

onActivityResult() method, 194, 220

onBind() method, 380

onBind(Intent) method, 22–24

onClick() method, 307

onClickListener interface, 47

onClick(View) method, 370

onConfigurationChanged() method,

92–93

onConnectionLost() method, 381

onContextItemSelected() method, 94

onCreate() method, 14, 20, 26, 237,

254, 275, 290, 295, 305, 416

onCreate(Bundle) method, 14–15, 17,

20, 24, 45–46, 53, 366, 369

onCreateContextMenu() method, 94

onDestroy() method, 14–15, 17, 20–21,

23, 25, 223, 381

onDraw(Canvas canvas) method, 361

onDraw(Canvas) method, 361

onEditorAction() method, 135

onGroupCollapsed() method, 145

onHandleIntent() method, 319, 321

OnItemSelectedListener interface, 47

onKeyDown() method, 98, 101

onKeyUp() method, 98, 102

onLocationChanged() method, 205

onPause() method, 14–17, 265, 279,

330, 416

onPostExecute() method, 165, 172

onPreExecute() method, 165

onProgressUpdate() method, 165

onRestart() method, 14–15

onRestoreInstanceState() method, 93

onResume() method, 14–16, 254, 265,

329

onSaveInstanceState() method, 93, 416

onSensorChanged() method, 243–244

onServiceConnected(ComponentName,

IBinder) method, 23–24

onServiceDisconnected(ComponentNa

me) method, 27

onStart() method, 14–15, 380

onStartCommand() method, 380

Index 433

onStartCommand(Intent, int, int)
method, 21

onStop() method, 14–15, 254
onTap() method, 214
onTextChanged() method, 103–104
onTouchEvent() method, 237
onUnbind(Intent) method, 23
onUpgrade() method, 276, 305
Open menu item, DroidDraw, 150
openAssetFile() method, 295
openContextMenu() method, 95
OpenGL | ES libraries, 5
openOrCreateDatabase() method, 285
operating system. See OS
operations

persistent background, 324–330
sticky, 319–324

options menu, customizing, 98–100
ORDER BY clause, 280
orderBy parameter, 280
org.apache.http.mime library, 175
org.eclipse.jdt.core.prefs file, 68
org.json package, 177
org.openintents.hardware.SensorManag

erSimulator class, 255
org.xml.sax.helpers.DefaultHandler

class, 180
orientation attribute, 49–50
orientation locking

dynamic, 89–91
overview, 88–89

orientation parameter, 90–91
orientation-specific layouts, 128
OS (operating system), 309–352

applications, 330–333
launching by other applications,

338–340
system, 333–337

contacts, 340–347
notifying from background, 309–313
operations

persistent background, 324–330
sticky, 319–324

periodic tasks, 313–314
picking device media, 347–349
saving to MediaStore class, 349–352

tasks
periodic, 315–318
timed, 313–314

overlay, for camera, 221–227
OverlayItem class, 210, 213

■ P
p option, 54
package attribute, 322
Package Explorer window, 69, 357
Package Manager component, 5
Package name textfield, 67, 357, 362,

364, 406
package option, 54
Packages list, 31
packet data unit (PDU), 185
padding attribute, 50
Paint class, 360
paint field, 360
Parameters.getSupportedPreviewSizes(

) method, 223
Parameters.setPreviewSize() method,

223
parsing CSV files, 274
Paste menu item, DroidDraw, 150
PATH environment variable, 27, 29, 36
path option, 54
PDF (Portable Document Format) files,

reading, 331–332
PDU (packet data unit), 185
peer-to-peer, Bluetooth connections,

188–194
PendingIntent parameter, 186
people table, 278
periodic tasks

API Level 1, 313
scheduling, 315–318

persistent background operations,
324–330

persisting data, 257–308
backing up, 281–285
databases

managing, 274–279
querying, 279–281
sharing, 286–292

Index 434

files

reading and writing, 266–271

using as resources, 271–274

preference screen, 257–262

sharing, 292–298

simple, 262–266

sqlite3 tool, 298–308

phone dialer, 334

pi constant, math module, 394

picking device media, 347–349

platforms, installing, 30–33

platforms directory, 29, 400

platform-tools directory, 33

playback

of audio, 232–237

of video

handling redirects for, 238–239

overview, 238

populate() method, 210

populateArrays() method, 305, 307

pop-up menu actions, 93–97

AlertDialog, 96–97

ContextMenu, 93–96

Portable Document Format (PDF) files,

reading, 331–332

PorterDuff.Mode parameter, 125

PorterDuff.Mode.SRC_IN mode, 121,

124

PorterDuff.Mode.SRC_IN transform,

122

position field, 44

position variable, 47

POST method, accessing REST API

using, 174–175

postAtTime() method, 315

postDelayed() method, 315

Preference element, 257

preference screen, 257–262

API Level 1, 257

loading defaults and accessing

preferences, 261–262

PreferenceActivity framework, 262

PreferenceCategory element, 257

PreferenceManager.setDefaultValues()

method, 259

Preferences category, 387

Preferences panel, Eclipse IDE, 66

PreferenceScreen element, 257

prepare() method, 236

Priced Status filter, 413

Proguard.cfg file, 54, 68

.project directory, 68

Project menu, DroidDraw, 150

Project name textfield, 355, 357, 361,

364, 406, 408

Project Selection dialog box, 365

prompt attribute, 51

Properties context menu item, 362, 364

Properties for GameBoard dialog box,

362

Properties for UseGameBoard dialog

box, 364

Properties for UseMathUtils dialog box,

358

Properties tab, DroidDraw, 151–152

protected void onMeasure(int

widthMeasureSpec, int

heightMeasureSpec) method,

361

<provider> tag, 12, 293, 296

public boolean exportImage(String

filename) method, 367

publishArrived() method, 381

publishing, preparing UC app for, 59–63

Publishing Status filter, 413

pull command, adb tool, 300

Pull method, 180

push command, adb tool, 299

push messaging, 375–384

example, 376–381

testing client, 381–384

putParcelableArrayListExtra() method,

336

Python app, 391

Python for Android icon, 393

Python Interpreter

installing, 389–393

scripting with, 394–395

python_r7.zip file, 392

Index 435

■ Q
QoS (quality of service), 381

query() method, 278, 286, 289, 292,

295

query parameter, 172

querying databases, 279–281

Quit menu item, DroidDraw, 150

■ R
R class, 45

radius attribute, 52

R.drawable.logo resource, 88

README.TXT file, 400

REAL type, 281

Really Small Message Broker (RSMB),

376

<receiver> tag, 12, 184, 316–317

receiving SMS messages, 184–185

recording audio, 227–229

redirects, for video URLs, 238–239

references, maintaining, 346–347

Refresh category, 387

Refresh Sources dialog box, 30–31

registerListener() method, 242

RelativeLayout class, 145

release() method, 233

release directory, 248

release mode, building in, 59–60

RELEASE.TXT file, 400

remapCoordinateSystem() method, 247

remote service, 8

remote.db database, 299

repository.xml file, 33

requestLocationUpdates() method, 326

Request.setAllowedNetworkTypes()

property, 170

Request.setAllowedOverRoaming()

property, 169

Request.setDescription() property, 169

Request.setDestinationInExternalFilesDi

r() method, 170

Request.setDestinationInExternalPublic

Dir() method, 170

Request.setDestinationUri() method,

170

Request.setTitle() property, 169

res directory, 54–55, 68, 152

res/anim/ directory, 112, 116

res/drawable directory, 87, 116,

120–121

res/drawable-hdpi/ directory, 87

res/drawable-hdpi/icon.png file, 87

res/drawable-hdpi/logo.png file, 88

res/drawable-ldpi/ directory, 87

res/drawable-ldpi/icon.png file, 87

res/drawable-ldpi/logo.png file, 87

res/drawable-mdpi/ directory, 87

res/drawable-mdpi/icon.png file, 87

res/drawable-mdpi/logo.png file, 87

res/drawable-xhdpi/ directory, 87

res/drawable-xhdpi/icon.png file, 87

reset() method, 233

res/layout/ directory, 99, 128

res/layout-land/ directory, 128

res/layout-land/main.xml file, 129

res/layout-large/ directory, 132

res/layout-large/main.xml file, 130

res/layout/main.xml file, 129

res/layout-port/ directory, 128

res/layout-xlarge/ directory, 132

resolution-independent assets, 86–88

Resource Manager component, 5

resources, using files as, 271–274

resources mode, 71

Resources.getConfiguration() method,

90

responsive apps, 415–416

REST API, accessing, 170–176

authentication for, 175–176

GET example, 172–173

POST example, 174–175

Restart Now button, Eclipse IDE, 66

RESULT_CANCELED status, 349

RESULT_OK status, 349

res/values/strings.xml file, 158

RFCOMM interfaces, 199

R.java file, 68

root activity, 19

<rotate> tag, 113

e

Index 436

RotateAnimation element, 110

rotation, handling manually, 91–93

RSMB (Really Small Message Broker),

376

RTC mode, 317

RTC_WAKEUP mode, 317

Run As dialog box, 71, 365, 407–408

Run menu item, 71

■ S
Samples directory, 248, 400, 408

san-angeles app, 408

san-angeles subdirectory, 408

Save & Exit menu item, 387

Save As menu item, DroidDraw, 150

Save menu item, DroidDraw, 150

saveState() method, 93

SAX method, 180

SAXParser.parse() method, 184

<scale> tag, 113

ScaleAnimation element, 110

scan mode, 194

scheduling, periodic tasks, 315–318

Screen Size filter, 412

SCREEN_ORIENTATION_UNSPECIFIE

D constant, 91

Scripting Layer for Android. See SL4A

scripts

with Python Interpreter, 394–395

shell, 387–388

Scripts menu, 386

Scripts screen, 388, 395

/sdcard/sl4a/scripts directory, 386

SDK (software development kit)

building and running NDKGreetings

app with, 403–405

installing, 27–30

SDK Manager: failed to install dialog

box, 31

SDK Manager tool, 30, 34, 36

SDK Manager.exe file, 29

SDK Readme.txt file, 30

seamless apps, 416–418

Search category, 387

Search Mode, 194–195

Search widget, Google, 38

section headers, in ListView, 142–145

Security Warning dialog box, Eclipse

IDE, 66

Select All menu item, DroidDraw, 150

Select Packages screen, 398

selection parameter, 280

selectionArgs parameter, 280

<selector> element, 119

sendTextMessage() method, 187

Sensor Simulator Java application,

248–249, 252, 254–255

Sensor Simulator Settings screen, 249

Sensor Simulator tab, 251

SensorDemo app, 248

SensorEventListener interface, 254–255

SensorManager class, 255

SensorManager interface, 240, 244

SensorManager.getOrientation()

method, 246

SensorManager.getSystemService()

method, 254

SensorManagerSimulator class, 255

SensorManagerSimulator.getSystemSer

vice() method, 254

SensorSimulator, 247–255

accessing from apps, 253–255

launching, 248–253

obtaining, 248

SensorSimulator directory, 248

SensorSimulator tool, 244

sensorsimulator-1.1.0-rc1 directory, 248

sensorsimulator-1.1.0-rc1.jar file,

248–249

sensorsimulator-1.1.0-rc1.zip link, 248,

253

sensorsimulator-lib-1.1.0-rc1.jar library,

248, 253

SensorSimulatorSettings directory, 248

SensorSimulatorSettings:

mSensorManager.connectSimul

ator() method, 254

SensorSimulatorSettings-1.1.0-rc1.apk

file, 248

<service> tag, 12, 322, 327, 380

ServiceConnection interface, 329

Index 437

ServiceConnection subclass, 23–25

services, 8

Service.START_STICKY constant, 21

Set Ids from Labels menu item,

DroidDraw, 150

<set> tag, 113, 116

setAnchorView() method, 237

setAxisValueX(String[]) method, 371

setCenter() method, 208

setContentView() method, 93, 367, 371

setContentView(R.layout.main) method,

45

setDataSource() method, 236, 240

setDefaultValues() method, 261

setDuration() method, 112

setImageUrl() method, 165

setItems() method, 97, 210

setItems(Aitem[]) method, 371

setNegativeButton() method, 97

setOutputFile() method, 229

setPlaceholderImage() method, 165

setRequestedOrientation() method,

90–91

setSelected() method, 107

.settings directory, 68

Settings.ACTION_LOCATION_SOURCE

_SETTINGS action, 204

setTitle() method, 97

setTitle(String) method, 371

setup.exe link, 398

setZoom() method, 208

SGL library, 5

sh hw.sh command, 389

shape attribute, 52

<shape> tag, 52, 119

SharedPreferences objects, sharing,

265–266

SharedPreferences.clear() method, 262

sharedUserId attribute, <manifest> tag,

13

sharing

application content, 332–333

data, 292–298

databases, 286–292

Shell menu item, 387

Shell option, 388

shell script, adding, 387–388

shells

accessing Linux, 388–389

adding script, 387–388

Short Message Service messages. See

SMS messages

shouldOverrideUrlLoading() method,

160–161, 163

show() method, 237

shrink.xml file, 113

SimpleActivity class, 17, 22, 24, 26, 41

SimpleActivity2 class, 17

SimpleBinder class, 24

SimpleBroadcastReceiver class, 25–26

SimpleContentProvider class, 26

SimpleService class, 19, 22

SimpleService getService() method, 24

size() method, 210

size-specific layouts, 128–132

SL4A (Scripting Layer for Android),

385–395

exploring, 386–389

accessing Linux shell, 388–389

adding shell script, 387–388

installing, 385

installing interpreters independently

of, 393

Python Interpreter

installing, 389–393

scripting with, 394–395

sl4a_r3.apk file, 385

SMS (Short Message Service)

messages, 336

receiving, 184–185

sending, 186–188

SMSManager service, 186–187

SMSManager.getDefault() method, 187

SmsManager.sendDataMessage()

method, 186

SmsManager.sendMultipartTextMessag

e() method, 186

SmsManager.sendTextMessage()

method, 186

SmsMessage.createFromPdu()

method, 185

Socket textfield, 251

Index 438

soft keyboard

customizing actions, 133–135

dismissing, 135–136

software development kit. See SDK

Software Updates dialog box, Eclipse

IDE, 66

Source tab, Eclipse IDE, 71

Sources directory, 400

speech recognition, 229–231

spnConversions.setAdapter(aa) method,

47

SQLite library, 5

sqlite> prompt, sqlite3 shell, 299

sqlite3 shell, 299

sqlite3 tool, and UC application,

300–308

SQLiteDatabase.insert() method, 275

SQLiteDatabase.query() method, 279

SQLiteOpenHelper.getReadableDataba

se() method, 275

SQLiteOpenHelper.getWritableDatabas

e() method, 275

squareDim field, 360

src directory, 55, 68

src node, 357, 364

SRC_IN transfer mode, 122

ss field, 24

SSL library, 6

startActivity() method, 17, 332–334,

336

startActivity(Intent) method, 17

startColor attribute, 52

startElement() method, 182

Starting Android Emulator dialog box,

37

startPreview() method, 227

startService() method, 329

startService(Intent) method, 20–22

startTracking() method, 326

state_checked attribute, 120

state_enabled attribute, 119

state_focused attribute, 120

state_pressed attribute, 119

state_selected attribute, 120

static void arraycopy(Object src, int

srcPos, Object dest, int

destPos, int length) method,

414

stdoutsub command, 384

sticky operations, 319–324

stopSelf() method, 21

stopSelfResult(int) method, 21

stopService(Intent) method, 21

stopTracking() method, 326

storage

external, 269–271

internal, 267–269

storeElement() method, 164

storepass option, 61

stretchColumns attribute, 372

<string> and </string> tags, 52

strings.xml editor window, Eclipse IDE, 71

strings.xml file, 52, 153, 373

strings.xml node, 71

strings.xml tab, Eclipse IDE, 71

styles.xml file, 77–78

subscribe() method, 381

<supports-screens> element, 412

Surface Manager library, 6

surfaceCreated() method, 223

system animations, 108–109

system applications, 333–337

Android Market, 337

API Level 1, 333

browser, 334

contact picker, 337

e-mail, 335–336

maps, 334–335

phone dialer, 334

SMS messages, 336

system themes, 77

System.arraycopy() method, 414

SystemClock.elapsedRealtime()

method, 318

System.currentTimeMillis() method, 351

System.loadLibrary() method, 402

■ T
t option, 54

<TableLayout> and </TableLayout>

tags, 372–373

Index 439

<TableRow> tag, 373

Take a Picture button, 216

takePicture() method, 226

target option, 54

tasks

periodic, 313–314

timed, 313–314

Telephony Manager component, 5

TelephonyManager.getDeviceId()

method, 380

telnet localhost console-port command,

40

test_AVD device, 37

testing clients, 381–384

Testing tab, 251–252

Tests directory, 400

text attribute, 50

Text textfield, DroidDraw, 151–152

TEXT type, 281

textColor attribute, 50

textSize attribute, 50

textStyle attribute, 50

TextView

monitoring changes in, 103–106

character counter example, 104

currency formatter example,

104–106

scrolling ticker for, 106–107

TextView element, 153

TextView widget, 103

<textview> tag, 50

TextView.addTextChangedListener()

method, 104

Theme.Dialog theme, 126

themes, 76–83

custom, 77–79

system, 77

this() notation, 147

this keyword, 46

timed tasks, 313–314

TITLE column, 351

<title> tag, 180

Toolchains directory, 400

tools directory, 29–30

toString() method, 179

trace startup option, 40

<translate> tag, 116

TranslateAnimation element, 110

ttsSpeak() function, 395

Tutorial menu item, DroidDraw, 150

two-libs app, 408

Type item, 10

■ U
UC (Units Converter) app, 41–53

creating, 53–55

developing with Eclipse IDE, 66–73

installing and running, 55–58

preparing for publishing, 59–63

sqlite3 tool and, 300–308

UC class, 44

uc subdirectory, 55

UC.apk file, 63

UC-debug.apk file, 55

UC.java file, 44, 55, 70

UC.java node, 70

uc-release-key.keystore file, 61

UC-unsigned.apk file, 60–63

UI (user interface)

animating view, 107–115

custom animations, 110–112

system animations, 108–109

using AnimationSet, 112–115

applying masks to images, 121–125

arbitrary mask image, 123–125

rounded corner Bitmap, 122–123

compound controls for, 145–148

custom state drawables, 119–121

Button and clickable widgets,

120

CheckBox and checkable

widgets, 120–121

customizing AdapterView empty

views, 136–138

customizing BACK button, 101–102

customizing options menu, 98–100

customizing windows, 75–83

in code, 79–80

FEATURE_CUSTOM_TITLE

feature, 80

Index 440

FEATURE_INDETERMINATE_PR

OGRESS feature, 81

FEATURE_LEFT_ICON feature,

81

FEATURE_NO_TITLE feature, 80

FEATURE_PROGRESS feature,

81

FEATURE_RIGHT_ICON feature,

82–83

with themes, 76–83

dialogs that persist, 125–127

displaying views, 83–85

drawables as backgrounds, 115–118

gradient ListView row, 116–117

rounded view group, 117–118

and DroidDraw, 148–153

creating simple screen with, 151

obtaining, 149

user interface of, 150–151

emulating HOME button, 102–103

handling rotation manually, 91–93

ListView

customizing rows in, 138–142

making section headers in,

142–145

monitoring click actions, 85–86

monitoring TextView changes,

103–106

character counter example, 104

currency formatter example,

104–106

orientation locking

dynamic, 89–91

overview, 88–89

pop-up menu actions, 93–97

AlertDialog, 96–97

ContextMenu, 93–96

resolution-independent assets,

86–88

scrolling TextView ticker, 106–107

situation-specific layouts, 127–132

example of, 128–132

orientation-specific, 128

size-specific, 128–132

soft keyboard

customizing actions, 133–135

dismissing, 135–136

unbindService(ServiceConnection)

method, 23

Units Converter app. See UC app

Units Converter icon, 56

Units textfield, 57

universally unique identifier (UUID),

discovering for device, 196

UnsupportedOperationException, 295

update() method, 286, 289, 293, 295

updateDirection() method, 246

upgrading databases, 276

Uri parameter, 332

Uri.getAuthority() method, 161

Uri.getPath() method, 349

UriMatcher class, 290

UriMatcher.addURI() method, 290

UriMatcher.match() method, 290

URL, displaying WebView from,

156–157

UseGameBoard node, 364

UseGameBoard project, 363

UseGameBoard.java node, 364

UseMathUtils node, 357–358

UseMathUtils project, 357

UseMathUtils.apk file, 358

UseMathUtils.java node, 357

user interface. See UI

user interface, of DroidDraw, 150–151

<uses-feature> element, 412

<uses-library> tag, 207

<uses-permission> tag, 12

<uses-sdk> element, 412

UUID (universally unique identifier),

discovering for device, 196

■ V
v option, 60, 62–63

validity option, 61

values directory, 55

values node, 71

verbose option, 62

version information, 59

versionCode attribute, 59, 66

versionName attribute, 59

Index 441

video

capture, from camera, 218–220

playback of

handling redirects for, 238–239

overview, 238

VideoView class, 238

View category, 387

View class, 360–361

View element, 85

View findViewById(int id) method, 46

View menu item, 388–389

View System component, 5

View.getWindowToken() method, 136

ViewGroup class, 145

views

animating, 107–115

custom animations, 110–112

system animations, 108–109

using AnimationSet, 112–115

displaying, 83–85

View.setAnimation() method, 108

View.setBackgroundDrawable()

method, 120

View.setBackgroundResource(R.drawa

ble.backgradient) method, 117

View.setBackgroundResource(R.drawa

ble.roundback) method, 122

View.startAnimation() method, 107

visible lifetime, 15

Vogel, Lars, 72

void

addTextChangedListener(Text

Watcher watcher) method, 48

void afterTextChanged(Editable s)

method, 48

void

beforeTextChanged(CharSeque

nces, int start, int count, int

after) method, 48

void onActivityResult(int requestCode,

int resultCode, Intent data)

method, 17

void onCreate() method, 19

void onCreate(Bundle bundle) method,

14

void onDestroy() method, 14, 19

void onItemSelected(AdapterView<?>

parent, View view, int position,

long id) method, 47

void onNewIntent(Intent intent) method,

17

void

onNothingSelected(AdapterVie

w<?> parent) method, 47

void onPause() method, 14

void onRebind(Intent intent) method, 23

void onReceive(Context context, Intent

intent) method, 25

void onRestart() method, 14

void onRestoreInstanceState(Bundle

savedInstanceState) method,

416

void onResume() method, 14

void onSaveInstanceState(Bundle

outState) method, 416

void

onServiceConnected(Compone

ntName className, IBinder

service) method, 23

void

onServiceDisconnected(Compo

nentName name) method, 25

void onStart() method, 14

void onStart(Intent intent, int startId)

method, 20

void onStop() method, 14

void onTextChanged(CharSequence s,

int start, int before, int count)

method, 48

void setAdapter(T) method, 47

void setAxisValueX(String[] labels)

method, 367

void setContentView(int layoutResID)

method, 45

void setDropDownViewResource(int

resource) method, 46

void setItems(Aitem[] items) method,

367

void setMeasuredDimension(int

measuredWidth, int

measuredHeight) method, 361

Index 442

void setOnItemClickListener

(AdapterView.OnItemClickListe

ner listener) method, 47

void setOnItemSelectedListener(

AdapterView.OnItemSelectedLi

stener listener) method, 47

void setTitle(String title) method, 367

void startActivityForResult(Intent intent,

int requestCode) method, 17

void startActivity(Intent intent) method,

17

void unbindService(ServiceConnection

conn) method, 23

■ W
Web content

accessing REST API, 170–176

authentication for, 175–176

GET example, 172–173

POST example, 174–175

downloading

in background, 166–170

and destinations for content,

169–170

image file, 163–166

parsing JSON, 176–179

parsing XML, 180–184

using WebView, 155–159

displaying from local source,

157–159

displaying from URL, 156–157

intercepting events for, 159–161

with JavaScript, 161–163

WebChromeClient class, 159

WebImageView class, 164

WebView, 155–159

displaying from local source,

157–159

displaying from URL, 156–157

intercepting events for, 159–161

with JavaScript, 161–163

WebView widget, 155, 158

WebView.addJavascriptInterface()

method, 161, 163

WebViewClient class, 159

WebViewClient.shouldOverrideUrlLoading

() method, 160

WebView.loadData() method, 158

WebView.loadUrl() method, 157

Welcome tab, Eclipse IDE, 68

WHERE clause, 280

Widgets tab, DroidDraw, 151–152

Width textfield, DroidDraw, 151–152

Window Manager component, 5

windows, 75–83

customizing in code, in code, 79–80

customizing with themes, 76–83

custom, 77–79

system, 77

FEATURE_CUSTOM_TITLE feature,

80

FEATURE_INDETERMINATE_PROG

RESS feature, 81

FEATURE_LEFT_ICON feature, 81

FEATURE_NO_TITLE feature, 80

FEATURE_PROGRESS feature, 81

FEATURE_RIGHT_ICON feature,

82–83

Wipe user data checkbox, 37

wmqtt.jar file, 376

Workspace Launcher dialog box,

Eclipse IDE, 65

WRITE_EXTERNAL_STORAGE

permission, 267, 269

writing files, 266–271

■ X, Y
XML (extensible markup language),

parsing, 180–184

xml directory, 259

XML node, 71

XMPP (Extensible Messaging and

Presence Protocol), 375

■ Z
zipalign tool, 30, 62–63

 i

Android Recipes

A Problem-Solution Approach

■ ■ ■

Dave Smith

Jeff Friesen

Android Recipes: A Problem-Solution Approach

Copyright © 2011 by Dave Smith and Jeff Friesen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3413-5

ISBN-13 (electronic): 978-1-4302-3414-2

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Tom Welsh
Technical Reviewer: Paul Connolly
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Jeff Olson, Jeffrey
Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Corbin Collins
Copy Editor: Tracy Brown
Compositor: MacPS, LLC
Indexer: BIM Indexing & Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

iv

Contents

Contents at a Glance .. iii

Foreword viii

About the Authors .. ix

About the Technical Reviewer .. x

Acknowledgments ... xi

Preface xii

■Chapter 1: Getting Started with Android ... 1
What Is Android? ... 1

History of Android ... 2

Android Architecture ... 3

App Architecture ... 7

Components ... 7

Intents .. 9

Manifest ... 11

App Package .. 13

Activities in Depth ... 13

Services in Depth .. 19

Broadcast Receivers in Depth 25

Content Providers in Depth 26

1–1. Installing the Android SDK 27

1–2. Installing an Android Platform 30

1–3. Creating an Android Virtual Device . .. 34

1–4. Starting the AVD 36

1–5. Introducing UC 41

1–6. Creating UC .. 53

1–7. Installing and Running UC . .. 55

1–8. Preparing UC for Publishing 59

1–9. Migrating to Eclipse 63

1–10. Developing UC with Eclipse 66

Summary .. 72

■ CONTENTS

v

■Chapter 2: User Interface Recipes ... 75
2–1. Customizing the Window ... 75

2–2. Creating and Displaying Views .. 83

2–3. Monitoring Click Actions .. 85

2–4. Resolution-Independent Assets ... 86

2–5. Locking Activity Orientation ... 88

2–6. Dynamic Orientation Locking ... 89

2–7. Manually Handling Rotation ... 91

2–8. Creating Pop-Up Menu Actions .. 93

2–9. Customizing Options Menu .. 98

2–10. Customizing Back Button ... 101

2–11. Emulating the Home Button ... 102

2–12. Monitoring TextView Changes ... 103

2–13. Scrolling TextView Ticker .. 106

2–14. Animating a View ... 107

2–15. Creating Drawables as Backgrounds ... 115

2–16. Creating Custom State Drawables ... 119

2–17. Applying Masks to Images ... 121

2–18. Creating Dialogs that Persist ... 125

2–19. Implementing Situation-Specific Layouts .. 127

2–20. Customizing Keyboard Actions .. 132

2–21. Dismissing Soft Keyboard .. 135

2–22. Customizing AdapterView Empty Views .. 136

2–23. Customizing ListView Rows ... 138

2–24. Making ListView Section Headers ... 142

2–25. Creating Compound Controls ... 145

Useful Tools to Know: DroidDraw ... 148

Obtaining and Launching DroidDraw ... 149

Exploring DroidDraw’s User Interface .. 150

Creating a Simple Screen .. 151

Summary .. 153

■Chapter 3: Communications and Networking .. 155
3–1. Displaying Web Information ... 155

3–2. Intercepting WebView Events .. 159

3–3. Accessing WebView with JavaScript ... 161

3–4. Downloading an Image File ... 163

3–5. Downloading Completely in the Background ... 166

3–6. Accessing a REST API .. 170

3–7. Parsing JSON ... 176

3–8. Parsing XML ... 180

3–8. Receiving SMS ... 184

3–9. Sending an SMS Message ... 186

3–10. Communicating over Bluetooth ... 188

3–11. Querying Network Reachability ... 197

Summary .. 198

■ CONTENTS

vi

■Chapter 4: Interacting with Device Hardware and Media 201
4–1. Integrating Device Location ... 201

4–2. Mapping Locations ... 205

4–3. Annotating Maps .. 209

4–4. Capturing Images and Video .. 216

4–5. Making a Custom Camera Overlay ... 221

4–6. Recording Audio ... 227

4–7. Adding Speech Recognition ... 229

4–8. Playing Back Audio/Video .. 231

4–9. Creating a Tilt Monitor ... 240

4–10. Monitoring Compass Orientation ... 243

Useful Tools to Know: SensorSimulator .. 247

Obtaining Sensor Simulator ... 248

Launching Sensor Simulator Settings and Sensor Simulator .. 248

Accessing Sensor Simulator from Your Apps .. 253

Summary .. 255

■Chapter 5: Persisting Data .. 257
5–1. Making a Preference Screen ... 257

5–2. Persisting Simple Data .. 262

5–3. Reading and Writing Files .. 266

5–4. Using Files as Resources ... 271

5–5. Managing a Database .. 274

5–6. Querying a Database .. 279

5–7. Backing Up Data .. 281

5–8. Sharing Your Database .. 286

5–9. Sharing Your Other Data .. 292

Useful Tools to Know: SQLite3 .. 298

SQLite3 and UC .. 300

Summary .. 308

■Chapter 6: Interacting with the System .. 309
6–1. Notifying from the Background .. 309

6–2. Creating Timed and Periodic Tasks ... 313

6–3. Scheduling a Periodic Task ... 315

6–4. Creating Sticky Operations .. 319

6–5. Running Persistent Background Operations .. 324

6–6. Launching Other Applications .. 330

6–7. Launching System Applications ... 333

6–8. Letting Other Applications Launch Yours ... 338

6–9. Interacting with Contacts ... 340

6–10. Picking Device Media ... 347

6–11. Saving to the MediaStore .. 349

Summary .. 352

■Chapter 7: Working with Libraries .. 353
7–1. Creating Java Library JARs .. 353

7–2. Using Java Library JARs .. 356

7–3. Creating Android Library Projects .. 359

7–4. Using Android Library Projects .. 363

■ CONTENTS

vii

7–5. Charting ... 366

7–6. Practical Push Messaging .. 375

Summary .. 384

■Appendix A: Scripting Layer for Android ... 385
Installing SL4A .. 385

Exploring SL4A .. 386

Adding a Shell Script ... 387

Accessing the Linux Shell .. 388

Installing the Python Interpreter ... 389

Scripting with Python .. 394

■Appendix B: Android NDK .. 397
Installing the NDK ... 397

Exploring the NDK ... 400

Greetings from the NDK .. 401

Building and Running NDKGreetings with the Android SDK ... 403

Building and Running NDKGreetings with Eclipse ... 406

Sampling the NDK ... 407

■Appendix C: App Design Guidelines ... 411
C–1. Designing Filtered Apps ... 411

C–2. Designing High-Performance Apps .. 413

C–3. Designing Responsive Apps .. 415

C–4. Designing Seamless Apps ... 416

Index ... 419

viii

Foreword

Dave Smith and Jeff Friesen have taken on a daunting task in writing this book. Knowing Dave for a long
time in the mobile development community, I know he labored over every chapter, debating the best
advice to give. How do I know this? Because I have the pleasure to work with Dave on a daily basis, and he
brings a methodical, measured, deliberative approach to the problems we solve shipping Android
software.

With the explosion of Android-powered devices in a very short period of time, a unique opportunity to
shape the future of mobile computing has arisen. Android powers phones, tablets, industrial appliances,
and in the future devices we have not yet imagined. This broad range of devices running on a common
platform allows software developers to write once and run everywhere. Within, Dave and Jeff present
examples that they have learned writing real-world Android applications to start you on your journey.
Now, take this information and build quality mobile experiences. When your app is launched, these
devices become your application. With the flood of mobile devices will come with it a flood of software,
much of which will be crap. Put yourself in the users’ shoes, solve a problem they have, and create
something to be proud of. Obsess on the details, your users will appreciate it — and remember, "Real
Artists Ship."

—Ben Reubenstein (@benr75)
benr@xcellentcreations.com

Xcellent Creations, Inc.

mailto:benr@xcellentcreations.com

ix

About the Authors

Dave Smith has been developing hardware and software for embedded
platforms since graduating from Colorado School of Mines in 2006 with
degrees in Electrical Engineering and Computer Science. Dave now focuses his
engineering efforts full-time in the mobile space, working as a consultant in
Denver, CO. Since 2009, Dave has worked on developing at all levels of the
Android platform, from writing user applications using the SDK to building and
customizing the Android source code. His favorite Android projects are those
that integrated custom hardware with consumer devices, or include building
Android for custom embedded platforms. In addition, Dave regularly

communicates via his development blog (blog.wiresareobsolete.com) and Twitter stream
(@devunwired).

Jeff Friesen is a freelance tutor and software developer with an emphasis on
Java (and now Android). In addition to writing this book, Jeff has written
numerous articles on Java and other technologies for JavaWorld
(www.javaworld.com), informIT (www.informit.com), java.net, and DevSource
(www.devsource.com). Jeff can be contacted via his website at tutortutor.ca.

http://www.javaworld.com
http://www.informit.com
http://www.devsource.com

x

About the Technical

Reviewer

Paul Connolly is the Director of Engineering for Atypon Systems' RightSuite
product line. RightSuite is an enterprise access-control and commerce solution
used by many of the world's largest publishing and media companies. Paul
enjoys designing and implementing high-performance, enterprise-class
software systems. He is also an active contributor in the open-source
community.

Prior to joining Atypon Systems, Paul worked as a senior software engineer
at Standard & Poor's, where he architected and developed key
communications systems. Paul is a Sun Certified Java Programmer, Sun
Certified Business Component Developer, and a Sun Certified Web

Component Developer. Paul lives in New York City with his wife Marina and daughter Olivia.

xi

Acknowledgments

First and foremost, I would like to thank my wife, Lorie, for her eternal patience and support
during the long hours I spent compiling and constructing the materials for this book. Next, many
thanks to my coauthor, Jeff Friesen, whose willingness to explore new options and paths to
Android development have given this book a diverse flavor that makes it great. To my friend and
colleague, Ben Reubenstein: thank you for taking time to provide the Foreword for the book, and
for making the intial introductions between myself and the team here at Apress. Finally, I send a
huge thank you to the team that Apress brought together to work with Jeff and me and make the
book the best it could possibly be: Steve Anglin, Corbin Collins, Tom Welsh, Paul Connolly, and
everyone else. Without your time and effort, this project would not even exist.

—Dave Smith

I thank Steve Anglin for contacting me to write this book, Corbin Collins for guiding me through
the various aspects of this project, Tom Welsh for helping me with the development of my
chapters, and Paul Connolly for his diligence in catching various flaws that would otherwise have
made it into this book. I also thank my coauthor Dave Smith for making a fantastic contribution
to this book.

—Jeff Friesen

xii

Preface

Welcome to Android Recipes!
If you are reading this book, you probably don’t need to be told of the immense opportunity

that mobile devices represent for software developers and users. In recent years, Android has
become one of the top mobile platforms for device users. This means that you, as a developer,
must know how to harness Android so you can stay connected to this market and the potential
that it offers. But any new platform brings with it uncertainty about best practices or solutions to
common needs and problems.

What we aim to do with Android Recipes is give you the tools to write applications for the
Android platform through direct e×amples targeted at the specific problems you are trying to
solve. This book is not a deep dive into the Android SDK, NDK, or any of the other tools. We don’t
weigh you down with all the details and theory behind the curtain. That’s not to say that those
details aren’t interesting or important. You should take the time to learn them, as they may save
you from making future mistakes. However, more often than not they are simply a distraction
when you are just looking for a solution to an immediate problem.

This book is not meant to teach you Java programming or even the building blocks of an
Android application. You won’t find many basic recipes in this book (such as how to display te×t
with Te×tView, for instance), as we feel these are tasks easily remembered once learned. Instead,
we set out to address tasks that developers, once comfortable with Android, need to do often, but
that are too comple× to remember or accomplish with a few lines of code.

Treat Android Recipes as a reference to consult, a resource-filled cookbook that you can
always open to find the pragmatic advice you need to get the job done quickly and well.

What Will You Find in the Book?
Although this book is not a beginner’s guide to Android, Chapter 1 offers an overview of those
Android fundamentals that are necessary for understanding the rest of the book’s content.
Chapter 1 also shows you how to set up your environment so that you can develop Android apps.
Specifically, it shows you how to install the Android SDK and Eclipse with the ADT Plugin.

As you become a seasoned Android app developer, you’re going to want to save time by not
reinventing the wheel. Instead, you’ll want to create and use your own libraries of reusable code,
or use the libraries that others have created. Chapter 7 shows you how to create and use your own
library code in the form of JAR-based libraries and Android library projects. In addition to
creating your own libraries, we’ll introduce a couple of Java libraries outside the Android SDK
that your applications can make use of.

In the intervening chapters, we dive into using the Android SDK to solve real problems. You
will learn tricks for effectively creating a user interface that runs well across device boundaries.
You will become a master of incorporating the collection of hardware (radios, sensors, and
cameras) that makes mobile devices such a unique platform. We’ll even discuss how to make the
system work for you, integrating with the services and applications provided by Google and the

■ PREFACE

xiii

various device manufacturers. Along the way, you’ll be introduced to some tools developed by
the community to help making development and testing of your applications easier.

Are you interested in scripting languages (such as Python or Ruby)? If so, you'll want to check
out Appendix A, which introduces you to Scripting Layer for Android. This special app lets you
install scripting language interpreters and scripts on a device, and then run these scripts, which
can speed up development.

Performance matters if you want your apps to succeed. Most of the time, this isn't a problem
because (as of version 2.2) Android's Dalvik virtual machine features a Just-In-Time compiler that
compiles Dalvik bytecode to the device's native code. However, if this isn’t enough, you’ll need to
leverage the Android NDK to boost performance. Appendix B offers you an introduction to the
NDK and demonstrates its usefulness in the context of an OpenGL example.

When creating apps, you need to ensure that they are performant, responsive, and seamless.
Apps that perform well drain less power from the battery, responsive apps avoid the dreaded
Application Not Responding dialog box, and seamless apps interact properly with other apps so as
not to annoy or confuse the user. Additionally, when you publish your app to Google’s Android
Market, you don’t want the app to be visible to incompatible devices. Instead, you want Android
Market to filter your app so that users of these incompatible devices cannot download (or even see)
the app. Appendix C rounds out the book by offering you guidelines for creating performant,
responsive, and seamless apps; and for taking advantage of filtering so that an app can be
downloaded (from Android Market) only by those users whose devices are compatible with the app.

Keep a Level Eye on the Target
Throughout the book, you will see that we have marked most recipes with the minimum API
Level that is required to support it. Most of the recipes in this book are marked API Level 1,
meaning that the code used can be run in applications targeting any version of Android since 1.0.
However, where necessary we make use of APIs introduced in later versions. Pay close attention
to the API Level marking of each recipe to ensure that you are not using code that doesn’t match
up with the version of Android your application is targeted to support.

	Cover
	Contents at a Glance
	Contents
	Foreword
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Preface
	What Will You Find in the Book?
	Keep a Level Eye on the Target

	Getting Started with Android
	What Is Android?
	History of Android
	Android Architecture
	App Architecture
	Components
	Activities
	Services
	Broadcast Receivers
	Content Providers

	Intents
	Manifest
	App Package

	Activities in Depth
	Services in Depth
	Broadcast Receivers in Depth
	Content Providers in Depth
	1–1. Installing the Android SDK
	Problem
	Solution
	How It Works

	1–2. Installing an Android Platform
	Problem
	Solution
	How It Works

	1–3. Creating an Android Virtual Device
	Problem
	Solution
	How It Works

	1–4. Starting the AVD
	Problem
	Solution
	How It Works

	1–5. Introducing UC
	Problem
	Solution
	How It Works

	1–6. Creating UC
	Problem
	Solution
	How It Works

	1–7. Installing and Running UC
	Problem
	Solution
	How It Works

	1–8. Preparing UC for Publishing
	Problem
	Solution
	How It Works

	1–9. Migrating to Eclipse
	Problem
	Solution
	How It Works

	1–10. Developing UC with Eclipse
	Problem
	Solution
	How It Works

	Summary

	User Interface Recipes
	2–1. Customizing the Window
	Problem
	Solution
	How It Works

	2–2. Creating and Displaying Views
	Problem
	Solution
	How It Works

	2–3. Monitoring Click Actions
	Problem
	Solution
	How It Works

	2–4. Resolution-Independent Assets
	Problem
	Solution
	How It Works

	2–5. Locking Activity Orientation
	Problem
	Solution
	How It Works

	2–6. Dynamic Orientation Locking
	Problem
	Solution
	How It Works

	2–7. Manually Handling Rotation
	Problem
	Solution
	How It Works

	2–8. Creating Pop-Up Menu Actions
	Problem
	Solution
	How It Works

	2–9. Customizing Options Menu
	Problem
	Solution
	How It Works

	2–10. Customizing Back Button
	Problem
	Solution
	How It Works

	2–11. Emulating the Home Button
	Problem
	Solution
	How It Works

	2–12. Monitoring TextView Changes
	Problem
	Solution
	How It Works

	2–13. Scrolling TextView Ticker
	Problem
	Solution
	How It Works

	2–14. Animating a View
	Problem
	Solution
	How It Works

	2–15. Creating Drawables as Backgrounds
	Problem
	Solution
	How It Works

	2–16. Creating Custom State Drawables
	Problem
	Solution
	How It Works

	2–17. Applying Masks to Images
	Problem
	Solution
	How It Works

	2–18. Creating Dialogs that Persist
	Problem
	Solution
	How It Works

	2–19. Implementing Situation-Specific Layouts
	Problem
	Solution
	How It Works

	2–20. Customizing Keyboard Actions
	Problem
	Solution
	How It Works

	2–21. Dismissing Soft Keyboard
	Problem
	Solution
	How It Works

	2–22. Customizing AdapterView Empty Views
	Problem
	Solution
	How It Works

	2–23. Customizing ListView Rows
	Problem
	Solution
	How It Works

	2–24. Making ListView Section Headers
	Problem
	Solution
	How It Works

	2–25. Creating Compound Controls
	Problem
	Solution
	How It Works

	Useful Tools to Know: DroidDraw
	Obtaining and Launching DroidDraw
	Exploring DroidDraw’s User Interface
	Creating a Simple Screen

	Summary

	Communications and Networking
	3–1. Displaying Web Information
	Problem
	Solution
	How It Works

	3–2. Intercepting WebView Events
	Problem
	Solution
	How It Works

	3–3. Accessing WebView with JavaScript
	Problem
	Solution
	How It Works

	3–4. Downloading an Image File
	Problem
	Solution
	How It Works

	3–5. Downloading Completely in the Background
	Problem
	Solution
	How It Works

	3–6. Accessing a REST API
	Problem
	Solution
	How It Works

	3–7. Parsing JSON
	Problem
	Solution
	How It Works

	3–8. Parsing XML
	Problem
	Solution
	How It Works

	3–8. Receiving SMS
	Problem
	Solution
	How It Works

	3–9. Sending an SMS Message
	Problem
	Solution
	How It Works

	3–10. Communicating over Bluetooth
	Problem
	Solution
	How It Works

	3–11. Querying Network Reachability
	Problem
	Solution
	How It Works

	Summary

	Interacting with Device Hardware and Media
	4–1. Integrating Device Location
	Problem
	Solution
	How It Works

	4–2. Mapping Locations
	Problem
	Solution
	How It Works

	4–3. Annotating Maps
	Problem
	Solution
	How It Works

	4–4. Capturing Images and Video
	Problem
	Solution
	How It Works

	4–5. Making a Custom Camera Overlay
	Problem
	Solution
	How It Works

	4–6. Recording Audio
	Problem
	Solution
	How It Works

	4–7. Adding Speech Recognition
	Problem
	Solution
	How It Works

	4–8. Playing Back Audio/Video
	Problem
	Solution
	How It Works

	4–9. Creating a Tilt Monitor
	Problem
	Solution
	How It Works

	4–10. Monitoring Compass Orientation
	Problem
	Solution
	How It Works

	Useful Tools to Know: SensorSimulator
	Obtaining Sensor Simulator
	Launching Sensor Simulator Settings and Sensor Simulator
	Accessing Sensor Simulator from Your Apps

	Summary

	Persisting Data
	5–1. Making a Preference Screen
	Problem
	Solution
	How It Works

	5–2. Persisting Simple Data
	Problem
	Solution
	How It Works

	5–3. Reading and Writing Files
	Problem
	Solution
	How It Works

	5–4. Using Files as Resources
	Problem
	Solution
	How It Works

	5–5. Managing a Database
	Problem
	Solution
	How It Works

	5–6. Querying a Database
	Problem
	Solution
	How It Works

	5–7. Backing Up Data
	Problem
	Solution
	How It Works

	5–8. Sharing Your Database
	Problem
	Solution
	How It Works

	5–9. Sharing Your Other Data
	Problem
	Solution
	How It Works

	Useful Tools to Know: SQLite3
	SQLite3 and UC

	Summary

	Interacting with the System
	6–1. Notifying from the Background
	Problem
	Solution
	How It Works

	6–2. Creating Timed and Periodic Tasks
	Problem
	Solution
	How It Works

	6–3. Scheduling a Periodic Task
	Problem
	Solution
	How It Works

	6–4. Creating Sticky Operations
	Problem
	Solution
	How It Works

	6–5. Running Persistent Background Operations
	Problem
	Solution
	How It Works

	6–6. Launching Other Applications
	Problem
	Solution
	How It Works

	6–7. Launching System Applications
	Problem
	Solution
	How It Works

	6–8. Letting Other Applications Launch Yours
	Problem
	Solution
	How It Works

	6–9. Interacting with Contacts
	Problem
	Solution
	How It Works

	6–10. Picking Device Media
	Problem
	Solution
	How It Works

	6–11. Saving to the MediaStore
	Problem
	Solution
	How It Works

	Summary

	Working with Libraries
	7–1. Creating Java Library JARs
	Problem
	Solution
	How It Works

	7–2. Using Java Library JARs
	Problem
	Solution
	How It Works

	7–3. Creating Android Library Projects
	Problem
	Solution
	How It Works

	7–4. Using Android Library Projects
	Problem
	Solution
	How It Works

	7–5. Charting
	Problem
	Solution
	How It Works

	7–6. Practical Push Messaging
	Problem
	Solution
	How It Works

	Summary

	Scripting Layer for Android
	Installing SL4A
	Exploring SL4A
	Adding a Shell Script
	Accessing the Linux Shell

	Installing the Python Interpreter
	Scripting with Python

	Android NDK
	Installing the NDK
	Exploring the NDK
	Greetings from the NDK
	Building and Running NDKGreetings with the Android SDK
	Building and Running NDKGreetings with Eclipse

	Sampling the NDK

	App Design Guidelines
	C–1. Designing Filtered Apps
	Problem
	Solution

	C–2. Designing High-Performance Apps
	Problem
	Solution

	C–3. Designing Responsive Apps
	Problem
	Solution

	C–4. Designing Seamless Apps
	Problem
	Solution

	Unknown

	Index
	Special Characters
	A
	B
	C
	D
	E
	G
	F
	I
	H
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X, Y
	Z

