
www.allitebooks.com

http://www.allitebooks.org

Applied XML Programming for Microsoft .NET

Dino Esposito

Microsoft Press
A Division of Microsoft Corporation One Microsoft Way Redmond, Washington 98052-6399

Copyright © 2003 by Dino Esposito

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data [pending.]

Esposito, Dino, 1965-

 Applied XML Programming for Microsoft .NET / Dino Esposito

 p. cm.

 Includes index.
ISBN 0-7356-1801-1

1. XML (Document markup language) 2. Microsoft .NET. I. Title.

QA76.76.H94 E85 2002

005.7'2--dc21 2002029546

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 7 6 5 4 3 2

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.
Microsoft Press books are available through booksellers and distributors worldwide. For
further information about international editions, contact your local Microsoft Corporation
office or contact Microsoft Press International directly at fax (425) 936-7329. Visit our
Web site at www.microsoft.com/mspress. Send comments to:
<mspinput@microsoft.com>.

ActiveX, IntelliSense, JScript, Microsoft, Microsoft Press, MS-DOS, Visual Basic, Visual
Studio, Win32, Windows and Windows NT are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries. Other
product and company names mentioned herein may be the trademarks of their
respective owners.

The example companies, organizations, products, domain names, e-mail addresses,
logos, people, places, and events depicted herein are fictitious. No association with any
real company, organization, product, domain name, e-mail address, logo, person,
place, or event is intended or should be inferred.
Acquisitions Editor: Anne Hamilton
Project Editor: Lynn Finnel
Technical Editor: Marc Young

Body Part No. X08-81851

www.allitebooks.com

http://www.allitebooks.org

Dino Esposito

Dino Esposito is Wintellect's ADO.NET and XML expert and a trainer and consultant
who specializes in .NET and Web applications. A frequent speaker at popular industry
events such as Microsoft TechEd, VSLive!, DevConnections, and WinSummit, Dino is
also a prolific author writing the monthly "Cutting Edge" column for MSDN Magazine
and the "Diving into Data Access" column for MSDN Voices. He also regularly
contributes to a number of other magazines, including Visual Studio Magazine, CoDe
Magazine, and asp.netPRO Magazine (http://www.aspnetpro.com). During a few rare
moments of spare time, Dino cofounded http://www.vb2themax.com, a Web site for
Visual Basic and Visual Basic .NET developers.

Fond of sea and beaches, Dino lives in Italy, precisely in the Rome area, with his wife,
Silvia, and two children—Francesco and Michela.
To Silvia, Francesco, and Michela
Acknowledgments

I can say it now: Several times I was about to start an XML book project, but then for
one reason or another the project never took off. So I'd like to start by saying thanks to
the people who believed in a fairly confused book idea and worked to make it happen.
These people are Anne Hamilton and Jeannine Gailey. (By the way, all the best,
Jeannine!)

Lynn Finnel brought the usual fundamental contribution as project editor. As Lynn
originally described her role in the first e-mail we exchanged, being an editor is a
delicate art, as you have to reconcile the needs of many people while meeting your own
deadlines. Thanks again, Lynn.

And a warm thanks goes to Jennifer Harris, who edited the book, and technical
reviewers Marc Young, Jim Fuchs, Julie Xiao, and Jean Ross.
Other people were involved with this book, mostly as personal reviewers. Francesco
Balena tested some of the code and provided a lot of insight. In particular, Giuseppe
Dimauro and Giuseppe Guerrasio helped to figure out the intricacies of the
XmlSerializer class, and Ralph Westphal did the same with custom readers. Kenn
Scribner has been the ideal extension to the MSDN documentation about Web

www.allitebooks.com

http://www.allitebooks.org

services. Rainer Heller of Siemens offered a really interesting perspective on Web
services interoperability. It was nice to discuss Web services in the more general
context of a conversation based on the World Football Championships—an indirect
demonstration that Web services are still interoperable today!

Thanks to all the Wintellect guys, and Jason Clark and Jeffrey Richter, in particular, for
their friendly and effective support.

And now my family. I've noticed that many authors, when writing acknowledgments,
promise their families that they will never repeat the experience. Although rewarding for
themselves, they explain, writing a book is too hard on the rest of the family to be
repeated. I'll be honest and sincere here. So, Silvia, and Francesco and Michela, set
your mind at rest. I will do all I can to write even more books. But I love you all beyond
imagination.

—'til the next book
Dino

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

 Applied XML Programming for Microsoft .NET

 Introduction

 Part I - XML Core Classes in the .NET Framework

 Chapter 1 - The .NET XML Parsing Model

 Chapter 2 - XML Readers

 Chapter 3 - XML Data Validation

 Chapter 4 - XML Writers

 Part II - XML Data Manipulation

 Chapter 5 - The XML .NET Document Object Model

 Chapter 6 - XML Query Language and Navigation

 Chapter 7 - XML Data Transformation

 Part III - XML and Data Access

 Chapter 8 - XML and Databases

 Chapter 9 - ADO.NET XML Data Serialization

 Chapter 10 - Stateful Data Serialization

 Part IV - Applications Interoperability

 Chapter 11 - XML Serialization

 Chapter 12 - The .NET Remoting System

 Chapter 13 - XML Web Services

 Chapter 14 - XML on the Client

 Chapter 15 - .NET Framework Application Configuration

 Afterword

 Index

 List of Figures

 List of Tables

 List of Sidebars

www.allitebooks.com

http://www.allitebooks.org

 1

Introduction

It was about five years ago, a few days after I finished my first book, when the publisher
came to me with a rather enticing proposal: "Why don't you start thinking about a new
book?" Now I realize that all publishers make this sort of proposition, but at the time the
proposal was definitely alluring, and a clear signal—I thought—of appreciation.
"Because you seem to do so well with new technologies," they said, "we'd like you to
have a look at this new stuff called XML." It was the first time I had heard about XML,
which was not yet a W3C recommendation.

A lot of things have happened in the meantime, and XML did go a long way. You can
be sure that, as I write this, a thousand or more IT managers are giving presentations
that include XML in one way or another. Not many years ago, at a software conference,
I heard a product manager emphasize the key role played by XML in the suite of
products he was presenting. After the first dozen sentences to the effect that "this
feature wouldn't have been possible without XML," one of the attendees asked a candid
question: "Is there a function in which you didn't use XML?" The presenter's genuine
enthusiasm led everyone there (including myself) to believe that programming would no
longer be possible without a strong knowledge of XML. We were more than a little
reassured by the speaker's answer: "Oh no, we didn't use XML in the compiler."

Regardless of the hype that often accompanies it, XML truly is a key element in
software. Today, XML is more than just a software technology. XML is a fundamental
aspect of all forms of programming, as essential as water and air to every human being.
Just as human beings realistically need some infrastructure to take advantage of water
and air, programming forms of life must be supported by software tools to be effective
and express their potential in terms of interoperability, flexibility, and information. For
XML, the most important of these tools is the parser.

An XML parser reads in XML text and outputs a memory representation of the contents.
The input for an XML parser is always plain and platform-independent text, although
potentially encoded in a variety of character sets, whereas the output of an XML parser
is strictly tied to the underlying hardware and software platform. Depending on the
operating system and the programming environment of choice, an XML parser can
generate a Component Object Model (COM) object as well as a Java or a JScript class.
No matter the kind of output, however, the end result is XML data in a programmable
form.

The growing level of integration and orchestration that partner applications need makes
the exchanged XML code more and more sophisticated and often requires the use of
specialized dialects like Simple Object Access Protocol (SOAP) and XPath. As a result,
XML programming requires ad hoc tools for reading and writing in these dialects; all the
better if the tools are tightly integrated into some sort of programming framework.

Effective XML programming requires that you be able to generate XML in a more
powerful way than merely concatenating strings. The XML API must be extensible
enough to accommodate pluggable technologies and custom functionalities. And it
must be serializable and integrate well with other elements of data storage and
exchange, including databases, complex data types (arrays, tables, and lists), and—
why not?—visual user interface elements. In simple terms, XML must no longer be a
distinct API bolted onto the core framework, but instead be a fully integrated member of
the family. This is just what XML is in the Microsoft .NET Framework. And this book is
about XML programming with the .NET Framework.

www.allitebooks.com

http://www.allitebooks.org

 2

What Is This Book About?

This book explores the array of XML tools provided by the .NET Framework. XML is
everywhere in the .NET Framework, from remoting to Web services, and from data
access to configuration. In the first part of this book, you'll find in-depth coverage of the
key classes that implement XML in the .NET platform. Readers and writers, validation,
and schemas are discussed with samples and reference information. Next the book
moves on to XPath and XSL Transformations (XSLT) and the .NET version of the XML
Document Object Model (XML DOM).

The final part of this book focuses on data access and interoperability and touches on
SQL Server 2000 and its XML extensions and .NET Remoting and its cross-platform
counterpart—XML Web services. You'll also find a couple of chapters about XML
configuration files and XML data islands and browser/deployed managed controls.

What Does This Book Cover?

This book attempts to answer the following common questions:
 Can I read custom data as XML?
 What are the guidelines for writing custom XML readers?
 Is it possible to set up validating XML writers?
 How can I extend the XML DOM?
 Why should I use the XPath navigator object whenever possible?
 Can I embed my own managed classes in an XSLT script?
 How can I serialize a DataSet object efficiently?
 What is the DiffGram format?
 Are the SQL Server 2000 XML Extensions (SQLXML) worth using?
 Why does the XML serializer use a dynamic assembly?
 When should I use Web services instead of .NET Remoting?
 How can I embed managed controls in Web pages?
 How can managed controls access client-side XML data islands?
 How do I insert my own XML data in a configuration file?

All of the sample files discussed in this book (and even more) are available through the
Web at the following address: http://www.microsoft.com/mspress/books/6235.asp. To
open the Companion Content page, click on the Companion Content link in the More
Information box on the right side of the page.

Although all the code shown in this book is in C#, the sample files are available both in
C# and in Microsoft Visual Basic .NET. Here are some of the more interesting
examples:
 An XML reader that reads CSV files and exposes their contents as XML
 An extended version of the XML DOM that detects changes to the disk file and

automatically refreshes its data
 A Web service that offers dynamically created images
 An XML reader class with writing capabilities
 A class that serializes DataTable objects in a true binary format
 A tool to track the behavior of the XML serializer class
 A ListView control that retrieves its data from the host HTML page

These and other samples will get you on your way to XML in the .NET Framework.

www.allitebooks.com

http://www.allitebooks.org

 3

What Do I Need to Use This Book?

Most of the examples in this book are Windows Forms or console applications. The key
requirements for running these applications are the .NET Framework and Microsoft
Visual Studio .NET. You also need to have SQL Server 2000 installed to make most of
the samples work, and a few examples make use of Microsoft Access 2000 databases.
The SQLXML 3.0 extensions are required for the samples in Chapter 8. The code has
been tested with the .NET Framework SP1.

The SQL Server examples in this book assume that the sa account uses a blank
password, although the use of such a blank password is strongly discouraged in any
professional development environment. If your SQL Server sa account doesn't use a
blank password, you'll need to add the sa password to the connection strings in the
source code. For example, if your sa password is "Hello", the following connection
string provides access to the Northwind database:

string nwind =
"SERVER=localhost;UID=sa;pswd=Hello;DATABASE=northwind;";

Some of the applications in this book require SOAP Toolkit 2.0 and SQLXML 3.0.
These products are available at the following locations:

 SOAP Toolkit 2.0

http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/sample.
asp?url=/MSDN-FILES/027/001/580/msdncompositedoc.xml

 SQLXML 3.0
http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/sample.
asp?url=/MSDN-FILES/027/001/824/msdn-compositedoc.xml

Contacting the Author

Please feel free to send any questions about this book directly to the author. Dino
Esposito can be reached via e-mail at one of the following addresses:

 <dinoe@wintellect.com>
 <desposito@vb2themax.com>

In addition, you can contact the author at the Wintellect (http://www.win-tellect.com) and
VB2-The-Max (http://www.vb2themax.com) Web sites.

Support

Every effort has been made to ensure the accuracy of this book and the contents of the
sample files. Microsoft Press provides corrections for books through the Web at the
following address:
http://www.microsoft.com/mspress/support/

To connect directly to the Microsoft Press Knowledge Base and enter a query regarding
a question or issue that you might have, go to:
http://www.microsoft.com/mspress/support/search.asp

If you have comments, questions, or ideas regarding this book or the sample files,
please send them to Microsoft Press using either of the following methods:

Postal mail:

www.allitebooks.com

http://www.allitebooks.org

 4

Microsoft Press
Attn:Microsoft .NET XML Programming Editor
One Microsoft Way
Redmond, Wa 98052-6399

E-mail:

<MSPINPUT@MICROSOFT.COM>

Please note that product support is not offered through the above mail addresses. For
support information, please visit the Microsoft Product Support Web site at
http://support.microsoft.com

www.allitebooks.com

http://www.allitebooks.org

 5

Part I: XML Core Classes in the .NET Framework

Chapter List

Chapter 1: The .NET XML Parsing Model
Chapter 2: XML Readers
Chapter 3: XML Data Validation
Chapter 4: XML Writers

Part Overview

www.allitebooks.com

http://www.allitebooks.org

 6

Chapter 1: The .NET XML Parsing Model

Overview

XML is certainly a hot topic in the software community these days. As you read this,
probably a thousand or more IT managers are giving presentations that include XML in
one way or another. In fact, it's becoming almost redundant to emphasize the effect that
the use of XML can have on applications.

Today, XML is a natural element of all forms of programming life, just as water, sun,
and minerals are fundamental resources for every human being. To take full advantage
of XML, applications need some infrastructure built into the operating system or into the
underlying software platform. Normally, an XML infrastructure takes the form of tools
that provide for parsing, document validation, schema design, and transformations.

The Microsoft .NET Framework provides a comprehensive set of classes that let you
work with XML documents and related technologies at various levels and in strict
accordance with the most recent World Wide Web Consortium (W3C) standards and
recommendations. The XML support available in the .NET Framework covers XML 1.0,
XML namespaces, Document Object Model (DOM) Level 2 Core, XML Schema
Definition (XSD) Language, Extensible Stylesheet Language Transformations (XSLT),
and XPath expressions. In addition, XML core classes are tightly integrated with other
key portions of the .NET Framework, including data access, serialization, and
applications configuration.

In this chapter, we'll take an overall look at XML as it is used in the .NET Framework. In
particular, we'll focus on the new and innovative parsing model based on the concept of
reader components. This first chapter is aimed at providing you with the big picture of
the .NET Framework XML API, the key elements of transition from the previous
Component Object Model (COM)-based Win32 API, and a bird's-eye view of the
interconnections between XML and various parts of the .NET Framework.

XML in the .NET Framework

The .NET Framework XML core classes can be categorized according to their
functions: reading and writing documents, validating documents, navigating and
selecting nodes, managing schema information, and performing document
transformations. The assembly in which the whole XML .NET Framework is
implemented is system.xml.dll.

The most commonly used namespaces are listed here:
 System.Xml
 System.Xml.Schema
 System.Xml.XPath
 System.Xml.Xsl

The .NET Framework also provides for XML object serialization. The classes involved
with this functionality are grouped in the System.Xml.Serialization namespace. XML
serialization writes objects to, and reads them from, XML documents. This kind of
serialization is particularly useful over the Web in combination with the Simple Object
Access Protocol (SOAP) and within the boundaries of .NET Framework XML Web
services.

 7

Related XML Standards
Table 1-1 lists the XML-related standards that have been implemented in the .NET
Framework. The table also provides the official URL for each standard for further
reference.

Table 1-1: W3C Standards Supported in the .NET Framework

Standard Reference

XML 1.0 http://www.w3.org/TR/1998/REC-
xml-19980210

XML namespaces http://www.w3.org/TR/REC-xml-
names

XML Schema http://www.w3.org/TR/xmlschema-
2

DOM Level 1 and Level 2 Core http://www.w3.org/TR/DOM-Level-
2

XPath http://www.w3.org/TR/xpath

XSLT http://www.w3.org/TR/xslt

SOAP 1.1 http://www.w3.org/TR/SOAP

As a data exchange technology, XML is fully and tightly integrated into the .NET
Framework. Table 1-2 provides a quick schematic view of the main areas of the .NET
Framework in which significant traces of XML are clearly visible. Each area includes
numerous classes and provides a set of application-level functions.

Table 1-2: Areas of the .NET Framework in Which XML Is Key

Category Description

ADO.NET Data container objects (for example, the DataSet object)
are always transferred and remoted via XML. The .NET
Framework also provides for two-way synchronized
binding between data exposed in tabular format and
XML format.

Configuration Application settings are stored in XML files, making use
of predefined and user-defined section readers. (More
on readers later.)

Remoting Remote .NET Framework objects can be accessed by
using SOAP packets to prepare and perform the call.

Web services SOAP is a lightweight XML protocol that Web services
use for the exchange of information in a decentralized,
distributed environment. Typically, you use SOAP to
invoke methods on a Web service in a platform-
independent fashion.

XML parsing The core classes providing for XML parsing and
manipulation through both the stream-based API and the
XML Document Object Model (XMLDOM).

XML serialization Supplies the ability to save and restore living instances
of objects to and from XML documents.

 8

Although not strictly part of the .NET Framework, another group of classes deserves
mention: the managed classes defined in the SQL Server 2000 XML Extensions
(SQLXML). SQLXML 3.0 extends the XML capabilities of SQL Server 2000 by
introducing Web services support. SQLXML 3.0 makes it possible for you to export
stored procedures as SOAP-based Web services and also extends ADO.NET
capabilities with server-side XPath queries and XML views. SQLXML 3.0 is available as
a separate download, but it seamlessly integrates with the existing installation of the
.NET Framework. We'll look at SQLXML 3.0 in more detail in Chapter 8.

In general, the entire set of XML classes provided with the .NET Framework offers a
standards-compliant, interoperable, extensible solution to today's software development
challenges. This support is not a tacked-on API but a true part of the .NET Framework.

Note Almost all of today's XML parsers support the latest W3C

specification for the DOM Level 2 Core. The current specification
does not define a standard interface to persist and restore contents,
however, although the most popular XML parsers, such as
Microsoft's XML Core Services (MSXML)—formerly known as the
Microsoft XML Parser—and some others based on Java, already
have their own ways to persist objects to streams and to restore
objects from them. These mechanisms have yet to be considered
as custom and platform-specific extensions. An official API for
serializing documents to and from XML format will not be available
until DOM Level 3 Core achieves the status of a W3C
recommendation. As of summer 2002, DOM Level 3 Core is
qualified as a work in progress. The publicly available draft defines
the specification for a pair of Load and Save methods designed to
enable loading XML documents into a DOM representation and
saving a DOM representation as an XML document. For more
information, refer to http://www.w3.org/TR/2002/WD-DOM-Level-3-
Core-20020409.
A known parser that already provides an experimental
implementation of DOM Level 3 Core is IBM's XML Parser for Java
(Xml4J). See http://www.alphaworks.ibm.com/tech/xml4j for more
information.

Core Classes for Parsing

Regardless of the underlying platform, the available XML parsers fall into one of two
main categories: tree-based parsers and event-based parsers. Each parser category is
designed according to a different philosophical approach and, subsequently, has its
own pros and cons. The two categories are commonly identified with their two most
popular implementations: XMLDOM and Simple API for XML (SAX). The XMLDOM
parser is a generic tree-based API that renders an XML document as an in-memory
structure. The SAX parser provides an event-based API for processing each significant
element in a stream of XML data.

Conceptually speaking, a SAX parser is diametrically opposed to an XMLDOM parser,
and the gap between the two models is indeed fairly large. XMLDOM seems to be
clearly defined in its set of functionalities, and there is not much more one can
reasonably expect from the evolution of this model. Regardless of whether you like the
XMLDOM model or find it suitable for your needs, you can't really expect to radically
improve or change its way of working. In a certain sense, the down sides of the

 9

XMLDOM model (memory footprint and bandwidth required to process large
documents) are structural and stem directly from design choices.

SAX parsers work by letting client applications pass living instances of platform-specific
objects to handle parser events. The parser controls the whole process and pushes
data to the application, which is in turn free to accept or simply ignore the data. The
SAX model is extremely lean and features a limited complexity in space.

The .NET Framework provides full support for the XMLDOM parsing model but not for
the SAX model. The set of .NET Framework XML core classes supports two parser
models: XMLDOM and a new model called an XML reader. The lack of support for SAX
parsers does not mean that you have to renounce the functionality that a SAX parser
can bring, however. All the functions of a SAX parser can be easily and even more
effectively implemented using an XML reader. Unlike a SAX parser, a .NET Framework
XML reader works under the total control of the client application, enabling the
application to pull out only the data it really needs and skip over the remainder of the
XML stream.
Readers are based on .NET Framework streams and work in much the same way as a
database cursor. Interestingly, the classes that implement this cursor-like parsing model
also provide the substrate for the .NET Framework implementation of the XMLDOM
parser. Two abstract classes—XmlReader and XmlWriter—are at the very foundation of
all .NET Framework XML classes, including XMLDOM classes, ADO.NET-related
classes, and configuration classes. So in the .NET Framework you have two possible
approaches when it comes to processing XML data. You can use either any classes
directly built onto XmlReader and XmlWriter or classes that expose information through
the well-known XMLDOM.

The set of XML core classes also includes tailor-made class hierarchies to support
other related XML technologies such as XSLT, XPath expressions, and the Schema
Object Model (SOM).
We'll look at XML core classes and related standards in the following chapters. In
particular, Chapter 2, Chapter 3, Chapter 4, and Chapter 5 describe the core classes
and parsing models. Chapter 6 and Chapter 7 examine the related standards, such as
XPath and XSL.

XML and ADO.NET

The interaction between ADO.NET classes and XML documents takes one of two
forms:

 Serialization of ADO.NET objects (in particular, the DataSet object) to
XML documents and corresponding deserialization. Data can be saved to
XML in a variety of formats, with or without schema information, as a full
snapshot of the in-memory data including pending changes and errors, or
with just the current instance of the data.

 A dual-access model that lets you access and update the same piece of
data either through a hierarchical programming interface or using the
ADO.NET relational API. Basically, you can transform a DataSet object
into an XMLDOM object and view the XMLDOM's subtrees as tables
merged with the DataSet object's tables.

The ADO.NET DataSet class represents the only .NET Framework object that can be
natively saved to XML. The XML representation of a DataSet object can have two
different layouts: the ADO.NET normal form and the DiffGram format. In particular, the
DiffGram format describes the history of the data and all recent changes. Each
changed row in each table is represented by two nodes: the first node contains the

 10

snapshot of the row as it was originally read, and the second node contains the current
values. The DiffGram represents a snapshot of the DataSet state and contents at a
given moment. To write DiffGrams, ADO.NET uses an XmlWriter object.
The integration of and interaction between XML and ADO.NET classes is discussed in
Chapter 8.

Application Configuration

Before Microsoft Windows 95, applications stored configuration settings to a text file
with a .ini extension. INI files store information using name/value pairs grouped under
sections. Ultimately, an INI file is a collection of sections, with each section consisting of
any number of name/value pairs.
Windows 95 revamped the role of the system registry—a centralized data repository
originally introduced with Windows NT. The registry is a collection of binary files that the
operating system manages in exclusive mode. Client applications can read and write
the contents of the registry only by using a tailor-made API. The registry works as a
kind of hierarchical database consisting of root nodes (also known as hives), nodes,
and entries. Each entry is a name/ value pair.

All system, component, and application settings are supposed to be stored in the
registry. The registry continues to increase in size, contributing to the creation of a
configuration subsystem with a single (and critical) point of failure. More recently,
applications have been encouraged to store custom settings and preferences in a local
file stored in the application's root folder. For .NET Framework applications, this
configuration file is an XML file written according to a specific schema.
In addition, the .NET Framework provides a specialized set of classes to read and write
settings. The key class is named AppSettingsReader and works as a kind of parser for
a small fragment of XML code—mostly a node or two with a few attributes.

ASP.NET applications store configuration settings in a file named web.config that is
located in the root of the application's virtual folder. Windows Forms applications, on
the other hand, store their preferences in a file with the same name as the executable
plus a .config extension—for example, myprogram.exe.config. The CONFIG file must
be available in the same folder as the main executable. The schema of the CONFIG file
is the same regardless of the application model.

The contents of a CONFIG file is logically articulated into sections. The .NET
Framework provides a number of predefined sections to accommodate Web and
Windows Forms settings, remoting parameters, and ASP.NET run-time characteristics
such as the authentication scheme and registered HTTP handlers and modules.
User-defined applications can extend the XML schema of the CONFIG file by defining
custom sections with custom elements. By default, however, the AppSettingsReader
class supports only settings expressed in a few formats, such as name/value pairs and
a single tag with as many attributes as needed. This schema fits the bill in most cases,
but when you have complex structured information, it soon becomes insufficient.
Information is read from a section using special objects called section handlers. If no
predefined section structure fits your needs, you can provide a tailor-made
configuration section handler to read your own XML data, as shown here:

<configuration>

 <configSections>

 <section name="MySection"

 type="MySectionHandlerClass, assembly" />

 </configSections>

 11

 <MySection>

 ⋮
 </MySection>

</configuration>

A configuration section handler is simply a .NET Framework class that parses a
particular XML fragment extracted from the CONFIG file. We'll look at custom section
handlers in more detail in Chapter 15.

Interoperability
XML is key to making .NET Framework applications interoperate with each other and
with external applications running on other software and hardware platforms. XML
interoperability is a sort of blanket term that covers three .NET-specific technologies:
XML Web services, remoting, and XML object serialization.

By rolling functionality into an XML Web service, you can expose the functionality to
any application on the Web that, irrespective of platform, speaks HTTP and
understands XML. Based on open standards (HTTP and XML, but also SOAP), XML
Web services are an emerging technology for system interoperation and are supported
by the major players in the IT industry. The .NET Framework provides a special
infrastructure to build both remote services and proxy-based clients.

Actually, in the .NET Framework, an XML Web service is treated as a special case of
an ASP.NET application—one that is saved with a different file extension (.asmx) and
accessible through the SOAP protocol as well as through HTTP GET and POST
commands. Incoming calls for both .aspx files (ASP.NET pages) and .asmx files are
processed by the same Internet Information Services (IIS) extension module, which
then dispatches the request to distinct downstream factory components.
In an XML Web service, XML plays its role entirely behind the scenes. It is first used as
the glue for the SOAP payloads that the communicating sides exchange. In addition,
XML is used to express the results of a remote, cross-platform call. But what if you write
a .NET XML Web service with one method returning, say, an ADO.NET DataSet
object? How can a Java application handle the results? The answer is that the DataSet
object is serialized to XML and then sent back to the client.

The .NET Framework provides two types of object serialization: serialization through
formatters and XML serialization. The two live side by side but have different
characteristics. XML serialization is the process that converts the public interface of an
object to a particular XML schema. The goal is simplifying the process of data
exchange between components rather than truly serializing objects that will then be
deserialized to living and effective instances.

Remoting is the .NET Framework counterpart of the Distributed Component Object
Model (DCOM) and uses XML to configure both the client and the remote components.
In addition, XML is used through SOAP to serialize outbound parameters and inbound
return values. Remoting is the official .NET Framework API for communicating
applications, but it works only between .NET peers.
XML serialization, remoting, and XML Web services are covered in Part IV—specifically
in Chapter 11, Chapter 12, and Chapter 13.

From MSXML to .NET Framework Classes

Prior to the advent of the .NET Framework, managing XML in the Microsoft world
meant using the COM-based MSXML, now available in version 4.0, SP1. It goes

 12

without saying that Microsoft is still strongly committed to supporting XML the COM
way, although this does not necessarily mean that we are going to have an MSXML 5.0
anytime soon. However, MSXML 4.0 represents an excellent parser for the Windows
platform and has been updated to support W3C final recommendations for the XML
Schema.

COM and .NET Framework XML Core Services
The first difference between MSXML and .NET Framework XML core classes that
catches the eye is the fact that while MSXML supports XMLDOM and SAX parsers, the
.NET Framework supplies an XMLDOM parser and XML readers and writers. (More on
readers shortly.) This is just the most remarkable example of a common pattern,
however. Quite a few key features of MSXML are apparently not supported in the .NET
Framework XML core classes, but this hardly results in a loss of programming power.

In general, the biggest (and perhaps the only significant) difference between MSXML
and .NET Framework XML classes is that the former represents a set of classes fully
integrated into an all-encompassing, self-contained framework. Several functionalities
that MSXML has to provide on its own come for free in the .NET Framework from other
compartments. If you happen to use a certain MSXML function and you don't find a
direct counterpart in the .NET Framework, check out the MSDN documentation before
you panic. In the paragraphs that follow, we'll look at a few examples of .NET
Framework functionality that provide the equivalent of some MSXML functionality.
MSXML supports asynchronous loading and validation while parsing. The .NET
Framework XMLDOM parser, centered around the XmlDocument class, does not
directly provide the same features, but proper use of the resources of the .NET
Framework will let you obtain the same final behavior anyway.
MSXML also provides for a multithreaded HTTP client (the XmlHttp object) capable of
issuing both synchronous and asynchronous calls to a remote URL. A similar feature is
certainly available in the .NET Framework, but it has nothing to do with XML classes. If
you just want your application to act as an HTTP client, use some of the classes in the
System.Net namespace (for example, HttpWebRequest and HttpWebResponse).

In general, if you loved MSXML, you'll love .NET Framework XML classes too. The
overall programming interface, especially for XMLDOM processing, is similar, although
the underlying implementation is radically different, and several methods and properties
have been renamed.

Note In MSXML 4.0, Microsoft introduced the same level of support for

some relatively newer XML standards that are found in .NET
Framework XML core classes—in particular, XSD, the XML Schema
object model, and XPath. If you look at MSXML 3.0, however, the
differences between managed and unmanaged XML processing are
clearer.

Using MSXML in the .NET Framework

As with other COM objects, you can import the MSXML type library within the
boundaries of a .NET application. The layer of system code providing for COM
importation in the .NET Framework is the COM Interop Services (CIS). CIS provides
access to existing COM components in a codeless and seamless way, without requiring
modification of the original component.

The CIS consists of two distinct parts: one part makes COM components usable from
within .NET applications, and the other part does the opposite—namely, making .NET
classes callable from within a COM component. To incorporate a COM object into a

 13

managed application, you must first create a .NET wrapper class that exposes all the
public methods and properties found in the component's type library. Microsoft Visual
Studio .NET, for example, creates such a class on the fly, immediately after adding the
proper library reference to the current project.
During the process, the involved types are converted from COM types and adapted to
fit into the .NET Framework type system. After the importation is complete, the original
COM object is ready for use in the .NET Framework, and more importantly, it has
preserved the original interface while adding some .NET Framework-specific members
such as ToString and GetType. In the end, for a Microsoft Visual Basic 6.0 programmer
who happens to use Visual Basic .NET, the code to be written is nearly identical.

Note To generate a .NET wrapper class for a COM object, you can also
use the tlbimp.exe utility from the command line. This utility gives
you full control over the entire process, and by using command-line
switches, you can intervene in many useful areas, including the
(strong) name of the assembly and the wrapping namespace.

Although importing MSXML functionality into a .NET application is straightforward, you
must have a good reason for doing so. Jumping continuously in and out of the .NET
common language runtime (CLR) can result in a performance hit—not to mention the
fact that you end up using a programming model that, although perfectly functional, is
not the best suited for the surrounding environment.

The .NET Framework XML API

The essence of XML in the .NET Framework is found in two abstract classes—
XmlReader and XmlWriter. These classes are at the core of all other .NET Framework
XML classes, including the XMLDOM classes, and are used extensively by various
subsystems to parse or generate XML text. For example, ADO.NET data adapters
retrieve the data to store in a DataSet object using a database reader, and the DataSet
object serializes its contents to the DiffGram format using an XmlTextWriter object,
which derives from XmlWriter.
XML readers and writers constitute the primitive I/O functions for XML documents and
are used to build more sophisticated functionalities. So overall, you have two possible
approaches when it comes to processing XML data. You can use any of the specialized
classes built on top of XmlReader and XmlWriter as well as document classes that
expose the contents through the well-known and classic XMLDOM.
The direct use of readers represents a stream-based, but fast and stateless, approach
to XML parsing. The use of XMLDOM classes (for example, XmlDocument) represents
the traditional XMLDOM parsing model. Readers are representative of a pull model, as
opposed to the SAX parser's typical push model. You can certainly build a push model
atop a pull model-based API. Unfortunately, the reverse is never true, and that's why
there is no SAX support in the .NET Framework. (In Chapter 2, you'll learn the basics of
implementing a SAX parser using .NET Framework XML readers.)

The XML API for the .NET Framework comprises the following set of functionalities:
 XML readers
 XML writers
 XML document classes

All of these functionalities must overcome the rather subtle problem of type mapping.
The .NET Framework XML type system has several things in common with the XSD
Schema type system, and ad hoc conversion classes in the .NET Framework provide
for applicable transformations.

 14

Before we go any further into this overview of the key groups of classes, let's look at
readers and writers in general. Readers and writers represent two rather generic
software components that find several concrete (and powerful) implementations
throughout the .NET Framework. The reader component provides a relatively common
programming interface to read information out of a file or a stream. The writer
component offers a common set of methods to write information down to a file or a
stream in a format-independent way. Not surprisingly, readers operate in read-only
mode, whereas writers accomplish their tasks operating in write-only mode.

.NET Framework Readers and Writers
In the .NET Framework, the classes available from the System.IO namespace provide
for both synchronous and asynchronous read/write operations on two distinct
categories of data: streams and files. A file is an ordered and named collection of bytes
and is persistently stored to a disk. A stream represents a block of bytes that is read
from, and written to, a data store. The data store can be based on a variety of storage
media, including memory, disk files, and remote URLs. A stream is a kind of superset of
a file, or in other words, a file that can be saved to a variety of storage media including
memory. To work with streams, the .NET Framework defines several flavors of reader
and writer classes. Figure 1-1 shows how each class relates to the others.

 15

Figure 1-1: Streams can be read and written using made-to-measure reader and writer
classes.

The base classes are TextReader, TextWriter, BinaryReader, BinaryWriter, and
Stream. With the exception of the binary classes, all of these classes are marked as
abstract (MustInherit, if you speak Visual Basic) and cannot be directly instantiated in
code. You can use abstract classes to reference living instances of derived classes,
however.
In the .NET Framework, base reader and writer classes find a number of concrete
implementations, including StreamReader and StringReader and their writing
counterparts. By design, reader and writer classes work on top of .NET streams and
provide programmers with a customized user interface able to handle a particular type
of underlying data or file format. Although each specific reader or writer class is tailor-
made for the content of a given type of stream, they share a common set of methods
and properties that defines the official .NET interface for reading and writing data.

The Cursor-Like Approach

A reader works in much the same way as a client-side database cursor. The underlying
stream is seen as a logical sequence of units of information whose size and layout
depend on the particular reader. Like a cursor, the reader moves through the data in a
read-only, forward-only way. Normally, a reader is not expected to cache any
information, but this is only common practice, rather than a strict requirement for all
standard .NET readers.
ADO.NET data reader classes (for example, SqlDataReader) are simply .NET readers
that move from one record to the next and expose the contents of the current record
through a tailor-made interface. The unit of information read at every step is the
database row. Similarly, a reader working on a disk file stream would consider as its
own atomic unit of information the single byte, whereas a text reader would perhaps
specialize in extracting one row of text at a time.

XML readers are simply another, very peculiar, type of .NET reader. The class parses
the contents of an XML file, moving from one node to the next. In this case, the finer
grain of the information processed is represented by the XML node—be it an element,
an attribute, a comment, or a processing instruction.

XML Readers

An XML reader makes externally available a programming interface through which
callers can connect and pull out all the data they need. This is in no way different from
what happens when you connect to a database and fetch data. The database server
returns a reference to an internal object—the cursor—which manages all the query
results and makes them available on demand. This statement applies regardless of the
fact that the database world might provide several flavors of cursors—client, scrollable,
server-side, and so on.

With XML readers, client applications are returned a reference to an instance of the
reader class, which abstracts the underlying data stream. Methods on the reader class
allow you to scroll forward through the contents, moving from node to node rather than
from byte to byte or from record to record. When viewed from the perspective of
readers, an XML document ceases to be a tagged text file and becomes a serialized
collection of nodes. Such a cursor model is specific to the .NET platform, and to date,
you will not find a similar programming API available for other platforms, including
Microsoft Win32.

www.allitebooks.com

http://www.allitebooks.org

 16

Readers vs. XMLDOM

XML readers don't require you to keep more data in memory than you actually need.
When you open the XML document, a simple logical pointer that corresponds to a node
is returned. You can easily skip over nodes to locate the one you need. In doing so, you
don't tax in any way the application's memory with extra data other than that required to
bufferize the currently selected node.

In contrast, the XMLDOM—a full read/write parser model—has the drawback that it
might require a significant memory footprint and a long time to set up large documents
in memory. Once in memory, however, the document can be easily and quickly read,
edited, and serialized. To search a single node, or to change an individual property, you
have to load the whole document in memory. As you can guess, this is not necessarily
an optimal approach and might not be the appropriate way to go for most applications.

Taking the cursor-like approach to its limit, you can also observe an interesting
convergence between readers and the XMLDOM. In fact, by visiting all element and
attribute nodes in the stream and storing in a memory tree the related data, you build a
dynamic and customized XMLDOM. Incidentally, this is just what happens in the .NET
Framework when XMLDOM classes are instantiated using readers to load data and are
serialized to disk using writers.

Readers vs. SAX

A SAX parser directly controls the evolution of the parsing process and pushes data to
the client application. A cursor parser (that is, an XML reader), on the other hand, plays
a more passive role and leaves client applications to control the process.

Giving applications, not the parser, control over the parsing process promotes the pull
model (as opposed to the SAX parser's push model), in which the parser is invoked to
obtain a reference to the underlying XML document. The parser also exposes methods
for the client to navigate through the obtained document.

In addition to providing a simplified programming interface, the pull model is on average
more efficient than the push model. For example, the pull model allows client
applications to implement selective node processing and just skip over unneeded
nodes. With SAX and the push model, all data has to pass through the application,
which is the only entity that can reliably determine what is of interest and what can be
discarded.

Note The push model, at least as implemented in SAX, can also be quite

boring to code. SAX works by passing node contents to application-
defined handlers. A handler is a living instance of an object that
implements one or more interfaces according to the specification.
So an application that needs to parse XML documents using SAX
assigns instances of these objects to ad hoc properties on the SAX
parser. Once started, the parser calls back the handlers through the
predefined interfaces whenever it parses some content that relates
to a given handler.

XML Writers

The .NET XML API separates parsing from editing and writing and offers a set of
methods that provides effective results for performance as well as usability. When
writing, you create new XML documents working at a considerably high level of

 17

abstraction and explicitly indicate the XML elements to create—nodes, attributes,
comments, or processing instructions. The writer works on a stream, dumping content
incrementally, one node after the next, without the random access capabilities of the
XMLDOM but also without its memory footprint.

To grasp the importance of XML writers, consider that, in general, the only alternative
you have for writing XML contents to any storage media consists of preparing the entire
output as a string and then writing it off. In this case, the markup nature of XML is more
hindrance than real help, because you must yourself take care of the intricacies of
quotation marks, attributes, indentation, and end tags.

In the .NET Framework, XML writers come to the rescue and let you write XML
documents programmatically in much the same way you write them through text
editors. For example, you can specify whether you want a namespace prefix, the
padding character and the size of the indentation, the quotation mark and the newline
character, and even how you want white spaces to be treated. To create nodes, you
simply use ad hoc methods to write comments, attributes, and element nodes. The
overall method of working is simple and extremely effective.
The .NET Framework provides several types of writers that use heterogeneous output
devices—strings, HTTP response, and HTML documents. You could also use an XML
text writer to dump contents to a stream object or a new text file. In the latter two cases,
you could also specify character encoding. If the encoding argument is null, the
Unicode 8-bits-per-character schema (UTF-8) will be used.
XML writers, and in particular the XmlTextWriter class, are used throughout the .NET
Framework for creating any sort of XML output. We'll look at XML writers in detail in
Chapter 4.

The XML Document Object API in .NET
As mentioned, along with XML readers and writers, the .NET Framework also provides
classes that load and edit XML documents according to the W3C DOM Level 1 and
Level 2 Core. The key XMLDOM class in the .NET Framework is XmlDocument—not
much different from the DOMDocument class, which you might recognize from working
with MSXML.

The XMLDOM supplies an in-memory tree-based representation of XML documents
and supports both navigation and editing of the document. In addition, the XMLDOM
classes can handle both XPath queries and XSLT.
Tightly coupled with the XmlDocument class is the XmlDataDocument class. It extends
XmlDocument and focuses on XML storage and retrieval of structured tabular data. In
particular, XmlDataDocument can import data from an ADO.NET DataSet object and
export regular XML contents to the DataSet relational format. Regular XML content is a
set of nodes with exactly one level of subnodes, with each node having the same
number of children. The ultimate goal of this requirement is enabling the XML contents
to fit into a relational table.
The XMLDOM representation of an XML document is fully editable. Attributes and text
can be randomly accessed, and nodes can be added and removed. You perform
updates on a loaded XMLDOM document by first creating a node object (the XmlNode
class) and then binding it to the existing tree. All in all, the underlying writing pattern is
close to that of XML writers—you write nodes to the stream in one case, and you add
nodes to the tree in the other. Of course, if you are using the XMLDOM, bear in mind
that all changes occur in memory and must be flushed to the storage medium prior to
return. (The XMLDOM API is described in detail in Chapter 5.)

 18

XPath Expressions and XSLT
In the .NET Framework, XSLT and XPath expressions are fully supported but are
implemented in classes distinct from those that parse and write XML text. This is a key
feature of the overall .NET XML API. Any functionality is provided through a small
hierarchy of objects, although each subtree connects and interoperates well with
others. Figure 1-2 demonstrates the interconnection between constituent APIs.

Figure 1-2: The XMLDOM API is built on top of readers and writers, but both XSLT and
XPath expressions need to have a complete and XMLDOM-based vision of the entire XML
document to process it.

XML readers and writers are the primitive elements of the .NET XML API. Whenever
XML text must be parsed or written, all classes, directly or indirectly, refer to them. A
more complex primitive element is the XMLDOM tree. Transformations and advanced
queries must rely on the document in its entirety being held in memory and accessible
through a well-known interface—the XMLDOM.

The XSLT Processor
The key class for XSLT is XslTransform. The class works as an XSLT processor and
complies with version 1.0 of the XSLT recommendation. The class has two key
methods, Load and Transform, whose behavior is for the most part selfexplanatory.
Once you acquire an instance of the XslTransform class, you first load the source of an
XSL document that contains the transformation rules. By calling the Transform method,
you actually perform the conversion from native XML to the output format. Prior to
applying the transformation, the underlying XML document is loaded as a kind of
XMLDOM tree. (The details of XSLT are covered in Chapter 7.)

 19

The XPath Query Engine

XPath is a language that allows you to navigate within XML documents. Think of XPath
as a general-purpose query language for addressing, sorting, and filtering both the
elements and the text of an XML document.
The XPath notation is basically declarative. Any XPath expression is a path within the
XML document that identifies the information with the given characteristics. The path
defines a pattern, and the resulting selection includes all the nodes that match it. The
selection is expressed through a notation that emphasizes the hierarchical relationship
between the nodes. It works in much the same way files and folders work. For example,
the XPath expression "book/publisher" means find the "publisher" element within the
"book" element. The XPath navigation model works in the context of a hierarchy of
nodes in the XML document's tree. XPath makes use of a variation of the
XmlDocument class, named XPathDocument.
Running an XPath query is not actually different from executing a TransactSQL (T-
SQL) query on SQL Server. Instead of getting back a collection of rows, a valid XPath
expression returns a collection of nodes. To scroll the returned nodes, you just use an
XPath-customized version of a reader. We'll look at XPath in more detail in Chapter 6.

Conclusion

In this chapter, we examined the building blocks of XML and explored the rationale
behind XML readers and writers—a new and innovative way to perform basic
operations on XML data sources. In the .NET Framework, XML readers introduce a
database-like cursor model to navigate through data. The cursor model falls
somewhere between the well-known XMLDOM and SAX models. Not as expensive as
XMLDOM and more programmer-friendly than SAX, the .NET Framework cursor model
presents XML as just another data format you can work on using a familiar approach.
As a developer, you are certainly familiar with I/O operations accomplished on a file or
a database. Why should XML data sources be totally different? The node becomes just
another atomic element, along with the database row or the byte. Ad hoc methods
make it possible for you to move through nodes in a straightforward, effective way.

Readers and writers are not the only tools you can use to create XML-driven .NET
applications. Another group of classes work according to the specification of the W3C
DOM. XSLT and XPath expressions are a pair of XML-related technologies that are
popular with developers and effective for arranging applications. In the .NET
Framework, you find made-to-measure classes that make XML-to-XML transformation
and query evaluation fast and easy.
All the XML technologies introduced in this chapter will be covered in depth in the
chapters that follow, beginning with XML readers in Chapter 2.

Further Reading

The W3C organization is currently working on a draft of the DOM Level 3 Core to
include support for an abstract modeling schema and I/O serialization. Check out the
most recent draft at http://www.w3.org/TR/2002/WD-DOM-Level3-ASLS-20020409. The
approved standard—DOM Level 2 Core—is available at http://www.w3.org/TR/DOM-
Level-2.
Relevant information about XML standards is available from the W3C Web site, at
http://www.w3.org. If you want to learn more about the SAX specification, look at the
new Web site for the SAX project, at http://www.saxproject.org.

 20

A lot of useful developer-oriented documentation about XML is available on the Web
sites of the companies that support XML. In addition to the Microsoft Web site
(http://msdn.microsoft.com/xml), check out the Intel Developer Services Web site
(http://cedar.intel.com). In particular, you'll find an essential guide to XML in the .NET
Framework: http://cedar.intel.com/media/pdf/dotnet/net_jumpstart.pdf.
Finally, if you just want a good, all-encompassing book about XML programming, I
heartily recommend the Microsoft Press Core Reference book XML Programming
(http://www.microsoft.com/mspress/books/4798.asp), by R. Allen Wyke, Sultan
Rehman, and Brad Leupen (Microsoft Press, 2002). For a more general look into XML
as a unifying technology, Essential XML: Beyond Markup (Addison Wesley, 2000), by
Don Box, Aaron Skonnard, and John Lam, is still one of the best books available.

 21

Chapter 2: XML Readers

In the Microsoft .NET Framework, two distinct sets of classes provide for XML-driven
reading and writing operations. These classes are known globally as XML readers and
writers. The base class for readers is XmlReader, whereas XmlWriter provides the base
programming interface for writers. In this chapter, we'll focus on a particular type of
XML readers—the XML text readers. In Chapter 3, we'll zero in on validating readers
and then move on to XML writers in Chapter 4.

The Programming Interface of Readers
XmlReader is an abstract class available from the System.Xml namespace. It defines
the set of functionalities that an XML reader exposes to let developers access an XML
stream in a noncached, forward-only, read-only way.

An XML reader works on a read-only stream by jumping from one node to the next in a
forward-only direction. The XML reader maintains an internal pointer to the current
node and its attributes and text but has no notion of previous and next nodes. You can't
modify text or attributes, and you can move only forward from the current node. If you
are visiting attribute nodes, however, you can move back to the parent node or access
an attribute by index. The visit takes place in node-first order, but other visiting
algorithms can be arranged in custom reader classes. See the note on page 72 for
more information about visiting algorithms.
The specification for the XmlReader class recommends that any derived class should
check at least whether the XML source is well-formed and throw exceptions if an error
is encountered. XML exceptions are handled through the tailor-made XmlException
class. The XMLReader class specification does not say anything about XML validation.
Throughout this chapter, you'll see that the .NET Framework provides several reader
classes with and without validation capabilities. Valid sources for an XML reader are
disk files as well as any flavor of .NET streams and text readers (for example, string
readers).

An OOP Refresher

Throughout this book, I'll often use terms such as interface and class, sometimes
qualified by helper adjectives such as abstract or base. Although a full explanation of
these terms and their related object-oriented programming (OOP) concepts is beyond
the scope of this book, a quick terminology refresher will help you get to the heart of
the XML class hierarchy in the .NET Framework.
In the .NET Framework, an interface is a container for a named collection of method,
property, and event definitions referred to as a contract An interface can be used as a
reference type, but it is not a creatable type. Other types can implement one or more
interfaces. In doing so, they adhere to the interface's contract and agree to provide
actual implementation for all the methods, properties, and events in the contract.
A class is a container that can include data and function members (methods,
properties, events, operators, and constructors). Classes support inheritance from
other classes as well as from interfaces. Any class from which another class inherits is
called a base class.
An abstract class simply declares its members without providing any implementation.
Like interfaces, abstract classes are not creatable but can be used as reference types.
An abstract class differs from an interface in that it has a slightly richer set of internal
members (constructors, constants, and operators). Members of an abstract class can
be scoped as private, public, or protected, whereas members of an interface are
mostly public. In addition, child classes can implement multiple interfaces but can
inherit from only one class.

 22

The XmlReader Class
The XmlReader class defines methods that enable you to pull data from an XML source
and to skip unwanted nodes. Bear in mind that each and every element in an XML
stream is considered a node, meaning that node is a rather generic concept that
applies to subtree roots as well as to attributes, processing instructions, entities,
comments, and plain text.
The XmlReader class includes methods for reading XML content from an entire text file,
returning the depth of the current XML node's subtree, and determining whether the
contents of a given element is empty. You can also fairly easily read and navigate
attributes and skip over elements and their contents. Valuable information such as the
name and the contents of the current node is also returned via ad hoc properties.

Base Properties of XML Readers
Table 2-1 lists the public properties exposed by the XmlReader class. Notice that the
values these properties contain depend on the actual reader class you are using in your
code. The description of each property refers to the property's intended goal, but this
description might not entirely reflect the actual role of the property in a derived reader
class.

Table 2-1: Public Properties of the XmlReader Class

Property Description

AttributeCount Gets the number of attributes on the current node.

BaseURI Gets the base URI of the current node.

CanResolveEntity Gets a value indicating whether the reader can resolve
entities.

Depth Gets the depth of the current node in the XML
document.

EOF Indicates whether the reader has reached the end of
the stream.

HasAttributes Indicates whether the current node has any attributes.

HasValue Indicates whether the current node can have a value.

IsDefault Indicates whether the current node is an attribute that
originated from the default value defined in the
document type definition (DTD) or schema.

IsEmptyElement Indicates whether the current node is an empty
element with no attributes or value.

Item Indexer property that returns the value of the specified
attribute.

LocalName Gets the name of the current node with any prefix
removed.

Name Gets the fully qualified name of the current node.

NamespaceURI Gets the namespace URI of the current node. Applies
to Element and Attribute nodes only.

NameTable Gets the name table object associated with the reader.
(More on name table objects later.)

NodeType Gets the type of the current node.

 23

Table 2-1: Public Properties of the XmlReader Class

Property Description

Prefix Gets the namespace prefix associated with the current
node.

QuoteChar Gets the quotation mark character used to enclose the
value of an attribute.

ReadState Gets the state of the reader from the ReadState
enumeration.

Value Gets the text value of the current node.

XmlLang Gets the xml:lang scope within which the current node
resides.

XmlSpace Gets the current xml:space scope from the XmlSpace
enumeration (Default, None, or Preserve).

Note

When you read any sort of documentation about XML, you are
usually bombarded by a storm of similar-looking acronyms: URI,
URL, and URN. Let's review these terms. A Uniform Resource
Identifier (URI) is a string that unequivocally identifies a resource
over the network. There are two types of URI: Uniform Resource
Locator (URL) and Uniform Resource Name (URN). A URL is
specified by the protocol prefix, the host name or IP address, the
port (optional), and the path. A URN is simply a unique descriptive
string—for example, the human-readable form of a CLSID (the 128-
bit identifier of a COM object) is a URN.

A bit misleading is the fact that URNs are often created using URL-
like strings. This regularly happens with XML namespaces, for
example. The reason for this practice is that a URL has a high
likelihood of being unique, especially if you use a path within your
company's Web site.

An XML reader can pass through several different states. All the possible states are
defined by the ReadState enumeration and are listed in Table 2-2. The ReadState
property contains a ReadState enumeration value and is expected to return the current
state of the reader, but actual implementations of a reader class must ensure that the
property always holds the correct value.

Table 2-2: Reader States

State Description

Closed The reader is closed.

EndOfFile The end of the file has been reached successfully, but
the reader is not yet closed.

Error A critical error occurred, and the read operation can't
continue.

Initial The reader is in its initial position, waiting for the Read
method to be called for the first time.

Interactive The reader is open and functional.

 24

The BaseURI property actually returns the URL of the node. Normally, the URL of a
node—more generally, the URI—is bound to the resource name, be it a local file, a
networked document, or a Web document. In these cases, the BaseURI property
simply returns the URL-styled name of the resource. The following are examples of
values that would be returned under these circumstances:

file://c:/myfolder/mydoc.xml

http://www.cpandl.com/myfolder/mydoc.xml

An XML document can result from the aggregation of various chunks of data—entities,
schemas, and DTDs—coming from different network locations. In these cases, the
BaseURI property tells you where these nodes come from. If the XML document is
being processed through a stream (for example, an in-memory string), no URI is
available and the BaseURI property returns the empty string.

Base Methods of XML Readers
Table 2-3 lists the public methods exposed by the XmlReader class. This table does not
include the methods defined in the Object class and overridden in XmlReader—for
example, ToString, GetType, and Equals.

Table 2-3: Public Methods of the XmlReader Class

Method Description

Close Closes the reader and sets the internal state to
Closed.

GetAttribute Gets the value of the specified attribute. An attribute
can be accessed by index, local name, or qualified
name.

IsStartElement Indicates whether the current content node is a start
tag.

LookupNamespace Returns the namespace URI to which the given
prefix maps.

MoveToAttribute Moves the pointer to the specified attribute. An
attribute can be accessed by index, local name, or
qualified name.

MoveToContent Moves the pointer ahead to the next content node
or to the end of the file. This method returns
immediately if the current node is already a content
node, such as non-white-space text, CDATA,
Element, EndElement, EntityReference, or
EndEntity.

MoveToElement Moves the pointer back to the element node that
contains the current attribute node. Relevant only
when the current node is an attribute.

MoveToFirstAttribute Moves to the first attribute of the current Element
node.

MoveToNextAttribute Moves to the next attribute of the current Element
node.

Read Reads the next node and advances the pointer.

ReadAttributeValue Parses the attribute value into one or more Text,
EndEntity, or EntityReference nodes. (More on this
in the section "Parsing Mixed-Content Attributes,"

 25

Table 2-3: Public Methods of the XmlReader Class

Method Description

on page 41.)

ReadElementString Reads and returns the text from a text-only element.

ReadEndElement Checks that the current content node is an end tag
and advances the reader to the next node. Throws
an exception if the node is not an end tag.

ReadInnerXml Reads and returns all the content below the current
node, including markup information.

ReadOuterXml Reads and returns all the content in and below the
current node, including markup information.

ReadStartElement Checks that the current node is an element and
advances the reader to the next node. Throws an
exception if the node is not a start tag.

ReadString Reads the contents of an element or a text node as
a string. This method concatenates all the text up
until the next markup. For attribute nodes, calling
this method is equivalent to reading the attribute
value.

ResolveEntity Expands and resolves the current EntityReference
node.

Skip Skips the children of the current node.

In addition to the methods listed in Table 2-3, the XmlReader class also features a
couple of static (shared, if you speak only Microsoft Visual Basic) methods named
IsName and IsNameToken. Both take a string and return a Boolean value. The return
value indicates whether the given string complies with the respective definitions of a
Name and a Nmtoken (name token) according to the W3C XML 1.0 Recommendation.
In XML 1.0, a Name is a string that begins with a letter, an underscore (_), or a colon (:)
and continues with letters, digits, hyphens, underscores, and colons. A Nmtoken, on the
other hand, is any non-zero-length mixture of name characters—that is, letters, digits,
hyphens, underscores, and colons.

Note A static member (as opposed to an instance member) of a class is a
kind of global member that belongs to the type itself rather than to a
specific instance of the class. Whereas an instance of a class contains a
separate copy of all instance members, there is only one copy of each
static member. Static members can't be referenced through an instance.
Instead, you must reference them through the type name:
Console.WriteLine(XmlReader.IsName("DinoEsposito"));

Members that in C# are called static and declared with the static
keyword, in Visual Basic .NET are called shared and are declared with
the Shared keyword. Aside from this, their usage is identical.

Recognized Node Types
Each node in an XML source is of a certain type. The NodeType property is a read-only
property that returns the type of the current node. The returned value belongs to the
XmlNodeType enumeration, which comprises the node types listed in the Table 2-4.

www.allitebooks.com

http://www.allitebooks.org

 26

Table 2-4: Types of Nodes in the XmlNodeType Enumeration

Node Type Description

Attribute Represents an attribute of an Element node.
Attribute nodes can have two child node types,
Text and EntityReference, which represent the
value of the attribute. Note that an attribute is not
the child of any other node type—in particular, it is
not considered the child of an Element node.

CDATA Represents a CDATA section. A CDATA section is
a block of escaped text used as is and is not
recognized as markup text. A CDATA node can't
have any child nodes.

Comment Represents a comment in the XML text. A
Comment node can't have any child nodes.

Document Represents a document object that is the root of
the document tree. Document provides access to
the whole XML document and can have the
following child node types: only one Element node
(the actual root of the XML tree),
ProcessingInstruction, Comment, and
DocumentType.

DocumentFragment Represents a document fragment—namely, a
node or an entire subtree—that is linked to a
document without actually being part of it or
contained in the same file.

DocumentType Represents a document type. A document type
node is characterized by the <!DOCTYPE> tag. A
DocumentType node can have child nodes of type
Notation and Entity.

Element Represents the most common type of node found
in XML documents. Element can have several
types of child nodes, including other element
nodes, text, comments, processing instructions,
CDATA, and entity references.

EndElement Represents the end tag of an element node.

EndEntity Represents the end of an entity node.

Entity Represents an entity declaration. In XML, entities
are much the same as macros—that is, names that
point to expanded text.

EntityReference Represents a reference to an entity used in the
body of XML documents.

None The node type returned by the XmlReader class if
the Read method has not yet been called.

Notation Represents a notation in the document type
declaration.

ProcessingInstruction Represents a processing instruction at the
beginning of the XML document.

 27

Table 2-4: Types of Nodes in the XmlNodeType Enumeration

Node Type Description

SignificantWhitespace Represents a significant white space character
between markup text in a mixed-content model or
white space within the scope of
xml:space="preserve".

Text Represents the text content of an element.

Whitespace Represents an insignificant space between markup
text.

XmlDeclaration Represents the XML declaration node.
XmlDeclaration must be the first node in the
document and can't have children. The node can
have attributes that provide version and encoding
information.

Table 2-4 includes all the possible types of nodes found within the body of an XML
document—at least when the document is parsed through a .NET XML reader. Notice
that the XML element that is normally perceived as being the node—that is, marked up
text—is said to be an element node. Attributes, comments, and even processing
instructions are just other types of nodes. In light of this, when you move from one node
to the next, you are not necessarily moving between nodes of the same type.
A lot of XML documents begin with several tags that do not represent any data content.
The reader's MoveToContent method lets you skip all the heading information and
position the pointer directly in the first content node. In doing so, the method skips over
the following node types: ProcessingInstruction, DocumentType, Comment,
Whitespace, and SignificantWhitespace.

Specialized Reader Classes
The XmlReader class defines only the clauses and appendices in the contract that
.NET XML applications sign with the actual parser class. Because XmlReader is an
abstract class, you'll use it in your code only as a reference type when type casting is
needed. In lieu of XmlReader, you can use any of its derived classes already defined in
the .NET Framework. In addition, you can use any other custom reader class that third-
party vendors, or you yourself, might have written. All of these reader classes share the
programming interface with XmlReader, however, and provide an actual, albeit custom,
implementation for each of the methods and properties listed in Table 2-1, on page 27,
and Table 2-3, on page 30.
Implementations of the XmlReader class extend the base class and vary in their design
to support different scenarios. The .NET Framework supplies the following reader
classes:

 XmlTextReader Extremely fast; the reader ensures that the XML source
is well-formed but neither validates it against a schema or a DTD nor
resolves any embedded entity.

 XmlValidatingReader An XML reader that can validate the source using
a DTD, an XML-Data Reduced (XDR) schema, and an XML Schema
Definition (XSD). In addition, the reader is capable of expanding entities
and also supports default attributes as defined in the DTD or schema.

 XmlNodeReader The reader specializes in parsing XML data from an
XML Document Object Model (XML DOM) subtree and does not support
validation.

In the next section, we'll examine the XmlTextReader class—probably the most
frequently used .NET reader class. Validating readers will be covered in Chapter 3;

 28

node readers are discussed in Chapter 5. By the end of this chapter, you'll also have
had in-depth exposure to the intricacies (and the flexibility) connected with the
development of a custom reader class.

Parsing with the XmlTextReader Class

The XmlTextReader class is designed to provide fast access to streams of XML data in
a forward-only and read-only manner. The reader verifies that the submitted XML is
well-formed. It also performs a quick check for correctness on the referenced DTD, if
one exists. In no case, though, does this reader validate against a schema or DTD. If
you need more functionality (for example, validation), you must resort to other reader
classes such as XmlNodeReader or XmlValidatingReader.
An instance of the XmlTextReader class can be created in a number of ways and from
a variety of sources, including disk files, URLs, streams, and text readers. To process
an XML file, you start by instantiating the constructor, as shown here:

XmlTextReader reader = new XmlTextReader(file);

Note that all the public constructors available require you to indicate the source of the
data, be it a stream, a file, or whatever else. The default constructor of the
XmlTextReader class is marked as protected and, as such, is not intended to be used
directly from user's code.
After the reader is up and running, you have to explicitly open it using the Read
method. This behavior is not unique to XML readers, it is common to all .NET reader
components. Readers move from their initial state to the first element using only the
Read method. To move from any node to the next, you can continue using Read as
well as a number of other more specialized methods, including Skip, MoveToContent,
and ReadInnerXml.
To process the entire content of an XML source, you typically set up a loop based on
the return value of the Read method. The Read method returns true if there's more
content to be read, and false otherwise.

Accessing Nodes
The following example shows how to use an XmlTextReader object to parse the
contents of an XML file and build the node layout. Let's begin by considering the
following XML data:

<platforms type="software">

 <platform vendor="Microsoft">.NET</platform>

 <platform vendor=""OpenSource="yes">Linux</platform>

 <platform vendor="Microsoft">Win32</platform>

 <platform vendor="Sun">Java</platform>

</platforms>

The corresponding node layout that we want to extrapolate consists of a block of XML
data that comprises all the element nodes of the source file, as shown here:

<platforms>

 <platform>

 </platform>

 <platform>

 </platform>

 <platform>

 </platform>

 29

 <platform>

 </platform>

</platforms>

To produce these results, I created the GetXmlFileNodeLayout function. This function
scans the entire contents of the XML file and processes each node found along the
way. Only two types of nodes are relevant for this example: the start and end tags of
Element nodes. The NodeType enumeration identifies these two types of nodes
through the keywords Element and EndElement.

private string GetXmlFileNodeLayout(string file)

{

 // Open the stream

 XmlTextReader reader = new XmlTextReader(file);

 // Loop through the nodes

 StringWriter writer = new StringWriter();

 string tabPrefix = "";

 while (reader.Read())

 {

 // Write the start tag

 if (reader.NodeType == XmlNodeType.Element)

 {

 tabPrefix = new string('\t', reader.Depth);

 writer.WriteLine("{0}<{1}>", tabPrefix,
reader.Name);

 }

 else

 {

 // Write the end tag

 if (reader.NodeType == XmlNodeType.EndElement)

 {

 tabPrefix = new string('\t', reader.Depth);

 writer.WriteLine("{0}</{1}>", tabPrefix,
reader.Name);

 }

 }

 }

 // Write to the output window

 string buf = writer.ToString();

 writer.Close();

 // Close the stream

 30

 reader.Close();

 return buf;

}

The Boolean value that controls the main loop stops the loop when the reader's internal
pointer reaches the end of the stream. GetXmlFileNodeLayout is designed to analyze
all nodes but process only those of type Element or EndElement. The name of the
node, formatted to look like a tag name, is output to a memory string as a line of text.
After finding an Element or EndElement node, the function uses the reader's Depth
property to get the nesting level of the current node and arranges a prefix string made
of as many tab characters as the depth level. The prefix string is inserted into the output
buffer before the node name to produce properly indented text.
You might have noticed that the GetXmlFileNodeLayout function accumulates the text
that represents the node layout into a StringWriter object. The StringWriter object is a
typical .NET writer class and offers a more friendly programming interface than the
classic String class. StringWriter lets you express the content in lines and automatically
provides for newline characters. In addition, its writing methods support placeholders
and a variable-length parameters list. GetXmlFileNodeLayout then uses the
StringWriter object's ToString method to return the accumulated text as a plain string.

Note The full source code for a Windows Forms application that uses the
GetXmlFileNodeLayout function is available in this book's sample
files. The application name is NodeLayout.

Reading and Converting Text
To read the content of the reader's current node, you normally use the Value property.
This property, however, always returns a string that you might need to convert to a
more specific type such as a date or a double. To convert a string to a .NET Framework
type, you should use any of the XmlConvert class methods.
How is the XmlConvert class different from the System.Convert class—the .NET
Framework primary tool for converting from one type to another? The two classes
perform nearly identical tasks, but the XmlConvert class works according to the XSD
data type specification and ignores the current locale. Let's look at an example that
illustrates the difference between the two converting classes. Suppose that you have an
XML fragment such as the following:

<employee>

 <hired>2-8-2001</hired>

 <salary>150,000</salary>

</employee>

The current locale dictates that the hire date is February 8, 2001, and the yearly salary
is $150,000. If you convert the strings to specific .NET types using the System.Convert
class, all will work as expected. If you convert using XmlConvert, you'll get errors:

// Assume the reader points to <hired>

DateTime dt = XmlConvert.ToDateTime(reader.Value);

// Move the reader to <salary>

reader.Read();

double d = XmlConvert.ToDouble(reader.Value);

 31

In particular, the XmlConvert class will not recognize the first string as a correct date.
As for the salary, you'll get a message stating that the input string is not in the correct
format.
If you had created the XML code programmatically using an XML writer (more on XML
writers in Chapter 4) and .NET strong types, the XML fragment you're working with
would be slightly different, as shown here:

<employee>

 <hired>2001-02-08</hired>

 <salary>150000</salary>

</employee>

To be understood in XML, a date must be in YYYY-MM-DD format and a double value
should not include any locale-dependent element such as the digit group symbol. If the
double value includes a fractional part, use a decimal point to separate it from the
integer part. Likewise, XmlConvert recognizes Booleans only if they are expressed as
true/false or 1/0 pairs.

Note Another aspect that makes the difference between the System.
Convert and XmlConvert classes even sharper is the fact that
XmlConvert does not support custom format providers. The
XmlConvert class works as a translator to and from .NET types and
XSD types. When the conversion takes place, the result is
rigorously locale independent.

Round-Tripping Non-XML Strings
Not all characters available on a given platform are necessarily valid XML characters.
Only the characters included in the range of allowed characters defined in the XML
specification (www.w3.org/TR/2000/REC-xml-20001006.html) can be safely used for
element and attribute names.
The XmlConvert class provides key functions for tunneling non-XML names through
XML over a round-trip to some servers. When names contain characters that are invalid
in XML names, the methods EncodeName and DecodeName can adjust them to fit into
an XML name schema. For example, several applications, including Microsoft SQL
Server and Microsoft Office, allow and support Unicode characters in their documents.
However, some of these characters are not valid in XML names. The typical
circumstance that demonstrates the importance of XmlConvert occurs when you
manipulate, say, a database column name containing blanks. Although SQL Server
allows a column name such as Invoice Details, that would not be a valid name for an
XML stream. The word space must be replaced with its hexadecimal encoding. A valid
XML representation for the column name Invoice Details is the following string:

Invoice_0x0020_Details

You can obtain that string by using EncodeName, as shown here:

string xmlColName = XmlConvert.EncodeName("Invoice Details");

The reverse operation is accomplished by using DecodeName. This method translates
an XML name back to its original form by unescaping any escaped sequence, as
shown in the following code. Note that only fully escaped forms are detected. For
example, only _0x0020_ is rendered as a blank space.

 32

string colName =
XmlConvert.DecodeName("Invoice_0x0020_Details");

The only valid form of hexadecimal sequences is _0xHHHH_, where HHHH stands for
a four-digit hexadecimal value. Similar forms are left unaltered, although they could
easily be considered logically equivalent—for example, _0x20_ is not processed.

Character Encoding

XML documents can contain an attribute to specify the encoding. Character encoding
provides a mapping between numeric indexes and corresponding characters that users
read from a document. The following declaration shows how to set the required
encoding for an XML document:

<?xml version="1.0" encoding="ISO-8859-5"?>

The Encoding property of the XML reader returns the character encoding found in the
document. The default encoding attribute is UTF-8 (UCS Transformation Format, 8
bits).
In the .NET Framework, the System.Text.Encoding class gathers all supported
encodings. Most of these encodings can be used with XML documents, with just a few
exceptions. Encodings such as UTF-7 are invalid for XML documents because they
require different byte values than UTF-8. UTF-8 encodes Unicode characters using 8
bits per character. UTF-7, on the other hand, encodes Unicode characters using 7 bits
per character.

Accessing Attributes
Of all the node types supplied in the .NET Framework, only Element, DocumentType,
and XmlDeclaration support attributes. To check whether a given node contains
attributes, use the HasAttributes Boolean property. The AttributeCount property returns
the number of attributes available for the current node.
Once the internal reader's pointer is positioned on a certain node, you can directly read
the value of a particular attribute using either the GetAttribute method or the indexer
property Item. In both cases, overloads of the method and the property allow you to
access attributes in various ways: by absolute position, by name, and by name and
namespace. The returned value for an attribute is always a string; the task of converting
it to a more specific data type is left to the programmer.
GetAttribute and Item provide a way to access attributes directly but require that you
know the name or the ordinal position of the attribute being accessed. A third way to
read attribute values is by moving the pointer to the attribute node itself and then using
the Value property. You enumerate the attribute nodes using the MoveToFirstAttribute
and MoveToNextAttribute methods. You can also change the pointer by moving directly
to a given node using the MoveToAttribute method.

This next example demonstrates how to programmatically access any sequence of
attributes for a node and concatenate their names and values in a single string.
Consider the following XML fragment:

<employee id="1" lastname="Users" firstname="Joe" />

We want to create a method that, when run on this XML block of data, generates the
following string:

id="1" lastname="Users" firstname="Joe"

 33

The method we create to do this is the user-defined function GetAttributeList.
GetAttributeList takes a reference to the reader and extracts attribute values for the
currently selected node.

// Assume we call this method after having read the node

string GetAttributeList(XmlReader reader)

{

 String buf = "";

 if (reader.HasAttributes)

 while(reader.MoveToNextAttribute())

 buf += reader.Name + "=\""+ reader.Value + "\" ";

 reader.MoveToElement();

 return buf;

}

When the pointer is not already positioned on an attribute node, calling
MoveToNextAttribute is equivalent to calling MoveToFirstAttribute, which moves the
pointer to the first attribute node.
An XML reader can move only forward, which means that no previously visited node
can be revisited once you have moved on to another node. This rule has a very specific
exception. When the pointer is positioned on an attribute node, you can move back to
the parent node using the MoveToElement method. This exception exists because,
after all, an attribute is a particular type of node that is used to qualify the contents of
the parent. From this point of view, an attribute is seen as a sort of subnode, and
moving between the attributes of a given node does not logically change the index of
the current element node. Using MoveToAttribute and MoveToFirstAttribute, you can
jump from one attribute node to the next in both directions.

Parsing Mixed-Content Attributes
Normally, the content of an attribute consists of a simple string of text. If you need to
use it as an instance of a more specific type (for example, a date or a Boolean value),
you can convert the string using either the methods of the static classes XmlConvert
(recommended) or even System.Convert.
In some situations, however, the content of an attribute is mixed and includes plain text
along with entities. Although unable to resolve entity references, the XmlTextReader
class can separate text from entities when both are embedded in an attribute's value.
For this to happen, you must parse the attribute's content using the ReadAttributeValue
method instead of simply reading the content via the Value property.
The following code demonstrates how to rewrite the GetAttributeList function so that it
can preprocess mixed attributes and separate text from entities. The added code is
shown in boldface.

// Assume we call this method after having read the node

string GetAttAttributeList(XmlReader reader)

{

 String buf = "";

 if (reader.HasAttributes)

 while(reader.MoveToNextAttribute())

 {

 34

 buf += reader.Name + "=\"";

 while(reader.ReadAttributeValue())

 {

 if (reader.NodeType == XmlNodeType.EntityReference)

 buf += "["+ reader.Name + "]";

 else

 buf += reader.Value;

 }

 buf += "\" ";

 }

 reader.MoveToElement();

 return buf;

}

The ReadAttributeValue method parses the attribute value and isolates each
constituent token, be it plain text or an entity. The function calls ReadAttributeValue
repeatedly until the end of the attribute string is reached. Because by design the
XmlTextReader parser does not resolve entities, there is not much you can do with the
embedded entity other than recognizing and maybe skipping it. The preceding code, for
instance, wraps the name of the entity in square brackets. When processing an element
node such as this:

<book ISBN="61801-1" author="&author;, Italy">

the GetAttAttributeList function produces the following string:

ISBN="61801-1" author="[author], Italy"

Attribute Normalization

The W3C XML 1.0 Recommendation defines attribute normalization as the preliminary
process that an attribute value should be subjected to prior to being returned to the
application. The normalization process can be summarized in a few basic rules:

 Any referenced character (for example,) is expanded.
 Any white space character (blanks, carriage returns, linefeeds, and tabs)

is replaced with a blank (ASCII 0x20) character.
 Any leading or trailing sequence of blanks is discarded.
 Any other sequence of blanks is replaced with a single blank character

(ASCII 0x20).
All other characters (for example, the literals forming the value) are simply appended to
the resulting normalized value. Any entity reference found in the attribute value is
recursively normalized. Of course, the normalization process applies only to the
attributes defined outside of any CDATA section.
The XmlTextReader parser lets you toggle the normalization process on and off
through the Normalization Boolean property. By default, the Normalization property is
set to false, meaning that attribute values are not normalized. If the normalization
process is disabled, an attribute can contain any character, including characters in the
� to range, which are normally considered invalid and not permitted. When
normalization is on, using any of those character entities results in an XmlException
being thrown.

 35

Consider the following attribute value, in which the entity character
 denotes a
linefeed character:

<book author="Dino Esposito"
AuthorDisplayName="Dino
Esposito">

Let's try to read the AuthorDisplayName attribute using the XmlTextReader parser
when the normalization is off. The following code shows how:

reader.Normalization = false;

reader.Read();

Console.WriteLine(reader["AuthorDisplayName"]);

In the resulting string, the linefeed is preserved, and the output in the console window
looks like this:

Dino

Esposito

Conversely, if you read the attribute when Normalization is set to true, the line-feed is
replaced with a blank, and the output looks like this:

Dino Esposito

Handling XML Exceptions
The XML reader throws an exception whenever it encounters a parsing error in the
XML source. The reader makes use of the XmlException class to return detailed
information about the last parsing error. Ad hoc information includes the line number,
the character position, and a text description. LinePosition and LineNumber, shown
here, are the members that differentiate the XmlException class from the basic .NET
Exception class:

public class XmlException : SystemException

{

 int LinePosition;

 int LineNumber;

}

Although you can still catch XML parsing and validation exceptions through the basic
Exception class, catching them through XmlException gives you more information and
the certainty that the error relates only to the code handling XML data.

Note If you have multiple XML documents in a single stream to parse in
sequence, you can still use the same instance of the reader.
However, prior to attacking a new stream, you must reset the
internal state of the reader. The XmlTextReader class specifically
defines a method, named ResetState, that simply resets the state of
the reader to ReadState.Initial.
ResetState resets all the properties to their default values, with a
few exceptions. Normalization, XmlResolver, and
WhitespaceHandling are not affected by the state reset.

Handling White Spaces
In XML, white spaces are a special type of node. White spaces found in the body of an
XML document can be classified in two groups: significant and insignificant. A white

www.allitebooks.com

http://www.allitebooks.org

 36

space is said to be significant when it appears in the text of an element node or when it
appears to be within the scope of a white space declaration, as shown here:

<MyTag xml:space="preserve">

<!-- Any space here is significant and must be preserved -->

⋮
</MyTag>

Significant white spaces can't be removed from the document without affecting to some
extent the validity and the contents of the document. An insignificant white space, on
the other hand, is any white space that you do not need to preserve after reading the
source document. White space is a blanket term that encompasses more than one
character and does not refer only to blanks (ASCII 0x20). White spaces are also
carriage returns (ASCII 0x0D), linefeeds (ASCII 0x0A), and tabs (ASCII 0x09).
The XmlTextReader class lets you control how white spaces are handled by using the
property WhitespaceHandling. This property accepts and returns a value taken from the
WhitespaceHandling enumeration, which lists three feasible options. The default option
is All and indicates that both significant and insignificant spaces will be returned as
distinct nodes—SignificantWhitespace and Whitespace, respectively. The None option
indicates that no white space at all will be returned as a node. The third option,
Significant, discards all insignificant white spaces and returns only nodes of type
SignificantWhitespace. Interestingly, the WhitespaceHandling property is one of the few
reader properties that can be changed at any time and will take effect immediately on
the next read operation.

Resolving Entities
In XML, an entity is a named placeholder for some content or markup text. Entities can
be declared both in-line and within a DTD or a schema. The declaration syntax is
shown here:

<!ENTITY name "content">

The following statement declares an entity named author that is associated with the
contents "Dino Esposito":

<!ENTITY author "Dino Esposito">

When it is declared in-line, the entity must be part of an all-encompassing
<!DOCTYPE> node, as in the following example:

<!DOCTYPE book [<!ENTITY author "Dino Esposito">]>

Once declared, entities are then used within the body of the XML document in place of
their bound content. An entity can appear only within the scope of Element, Attribute, or
EntityReference nodes. When used in an XML source, an entity is called an entity
reference, and the parser connects to it through an EntityReference node. The following
example shows how to use an entity in XML code:

<book ISBN="61801-1">

 <publisher>Microsoft Press</publisher>

 <author>&author;</author>

</book>

 37

An entity reference consists of the entity name bracketed by an ampersand (&) and a
semicolon (;). Not all parsers automatically expand entities upon document loading.
When the XmlTextReader class encounters an entity reference, it returns an empty
instance of the XmlEntityReference class in which the Value property is set to the
empty string. By design, the XmlTextReader parser can't resolve entities, although it
boasts a ResolveEntity method. Calling this method always throws an exception. You
must use XmlValidatingReader to have entities properly expanded. (We'll cover
validating readers and validation schemas in Chapter 3.)

Resolving External References
In the .NET Framework, external XML resources identified by a URI are resolved
through classes derived from the abstract class XmlResolver. Typical external
resources are entities and DTDs; however, the XmlResolver class can also successfully
process include and import elements for both XSD schemas and XSL style sheets.
The .NET Framework provides only one concrete resolver class built atop XmlResolver:
XmlUrlResolver. Programmers can design and implement custom resolvers, however,
either by inheriting from the XmlUrlResolver class or completely from scratch by
overriding the methods and properties of XmlResolver. Let's take a look at the key
aspects, and the main tasks, of a resolver.
The activity of an XML resolver revolves around two methods: GetEntity and
ResolveUri. The former takes the specified URI and returns the Stream object that
represents the desired contents. How the method actually manages to resolve the URI
is implementation-specific. GetEntity, however, assumes to have at its disposal an
absolute URI. What if the URI read from the XML document is relative? Prior to calling
GetEntity, you must be sure to call ResolveUri, passing both the relative URI and any
base URI. ResolveUri is responsible for combining these URIs into an absolute URI.
Another problem a resolver must be ready to face arises when the resource referenced
by the URI is protected and available only to authenticated users. In this case, the
resolver must be passed valid credentials to carry out the task. Credentials are
represented by an instance of the NetworkCredential class.
The NetworkCredential class can be used to support a variety of authentication
schemes that make use of passwords. Among others, the list of authentication
schemes includes basic and digest authentication and Kerberos. The class does not
support other types of authentication such as those based on a public key. You provide
the credentials to the resolver through the XmlResolver.Credentials property, as shown
here:

XmlUrlResolver resolver = new XmlUrlResolver();

NetworkCredential cred = new NetworkCredential(user, pswd);

resolver.Credentials = cred;

reader.XmlResolver = resolver;

You can also use the CredentialCache class to bind the resolver in a single shot to a
collection of URI/credential pairs, as shown in the following code. The collection will
then be scanned, searching for a matching URI each time the resolver is called to
action.

CredentialCache credCache = new CredentialCache();

credCache.Add(new Uri(url1), "Basic", cred);

credCache.Add(new Uri(url2), "Digest", cred);

resolver.Credentials = credCache;

 38

If credentials are needed but not provided, the resolver makes an attempt using default
credentials, available from the CredentialCache.DefaultCredentials property. If the
default credentials still don't provide access, the resolve attempt will fail. Default
credentials represents the system credentials for the application security context—that
is, the credentials of the logged-in user or the user being impersonated.

Reading Large Streams
The XmlTextReader class provides a few methods—ReadChars, ReadBinHex, and
ReadBase64—tailored to read chunks of data out of a large stream of embedded text.
These methods share almost the same prototype and overall logic, but differ in how
they preprocess and return the fetched data:

public int ReadChars (char[] array, int offset, int len);

public int ReadBinHex(byte[] array, int offset, int len);

public int ReadBase64(byte[] array, int offset, int len);

All three methods can be used only to read the text associated with an Element node. If
you use any of them with nodes of other types, the method will fail. The read methods
let you fetch the specified number of bytes (len argument) from the current reader
starting at the given offset (offset argument). The fetched bytes are then placed in the
array argument. The return value indicates the number of bytes effectively read. This
number equals len if the call was successful. The return value could be less than len if
the stream is close to its end, however. Anomalous situations are identified through
exceptions.
So what's the difference between these three methods? As their names imply, they
differ in their decoding capabilities. The ReadBinHex method decodes BinHex content,
whereas ReadBase64 returns Base64 decoded binary bytes. The ReadChars method,
on the other hand, reads the text as it is.

There are a few minor issues regarding the use of these methods. They do not perform
any XML-specific tasks such as validating, resolving entities, or normalizing attribute
values. While you're in the process of reading node content using a stream-based
method, you can't read any attributes.
ReadChars, ReadBinHex, and ReadBase64 always return everything found between
the start tag and the end tag of the element node they are working on. If the embedded
text includes any markup (for example, a mixed-content node), that is returned as well,
just as if you were reading a binary or a text file from a disk.

Note The full source code for an application demonstrating incremental
access to XML files is available in this book's sample files. The
application name is IncrementalRead.

Note Earlier in this chapter, you learned how to use a single instance of
an XmlTextReader reader to process multiple XML streams. In that
case, the key was using the ResetState method to reinitialize the
reader's internal state. If needed, however, you can also do the
reverse—that is, use different readers (for example, a text reader
and a validating reader) to process distinct pieces of a single XML
stream. The method that makes this possible is GetRemainder,
which returns the remainder of the buffered XML stream.
GetRemainder scans and returns the portion of the buffer that has
not yet been processed. The buffer is returned as a generic
TextReader object.

 39

The NameTable Object
One of the secrets behind the XML readers' great performance is the NameTable
class—a helper class that works as a quickly accessible table of string objects. Several
.NET classes, including, but not limited to, XmlDocument and XmlTextReader, make
use internally of a NameTable object. User applications too can use a NameTable
object to store potentially duplicated strings more efficiently. When stored in a name
table, a string is said to be an atomized string.

The net effect of atomized strings is that XML readers can manage elements and
attributes as references rather than values and can therefore function more effectively,
especially in terms of memory occupation and speed of comparison. Comparing two
object references is much faster than comparing all the characters that form a string.
The NameTable class, which inherits from the abstract class XmlNameTable, has a
relatively simple programming interface and provides methods to add new items and to
read them back. You add a new item to a name table using the Add method.

NameTable table = new NameTable();

string name = table.Add("Author");

You get the atomized string with the specified value from the table using the Get
method.

string name = table.Get("Author");

XML reader classes make internal use of name tables. The reader's name table can be
accessed through the NameTable property. The reader's name table contains an atom
(a reference to the string object) for each distinct element or attribute name, completed
with namespace information for uniqueness. If the XML document being processed
contains, say, 1000 nodes named <Customer>, only one atomized entry will be created
in the name table. Don't mistake the NameTable object for a worker table in which the
reader stores all the document's nodes. Instead, the NameTable object is just a worker
collection of unique names stored in a way that allows for more effective storage,
retrieval, and comparison.
The NameTable object is internally implemented using an array of structures that
mimics a hash table. Like a hash table, the array manages strings using hash codes.
So when a new string is added to the table, a new hash code is generated and
compared to the others existing in the array. If a string with that hash code already
exists in the table, a reference to the existing atom is returned; otherwise, a new entry
is created and the relative reference (atom) returned. In case of overflow, the size of the
array is doubled.
The NameTable object uses a homemade hash table rather than the official .NET
HashTable object because the HashTable object is not as simple and compact as
required in this context.
When creating a new instance of the XmlTextReader class, you can also indicate the
specific NameTable object to use.

Designing a SAX Parser with .NET Tools
As mentioned in Chapter 1, significant differences exist between .NET XML readers—a
kind of cursor-like parser—and Simple API for XML (SAX) parsers. All of these
differences can be traced, directly or indirectly, to the differences existing between the
push model, which is typical of SAX, and the pull model on which readers are based.

A SAX parser takes full control over the parsing process, extrapolates any predefined
piece of XML code, duplicates it into local buffers, and finally pushes that data down to
the calling application. The interaction between the parser and the application takes
place through application-defined classes that, in turn, implement SAX-defined
interfaces.

 40

With SAX, the client application receives any data the parser is designed to push and
can discard it if that result is of no interest. The data is always sent, however. The
application has to build fairly sophisticated code to isolate the pieces of information it
really needs (that is, the nodes of interest) and, more importantly, to add them to a
custom data structure that represents the state.

XML readers tout the pull model, in which the parser is just one tool managed and
governed by the caller application. This model allows for more selective processing—
the application just skips over unneeded data—and even for an optimized interaction. In
fact, the application puts data of interest directly in its final buffers rather than having
the parser create and pass on temporary buffers.

The main advantage of SAX over XMLDOM—that is, the ability to visit XML data in a
fast, forward-only, read-only way—is still the key feature of .NET XML readers. For this
reason, you will not find any support for SAX in the .NET Framework, and frankly, the
.NET XML infrastructure clearly works as a superset of SAX. However, if you still feel
some nostalgia for the SAX model, consider that the pull model is flexible enough to let
you build a push model on top of it. Let's see how.

Applications interact with a SAX parser by writing and registering their own handlers, as
shown here:

Set saxParser.contentHandler = myCntHandler

' *** Set other handlers

saxParser.parseURL(file)

In Visual Basic .NET, you create a new .NET class named SaxParser:

Public Class SaxParser

 Public ContentHandler As SaxContentHandler

 Public Sub Parse(ByVal file As String)

 Dim reader As XmlTextReader = New XmlTextReader(file)

 While (reader.Read())

 ContentHandler.Process(reader.Name, reader.Value,
reader.NodeType)

 End While

 reader.Close()

 End Sub

End Class

The SaxParser class has a property named ContentHandler that refers to a user-
defined object in charge of processing the found nodes. The Parse method parses the
content of the XML document using a reader, and whenever a new node is found, the
method calls the content handler. The content handler class has a fixed interface
represented by the following abstract class:

Public MustInherit Class SaxContentHandler

 Public MustOverride Sub Process(_

 ByVal name As String, _

 ByVal value As String, _

 41

 ByVal type As XmlNodeType)

End Class

After the two classes have been compiled into an assembly, a client SAX application
can simply reference and instantiate the parser and the content handler class. The
world's simplest content handler class is shown here:

Public Class MyContentHandler

 Inherits SaxContentHandler

 Public Overrides Sub Process(_

 ByVal name As String, _

 ByVal value As String, _

 ByVal type As XmlNodeType)

 If type = XmlNodeType.Element Then

 MsgBox(name)

 End If

 End Sub

End Class

The SAX application initializes the parser as follows:

Dim saxParser As New SaxParser()

Dim myHandler As New MyContentHandler()

saxParser.ContentHandler = myHandler

saxParser.Parse(file)

Of course, the parser discussed here is fairly minimal, but the design guidelines are
concrete and effective. As an aside, consider the fact that in the client application, the
content handler class and the form are different classes, which makes updating the
user interface from the content handler class a bit complicated.

Note The full source code discussed here is provided in this book's

sample files. The application is named SaxParser.

Parsing XML Fragments

The XmlTextReader class provides the basic set of functionalities to process any XML
data coming from a disk file, a stream, or a URL. This kind of reader works sequentially,
reading one node after the next, and does not deliberately provide any ad hoc search
function to parse only a particular subtree.
In the .NET Framework, to process only fragments of XML data, excerpted from a
variety of sources, you can take one of two routes. You can initialize the text reader
with the XML string that represents the fragment, or you can use another, more
specific, reader class—the XmlNodeReader class.
The XmlNodeReader class works on the subtree rooted in the XmlNode object passed
to the class constructor. A living instance of an XmlNode object is not something you
can obtain through a text reader, however. Only the .NET XML DOM parser can create
and return an XmlNode object. We'll examine the details of the XmlNodeReader class
in Chapter 5, along with the .NET XML DOM parser.

 42

If you have ever used Microsoft XML Core Services (MSXML)—the Microsoft COM
XML parser—you have certainly noticed that it allows you to initialize the parser from a
well-formed XML string. However, the long list of constructors that the XmlTextReader
class boasts gives no clear indication that that same MSXML feature is also supplied by
the .NET Framework. In this section, you'll learn how to parse XML data stored in a
memory string. First I'll show you how to work with plain strings with no context
information, and then I'll show you how to process XML fragments using specific
context information for the parser, such as namespaces and document type
declarations.

Parsing Well-Formed XML Strings
The trick to initializing a text reader from a string is all in packing the string into a
StringReader object. One of the XmlTextReader constructors looks like this:

public XmlTextReader(TextReader);

TextReader is an abstract class that represents a .NET reader object capable of
reading a sequence of characters no matter where they are physically stored. The
StringReader class inherits from TextReader and simply makes itself capable of
reading the bytes of an in-memory string. Because StringReader derives from
TextReader, you can safely use it to initialize XmlTextReader.

string xmlText = "…";

StringReader strReader = new StringReader(xmlText);

XmlTextReader reader = new XmlTextReader(strReader);

The net effect of this code snippet is that the XML code stored in the xmlText variable is
parsed as it is read from a disk file or an open stream or downloaded from a URL.

Important Any class based on TextReader is inherently not thread-safe.
Among other things, this means that the string object you are
using to contain parsable XML data might be concurrently
accessed from other threads. Of course, this happens only
under special conditions, but it is definitely a plausible
scenario. If you have a multi-threaded application and the
string itself happens to be globally visible throughout the
application, one thread could break the well-formedness of the
string while another thread is parsing it. To avoid this situation,
create a thread-safe wrapper for the StringReader class using
the TextReader class's static member Synchronized, as shown
here:

String xmlText = "…";
StringReader sr = new StringReader(xmlText);
XmlTextReader reader = new
XmlTextReader(sr);
TextReader strReader =
TextReader.Synchronized(sr);

For performance reasons, you should use the thread-safe
wrapper class only when strictly necessary. Even better,
wherever possible, you should design your code to avoid the
need for thread-safe classes.

 43

Fragments and Parser Context

The context for an XML parser consists of all the information that can be used to
customize the way in which the parser works. Context information includes the
encoding character set, the DTD information needed to set all the default attributes and
to expand entities, the namespaces, the language, and the white space handling.
If you specify the XML fragment using a StringReader object, as shown in the previous
section, all elements of the parser context are set with default values. The parser
context is fully defined by the XmlParserContext class. When instantiating an
XmlTextReader class to operate on a string, you use the following constructor and
specify a parser context:

public XmlTextReader(

 string xmlFragment,

 XmlNodeType fragType,

 XmlParserContext context

);

The xmlFragment parameter contains the XML string to parse. The fragType argument,
on the other hand, represents the type of fragment. It specifies the type of the node at
the root of the fragment. Only Element, Attribute, and Document nodes are permitted.
The XmlParserContext constructor has a few overloads. The one with the shortest list
of arguments, shown here, is probably the overload you will use most often:

public XmlParserContext(

 XmlNameTable nt,

 XmlNamespaceManager nsMgr,

 string xmlLang,

 XmlSpace xmlSpace

);

Creating a new parser context is as easy as running the following statements:

NameTable table = new NameTable();

table.Add("Author");

XmlNamespaceManager mgr = new XmlNamespaceManager(table);

mgr.AddNamespace("company", "urn:ThisIsMyBook");

XmlParserContext context;

context = new XmlParserContext(table, mgr, "en-US",
XmlSpace.None);

The first parameter to this XmlParserContext constructor is a NameTable object. The
name table is used to look up prefixes and namespaces as atomized strings. For
performance reasons, you also need to pass a NameTable object—which inherits from
the abstract XmlNameTable class—when creating a new instance of a namespace
manager class.

Note If the namespace manager and the parser context happen to use
different NameTable objects, the XmlParserContext might not be
able to recognize the namespaces brought in by the manager,
resulting in an XML exception.

 44

The second parameter to the XmlParserContext constructor is an
XmlNamespaceManager object. The XmlNamespaceManager class is a type of
collection class designed to contain and manage namespace information. It provides
methods to add, remove, and search for namespaces. Namespaces are stored with
their prefix and URN, which are passed to it through the AddNamespace method. If the
prefix is an empty string, the namespace is considered to be the default.
The XmlParserContext class makes use of a namespace manager to collect all the
namespaces that the fragment might use. A fragment is simply a small piece of XML
code and, as such, is not expected to contain all namespace definitions that its nodes
and attributes might use.
When a namespace manager is created, the class constructor automatically adds a
couple of frequently used prefixes. These prefixes are listed in Table 2-5.

Table 2-5: Standard Namespace Prefixes Added to XmlNamespaceManager

Prefix Corresponding Namespace

xmlns http://www.w3.org/2000/xmlns

xml http://www.w3.org/1998/namespace

A third namespace prefix that is allowed is the empty string, which of course has no
corresponding namespace URN. Thanks to this contrivance, you don't need to create a
namespace manager instance to parse XML fragments unless nodes and attributes
really contain custom namespaces. Added namespaces are not verified as conforming
to the W3C Namespaces specification and are discarded if they do not conform.
As mentioned in the section "The NameTable Object," on page 49, the namespace
names are atomized and placed in the related NameTable object as soon as they are
added to the collection. When you call the XML reader's LookupNamespace method to
search for the namespace that matches the specified prefix, the prefix string is
atomized and added to the name table for additional, faster use.
Any namespace declaration has a clear and well-defined scope. The namespace
declaration can appear anywhere in the document, not just at the very beginning of it.
The place in the source where the declaration appears determines the scope. A
namespace controls all the XML elements rooted in the node in which it appears. In the
following example, the namespace is applied to the node <author> and all of its
descendants:

<some_parent_node>

 ⋮
<author xmlns:dinoe="http://www.dinoe.com">

<firstname>Dino</firstname>

<lastname>Esposito</lastname>

<royalty>99</royalty>

</author>

 ⋮
</some_parent_node>

The namespace defined for the <author> element does not apply to elements outside
that element. The namespace is effective from its point of declaration until the end of
the element. After that, any other node not qualified with a namespace prefix is
assumed to belong to whichever default namespace has been declared in the
document.

 45

You can specify other settings for the parser context using the properties of the
XmlParserContext class, including Encoding, BaseURI, and DocTypeName. In
particular, BaseURI is especially useful because it indicates the location from which the
fragment was loaded.

Writing a Custom XML Reader

We have one more topic to consider on the subject of XML readers, which opens up a
whole new world of opportunities: creating customized XML readers. An XML reader
class is merely a programming interface for reading data that appears to be XML. The
XmlTextReader class represents the simplest and the fastest of all possible XML
readers but—and this is what really matters—it is just one reader. Its inherent simplicity
and effectiveness stems from two key points. First, the class operates as a read-only,
forward-only, nonvalidating parser. Second, the class is assumed to work on native
XML data. It has no need, and no subsequent overhead, to map input data internally to
XML data structures.

Virtually any data can be read, traversed, and queried as XML as long as a tailor-made
piece of code takes care of mapping that data to an XML Schema. This mapping code
can then be buried in a method that simply returns one of the standard reader objects
or creates a custom XML reader class.

Note What's the advantage of exposing data through XML? XML provides

a kind of universal model for defining a set of information (infoset),
the type and layout of constituent items (XML Schema), and the
query commands (XPath). In the .NET Framework, XML readers
provide an effective way to deal with hierarchical, XML-shaped data.
Because XML is just a metalanguage used to describe information,
and not a data repository itself, the key difference between standard
XML readers and custom XML readers is in the location and the
modality of intervention of the code that exposes data as XML. Such
code is not part of the basic .NET XML reader classes but
constitutes the core of custom XML readers.

Mapping Data Structures to XML Nodes

For a long time, INI files have been a fundamental part of Microsoft Windows
applications. Although with the advent of Microsoft Win32 they were officially declared
obsolete, a lot of applications have not yet stopped using them. Understanding the
reasons for this persistence is not of much importance here, but when they were
designing the .NET Framework, the Microsoft architects decided not to insert any
managed classes to handle INI files. Although overall I agree with their decision, keep
in mind that if you need to access INI files from within a .NET Framework application,
you'll find at your disposal only workarounds, not a direct solution.
You could, for instance, read and write the content of an INI file using file and I/O
classes, or you might resort to making calls to the underlying Win32 unmanaged
platform. Recently, however, I came across a rather illuminating MSDN article in which
an even better approach is discussed. (See the section "Further Reading," on page 74,
for details and the URL.) The idea is this: Why not wrap the contents of INI files into an
XML reader? INI files are not well-formed XML files, but a custom reader could easily
map the contents of an INI file's sections and entries to XML nodes and attributes.

www.allitebooks.com

http://www.allitebooks.org

 46

In the next few sections of this chapter, you'll learn how to build a custom XML reader
working on top of comma-delimited CSV files.

Mapping CSV Files to XML

A CSV file consists of one or more lines of text. Each line contains strings of text
separated by commas. Each line of a CSV file can be naturally associated with a
database row in which each token maps to a column. Likewise, a line in a CSV file can
also be correlated to an XML node with as many attributes as the comma-separated
tokens. The following code shows a typical CSV file:

Davolio,Nancy,Sales Representative

Fuller,Andrew,Sales Manager

Leverling,Janet,Sales Representative

A good XML representation of this structure is shown here:

<csv>

 <row col1="Davolio" col2="Nancy" col3="Sales Representative"
/>

 <row col1="Fuller" col2="Andrew" col3="Sales Manager" />

 <row col1="Leverling" col2="Janet" col3="Sales
Representative" />

</csv>

Each row in the CSV file becomes a node in the XML representation, while each token
is represented by a node attribute. In this case, the XML schema is ever-changing
because the number of attributes varies with the number of commas in the CSV file.
The number of total columns can be stored as an extra property. You can opt for an
automatically generated sequence of attribute names such as col1, col2, and so on, or
if the CSV file provides a header with column names, you can use those names. Of
course, there is no way to know in advance, and in general, whether the first row has to
be read as the first data row or just the header. A possible workaround is adding an
extra property that tells the reader how to handle the first row.

Using the XML schema described so far, you can use the following pseudocode to read
about a given item of information in the second row:

XmlCsvReader reader = new XmlCsvReader("employees.csv");

reader.Read();

reader.Read();

Console.WriteLine(reader[1].Value);

Console.WriteLine(reader["col2"].Value);

Another reasonable XML schema for a CSV file is shown here:

<csv>

 <row>

 <column name="col1">Davolio</column>

 <column name="col2">Nancy</column>

 <column name="col3">Sales Representative</column>

 </row>

 47

 <row>

 <column name="col1">Fuller</column>

 <column name="col2">Andrew</column>

 <column name="col3">Sales Manager</column>

 </row>

 <row>

 <column name="col1">Leverling</column>

 <column name="col2">Janet</column>

 <column name="col3">Sales Representative</column>

 </row>

</csv>

Although more expressive, I find this format—an element normal form—to be a bit
verbose, and more importantly, it would require more calls to Read or Skip methods to
get to what you really need to know from CSV data—values.

Implementing a CSV-to-XML Reader
In this section, I'll take you through building a custom CSV-to-XML reader. A custom
XML reader is built starting from the abstract XmlReader class, as shown in the
following code. You override all abstract methods and properties and, if needed, add
your own overloads and custom members.

public class XmlCsvReader : XmlReader

{

 ⋮
}

The XmlCsvReader class we're going to build is the reader class that processes CSV
files as XML documents. Given the structure of a CSV file, not all methods and
properties defined by the abstract XML reader interface make sense. For example, a
CSV file does not contain namespaces or entities. Likewise, it does not need a name
table property. Aside from these few exceptions, a large part of the XmlReader class
basic interface is preserved.
The key method for our custom reader is still Read, and Value is the principal property.
We'll use a StreamReader object to access the file and move from line to line as the
user calls Read. From an XML point of view, the structure of a CSV file is rather simple.
It consists of just one level of nodes—the Depth property is always 0—and,
subsequently, there is no possibility for nested nodes. As you can imagine, this fact
greatly simplifies the development and the internal logic of the reader.

Important If you look at the full source code for the XmlCsvReader class,
you'll notice that not all properties (see Table 2-1, on page 27)
and methods (see Table 2-3, on page 30) defined for the
XmlReader class are actually implemented or overridden. The
reason is that although XmlReader is declared as an abstract
class, not all methods and properties in the class are marked
as abstract. Abstract methods and properties must be
overridden in a derived class. Virtual methods and properties,
on the other hand, can be overridden only if needed.
Notice that abstract and virtual are C# and C++ specific

 48

keywords. In Visual Basic .NET, to define an abstract class
and a virtual method, you use the MustInherit and
MustOverride keywords, respectively.

The Custom Reader's Constructors
The XmlCsvReader class comes with a couple of constructors: one takes the name of
the file to open, and one, in addition to the file name, takes a Boolean value indicating
whether the contents of the first line in the CSV file contains titles of the columns, as
shown here:

LastName,FirstName,Title

Davolio,Nancy,Sales Representative

Fuller,Andrew,Sales Manager

Leverling,Janet,Sales Representative

Both constructors reference an internal helper routine, InitializeClass, that takes care of
any initialization steps.

public XmlCsvReader(string filename)

{

 InitializeClass(filename, false);

}

public XmlCsvReader(string filename, bool hasColumnHeaders)

{

 InitializeClass(filename, hasColumnHeaders);

}

private void InitializeClass(string filename, bool
hasColumnHeaders)

{

 m_hasColumnHeaders = hasColumnHeaders;

 m_fileName = filename;

 m_fileStream = new StreamReader(filename);

 m_readState = ReadState.Initial;

 m_tokenValues = new NameValueCollection();

 m_currentAttributeIndex = -1;

 m_currentLine = "";

}

In particular, the initialization routine creates a working instance of the StreamReader
class and sets the internal state of the reader to the ReadState.Initial value. The CSV
reader class needs a number of internal and protected members, as follows:

StreamReader m_fileStream; // Stream reader

String m_fileName; // Name of the CSV file

ReadState m_readState; // Internal read state

NameValueCollection m_tokenValues; // Current element node

 49

String[] m_headerValues; // Current headers for CSV
tokens

bool m_hasColumnHeaders; // Indicates whether the

 // CSV file has titles

int m_currentAttributeIndex; // Current attribute index

string m_currentLine; // Text of the current CSV
line

The currently selected row is represented through a NameValueCollection structure,
and the current attribute is identified by its ordinal and zero-based index. In addition, if
the CSV file has a preliminary header row, the column names are stored in an array of
strings.

The Read Method
The CSV reader implementation of the Read method lets you move through the various
rows of data that form the CSV file. First the method checks whether the CSV file has
headers. The structure of the CSV file does not change regardless of whether headers
are present. It's the programmer who declares, using a constructor's argument, whether
the reader must consider the first row as the header row or just a data row. If the
header row is present, it must be read only the first time a read operation is performed
on the CSV file, and only if the read state of the reader is set to Initial.

public override bool Read()

{

 // First read extracts headers if any

 if (m_readState == ReadState.Initial)

 {

 if(m_hasColumnHeaders)

 {

 string headerLine = m_fileStream.ReadLine();

 m_headerValues = headerLine.Split(',');

 }

 }

 // Read the new line and set the read state to interactive

 m_currentLine = m_fileStream.ReadLine();

 if (m_currentLine != null)

 m_readState = ReadState.Interactive;

 else

 {

 m_readState = ReadState.EndOfFile;

 return false;

 }

 // Populate the internal structure representing the current
element

 50

 m_tokenValues.Clear();

 String[] tokens = m_currentLine.Split(',');

 for (int i=0; i<tokens.Length; i++)

 {

 string key = "";

 if (m_hasColumnHeaders)

 key = m_headerValues[i].ToString();

 else

 key = CsvColumnPrefix + i.ToString();

 m_tokenValues.Add(key, tokens[i]);

 }

 // Exit

 return true;

}

The header values are stored in an array of strings (m_headerValues), which is
automatically created by the Split method of the .NET String object. The Split method
takes a character and splits into tokens all the parts of the string separated by that
character. For a line of text read out of a CSV file, the separator must be a comma.
The reader reads one row at a time and ensures that the internal reader state is set to
Interactive to indicate that the reader is ready to process requests and to EndOfFile
when the end of the stream is reached. The text read is split into components, and each
component is copied as the value of a name/value pair. In the following example, the
row is split into Davolio, Nancy, and Sales Representative:

LastName,FirstName,Title

Davolio,Nancy,Sales Representative

If the reader has been set to support header names, each value is stored with the
corresponding header. The resulting name/value pairs are shown here:

LastName/Davolio

FirstName/Nancy

Title/Sales Representative

If no header row is present, the name of each value takes a default form: col1, col2,
col3, and so on. You can customize the prefix of the header by setting the
CsvColumnPrefix property. As you might have guessed, CsvColumnPrefix is a custom
property defined for the XmlCsvReader class. The name/ value pairs are stored in a
NameValueCollection object, which is emptied each time the Read method is called.
The Name and Value Properties
The Name property represents the name of the current node—be it an element or an
attribute node. Both the Name and the Value properties share a common design, as
shown in the following code. Their content is determined by the node type.

public override string Name

{

 51

 get

 {

 if(m_readState != ReadState.Interactive)

 return null;

 string buf = "";

 switch(NodeType)

 {

 case XmlNodeType.Attribute:

 buf =
m_tokenValues.Keys[m_currentAttributeIndex].ToString();

 break;

 case XmlNodeType.Element:

 buf = CsvRowName;

 break;

 }

 return buf;

 }

}

If the reader is not in interactive mode, all properties return null, including Name. If the
current node type is an attribute, Name is the header name for the CSV token that
corresponds to the attribute index. For example, if the reader is currently positioned on
the second attribute, and the CSV has headers as shown previously, the name of the
attribute is FirstName. Otherwise, if the node is an element, the name is a string that
you can control through the extra CsvRowName property. By default, the property
equals the word row.
The Value property is implemented according to a nearly identical logic. The only
difference is in the returned text, which is the value of the currently selected attribute if
the node is XmlNodeType.Attribute or the raw text of the currently selected CSV line if
the node is an element.

public override string Value

{

 get

 {

 if(m_readState != ReadState.Interactive)

 return "";

 string buf = "";

 switch(NodeType)

 {

 case XmlNodeType.Attribute:

 buf = this[m_currentAttributeIndex].ToString();

 52

 break;

 case XmlNodeType.Element:

 buf = m_currentLine;

 break;

 }

 return buf;

 }

}

Who sets the node type? Actually, the node type is never explicitly set, but is instead
retrieved from other data whenever needed. In particular, for this example, the index of
the current attribute determines the type of the node. If the index is equal to -1, the
node is an element simply because no attribute is currently selected. Otherwise, the
node can only be an attribute.

public override XmlNodeType NodeType

{

 get

 {

 if (m_currentAttributeIndex == -1)

 return XmlNodeType.Element;

 else

 return XmlNodeType.Attribute;

 }

}

The programming interface of an XML reader is quite general and abstract, so the
actual implementation you provide (for example, for CSV files) is arbitrary to some
extent, and several details can be changed at will. The NodeType property for a CSV
file is an example of how customized the internal implementation can be. In fact, you
return Element or Attribute based on logical conditions rather than the actual structure
of the XML element read off disk.

Reading Attributes
Every piece of data in the CSV file is treated like an attribute. You access attributes
using indexes or names. The methods in the XmlReader base interface that allow you
to retrieve attribute values using a string name and a namespace URI are not
implemented, simply because there is no notion of a namespace in a CSV file.
The following two function overrides demonstrate how to return the value of the
currently selected attribute node by position as well as by name. The values of the
current CSV row are stored as individual entries in the internal m_tokenValues
collection.

public override string this[int i]

{

 get

 {

 return m_tokenValues[i].ToString();

 }

 53

}

public override string this[string name]

{

 get

 {

 return m_tokenValues[name].ToString();

 }

}

The preceding code simply allows you to access an attribute using one of the following
syntaxes:

Console.WriteLine(reader[i]);

Console.WriteLine(reader["col1"]);

You can also obtain the value of an attribute using one of the overloads of the
GetAttribute method. The internal implementation for the CSV XML reader GetAttribute
method is nearly identical to the this overrides.

Moving Through Attributes
When you call the Read method on the CSV XML reader, you move to the first
available row of data. If the first row is managed as the header row, the first available
row of data becomes the second row. The internal state of the reader is set to
Interactive—meaning that it is ready to take commands—only after the first successful
and content-effective reading.
Any single piece of information in the CSV file is treated as an attribute. In this way, the
Read method can move you only from one row to the next. As with real XML data,
when you want to access attributes, you must first select them. To move among
attributes, you will not use the Read method; instead, you'll use a set of methods
including MoveToFirstAttribute, MoveToNextAttribute, and MoveToElement.
The CSV XML reader implements attribute selection in a straightforward and effective
way. Basically, the current attribute is tracked using a simple index that is set to -1
when no attribute is selected and to a zero-based value when an attribute has been
selected. This index, stored in m_currentAttributeIndex, points to a particular entry in
the collection of token values that represents each CSV row.

The CSV XML reader positions itself at the first attribute of the current row simply by
setting the internal index to 0, as shown in the following code. It then moves to the next
attribute by increasing the index by 1. In this case, though, you should also make sure
that you're not specifying an index value that's out of range.

public override bool MoveToFirstAttribute()

{

 m_currentAttributeIndex = 0;

 return true;

}

public override bool MoveToNextAttribute()

{

 if (m_readState != ReadState.Interactive)

 54

 return false;

 if (m_currentAttributeIndex < m_tokenValues.Count-1)

 m_currentAttributeIndex ++;

 else

 return false;

 return true;

}

You can also move to a particular attribute by index, and you can reset the attribute
index to -1 to reposition the internal pointer on the parent element node.

public override void MoveToAttribute(int i)

{

 if (m_readState != ReadState.Interactive)

 return;

 m_currentAttributeIndex = i;

}

public override bool MoveToElement()

{

 if (m_readState != ReadState.Interactive)

 return false;

 m_currentAttributeIndex = -1;

 return true;

}

A bit trickier code is required if you just want to move to a particular attribute by name.
The function providing this feature is an overload of the MoveToAttribute method.

public override bool MoveToAttribute(string name)

{

 if (m_readState != ReadState.Interactive)

 return false;

 for(int i=0; i<AttributeCount; i++)

 {

 if (m_tokenValues.Keys[i].ToString() == name)

 {

 m_currentAttributeIndex = i;

 return true;

 }

 55

 }

 return false;

}

The name of the attribute—determined by a header row or set by default—is stored as
the key of the m_tokenValues named collection. Unfortunately, the
NameValueCollection class does not provide for search capabilities, so the only way to
determine the ordinal position of a given key is by enumerating all the keys, tracking the
index position, until you find the key that matches the specified name.
As you've probably noticed, almost all the methods and properties in the CSV reader
begin with a piece of code that simply returns if the reader's state is not Interactive. This
is a specification requirement that basically dictates that an XML reader can accept
commands only after it has been correctly initialized.

Exposing Data as XML
In a true XML reader, methods like ReadInnerXml and ReadOuterXml serve the
purpose of returning the XML source code embedded in, or sitting around, the currently
selected node. For a CSV reader, of course, there is no XML source code to return.
You might want to return an XML description of the current CSV node, however.
Assuming that this is how you want the CSV reader to work, the ReadInnerXml method
for a CSV XML reader can only return either null or the empty string, as shown in the
following code. By design, in fact, each element has an empty body.

public override string ReadInnerXml()

{

 if (m_readState != ReadState.Interactive)

 return null;

 return String.Empty;

}

In contrast, the outer XML text for a CSV node can be designed like a node with a
sequence of attributes, as follows:

<row attr1="…" attr2="…" />

The source code to obtain this output is shown here:

public override string ReadOuterXml()

{

 if (m_readState != ReadState.Interactive)

 return null;

 StringBuilder sb = new StringBuilder("");

 sb.Append("<");

 sb.Append(CsvRowName);

 sb.Append(" ");

 foreach(object o in m_tokenValues)

 {

 sb.Append(o);

www.allitebooks.com

http://www.allitebooks.org

 56

 sb.Append("=");

 sb.Append(QuoteChar);

 sb.Append(m_tokenValues[o.ToString()].ToString());

 sb.Append(QuoteChar);

 sb.Append("");

 }

 sb.Append("/>");

 return sb.ToString();

}

The CSV XML Reader in Action
In this section, you'll see the CSV XML reader in action and learn how to instantiate and
use it in the context of a realistic application. In particular, I'll show you how to load the
contents of a CSV file into a DataTable object to appear in a Windows Forms DataGrid
control. Figure 2-1 shows the application in action.

Figure 2-1: The CSV XML reader shows all the rows of a CSV file.

You start by instantiating the reader object, passing the name of the CSV file to be
processed and a Boolean flag. The Boolean value indicates whether the values in the
first row of the CSV source file must be read as the column names or as data. If you
pass false, the row is considered a plain data row and each column name is formed by
a prefix and a progressive number. You control the prefix through the CsvColumnPrefix
property.

// Instantiate the reader on a CSV file

XmlCsvReader reader;

reader = new XmlCsvReader("employees.csv", hasHeader.Checked);

reader.CsvColumnPrefix = colPrefix.Text;

reader.Read();

// Define the target table

DataTable dt = new DataTable();

for(int i=0; i<reader.AttributeCount; i++)

{

 reader.MoveToAttribute(i);

 DataColumn col = new DataColumn(reader.Name,
typeof(string));

 57

 dt.Columns.Add(col);

}

reader.MoveToElement();

Before you load data rows into the table and populate the data grid, you must define the
layout of the target DataTable object. To do that, you must scroll the attributes of one
row—typically the first row. You move to each of the attributes in the first row and
create a DataColumn object with the same name as the attribute and specified as a
string type. You then add the DataColumn object to the DataTable object and continue
until you've added all the attributes. The MoveToElement call restores the focus to the
CSV row element.

// Loop through the rows and populate a DataTable

do

{

 DataRow row = dt.NewRow();

 for(int i=0; i<reader.AttributeCount; i++)

 {

 row[i] = reader[i].ToString();

 }

 dt.Rows.Add(row);

}

while (reader.Read());

reader.Close();

// Bind the table to the grid

dataGrid1.DataSource = dt;

Next you walk through the various data rows of the CSV file and create a new DataRow
object for each. The row will then be filled in with the values of the attributes. Because
the reader is already positioned in the first row when the loop begins, you must use a

do…while loop instead of the perhaps more natural while loop. At the end of the loop,
you simply close the reader and bind the freshly created DataTable object to the
DataGrid control for display.
Figure 2-2 shows the output generated by the sample application when it uses the
values in the first row of the CSV file as column names.

Figure 2-2: The CSV XML reader now reads the column names from the first row in the
source file.

 58

Caution I tried to keep this version of the CSV reader as simple as

possible, which is always a good guideline. In this case,
however, I went beyond my original intention and came up with a
too simple reader! Don't be fooled by the fact that the sample
code discussed here works just fine. As I built it, the CSV reader
does not expose the CSV document as a well-formed XML
document, but rather as a well-formed XML fragment. There is
no root node, and no clear distinction is made between start and
end element tags. In addition, the ReadAttributeValue method is
not supported. As a result, if you use ReadXml to load the CSV
into a DataSet object, only the first row would be loaded. If you
run the CsvReader sample included in this book's sample files,
you'll see an additional button on the form labeled Use
ReadXML, which you can use to see this problem in action. In
Chapter 9, after a thorough examination of the internals of
ReadXml, we'll build an enhanced version of the CSV reader.

The DataGrid control shown in Figure 2-2 is read-only, but this does not mean that you
can't modify rows in the underlying DataTable object and then save changes back to
the CSV file. One way to accomplish this result would be by using a customized XML
writer class—a kind of XmlCsvWriter. You'll learn how to create such a class in Chapter
4, while we're looking at XML writers.

Note The full source code for both the CSV XML reader and the sample
application making use of it is available in this book's sample files.
The folder of interest is named CsvReader.

Important The XmlTextReader class implements a visiting algorithm for
the XML tree based on the so-called node-first approach. This
means that for each XML subtree found, the root is visited first,
and then recursively all of its children are visited, from the first
to the last. Node-first is certainly not the most unique visiting
algorithm you can implement, but it turns out to be the most
sensible one for XML trees.
Another well-known visiting algorithm is the in-depth-first
approach, which goes straight to the leaves of the tree and
then pops back to outer parent nodes. The node-first approach
is more effective for XML trees because it visits nodes in the
order they are written to disk. Choosing to implement a
different visiting algorithm would make the code significantly
more complex and less effective from the stand-point of
memory footprint. In short, you should have a good reason to
plan and code any algorithm other than node-first.

In general, visiting algorithms other than node-first algorithms
exist mostly for tree data structures, including well-balanced
and binary trees. XML files are designed like a tree data
structure but remain a very special type of tree.

 59

Readers and XML Readers

To cap off our examination of XML readers and custom readers, let's spend a few
moments looking at the difference between an XML reader and a generic reader for a
non-XML data structure.
A reader is a basic and key concept in the .NET Framework. Several different types of
reader classes do exist in the .NET Framework: binary readers, text readers, XML
readers, and database readers, just to name a few. Of course, you can add your own
data-specific readers to the list. But that's the point. How would you write your new
reader? The simplest answer would be, you write the reader by inheriting from one of
the existing reader classes.
A more precise answer should help you identify the best reader class to start from. The
key criterion when you're choosing a base class is the kind of programming interface
you expect from the new reader. Another minor, but not negligible, concern is whether
the class allows for inheritance. Some reader classes are sealed and do not permit
inheritance. (The data reader classes, such as SqlDataReader, belong to this
category.)
Actually, you could build your own reader class from base classes such as
BinaryReader, TextReader, and XmlReader. Typically, you choose the BinaryReader
class if you need to manipulate primitive types in binary rather than text format. You
choose the TextReader class whenever character input is critical. To successfully build
on top of TextReader, the most complicated thing you might need to do is read a line of
text between two successive instances of a carriage return. You choose the XmlReader
class as the base class if the content of the data you expose can be rendered, or at
least traversed, as XML. Because XML is a very specific flavor of text, the XmlReader
class happens to be more powerful and richer than any other reader class. Not all data,
however, maps to some reasonable extent to XML. If this is the case, simply plan a
brand-new reader on top of BinaryReader or TextReader as applicable.
If you just want to implement a specialized XML reader (for example, a SAX reader or
an XML reader supporting a different visiting algorithm), you might also consider
starting from XmlTextReader, XmlNodeReader, or XmlValidatingReader. An XML
specialized reader is basically a reader designed to handle data that is natively stored
as well-formed XML.

Conclusion

So far, we've covered the basics of XML readers. By now, you should know how to
parse an XML document irrespective of its physical location and storage medium. You
know how to move between nodes, how to skip unneeded nodes, and how to read
contents and attributes. In short, you have gotten the gist of XML readers.

The reader is a general concept that crosses the whole spectrum of .NET Framework
functionalities and applies to XML as well as databases, files, and network protocols.
You can also create custom XML readers to process non-XML data structures such as
CSV files.
We've only scratched the surface of this topic—there's a lot more to be done. For
example, we haven't yet looked at validation, which is the topic of Chapter 3.

 60

Further Reading

An article that summarizes in a few pages the essence of XML readers and writers was
written for the January 2001 issue of MSDN Magazine. Although based on a beta
version of .NET, it is still of significant value and can be found at
http://msdn.microsoft.com/msdnmag/issues/01/01/xml/xml.asp. Fresh, up-to-date, and
handy information about XML in the .NET world (and other topics) can be found
monthly in the "Extreme XML" column on MSDN Online.
If you need to know more about ADO.NET and its integration with XML, you can check
out my book Building Web Solutions with ASP.NET and ADO.NET (Microsoft Press,
2002) or David Sceppa's book Microsoft ADO.NET (Core Reference) (Microsoft Press,
2002).
XML extensions for SQL Server 2000 are described in detail in Chapter 2.
Finally, for a very informative article about the development of XML custom readers,
see "Implementing XmlReader Classes for Non-XML Data Structures and Formats,"
available on MSDN at http://msdn.microsoft.com/library/en-
us/dndotnet/html/Custxmlread.asp.

 61

Chapter 3: XML Data Validation

Overview

The base XML reader examined in Chapter 2—the XmlTextReader class—does not
enable you to validate the contents of an XML source against a schema. The
correctness of XML documents can be measured using two distinct and complementary
metrics: the well-formedness of the document and the validity. Well-formedness of the
document refers to the overall syntax of the document. Validation applies at a deeper
level and involves the semantics of the document, which must be compliant with a user-
defined layout.
The XmlTextReader class ensures only that the document being processed is
syntactically correct. By design, the XmlTextReader class deliberately avoids making a
more advanced analysis of the nodes in the document and checking their internal
dependencies. A more specialized class is available in the Microsoft .NET Framework
for accomplishing this more complex task—the XmlValidatingReader class. This
chapter will focus on techniques and classes available in the .NET Framework to
perform validation on XML data.
Although validation is a key aspect in projects that involve critical document exchange
across heterogeneous platforms, it does come at a price. Validating a document means
taking a while to analyze the constituent nodes; the number, type, and values of their
attributes; and the node-to-node dependencies. When applications handle a fully
validated document, they can be certain not only about the overall syntax but even
about the contents. In a normal XML document, a node simply represents itself—a
rather generic repository of hierarchical information. In a validated XML document, on
the other hand, the same node to the application's eye represents a strongly typed and
strongly defined piece of information. Basically, in a validated document, a node
<invoice_number> ceases to be a node and becomes what it was intended to be—the
number of the invoice.
Clearly, a nonvalidating reader (and, more generally, a nonvalidating XML parser) will
run faster than a validating reader, and that's why XML parsers usually provide XML
validation as an option that can be programmatically toggled on and off. In .NET
applications, you use XmlTextReader if you simply need well-formedness; you resort to
XmlValidatingReader if you need to validate the schema of the document.

The XmlValidatingReader Class

The XmlValidatingReader class is an implementation of the XmlReader class that
provides support for several types of XML validation: document type definitions (DTDs),
XML-Data Reduced (XDR) schemas, and XML Schemas. The XML Schema language
is also referred to as XML Schema Definition (XSD). DTD and XSD are official
recommendations issued by the W3C, whereas XDR is simply the Microsoft
implementation of an early working draft of XML Schemas that will be superseded by
XSD as time goes by.
You can use the XmlValidatingReader class to validate entire XML documents as well
as XML fragments. An XML fragment is a string of XML code that does not have a root
node. For example, the following XML string turns out to be a valid XML fragment but
not a valid XML document. XML documents must have a root node.

<firstname>Dino</firstname>

<lastname>Esposito</lastname>

 62

The XmlValidatingReader class works on top of an XML reader—typically an instance
of the XmlTextReader class. The text reader is used to walk through the nodes of the
document, and then the validating reader gets into the game, validating each piece of
XML based on the requested validation type.

Supported Validation Types
What are the key differences between the validation mechanisms (DTD, XDR, and
XSD) supported by the XmlValidatingReader class? Let's briefly review the main
characteristics of each mechanism.

 DTD A DTD is a text file whose syntax stems directly from the Standard
Generalized Markup Language (SGML)—the ancestor of XML as we know
it today. A DTD follows a custom, non-XML syntax to define the set of
valid tags, the attributes each tag can support, and the dependencies
between tags. A DTD allows you to specify the children for each tag, their
cardinality, their attributes, and a few other properties for both tags and
attributes. Cardinality specifies the number of occurrences of each child
element.

 XDR XDR is a schema language based on a proposal submitted by
Microsoft to the W3C back in 1998. (For more information, see
http://www.w3.org/TR/1998/NOTE-XML-data-0105.) XDRs are flexible and
overcome some of the limitations of DTDs. Unlike DTDs, XDRs describe
the structure of the document using the same syntax as the XML
document. Additionally, in a DTD, all the data content is character data.
XDR language schemas allow you to specify the data type of an element
or an attribute.

 XSD XSD defines the elements and attributes that form an XML
document. Each element is strongly typed. Based on a W3C
recommendation, XSD describes the structure of XML documents using
another XML document. XSDs include an all-encompassing type system
composed of primitive and derived types. The XSD type system is also at
the foundation of the Simple Object Access Protocol (SOAP) and XML
Web services.

DTD was considered the cross-platform standard until a couple of years ago. Then the
W3C officialized a newer standard—XSD—which is, technically speaking, far superior
to DTD. Today, XSD is supported by almost all parsers on all platforms. Although the
support for DTD will not be deprecated anytime soon, you'll be better positioned if you
start migrating to XSD or building new XML-driven applications based on XSD instead
of DTD or XDR.
As mentioned, XDR is an early hybrid specification that never reached the status of a
W3C recommendation. It then evolved into XSD. The XmlValidatingReader class
supports XDR mostly for backward compatibility, as XDR is fully supported by the
Component Object Model (COM)-based Microsoft XML Core Services (MSXML).

Note The .NET Framework provides a handy utility, named xsd.exe, that
among other things can automatically convert an XDR schema to
XSD. If you pass an XDR schema file (typically, a .xdr extension),
xsd.exe converts the XDR schema to an XSD schema, as shown
here:
xsd.exe myoldschema.xdr

The output file has the same name as the XDR schema, but with
the .xsd extension.

 63

The XmlValidatingReader Programming Interface
The XmlValidatingReader class inherits from the base class XmlReader but implements
internally only a small set of all the functionalities that an XML reader exposes. The
class always works on top of an existing XML reader, and many methods and
properties are simply mirrored.

The dependency of validating readers on an existing text reader is particularly evident if
you look at the class constructors. An XML validating reader, in fact, can't be directly
initialized from a file or a URL. The list of available constructors comprises the following
overloads:

public XmlValidatingReader(XmlReader);

public XmlValidatingReader(Stream, XmlNodeType,
XmlParserContext);

public XmlValidatingReader(string, XmlNodeType,
XmlParserContext);

A validating reader can parse only an XML document for which a reader is provided as
well as any XML fragments accessible through a string or an open stream. In the
section "Under the Hood of the Validation Process," on page 89, we'll look more closely
at the internal architecture of an XML validating reader. In the meantime, let's analyze
more closely the programming interface of such a class, starting with properties.

XmlValidatingReader Properties
Table 3-1 lists the key public properties exposed by the XmlValidatingReader class.
This table does not include those properties defined in the XmlReader base class for
which the XmlValidatingReader class simply mirrors the behavior of the underlying
reader. Refer to Chapter 2 for more information about the base properties of
XmlReader.

Table 3-1: Key Properties of the XmlValidatingReader Class

Property Description

CanResolveEntity Always returns true because the XML validating reader
can always resolve entities.

EntityHandling Indicates how entities are handled. Allowable values for
this property come from the EntityHandling
enumeration. The default value is ExpandEntities,
which means that all entities are expanded. If set to
ExpandCharEntities, only character entities are
expanded (for example, '). General entities are
returned as EntityReference node types.

Namespaces Indicates whether namespace support is requested.

NameTable Gets the name table object associated with the
underlying reader.

Reader Gets the XmlReader object used to construct this
instance of the XmlValidatingReader class. The return
value can be cast to a more specific reader type, such
as XmlTextReader. Any change entered directly to the
underlying reader object can lead to unpredictable
results. Use the XmlValidatingReader interface to
manipulate the properties of the underlying reader.

Schemas Gets an XmlSchemaCollection object that holds a

 64

Table 3-1: Key Properties of the XmlValidatingReader Class

Property Description

collection of preloaded XDRs and XSDs. Schema
preloading is a trick used to speed up the validation
process. Schemas, in fact, are cached, and there is no
need to load them every time.

SchemaType Gets the schema object that represents the current
node in the underlying reader. This property is relevant
only for XSD validation. The object describes whether
the type of the node is one of the built-in XSD types or
a user-defined simple or complex type.

ValidationType Indicates the type of validation to perform. Feasible
values come from the ValidationType enumeration:
Auto, None, DTD, XDR, and Schema.

XmlResolver Sets the XmlResolver object used for resolving external
DTD and schema location references. The
XmlResolver is also used to handle any import or
include elements found in XSD schemas.

The validating reader uses the underlying reader to move around the document and
implements most of its XmlReader-derived properties by simply mirroring the
corresponding properties of the worker reader.

XmlValidatingReader Methods
Table 3-2 lists the methods exposed by the XmlValidatingReader class that are either
new or whose behavior significantly differs from the corresponding methods of the
XmlReader class.

Table 3-2: Public Methods of the XmlValidatingReader Class

Method Description

Read The underlying reader moves to the next node. At the
same time, the validating reader gets the node
information and validates it using the schema
information and the previously cached information.

ReadTypedValue Gets the value for the underlying node as a common
language runtime (CLR) type. The mapping can take
place only for XSDs. Whenever a direct mapping is not
possible, the node value is returned as a string.

Skip Skips the children of the current node in the underlying
reader. You can't skip over badly formed XML text,
however. In the XmlValidatingReader class, the Skip
method also validates the skipped content.

As you can see, the programming interface of the XmlValidatingReader class does not
explicitly provide a single method that can validate the entire contents of a document.
The validating reader works incrementally, node by node, as the underlying reader
does. Each validation error found along the way results in a particular event notification
being returned to the caller application. The application is then responsible for defining
an ad hoc event handler and behaving as needed.

 65

The ValidationEventHandler Event
The XmlValidatingReader class contains a public event named Validation-
EventHandler, which is defined as follows:

public event ValidationEventHandler ValidationEventHandler;

This event is used to pass information about any DTD, XDR, or XSD schema validation
errors that have been detected. The handler for the event (also named
ValidationEventHandler) has the following signature:

public delegate void ValidationEventHandler(

 object sender,

 ValidationEventArgs e

);

The ValidationEventArgs class is described by the following pseudocode:

public class ValidationEventArgs : EventArgs

{

 public XmlSchemaException Exception;

 public string Message;

 public XmlSeverityType Severity;

}

The Message field returns a description of the error. The Exception field, on the other
hand, returns an ad hoc exception object (XmlSchemaException) with details about
what happened. The schema exception class contains information about the line that
originated the error, the source file, and, if available, the schema object that generated
the error. The schema object (the SourceSchemaObject property) is available for XSD
validation only.
The Severity field represents the severity of the validation event. The XmlSeverityType
defines two levels of severity—Error and Warning. Error indicates that a serious
validation error occurred when processing the document against a DTD, an XDR, or an
XSD schema. If the current instance of the XmlValidatingReader class has no validation
event handler set, an exception is thrown. Typically, a warning is raised when there is
no DTD, XDR, or XSD schema to validate a particular element or attribute against.
Unlike errors, warnings do not throw an exception if no validation event handler has
been set.

The XmlValidatingReader in Action
Let's see how to validate an XML document. As mentioned, the XmlValidatingReader
class is still a reader class, so it proceeds with an incremental validation as nodes are
actually read. The caller is notified of any schema exception found for a node by raising
the ValidationEventHandler event. This section describes in detail how to validate an
XML document, including initializing an XML reader, handling validation errors, and
setting and detecting the validation types.

Initialization of the Reader
To validate the contents of an XML file, you must first create an XML text reader to
work on the file and then use this reader to initialize an instance of a validating reader.
A validating reader can be initialized using a living instance of an XmlReader class—
typically, an XmlTextReader object—or using an XML fragment taken from a stream or
a memory string, as shown here:

www.allitebooks.com

http://www.allitebooks.org

 66

XmlTextReader _coreReader = new XmlTextReader(fileName);

XmlValidatingReader reader = new
XmlValidatingReader(_coreReader);

You move around the input document using the Read method as usual. Actually, you
use the validating reader as you would any other XML .NET reader. At each step,
however, the structure of the currently visited node is validated against the specified
schema and an exception is raised if an error is found.

To validate an entire XML document, you simply loop through its contents, as shown
here:

private bool ValidateDocument(string fileName)

{

 // Initialize the validating reader

 XmlTextReader _coreReader = new XmlTextReader(fileName);

 XmlValidatingReader reader = new
XmlValidatingReader(_coreReader);

 // Prepare for validation

 reader.ValidationType = ValidationType.Auto;

 reader.ValidationEventHandler += new

 ValidationEventHandler(MyHandler);

 // Parse and validate all the nodes in the document

 while(reader.Read()) {}

 // Close the reader

 reader.Close();

 return true;

}

The ValidationType property is set to the default value—ValidationType.Auto. In this
case, the reader determines what type of validation (DTD, XDR, or XSD) is required by
looking at the contents of the file. The caller application is notified of any error through a
ValidationEventHandler event. In the preceding code, the MyHandler procedure runs
whenever a validation error is detected, as shown here:

private void MyHandler(object sender, ValidationEventArgs e)

{

// Logs the error that occurred

PrintOut(e.Exception.GetType().Name, e.Message);

}

Figure 3-1 shows the output of the sample program ValidateDocument. The list box
tracks down all the errors that have been detected. The complete code listing for the
sample application showing how to set up a validating parser is available in this book's
sample files.

 67

Figure 3-1: The sample application dumps the most significant events of its life cycle: when
parsing begins, when parsing ends, and all the validation errors that have been detected in
between.

When you've finished with the validation process, you close the reader using the Close
method. This operation also resets the reader's internal state to Closed. Closing the
validating reader automatically closes the underlying text reader. However, no
exception is raised if you also attempt to programmatically close the internal reader.
The Close method simply returns when it is called on a reader that is already closed.

Handling Validation Errors

If you need to know the details of validation errors, you must necessarily define an
event handler and pass it along to the validating reader. Whenever an error is found,
the reader fires the event and then continues to parse. As a result, the event fires for all
the errors detected, thus giving the caller application a chance to handle the errors
separately.
In some situations, you might want to know simply whether a given XML document
complies with a given schema. In this case, you don't need to know anything about the
error other than the fact that it occurred. The following code provides a class with a
static method named ValidateXmlDocument. This method takes the name of an XML
file, figures out the most appropriate validation schema, and returns a Boolean value.

using System;

using System.Xml;

using System.Xml.Schema;

public class XmlValidator

{

 private static bool m_isValid = false;

 // Handle any validation errors detected

 private static void ErrorHandler(object sender,

 ValidationEventArgs e)

 {

 // Go on in case of warnings

 68

 if (e.Severity == XmlSeverityType.Error)

 m_isValid = false;

 }

 // Validate the specified XML document (using Auto mode)

 public static bool ValidateXmlDocument(string fileName)

 {

 XmlTextReader _coreReader = new XmlTextReader(fileName);

 XmlValidatingReader reader = new
XmlValidatingReader(_coreReader);

 reader.ValidationType = ValidationType.Auto;

 reader.ValidationEventHandler +=

 new ValidationEventHandler(XmlValidator.ErrorHandler);

 // Parse the document

 try

 {

 m_isValid = true;

 while(reader.Read() && m_isValid) {}

 }

 catch

 {

 m_isValid = false;

 }

 reader.Close();

 return m_isValid;

 }

}

The ValidateXmlDocument method loops through the nodes of the document until the
internal member m_isValid is false or the end of the stream is reached. The m_isValid
member is set to true at the beginning of the loop and changes to false the first time an
error is found. At this point, the document is certainly invalid, so there is no reason to
continue looping.
Because the ValidateXmlDocument method is declared static (or Shared in Microsoft
Visual Basic .NET), you don't need a particular instance of the base class to issue the
call, as shown here:

if(!XmlValidator.ValidateXmlDocument("data.xml"))

 MessageBox.Show("Not a valid document!");

Note The reader's internal mechanisms responsible for checking a
document's well-formedness and schema compliance are distinct.
So if a validating reader happens to work on a badly formed XML

 69

document, no event is fired, but an XmlException exception is
raised.

Setting the Validation Type
The ValidationType property indicates what type of validation must be performed on the
current document. To be effective, the property must be set before the first call to Read.
Setting the property after the first call to Read would originate an
InvalidOperationException exception. If no value is explicitly assigned to the property, it
defaults to the ValidationType.Auto value.
The ValidationType enumeration defines all the feasible values for the property, as
listed in Table 3-3.

Table 3-3: Types of Validation

Type Description

None Creates a nonvalidating reader and ignores any validation errors

Auto Determines the most appropriate type of validation by looking at
the contents of the document

DTD Validates according to the specified DTD

Schema Validates according to the specified XSD schemas, including in-
line schemas

XDR Validates according to XDR schemas, including in-line schemas

When the validation type is set to Auto, the reader first attempts to locate a DTD
declaration in the document. The DTD validation always takes precedence over other
validation types. If a DTD is found, the document is validated accordingly. Otherwise,
the reader looks for an XSD, either referenced or inline. If no XSD is found, the reader
makes a final attempt to find a referenced or an in-line XDR schema. If a schema is still
not found, a nonvalidating reader is created. If more than one validation schema is
specified in the document, only the first occurrence, in accordance with the order just
discussed, is taken into account.

Detecting the Actual Validation Type
When the ValidationType property is set to Auto, you know at the end of the process
whether the semantics of your XML document are valid. But valid against which
schema? The Auto mode forces the parser to make various attempts until a validation
schema type is found in the source code—whether it be DTD, XSD, or XDR. Is there a
way to know what type of validation the parser is actually performing when working in
Auto mode?

The validating reader class provides no help on this point, but with a bit of creativity you
can easily identify the information you need. This information is not directly exposed,
but it is right under your nose and can be inferred from the node type and the schema
type without too much effort.
If the parser detects a node of type DocumentType, it can only be validating against a
DTD. By definition, the DOCTYPE node must appear outside the information set
(infoset). If no DOCTYPE node is found, check whether the SchemaType property
evaluates to an XmlSchemaType object. This can happen only if an XML Schema
Object Model (SOM) has been created, and hence only if XSD validation is taking
place. The XmlSchemaType object has even more in store. By checking the contents of
the SourceUri property, you can also determine whether the schema is in-line or a
reference. If the schema is in-line, the SourceUri property matches the URI of the XML

 70

document being processed. Finally, if the validation type is neither DTD nor XSD, it can
only be XDR! The following source code illustrates a function that determines the actual
validation type:

string GetActualValidationType(XmlValidatingReader reader,

 string filename)

{

 string realValidationType = "";

 if(reader.ValidationType == ValidationType.Auto)

 {

 if(reader.NodeType == XmlNodeType.DocumentType)

 realValidationType = "Auto.DTD";

 else

 {

 if(reader.SchemaType is XmlSchemaType)

 {

 XmlSchemaType xst = (XmlSchemaType)
reader.SchemaType;

 string xsd = Path.GetFileName(xst.SourceUri);

 string doc = Path.GetFileName(filename);

 if (xsd == doc)

 realValidationType = "Auto.Schema.Inline";

 else

 realValidationType = "Auto.Schema.Ref ("+ xsd +
")";

 }

 }

 }

 return realValidationType;

}

This code alone is not sufficient to produce the desired effect. It must be used in
combination with the main parsing loop, as shown in the following code. The function
should be called from within the loop as you read nodes, and at the end loop, you
should check for the results. If neither DTD nor XSD has been detected, the document
can be validated only through XDR.

string valtype = "";

while(reader.Read())

{

 if (valtype == "")

 valtype = GetActualValidationType(reader, filename);

}

// No DTD, no XSD, so it must be XDR...

if (valtype == ""&& reader.ValidationType==ValidationType.Auto)

 71

 valtype = "Auto.XDR";

Figure 3-2 shows how the ValidateDocument application implements this feature.

Figure 3-2: The ValidateDocument application determines the type of validation occurring
under the umbrella of the Auto validation type.

Although it's easy to use, the Auto option is the most expensive of all in terms of
performance because it must first figure out what type of validation to apply. Whenever
possible, you should indicate explicitly the type of validation required.

Note When the ValidationType property is set to None, the DTD-specific
DOCTYPE node, if present, is not used for validation purposes.
However, default attributes in the DTD are correctly reported.
General entities are not automatically expanded but can be resolved
using the ResolveEntity method.

Events vs. Exceptions
The typical way to detect validation errors is by means of a validation event handler. If a
validation event handler is specified, no validation exception is ever raised. In practice,
once the reader has found an error, it looks for an event handler. If a handler is found,
the handler raises the event; otherwise, it throws an XmlSchemaException exception.
For the reader class, handling an exception is much more expensive than firing an
event, so use the ValidationEventHandler event whenever possible and do not abuse
exceptions. Using exceptions automatically stops the validation process after the first
error. As shown in the section "Detecting the Actual Validation Type," on page 86, you
can obtain the same behavior from the event by using a slightly smarter Boolean guard
for the loop. Instead of using the following statement:

while(reader.Read());

you resort to this:

while(reader.Read() && !m_errorFound)

where the m_errorFound private member is updated in the body of the event handler
according to what you want to do.

A Word on XML DOM
So far, we've looked exclusively at how the validation process works for XML readers.
But what about the XmlDocument class for XML Document Object Model (XML DOM)
parsing? How can you validate against a schema while building an XML DOM? We'll

 72

examine XML DOM classes in detail in Chapter 5, but for now a quick preview, limited
to validation, is in order.
The XmlDocument class—the key .NET Framework class for XML DOM parsing—uses
the Load method to parse the entire contents of a document into memory. The Load
method does not validate the XML source code against a DTD or a schema, however—
Load can only check whether the XML is well-formed.
If you want to validate the in-memory tree while building it, use the following overload
for the XmlDocument class's Load method:

public override void Load(XmlReader);

You can create an XML DOM from a variety of sources, including a stream, a text
reader, and a file name. If you load the document through an XML validating reader,
you hit your target and obtain a fully validated in-memory DOM, as shown here:

XmlTextReader _coreReader = new XmlTextReader(fileName);

XmlValidatingReader reader = new
XmlValidatingReader(_coreReader);

XmlDocument doc = new XmlDocument();

doc.Load(reader);

As you'll see in Chapter 5, in the .NET Framework, an XML DOM is built using an
internal reader. The programming interface of the XmlDocument class, however, in
some cases allows you to specify the reader to use. If this reader happens to be a
validating reader, you are automatically provided with a fully validated in-memory DOM.

Under the Hood of the Validation Process

Before going any further with the details of DTD, XDR, and XSD validation, let's review
what happens under the hood of the validation process and how the
XmlValidatingReader class really operates.
As mentioned, a validating reader works on top of a less-specialized reader, typically an
XML text reader. You initialize the validating reader simply by passing a reference to
this object. Upon initialization, the validating reader copies a few settings from the
underlying reader. In particular, the properties BaseURI, Normalization, and
WhiteSpaceHandling get the same values as the underlying reader. During the
initialization step, an internal validator object is created to manage the schema
information on a per-node basis.

Important Although one of the XmlValidatingReader constructors takes
an instance of the XmlReader class as its parameter, actually
that reader can only be an instance of the XmlTextReader
class, or a class that derives from it. You can't use just any
class that happens to inherit from XmlReader (for example, a
custom XML reader). Internally, the XmlValidatingReader
class assumes that the underlying reader is an
XmlTextReader object and specifically casts the input reader
to XmlTextReader. If you use XmlNodeReader or a custom
reader class, you will not get an error at compile time, but an
exception will be thrown at run time.

Incremental Parsing
The validation takes place as the user moves the pointer forward using the Read
method. After the node has been parsed and read, it is passed on to the internal

 73

validator object for further processing. The validator object operates based on the node
type and the validation type requested. The validator object makes sure that the node
has all the attributes and children it is expected to have.

The validator object internally invokes two flavors of objects: the DTD parser and the
schema builder. The DTD parser processes the contents of the current node and its
subtree against the DTD. The schema builder builds a SOM for the current node based
on the XDR or XSD schema source code. The schema builder class is actually the
base class for more specialized XDR and XSD schema builders. What matters, though,
is that XDR and XSD schemas are treated in much the same way and with no
difference in performance.
If a node has children, another temporary reader is used to read its XML subtree in
such a way the schema information for the node can be fully investigated. The overall
diagram is shown in Figure 3-3.

Figure 3-3: The validating reader coordinates the efforts of the internal reader, the
validator, and the event handler.

In general, an XML reader might or might not resolve entities, but an XML validating
reader always does so. The EntityHandling property defines how entities are handled.
The EntityHandling property can take one of two values defined in the EntityHandling
enumeration, as described in Table 3-4.

Table 3-4: Ways to Handle Entities

Action Description

ExpandCharEntities Expands character entities and returns general

 74

Table 3-4: Ways to Handle Entities

Action Description

entities as EntityReference nodes. You must then call
the ResolveEntity method to expand a general entity.

ExpandEntities Default setting; expands all entities and replaces
them with their underlying text.

A character entity is an XML entity that evaluates to a character and is expressed
through the character's decimal or hexadecimal representation. For example, A
expands to A. Character entities are mostly used to guarantee the well-formedness of
the overall document when this is potentially broken by that character.
A general entity is a normal XML entity that can expand to a string of any size, including
a single character. A general entity is always expressed through text, even when it
refers to a single character.
By default, the reader makes no distinction between the types of entities and expands
them all when needed. By setting the EntityHandling property to ExpandCharEntities,
however, you can optimize entity handling by expanding the general entities only when
required. In this case, a call to Read expands only character entities. To expand
general entities, you must resort to the ResolveEntity method or to GetAttribute, if the
entity is part of an attribute.
The EntityHandling property can be changed on the fly; the new value takes effect
when the next call to Read is made.

A Cache for Schemas
In the validating reader class, the Schemas property represents a collection—that is, an
instance of the XmlSchemaCollection class—in which you can store one or more
schemas that you plan to use later for validation. Using the schema collection improves
overall performance because the various schemas are held in memory and don't need
to be loaded each and every time validation occurs. You can add as many XSD and
XDR schemas as you want, but bear in mind that the collection must be completed
before the first Read call is made.
To add a new schema to the cache, you use the Add method of the
XmlSchemaCollection object. The method has a few overloads, as follows:

public void Add(XmlSchemaCollection);

public XmlSchema Add(XmlSchema);

public XmlSchema Add(string, string);

public XmlSchema Add(string, XmlReader);

The first overload populates the current collection with all the schemas defined in the
given collection. The remaining three overloads build from different data and return an
instance of the XmlSchema class—the .NET Framework class that contains the
definition of an XSD schema.

Populating the Schema Collection
The schema collection actually consists of instances of the XmlSchema class—a kind
of compiled version of the schema. The various overloads of the Add method allow you
to create an XmlSchema object from a variety of input arguments. For example,
consider the following method:

public XmlSchema Add(

 string ns,

 string url

 75

);

This method creates and adds a new schema object to the collection.

The compiled schema object is created using the namespace URI associated with the
schema and the URL of the source. For example, let's assume that you have a
clients.xsd file that begins as follows:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="urn:my-company"

 elementFormDefault="qualified"

 targetNamespace="urn:my-company">

The corresponding Add statement to insert the schema into the collection looks like
this:

XmlTextReader _coreReader = new XmlTextReader(file);

XmlValidatingReader reader = new
XmlValidatingReader(_coreReader);

reader.Schemas.Add("urn:my-company", "clients.xsd");

While validating, the XmlValidatingReader class identifies the schema to use for a given
XML source document by matching the document's namespace URI with the
namespace URIs available in the collection. If the input document is an XDR schema,
the source item to match in the schema collection is the contents of the xmlns attribute.
If the input document is an XSD schema, the targetNamespace attribute in the XSD
source code is used.
When you add a new schema to the collection and the namespace URI argument (the
first argument) is null or empty, the Add method automatically brings in the value of the
xmlns attribute if the source file is an XDR schema and the value of the
targetNamespace attribute if you are adding an XSD schema, as shown here:

XmlTextReader _coreReader = new XmlTextReader(file);

XmlValidatingReader reader = new
XmlValidatingReader(_coreReader);

reader.Schemas.Add(null, "Clients.xsd");

reader.ValidationType = ValidationType.Schema;

reader.ValidationEventHandler += new
ValidationEventHandler(MyHandler);

If the namespace URI you use already exists in the schema collection, the schema
being added replaces the original one.

If necessary, you could also load the schema from an XML reader object by using the
overload shown here:

public XmlSchema Add(

 string ns,

 XmlReader reader

);

 76

Note You can check whether a schema is already in the schema
collection by using the Contains method. The Contains method can
take either an XmlSchema object or a string representing the
namespace URI associated with the schema. The former approach
works only for XSD schemas. The latter covers both XSD and XDR
schemas.

Different Treatments for XSD and XDR
Although you can store both XSD and XDR schemas in the schema collection, there
are some differences in the way in which the XmlSchemaCollection object handles
them internally. For example, the Add method returns an XmlSchema object if you add
an XSD schema but returns null if the added schema is an XDR. In general, any
method or property that manipulates the input or output of an XmlSchema object
supports XSD schemas only.
Another difference concerns the behavior of the Item property in the
XmlSchemaCollection class. The Item property takes a string representing the
schema's namespace URI and returns the corresponding XmlSchema object. This
happens only for XSDs, however. If you call the Item property on a namespace URI that
corresponds to an XDR schema, null is returned.

The reason behind the different treatments for XDR and XSD schemas is that XDR
schemas have no object model available in the .NET Framework, so when you need to
handle them through objects, the system gracefully ignores the requests.

XDR schemas are there only to preserve backward compatibility; you will not find them
supported outside the Microsoft Win32 platform. It is important to pay attention to the
methods and the properties you use to manage XDR in your code. The overall
programming interface makes the effort to unify the methods and the properties to work
on both XDRs and XSDs. But in some circumstances, those same methods and
properties might lead to unpleasant surprises.
In a nutshell, you can cache an XDR schema for further and repeated use by the
XmlValidatingReader class, but that's all that you can do. You can't check for the
existence of XDR schemas, nor can a reference to an XDR schema be returned. But
you can do this, and more, for XSDs.

Important The XmlSchemaCollection object is important to improving the
overall performance of the validation process. If you are
validating more than one document against the same schema
(XDR or XSD), preload the schema in the reader's internal
cache, represented by the Schemas property. While doing so,
bear in mind that any insertion in the schema collection must
be done prior to starting the validation process. You can add to
the schema collection only when the reader's state is set to
Initial.

Validating XML Fragments
As mentioned, the XmlValidatingReader class has the ability to parse and validate
entire documents as well as XML fragments. To parse an XML fragment, you must
resort to one of the other two constructors that the XmlValidatingReader class kindly
provides, as shown here:

 77

public XmlValidatingReader(Stream, XmlNodeType,
XmlParserContext);

public XmlValidatingReader(string, XmlNodeType,
XmlParserContext);

These constructors allow you to read XML fragments from a stream or a memory string
and process them within the boundaries of a given parser context.
To bypass the root level rule for well-formed XML documents, you explicitly indicate
what type of node the fragment happens to be. The node types for XML fragments are
listed in Table 3-5.

Table 3-5: XML Fragment Node Types

Type Fragment Contents

Attribute The value of an attribute, including entities.

Document An entire XML document in which all the rules of well-
formedness apply, including the root level rules.

Element Any valid element contents, including a combination of
elements, comments, processing instructions, CDATA,
and text. Root level rules are not enforced.

If you use any other element from the XmlNodeType enumeration, an exception is
thrown. Entity references that are found in the element or the attribute body are
expanded according to the value of the EntityHandling property.
When parsing a small XML fragment, you might need to take in extra information that
can be used to resolve entities and add default attributes. For this purpose, you use the
XmlParserContext class. (See Chapter 2 for more information about the
XmlParserContext class.) The XmlParserContext argument of the XmlTextReader
constructor is required if the requested validation mode is DTD or Auto. In this case, in
fact, the parser context is expected to contain the reference to the DTD file against
which the validation must be done. An exception is thrown if the ValidationType
property is set to DTD and the XmlParserContext argument does not contain any DTD
properties.
For all other validation types, the XmlParserContext argument can be specified without
any DTD properties. Any schemas (XSDs or XDRs) used to validate the XML fragment
must be referenced directly inside the XML fragment. When the validation is against
schemas, the XmlParserContext argument is used primarily to provide information
about namespace resolution.

Important As mentioned, the XmlValidatingReader always works on top
of an XML text reader and uses it to move around the nodes to
validate. When you validate an XML fragment, however, you
are not required to indicate a reader. So does the validating
reader support a dual internal architecture to handle both
cases? The fact that you don't have to pass an XML text
reader to validate an XML fragment does not mean that a text
reader can't be playing around in your code. Internally, both
fragment-based constructors create a temporary text reader as
their first task. The following pseudocode shows what
happens:
XmlTextReader coreReader = new

 78

XmlTextReader(xml, type, context);
this = new XmlValidatingReader(coreReader);

At this point, the internal mechanisms of an XML validating reader and its programming
interface should be clear. In the remainder of this chapter, we'll examine in more detail
the three key types of validation—DTD, XDR, and XSD.

Using DTDs

The DTD validation guarantees that the source document complies with the validity
constraints defined in a separate file—the DTD. A DTD file uses a formal grammar to
describe both the structure and the syntax of XML documents. XML authors use DTDs
to narrow the set of tags and attributes allowed in their documents. Validating against a
DTD ensures that processed documents conform to the specified structure. From a
language perspective, a DTD defines a newer and stricter XML-based syntax and a
new tagged language tailor-made for a related group of documents.

Historically speaking, the DTD was the first tool capable of defining the structure of a
document. The DTD standard was developed a few decades ago to work side by side
with SGML—a recognized ISO standard for defining markup languages. SGML is
considered the ancestor of today's XML, which actually sprang to life in the late 1990s
as a way to simplify the too-rigid architecture of SGML.

DTDs use a proprietary syntax to define the syntax of markup constructs as well as
additional definitions such as numeric and character entities. You can correctly think of
DTDs as an early form of an XML schema. Although doomed to obsolescence, DTD is
today supported by virtually all XML parsers.
An XML document is associated with a DTD file by using the DOCTYPE special tag.
The validating parser (for example, the XmlValidatingReader class) recognizes this
element and extracts from it the schema information. The DOCTYPE declaration can
either point to an inline DTD or be a reference to an external DTD file.

Developing a DTD Grammar

Let's look more closely at a DTD file. To build a DTD, you normally start writing the file
according to its syntax. In this case, however, we'll start from an XML file named
data_dtd.xml that will actually be validated through the DTD, as shown here:

<?xml version="1.0" ?>

<!DOCTYPE class SYSTEM "class.dtd">

<!-- Sample XML document (data_dtd.xml) using a DTD -->

<class title="Applied XML Programming for .NET"

 company="DinoEsposito's Own Company"

 author="Dino Esposito">

 <days total="5" expandable="true">

 <day id="1">XML Core Classes</day>

 <day id="2">Related Technologies</day>

 <day id="3">XML and ADO.NET</day>

 <day id="4" optional="true">XML and Applications</day>

 79

 <day id="5" optional="true">XML Interoperability</day>

 </days>

</class>

As you can see, the file describes a class through its modules and topics covered. The
general information about the class (title, author, training company) are written using
attributes. Each module spans a full day, and its description is implemented using plain
text.
Any XML document that must be validated against a given DTD file includes a
DOCTYPE tag through which it simply links to the DTD of choice, as shown here:

<!DOCTYPE class SYSTEM "class.dtd">

The word following DOCTYPE identifies the metalanguage described by the DTD. This
information is extremely important for the validation process. If that word—the
document type name—does not match the root element of the DTD, a validation error is
raised. The text following the SYSTEM attribute is the URL from which the DTD will
actually be downloaded.

The following listing demonstrates a DTD that is tailor-made for the preceding XML
document:

<!ELEMENT class (days)>

<!ATTLIST class title CDATA #REQUIRED

 author CDATA #IMPLIED

 company CDATA #IMPLIED>

<!ENTITY % Boolean "true | false">

<!ELEMENT days (day*)>

<!ATTLIST days total CDATA #REQUIRED

 expandable (%Boolean;) #REQUIRED>

<!ELEMENT day (#PCDATA)>

<!ATTLIST day id CDATA #REQUIRED

 optional (%Boolean;) #IMPLIED>

The ELEMENT tag identifies a node element, whereas ATTLIST is the tag that groups
all attributes of a given node. Attributes are normally expressed through CDATA
sections that contain unparsed data. In some cases, however, they can be allowed to
take only the values defined by the specified entity. This is the case for the expandable
attribute, whose only permitted values are true and false.
In the section "Further Reading," on page 133, you'll find references for learning more
about the DTD syntax. What first catches the eye about DTDs is that they are written in
a proprietary language that only mimics the typical markup of XML.

Validating Against a DTD
The following code snippet creates an XmlValidatingReader object that works on the
sample XML file data_dtd.xml discussed in the section "Developing a DTD Grammar,"
on page 97. The document is bound to a DTD file and is validated using the DTD
validation type.

 80

XmlTextReader _coreReader = new XmlTextReader("data_dtd.xml");

XmlValidatingReader reader = new
XmlValidatingReader(_coreReader);

reader.ValidationType = ValidationType.DTD;

reader.ValidationEventHandler += new
ValidationEventHandler(MyHandler);

while(reader.Read());

Remember that when the validation type is set to Auto, the DTD option is the first to be
considered.
When the validation mode is set to DTD, the validating parser returns a warning if the
file has no link to any DTDs. Otherwise, if a DTD is correctly linked and accessible, the
validation is performed, and in the process, entities are expanded. If the linked DTD file
is not available, an exception is raised. What you'll get is not a schema exception but a
simpler FileNotFoundException exception.
If you mistakenly use a DTD to validate an XML file with schema information, a schema
exception is thrown, but with a low severity level. In practice, you get a warning
informing you that no DTD has been found in the XML file. Figure 3-4 shows how the
sample application handles this situation.

Figure 3-4: When you try to use a DTD to validate an XML document with schema
information, the validating parser returns a warning.

In general, if you decide that schema warnings are not serious enough to break the
ongoing validation process, you can skip them with the following code:

private void MyHandler(object sender, ValidationEventArgs e)

{

 if (e.Severity == XmlSeverityType.Error)

 {

 // Handle the schema exception

 }

}

Usage and Trade-Offs for DTDs

Unquestionably, the DTD validation format is an old one, albeit largely supported by
virtually all available parsers. But if you are designing the validation layer for an XML-
driven data exchange infrastructure today, there is no reason for you to discard XSDs.

 81

XSDs are more powerful than DTDs, and more important, they recently achieved W3C
recommendation status, so they are a standard too.
So when should you use DTDs instead of XSDs, and under what circumstances will
DTDs give you a better trade-off? Compatibility and legacy code are the only possible
answers to these questions. Especially if your application handles complex DTDs,
porting them to an XSD can be costly and is in no way an easy task. There is no official
and totally reliable tool to automatically convert DTDs to schemas. On the W3C Web
site (www.w3.org), you'll find a conversion tool available for download, but I wouldn't
trust it to do the job unsupervised and then take the output as a trustworthy result.

Converting DTDs to schemas is no simple matter—in fact, it can be as complex as
translating spoken languages. Translating from English to Italian, for example, requires
a reengineering of the entire text, not just an adaptation of individual words and
sentences. So design is deeply involved. When converting DTDs to schemas, you
should also consider rearchitecting tags into types and perhaps rearchitecting the way
you expose data in light of the new features.

Certainly XSDs provide you with more functions than DTDs can. For one thing,
schemas are all written in XML and don't require you to learn a new language. If you
look at our basic DTD example in this context, you might not be scared by its unusual
format. As you move from textbook examples and enter the tough real world, the
complexity of an inflexible language like DTD becomes more apparent.

XSDs provide you with a finer level of control over the cardinality of the tags and the
attribute types. In addition, XSDs can be used to set up a system of schema inheritance
in which more complex types are built atop existing ones.

All in all, if you currently have a huge, complex DTD, probably the best thing you can do
is continue working with it while you carefully plan a migration to XSDs. DTDs and
XSDs are both renowned standards, but especially if you are exchanging data between
heterogeneous platforms, you're more likely to find a DTD-compliant parser than an
XSD-compliant one. This situation will change over time, but not anytime soon. Check
the supported functions for the XML parsers available on the target platform carefully
before you drop DTDs.

Using XDR Schemas

As mentioned, XML-Data Reduced (XDR) schema validation is the result of a Microsoft
implementation of an early draft of what today is XSDs. XDR was implemented for the
first time in the version of MSXML that shipped with Microsoft Internet Explorer 5.0,
back in the spring of 1999.

In the XDR schema specification, you'll find almost all of the ideas that characterize
XSDs today. The main reason for XDR support in the .NET Framework is backward
compatibility with existing MSXML-based applications. To enable these applications to
upgrade properly to the .NET Framework, XDR support has been retained intact. You
will not find XDR support anywhere else outside the Microsoft Windows platform,
however.
If you have used Microsoft ActiveX Data Objects (ADO), and in particular the library's
ability to persist the contents of a Recordset object to XML, you are probably a veteran
of XDR. In fact, the XML schema used to persist ADO 2.x Recordset objects to XML is
simply XDR.

 82

Overview of XDR Schemas

The example XML document data_dtd.xml used to demonstrate DTDs contains
information about the modules in which a given class is articulated. The following listing
shows the XDR schema that provides a full description of the class:

<?xml version="1.0"?>

<Schema name="MyClass"

 xmlns="urn:schemas-microsoft-com:xml-data"

 xmlns:dt="urn:schemas-microsoft-com:datatypes">

<!-- Attribute Types -->

<AttributeType name="title" dt:type="string" />

<AttributeType name="company" dt:type="string" />

<AttributeType name="author" dt:type="string" />

<AttributeType name="total" dt:type="int" />

<AttributeType name="expandable" dt:type="enumeration"

 dt:values="true false" />

<AttributeType name="optional" dt:type="enumeration"

 dt:values="true false" />

<AttributeType name="id" dt:type="int" />

<!-- Element Types -->

<!-- CLASS -->

<ElementType name="class" content="eltOnly" model="closed"
order="seq">

 <element type="days" minOccurs="1" maxOccurs="1" />

 <attribute type="title" required="yes" />

 <attribute type="author" required="no" />

 <attribute type="company" required="no" />

</ElementType>

<!-- DAYS -->

<ElementType name="days" content="eltOnly">

 <element type="day" minOccurs="1" maxOccurs="*" />

 <attribute type="total" required="yes" />

 <attribute type="expandable" required="no" />

</ElementType>

<!-- DAY -->

<ElementType name="day" content="textOnly">

 83

 <attribute type="id" required="yes" />

 <attribute type="optional" required="no" />

</ElementType>

</Schema>

Compared to the DTD schema, this XDR schema is certainly more verbose, but it also
provides more detailed information. The idea behind an XDR schema is that you define
attribute and element types and then use those entities to construct the hierarchy that
makes the target document. For example, let's analyze more closely the block that
refers to the <class> root node, shown here:

<ElementType name="class" content="eltOnly" model="closed"
order="seq">

 <element type="days" minOccurs="1" maxOccurs="1" />

 <attribute type="title" required="yes" />

 <attribute type="author" required="no" />

 <attribute type="company" required="no" />

</ElementType>

The <class> element is declared as an element type, with the subtree formed by all the
nodes located one level down from it—in this case, only <days> and a few attributes.
Both attributes and child nodes have a type property that refers to other ElementType
or AttributeType schema nodes. From this structure, it's easy to see how validating
parsers work to verify the correctness of a node against a schema—be it XDR or XSD.
They simply validate the node attributes and the child nodes one level down. By
applying this simple algorithm recursively, they traverse and validate the entire tree.
From our sample XDR file, you can also appreciate the schema enhancements over the
DTD model. In particular, you can set the type for each attribute and strictly control the
cardinality of each node by using the minOccurs and maxOccurs properties. With
DTDs, on the other hand, you can barely define a fixed range of occurrences for a
given node.
Looking ahead to XSD, you'll notice that the key improvement concerns typing. XSD
defines a type system that extends the XDR type system and that, more importantly,
has a direct counterpart in the .NET Framework type system. (I'll have more to say
about this in the section ".NET Type Mapping," on page 109.)

Validating Against an XDR
An XML document can include its XDR schema as in-line code or simply link it as an
external resource. The XmlValidatingReader class determines that a given document
requires XDR validation if an x-schema namespace declaration is found. The following
sample document, named data_xdr.xml, points to an XDR schema stored in an external
resource—the schema.xml file:

<?xml version="1.0" ?>

<!-- Sample XML document (data_xdr.xml) using XDR -->

<class xmlns="x-schema:Schema.xml"

 title="Applied XML Programming for .NET"

 company="Wintellect"

 author="DinoE">

 84

 <days total="5" expandable="true">

 <day id="1">XML Core Classes</day>

 <day id="2">Related Technologies</day>

 <day id="3">XML and ADO.NET</day>

 <day id="4" optional="true">XML and Applications</day>

 <day id="5" optional="true">XML Interoperability</day>

 </days>

</class>

The following code snippet demonstrates how to set up an instance of the
XmlValidatingReader class to make it validate a file using XDR:

XmlTextReader _coreReader = new XmlTextReader("data_xdr.xml");

XmlValidatingReader reader = new
XmlValidatingReader(_coreReader);

reader.ValidationType = ValidationType.XDR;

reader.ValidationEventHandler += new
ValidationEventHandler(MyHandler);

while(reader.Read());

This is in no way different from what you've seen for DTD and what you will see for
XSD in the section "Validating Against an XSD Document," on page 130. When you
require XDR validation and no XDR schema information exists in the XML document,
the parser always returns a warning similar to the one shown in Figure 3-5.

Figure 3-5: The parser has attempted to use XDR validation on a DTD-driven XML
document.

The XML format for an ADO recordset provides the perfect, real-world example of an
XML document that contains in-line XDR schema information, as shown here:

<!-- Northwind.xml, XML representation of an ADO recordset -->

<xml xmlns:s='uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882'

 xmlns:dt='uuid:C2F41010-65B3-11d1-A29F-00AA00C14882'

 xmlns:rs='urn:schemas-microsoft-com:rowset'

 85

 xmlns:z='#RowsetSchema'>

<s:Schema id='RowsetSchema'>

 <s:ElementType name='row' content='eltOnly'>

 <s:AttributeType name='employeeid' rs:number='1' />

 <s:AttributeType name='firstname' rs:number='2' />

 <s:AttributeType name='lastname' rs:number='3' />

 <s:extends type='rs:rowbase'/>

 </s:ElementType>

</s:Schema>

<rs:data>

 <z:row employeeid='1' firstname='Nancy' lastname='Davolio' />

 <z:row employeeid='2' firstname='Andrew' lastname='Fuller' />

 <z:row employeeid='3' firstname='Janet' lastname='Leverling'
/>

</rs:data>

</xml>

This simple recordset contains just three columns taken from the Employees table in
the Microsoft SQL Server 2000 Northwind database. The XDR schema is placed in-line
under the <s:Schema>tag. The structure of the document is expressed using a single
element node (named row) and one attribute node per each column in the result set.
Figure 3-6 demonstrates that this file (northwind.xml) is perfectly validated by the .NET
XDR parser.

Figure 3-6: When the sample application operates in XDR validation mode, it can easily
process XML files created by ADO.

Using the XML Schema API

As mentioned, XSD is a W3C recommendation that provides the tools you need to
define the structure, contents, and semantics of an XML document. Compared to DTDs
and XDRs, XSD has two key advantages. First, it is the official W3C recommendation

 86

for defining the structure of XML data. Second, it is the newest schema technology, and
as such, has been built specifically to fix bugs and flaws in the other schemas (mostly
problems with DTDs). And remember, more than an alternative schema technology,
XDR is Microsoft's implementation of an early working draft of the XML Schema
specification.

Although no developer can seriously think of denying the significance of XML, many
perceive XML as a sort of extraneous entity that lies outside the main body of the code
and that must be integrated through distinct objects. XML parsers process strings made
of text and markup and come up with binary representations of that content. When you
try to integrate this with the rest of the caller program, you must effectively transform
text content into more specific data types.

The same issue arises in the other direction. To export your binary objects to XML, you
perform a kind of text serialization that looks more like a normalization of involved types
with subsequent loss of type information. You shouldn't be surprised by this information
loss, because XML doesn't have a type system.

DTD is a format designed to describe the structure and the contents of a document
rather than to endow XML with an effective type system. XDR, on the other hand,
introduces the concept of typed attributes. XSD thinks a little bigger. Not only does it
reinforce the importance of typed attributes, but it also distinguishes between simple
and complex types, simplifies type inheritance, and exposes a full-blown and official
XML type system.

The .NET Framework has been designed around XML standards, including XSD.
Although the .NET Framework type system is a separate entity from the XML type
system, a conversion API does exist that greatly simplifies software interaction through
integration technologies such as SOAP and Web services.

What Is a Schema, Anyway?
A schema is an XML file (with typical extension .xsd) that describes the syntax and
semantics of XML documents using a standard XML syntax. An XML schema specifies
the content constraints and the vocabulary that compliant documents must
accommodate. For example, compliant documents must fulfill any dependencies
between nodes, assign attributes the correct type, and give child nodes the exact
cardinality.
The XML Schema specification is articulated into two distinct parts. Part I contains the
definition of a grammar for complex types—that is, composite XML elements. Part II
describes a set of primitive types—the XML type system—plus a grammar for creating
new primitive types, said to be simple types. New types are defined in terms of existing
types.
An XML schema also supports rather advanced and object-oriented concepts such as
type inheritance. In the .NET Framework, the SOM provides a suite of classes held in
the System.Xml.Schema namespace to read a schema from an XSD file. These
classes also enable you to programmatically create a schema that can be either
compiled in memory or written to a disk file.

Simple and Complex Types
XML simple types consist of plain text and don't contain any other elements. Examples
of simple types are string, date, and various flavors of numbers (long, double, and
integer). XML complex types can include child elements and attributes. In practice, a
complex type is always rendered as an XML subtree. A complex type can be
associated only with an XML element node, whereas a simple type applies to both
elements and attributes.
The diagram in Figure 3-7 illustrates the structure of the XSD type system.

 87

 88

Figure 3-7: The XSD type hierarchy.
As you can see, both simple and complex types descend from the generic type
anyType. Simple types also have their own base class, named anySimpleType. You
can build new simple types from existing types and combine simple and existing
complex types to create new ad hoc types by restricting, summing up, or listing features
and values of the base types.

.NET Type Mapping
All the data types that can be used in XSD documents have a .NET Framework
counterpart. After an XSD has been compiled into a .NET Framework representation
object model, you can access it using the SOM classes. I'll have more to say on this in
the section "Modifying a Schema Programmatically," on page 123.

The infoset that results from the schema compilation is also defined in the XSD
recommendation and is said to be the post-schema-validation infoset (PSVI). The SOM
renders the PSVI fields using read-only properties.

The pre-schema-validation infoset—that is, the infoset describing the source contents
of the XSD—is built while the schema is being edited either from reading from a file or
by using the SOM programmatically. The properties that express the pre-schema-
validation infoset are all read/write.
In the SOM representation of the PSVI, the constituent elements of the schema are
represented with instances of the XmlSchemaDatatype class. This class features two
properties: ValueType and TokenizedType. The former returns the name of the XSD
type, and the latter provides the name of the corresponding .NET Framework type. The
return type is taken from the conversions listed in Table 3-6.

Table 3-6: Mapping Between XSD and .NET Types

XSD Type .NET Type Description

anyURI System.Uri A URI reference

base64Binary System.Byte[] Base64-encoded
binary data

Boolean System.Boolean Boolean values

Byte System.SByte A byte—that is, an 8-
bit signed integer

Date System.DateTime Date based on the
Gregorian calendar

dateTime System.DateTime An instant in time

decimal System.Decimal Decimal number with
arbitrary precision

Double System.Double Double-precision
floating number

duration System.TimeSpan An interval of time

ENTITIES System.String[] List of XML 1.0 entities

ENTITY System.String An XML 1.0 entity

Float System.Single Single-precision
floating number

 89

Table 3-6: Mapping Between XSD and .NET Types

XSD Type .NET Type Description

gDay System.DateTime Represents a day

gMonth System.DateTime Represents a month

gMonthDay System.DateTime Represents a period
one day long

gYear System.DateTime Represents a year

gYearMonth System.DateTime Represents a period
one month long

hexBinary System.Byte[] Hex-encoded binary
data

ID System.String An XML 1.0 ID
element

IDREF System.String An XML 1.0 IDREF
element

IDREFS System.String[] List of XML 1.0 IDREF
elements

int System.Int32 32-bit signed integer

integer System.Decimal Arbitrary long integer

language System.String Language identifier
(see RFC 1766 at
http://rfc.net/rfc1766.ht
ml)

long System.Int64 64-bit signed integer

Name System.String An XML name

NCName System.String Local name of XML
elements (non-
colonized)

negativeInteger System.Decimal Arbitrary long negative
integer

NMTOKEN System.String An XML 1.0
NMTOKEN element

NMTOKENS System.String[] List of XML 1.0
NMTOKEN elements

nonNegativeInteger System.Decimal Arbitrary long integer =
0

nonPositiveInteger System.Decimal Arbitrary long integer =
0

normalizedString System.String String with normalized
white spaces

NOTATION System.String An XML 1.0
NOTATION element

positiveInteger System.Decimal Arbitrary long positive

 90

Table 3-6: Mapping Between XSD and .NET Types

XSD Type .NET Type Description

integer

QName System.Xml.XmlQualifiedName An XML qualified
name

short System.Int16 16-bit signed integer

string System.String A string type

time System.DateTime An instant in time

timePeriod System.DateTime A period of time

token System.String Normalized string with
leading and trailing
white spaces removed

unsignedByte System.Byte 8-bit unsigned integer

unsignedInt System.UInt32 32-bit unsigned integer

unsignedLong System.UInt64 64-bit unsigned integer

unsignedShort System.UInt16 16-bit unsigned integer

The schema compiler is a piece of code that translates between XSD types and the
type system of a particular platform. In the .NET Framework, the schema compiler
compiles XSD into an XmlSchema object that exposes the schema information through
methods and properties.
Effective serialization between XSD and binary classes on a given platform is a feature
with tremendous potential. It could supersede today's XML parsing by automatically
creating an instance of a class instead of creating a generic and unwieldy XML DOM or
simply passing raw data to the application. In the .NET Framework, XML serialization is
accomplished using the XmlSerializer class and exploiting the services of the XML
Schema definition tool (xsd.exe). I'll cover XML serialization extensively in Chapter 11.

Note The XML Schema definition tool (xsd.exe) is an executable
available with the .NET Framework SDK. You'll find it in the BIN
subdirectory of the .NET Framework installation path. Normally, this
path is C:\Program Files\Microsoft Visual Studio
.NET\FrameworkSDK.

Among other things, xsd.exe can generate a C# or Visual Basic
class from an XSD file and infer an XSD from a source XML file.
This tool is also responsible for all the XSD-related magic performed
by Visual Studio .NET.

Defining an XSD Schema
You have three options when creating an XSD schema. You can write it manually by
combining the various tags defined by the XML Schema specification. A more effective
option is represented by Visual Studio .NET, which provides a visual editor for XSD files
with full IntelliSense support. The third option is based on the XML Schema definition
tool (xsd.exe) mentioned in the previous section, which can infer the underlying schema
from any well-formed XML document.
Of these options, the first is certainly the hardest to code and the one that you will
probably use less frequently. It also happens to be the most useful tool for gaining an

 91

essential knowledge of the schema's structure and internals. Don't expect to find here
an exhaustive explanation of the XSD syntax. For a comprehensive programmer's
reference guide, use one of the resources listed in the section "Further Reading," on
page 133.

Setting Up a Sample Schema
Let's start by creating a simple schema to describe an address. Like many realworld
objects, an address too is rendered using a complex type—a kind of XML data
structure. The following code shows the schema for an address. It's a fairly simple
schema consisting of a sequence of five elements: street, number, city, state and zip,
plus an attribute named country . All constituent elements are string types.

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="address" type="AddressType" />

 <xs:complexType name="AddressType">

 <xs:sequence>

 <xs:element name="street" type="xs:string" />

 <xs:element name="number" type="xs:string" />

 <xs:element name="city" type="xs:string" />

 <xs:element name="state" type="xs:string" />

 <xs:element name="zip" type="xs:string" />

 </xs:sequence>

 <xs:attribute name="country" type="xs:string" />

 </xs:complexType>

</xs:schema>

An XSD file begins with a schema node prefixed by the standard XML schema
namespace: http://www.w3.org/2001/XMLSchema. In the schema's root node, you
might want to set the targetNamespace attribute to specify the namespace of all
components in the schema being defined and any schemas imported using the include
element. Below the root node, you can find any of the top-level elements listed in Table
3-7.

Table 3-7: Top-Level Elements for XML Schema Files

Element Description

Annotation Contains a brief annotation about the structure.

Attribute Indicates a global attribute declaration.

AttributeGroup Groups attribute declarations for further use within the
body of complex type definitions.

complexType Defines an XML complex type.

element Indicates a global element declaration.

group Groups element declarations for further use within the
body of complex type definitions.

import Adds to the schema some definitions belonging to a

 92

Table 3-7: Top-Level Elements for XML Schema Files

Element Description

different namespace. You reference the location of the
external schema using the schemaLocation attribute.

include Adds to the schema some definitions belonging to the
same namespace as the current schema. The
schemaLocation attribute lets you reference the external
schema.

notation Contains the definition of a notation to describe the format
of non-XML data within an XML document.

redefine Allows you to redefine in the current schema any
components imported or included from an external
schema.

simpleType Defines an XML simple type.

In the preceding source code, the XSD file has one top-level element component of
type address . It is followed by the declaration of the corresponding complex type—the
AddressType sequence. The sequence element specifies the sequence of permitted
nodes and related types. A complex type can be arranged using exactly one of the
elements listed in Table 3-8. The element chosen specifies the content and the
structure of the resultant type.

Table 3-8: Elements That Specify the Contents for Complex Types

Element Description

simpleContent Contains text or a simpleType; the type has no child
elements.

complexContent Contains only elements or is empty (has no element
contents).

group Contains the elements defined in the referenced group.

sequence Contains the elements defined in the specified
sequence.

choice Lists the types of contents permitted for the type.

all A group that allows elements to appear once and in any
order.

Linking Documents and Schemas

You might want to know how an XML document can link to the schema. An XML
schema can be associated with document files in two ways: as in-line code or through
external references. The second option decouples the document instance and the
schema. The first option, on the other hand, simplifies deployment and data
transportation because all information resides in a single place.
The XSD is inserted prior to the document's root node, whether as in-line code or as an
external reference. The following XML document links to the previously defined XSD
through the noNamespaceSchemaLocation attribute:

<?xml version="1.0"?>

<address xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 93

 xsi:noNamespaceSchemaLocation="address.xsd"

 country="Italy">

 <street>One Microsoft Way</street>

 <number>1</number>

 <city>Redmond</city>

 <state>WA</state>

 <zip>98052</zip>

</address>

The schema can be tied to a namespace by using the schemaLocation attribute, as
shown here:

<?xml version="1.0"?>

<d:address xmlns:d="dino-e"

 xsi:schemaLocation="dino-e address1.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 country="Italy">

 <street>One Microsoft Way</street>

 <number>1</number>

 <city>Redmond</city>

 <state>WA</state>

 <zip>98052</zip>

</d:address>

In this case, the XSD (address1.xsd) must be slightly modified by adding a
targetNamespace attribute and setting an xmlns attribute to the target namespace URI,
as follows:

<xs:schema targetNamespace="dino-e" xmlns="dino-e"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

Needless to say, the target namespace must match the designated namespace URI in
the source document.

Complex Type Inheritance

With complex types, you simply define XML data structures that are in no logical way
different from classes of object-oriented languages such as C# or Java. One key
feature of those languages is the ability to derive new data types from existing classes.
The same kind of inheritance can be achieved with XML schemas. To demonstrate,
we'll build a new address type that, as in many European countries, takes into account
also the province.

The address.xsd schema considered up to now contains more than just the definition of
a complex type—it also contains a global element that will be included in any compliant
document as an instance of the type. Let's first create a base class for the schema and
name it xaddress.xsd, as shown in the following code. The new file differs from the
earlier version in only one aspect: it now lacks the global element declaration.

<?xml version="1.0"?>

 94

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <!-- Base definition for the Address type -->

 <xs:complexType name="AddressType">

 <xs:sequence>

 <xs:element name="street" type="xs:string" />

 <xs:element name="number" type="xs:string" />

 <xs:element name="city" type="xs:string" />

 <xs:element name="state" type="xs:string" />

 <xs:element name="zip" type="xs:string" />

 </xs:sequence>

 <xs:attribute name="country" type="xs:string" />

 </xs:complexType>

</xs:schema>

The next step is to define a new schema for a type named EuAddressType . You use
the include tag to import the existing address construct from the base type declaration,
as shown in the following code:

<xs:include schemaLocation="xaddress.xsd" />

At this point, you can declare the global element that, of course, will be of the new
EuAddressType type, as follows:

<xs:element name="address" type="EuAddressType" />

Using the original xaddress.xsd schema (with a global element of type AddressType)
raises a conflict because the address tag would be repeated. The final step is to define
the extensions (or the restrictions) that characterize the new type. You use the
extension tag or the restriction tag as needed. The following code adds a <province>
string element to the definition:

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="dino-e"

 xmlns="dino-e">

 <!-- Include the definition of the Address type -->

 <!-- xAddress.xsd does not include the global element -->

 <xs:include schemaLocation="xaddress.xsd" />

 <!-- Define the global element -->

 <xs:element name="address" type="EuAddressType" />

 <!-- Declare the new type inheriting from the base type -->

 <xs:complexType name="EuAddressType">

 95

 <xs:complexContent>

 <xs:extension base="AddressType">

 <xs:sequence>

 <xs:element name="province" type="xs:string" />

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

</xs:schema>

The following XML file is now perfectly valid:

<?xml version="1.0"?>

<d:address xmlns:d="dino-e"

 xsi:schemaLocation="dino-e eu_address.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 country="Italy">

 <street>Via dei Tigli</street>

 <number>123</number>

 <city>Lamiacitta</city>

 <state></state>

 <zip>12345</zip>

 <province>Rm</province>

</d:address>

The validation program ValidateDocument described in the section "The
XmlValidatingReader in Action," on page 81, successfully checks the schema
conformance of the preceding document, as shown in Figure 3-8. In the section
"Validating Against an XSD Document," on page 130, we'll examine in more detail what
happens when an instance of the XmlValidatingReader class is called to process an
XML schema.

Figure 3-8: The EuAddressType schema is successfully checked.

 96

Creating an XML Schema with Visual Studio .NET

Visual Studio .NET provides a visual editor, the XML Editor for XSD files. Instead of
handling yourself the intricacies of schema markup, you can simply edit XML files using
the drag and drop features and shortcut menus provided by the editor.
Figure 3-9 shows the XSD file from the previous section as it appears in the Visual
Studio editor. The figure shows the components of the XSD file: a global element of
type AddressType and the corresponding definition of the global element's complex
type.

Figure 3-9: Sample XSD file edited with Visual Studio .NET.

As mentioned, Visual Studio .NET can also dynamically infer the schema from the
currently displayed XML file. The task is actually accomplished by xsd.exe and can be
easily repeated and controlled programmatically. The command line to use this tool is
fairly straightforward, as shown here:

xsd.exe file.xml

Let's ask Visual Studio .NET to infer the schema for the sample address.xml file—the
file we designed to be compliant with the address.xsd schema. One would expect to
obtain a file nearly identical to address.xsd. However, surprisingly enough, the resultant
schema seems to be different, as shown in the following code. The schema inferred is
lexically different from address.xsd but completely equivalent in terms of semantics.

<?xml version="1.0"?>

<xs:schema id="NewDataSet"

 targetNamespace="http://tempuri.org/address1.xsd"

 97

 xmlns:mstns="http://tempuri.org/address1.xsd"

 xmlns="http://tempuri.org/address1.xsd"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

 attributeFormDefault="qualified"

 elementFormDefault="qualified">

 <xs:element name="address">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="street" type="xs:string"

 minOccurs="0" msdata:Ordinal="0" />

 <xs:element name="number" type="xs:string"

 minOccurs="0" msdata:Ordinal="1" />

 <xs:element name="city" type="xs:string"

 minOccurs="0" msdata:Ordinal="2" />

 <xs:element name="state" type="xs:string"

 minOccurs="0" msdata:Ordinal="3" />

 <xs:element name="zip" type="xs:string"

 minOccurs="0" msdata:Ordinal="4" />

 </xs:sequence>

 <xs:attribute name="country" form="unqualified"

 type="xs:string" />

 </xs:complexType>

 </xs:element>

 <xs:element name="NewDataSet" msdata:IsDataSet="true"

 msdata:EnforceConstraints="False">

 <xs:complexType>

 <xs:choice maxOccurs="unbounded">

 <xs:element ref="address" />

 </xs:choice>

 </xs:complexType>

 </xs:element>

</xs:schema>

If the difference isn't obvious from looking at the source code, take a quick look at the
file in the XML Editor, as shown in Figure 3-10.

 98

Figure 3-10: The graphical representation of the schema that Visual Studio inferred from
the sample document.

The global address element is now described as simple content, as shown in the
following code, and there is no reference to a named complex type like AddressType .
In addition, the instance of the global element in the page is inserted using the ref
keyword instead of the keyword pair name/type.

<xs:element ref="address" />

In the address.xsd schema, the address element was defined using the name/type pair,
like this:

<xs:element name="address" type="AddressType" />

The ref attribute lets you declare an element that uses an existing element definition.
You use the name/type pair when the element is of a previously defined, or included,
complex type. The ref and name attributes are mutually exclusive.

Note To understand the reason for such apparently odd behavior,
consider the input data that you pass to Visual Studio .NET (and,
under the hood, xsd.exe). Visual Studio .NET simply infers the
schema, which means that it tries to figure out the schema based on
the only observable source—the document text. In the source text,
however, there is no mention of any complex type declarations.
That's why the layout is correctly guessed but rendered using a
simple content element.

The .NET Schema Object Model

Visual Studio .NET is not the only commercial tool capable of creating XML schemas in
a visual fashion. XML Spy, for example, is another popular tool. The more powerful a
tool is, however, the more details are hidden from the users.

 99

For an effective programmatic manipulation of an XML schema, you need an object
model. An object model enables you to build and edit schema information in memory. It
also gives you access to each element that forms the schema and that exposes
read/write properties in homage to the pre-schema-validation and post-schema-
validation infoset specifications.
The .NET Framework provides a hierarchy of classes under the System.Xml.Schema
namespace to edit existing schemas or create new ones from the ground up. The root
class of the hierarchy is XmlSchema. Once your application holds an instance of the
class, it can load an existing XSD file and populate the internal properties and
collections with the contained information. By using the XmlSchema programming
interface, you can then add or edit elements, attributes, and other schema components.
Finally, the class exposes a Write method that allows you to persist to a valid stream
object the current contents of the schema.

Reading a Schema from a File
You can create an instance of the XmlSchema class in two ways. You can use the
default constructor, which returns a new, empty instance of the class, or you can use
the static Read method.
The Read method operates on schema information available through a stream, a text
reader, or an XML reader. The schema returned is not yet compiled. The Read method
accepts a second argument—a validation event handler such as the ones discussed in
the section "The XmlValidatingReader Programming Interface," on page 78. You can
set this argument to null, but in this case you won't be able to catch and handle
validation errors. The following code shows how to read and compile a schema using
the .NET SOM:

XmlSchema schema;

XmlTextReader reader = new XmlTextReader(filename);

schema = XmlSchema.Read(reader, null);

schema.Compile(null);

//

// Do something here

//

⋮
reader.Close();

Once the schema has been compiled, you can access the constituent elements of the
schema as defined by the PSVI. To access the actual types in the schema, you use the
SchemaTypes collection. One of the differences between the information available
before and after compilation is that an included complex type will not be detected until
the schema is compiled. For example, in eu_address.xsd, we extended the
AddressType type after importing it through the <xs:include> tag. To programmatically
detect the presence of the AddressType complex type, however, you must first compile
the schema, which would expand the include element that imports the type definition.

The following code snippet demonstrates how to get the list of complex types defined in
the specified schema after compilation:

void ListComplexTypes(string filename)

{

 XmlSchema schema;

 100

 // Open the XML reader

 XmlTextReader reader = new XmlTextReader(filename);

 try {

 schema = XmlSchema.Read(reader, null);

 schema.Compile(null);

}

catch {

 reader.Close();

 Console.WriteLine("Invalid schema specified.");

 return;

}

Console.WriteLine("{0} element(s) found.",

 schema.SchemaTypes.Count.ToString());

// Loop through the collection of types

foreach(XmlSchemaObject o in schema.SchemaTypes.Values)

{

 if (o is XmlSchemaComplexType)

 {

 XmlSchemaComplexType t = (XmlSchemaComplexType) o;

 Console.WriteLine("{0} -- {1}", t.Name, o.ToString());

 }

 else

 Console.WriteLine("No complex types found");

 }

 reader.Close();

}

Figure 3-11 shows the tool in action on the eu_address.xsd schema.

Figure 3-11: Getting the list of complex types defined in the given XSD file.

Modifying a Schema Programmatically
After the schema has been read into memory, you can manipulate the structure of the
schema, with the obvious limitation that indirect tags such as include, import, and
redefine will be detected only as individual objects. These three tags, for example, will
be detected as XmlSchemaInclude, XmlSchemaImport, and XmlSchemaRedefine,

 101

respectively, but the effect they have on the overall schema and contained types is not
yet perceived.

Immediately after reading a schema, however, you can edit its child items by adding
new elements and removing existing ones. When you have finished, you compile the
schema and, if all went fine, save it to disk. Compiling the schema prior to persisting
changes is not strictly necessary to get a valid schema, but it helps to verify whether
any errors were introduced during editing.
The following applet reads a schema from disk, verifies that it contains a particular
complex type, and then extends the structure of the type by adding a new element. The
type processed is AddressType, which is edited with the addition of a new
<provinceInitials>node. The node is expected to contain the first two uppercase initials
of the province.

void EditComplexTypes(string filename)

{

 // Open and read the XML reader into a schema object

 XmlSchema schema;

 XmlTextReader reader = new XmlTextReader(filename);

 schema = XmlSchema.Read(reader, null);

 reader.Close();

 // Verify that the AddressType complex type is there

 XmlSchemaComplexType ct = GetComplexType(schema,
"AddressType");

 if (ct == null)

 {

 Console.WriteLine("No type [AddressType] found.");

 return;

 }

 // Create the new <provinceInitials> element

 XmlSchemaElement provElem = new XmlSchemaElement();

 provElem.Name = "provinceInitials";

 // Define the in-line type of the element

 XmlSchemaSimpleType provinceType = new XmlSchemaSimpleType();

 XmlSchemaSimpleTypeRestriction provinceRestriction;

 provinceRestriction = new XmlSchemaSimpleTypeRestriction();

 provinceRestriction.BaseTypeName = new
XmlQualifiedName("string",

 "http://www.w3.org/2001/XMLSchema");

 provinceType.Content = provinceRestriction;

 // Set the (in-line) type of the element

 provElem.SchemaType = provinceType;

 102

 // Define the pattern for the content

 XmlSchemaPatternFacet provPattern = new
XmlSchemaPatternFacet();

 provPattern.Value = "[A-Z]{2}";

 provinceRestriction.Facets.Add(provPattern);

 // Get the sequence for the AddressType

 XmlSchemaSequence seq = (XmlSchemaSequence) ct.Particle;

 seq.Items.Add(provElem);

 // Compile the schema

 schema.Compile(null);

 // Save the schema

 XmlTextWriter writer = new XmlTextWriter("out.xsd", null);

 writer.Formatting = Formatting.Indented;

 schema.Write(writer);

 writer.Close();

}

This code reads the schema using an XML reader and checks for a complex type
named AddressType. If the type is not found, the application exits immediately. The
search for a complex type is performed by scanning the contents of the schema's Items
collection of XmlSchemaObject objects. XmlSchemaObject is the base class for all
schema components. Figure 3-12 shows a non-exhaustive diagram of the schema
object relationships. (See the section "Further Reading," on page 133, for additional
references.)

 103

Figure 3-12: The XmlSchemaObject class and some of its descendants.

The Items collection picks up all the top-level elements found below the root
<xs:schema> node. All elements that can be safely cast to XmlSchemaComplexType
have their Name property checked against the requested type, as shown here:

XmlSchemaComplexType GetComplexType(XmlSchema schema, string
typeName)

{

 XmlSchemaComplexType ct;

 foreach(XmlSchemaObject o in schema.Items)

 {

 if (o is XmlSchemaComplexType)

 {

 ct = (XmlSchemaComplexType) o;

 if (ct.Name == typeName)

 return ct;

 }

 }

 return null;

}

Once a reference to the complex type has been found, the code proceeds by creating
the new <provinceInitials>schema element. The relative type is declared in-line in the

 104

body of the element. It is a simple type defined as a restriction of the primitive XSD
string type. When you define an XSD simple type by restriction you apply some facets
to it. A facet is a property that narrows the set of values allowed for that element. For
example, length, minInclusive, and maxInclusive are all facets that respectively
determine the length of the type and the range of accepted values. Each facet defined
in the XML Schema 1.0 specification has a corresponding class in the .NET SOM.
The <provinceInitials> element must fulfill a number of requirements. It has to be an
uppercase string with a fixed length (2 characters). The pattern facet available in the
XML Schema specification supports regular expressions to control the contents of an
element at the finest level. The following code sets the uppercase and fixed-length
constraints. (For more information about regular expressions, refer to the section
"Further Reading," on page 133.)

XmlSchemaPatternFacet provPattern = new XmlSchemaPatternFacet();

provPattern.Value = "[A-Z]{2}";

provinceRestriction.Facets.Add(provPattern);

After the new element has been defined and given a type, you add it to the sequence of
elements that form the type you want to extend. In this case, the <provinceInitials>
element must become the next element in the <xs:sequence> compositor of the
AddressType type. The programming interface of a complex type lets you access the
sequence component through the Particle property, as shown here:

XmlSchemaSequence seq = (XmlSchemaSequence) ct.Particle;

seq.Items.Add(provElem);

At this point, the editing phase approaches an end. The new schema is now complete;
all that remains is to save it to a disk file. The code discussed up to now, when applied
to the address.xsd file, produces the following schema:

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="address" type="AddressType" />

 <xs:complexType name="AddressType">

 <xs:sequence>

 <xs:element name="street" type="xs:string" />

 <xs:element name="number" type="xs:string" />

 <xs:element name="city" type="xs:string" />

 <xs:element name="state" type="xs:string" />

 <xs:element name="zip" type="xs:string" />

 <xs:element name="provinceInitials">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="[A-Z]{2}" />

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="country" type="xs:string" />

 105

 </xs:complexType>

</xs:schema>

Application-Embedded Schemas

Schema information is fundamental for letting client applications know about the
structure of the XML data they get from servers. Especially in distributed applications,
however, schema information is just an extra burden that takes up a portion of the
bandwidth.

In some situations, you can treat the schema like the debug information in Windows
executables: indispensable during the development of the application; useless and
unneeded once the application is released. This pattern does not apply to all
applications but, where possible, constitutes an interesting form of optimization. After
the two communicating modules agree on an XML format and this format is hard-coded
in software, how can the format of the XML data being exchanged be different?
When the generation of XML documents is not completely controlled by the involved
applications, schema validation ceases to be an optional feature. Thanks to the SOM,
however, there's still room for optimizing the use of the bandwidth by not sending the
schema information along with the document. The first option that comes to mind is that
the client application stores the schema locally and loads it when needed to validate
incoming documents. For .NET Framework applications, the XmlSchema.Read static
method is just what you need to load existing schema files.
An alternative option entails creating and compiling a schema object dynamically and
then using it to validate documents. The code discussed in the previous section
provides a concrete example of how .NET Framework applications can use the SOM to
create schemas on the fly.

Note Several applications in Windows incorporate an internal schema
parser. Apparently, those applications don't require you to specify a
schema. If you pass them an XML document that does not comply
with the internal schema, however, an error is raised. An application
that works in this way is the Windows Script Host (WSH)
environment (wscript.exe)—the Windows shell-level script
environment. Along with plain VBScript and JScript files, WSH
supports an XML-based format characterized by a .wsf extension.
Those files do not require schema information, but if you violate the
documented layout rules, the file is not processed.

Deterministic and Nondeterministic Schemas

A schema validating parser works by matching the structure of the underlying XML
document with the referenced XML schema document. By compiling the schema, the
parser gets enough information to determine whether a given node in the source XML
document conforms to the layout depicted by the XSD.
As the parser moves from one node to the next, two different situations can occur.
Either the parser can unambiguously match the current node structure with a valid XSD
sequence or it can't. If exactly one match is found, the process can continue. If no
match is found, the source document does not follow the XML schema. Parsing stops,
and an exception is raised. A schema in which the match between one XML node and
one XSD sequence is unique (if any) is said to be deterministic. Our sample address
schema is deterministic, and the SOM parser processes it successfully.
Other flavors of XML schemas are called nondeterministic because the number of
matches found can exceed one. In this case, the parser must look ahead to try to

 106

determine the correct sequence and identify the correct piece of PSVI information.
Nondeterministic does not mean invalid, but not all parsers can successfully handle
such schemas. The .NET Framework schema parser, for example, does not support
nondeterministic schemas. All files written according to the following (valid) schema are
inevitably rejected:

<?xml version="1.0" encoding="utf-8" ?>

<xs:schema xmlns=""xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="address">

 <xs:complexType>

 <xs:choice>

 <xs:sequence>

 <xs:element name="street" type="xs:string" />

 <xs:element name="number" type="xs:string" />

 <xs:element name="city" type="xs:string" />

 <xs:element name="state" type="xs:string" />

 <xs:element name="zip" type="xs:string" />

 </xs:sequence>

 <xs:sequence>

 <xs:element name="street" type="xs:string" />

 <xs:element name="number" type="xs:string" />

 <xs:element name="city" type="xs:string" />

 <xs:element name="state" type="xs:string" />

 <xs:element name="zip" type="xs:string" />

 <xs:element name="country" type="xs:string" />

 </xs:sequence>

 </xs:choice>

 </xs:complexType>

 </xs:element>

</xs:schema>

The<xs:choice> element makes the schema inherently more prone to become
nondeterministic. The <xs:choice>elements permits exactly one of the subsequent
schema elements. However, when child elements are sequences, the schema
automatically becomes nondeterministic.
In the preceding XSD, as soon as the parser moves to the street node, it detects an
ambiguity. What is the correct XmlSchemaSequence class to take into account? The
correct class can be determined only by looking a certain number of nodes ahead. In
this very unfortunate case, the parser would need to look at least five nodes ahead.
Some parsers support the forward-checking feature up to a fixed number of nodes;
some do not. The .NET SOM parser requires the schema to be deterministic. Figure 3-
13 shows what happens when the sample application ValidateDocument grapples with
a nondeterministic schema.

 107

Figure 3-13: .NET SOM parser complaints about the nondeterministic nature of the
schema.

Validating Against an XSD Document
After this long digression into the XML Schema API in the .NET Framework, let's
conclude this chapter by looking at what happens when the XmlValidatingReader class
is called to operate on an XML file that includes, or references, an XML schema.

The following code shows how to set up the XML validator class to work on XSD files:

XmlTextReader _coreReader = new XmlTextReader(fileName);

XmlValidatingReader reader = new
XmlValidatingReader(_coreReader);

reader.ValidationType = ValidationType.Schema;

reader.ValidationEventHandler += new
ValidationEventHandler(MyHandler);

while(reader.Read());

When the ValidationType property is set to Schema, the parser tries to proceed
anyway, regardless of the fact that the source file has no link to a schema file.

An interesting phenomenon occurs when the XML schema is embedded in the XML
document that is being validated. In this case, the schema appears as a constituent
part of the source document. In particular, it is a direct child of the document root
element.

The schema is an XML subtree that is logically placed at the same level as the
document to validate. A well-formed XML document can't have two roots, however.
Thus an all-encompassing root node with two children, the schema and the document,
must be created, as shown here:

<wrapper>

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="sample">

 <xs:element name="book" type="xs:string" />

 </xs:schema>

 <smp:book xmlns:smp="sample">

 Applied XML Programming for Microsoft(r) .NET

 </smp:book>

 108

</wrapper>

The root element can't be successfully validated because there is no schema
information about it. When the ValidationType property is set to Schema, the
XmlValidatingReaderclass returns a warning for the root element if an in-line schema is
detected, as shown in Figure 3-14. Be aware of this when you set up your validation
code. A too-strong filter for errors could signal as incorrect a perfectly legal XML
document if the XSD code is embedded.

Figure 3-14: The validating parser returns a warning when the ValidationType property is
set to Schema and an in-line schema is used.

Note The warning you get from XmlValidatingReader is only the tip of the
iceberg. Although XML Schema as a format is definitely a widely
accepted specification, the same can't be said for in-line schemas.
An illustrious victim of this situation is the XML code you obtain from
the WriteXml method of the DataSet object when the
XmlWriteMode.WriteSchema option is set. The file you get has the
XML schema in-line, but if you try to validate it using
XmlValidatingReader, it does not work!
In general, the guideline is to avoid in-line XML schemas whenever
possible. This improves the bandwidth management (the schema is
transferred one time at most) and shields you from bad surprises.
As for the DataSet object, if you remove the schema to a separate
file and reference it from within the DataSet object's serialized
output, everything works just fine. Alternatively, with the
XmlValidatingReader object, you can preload the schema in the
schema cache and then proceed with the parsing of the source.
We'll delve deeper into DataSet serialization issues in Chapter 9.

Conclusion

XML validation is the parser's ability to verify that a given XML source document is
comformant to a specified layout. The intrinsic importance of validation, and related
technologies, can't be denied, but a few considerations must be kept in mind.

 109

For one thing, XML documents and schema information must be distinct elements. This
improves performance when the document is transferred over the wire and keeps the
memory footprint as lean as possible. In addition, validating a document to make sure it
has the requested layout is not always necessary if the correctness of the data two
applications exchange can be ensured by design. If the documents sent and received
are generated programmatically and there is no (reasonable) way to hack them,
validation can be an unneeded burden. In this case, you can rate the schema
information as similar to debug information in Win32 executables: useful to speed up
the development cycle, but useless in a production environment.

The real big thing behind XML validation is XSD—a W3C specification to define the
structure, contents, and semantics of XML documents. XSD is another key element that
enriches the collection of official and de facto current standards for interoperable
software. It joins the group formed by HTTP for network transportation, XML for data
description, SOAP for method invocation, XSL for data transformation, and XPath for
queries.

With XSD, we have a standard but extremely rigorous way to describe the layout of the
document that leaves nothing to the user's imagination. XSD is the constituent
grammar for the XML type system, and thanks to the broad acceptance gained by XML,
it is a candidate to become a universal and cross-platform type system.
This chapter uses the features and programming interface of a special reader class—
the XmlValidatingReader class—to demonstrate how XML validation is accomplished in
the .NET Framework. In doing so, we have inevitably touched on the technologies that
are involved with the schema definition—from the still-flourishing DTD, to the newest
and standard XSD, and passing through the intermediate, and mostly Microsoft
proprietary, XDR.

For the most part, this chapter covers issues revolving around XML validating parsers.
It also opens a window into the world of XML-related technologies.

Further Reading
XML sprang to life in the late 1990s as a metalanguage scientifically designed to
definitively push aside SGML. If you want to learn more about this ancestor of XML, still
in use in some legacy e-commerce applications, have a look at the tutorial available at
http://www.w3.org/TR/WD-html40-970708/intro/sgmltut.html.
In this chapter and in this book, you won't find detailed references to the syntax and
structure of XML technologies. If you need to know all about DTD attributes and XSD
components, you'll need to look elsewhere. One resource that I've found extremely
valuable is Essential XML Quick Reference, written by Aaron Skonnard and Martin
Gudgin (Addison Wesley, 2001). This book is an annotated review of all the markup
code around XML, including XSD, XSL, XPath, and SOAP—not coincidentally, the
same XML standards fully supported by the .NET Framework. Another resource I would
recommend is XML Pocket Consultant, written by William R. Stanek (Microsoft Press,
2002). For online resources, check out in particular http://www.xml.com.
An excellent article that describes the big picture behind XSD, Web services, and
SOAP can be found on the MSDN Magazine Web site, at
http://msdn.microsoft.com/msdnmag/issues/01/11/WebServ/WebServ0111.asp. A
detailed tutorial on XSD can be found at http://www.w3.org/TR/xmlschema-0. I
especially recommend this tutorial if you need a complete step-by-step guide to the
intricacies and wonders of the XSD as defined by the W3C.
As for regular expressions, I don't know of any book or online resource that specifically
untangles this topic. On the other hand, regular expressions are covered in almost
every book aimed at the .NET Framework. In particular, take a look at Chapter 12 of

 110

Francesco Balena's Programming Visual Basic .NET Core Reference (Microsoft Press,
2002).

 111

Chapter 4: XML Writers

Overview

Creating XML documents in a programmatic way has never been a particularly
complicated issue. You simply concatenate a few strings into a buffer and then flush the
buffer to a storage medium when you have finished. The process is quick, easy, and
straightforward—could you ask for more? Well, actually, you should!

XML documents are text-based files, but they also contain a lot of markup text, and as
you know, dealing with markup text can at times be boring or even annoying. More than
just being a bother, you might find that supplying the necessary quotation marks and
angle brackets can make your code more error-prone. Creating XML documents
programmatically by simply putting one string of text after another is effective as long as
you can absolutely guarantee that subtle errors will never sneak into the code
mainstream, which is not much different from certifying that all of your manually created
code is 100 percent bug-free.

The Microsoft .NET Framework provides a more productive, and even elegant,
approach to writing XML code. Based on ad hoc tools, this approach simply applies the
same pattern that has been the key to XML's rapid adoption—focus on the data and
ignore the rest. Enter XML writers.

The XML Writer Programming Interface

An XML writer represents a component that provides a fast, forward-only way of
outputting XML data to streams or files. More important, an XML writer guarantees—by
design—that all the XML data it produces conforms to the W3C XML 1.0 and
Namespace recommendations.

Suppose you have to render in XML the contents of a string array. The following code
normally fits the bill:

void CreateXmlFile(String[] theArray, string filename)

{

 StringBuilder sb = new StringBuilder("");

 // Loop through the array and build the file

 sb.Append("<array>");

 foreach(string s in theArray)

 {

 sb.Append("<element value=\"");

 sb.Append(s);

 sb.Append("\"/>");

 }

 sb.Append("</array>");

 // Create the file

 StreamWriter sw = new StreamWriter(filename);

 112

 sw.Write(sb.ToString());

 sw.Close();

}

The output is shown in Figure 4-1. Apparently, everything is working just fine.

Figure 4-1: The sample XML file is successfully recognized and managed by Microsoft
Internet Explorer.

One small drawback is that the XML code you get is not exactly in the format you
expect—the format shown in Internet Explorer. The source code for the XML file in
Figure 4-1 has no newline characters or indentation and appears to be an endless and
hardly readable string of markup text. But this is no big deal. You can simply enhance
the code a little bit by adding newline and tab characters.

In general, there is nothing really bad or wrong with this approach as long as the
document file you need to create is simple, has minimal structure, and has only a few
levels of nesting. When you have more advanced and stricter requirements such as
processing instructions, namespaces, indentation, formatting, and entities, the
complexity of your code can grow exponentially and, with it, the likelihood of introducing
errors and bugs.

Let's rewrite our sample file using .NET XML writers, as shown in the following code. A
.NET XML writer features ad hoc write methods for each possible XML node type and
makes the creation of XML output more logical and much less dependent on the
intricacies, and even the quirkiness, of the markup languages.

void CreateXmlFileUsingWriters(String[] theArray,

 string filename)

{

 // Open the XML writer (default encoding charset)

 XmlTextWriter xmlw = new XmlTextWriter(filename, null);

 xmlw.Formatting = Formatting.Indented;

 xmlw.WriteStartDocument();

 xmlw.WriteStartElement("array");

 foreach(string s in theArray)

 113

 {

 xmlw.WriteStartElement("element");

 xmlw.WriteAttributeString("value", s);

 xmlw.WriteEndElement();

 }

 xmlw.WriteEndDocument();

 // Close the writer

 xmlw.Close();

}

Viewed in Internet Explorer, the final output for this file is the same as we saw in Figure
4-1. However, now newline and tab characters have been inserted as appropriate, and
the source code truly looks like this:

<?xml version="1.0"?>

<array>

 <element value="Rome" />

 <element value="New York" />

 <element value="Sydney" />

 <element value="Stockholm" />

 <element value="Paris" />

</array>

An XML writer is a specialized class that knows only how to write XML data to a variety
of storage media. It features ad hoc methods to write any special item that
characterizes XML documents—from character entities to processing instructions, from
comments to attributes, and from element nodes to plain text. In addition, and more
important, an XML writer guarantees well-formed XML 1.0–compliant output. And you
don't have to worry about a single angle bracket or the last element node that you left
open.

Important Because more often than not an XML writer class simply

creates local or remote disk files, don't be too surprised if your
code causes the .NET Code Access Security (CAS) system to
throw a security exception. Partially trusted applications, and
in particular Microsoft ASP.NET applications with default
settings, have no access to the file system. Be aware that
when you use XML writers, unless you take particular
measures, sooner or later a security exception will be thrown.

The XmlWriter Base Class
XML writers are based on the XmlWriter abstract class that defines the .NET
Framework interface for writing XML. The XmlWriter class is not directly creatable from
user applications, but it can be used as a reference type for objects that are instances
of classes derived from XmlWriter. Actually, the .NET Framework provides just one
class that gives a concrete implementation of the XmlWriter interface—the
XmlTextWriter class.

 114

What the XmlWriter Class Can't Do
Although powerful and considerably feature-rich, an XML writer is not perfect; it still
leaves some margin for errors. To be more precise, the XmlWriter class certainly
generates 100-percent well-formed code, but only if you pass on correct information. In
particular, an XML writer does not check for invalid characters in element and attribute
names. It also does not guarantee that any Unicode characters you use fit into the
current encoding schema. As a consequence, any characters outside the encoding
schema are not escaped into character entities and might lead to incorrect output.
An XML writer also does not verify duplicate attributes; it simply dumps the text out
when you call the appropriate method. Nor does an XML writer validate any identifiers
(for example, the SYSTEM identifier) you specify when you create a DOCTYPE node.
In addition, the XmlWriter class does not validate against any schema or document type
definition (DTD). Creating a validating writer is not difficult, however; I'll give you some
tips on how to build one in the section "XML Validating Writers," on page 168. By the
way, an XmlValidatingWriter class is just one of the extensions to the System.Xml
namespace slated for the next version of the .NET Framework.

Properties of the XmlWriter Class
Table 4-1 lists the properties that belong to the XmlWriter class.

Table 4-1: Properties of the XmlWriter Class

Property Description

WriteState Read-only property that gets the state of the writer. The state
can be any value taken from the WriteState enumeration and
describes the element being written.

XmlLang Read-only property that returns the current xml:lang scope.
You set the language of the document by writing an xml:lang
attribute to the output stream.

XmlSpace Read-only property that indicates the current xml:space scope
through a value taken from the XmlSpace enumeration
(Default, None, or Preserve).

All of these properties are read-only and abstract—that is, they must be overridden in
any derived class. The behavior described in Table 4-1 simply indicates what the
properties have been designed for and does not necessarily reflect the actual behavior
of these properties in a custom implementation.
In general, the XmlWriter class properties serve to track the state in which another
component might have left the writer. Note that these properties belong to the current
instance of the writer object. If you are using the same writer to generate more
documents on the same stream, these properties are not automatically reset when you
start a new document.

XML Writer States
Table 4-2 summarizes the allowable states for an XML writer. Values come from the
WriteState enumeration type. Any XML writer is expected to properly and promptly
update its WriteState property as various internal operations take place.

Table 4-2: States of an XML Writer

State Description

Attribute The writer enters this state when an attribute is being
written.

 115

Table 4-2: States of an XML Writer

State Description

Closed The Close method has been called, and the writer is no
longer available for writing operations.

Content The writer enters this state when the contents of a node is
being written.

Element The writer enters this state when an element start tag is
being written.

Prolog The writer is writing the prolog (the section that declares the
element names, attributes, and construction rules of valid
markup for a data type) of a well-formed XML 1.0 document.

Start The writer is in an initial state, waiting for a write call to be
issued.

When you create a writer, its state is set to Start, meaning that you are still configuring
the object and the actual writing phase has not yet begun. The next state is Prolog,
which is reached as soon as you call WriteStartDocument—the first write method you
call. After that, the state transition depends primarily on the type of document you are
writing and its contents.
The writer remains in Prolog state while you add nonelement nodes, including
comments, processing instructions, and document types. When the first element node
is encountered—the document root node—the state changes to Element. The state
switches to Attribute when you call the WriteStartAttribute method but not when you
write attributes using the more direct WriteAttributeString method. (In the latter case,
the state remains set to Element.) Writing an end tag switches the state to Content, and
when you have finished writing and call WriteEndDocument, the state returns to Start
until you start another document or close the writer.

Methods of the XmlWriter Class
Table 4-3 lists some of the methods that belong to the XmlWriter class. Only methods
that are not directly involved with the writing of XML elements are included here.

Table 4-3: Nonwriting Methods of the XmlWriter Class

Method Description

Close Closes both the writer and the underlying stream. The writer
can't be used to write additional text. Any attempt would
cause an invalid operation exception to be thrown.

Flush Flushes whatever is in the buffer to the underlying streams
and also flushes the underlying stream. After this method is
called, the writer remains active and ready to write more to
the same stream.

LookupPrefix Takes a namespace URI and returns the corresponding
prefix. In doing so, the method looks for the closest
matching prefix defined in the current namespace scope.

An XML writer accumulates text in an internal buffer. Normally, the buffer is flushed,
and the XML text actually written, only when the writer is closed. By calling the Flush
method, however, you can empty the buffer and write the current contents down to the

 116

stream. Some working memory is freed, the writer is not closed, and the operation can
continue.
For example, let's assume that you use a file as the output stream. At some point, while
generating the XML content, you call Flush. As a result, the file (existing or already
created by the time Flush is called) is partially populated. However, it can't be accessed
by other processes because the file is locked by your process. The XML file will be
unlocked and made available to other processes only when the writer is closed—an
action that, in turn, closes the stream and releases any underlying resources.
Table 4-4 summarizes the key methods of the XmlWriter class for writing specific XML
elements such as attributes, entities, and nodes.

Table 4-4: Writing Methods of the XmlWriter Class

Method Description

WriteAttributeString Writes an attribute with the specified value.
The method adds start and end quotation
marks.

WriteCData Writes a CDATA block containing the
specified text. The method adds start
(<![CDATA[) and end (]]>) blocks for the
element.

WriteCharEntity Writes the specified Unicode character in
hexadecimal character entity reference format.
For example, the & (ampersand) character is
written as &.

WriteComment Writes a comment. The method adds start (<!-
-) and end (-->) blocks for the element.

WriteDocType Writes the DOCTYPE declaration with the
specified name and optional attributes.

WriteElementString Writes an element node with the specified
contents. It can produce the following output
with a single call: <city>Rome</city>, where
city is the name of the element and Rome is
the contents to write.

WriteEndAttribute Closes a previous call made to
WriteStartAttribute.

WriteEndDocument Closes any open elements or attributes and
returns the writer to its initial state (Start).

WriteEndElement Closes the innermost open element using the
short end tag (/>) where appropriate. The
namespace scope moves one level up.

WriteEntityRef Writes an entity reference with the specified
name. Takes care of the leading & and the
trailing semicolon (;).

WriteFullEndElement Closes one element by using a full end tag (for
example, </element>). This method is similar
to WriteEndElement, but it always closes the
innermost element using a full end tag. Just as
with WriteEndElement, the namespace scope
is moved one level up.

WriteName Writes the specified name, ensuring that it is a

 117

Table 4-4: Writing Methods of the XmlWriter Class

Method Description

valid name according to the W3C XML 1.0
recommendation.

WriteNmToken Writes the specified name, ensuring that it is a
valid NmToken according to the W3C XML 1.0
recommendation.

WriteProcessingInstruction Writes a processing instruction using the
required syntax <?name value?>.

WriteQualifiedName Writes the namespace-qualified name after
looking up the prefix that is in scope for the
specified namespace.

WriteStartAttribute Writes the start of an attribute. Switches the
writer's state to Attribute.

WriteStartDocument Writes the XML 1.0 standard prolog
declaration.

WriteStartElement Writes the specified start tag for the specified
element node.

WriteString Writes the specified text contents. Can be
used with open attributes or element nodes.

WriteWhitespace Writes the specified white space.

Some of these methods are abstract; some are not. In particular, the XmlWriter class
provides an implementation for one-shot methods that group a few more basic calls.
For example, WriteAttributeString is implemented in XmlWriter like this:

public void WriteAttributeString(string localName, string value)

{

 WriteStartAttribute(null, localName, null);

 WriteString(value);

 WriteEndAttribute();

}

Other, more specialized, writing methods available in the XmlWriter interface are listed
in Table 4-5.

Table 4-5: Miscellaneous Writing Methods

Method Description

WriteAttributes Writes all the attributes found at the current
position in the specified XmlReader object. This
method is actually implemented in XmlWriter.
(This method will be discussed in more detail in
the section "A Read/Write XML Streaming
Parser," on page 179.)

WriteBase64 Encodes the specified binary bytes as base64
and writes out the resulting text. (Base64
encoding is designed to represent arbitrary byte

 118

Table 4-5: Miscellaneous Writing Methods

Method Description

sequences in a text form comprised of the 65
US-ASCII characters [A-Za-z0-9+/=], where
each character encodes 6 bits of the binary
data.) You decrypt this text using the
XmlReader class's ReadBase64 method.
(These methods will be discussed in more
detail in the section "Writing Encoded Data," on
page 162.)

WriteBinHex Encodes the specified binary bytes as BinHex
and writes out the resulting text. (BinHex is an
encoding scheme that converts binary data to
ASCII characters.) You decrypt this text using
the XmlReader class's ReadBinHex method.
(These methods will be discussed in more
detail in the section "Writing Encoded Data," on
page 162.)

WriteChars Writes a block of bytes as text to the XML
stream. This method is useful when you have
to write a lot of text and want to do it one chunk
at a time.

WriteNode Copies everything from the specified reader to
the writer, moving the XmlReader object to the
end of the current element. This method is
actually implemented in XmlWriter. (This
method will be discussed in more detail in the
section "A Read/Write XML Streaming Parser,"
on page 179.)

WriteRaw Writes unencoded text either from a string or
from a buffer of bytes as is. Can contain
markup text that would be parsed as
appropriate.

WriteSurrogateCharEntity Generates and writes the surrogate character
entity for the surrogate character pair.

A surrogate (or surrogate pair) is a pair of 16-bit Unicode encoding values that together
represent a single character. Surrogate pairs are in effect 32-bit atomic characters,
although they are represented by a pair of characters (low and high char). Surrogates
are critical when you use the WriteChars method to split a large amount of text. If that
text, arbitrarily split, contains surrogates, some special handling must be done to
ensure that surrogate pairs are not split across different chunks.
If a split happens, a generic exception (Exception class) is thrown. By catching this
exception, you force the application to continue writing until the erroneously split
surrogate pair is safely copied into the output buffer.

The XmlTextWriter Class
As mentioned, XmlWriter is an abstract class, although a few of its methods have a
concrete implementation. In the .NET Framework, there is just one class built on top of
the base XmlWriter class—the XmlTextWriter class.

 119

XmlTextWriter provides a standard implementation for all the methods and the
properties described up to now, plus a few more. It maintains an internal stack to keep
track of XML elements that have been opened but not yet closed. Each element node
can be directly associated with a namespace, thus becoming the root of a namespace
scope. If a namespace is not specified, the element is associated with the last declared
namespace.
The XmlTextWriter class has three constructors. You can have the writer work on a file
or on an open stream. In both cases, you must also specify the required encoding
schema, as shown in the following code. If this argument is null, the Universal
Character Set Transformation Format, 8-bit form (UTF-8) character encoding set is
assumed.

public XmlTextWriter(Stream w, Encoding encoding);

public XmlTextWriter(string filename, Encoding encoding);

The third constructor allows you build an XML text writer starting from a TextWriter
object.

Encoding Schemas
In the .NET Framework, four different character encoding schemas are defined. Each
schema corresponds to a class that inherits from the Encoding class. The classes are
listed in Table 4-6.

Table 4-6: Available Character Encoding Schemas

Property Class Description

Encoding.ASCII ASCIIEncoding Encodes Unicode characters
as single 7-bit ASCII
characters.

Encoding.Unicode UnicodeEncoding Encodes each Unicode
character as two consecutive
bytes.

Encoding.UTF7 UTF7Encoding Encodes Unicode characters
using the UTF-7 character
encoding set. (UTF-7 stands
for Universal Character Set
Transformation Format, 7-bit
form.)

Encoding.UTF8 UTF8Encoding Encodes Unicode characters
using the UTF-8 character
encoding set.

The default character encoding schema is UTF-8, which supports all Unicode character
values and surrogates. UTF-8 uses a variable number of bytes per character and is
optimized for the lower 127 ASCII characters.
If you want to use the default encoding, omit the second argument in the constructor.
Otherwise, use the static properties of the Encoding class to indicate which type of
encoding you want. You don't need to create a new instance of an encoding class to
create a writer that encodes data in a certain way. For example, to create an ASCII
stream, you use the following code:

XmlTextWriter xmlw = new XmlTextWriter(file, Encoding.ASCII);

 120

If you want to get just the default setting, use Encoding.Default instead. Keep in mind
that character encoding classes are located in the System.Text namespace.

Properties of the XML Text Writer
Table 4-7 lists the properties that are specific to the XmlTextWriter class—that is, the
properties that the class does not inherit from XmlWriter.

Table 4-7: Properties of the XmlTextWriter Class

Property Description

BaseStream Returns the underlying stream object. If you created the
writer from a file, this result is a FileStream object.

Formatting Indicates how the output is formatted. Allowed values are
found in the Formatting enumeration type: None or
Indented.

Indentation Gets or sets the number of times to write the IndentChar
white space character for each level of nesting in the XML
data. This property is ignored when Formatting is set to
None.

IndentChar Gets or sets the white space character to be used for
indenting when Formatting is set to Indented.

Namespaces Gets or sets support for namespaces. When this property is
set to false, xmlns declarations are not written. Set to true
by default.

QuoteChar Gets or sets the character to be used to surround attribute
values. Can be a single (') or a double (") quotation mark;
the default is a double quotation mark.

In theory, the indentation character can be any character; the property does not
exercise any control over what you choose. To create XML 1.0–compliant code,
however, the value of the IndentChar property must be a white space character such as
a tab, a blank, or a carriage return. By default, each level of indentation is rendered with
two blanks.

Note When the XML text writer works on a file, it opens the file in
exclusive write mode. If the file does not exist, it will be created. If
the file exists already, it will be truncated to zero length.

The XmlTextWriter class has no data methods in addition to those described in Table 4-
3, Table 4-4, and Table 4-5 as part of the XmlWriter class interface.

Writing Well-Formed XML Text

TheXmlTextWriter class takes a number of precautions to ensure that the final XML
code is perfectly compliant with the XML 1.0 standard of well-formedness. In particular,
the class verifies that any special character found in the passed text is automatically
escaped and that no elements are written in the wrong order (such as attributes outside
nodes, or CDATA sections within attributes). Finally, the Close method performs a full
check of well-formedness immediately prior to return. If the verification is successful,
the method ends gracefully; otherwise, an exception is thrown.

 121

Other controls that the XmlTextWriter class performs on the generated XML output
ensure that each document starts with the standard XML prolog, shown in the following
code, and that any DOCTYPE node always precedes the document root node:

<?xml version="1.0" ?>

This said, there is no absolute guarantee that users won't write badly formed code. If
the bad format can be detected, the writer throws an exception. Otherwise, the file is
considered correctly written, but client applications might complain about it, as in Figure
4-2.

Figure 4-2: An XML file created with the XmlTextWriter class has a duplicated attribute that
the class did not discover.

The following code demonstrates how to write two identical attributes for a specified
node:

xmlw.WriteStartElement("element");

xmlw.WriteAttributeString("value", s);

xmlw.WriteAttributeString("value", s);

xmlw.WriteEndElement();

In the check made just before dumping data out, the writer neither verifies the names
and semantics of the attributes nor validates the schema of the resultant document,
thus authorizing this code to generate bad XML.

Building an XML Document

Up to now, we've looked at several code snippets showing the XML text writer in action,
but without going into details. Let's make up for this now. The necessary steps to create
an XML document can be summarized as follows:

 Initialize the document The output stream is already open, and at this
stage you simply write the XML prolog, including the XML 1.0 default
declaration and any other heading information that the recommendation
mandates to precede actual data nodes. (Typically, this information
consists of processing instructions, schema references, and the DTD.)

 Write data At this stage, you create XML nodes such as element nodes,
attributes, CDATA and parsable text, entities, white space, and whatever

 122

else you might need that the writer supports. The writer maintains an
internal node stack and uses it to detect and block erroneous calls such as
attributes being created outside the start tag. The writer is smart enough
to complete the markup for nodes automatically. This means, for example,
that the writer automatically inserts all missing end tags when the writer is
closed and completes the markup for the start tag when writing of text or
child nodes begins.

 Close the document At this stage, you close the writer to flush both the
contents of the writer and the underlying stream object. At this time only
(or prior, if you call the Flush method), the XML text accumulated in an
internal buffer is written out and undergoes a summary check for XML
well-formedness.

Writing the XML Prolog
Once you have a living and functional instance of the XmlTextWriter class, the first XML
element you add to it is the official XML 1.0 signature. You obtain this signature in a
very natural and transparent way simply by calling the WriteStartDocument method.
This method starts a new document and marks the XML declaration with the version
attribute set to "1.0", as shown in the following code:

// produces: <?xml version="1.0"?>

writer.WriteStartDocument();

By using one of the WriteStartDocument overloads, you can also set the standalone
attribute to "yes", as shown here:

// produces: <?xml version="1.0" standalone="yes"?>

writer.WriteStartDocument(true);

Note A stand-alone XML document is declared to be totally independent
of external resources such as DTDs or entities.

You close the document writing phase by calling the WriteEndDocument method, as
shown in the following code. At this stage, all pending nodes are automatically closed,
the internal stack is entirely cleared, and the writer is switched back to its initial state.

writer.WriteStartDocument();

// ...

// Build the document here

// ...

writer.WriteEndDocument();

Important The WriteStartDocument/WriteEndDocument pair is not
required to produce an XML file. If you omit such calls, the
writer will still work just fine. However, instead of a well-formed
XML 1.0 document, you can get a well-formed XML fragment
with no root rules applied.

When you need to insert a comment, use the WriteComment method. The syntax is
straightforward, as shown here:

writer.WriteComment("Do something here");

 123

No exception is raised if the comment text is null or empty. The following code is
generated by an empty comment:

<!---->

Another XML element you often find at the beginning of an XML document is the
processing instruction. The method that writes such instructions is
WriteProcessingInstruction. It takes two arguments: the name of the instruction and a
value. The following code demonstrates a typical processing instruction:

<?xml-stylesheet type="text/xsl" href="transform.xsl"?>

The processing instruction dictates that the contents of the current document must be
transformed using the source of the specified style sheet document. A processing
instruction consists of a name (xml-stylesheet in this example) plus a value. The value
can be a combination of one or more name/ value pairs, however. When you create a
processing instruction with the .NET XML API, you group all the name/value pairs in a
single string, using blanks to separate consecutive pairs, as shown here:

String text = "type=\"text/xsl\" href=\"transform.xsl\"";

writer.WriteProcessingInstruction("xml-stylesheet", text);

The preceding code creates the following XML line:

<?xml-stylesheet type="text/xsl" href="transform.xsl"?>

Important The XML declaration is a kind of processing instruction.
However, you can't create a typical XML 1.0 signature using
the WriteProcessingInstruction method because
WriteProcessingInstruction can be called only after the XML
document has been initialized—that is, after
WriteStartDocument has been called. At this point, any
attempt to write the xml processing instruction would raise an
argument exception.

Writing DOCTYPE and Entities
In an XML document, the document type subtree is a unique graph that contains
references to external markup resources such as a DTD or a list of entities. As
mentioned in the previous section, XML documents without such external references
are said to be stand-alone and can declare their status in the XML signature through
the standalone attribute.
To identify an external markup resource, two types of identifiers can be used: public
and system. In the .NET Framework, both identifiers are found in the body of the
WriteDocType method, as shown here:

public override void WriteDocType(

 string name, string pubid, string sysid, string subset);

The name argument is mandatory and represents the name of DOCTYPE root node.
The subset argument, on the other hand, represents the text being written in the
!DOCTYPE XML node. The pubid and sysid arguments represent the identifier of the
DOCTYPE resource being defined. The key identifier is sysid, rendered in XML through
the SYSTEM attribute. It normally evaluates to a URL that points to the remote location
where the resource is stored. For example, the following code associates the MyDoc
resource with the file.dtd URL:

<!DOCTYPE MyDoc SYSTEM "http://server/file.dtd" >

 124

By using the pubid argument (PUBLIC attribute in XML code), you can reinforce the
identification of the resource by also using a location-independent public name for it, as
shown here:

<!DOCTYPE MyDoc PUBLIC "MyDtd" "http://server/file.dtd" >

You can use SYSTEM without PUBLIC, or both, or neither. You can't use PUBLIC
alone.
You use the WriteDocType method to insert a reference to an in-line or external DTD
file to be used for validation purposes. Alternatively, you can use the WriteDocType
method to insert entity definitions. In this case, specify null values for both sysid and
pubid arguments. The following XML code creates an entity named dinoe that
evaluates to "Dino Esposito":

writer.WriteDocType(

 "MyDef",

 null,

 null,

 "<!ENTITY dinoe 'Dino Esposito'>");

The resulting XML text looks like this:

<!DOCTYPE MyDef[<!ENTITY dinoe 'Dino Esposito'>]>

An entity declaration defines a macro to access pieces of XML text using a symbolic
name. When a previously defined entity is then used in code, another method does the
job of expanding the content—WriteEntityRef. (More on this expansion in the next
section.)

Writing Element Nodes and Attributes
The .NET XML API provides two methods for writing nodes. You use the
WriteElementString method if you need to write a simple node around some text. You
use the WriteStartElement/WriteEndElement pair if you need to specify attributes or if
you need to control what's written as the body of the node.
The following instruction creates a node named MyNode and wraps it around the
specified text. If needed, the method also provides an overload in which you can add
namespace information.

writer.WriteElementString("MyNode", "Sample text");

The output looks like this:

<MyNode>Sample text</MyNode>

By writing the start tag and the end tag of an element node as distinct pieces, you can
add attributes, reference entities, and create CDATA sections. Here's how:

// Open the document

writer.WriteStartDocument();

// Write DOCTYPE and entities

writer.WriteDocType("MyDef", null, null,

 "<!ENTITY I 'Italy'><!ENTITY I-Capital 'Rome'>");

 125

// Open the root <Cities>

writer.WriteStartElement("Cities");

// Open the child <City>

writer.WriteStartElement("City");

// Write the Zip attribute

writer.WriteAttributeString("Zip", "12345");

// Write the State attribute (reference an entity)

writer.WriteStartAttribute("State", "");

writer.WriteEntityRef("I");

writer.WriteEndAttribute();

// Write the body of the node (reference an entity)

writer.WriteEntityRef("I-Capital");

// Close the current innermost element (City)

writer.WriteEndElement();

// Close the current innermost element (Cities)

writer.WriteEndDocument();

// Close the document

writer.WriteEndDocument();

All the instructions in the preceding code work together to populate a single element
node named City. The City node contains an attribute named Zip, which is created in
one shot using the WriteAttributeString method. As with element nodes, attribute nodes
too can be written in two ways, using either a one-shot method or a pair of start/end
methods.
The instructions in boldface demonstrate the alternative approach. The State attribute is
opened and closed with separate statements. Meanwhile, a WriteEntityRef call
determines the entity's contents by expanding a previously defined entity. The final
output is shown here:

<Cities>

 <City Zip="12345" Country="&I;">&I-Capital;</City>

</Cities>

Internet Explorer correctly displays the document and expands all of its entities, as
shown in Figure 4-3.

 126

Figure 4-3: A dynamically created XML document with entities and DOCTYPE definitions.

If you need to concatenate entities with plain text or if you just want to write the
contents of an attribute, use the WriteString method. For example, the following code
adds ", Europe" to the attribute Country:

writer.WriteStartAttribute("Country", "");

writer.WriteEntityRef("I");

writer.WriteString(", Europe");

writer.WriteEndAttribute();

Figure 4-4 shows the results of the concatenation.

Figure 4-4: The Country attribute is created by concatenating an entity reference and plain
text.

As you might have noticed, the end tags for both attributes and nodes do not take any
arguments. The writer maintains an internal stack of opened attributes and nodes and
automatically pops the innermost element when you close a node. Likewise, when a
new node or attribute is opened, the writer simply pushes a new element onto the
stack. If the newly added element is a node, in the resulting XML code, the node is
nested one additional level.
At the end of the document—that is, when WriteEndDocument is called—all pending
nodes are automatically popped off the stack and closed according to the last in, first
out (LIFO) method. Let's consider what can happen if you disregard this simple rule and
omit a call to WriteEndElement in a loop. The following code translates an array of
strings into XML:

 127

writer.WriteStartDocument();

writer.WriteStartElement("array");

foreach(string s in theArray)

{

 writer.WriteStartElement("element");

 writer.WriteAttributeString("value", s);

 writer.WriteEndElement();

}

writer.WriteEndDocument();

The root node is array and contains a series of child nodes named element, each with
an attribute value, as shown here:

<?xml version="1.0"?>

<array>

 <element value="Rome" />

 <element value="New York" />

 <element value="Sydney" />

 <element value="Stockholm" />

 <element value="Paris" />

</array>

The element node is created entirely in the loop. If you don't explicitly close it by calling
WriteEndElement, the final output would look like this:

<?xml version="1.0"?>

<array>

 <element value="Rome">

 <element value="New York">

 <element value="Sydney">

 <element value="Stockholm">

 <element value="Paris" />

 </element>

 </element>

 </element>

 </element>

</array>

Writing Raw XML Data

As we've seen, the XML writer saves the developer from a lot of the details concerning
the markup text in an XML document. So what happens if you try to run the following
command?

writer.WriteString("<");

 128

This command executes normally, but any occurrence of markup-sensitive characters
is replaced by escaped characters—mostly entities. Thus, the less than sign (<) is
written using the < entity. This behavior might be acceptable at times, and sometimes
not. If you just need to write out a particular sequence of markup characters as is, use
WriteRaw method, as follows

writer.WriteRaw("<");

Unlike other writing methods, WriteRaw does not parse the string being passed. The
method counts two overloads and allows you to write markup text manually either from
a string or from a buffer of characters. If you use WriteRaw and make yourself
responsible for the manual handling of the markup text, the writer can no longer
guarantee the well-formedness of the final XML output.
In addition to WriteRaw, the WriteCData method writes out text in a somewhat
protected way. WriteCData writes the text wrapped by a CDATA block, thus marking
the text as unparsable by XML parsers. Typically, you use a CDATA section for XML
code that might contain sensitive symbols such as less than (<), greater than (>), or
ampersand (&), as shown here

writer.WriteCData("More >");

The text passed on to WriteCData is rendered like this:

<![CDATA[More >]]>

If you try to write the same text using WriteString, the effect is different, as the following
XML text demonstrates:

More >

Tip The XmlConvert class represents a handy tool that can be used to
achieve a couple of goals. First, it provides methods for converting
XML Schema Definition (XSD) data types to the .NET Framework
type system. For example, the method ToDate Time converts an XSD
Date type to System.DateTime. In addition, the XmlConvert class also
lets you encode and decode XML names so that they comply with the
W3C standards. The encoding process escapes any invalid
characters into entities consisting of the character's numeric
representation in the current encoding set.

Formatting Text
The XmlTextWriter class allows you to specify a few properties to configure the way in
which newline characters, quotation marks, and indentation are defined. Normally, XML
documents use tab characters or blanks to indent child nodes, although an XML
document rendered as an endless string is by all means a perfectly valid XML
document.
As mentioned, the properties involved with XML formatting are Formatting, IndentChar,
Indentation, and QuoteChar. The first three are somewhat correlated, whereas the
latter simply indicates the character to be used to enclose attributes—by default, the
double quotation mark.
Formatting lets you control the formatting style by toggling it on and off altogether.
When Formatting is set to Formatting.Indented (the other possible value is
Formatting.None), the XML writer attributes a special role to IndentChar and
Indentation that would otherwise be ignored. Indentation specifies the number of
characters to indent for each level in the document's hierarchy. Conversely, IndentChar

 129

represents the character that will be used to indent the text of the new node. By default,
formatting is on and the indentation is two blanks.
Note that all the XML writer's formatting is managed by the writer only before the
document is actually opened—that is, prior to the WriteStartDocument call. The
following code snippet demonstrates how to write a new XML document, indenting with
a tab character any level of the hierarchy:

XmlTextWriter writer = new XmlTextWriter(filename, null);

writer.Formatting = Formatting.Indented;

writer.Indentation = 1;

writer.IndentChar = "\t";

As a final note, keep in mind that XML formatting normally indents element contents
only and does not format mixed contents.

Supporting Namespaces
In the XmlTextWriter class, all the methods available for writing element nodes and
attributes have overloads to work with namespaces. You simply add a new argument to
the call and specify the namespace prefix of choice. A namespace is identified by a
URN and is used to qualify both attribute and node names so that they belong to a
particular domain of names.

Namespace Declaration
You insert a namespace declaration in the current node using the xmlns attribute. You
can also optionally specify a namespace prefix. The prefix is a symbolic name that
uniquely identifies the namespace. To declare a namespace, add a special attribute to
the node that roots the target scope of the namespace, as shown here:

<node xmlns:prefix="namespace-urn">

You can write this XML text as raw text or use one of the methods of the writer object.
Typically, you use one of the overloads of the WriteAttributeString method, as shown
here:

public void WriteAttributeString(

 string prefix,

 string attr,

 string ns,

 string value);

You can use this method to declare a namespace, but it remains primarily a method to
add attributes. To obtain a namespace declaration like the one in our earlier examples,
a few exceptions to the signature apply. In particular, for an xmlns attribute being
written, you instruct the method to add an attribute whose name matches the prefix and
whose prefix equals xmlns.
The third argument is expected to be the URN of the namespace for the attribute. In
this case, however, the namespace prefix named xmlns points to the default XML
namespace, so the ns argument must be set to null. Note that any attempt to set ns to a
non-null value would result in an exception because the specified URN would not match
the URN of the xmlns namespace prefix. The fourth and final argument, value, contains
the URN of the namespace you are declaring. The following code shows how to declare
a sample namespace rooted in the node <MyNode>:

writer.WriteStartElement("MyNode");

writer.WriteAttributeString("xmlns", "x", null,

 130

 "dinoe:isbn-0735618011");

This code produces the following output:

<MyNode xmlns:x="dinoe:isbn-0735618011">

Qualified Nodes
A namespace is unequivocally identified by a URN. Thus, whenever you need to
indicate a namespace for an XML node, you should specify the URN. The following
code shows how to use WriteElementString to write a qualified node based on the
namespace declared in the previous section:

writer.WriteElementString("value", "dinoe:isbn-0735618011",

 "...");

The output looks like the following XML code:

<x:value>...</x:value>

As you can see, the method uses the specified URN to look up the closest prefix and
then uses that prefix to generate the output text.
The LookupPrefix method is a public method that takes a URN and returns the closest
prefix that matches it. By closest, I mean the topmost prefix available on the
namespace stack. In other words, you can have the same namespace being referenced
through different prefixes in different document's subtrees. LookupPrefix simply scans
the namespaces declared within the current document and returns when the most
recent one has been found. The method traverses the XML tree starting from the
current node and moving up from parent to parent until the root is reached.
The following code shows an alternative way to write the preceding XML data using
LookupPrefix:

string prefix = writer.LookupPrefix("dinoe:isbn-0735618011");

writer.WriteStartElement(prefix, "value", null);

writer.WriteString("...");

writer.WriteEndElement();

The WriteStartElement method takes the prefix and the node name. It can also accept
a third argument, the URN of the namespace. If this argument is null or matches the
closest URN for the prefix, the looked-up, existing namespace is used. The final XML
code looks like this:

<x:value>...</x:value>

If the third argument of WriteStartElement represents an unknown URN, the
namespace is declared and prefixed in place. In this case, its scope ranges over the
XML subtree rooted in the node being created. Consider the following statements:

// Get the topmost prefix for the URN.

string prefix = writer.LookupPrefix("dinoe:isbn-0735618011");

// Write a <prefix:value> node. Identify the namespace

// using the most recent prefix/URN binding.

writer.WriteStartElement(prefix, "value", null);

writer.WriteString("...");

writer.WriteEndElement();

 131

// Write a <prefix:value> node. Since the URN associated with

// the prefix does not match the specified URN, a new prefix/URN

// binding is generated rooting in the new <prefix:value> node.

writer.WriteStartElement(prefix, "value",

 "despos:isbn-0735618011");

writer.WriteString("...");

writer.WriteEndElement();

The two nodes created look like the XML source code shown here:

<x:value>...</x:value>

<x:value xmlns:x="despos:isbn-0735618011">...</x:value>

The two <x:value> nodes are scoped in different namespaces although they have the
same name and even the same namespace prefix.

Qualified Attributes
To write qualified attributes, you use some of the overloads of the WriteAttributeString
and WriteStartAttribute methods. According to the W3C XML 1.0 and Namespaces
specifications, element nodes can have an associated namespace without a prefix, as
shown here:

<value xmlns="despos:isbn-0735618011">...</value>

This namespace can be obtained with the following code:

writer.WriteStartElement("value", "despos:isbn-0735618011");

writer.WriteString("...");

writer.WriteEndElement();

Attributes, on the other hand, can't do without a prefix once they are bound to a
namespace. If you don't indicate the prefix explicitly, one is generated automatically.
Try the following code:

writer.WriteStartElement("element");

writer.WriteStartAttribute("value", "despos:isbn-0735618011");

writer.WriteString(s);

writer.WriteEndAttribute();

writer.WriteEndElement();

The value attribute is associated with a namespace URN, but no prefix is set or
retrieved through LookupPrefix. The resultant XML text is shown here:

<element d2p1:value="..." xmlns:d2p1="despos:isbn-0735618011" />

An automatic prefix is generated to scope the attribute. There are two elements in the
.NET Framework–generated prefix: the depth level, d{n}, and the prefix index, p{n}. The
depth level is a one-based value that counts the depth of the node in the XML tree. The
prefix index counts the number of namespaces defined in the body of the node. For
example, consider the following code:

writer.WriteStartElement("parent");

 132

writer.WriteStartElement("element");

// First <element value=".."> attribute

writer.WriteStartAttribute("value", "despos:isbn-0735618011");

writer.WriteString("...");

writer.WriteEndAttribute();

// Second <element value=".."> attribute

writer.WriteAttributeString("value", "urn:my-namespace", "...");

writer.WriteEndElement();

writer.WriteEndElement();

The corresponding output that the XmlTextWriter class generates is shown in the
following code. Notice the presence of an extra parent node.

<parent>

 <element d3p1:value="..." d3p2:value="..."

 xmlns:d3p2="urn:my-namespace"

 xmlns:d3p1="despos:isbn-0735618011" />

</parent>

As you can see, the depth increased by 1 due to the extra parent node. In addition, the
prefix index ranges from 1 to 2 to include all the namespaces in the node.

Getting the Qualified Name
The methods described up to now only allow you to create element and attribute nodes
with fully qualified names. WriteQualifiedName is a method you can use to write out
both element and attribute namespace-qualified names.
The WriteQualifiedName method takes two arguments, one for the node name and one
for the namespace URN. Next it looks for the prefix associated with that URN and
outputs the combined name in the form prefix:name. If you are writing element content,
you get an exception if the namespace declaration does not exist. If the namespace
argument maps to the current default namespace, the method generates no prefix. For
attributes, if the specified namespace is not found, it is automatically registered and a
related prefix is created as described in the previous section.
The WriteQualifiedName method, however, simply returns the name of the node and
can't be used to create the node itself. From this point of view, it is only complementary
to methods like WriteStartElement and WriteStartAttribute. You need this method only
when you have to write out the name of a node. When the writer is configured to
support namespaces (which is the default), the WriteQualifiedName method also
ensures that the output name conforms to the W3C Namespaces recommendation as
defined in the XML 1.0 specification. You can turn namespace support on and off in a
writer by setting the Namespaces property with a Boolean value as appropriate.

Tip As the W3C XML Namespaces specification recommends, the prefix
should be considered only as a placeholder for a namespace URN.
Although you could use prefixes and real names interchangeably
within the range of a document, bear in mind that an intensive use of
prefixes can soon become misleading when the document must be
accessed by different applications and when you use the same prefix

 133

repeatedly in the same document. Whenever possible, applications
should use the namespace name rather than a prefix. The use of a
prefix is more acceptable when only unique prefixes are used and
possibly only one namespace is defined in the document.

Writing Encoded Data
As mentioned in the section "Methods of the XmlWriter Class," on page 141, the XML
text writer object has two methods that write out XML data in a softly encrypted way
using base64 and BinHex algorithms. The methods involved—WriteBase64 and
WriteBinHex—have a rather straightforward interface. They simply take an array of
bytes and write it out starting at a specified offset and for the specified number of bytes.
(As you saw in Chapter 2, XML reader classes have matching ReadBase64 and
ReadBinHex methods to comfortably read back encoded information.)

Note In the .NET Framework, base64 encoding can also be performed
through static methods exposed by the Convert class. In particular,
the ToBase64String method takes an array of bytes and returns a
base64-encoded string. Likewise, the FromBase64String method
decodes a previously encoded string and returns it as an array of
bytes. For some reason, the .NET Framework does not provide
similar support for BinHex. BinHex, therefore, is supported only
through XML readers and writers.

In the section "The XML Writer Programming Interface," on page 136, you learned how
to serialize an array of strings to XML using the following array:

string[] theArray = {"Rome", "New York", "Sydney",

 "Stockholm", "Paris"};

Let's look at how to write this array to a base64-encoded form. The structure of the
code we analyzed earlier does not need to be altered much. Only a couple of issues
need to be addressed. The first concerns how strings are actually turned into an array
of bytes. The second concerns the signature of the encoding methods. You can use
WriteBinHex to write both element and attribute content in BinHex format, instead of
using WriteBase64, as shown here:

XmlTextWriter xmlw = new XmlTextWriter(filename, null);

writer.Formatting = Formatting.Indented;

writer.WriteStartDocument();

writer.WriteComment("Array to Base64 XML");

writer.WriteStartElement("array");

writer.WriteAttributeString("xmlns", "x", null,

 "dinoe:isbn-0735618011");

foreach(string s in theArray)

{

 writer.WriteStartElement("x", "element", null);

 writer.WriteBase64(Encoding.Unicode.GetBytes(s),

 0, s.Length*2);

 writer.WriteEndElement();

 134

}

writer.WriteEndDocument();

writer.Close();

Encoding-derived classes provide the GetBytes method, which simply translates strings
into an array of bytes. You use Encoding.Unicode be cause that is the native format of
.NET Framework strings in memory. When translating a Unicode string to an array of
bytes, keep in mind that each Unicode character takes up two bytes. This code is
slightly more efficient than using the following instruction, in which the conversion is
performed internally:

writer.WriteBase64(Encoding.Default.GetBytes(s), 0, s.Length);

In the case of very large arrays, you can consider using direct pointers and the unsafe
copy method. The unsafe method has the clear advantage of reducing memory
allocations, so the resulting code is slightly faster. (See the section "Further Reading,"
on page 199, for references to more information.)
Figure 4-5 shows the final output of this code.

Figure 4-5: The contents of an array serialized to base64-encoded XML text.

Encoding using BinHex is nearly identical, as Figure 4-6 demonstrates.

 135

Figure 4-6: The contents of an array serialized to BinHex-encoded XML text.

As for the code, simply change the boldfaced line to the following and you're pretty
much done:

writer.WriteBinHex(Encoding.Unicode.GetBytes(s), 0, s.Length*2);

Decoding Base64 and BinHex Data
Reading encoded data is a bit trickier, but not because the ReadBase64 and
ReadBinHex methods feature a more complex interface. The difficulty lies in the fact
that you have to allocate a buffer to hold the data and make some decision about its
size. If the buffer is too large, you can easily waste memory; if the buffer is too small,
you must set up a potentially lengthy loop to read all the data. In addition, if you can't
process data as you read it, you need another buffer or stream in which you can
accumulate incoming data.
Aside from this, however, decoding is as easy as encoding. The following code shows
how to read the base64 XML document created in the previous section. The XML
reader opens the file and loops over the contained nodes. The ReadBase64 method
copies the specified number of bytes, starting at the specified offset, into a buffer that is
assumed to be large enough. ReadBase64 returns a value denoting the actual number
of bytes read.
Encoding-derived classes also provide a method—GetString—to transform an array of
bytes into a string, as shown here:

XmlTextReader reader = new XmlTextReader(filename);

while(reader.Read())

{

 if (reader.LocalName == "element")

 {

 byte[] bytes = new byte[1000];

 int n = reader.ReadBase64(bytes, 0, 1000);

 string buf = Encoding.Unicode.GetString(bytes);

 // Output the decoded data

 Console.WriteLine(buf.Substring(0,n));

 136

 }

}

reader.Close();

If in this code you replace the call to ReadBase64 with a call to ReadBinHex, you obtain
a BinHex decoder as well.

Embedding Images in XML Documents
The technique described in the previous section can be used with any sort of binary
data that can be expressed with an array of bytes, including images. Let's look at how
to embed a JPEG image in an XML document.
The structure of the sample XML document is extremely simple. It will consist of a
single <jpeg> node holding the BinHex data plus an attribute containing the original
name, as shown here:

writer.WriteStartDocument();

writer.WriteComment("Contains a BinHex JPEG image");

writer.WriteStartElement("jpeg");

writer.WriteAttributeString("FileName", filename);

// Get the size of the file

FileInfo fi = new FileInfo(jpegFileName);

int size = (int) fi.Length;

// Read the JPEG file

byte[] img = new byte[size];

FileStream fs = new FileStream(jpegFileName, FileMode.Open);

BinaryReader f = new BinaryReader(fs);

img = f.ReadBytes(size);

f.Close();

// Write the JPEG data

writer.WriteBinHex(img, 0, size);

// Close the document

writer.WriteEndElement();

writer.WriteEndDocument();

This code uses the FileInfo class to determine the size of the JPEG file. FileInfo is a
helper class in the System.IO namespace used to retrieve information about individual
files. The contents of the JPEG file is extracted using the ReadBytes method of the
.NET binary reader. The contents are then encoded as BinHex and written to the XML
document. Figure 4-7 shows the source code of the XML just created.

 137

Figure 4-7: An XML file containing a BinHex-encoded JPEG file.

The BinHex stream is now part of the XML document and, as such, can be reread using
an XML reader and decoded into an array of bytes. The sample application shown in
the following code does just that and, in addition, translates the bytes into a Bitmap
object to display within a Windows Forms PictureBox control:

XmlTextReader reader = new XmlTextReader(filename);

reader.Read();

reader.MoveToContent();

if (reader.LocalName == "jpeg")

{

 FileInfo fi = new FileInfo(filename);

 int size = (int) fi.Length;

 byte[] img = new byte[size];

 reader.ReadBinHex(img, 0, size);

 // Bytes to Image object

 MemoryStream ms = new MemoryStream();

 ms.Write(img, 0, img.Length);

 Bitmap bmp = new Bitmap(ms);

 ms.Close();

 // Fill the PictureBox control

 JpegImage.Image = bmp;

}

reader.Close();

The reader opens the XML file and jumps to the root node using MoveToContent. Next
it gets the size of the XML file to oversize the buffer destined to contain the decoded
JPEG file. Bear in mind that a BinHex stream is always significantly larger then a binary
JPEG file, but this is the price you must pay to string encoding algorithms. The
ReadBinHex method decodes the JPEG stream and stores it in a MemoryStream
object. This step is necessary if you want to transform the array of bytes into a .NET
Framework graphics object—say, the Bitmap object—that can be then bound to a
PictureBox control, as shown in Figure 4-8.

 138

Figure 4-8: A PictureBox control displays a JPEG file just extracted from an XML file and
properly decoded.

If you want to extract the image bits and create a brand-new JPEG file, use the
following code. The name of the JPEG file is read out of the OriginalFileName attribute
in the XML encoded document.

string originalFileName = reader["OriginalFileName"];

FileStream fs = new FileStream(originalFileName,

 FileMode.Create);

BinaryWriter writer = new BinaryWriter(fs);

writer.Write(img);

writer.Close();

XML Validating Writers

As mentioned, XML text writers do not validate against schema or DTD files. In fact,
writing the XML document and validating its contents are two distinct operations that
can't occur at the same time. However, if you need to make sure that the document just
written is valid against, say, a schema, you can proceed in the following way: write the
document and, when finished, validate it using a validating reader. Sounds
straightforward? Well, it isn't.
The difficulty lies in the fact that, to validate, you must reread the text just written. If you
are using a file, you can simply open the file using an XML reader and then instantiate a
validating reader. The task is trickier if you happen to use an output stream—in many
cases, you can't read the contents of an output (and mostly write-only) stream. In this
case, a possible workaround is caching the entire XML document into a string. When
you've finished, you simply pass the XML fragment to the validating reader. If all went
fine, you write out the string to the expected output stream. To accumulate the XML
output into a string, you use a StringWriter object to build the XML writer. The
StringWriter class inherits from TextWriter and, as such, can be used to initialize an
XML text writer using the following constructor:

public XmlTextWriter(TextWriter w);

Because this constructor is not stream-based, you can't indicate an encoding schema.
Once you have run the statements listed in the following code, the remainder of the
code does not need to be changed or altered. The big difference, though, is that now
the text is accumulated in an in-memory buffer managed by StringWriter. Incidentally,
this buffer is implemented using a StringBuilder object.

StringWriter sw = new StringWriter();

 139

XmlTextWriter writer = new XmlTextWriter(sw);

//

// Write as usual

//

writer.Close();

Only after the XML writer has been closed does the string contain all the XML text
generated by the application. You can copy that text into a local string variable using
the ToString method and post-process it as appropriate, as shown here:

string xml = sw.ToString();

sw.Close();

In particular, you might want to pass down this string to an instance of the
XmlValidatingReader class to apply schema validation. You can initialize the
XmlValidatingReader class by passing the string as a whole and a node type of
Document. Alternatively, you can use an XmlTextReader object working on the XML
string through a StringReader object, as shown here:

StringReader sr = new StringReader(xml);

XmlTextReader xr = new XmlTextReader(sr);

XmlValidatingReader reader = new XmlValidatingReader(xr);

Yet another option is to use the special all-inclusive validator object built in Chapter 3—
the global XmlValidator object—as shown here:

StringReader sr = new StringReader(xml);

XmlTextReader xr = new XmlTextReader(sr);

bool b = XmlValidator.ValidateXmlDocument(xr);

TheXmlValidator object takes an XmlReader-derived class (or a file name) and handles
internally all the details of the validation process, returning a Boolean value that
indicates the success of the operation. Figure 4-9 shows the output of the sample
application.

Figure 4-9: The sample XML validating writer in action. It dumps out the XML text and the
Boolean value resulting from the schema validation.

 140

Note The entire source code for a sample XML validating writer
application can be found in this book's sample files. It is a console
application named ValidatingWriter.

Writing a Custom XML Writer

As we've seen, an XML writer is a .NET Framework class that specializes in writing out
XML text. Because there is just one flavor of XML, the need for customized versions of
XmlTextWriter is extremely low. However, a lot of documents and objects out there
might take significant advantage of an ad hoc, specialized, and seamless XML
serialization class.
In the .NET Framework, all the XML files being used—from ADO.NET DiffGram objects
to Web .config files—are written using XML writers. (ADO.NET DataSet objects are
always remoted and serialized in a special XML format called the DiffGram; see
Chapter 10.) In addition, the XML serializer saves and restores .NET Framework
objects to and from XML documents. (I'll cover XML serialization in Chapter 11) So the
.NET Framework provides you with some tools to save existing objects into an XML
layout.

The XML serializer is designed to map living instances of objects to an XML schema.
Sometimes, though, you just need to produce a particular XML output, and the use of
XML schemas is not a strict requirement. In situations like this, what you can do is
create an XML writer class and add to it as many specialized methods and properties
as required by the structure you want to obtain.

Earlier in this chapter, we looked at a couple of simple XML writers that were used to
create XML representations of string arrays and even JPEG images. In those cases,
however, the expected output was so simple that there was no need to set up a class
with more than one method. The next step is to analyze a more complex case—
arranging a .NET XML writer class to produce the XML version of an ADO recordset
starting from ADO.NET objects.

Implementing an ADO Recordset XML Writer
In Microsoft ADO.NET, the OleDbDataAdapter class allows you to import the contents
of an ADO Recordset object into one or more DataTable objects. This kind of binding is
unidirectional, however. You can import recordsets into ADO.NET objects, but you can't
create an ADO Recordset object starting from, say, a DataSet or a DataTable object.

The two-way binding between ADO.NET and ADO is important because it can save you
from planning hasty porting of Windows Distributed interNet Applications (DNA)
applications to the .NET platform. If you have a Windows DNA application with middle-
tier objects that use ADO to fetch data, chances are good that you can import ADO
recordsets into ASP.NET pages. In this way, as the first step of the porting, you simply
refresh the user interface but leave unaltered the middle tier—the most critical part of a
distributed system.
With this approach, you soon run into a subtle problem. How can you send down
updated recordsets to the middle-tier objects? A possible workaround to create a
recordset from scratch is by importing the ADO library in .NET Framework applications
and then using the native methods to instantiate and populate the Recordset object. In
this section, we'll look at an alternative approach: creating an ADO-specific XML file
that COM-based middle-tier objects can read and internally transform into a living
instance of the object.
Although the ADO.NET DataSet object can be easily serialized to XML, the schema
used is not compatible with ADO. The XML schema used by ADO is based on XML

 141

Data-Reduced (XDR) schemas (see Chapter 3) and a few specific namespaces. In
addition, it makes use of the XDR type system, which has no direct correspondence
with the .NET Framework type system. But one thing at a time. Let's start with the new
XmlRecordsetWriter class.

The XmlRecordsetWriter Programming Interface
The XmlRecordsetWriter class embeds an instance of the XmlTextWriter class but does
not inherit from it. All the hard work of creating the XML output is accomplished through
the internal writer, but the class programming interface is completely customized and
largely simplified.
By design, the set of constructors of the XmlRecordsetWriter class is nearly identical to
the constructors of the XmlTextWriter class, as shown here:

protected XmlTextWriter Writer;

public XmlRecordsetWriter(string filename)

{

 Writer = new XmlTextWriter(filename, null);

 SetupWriter();

}

public XmlRecordsetWriter(Stream s)

{

 Writer = new XmlTextWriter(s, null);

 SetupWriter();

}

public XmlRecordsetWriter(TextWriter tw)

{

 Writer = new XmlTextWriter(tw);

 SetupWriter();

}

The only difference is that the XmlRecordsetWriter constructors do not support an
encoding character set. The parameter for encoding is always set to null.
Table 4-8 lists the methods exposed by the XmlRecordsetWriter class.

Table 4-8: Public Methods of the XmlRecordsetWriter Class

Method Description

WriteContent Loops on the specified ADO.NET source object and
writes a row of data. This method features overloads
to read from DataSet, DataTable, and DataView
objects.

WriteEndDocument Ensures that all the pending nodes are closed and
releases the underlying writer and stream.

WriteRecordset One-shot method that groups together all the steps
necessary to create an XML recordset file. This
method features overloads to read from DataSet,
DataTable, and DataView objects.

WriteSchema Writes the schema information according to the XDR
syntax and reads column metadata from ADO.NET

 142

Table 4-8: Public Methods of the XmlRecordsetWriter Class

Method Description

objects. This method features overloads to read from
DataSet, DataTable, and DataView objects.

WriteStartDocument Writes the document's prolog, including the root
node with all the needed namespace declarations.

For writing schemas and content, the XmlRecordsetWriter class needs to read
information out of some ADO.NET objects. For this reason, methods like WriteSchema,
WriteContent, and WriteRecordset have the following four overloads:

public void WriteXXX(DataSet ds)

{

 WriteXXX(ds.Tables[0]);

}

public void WriteXXX(DataSet ds, string tableName)

{

 WriteXXX(ds.Tables[tableName]);

}

public void WriteXXX(DataView dv)

{

 WriteXXX(dv.Table);

}

public void WriteXXX(DataTable dt)

{

 // Actual implementation here

}

The node layout of an ADO Recordset object is shown in Figure 4-10.

 143

Figure 4-10: Layout of the XML schema for ADO Recordset objects.

Creating an XML Recordset object involves four steps: writing the prolog, writing the
schema, writing the contents, and, finally, closing all pending nodes. The
XmlRecordsetWriter class allows you to create the XML code by controlling each step
yourself or by calling one of the WriteRecordset overloads, shown here:

public void WriteRecordset(DataTable dt)

{

 WriteStartDocument();

 WriteSchema(dt);

 WriteContent(dt);

 WriteEndDocument();

}

Creating the Recordset-Based Document
The WriteStartDocument method writes the root node, named xml, and all of the
namespaces the document needs to reference, as follows:

public void WriteStartDocument()

{

 Writer.WriteStartDocument();

 Writer.WriteComment("Created by XmlRecordsetWriter");

 144

 Writer.WriteStartElement("xml");

 Writer.WriteAttributeString("xmlns", "s", null,

 "uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882");

 Writer.WriteAttributeString("xmlns", "dt", null,

 "uuid:C2F41010-65B3-11d1-A29F-00AA00C14882");

 Writer.WriteAttributeString("xmlns", "rs", null,

 "urn:schemas-microsoft-com:rowset");

 Writer.WriteAttributeString("xmlns", "z", null,

 "#RowsetSchema");

}

The next step is creating the schema. The following listing demonstrates a sample, but
valid, XML schema for an ADO Recordset object with two fields, firstname and
lastname:

<s:Schema id="RowsetSchema">

 <s:ElementType name="row" content="eltOnly">

 <s:AttributeType name="firstname" rs:number="2" />

 <s:AttributeType name="lastname" rs:number="3" />

 <s:extends type="rs:rowbase" />

 </s:ElementType>

</s:Schema>

As you can see, this syntax is based on the Microsoft XDR schema, an early subset of
today's XML schema, shown here:

public void WriteSchema(DataTable dt)

{

 // Open the schema tag (XDR)

 Writer.WriteStartElement("s", "Schema", null);

 Writer.WriteAttributeString("id", "RowsetSchema");

 Writer.WriteStartElement("s", "ElementType", null);

 Writer.WriteAttributeString("name", "row");

 Writer.WriteAttributeString("content", "eltOnly");

 // Write the column info based on the table passed

 int index=0;

 foreach(DataColumn dc in dt.Columns)

 {

 index ++;

 Writer.WriteStartElement("s", "AttributeType", null);

 Writer.WriteAttributeString("name", dc.ColumnName);

 Writer.WriteAttributeString("rs", "number", null,

 index.ToString());

 Writer.WriteEndElement();

 145

 }

 Writer.WriteStartElement("s", "extends", null);

 Writer.WriteAttributeString("type", "rs:rowbase");

 // Close the schema tag(s)

 Writer.WriteEndElement();

 Writer.WriteEndElement();

 Writer.WriteEndElement();

}

The information exposed by the schema depends on the source table used. The
XmlRecordsetWriter class can do its job starting from data contained in any of the
following objects: DataSet, DataTable, and DataView. However, because the
DataTable object is the ADO.NET object that more closely matches the ADO Recordset
object, the overloaded methods that receive a DataSet or a DataView object simply
pass the related DataTable object to the overloaded method that receives a DataTable
object. As mentioned, the XML recordset is built using a particular table in the specified
DataSet object or using the table for the specified DataView object.

Processing Record Contents
The serialized contents of an ADO Recordset object consist of a bunch of <z:row>
nodes grouped below a parent <rs:data> node. The WriteContent method simply loops
through the rows in the table and creates the <z:row> nodes, as shown in the following
code. Next it loops over all the columns and adds an attribute for each data column
found.

public void WriteContent(DataTable dt)

{

 // Write data

 Writer.WriteStartElement("rs", "data", null);

 foreach(DataRow row in dt.Rows)

 {

 Writer.WriteStartElement("z", "row", null);

 foreach(DataColumn dc in dt.Columns)

 Writer.WriteAttributeString(dc.ColumnName,

 row[dc.ColumnName].ToString());

 Writer.WriteEndElement();

 }

 Writer.WriteEndElement();

}

ADO Recordset objects do not support embedding more result sets in a single XML file.
For this reason, you must either develop a new XML format or use separate files, one
for each result set.

 146

Testing the XmlRecordsetWriter Class
For .NET Framework applications, using the XmlRecordsetWriter class is no big deal.
You simply instantiate the class and call its methods, as shown here:

void ButtonLoad_Click(object sender, System.EventArgs e)

{

 // Create and display the XML document

 CreateDocument("adors.xml");

 UpdateUI("adors.xml");

}

void CreateDocument(string filename)

{

 DataSet ds = LoadDataFromDatabase();

 XmlRecordsetWriter writer = new
XmlRecordsetWriter(filename);

 writer.WriteRecordset(ds);

}

Figure 4-11 shows the output of a sample application that creates the XML file and then
displays it in a text box on the form.

Figure 4-11: An ADO XML Recordset object that has just been created and its contents
displayed in a text box on the form.

The source DataSet object is fetched from the SQL Server Northwind database by
executing the following query:

SELECT employeeid, firstname, lastname FROM employees

The XML file that is created in this way is successfully recognized by ADOdriven
applications, as shown in Figure 4-12.

 147

Figure 4-12: COM-based applications based on ADO interoperate perfectly with the
document that the XML writer has created by exporting ADO.NET data.

The following VBScript script proves just that:

Const adClipString = 2

Const adCmdFile = 256

Set rs = CreateObject("ADODB.Recordset")

rs.Open filename, Nothing, -1, -1, adCmdFile

MsgBox rs.GetString(adClipString),, filename

Important In the XML document that represents the data originally stored
in an ADO.NET DataTable object, no type information exists.
In spite of this, the XML document built so far is technically
legal and correct, and all ADO-based applications can
successfully manage it. All the various pieces of information in
the document are rendered in the same way—that is, using
Unicode strings, by means of the ADO adLongVarWChar data
type.
Making those fields type-aware means adding some type
information to the <AttributeType> node in the XML schema.
You do this using a pair of attributes in the dt namespace—
one of the namespaces defined in the root node—as shown
here:
<s:AttributeType name='lastname'
rs:number='2'>
 <s:datatype dt:type='string'
dt:maxLength='20' />
</s:AttributeType>

The <s:datatype>element describes the type of corresponding
character data used in the parent attribute value. The main
attribute of <s:datatype> is the dt:type attribute. For variable-
length data types, XDR also allows you to specify a maximum
length via the dt:maxLength attribute.
The .NET Framework type system and the ADO Recordset
object recognize different types. And ADO types are, in turn,
different from predefined XDR data types. There's no easy
way to obtain the XDR data type that corresponds to a .NET
Framework Type object. Whenever type information is critical
for the health of your application, you should figure out how to
map a DataTable object's column .NET Framework type to an
XDR type. In fact, you should exhaustively consider each .NET

 148

Framework type and map each to an element in another set of
data types.

Comparing Writers and XML Writers
In the .NET Framework, a writer class is merely a document-producer object. It
exposes ad hoc methods to let developers create the desired output using highlevel
tools. A method named WriteSchema that internally handles primitives to add nodes
and attributes is much more understandable than, say, a StringBuilder object that you
use to build markup text. An XML writer is just a specialized writer that handles XML
text.
You can certainly design your own writer classes to quickly and easily enable
developers to create certain compound documents. In doing so, though, you don't need
to inherit from XmlWriter, XmlTextWriter, or BinaryWriter. Although you can, and often
must, use those objects internally, the user-level interface should comprehend methods
and properties that reflect the nature and the structure of the final document.
As a general guideline, try to provide constructors that work over streams and text
writers and to provide as many overloads as you can. For example, the
XmlRecordsetWriter class can output its contents to streams and TextWriter-derived
objects, including StringWriter objects. The modular architecture of the .NET
Framework makes achieving these goals relatively inexpensive and, there-fore, there is
no good reason for not exploiting it to the fullest.

A Read/Write XML Streaming Parser

XML readers and writers work in separate compartments and in an extremely
specialized way. Readers just read, and writers just write. There is no way to force
things to go differently, and in fact, the underlying streams are read-only or write-only
as required. Suppose that your application manages lengthy XML documents that
contain rather volatile data. Readers provide a powerful and effective way to read that
contents. Writers, on the other hand, offer a fantastic tool to create that document from
scratch. But if you want to read and write the document at the same time, you must
necessarily resort to a full-fledged XML Document Object Model (XML DOM). What can
you do to read and write an XML document without loading it entirely into memory?
In Chapter 5, I'll tackle the XML DOM model of a parser, which is the classic tool for
performing read/write operations on an XML tree. The strength of the XML DOM
parsers, but also their greatest drawback, lies in the fact that an XML DOM parser loads
the whole XML document in memory, creates an ad hoc image of the tree, and lets you
perform any sort of modification and search on the mapped nodes. Keeping the nitty-
gritty details of XML DOM warm for Chapter 5, in this section, we'll look at how to set up
a mixed type of streaming parser that works as a kind of lightweight XML DOM parser.
The idea is that this parser will allow you read the contents of a document one node at
a time as with an XML (validating) reader but that, if needed, it can also perform some
simple updates. By simple updates, I mean simply changing the value of an existing
attribute, changing the contents of a node, or adding new attributes or nodes. For more
complex operations, realistically nothing compares to XML DOM parsers.

Designing a Writer on Top of a Reader

In the .NET Framework, the XML DOM classes make intensive use of streaming
readers and writers to build the in-memory tree and to flush it out to disk. Thus, readers
and writers are definitely the only XML primitives available in the .NET Framework.
Consequently, to build up a sort of lightweight XML DOM parser, we can only rely, once
more, on readers and writers.

 149

The inspiration for designing such a read/write streaming parser is database server
cursors. With database server cursors, you visit records one after the next and, if
needed, can apply changes on the fly. Database changes are immediately effective,
and actually the canvas on which your code operates is simply the database table. The
same model can be arranged to work with XML documents.

You will use a normal XML (validating) reader to visit the nodes in sequence. While
reading, however, you are given the opportunity to change attribute values and node
contents. Unlike the XML DOM, changes will have immediate effect. How can you
obtain these results? The idea is to use an XML writer on top of the reader.

You use the reader to read each node in the source document and an underlying writer
to create a hidden copy of it. In the copy, you can add some new nodes and ignore or
edit some others. When you have finished, you simply replace the old document with
the new one. You can decide to write the copy in memory or flush it in a temporary
medium. The latter approach makes better use of the system's memory and saves you
from possible troubles with the application's security level and zones. (For example,
partially trusted Windows Forms applications and default running ASP.NET applications
can't create or edit disk files.)

Built-In Support for Read/Write Operations
When I first began thinking about this lightweight XML DOM component, one of key
points I identified was an efficient way to copy (in bulk) blocks of nodes from the read-
only stream to the write stream. Luckily enough, two somewhat underappreciated
XmlTextWriter methods just happen to cover this tricky but boring aspect of two-way
streaming: WriteAttributes and WriteNode.
The WriteAttributes method reads all the attributes available on the currently selected
node in the specified reader. It then copies them as a single string to the current output
stream. Likewise, the WriteNode method does the same for any other type of node.
Note that WriteNode does nothing if the node type is XmlNodeType.Attribute.

The following code shows how to use these methods to create a copy of the original
XML file, modified to skip some nodes. The XML tree is visited in the usual node-first
approach using an XML reader. Each node is then processed and written out to the
associated XML writer according to the index. This code scans a document and writes
out every other node.

XmlTextReader reader = new XmlTextReader(inputFile);

XmlTextWriter writer = new XmlTextWriter(outputFile);

// Configure reader and writer

writer.Formatting = Formatting.Indented;

reader.MoveToContent();

// Write the root

writer.WriteStartElement(reader.LocalName);

// Read and output every other node

int i=0;

while(reader.Read())

{

 150

 if (i % 2)

 writer.WriteNode(reader, false);

 i++;

}

// Close the root

writer.WriteEndElement();

// Close reader and writer

writer.Close();

reader.Close();

You can aggregate the reader and the writer in a single new class and build a brand-
new programming interface to allow for easy read/write streaming access to attributes
or nodes.

Designing the XmlTextReadWriter Class
The XmlTextReadWriter class does not inherit from XmlReader or XmlWriter but,
instead, coordinates the activity of running instances of both classes—one operating on
a read-only stream, and one working on a write-only stream. The methods of the
XmlTextReadWriter class read from the reader and write to the writer, applying any
requested changes in the middle.
The XmlTextReadWriter class features three constructors, shown in the following code.
These constructors let you indicate an input file and an optional output stream, which
can be a stream as well as a disk file. If the names of input and output files coincide, or
if you omit the output file, the XmlTextReadWriter class uses a temporary file to collect
the output and then automatically overwrites the input file. The net effect of this
procedure is that you simply modify your XML document without holding it all in
memory, as XML DOM does.

public XmlTextReadWriter(string inputFile)

public XmlTextReadWriter(string inputFile, string outputFile)

public XmlTextReadWriter(string inputFile, Stream outputStream)

The internal reader and writer are exposed through read-only properties named Reader
and Writer, as shown here:

public XmlTextReader Reader

{

 get {return m_reader;}

}

public XmlTextWriter Writer

{

 get {return m_writer;}

}

 151

For simplicity, I assume that all the XML documents the class processes have no
significant prolog (for example, processing instructions, comments, declarations, and
DOCTYPE definitions). On the other hand, the primary goal of this class is to provide
for quick modification of simple XML files—mostly filled with any kind of settings. For
more complete read/write manipulation of documents, you should resort to XML DOM
trees.
Configuring the XmlTextReadWriter Class

Immediately after class initialization, the reader and the writer are configured to work
properly. This process entails setting the policy for white spaces and setting the
formatting options, as shown here:

m_reader = new XmlTextReader(m_InputFile);

m_writer = new XmlTextWriter(m_OutputStream, null);

m_reader.WhitespaceHandling = WhitespaceHandling.None;

m_writer.Formatting = Formatting.Indented;

// Skip all noncontent nodes

m_reader.Read();

m_reader.MoveToContent();

I recommend that you configure the reader to ignore any white space so that it never
returns any white space as a distinct node. This setting is correlated to the
autoformatting feature you might need on the writer. If the reader returns white spaces
as nodes and the writer indents any node being created, the use of the writer's
WriteNode method can cause double formatting.
As you can see in the preceding code, the XmlTextReadWriter class also moves the
internal reader pointer directly to the first contents node, skipping any prolog node
found in the source.
The XmlTextReadWriter Programming Interface
I designed the XmlTextReadWriter class with a minimal programming interface
because, in most cases, what you really need is to combine the features of the reader
and the writer to create a new and application-specific behavior such as updating a
particular attribute on a certain node, deleting nodes according to criteria, or adding
new trees of nodes. The class provides the methods listed in Table 4-9.

Table 4-9: Methods of the XmlTextReadWriter Class

Method Description

AddAttributeChange Caches all the information needed to perform a
change on a node attribute. All the changes cached
through this method are processed during a
successive call to WriteAttributes.

Read Simple wrapper around the internal reader's Read
method.

WriteAttributes Specialized version of the writer's WriteAttributes
method. Writes out all the attributes for the specified
node, taking into account all the changes cached
through the AddAttributeChange method.

 152

Table 4-9: Methods of the XmlTextReadWriter Class

Method Description

WriteEndDocument Terminates the current document in the writer and
closes both the reader and the writer.

WriteStartDocument Prepares the internal writer to output the document
and adds default comment text and the standard
XML prolog.

A read/write XML document is processed between two calls to WriteStartDocument and
WriteEndDocument, shown in the following code. The former method initializes the
underlying writer and writes a standard comment. The latter method completes the
document by closing any pending tags and then closes both the reader and the writer.

public void WriteStartDocument()

{

 m_writer.WriteStartDocument();

 string text = String.Format("Modified: {0}",

 DateTime.Now.ToString());

 m_writer.WriteComment(text);

}

public void WriteEndDocument()

{

 m_writer.WriteEndDocument();

 m_reader.Close();

 m_writer.Close();

 // If using a temp file name, overwrite the input

 if (m_ReplaceFile)

 {

 File.Copy(m_tempOutputFile, m_InputFile, true);

 File.Delete(m_tempOutputFile);

 }

}

If you are not using a distinct file for output, WriteEndDocument also overwrites the
original document with the temporary file in which the output has been accumulated in
the meantime.
You can use any of the methods of the native interfaces of the XmlTextWriter and
XmlTextReader classes. For simplicity, however, I endowed the XmlTextReadWriter
class with a Read method and a NodeType property. Both are little more than wrappers
for the corresponding method and property on the reader. Here's how you initialize and
start using the XmlTextReadWriter class:

XmlTextReadWriter rw = new XmlTextReadWriter(inputFile);

rw.WriteStartDocument();

// Process the file

 153

rw.WriteEndDocument();

What happens between these two calls depends primarily on the nature and the goals
of the application. You could, for example, change the value of one or more attributes,
delete nodes, or replace the namespace. To accomplish whatever goal the application
pursues, you can issue direct calls on the interface of the internal reader and writer as
well as use the few methods specific to the XmlTextReadWriter class.

Bear in mind that reading and writing are completely distinct and independent
processes that work according to slightly different models and strategies. When the
reader is positioned on a node, no direct method can be called on the writer to make
sure that just the value or the name of that node is modified. The following pseudocode,
for example, does not correspond to reality:

if (reader.Value >100)

 writer.Value = 2*reader.Value;

To double the value of each node, you simply write a new document that mirrors the
structure of the original, applying the necessary changes. To change the value of a
node, you must first collect all the information about that node (including attributes) and
then proceed with writing. One of the reasons for such an asymmetry in the reader's
and writer's working model is that XML documents are hierarchical by nature and not
flat like an INI or a CSV file. In the section "A Full-Access CSV Editor," on page 192, I'll
discuss a full read/write editor for CSV files for which the preceding pseudocode is
much more realistic.

Testing the XmlTextReadWriter Class
Let's review three examples of how the XmlTextReadWriter class can be used to
modify XML documents without using the full-blown XML DOM. Looking at the source
code, you'll realize that a read/write streaming parser is mostly achieved by a smart and
combined use of readers and writers.
By making assumptions about the structure of the XML source file, you can simplify that
code while building the arsenal of the XmlTextReadWriter class with ad hoc properties
such as Value or Name and new methods such as SetAttribute (which would be paired
with the reader's GetAttribute method).

Changing the Namespace
For our first example, consider the problem of changing the namespace of all the nodes
in a specified XML file. The XmlTextReadWriter parser will provide for this eventuality
with a simple loop, as shown here:

void ChangeNamespace(string prefix, string ns)

{

 XmlTextReadWriter rw;

 rw = new XmlTextReadWriter(inputFile);

 rw.WriteStartDocument();

 // Modify the root tag manually

 rw.Writer.WriteStartElement(rw.Reader.LocalName);

 rw.Writer.WriteAttributeString("xmlns", prefix, null, ns);

 // Loop through the document

 154

 while(rw.Read())

 {

 switch(rw.NodeType)

 {

 case XmlNodeType.Element:

 rw.Writer.WriteStartElement(prefix,

 rw.Reader.LocalName, null);

 rw.Writer.WriteAttributes(rw.Reader, false);

 if (rw.Reader.IsEmptyElement)

 rw.Writer.WriteEndElement();

 break;

 }

 }

 // Close the root tag

 rw.Writer.WriteEndElement();

 // Close the document and any internal resources

 rw.WriteEndDocument();

}

The code starts by manually writing the root node of the source file. Next it adds an
xmlns attribute with the specified prefix and the URN. The main loop scans all the
contents of the XML file below the root node. For each element node, it writes a fully
qualified new node whose name is the just-read local name with a prefix and
namespace URN supplied by the caller, as shown here:

rw.Writer.WriteStartElement(prefix, rw.Reader.LocalName, null);

Because attributes are unchanged, they are simply copied using the writer's
WriteAttributes method, as shown here:

rw.Writer.WriteAttributes(rw.Reader, false);

The node is closed within the loop only if it has no further contents to process. Figure 4-
13 shows the sample application. In the upper text box, you see the original file. The
bottom text box contains the modified document with the specified namespace
information.

 155

Figure 4-13: All the nodes in the XML document shown in the bottom text box now belong
to the specified namespace.

Updating Attribute Values
The ultimate goal of our second example is changing the values of one or more
attributes on a specified node. The XmlTextReadWriter class lets you do that in a single
visit to the XML tree. You specify the node and the attribute name as well as the old
and the new value for the attribute.

In general, the old value is necessary just to ensure that you update the correct
attribute on the correct node. In fact, if an XML document contains other nodes with the
same name, you have no automatic way to determine which is the appropriate node to
update. Checking the old value of the attribute is just one possible workaround. If you
can make some assumptions about the structure of the XML document, this constraint
can be easily released.
As mentioned, the update takes place by essentially rewriting the source document,
one node at a time. In doing so, you can use updated values for both node contents
and attributes. The attributes of a node are written in one shot, so multiple changes
must be cached somewhere. There are two possibilities. One approach passes through
the addition of enrichment of a set of properties and methods that more closely mimics
the reader. You could expose a read/write Value property. Next, when the property is
written, you internally cache the new value and make use of it when the attributes of the
parent node are serialized.
Another approach—the one you see implemented in the following code—is based on
an explicit and application-driven cache. Each update is registered using an internal
DataTable object made up of four fields: node name, attribute name, old value, and
new value.

rw.AddAttributeChange(nodeName, attribName, oldVal, newVal);

The same DataTable object will contain attribute updates for each node in the
document. To persist the changes relative to a specified node, you use the
XmlTextReadWriter class's WriteAttributes method, shown here:

public void WriteAttributes(string nodeName)

{

 156

 if (m_reader.HasAttributes)

 {

 // Consider only the attribute changes for the given
node

 DataView view = new DataView(m_tableOfChanges);

 view.RowFilter = "Node='"+ nodeName + "'";

 while(m_reader.MoveToNextAttribute())

 {

 // Begin writing the attribute

 m_writer.WriteStartAttribute(m_reader.Prefix,

 m_reader.LocalName, m_reader.NamespaceURI);

 // Search for a corresponding entry

 // in the table of changes

 DataRow[] rows =

 m_tableOfChanges.Select("Attribute='"+

 m_reader.LocalName + "' AND OldValue='"+

 m_reader.Value + "'");

 if (rows.Length >0)

 {

 DataRow row = rows[0];

m_writer.WriteString(row["NewValue"].ToString());

 }

 else

 m_writer.WriteString(m_reader.Value);

 }

 }

 // Move back the internal pointer

 m_reader.MoveToElement();

 // Clear the table of changes

 m_tableOfChanges.Rows.Clear();

 m_tableOfChanges.AcceptChanges();

}

The following code, called by a client application, creates a copy of the source
document and updates node attributes:

void UpdateValues(string nodeName, string attribName,

 string oldVal, string newVal)

 157

{

 XmlTextReadWriter rw;

 rw = new XmlTextReadWriter(inputFile, outputFile);

 rw.WriteStartDocument();

 // Modify the root tag manually

 rw.Writer.WriteStartElement(rw.Reader.LocalName);

 // Prepare attribute changes

 rw.AddAttributeChange(nodeName, attribName, oldVal, newVal);

 // Loop through the document

 while(rw.Read())

 {

 switch(rw.NodeType)

 {

 case XmlNodeType.Element:

 rw.Writer.WriteStartElement(rw.Reader.LocalName);

 if (nodeName == rw.Reader.LocalName)

 rw.WriteAttributes(nodeName);

 else

 rw.Writer.WriteAttributes(rw.Reader, false);

 if (rw.Reader.IsEmptyElement)

 rw.Writer.WriteEndElement();

 break;

 }

 }

 // Close the root tag

 rw.Writer.WriteEndElement();

 // Close the document and any internal resources

 rw.WriteEndDocument();

}

Figure 4-14 shows the output of the sample application from which the preceding code
is excerpted.

 158

Figure 4-14: The code can be used to change the value of the forecolor attribute from blue
to black.

Adding and Deleting Nodes

A source XML document can also be easily read and modified by adding or deleting
nodes. Let's look at a couple of examples.

To add a new node, you simply read until the parent is found and then write an extra
set of nodes to the XML writer. Because there might be other nodes with the same
name as the parent, use a Boolean guard to ensure that the insertion takes place only
once. The following code demonstrates how to proceed:

void AddUser(string name, string pswd, string role)

{

 XmlTextReadWriter rw;

 rw = new XmlTextReadWriter(inputFile, outputFile);

 rw.WriteStartDocument();

 // Modify the root tag manually

 rw.Writer.WriteStartElement(rw.Reader.LocalName);

 // Loop through the document

 bool mustAddNode = true; // Only once

 while(rw.Read())

 {

 switch(rw.NodeType)

 {

 case XmlNodeType.Element:

 rw.Writer.WriteStartElement(rw.Reader.LocalName);

 if ("Users" == rw.Reader.LocalName && mustAddNode)

 159

 {

 mustAddNode = false;

 rw.Writer.WriteStartElement("User");

 rw.Writer.WriteAttributeString("name", name);

 rw.Writer.WriteAttributeString("password",
pswd);

 rw.Writer.WriteAttributeString("role", role);

 rw.Writer.WriteEndElement();

 }

 else

 rw.Writer.WriteAttributes(rw.Reader, false);

 if (rw.Reader.IsEmptyElement)

 rw.Writer.WriteEndElement();

 break;

 }

 }

 // Close the root tag

 rw.Writer.WriteEndElement();

 // Close the document and any internal resources

 rw.WriteEndDocument();

}

To delete a node, you simply ignore it while reading the document. For example, the
following code removes a <User> node in which the name attribute matches a specified
string:

while(rw.Read())

{

 switch(rw.NodeType)

 {

 case XmlNodeType.Element:

 if ("User" == rw.Reader.LocalName)

 {

 // Skip if name matches

 string userName = rw.Reader.GetAttribute("name");

 if (userName == name)

 break;

 }

 // Write in the output file if no match has been found

 160

 rw.Writer.WriteStartElement(rw.Reader.LocalName);

 rw.Writer.WriteAttributes(rw.Reader, false);

 if (rw.Reader.IsEmptyElement)

 rw.Writer.WriteEndElement();

 break;

 }

}

Figure 4-15 shows this code in action. The highlighted record has been deleted
because of the matching value of the name attribute.

Figure 4-15: A sample application to test the class's ability to add and delete nodes.

Note The entire sample code illustrating the XmlTextReadWriter class
and its way of working is available in this book's sample files. The
all-encompassing Microsoft Visual Studio .NET solution is named
XmlReadWriter.

A Full-Access CSV Editor
In Chapter 2, we looked at the XmlCsvReader class as an example of a custom XML
reader. The XmlCsvReader class enables you to review the contents of a CSV file
through nodes and attributes and the now-familiar semantics of XML readers. In this
section, I'll go one step further and illustrate a full-access CSV reader capable of
reading and writing—the XmlCsvReadWriter class.
The new class inherits from XmlCsvReader and modifies only a few methods and
properties. The XmlCsvReadWriter class works by using a companion output stream in
which each row read and modified is then persisted prior to reading a new row. The
XmlCsvReadWriter class is declared as follows:

public class XmlCsvReadWriter : XmlCsvReader

 161

{

public XmlCsvReadWriter(

string filename, bool hasColumnHeaders, bool enableOutput)

 { ... }

 ...

}

The class has a new constructor with a third argument—the Boolean value
enableOutput, which specifies whether the class should use a hidden output stream.
Basically, by setting enableOutput to true, you declare your intent to use the class as a
reader/writer instead of a simple reader. When this happens, the constructor creates a
temporary file and a stream writer to work on it. At the end of the reading, this output file
contains the modified version of the CSV and is used to replace the original file. A new
property, named EnableOutput, can be used to programmatically enable and disable
the output stream.

Shadowing the Class Indexer
The Item indexer property—that is, the property that permits the popular reader[index]
syntax—is declared as read-only in the abstract XmlReader base class. This means
that any derived class can't replace that property with another one that is read/write.
However, the XmlCsvReader class provides a total implementation of the abstract
functionality defined in XmlReader. So when deriving from XmlCsvReader, you can
simply shadow the base Item property and replace it with a brand-new one with both
get and set accessors.
The following code is at the heart of the new CSV reader/writer class. It extends the
Item property to make it work in a read/write fashion. The get accessor is identical to
the base class. The set accessor copies the specified value in the m_tokenValues
collection, in which the attributes of the current CSV row are stored. (See Chapter 2 for
more details about the internal architecture of the CSV sample XML reader.)

new public string this[int i]

{

 get

 {

 return base[i].ToString();

 }

 set

 {

 // The Item[index] property is read-only, so

 // use the Item[string] overload

 string key = m_tokenValues.Keys[i].ToString();

 m_tokenValues[key] = value;

 }

}

Notice the use of the new keyword to shadow the same property defined on the base
class. This trick alone paves the road for the read/write feature.

 162

Note The new keyword is C#-specific. To achieve the same effect with
Microsoft Visual Basic .NET, you must use the Shadows keyword.
Also note that, when it comes to overloading a method in a derived
class, you don't need to mark it in any way if the language of choice
is C#. If you use Visual Basic .NET, the overload must be explicitly
declared using the Overloads keyword.

In addition, bear in mind that a standard NameValueCollection object allows you to
update a value only if you can pass the key string to the indexer, as shown here:

public string this[int] {get;}

public string this[string] {get; set;}

The new Item indexer property allows you to write code, as the following code snippet
demonstrates:

for(int i=0; i<reader.AttributeCount; i++)

{

 if (reader[i] == "Sales Representative")

 reader[i] = "SalesMan";

 ...

}

The reader's Read method copies the contents of the current CSV row in the input
stream, and from there the indexer will draw the values to return. When updated, the
indexer overwrites values in the internal memory collection. When will changes actually
be persisted to the CSV output stream?

Persisting Changes During the Next Read
The Read method moves the internal pointer of an XML reader one element ahead. An
XML CSV reader moves that pointer to the next row. The contents of the newly
selected row is buffered into a local and transient structure—the m_tokenValues
collection—for further use and investigation.
However, when the Read method is called to move ahead, all the changes on the
current element have been performed. This is a great time to persist those changes to
the output stream if a stream is enabled. After that, you go on as usual with the Read
base class's implementation, as shown here:

public override bool Read()

{

 if (!EnableOutput)

 return base.Read();

 // If we're not reading the first row, then save the

 // current status to the output stream. (If we're reading
the

 // first row, then the token collection is empty and there's

 // nothing to persist.

 if (m_tokenValues.Count >0)

 {

 // If writing the first row, and used the first source

 163

 // row for headers, now add that prior to writing the

 // first data row.

 if (HasColumnHeaders && !m_firstRowRead)

 {

 m_firstRowRead = true;

 string header = "";

 foreach(string tmp in m_tokenValues)

 header += tmp + ",";

 m_outputStream.WriteLine(header.TrimEnd(','));

 }

 // Prepare and write the current CSV row

 string row = "";

 foreach(string tmp in m_tokenValues)

 row += m_tokenValues[tmp] + ",";

 m_outputStream.WriteLine(row.TrimEnd(','));

 }

 // Move ahead as usual

 return base.Read();

}

If the first row in the source CSV file has been interpreted as the headers of the
columns (HasColumnHeaders property set to true), this implementation of the Read
method ensures that the very first row written to the output stream contains just those
headers. After that, the current contents of the m_tokenValues collection is serialized to
a comma-separated string and is written to the output stream. Once this has been
done, the Read method finally moves to the next line.

Closing the Output Stream

When you close the reader, the output stream is also closed. In addition, because the
output stream was writing to a temporary file, that file is also copied over by the source
CSV replacing it, as shown here:

public override void Close()

{

 base.Close();

 if (EnableOutput)

 {

 m_outputStream.Close();

 File.Copy(m_tempFileName, m_fileName, true);

 File.Delete(m_tempFileName);

 }

 164

}

The net effect of this code is that any changes entered in the source CSV document are
cached to a temporary file, which then replaces the original. The user won't perceive
anything of these workings, however.

The CSV Reader/Writer in Action

Let's take a sample CSV file, read it, and apply some changes to the contents so that
they will automatically be persisted when the reader is closed. Here is the source CSV
file:

LastName,FirstName,Title,Country

Davolio,Nancy,Sales Representative,USA

Fuller,Andrew,Sales Manager,USA

Leverling,Janet,Sales Representative,UK

Suyama,Michael,Sales Representative,UK

The idea is to replacing the expression Sales Representative with another one—say,
Sales Force. The sample application, nearly identical to the one in Chapter 2, loads the
CSV file, applies the changes, and then displays it through a desktop DataGrid control,
as follows:

// Instantiate the reader on a CSV file

XmlCsvReadWriter reader;

reader = new XmlCsvReadWriter("employees.csv",

 hasHeader.Checked);

reader.EnableOutput = true;

reader.Read();

// Define the schema of the table to bind to the grid

DataTable dt = new DataTable();

for(int i=0; i<reader.AttributeCount; i++)

{

 reader.MoveToAttribute(i);

 DataColumn col = new DataColumn(reader.Name,

 typeof(string));

 dt.Columns.Add(col);

}

reader.MoveToElement();

// Loop through the CSV rows and populate the DataTable

do

{

 DataRow row = dt.NewRow();

 for(int i=0; i<reader.AttributeCount; i++)

 {

 165

 if (reader[i] == "Sales Representative")

 reader[i] = "Sales Force";

 row[i] = reader[i].ToString();

 }

 dt.Rows.Add(row);

}

while (reader.Read()); // Persist changes and move ahead

// Flushes the changes to disk

reader.Close();

// Bind the table to the grid

dataGrid1.DataSource = dt;

If the contents of a specified CSV attribute matches the specified string, it is replaced.
The change occurs initially on an internal collection and is then transferred to the output
stream during the execution of the Read method. Finally, the reader is closed and the
output stream flushed. Figure 4-16 shows the program in action.

Figure 4-16: The original CSV file has been read and updated on disk.

Conclusion

Readers and writers are at the foundation of every I/O operation in the .NET
Framework. You find them at work when you operate on disk and on network files,
when you serialize and deserialize, while you perform data access, even when you
read and write configuration settings.

XML writers are ad hoc tools for creating XML documents using a higherlevel metaphor
and putting more abstraction between your code and the markup. By using XML
writers, you go far beyond markup to reach a nodeoriented dimension in which, instead
of just accumulating bytes in a block of contiguous memory, you assemble nodes and
entities to create the desired schema and infoset.
In this chapter, we looked primarily at the programming interface of .NET XML writers—
specifically, the XmlTextWriter class. You learned how to create well-formed XML
documents, how to add nodes and attributes, how to support namespaces, and how to
encode text using BinHex and base64 encoding algorithms.

 166

.NET XML writers only ensure the well-formedness of each individual XML element
being generated. Writers can in no way guarantee the well-formedness of the entire
document and can do even less to validate a document against a DTD or a schema.
Although badly formed XML documents can only result from actual gross programming
errors, the need for an extra step of validation is often felt in production environments,
especially when the creation of the document depends on a number of variable factors
and run-time conditions. For this reason, we've also examined the key points involved
in the design and implementation of a validating XML writer.
This chapter also featured a few custom XML-driven writers. In this chapter, you
learned how to write string arrays, JPEG images, and DataTable objects to specific
XML schemas. It goes without saying that the techniques discussed here do not
exhaust the options available in the .NET Framework for those tasks. For example, the
XML serializer can sometimes be more effectively employed to obtain the same results.
(XML serializers are covered in Chapter 11.)

These examples were provided with a double goal: to show one way to solve a
problem, and to demonstrate custom XML writers. As a general guideline, bear in mind
that the more specific an XML-based format is, the more a specialized writer class can
help. The key advantage of a writer class is perhaps not so much raw performance
savings but the resultant elegance, reusability, and efficiency of the design.
We've also looked at an intermediate level of XML parser that falls somewhere between
streaming parsers such as readers and XML DOM. XML readers are great for parsing
XML documents, but they work in a read-only way. XML DOM parsers, on the other
hand, make updating documents a snap—but only after the documents have been fully
loaded in memory. The XmlTextReadWriter class incorporates a reader and a writer
and coordinates their independent activity through a simple new API. As a result, you
can parse a document one node at a time while maintaining the ability to add, update,
or delete nodes. The new class is not the cure-all for any XML pains, but it can be an
interesting option in some situations.
In Chapter 5, we'll examine the XML DOM classes that you must use when full
read/write access to XML documents is critical and when the ability to perform searches
takes precedence over the memory footprint.

Further Reading

This chapter touches on a number of topics that you might want to know more about.
Some are XML-related, but not so much .NET-related as to find an ideal place for
discussion here. Some are not really XML-related but definitely belong to the .NET
Framework and, as such, deserve at least a reference here.
One topic we spent a lot of time on in this chapter is XML namespaces and qualified
names. The official site where the specification can be found is
http://www.w3.org/TR/REC-xml-names. In Chapter 3, I covered XML validation and the
various schema involved in the process. If you think you need an XML crash course
from a higher, non-.NET-Framework-related perspective, I can recommend two books.
One is Essential XML, by Don Box, John Lam, and Aaron Skonnard (Addison-Wesley,
2000). This reference is great if you need to get the gist of XML in a platform-
independent and language-independent context. Otherwise, look at the XML
Programming Core Reference, by R. Allen Wyke, Sultan Rehman, Brad Leupen, and
Ash Rofail (Microsoft Press, 2002), for more development-related considerations and
tips.
A great source for learning about underdocumented features and tricks of the .NET
Framework is certainly Jeffrey Richter's most recent book, Applied .NET Framework
Programming (Microsoft Press, 2002). This book is a gold mine for all that boring stuff

 167

that revolves around string manipulation, character encoding, and memory
management.
One of the examples discussed in this chapter entails the creation of an XML ADO
Recordset object from ADO.NET–specific objects such as DataSet, DataTable, and
DataView. A more thorough discussion of the integration between ADO and ADO.NET
can be found in Chapter 8 of my book Building Web Solutions with ASP.NET and
ADO.NET (Microsoft Press, 2002). Although that book is markedly ASP.NET-specific,
the theme of how to efficiently use ADO from .NET Framework applications is fairly
platform-independent and can be applied to Windows Forms as well.
Finally, this chapter touches on .NET code security. If you need to get started with
security and are looking for a long-range perspective with concrete code snippets
sprinkled here and there, by all means check out Jason Clark's excellent article at
http://msdn.microsoft.com/msdnmag/issues/02/06/rich/rich.asp.

 168

Part II: XML Data Manipulation

Chapter List

Chapter 5: The XML .NET Document Object Model
Chapter 6: XML Query Language and Navigation
Chapter 7: XML Data Transformation

Part Overview

 169

Chapter 5: The XML .NET Document Object Model

Overview
In addition to XML readers and writers, the Microsoft .NET Framework provides classes
that parse XML documents according to the W3C Document Object Model (DOM) Level
1 Core and the DOM Level 2 Core. These classes, available in the System.Xml
namespace, build a complete in-memory representation of the contents of an XML
document and make it programmatically accessible during both read and write
operations.
The structure of the XML Document Object Model (XML DOM) is a general
specification that is implemented using platform-specific features and components. The
MSXML library provides a COM-based XML DOM implementation for the Microsoft
Win32 platform. The System.Xml assembly provides a .NET Framework-specific
implementation of the XML DOM centered on the XmlDocument class.

Although it is stored as flat text in a linear text file, XML content is inherently
hierarchical. Readers simply parse the text as it is read out of the input stream. They
never cache read information and work in a stateless fashion. As a result of this
arrangement, you can neither edit nodes nor move backward. The limited navigation
capabilities also prevent you from implementing node queries of any complexity. The
XML DOM philosophy is quite different. XML DOM loads all the XML content in memory
and exposes it through a suite of collections that, overall, offer a tree-based
representation of the original content. In addition, the supplied data structure is fully
searchable and editable.
Advanced searching and editing are the primary functions of the XML DOM, whereas
readers (and Simple API for XML [SAX] parsers as well) are optimized for document
inspection, simple searching, and any sort of read-only activity. In Chapter 2, we
explored the characteristics of pull mode readers. Let's analyze now the .NET
Framework programming interface for full-access XML document processing.

The XML DOM Programming Interface

The central element in the .NET XML DOM implementation is the XmlDocument class.
The XmlDocument class represents an XML document and makes it programmable by
exposing its nodes and attributes through ad hoc collections. Let's consider a simple
XML document:

<MyDataSet>

 <NorthwindEmployees count="3">

 <Employee>

 <employeeid>1</employeeid>

 <firstname>Nancy</firstname>

 <lastname>Davolio</lastname>

 </Employee>

 <Employee>

 <employeeid>2</employeeid>

 <firstname>Andrew</firstname>

 <lastname>Fuller</lastname>

 <Employee>

 170

 <employeeid>3</employeeid>

 <firstname>Janet</firstname>

 <lastname>Leverling</lastname>

 </Employee>

 </NorthwindEmployees>

</MyDataSet>

When processed by an instance of the XmlDocument class, this file creates a tree like
the one shown in Figure 5-1.

Figure 5-1: Graphical representation of an XML DOM tree.

The XmlDocument class represents the entry point in the binary structure and the
central console that lets you move through nodes, reading and writing contents. Each

 171

element in the original XML document is mapped to a particular .NET Framework class
with its own set of properties and methods. Each element can be reached from the
parent and can access all of its children and siblings. Element-specific information such
as contents and attributes are available via properties.
Any change you enter is applied immediately, but only in memory. The XmlDocument
class does provide an I/O interface to load from, and save to, a variety of storage
media, including disk files. Subsequently, all the changes to constituent elements of an
XML DOM tree are normally persisted all at once.

Note The W3C DOM Level 1 Core and Level 2 Core do not yet mandate
an official API for serializing documents to and from XML format.
Such an API will come only with the DOM Level 3 specification,
which at this time is only a working draft.

Before we look at the key tasks you might want to accomplish using the XML DOM
programming interface, let's review the tools that this interface provides. In particular,
we'll focus here on two major classes—the XmlDocument class and the XmlNode
class. A third class, XmlDataDocument, that is tightly coupled with XML DOM in
general, and XmlDocument in particular, will be covered in Chapter 8.
XmlDataDocument represents the connecting link between the hierarchical world of
XML and the relational world of ADO.NET DataSet objects.

The XmlDocument Class
When you need to load an XML document into memory for full-access processing, you
start by creating a new instance of the XmlDocument class. The class features two
public constructors, one of which is the default parameterless constructor, as shown
here:

public XmlDocument();

public XmlDocument(XmlNameTable);

While initializing the XmlDocument class, you can also specify an existing
XmlNameTable object to help the class work faster with attribute and node names and
optimize memory management. Just as the XmlReader class does, XmlDocument
builds its own name table incrementally while processing the document. However,
passing a precompiled name table can only speed up the overall execution. The
following code snippet demonstrates how to load an XML document into a living
instance of the XmlDocument class:

XmlDocument doc = new XmlDocument();

doc.Load(fileName);

The Load method always work synchronously, so when it returns, the document has
been completely (and successfully, we hope) mapped to memory and is ready for
further processing through the properties and methods exposed by the class. As you'll
see in a bit more detail later in this section, the XmlDocument class uses an XML
reader internally to perform any read operation and to build the final tree structure for
the source document.

Note In spite of what the beginning of this chapter might suggest, the
XmlDocument class is just the logical root class of the XML DOM
class hierarchy. The XmlDocument class actually inherits from the
XmlNode class and is placed at the same level as classes like
XmlElement, XmlAttribute, and XmlEntity that you manipulate as

 172

child elements when processing an XML document. In other words,
XmlDocument is not designed as a wrapper class for XML node
classes. Its design follows the XML key guideline, according to
which everything in a document is a node, including the document
itself.

Properties of the XmlDocument Class
Table 5-1 lists the properties supported by the XmlDocument class. The table includes
only the properties that the class introduces or overrides. These properties are specific
to the XmlDocument class or have a class-specific implementation. More properties are
available through the base class XmlNode, which we'll examine in more detail in the
section "The XmlNode Base Class," on page 213.

Table 5-1: Properties of the XmlDocument Class

Property Description

BaseURI Gets the base URI of the document (for example,
the file path).

DocumentElement Gets the root of the document as an XmlElement
object.

DocumentType Gets the node with the DOCTYPE declaration (if
any).

Implementation Gets the XmlImplementation object for the
document.

InnerXml Gets or sets the markup representing the body of
the document.

IsReadOnly Indicates whether the document is read-only.

LocalName Returns the string #document.

Name Returns the string #document.

NameTable Gets the NameTable object associated with this
implementation of the XmlDocument class.

NodeType Returns the value XmlNodeType.Document.

OwnerDocument Returns null. The XmlDocument object is not
owned.

PreserveWhitespace Gets or sets a Boolean value indicating whether to
preserve white space during the load and save
process. Set to false by default.

XmlResolver Write-only property that specifies the XmlResolver
object to use for resolving external resources. Set to
null by default.

Note

In Table 5-1, you'll find the description of the property for a special
type of XML node—the XmlNodeType.Document node. In some
instances, this same property is shared with other nodes, in which
case it behaves in a slightly different manner. So read this table with
a grain of salt and replace the word document with the more generic
word node when appropriate. For example, the OwnerDocument
property returns null if the node is Document but returns the owner
XmlDocument object in all other cases. Similarly, both Name and

 173

LocalName always return #document for XmlDocument, but they
actually represent the qualified and simple (namespace-less) name
of the particular node.

By default, the PreserveWhitespace property is set to false, which indicates that only
significant white spaces will be preserved while the document is loaded. A significant
white space is any white space found between markup in a mixed-contents node or any
white space found within the subtree affected by the following declaration:

xml:space="preserve"

All spaces are preserved throughout the document if PreserveWhitespace is set to true
before the Load method is called. As for writing, if PreserveWhitespace is set to true
when the Save method is called, all spaces are preserved in the output. Otherwise, the
serialized output is automatically indented. This behavior represents a proprietary
extension over the standard DOM specification.

The XmlDocument Implementation
The Implementation property of the XmlDocument class defines the operating context
for the document object. Implementation returns an instance of the XmlImplementation
class, which provides methods for performing operations that are independent of any
particular instance of the DOM.
In the base implementation of the XmlImplementation class, the list of operations that
various instances of XmlDocument classes can share is relatively short. These
operations include creating new documents, testing for supported features, and more
important, sharing the same name table.
The XmlImplementation class is not sealed, so you could try to define a custom
implementation object and use that to create new XmlDocument objects with some
nonstandard settings (for example, PreserveWhitespace set to true by default). The
following code snippet shows how to create two documents from the same
implementation:

XmlImplementation imp = new XmlImplementation();

XmlDocument doc1 = imp.CreateDocument();

XmlDocument doc2 = imp.CreateDocument();

The following code shows how XmlImplementation could work with a custom
implementation object:

MyImplementation imp = new MyImplementation();

XmlDocument doc = imp.CreateDocument();

In the section "Custom Node Classes," on page 234, when we examine XML DOM
extensions, I'll have more to say about custom implementations.

Note Two instances of XmlDocument can share the same implementation
when the implementation is custom. Actually, all instances of
XmlDocument share the same standard XmlImplementation object.
Sharing the same implementation does not mean that the two
objects are each other's clone, however. The XML implementation
is a kind of common runtime that services both objects.

Methods of the XmlDocument Class
Table 5-2 lists the methods supported by the XmlDocument class. The list includes only
the methods that XmlDocument introduces or overrides; more methods are available

 174

through the base class XmlNode. (See the section "The XmlNode Base Class," on
page 213.)

Table 5-2: Methods of the XmlDocument Class

Method Description

CloneNode Creates a duplicate of the document.

CreateAttribute Creates an attribute with the specified
name.

CreateCDataSection Creates a CDATA section with the specified
data.

CreateComment Creates a comment with the specified text.

CreateDocumentFragment Creates an XML fragment. Note that a
fragment node can't be inserted into a
document; however, you can insert any of
its children into a document.

CreateDocumentType Creates a DOCTYPE element.

CreateElement Creates a node element.

CreateEntityReference Creates an entity reference with the
specified name.

CreateNode Creates a node of the specified type.

CreateProcessingInstruction Creates a processing instruction.

CreateSignificantWhitespace Creates a significant white space node.

CreateTextNode Creates a text node. Note that text nodes
are allowed only as children of elements,
attributes, and entities.

CreateWhitespace Creates a white space node.

CreateXmlDeclaration Creates the standard XML declaration.

GetElementById Gets the element in the document with the
given ID.

GetElementsByTagName Returns the list of child nodes that match
the specified tag name.

ImportNode Imports a node from another document.

Load Loads XML data from the specified source.

LoadXml Loads XML data from the specified string.

ReadNode Creates an XmlNode object based on the
information read from the given XML reader.

Save Saves the current document to the specified
location.

WriteContentTo Saves all the children of the current
document to the specified XmlWriter object.

WriteTo Saves the current document to the specified

 175

Table 5-2: Methods of the XmlDocument Class

Method Description

writer.

As you can see, the XmlDocument class has a lot of methods that create and return
instances of node objects. In the .NET Framework, all the objects that represent a node
type (Comment, Element, Attribute, and so on) do not have any publicly usable
constructors. For this reason, you must resort to the corresponding method.
How can the XmlDocument class create and return instances of other node objects if
no public constructor for them is available? The trick is that node classes mark their
constructors with the internal modifier (Friend in Microsoft Visual Basic). The internal
keyword restricts the default visibility of a type method or property to the boundaries of
the assembly. The internal keyword works on top of other modifiers like public and
protected. XmlDocument and other node classes are all defined in the System.Xml
assembly, which ensures the effective working of factory methods. The following
pseudocode shows the internal architecture of a factory method:

public virtual XmlXXX CreateXXX(params)

{

 return new XmlXXX (params);

}

Note When the node class is XmlDocument, the methods WriteTo and
WriteContentTo happen to produce the same output, although they
definitely run different code. WriteTo is designed to persist the entire
contents of the node, including the markup for the node, attributes,
and children. WriteContentTo, on the other hand, walks its way
through the collection of child nodes and persists the contents of
each using WriteTo. Here's the pseudocode:
void WriteContentTo(XmlWriter w) {
 foreach(XmlNode n in this)
 n.WriteTo(w);
}

A Document node is a kind of super root node, so the loop on all
child nodes begins with the actual root node of the XML document.
In this case, WriteTo simply writes out the entire contents of the
document but the super root node has no markup. As a result, the
two methods produce the same output for the XmlDocument class.

Events of the XmlDocument Class
Table 5-3 lists the events that the XmlDocument class fires under the following specific
conditions: when the value of a node (any node) is being edited, and when a node is
being inserted into or removed from the document.

Table 5-3: Events of the XmlDocument Class

Events Description

NodeChanging,
NodeChanged

The Value property of a node belonging to this
document is about to be changed or has been
changed already.

NodeInserting,
NodeInserted

A node is about to be inserted into another node

 176

Table 5-3: Events of the XmlDocument Class

Events Description

in this document or has been inserted already.
The event fires whether you are inserting a new
node, duplicating an existing node, or importing a
node from another document.

NodeRemoving,
NodeRemoved

A node belonging to this document is about to be
removed from the document or has been removed
from its parent already.

All these events require the same delegate for the event handler, as follows:

public delegate void XmlNodeChangedEventHandler(

 object sender,

 XmlNodeChangedEventArgs e

);

The XmlNodeChangedEventArgs structure contains the event data. The structure has
four interesting fields:

 Action Contains a value indicating what type of change is occurring on
the node. Allowable values, listed in the XmlNodeChangedAction
enumeration type, are Insert, Remove, and Change.

 NewParent Returns an XmlNode object representing the new parent of
the node once the operation is complete. The property will be set to null
if the node is being removed. If the node is an attribute, the property
returns the node to which the attribute refers.

 Node Returns an XmlNode object that denotes the node that is being
added, removed, or changed. Can't be set to null.

 OldParent Returns an XmlNode object representing the parent of the
node before the operation began. Returns null if the node has no
parent—for example, when you add a new node.

Some of the actions you can take on an XML DOM are compound actions consisting of
several steps, each of which could raise its own event. For example, be prepared to
handle several events when you set the InnerXml property. In this case, multiple nodes
could be created and appended, resulting in as many NodeInserting/NodeInserted
pairs. In some cases, the XmlNode class's AppendChild method might fire a pair of
NodeRemoving / NodeRemoved events prior to actually proceeding with the insertion.
By design, to ensure XML well-formedness, AppendChild checks whether the node you
are adding already exists in the document. If it does, the existing node is first removed
to avoid identical nodes in the same subtree.

The XmlNode Base Class
When you work with XML DOM parsers, you mainly use the XmlDocument class. The
XmlDocument class, however, derives from a base class, XmlNode, which provides all
the core functions to navigate and create nodes.
XmlNode is the abstract parent class of a handful of node-related classes that are
available in the .NET Framework. Figure 5-2 shows the hierarchy of node classes.

 177

Figure 5-2: Graphical representation of the hierarchy of node classes and their
relationships in the .NET Framework.

 178

Both XmlLinkedNode and XmlCharacterData are abstract classes that provide basic
functionality for more specialized types of nodes. Linked nodes are nodes that you
might find as constituent elements of an XML document just linked to a preceding or a
following node. Character data nodes, on the other hand, are nodes that contain and
manipulate only text.

Properties of the XmlNode Class
Table 5-4 lists the properties of the XmlNode class that derived classes can override if
necessary. For example, not all node types support attributes and not all have child
nodes or siblings. For situations such as this, the overridden properties can simply
return null or the empty string. By design, all node types must provide a concrete
implementation for each property.

Table 5-4: Properties of the XmlNode Class

Property Description

Attributes Returns a collection containing the attributes of the
current node. The collection is of type
XmlAttributeCollection.

BaseURI Gets the base URI of the current node.

ChildNodes Returns an enumerable list object that allows you to
access all the children of the current node. The object
returned derives from the base class XmlNodeList,
which is a linked list connecting all the nodes with the
same parent and the same depth level (siblings). No
information is cached (not even the objects count), and
any changes to the nodes are detected in real time.

FirstChild Returns the first child of the current node or null. The
order of child nodes reflects the order in which they
have been added. In turn, the insertion order reflects the
visiting algorithm implemented by the reader. (See
Chapter 2.)

HasChildNodes Indicates whether the current node has children.

InnerText Gets or sets the text of the current node and all its
children. Setting this property replaces all the children
with the contents of the given string. If the string
contains markup, the text will be escaped first.

InnerXml Gets or sets the markup representing the body of the
current node. The contents of the node is replaced with
the contents of the given string. Any markup text will be
parsed and resulting nodes inserted.

IsReadOnly Indicates whether the current node is read-only.

Item Indexer property that gets the child element node with
the specified (qualified) name.

LastChild Gets the last child of the current node. Again, which
node is the last one depends ultimately on the visiting
algorithm implemented by the reader. Normally, it is the
last child node in the source document.

 179

Table 5-4: Properties of the XmlNode Class

Property Description

LocalName Returns the name of the node, minus the namespace.

Name Returns the fully qualified name of the node.

NamespaceURI Gets the namespace URI of the current node.

NextSibling Gets the node immediately following the current node.
Siblings are nodes with the same parent and the same
depth.

NodeType Returns the type of the current node as a value taken
from the XmlNodeType enumeration.

OuterXml Gets the markup code representing the current node
and all of its children. Unlike InnerXml, OuterXml also
includes the node itself in the markup with all of its
attributes. InnerXml, on the other hand, returns only the
markup found below the node, including text.

OwnerDocument Gets the XmlDocument object to which the current node
belongs.

ParentNode Gets the parent of the current node (if any).

Prefix Gets or sets the namespace prefix of the current node.

PreviousSibling Gets the node immediately preceding the current node.

Value Gets or sets the value of the current node.

The collection of child nodes is implemented as a linked list. The ChildNodes property
returns an internal object of type XmlChildNodes. (The object is not documented, but
you can easily verify this claim by simply checking the type of the object that
ChildNodes returns.) You don't need to use this object directly, however. Suffice to say
that it merely represents a concrete implementation of the XmlNodeList class, whose
methods are, for the most part, marked as abstract. In particular, XmlChildNodes
implements the Item and Count properties and the GetEnumerator method.
XmlChildNodes is not a true collection and does not cache any information. When you
access the Count property, for example, it scrolls the entire list, counting the number of
nodes on the fly. When you ask for a particular node through the Item property, the list
is scanned from the beginning until a matching node is found. To move through the list,
the XmlChildNodes class relies on the node's NextSibling method. But which class
actually implements the NextSibling method? Both NextSibling and PreviousSibling are
defined in the XmlLinkedNode base class.
XmlLinkedNode stores an internal pointer to the next node in the list. The object
referenced is simply what NextSibling returns. Figure 5-3 how things work.

 180

Figure 5-3: The XmlLinkedNode class's NextSibling method lets applications navigate
through the children of each node.

Scrolling forward through the list of child nodes is fast and effective. The same can't be
said for backward scrolling. The list of nodes is not double-linked, and each node
doesn't also store a pointer to the previous one in the list. For this reason,
PreviousSibling reaches the target node by walking through the list from the beginning
to the node that precedes the current one.

Tip To summarize, when you are processing XML subtrees, try to
minimize calls to PreviousSibling, Item, and Count because they
always walk through the entire collection of subnodes to get their
expected output. Whenever possible, design your code to take
advantage of forward-only movements and perform them using
NextSibling.

Methods of the XmlNode Class
Table 5-5 lists the methods exposed by the XmlNode class.

Table 5-5: Methods of the XmlNode Class

Method Description

AppendChild Adds the specified node to the list of children of
the current node. The node is inserted at the
bottom of the list.

Clone Creates a duplicate of the current node. For
element nodes, duplication includes child nodes
and attributes.

CloneNode Creates a duplicate of the current node. Takes a
Boolean argument indicating whether cloning
should proceed recursively. If this argument is
true, calling the CloneNode method is equivalent
to calling Clone. Entity and notation nodes can't
be cloned.

GetEnumerator Returns an internal and node-specific object that
implements the IEnumerator interface. The
returned object provides the support needed to
arrange for-each iterations.

 181

Table 5-5: Methods of the XmlNode Class

Method Description

GetNamespaceOfPrefix Returns the closest xmlns declaration for the
given prefix.

GetPrefixOfNamespace Returns the closest xmlns declaration for the
given namespace URI.

InsertAfter Inserts the specified node immediately after the
specified node. If the node already exists, it is
first removed. If the reference node is null, the
insertion occurs at the beginning of the list.

InsertBefore Inserts the specified node immediately before the
specified reference node. If the node already
exists, it is first removed. If the reference node is
null, the insertion occurs at the bottom of the list.

Normalize Ensures that there are no adjacent XmlText
nodes by merging all adjacent text nodes into a
single one according to a series of precedence
rules.

PrependChild Adds the specified node to the beginning of the
list of children of the current node.

RemoveAll Removes all the children of the current node,
including attributes.

RemoveChild Removes the specified child node.

ReplaceChild Replaces the specified child node with a new
one.

SelectNodes Returns a list (XmlNodeList) of all the nodes that
match a given XPath expression.

SelectSingleNode Returns only the first node that matches the
given XPath expression.

Supports Verifies whether the current XmlImplementation
object supports a specific feature.

WriteContentTo Saves all the children of the current node to the
specified XmlWriter object. Equivalent to
InnerXml.

WriteTo Saves the entire current node to the specified
writer. Equivalent to OuterXml.

To locate one or more nodes in an XML DOM object, you can use either the
ChildNodes collection or the SelectNodes method. With the former technique, you are
given access to the unfiltered collection of child nodes. Note that in this context, child
nodes means all and only the sibling nodes located one level below the current node.
The SelectNodes (and the ancillary SelectSingleNode) method exploits the XPath
query language to let you extract nodes based on logical conditions. In addition, XPath
queries can go deeper than one level and even work on all descendants of a node. The
.NET Framework XPath implementation is covered in Chapter 6. See the section
"Further Reading," on page 244, for resources providing detailed coverage of the XPath
query language.

 182

Working with XML Documents
To be fully accessible, an XML document must be entirely loaded in memory and its
nodes and attributes mapped to relative objects derived from the XmlNode class. The
process that builds the XML DOM triggers when you call the Load method. You can use
a variety of sources to indicate the XML document to work on, including disk files and
URLs and also streams and text readers.

Loading XML Documents
The Load method always transforms the data source into an XmlTextReader object and
passes it down to an internal loader object, as shown here:

public virtual void Load(Stream);

public virtual void Load(string);

public virtual void Load(TextReader);

public virtual void Load(XmlReader);

The loader is responsible for reading all the nodes in the document and does that
through a nonvalidating reader. After a node has been read, it is analyzed and the
corresponding XmlNode object created and added to the document tree. The entire
process is illustrated in Figure 5-4.

Figure 5-4: The loading process of an XmlDocument object.

Note that before a new XmlDocument object is loaded, the current instance of the
XmlDocument object is cleared. This means that if you reuse the same instance of the
XmlDocument class to load a second document, the existing contents are entirely
removed before proceeding.

 183

Important Although an XML reader is always used to build an XML DOM,
some differences can be noticed when the reader is built
internally—that is, you call Load on a file or a stream—or
explicitly passed by the programmer. In the latter case, if the
reader is already positioned on a nonroot node, only the
siblings of that node are read and added to the DOM. If the
current reader's node can't be used as the root of a document
(for example, attributes or processing instructions), the reader
reads on until it finds a node that can be used as the root. Pay
attention to the state of the reader before you pass it on to the
XML DOM loader.

Let's see how to use the XML DOM to build a relatively simple example—the same
code that we saw in action in Chapter 2 with readers. The following code parses the
contents of an XML document and outputs its element node layout, discarding
everything else, including text, attributes, and other nonelement nodes:

using System;

using System.Xml;

class XmlDomLayoutApp

{

 public static void Main(String[] args)

 {

 try {

 String fileName = args[0];

 XmlDocument doc = new XmlDocument();

 doc.Load(fileName);

 XmlElement root = doc.DocumentElement;

 LoopThroughChildren(root);

 }

 catch (Exception e) {

 Console.WriteLine("Error:\t{0}\n", e.Message);

 }

 return;

 }

 private static void LoopThroughChildren(XmlNode root)

 {

 Console.WriteLine("<{0}>", root.Name);

 foreach(XmlNode n in root.ChildNodes)

 184

 {

 if (n.NodeType == XmlNodeType.Element)

 LoopThroughChildren(n);

 }

 Console.WriteLine("</{0}>", root.Name);

 }

}

After creating the XML DOM, the program begins a recursive visit that touches on all
internal nodes of all types. The ChildNodes list returns only the first-level children of a
given node. Of course, this is not enough to traverse the tree from the root to the
leaves, so the LoopThroughChildren method is recursively called on each element
node found. Let's call the program to work on the following XML file:

<platforms type="software">

 <platform vendor="Microsoft">.NET</platform>

 <platform vendor=""OpenSource="yes">Linux</platform>

 <platform vendor="Microsoft">Win32</platform>

 <platform vendor="Sun">Java</platform>

</platforms>

The result we get using the XML DOM is shown here and is identical to what we got
from readers in Chapter 2:

<platforms>

<platform></platform>

<platform></platform>

<platform></platform>

<platform></platform>

</platforms>

Well-Formedness and Validation
The XML document loader checks only input data for well-formedness. If parsing errors
are found, an XmlException exception is thrown and the resulting XmlDocument object
remains empty. To load a document and validate it against a DTD or a schema file, you
must use the Load method's overload, which accepts an XmlReader object. You pass
the Load method a properly initialized instance of the XmlValidatingReader class, as
shown in the following code, and proceed as usual:

XmlTextReader _coreReader;

XmlValidatingReader reader;

_coreReader = new XmlTextReader(xmlFile);

reader = new XmlValidatingReader(_coreReader);

doc.Load(reader);

Any schema information found in the file is taken into account and the contents are
validated. Parser errors, if any, are passed on to the validation handler you might have
defined. (See Chapter 3 for more details on the working of .NET Framework validating
readers.) If your validating reader does not have an event handler, the first exception

 185

stops the loading. Otherwise, the operation continues unless the handler itself throws
an exception.

Loading from a String
The XML DOM programming interface also provides you with a method to build a DOM
from a well-formed XML string. The method is LoadXml and is shown here:

public virtual void LoadXml(string xml);

This method neither supports validation nor preserves white spaces. Any context-
specific information you might need (DTD, entities, namespaces) must necessarily be
embedded in the string to be taken into account.

Loading Documents Asynchronously
The .NET Framework implementation of the XML DOM does not provide for
asynchronous loading. The Load method, in fact, always work synchronously and does
not pass the control back to the caller until completed. As you might guess, this can
become a serious problem when you have huge files to process and a rich user
interface.

In similar situations—that is, when you are writing a Windows Forms rich client—using
threads can be the most effective solution. You transfer to a worker thread the burden
of loading the XML document and update the user interface when the thread returns, as
shown here:

void StartDocumentLoading()

{

 // Create the worker thread

 Thread t = new Thread(new
ThreadStart(this.LoadXmlDocument));

 statusBar.Text = "Loading document...";

 t.Start();

}

void LoadXmlDocument()

{

 XmlDocument doc = new XmlDocument();

 doc.Load(InputFile.Text);

 // Update the user interface

 statusBar.Text = "Document loaded.";

 Output.Text = doc.OuterXml;

 Output.ReadOnly = false;

 return;

}

 186

While the secondary thread works, the user can freely use the application's user
interface and the huge size of the XML file is no longer a serious issue—at least as it
pertains to loading.

Extracting XML DOM Subtrees
You normally build the XML DOM by loading the entire XML document into memory.
However, the XmlDocument class also provides the means to extract only a portion of
the document and return it as an XML DOM subtree. The key method to achieve this
result is ReadNode, shown here:

public virtual XmlNode ReadNode(XmlReader reader);

The ReadNode method begins to read from the current position of the given reader and
doesn't stop until the end tag of the current node is reached. The reader is then left
immediately after the end tag. For the method to work, the reader must be positioned
on an element or an attribute node.
ReadNode returns an XmlNode object that contains the subtree representing
everything that has been read, including attributes. ReadNode is different from
ChildNodes in that it recursively processes children at any level and does not stop at
the first level of siblings.

Visiting an XML DOM Subtree

So far, we've examined ways to get XML DOM objects out of an XML reader. Is it
possible to call an XML reader to work on an XML DOM document and have the reader
visit the whole subtree, one node after the next?
Chapter 2 introduced the XmlNodeReader class, with the promise to return to it later.
Let's do that now. The XmlNodeReader class is an XML reader that enables you to
read nodes out of a given XML DOM subtree.
Just as XmlTextReader visits all the nodes of the specified XML file, XmlNodeReader
visits all the nodes that form an XML DOM subtree. Note that the node reader is really
capable of traversing all the nodes in the subtree no matter the level of depth. Let's
review a situation in which you might want to take advantage of XmlNodeReader.

The XmlNodeReader Class
Suppose you have selected a node about which you need more information. To scan all
the nodes that form the subtree using XML DOM, your only option is to use a recursive
algorithm like the one discussed with the LoopThroughChildren method in the section
"Loading XML Documents," on page 219. The XmlNodeReader class gives you an
effective, and ready-to-use, alternative, shown here:

// Select the root of the subtree to process

XmlNode n = root.SelectSingleNode("Employee[@id=2]");

if (n != null)

{

 // Instantiate a node reader object

 XmlNodeReader nodeReader = new XmlNodeReader(n);

 // Visit the subtree

 while (nodeReader.Read())

 {

 // Do something with the node...

 187

 Console.WriteLine(nodeReader.Value);

 }

}

The while loop visits all the nodes belonging to the specified XML DOM subtree. The
node reader class is initialized using the XmlNode object that is the root of the XML
DOM subtree.

Updating Text and Markup

Once an XML document is loaded in memory, you can enter all the needed changes by
simply accessing the property of interest and modifying the underlying value. For
example, to change the value of an attribute, you proceed as follows:

// Retrieve a particular node and update an attribute

XmlNode n = root.SelectSingleNode("days");

n.Attributes["module"] = 1;

To insert many nodes at the same time and in the same parent, you can exploit a little
trick based on the concept of a document fragment. In essence, you concatenate all the
necessary markup into a string and then create a document fragment, as shown here:

XmlDocumentFragment df = doc.CreateDocumentFragment();

df.InnerXml = "<extra>Value</extra><extra>Another
Value</extra>";

parentNode.AppendChild(df);

Set the InnerXml property of the document fragment node with the string, and then add
the newly created node to the parent. The nodes defined in the body of the fragment
will be inserted one after the next.
In general, when you set the InnerXml property on an XmlNode-based class, any
detected markup text will be parsed, and the new contents will replace the existing
contents. For this reason, if you want simply to add new children to a node, pass
through the XmlDocumentFragment class, as described in the previous paragraph, and
avoid using InnerXml directly on the target node.

Detecting Changes

Callers are notified of any changes that affect nodes through events. You can set event
handlers at any time and even prior to loading the document, as shown here:

XmlDocument doc = new XmlDocument();

doc.NodeInserted += new XmlNodeChangedEventHandler(Changed);

doc.Load(fileName);

If you use the preceding code, you will get events for each insertion during the building
of the XML DOM. The following code illustrates a minimal event handler:

void Changed(object sender, XmlNodeChangedEventArgs e)

{

 Console.WriteLine(e.Action.ToString());

}

Note that by design XML DOM events give you a chance to intervene before and after a
node is added, removed, or updated.

 188

Limitations of the XML DOM Eventing Model
Although you receive notifications before and after an action takes place, you can't alter
the predefined flow of operations. In other words, you can perform any action while
handling the event, but you can't cancel the ongoing operation. This also means that
you can't just skip some nodes based on run-time conditions. In fact, the event handler
function is void, and all the arguments passed with the event data structure are read-
only. Programmers have no way to pass information back to the reader and skip the
current node. There is only one way in which the event handler can affect the behavior
of the reader. If the event handler throws an exception, the reader will stop working. In
this case, however, the XML DOM will not be built.

Selecting Nodes by Query
As mentioned, the XML DOM provides a few ways to traverse the document forest to
locate a particular node. The ChildNodes property returns a linked list formed by the
child nodes placed at the same level. You move back and forth in this list using the
NextSibling and PreviousSibling methods.
You can also enumerate the contents of the ChildNodes list using a foreach-style
enumerator. This enumerator is built into the XmlDocument class and returned on
demand by the GetEnumerator method, as shown here:

foreach(XmlNode n in node.ChildNodes)

{

 // Do something

}

Direct Access to Elements
TheGetElementById method returns the first child node below the current node that has
an ID attribute with the specified value. Note that ID is a particular XML type and not
simply an attribute with that name. An attribute can be declared as an ID only in an
XML Schema Definition (XSD) or a DTD schema. The following XML fragment defines
an employeeid attribute of type ID. The attribute belongs to the Employee node.

<!ATTLIST Employee employeeid ID #REQUIRED>

A corresponding XML node might look like this:

<Employee employeeid="1" LastName="Davolio" FirstName="Nancy" />

As you can see, the source XML is apparently unaffected by the use of an ID attribute.
An ID attribute can be seen as an XML primary key, and the GetElementById method—
part of the W3C DOM specification—represents the search method that applications
use to locate nodes. The following code retrieves the node element in the document
whose ID attribute (employeeid) matches the specified value:

employeeNode = node.GetElementById("1");

If you call GetElementById on a node whose children have no ID attributes or matching
values, the method returns null. The search for a matching node stops when the first
match is found.
Another query method at your disposal is GetElementsByTagName. As the name
suggests, this method returns a list of nodes with the specified name.
GetElementsByTagName looks similar to ChildNodes but differs in one aspect.
Whereas ChildNodes returns all the child nodes found, including all elements and
leaves, GetElementsByTagName returns only the element nodes with a particular
name. The name specified can be expressed as a local as well as a namespace-
qualified name.

 189

XPath-Driven Access to Elements
The methods SelectNodes and SelectSingleNode provide more flexibility when it comes
to selecting child nodes. Both methods support an XPath syntax (see Chapter 6) to
select nodes along the XML subtree rooted in the current node. There are two main
differences between these methods and the other methods we've examined, such as
ReadNode and XmlNodeReader.

The first difference is that an XPath query lets you base the search at a deeper level
than the current node. In other words, the query expression can select the level of child
nodes on which the search will be based. All other search methods can work only on
the first level of child nodes.

The second difference is that an XPath expression lets you select nodes based on
logical criteria. The code in this section is based on the following XML layout:

<MyDataSet>

 <NorthwindEmployees>

 <Employee id="1" />

 ...

 </NorthwindEmployees>

</MyDataSet>

By default, the SelectNodes and SelectSingleNode methods work on the children of the
node that calls it, as follows:

root.SelectNodes("NorthwindEmployees");

root.SelectNodes("NorthwindEmployees/Employee");

root.SelectNodes("NorthwindEmployees/Employee[@id>4]");

An XPath expression, however, can traverse the tree and move the context for the
query one or more levels ahead, or even back. The first query selects all the
NorthwindEmployees nodes found below the root (the MyDataSet node). The second
query starts from the root but goes two levels deeper to select all the nodes named
Employee below the first NorthwindEmployees node. Finally, the third query adds a
stricter condition and further narrows the result set by selecting only the Employee
nodes whose id attribute is greater than 4. By using special syntax constructs, you can
have XPath queries start from the root node or any other node ancestor, regardless of
which node runs the query. (More on this topic in Chapter 6.)

Creating XML Documents

If your primary goal is analyzing the contents of an XML document, you will probably
find the XML DOM parsing model much more effective than readers in spite of the
larger memory footprint and set-up time it requires. A document loaded through XML
DOM can be modified, extended, shrunk, and, more important, searched. The same
can't be done with XML readers; XML readers follow a different design center. But what
are the advantages of creating XML documents using XML DOM?
To create an XML document using the XML DOM API, you must first create the
document in memory and then call the Save method or one of its overloads. This
system gives you great flexibility because no changes you make are set in stone until
you save the document. In general, however, using the XML DOM API to create a new

 190

XML document is often overkill unless the creation of the document is driven by a
complex and sophisticated logic.
In terms of the internal implementation, it is worth noting that the XML DOM's Save
method makes use of an XML text writer to create the document. So unless the content
to be generated is complex and subject to a lot of conditions, using an XML text writer
to create XML documents is faster.
The XmlDocument class provides a bunch of methods to create new nodes. These
methods are named consistently with the writing methods of the XmlTextWriter class
we encountered in Chapter 4. You'll find a CreateXXX method for each WriteXXX
method provided by the writer. Actually, each CreateXXX method simply creates a new
node in memory, and the corresponding WriteXXX method on the writer simply writes
the node to the output stream.

Appending Nodes

Let's look at how to create a brand-new XML document persisting to XML the
subdirectories found below a given path. The basic algorithm to implement can be
summarized in the following steps:

1. Create any necessary nodes.
2. Link the nodes to create a tree.
3. Append the tree to the in-memory XML document.
4. Save the document.

The expected final output has the following layout:

<folders...>

 <folder ...>text</folder>

 <folder ...>text</folder>

 ...

</folders>

The following code creates the XML prolog and appends to the XmlDocument instance
the standard XML declaration and a comment node:

XmlDocument doc = new XmlDocument();

XmlNode n;

// Write and append the XML heading

n = doc.CreateXmlDeclaration("1.0", "", "");

doc.AppendChild(n);

// Write and append some comment

n = doc.CreateComment("Content of the \""+ path + "\" folder ");

doc.AppendChild(n);

The CreateXmlDeclaration method takes three arguments: the XML version, the
required encoding, and a Boolean value denoting whether the document can be
considered stand-alone or has dependencies on other documents. All arguments are
strings, including the encoding argument, as shown here:

<?xml version="1.0" standalone="yes" encoding="utf-7"?>

 191

If specified, the encoding is written in the XML declaration and used by Save to create
the actual output stream. If the encoding is null or empty, no encoding attribute is set,
and the default Unicode Universal Character Set Transformation Format, 8-bit form
(UTF-8) encoding is used.

CreateXmlDeclaration returns an XmlDeclaration node that you add as a child to the
XmlDocument class. CreateComment, on the other hand, creates an XmlComment
node that represents an XML comment, as shown here:

<!-- Content of the c:\ folder -->

Element nodes are created using the CreateElement method. The node is first
configured with all of its expected child nodes and then added to the document, as
shown here:

XmlNode root = doc.CreateElement("folders");

For the purposes of this example, we need a way to access all the subdirectories of a
given folder. In the .NET Framework, this kind of functionality is provided by the
DirectoryInfo class in the System.IO namespace:

DirectoryInfo dir = new DirectoryInfo(path);

To scan the subdirectories of the given path, you arrange a loop on top of the array of
DirectoryInfo objects returned by the GetDirectories method, as follows:

foreach (DirectoryInfo d in dir.GetDirectories())

{

 n = doc.CreateElement("folder");

 //

 // Create attributes for the <folder> node

 //

 // Set the text for the node

 n.InnerText = "Content of "+ d.Name;

 // Append the node to the rest of the document

 root.AppendChild(n);

}

In the loop, you create any needed <folder>node, configure the node with attributes and
text, and then append the node to the parent <folders>node.
When creating an element node using the CreateElement method, you can specify a
namespace URI as well as a namespace prefix. With the following code, you add an
xmlns attribute to the node declaration:

XmlNode root = doc.CreateElement("folders", "urn:dino-e");

The final result is shown here:

<folders xmlns="urn:dino-e">

 192

If you use a namespace, you might reasonably want to use a prefix too. To specify a
namespace prefix, resort to another overload for the CreateElement method in which
you pass in the order, the prefix, the local name of the element, and the namespace
URI, as shown here:

XmlNode root = doc.CreateElement("d", "folders", "urn:dino-e");

The node XML code changes to this:

<folders xmlns:d="urn:dino-e">

At this point, to also qualify the successive <folder> nodes with this namespace, call
CreateElement with the prefix and the URI, as shown here:

n = doc.CreateElement("d", "folder", "urn:dino-e");

Note Bear in mind that although all the CreateXXX methods available in
the XmlDocument class can create an XML node, that node is not
automatically added to the XML DOM. You must do that explicitly
using one of the several methods defined to extend the current
DOM.

Appending Attributes
An attribute is simply a special type of node that you create using the CreateAttribute
method. The method returns an XmlAttribute object. The following code shows how to
create a new attribute named path and how to associate it with a parent node:

XmlAttribute a;

a = doc.CreateAttribute("path");

a.Value = path;

node.Attributes.SetNamedItem(a);

Like CreateElement, CreateAttribute too allows you to qualify the name of the attribute
using a namespace URI and optionally a prefix. The overloads for both methods have
the same signature.
You set the value of an attribute using the Value property. At this point, however, the
attribute node is not yet bound to an element node. To associate the attribute with a
node, you must add the attribute to the node's Attributes collection. The SetNamedItem
method does this for you. The following code shows the finalized version of the loop
that creates the XML file for our example:

foreach (DirectoryInfo d in dir.GetDirectories())

{

 n = doc.CreateElement("folder");

 a = doc.CreateAttribute("name");

 a.Value = d.Name;

 n.Attributes.SetNamedItem(a);

 a = doc.CreateAttribute("created");

 a.Value = d.CreationTime.ToString();

 n.Attributes.SetNamedItem(a);

 193

 root.AppendChild(n);

 n.InnerText = "Content of "+ d.Name;

}

Figure 5-5 demonstrates the structure of the newly created XML file.

Figure 5-5: An XML file representing a directory listing created using the XML DOM API.

Persisting Changes
The final step in saving the XML document we have created is to attach the <folders>
node to the rest of the document and save the document, as shown here:

doc.AppendChild(root);

doc.Save(fileName);

To persist all the changes to a storage medium, you call the Save method, which
contains four overloads, shown here:

public virtual void Save(Stream);

public virtual void Save(string);

public virtual void Save(TextWriter);

public virtual void Save(XmlWriter);

The XML document can be saved to a disk file as well as to an output stream, including
network and compressed streams. You can also integrate the class that manages the
document with other .NET Framework applications by using writers, and you can
combine more XML documents using, in particular, XML writers.
Whatever overload you choose, it is always an XML writer that does the job of
persisting XML nodes to a storage medium. The XmlDocument class makes use of a
specialized version of the XmlTextWriter class that simply works around one of the
limitations of XML writers.
XML writers do not allow you to write element and attribute nodes for which you have a
prefix but an empty namespace. If the namespace URI is set to null, the writer
successfully looks up the closest definition for that prefix and figures out the
namespace, if one exists. If the namespace is simply an empty string, however, an
ArgumentException exception is thrown. The XML DOM internal writer overrides the
WriteStartElement and WriteStartAttribute methods. If the namespace URI is empty
when the prefix is not, the new overrides reset the prefix to the empty string and no
exception is raised.

 194

Extending the XML DOM
Although the .NET Framework provides a suite of rich classes to navigate, query, and
modify the contents of an XML document, there might be situations in which you need
more functionality. For example, you might want a node class with more informative
properties or a document class with extra functions. To obtain that class, you simply
derive a new class from XmlNode, XmlDocument, or whatever XML DOM class you
want to override. Let's see how.

Custom Node Classes
As a general rule of thumb, you should avoid deriving node classes from the base class
XmlNode. If necessary, derive node classes from a specialized and concrete node
class like XmlElement or XmlAttribute. This will ensure that no key behavior of the node
is lost in your implementation. But what kind of extensions can you reasonably build for
a node?

I haven't encountered any huge flaws in the design of the XML DOM node classes, so if
you need extensions, it's probably because you want to give nodes new methods or
properties that simplify a particular operation you carry out quite often.
The Microsoft Developer Network (MSDN) documentation already provides an example
of XML DOM extensions that adds line information to each node and then counts the
number of element nodes a given document contains. (See the section "Further
Reading," on page 244, for more information about this example.) As mentioned, the
ChildNodes property of the XmlDocument class does not cache the number of
elements in the list. As a result, whenever you need to know the number of children and
call the Count property, the entire list of nodes is walked from top to bottom. In addition,
you have no way to distinguish between element nodes and leaf nodes.
In the MSDN documentation, you'll find a class that attempts to solve this problem by
extending the XmlDocument class with a custom GetCount method, shown here:

class LineInfoDocument : XmlDocument

{

 ...

 public int GetCount()

 {

 return elementCount;

 }

 ...

}

In the remainder of this section, however, we'll look at a more substantial improvement
to the XmlDocument class. In particular, you'll learn how to build a kind of "sensitive"
XML DOM that can detect any changes to the underlying disk file and automatically
reload the new contents.

Building a Hot-Plugging XML DOM

Being able to detect changes to files and folders as they occur is a feature that many
developers would welcome. Win32 provides a set of functions to get notifications of
incoming changes to the size, the contents, or the attributes of a given file or folder.
Unfortunately, the feature is limited to notifying registered applications that a certain
event occurred in the watched file or folder but provides no further information about
what happened to which file or folder and why.

 195

To clarify, this feature was introduced with Microsoft Windows 95 and was tailor-made
for Windows Explorer. Have you ever noticed that when you have a Windows Explorer
view open and you modify a file shown in that view, the Windows Explorer view
automatically refreshes to show updated data? The trick behind this apparently magical
behavior is that, just before a new folder view is opened, Windows Explorer registers a
file notification object for the contents of that folder. When it gets a notification that
something occurred to that folder's contents, Windows Explorer simply refreshes the
view to show the new contents, whatever that is.

Later, Microsoft introduced only for the Windows NT platform an even more
sophisticated mechanism that not only notifies applications of the event but also
provides information about the type of change that occurred and the file or files
affected. This extended feature relies on Win32 API functions supported only on
Windows NT platforms, starting with Windows NT 4.0.
The .NET Framework wraps all this functionality into the FileSystemWatcher class,
available from the System.IO namespace. This class takes advantage of the Windows
NT-based API and for this reason is not available with Microsoft Windows 98, Microsoft
Windows Me, and older platforms.

Note Because FileSystemWatcher is a wrapper for the Windows NT API,
it works only on computers running Windows NT, Windows 2000, or
Windows XP. But you could write a wrapper class using a less
powerful Win32 API and have it work on all Win32 platforms.

An instance of the FileSystemWatcher class is at the foundation of the extended
version of the XmlDocument class that we'll build in the next section. The new class,
named XmlHotDocument, is capable of detecting any changes that have occurred in
the underlying file and automatically notifies the host application of these changes.
The XmlHotDocument Class Programming Interface
TheXmlHotDocument class inherits from XmlDocument and provides a new event and
a couple of new properties, as shown in the following code. In addition, it overrides one
of the overloads of the Load method—the method overload that works on files. In
general, however, nothing would really prevent you from extending the feature to also
cover streams or text readers as long as those streams and readers are based on disk
files.

public class XmlHotDocument : XmlDocument

{

 public XmlHotDocument() : base()

 {

 m_watcher = new FileSystemWatcher();

 HasChanges = false;

 EnableFileChanges = false;

 }

 ...

}

As you can see, the preceding code includes the class declaration and the constructor's
code. Upon initialization, the class creates an instance of the file system watcher and
sets the new public properties—HasChanges and EnableFileChanges—to false. Table
5-6 summarizes what's really new with the programming interface of the
XmlHotDocument class.

 196

Table 5-6: Programming Interface of the XmlHotDocument Class

Property or Event Description

EnableFileChanges Boolean property that you use to toggle on
and off the watching system. If set to true,
the application receives notifications for
each change made to the file loaded in the
DOM. Set to false by default.

HasChanges Boolean property that the class sets to true
whenever there are changes in the
underlying XML file that the application has
not yet processed. Set to false by default;
is reset when you call the Load method
again.

UnderlyingDocumentChanged Represents an event that the class fires
whenever a change is detected in the
watched file.

In addition, the XmlHotDocument class has one private member—the reference to the
FileSystemWatcher object used to monitor file system changes.

The Watching Mechanism
An instance of the FileSystemWatcher class is created in the class constructor but is
not set to work until the caller application sets the EnableFileChanges property to true,
as shown here:

public bool EnableFileChanges

{

 get { return m_watcher.EnableRaisingEvents; }

 set {

 if (value == true)

 {

 // Get the local path of the current file

 Uri u = new Uri(BaseURI);

 string filename = u.LocalPath;

 // Set the path to watch for

 FileInfo fi = new FileInfo(filename);

 m_watcher.Path = fi.DirectoryName;

 m_watcher.Filter = filename;

 // Set hooks for writing changes

 m_watcher.NotifyFilter = NotifyFilters.LastWrite;

 m_watcher.Changed +=

 new FileSystemEventHandler(this.OnChanged);

 197

 // Start getting notifications

 m_watcher.EnableRaisingEvents = true;

 }

 else

 m_watcher.EnableRaisingEvents = false;

 }

}

EnableFileChanges is a read/write property that is responsible for setting up the
watching system when set to true. The watching system consists of Path and Filter
properties that you use to narrow the set of files and folders that must be watched for
changes.
The Path property sets the folder to watch, while the Filter property restricts the number
of files monitored in that folder. If you set the Filter property to an empty string, the
entire contents of the folder will be watched; otherwise, only the files matching the filter
string will be taken into account. In this case, we just need to monitor a single file, so
we'll set the Filter property to the name of the document used to populate the current
XML DOM.

Note When setting the Filter property, avoid using fully qualified path
names. Internally, the FileSystemWatcher class will be
concatenating the Path and Filter properties to obtain the fully
qualified path to filter out files and folders involved in any file-
system-level event caught.

The XmlDocument class stores the name of the document being processed in its
BaseURI property. Although the BaseURI property is a string, it stores the file name as
a URI. As a result, a file name such as c:\data.xml is stored in the BaseURI property as
file:///c:/data.xml. Note that in the .NET Framework, URIs are rendered through an ad
hoc type—the Uri class. To obtain the local path from a URI, you must first create a
new Uri object and query its LocalPath property, as shown here:

Uri u = new Uri(BaseURI);

string filename = u.LocalPath;

Why can't we just use the file name in the URI form? To avoid the rather boring task of
parsing the path string to extract the directory information, I use the FileInfo class and
its handy DirectoryName property. Unfortunately, however, the FileInfo class can't
handle file names in the URI format. The following code will throw an exception if
filename is a URI:

FileInfo fi = new FileInfo(filename);

m_watcher.Path = fi.DirectoryName;

m_watcher.Filter = fi.Name;

To finalize the watcher setup, you also need to define the change events that will be
detected and register a proper event handler for each of them. You set the NotifyFilter
property with any bitwise combination of flags defined in the NotifyFilters enumeration.
In particular, you can choose values to detect changes in the size, attributes, name,
contents, date, and security settings of each watched file. The following code simply
configures the watcher to control whether the monitored file has something new written
to it. The LastWrite flag actually causes an event to fire whenever the timestamp of the

 198

file changes, irrespective of the contents that you might have written to the file. In other
words, the event also fires if you simply open and save the file without entering any
changes.

m_watcher.NotifyFilter = NotifyFilters.LastWrite;

m_watcher.Changed += new FileSystemEventHandler(this.OnChanged);

// Start getting notifications

m_watcher.EnableRaisingEvents = true;

The changes you can register to be detected are originated by four events: Changed,
Created, Deleted, and Renamed. In this example, we are interested only in the changes
that modify an existing file, so let's handle only the Changed event, as shown here:

private void OnChanged(object source, FileSystemEventArgs e)

{

 HasChanges = true;

 if (UnderlyingDocumentChanged != null)

 UnderlyingDocumentChanged(this, EventArgs.Empty);

}

Any file system event passes to the handlers a FileSystemEventArgs object that
contains information about the event—for example, the name of the files involved and a
description of the event that just occurred. The XmlHotDocument class processes the
Changed event by simply setting the HasChanges property to true and bubbling the
event up to the caller application. In the process, the original event is renamed to a
class-specific event named UnderlyingDocumentChanged. In addition, no argument is
passed because the client application using the XML DOM needs to know only that
some changes have occurred to the underlying documents currently being processed.
After it is completely set up, the FileSystemWatcher class starts raising file system
events only if you set its EnableRaisingEvents property to true. Changing the value of
this property to false is the only way you have to stop the watcher from sending further
events.

Note When monitoring a file or a folder through a FileSystemWatcher
class, don't be surprised if you receive too many events and some
events that are not strictly solicited. The class is a watchful observer
of what happens at the file system level and correctly reports any
change you registered for. Many operations that look like individual
operations are actually implemented in several steps, each of which
can cause an independent event. In addition, you might have
software running in the background (for example, antivirus software)
that performs disk operations that will be detected as well.

Using the XmlHotDocument Class

To take advantage of the new class in a client application, start by declaring and
instantiating a variable of that type, as follows:

XmlHotDocument m_hotDocument = new XmlHotDocument();

Next you register an event handler for the UnderlyingDocumentChanged event and call
the Load method to build the XML DOM. When you think you are ready to start

 199

receiving file system notifications, set the EnableFileChanges property to true, as
shown here:

m_hotDocument.UnderlyingDocumentChanged +=

 new EventHandler(FileChanged);

m_hotDocument.Load("data.xml");

m_hotDocument.EnableFileChanges = true;

Note that you can't set EnableFileChanges to true before the XML DOM is built—that
is, before the Load method has been called.
Registering a handler for the custom UnderlyingDocumentChanged event is not
mandatory, but doing so gives your application an immediate notification about what
happened. The value of the HasChanges property automatically indicates any
underlying changes that the current XML DOM does not yet reflect, however. When you
build an XML DOM, the HasChanges property is reset to false. Figure 5-6 shows the
sample application immediately after startup.

Figure 5-6: A sample application making use of the XmlHotDocument class. No pending
changes have been detected yet on the displayed XML file.

When another user, or another application, modifies the XML file that is being
processed by the current instance of the XmlHotDocument object, an
UnderlyingDocumentChanged event reaches the application. The sample program
shown in Figure 5-6 handles the event using the following code:

void FileChanged(object sender, EventArgs e)

{

 UpdateUI();

}

The internal UpdateUI method simply refreshes the user interface, checking the state of
the HasChanges property, as shown here:

if (m_hotDocument.HasChanges)

 PendingChanges.Text = "*** Pending changes ***";

Figure 5-7 shows the application when it detects a change.

 200

Figure 5-7: The sample application detects changes in the underlying XML file and updates
the user interface.

At this point, the user can reload the XML DOM using the Load method again, as
shown in the following code. As mentioned, calling the Load method resets the status of
the HasChanges property, resulting in an up-to-date user interface.

public override void Load(string filename)

{

 // Load the DOM the usual way

 base.Load(filename);

 // Reset pending changes

HasChanges = false;

}

Figure 5-8 shows the application displaying the change.

Figure 5-8: Changes dynamically occurring in the XML document are now correctly
reflected by the XML DOM used by the application.

A hot-plugging XML DOM is more than a made-to-measure example. It is a piece of
code that you might find useful in all those circumstances in which you make use of
extremely volatile XML documents.

 201

Conclusion

This chapter presented the .NET Framework classes that provide XML DOM
capabilities. Using these classes—primarily XmlDocument and XmlNode—you can
parse XML documents, building in-memory and fully accessible representations of data.
The overall programming interface of the XmlDocument class might look familiar to
those of you who have spent some time working with the Microsoft COM-based
MSXML library. The XmlDocument class provides methods to load XML documents
from a variety of sources, including XML readers and streams. The loading of a
document can happen only synchronously, but you can significantly lessen the impact
of this design issue by using multiple threads.
To locate a node in the in-memory tree that represents the original XML document, you
can proceed with a collection that returns only the first level of child nodes, or you can,
more effectively, use an XPath query string to locate nodes by condition. If your goal is
visiting all the nodes that are part of a given DOM subtree, you have two options, both
of which have been described with code in this chapter. One possibility is writing your
own recursive algorithm to visit all the child nodes below a given root. An alternative
approach is based on the XmlNodeReader class—an XML reader class capable of
reading nodes from an XML DOM source.
You also learned how to build XML documents from scratch using the XML DOM
classes and the methods offered by the XmlDocument class. Creating new documents
using XML DOM is not as efficient as using XML writers, but because the document is
first built in memory, you have an unprecedented level of flexibility and can fine-tune
your document before it is written to the output stream.
XML DOM is a powerful object model that provides you with a rich set of methods and
properties to manipulate the schema and contents of XML documents. Under the hood
of the XML DOM interface, however, you still find XML reader and writer objects
working hard to provide input and output functionalities. Extending the DOM is as easy
as deriving a new class from XmlDocument, as you saw when we created a "sensitive"
XML DOM class that detects incoming changes in the underlying XML file and fires ad
hoc events to the caller application. In Chapter 6, we'll take the plunge into XPath and
the .NET Framework classes that make it happen.

Further Reading
This chapter repeatedly mentions the XML DOM as the starting point for defining the
set of methods and properties for the XmlDocument class. The .NET Framework
classes support the interface defined by the DOM Level 1 Core and DOM Level 2 Core
specifications. If you are interested in the official papers, you can find them at
http://www.w3.org/TR/REC-DOM-Level-1 and http://www.w3.org/TR/DOM-Level-2.
Another topic that has been mentioned quite often is XPath. We'll be looking at XPath
in Chapter 6, but you won't find a complete reference to the syntax elements of the
XPath query language there. (In general, this book is not a comprehensive reference
for any of the XML-related standards.) For a thorough treatment of this topic, refer to
Essential XML Quick Reference, by Aaron Skonnard and Martin Gudgin (Addison-
Wesley, 2001), which provides short comments and descriptions and not much
background information, but does cover in detail every single element of the syntax. By
combining the information in that book with the general information available in this one,
you should end up with a good grasp of the technology.
In this chapter, I developed an XML DOM extension that enables XML applications to
detect ongoing changes in the XML files they are processing through the DOM. Another
example of XML DOM extensions is available for download at
http://www.gotdotnet.com/userfiles/XMLDom/extendDOM.zip.

 202

Chapter 6: XML Query Language and Navigation

Overview
XML sprang to life as a metalanguage that can be used to describe any sort of data and
documents using a truly hierarchical representation, or a representation that simply
looks hierarchical. As XML gained broad acceptance from the software industry, the
need for additional and related standards promptly arose. In Chapter 5, we looked at
the XML Document Object Model (XML DOM), which represents the official object
model for XML data containers.

Although it is rich and powerful, XML DOM alone does not address the needs of XML
data retrieval. One of the key advantages of XML markup text over plain text is that it
can be used to mark portions of the text with special tags and attributes. So how do you
effectively retrieve parts of an XML document that have been marked in a certain way?
The need for an effective XML-based query language is as old as the need for a
general-purpose data description language. In fact, a W3C-ratified standard for an XML
query language followed shortly after the XML 1.0 recommendation. XPath is the query
language defined to address parts of an XML document using a compact, relatively
simple, but not XML-based syntax. More importantly, XPath is designed to define and
provide a common syntax for accessing XML nodes through the XML DOM as well as
from XML Stylesheet Language Transformation (XSLT) scripts. (We'll look at XSLT in
Chapter 7.)
In the Microsoft .NET Framework, XPath is fully supported through the classes defined
in the System.Xml.XPath namespace. The .NET Framework implementation of XPath is
based on a language parser and an evaluation engine. The overall architecture is
similar to database queries. As with SQL commands, you prepare XPath expressions
and submit them to a run-time engine evaluation. The query is parsed and executed
against a data source—an instance of the XML DOM. Next you get back some
information representing the result set of the query.

What Is XPath, Anyway?

XPath is a general-purpose query language for addressing and filtering both the
elements and the text of an XML document. As the name suggests, the XPath notation
is basically declarative. A valid XPath expression looks like a path to a particular set of
nodes or a value excerpted from the source document.

XPath works on top of a tree-based representation of the source document. The path
expresses a node pattern using a notation that emphasizes the hierarchical relationship
between the nodes. Although semantically speaking the closest similarity is with the
SQL query language, from a syntax point of view, XPath expressions look a lot like a
file system path composed of folder and file names. For example, consider the following
simple XPath expression:

customer/address

This expression states: find all the address nodes that happen to be children of the
customer element. But on which nodes is this expression evaluated? An XPath
expression is always evaluated in the context of a node. The context node is
designated by the application and represents the starting point of the query. Expressing
the concept of the context node in terms of file system paths, we could say that the
appropriate file system counterpart for the context node is the current directory.
The nodes affected by the expression form the context node-set. The final set of nodes
that is actually returned to the application is a subset of the context node-set that
includes only those nodes that match the specified criteria.

 203

Context of XPath Queries

The context of an XPath query includes, but is not limited to, a context node and a
context node-set. The XPath context also contains position and namespace
information, variable bindings, and a standard library of functions. We'll look at the
contents of the XPath context in detail in this section.
In the .NET Framework, the context node is the XmlNode object on which you call
either the SelectNodes or the SelectSingleNode method. The context node-set is
determined by the so-called axis of the query. The axis is a keyword that specifies the
group of nodes that will then be filtered out by the XPath expression.

XPath Axes

Continuing with the file system parallel, the axis is similar to the drive information in a
file system path. Like the drive identifier, axis information is not strictly necessary, and a
default value can be assumed if the axis is omitted.
If an XPath query has no axis element, the context node-set contains the direct children
of the context node. As with drives, when specified, an axis defines the entire set of
nodes that the following path will evaluate. Table 6-1 lists the available axes.

Table 6-1: XPath Axes

Axis Description Context
NodeSe
t

self The context node. 7

child Children of the context node. 8, 9

parent Parent of the context node. 5

descendant Nodes in the subtree rooted in the context
node. The variant descendant-or-self adds
the context node to the set.

8, 9, 10

ancestor Parent of the context node and then parent's
parent, up to the document root. The variant
ancestor-or-self adds the context node to the
set.

5, 1

Following All the nodes that will be visited after the
context node. The XPath specification
dictates that the document be visited in
depth-first order, going as deep as possible
on a path.

> 7

following-
sibling

Following sibling nodes of the context node. 11

Preceding All the nodes already visited according to the
standard algorithm.

< 7

preceding-
sibling

Preceding sibling of the context node. 6

The context node-set numbers in Table 6-1 refer to the XML tree in Figure 6-1 and
indicate the nodes that would form the corresponding node-set once a given axis is
specified. The context node is labeled 7.

 204

Figure 6-1: A sample XML tree in which the node numbers indicate the order in which
nodes are visited by the XPath query processor.

The XPath specification requires that the nodes be visited in depth-first order, starting
from the root and then proceeding with all the children from left to right until a leaf is
found. This order corresponds to the order in which nodes are read from an XML disk
file.

Position Information
An XPath context is characterized by a position and a size. The position attribute is a
one-based value that indicates the ordinal position of the context node in the context
node-set to which it belongs. The size attribute, on the other hand, returns the size of
the context node-set—that is, the number of nodes being processed by the expression.
The number does not necessarily match the size of the final node-set returned to the
caller application.

XPath and Namespaces

The XPath processor uses node information to determine whether a match exists with
the current expression. The most important information used by XPath expressions is
the node's name, type, and attributes. XPath fully supports XML namespaces and splits
the name of a node into two constituent parts: the namespace URI and the local name.
The set of namespaces declared in scope for the context node is used to qualify node
names in the expression.

Variable Bindings
An XPath expression can contain variable references that are resolved through a set of
in-memory bindings established between variable names and actual values. Each
variable holds a value whose type is normally one of the four base types—node-set,
string, Boolean, and number. It is still possible, however, for a variable reference to
contain a value of some other type.

 205

XPath Functions

Any implementation of the XPath parser must provide a function library that is used to
evaluate expressions. Functions in the core library have no namespace information, but
extension functions can have a namespace. Extension functions are defined within
vendor-specific XPath implementations but can also be provided by specialized and
XPath-based programming APIs such as XSLT and XML Pointer Language (XPointer)
APIs.
The functions in the XPath core library work on the base XPath types: node-set,
Boolean, string, and number. Type conversion is automatically performed whenever
possible. The only type conversion not permitted is from any other type to node-sets.
Table 6-2 lists just the commonly used functions included in the library.

Table 6-2: Some Members of the XPath Core Library

Function Description

last A node-set function that returns the number of nodes in the
current node-set

name A node-set function that returns the fully qualified name of the
specified node

text A node-set function that returns the text of the specified node

position A node-set function that returns the index of the context node in
the current node-set

boolean A Boolean function that converts a value to a Boolean

contains A string function that indicates whether a string contains the
specified substring

substring A string function that returns the specified substring

starts-
with

A string function that indicates whether the string begins with a
given substring

ceiling A number function that rounds a number up to the next integer

floor A number function that rounds a number down to the next
integer

round A number function that rounds a number to the nearest integer

You will likely use the node-set functions most often. While being processed, an XPath
expression is tokenized into subexpressions, and each subexpression is individually
evaluated. The XPath processor is passed the subexpression and the context node-set.
It returns a possibly narrowed node-set that will be iteratively used as the input
argument for the next subexpression. During this process, the context node, position,
and size can vary, whereas variable and function references as well as namespace
declarations remain intact.

Location Paths
As mentioned, an XPath expression can return any of the following types: Boolean,
string, number, or node-set. In most cases, however, it will return a set of nodes. The
most frequently used type of XPath expression is the location path.
A location path looks a lot like a file system path and, like a file system path, can be
either absolute or relative to the context node. When absolute, a location path begins

 206

with the forward slash (/). The following expression, for example, locates all the
<invoice> nodes, irrespective of the node on which the expression is evaluated.

/archive/invoices/invoice

In contrast, this expression attempts to retrieve the nodes at the end of a particular path
that starts from the current node:

archive/invoices/invoice

Unabbreviated Syntax for a Location Path
A fully qualified location path consists of three pieces: an optional axis, a node test, and
an optional predicate. The axis information defines the initial context node-set for the
expression, whereas the node test is a sequence of node names that identifies a path
in the node-set. The predicate is a logical expression that defines the criteria to filter the
current node-set.
If the location path lacks any of its optional components, it is said to be in abbreviated
form. The general, unabbreviated, syntax for a location path expression is shown here:

axis::node-test[predicate]

The syntax dictates that the axis be separated from the rest of the expression by a
double colon (::). This special separator once again recalls the parallel between axis
information and drive information in a file system. The predicate is enclosed in square
brackets. A location path can include multiple predicates that are written one after
another like indexes in a multidimensional array.
The node test is a node-based expression that is evaluated for each node in the context
node-set. If the expression returns true, the node remains in the node-set; otherwise, it
is removed. Typically, the node test takes the form of a path. Read as an expression, it
returns true if the specified path exists below the context node and false otherwise. The
following code demonstrates a fully qualified XPath location:

descendant::invoice[@year = 2002]

The XPath processor first selects all the descendants of the context node. Next it
selects from this set all the <invoice> nodes whose year attribute equals 2002.

Tip You can use the wildcard character (*) to indicate all the nodes in a
given axis. For example, the expression child::* denotes all the
children of the current context node. Likewise, descendant-or-self::*
means all the descendants and the node itself.

Location Steps
A location path is composed of several child elements called location steps. Each
location step is actually a location path and, as such, can be expressed in an
abbreviated or fully qualified form, as appropriate. Location steps are separated by
forward slashes, as shown in Figure 6-2.

 207

Figure 6-2: A location path consists of one or more location steps, each of which can be
expressed in full or abbreviated form.

Consider the following three-step expression:

invoices/descendant::invoice[@year = 2002]/child::country[text()
= 'USA']

The first step selects all the nodes named <invoices> below the context node. This
node-set is then passed as the context node-set to the next location step. The second
location step is expressed in an unabbreviated form and loops through all the
descendants of each previously selected <invoices> node. When processed, each
node plays the role of the context node and provides different position information. At
the end of the second step, the node-set contains only the <invoice> nodes that have a
parent <invoices> and a year attribute set to 2002.
The final step further narrows the node-set by excluding all the nodes that have no
<country> child whose text equals USA.

Note The at sign (@) that you use to indicate a node attribute is actually
an abbreviation for another particular axis type: the attribute. The
full syntax for the year attribute is attribute::year. The XPath
specification recommends a number of abbreviations that are
commonly used in coding, including the following shortcuts: Use a
period (.) to indicate the context node and two periods (..) to refer to
the parent. When no axis is specified, child:: is assumed. Finally, [n]
means the nth node in the current context node-set; this array-like
notation is equivalent to [position() = n].

Links Between Documents

The XPath query language is used to select a set of nodes in a given XML document.
You typically use XPath to search for nodes in an XML DOM implementation of a data
source and to filter the nodes to which a given transformation template in an XSL script
must be applied.

Recently, another possible use for the XPath syntax has boldly emerged. I'm talking
about XPointer, which is designed to become the standard way to link portions of
external documents to XML documents.

What Is XPointer?

XPointer is used to locate data within an XML document. When XML documents need
to point to external resources, they can declare an entity reference or, more effectively,
include the whole resource, using the XML Inclusion (XInclude) syntax. XInclude—a
W3C recommendation candidate—links the host document to an external resource, or
a portion of it. XPointer defines the syntax you use to specify the addressed portion of
the document.
Normally, to indicate a particular position in an XML document, you attach a fragment
identifier to the document's URL. A fragment identifier is marked by a number sign (#)
and follows the document's URL. For example, the URL
http://www.w3.org/TR/xptr/#conformance points to the portion of the document labeled
with the conformance name.

With XPointer, you can use the XPath syntax to identify with greater flexibility a
particular location in the external document.

 208

How XPointer Uses XPath

An XPointer fragment identifier can be the name of a particular portion of the target
document, but it could also be a more complex and expressive XPath query. For
example, you could link a piece of information using the following syntax:

invoices.xml#xpointer(/descendant::invoice[@id=201])

This expression references the particular descendant node named <invoice> having an
id attribute equal to 201.

XPath in the XML DOM

In the .NET Framework, you can make use of XPath expressions in two ways: through
the XML DOM or by means of a new and more flexible API based on the concept of the
XPath navigator.
In the former case, you use XPath expressions to select nodes within the context of a
living instance of the XmlDocument class. As we saw in Chapter 5, the XmlDocument
class is the .NET Framework class that renders a given XML document as a
hierarchical object model (XML DOM). This approach keeps the API close to the old
MSXML programming style and has probably been supplied mostly for compatibility
reasons.
The alternative approach consists of creating an instance of the XPathDocument class
and obtaining from it an XPath navigator object. The navigator object is a generic XPath
processor that works on top of any XML data store that exposes the IXPathNavigable
interface. Rendered through the XPathNavigator class, the XPath navigator object
parses and executes expressions using its Select method. XPath expressions can be
passed as plain text or as preprocessed, compiled expressions. As you can see,
although the classes involved are different, the overall programming style is not much
different from those pushed by MSXML and the .NET Framework XML DOM classes.
This said, though, the XPath navigator object represents a quantum leap from the
SelectNodes method of the XmlDocument class. For one thing, it works on top of highly
specialized document classes that implement IXPathNavigable and are optimized to
perform both XPath queries and XSL transformations. In contrast, the XmlDocument
class is a generic data container class that incorporates an XPath processor but is not
built around it.
Several classes in the .NET Framework implement the IXPathNavigable interface, thus
making their contents automatically selectable by XPath expressions. We'll look at the
navigation API in more detail in the section "The .NET XPath Navigation API," on page
263. For now, let's review the XPath support built into the XmlDocument class.

The XML DOM Node Retrieval API
When using XPath queries to query an XML DOM instance, you can use the
SelectNodes method of the XmlDocument class. In particular, SelectNodes returns a
collection that contains instances of all the XmlNode objects that match the specified
expression. If you don't need the entire node-set, but instead plan to use the query to
locate the root of a particular subtree, use the SelectSingleNode method.
SelectSingleNode takes an XPath expression and returns a reference to the first match
found.
The SelectNodes and SelectSingleNode methods perform identical functionality to the
methods available from the Component Object Model (COM)– based MSXML library
that script and Microsoft Win32 applications normally use. It is worth noting that these

 209

methods are not part of the official W3C XML DOM specification but represent, instead,
Microsoft extensions to the standard XML DOM.

At the application level, XML DOM methods and the XPath navigator supply different
programming interfaces, but internally they run absolutely equivalent code.
The SelectNodes Internal Implementation
The SelectNodes method internally employs a navigator object to retrieve the list of
matching nodes. The return value of the navigator's Select method is then used to
initialize an undocumented internal node list class named System.Xml.XPath
.XPathNodeList. As you have probably guessed, this class inherits from XmlNodeList,
which is a documented class. To verify this statement, compile and run the following
simple code:

XmlDocument doc = new XmlDocument();

doc.Load(fileName);

XmlNodeList nodes = doc.SelectNodes("child::*");

Console.WriteLine(nodes.ToString());

The true type of the variable nodes is XPathNodeList. If you try to reference that type in
your code, you get a compile error due to the protection level of the class.
What's the difference between using SelectNodes and the XPath navigator object? The
SelectNodes method uses a navigator that works on top of a generic XML document
class—the XmlDocument class. The SelectNodes method's navigator object is, in fact,
created by the XmlDocument class's CreateNavigator method. If you choose to publicly
manage a navigator, you normally create it from a more specific and XPath-optimized
document class—the XPathDocument class.

The XPath expression is passed to the navigator as plain text:

XmlNodeList SelectNodes(string xpathExpr, XmlNamespaceManager
nsm)

Interestingly enough, however, if you use this overload of the SelectNodes method that
handles namespace information, the XPath expression is first compiled and then
passed to the processor.
As we'll see in the section "Compiling Expressions," on page 274, only compiled XPath
expressions support namespace information. In particular, they get namespace
information through an instance of the XmlNamespaceManager class.

The SelectSingleNode Internal Implementation
The SelectSingleNode method is really a special case of SelectNodes. Unfortunately,
there is no performance advantage in using SelectSingleNode in lieu of SelectNodes.
The following pseudocode illustrates the current implementation of the
SelectSingleNode method:

public XmlNode SelectSingleNode(string xpathExpr)

{

 XmlNodeList nodes = SelectNodes(xpathExpr);

 return nodes[0];

}

The SelectSingleNode method internally calls SelectNodes and retrieves all the nodes
that match a given XPath expression. Next it simply returns the first selected node to

 210

the caller. Using SelectSingleNode perhaps results in a more easily readable code, but
doing so certainly does not improve the performance of the application when you need
just one node.
In the next section, we'll build a sample Microsoft Windows Forms application to start
practicing with XPath expressions, thus turning into concrete programming calls all that
theory about the XPath query language.

The Sample XPath Evaluator
The sample XPath Evaluator application is a Windows Forms application that loads an
XML document and then performs an XPath query on it. The application's user
interface lets you type in both the context node and the query string. Next it creates an
XML DOM for the document and calls SelectNodes.
The output of the expression is rendered as an XML string rooted in an arbitrary
<results> node, as shown here:

<results>

 ... XML nodes that match ...

</results>

The sample application is shown in Figure 6-3. You can find the code listing for this
application in this book's sample files.

Figure 6-3: The XPath Evaluator sample application in action.

Initializing the Application
When the user clicks the Load button, a StreamReader object is used to load the
specified XML document and refresh the left text box, which displays the contents of
the XPath source document. I used the I/O API to read the document to preserve the
newline characters. An alternative approach consists of loading the document into the
XmlDocument class and then getting the source through the document element's
OuterXml property. In this case, however, what you get is a string of contiguous
characters that does not display well in a fixed-width text box.

 211

Setting the Context Node
As mentioned, the context node is the starting point of the query. The context node is
important if you specify a relative expression. In this case, the context node—that is,
the XmlNode object from which you call SelectNodes—determines the full path. The
context node is simply ignored if the expression contains an absolute location path, in
which case, the path must start from the XML root node.
The sample application first initializes the XML DOM and then sets the context node by
calling SelectSingleNode on the document object. For the sake of generality, this
application's user interface accepts a reference to the context node using an XPath
expression, as shown here:

XmlDocument doc = new XmlDocument();

doc.Load(xmlFile);

XmlNode cxtNode = doc.SelectSingleNode(ContextNode.Text);

In a real-world situation, you normally know what the context node is (typically, the XML
document root) and can locate it more efficiently using the ChildNodes collection. For
example, the following code shows how to set the context node to the document's root:

XmlNode cxtNode = doc.DocumentElement;

XmlNodeList nodes = cxtNode.SelectNodes(xpathExpr);

Performing the XPath Query

After you type the XPath expression, you click the Eval button to run the query. Note
that the node names in an XPath expression are case-sensitive and must perfectly
match the names in the original source document.
After the processor has processed the node list, the output string is built by calling the
BuildOutputString method and then displayed in the form's results panel via the
ShowResults method, as shown here:

string buf = "";

int nodeCount = 0;

XmlNodeList nodes = null;

try {

 nodes = cxtNode.SelectNodes(xpathExpr);

 nodeCount = nodes.Count;

}catch{}

if (nodes == null || nodeCount <= 0)

 buf = "<results>No nodes selected</results>";

else

 buf = BuildOutputString(nodes);

ShowResults(buf, nodeCount);

The results of the XPath query are rendered as an XML document. The root node is
<results>, which contains the outer XML code of each node found.

Post-Processing the Node-Set

Post-processing the output of an XPath query is a relatively common task if you have to
transfer the results to a different process or machine. In similar situations, you don't
have formatting concerns and can quickly arrange a final XML document, as follows:

 212

StringBuilder sb = new StringBuilder("<results>");

foreach(XmlNode n in nodes)

 sb.Append(n.OuterXml);

sb.Append("</results>");

return sb.ToString();

Our sample application intentionally follows a more sophisticated approach to display
formatted output in the text box. In addition, this code turns out to be a useful exercise
for understanding the logic of XML writers.

If you want to generate XML output in the .NET Framework, unless the text is short and
straightforward, you have no good reason for not using XML writers. Using XML writers
also provides automatic and free indentation. Don't think that choosing an XML writer
ties you to using a specific output stream. As the following code demonstrates, the
output of an XML writer can be easily redirected to a string:

string BuildOutputString(XmlNodeList nodes)

{

 // Create a string writer to hold the XML text. For
efficiency,

 // the string writer is based on a StringBuilder object.

 StringBuilder sb = new StringBuilder("");

 StringWriter sw = new StringWriter(sb);

 // Instantiate the XML writer

 XmlTextWriter writer = new XmlTextWriter(sw);

 writer.Formatting = Formatting.Indented;

 // Write the first element (No WriteStartDocument call is
needed)

 writer.WriteStartElement("results");

 // Loop through the children of each selected node and

 // recursively output attributes and text

 foreach(XmlNode n in nodes)

 LoopThroughChildren(writer, n);

 // Complete pending nodes and then close the writer

 writer.WriteEndElement();

 writer.Close();

 // Flush the contents accumulated in the string writer

 return sw.ToString();

}

Let's see what happens when we process the following XML document:

<MyDataSet>

 213

 <NorthwindEmployees>

 <Employee>

 <employeeid>1</employeeid>

 <lastname>Davolio</lastname>

 <firstname>Nancy</firstname>

 <title>Sales Representative</title>

 </Employee>

 ⋮
 </NorthwindEmployees>

</MyDataSet>

This document is the same XML representation of the Northwind's Employees
database that we used in previous chapters. To see the application in action, let's set
MyDataSet (the root) as the context node and try the following expression:

NorthwindEmployees/Employee[employeeid > 7]

The XPath query has two steps. The first step restricts the search to all the
<NorthwindEmployees> nodes in the source document. In this case, there is only one
node with that name. The second step moves the search one level down and then
focuses on the <Employee> nodes that are children of the current
<NorthwindEmployees> context node. The predicate [employeeid > 7] includes in the
final result only the <Employee> nodes with a child <employeeid> element greater than
7. The following XML output is what XPath Evaluator returns:

<results>

 <Employee>

 <employeeid>8</employeeid>

 <lastname>Callahan</lastname>

 <firstname>Laura</firstname>

 <title>Inside Sales Coordinator</title>

 </Employee>

 <Employee>

 <employeeid>9</employeeid>

 <lastname>Dodsworth</lastname>

 <firstname>Anne</firstname>

 <title>Sales Representative</title>

 </Employee>

</results>

Figure 6-4 shows the user interface of XPath Evaluator when it is set to work on our
sample document and expression.

 214

Figure 6-4: The node set returned by XPath Evaluator.

Note The preceding expression is an abbreviated form that could have been
more precisely expressed as follows:
NorthwindEmployees/Employee/self::*[child::employeeid
> 7]

You apply the predicate to the context node in person (self) and verify
that the employeeid node on its children has a value greater than 7.

The contents of the final node-set is determined by the node that appears in the last
step of the XPath expression. Predicates allow you to perform a sort of forward
checking—that is, selecting nodes at a certain level but based on the values of child
nodes. The expression NorthwindEmployees/Employee[employeeid > 7] is different
from this one:

NorthwindEmployees/Employee/employeeid[node() > 7]

In this case, the node set consists of <employeeid> nodes, as shown here:

<results>

 <employeeid>8</employeeid>

 <employeeid>9</employeeid>

</results>

Concatenating Multiple Predicates
An XPath expression can contain any number of predicates. If no predicate is specified,
child::* is assumed, and all the children are returned. Otherwise, the conditions set with
the various predicates are logically concatenated using a short-circuited AND operator.

Predicates are processed in the order in which they appear, and the next predicate
always works on the node-set generated by the previous one, as shown here:

Employee[contains(title, 'Representative')][employeeid >7]

 215

This example set first selects all the <Employee> nodes whose <title> child node
contains the word Representative. Next the returned set is further filtered by discarding
all the nodes with an <employeeid> not greater than 7.

Accessing the Selected Nodes
The SelectNodes method returns the XPath node set through an XmlNodeList data
structure—that is, a list of references to XmlNode objects. If you need simply to pass on
this information to another application module, you can serialize the list to XML using a
plain for-each statement and the XmlNode class's OuterXml property.
Suppose, instead, that you want to access and process all the nodes in the result set.
In this case, you set up a recursive procedure, like the following LoopThroughChildren
routine, and start it up with a for-each statement that touches on the first-level nodes in
the XPath node-set:

foreach(XmlNode n in nodes)

 LoopThroughChildren(writer, n);

The following procedure is designed to output the node contents to an XML writer, but
you can easily modify the procedure to meet your own needs.

void LoopThroughChildren(XmlTextWriter writer, XmlNode rootNode)

{

 // Process the start tag

 if (rootNode.NodeType == XmlNodeType.Element)

 {

 writer.WriteStartElement(rootNode.Name);

 // Process any attributes

 foreach(XmlAttribute a in rootNode.Attributes)

 writer.WriteAttributeString(a.Name, a.Value);

 // Recursively process any child nodes

 foreach(XmlNode n in rootNode.ChildNodes)

 LoopThroughChildren(writer, n);

 // Process the end tag

 writer.WriteEndElement();

 }

 else

 // Process any content text

 if (rootNode.NodeType == XmlNodeType.Text)

 writer.WriteString(rootNode.Value);

}

This version of the LoopThroughChildren routine is an adaptation of the routine we
analyzed in Chapter 5.

 216

A Better Way to Select a Single Node
In the section "The SelectSingleNode Internal Implementation," on page 255, I pointed
out that SelectSingleNode is not as efficient as its signature and description might
suggest. This XML DOM method is expected to perform an XPath query and then
return only the first node. You might think that the method works smartly, returning to
the caller as soon as the first node has been found.
Unfortunately, that isn't what happens. SelectSingleNode internally calls SelectNodes,
downloads all the nodes (potentially a large number), and then returns only the first
node to the caller. The inefficiency of this implementation lies in the fact that a
significant memory footprint might be required, albeit for a very short time.

So in situations in which you need to perform an XPath query to get only a subset of the
final node-set (for example, exactly one node), you can use a smarter XPath
expression. The basic idea is that you avoid generic wildcard expressions like the
following:

doc.SelectSingleNode("NorthwindEmployees/Employee");

Instead, place a stronger filter on the XPath expression so that it returns just the subset
you want. For example, to get only the first node, use the following query:

doc.SelectSingleNode("NorthwindEmployees/Employee[position() =
1");

The same pattern can be applied to get a matching node in a particular position. For
example, if you need to get the nth matching node, use the following expression:

doc.SelectSingleNode("NorthwindEmployees/Employee[position() <
n+1");

Using such XPath expressions with SelectSingleNode does not change the internal
implementation of the method, but those expressions require downloading a smaller
subset of nodes prior to returning the first matching node to the caller.
The same XPath expression, if used with SelectNodes, returns a subset of the first n
matching nodes:

doc.SelectNodes("NorthwindEmployees/Employee[position() < n+1");

The .NET XPath Navigation API

The XML DOM support for XPath expressions has a double goal. First, it smooths the
transition from MSXML COM code to the .NET Framework. Second, it gives you a built-
in and easy-to-use mechanism to search for nodes in a memory-mapped XML
document. As mentioned, the core .NET API for processing XPath expressions is built
into a tailor-made class named XPathNavigator.
You access the navigator object either from the XmlDocument class or from the newest
XPathDocument class. Figure 6-5 illustrates the relationship between the two ways of
accessing XPath functions in the .NET Framework.

 217

Figure 6-5: Applications can access XPath through either XmlDocument or
XPathDocument. In both cases, the actual query is performed by a .NET XPath navigator
object.

As you can see, the XmlDocument and XPathDocument classes have different internal
layouts. XmlDocument implements XML DOM, whereas XPathDocument provides a
more agile and compact structure, designed to speed XPath-driven navigation. (Later in
this chapter, in the section "The XPathDocument Class," on page 281, I'll have more to
say about this.)

No matter the application-level API, the sequence of steps necessary to execute XPath
queries on an XML data source is always the same:

1. Get a reference to an XPath-enabled document class (for example, an
instance of an XPathDocument or XmlDocument class).

2. Create a navigator object for the class instance.

 218

3. Optionally, precompile the XPath expression.
4. Call the Select method on the navigator object to act on the specified

XPath expression.

The XPathNavigator Class
The programming interface of the navigator object is defined in the XPathNavigator
abstract class. The XPathNavigator class represents a generic interface designed to act
as a reader for any data that exposes its contents as XML.
Functionally speaking, the XPathNavigator class is not much different from a pseudo-
class that simply groups together all the XML DOM methods (ChildNodes,
SelectNodes, and SelectSingleNode) to navigate the document contents. The big
difference lies in the fact that XPathNavigator is a distinct component completely
decoupled from the document class. As mentioned, XPathNavigator represents a
generic interface to navigate and read data from any XML-based, or XML-looking,
contents.
The XPathNavigator class enables you to move from one node to the next and perform
XPath queries. In the .NET Framework, only three classes support XPath navigators:
XmlDocument, XPathDocument, and XmlDataDocument.
An XPath navigator works on top of a special breed of XML document class that is
generically referred to as an XPath data store. An XPath data store is simply any .NET
Framework class that exposes its contents as XML and that can be queried using
XPath expressions. An XPath data store can be based on a native XML stream or other
data sources exposed as XML. For example, both the XmlDocument and
XPathDocument classes are built from well-formed XML data. In contrast, the
XmlDataDocument class exposes as XML the contents of an ADO.NET DataSet object.
In all cases, however, the XPath query and navigation API works just fine.

As a stand-alone class providing a programming interface, the navigator is much more
than a simple collection of XPath-related methods. The XPath navigator is not bound to
a particular class document and can be associated with a number of data container
classes.
A .NET Framework class becomes XPath-enabled simply by implementing the
IXPathNavigable interface. This interface consists of a single method, CreateNavigator,
that creates and returns an instance of a document-specific navigator object, as shown
here:

public interface IXPathNavigable

{

 XPathNavigator CreateNavigator();

}

All document-specific navigators derive from the XPathNavigator abstract class.

XPath Navigators and XML Readers
The MSDN documentation defines an XPath navigator as a class that reads data from
an XML-based data store using a cursor model. XPathNavigator, therefore, provides
read-only, random access to the underlying XML-based data. The navigator has a
notion of the current node and advances the internal pointer using a series of move
methods. When the navigator is positioned on a given node, all of its properties reflect
the value of that node. How is this different from the XML readers that we encountered
in Chapter 2?

XPath navigators and XML readers are radically different objects, although both look
like client-side cursors for reading XML data. Let's review the key differences:

 219

 Connection model Both readers and navigators work on top of a data
source. Readers, however, work connected to the input stream, which is
often a persistent storage medium like a disk file. Navigators always work
on memory-mapped data sources like XML DOM or more optimized and
specialized structures. Readers must be closed when you have finished
with them; navigators are simply garbage-collected when they go out of
scope. A parallel can be drawn with ADO.NET data readers and DataSet
objects. An XML data reader object, like the SqlDataReader base class, is
connected to the data source, whereas a DataSet object is a disconnected
object.

 Navigation interface Readers are simple read-only and forward-only
cursors. Navigators too are read-only, but they let you move forward and
backward. The navigator's set of move methods is significantly richer. In
particular, the set includes methods for going to the root of the underlying
document, for reaching the parent node, for reaching the next and the
previous sibling, for reaching the node where the given namespace is
defined, and even more. In addition, you can synchronize the navigator
position with the current position on another navigator object.

 Programming interface Navigators provide rich XPath capabilities and
supply methods that perform XPath queries and return groups of related
nodes. You have a generic Select method but also ad hoc selection
methods that specialize on the most common XPath axes, such as
descendant, ancestor, and child. In addition, navigators can simply
evaluate an XPath expression and return the value.

Conceptually, XPath navigators and XML readers occupy diametrically opposed
positions in the .NET XML puzzle. Moreover, this difference clearly stems from their
names. Navigators are thought to traverse XML-based or XMLlooking data. XML
readers are simply lower-level tools that you can use to read XML-based or XML-
looking data and build in-memory data structures that navigators rely on.

Note As mentioned, XML readers and navigators work on XMLbased or

XML-looking data. XML-based data refers to data persisted, or just
read, as well-formed XML. As we saw in Chapter 2, however, you
can use specialized reader classes to publish non-XML data
through a virtual XML tree. Likewise, a navigator can be built to
work on top of a data store that creates a virtual XML tree from non-
XML data. XML-looking data refers to just such virtual XML trees.

The XPathNavigator Programming Interface
Let's briefly review the properties and methods that form the programming interface of
the XPathNavigator class. A valid instance of the class can be obtained by calling the
CreateNavigator method on any .NET Framework class that implements the
IXPathNavigable interface.

Properties of the XPathNavigator Class
Table 6-3 summarizes the properties of the XPathNavigator class. As you can see,
most of these properties reflect the characteristics of the currently selected node.

Table 6-3: Properties of the XPathNavigator Class

Property Description

BaseURI Gets the base URI of the current node

 220

Table 6-3: Properties of the XPathNavigator Class

Property Description

HasAttributes Indicates whether the current node has any attributes

HasChildren Indicates whether the current node has any child nodes

IsEmptyElement Indicates whether the current node is empty (for
example, <node />)

LocalName Gets the name of the current node without the
namespace prefix

Name Gets the fully qualified name of the current node

NamespaceURI Gets the URI of the namespace associated with the
current node

NameTable Gets the name table associated with the navigator

NodeType Gets the type of the current node

Prefix Gets the namespace prefix associated with the current
node

Value Returns a string denoting the value of the current node

XmlLang Gets the xml:lang scope for the current node

Like XML readers and XML DOM documents, an XPath navigator employs a name
table to more efficiently store strings. The set of properties looks like the subset of
properties that in the XmlTextReader class characterizes the current node.

Methods of the XPathNavigator Class
The tables in this section group the methods available in the XPathNavigator class into
three main categories: move methods, selection methods, and miscellaneous methods.
Table 6-4 lists the move methods.

Table 6-4: XPathNavigator Move Methods

Method Description

MoveTo Moves to the same position as the specified
XPathNavigator object.

MoveToAttribute Moves to the specified attribute of the current
node.

MoveToFirst Moves to the first sibling of the current node.

MoveToFirstAttribute Moves to the first attribute of the current node.

MoveToFirstChild Moves to the first child of the current node.

MoveToFirstNamespace Moves to the first namespace in the current
element node.

MoveToId Moves to the node with an attribute of type ID
whose value matches the given string.

MoveToNamespace Moves to the namespace node with the
specified prefix in the current element node. A
namespace node is seen as an attribute node
with the xmlns name. The real name of the

 221

Table 6-4: XPathNavigator Move Methods

Method Description

namespace node is the prefix.

MoveToNext Moves to the next sibling of the current node.

MoveToNextAttribute Moves to the next attribute of the current node.

MoveToNextNamespace Moves to the next namespace in the current
element node.

MoveToParent Moves to the parent of the current node.

MoveToPrevious Moves to the previous sibling of the current
node.

MoveToRoot Moves to the root node of the document.

The MoveTo method attempts to synchronize the current instance of the
XPathNavigator object with another instance. MoveTo returns true or false depending
on the success or failure of the operation. Note that the synchronization always fails if
the two navigators are actually implemented through different and incompatible classes.
Two navigators have different implementations if the other navigator can't be cast to the
current type.

Consider the following pseudocode:

public bool MoveTo(XPathNavigator other)

{

 InternalXPathNavigator nav = other as InternalXPathNavigator;

 if (nav == null)

 return false;

 ⋮
}

In C#, the as operator behaves like a cast except that, when the conversion fails, it
returns null rather than raising an exception. In the preceding pseudocode, the
InternalXPathNavigator class represents the actual (and internal) navigator class you
got from the document's CreateNavigator method. Each XPathenabled document class
actually instantiates a custom navigator class and returns that class when you call its
CreateNavigator method.
The MoveTo method also might fail when the two navigators share the same
implementation but point to different document instances. What happens in this case,
however, depends on the specific implementation. In particular, MoveTo fails when the
document class is XmlDocument or XmlDataDocument, but not when the underlying
data object is an instance of XPathDocument.

Namespace Node Navigation

As you might have noticed in Table 6-4, there are three types of move methods: for
element, attribute, and namespace nodes. Calling the wrong method on a node
causes the whole operation to fail, and there is no change in the position of the
navigator. Only MoveTo and MoveToRoot can be called on any node, irrespective of

 222

the type. In addition, attributes and namespaces also have ad hoc methods to return
their values: GetAttribute and GetNamespace.
When you call either MoveToFirstNamespace or MoveToNextNamespace, you can
specify an argument of type XPathNamespaceScope. The XPathNamespaceScope
enumeration has three values: All, ExcludeXML, and Local. All returns all namespaces
defined in the scope of the current node, including xmlns:xml, which is always
declared implicitly. ExcludeXml returns all namespaces defined in the scope of the
current node, excluding xmlns:xml. Local returns all namespaces that are defined
locally at the current node. Whatever value you specify, the order of the namespaces
returned is not defined. A namespace node is a special type of attribute node. When
selected, the navigator's Name property returns the namespace prefix. The Value
property, on the other hand, returns the URI.

Table 6-5 lists the XPathNavigator class's methods for selecting nodes through XPath
queries.

Table 6-5: XPathNavigator' Selection Methods

Method Description

Select Returns the node-set selected by the specified XPath
expression. The context for the selection is the
position of the navigator when the method is called.
The XPath expression can be passed in as plain text
or in a compiled form.

SelectAncestors Selects all the ancestor element nodes of the current
node. You can narrow the returned node-set by
specifying a node name and a namespace URI to
match.

SelectChildren Selects all the child nodes of the current node. You
can narrow the node-set by specifying a node name
and a namespace URI to match. Attributes and
namespace nodes are not included.

SelectDescendants Selects all the descendant nodes of the current node.
You can narrow the node-set by specifying a node
name and a namespace URI to match. Attributes and
namespace nodes are not included.

None of these methods produces any effect on the state of the XPathNavigator object.
The following code snippet demonstrates how to select the descendants of a node. The
code to get the ancestors is nearly identical.

// Create the underlying XPath-enabled document object

XPathDocument doc = new XPathDocument(fileName);

// Create the navigator for the specified object

XPathNavigator nav = doc.CreateNavigator();

// Select the descendants of the current node that match

// the specified criteria

nav.SelectDescendants(nodeName, nsUri, selfIncluded);

 223

SelectDescendants, as well as SelectAncestors, has the following two over-loads. The
former takes a node type and returns only the nodes of that type, if any. The latter takes
a node name and a namespace URI.

XPathNodeIterator SelectDescendants(XPathNodeType, bool);

XPathNodeIterator SelectDescendants(string, string, bool);

If you pass both the node name and the namespace URI as empty strings, all
descendant nodes with no namespace information are selected. This method, and the
homologous SelectAncestors and SelectChildren methods, is a specialized query
performed along the corresponding XPath axis.
The Boolean argument you specify in the method signatures indicates whether the
context node must be included in the final node-set. Setting the argument to true is
equivalent to working along the descendant-or-self axis.

Important As you might have noticed, all selection methods return a new
type of object—the XPathNodeIteratorclass. This class will be
covered in detail in the section "The XPathNodeIterator Class,"
on page 285. For now, suffice to say that an XPath iterator
provides a generic way to visit a set of selected nodes. From
this point of view, an iterator is not much different from an
enumerator—just a bit more specialized.

Table 6-6 lists the remaining XPathNavigator methods.

Table 6-6: XPathNavigator Miscellaneous Methods

Method Description

Clone Clones the navigator and returns a new object with the
same current node.

ComparePosition Compares the position of the current navigator with the
position of the specified XPathNavigator object.

Compile Compiles an XPath expression.

Evaluate Evaluates the given XPath expression and returns the
result.

GetAttribute Gets the value of the specified attribute, if such an
attribute exists on the current node.

GetNamespace Gets the URI of the specified namespace prefix, if such
a namespace exists on the current node.

IsDescendant Indicates whether the specified navigator is a
descendant of the current navigator. A navigator is a
descendant of another navigator if it is positioned in a
descendant node.

IsSamePosition Indicates whether the current navigator is at the same
position as the specified navigator.

Matches Determines whether the current node matches the
specified XPath expression.

 224

As you can see, several methods have to do with XPath expressions that are often
rendered as instances of the XPathExpression class. But why do we need to express
an XPath command using a new class?

XPath Expressions in the .NET Framework
An XPath expression is first of all a string that represents a location path, but an XPath
expression is a bit more than a plain command string. It has a surrounding context that
is just what the .NET Framework XPathExpression class encapsulates. The context of
an expression includes the return type and the namespace information to handle the
involved nodes.

The XPathExpression Class
Table 6-7 lists the methods and properties that characterize a .NET Framework XPath
expression.

Table 6-7: Properties and Methods of the XPathExpression Class

Name Description

Expression Property that returns the XPath expression as a string.

ReturnType Property that returns the computed result type of the
expression.

AddSort Method that sorts the nodes selected by the expression.

Clone Method that clones the XPathExpression object.

SetContext Method that sets the necessary information to use for
resolving nodes namespaces. The information is passed,
packed into an object of type XmlNamespaceManager.

Looking at the programming interface of the XPathExpression class, you'll notice the
methods Clone and AddSort. As its name suggests, Clone makes a deep copy of the
object, creating a brand-new and identical object. AddSort, on the other hand,
associates the expression with a sorting algorithm that will be automatically run once
the node-set for the expression has been retrieved.
The XPathExpression class is not publicly creatable. To get a new instance of this
class, you must take a plain XPath string expression and compile it into an
XPathExpression object.

Compiling Expressions
Both the XML DOM SelectNodes method and the navigator object's Select method let
you execute an XPath query indicating the expression as plain text. In spite of this
simplified programming interface, in the .NET Framework, an XPath expression can
execute only in its compiled form. This means that both the aforementioned methods
silently compile the provided text into an XPathExpression before proceeding.

Note In this context, the term compile does not mean that the XPath
expression is transformed into an executable (and/or managed)
piece of code. More simply, the action of compiling must be literally
seen as the process that produces an object by collecting and
putting together many pieces of information.

There are several advantages to compiling the expression yourself. For one thing, you
can reuse the compiled object over and over. If you repeatedly call an XPath selection
method to work on the same expression, each time the method will instantiate the same
object. If you have a compiled expression, you save a few operations.

 225

In addition, a compiled expression lets you know in advance about the expected return
type. The return type is one of the values defined in the XPathResultType enumeration,
shown in Table 6-8.

Table 6-8: XPath Return Types

Type Description

Any Represents any of the XPath node types

Boolean Represents a Boolean value

Error When returned, the expression does not evaluate to a correct
XPath type

Navigator Described as a value that returns a tree fragment; in the current
version of the .NET Framework, implemented as a synonym of
String

NodeSet Represents a collection of nodes

Number Represents a numeric, floating-point value

String Represents a string value

The Boolean, NodeSet, Number, and String types come directly from the W3C
specification; the others represent extensions. However, Any and Error do not introduce
any new functionality but simply make more consistent the enumeration type.
If you use a compiled expression, you can add namespace information to process the
nodes and define a sorting algorithm for the resultant node-set. All this extra information
remains associated with the XPathExpression object and can be reused at will.
To compile an expression, you use the Compile method of the XPathNavigator class.
The method takes a string and returns an XPathExpression object, as shown here:

XPathDocument doc = new XPathDocument(fileName);

XPathNavigator nav = doc.CreateNavigator();

XPathExpression expr = nav.Compile(xpathExpr);

// Output the expected return type

Console.WriteLine(expr.ReturnType.ToString());

// Execute the expression

nav.Select(expr);

A compiled XPath expression can be consumed by a few navigator methods, including
Select, Evaluate, and Matches.

Important Unlike the navigator's Select method, the XML DOM
SelectNodes method can't accept a compiled XPath
expression. Internally, the SelectNodes method creates an
instance of the navigator object that actually compiles the
XPath string into an XPathExpression object. In this case,
however, there is no object reuse.

 226

Setting Namespace Information
The information you can pass through the SetContext method helps the XPath
processor to resolve any namespace references in the expression. If no prefix appears
in the expression, it is assumed that the namespace URI for all nodes is the empty
namespace. Otherwise, you must let the processor know about defined prefix and
namespace URI mappings.
You create an XmlNamespaceManager object, pack it with all the needed information,
and then use the SetContext method to register it with the XPath expression object, as
shown here:

// Create the navigator

XPathDocument doc = new XPathDocument(fileName);

XPathNavigator xnm = doc.CreateNavigator();

// Create and populate the XML namespace manager

XmlNamespaceManager xnm = new
XmlNamespaceManager(nav.NameTable);

xnm.AddNamespace("dd", "urn:dino-e");

xnm.AddNamespace("es", "http://www.contoso.com");

// Set the expression's context

XPathExpression expr = nav.Compile(xpathExpr);

expr.SetContext(xnm);

The .NET XPath processor is designed to look for the namespace manager on the
XPath expression object prior to proceeding.

Evaluating Expressions
As mentioned, when evaluated, an XPath expression can return any of four basic types:
node-set, Boolean, number, or string. If the return type is a node-set, you can run the
expression through both the Select method and the Evaluate method.
The Select method returns an object of type XPathNodeIterator that you can use to
walk your way through the members of the node-set. Unlike Select, the Evaluate
method returns a generic object type, which it is your responsibility to cast to the correct
strong type, as in the following example:

XPathNodeIterator iterator = (XPathNodeIterator)
nav.Evaluate(expr);

Expressions that do not return a node-set can be used only with the Evaluate method.
In this case, however, you must also cast the returned object to a strong type, as shown
here:

string buf = (string) nav.Evaluate(expr);

The Evaluate method has no effect on the state of the navigator. An interesting
overload for the method is shown here:

public object Evaluate(

 XPathExpression expr,

 XPathNodeIterator context

);

 227

Normally, the expression is evaluated using the current node in the navigator as the
context node. Using this overload, however, you can control the context node for the
expression. If the context argument is null, the method works as usual. Otherwise, if
context points to a valid iterator object, the current node in the iterator is used to
determine the context node for the XPath expression.

Sorting the Node-Set
An interesting extension to the XPath programming model built into the
XPathExpression class and the XPath processor is the ability to sort the node-set
before it is passed back to the caller. To add a sorting algorithm, call the AddSort
method of the XPathExpression object. AddSort allows for two overloads, as follows:

public void AddSort(

 object expr,

 IComparer comparer

);

public void AddSort(

 object expr,

 XmlSortOrder order,

 XmlCaseOrder caseOrder,

 string lang,

 XmlDataType dataType

);

The expr argument denotes the sort key. It can be a string representing a node name or
another XPathExpression object that evaluates to a node name. In the first overload,
the comparer argument refers to an instance of a class that implements the IComparer
interface. The interface supplies a Compare method that is actually used for comparing
a pair of values. Use this overload if you need to specify a custom algorithm to sort
nodes.

Using the Comparer Object
To sort arrays of objects, the .NET Framework provides a few predefined comparer
classes, including Comparer and CaseInsensitiveComparer. The former class
compares objects (including strings) with respect to the case. The latter class does the
same, but irrespective of the case. To use both classes in your code, be sure to import
the System.Collections namespace.
The Comparer class has no public constructor but provides a singleton instance
through the Default static property, as shown here:

expr.AddSort("lastname", Comparer.Default);

If you need to create your own comparer class, do as follows:

class MyOwnStringComparer : IComparer

{

 public int Compare(object x, object y)

 {

 228

 string strX = (string) x;

 string strY = (string) y;

 // 0 if equals, >0 if x>y, <0 if x<y

 return String.Compare(strX, strY);

 }

}

This class can also be defined within the body of your application and does not
necessarily require a separate assembly.

The second overload of the AddSort method always performs a numeric or text
comparison according to the value of the dataType argument. In addition, you can
specify a sorting order (ascending or descending) and even the sort order for
uppercase and lowercase letters. In practice, you can decide whether lowercase letters
must come before or after uppercase letters. The constant XmlCaseOrder.None simply
ignores the case. Finally, the lang argument indicates the language to use for
comparison—for example, "us-en" for U.S. English.
The following code snippet selects all the <Employee> nodes from our original sample
XML file. This time, we make use of a compiled expression with sorting capabilities.

XPathDocument doc = new XPathDocument(fileName);

XPathNavigator nav = doc.CreateNavigator();

XPathExpression expr;

expr = nav.Compile("/MyDataSet/NorthwindEmployees/Employee");

expr.AddSort("lastname",

 XmlSortOrder.Ascending, XmlCaseOrder.None,

 "", XmlDataType.Text);

XPathNodeIterator iterator = nav.Select(expr);

The iterator now returns nodes sorted in ascending order on the values stored in the
lastname child nodes.
Is there a way to sort by multiple fields? As mentioned, the expr argument of the
AddSort method can also be an XPath expression, and by exploiting this feature, you
can involve more nodes in the sort process. When sorting database tables, you
normally indicate the sortable columns in a comma-separated string. In this case, you
must provide a valid XPath expression. The expression will be evaluated to a string and
the actual value used to sort nodes. To concatenate the contents of two or more nodes,
you must resort to the XPath concat core function—the only XPath way to concatenate
strings. The following code sorts by title and lastname. To demonstrate the flexibility of
the solution, the node contents are separated with an unnecessary comma.

string sortKey = "concat(concat(title, ','), lastname)";

Figure 6-6 demonstrates that using the AddSort method does change the structure of
the final node-set.

 229

Figure 6-6: The sample application sorts nodes by title and lastname.

To generate the output shown in this figure, I made use of an XPath iterator to visit all
the nodes and their own subtrees. We'll examine this code in detail in the section
"Visiting the Selected Nodes," on page 286, but first we'll take a look at the internal
layout of the XML document classes the navigator relies on.

XPath Data Stores
As mentioned, an XPath navigator works on top of an ad hoc document class. The
.NET Framework provides three XPath-enabled classes: XmlPathDocument,
XmlDocument, and XmlDataDocument. These classes have in common the
IXPathNavigable interface.
In theory, each .NET Framework class can become XPath-enabled. In practice,
however, only a subset of classes is a good candidate. In the first place, the class must
act as the in-memory repository of some sort of content. Second, this content must be,
or must be exposed as, XML. When these two prerequisites are met, classes can
reasonably implement the IXPathNavigable interface and create their own navigators.
An XPath navigator is always class-specific and is built by inheriting from the abstract
class XPathNavigator. Although in practice you always use navigators through the
generic reference type of XPathNavigator, each class has its own navigator object.
Table 6-9 lists these internal, undocumented classes; they are programmatically
unaccessible, and often each is implemented in a different way. Despite this
complexity, however, the classes' application-level programming interface is common
and is based on their base class XPathNavigator.

Table 6-9: Document-Specific Navigator Classes

Document Class Corresponding Internal Navigator Class

XPathDocument System.Xml.XPath.XPathDocumentNavigator

XmlDocument System.Xml.DocumentXPathNavigator

XmlDataDocument System.Xml.DataDocumentXPathNavigator

The document-specific navigator exploits the internal layout of the document class to
provide the navigation API. A document-specific navigator can also have new methods
and properties that make sense to a particular implementation. In this case, however,

 230

the navigator's author must carefully document the new features; otherwise, it would be
hard for a caller to exploit them through the generic XPathNavigator interface.

In the following sections, we'll review the characteristics of the various XPath-enabled
document classes.

The XPathDocument Class
The XPathDocument class provides a highly optimized, read-only in-memory cache for
XML documents. Specifically designed to serve as an XPath data container, the class
does not provide any information or identity for nodes. XPathDocument simply creates
an underlying web of node references to let the navigator operate quickly and
effectively. XPathDocument does not respect any XML DOM specification and has only
one method—CreateNavigator.
The internal architecture of the XPathDocument class looks like a linked list of node
references. Nodes are managed through an internal class (XPathNode) that represents
a small subset of the XmlNode class, which is the official XML DOM node class in the
.NET Framework. You can access the XML nodes of the document only through the
properties exposed by the navigator object. (See Table 6-3.)
The following code shows how to create a new, XPathDocument -driven navigator
object:

XPathDocument doc = new XPathDocument(fileName);

XPathNavigator nav = doc.CreateNavigator();

The returned navigator is positioned at the root of the document. The XPathDocument
class supports only XML-based data sources, and you can initialize it from disk files,
streams, text, and XML readers.

Tip You can also initialize an XPath document using the output returned
by the ExecuteXmlReader method of the SqlCommand ADO.NET
class. The method builds and returns an XML reader using the result
set of a SQL query, as shown here:
SqlCommand cmd = new SqlCommand(query, conn);
XmlTextReader reader = (XmlTextReader)
cmd.ExecuteXmlReader();
XPathDocument doc = new XPathDocument(reader);

The XmlDocument Class
XmlDocument is the class that represents the .NET Framework implementation of the
W3C-compliant XML DOM. This aspect of XmlDocument was covered in detail in
Chapter 5.
Unlike XPathDocument, the XmlDocument class provides read/write access to the
nodes of the underlying XML document. In addition, each node can be individually
accessed and sets of nodes can be selected through XPath queries run by the
SelectSingleNode and SelectNodes methods, respectively.
The XmlDocument class also enables you to create a navigator object. In this case,
however, the navigator will work on a much more rich and complex web of node
references. The following code shows how to get the navigator for the XmlDocument
class:

XmlDocument doc = new XmlDocument();

doc.Load(fileName);

XPathNavigator nav = doc.CreateNavigator();

 231

In particular, XmlDocument's navigator class extends the interface of the standard
navigator by implementing the IHasXmlNode interface. This interface defines just one
method, GetNode, as shown here:

public interface IHasXmlNode

{

 XmlNode GetNode();

}

Using this method, callers can access and query the currently selected node of the
navigator. This feature is simply impossible to implement for navigators based on
XPathDocument because it exploits the different internal layout of the XmlDocument
class. By design, the XPathDocument class minimizes the memory footprint and does
not provide node identity.
If the GetNode method is an extension to the XPathNavigator base class, how can
callers take advantage of it? Here's a code snippet:

XmlDocument doc = new XmlDocument();

doc.Load(fileName);

XPathNavigator nav = doc.CreateNavigator();

XmlNode node = ((IHasXmlNode) nav).GetNode();

At this point, the caller program has gained full access to the node and can read and
update it at will.

Note When created, the XmlDocument navigator is not positioned on the

root of the document. Instead, it is positioned on the node from
which the CreateNavigator method was called.

The XmlDataDocument Class
The XmlDataDocument class is an extension of XmlDocument designed to allow the
manipulation of a relational DataSet object through XML. The class also allows for
rendering XML data as a relational DataSet object; but this aspect is less important
here. (We will return to this topic in Chapter 8.)
The XmlDataDocument class provides a CreateNavigator method to let callers navigate
the XML representation of an ADO.NET DataSet object. This is a neat example of the
fact that the .NET Framework navigation API can be indifferently applied to XML-based
data as well as XML-looking data. Like the XmlDocument navigator, the
XmlDataDocument navigator also is not positioned on the root of the document but is
positioned on the node from which the CreateNavigator method was called.

Custom Navigator Objects
The .NET Framework navigation API is extensible with navigator objects that work on
top of particular XML documents or any other data exposed through a virtual XML node
structure. To XPath-enable a given data source, you create a class that inherits from
XPathNavigator. You can associate this new navigator class with a document class or
make it a stand-alone creatable class. The MSDN documentation includes an example
class named FileSystemNavigator. I extracted it from the documentation and compiled
the C# and Microsoft Visual Basic code into an assembly. The assembly is available in
this book's sample files.

The file system navigator supports a virtual node structure similar to the following:

<root Name="…" CreationTime="…">

 232

 <folder Name="…" CreationTime="…" />

 <folder Name="…" CreationTime="…">

 <file Name="…" CreationTime="…" Length="…" />

 <file Name="…" CreationTime="…" Length="…" />

 ⋮
 </folder>

</root>

Notice that the sample file system navigator places all subfolders of the context folder
at the same level, thus losing any hierarchical information. The following code snippet
shows how the custom navigator can be created and used:

XPathNavigator nav = new FileSystemNavigator("c:\\folder");

// Exclude the folder itself but not all the subfolders.

// (If you run this on c:\ a VERY LONG list of nodes is
returned...)

XPathNodeIterator it = nav.Select("descendant::*[position()
>1]");

while(it.MoveNext())

 Console.WriteLine(it.Current.Name);

In this case, the architecture of the sample code makes it significantly harder to execute
a query that selects only the children of the context folder. The preceding listing returns
all the folders and files below the c:\ folder despite the effective parent folder. The
predicate [position() >1] skips over the context folder name.

Tip When you plan to build a navigator for a persistent data source (for
example, a database, the file system, or the registry), you can do
without a document class. A document class is key when there is no
other API to provide the in-memory infrastructure for navigation. In
the previous example, the DirectoryInfo and FileInfo classes provide
the core API used by the FileSystemNavigator object. In this case,
they actually play the role of the XPath document class.

XPath Iterators

When the XPath expression originates a node-set, the navigator object always returns it
using a new breed of object—the node iterator. The node iterator is a relatively simple
object that provides an agile, common interface to navigate an array of nodes. The
base class for XPath iterators is XPathNodeIterator.
The node iterator does not cache any information about the identity of the nodes
involved. It simply works as an indexer on top of the navigator object that operated the
XPath query. All the functionalities you might find in the implementation of any
XPathNodeIterator classes could have been easily packed into the navigator itself. Why
then does the .NET Framework provide the navigation and the iteration API as distinct
components?

 233

First, decoupling data containers from navigators, and navigators from iterators,
represents a good bargain from the software standpoint. The ultimate reason for
keeping the navigation and the iteration API distinct, however, is that in this way the
results of any XPath query can be easily accessed and processed from different
programming environments—XML DOM, XPath, and, last but not least, XSLT.

The XPathNodeIterator Class
The XPathNodeIterator class has no public constructor and can be created only by the
parent navigator object. The iterator provides forward-only access to the nodes
selected by XPath query. Callers use the iterator's methods and properties to access all
the nodes included in the node-set. Figure 6-7 illustrates the relationship between
callers, navigators, and iterators. A caller passes an XPath expression. The navigator
executes the command and gets a node-set. The caller then receives an iterator object
to access the members of the node-set. Current, Count, and MoveNext are the key
members of the iterator's programming interface.

Figure 6-7: The relationship between callers, navigators, and iterators.

Properties of the Iterator Object
Table 6-10 summarizes the properties exposed by the XPathNodeIterator class.

Table 6-10: Properties of the XPathNodeIterator Class

Property Description

Count Returns the number of elements in the node-set. This
value refers to the top-level nodes and does not consider
child nodes.

Current Returns a reference to a navigator object rooted in the

 234

Table 6-10: Properties of the XPathNodeIterator Class

Property Description

iterator's current node.

CurrentPosition Gets the index of the currently selected node.

The Current property is the key property for callers to drill down into the structure of the
selected node. In the XPath Evaluator sample application we discussed earlier in this
chapter, at a certain point we had to examine the subtree of each node included in the
node-set. The code in Figure 6-4 uses a recursive routine (named
LoopThroughChildren) to navigate the subtree of a given node.
The navigator/iterator pair makes that task quite straightforward to accomplish. The
Current property already returns a reference to the XPathNavigator object rooted in the
currently selected node. Pay attention to the fact that what you get is not a copy of the
navigator but a simple reference. If you need to dig into the node structure, make a
deep copy of the navigator first. For the purpose, you can use the navigator's Clone
method.

Methods of the Iterator Object
Table 6-11 lists the public methods of an iterator object.

Table 6-11: Methods of the XPathNodeIterator Class

Method Description

Clone Makes a deep copy of the current XPathNodeIterator object

MoveNext Moves to the next node in the navigator's selected node-set

When MoveNext is called, the iterator adjusts some internal pointers and refreshes its
Current and CurrentPosition properties. When the iterator is first returned to the caller,
there is no currently selected node. Only after the first call to MoveNext does the
Current property point to a valid navigator object.

Visiting the Selected Nodes
Let's review the typical way in which an XPath iterator works. Suppose that you just
executed an XPath command using an XPathNavigator object, as shown here:

XPathDocument doc = new XPathDocument(fileName);

XPathNavigator nav = doc.CreateNavigator();

XPathNodeIterator iterator = nav.Select(expr);

To visit all the selected nodes, you set up a loop controlled by the iterator's MoveNext
method, as follows:

while (iterator.MoveNext())

{

 XPathNavigator nav2 = iterator.Current.Clone();

 ⋮
}

In real-world applications, you need to drill down into the subtree of each node
referenced in the XPath node-set. You should not use the navigator returned by the
Current property to move away from the node-set. Instead, you should clone the object

 235

and use the cloned navigator to perform any additional moves. The following code
snippet generates the output shown in Figure 6-6:

while (iterator.MoveNext())

{

 XPathNavigator _copy = iterator.Current.Clone();

 string buf = "";

 // Select the <employeeid> node and read the current value

 _copy.MoveToFirstChild();

 buf += _copy.Value + ". ";

 // Select the <lastname> node and read the current value

 _copy.MoveToNext();

 buf += _copy.Value;

 // Select the <firstname> node and read the current value

 _copy.MoveToNext();

 buf += ", "+ _copy.Value;

 // Select the <title> node and read the current value

 _copy.MoveToNext();

 buf += "\t["+ _copy.Value + "]";

 // Write out the final result

 Console.WriteLine(buf);

}

Of course, the cloned and the original XPathNavigator objects are totally distinct and
independent objects, and the clone is not affected by any subsequent changes made to
the original navigator.

Conclusion

On the long road to standardization, XPath seems like the first significant step toward a
universal query language to keep up with the universal protocol (HTTP), the universal
data description language (XML), and the universal remote procedure call protocol
(SOAP).
With XPath, you gain the ability to identify and process a group of related nodes from
an XML-driven data source. This ability can be exploited by a number of different client
environments. XML DOM classes, for example, can use XPath for in-memory data
retrieval. XPath is also great for querying XML representations of relational data held
both in disconnected structures (such as XmlDataDocument) and in more traditional
APIs like XML Extensions for SQL Server 2000. (See Chapter 10.)
XSLT is another programming environment that successfully leverages XPath. XSLT is
particularly powerful when it comes to applying code templates to XML subtrees. XPath

 236

supplies the underlying means to identify those nodes declaratively. XPathNavigator
supports XSLT and can be used as an input mechanism to the XslTransform class.
We'll look at XSLT in more detail in Chapter 7.

This chapter presented two high-level APIs to evaluate XPath expressions: the XML
DOM–based API and the newest, .NET Framework–specific navigation API. As we've
seen, under the hood, the two APIs make use of the same core code. What's new with
XPath in the .NET Framework is the concept of the navigator object, especially in
conjunction with the iterator object.

The navigator is a self-contained API used to navigate an XML-based, or XML-looking,
data source. The iterator is a child object that comes in handy for accessing the results
of XPath queries run by the navigator. All the underlying data structures are extremely
optimized and compact. So if you're looking for efficiency, run your XPath queries using
the navigation API.

Further Reading

The official XPath specification is available at http://www.w3.org/TR/xpath. This chapter
also mentioned XPointer and XInclude as XPath-related technologies. You can find
their current W3C status and most recent specifications at http://www.w3.org/TR/xptr
and http://www.w3.org/TR/xinclude.
Like many other XML-related technologies, XPath is well covered in different forms in
Essential XML Quick Reference, written by Aaron Skonnard and Martin Gudgin
(Addison-Wesley, 2001) and mentioned in previous chapters. For even quicker and
more compact references, check out the "The XML Files," a monthly column in MSDN
Magazine, at http://msdn.microsoft.com/msdnmag. Finally, the following URL points you
to a recent and useful article about XPath and namespaces:
http://msdn.microsoft.com/library/en-us/dnexxml/html/xml05202002.asp.

 237

Chapter 7: XML Data Transformation

Overview
XML was first introduced as a metalanguage for data description. Why is it a
metalanguage and not just a language? In general, the prefix meta indicates an
evolutionary transformation process. A metalanguage represents a well-defined
interface that evolves and is transformed into derived languages. XML is simply the
foundation interface for a number of specific markup languages, each of which is based
on its own vocabulary and schema.

The schema syntactically differentiates XML languages from each other. XML is key for
data exchange and interoperability, and the schema is essential for providing XML
documents with a typed and well-defined structure. Unfortunately, in the imperfect world
in which we live, schemas often express the same semantics through different
syntaxes.

An XML transformation is simply the XML workaround for this relatively common
situation. An XML transformation is a user-defined algorithm that attempts to express
the semantics of a given document using another equivalent syntax. A transformation is
much like a type cast in programming. You can always try to coerce the type, but in
doing so you could face and accept compromises like syntax adaptations and,
sometimes, loss of data and logic.
In XML, the transformation process is seen as the application of a style sheet to the
source document. The style sheet is a declarative and user-defined document that is
referred to as extensible. The term Extensible Stylesheet Language (XSL) indicates a
metalanguage designed for expressing style sheets for XML documents. An XSL file
contains the set of rules that will be used to transform a document into another,
possibly equivalent, document.
XSL files were originally conceived as the XML counterpart of HTML's cascading style
sheets (CSS). In this context, XSL files were simply extensible and user-definable tools
to render an XML markup in HTML for display purposes. The growing complexity of
style sheets, as well as the advent of XML schemas, changed the perspective of XSL
and led to XSL Transformations (XSLT).

What Is XSLT, Anyway?

The goal of XSL has evolved over time. Today, XSL is a blanket term for a number of
derived technologies that altogether better qualify and implement the original idea of
styling XML documents. The various components that fall under the umbrella of XSL
are the actual software entities that you use in your code:

 XSLT Rule-based language for transforming XML documents into any other
text-based format. XSLT provides for XML-to-XML transformation, which
mostly means schema transformation. An XSLT program is a generic set of
transformation rules whose output can be any text-based language,
including HTML, Rich Text Format (RTF), and Wireless Markup Language
(WML), to name just a few.

 XPath Query language that XSLT programs use to select specific parts of an
XML document. The result of XPath expressions is then parsed and
elaborated by the XSLT processor. Normally, the XSLT processor works
sequentially on the source document, but it resorts to XPath if it needs to
access and refer to particular groups of nodes. XPath was covered in
Chapter 6.

 238

 XSL Formatting Objects (XSL-FO) Advanced styling features expressed by
an XML vocabulary that define the semantics of a set of formatting
elements. Most of these formatting objects are borrowed from CSS, Level 2
(CSS2) properties, but others have been added. (See the section "Further
Reading," on page 343, for more information.)

XSL and XSLT are not the same thing. XSL still refers to the page styling, of which XML
transformations to arbitrary text are just one aspect, albeit the most important aspect.
This chapter will accentuate the Microsoft .NET Framework implementation of XSLT.
Before going any further with the .NET Framework core classes for data transformation,
let's briefly recap the main concepts of XSLT and the programming tools it provides to
developers.

XSLT Template Programming

XSLT is a process that combines two XML documents—the XML source file and the
style sheet—to produce a third document. The resultant document can be an XML
document, an HTML page, or any text-based file the style sheet has been instructed to
generate.
The source document must meet only one requirement: it must be a well-formed XML
document. The style sheet must be a valid XML document that contains the
transformation logic expressed using the elements in the XSLT vocabulary. An XSLT
style sheet can be seen as a sequence of templates. Each template takes one or more
source elements as input and returns some output text based on literals as well as
transformed input data. Figure 7-1 illustrates the transformation process.

Figure 7-1: An overview of the XSLT process.

The core part of the transformation process is the application of templates to XML
source elements. Other ancillary steps might include the expansion of elements to text,
the execution of some script code, and the selection of a subset of nodes using XPath
queries. The layout of a generic XSLT script is shown here:

 239

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/xsl/transform">

 <xsl:template match="/">

 ⋮
 </xsl:template>

 <xsl:template match="...">

 ⋮
 </xsl:template>

 ⋮
</xsl:stylesheet>

The root node of an XSLT script is <stylesheet>. The <stylesheet> node belongs to the
official W3C namespace for XSLT 1.0. (Note that the .NET Framework supports only
XSLT 1.0, but the W3C committees are currently working on a draft of XSLT 1.1.)
Below the <stylesheet> node are a variety of <template> nodes, each of which contains
a match attribute. The match attribute contains a valid XPath expression that selects
the source node (or nodes) that will be used to fill the template.
The template consists of some output literal text interspersed with XSLT placeholder
tags. At compile time, the XSLT processor reads source data for any matching nodes
and dynamically populates all the placeholders. The source markup text is poured into
the template in various forms according to the particular XSLT instruction used. Text or
attribute values can be copied or preprocessed using script code or extension objects.
In addition, you can apply some basic flow constructs such as if, when, and for-each as
well as process nodes in a particular order or filtered by an ad hoc XPath expression.

The final output of each template must form a syntactically valid fragment in the target
language—be it XML, HTML, RTF, or some other language. You are not required to
indicate the target language explicitly, although the XSLT vocabulary provides a tailor-
made instruction to declare what the expected output will be. The main requirement for
the XSLT style sheet is that its overall text be well-formed XML. In addition, it must
make syntactically correct use of all the XSLT instructions it needs. The syntax of each
embedded XSLT command, therefore, is validated against the official XSLT schema.

Although an XSLT style sheet is not necessarily composed of explicitly declared
templates, in many real-world cases, it is. In other situations, you can have an XSLT
style sheet that consists of plain XSLT instructions not grouped as individually callable
templates.

A template to the XSLT language is much like a function to other highlevel
programming languages. You can group more instructions under a function or a
method, but you can also embed in the source program instructions to run sequentially.
In the body of an XSLT style sheet, a template is always defined with inline code, but it
can be configured, and subsequently invoked, in two ways: it can have implicit or
explicit arguments. With implicit arguments, you use the match attribute to select the
nodes for the template to process. In this case, you apply the template to the matching
nodes.
With explicit arguments, you give the template a name and optionally some arguments
and let other templates call it explicitly. Like a DLL function, the invoked template can
try to determine its context by using XPath expressions, or it can work in isolation, using
only the passed arguments. In this case, you call the template to operate on some
arguments. We'll look at some examples of template calls in the section "From XML to

 240

HTML," on page 299. In the meantime, Figure 7-2 illustrates the process of applying
templates to nodes.

Figure 7-2: Applying an XSLT template to source markup text.

XSLT Instructions

The XSLT vocabulary consists of special tags that represent particular operations you
can perform on the source markup text or passed arguments. Although the overall
syntax is that of a rigorous XML dialect, you can easily recognize the main constructs of
a high-level programming language.

The following subsections summarize the main XSLT instructions you are likely to run
across in your XSLT experience. The XSLT instructions are divided into four categories:
templates, data manipulation, control flow, and layout.

Template Instructions
An XSLT template is a mixed-content template consisting of verbatim text and
expandable placeholders. A template can be applied to a selected group of nodes as
well as invoked by other templates with or without arguments. Table 7-1 lists the main
commands for working with templates. All of these XSLT elements are qualified with the
xsl prefix, but bear in mind that xsl is just an arbitrary, although common, namespace
prefix. Feel free to replace it with another prefix in your own code.

Table 7-1: XSLT Instructions for Templates

Instruction Description

<xsl:template match="…" | name="…"> Defines the transformation rules
for the nodes that match the
XPath expression set in the
match attribute. The template
must be explicitly applied to its
nodes using the <xsl:apply-
templates> command. The
instruction can also be used to
declare a template that will then
be called by name using the
<xsl:call-template> command. In
this case, use the name attribute
instead of match.

<xsl:apply-template select="…"> Applies all the possible

 241

Table 7-1: XSLT Instructions for Templates

Instruction Description

templates to the elements that
match the XPath description.
The select attribute selects the
target elements. In general, a
single element can be affected
by multiple templates.

<xsl:call-template name="…"> Executes the specified template.
The name attribute indicates the
name of the previously declared
template to execute.

<xsl:param name="…" select="…">
</xsl:param>

Defines a formal argument for a
named template. The name
attribute indicates the name of
the argument. The parameter
can have a default argument.
You specify a default value using
either an XPath expression (via
the select attribute) or a template
as the body of the element.

<xsl:with-param name="…" select="…">
</xsl:with-param>

Defines an actual parameter for
a template call. The name
attribute indicates the matching
parameter. The actual value can
be expressed using either an
XPath expression (via the select
attribute) or the body of the
element.

When you set the select attribute, the template (or the parameter) will execute in the
context of the selected nodes. Any further XPath expression to locate the text of a
particular node or attribute must be based in that context.

Data Manipulation Instructions
The commands listed in Table 7-2 are helpful for extracting data out of source nodes
and then preprocessing it using in-place code.

Table 7-2: XSLT Instructions for Data Manipulation

Instruction Description

<xsl:value-of select="…"> Returns the value of the
specified attribute or the text
associated with the given node.
You select nodes using XPath
expressions. Of course,
attributes must be prefixed with
an at sign (@). This command
works more or less as a macro
that expands at run time.

<xsl:copy-of select="…"> Returns the entire node-set that
corresponds to the results of

 242

Table 7-2: XSLT Instructions for Data Manipulation

Instruction Description

the specified XPath expression.

<xsl:sort select="…" data-type="…"

order="…" case-order="…">

Specifies sort criteria for the
node-set being processed by
<xsl:for-each> or <xsl:apply-
templates> instructions. In this
case, you use the select
keyword to indicate the sort key
and data-type for the type of
sorting (text or number). The
order attribute indicates the
direction, and case-order
designates which case comes
first in the sort.

<xsl:eval>FuncName()
</xsl:eval>

Evaluates a user-defined
function and returns the output.
The function can access the
underlying XML Document
Object Model (XML DOM)
using the this keyword as the
entry point to the document root
node. The <xsl:eval> tag is a
Microsoft extension to the XSL
implementation.

Each XSLT implementation supports a different set of languages for writing user-
defined functions. For example, Microsoft's XML Core Services (MSXML) supports only
Microsoft Visual Basic, Scripting Edition (VBScript) and JScript. The .NET Framework
transformation classes, on the other hand, include support for C# and Microsoft Visual
Basic .NET. (More on this later.)

Note The syntax shown for the XSLT instructions is largely incomplete. I

limited the descriptions to the most important and most frequently
used attributes. More attributes are actually available; you can find
them documented and explained in the MSDN documentation as
well as in the resources listed in the section "Further Reading," on
page 343.

Control Flow Instructions
The XSLT vocabulary includes some tags that represents control flow statements such
as conditional and iterative statements. Table 7-3 summarizes the most important
commands.

Table 7-3: XSLT Instructions for Control Flow

Instruction Description

<xsl:for-each select="…">
</xsl:for-each>

Applies the rules in the body to each
element that matches the given
XPath expression. The node-set can
be sorted by putting an <xsl:sort> in
the body.

 243

Table 7-3: XSLT Instructions for Control Flow

Instruction Description

<xsl:if test="…">
</xsl:if>

Applies the internal template only if
the specified XPath expression
evaluates to true.

<xsl:choose> <xsl:when test="…">…
</xsl:when>

<xsl:otherwise>…
</xsl:otherwise><xsl:choose>

Similar to the C# switch statement;
represents a multiple-choice
statement. Each test is expressed
using an <xsl:when> statement,
while the <xsl:otherwise> element
represents the default choice. The
statement evaluates all the
<xsl:when> blocks until the test
expression returns true. When that
happens, the corresponding
template is applied. If no test is
successful, the <xsl:otherwise>
template is invoked.

Although this list of commands lacks a for statement, you can still realize a loop that
runs a specified number of times by using the XPath position function. Of course,
position returns the index of the current context node and is not a general variable
counter. On the other hand, XSLT instructions are designed to work on XPath node-
sets, not to arrange general-purpose programs.

Layout Instructions
A typical task for an XSLT script is the creation of new elements and attributes.
Sometimes attributes and node elements can be hard-coded in script; sometimes this is
just impossible to do. The XSLT statements listed in Table 7-4 let you programmatically
create layout elements.

Table 7-4: XSLT Instructions for Layout

Instruction Description

<xsl:element name = "…" namespace

= "…">
</xsl:element>

Creates an element with the
specified name. The namespace
attribute indicates the URI of the
created element, if any. The
<xsl:element> element contains a
template for the attributes and
children of the created element.

<xsl:attribute name = "…" namespace

= "…">
</xsl:attribute>

Creates an attribute node and
attaches it to an output element.
The name attribute denotes the
name of the attribute, and
namespace indicates the
namespace URI, if any. The
contents of this element specify the
value of the attribute. Note that
<xsl:attribute> can also be used
directly on output elements, not
only in conjunction with
<xsl:element>.

 244

Table 7-4: XSLT Instructions for Layout

Instruction Description

<xsl:processing-instruction

name="…">
</xsl:processing-instruction>

Generates a processing instruction
in the output text. The name
attribute represents the name of
the processing instruction. The
contents of the element provide the
text of the processing instruction.

<xsl:comment> Generates a comment node in the
output text. The text generated by
the body of <xsl:comment>
appears between the typical
comment wrappers <!-- and -->.

In addition to the instructions described in this section, the XSLT vocabulary contains a
few more elements to define data-bound variables (<xsl:variable>), raw text
(<xsl:text>), or numbers (<xsl:number>). In particular, a data-bound variable can be
given a name and its value calculated either by evaluating an XPath expression or by
applying the template in the body of the tag.

After our brief but intensive tour of the XSLT programming interface, let's see how to
turn some of these instructions into concrete calls in a real XSLT script. We'll look at a
couple of typical examples: converting XML documents to HTML pages, and
transforming an XML document into an equivalent schema.

From XML to HTML

Let's return to our faithful XML document (data.xml) from previous chapters and turn it
into a compelling HTML page. This sample XML document contains information about
the employees in the Northwind database's Employees table.

The idea is to create a final HTML page that renders the information about employees
through a table. The structure of the XSLT script is shown in the following code:

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:template match="/">

 <HTML>

 <BODY>

 <H1>Northwind's Employees</H1>

 <TABLE>

 <xsl:apply-templates

 select="MyDataSet/NorthwindEmployees/Employee" />

 </TABLE>

 </BODY>

 </HTML>

 </xsl:template>

 245

 ⋮
 more templates here

 ⋮
</xsl:stylesheet>

As the match attribute indicates, the main <xsl:template> instruction applies to the root
of the XML document. The XSLT script produces a simple HTML page with a fixed H1
heading and a table. The table is generated by applying all matching templates to the
nodes that match the following XPath expression:

MyDataSet/NorthwindEmployees/Employee

The actual templates that make the final HTML page are defined later in the document.
To start off, you define a template for each <Employee> node, as shown here:

<xsl:template match="Employee">

 <TR>

 <xsl:apply-templates select="employeeid" />

 <xsl:apply-templates select="lastname" />

 <xsl:apply-templates select="title" />

 </TR>

</xsl:template>

The template defines a wrapper table row and then calls into the child templates, one
for each significant piece of information to be rendered. As you've probably guessed,
each child template defines a table cell. For example, the following template selects the
<employeeid> node below the current Employee and renders the text of the node in
boldface:

 <xsl:template match="employeeid">

 <TD bgcolor="yellow" style="border:1px solid black">

 <xsl:value-of select="." />

 </TD>

 </xsl:template>

As you can see, the node selection is always performed using XPath expressions. The
"." expression for the <xsl:value-of> node refers to the text of the current node. A similar
pattern is used for other templates, as follows:

 <xsl:template match="lastname">

 <TD style="border:1px solid black">

 <xsl:value-of select="."/>,

 <xsl:value-of select="../firstname"/>

 </TD>

 </xsl:template>

 <xsl:template match="title">

 <TD style="border:1px solid black">

 <I><xsl:value-of select="."/></I>

 246

 </TD>

 </xsl:template>

In the first template, the context node is <lastname>, but at a certain point, we need to
access a sibling node—the <firstname> node. The XPath syntax includes the double-
dot symbol (..), which is a shortcut for the parent of the current context node. (See
Chapter 6.)
The final HTML output for the source XML document is shown Figure 7-3.

Figure 7-3: The HTML page generated from a source XML file.

To display the HTML output as plain text, you must perform the transformation
programmatically, using either the MSXML object model or the newest .NET
Framework classes. Alternatively, you can view the output using a specialized browser
with the direct browsing functionality. Microsoft Internet Explorer has provided this
capability since version 5.0.

Linking the Style Sheet to the HTML Page

Internet Explorer applies a silent and automatic transformation to all XML documents
you view through it. However, an XML document can override the default Internet
Explorer style sheet by using a processing instruction that simply links an XSLT script.
The following code demonstrates how to add the style sheet from the previous section
(emplist.xsl) to the source file (data.xml) so that double-clicking it generates the output
shown in Figure 7-3. A style sheet can have either a .xsl or a .xml extension.

<!-- Directly browsable using a custom XSLT script -->

<?xml-stylesheet type="text/xsl" href="emplist.xsl"?>

You register a style sheet with an XML document using a processing instruction with a
couple of attributes: type and href. The type attribute must be set to the string text/xsl.
The href attribute instead references the URL of the XSLT script. If you insert more than
one processing instruction for XSLT scripts, only the final instruction will be considered.

Calling Templates
The previous example used <xsl:apply-templates> exclusively to perform template-
based transformations. When you know that only one template applies to a given block

 247

of XML source code, you might want to use a more direct instruction: <xsl:call-
template>.
If you plan to use the <xsl:call-template> instruction, you must first give the target
template a name. For example, the following code defines a template named
EmployeeIdTemplate:

 <xsl:template name="EmployeeIdTemplate">

 <TD bgcolor="yellow" style="border:1px solid black">

 <xsl:value-of select="employeeid"/>

 </TD>

 </xsl:template>

How do you call into this template? Just use the following code:

<xsl:template match="Employee">

 <TR>

 <xsl:call-template name="EmployeeIdTemplate" />

 <xsl:apply-templates select="lastname" />

 <xsl:apply-templates select="title" />

 </TR>

</xsl:template>

There is one difference you should be aware of. With <xsl:apply-templates>, you use
the select attribute to select a node-set for the template, as shown here:

 <xsl:apply-templates select="employeeid" />

As a result, the template works on the <employeeid> node and retrieves the value with
the following expression:

<xsl:value-of select="." />

When you use the <xsl:call-template> instruction, on the other hand, you call the
template by name, but it works on the currently selected context node. The ongoing
context node is <Employee>, and you must explicitly indicate the child node in the body
of <xsl:value-of>, as shown here:

<xsl:value-of select="employeeid" />

From Schema to Schema

Transforming an XML document into an XML document with another schema is in no
way different from transforming XML into HTML. The real difference is that you use
another target XML vocabulary.

The following XSLT script is designed to simplify the structure of our sample data.xml
file. The original file is structured like this:

<MyDataSet>

 <NorthwindEmployees>

 <Employee>

 <employeeid>…</employeeid>

 <lastname>…</lastname>

 248

 <firstname>…</firstname>

 <title>…</title>

 </Employee>

 ⋮
 </NorthwindEmployees>

</MyDataSet>

The expected target schema is simpler and contains only two levels of nodes, as shown
in the following code. In addition, all employee information is now coded using attributes
instead of child nodes, and last and first names are merged into a single value.

<Employees database="northwind">

 <Employee id="1" name="Davolio, Nancy"

 title="Sales Representative" />

 ⋮
 </Employee>

</Employees>

The following script performs the magic:

<xsl:stylesheet

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 <xsl:template match="MyDataSet/NorthwindEmployees">

 <Employees database="northwind">

 <xsl:for-each select="Employee">

 <xsl:element name="Employee">

 <xsl:attribute name="id">

 <xsl:value-of select="employeeid" />

 </xsl:attribute>

 <xsl:attribute name="name">

 <xsl:value-of select="lastname" />,

 <xsl:value-of select="firstname" />

 </xsl:attribute>

 <xsl:attribute name="title">

 <xsl:value-of select="title" />

 </xsl:attribute>

 </xsl:element>

 </xsl:for-each>

 </Employees>

 </xsl:template>

</xsl:stylesheet>

 249

This script includes only one template rooted in the <NorthwindEmployees> node and
creates a new element for each child <Employee> node. The node has a few attributes:
id, name, and title. The <xsl:value-of> instruction is used to read node values into the
newly created attributes. The final output is shown here:

<?xml version="1.0" encoding="utf-8"?>

<Employees database="northwind">

 <Employee id="1" name="Davolio, Nancy"

 title="Sales Representative"></Employee>

 <Employee id="2" name="Fuller, Andrew"

 title="Vice President, Sales"></Employee>

 <Employee id="3" name="Leverling, Janet"

 title="Sales Representative"></Employee>

 <Employee id="4" name="Peacock, Margaret"

 title="Sales Representative"></Employee>

 <Employee id="5" name="Buchanan, Steve"

 title="Sales Manager"></Employee>

 <Employee id="6" name="Suyama, Michael"

 title="Sales Representative"></Employee>

 <Employee id="7" name="King, Robert"

 title="Sales Representative"></Employee>

 <Employee id="8" name="Callahan, Laura"

 title="Inside Sales Coordinator"></Employee>

 <Employee id="9" name="Dodsworth, Anne"

 title="Sales Representative"></Employee>

</Employees>

As you can see, transforming XML into another arbitrary text-based language is simply
a matter of becoming familiar with a relatively small vocabulary of ad hoc tags. The
XSLT vocabulary is a bit peculiar because some of its tags look a lot like high-level
programming language statements. But grasping the essence of XSLT is not all that
difficult.

The .NET Framework XSLT Processor

In the .NET Framework, the core class for XSLT is XslTransform. Located in the
System.Xml.Xsl namespace, the XslTransform class implements the XSLT processor.
You make use of this class in two steps: first you load the style sheet in the processor,
and then you apply transformations to as many source documents as you need.
The XslTransform class supports only the XSLT 1.0 specification. A style sheet
declares itself compliant with this version of the specification by including the following
namespace:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 version="1.0">

 250

By the way, note that the version attribute is mandatory to ensure the correctness of the
style sheet document.
The key methods in the XslTransform class are Load and Transform. They perform the
two steps just mentioned. In particular, you use the Load method to read the style sheet
from a variety of sources. The Transform method, on the other hand, applies the
transformation rules set in the style sheet to a given XML source document.

A Quick XSLT Transformer

Earlier in the chapter, we used XSLT scripts to transform an XML source document into
something else—say, an HTML page or another XML schema. The scripts were tested
simply by adding a processing instruction to the XML source document. Such an
instruction tells specialized browsers, like Internet Explorer 5 and later, to use the
referenced XSLT script to transform the XML document before displaying it.
A .NET Framework application can programmatically control the entire transformation
process using the XslTransform class. The following console application represents a
quick command-line XSLT transformer. It takes three arguments (the XML source, the
XSLT style sheet, and the output file), sets up the processor, and saves the results of
the transformation to the output file.

using System;

using System.Xml;

using System.Xml.Xsl;

class QuickXslTransformer

{

 public QuickXslTransformer(string source, string stylesheet,

 string output)

 {

 XslTransform xslt = new XslTransform();

 xslt.Load(stylesheet);

 xslt.Transform(source, output);

 }

 public static void Main(string[] args)

 {

 try {

 QuickXslTransformer o;

 o = new QuickXslTransformer(args[0], args[1],
args[2]);

 }

 catch (Exception e)

 {

 Console.WriteLine(

 "Unable to apply the XSLT transformation.");

 Console.WriteLine("Error:\t{0}", e.Message);

 251

 Console.WriteLine("Exception: {0}",
e.GetType().ToString());

 }

 return;

 }

}

The heart of the application is found in the following three lines of rather self-
explanatory code:

XslTransform xslt = new XslTransform();

xslt.Load(stylesheet);

xslt.Transform(source, output);

The style sheet can be loaded from a variety of sources, including XPath documents,
XML readers, local disk files, and URLs. The Load method compiles the style sheet and
uses the stored information to initialize the XSLT processor. When Load returns, the
processor is ready to perform any requested transformation.
The Transform method loads an XML document, runs the XSLT script, and writes the
results to the specified stream. Transform is particularly handy, because it saves you
from explicitly loading the source document and creating the output file. As we'll see
more in detail in the section "Performing Transformations," on page 314, Transform
uses an intermediate XPath document to transform the XML.

Note Several other programming environments allow you to exercise total
control over the XSLT process. In particular, in Microsoft Win32, the
combined use of two distinct instances of the Microsoft.XMLDOM
COM object lets you programmatically perform an XSLT
transformation. The following JScript code illustrates how to
proceed:
// Collects arguments from the WSH command line
source = WScript.Arguments(0);
stylesheet = WScript.Arguments(1);
output = WScript.Arguments(2);

// Instantiates the XMLDOM for the source
xml = new ActiveXObject("Microsoft.XMLDOM");
xml.load(source);

// Instantiates the XMLDOM for the style sheet
xsl = new ActiveXObject("Microsoft.XMLDOM");
xsl.load(stylesheet);

// Creates the output
fso = new
ActiveXObject("Scripting.FileSystemObject");
f = fso.CreateTextFile(output);
f.Write(xml.transformNode(xsl.documentElement));
f.Close();

 252

The XslTransform Class
Now that we've seen how the XslTransform class implements the .NET Framework
processor to transform XML data into arbitrary text using XSL style sheets, let's look
more closely at its programming interface.
As shown in the following code, XslTransform has only the default constructor. In
addition, it is a sealed class, meaning that you can use it only as is and other classes
can't inherit from it.

public sealed class XslTransform

{

 ⋮

}

The programming interface of the class is fairly simple and consists of just one public
property and a couple of methods.
Properties of the XslTransform Class
The only property that the XslTransform class exposes is XmlResolver, which handles
an instance of the XmlResolver class. Interestingly, the XmlResolver property is write-
only—that is, you can set it, but you can't check the currently set resolver object.
As we've seen in previous chapters, the XmlResolver object is used to resolve external
references found in the documents being processed. In this context, the XmlResolver
property is used only during the transformation process. It is not used, for example, to
resolve external resources during load operations.
If you don't create a custom resolver object, an instance of the XmlUrlResolver class is
used.

Methods of the XslTransform Class
TheXslTransform class supplies two methods specific to its activity—the Load and
Transform methods mentioned earlier. The Load and Transform methods are described
in more detail in Table 7-5.

Table 7-5: Methods of the XSLT Processor

Method Description

Load Loads the specified XSLT style sheet document from a number
of possible sources, including remote URLs and XML readers.
The method has several overloads, including overloads that let
you specify a custom XmlResolver object to load any style
sheets referenced through xsl:import and xsl:include
statements.

Transform Transforms the specified XML data using the loaded XSLT
style sheet and writes the results to a given stream. Some of
the method's overloads let you specify an argument list as
input to the transformation.

The following code snippet shows how to use an XmlResolver object with credentials to
access a remote XSLT style sheet:

XmlUrlResolver resolver = new XmlUrlResolver();

NetworkCredential cred = new NetworkCredential(uid, pswd,
domain);

resolver.Credentials = cred;

XslTransform xslt = new XslTransform();

 253

xslt.Load(stylesheet, resolver);

The XslTransform class is also unique from the threading and security standpoints.
Let's see why.

Threading Considerations
XslTransform is guaranteed to operate in a thread-safe way only during transform
operations. In other words, although an instance of the class can be shared by multiple
threads, only the Transformmethod can be called safely from multiple threads. For the
sake of your code, you must ensure that both of the following conditions are met:

 The Load method is not concurrently called from within different threads.
 No other method (for example, Transform) is called on the object during

load operations.
In a nutshell, the XslTransform class is multithreaded only with respect to
transformations. The reasons for this behavior stem from the internal architecture of the
class, which is summarized in Figure 7-4.

Figure 7-4: The Load method is not thread-safe, and its state can be overwritten and
spoiled by concurrent calls. The Transform method, on the other hand, reads the shared
state and can run concurrently from multiple threads.

When the Load method is called, the style sheet is compiled and its contents are used
to set the internal state of the object. For performance reasons, this code is not grouped
into a critical section, which would serialize the threads' access to the internal state.
After loading the style sheet, the XSLT processor needs to modify its state to reflect the
loaded document. The operation does not occur atomically within the virtual boundaries
created by a lock statement. As a result, concurrently running threads could in theory
access the same instance of the processor and break the data consistency. The load
operation is thread-sensitive because it alters the global state of the object.

The transform operation, on the other hand, is inherently thread-safe because it
performs read-only access to the processor's state. Nothing bad can happen if
concurrent threads apply transformations using the same processor.

 254

To avoid threading risks, be aware that loading a style sheet is an unprotected
operation. Either lock the operation yourself, or avoid spawning concurrent threads that
perform style sheet loading on the same processor.

Security Considerations
The XslTransform class has a link demand permission set attached. A link demand
specifies which permissions direct callers must have to run the code, as shown in the
following example. Callers' rights are checked during just-in-time compilation.

[PermissionSet(SecurityAction.LinkDemand, Name="FullTrust")]

public sealed class XslTransform

{

 ⋮

}

The permission set attribute for the XslTransform class is expressed by name and
points to one of the built-in permission sets— FullTrust. What does this mean to you?
Only callers (direct callers are involved with the check, not caller's callers) with fully
trusted access to all the local resources can safely call into the XSLT processor.
Try running the XSLT Quick Security Tester sample application over a network.
Because of the class security settings, a security exception is thrown. Figure 7-5 shows
the security exception dialog box.

Figure 7-5: The XSLT processor class works only if called by locally trusted callers. An
XSLT application can work well as long as you invoke it locally, but it will raise a security
exception if you run it over a network share.

Under the Hood of the XSLT Processor
In the overall behavior of the .NET Framework XSLT processor, three phases can be
clearly identified: loading the style sheet document, setting up the internal state, and
performing the transformations. Although you see, and interact with, only a single class
(XslTransform), a lot of internal classes are involved in the process.
The first two phases occur within the context of the Load method. Of course, you can't
call the Transform method before a previous call to Load has successfully terminated. If
you do, you will experience an XsltException exception on the Transform method.

 255

Load always works synchronously, so when it returns, you can be sure that the loading
step has been completed. You will not get from Load any return value that denotes the
failure or the success of the operation. When something goes wrong with the Load
method, however, some exceptions are thrown. In particular, you will get a
FileNotFoundException exception if you are pointing to a missing style sheet, and you
will get a more generic XsltCompileException exception if the XSLT script contains
errors. An XsltCompileException exception provides you with a line position and
number indicating where the error occurred in the style sheet.

Loading the Style Sheet
The input style sheet can be loaded from four sources: a URL, an XML reader, an
XPath document, or an XPath navigator. Whatever the source, the Load method first
expresses it as an XPath navigator. As discussed in Chapter 6, an XPath navigator
represents a generic interface able to navigate over any XMLbased, or XML-looking,
data store. The XPathNavigator class enables you to move from one node to the next
and to retrieve node-sets using XPath queries.
The source style sheet is normalized to an XPath navigator mostly for performance
reasons. The style sheet must be compiled and, given the compiler's architecture, a
navigator is an extremely efficient object for performing the task. Compiling is a process
that simply excerpts information from the original style sheet and stores it in handy data
structures for further use. The entire set of these data structures is said to be the state
of the XSLT processor. Figure 7-6 illustrates the flow of the Load method.

Figure 7-6: The style sheet is first normalized to an XPath navigator and then compiled.

Managing the Processor's State
The style sheet compiler populates three internal data structures with the data read
from the source. The compiled style sheet object shown in Figure 7-6 represents an

 256

index of the style sheet contents. The other two data structures are tables containing
compiled versions of the XPath queries to execute and the actions that the various
templates require.
As mentioned, the state of the XSLT processor is not set atomically, which might pose
problems if you are using the XSLT processor from within a multi-threaded application.
Once set by the Load method, the processor's state is not modified until the same Load
method is called again.

Performing Transformations
The transformation method, depicted in Figure 7-7, takes at least two explicit
arguments—the source XML document and the output stream—plus a couple of implicit
parameters. The compiled style sheet object is of course one of the implicit input
arguments. The second implicit parameter is the XmlResolver property. As mentioned,
the XmlResolver property is designed to help the processor resolve external resources.

Figure 7-7: The XSLT processor generates the output text based on the source XML
document and the internally stored information about the style sheet.

The Transform method can also take a third explicit argument—an object of class
XsltArgumentList. The argument contains the namespace-qualified arguments used as
input to the transformation process. (More on this in the section "Creating a .NET
Framework Argument List," on page 324.)
The XML source document is normalized as an XPath navigator and passed down in
this form to the XSLT processor. Interestingly, the internal processor class has two
types of overloads. Some of the overloads work as void methods and simply write to
the specified stream. Others work as functions and specifically return an XML reader
object. As you'll see in a moment, this feature provides an interesting opportunity:
implementing asynchronous XSLT transformations.

Note How easy is it to normalize XML readers, URLs, and documents to

 257

XPath navigators? Remember that you can always create an
XPathDocument object from any XML file or reader. Once you have
a reference to an XPathDocument object, or an instance of any
other object that implements the IXPathNavigableinterface, you
simply call the CreateNavigator method and you're done. The
CreateNavigator method, of course, is part of the IXPathNavigable
interface.

Applying Transformations

The XSL style sheet and the XML source can be loaded from a variety of sources,
including local disk files and remote URLs. You can't load style sheets and source
documents from a stream, but because you can easily obtain an XML reader from a
stream, a workaround is quickly found. Whatever the input format, the content is
transformed into an XPath navigator object immediately after reading.

In light of this, passing style sheet and XML source data directly as XPath documents
or navigators is advantageous from two standpoints: you save conversion time, and you
work with objects whose internal storage mechanism is lighter and more compact.
Choosing optimized forms of storage like XPath documents binds you to a read-only
manipulation of the data. If you need to edit the document before a transformation is
performed, load it into an XmlDocument object and apply all the changes. When you
have finished, pass the XmlDocument object to the XslTransform class. As you'll recall
from Chapter 6, XmlDocument implements the IXPathNavigable interface and as such
can be used with the Transform method.
The Load and Transform methods have several overloads each. In all this richness of
call opportunities, not all possible combinations of input and output channels are always
supported. For example, you can load the source document from a URL, but only if you
output to another URL or disk file. Likewise, if you want to transform to a text writer, you
can't load the source from a file. Table 7-6 and Table 7-7 provide a quick-access view
of the available overloads.

Table 7-6: Load Method Overloads

Return Type Style Sheet Source XML Resolver

void File or URL No

void XPath document No

void XPath navigator No

void XML reader No

void File or URL Yes

void XPath document Yes

void XPath navigator Yes

void XML reader Yes

Table 7-7: Transform Method Overloads

Return Type XML Source Argument List Output

 258

Table 7-7: Transform Method Overloads

Return Type XML Source Argument List Output

void File or URL File or
URL

void XPath document XsltArgumentList Stream

void XPath navigator XsltArgumentList Stream

void XPath document XsltArgumentList Text
writer

void XPath navigator XsltArgumentList Text
writer

void XPath document XsltArgumentList XML
writer

void XPath navigator XsltArgumentList XML
writer

XmlReader XPath document XsltArgumentList

XmlReader XPath navigator XsltArgumentList

The interface of the Load method is fairly regular. It always returns void, and it supports
four reading media, with or without an XML resolver object.
The programming interface of the Transform method is much less regular. The
overloads that return an XML reader work only on XPath documents or navigators. The
overload that manages URLs or files is an exception, perhaps provided for the sake of
simplicity. The remaining overloads are grouped by the type of the output media:
stream, text, or XML writer. For each of them, you can have a source XML document
read from an XPath document or an XPath navigator.

Design Considerations
The style sheet and the source XML document are two equally important arguments for
the XSLT processor. The XslTransform programming interface requires that you
indicate them in different steps, however. In doing so, the accent goes on a particular
use—transforming multiple documents using the same style sheet.

Although optimized for a particular scenario, such a design doesn't tax those
programmers who use the style sheet for a single transformation. In this case, the only,
and very minimal, drawback is that you have to write three lines of code instead of one!
Look at the following class. It provides a static method for performing XSLT
transformations. It doesn't explicitly provide for style sheet reuse, but it does save you
two lines of code!

public class QuickXslt

{

 public static bool Transform(

 string source, string stylesheet, string output)

 {

 try

 {

 259

 XslTransform xslt = new XslTransform();

 xslt.Load(stylesheet);

 xslt.Transform(source, output);

 return true;

 }

 catch (Exception e)

 {

 return false;

 }

 }

The Transform method shown in the preceding code also catches any exceptions and
flattens them into a Boolean value. Using this global method is as easy as writing the
following code:

public static void Main(string[] args)

{

 bool b = QuickXslt.Transform(args[0], args[1], args[2]);

 Console.WriteLine(b.ToString());

}

By design, the static Transform method accepts only disk files or URLs.

Tip By passing an XML reader to the XslTransformclass's Load and
Transform methods, you can load both the style sheet and the source
document from an XML subtree. In this case, in fact, the
XslTransform class will start reading from the reader's current node
and continue through the entire subtree.

Another interesting consideration that applies to XSLT concerns the process as a
whole. The style sheet is always loaded synchronously. The transformation, on the
other hand, can occur asynchronously—at least to some extent. Let's see why.

Asynchronous Transformations
The Transform method has a couple of overloads that return an XML reader, as shown
here:

public XmlReader Transform(XPathNavigator input,

 XsltArgumentList args);

public XmlReader Transform(IXPathNavigable input,

 XsltArgumentList args);

The signature, and the behavior, of these overloads is slightly different from the others.
As you can see, the method does not accept any argument representing the output
stream. The second argument can be an XsltArgumentList object, which serves other
purposes that we'll get into in the section "Creating a .NET Framework Argument List,"
on page 324. The input document must be an XPath navigator or an XPath document
referenced through the IXPathNavigable interface.

 260

XSLT Output Records
The output of the transformation process is not written out to a stream but created in
memory and returned to the user via an XML reader. The overall transformation
process works by creating an intermediate data structure (referred to as the navigator
input) in which the content of the style sheet is used as the underlying surface. Any
XSLT tag found in the style sheet source is replaced with expanded text or any
sequence of calls that results from embedded templates.
The final output looks like a compiled program in which direct statements are
interspersed with calls to subroutines. In an XSLT program, these statements are called
output records, while templates play the role of subroutines. Figure 7-8 shows how the
XSLT processor generates its output.

Figure 7-8: An XML reader lets you access the output records one at a time.

When the Transform method gets an output stream to write to, the XSLT processor
loops through all the records and accumulates the text into the specified buffer. If an
XML reader has been requested, the processor creates an instance of an internal
reader class and returns that to the caller. The exact name of the internal reader is
System.Xml.Xsl.ReaderOutput. No transformation is performed until the caller explicitly
asks to read the cached output records. Figure 7-9 shows how the XSLT processor
returns its output.

 261

Figure 7-9: The XSLT processor instantiates a reader object and returns. No
transformation is performed until you "read" the internal data using the methods and the
properties of the returned reader.

The XSLT Record Reader
The ReaderOutput class builds a virtual XML tree on top of the compiled style sheet,
thus making it navigable using the standard XML reader interface. When the Transform
method returns, the reader is in its initial state (and therefore it is not yet initialized for
reading).

Each time you pop an element from the reader, a new output record is properly
expanded and returned. In this way, you have total control over the transformation
process and can plan and realize a number of fancy features. For example, you could
provide feedback to the user, discard nodes based on runtime conditions and user
roles, or cause the process to occur asynchronously on a secondary thread.

The reader interface exposes the XSLT records as XML nodes—the same XML nodes
you will find by visiting the output document. The following code snippet demonstrates
how to set up a user-controlled transformation:

// The XML source must be an XPath document or an XPath
navigator

XPathDocument doc = new XPathDocument(source);

// No arg-list to provide in this case

XmlReader reader = xslt.Transform(doc, null);

 262

// Perform the transformation, record by record

while (reader.Read())

{

 // Do something

}

Figure 7-10 shows the user interface of a sample application. It includes a list box
control that is iteratively populated with information excerpted from the reader's current
node. Each row in the list box corresponds to an output record generated by the XSLT
processor.

Figure 7-10: The HTML file generated by the transformation, rendered as a node tree, is
received one row at a time.

In the reading loop, all nodes are analyzed and serialized to XML text, as shown in the
following code. In this way, each row in the list box corresponds to the line of text that is
sent to an output stream if you opt for a synchronous transformation.

void ReadOutputRecords(XmlReader reader)

{

 // Clear the list box

 OutputList.Items.Clear();

 // Read the records

 while(reader.Read())

 {

 string buf = "";

 switch(reader.NodeType)

 {

 case XmlNodeType.Element:

 buf = String.Format("{0}<{1} {2}>",

 new String(' ', 2*reader.Depth),

 263

 reader.Name,

 GetNodeAttributes(reader));

 break;

 case XmlNodeType.EndElement:

 buf = String.Format("{0}</{1}>",

 new String(' ', 2*reader.Depth),

 reader.Name);

 break;

 case XmlNodeType.Text:

 buf = String.Format("{0}{1}",

 new String(' ', 2*reader.Depth),

 reader.Value);

 break;

 }

 OutputList.Items.Add(buf);

 }

}

The final text is indented using a padding string whose size depends on the reader's
Depth property. Node names and values are returned by the Name and Value
properties. For element nodes, attributes are read using a piece of code that we
examined in detail in Chapter 2:

string GetNodeAttributes(XmlReader reader)

{

 if (!reader.HasAttributes)

 return "";

 string buf = "";

 while(reader.MoveToNextAttribute())

 buf += String.Format("{0}=\"{1}\" ", reader.Name,
reader.Value);

 reader.MoveToElement();

 return buf;

}

Output Formats
An XSLT style sheet can declare the output format of the serialized text using the
<xsl:output> statement. This statement features several attributes, the most important
of which is method. The method attribute can be set with any of the following keywords:
xml, html, or text. By default, the output format is XML unless the root tag of the results
document equals <html>. In this case, the output is in HTML.
Differences between XML and HTML are minimal. If the output format is HTML, the
XML well-formedness is sacrificed in the name of a greater programmer-friendliness.
This means that, for example, empty tags will not have an end tag. In addition to

 264

method, other attributes of interest are indent, encoding, and omit-xml-declaration,
which respectively indent the text, set the preferred character encoding, and omit the
typical XML prolog.
If you add an <xsl:output> statement to the previously considered style sheets, the
source code of the results document will be significantly different, but not its overall
meaning. If you choose to output plain text, on the other hand, the XSLT processor will
discard any markup text in the style sheet and output only text.
As a final note, consider that <xsl:output> is a discretionary behavior that not all XSLT
processors provide and not all in the same way. In particular, when the Transform
method is writing to a text writer or an XML writer, the .NET Framework XSLT
processor ignores the encoding attribute in favor of the corresponding property on the
object.

Passing and Retrieving Arguments

As mentioned, XSLT scripts can take arguments. You can declare arguments globally
for the entire script or locally to a particular template. Arguments can have a default
value that will make them always available as a variable in the scope. Aside from the
default value, in XSLT there are no other differences between arguments and variables.
The following code shows a style sheet snippet in which a parameter named
MaxNumOfRows is declared and initialized with a default value of 6:

 <xsl:template match="Employee">

 <xsl:param name="MaxNumOfRows" select="6" />

 <xsl:if test="$MaxNumOfRows > position()">

 <TR>

 <xsl:apply-templates select="employeeid" />

 <xsl:apply-templates select="lastname" />

 <xsl:apply-templates select="title" />

 </TR>

 </xsl:if>

</xsl:template>

The script retrieves the argument using its public name prefixed with a dollar sign ($). In
particular, the conditional statement shown here applies to the template only if five
employee nodes have not yet been processed:

<xsl:if test="$MaxNumOfRows > position()">

 <!-- Apply the template -->

</xsl:if>

Note that you can't use the less than sign (<) in an XSLT expression because it could
confuse the processor. Instead, use the escaped version of the character: <. The
greater than sign (>) can be safely used, however. If, like me, you don't like escaped
strings, you can invert the terms of the comparison.

Note Parameters can be associated only with templates or with the global
script. You can't associate parameters with other XSLT instructions
such as a <xsl:for-each>.

 265

Calling Templates with Arguments
When you call a parameterized XSLT template, you give actual values to formal
parameters using the <xsl:with-param> instruction. Here's an example that calls the
sample Employee template, giving the MaxNumOfRows argument a value of 7:

<xsl:apply-templates
select="MyDataSet/NorthwindEmployees/Employee">

 <xsl:with-param name="MaxNumOfRows" select="7" />

</xsl:apply-templates>

If the called template has no such parameter, nothing happens, and the argument will
be ignored. The <xsl:with-param> instruction can be associated with both <xsl:apply-
templates> and <xsl:call-template> instructions.

Creating a .NET Framework Argument List
TheTransform method lets you pass arguments to the style sheet using an instance of
the XsltArgumentList class. When you pass arguments to an XSLT script in this way,
you can't specify what template call will actually use those arguments. You just pass
arguments globally to the XSLT processor. The internal modules responsible for
processing templates will then read and import those arguments as appropriate.
Creating an argument list is straightforward. You create an instance of the
XsltArgumentList class and populate it with values, as shown here:

XsltArgumentList args = new XsltArgumentList();

args.AddParam("MaxNumOfRows", "", 7);

The AddParam method creates a new entry in the argument list. AddParam requires
three parameters: the (qualified) name of the parameter, the namespace URI (if the
name is qualified by a namespace prefix), and an object representing the actual value.
Regardless of the .NET Framework type you use to pack the entry into the argument
list, the parameter value must correspond to a valid XPath type: string, Boolean,
number, node fragment, and node-set. The number type corresponds to a .NET
Framework double type, whereas node fragments and node-sets are equivalent to
XPath navigators and XPath node iterators. (See Chapter 6 for more information about
these data types.)

The XsltArgumentList Class
Despite what its name suggests, XsltArgumentList is not a collection-based class. It
does not derive from ArrayList or from a collection class, nor does it implement any of
the typical list interfaces like IList or ICollection.
The XsltArgumentList class is built around a couple of child hash tables: one to hold
XSLT parameters and one to gather the so-called extension objects. An extension
object is simply a living instance of a .NET Framework object that you can pass as an
argument to the style sheet. Of course, this feature is specific to the .NET XSLT
processor. We'll look at extension objects in more detail in the section "XSLT Extension
Objects," on page 336.
The programming interface of the XsltArgumentList class is described in Table 7-8. It
provides only methods.

Table 7-8: Methods of the XsltArgumentList Class

Method Description

AddExtensionObject Adds a new managed object to the list. You
can specify the namespace URI or use the

 266

Table 7-8: Methods of the XsltArgumentList Class

Method Description

default namespace by passing an empty
string. If you pass null, an exception is thrown.

AddParam Adds a parameter value to the list. Must
indicate the name of the argument and
optionally the associated namespace URI.

Clear Removes all parameters and extension
objects from the list.

GetExtensionObject Returns the object associated with the given
namespace.

GetParam Gets the value of the parameter with the
specified (qualified) name.

RemoveExtensionObject Removes the specified object from the list.

RemoveParam Removes the specified parameter from the
list.

As with parameters, the style sheet identifies an extension object through its class
name and an associated namespace prefix.

Practical Examples
Before we take the plunge into more advanced topics such as using managed objects
with XSLT style sheets, let's recap and summarize what we've looked at so far in a
couple of real-world examples. First we'll transform a Microsoft ADO.NET DataSet
object into a Microsoft ActiveX Data Objects (ADO) Recordset object. Of course, this
transformation will not involve the binary image of the objects, just their XML
representation.

Second we'll look at a Microsoft ASP.NET example to introduce you to the use of a very
handy control: the XML Web server control. The XML Web server control is capable of
rendering an XML document in the body of a Web page with or without XSLT
formatting.

Transforming DataSet Objects into Recordset Objects
Exporting the contents of ADO.NET DataSet objects to legacy ADO applications is a
problem that we encountered and solved in Chapter 4. That solution was based on a
special breed of XML writer. In this section, we'll reconsider that approach and use an
XSLT style sheet to accomplish the same task.
Bear in mind that using a style sheet to convert a DataSet object to a Recordset object
does not necessarily lead to faster code. If we merely consider the transformation
process, I do recommend that you always use the writer. Your code is not taxed by the
XSLT processor and, perhaps more importantly, you can use a more familiar
programming style. The writer is written in C# or Visual Basic and, as such, provides
you with total control over the generated output. An XSLT style sheet is something
different, even though it is often referred to as a program.

A style sheet is a kind of mask that you put on top of a document to change its
appearance; the document can then be saved in its new form. Using a style sheet also
decouples the transformation process from the rest of the application. You can modify
the logic of the transformation without touching or recompiling a single line of code.

 267

Writing an XSLT style sheet to transform a DataSet object into a Recordset object is
useful for other reasons as well. First, the style sheet code needed is not trivial and
requires a good working knowledge of both XPath and XSLT. Look at it as a useful
exercise to test your level of familiarity with the technologies. Second, you can apply
the style sheet directly to the binary DataSet object, without first serializing the object to
XML.
The ability to style a binary DataSet object is provided by the XmlDataDocument class.
As mentioned in Chapter 6, XmlDataDocument is an XPath document class. It
implements the IXPathNavigable interface and, as such, can be directly passed as an
argument to the Transform method. (We'll examine the XmlDataDocument class in
detail in Chapter 8.)

Getting the DataSet Object
The following code fetches some records from the Northwind database's Employees
table and stores them into a DataSet object:

string conn = "DATABASE=northwind;SERVER=localhost;UID=sa;";

string comm = "SELECT firstname, lastname, title, notes FROM
employees";

SqlDataAdapter adapter = new SqlDataAdapter(comm, conn);

DataSet data = new DataSet("Northwind");

adapter.Fill(data, "Employees");

The DataSet object is named Northwind and contains just one DataTable object,
Employees. As we'll see in a moment, the names of the DataSet and DataTable objects
play a key role in the XML representation of the objects. By default, a DataSet object is
named NewDataSet, and a DataTable object is named Table. (We'll look at ADO.NET
XML serialization in great detail in Chapter 9 and Chapter 10.)
The XML representation of a DataSet object looks like this:

<DataSetName>

 <TableName>

 <employeeid>...</employeeid>

 <lastname>...</lastname>

 ⋮

 </TableName>

 ⋮

</DataSetName>

Tip You can get the string representing the XML version of the DataSet
object through the DataSet method GetXml. The text does not include
schema information. You can get the schema script separately by
calling the GetXmlSchema method. To persist the XML
representation to a stream, use the WriteXml method instead.

Transforming the DataSet Object
Transforming a DataSet object into a Recordset object poses a couple of problems.
The first is that you have to infer and write the Recordset object's schema. The second
is that the XML layout of the DataSet object depends on a number of different
parameters. In particular, the root of the XML version of the DataSet object depends on

 268

the object's DataSetName property. Likewise, each table record is grouped under a
node whose name matches the DataTable object's TableName property.
You could easily work around the first issue by writing a more generic XSLT script. As
for the second problem, because a DataSet object can contain multiple tables, you
must necessarily know the name of the table you want to process and render as a
Recordset object. The name of the table must be passed to the XSLT processor
through the argument list.
The following code shows how to transform the DataSet object into an XPath document
and load it into the processor. The result of the transformation is directly written out to
an auto-indent XML writer. The argument passed to the style sheet is the name of the
first table in the specified DataSet object.

// Set up the style sheet

XslTransform xslt = new XslTransform();

xslt.Load("ado.xsl");

// Create an XPath document from the DataSet

XmlDataDocument doc = new XmlDataDocument(data);

// Prepare the output writer

XmlTextWriter writer = new XmlTextWriter(outputFile, null);

writer.Formatting = Formatting.Indented;

// Set some arguments

XsltArgumentList args = new XsltArgumentList();

args.AddParam("TableName", "", data.Tables[0].TableName);

// Call the transfomer and close the writer upon completion

xslt.Transform(doc, args, writer);

writer.Close();

The XmlDataDocument class internally creates an XML DOM representation of the
DataSet content. That content then becomes the input for the XSLT style sheet.

The ADO Style Sheet
Let's analyze the XSLT code necessary to transform a DataSet object into the XML
version of an ADO Recordset object. The following listing shows the over-all layout:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" />

<!-- Matches the DataSet's root, whatever the name -->

<xsl:template match="/child::*[position()=1]">

 <!-- PARAM:: Name of the table to consider -->

 <xsl:param name="TableName" select="string('Table')" />

 269

 <!-- The XML-based ADO Recordset -->

 ⋮

 <!-- End of the XML-based ADO Recordset -->

 </xsl:template>

</xsl:stylesheet>

The style sheet contains a single template that applies to the first node in the
document—that is, the DataSet object's root. Because the match is found using a
generic XPath expression that selects the first child, the template will work on the
DataSet object's root, whatever its name might be.
The style sheet can accept one argument (TableName) that defaults to the string Table.
Note that if you omit the XPath string function, Table denotes a node-set value rather
than a string.
The XML version of an ADO Recordset object consists of two distinct blocks—schema
and rows—grouped under an <xml> node. Here's the code for the Recordset schema:

<xml

 xmlns:s="uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882"

 xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"

 xmlns:rs="urn:schemas-microsoft-com:rowset"

 xmlns:z="#RowsetSchema">

 <!-- Create the schema -->

 <xsl:element name="s:schema"

 namespace="uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882">

 <xsl:attribute name="id">RowsetSchema</xsl:attribute>

 <xsl:element name="s:ElementType"

 namespace="uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882">

 <xsl:attribute name="name">row</xsl:attribute>

 <xsl:attribute name="content">eltOnly</xsl:attribute>

 <!-- Take the first table tree and walk its children

 to enumerate the fields in the schema -->

 <xsl:for-each

 select="child::*[local-name()=$TableName][position()=1]">

 <xsl:for-each select="child::*">

 <xsl:element name="s:AttributeType"

 namespace="uuid:BDC6E3F0-6DA3-11d1-A2A3-
00AA00C14882">

 <xsl:attribute name="name">

 <xsl:value-of select="local-name()" />

 270

 </xsl:attribute>

 </xsl:element>

 </xsl:for-each>

 </xsl:for-each>

 </xsl:element>

 <xsl:element name="s:extends"

 namespace="uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882">

 <xsl:attribute name="type">rs:rowbase</xsl:attribute>

 </xsl:element>

</xsl:element>

After you create the <xml> node with all of its required namespace declarations, you
create a <s:schema> node with an id attribute. The schema tree contains the definitions
of all the element and attribute types that will be used later. Note that ADO expresses
the Recordset object in XML using the XML-Data Reduced (XDR) schema instead of
the newer XML Schema Definition (XSD) schema. (See Chapter 3.)
In particular, the Recordset schema defines a <row> element to render a table row. The
node will contain as many attributes as there are columns in the source table. To define
all the attributes in the Recordset schema, you must visit all the children of a
<TableName> node in the DataSet object. The actual name of the <TableName> node
will be specified by the $TableName style sheet argument.
The sample listing emphasizes a couple of for-each statements. The first statement
selects the first node whose local, unqualified name matches the $TableName
argument. The second loop enumerates the children of this node and creates an
attribute schema definition for each.
The final step involves the creation of the data rows. Each source row corresponds to a
<z:row> node whose attributes map to the source columns, as shown here:

<xsl:element name="rs:data"

 namespace="urn:schemas-microsoft-com:rowset">

 <xsl:for-each select="child::*[local-name()=$TableName]" >

 <xsl:element name="z:row" namespace="#RowsetSchema">

 <xsl:for-each select="child::*">

 <xsl:attribute name="{local-name()}">

 <xsl:value-of select="." />

 </xsl:attribute>

 </xsl:for-each>

 </xsl:element>

 </xsl:for-each>

</xsl:element>

This listing also includes a couple of nested for-each statements that run in the context
of the DataSet object's root. The outer loop selects all the nodes whose name matches
the $TableName parameter, whereas the innermost loop creates an attribute for each
child node found. The <z:row> node is expected to have as many attributes as the child

 271

nodes of the corresponding source tree and be named after them. In other words, the
name of the attribute must be determined dynamically.
In an XSLT script, you create an attribute using the <xsl:attribute> instruction. The
instruction has a name attribute to let you assign a name to the attribute. The name
attribute can only be set with a literal, however. What if you must use an XPath
expression to decide the name? In that case, you use the following special XPath
syntax:

<xsl:attribute name="{local-name()}">

By wrapping the expression in curly brackets, you tell the processor that the attribute
must be assigned the result of the specified expression.
Figure 7-11 illustrates a sample application that runs a query against SQL Server and
saves the output in ADO-compliant XML.

Figure 7-11: The DataSet-to-Recordset style sheet converter in action.

Caution The style sheet discussed in this example works well even if the
DataSet object contains multiple tables. In fact, it has been
designed to process only the nodes that match a given table
name. The style sheet will produce incorrect XML output if a
relationship exists between two tables and the corresponding
DataRelation object has the Nested property set to true. In this
case, the records of the child table are serialized below each
parent row, thus resulting in a discrepancy between the declared
schema and the actual contents of each row.
A possible workaround is to use a second parameter, n, that
specifies the number of columns in the table to be processed.
While you define the schema, you stop the loop after the first n
child rows, discarding all the rows set there because of the
nested relationship.

The XML Web Server Control

The XML Web server control is used to output the contents of an XML document
directly in an ASP.NET page. The control can display the source XML as is or as the
results of an XSLT transformation.
The XML Web server control, denoted by the <asp:xml> tag, is a declarative
counterpart to the XslTransform class. The XML Web server control has no more

 272

features than the XslTransform class. More precisely, the XML Web server control
makes use of the XslTransform class internally.
You use the XML Web server control when you need to embed XML documents in a
Web page. For example, the control is extremely handy when you need to create XML
data islands for the client to consume. Data islands consist of XML data referenced or
included in an HTML page. The XML data can be included in-line within the HTML, or it
can be in an external file. By combining this control's ability with the ADO XML style
sheet we created in the previous section, you can transform a DataSet object into an
ADO Recordset object and send it to the browser to be processed by client script
procedures.

Let's take a closer look at the programming interface of the XML Web server control.

Programming the XML Web Server Control
In addition to the typical and standard properties of all server controls, the XML Web
server control provides the properties listed in Table 7-9. The document properties
represent the source XML data, and the transform properties handle the instance of the
XslTransform class to be used and the style sheet.

Table 7-9: Properties of the XML Web Server Control

Property Description

Document Sets the XML source document using an
XmlDocument object

DocumentContent Sets the XML source document using a string

DocumentSource Sets the XML source document using a file

Transform Sets the XslTransform class to use for
transformations

TransformArgumentList Gets or sets the argument list for transformations

TransformSource Sets the style sheet to use for transformations

You can specify a source document using a file, a string, or an XML DOM object. A
style sheet, on the other hand, can be specified using a file or a preconfigured
XslTransform object. The output of the transformation, if any, is the Web page output
stream.
The settings are mutually exclusive, and the last setting always wins. For example, if
you set both Document and DocumentSource, no exception is thrown, but the first
assignment is overridden. Although Table 7-9 emphasizes the writing of these
properties, they are all read/write properties. For the DocumentContent property,
however, only the set accessor has a significant implementation. If you attempt to read
the property, an empty string is returned.
The DocumentContent property can be set programmatically by using a string variable
or declaratively by placing text between the start and end tags of the control, as shown
here:

<asp:xml runat="server" id="theXml">

 ... xml data ...

</asp.xml>

You can optionally specify an XSL style sheet document that formats the XML
document before it is written to the output. The output of the style sheet must be HTML,

 273

XML, or plain text. It can't be, for example, ASP.NET source code or a combination of
ASP.NET layout declarations. Let's look at a few practical examples.

Server-Side Transformations

The following listing demonstrates a simple but effective way to describe a portion of
your Web page using XML code. The actual XML-to-HTML transformation is
automatically and silently performed by the style sheet.

<!-- Show employee info -->

<asp:xml runat="server" TransformSource="EmpInfo.xsl">

 <MyDataSet>

 <NorthwindEmployees>

 <Employee>

 <employeeid>1</employeeid>

 <firstname>Nancy</firstname>

 <lastname>Davolio</lastname>

 <title>Sales Representative</title>

 <notes>...</notes>

 </Employee>

 </NorthwindEmployees>

 </MyDataSet>

</asp:xml>

The XML Web server control can have an ID and can be programmatically accessed.
This opens up a new possibility. You can now check the browser's capabilities and
decide dynamically which style sheet is most appropriate.

You can also describe the entire page with XML and use a style sheet to translate the
page into HTML, as shown in the following code. This is not always, and not
necessarily, the best solution to gain flexibility, but the XML Web server control
definitely makes implementing that solution considerably easier.

<asp:xml runat="server"

 DocumentSource="Employees.xml"

 TransformSource="EmpInfo.xsl" />

If you need to pass in an argument, simply create and populate an instance of the
XsltArgumentList class and pass it to the control using the TransformArgumentList
property.

Creating Client-Side Data Islands

A data island is a block of data that is embedded in the body of an HTML page and is
invisible to the user. Storing data in hidden fields is certainly the oldest and more widely
supported way of implementing data islands. You can think of XML data islands as
islands of XML data dispersed in the sea of HTML pages.
Modern browsers (Internet Explorer 5.0 and later) support an ad hoc client-side tag,
<xml>, to store islands of data, hiding them from view, as shown here:

<xml id="data">

 ... XML data goes here ...

 274

</xml>

Don't confuse the Internet Explorer 5.0 client-side HTML tag with the <asp:xml> server-
side control. In Chapter 14, we'll return to data islands, and you'll learn how to define
them from within server pages. For now, let's just say that an XML data island is XML
text wrapped in an <xml> HTML tag. Not all browsers support this. The example
described here requires Internet Explorer 5.0 or later.
Used in conjunction with the <xml> tag, the XML Web server control can be very helpful
and effective. The following code flushes the contents of the specified XML file in a
particular data island:

<xml id="data">

 <asp:xml runat="server" documentsource="employees.xml" />

</xml>

If needed, you can first apply a transformation. For example, you can embed an ADO
XML Recordset object in a data island. In this case, set the TransformSource property
of the XML Web server control with the proper style sheet.
Internet Explorer 5.0 automatically exposes the contents of the <xml> tag through an
XML DOM object. Hold on, though—that's not managed code! What you get is a
scriptable MSXML COM object. The following ASP.NET page includes some VBScript
code that retrieves the contents of the data island. (More on this in Chapter 14.)

<script runat="server">

<!-- Add a client-side onclick handler to the button -->

void Page_Load(object sender, EventArgs e)

{

 button.Attributes["onclick"] = "ReadXmlData()";

}

</script>

<html>

 <script language="VBScript">

 Sub ReadXmlData()

 ' data is the name of the <xml> tag and

 ' represents an MSXML XML DOM object

 window.alert(data.DocumentElement.nodeName)

 End Sub

 </script>

 <body>

 <h1>Client-side Data Islands</h1>

 <!-- Client-side XML data island -->

 <xml id="data">

 <asp:xml runat="server" documentsource="employees.xml" />

 </xml>

 <!-- End of the data island -->

 275

 <form runat="server">

 <asp:button runat="server" id="button" text="Click..." />

 </form>

 </body>

</html>

XSLT Extension Objects

Let's complete our examination of transformations by analyzing the XSLT extension
objects. As mentioned, the XsltArgumentList class can contain both parameters and
extension objects. Parameters are simply value types, whereas extension objects are
instances of .NET classes. When passed to the Transform method, both parameters
and extension objects can be invoked from style sheets.
The behavior of a style sheet can be extended in various ways. For example, you can
use the <xsl:eval> instruction to run VBScript or JScript interpreted code. Before the
advent of the .NET Framework, this was the only option available. With the .NET
Framework, given the other characteristics of the XSLT processor, the <xsl:eval>
instruction is by far the less interesting alternative.
In addition, in the .NET Framework, the <xsl:eval> instruction has been superseded by
the <msxsl:script> element. This new instruction works in much the same way as
<xsl:eval>, but it supports managed languages, thus providing access to the entire
.NET Framework.

Processing Embedded Scripts
When the style sheet is loaded in the XslTransformclass, all defined functions are
wrapped in a class and compiled to the .NET Framework intermediate language (IL).
They then become available to XPath expressions as native functions.
The .NET Framework XSLT processor accepts external scripts through the
<msxsl:script> element. The script must use only XPath-compliant types even though,
in most cases, type coercion is automatically provided by the processor. The type
conformance is fundamental for input parameters and return values. Each script can
internally use any .NET Framework type, paying some attention to the required
namespaces. The following namespaces are imported by default: System,
System.Text, System.Xml, System.Text.RegularExpressions, System.Xml.XPath,
System.Xml.Xsl, System.Collections, and Microsoft.VisualBasic. Classes in other
system namespaces can be used too, but their names must be fully qualified. For
example, to use a DataSet object, you must call it System.Data.DataSet.

Important An embedded script can't call into a user-defined namespace.
The XSLT subsystem knows nothing about dependent
assemblies and so can't reference them at compile time. To
work around this issue, use extension objects.

The <msxsl:script> Instruction
The <msxsl:script> instruction has the following syntax:

<msxsl:script

 language = "language"

 implements-prefix = "prefix">

 276

</msxsl:script>

Supported languages are C#, Visual Basic, and JScript. The language attribute is not
mandatory and, if not specified, defaults to JScript. The implements-prefix attribute is
mandatory, however. It declares a namespace and associates the user-defined code
with it. The namespace must be defined somewhere in the style sheet. In addition, to
make use of the <msxsl:script> instruction, the style sheet must include the following
namespace:

xmlns:msxsl=urn:schemas-microsoft-com:xslt

Let's see how to define a simple script. To start off, we'll declare the extra namespaces
in the the style sheet's root node, as shown here:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:msxsl="urn:schemas-microsoft-com:xslt"

 xmlns:dino="urn:dino-scripts" >

This declaration is necessary to be able to call the <msxsl:script> instruction. The
namespace simply groups under a single roof some user-defined scripts. The prefix
dino is now necessary to qualify any calls to any functions defined in a <msxsl:script>
block. Script blocks can be defined as children of the <stylesheet> node, at the same
level as templates.

The following script concatenates first and last names, separated by a comma:

 <msxsl:script implements-prefix="dino" language="C#">

 public string PrepareName(string last, string first)

 {

 return last + ", "+ first;

 }

 </msxsl:script>

In the body of the style sheet—typically in a template—you call the function, as follows:

 <xsl:template match="lastname">

 <TD style="border:1px solid black">

 <xsl:value-of select="dino:PrepareName(., ../firstname)" />

 </TD>

 </xsl:template>

If you enclose parameters in quotation marks, they will be treated as literals. To ensure
that the function receives only node values, use the same expressions you would use
with the select attribute of an <xsl:value-of> instruction. The preceding script runs from
the context of a <lastname> node in the following schema:

<Employee>

 <lastname>...</lastname>

 <firstname>...<firstname>

</Employee>

 277

The dot symbol (.) indicates the value of the current node, whereas../firstname stands
for the sibling of the current context node, named <firstname>.

When a function is declared, it is contained in a script block. Style sheets, however, can
contain multiple blocks. All blocks are namespace-scoped and independent from each
other. You can call a function defined in another block only when both functions share
the same namespace and language.
Why should we use the same language to call into a function defined in another block?
Isn't the .NET Framework totally language-neutral? The explanation for this
discrepancy is found under the hood of <msxsl:script>. The instruction works as a mere
code runner. It groups all script blocks in one or more allencompassing classes. Blocks
with the same namespace flow in the same dynamically created class.

In light of this, calling into external blocks is only possible because both involved
functions—the caller and the callee—are members of the same managed class. For the
same reasons, you can't use different languages. What the .NET Framework provides
is the ability to invoke a compiled class irrespective of its source language. In no way
does the .NET Framework provide you with the ability to write and compile a single
class using different languages.

The CDATA Section
When an <msxsl:script> element is declared, you should enclose all of its code in a
CDATA section. The main purpose of the CDATA delimitors is to protect the source
code from the XML parser. A style sheet document is in fact still an XML document and
as such gets parsed, as shown here:

<msxsl:script implements-prefix="dino" language="C#">

<![CDATA[

 code goes here

]]>

</msxsl:script>

Wrapped in a CDATA section, the user-defined code can contain any unescaped
character that would otherwise confuse the parser. The most common example is <. If
you omit the CDATA section and need to use < in a Boolean expression, you must use
it in the escaped form < or you'll get an error.

Node Fragments in Transformations
As mentioned, you must always use XPath types when you pass arguments to
<msxsl:script> blocks or return values from within a user-defined function. Let's have a
second look at the command we used to invoke our previously defined extension
function:

<xsl:value-of select="dino:PrepareName(., ../firstname)" />

As you can see, the PrepareName function is actually passed a couple of
XPathNodeIterator objects. Chapter 6 defined XPathNodeIterator objects as the .NET
Framework implementation of XPath node-sets. What any function receives is always
the .NET Framework type that represents the results of a particular XPath query. The
XSLT processor attempts to coerce types whenever possible. In this example, the
PrepareName function takes two string objects, and the processor coerces the results
of the . and ../firstname expressions to string types.
When you need to process an entire node-set, declare your function to use an
XPathNodeIterator argument, as shown here:

 278

double CalculateSubTotal(XPathNodeIterator nodeset)

{

 double total = 0;

 while (nodeset.MoveNext())

 total += System.Convert.ToDouble(nodeset.Value);

 return total;

}

You call this function passing an XPath expression that evaluates to a node-set and
then use the iterator's methods to navigate the nodes.

Passing Managed Objects to the Style Sheet
Using the <msxsl:script> instruction lets you execute managed code, which is
advantageous from at least two standpoints. First, you write extension code using high-
level languages, thus accessing the true power of the .NET Framework. Second, you
move some of the style sheet logic into functions, thus rendering it with more
appropriate tools than XSLT instructions.
The <msxsl:script> instruction does not represent the optimal solution, however. The
main problem is that you still have code defined in the body of the style sheet. In
addition, this code is silently and automatically transformed into managed code through
the intervention of a system tool— the <msxsl:script> instruction—whose activity is
neither monitored nor controllable. For this reason, the XSLT processor allows you to
define a second group of parameters—extension objects.

How Managed Extension Objects Work
The idea behind extension objects is simple. Instead of defining embedded scripts and
leaving the <msxsl:script> instruction the task of grouping them into a dynamically
created and compiled class, you just create and pass a managed class yourself!
Unlike embedded scripts, which are natively defined in the body of the style sheet,
extension objects are external resources that must be plugged into the style sheet in
some way. You can't use the <xsl:param> mechanism, however, because XSLT
parameters must be XPath types. On the other hand, conceptually speaking, an
extension object is just an external argument you pass to the style sheet. For this
reason, the XsltArgumentList class defines a parallel array of methods specifically to
handle extension objects. (See the section "Passing and Retrieving Arguments," on
page 323.)
The XSLT processor maps the parameters in the argument list to the <xsl:param>
instructions in the style sheet. The extension objects, on the other hand, are plugged in
using the same internal mechanism that triggers when the <msxsl:script> code is
gathered and then compiled. In abstract terms, using embedded scripts and using
extension objects are somewhat equivalent. But using extension objects provides you
with greater flexibility and improves the overall software design.

Script and Extension Object Trade-Offs

Using extension objects is preferable over using embedded scripts for at least three
reasons. First, extension objects provide much better code encapsulation, not to
mention the possibility of class reuse. Second, you end up with more compact, layered
style sheets, with significant advantages also in terms of more seamless code
maintenance.

 279

Finally, using classes lets you exploit the true potential of the .NET Framework more
easily. You no longer have to worry about CDATA sections. And you can cascade calls
from one class to another, with each class compiled separately and written in any
language. An additional pleasant side effect is that you can call methods in classes
belonging to custom namespaces as well as system namespaces.

Extension Objects in Action

The following code demonstrates how to register extension objects for use with the
XSLT processor:

// Create and configure the extension object

ExtensionObject o = new ExtensionObject();

// *** set properties on the object if needed

// Register the object with the XSLT processor

XsltArgumentList args = new XsltArgumentList();

args.AddExtensionObject("urn:dino-objects", o);

XslTransform xslt = new XslTransform();

xslt.Transform(doc, args, writer);

TheExtensionObject class in this code snippet is any .NET class that is visible to the
caller program. When you add a living instance of the object to the argument list, you
must specify the namespace URI that will be used throughout the style sheet to qualify
the object.

The style sheet must include the corresponding namespace declaration with its own
style sheet–wide prefix, as in the following example:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:dino="urn:dino-objects" >

Finally, you invoke the methods on the object's interface using XPath expressions, as
with embedded scripts. For example, if the ExtensionObject class has a DoSomething
method, the following would be perfectly valid code:

 <xsl:template match="lastname">

 <TD style="border:1px solid black">

 <xsl:value-of select="dino:DoSomething(., ../firstname)" />

 </TD>

 </xsl:template>

As with embedded scripts, methods of extension objects must publicly handle .NET
Framework types that can be converted to XPath types.

Conclusion

XML data is a key element for any modern distributed and tiered system. But XML data
alone is not really usable, and even when it is usable, it turns out to be not very

 280

profitable, because XML is a metalanguage that needs further instantiation and
specialization.
You can think of XML as an abstract class for data description languages. Like abstract
classes, you can use XML as a reference but not to perform complex tasks. So XML
does matter but only if you pair it with other related technologies. In Chapter 6, we
analyzed XPath as the emerging language for performing queries. I can't say whether
XPath is the definitive query tool or just a temporary technology that will soon be
replaced by something else—perhaps XQuery. XPath is a key technology to enable
powerful and effective data transformation, which is just what this whole chapter has
been all about.

In abstract terms, transforming XML data means making data usable by actual
applications and by end-users. XSLT is simply a subset of the XML style sheet
language, but it probably represents the core part. This chapter provided a quick
refresher course in the XSLT vocabulary of instructions and then focused on the .NET
Framework implementation of the XSLT processor.
In the .NET Framework, the XSLT processor is contained in a single class—the
XslTransform class. This chapter explained the programming interface of the XSLT
processor and unveiled some of its internal features. We also looked at security and
threading aspects and a few concrete examples of style sheet definitions and use.
With this chapter, the second part of the book, dedicated to data manipulation via XML-
related standards, has come to the end. In Part III, we'll look at a new programming
aspect of XML—XML and databases. Chapter 8 in particular will discuss how to read
and write data from and to databases in XML format.

Further Reading

For further study of the XSL initiative and XSLT in particular, the official specification is
available at http://www.w3.org/TR/xslt. It refers to XSLT 1.0, which is the version
currently supported by the .NET Framework. For a sneak preview of what's coming
next, the working draft of XSLT 1.1 is downloadable from http://www.w3.org/TR/xslt11.
In our examination of the XSL technology as a whole, XSL Formatting Objects (XSL-
FO) were introduced. To learn more, have a look at the following online tutorial:
http://www.dpawson.co.uk/xsl/sect3/bk/index.html. In general, useful links for online
material about XSL and related technologies are listed at http://www.w3.org/Style/XSL.

 281

Part III: XML and Data Access

Chapter List

Chapter 8: XML and Databases
Chapter 9: ADO.NET XML Data Serialization
Chapter 10: Stateful Data Serialization

Part Overview

 282

Chapter 8: XML and Databases

Overview
Most likely, the majority of today's computer experts and students would associate the
idea of a database with a relational database. Since their introduction in the early
1970s, relational databases have gained an extraordinary success. Relational
databases have grown so steadily and progressively that along the way they've lost the
qualifying adjective relational and become the only commonly accepted way to design a
database.

Today, relational databases like Microsoft SQL Server 2000, Oracle 9i, and IBM DB2
are the favorite tools for storing and working with data. Modern databases do a lot of
things, but what a (relational) database still does best is store data. Relational
databases won out over other data models such as the hierarchical and reticular
models mostly because of their inherent simplicity and natural way of modeling data
and arranging queries. Relational databases exploit the structured query language
(SQL) to search for contained information.

Recent developments in the computer industry have raised the need for total software
integration and communication. As a side effect, data modeled into a system must often
be transformed into analogous, but not identical, models in order to be stored or linked
on different systems. Enter XML and its innate ability to describe data.

More and more often today you need to extract data out of databases and model it into
a particular data schema using XML. So why not just ask the database itself to return
data as XML, possibly formatted in a supplied schema? XML support is built into (or will
be built into) almost all database management systems (DBMS) currently available. In
particular, Microsoft SQL Server 2000 comes with an embedded engine capable of
returning data as XML. This feature is built as an extension to the traditional SELECT
command, and data is rendered as XML before being sent back to the client. Oracle 9i
provides a slightly different model that treats XML as a native data type. XML data can
be stored in ad hoc relational tables as well as in binary large object (BLOB) fields that
can be either binary or ASCII.

Whatever the vendor approach, XML and databases represent a key alliance for the
present and the future of data-driven and interoperable applications. In this chapter,
we'll review the essential aspects of XML in SQL Server 2000, and you'll learn how to
take advantage of these features from within a Microsoft .NET Framework environment.

Reading XML Data from Databases

With SQL Server 2000, you have two basic ways to retrieve data as XML: you can use
the XML extensions to the SELECT command, or you can execute a query on a
particular text or BLOB field that is known to contain XML data. SQL Server does not
mark these fields with a special attribute or data type to indicate that they contain XML
data, however.

With the first technique, you typically use the FOR XML clause in a traditional query
command. In response, the DBMS executes the query in two steps. First it executes the
SELECT statement, and next it applies the FOR XML transformation to a rowset. The
resulting XML is then sent to the client as a one-column rowset.

 283

Note Although specific to the OLE DB specification, the term rowset is
often used generically to indicate a set of rows that contain columns
of data. Rowsets are key objects that enable all OLE DB data
providers to expose query result set data in a tabular format.

The FOR XML extensions let you consider XML mostly as a data output format. With
the alternative technique for retrieving data as XML, you can store raw XML data in a
text or BLOB field and retrieve that data using an ordinary query—preferably a scalar,
single-field query. In both cases, the Microsoft ADO.NET object model, along with the
Microsoft .NET Framework XML core classes, provide a number of handy features to
extract XML data quickly and effectively.

SQL Server 2000 XML Extensions

The XML support in SQL Server 2000 provides URL-driven access to the database
resources, XML-driven data management, and the possibility of using XPath queries
to select data from relational tables. SQL Server 2000 does not create ad hoc storage
structures for XML data. It does provide an ad hoc infrastructure for reading, writing,
and querying relational data through the XML logical filter.

The following list gives you a bird's-eye view of the key XML features available in SQL
Server 2000 and its latest extension, SQLXML 3.0:

 Access SQL Server through a URL. An ISAPI filter running on top of
the Internet Information Services (IIS) allows you to directly query
commands to SQL Server using HTTP. You simply point to a properly
formatted URL, and what you get back is the result set data formatted as
XML data.

 Create XML schema-driven views of relational data. Similar to
CREATE VIEW, this feature lets you represent a result set as an XML
document written according to a given XML Schema Definition (XSD) or
XML-Data Reduced (XDR) schema. You specify the mapping rules
between the native fields and XML attributes and elements. The resultant
XML document can be treated as a regular XML Document Object Model
(XML DOM) object and queried using XPath expressions.

 Return fetched data as XML. This feature is at the foundation of the
entire XML support in SQL Server 2000. A database internal engine is
capable of formatting raw column data into XML fragments and exposing
those fragments as strings to callers. This capability is incorporated in
the SELECT statement and can be controlled through a number of
clauses and attributes.

 Insert data represented as an XML document. Just as you can read
relational data into hierarchical XML documents, you can write XML data
into tables. The source document is preprocessed by a system stored
procedure named sp_xml_preparedocument. The parsed document is
then passed on to a special module—named OPENXML—that provides
a rowset view of the XML data. At this point, to ordinary Transact-SQL
(T-SQL) commands, XML native data looks like ordinary result sets.

SQLXML 3.0 is an extension to SQL Server 2000 designed to keep current with
evolving W3C standards for XML and other requested functions. Available as a free
download at http://msdn.microsoft.com/downloads, SQLXML 3.0 also provides a
bunch of managed classes for exposing some of the functionalities to .NET

 284

Framework applications. SQLXML 3.0 includes the ability to expose stored
procedures as Web services via the Simple Object Access Protocol (SOAP) and adds
support for ADO.NET DiffGrams and client-side XML transformations.

XML Extensions to the SELECT Statement
In SQL Server 2000, you can query existing relational tables and return results as XML
documents rather than as standard rowsets. The query is written and runs normally. If
the SELECT statement contains a trailing FOR XML clause, the result set is then
transformed into a string of XML text. Within the FOR XML clause, you can specify one
of the XML modes described in Table 8-1.

Table 8-1: Modes of the FOR XML Extension

Mode Description

AUTO Returns query results as a sequence of <table> XML
elements, where table is the name of the table. Fields are
rendered as node attributes. If the additional ELEMENTS
clause is specified, rows are rendered as child nodes instead
of attributes.

EXPLICIT The query defines the schema of the XML document being
returned.

RAW Returns query results as a sequence of generic <row> nodes
with as many attributes as the selected fields.

The mode is valid only in the SELECT command for which it has been set. In no way
does the mode affect any subsequent queries. XML-driven queries can be executed
directly or from within stored procedures.

Tip The XML data contains an XDR schema if you append the XMLDATA

attribute to the FOR XML mode of choice, as shown here:
SELECT * FROM Employees FOR XML, XMLDATA
Schema information is incorporated in a <schema> node prepended
to the document.

The FOR XML AUTO Mode

The AUTO mode returns data packed as XML fragments—that is, without a root node.
The alias of the table determines the name of each node. If the query joins two tables
on the value of a column, the resulting XML schema provides nested elements.

Let's consider the following simple query:

SELECT CustomerID, ContactName FROM Customers FOR XML AUTO

The XML result set has the form shown here:

<Customers CustomerID="ALFKI" ContactName="Maria Anders" />

<Customers CustomerID="ANATR" ContactName="Ana Trujillo" />

...

Try now with a command that contains an INNER JOIN, as follows:

SELECT Customers.CustomerID, Customers.ContactName,

 Orders.OrderID

FROM Customers

 285

INNER JOIN Orders ON Customers.CustomerID = Orders.CustomerID

FOR XML AUTO

Interestingly, in this case the XML output automatically groups child records below the
parent:

<Customers CustomerID="ALFKI" ContactName="Maria Anders">

 <Orders OrderID="10643"/>

 <Orders OrderID="10692"/>

 <Orders OrderID="10783"/>

 ...

</Customers>

<Customers CustomerID="ALFKI" ContactName="Ana Trujillo">

 <Orders OrderID="11459"/>

 <Orders OrderID="10987"/>

...

</Customers>

...

If the ELEMENTS attribute is also specified, the data rows are rendered in XML through
elements rather than as attributes. Let's consider the following query:

SELECT CustomerID, ContactName FROM Customers FOR XML AUTO,

 ELEMENTS

The XML output is similar to this:

<Customers>

 <CustomerID>ALFKI</CustomerID>

 <ContactName>Maria Anders</ContactName>

</Customers>

<Customers>

 <CustomerID>ANATR</CustomerID>

 <ContactName>Ana Trujillo</ContactName>

</Customers>

...

In the case of INNER JOINs, the output becomes the following:

<Customers>

 <CustomerID>ALFKI</CustomerID>

 <ContactName>Maria Anders</ContactName>

 <Orders>

 <OrderID>10643</OrderID>

 </Orders>

 <Orders>

 <OrderID>10692</OrderID>

 </Orders>

 286

 ...

</Customers>

...

The FOR XML AUTO mode always resolves table dependencies in terms of nested
rows. The overall XML stream is not completely well-formed. Instead of an XML
document, the output is an XML fragment, making it easier for clients to concatenate
more result sets into a single structure.

Note If you also add the BINARY BASE64 option to a FOR XML query,

any binary data that is returned will automatically be encoded using
a base64 algorithm.

The FOR XML RAW Mode
As its name suggests, the FOR XML RAW mode is the least rich mode in terms of
features and options. When designed using this mode, the query returns an XML
fragment that, at a first glance, might look a lot like the fragment produced by the FOR
XML AUTO option. You obtain an XML fragment made of <row> nodes with as many
attributes as the columns. For example, consider the following simple query:

SELECT CustomerID, ContactName FROM Customers FOR XML RAW

The output is shown here:

<row CustomerID="ALFKI" ContactName="Maria Anders" />

<row CustomerID="ANATR" ContactName="Ana Trujillo" />

...

You can't change the name of the node, nor can you render attributes as nested nodes.
So far, so good—the RAW mode is only a bit less flexible than the AUTO mode.
However, the situation changes when you use joined tables.
The schema of XML data remains intact even when you process multiple tables. The
INNER JOIN statement from the previous section run in FOR XML RAW mode
originates the following output:

<row CustomerID="ALFKI" ContactName="Maria Anders"

 OrderID="10643"/>

<row CustomerID="ALFKI" ContactName="Maria Anders"

 OrderID="10692"/>

<row CustomerID="ALFKI" ContactName="Maria Anders"

 OrderID="10783"/>

...

Even with the naked eye, you can see that the RAW mode produces a less optimized
and more redundant output than the AUTO mode. The ELEMENTS clause is not
supported in RAW mode, whereas XMLDATA and BINARY BASE64 are perfectly
legitimate.

Limitations of FOR XML

The FOR XML clause is not valid in all cases in which a SELECT statement is
acceptable. In general, FOR XML can be used only when the selection produces direct
output going to the SQL Server client, whatever that output is. Let's review a couple of

 287

common scenarios in which you can't make use of the FOR XML clause. For a more
complete overview, please refer to SQL Server's Books Online.

FOR XML Can't Be Used in Subselections

SQL Server 2000 allows you to use the output of an inner SELECT statement as a
virtual table to which an outer SELECT statement can refer. The inner query can't
return XML data if you plan to use its output to perform further operations. For example,
the following query is not valid:

SELECT * FROM (SELECT * FROM Employees FOR XML AUTO) AS t

Likewise, the FOR XML clause is not valid in a SELECT statement that is used to
create a view. For example, the following statement is not allowed:

CREATE VIEW MyOrders AS

 SELECT OrderId, OrderDate FROM Orders FOR XML AUTO

In contrast, you can select data from a view and return it as XML. In addition, FOR XML
can't be used with cursors.

FOR XML Can't Be Used with Computed Columns

The current version of SQL Server does not permit GROUP BY and aggregate
functions to be used with FOR XML AUTO. Aggregate functions and GROUP BY
clauses can be safely used if the XML query is expressed in RAW mode, however. The
following code returns the expected results:

SELECT min(unitprice) AS price, max(quantity) AS quantity

FROM [order details] FOR XML RAW

The only caveat is that you must explicity name the computed columns using the AS
keyword. The output is shown here:

<row price="2.0000" quantity="130" />

Table 8-1 mentioned a third FOR XML mode—the EXPLICIT mode. The EXPLICIT
mode goes beyond the rather basic goals of both AUTO and RAW. It is designed to
enable users to build a personal schema to render relational data in XML. The
EXPLICIT mode is one of the ways that programmers have to create custom XML
views of stored data.

Client-Side XML Formatting
SQLXML 3.0 extends the base set of SQL Server 2000 XML extensions by including
client-side formatting capabilities in addition to the default server-side XML formatting.
From within a .NET Framework application, you use SQLXML 3.0 managed classes
(more on this in the section "SQLXML Managed Classes," on page 386) to set up a
command that returns XML data.
When the command executes, the managed classes—at least in this version of the
SQLXML library—call into a middle-tier OLE DB provider (SQLXMLOLEDB) object,
which in turn calls into the OLE DB provider for SQL Server. The command that hits the
database does not contain the FOR XML clause. When the rowset gets back to the
SQLXMLOLEDB provider, it is transformed into XML according to the syntax of the
FOR XML clause and returned to the client. Figure 8-1 compares server-side and
client-side XML formatting.

 288

Figure 8-1: The client-side XML formatting feature of SQLXML 3.0 makes use of
intermediate OLE DB providers to execute the query and transform the results.

As you'd expect, the two intermediate OLE DB providers cause more performance
problems than they ever attempt to resolve. On the other hand, SQLXML 3.0 is not
specifically designed for the .NET Framework, although it contains a few managed
classes that we'll look at in the section "SQLXML Managed Classes," on page 386. In a
nutshell, keep in mind that SQLXML 3.0 provides client-side XML formatting but that
this feature is rather inefficient. For .NET Framework applications, a much better
approach for client-side XML rendering is represented by the XmlDataDocument class.
(See the section "The XmlDataDocument Class," on page 372.)

Creating XML Views

Just as a CREATE VIEW statement in SQL lets you create a virtual table by collecting
columns from one or more tables, an XML view provides an alternative and highly
customizable way to present relational data in XML.

Building an XML view consists of defining a custom XML schema and mapping to its
elements the columns and the tables selected by the query. Once built, an XML view
can be used like its close cousin, SQL view. In particular, an XML view can be queried
using XPath expressions and transformed using XSL Transformation (XSLT) scripts. An
XML view is simply a stream of XML data and can be used as allowed by .NET. In the
.NET Framework, you can use XML views through readers, XML DOM, or even
specialized classes, such as those in SQLXML 3.0.

There are two possible ways to create XML views: you can use the FOR XML
EXPLICIT mode of the SELECT statement, or you can build an annotated XDR or XSD
schema. To use an XSD schema, you must install SQLXML 3.0 first.

 289

The FOR XML EXPLICIT Mode

The query defines the shape of the generated XML document. The ultimate goal of the
query is making hierarchical data fit into a tabular rowset. An EXPLICIT mode query
creates a virtual table in which all the information fetched from the tables is organized in
such a way that it can then be easily rendered in XML. The definition of the schema is
free, and of course, programmers must ensure that the final output is well-formed XML.
Any FOR XML EXPLICIT query requires two extra metacolumns, named Tag and
Parent. The values in these columns are used to generate the XML hierarchy. The Tag
column contains a unique numeric index for each XML root node that is expected to
have children in the XML schema. The Parent column contains a tag value that links a
given node to a particular, and previously defined, subtree.

To add columns, you must use a relatively complex syntax for column aliases. Each
selected column must have an alias defined according to the following syntax:

SELECT column_name AS [ParentNode!ParentTag!TagName!Directive]

TheParentNode item represents the name of the node element that is expected to be
the parent of the column data. The ParentTag is the tag number of the parent. The
TagName item indicates the name of the XML element that contains the column data.
Finally, the Directive element can take various values, the most common ones being no
value or element. If no value is specified, the column data is rendered as an attribute
named TagName; otherwise, it will be an element attribute.

It's interesting to note that an EXPLICIT mode query consists of one or more tables that
result from SELECT statements potentially involving multiple tables and joined data.
Let's see what's needed to obtain the following XML representation of the rows in the
Northwind database's Employees table:

<Employee id="employeeid"

 name="titleOfCourtesy lastname, firstname">

 <PersonalData>

 <Birth>birthdate</Birth>

 <City>city</City>

 </PersonalData>

 <JobData>

 <Hired>hiredate</Hired>

 <Title>title</Title>

 </JobData>

 <Notes>notes</Notes>

</Employee>

The boldface lines in this code represent the roots of the three subtrees of XML data
being created. Each subtree corresponds to a different tag, and each must be filled by
resorting to a different SELECT statement.

To begin filling the subtrees, consider the following query:

SELECT 1 AS Tag,

 NULL AS Parent,

 employeeid AS [Employee!1!ID],

 290

 lastname AS [Employee!1!Name]

This statement fills in the first tag—the fragment's root—which has no parent and
contains two attributes, ID and Name. The employeeid and the lastname columns will
fill respectively the ID and the Name attributes of an <Employee> node with no parent.

The first table always defines the structure of the XML view. Successive tables can only
fill in holes—nothing new will be added. Consequently, to obtain the previous schema,
you must write the first tag as follows:

SELECT 1 AS Tag,

 NULL AS Parent,

 employeeid AS [Employee!1!ID],

 titleofcourtesy + ' ' + lastname + ', ' + firstname

 AS [Employee!1!Name],

 NULL AS [PersonalData!2!BirthDate!element],

 NULL AS [PersonalData!2!City!element],

 NULL AS [JobData!3!HireDate!element],

 NULL AS [JobData!3!Title!element],

 lastname AS [Employee!1!Notes!element]

FROM Employees

The columns with NULL values will be selected by successive queries. In particular,
you'll notice PersonalData and JobData trees with tag IDs of 2 and 3, respectively. The
former contains a pair of BirthDate and City elements. The latter holds elements named
Title and HireDate.

To unify all the subtables, you must use the UNION ALL statement. The complete
statement is shown here:

SELECT

 1 AS Tag,

 NULL AS Parent,

 employeeid AS [Employee!1!ID],

 titleofcourtesy + ' ' + lastname + ', ' + firstname

 AS [Employee!1!Name],

 NULL AS [PersonalData!2!BirthDate!element],

 NULL AS [PersonalData!2!City!element],

 NULL AS [JobData!3!HireDate!element],

 NULL AS [JobData!3!Title!element],

 lastname AS [Employee!1!Notes!element]

FROM Employees

UNION ALL

SELECT

 2, 1,

 employeeid,

 291

 titleofcourtesy + ' ' + lastname + ', ' + firstname,

 birthdate,

 city,

 hiredate,

 title,

 notes

FROM Employees

UNION ALL

SELECT

 3, 1,

 employeeid,

 titleofcourtesy + ' ' + lastname + ', ' + firstname,

 birthdate,

 city,

 hiredate,

 title,

 notes

FROM Employees

ORDER BY [Employee!1!ID]

FOR XML EXPLICIT

The T-SQL UNION ALL operator combines the results of two or more SELECT
statements into a single result set. All participating result sets must have the same
number of columns, and corresponding columns must have compatible data types.

Using an Annotated Mapping Schema

A more lightweight alternative to FOR XML EXPLICIT views is the annotated schema.
SQL Server 2000 lets you create XML views by defining an XDR schema with special
annotations that work like placeholders for selected data. Basically, instead of defining
the schema using a new syntax and combining multiple virtual tables, you use a
standard XML data definition language and map elements to columns using ad hoc
annotations.
The base version of SQL Server 2000 supports only XDR. If you want to use XSD, you
must install SQLXML 3.0. (To review the differences between XDR and XSD, see
Chapter 3)
The following listing shows a simple XSD annotated schema that defines an
<Employee> node with a couple of child nodes—<FirstName> and <LastName>:

<xsd:schema

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

 <xsd:element name="Employee" sql:relation="Employees" >

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="FName"

 292

 sql:field="FirstName" type="xsd:string" />

 <xsd:element name="LName"

 sql:field="LastName" type="xsd:string" />

 </xsd:sequence>

 <xsd:attribute name="EmployeeID" type="xsd:integer" />

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

The annotations sql:relation and sql:field facilitate the mapping between the source
table and the resulting XML data. In particular, sql:relation indicates that the given node
is related to the specified table. The sql:field annotation indicates the column that
should be used to populate the given element. If no sql:field annotation is provided,
SQL Server expects to find a perfect match between the element or attribute name and
a column. In the preceding schema, the EmployeeID attribute is linked directly by
name.

Note Annotated schemas do not allow you to use expressions when
selecting columns. The sql:field annotation can accept only the
name of an existing column; it can't accept an expression that
evaluates to a column name.

Are XML Views Effective?

The FOR XML EXPLICIT clause and annotated schemas are two somewhat equivalent
ways to query relational tables and return data formatted according to a particular XML
schema. XSD mapping is more powerful than XDR, but all in all, in terms of raw
functionalities, explicit and schema mapping are two nearly identical options for building
XML views.

Certainly the FOR XML EXPLICIT clause can lead to hard-to-maintain code, whereas
annotated schemas are probably easier to read and maintain and, in addition, keep the
schema distinct from the query and the data.
The real XML mapping schema issue is this: What's the added value that XML views
bring to your code? Are you sure that the ability to execute XPath queries justifies the
creation of an XML view? The XPath query engine is certainly inferior to the SQL
Server's query engine, at least for complex queries like the ones you might need to
perform on real-world data. In addition, for read/write solutions, writing data back to the
native relational tables can be less than effective if done through XML. We'll return to
this topic when we look at the OPENXML provider in the section "The OPENXML
Rowset Provider," on page 376.

One scenario in which reading relational data as XML turns out to be really and clearly
effective is when you need to turn fetched data into more manageable or easily
interoperable structures. If you need to exchange an invoice document with commercial
partners, using an XML representation of the data is certainly useful, because you
process data in an intermediate, platform-independent and application-independent
format, while preserving the ability to create views and perform queries locally. In
addition, having the database return and accept XML data with a custom layout can
only help considerably.
In this scenario, another reasonable step you might need to take is transforming the
XML data into high-level data structures such as classes. For .NET Framework

 293

applications, XML.serialization is key technology that you must absolutely be familiar
with. We'll examine XML serialization in Chapter 11.

Let's look now at how ADO.NET and XML classes can be used to read and process
relational data expressed in a hierarchical shape.

XML Data Readers

.NET Framework applications delegate all their low-level data access tasks to a special
breed of connector objects called managed data providers. The object model around
these connector components is known as ADO.NET. Basically, a data provider is the
software component that enables any .NET Framework application to connect to a data
source and execute commands to retrieve and modify data.

A .NET Framework data provider component interfaces client applications through the
objects in the ADO.NET namespace and exposes any provider-specific behavior
directly to consumers. A .NET Framework data provider component creates a minimal
layer between the physical data source and the client code, thereby increasing
performance without sacrificing functionality.

A .NET Framework data provider is fully integrated with the surrounding environment—
the .NET Framework—so any results that a command generates are promptly and
automatically packed into a familiar data structure—the ADO.NET and XML classes—
for further use.

A key architectural goal for .NET Framework data providers is that they must be
designed to work on a rigorous per-data source basis. They expose connection,
transaction, command, and reader objects, all working according to the internal
capabilities and structure of the DBMS. As a result, the programming interface of, say,
the Microsoft Access data provider will not be completely identical to that of the SQL
Server provider. An area in which this difference is palpable is in XML data queries.

OLE DB and .NET Framework Managed Data Providers

Prior to the advent of the .NET Framework, OLE DB was considered the emerging
data access technology. It was well positioned to definitively replace in the heart, and
the code, of developers another well-known standard for universal data access—open
database connectivity (ODBC).

OLE DB is the data access technology that translates the Universal Data Access
(UDA) vision into concrete programming calls. Introduced about five years ago, UDA
describes a scenario in which all the data that can be expressed in a tabular format
can be accessed and manipulated through a common API, no matter the actual binary
format and the storage medium. According to the UDA vision, special modules—the
OLE DB providers—would be called to expose the contents of a data source to the
world. Another family of components—the OLE DB consumers—would consume such
contents by interacting with the providers through a common API.

In designing the intermediate API for OLE DB providers and consumers to
communicate through, Microsoft decided to use the key software technology of the
time: the Component Object Model (COM). In this design approach, the consumer had

 294

to instantiate a COM object, query for a number of interfaces, and handle the results.
The provider had to implement the same number of interfaces (and even more) and
access the wrapped data source at every method invocation. The methods defined in
the OLE DB interfaces are quite general and are not tied to the features of a particular
data source.

Compared to OLE DB providers, .NET Framework data providers implement a much
smaller set of interfaces and always work within the boundaries of the .NET
Framework common language runtime (CLR). A .NET Framework managed data
provider and an OLE DB provider are different components mostly in the outermost
interface, which clients use to communicate. Under the hood, they look much more
similar than you may expect. In particular, both components use the same low-level
API to talk to the physical data source. For example, both the .NET Framework data
provider and the OLE DB provider access SQL Server 7.0 and later using Tabular
Data Stream (TDS) packets. Both components hook up SQL Server at the wire level,
thereby providing a nearly identical performance, each from their native
environment—Microsoft Win32 for OLE DB and the .NET Framework for managed
data providers.

Reading from XML Queries
The SQL Server .NET Framework data provider makes available a particular method in
its command class, SqlCommand, that explicitly lets you obtain an XML reader
whenever the command text returns XML data. In other words, you can choose to
execute a SQL command with a trailing FOR XML clause and then pick up the results
directly using an XML reader. Let's see how.

The following code sets up a command that returns XML information about all the
employees in the Northwind database:

string nwind = "DATABASE=northwind;SERVER=localhost;UID=sa;";

string query = "SELECT * FROM Employees FOR XML AUTO, ELEMENTS";

SqlConnection conn = new SqlConnection(nwind);

SqlCommand cmd = new SqlCommand(query, conn);

In general, an ADO.NET command can be run using a variety of execute methods,
including ExecuteNonQuery, ExecuteReader, and ExecuteScalar. These methods differ
in the format in which the result set is packed. The SQL Server 2000 ad hoc command
class—SqlCommand—supplies a fourth execute method, ExecuteXmlReader, which
simply returns the result set as an XML reader.
You use the ExecuteXmlReader method as a special type of constructor for an
XmlTextReader object, as shown here:

conn.Open();

XmlTextReader reader = (XmlTextReader) cmd.ExecuteXmlReader();

ProcessXmlData(reader);

reader.Close();

conn.Close();

The ExecuteXmlReader method executes the command and returns an instance of an
XmlTextReader object to access the result set. Of course, ExecuteXmlReader fails,
throwing an InvalidOperationException exception, if the command does not return an
XML result.

 295

The SqlCommand class performs no preliminary check on the structure of the T-SQL
command being executed to statically determine whether the command returns XML
data. This means that any error that invalidates the operation is detected on the server.
A client-side check could verify that the command text incorporates a correct FOR XML
clause prior to sending the text to the database. However, such a test would also catch
as erroneous a perfectly legitimate situation: selecting XML data from a text or a BLOB
field. So while performing a preliminary check could still make sense for some user
applications, it would be ineffective if done from within the command class.

Note Although the ExecuteXmlReader method returns a generic
XmlReader object, the true type of the returned object is always
XmlTextReader. You can use this object at will—for example, to
create a validating reader. Bear in mind, however, that the more you
use the XML reader, the longer the connection stays open.

The application shown in Figure 8-2 uses the schema we analyzed in the section "The
FOR XML EXPLICIT Mode," on page 356, while examining the FOR XML EXPLICIT
clause. The application runs the same SELECT command we used in that section and
then walks its way through the result set using an XML reader. The information read is
used to fill up a treeview control.

Figure 8-2: The application retrieves data from SQL Server using an explicit schema, reads
the information through an XML reader, and populates a treeview control.

The following code illustrates how to extract information from the previously described
schema and add nodes to the treeview. The ProcessXmlData routine has an extra
Boolean argument used to specify whether you want the application's user interface to
be generic. If the user interface is not generic, it makes assumptions about the structure
of the XML data and attributes specific semantics to each element. If the user interface
is generic, the sample application treats the data as a generic XML stream.

void ProcessXmlData(XmlTextReader reader, bool bUseGenericMode)

{

 // Clear the treeview

 dataTree.Nodes.Clear();

 dataTree.BeginUpdate();

 296

 // Process elements

 while(reader.Read())

 {

 if(reader.NodeType == XmlNodeType.Element)

 {

 // Creates an hash table of nodes at various

 // depths so that each element can figure out

 // what its parent is

 int depth = reader.Depth;

 int parentDepth = depth -1;

 string text = "";

 if (m_ParentNodes.ContainsKey(parentDepth))

 {

 TreeNode n =

 (TreeNode) m_ParentNodes[parentDepth];

 text = PrepareOtherDataDisplayText(reader,

 bUseGenericMode);

 m_ParentNodes[depth] = n.Nodes.Add(text);

 }

 else

 {

 // Only first-level nodes

 text = PrepareEmployeeDisplayText(reader,

 bUseGenericMode);

 m_ParentNodes[depth] = dataTree.Nodes.Add(text);

 }

 }

 }

 dataTree.EndUpdate();

}

Figure 8-3 shows the user interface in generic mode.

 297

Figure 8-3: The user interface of the application now shows only XML elements.

A quick comment regarding the algorithm used to populate this treeview object: I make
use of a small hash table to keep track of the latest node inserted at a given level—the
Depth property of the XML text reader. Each element that is expected to have a
parent—that is, a depth greater than 0—looks upward for a TreeNode object in the
table and adds its description to the node. Next, the node itself registers as a parent
node for its own level of depth.

Under the Hood of ExecuteXmlReader
Internally, the ExecuteXmlReader method first calls ExecuteReader and then creates a
new instance of an XmlTextReader object. The XML reader is configured to work on an
internal stream object whose class name is SqlStream. The SqlStream class represents
the data stream that SQL Server uses to return rows to callers. The format of the SQL
Server data stream is the TDS.

Note The SqlStream class is defined internally to the System.Data
assembly and is marked with the internal modifier. This keyword
makes the class accessible only to the other classes defined in the
same assembly. The Microsoft Visual Basic .NET counterpart to the
internal keyword is Friend.

The following listing shows the pseudocode of ExecuteXmlReader. What happens
under the lid of this method leads straight to the conclusion that the ability to execute a
database command to XML can also be added to the OleDbCommand class as well as
to the command classes in a number of other managed providers. We'll examine this
concept in more detail in a moment.

public XmlReader ExecuteXmlReader()

{

 // Execute the command

 SqlDataReader datareader = ExecuteReader();

 // Obtain the TDS stream for the command

 SqlStream tdsdata = new SqlStream(datareader);

 // Create the XML text reader

 298

 // (No context information specified)

 XmlReader xmlreader = new XmlTextReader(tdsdata,

 XmlNodeType.Element, null);

 // Close the temporary data reader but leaves the

 // stream open

 datareader.Close();

 return xmlreader;

}

As long as the XML reader is open and in use, the underlying database connection
remains open.

At the end of the day, the trick that makes it possible to access the result set as XML is
simply the availability of the data through a stand-alone XML reader object. SQL Server
2000 transforms the contents of its low-level TDS stream into XML and then builds an
XML text reader from that. The whole process takes place on the server.

Reading from Text Fields
Most important with XML readers working on top of SQL commands is that the
commands return XML data. With SQL Server 2000, this certainly happens if you use
any of the FOR XML clauses. It also happens if the query returns one or more rows
that, in combination, can be seen as a unique XML stream.
Text or ntext fields that contain XML data can be selected and then processed using an
XML text reader. (The ntext data type is a variable-length Unicode data type that can
hold a maximum of 1,073,741,823 characters. An ntext column stores a 16-byte pointer
in the data row, and the data is stored separately.) Of course, the query must include a
single column and possibly a single record. Let's consider the following query from a
modified version of the Northwind database. I created the XmlNet database by
duplicating the Northwind databases Employees table and then wrapping all the strings
stored in the Notes column in a <notes></notes>pair. The Notes column is of type
ntext.

SELECT notes FROM employees

Although the SELECT command listed here does not explicitly return XML data, you
can run it through the ExecuteXmlReader method, as shown here:

string nwind = "DATABASE=xmlnet;SERVER=localhost;UID=sa;";

string query = "SELECT notes FROM employees";

SqlConnection conn = new SqlConnection(nwind);

SqlCommand cmd = new SqlCommand(query, conn);

conn.Open();

XmlTextReader reader = (XmlTextReader) cmd.ExecuteXmlReader();

ProcessNotes(reader);

reader.Close();

conn.Close();

 299

The XML reader will loop through the nodes, moving from one record to the next, as
shown here:

void ProcessNotes(XmlTextReader reader)

{

 try

 {

 while(reader.Read())

 {

 if (reader.NodeType == XmlNodeType.Text)

 MessageBox.Show(reader.Value);

 }

 }

 catch {}

 finally

 {

 MessageBox.Show("Closed...");

 }

}

The connection remains open until the reader is closed. Next store the results in a
string variable and use that string to create a new XmlTextReader object. (See Chapter
2.) This technique gives you an extra advantage: you can work with the reader while
you are disconnected from the database.

An XML Reader for Data Readers
An XML reader can work on top of different data containers, including streams, files,
and text readers. By writing a custom XML reader, you can also navigate non-XML data
using the same XML reader metaphor. In this case, you create a virtual XML tree and
make the underlying data look like XML. (In Chapter 2, you learned how to visit CSV
files the XML way.)
The ability to expose result sets via XML is specific to SQL Server 2000 and potentially
to any other native managed provider for DBMS systems with full support for XML
queries. You can't, for example, use the ExecuteXmlReader method with an object of
class OleDbCommand.
Recall from the section "Under the Hood of ExecuteXmlReader," on page 366, the
internal structure of ExecuteXmlReader. The ExecuteXmlReader method simply
creates an XML text reader based on the internal stream used to carry data back and
forth. What about creating a custom XML reader by building a virtual XML tree around
the provider-specific data reader? In this way, you could easily extend any .NET
Framework data provider by using the ExecuteXmlReader method. This method is not
as effective as using the internal stream, but it does work and can be applied to all data
providers.

Building the XML Data Reader
Let's rework the CSV reader example from Chapter 2 and build an XmlDataReader
class inheriting from XmlReader, as follows:

public class XmlDataReader : XmlReader

{

 300

 ...

}

The base class is for the most part abstract, thus requiring you to override several
methods and properties. When designing an XML reader, a key step is defining the
XML virtual tree that underlying data will populate. In this case, we'll try for a relatively
simple XML schema that closely resembles the schema of the FOR XML RAW mode,
as shown here:

<row field1="..." field2="..." ... />

<row field1="..." field2="..." ... />

...

The XmlDataReader class features only one constructor, which takes any object that
implements the IDataReader interface. The programming interface of a data reader
object like OleDbDataReader and SqlDataReader consists of two distinct groups of
functions: the IDataReader and IDataRecord interfaces. The former includes basic
methods such as Read, Close, and GetSchemaTable. The latter contains specific
reading methods including GetName, GetValue, and the Item indexer property.
By making the constructor accept a reference to the IDataReader interface, you enable
the XmlDataReader class to support any data reader object. Internally, the class
defines the following private properties:

protected IDataReader m_dataReader;

protected IDataRecord m_dataRecord;

protected ReadState m_readState;

protected int m_currentAttributeIndex;

The idea is to map the reading methods of the XmlDataReader class to the data reader
object and use the m_currentAttributeIndex member to track down the currently
selected attribute, as shown in the following code. Of course, each XML attribute
corresponds to a column in the underlying result set.

public XmlDataReader(IDataReader dr)

{

 m_dataReader = dr;

 m_readState = ReadState.Initial;

 m_dataRecord = (IDataRecord) dr;

 m_currentAttributeIndex = -1;

}

Notice that the same object is passed as a reference to IDataReader but can also be
cast to IDataRecord. This is possible as long as the real object implements both
interfaces, but for data reader objects this is true by design.
The XmlDataReader Implementation

Let's review the implementation of a few properties and methods to grasp the essence
of the reader, as shown in the following code. The entire source code is available for
download in this book's sample files.

// Return the number of attributes (for example, the field
count)

 301

public override int AttributeCount

{

 get {return m_dataRecord.FieldCount;}

}

// Indexer property that works by index and name

public override string this[int i]

{

 get {return m_dataRecord.GetValue(i).ToString();}

}

public override string this[string name]

{

 get {return m_dataRecord[name].ToString();}

}

// Return the value of the current attribute

public override string Value

{

 get {

 if(m_readState != ReadState.Interactive)

 return "";

 string buf = "";

 if (NodeType == XmlNodeType.Attribute)

 buf = this[m_currentAttributeIndex].ToString();

 return buf;

 }

}

The Read method calls into the Read method of the data reader and updates its state
accordingly, as shown in the following code. The Close method closes the data reader
and resets the internal state.

public override bool Read()

{

 // Read the new row and set the state

 bool canReadMore = m_dataReader.Read();

 m_readState = (canReadMore

 ?ReadState.Interactive :ReadState.EndOfFile);

 return canReadMore;

}

 302

public override void Close()

{

 m_dataReader.Close();

 m_readState = ReadState.Closed;

}

The XML data reader object can work atop any provider-specific data readers, thus
providing a free XML transformation service that is functionally equivalent to
ExecuteXmlReader. The so-called XML transformation takes place on the client, but the
connection with the database remains open until you close the reader.

Note A custom XML reader does not really transform rows into XML
schemas. The XmlDataReader object simply causes a data record
to look like an XML fragment. You can derive new classes from
XmlDataReader to support more complex XML schemas. For such
simple XML layouts at least, this approach is even slightly more
efficient than using FOR XML. Both solutions use an underlying
data reader and expose an XML reader, but XmlDataReader
requires no server-side rowset-to-XML transformation.

Using XML with OLE DB Data Providers
Let's see how to use the XmlDataReader class with an instance of the OLE DB data
reader. As usual, you create an OleDbCommand object, execute the command, and
get a living instance of the OleDbDataReader class. Next you pass the OLE DB data
reader to the XmlDataReader constructor, as shown here:

string nwind, query;

nwind = "PROVIDER=sqloledb;SERVER=localhost;" +

 "DATABASE=northwind;UID=sa;";

query = "SELECT employeeid, firstname, lastname," +

 " title FROM employees";

OleDbConnection conn = new OleDbConnection(nwind);

OleDbCommand cmd = new OleDbCommand(query, conn);

// Create the XML data reader

conn.Open();

OleDbDataReader dr = cmd.ExecuteReader();

XmlDataReader reader = new XmlDataReader(dr);

ProcessDataReader(reader);

reader.Close();

conn.Close();

The reader can be used on demand to walk through the contents of the result set, as
shown here:

private void ProcessDataReader(XmlReader reader)

{

 ResultsListBox.Items.Clear();

 303

 while(reader.Read())

 ResultsListBox.Items.Add(reader.ReadOuterXml());

 reader.Close();

}

This code generates the output shown in Figure 8-4.

Figure 8-4: FOR XML RAW output obtained using the XmlDataReader class and an OLE
DB data provider.

A Disconnected XML Data Reader

By design, a data reader object works while connected, and so do any XML readers
you might build on top of it. However, the .NET Framework provides a class that has
the ability to expose a disconnected set of rows—a DataSet object—as XML. The
DataSet object is designed as a disconnected object with no relationship to any living
instance of a DBMS. The XmlDataDocument class takes a DataSet object and
transforms it into an XML DOM object—that is, the XmlDocument class we analyzed in
Chapter 5. In a nutshell, the XmlDataDocument class provides a client-side and an
XML DOM representation of a disconnected set of rows. Let's see how.

The XmlDataDocument Class
The XmlDataDocument class inherits from XmlDocument, and although it is defined in
the system.data assembly, it belongs to the System.Xml namespace. A combined use
of the XmlDataDocument class and the DataSet class provides access to the same
data using two otherwise alternative approaches: relational and hierarchical. When a
DataSet class and an XmlDataDocument class are synchronized, they work on the
same set of data and detect each other's changes in real time.
The XmlDataDocument class has a DataSet property that is bound to the related
DataSet object. The class does not duplicate the DataSet contents but simply holds a
reference to the object. When the DataSet property is set, the XmlDataDocument
registers a listener module for each DataSet event that indicates a change in the data.
By hooking the events, the XmlDataDocument class can stay in sync with the DataSet
contents.
Event hooking also works the other way around. In Chapter 5, we saw that whenever
an application changes the contents of the XML DOM, a NodeChanged event fires. The
XmlDataDocument class registers an event handler for NodeChanged and passes the
changes down to the referenced DataSet object.

 304

Synchronizing with a DataSet Object
You can synchronize a DataSet object with an XmlDataDocument object in various
ways. For example, you can start by populating a DataSet object with schema and data
and then pass it on to a new XmlDataDocument object, as shown here:

DataSet data = new DataSet();

// Populate the DataSet with schema and data

XmlDataDocument dataDoc = new XmlDataDocument(data);

In this case, the XML DOM object is created from the relational data. Alternatively, you
can set up the DataSet object with schema only, associate it with the
XmlDataDocument class, and then populate the XML DOM object with XML data, as
shown in the following code. In this way, the DataSet object is filled with hierarchical
data.

DataSet data = new DataSet();

// Populate the DataSet only with schema information

XmlDataDocument dataDoc = new XmlDataDocument(data);

dataDoc.Load(xmlfile);

Note that an exception is thrown if you attempt to load an XmlDataDocument object
synchronized with a DataSet object that contains data.
You can take a third route. You can instantiate and load an XmlDataDocument object
and then extract the corresponding DataSet object from it, as shown here:

XmlDataDocument dataDoc = new XmlDataDocument();

DataSet data = dataDoc.DataSet;

// Add schema information to the DataSet

dataDoc.Load(xmlfile);

In this case, no DataSet object is explicitly passed in by the user. The default
constructor creates an empty DataSet object anyway that is then filled when the
XmlDataDocument object is loaded. A client application can get a reference to the
internal DataSet object by using the DataSet property.
An important issue to consider is that the DataSet object can't be filled if no schema
information has been set. You can manually create tables and columns in the DataSet
object or read the information from an XML stream using the ReadXmlSchema method.
(More on this topic in Chapter 9.)

XML Data Fidelity
To fill a DataSet object with XML data, you can use one of two methods. The first
method is to use the DataSet object's ReadXml method (see Chapter 9). The second
method is to load the data as XML into an instance of the XmlDataDocument class, and
then use the XmlDataDocument. DataSet method to fill the DataSet object. The two
approaches differ significantly in terms of data fidelity.
When ReadXml is used and the data is written back as XML, all extra XML information
such as white spaces, processing instructions, and CDATA sections is irreversibly lost.
This happens because the DataSet relational format simply does not know how to
handle information that is meaningful only to the hierarchical model.
When the DataSet object is filled using an XML document loaded into
XmlDataDocument, the DataSet object still contains a simplified and adapted
representation of the hierarchical contents but the original XML document is preserved
intact.

 305

Nested Data Relations
If the DataSet object to be synchronized with an XmlDataDocument object contains one
or more relations (instances of the DataRelation object), you should set the Nested
property of the DataRelation object to true. In this way, the child rows of the relation will
be nested within the parent column when written as XML data or synchronized with an
XmlDataDocument object. By default, the Nested property of the DataRelation object is
false.

Reading Data as XML

Representing a DataSet object with an instance of the XmlDataDocument class allows
you to use XPath expressions to select data. In general, using XPath queries to select
XML data makes sense especially if you have XML DOM data disconnected and
stored in memory—that is, if you use XmlDataDocument. In doing so, you actually
work on an XML DOM object and don't in any way tax the database. Pay attention
when using this technique in Microsoft ASP.NET applications. In this case, the client
lives on the Web server, and you end up occupying the Web server's memory with
potential hits on the overall performance and scalability.

Using XPath to query XML representations of data relationally stored in SQL Server
(for example, annotated schemas) seems to be a rather twisted and ineffective way to
execute queries. The query engine of SQL Server, therefore, outperforms the XPath
query engine—not to mention that to run slower queries, you still have to pay the price
of transforming relational data in XML.

Reading database contents as XML makes sense only if you need to represent that
information in an intermediate format for further transformations and processing.
Currently, the best approach is still relying on FOR XML using the EXPLICIT operator
if you need complex schemas. SQL Server 2000 supports XDR schemas, and to use
XSD, you should resort to SQLXML 3.0. Unfortunately, SQLXML 3.0 relies on the OLE
DB provider for data access and is not recommended for .NET Framework
applications. If you find the FOR XML EXPLICIT syntax too quirky, look ahead to the
discussion of .NET Framework XML serialization in Chapter 11.

Writing XML Data to Databases

So much for reading database contents as XML. Now let's review the options available
for persisting data to relational DBMS systems using XML representations of data. SQL
Server 2000 supports three basic ways for expressing database changes using XML:
OPENXML, XML bulk loading, and Updategrams.

OPENXML is a SQL Server 2000 keyword that represents a rowset provider such as a
table or a view. The net effect of OPENXML is not really different from that of another
relatively popular T-SQL keyword—OPENROWSET. The OPENROWSET keyword
represents an alternative to accessing tables in a linked server and an ad hoc method
of accessing data using any OLE DB providers. Both keywords can be referenced as if
they were actual table names in the FROM clause of a query and in an INSERT or
UPDATE command. The difference between the two keywords is that OPENXML
renders the contents of an XML file as a rowset, whereas OPENROWSET does the
same with the results of an OLE DB query.

XML bulk loading is a technique that lets you load semistructured XML data into SQL
Server tables. Functionally similar to OPENXML, bulk loading is implemented through a
COM object and provides higher performance when large amounts of XML data must
be processed.

Finally, Updategrams are an XML description of the changes that must be applied to
the database. Updategrams are a syntax that applies to an annotated XML view to

 306

denote insertions, deletions, and updates. The mapping schema of the XML view
contains the necessary information to map XML elements and attributes to tables and
columns in the database. From a .NET Framework perspective, Updategrams look a lot
like DiffGrams. In SQL Server 2000, however, Updategrams are the native XML
language to denote database changes.

The OPENXML Rowset Provider

OPENXML is a T-SQL function that takes care of inserting data represented as an XML
document. OPENXML parses the contents of the XML document and exposes it as a
rowset. As a result, the records in the rowset can be stored in database tables.
OPENXML is not a write-only keyword that you can use only with INSERT or UPDATE.
Because it is a generic rowset provider, you can use it with statements such as
SELECT and SELECT INTO, and in general wherever a source table or view is
accepted.

OPENXML takes up to three arguments, as shown here:

OPENXML (handle, rowpattern [, flags])

[WITH (SchemaDeclaration | TableName)]

The first argument (handle) is the handle of the internal representation of an XML
document. The document handle is created by the sp_xml_preparedocument system
stored procedure. The rowpattern argument is the XPath expression that selects the
nodes in the source XML that must be processed as database rows.
The flags argument is optional and, if specified, indicates how attributes and elements
in the selected nodes should be processed. By default, the flag is set to 1, which
indicates attribute-centric mapping. Attribute-centric mapping accepts input values only
from the attributes of the selected nodes. The mapping between attributes and columns
is determined by name. Alternatively, you can specify element-centric mapping(a value
of 2). Element-centric mapping is similar to attribute-centric mapping except for the fact
that it accepts input values from the text of child element nodes.

Caution You could also opt for mixed mapping—a value of 3—by
combining attribute-centric and element-centric mapping. In this
case, attribute-centric mapping is applied first, and then for all
still unmatched columns, an element-centric mapping is applied.
You should use this feature only when absolutely necessary.
Using a double flag can significantly slow performance.

The WITH clause is optional and can be used to define the schema of the target table.
If a table with the desired schema already exists, you simply indicate the table name.
This is what commonly happens when you use OPENXML to write data. When you use
OPENXML with a SELECT statement, you can specify the schema of the columns
being returned. (More details on the syntax of OPENXML can be found in SQL Server
2000 Books Online.)

OPENXML in Action
The first step in using OPENXML is calling the sp_xml_preparedocument stored
procedure to parse the XML document. The stored procedure returns a tree
representation of the nodes in the XML document, and this in-memory image becomes
the input for OPENXML. The stored procedure returns the handle of the document as
an output parameter. Here's an example of how to use OPENXML:

DECLARE @handle int

EXEC sp_xml_preparedocument @handle OUTPUT,

 N'<ROOT>

 307

 <Employees LastName="Esposito" FirstName="Dino" />

 <Employees LastName="Esposito" FirstName="Michela" />

 </ROOT>'

INSERT Employees

SELECT * FROM OPENXML(@handle, N'/ROOT/Employees') WITH
Employees

EXEC sp_xml_removedocument @handle

This code adds a couple of records to the Employees table in the Northwind database.
Notice that the XPath expression selects all the <Employees>nodes in the source
document.
The sp_xml_removedocument stored procedure removes the internal representation of
the specified XML document that was previously built by sp_xml_preparedocument. If
not explicitly invalidated, the handle of the document is valid for the duration of the
connection to SQL Server.

Threshold and Performance

OPENXML uses the Microsoft XML Core Services (MSXML) COM parser to build a
binary representation of the source document. Next it performs some XPath queries to
select the proper node-set to be processed to build the physical rowset to interface with
SQL Server.

In general, you should avoid using XPath beyond a certain threshold. If you realize that
your code is relying on XPath for complex queries that run often, you are probably
using the wrong tool to address your needs. A temporary relational table would
probably serve you better.
A parsed document is stored in the internal cache of SQL Server 2000. The memory
that the MSXML parser can use to generate binary images of the source XML can
reach up to one-eighth of the total memory available to SQL Server. To avoid running
out of memory, free up binary images as soon as document handles go out of scope by
using sp_xml_removedocument. Be sure to use the stored procedure in a timely
manner, however. If you free up memory that will be used later, SQL Server can only
reparse the source document, which is probably worse than occupying more memory.
To be on the safe side, keep the number of documents in memory under control, and
don't forget to call sp_xml_removedocument too.

Keep in mind that OPENXML has been designed and optimized to handle documents
up to 50 KB in size. Over that threshold, monitor constantly the response time, and
decide whether you can still continue with OPENXML or you need something different,
like XML bulk loading.

XML Bulk Loading

XML Bulk Load is a COM component available for SQL Server 2000 that reads data out
of an XML file and according to an XDR or XSD schema copies the data into database
tables and columns. Unlike OPENXML, XML bulk loading is optimized to work with
large quantities of data.

The bulk loader reads the XML data as a stream. Step by step, it identifies the
database tables and columns involved and prepares and executes SQL statements
against SQL Server. When the bulk loader encounters an XML element, it uses the

 308

schema information to associate the element with a record in a table. The record is
actually written when the end tag for that element is found. This algorithm ensures that
in the case of parent-child relationships, all the children are processed before the
parent row.

Transacted Loading

Unlike the T-SQL BULK INSERT statement, XML bulk loading is a sort of add-on.
Because XML bulk loading is not natively part of SQL Server 2000, it never runs within
an implicit transaction, as normally happens with T-SQL statements. As a result, you
must manage transactions yourself. On the other hand, bulk loading is the kind of
operation that sometimes does need to run in a transacted context.

It goes without saying that if you can afford to run bulk loading without transactions,
doing so would be greatly beneficial to the overall performance of the application.
Nontransacted loading makes a lot of sense when you have to fill up empty databases.
In a transactionless scenario, you lose the ability to roll back changes, but because
your databases were originally empty, if something goes wrong, you can clear the
database and start over.

Note In nontransacted mode, XML bulk loading takes advantage of the

methods of the OLE DB IRowsetFastLoad interface to do the job.
Not all OLE DB providers supply the IRowsetFastLoad interface, but
the SQLOLEDB provider does.

When XML bulk loading works in transacted mode, the component creates a temporary
file for each table involved in the operation. The files will gather all the changes for the
tables. When a commit occurs, the contents of the various files are flushed into the
corresponding SQL Server table using the BULK INSERT statement.

XML Bulk Loading in Action
Let's see how XML bulk loading really works. As mentioned, XML bulk loading is
implemented through a COM object whose progID attribute is SQLXMLBulkLoad. The
following Visual Basic 6.0 code shows how to use the object:

conn = "PROVIDER=sqloledb;SERVER=localhost;" & _

 "database=Northwind;UID=sa"

Set bulk = CreateObject("SQLXMLBulkLoad.SQLXMLBulkload.3.0")

bulk.ConnectionString = conn

bulk.Execute "schema.xml", "data.xml"

To perform bulk loading, you set the connection string and then call the Execute
method. The method takes two arguments: the schema and the XML source data. In-
line schemas are ignored, as are schema files referenced in the source file. As a result,
you must always supply schema information and data through distinct XML files.
Finally, note that XML documents are checked for well-formedness, but their contents
are never validated against any schema. Any contents outside the root node of the
document—the <ROOT> node—are simply discarded.

The following listing shows a typical source for a bulk loading operation. It adds a
couple of employees, each with a few related territories.

<ROOT>

 <Employees>

 309

 <EmployeeID>991</EmployeeID>

 <FirstName>Dino</FirstName>

 <LastName>Esposito</LastName>

 <City>Roma</City>

 <Territory TerritoryID="1" />

 <Territory TerritoryID="2" />

 </Employees>

 <Employees>

 <EmployeeID>992</EmployeeID>

 <FirstName>Francesco</FirstName>

 <LastName>Esposito</LastName>

 <City>Roma</City>

 <Territory TerritoryID="5" />

 </Employees>

</ROOT>

The schema that would make it possible for the bulk loader to interpret and process this
information is shown here:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

<xsd:annotation>

 <xsd:appinfo>

 <sql:relationship name="Employees2Territories"

 parent="Employees"

 parent-key="EmployeeID"

 child="EmployeeTerritories"

 child-key="EmployeeID" />

 </xsd:appinfo>

</xsd:annotation>

 <xsd:element name="Employees" sql:relation="Employees" >

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="EmployeeID" type="xsd:int" />

 <xsd:element name="FirstName" type="xsd:string" />

 <xsd:element name="LastName" type="xsd:string" />

 <xsd:element name="City" type="xsd:string" />

 <xsd:element name="Territory"

 sql:relation="EmployeeTerritories"

 sql:relationship="Employees2Territories" >

 <xsd:complexType>

 <xsd:attribute name="TerritoryID" type="xsd:integer"
/>

 310

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

This schema first defines a relationship between the Employees table and the
EmployeeTerritories table. The relationship is based on the common field EmployeeID.
Next the schema describes the elements and the attributes that form the data source.
The sql:relation annotation identifies the source table, whereas sql:relationship points to
the relationship.

Bulk Loading in .NET Framework Applications

As you've probably noticed, very little about XML bulk loading is specifically related to
the .NET Framework world. XML bulk loading and, more generally, a lot of SQLXML 3.0
features are still based on COM. This means a couple of things. First, the only way you
can take advantage of such features is through the .NET Framework COM interop
layer. (COM interop allows COM clients to access .NET objects and .NET code to
access COM objects.) Be aware that, although highly optimized, the performance of
COM interop services isn't the same as you get by calling managed code. If you have
no alternative, you should use COM interop services; otherwise, choose a more .NET
Framework– specific approach.
XML bulk loading can't be directly invoked from within managed code. Managed code
must yield to COM code to do the job. As of SQLXML 3.0 SP1, the COM object that
provides XML bulk loading is named xblkld3.dll and is normally located under the
following path: C:\Program Files\Common Files\System\Ole DB. You can use either
Microsoft Visual Studio .NET or the tlbimp.exe command-line utility to generate a .NET
Framework wrapper class.

The Updategram Template

An Updategram is an XML file that contains information about the changes that must be
entered in one or more database tables. In addition to incoming changes, the
Updategram can also contain optional mapping information to better associate
elements in the XML source with columns in the database.
Below the <ROOT>tag, an Updategram can have one or more <sync> blocks. Each of
these blocks can contain one or more pairs of <before> and <after> blocks. Using
<before> and <after>blocks, you can specify the new expected state of the source. If a
record exists only in the <before> block, a DELETE operation is performed. If the
record appears only in the <after> block, an INSERT operation occurs. If the record
appears in both blocks, an UPDATE statement is run. Records that do not appear in
either block are left intact.

Structure of an Updategram

The schema of an Updategram is illustrated here:

<ROOT>

<sync>

 <before>

 <Customers customerid="999" ... />

 311

 </before>

 <after>

 <Customers customerid="1999" ... />

 </after>

</sync>

<sync>

 ...

</sync>

</ROOT>

The contents of each <sync> block represent an atomic unit of processing for which the
Updategram guarantees a transactional behavior—either all the changes take effect or
none do. You can use different pairs of <before> and <after> blocks to group changes
that must be executed in a certain order.
All the keywords in an Updategram are defined in the namespace urn:schemas-
microsoft-com:xml-updategram. The namespace must be associated with each
Updategram, although with arbitrary prefixes, as in the following example:

<ROOT xmlns:u="urn:schemas-microsoft-com:xml-updategram">

<u:sync>

 <u:before>

 <Customers customerid="999" ... />

 </u:before>

 <u:after>

 <Customers customerid="1999" ... />

 </u:after>

</u:sync>

By default, the Updategram maps any first-level element below the <before> and
<after> blocks to a table of the same name in the current database. Any attribute in that
node is implicitly mapped to columns in that table. For example, in the preceding
sample script, the Updategram would work on the Customers table, removing the row
with a customerid attribute of 999 and replacing it with a new row with a customerid
attribute of 1999.
You can specify a mapping schema using the mapping-schema attribute, as shown in
the following code. The attribute references an XML file (typically an XDR or XSD file)
that describes the nature of the mapping in much the same way as described earlier for
XML bulk loading. (See the section "XML Bulk Loading in Action," on page 379.)

<u:sync mapping-schema="schema.xml">

Note The schema for XML bulk loading does not recognize the

sql:identity annotation to flag identity auto-increment columns, which
means that XML bulk loading is unable to handle tables with this
feature. On the other hand, Updategrams handle identity columns
nicely. You simply annotate the column in the schema and set the
sql:identity attribute to Ignore if you need to rely on the SQL Server–
generated values or to useValue if a user-provided value should be
used instead.
NULL values also require special handling. In practice, you declare
an alternative text-based representation for NULL values and use

 312

that throughout the Updategram. The nullvalue attribute indicates
the alternative text, as shown here:
<u:sync u:nullvalue="IsNULL" >
 <u:before>
 <Employees EmployeeID="1" Title="IsNULL" />
 </u:before>
...

Submitting Commands Through Updategrams

Updategrams can be executed in various ways. You can send the Updategram text to
SQL Server over HTTP. Alternatively, you can write the XML contents out to a file and
then point the browser (or any other HTTP-enabled software) to that URL so that the
contents are executed. Or you can use an Updategram with ADO.

The following Visual Basic 6.0 code shows how to proceed. Notice that you must copy
the Updategram to a stream and receive the response over another stream object.

Dim cmd As New ADODB.Command

Dim conn As New ADODB.Connection

Dim strIn As New ADODB.Stream

Dim strOut As New ADODB.Stream

conn.Provider = "SQLOLEDB"

conn.Open "SERVER=localhost;DATABASE=northwind;UID=sa;"

conn.Properties("SQLXML Version") = "SQLXML.3.0"

Set cmd.ActiveConnection = conn

cmd.Dialect = "{5d531cb2-e6ed-11d2-b252-00c04f681b71}"

strIn.Open

strIn.WriteText SQLxml

strIn.Position = 0

Set cmd.CommandStream = strIn

strOut.Open

cmd.Properties("Output Stream").Value = strOut

cmd.Properties("Output Encoding").Value = "UTF-8"

cmd.Execute , , adExecuteStream

Notice also that you need to set the command dialect to a particular globally unique
identifier (GUID)—DBGUID_MSSQLXML—and set a few properties on the command
and the connection objects.

Concurrency Issues

Updategrams are batches that work by looping on source data and executing a
sequence of commands. What happens if, due to the system concurrency, rows that
you are going to modify have been changed since the time you last read them?

 313

Updategrams have been designed to provide three levels of protection against this kind
of conflict, as follows:

 Blind updates You specify only the primary key of the record in the
<before> block. In this case, the change is persisted without first
checking whether the current status of the record is consistent with the
expected one.

 Partial conflict detection The <before> block contains the primary key
as well as any other field you plan to update. When the Updategram
executes, the change is applied only if the specified fields haven't been
changed in the meantime.

 Total conflict detection All the columns in the row are checked, and
the change fails if any of them has been modified. You can obtain this
form of protection either by listing all the fields in the <before> block or
by using the table timestamp column, if one exists. A timestamp column
will be updated whenever a user writes something to the row.

Updategrams and DiffGrams

If you're familiar with ADO.NET, you'll no doubt notice a close similarity, both
conceptual and physical, between Updategrams and DiffGrams. Although ADO.NET
DiffGrams are a newer format—and perhaps the format of the future—currently, SQL
Server 2000 natively supports only Updategrams.
In the section "SQLXML Managed Classes," on page 386, we'll take a quick tour of the
managed classes in SQLXML 3.0. You'll notice that some of these classes apparently
enable you to send DiffGrams to SQL Server. Although this is possible, the actual
implementation is not particularly effective. The source DiffGram is in fact internally
transformed into an Updategram and then processed by SQL Server.
Apart from the patent similarity in their schemas, Updategrams and DiffGrams have
slightly different goals. Updategrams have been designed to update SQL Server;
DiffGrams are mostly a stateful way to persist the contents of a DataSet object.
(ADO.NET DiffGrams are covered in Chapter 10.) Converting DiffGrams to
Updategrams is certainly possible at the schema level, but Updategrams are
unquestionably more powerful objects. Together with SQLXML 3.0 and the SQL Server
XML extensions, Updategrams let you control concurrency, control the order of
updates, perform transactional updates, and specify parameters.
On the other hand, there is not yet a .NET Framework class that works like an
Updategram. (And SQLXML 3.0 is still a hybrid, half COM and half managed code.)
Most of the batch update features you find in Updategrams can be implemented in
ADO.NET using the DataSet object's Update method and the provider-specific data
adapter object. Nothing comes for free, though, and you must write a lot of code to
emulate Updategrams in the .NET Framework.

XML Batch Update

In ADO.NET, as well as in ADO, you can persist the changes made to a set of records
stored in memory using a procedure called a batch update. This procedure consists of
a loop that looks up for changed records in the DataSet object (or the Recordset
object in ADO) and issues a command to the back-end database. From the
programmer's perspective, a batch update is ideal for working in disconnected
scenarios and in ADO.NET—although it is not yet perfect, it has been significantly
improved and made applicable to real-world usage.
Thanks to the ADO.NET XML serialization mechanism (see Chapter 9), you can load
a DataSet object from XML data, enter the needed changes, and then proceed with
the batch update. The ADO.NET DiffGram is one of the possible XML representations
for a DataSet object. Although, all in all, the Updategram is a more powerful and richer

 314

object for XML-driven updates, an ADO.NET batch update is still an option to consider
when you're updating a database starting with XML data.

The ADO.NET batch update is a step-by-step procedure implemented through a
sequence of individual statements, all running from the client environment. Once
again, this is different from Updategrams, in which all data is downloaded to SQL
Server and applied as a server-side batch.

The closest you can get to this model with ADO.NET is using a datatier component
that decouples any middle-tier objects from the database. The middle-tier object
applies all the needed changes to the DataSet object and then passes the object on to
another component, possibly located on the same machine as SQL Server. The
DataSet object is remoted as XML and is rebuilt at the destination. Finally, the
changes are applied in batch update mode but through a specialized and scalable
datatier component and with a more effective use of the bandwidth.

SQLXML Managed Classes

SQLXML 3.0 comes with a handful of managed classes designed to expose the
functionality of SQLXML 3.0 inside the .NET Framework. SQLXML managed classes
allow you bring XML data read from SQL Server into .NET Framework applications,
process the data, and send any updates back to SQL Server as an ADO.NET DiffGram.
The managed classes are exposed by the microsoft.data.sqlxml assembly.

SQLXML does not get along perfectly with the .NET Framework data provider for SQL
Server. SQLXML needs to address special XML-driven functionalities of SQL Server
2000 that the .NET Framework data provider simply does not support. As a result, the
SQL Server .NET Framework provider can handle traditional SQL queries, including
FOR XML queries, but it can't execute XML templates (for example, Updategrams) or
server-side XPath queries over XML views. For this reason, SQLXML managed classes
rely on the SQLXMLOLEDB OLE DB provider for all of the tasks that involve a SQL
Server connection.
Figure 8-5 illustrates the key role that the SqlXmlCommand class and its
ExecuteStream method play in the overall SQLXML 3.0 architecture.

 315

Figure 8-5: SQLXML managed classes go to SQL Server 2000 using the ExecuteStream
method of the SqlXmlCommand class and the SQLXMLOLEDB OLE DB provider.

The set of SQLXML managed classes consists of two main classes—SqlXmlCommand
and SqlXmlAdapter—plus a few ancillary classes like SqlXmlParameter and
SqlXmlException. SqlXmlCommand is the fundamental class used to execute an XML-
driven command against SQL Server. The SqlXmlAdapter class is actually a wrapper
for the command that simply exposes the results through a DataSet object.

The SqlXmlCommand Class
TheSqlXmlCommand class represents any XML command you can send to SQL Server
2000. As mentioned, you should use this class only to issue those XML related
commands that the .NET Framework data provider for SQL Server does not natively
support. The class reliance on an OLE DB provider makes rather ineffective any kind of
abuse from within a .NET Framework application.
Do not use SqlXmlCommand to execute a simple FOR XML query, but take it into
account when you need to work with Updategrams, server-side XPath queries
(assuming that an XPath query makes sense at all in the context of the application), or
XML views.

SqlXmlCommand Properties
The properties available in the SqlXmlCommand class let you configure the query.
Unlike most ADO.NET command classes, the SqlXmlCommand class provides a
command stream property that applications can use to pass potentially lengthy input
data such as Updategrams. Table 8-2 summarizes the properties of the
SqlXmlCommand class.

 316

Table 8-2: Properties of the SqlXmlCommand Class

Property Description

BasePath Gets or sets the base path used to resolve an XSL
file (XslPath property), a mapping schema file
(SchemaPath property), or any other external
schema reference in an XML template.

ClientSideXml Boolean property, indicates that the conversion of the
rowset to XML should occur on the client instead of
on the server.

CommandStream Gets or sets the input stream for the command. Use
this property to execute a command from a file (for
example, a template or an Updategram).
CommandStream and CommandText are mutually
exclusive; if you set CommandStream,
CommandText is automatically set to null.

CommandText Gets or sets the text of the command to execute.
CommandText and CommandStream are mutually
exclusive; if you set CommandText,
CommandStream is automatically set to null.

CommandType Identifies the type of the command you want to
execute. Feasible values are defined in the
SqlXmlCommandType enumeration.

Namespaces Enables the execution of XPath queries that use
namespaces.

OutputEncoding Specifies the encoding for the stream that is returned
when the command executes. UTF-8 is the default
encoding.

RootTag Gets or sets the name of the root element for XML
generated by command execution. Set to <ROOT>
by default.

SchemaPath Gets or sets the name of the mapping schema for
XPath queries. The path can be absolute or relative.
If relative, the BasePath property is used to resolve
the path.

XslPath Gets or sets the name of the XSL file to use for XML
data transformations. The path can be absolute or
relative.

Streams play a key role in the SqlXmlCommand class. Not only can you use a stream
to specify the input of a command, but you can also pick up the results of the command
from an output stream. You can also control the encoding of this output stream. For a
better understanding of these properties, review the ADO example about Updategrams
in the section "Submitting Commands Through Updategrams," on page 383.

Supported Command Types
TheSqlXmlCommand class can execute a variety of commands. The allowable
command types are defined in the SqlXmlCommandType enumeration and are shown
in Table 8-3.

 317

Table 8-3: Command Types

Type Description

Diffgram Executes an ADO.NET DiffGram.

Sql Executes an ordinary SQL command that returns XML. The
default setting.

Template Executes an XML template (for example, creates an XPath-
driven view). The command text is specified via the
command input stream.

TemplateFile Executes an XML template via the specified file. The name
of the file is set through the CommandText property.

UpdateGram Executes an updategram.

XPath Executes an XPath command.

A template is an XML document that contains T-SQL commands wrapped in ad hoc
XML attributes, as shown here:

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">

 <sql:query>

 SELECT * FROM Employees FOR XML AUTO

 </sql:query>

</ROOT>

The template specifies a sequence of commands to produce a particular result set.
Overall, a template is a dynamically defined stored procedure expressed using XML
syntax and supporting XPath queries.

SqlXmlCommand Methods
On instantiation, the SqlXmlCommand class creates an instance of the
SQLXMLOLEDB provider. Interestingly, it does not make use of an explicit wrapper
assembly but instead gets a COM object type using the static method
GetTypeFromCLSID from the Type class. Next it instantiates the COM object using the
Activator class.

Note The Activator class contains methods to create types of objects
locally or remotely, or obtain references to existing remote objects.
Functionally equivalent to the new operator, Activator enables you
to create instances of objects whose type is passed as an
argument. With Activator, you can sometimes experience difficulties
addressing a particular parameter-rich constructor. The Activator
object will be covered in detail in Chapter 12.

The methods provided by the SqlXmlCommand class are described in Table 8-4.

Table 8-4: Methods of the SqlXmlCommand Class

Method Description

CreateParameter Creates an SqlXmlParameter object that represents a
parameter for the command

 318

Table 8-4: Methods of the SqlXmlCommand Class

Method Description

ClearParameters Clears the parameters that were created for the
command

ExecuteNonQuery Executes the command but does not return anything

ExecuteStream Executes the command and returns a new Stream
object

ExecuteToStream Executes the command and writes the query results
to the specified existing stream

ExecuteXmlReader Executes the command and returns an XmlReader
object

ExecuteStream is the key method in the interface in the sense that all other execute
methods fall back internally to it. In particular, ExecuteNonQuery merely wraps a call to
ExecuteStream, whereas ExecuteXmlReader creates and returns an XmlTextReader
object built using the stream obtained from ExecuteStream.
ExecuteToStream does not use ExecuteStream internally, but the two methods have a
similar architecture and use the same internal worker method. Basically,
ExecuteStream calls an internal executor and sets it to work on a memory stream. The
memory stream (MemoryStream class) is then returned as a generic Stream object.
ExecuteToStream, instead, reads from, and writes to, the user-provided stream object.
Figure 8-6 shows these two methods in action.

Figure 8-6: ExecuteStream and ExecuteToStream in action.

The following code shows how to use a SqlXmlCommand object. Notice that the
connection string for SqlXmlCommand must necessarily use the SQLOLEDB provider
because SQLXML 3.0 does not support the .NET Framework managed data provider.

string conn = "PROVIDER=sqloledb;SERVER=(local);" +

 "DATABASE=northwind;UID=sa";

 319

SqlXmlCommand cmd = new SqlXmlCommand(conn);

cmd.CommandText = "SELECT * FROM Employees" +

 " FOR XML AUTO, BINARY BASE64";

Stream stm = cmd.ExecuteStream();

// Consumes the stream content

StreamReader sr = new StreamReader(stm)

Console.WriteLine(sr.ReadToEnd());

sr.Close();

The Employees table contains a BLOB field with a picture of each employee. If you
want the binary field returned encoded as a string, use the BINARY BASE64 keyword
in the FOR XML clause.
If the command that SqlXmlCommand executes does not return XML, an exception is
raised because streaming is not supported over a result set with multiple columns.
SqlXmlCommand works just fine on non-XML queries as long as they return a single
column of data.

Tip The ExecuteToStream method comes in handy for automatically
sending the result set over a special stream like the output stream of
an ASP.NET page or the console.

Executing Server-Side XPath Queries

A typical functionality of the SQLXML library is executing server-side XPath queries
over SQL Server data. Personally, I would not recommend this practice—I believe that
a well-designed SQL query outperforms any XPath engine. The XPath language does
let you address hierarchically structured data more easily, however, but keep in mind
that a server-side XPath query requires a preliminary step—the relational-to-XML data
transformation, as shown here:

SqlXmlCommand cmd = new SqlXmlCommand(conn);

cmd.CommandText = "Emp[@EmployeeID >3]";

cmd.CommandType = SqlXmlCommandType.XPath;

cmd.SchemaPath = "MappingSchema.xml";

cmd.RootTag = "Northwind";

Stream stOut = cmd.ExecuteStream();

When the command type is XPath, you must necessarily set the SchemaPath property
on the SqlXmlCommand object. The property points to an XSD or XDR file that defines
the XML schema on which the XPath expression is called to operate. For example,
consider the following schema:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

 <xsd:element name="Emp" sql:relation="Employees" >

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="FName" sql:field="FirstName"

 type="xsd:string" />

 320

 <xsd:element name="LName" sql:field="LastName"

 type="xsd:string" />

 </xsd:sequence>

 <xsd:attribute name="EmployeeID" type="xsd:integer" />

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

This schema addresses a layout such as the following, in which FName and LName
map to FirstName and LastName and the target table is Employees:

<Emp employeeid="...">

 <FName>...<FName>

 <LName>...<LName>

</Emp>

Given this underlying XML schema, using the following command text to select all the
employees with an ID greater than 3 makes sense:

Emp[@EmployeeID >3]

The SqlXmlParameter Class
To pass parameters to a SqlXmlCommand object, you must use instances of the
SqlXmlParameter class. Here's an example:

string conn = "PROVIDER=sqloledb;SERVER=(local);" +

 "DATABASE=northwind;UID=sa";

SqlXmlCommand cmd = new SqlXmlCommand(conn);

// Define the command text

StringBuilder sb = new StringBuilder("");

sb.Append("SELECT * FROM Employees ");

sb.Append("WHERE employeeid=? ");

sb.Append("FOR XML AUTO, BINARY BASE64");

cmd.CommandText = sb.ToString();

// Set the parameter

SqlXmlParameter p = cmd.CreateParameter();

p.Value = 2;

// Execute the command

Stream stm = cmd.ExecuteStream();

When you have several parameters set on a particular instance of a SqlXmlCommand
object and you want to reuse that instance for another command, use the
ClearParameters method to clear in a single shot the parameters collection.

 321

The SqlXmlAdapter Class
The SqlXmlAdapter class is a shrink-wrapped adapter class. It does not implement the
IDataAdapter interface, so technically speaking, it can't be presented as an adapter
object. Nevertheless, the class provides adapter-like methods such as Fill and Update,
as shown in the following code. These are also the only public methods for the class.

void Fill(DataSet ds);

void Update(DataSet ds);

The SqlXmlAdapter class also provides three constructors, shown in the following code,
whose signatures reinforce the idea that this adapter is a mere wrapper class for
SqlXmlCommand. In other words, the SqlXmlAdapter class is more a command that
manages DataSet objects than a true data adapter object as it is described in the
ADO.NET specification.

public SqlXmlAdapter(SqlXmlCommand cmd)

public SqlXmlAdapter(string commandText,

 SqlXmlCommandType cmdType,

 string connectionString)

public SqlXmlAdapter(Stream commandStream,

 SqlXmlCommandType cmdType,

 string connectionString)

These constructors use the information they receive to set up an internal instance of the
SqlXmlCommand class. The Fill method makes full use of all the information passed
through the constructor. For the Update method, on the other hand, only the connection
string information is actually needed.

Filling an XML Adapter
The Fill method is rather simple. First it executes the embedded XML command using
ExecuteStream. Next it uses the returned memory stream to fill the specified DataSet
object through its ReadXml method.
The ReadXml method populates a DataSet object by reading XML data from a variety
of sources, including streams and text readers, and inferring the schema. We'll examine
the inference process in detail in Chapter 9. For now, suffice to say that ReadXml can
detect any in-line or referenced XSD schema or determine the schema dynamically.
Once the DataSet object has been filled from the XML stream generated by the
command execution, all the changes are accepted so that the DataSet object appears
intact and with no pending changes.

Updating Using an XML Adapter
The Update method takes a DataSet object and applies its pending changes to the
target database. The parameters specified on instantiation contain the details about the
connection string. The embedded SqlXmlCommand object has command text and a
command type that are simply ignored during Update. Let's see why.
When Update executes, the embedded command object is used to perform the task,
but its command text and command type properties are silently and temporarily
overwritten with DataSet-specific settings.
The Update method writes the contents of the DataSet object to a newly created
memory stream. The DataSet object is serialized as a DiffGram. Next the contents of
the stream—that is, the DiffGram representation of the DataSet object—are copied into
the CommandText property of the underlying SqlXmlCommand object. The
CommandType property is set to Template, and ExecuteStream is called to update the

 322

database. If all goes well, the DataSet changes are committed using the DataSet
object's AcceptChanges method.
Although COM is still involved, the SqlXmlAdapter object represents a way to
architecturally improve the batch update mechanism in ADO.NET. By using
SqlXmlAdapter, you actually obtain a DataSet object that is serialized as a DiffGram
directly to SQL Server and processed entirely on the server. To optimize the bandwidth,
you can pass a DataSet object that contains only changed rows. The GetChanges
method provides for that.

Note Using GetChanges with ADO.NET batch updating is not a
significant optimization—it simply reduces the total number of
iterations, but the eliminated iterations are no-op by design. Instead,
using GetChanges with SqlXmlAdapter can be a key optimization,
as it truly minimizes the amount of data being transferred from the
client to SQL Server.

Conclusion

In this chapter, we have explored the connections between databases (SQL Server
2000 in particular) and XML. Several DBMS systems provide XML support in various
forms. The industry standard, however, requires that a DBMS provide for direct XML
result sets and accept changes expressed as XML streams. SQL Server 2000 adheres
to these requirements.

The difficulty lies in .NET and the different connecting model it introduces—.NET
Framework data providers instead of OLE DB providers. For .NET Framework
applications, fetching data as XML is much easier and more effective than persisting
changes as XML. For COM applications, the same features are more balanced. The
reason is that SQL Server 2000 came out much earlier than the .NET Framework, but
the .NET Framework still came too soon to allow the managed provider to be designed
with a broader perspective.

As a result, the SQL Server managed provider is unaware of XML extensions to
support FOR XML queries and their limitations. Incidentally, this feature, combined with
the power of .NET Framework XML readers, produces a really powerful toolkit. The
truth, however, is that today the SQL Server managed provider is designed and
optimized for traditional SQL commands—period.

SQLXML 3.0 is an add-on conceived to extend the SQL Server 2000 support for XML.
SQLXML 3.0 is just that, however; in no way does it represent an integration to the
.NET Framework managed provider model. For this reason, it is entirely based on COM
OLE DB providers. The managed classes are wrappers around the SQLXMLOLEDB
provider and, as such, require your code to silently jump out of the CLR during
execution. This does not mean that you should not use SQLXML 3.0—just be aware of
the managed classes' understandable, but still not optimal, design.

Hopes for the future? That's easy—my wish is that SQLXML 3.0 will be improved and
integrated with the .NET Framework managed provider. As a side effect of this
integration, ADO.NET should be enriched with a kind of Updategram object specifically
designed for server-side batch updates.
In Chapter 9, we'll tackle DataSet serialization and the theme of XML serialization for
key ADO.NET objects in general, including DataTable and DataView objects. We'll also
take another look at DiffGrams. DiffGrams will be explored in depth in Chapter 10.

 323

Further Reading

This chapter touched on a number of SQL Server 2000 issues and, in particular, a
number of points related to T-SQL—the SQL dialect of SQL Server. The online
documentation that comes with the product (SQL Server's Books Online) is certainly a
good starting point to learn more. If you're interested in SQL Server 2000 from an
architectural point of view, I recommend Kalen Delaney's Inside SQL Server 2000
(Microsoft Press, 2000). Delaney's book covers the basics of the T-SQL language, but
it is not an in-depth guide to T-SQL, and should be accompanied with another text more
specifically targeted to the SQL Server dialect. One that I've found useful is Ken
Henderson's The Guru's Guide to Transact-SQL, (Addison Wesley, 2000).
Programming Microsoft SQL Server 2000 with XML by Graeme Malcolm (Microsoft
Press, 2001) is a good introductory text for exploring XML extensions in SQL Server
2000. Because the book is a bit outdated, it does not cover SQLXML 3.0 and managed
extensions.
Another topic introduced in this chapter is ADO.NET and batch updating. My book
Building Web Solutions with ASP.NET and ADO.NET (Microsoft Press, 2002) includes
a practical chapter on batch updating from the ASP.NET perspective. A broader and in
some respects more thoughtful and technology-oriented coverage can be found in
Francesco Balena's Programming Visual Basic .NET (Microsoft Press, 2002). If you're
interested in the entire spectrum of ADO.NET technologies, take a look at David
Sceppa's Microsoft ADO.NET (Microsoft Press, 2002).

 324

Chapter 9: ADO.NET XML Data Serialization

Overview

XML is the key element responsible for the greatly improved interoperability of the
Microsoft ADO.NET object model when compared to Microsoft ActiveX Data Objects
(ADO). In ADO, XML was merely an I/O format (nondefault) used to persist the
contents of a disconnected recordset. The participation of XML in the building and in
the interworkings of ADO.NET is much deeper. The aspects of ADO.NET in which the
interaction and integration with XML is stronger can be summarized in two categories:
object serialization and remoting and a dual programming interface.
In ADO.NET, you have several options for saving objects to, and restoring objects from,
XML documents. In effect, this capability belongs to one object only—the DataSet
object—but it can be extended to other container objects with minimal coding. Saving
objects like DataTable and DataView to XML is essentially a special case of the
DataSet object serialization.
As we saw in Chapter 8, ADO.NET and XML classes provide for a unified, intermediate
API that is made available to programmers through a dual, synchronized programming
interface—the XmlDataDocument class. You can access and update data using either
the hierarchical node-based approach of XML or the relational approach of column-
based tabular data sets. At any time, you can switch from a DataSet representation of
the data to an XML Document Object Model (XML DOM) representation, and vice
versa. Data is synchronized, and any change you enter in either model is immediately
reflected and visible in the other.
In this chapter, we'll explore the XML features built around the DataSet object and other
ADO.NET objects for data serialization and deserialization. You'll learn how to persist
and restore data contents, how to deal with schema information, and even how schema
information is automatically inferred from the XML source.

Serializing DataSet Objects

Like any other .NET Framework object, a DataSet object is stored in memory in a
binary format. Unlike other objects, however, the DataSet object is always remoted and
serialized in a special XML format, called a DiffGram. (We'll look at the DiffGram format
and the relative API in more detail in Chapter 10.) When the DataSet object trespasses
across the boundaries of the application domains (AppDomains), or the physical
borders of the machine, it is automatically rendered as a DiffGram. At its destination,
the DataSet object is silently rebuilt as a binary and immediately usable object.
In ADO.NET, serialization of an object is performed either through the public
ISerializable interface or through public methods that expose the object's internal
serialization mechanism. As .NET Framework objects, ADO.NET objects can plug into
the standard .NET Framework serialization mechanism and output their contents to
standard and user-defined formatters. The .NET Framework provides a couple of built-
in formatters: the binary formatter and the Simple Object Access Protocol (SOAP)
formatter. A .NET Framework object makes itself serializable by implementing the
methods of the ISerializable interface—specifically, the GetObjectData method, plus a
particular flavor of the constructor. According to this definition, both the DataSet and the
DataTable objects are serializable.
In addition to the official serialization interface, the DataSet object supplies an
alternative, and more direct, series of methods to serialize and deserialize itself, but in a
class-defined XML format only. To serialize using the standard method, you create
instances of the formatter object of choice (binary, SOAP, or whatever) and let the

 325

formatter access the source data through the methods of the ISerializable interface.
The formatter obtains raw data that it then packs into the expected output stream.
In the alternative serialization model, the DataSet object itself starts and controls the
serialization and deserialization process through a group of extra methods. The
DataTable object does not offer public methods to support such an alternative and
embedded serialization interface, nor does the DataView object.
In the end, both the official and the embedded serialization engines share the same set
of methods. The overall architecture of DataSet and DataTable serialization is
graphically rendered in Figure 9-1.

Figure 9-1: Both the DataSet object and the DataTable object implement the ISerializable
interface for classic .NET Framework serialization. The DataSet object also publicly
exposes the internal API used to support classic serialization.

All the methods that the DataSet object uses internally to support the .NET Framework
serialization process are publicly exposed to applications through a group of methods,
one pair of which clearly stands out—ReadXml and WriteXml. The DataTable object, on
the other hand, does not publish the same methods, although this feature can be easily
obtained with a little code. (I'll demonstrate this in the section "Serializing Filtered
Views," on page 417.)
As you can see in the architecture depicted in Figure 9-1, both objects always pass
XML data to .NET Framework formatters. This means that there is no .NET Framework-

 326

provided way to serialize ADO.NET objects in binary formats. We'll return to this topic in
the section "Custom Binary Serialization," on page 424.

The DataSet Object's Embedded API for XML
Table 9-1 presents the DataSet object methods you can use to work with XML, both in
reading and in writing. This list represents the DataSet object's internal XML API, which
is at the foundation of the serialization and deserialization processes for the object.

Table 9-1: The DataSet Object's Embedded Serialization API

Method Description

GetXml Returns an XML representation of the data currently
stored in the DataSet object. No schema information is
included.

GetXmlSchema Returns a string that represents the XML schema
information for the data currently stored in the object.

ReadXml Populates the DataSet object with the specified XML
data read from a stream or a file. During the process,
schema information is read or inferred from the data.

ReadXmlSchema Loads the specified XML schema information into the
current DataSet object.

WriteXml Writes out the XML data, and optionally the schema,
that represents the DataSet object to a storage
medium—that is, a stream or a file.

WriteXmlSchema Writes out a string that represents the XML schema
information for the DataSet object. Can write to a
stream or a file.

Note that GetXml returns a string that contains XML data. As such, it requires more
overhead than simply using WriteXml to write XML to a file. You should not use GetXml
and GetXmlSchema unless you really need to obtain the DataSet representation or
schema as distinct strings for in-memory manipulation. The GetXmlSchema method
returns the DataSet object's XML Schema Definition (XSD) schema; there is no way to
obtain the DataSet object's XML-Data Reduced (XDR) schema.
As Table 9-1 shows, when you're working with DataSet and XML, you can manage
data and schema information as distinct entities. You can take the XML schema out of
the object and use it as a string. Alternatively, you could write the schema to a disk file
or load it into an empty DataSet object. Alongside the methods listed in Table 9-1, the
DataSet object also features two XML-related properties: Namespace and Prefix.
Namespace specifies the XML namespace used to scope XML attributes and elements
when you read them into a DataSet object. The prefix to alias the namespace is stored
in the Prefix property. The namespace can't be set if the DataSet object already
contains data.

Writing Data as XML
The contents of a DataSet object can be serialized as XML in two ways that I'll call
stateless and stateful. Although these expressions are not common throughout the
ADO.NET documentation, I believe that they capture the gist of the two XML schemas
that can be used to persist a DataSet object's contents. A stateless representation
takes a snapshot of the current instance of the data and renders it according to a
particular XML schema (defined in Chapter 1 as the ADO.NET normal form). A stateful
representation, on the other hand, contains the history of the data in the object and

 327

includes information about changes as well as pending errors. Keep in mind that
stateless and stateful refer to the data in the DataSet object but not to the DataSet
object as a whole.
In this chapter, we'll focus on the stateless representation of the DataSet object, with
just a glimpse at the stateful representation—the DiffGram format. In Chapter 10, we'll
delve into the DiffGram's structure and goals.
The XML representation of a DataSet object can be written to a file, a stream, an
XmlWriter object, or a string using the WriteXml method. It can include, or not include,
XSD schema information. The actual behavior of the WriteXml method can be
controlled by passing the optional XmlWriteMode parameter. The values in the
XmlWriteMode enumeration determine the output's layout. The overloads of the method
are shown in the following listing:

public void WriteXml(Stream, XmlWriteMode);

public void WriteXml(string, XmlWriteMode);

public void WriteXml(TextWriter, XmlWriteMode);

public void WriteXml(XmlWriter, XmlWriteMode);

WriteXml provides four additional overloads with the same structure as this code but
with no explicit XmlWriteMode argument.
The stateless representation of the DataSet object takes a snapshot of the current
status of the object. In addition to data, the representation includes tables, relations,
and constraints definitions. The rows in the tables are written only in their current
versions, unless you use the DiffGram format—which would make this a stateful
representation. The following schema shows the ADO.NET normal form—that is, the
XML stateless representation of a DataSet object:

<DataSetName>

 <xs:schema ... />

 <Table #1>

 <field #1>...</field #1>

 <field #2>...</field #2>

 </Table #1>

 <Table #2>

 <field #1>...</field #1>

 <field #2>...</field #2>

 <field #3>...</field #3>

 </Table #2>

 ⋮
</DataSetName>

The root tag is named after the DataSet object. If the DataSet object has no name, the
string NewDataSet is used. The name of the DataSet object can be set at any time
through the DataSetName property or via the constructor upon instantiation. Each table
in the DataSet object is represented as a block of rows. Each row is a subtree rooted in
a node with the name of the table. You can control the name of a DataTable object via
the TableName property. By default, the first unnamed table added to a DataSet object
is named Table. A trailing index is appended if a table with that name already exists.
The following listing shows the XML data of a DataSet object named NorthwindInfo:

 328

<NorthwindInfo>

 <Employees>

 <employeeid>1</employeeid>

 <lastname>Davolio</lastname>

 <firstname>Nancy</firstname>

 </Employees>

 ⋮
 <Territories>

 <employeeid>1</employeeid>

 <territoryid>06897</territoryid>

 </Territories>

 ⋮
</NorthwindInfo>

Basically, the XML representation of a DataSet object contains rows of data grouped
under a root node. Each row is rendered with a subtree in which child nodes represent
columns. The contents of each column are stored as the text of the node. The link
between a row and the parent table is established through the name of the row node. In

the preceding listing, the <Employees>…</Employees> subtree represents a row in a
DataTable object named Employees.

Modes of Writing
Table 9-2 summarizes the writing options available for use with WriteXml through the
XmlWriteMode enumeration.

Table 9-2: The XmlWriteMode Enumeration

Write Mode Description

DiffGram Writes the contents of the DataSet object as a DiffGram,
including original and current values.

IgnoreSchema Writes the contents of the DataSet object as XML data
without a schema.

WriteSchema Writes the contents of the DataSet object, including an in-
line XSD schema. The schema can't be inserted as XDR,
nor can it be added as a reference.

IgnoreSchema is the default option. The following code demonstrates the typical way to
serialize a DataSet object to an XML file:

StreamWriter sw = new StreamWriter(fileName);

dataset.WriteXml(sw); // Defaults to IgnoreSchema

sw.Close();

Tip In terms of functionality, calling the GetXml method and then writing
its contents to a data store is identical to calling WriteXml with
XmlWriteMode set to IgnoreSchema. Using GetXml can be

 329

comfortable, but in terms of raw overhead, calling WriteXml on a
StringWriter object is slightly more efficient, as shown here:
StringWriter sw = new StringWriter();
ds.WriteXml(sw, XmlWriteMode.IgnoreSchema);
// Access the string using sw.ToString()
The same considerations apply to GetXmlSchema and
WriteXmlSchema.

Preserving Schema and Type Information

The stateless XML format is a flat format. Unless you explicitly add schema information,
the XML output is weakly typed. There is no information about tables and columns, and
the original content of each column is normalized to a string. If you need a higher level
of type and schema fidelity, start by adding an in-line XSD schema.
In general, a few factors can influence the final structure of the XML document that
WriteXml creates for you. In addition to the overall XML format—DiffGram or a plain
hierarchical representation of the current contents—important factors include the
presence of schema information, nested relations, and how table columns are mapped
to XML elements.

Note To optimize the resulting XML code, the WriteXml method drops
column fields with null values. Dropping the null column fields
doesn't affect the usability of the DataSet object—you can
successfully rebuild the object from XML, and data-bound controls
can easily manage null values. This feature can become a problem,
however, if you send the DataSet object's XML output to a non-
.NET platform. Other parsers, unaware that null values are omitted
for brevity, might fail to parse the document. If you want to represent
null values in the XML output, replace the null values
(System.DBNull type) with other neutral values (for example, blank
spaces).

Writing Schema Information
When you serialize a DataSet object, schema information is important for two reasons.
First, it adds structured information about the layout of the constituent tables and their
relations and constraints. Second, extra table properties are persisted only within the
schema. Note, however, that schema information describes the structure of the XML
document being created and is not a transcript of the database metadata.
The schema contains information about the constituent columns of each DataTable
object. (Column information includes name, type, any expression, and all the contents
of the ExtendedProperties collection.)
The schema is always written as an in-line XSD. As mentioned, there is no way for you
to write the schema as XDR, as a document type definition (DTD), or even as an added
reference to an external file. The following listing shows the schema source for a
DataSet object named NorthwindInfo that consists of two tables: Employees and
Territories. The Employees table has three columns—employeeid, lastname, and
firstname. The Territories table includes employeeid and territoryid columns. (These
elements appear in boldface in this listing.)

<xs:schema id="NorthwindInfo" xmlns=""

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

 <xs:element name="NorthwindInfo" msdata:IsDataSet="true">

 330

 <xs:complexType>

 <xs:choice maxOccurs="unbounded">

 <xs:element name="Employees">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="employeeid" type="xs:int" />

 <xs:element name="lastname" type="xs:string" />

 <xs:element name="firstname" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Territories">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="employeeid" type="xs:int" />

 <xs:element name="territoryid" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:complexType>

 </xs:element>

</xs:schema>

The <xs:choice> element describes the body of the root node <NorthwindInfo> as an
unbounded sequence of <Employees> and <Territories> nodes. These first-level nodes
indicate the tables in the DataSet object. The children of each table denote the schema
of the DataTable object. (See Chapter 3 for more information about XML schemas.)
The schema can be slightly more complex if relations exist between two or more pairs
of tables. The msdata namespace contains ad hoc attributes that are used to annotate
the schema with ADO.NET-specific information, mostly about indexes, table
relationships, and constraints.

In-Line Schemas and Validation
Chapter 3 hinted at why the XmlValidatingReader class is paradoxically unable to
validate the XML code that WriteXml generates for a DataSet object with an in-line
schema, as shown here:

<DataSetName>

 <schema>...</schema>

 <Table1>...</Table1>

 <Table2>...</Table2>

<DataSetName>

In the final XML layout, schema information is placed at the same level as the table
nodes, but includes information about the common root (DataSetName, in the

 331

preceding code) as well as the tables (Table1 and Table2). Because the validating
parser is a forward-only reader, it can match the schema only for nodes placed after the
schema block. The idea is that the parser first reads the schema and then checks the
compliance of the remainder of the tree with the just-read information, as shown in
Figure 9-2.

Figure 9-2: How the .NET Framework validating reader parses a serialized DataSet object
with an in-line schema.

Due to the structure of the XML document being generated, what comes after the
schema does not match the schema! Figure 9-3 shows that the validating parser we
built in Chapter 3 around the XmlValidatingReader class does not recognize (I'd say, by
design) a serialized DataSet object when an in-line schema is incorporated.

Figure 9-3: The validating parser built in Chapter 3 does not validate an XML DataSet
object with an in-line schema.

Is there a way to serialize the DataSet object so that its XML representation remains
parsable when an in-line schema is included? The workaround is fairly simple.

 332

Serializing to Valid XML
As you can see in Figure 9-2, the rub lies in the fact that the in-line schema is written in
the middle of the document it is called to describe. This fact, in addition to the forward-
only nature of the parser, irreversibly alters the parser's perception of what the real
document schema is. The solution is simple: move the schema out of the DataSet XML
serialization output, and group both nodes under a new common root, as shown here:

<Wrapper>

 <xs:schema> ... </xs:schema>

 <DataSet>

 ⋮
 </DataSet>

</Wrapper>

Here's a code snippet that shows how to implement this solution:

XmlTextWriter writer = new XmlTextWriter(file);

writer.Formatting = Formatting.Indented;

writer.WriteStartElement("Wrapper");

ds.WriteXmlSchema(writer);

ds.WriteXml(writer);

writer.WriteEndElement();

writer.Close();

If you don't use an XML writer, the WriteXmlSchema method would write the XML
declaration in the middle of the document, thus making the document wholly
unparsable. You can also mark this workaround with your own credentials using a
custom namespace, as shown here:

writer.WriteStartElement("de", "Wrapper", "dinoe-xml-07356-1801-
1");

Figure 9-4 shows the new document displayed in Microsoft Internet Explorer.

Figure 9-4: The DataSet object's XML output after modification.

Figure 9-5 shows that this new XML file (validdataset.xml) is successfully validated by
the XmlValidatingReader class. The validating parser raises a warning about the new
root node; this feature was covered in Chapter 3.

 333

Figure 9-5: The validating parser raises a warning but accepts the updated XML file.

A reasonable concern you might have is about the DataSet object's ability to read back
such a modified XML stream. No worries! The ReadXml method is still perfectly able to
read and process the modified schema, as shown here:

DataSet ds = new DataSet();

ds.ReadXml("ValidDataset.xml", XmlReadMode.ReadSchema);

ds.WriteXml("standard.xml");

Note Although paradoxical, this behavior (whether it's by design or a bug)
does not deserve much hype. At first glance, this behavior seems to
limit true cross-platform interoperability, but after a more thoughtful
look, you can't help but realize that very few XML parsers today
support in-line XML schemas. In other words, what appears to be a
clamorous and incapacitating bug is actually a rather innocuous
behavior that today has a very limited impact on real applications.
Real-world cross-platform data exchange, in fact, must be done
using distinct files for schema and data.

Customizing the XML Representation
The schema of the DataSet object's XML representation is not set in stone and can be
modified to some extent. In particular, each column in each DataTable object can
specify how the internal serializer should render its content. By default, each column is
rendered as an element, but this feature can be changed to any of the values in the
MappingType enumeration. The DataColumn property that specifies the mapping type
is ColumnMapping.

Customizing Column Mapping
Each row in a DataTable object originates an XML subtree whose structure depends on
the value assigned to the DataColumn object's ColumnMapping property. Table 9-3
lists the allowable column mappings.

Table 9-3: The MappingType Enumeration

Mapping Description

Attribute The column is mapped to an XML attribute on the row
node.

Element The column is mapped to an XML node element. The
default setting.

 334

Table 9-3: The MappingType Enumeration

Mapping Description

Hidden The column is not included in the XML output unless the
DiffGram format is used.

SimpleContent The column is mapped to simple text. (Only for tables
containing exactly one column.)

The column data depends on the row node. If ColumnMapping is set to Element, the
column value is rendered as a child node, as shown here:

<Table>

 <Column>value</Column>

 ⋮
</Table>

If ColumnMapping is set to Attribute, the column data becomes an attribute on the row
node, as shown here:

<Table Column="value">

 ⋮
</Table>

By setting ColumnMapping to Hidden, you can filter the column out of the XML
representation. Unlike the two preceding settings, which are maintained in the DiffGram
format, a column marked with Hidden is still serialized in the DiffGram format, but with a
special attribute that indicates that it was originally marked hidden for serialization. The
reason is that the DiffGram format is meant to provide a stateful and high-fidelity
representation of the DataSet object.
Finally, the SimpleContent attribute renders the column content as the text of the row
node, as shown here:

<Table>value</Table>

For this reason, this attribute is applicable only to tables that have a single column.

Persisting Extended Properties
Many ADO.NET classes, including DataSet, DataTable, and DataColumn, use the
ExtendedProperties property to enable users to add custom information. Think of the
ExtendedProperties property as a kind of generic cargo variable similar to the Tag
property of many ActiveX controls. You populate it with name/value pairs and manage
the contents using the typical and familiar programming interface of collections. For
example, you can use the DataTable object's ExtendedProperties collection to store the
SQL command that should be used to refresh the table itself.
The set of extended properties is lost at serialization time, unless you choose to add
schema information. The WriteXml method adds extended properties to the schema
using an ad hoc attribute prefixed with the msprop namespace prefix. Consider the
following code:

ds.Tables["Employees"].ExtendedProperties.Add("Command",

 EmployeesCommand.Text);

ds.Tables["Territories"].ExtendedProperties.Add("Command",

 TerritoriesCommand.Text);

 335

When the tables are serialized, the Command slot is rendered as follows:

<xs:element name="Employees" msprop:Command="...">

<xs:element name="Territories" msprop:Command="...">

ExtendedProperties holds a collection of objects and can accept values of any type, but
you might run into trouble if you store values other than strings there. When the object
is serialized, any extended property is serialized as a string. In particular, the string is
what the object's ToString method returns. This can pose problems when the DataSet
object is deserialized.
Not all types can be successfully and seamlessly rebuilt from a string. For example,
consider the Color class. If you call ToString on a Color object (say, Blue), you get
something like Color [Blue]. However, no constructor on the Color class can rebuild a
valid object from such a string. For this reason, pay careful attention to the nonstring
types you store in the ExtendedProperties collection.

Rendering Data Relations
A DataSet object can contain one or more relations gathered under the Relations
collection property. A DataRelation object represents a parent/child relationship set
between two DataTable objects. The connection takes place on the value of a matching
column and is similar to a primary key/foreign key relationship. In ADO.NET, the
relation is entirely implemented in memory and can have any cardinality: one-to-one,
one-to-many, and even many-to-one.
More often than not, a relation entails table constraints. In ADO.NET, you have two
types of constraints: foreign-key constraints and unique constraints. A foreign-key
constraint denotes an action that occurs on the columns involved in the relation when a
row is either deleted or updated. A unique constraint denotes a restriction on the parent
column whereby duplicate values are not allowed. How are relations rendered in XML?
If no schema information is required, relations are simply ignored. When a schema is
not explicitly required, the XML representation of the DataSet object is a plain snapshot
of the currently stored data; any ancillary information is ignored. There are two ways to
accurately represent a DataRelation relation within an XML schema: you can use the
<msdata:Relationship> annotation or specify an <xs:keyref> element. The WriteXml
procedure uses the latter solution.

The msdata:Relationship Annotation
The msdata:Relationship annotation is a Microsoft XSD extension that ADO.NET and
XML programmers can use to explicitly specify a parent/child relationship between non-
nested tables in a schema. This annotation is ideal for expressing the content of a
DataRelation object. In turn, the content of an msdata:Relationship annotation is
transformed into a DataRelation object when ReadXml processes the XML file.

Let's consider the following relation:

DataRelation rel = new DataRelation("Emp2Terr",

 ds.Tables["Employees"].Columns["employeeid"],

 ds.Tables["Territories"].Columns["employeeid"]);

ds.Relations.Add(rel);

The following listing shows how to serialize this relation to
XML:

<xs:schema id="NorthwindInfo" ... >

 <xs:annotation>

 336

 <xs:appinfo>

 <msdata:Relationship name="Emp2Terr"

 msdata:parent="Employees"

 msdata:child="Territories"

 msdata:parentkey="employeeid"

 msdata:childkey="employeeid" />

 </xs:appinfo>

 </xs:annotation>

 <xs:element name="NorthwindInfo" msdata:IsDataSet="true">

 ⋮
 </xs:element>

</xs:schema>

This syntax is simple and effective, but it has one little drawback—it is simply targeted
to describe a relation. When you serialize a DataSet object to XML, you might want to
obtain a hierarchical representation of the data, if a parent/child relationship is present.
For example, which of the following XML documents do you find more expressive? The
sequential layout shown here is the default:

<Employees employeeid="1" lastname="Davolio" firstname="Nancy"
/>

<Territories employeeid="1" territoryid="06897" />

<Territories employeeid="1" territoryid="19713" />

The following layout provides a hierarchical view of the data—
all the territories' rows are nested below the logical parent
row:

<Employees employeeid="1" lastname="Davolio" firstname="Nancy">

 <Territories employeeid="1" territoryid="06897" />

 <Territories employeeid="1" territoryid="19713" />

</Employees>

As an annotation, msdata:Relationship can't express this schema-specific information.
Another piece of information is still needed. For this reason, the WriteXml method uses
the <xs:keyref> element to describe the relationship along with nested type definitions
to create a hierarchy of nodes.

The XSD keyref Element
In XSD, the keyref element allows you to establish links between elements within a
document in much the same way a parent/child relationship does. The WriteXml
method uses keyref to express a relation within a DataSet object, as shown here:

<xs:keyref name="Emp2Terr" refer="Constraint1">

 <xs:selector xpath=".//Territories" />

 <xs:field xpath="@employeeid" />

</xs:keyref>

 337

The name attribute is set to the name of the DataRelation object. By design, the refer
attribute points to the name of a key or unique element defined in the same schema.
For a DataRelation object, refer points to an automatically generated unique element
that represents the parent table, as shown in the following code. The child table of a
DataRelation object, on the other hand, is represented by the contents of the keyref
element.

<xs:unique name="Constraint1">

 <xs:selector xpath=".//Employees" />

 <xs:field xpath="employeeid" />

</xs:unique>

The keyref element's contents consist of two mandatory subelements—selector and
field—both of which contain an XPath expression. The selector subelement specifies
the node-set across which the values selected by the expression in field must be
unique. Put more simply, selector denotes the parent or the child table, and field
indicates the parent or the child column. The final XML representation of our sample
DataRelation object is shown here:

<xs:unique name="Constraint1">

 <xs:selector xpath=".//Employees" />

 <xs:field xpath="employeeid" />

</xs:unique>

<xs:keyref name="Emp2Terr" refer="Constraint1">

 <xs:selector xpath=".//Territories" />

 <xs:field xpath="@employeeid" />

</xs:keyref>

This code is functionally equivalent to the msdata:Relationship annotation, but it is
completely expressed using the XSD syntax.

Nested Data and Nested Types
The XSD syntax is also important for expressing relations in XML using nested
subtrees. Neither msdata:Relationship nor keyref are adequate to express the relation
when nested tables are required. Nested relations are expressed using nested types in
the XML schema.
In the following code, the Territories type is defined within the Employees type, thus
matching the hierarchical relationship between the corresponding tables:

<xs:element name="Employees">

 <xs:complexType>

 <xs:sequence>

 ⋮
 <xs:element name="Territories" minOccurs="0"
maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="employeeid" type="xs:int" />

 <xs:element name="territoryid" type="xs:string" />

 338

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

By using keyref and nested types, you have a single syntax—the XML Schema
language—to render in XML the contents of any ADO.NET DataRelation object. The
Nested property of the DataRelation object specifies whether the relation must be
rendered hierarchically—that is, with child rows nested under the parent—or
sequentially—that is, with all rows treated as children of the root node.

Important When reading an XML stream to build a DataSet object, the
ReadXml method treats the <msdata:Relationship> annotation
and the <xs:keyref> element as perfectly equivalent pieces of
syntax. Both are resolved by creating and adding a
DataRelation object with the specified characteristics. When
ReadXml meets nested types, in the absence of explicit
relationship information, it ensures that the resultant DataSet
object has tables that reflect the hierarchy of types and creates
a DataRelation object between them. This relation is given an
auto-generated name and is set on a pair of automatically
created columns.

Serializing Filtered Views

As mentioned, in ADO.NET both the DataSet object and the DataTable object
implement the ISerializable interface, thus making themselves accessible to any .NET
Framework serializers. Only the DataSet object, however, exposes additional methods
(for example, WriteXml) to let you explicitly save the contents to XML. We'll explore the
various aspects of ADO.NET object serialization in the section "Binary Data
Serialization," on page 422.
In the meantime, let's see how to extend the DataTable and DataView objects with the
equivalent of a WriteXml method.

Serializing DataTable Objects
The .NET Framework does not allow you to save a stand-alone DataTable object to
XML. (A stand-alone DataTable object is an object not included in any parent DataSet
object.) Unlike the DataSet object, the DataTable object does not provide you with a
WriteXml method. Nevertheless, when you persist a DataSet object to XML, any
contained DataTable object is regularly rendered to XML. How is this possible?
The DataSet class includes internal methods that can be used to persist an individual
DataTable object to XML. Unfortunately, these methods are not publicly available.
Saving the contents of a stand-alone DataTable object to XML is not particularly
difficult, however, and requires only one small trick.
The idea is that you create a temporary, empty DataSet object, add the table to it, and
then serialize the DataSet object to XML. Here's some sample code:

public static

void WriteDataTable(DataTable dt, string outputFile,
XmlWriteMode mode)

 339

{

 DataSet tmp = CreateTempDataSet(dt);

 tmp.WriteXml(outputFile, mode);

}

This code is excerpted from a sample class library that provides static methods to save
DataTable and DataView objects to XML. Each method has several overloads and
mimics as much as possible the DataSet object's WriteXml method. In the preceding
sample code, the input DataTable object is incorporated in a temporary DataSet object
that is then saved to a disk file. The following code creates the temporary DataSet
object and adds the DataTable object to it:

private static DataSet CreateTempDataSet(DataTable dt)

{

 // Create a temporary DataSet

 DataSet ds = new DataSet("DataTable");

 // Make sure the DataTable does not already belong to a
DataSet

 if (dt.DataSet == null)

 ds.Tables.Add(dt);

 else

 ds.Tables.Add(dt.Copy());

 return ds;

}

Note that a DataTable object can't be linked to more than one DataSet object at a time.
If a given DataTable object has a parent object, its DataSet property is not null. If the
property is not null, the temporary DataSet object must be linked to an in-memory copy
of the table.
The class library that contains the various WriteDataTable overloads is available in this
book's sample files and is named AdoNetXmlSerializer. A client application uses the
library as follows:

StringWriter writer = new StringWriter();

AdoNetXmlSerializer.WriteDataTable(m_data, writer);

// Show the serialization output

OutputText.Text = writer.ToString();

writer.Close();

Figure 9-6 shows the sample application in action.

 340

Figure 9-6: An application that passes some data to a DataTable object and then persists it
to XML.

So much for DataTable objects. Let's see what you can do to serialize to XML the
contents of an in-memory, possibly filtered, view.

Inside the DataView Object
The DataView class represents a customized view of a DataTable object. The
relationship between DataTable and DataView objects is governed by the rules of a
well-known design pattern: the document/view model. According to this model, the
DataTable object acts as the document, and the DataView object acts as the view. At
any moment, you can have multiple, different views of the same underlying data. More
important, you can manage each view as an independent object with its own set of
properties, methods, and events.
The view is implemented by maintaining a separate array with the indexes of the
original rows that match the criteria set on the view. By default, the table view is
unfiltered and contains all the records included in the table. By configuring the
RowFilter and RowStateFilter properties, you can narrow the set of rows that fit into a
particular view. Using the Sort property, you can apply a sort expression to the rows in
the view. Figure 9-7 illustrates the internal architecture of the DataView object.

Figure 9-7: A DataView object maintains an index of the table rows that match the criteria.

When any of the filter properties is set, the DataView object gets from the underlying
DataTable object an updated index of the rows that match the criteria. The index is a
simple array of positions. No row objects are physically copied or referenced at this
time.

 341

Linking Tables and Views
The link between the DataTable object and the DataView object is typically established
at creation time through the constructor, as shown here:

public DataView(DataTable table);

However, you could also create a new view and associate it with a table at a later time
using the DataView object's Table property, as in the following example:

DataView dv = new DataView();

dv.Table = dataSet.Tables["Employees"];

You can also obtain a DataView object from any table. In fact, the DefaultView property
of a DataTable object simply returns a DataView object initialized to work on that table,
as shown here:

DataView dv = dt.DefaultView;

Originally, the view is unfiltered, and the index array contains as many elements as
there are rows in the table.

Getting Views of Rows
The contents of a DataView object can be scrolled through a variety of programming
interfaces, including collections, lists, and enumerators. The GetEnumerator method in
particular ensures that you can walk your way through the records in the view using the
familiar foreach statement.

The following code shows how to access all the rows that fit into the view:

DataView myView = new DataView(table);

foreach(DataRowView rowview in myView)

{

 // Dereferences the DataRow object

 DataRow row = rowview.Row;

 ⋮
}

When client applications access a particular row in the view, the class expects to find it
in an internal rows cache. If the rows cache is not empty, the specified row is returned
to the caller via an intermediate DataRowView object. The DataRowView object is a
wrapper for the DataRow object that contains the actual data. You access row data
through the Row property. If the rows cache is empty, the DataView class fills it with an
array of DataRowView objects, each of which references an original DataRow object.
The rows cache can be empty either because it has not yet been used or because the
sort expression or the filter string has been changed in the meantime.

Serializing DataView Objects
The AdoNetXmlSerializer class also provides overloaded methods to serialize a
DataView object. You build a copy of the original DataTable object with all the rows
(and only those rows) that match the view, as shown here:

public static

void WriteDataView(DataView dv, string outputFile, XmlWriteMode
mode)

 342

{

 DataTable dt = CreateTempTable(dv);

 WriteDataTable(dt, outputFile, mode);

}

You create a temporary DataTable object and then serialize it to XML using the
previously defined methods. The structure of the internal CreateTempTable routine is
fairly simple, as shown here:

private static DataTable CreateTempTable(DataView dv)

{

 // Create a temporary DataTable with the same structure

 // as the original

 DataTable dt = dv.Table.Clone();

 // Fill the DataTable with all the rows in the view

 foreach(DataRowView rowview in dv)

 dt.ImportRow(rowview.Row);

 return dt;

}

The ImportRow method creates a new row object in the context of the table. Like many
other ADO.NET objects, the DataRow object can't be referenced by two container
objects at the same time. Using ImportRow is logically equivalent to cloning the row and
then adding the clone as a reference to the table. Figure 9-8 shows a DataView object
saved to XML.

Figure 9-8: Saving a DataView object to XML.

Binary Data Serialization

 343

There are basically two ways to serialize ADO.NET objects: using the object's own XML
interface, and using .NET Framework data formatters. So far, we have reviewed the
DataSet object's methods for serializing data to XML, and you've learned how to persist
other objects like DataTable and DataView to XML. Let's look now at what's needed to
serialize ADO.NET objects using the standard .NET Framework data formatters.
The big difference between methods like WriteXml and .NET Framework data
formatters is that in the former case, the object itself controls its own serialization
process. When .NET Framework data formatters are involved, any object can behave in
one of two ways. The object can declare itself as serializable (using the Serializable
attribute) and passively let the formatter extrapolate any significant information that
needs to be serialized. This type of object serialization uses .NET Framework reflection
to list all the properties that make up the state of an object.
The second behavior entails the object implementing the ISerializable interface, thus
passing the formatters the data to be serialized. After this step, however, the object no
longer controls the process. A class that neither is marked with the Serializable attribute
nor implements the ISerializable interface can't be serialized. No ADO.NET class
declares itself as serializable, and only DataSet and DataTable implement the
ISerializable interface. For example, you can't serialize to any .NET Framework
formatters a DataColumn or a DataRow object.

Ordinary .NET Framework Serialization
The .NET Framework comes with two predefined formatter objects defined in the
System.Runtime.Serialization.Formatters namespace—the binary formatter and the
SOAP formatter. The classes that provide these two serializers are BinaryFormatter
and SoapFormatter. The former is more efficient, is faster, and produces more compact
code. The latter is designed for interoperability and generates a SOAP-based
description of the class that can be easily consumed on non-.NET platforms.

Note A formatter object is merely a class that implements the IFormatter
interface to support the serialization of a graph of objects. The
SoapFormatter and BinaryFormatter classes also implement the
IRemotingFormatter interface to support remote procedure calls
across AppDomains. No technical reasons prevent you from
implementing custom formatters. In most cases, however, you only
need to tweak the serialization process of a given class instead of
creating an extension to the general serialization mechanism. Quite
often, this objective can be reached simply by implementing the
ISerializable interface.

The following code shows what's needed to serialize a DataTable object using a binary
formatter:

BinaryFormatter bf = new BinaryFormatter();

StreamWriter swDat = new StreamWriter(outputFile);

bf.Serialize(swDat.BaseStream, dataTable);

swDat.Close();

The Serialize method causes the formatter to flush the contents of an object to a binary
stream. The Deserialize method does the reverse—it reads from a previously created
binary stream, rebuilds the object, and returns it to the caller, as shown here:

DataTable dt = new DataTable();

BinaryFormatter bf = new BinaryFormatter();

StreamReader sr = new StreamReader(sourceFile);

 344

dt = (DataTable) bf.Deserialize(sr.BaseStream);

sr.Close();

When you run this code, something surprising happens. Have you ever tried to serialize
a DataTable object, or a DataSet object, using the binary formatter? If so, you certainly
got a binary file, but with a ton of XML in it. Unfortunately, XML data in serialized binary
files only makes them huge, without the portability and readability advantages that XML
normally offers. As a result, deserializing such files might take a while to complete—
usually seconds.
There is an architectural reason for this odd behavior. The DataTable and DataSet
classes implement the ISerializable interface, thus making themselves responsible for
the data being serialized. The ISerializable interface consists of a single method—
GetObjectData—whose output the formatter takes and flushes into the output stream.
Can you guess what happens next? By design, the DataTable and DataSet classes
describe themselves to serializers using an XML DiffGram document. The binary
formatter takes this rather long string and appends it to the stream. In this way, DataSet
and DataTable objects are always remoted and transferred using XML—which is great.
Unfortunately, if you are searching for a more compact representation of persisted
tables, the ordinary .NET Framework run-time serialization for ADO.NET objects is not
for you. Let's see how to work around it.

Custom Binary Serialization
To optimize the binary representation of a DataTable object (or a DataSet object), you
have no other choice than mapping the class to an intermediate object whose
serialization process is under your control. The entire operation is articulated into a few
steps:

1. Create a custom class, and mark it as serializable (or, alternatively,
implement the ISerializable interface).

2. Copy the key properties of the DataTable object to the members of the
class. Which members you actually map is up to you. However, the list
must certainly include the column names and types, plus the rows.

3. Serialize this new class to the binary formatter, and when deserialization
occurs, use the restored information to build a new instance of the
DataTable object.

Let's analyze these steps in more detail.

Creating a Serializable Ghost Class
Assuming that you need to persist only columns and rows of a DataTable object, a
ghost class can be quickly created. In the following example, this ghost class is named
GhostDataTable:

[Serializable]

public class GhostDataTable

{

 public GhostDataTable()

 {

 colNames = new ArrayList();

 colTypes = new ArrayList();

 dataRows = new ArrayList();

 }

 public ArrayList colNames;

 public ArrayList colTypes;

 345

 public ArrayList dataRows;

}

This class consists of three, serializable ArrayList objects that contain column names,
column types, and data rows.
The serialization process now involves the GhostDataTable class rather than the
DataTable object, as shown here:

private void BinarySerialize(DataTable dt, string outputFile)

{

 BinaryFormatter bf = new BinaryFormatter();

 StreamWriter swBin = new StreamWriter(outputFile);

 // Instantiate and fill the worker class

 GhostDataTable ghost = new GhostDataTable();

 CreateTableGraph(dt, ghost);

 // Serialize the object

 bf.Serialize(swBin.BaseStream, ghost);

 swBin.Close();

}

The key event here is how the DataTable object is mapped to the GhostDataTable
class. The mapping takes place in the folds of the CreateTableGraph routine.

Mapping Table Information
The CreateTableGraph routine populates the colNames array with column names and
the colTypes array with the names of the data types, as shown in the following code.
The dataRows array is filled with an array that represents all the values in the row.

void CreateTableGraph(DataTable dt, GhostDataTable ghost)

{

 // Insert column information (names and types)

 foreach(DataColumn col in dt.Columns)

 {

 ghost.colNames.Add(col.ColumnName);

 ghost.colTypes.Add(col.DataType.FullName);

 }

 // Insert rows information

 foreach(DataRow row in dt.Rows)

 ghost.dataRows.Add(row.ItemArray);

}

The DataRow object's ItemArray property is an array of objects. It turns out to be
particularly handy, as it lets you handle the contents of the entire row as a single,
monolithic piece of data. Internally, the get accessor of ItemArray is implemented as a
simple loop that reads and stores one column after the next. The set accessor is even

 346

more valuable, because it automatically groups all the changes in a pair of
BeginEdit/EndEdit calls and fires column-changed events as appropriate.

Sizing Up Serialized Data
The sample application shown in Figure 9-9 demonstrates that a DataTable object
serialized using a ghost class can be up to 80 percent smaller than an identical object
serialized the standard way.

Figure 9-9: The difference between ordinary and custom binary serialization.

In particular, consider the DataTable object resulting from the following query:

SELECT * FROM [Order Details]

The table contains five columns and 2155 records. It would take up half a megabyte if
serialized to the binary formatter as a DataTable object. By using an intermediate ghost
class, the size of the output is 83 percent less. Looking at things the other way round,
the results of the standard serialization process is about 490 percent larger than the
results you obtain using the ghost class.
Of course, not all cases give you such an impressive result. In all the tests I ran on the
Northwind database, however, I got an average 60 percent reduction. The more the
table content consists of numbers, the more space you save. The more BLOB fields
you have, the less space you save. Try running the following query, in which photo is
the BLOB field that contains an employee's picture:

SELECT photo FROM employees

The ratio of savings here is only 25 percent and represents the bottom end of the
Northwind test results. Interestingly, if you add only a couple of traditional fields to the
query, the ratio increases to 28 percent. The application shown in Figure 9-9 (included
in this book's sample files) is a useful tool for fine-tuning the structure of the table and
the queries for better serialization results.

Deserializing Data
Once the binary data has been deserialized, you hold an instance of the ghost class
that must be transformed back into a usable DataTable object. Here's how the sample
application accomplishes this:

DataTable BinaryDeserialize(string sourceFile)

 347

{

 BinaryFormatter bf = new BinaryFormatter();

 StreamReader sr = new StreamReader(sourceFile);

 GhostDataTable ghost =

 (GhostDataTable) bf.Deserialize(sr.BaseStream);

 sr.Close();

 // Rebuild the DataTable object

 DataTable dt = new DataTable();

 // Add columns

 for(int i=0; i<ghost.colNames.Count; i++)

 {

 DataColumn col = new
DataColumn(ghost.colNames[i].ToString(),

 Type.GetType(ghost.colTypes[i].ToString()));

 dt.Columns.Add(col);

 }

 // Add rows

 for(int i=0; i<ghost.dataRows.Count; i++)

 {

 DataRow row = dt.NewRow();

 row.ItemArray = (object[]) ghost.dataRows[i];

 dt.Rows.Add(row);

 }

 dt.AcceptChanges();

 return dt;

}

The information stored in the ghost arrays is used to add columns and rows to a newly
created DataTable object. Figure 9-9 demonstrates the perfect equivalence of the
objects obtained by deserializing a DataTable and a ghost class.

Caution The ghost class used in the preceding sample code serializes
the minimal amount of information necessary to rebuild the
DataTable object. You should add new properties to track other
DataColumn or DataRow properties that are significant in your
own application. Note that you can't simply serialize the
DataColumn and DataRow objects as a whole because none of
them is marked as serializable.

 348

Loading DataSet Objects from XML
The contents of an ADO.NET DataSet object can be loaded from an XML stream or
document—for example, from an XML stream previously created using the WriteXml
method. To fill a DataSet object with XML data, you use the ReadXml method of the
class.
The ReadXml method fills a DataSet object by reading from a variety of sources,
including disk files, .NET Framework streams, or instances of XmlReader objects. In
general, the ReadXml method can process any type of XML file, but of course the
nontabular and rather irregularly shaped structure of XML files might create some
problems and originate unexpected results when the files are rendered in terms of rows
and columns.
In addition, the ReadXml method is extremely flexible and lets you load data according
to a particular schema or even infer the schema from the data.

Building DataSet Objects
The ReadXml method has several overloads, all of which are similar. They take the
XML source plus an optional XmlReadMode value as arguments, as shown here:

public XmlReadMode ReadXml(Stream, XmlReadMode);

public XmlReadMode ReadXml(string, XmlReadMode);

public XmlReadMode ReadXml(TextReader, XmlReadMode);

public XmlReadMode ReadXml(XmlReader, XmlReadMode);

The ReadXml method creates the relational schema for the DataSet object according to
the read mode specified and regardless of whether a schema already exists in the
DataSet object. The following code snippet is typical code you would use to load a
DataSet object from XML:

StreamReader sr = new StreamReader(fileName);

DataSet ds = new DataSet();

ds.ReadXml(sr);

sr.Close();

The return value of the ReadXml method is an XmlReadMode value that indicates the
modality used to read the data. This information is particularly important when no
reading mode is specified or when the automatic default mode is set. In either case,
you don't really know how the schema for the target DataSet object has been
generated.

Modes of Reading
Table 9-4 summarizes the reading options available for use with the ReadXml method;
allowable options are grouped in the XmlReadMode enumeration.

Table 9-4: XmlReadMode Enumeration Values

Read Mode Description

Auto Default option; indicates the most appropriate way of
reading by looking at the source data.

DiffGram Reads a DiffGram and adds the data to the current
schema. If no schema exists, an exception is thrown.

 349

Table 9-4: XmlReadMode Enumeration Values

Read Mode Description

Information that doesn't match the existing schema is
discarded.

Fragment Reads and adds XML fragments until the end of the
stream is reached.

IgnoreSchema Ignores any in-line schema that might be available and
relies on the DataSet object's existing schema. If no
schema exists, no data is loaded. Information that doesn't
match the existing schema is discarded.

InferSchema Ignores any in-line schema and infers the schema from the
XML data. If the DataSet object already contains a
schema, the current schema is extended. An exception is
thrown in the case of conflicting table namespaces and
column data types.

ReadSchema Reads any in-line schema and loads both data and
schema. An existing schema is extended with new
columns and tables, but an exception is thrown if a given
table already exists in the DataSet object.

The default read mode is XmlReadMode.Auto. When this mode is set, or when no read
mode has been explicitly set, the ReadXml method examines the XML source and
chooses the most appropriate option.
The first possibility checked is whether the XML data is a DiffGram. If it is, the
XmlReadMode.DiffGram mode is used. If the XML data is not a DiffGram but
references an XDR or an XSD schema, the InferSchema mode is used. ReadSchema
is used only if the document contains an in-line schema. In both the InferSchema and
ReadSchema cases, the ReadXml method checks first for an XDR (referenced or in-
line) schema and then for an XSD schema. If the DataSet object already has a schema,
the read mode is set to IgnoreSchema. Finally, if no schema information can be found,
the InferSchema mode is used.

Reading XML Data
Although ReadXml supports various types of sources—streams, files, and text
readers—the underlying routine used in all cases reads data using an XML reader. The
following pseudocode illustrates the internal architecture of the ReadXml overloads:

public XmlReadMode ReadXml(Stream stream)

{

 return ReadXml(new XmlTextReader(stream));

}

public XmlReadMode ReadXml(TextReader reader)

{

 return ReadXml(new XmlTextReader(reader));

}

public XmlReadMode ReadXml(string fileName)

{

 return ReadXml(new XmlTextReader(fileName));

}

 350

The XML source is read one node after the next until the end is reached. The
information read is transformed into a DataRow object that is added to a DataTable
object. Of course, the layout of both the DataTable object and the DataRow object is
determined based on the schema read or inferred.

Merging DataSet Objects
When loading the contents of XML sources into a DataSet object, the ReadXml method
does not merge new and existing rows whose primary key information matches. To
merge an existing DataSet object with a DataSet object just loaded from an XML
source, you must proceed in a particular way.
First you create a new DataSet object and fill it with the XML data. Next you merge the
two objects by calling the Merge method on either object, as shown in the following
code. The Merge method is used to merge two DataSet objects that have largely similar
schemas.

target.Merge(source);
The target DataSet object is the object on which the merge occurs. The source DataSet
object provides the information to merge but is not affected by the operation.
Determining which DataSet object must be the target and which will be the source is up
to you and depends on the data your application needs to obtain. During the merging,
the rows that get overwritten are those with matching primary keys.
An alternative way to merge existing DataSet objects with contents read from XML is
through the DiffGram format. Loading a DiffGram using ReadXml will automatically
merge rows that have matching primary keys. When using the XmlReadMode.DiffGram
format, the target DataSet object must have the same schema as the DiffGram;
otherwise, the merge operation fails and an exception is thrown.

Reading Schema Information
The XmlReadMode.IgnoreSchema option causes the ReadXml method to ignore any
referenced or in-line schema. The data is loaded into the existing DataSet schema, and
any data that does not fit is discarded. If no schema exists in the DataSet object, no
data will be loaded. Of course, an empty DataSet object has no schema information, as
shown in the following listing. If the XML source is in the DiffGram format, the
IgnoreSchema option has the same effect as XmlReadMode.DiffGram.

// No schema in the DataSet, no data will be loaded

DataSet ds = new DataSet();

StreamReader sr = new StreamReader(fileName);

ds.ReadXml(sr, XmlReadMode.IgnoreSchema);

Reading In-Line Schemas
The XmlReadMode.ReadSchema option works only with in-line schemas and does not
recognize external references to schema files. The ReadSchema mode causes the
ReadXml method to add new tables to the DataSet object, but if any tables defined in
the in-line schema already exist in the DataSet object, an exception is thrown. You can't
use the ReadSchema option to change the schema of an existing table.
If the DataSet object does not contain a schema (that is, the DataSet object is empty)
and there is no in-line schema, no data is read or loaded. ReadXml can read only in-
line schemas defined using the XDR or XSD schema. DTD documents are not
supported.

 351

Reading External Schemas
An XML source that imports XDR or XSD schema information from an external
resource can't be handled through ReadSchema. External references are resolved
through the InferSchema option by inferring the schema from the external file.
The InferSchema option is generally quite slow because it has to determine the
structure by reading the source. With externally referenced schemas, however, the
procedure is considerably faster. The ReadXml method simply reads the schema
information from the given URL in the same way as the ReadXmlSchema method
does—no true inferential process is started.
By design, external schema resolution is implemented in the InferSchema reading
mode rather than in ReadSchema. When called to operate in automatic mode on a file
that references an external schema, the ReadXml method returns InferSchema. In turn,
ReadSchema does not work if called to work on external schemas.
The ReadSchema and InferSchema options are complementary. The former reads only
in-line schema and ignores external references. The latter does the reverse, ignoring
any in-line schema that might be present in the source.

Reading Fragments
When the XmlReadMode.Fragment option is set, the DataSet object is loaded from an
XML fragment. An XML fragment is a valid piece of XML that identifies elements,
attributes, and documents. The XML fragment for an element is the markup text that
fully qualifies the XML element (node, CDATA, processing instruction, or comment).
The fragment for an attribute is the Value attribute; the fragment for a document is the
entire content set.
When the XML data is a fragment, the root level rules for well-formed XML documents
are not applied. Fragments that match the existing schema are appended to the
appropriate tables, and fragments that do not match the schema are discarded.
ReadXml reads from the current position to the end of the stream. The
XmlReadMode.Fragment option should not be used to populate an empty, and
subsequently schemaless, DataSet object.

Inferring Schema Information
When the ReadXml method works with the XmlReadMode.InferSchema option set, the
data is loaded only after the schema has been completely read from an external source
or after the schema has been inferred. Existing schemas are extended by adding new
tables or by adding new columns to existing tables, as appropriate.
In addition to the ReadXml method, you can use the DataSet object's InferXmlSchema
method to load the schema from a specified XML file into the DataSet object. You can
control, to some extent, the XML elements processed during the schema inference
operation. The signature of the InferXmlSchema method allows you to specify an array
of namespaces whose elements will be excluded from inference, as shown here:

void InferXmlSchema(String fileName, String[] rgNamespace);
The InferXmlSchema method creates an XML DOM representation of the XML source
data and then walks its way through the nodes, creating tables and columns as
appropriate.

A Sample Application
To demonstrate the various effects of ReadXml and other reading modes, I've created
a sample application and a few sample XML documents. Using the application is
straightforward. You select an XML file, and the code attempts to load it into a DataSet
object using the XmlReadMode option you specify. The results are shown in a DataGrid
control. As shown in Figure 9-10, the bottom text box displays the schema of the
DataSet object as read or inferred by the reading method.

 352

Figure 9-10: ReadXml correctly recognizes an XML document in ADO.NET normal form.

In Figure 9-10, the selected XML document is expressed in the ADO.NET normal
form—that is, the default schema generated by WriteXml—and the ReadXml method
handles it correctly.
Not all XML sources smoothly fill out a DataSet object, however. Let's consider what
happens with the following XML document:

<?xml version="1.0" ?>

<class title="Programming XML.NET" company="Wintellect"
author="DinoE">

 <days total="4" expandable="true">

 <day id="1">XML Core Classes</day>

 <day id="2">XML-related Technologies</day>

 <day id="3">XML and ADO.NET</day>

 <day id="4">Remoting and Web services</day>

 <day id="5" optional="true">Miscellaneous and Samples</day>

 </days>

</class>

This document is not in ADO.NET normal form even though it contains information that
can easily fit in a table of data. As you can see in Figure 9-11, the .NET Framework
inference algorithm identifies three distinct tables in this document: class, days, and
day. Although acceptable, this is not probably what one would expect.

 353

Figure 9-11: The schema that ReadXml infers from the specified and nonstandard XML
file.

I would read this information as a single table—day—contained in a DataSet object. My
interpretation is a logical rather than an algorithmic reading of the data, however. The
final schema consists of three connected tables, shown in Figure 9-12, of which the first
two tables simply contain a foreign key field that normalizes the entire data structure.

 354

Figure 9-12: How Microsoft Visual Studio .NET renders the XML schema inferred by
ReadXml.

Choosing the Correct Reading Mode
If you save the contents of a DataSet object to XML and then read it back via ReadXml,
pay attention to the reading mode you choose. Each reading mode has its own set of
features and to the extent that it is possible, you should exploit those features.
Although it is fairly easy to use, the XmlReadMode.Auto mode is certainly not the most
effective way to read XML data into a DataSet object. Avoid using this mode as much
as possible, and instead use a more direct, and data-specific, option.

Binding XML to Data-Bound Controls

XML data sources are not in the official list of allowable data sources for the .NET
Framework data-bound client and server controls. Many .NET Framework classes can
be used as data sources—not just those dealing with database contents. In general,
any object that exposes the ICollection interface is a potential source for data binding.
As a result, you can bind a Microsoft Windows Forms data-bound control or a Web
Forms data-bound control to any of the following data structures:

 In-memory .NET Framework collection classes, including arrays,
dictionaries, sorted and linked lists, hash tables, stacks, and queues

 User-defined data structures, as long as the structure exposes
ICollection or one of its child interfaces, such as IList

 Database-oriented classes such as DataTable and DataSet

 355

 Views of data represented by the DataView class
You can't directly bind XML documents, however, unless you load XML data in one of
the aforementioned classes. Typically, you load XML data into a DataTable or a
DataSet object. This operation can be accomplished in a couple of ways. You can
load the XML document into a DataSet object using the ReadXml method.
Alternatively, you can load the XML document into an instance of the
XmlDataDocument class and access the internally created DataSet object.

Loading from Custom Readers
In Chapter 2, we built a custom XML reader for loading CSV files into a DataTable
object. As mentioned, however, that reader is not fully functional and does not work
through ReadXml. Let's see how to rewrite the class to make it render the CSV content
as a well-formed XML document.

Our target XML schema for the CSV document would be the following:

<csv>

 <row col1="..." col2="..." col3="..." />

 <row col1="..." col2="..." col3="..." />

 ⋮
</csv>

Of course, this is not the only schema you can choose. I have chosen it because it is
both compact and readable. If you decide to use another schema, the code for the
reader should be changed accordingly. The target XML schema is a crucial aspect, as it
specifies how the Read method should be implemented. Figure 9-13 illustrates the
behavior of the Read method.

Figure 9-13: The process of returning an XML schema for a CSV file.

 356

The reader tracks the current node and sets internal variables to influence the next
node to be returned. For example, when returning an Element node, the reader
annotates that there's an open node to close. Given this extremely simple schema, a
Boolean member is enough to implement this behavior. In fact, no embedded nodes
are allowed in a CSV file. In more complex scenarios, you might want to use a stack
object.

The Read Method
When a new node is returned, the reader updates the node's depth and state. In
addition, the reader stores fresh information in node-specific properties such as Name,
NodeType, and Value, as shown here:

public override bool Read()

{

 if (m_readState == ReadState.Initial)

 {

 if (m_hasColumnHeaders)

 {

 string m_headerLine = m_fileStream.ReadLine();

 m_headerValues = m_headerLine.Split(',');

 }

 SetupRootNode();

 m_readState = ReadState.Interactive;

 return true;

 }

 if (m_readState != ReadState.Interactive)

 return false;

 // Return an end tag if there's one opened

 if (m_mustCloseRow)

 {

 SetupEndElement();

 return true;

 }

 // Return an end tag if the document must be closed

 if (m_mustCloseDocument)

 {

 m_readState = ReadState.EndOfFile;

 return false;

 }

 357

 // Open a new tag

 m_currentLine = m_fileStream.ReadLine();

 if (m_currentLine != null)

 m_readState = ReadState.Interactive;

 else

 {

 SetupEndRootNode();

 return true;

 }

 // Populate the internal structure representing the current
element

 m_tokenValues.Clear();

 string[] tokens = m_currentLine.Split(',');

 for (int i=0; i<tokens.Length; i++)

 {

 string key = "";

 if (m_hasColumnHeaders)

 key = m_headerValues[i].ToString();

 else

 key = CsvColumnPrefix + i.ToString();

 m_tokenValues.Add(key, tokens[i]);

 }

 SetupElement();

 return true;

}

For example, when the start tag of a new element is returned,
the following code runs:

private void SetupElement()

{

 m_isRoot = false;

 m_mustCloseRow = true;

 m_mustCloseDocument = false;

 m_name = CsvRowName;

 m_nodeType = XmlNodeType.Element;

 m_depth = 1;

 m_value = null;

 // Reset the attribute index

 358

 m_currentAttributeIndex = -1;

}

When traversing a document using an XML reader, the ReadXml method visits
attributes in a loop and reads attribute values using ReadAttributeValue.

Setting Attributes
Attributes are not read through calls made to the Read method. A reader provides ad
hoc methods to access attributes either randomly or sequentially. When one of these
methods is called—say, MoveToNextAttribute—the reader calls an internal method that
refreshes the state so that Name and NodeType can now point to the correct content,
as shown here:

private void SetupAttribute()

{

 m_nodeType = XmlNodeType.Attribute;

 m_name = m_tokenValues.Keys[m_currentAttributeIndex];

 m_value = m_tokenValues[m_currentAttributeIndex].ToString();

 if (m_parentNode == "")

 m_parentNode = m_name;

}

A node is associated with a line of text read from the CSV file. Each token of
information becomes an attribute, and attributes are stored in a collection of
name/value pairs. (This part of the architecture was described in detail in Chapter 2.)
The m_parentNode property tracks the name of the element acting as the parent of the
current attribute. Basically, it represents the node to move to when MoveToElement is
called. Again, in this rather simple scenario, a string is sufficient to identify the parent
node of an attribute. For more complex XML layouts, you might need to use a custom
class.

Reading Attributes Using ReadXml
The ReadXml method accesses all the attributes of an element using a loop like this:

while (reader.MoveToNextAttribute())

{

 // Use ReadAttributeValue to read attribute values

 ⋮
}

To load XML data into a DataSet object, the ReadXml method uses an XML loader
class that basically reads the source and builds an XmlDocument object. This
document is then parsed, and DataRow and DataTable objects are created and added
to the target DataSet object. While building the temporary XmlDocument object, the
loader scrolls attributes using MoveToNextAttribute and reads values using
ReadAttributeValue.
ReadAttributeValue does not really return the value of the current attribute. This
method, in fact, simply returns a Boolean value indicating whether there's more to read
about the attribute. By using ReadAttributeValue, however, you can read through the
text and entity reference nodes that make up the attribute value. Let's say that this is a
more general way to read the content of an attribute; certainly, it is the method that

 359

ReadXml uses indirectly. To let ReadXml read the value of an attribute, you must
provide a significant implementation for ReadAttributeValue. In particular, if the current
node is an attribute, your implementation should set the new node type to
XmlNodeType.Text, increase the depth by 1, and return true.

public override bool ReadAttributeValue()

{

 if (m_nodeType == XmlNodeType.Attribute)

 {

 m_nodeType = XmlNodeType.Text;

 m_depth ++;

 return true;

 }

 return false;

}

ReadAttributeValue parses the attribute value into one or more Text, EntityReference,
or EndEntity nodes. This means that the XML loader won't be able to read the value
unless you explicitly set the node type to Text. (We don't support references in our
sample CSV reader.) At this point, the loader will ask the reader for the value of a node
of type Text. Our implementation of the Value property does not distinguish between
node types, but assumes that Read and other move methods (for example,
MoveToNextAttribute) have already stored the correct value in Value. This is just what
happens. In fact, the attribute value is read and stored in Value right after positioning on
the attribute, before ReadAttributeValue is called. In other cases, you might want to
check the node type in the Value property's get accessor prior to returning a value.
In general, understanding the role of ReadAttributeValue and integrating this method
with the rest of the code is key to writing effective custom readers. Nevertheless, as you
saw in Chapter 2, if you don't care about ReadXml support, you can write XML readers
even simpler than this. But the specialness of an XML reader is precisely that you can
use it with any method that accepts an XML reader! So dropping the support for the
DataSet object's ReadXml method would be a significant loss.

Note How ReadXml works with custom readers is in no way different from
the way it works with system-provided XML readers. However,
understanding how ReadXml works with XML readers can help you
to build effective and functional custom XML readers.

Conclusion
In ADO.NET, XML is much more than a simple output format for serializing data. You
can use XML to streamline the entire contents of a DataSet object, but you can also
choose the actual XML schema and control the structure of the resulting XML
document.
There are several ways to persist a DataSet object's contents. You can create a
snapshot of the currently stored data using a standard layout referred to here as the
ADO.NET normal form. This data format can include schema information or not. Saving
to the ADO.NET normal form does not preserve the state of the DataSet object and
discards any information about the previous state of each row. If you want stateful

 360

persistence, resort to the DiffGram XML format. DiffGrams are the subject of Chapter
10.
In this chapter, we also examined how ADO.NET objects integrate with the standard
.NET Framework run-time serialization mechanism. DataSet and DataTable objects
always expose themselves to data formatters as XML DiffGrams, thus resulting in
larger output files. We looked at a technique for reducing the size of the serialized data
as much as 500 percent.
In ADO.NET, the deserialization process is tightly coupled with the inference engine,
which basically attempts to algorithmically extract the layout of the XML stream. When
loading XML into a DataSet object, the inference engine is involved more frequently
than not. Because it is not a lightweight piece of code, you should always opt for a clear
and effective reading mode and use the inference engine only when absolutely
necessary.
As mentioned, in the next chapter we'll tackle a very special XML serialization format—
the DiffGram. Among other things, the DiffGram format is the format used to deliver
DataSet objects to other platforms through Web services. It is also ideal for setting up
intermittent applications—that is, applications that can work both connected to and
disconnected from the system.

Further Reading
Object serialization and ADO.NET are the key topics of this chapter. You'll find a lot of
books out there covering ADO.NET from various perspectives. I recommend Microsoft
ADO.NET, Core Reference, by David Sceppa (Microsoft Press, 2002).
It's more difficult to locate a book that provides thorough coverage of object
serialization. Chapter 11 in Programming Microsoft Visual Basic .NET, Core Reference,
by Francesco Balena (Microsoft Press, 2002), is an excellent and self-contained
reference. If you want a shorter but complete overview, have a look at the following
online article: http://msdn.microsoft.com/library/en-
us/dnadvnet/html/vbnet09252001.asp.

 361

Chapter 10: Stateful Data Serialization

Highlights
The DataSet object is designed with data disconnection in mind and with the
assumption that optimistic concurrency is the default. In a multiple-user environment,
optimistic concurrency occurs when applications do not lock a row while reading it. In
contrast, a pessimistic form of concurrency involves locking rows at the data source to
prevent users from modifying data in a way that affects other users. The DataSet object
abstracts from the physical data source and qualifies itself as a superarray component
capable of containing in-memory data.
As a container of disconnected data, the DataSet object accepts any sort of update to
the rows it contains, so you can add new rows to any child tables, and you can update
or delete existing rows. All these changes are persisted in memory and are not passed
on to a persistent storage medium until an explicit update operation is conducted. Such
an update requires a new connection and applies an array of changes in a single shot.
For this reason, a DataSet update operation is often referred to as a batch update.
When the batch update is completed, the DataSet in-memory changes are
automatically committed to ensure consistency between the in-memory cache and the
underlying storage medium.
As a result, each row of data stored in a DataSet object can have a history of changes
that applications might be interested in knowing about and exploiting. All this
information is irreversibly lost when you serialize a DataSet object to the Microsoft
ADO.NET normal form using the standard option of the WriteXml method. (We
examined this type of serialization in Chapter 9.)
An alternative XML schema for serializing the contents of a DataSet object is the
DiffGram format. The DiffGram format of the WriteXml method can provide a stateful
representation of the DataSet contents, as opposed to the stateless nature of the
normal form. Because of its ability to preserve the state of the constituent rows, the
DiffGram format is also used to remote a DataSet object through both the Microsoft
.NET Framework remoting architecture and Web services. But let's start by taking a
closer look at the structure of a DiffGram script.

Overview of the DiffGram Format

A DiffGram is an XML serialization format that includes both the original values and the
current values of each row in each table. In particular, a DiffGram contains the current
instance of rows with the up-to-date values, plus a section where all the original values
for changed rows are grouped.

Each row is given a unique identifier that is used to track changes between the two
sections of the DiffGram. This relationship looks a lot like a foreign key relationship. The
following listing outlines the structure of a DiffGram:.

<diffgr:diffgram

 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">

 <DataSet>

 ...

 </DataSet>

 <diffgr:before>

 362

 ...

 </diffgr:before>

 <diffgr:errors>

 ...

 </diffgr:errors>

</diffgr:diffgram>

The <diffgr:diffgram> root node can have up to three children. The first is the DataSet
object with its current contents, including newly added rows and modified rows but not
deleted rows. The actual name of this subtree depends on the DataSetName property
of the source DataSet object. If the DataSet object has no name, the subtree's root is
NewDataSet.
The subtree rooted in the <diffgr:before> node contains enough information to restore
the original state of all modified rows. For example, it still contains any row that has
been deleted as well as the original contents of any modified row. All columns affected
by any change are tracked in the <diffgr:before> subtree.
The last subtree is <diffgr:errors>, which contains information about any errors that
have occurred in a particular row. The DataRow class provides a few methods and
properties that programmers can use to set an error on any column in the row. Errors
can be set at any time, not necessarily when the data is entered. For example, in
distributed applications, it's typical for one user to create some data that another user
has to validate. In this situation, the reviewer can set an error message on each column
of a row to signal that something is wrong with that column. Amazingly, the Microsoft
Windows Forms DataGrid control then detects any pending errors on displayed rows
and marks them with a red exclamation point, providing the user with visual feedback
that a particular column contains an error.

The following listing shows a sample DiffGram in which row 1 has been modified, row 2
has been deleted, row 3 has an error, and a new row has been added:

<diffgr:diffgram

 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">

 <NorthwindInfo>

 <Employees diffgr:id="Employees1" msdata:rowOrder="0"

 diffgr:hasChanges="modified"

 employeeid="1" lastname="Davolio" firstname="Michela" />

 <Employees diffgr:id="Employees4" msdata:rowOrder="3"

 diffgr:hasErrors="true"

 employeeid="4" lastname="Peacock" firstname="Margaret" />

 <Employees diffgr:id="Employees10" msdata:rowOrder="9"

 diffgr:hasChanges="inserted"

 employeeid="10" lastname="Esposito" firstname="Dino" />

 </NorthwindInfo>

 <diffgr:before>

 363

 <Employees diffgr:id="Employees1" msdata:rowOrder="0"

 employeeid="1" lastname="Davolio" firstname="Nancy" />

 <Employees diffgr:id="Employees2" msdata:rowOrder="1"

 employeeid="2" lastname="Fuller" firstname="Andrew" />

 </diffgr:before>

 <diffgr:errors>

 <Employees diffgr:id="Employees3"

 diffgr:Error="Check out the first name!!!" />

 </diffgr:errors>

</diffgr:diffgram>

Some of the attributes and nodes that form a DiffGram come from a couple of Microsoft
proprietary namespaces. The default prefixes are msdata and diffgr. In particular, the
msdata namespace contains a number of attributes that are annotations for the data in
the stream. We'll look at these attributes and the entire structure of the DiffGram in the
section "DiffGram Format Annotations," on page 448.

The Current Data Instance
The first section of the DiffGram represents the current instance of the data. Although
it's not strictly mandatory from a syntax standpoint, of the three constituent subtrees,
the data instance is the only subtree that you will always find in a DiffGram. A DiffGram
without data is just the representation of an empty DataSet object. The <diffgr:before>
and <diffgr:errors> subtrees are not present if the source DataSet object has no
pending changes and errors.
A DiffGram is stateful and is like a superset of the ADO.NET XML normal form. The
data instance is nearly identical to the normal form, which is a simple, stateless
snapshot of data. The major difference between the DiffGram's data instance and the
normal form is that the DiffGram format does not include schema information. To make
the overall DiffGram format truly stateful, you must combine the data with two other
subtrees—the original data and the pending errors. By combining the contents of the
three subtrees, a client can rebuild a faithful representation of the original DataSet
contents.

Note Like the normal form, not even the DiffGram can be considered a
serialization format for the DataSet as an object. The DiffGram is a
serialization format for the contents of a DataSet object. To be a
valid serialization of the DataSet object itself, the DiffGram would
need to contain schema information. Incidentally, the
implementation of the ISerializable interface that both the DataSet
object and the DataTable object provide manages to return a
special version of the DiffGram format that differs from this because
it incorporates schema information. You'll learn how to build
DiffGram documents that contain a schema in the section "The
DiffGram Viewer Application," on page 457.

Data Generator Objects
As mentioned, the data subtree in a DiffGram is similar to the ADO.NET normal form for
XML we looked at in Chapter 9. In both cases, the XML code being generated by the
WriteXml method represents a snapshot of the data currently stored in the DataSet

 364

object's tables. The data written out faithfully tracks any pending updates and deletions
that have occurred in the meantime. As Figure 10-1 shows, the similarity between the
first block of a DiffGram and the XML normal form is not just cosmetic, nor it is due to a
mere chance.

Figure 10-1: Components that work under the hood of the DataSet object's WriteXml
method.

The same internal component, the XML tree writer, is used to generate both the
ADO.NET XML normal form and the data instance block in a DiffGram. A pleasant side
effect of this architecture is that all the mapping features for DataColumn objects we
examined in Chapter 9 (see the discussion of the MappingType enumeration in the
section "Customizing the XML Representation," on page 411) are still valid in the
context of a DiffGram. You can decide whether a given column is better rendered using
an attribute or an element, or whether the column should be hidden altogether.

The Hidden Flag
The MappingType.Hidden flag reveals a slight difference in the XML code that WriteXml
generates for DiffGrams. A column mapped as hidden text is still part of DiffGram's
data instance, but qualified with a particular attribute, as shown here:

<diffgr:diffgram

 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">

 <NorthwindInfo>

 <Employees diffgr:id="Employees1" msdata:rowOrder="0"

 msdata:hiddenemployeeid="1">

 <lastname>Davolio</lastname>

 365

 <firstname>Nancy</firstname>

 </Employees>

 ...

 </NorthwindInfo>

</diffgr:diffgram>

For example, assume that you marked the employeeid column as hidden, as shown
here:

DataColumn col = ds.Tables["Employees"].Columns["employeeid"];

col.ColumnMapping = MappingType.Hidden;

The employeeid column is not rendered as an <employeeid> element or an employeeid
attribute, but a custom attribute is always used. The name of this attribute is
hiddenXXX, where XXX represents the name of the column—in this case,
hiddenemployeeid. The new attribute belongs to the msdata namespace.

Note In the context of the DiffGram, the msdata:hiddenXXX attribute is a
full replacement for the hidden column—in other words, the
information is not hidden at all, but the name of the column is a bit
camouflaged.

DiffGram Format Annotations
Another remarkable difference between the ADO.NET XML normal form and the
DiffGram's data instance is that the latter includes extra attributes such as id,
hasChanges, hasErrors, and rowOrder. The extra attributes come from a couple of
custom namespaces that are referenced at the beginning of the DiffGram. These
special attributes are used to flag nodes, thus relating elements across the various
sections—data instance, changes, and errors.
Table 10-1 lists all the DiffGram special attributes, also commonly referred to as
annotations.

Table 10-1: DiffGram Annotations

Attribute Description

diffgr:error Contains the text that describes the error for the row
or a column on the row.

diffgr:hasChanges Indicates that the row has been modified or inserted.

diffgr:hasErrors Indicates that the row contains an error.

diffgr:id Returns the unique ID used to couple rows across
sections.

diffgr:parentId Returns the unique ID for the parent row.

msdata:hiddenXXX Replacement attribute for columns marked as hidden.
XXX denotes the actual name of the column.

msdata:rowOrder Tracks the ordinal position of the row in the DataSet
object.

There's no special reason for annotations to come from different namespaces—it's just
a more rational categorization. Attributes in the diffgr namespace relate elements from

 366

different blocks. Attributes in the msdata namespace represent working information that
is useful to know when you're processing the DiffGram.

Cross-Section Links
Each row rendered in a DiffGram is given a unique ID. The ID is automatically
generated and consists of the table name followed by a one-based index—for example,
Employees1, Employees2, and so on. The diffgr:id attribute is used as a key to retrieve
the original data and the errors of a row from the <diffgr:before> and <diffgr:errors>
sections.

The following DiffGram contains a modified row:

<diffgr:diffgram

 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">

 <NorthwindInfo>

 <Employees diffgr:id="Employees1" msdata:rowOrder="0"

 diffgr:hasChanges="modified"

 employeeid="1" lastname="Davolio" firstname="Michela" />

 ...

 </NorthwindInfo>

 <diffgr:before>

 <Employees diffgr:id="Employees1" msdata:rowOrder="0"

 employeeid="1" lastname="Davolio" firstname="Nancy" />

..</diffgr:before>

</diffgr:diffgram>

The same row can be referenced in any, or even all, of the DiffGram blocks. If the row
is currently part of the DataSet object, you will find it in the data instance block. If the
row has been updated or deleted, it will have a corresponding entry in the
<diffgr:before> section. If error messages have been associated with any of the row's
columns, another record will be found in the <diffgr:errors> section. The diffgr:id
attribute is used to pair related elements.
The msdata:rowOrder attribute is a simple zero-based index that tracks the ordinal
position of the row in the source DataSet object. This information is not updated when a
row is deleted. An msdata:rowOrder value of 1 indicates that the row was the second in
the table when the DiffGram was created.

Catching Changes in the Data
The diffgr:hasChanges attribute indicates the type of change that has occurred in the
row. This attribute can take any of the values listed in Table 10-2.

Table 10-2: Values for the diffgr:hasChanges Attribute

Value Description

descent Indicates that the row received has one or more children from a
parent/child relationship that have been modified.

inserted Indicates that the row has been added.

modified Indicates that the row has been modified. The original values are
stored in the corresponding row in the <diffgr:before> section.

 367

An added row has no corresponding element in the <diffgr:before> section. A deleted
row has no corresponding element in the data instance block, but there will be an entry
in the <diffgr:before> block. Looking at the data instance, you can quickly and easily
identify the modified and added rows—each has a diffgr:hasChanges attribute set to a
self-explanatory value. But what about deleted rows?
By design, any hole in the sequence of msdata:rowOrder values denotes a deleted row.
The msdata:rowOrder values must necessarily be consecutive. Let's look more closely
at how a DiffGram is actually loaded in memory and transformed into a DataSet object.

Reading Back DiffGrams
When reading a DiffGram, the DataSet object's ReadXml method first loads the data
instance and creates all the necessary tables and rows. Each row is put in the added or
modified state, as appropriate. All the diffgr:id values are temporarily copied into an
internal hash table defined as a property of the DataSet object. Each entry in the hash
table references a DataRow object in the table being created.
Next ReadXml processes the <diffgr:before> section and reads the old values for the
available rows. If a match can be found between a row in the <diffgr:before> section
and a row already loaded in the table, the just-read values are stored as the original
values of the table row. ReadXml looks for a match between the diffgr:id attribute in the
<diffgr:before> section and the contents of the hash table. Figure 10-2 shows how the
DataSet object is built.

Figure 10-2: The DataSet is built by reading the DiffGram sections one after the next and
using the row IDs to pair elements in the various blocks.

 368

If no match is found, ReadXml deduces that the row in the <diffgr:before> section was
deleted from the table when it was at the position that the msdata:rowOrder attribute
indicates. The method inserts a new row in the table at the same position and
populates it with the values read from the <diffgr:before> section. Next the row is
marked for deletion using the Delete method of the DataRow object.
The final step consists of reading the values from the <diffgr:errors> section and
updating accordingly the RowError property of the corresponding DataRow object in the
table.

The Row Commit Model
The DataSet, DataTable, and DataRow objects maintain a local cache of changes.
When a row is modified, deleted, or added, its state changes to one of the values of the
DataRowState enumeration. (See the .NET Framework documentation for details.)
Similarly, when a row is added, modified, or deleted from a table, the internal state of
the table is altered, resulting in pending changes for the affected rows.
Pending changes can be either accepted or rejected at the DataSet, DataTable, or
DataRow level. Accepting a pending change means that the row (changes always
involve a row) updates are committed to the table. Rejecting a pending change rolls
back the state of the table, and the table appears as though the change never occurred.
A DiffGram can track pending changes—that is, in-memory changes that have not yet
been committed. Table 10-3 lists the allowable states for a DataRow object.

Table 10-3: States of a DataRow Object

State Description

Added The row has been added to the table, but AcceptChanges
has not yet been called.

Deleted The row is marked for deletion from the parent table.

Detached Either the row has been created but not yet added to the
table, or the row has been removed from the rows collection.

Modified Some columns within the row have been changed.

Unchanged No changes have been made since the last call to
AcceptChanges. This is also the state of all rows when the
table is first created.

The AcceptChanges method has the power to commit all the changes and accept the
current values as the new original values of the table, clearing pending changes.
RejectChanges rolls back all the pending changes. We'll encounter the row commit
model again in the section "A Save-And-Resume Application," on page 464, when we
look at save-and-resume applications.

The Original Data Section
The DiffGram has a layered structure in which current values, original values for the
modified rows, and pending errors are stored in distinct sections. The state of the
DataSet object is rebuilt by combining the contents of these sections. The original
values are stored in the <diffgr:before> section as a change with respect to the current
data instance.
The DataRow object maintains several versions of itself that are internally stored in an
array of rows. The versions are grouped in the DataRowVersion enumeration, shown in
Table 10-4.

 369

Table 10-4: Values for the DataRowVersion Enumeration

Value Description

Current Contains the current values of the row

Default The default row version, according to the current state of the
row

Original Contains the original values for the row—that is, the values
stored when AcceptChanges was last called

Proposed Contains proposed values for the row

Only the Current and Original versions are permanently stored in the DataRow object.
The Proposed versions have a shorter life and are available only during the row edit
phase. A row is in edit mode only during the time that elapses between two successive
calls to the BeginEdit and EndEdit methods. When reading values from a DataRow
object, you can also specify which of the available versions you want, as shown here:

if(row[0] == row[0, DataRowVersion.Original])

{...}

The <diffgr:before> section contains information that the ReadXml method will use to
restore the Original version of each row referenced in the data instance. Newly added
rows have no previous state and, subsequently, are not listed in the <diffgr:before>
section.
Deleted rows are present only in the <diffgr:before> section, as they have no current
data to show. Deleted rows are detected by matching the diffgr:id attribute of original
rows in the DiffGram with the IDs of the rows in the current data instance. Rows in the
<diffgr:before> section that have no counterpart in the current data instance are first
inserted in the table and then deleted. Although this approach might appear a bit odd,
it's probably the most sensible way to add a logically deleted row to a DataTable object.

Note The DataTable class provides two methods to delete child rows:
Delete and Remove. The Delete method deletes the row logically by
changing the state of the row. The row no longer appears in the
Rows collection, but it is not detached from the DataTable object.
The Remove method, on the other hand, performs a physical
deletion and detaches the row from the table. The detached
DataRow object is not automatically destroyed and remains valid as
long as it does not go out of scope. (Out of scope objects are
automatically garbage-collected and destroyed.) Valid DataRow
objects can be readded to the same DataTable object (or to another
DataTable object) at any time.

No matter how many columns in a row have effectively been updated, in the
<diffgr:before> section, the original row is stored in its entirety. The XML layout of the
row depends on the column mappings, as shown here:

<diffgr:before>

 <Employees diffgr:id="Employees2" msdata:rowOrder="1">

 <employeeid>2</employeeid>

 <lastname>Fuller</lastname>

 <firstname>Andrew</firstname>

 </Employees>

 370

</diffgr:before>

Although this solution is clearly not optimal, because unchanged columns are stored
twice, it closely reflects the internal architecture of the DataRow object and, as such,
speeds up the restoration of the DataRow object in the destination DataTable object.

Note The DataRow class maintains its various versions by implementing
an array of subobjects—one for the current values, one for the
original version, and one for intermediate proposed values. Other
internal properties indicate at any moment which is the current
version and what the state of the row is.

As a final note, consider that for each column in a DataRow object, only the original and
the current values are tracked, and no intermediate values are buffered. For example,
suppose that you perform the following operation on an unchanged row:

// 1 is the current value of the field

row[0][field] = 2;

The row state changes to Modified, the original value (1) is persisted in the Original
copy of the row, and the new value (2) is registered as the current value. Next the
following code runs:

// 2 is the current value of the field

// 1 is the original value of the field

row[0][field] = 3;

// 3 is NOW the current value of the field

// 1 is the original value of the field

The original copy of the row remains intact, but the current version is updated. As a
result, the intermediate value (2) is overwritten and is irreversibly lost.

Note Building an automatic mechanism for tracking the entire history of a

row is probably unnecessary in most cases. If you need a more
powerful mechanism to track changes, you can build a parallel table
of changes for each row in the table. Each entry in the custom table
would point to a particular DataRow object and contain a collection
of changes organized as you prefer.

Tracking Pending Errors
The DataRow class provides a few methods for handling row errors. You can set a
general error message on the entire row, and you can set a column-specific message.
To set a general error message, you use the RowError property. To set a column-
specific message, you use the pair of methods SetColumnError and GetColumnError.
Other helper methods available are GetColumnsInError and ClearErrors.
A column or row with an error is in no way different from a column or row without
pending errors. In this context, an error is simply a description of contents that the user,
or the application, finds erroneous and inconsistent. Nothing prevents you from using
error properties as general-purpose cargo variables in which to store custom
information and annotations.

Note If you choose to use error properties as general-purpose cargo
variables, keep in mind that some advanced Windows Forms and
Web Forms controls can, in the presence of error flags, refresh their
own user interfaces accordingly. For example, the Windows Forms

 371

Data-Grid control displays a red exclamation mark on the columns
in error, as shown here:

The DataRow Error Programming Interface
The tables in this section provide a quick overview of the properties and methods
available in the DataRow class for setting and getting error messages. These
messages are then tracked in the <diffgr:errors> section of the DiffGram. Table 10-5
lists the error-related properties of the DataRow class.

Table 10-5: Error-Related DataRow Properties

Property Description

HasErrors Indicates whether the row contains errors

RowError Gets or sets a custom error description for the row

The HasErrors property is set to true when either the RowError property contains a
value or at least one column is not associated with an empty message. If you want to
know about all the columns with errors, use the GetColumnsInError method to obtain
an array containing the DataColumn objects with errors.
Table 10-6 shows the error-related methods of the DataRow class.

Table 10-6: Error-Related DataRow Methods

Method Description

ClearErrors Clears all the pending errors for the row. Does not
distinguish between errors set using RowError and
errors set using SetColumnError.

GetColumnError Gets the error description for the specified column.

GetColumnsInError Returns an array of the DataColumn objects with
errors.

SetColumnError Sets the error description for the specified column.

Contents of the <diffgr:errors> Section
A table row is assigned an element in the <diffgr:errors> section if its HasErrors
property returns true. In this case, the element that represents the row in the data
section has an extra attribute, diffgr:hasErrors, as shown here:

<Employees diffgr:id="Employees1" msdata:rowOrder="0"

 diffgr:hasErrors="true">

 <employeeid>1</employeeid>

 <lastname>Davolio</lastname>

 <firstname>Nancy</firstname>

</Employees>

The preceding element is coupled with another element in the <diffgr:errors> section in
which the error messages are tracked, as follows:

 372

<diffgr:errors>

 <Employees diffgr:id="Employees1" diffgr:error="Must review">

 <employeeid diffgr:error="Check the ID" />

 <lastname diffgr:error="Sounds like the wrong name" />

 </Employees>

</diffgr:errors>

The diffgr:error attribute on the row node (<Employees> in the preceding sample code)
contains the text stored in the RowError property. For each column with a custom error
description, a new child element is created with the name of the column and a
diffgr:error attribute. In the sample code, the employeeid and lastname columns contain
errors. Note that the RowError property is not automatically filled when at least one
column is in error.

Caution The XML schema of the elements in the <diffgr:errors> section is
not affected by column mappings, as is the case with the current
data and the <diffgr:before> sections we examined earlier.

The DiffGram Viewer Application

To fully demonstrate the workings of XML DiffGrams, nothing is better than taking a
DataSet object, entering some changes, and seeing how the corresponding DiffGram
representation varies. For this purpose, I created the DiffGram Viewer Windows Forms
application, shown in Figure 10-3. The application is available in this book's sample
files.

Figure 10-3: The DiffGram Viewer sample application in action.

This application executes a couple of SQL commands to obtain a DataSet object filled
with two tables—Employees and Territories. The names of the DataSet object and the
in-memory tables can be changed at will using text boxes. Next the application creates
a relation between the tables, sets the nesting property to true, and creates the
DiffGram.

 373

The DiffGram is created using an in-memory string writer, and the output text is written
to a multiline, read-only text box. Clicking the Edit button opens a new form with a
DataGrid control for editing rows. The DataGrid control is bound to the DataSet object
generated by the query, and is shown in Figure 10-4.

Figure 10-4: At the end of the editing phase, the updated DataSet object is resaved as a
DiffGram and the pending changes are displayed.

The child form allows you to set errors and enter any type of changes. When the form is
dismissed, the main application automatically saves the bound DataSet object back to a
DiffGram and refreshes the user interface. As a result, you can easily test the DiffGram
and view how the output varies after data changes.
A nice feature of the DiffGram Viewer application is that it lets you toggle the DiffGram
view between plain text and XML. The XML view is provided by Internet Explorer, as
shown in Figure 10-5.

Figure 10-5: The DiffGram displayed in Internet Explorer.

The DiffGram Viewer application makes use of the WebBrowser ActiveX control, which
is imported almost seamlessly by Microsoft Visual Studio .NET. The following code
shows how to refresh such a Web view. To view the DiffGram using the WebBrowser
control, the DiffGram must first be saved to disk as a temporary XML file.

void RefreshWebBrowser()

 374

{

 // Url is a form property that points to the DiffGram file

 object o1=null, o2=null, o3=null, o4=null;

 WebBrowser.Navigate(Url, ref o1, ref o2, ref o3, ref o4);

}

A DiffGram has no trace of relationships between tables unless the Nested property of
the DataRelation object is set to true. This system is reasonable in light of what we saw
in Chapter 9. ADO.NET serializes information about tables relationships using XML
Schema constructs. Because a DiffGram does not include schemas, it can't contain
static information about table relationships. When the Nested property is set to true, the
parent/child relationship is expressed by grouping child rows as a subtree of the parent
row.

Persisting a DataSet Object to a DiffGram
A DiffGram is programmatically created by calling the WriteXml method of the DataSet
class. To save data to a DiffGram, however, you must explicitly set the XmlWriteMode
argument of the method to the flag XmlWriteMode.DiffGram, as shown in the following
code. The XML data created in this way does not include schema information. We'll
return to this important point in the section "Schema Information in the DiffGram," on
page 461.

// Prepare the output stream

StreamWriter sw = new StreamWriter(fileName);

XmlTextWriter writer = new XmlTextWriter(sw);

writer.Formatting = Formatting.Indented;

// Create the diffgram

ds.WriteXml(writer, XmlWriteMode.DiffGram);

writer.Close();

The DiffGram contains all the rows from all the tables found in the DataSet object. You
can create ad hoc subsets of the DataSet object to narrow the information being saved.
In particular, you can use the DataSet object's GetChanges method to save only those
rows that contain uncommitted changes, as shown here:

DataSet dsChanges = ds.GetChanges();

dsChanges.WriteXml(writer, XmlWriteMode.DiffGram);

The GetChanges method also has a few overloads that let you control the type of
changes you are interested in. For example, the following code prepares a DiffGram
containing only the rows that have been inserted:

DataSet dsChanges = ds.GetChanges(DataRowState.Added);

dsChanges.WriteXml(writer, XmlWriteMode.DiffGram);

Loading a DataSet Object from a DiffGram
When you try to build a DataSet object from an XML DiffGram, you must first ensure
that the target DataSet object has a schema that is compatible with the data in the
DiffGram.

 375

In no case does the ReadXml method—the only DataSet method that can load a
DiffGram—infer the schema or extend with new elements an existing schema.
ReadXml works by merging the rows read from the DiffGram with existing rows in the
DataSet object. The DiffGram row identifier (the diffgr:id attribute) is used to pair
DiffGram and DataSet object rows.
Any incompatibility between the current schema of the DataSet object and the data in
the DiffGram throws an exception and causes the merge operation to fail. As a result,
you can't load a DiffGram into an empty, newly created DataSet object. You can create
the target DataSet object simply by cloning an existing object that you know has the
correct schema. Or, more realistically, you might want to read the schema from an
external support using the ReadXmlSchema method. The following code snippet shows
how to create a DiffGram and its schema in distinct files:.

// Prepare the output stream for the DiffGram

StreamWriter diffStrm = new StreamWriter(diffgramFile);

XmlTextWriter writer = new XmlTextWriter(diffStrm);

writer.Formatting = Formatting.Indented;

// Create the diffgram from the ds DataSet

ds.WriteXml(writer, XmlWriteMode.DiffGram);

writer.Close();

// Prepare the output stream for the schema

StreamWriter xsdStrm = new StreamWriter(schemaFile);

XmlTextWriter writer = new XmlTextWriter(xsdStrm);

writer.Formatting = Formatting.Indented;

// Create the schema from the ds DataSet

ds.WriteXmlSchema(writer);

writer.Close();

The schema written with WriteXmlSchema is an XML Schema and includes table,
relation, and constraint definitions.

Schema Information in the DiffGram

In general, the schema and the data should be kept in separate files and handled as
truly independent entities. The schema and the data are tightly coupled, and if
serialization is involved, you might want to consider putting schema information in-line
in the data.
In the .NET Framework, the WriteXml method does not provide the capability to include
schema information along with the data. This is more of a design choice than an
objective difficulty. An indirect confirmation comes from the XML string you get from a
Web service method that returns a DataSet object. The output is a DiffGram extended
with schema information, as shown here:

<DataSet>

 <xs:schema> ... </xs:schema>

 <diffgr:diffgram ... >

 376

 ...

 </diffgr:diffgram>

</DataSet>

By design, the current DiffGram implementation does not include schema information.
However, I can't see any reason for not providing the schema option in future versions.
The DataSet representation you get from a Web service method offers a glimpse of
what could be a possible enhancement of the DiffGram format. Technically speaking,
the Web service serialization of a DataSet object is not a DiffGram, but rather a new
XML format that incorporates a DiffGram. In addition, this new format is not produced
by WriteXml but comes care of the XML serializer—a different breed of data formatter
that we'll explore in Chapter 11.

Creating DiffGrams with Schemas
The DiffGram Viewer application includes a Save With Schema check box that enables
you to persist the DataSet object using the XML serializer. The final output, shown in
Figure 10-6, is the same as you would obtain through a Web service. (This happens
because .NET Framework Web services are actually serviced by the XML serializer.)

Figure 10-6: A DataSet object serialized through the XML serializer class.

The code that saves the DataSet object to a DiffGram changes as follows:

StreamWriter sw = new StreamWriter(fileName);

XmlTextWriter writer = new XmlTextWriter(sw);

writer.Formatting = Formatting.Indented;

// Create the diffgram

if (!bUseSchema)

 ds.WriteXml(writer, XmlWriteMode.DiffGram);

else

{

 XmlSerializer ser = new XmlSerializer(typeof(DataSet));

 ser.Serialize(writer, ds);

 377

}

writer.Close();

If schema information must be included, the application makes use of the XML
serializer defined in the System.Xml.Serialization namespace. The constructor of the
XML serializer takes the type of the data to process as an argument and invokes the
Serialize method. In Chapter 11, I'll unveil what really happens at this stage and how
the XML serializer sets itself up to work on a particular data type. For now, suffice to
say that once the instance of the serializer has been configured, you simply call the
Serialize method on the object instance to be persisted. When the object is a DataSet,
the output is a DiffGram and a schema—that is, an XML Schema and a DiffGram
rooted under a common node. The name of the root matches the name of the type
being serialized (for example, DataSet) and can't be modified programmatically.

Loading DiffGrams with Schemas
To read back a DiffGram and a schema into a DataSet object, you call the XML
deserializer. Deserialization is the process of reading an XML document and building
an object instance that coincides with a given XML Schema. With DataSet objects, the
schema and the data are stored as distinct nodes under a common root. The data is
expressed as a DiffGram.
To set up the serializer, follow the same steps as in the previous section. You
instantiate the XmlSerializer class and pass the type of the object to process, as shown
here:

XmlSerializer ser = new XmlSerializer(typeof(DataSet));

DataSet dsNew = (DataSet) ser.Deserialize(writer, ds);

To deserialize, call the Deserialize method and cast the object you get to the DataSet
type.

DiffGrams and Remoting

When a DataSet object is serialized to a .NET Framework formatter, it directly controls
the format of its data through the methods of the ISerializable interface. In particular, a
serializable class implements the GetObjectData method, as shown here:

void GetObjectData(SerializationInfo info,

 StreamingContext context)

The class passes its data to the formatter by adding entries to the SerializationInfo
object using the AddValue method. A DataSet object serializes itself by adding a
couple of entries, as shown in the following pseudocode:

info.AddValue("XmlSchema", this.GetXmlSchema());

this.WriteXml(strWriter, XmlWriteMode.DiffGram);

info.AddValue("XmlDiffGram", strWriter.ToString());

The information stored in the SerializationInfo is then flushed to a binary stream or a
Simple Object Access Protocol (SOAP) stream, according to the formatter in use.
The gist of this story is that a DataSet object is remoted using a couple of XML
documents—one for the schema and one for the data—and the data is rendered using

 378

a DiffGram. To make DiffGrams really usable, the availability of schema information is
vital.

A Save-and-Resume Application

As a stateful data format, a DiffGram is particularly useful for building save-and-resume
applications. In this context, a save-and-resume application is a desktop or Web
application that can work both on line and off line. For such applications, the connection
to the rest of the back-end system is optional and is not guaranteed to be up all the
time. From the connectivity standpoint, a save-and-resume application is intermittent
and must be able to get its core data either remotely (for example, from the central
system) or locally (for example, from data persisted to files).

In this section, we'll build a Windows Forms application that connects to a database,
downloads some data, and disconnects. From this point on, the application works
disconnected, the data it needs is stored locally, and the application can be used
anywhere and shut down and resumed any number of times. All the changes made to
the local data are correctly tracked and reported as insertions, deletions, and updates.
At a later time, the application reconnects to the system and submits its changes.
In this description, common words such as connection, back-end system, data,
database, and updates are treated as blanket terms that each application can
implement as needed. For example, a simple query executed on a SQL Server table in
the sample application can easily become a call to a middle-tier object. Similarly, a
simple connection to SQL Server in the sample application could be viewed as a login
in a distributed application.

Note While looking at the sample application discussed here, keep in
mind that it is just a sample. Focus on the technologies involved and
their interactions rather than on the implementation details. The
overall context of the sample application, while representative of a
common type of application, is certainly not a real-world scenario!

Setting Up the Application
The key functions of a save-and-resume application can be summarized in three
categories. First, the application must be able to work disconnected, thus transparently
using a local copy of the back-end database. Next, the application must allow you to
review, filter, and reject changes. Finally, the application must allow you to reconnect
and submit changes at any time. Figure 10-7 shows the key elements of the
architecture.

 379

Figure 10-7: Constituent parts of a disconnected save-and-resume application.

At startup, the application loads data either from the local store or from a centralized
repository. Applications can determine what route should be taken first according to
their own features and requirements. Likewise, they can provide distinct user interface
elements to trigger the local and remote downloads independently.
The DataSet object is ideal for storing a disconnected database. It can contain multiple,
even indexed, tables, as well as relations and constraints. Once rebuilt, the DataSet
object is used to populate the user interface, which also provides for editing. In this
chapter and in Chapter 9 and Chapter 11, we examine the various options available for
serializing a DataSet object: .NET Framework formatters, the ADO.NET normal form,
DiffGrams, and XML serializers.
A disconnected application should allow users to accumulate and review changes to
the original through several work sessions. This means that the local data store must
persist the state of each change and possibly the history of each row. The DataSet
object provides for just this situation.
The DataSet object is also ideal for gathering all the modified rows to be submitted to
the back-end system for permanent updates. The DataSet object has been designed
with disconnection in mind and to be used in save-and-resume applications. In save-
and-resume scenarios, the serialization of the object is a critical aspect in improving
overall client-side performance and efficiency.

Creating the Local Data Store
The sample application shown in Figure 10-8 is a simple Windows Forms application
containing an editable DataGrid control. The grid is bound to a DataSet object that can
be obtained by executing a SQL query or by reading a local DiffGram file.

 380

Figure 10-8: The sample save-and-resume application.

The code that populates the data grid looks like this:

void PopulateGrid()

{

 if (!File.Exists(m_diffgram))

 LoadFromDatabase();

 else

 LoadFromLocalStore();

 // Load methods fill the m_dataSet internal property

 grid.DataSource = m_dataSet;

 grid.DataMember = "Employees";

}

Once the data loads, users can start working and enter changes as appropriate. The
DataSet object tracks any changes and signals those changes to the application
through the HasChanges method. Here's the code to load the data from the local store:

private void LoadFromLocalStore()

{

 // Load the schema into the DataSet

 m_dataSet.ReadXmlSchema(m_schemaFile);

 // Load the data

 m_dataSet.ReadXml(m_diffgramFile, XmlReadMode.DiffGram);

}

The sample application uses a DiffGram to implement the local store. More precisely,
the local store consists of two distinct files—one for the data (the DiffGram) and one for
the schema. As mentioned, a DiffGram can't be used to populate a DataSet object
without schema information. This is not your only option, however.
You can use the XML serializer to persist a DataSet object to a file that stores schema
and data in the same place. In all these cases, the final output format is XML. If you

 381

want a more compact format, opt for the binary .NET Framework formatter and
consider using a ghost class, as described in Chapter 9.

Reviewing and Rejecting Changes
Users of the sample application enter changes through the interface of the DataGrid
control. Each change is detected, and controls in the user interface are enabled and
disabled to reflect those changes. For example, the Review Changes button is enabled
if there are changes to review.

Detecting Ongoing Changes
In a Windows Forms application, data sources associated with data-bound controls are
managed by a special breed of component—the binding manager.
BindingManagerBase is the abstract class for binding managers; the actual classes you
will work with are CurrencyManager and PropertyManager.
The PropertyManager class keeps track of a simple binding between a data-bound
control property and a data source scalar value. The CurrencyManager class plays a
more sophisticated role. CurrencyManager handles complex data binding and
maintains bindings between a data source and all the list controls (for example, the
DataGrid control) that bind to it or to one of its member tables. The CurrencyManager
class takes care of synchronizing the controls bound to the same data source and
provides a uniform interface for clients to access the current item for the list. Both
manager classes have a property named Current and fire position-related events such
as ItemChanged. The Current property returns the currently selected item, whatever
that is for the particular binding class. For example, for the DataGrid class, the current
item is the nth bound element—that is, a DataRow object if a DataTable is bound, or a
string if an array of strings is bound.
To access the binding manager for a particular data source, you use the Form object's
BindingContext collection, as shown here:

CurrencyManager m_bmbEmployees;

m_bmbEmployees = (CurrencyManager) BindingContext[m_dataSet,

 "Employees"];

m_bmbEmployees.ItemChanged +=

 new ItemChangedEventHandler(CurrentChanged);

This code also registers a handler for the ItemChanged event. The binding manager
automatically fires the event whenever an item in the bound data source—the
Employees table in the grid's DataSet object—changes. In other words, the handler
executes whenever a change occurs and refreshes the application's user interface
accordingly.

Selecting Changed Rows
As mentioned, the DataSet object registers all the changes but retains the original
values of the modified rows. Thanks to these features, setting up a form to review the
current changes is not at all difficult. Let's see how to proceed.
The idea is to create a view of the table—possibly a copy of the table that includes only
the changes. The GetChanges method can be used to obtain a copy of the DataTable
object (or the DataSet object) that includes only the changed rows, as shown here:

DataTable dtChanges =
m_dataSet.Tables["Employees"].GetChanges();

if (dtChanges == null)

 return;

DataView dv = dtChanges.DefaultView;

 382

dv.RowStateFilter = DataViewRowState.Added |

 DataViewRowState.ModifiedOriginal |

 DataViewRowState.Deleted;

gridChanges.DataSource = dv;

A DataView object can be obtained from the table through the DefaultView property.
Normally, the DefaultView property returns an unfiltered view of the table contents. The
RowStateFilter property enables you to select the rows to be displayed in the view
based on the state. With the preceding code, only the rows added and deleted are
shown. In addition, the view includes the original version of the modified rows.
Because the dtChanges table has already been constructed to contain all the changes,
a good question would be, Should we really need to set the RowStateFilter property to
Added, ModifiedOriginal, and Deleted ? Shouldn't such rows already be displayed in
the view? This consideration applies only to added and deleted rows. By default, the
modified rows are displayed with the current values, not the original values. The goal of
the Review Changes feature is to display pending changes, so we need to display the
original values to let users make comparisons with the current values. The Changes
window, shown in Figure 10-9, allows you to see any changes to the data.

Figure 10-9: The Review Changes feature in action. The bottom grid shows the original
version of the modified rows.

Rejecting Changes
Pending changes can be rejected by calling the RejectChanges method.
RejectChanges is available on the DataSet class as well as on the DataTable and
DataRow classes. By calling RejectChanges on the DataSet class, you cancel all the
pending changes in all the tables in the DataSet object. Similarly, calling
RejectChanges on a DataTable object rejects all the changes on the table. Finally,
calling the method on the DataRow class simply cancels the current changes on the
given row.
If RejectChanges performs an in-memory rollback, AcceptChanges does the opposite
and commits all the pending changes. When changes are committed, the original
values of each involved row are overwritten with the current values and the row state is
reset to Unchanged. Uncommitted changes are key to performing a batch update to the
back-end system.

 383

Submitting Changes

Data submission is the process in which all in-memory changes are passed on to the
back-end system for permanent storage and global availability. In ADO.NET, this
submission does not consist of a block of data being sent to the database—SQL Server
2000 or any other database—in a single shot as an Updategram or a text stream. An
ADO.NET batch update executes individual statements on the target system, one for
each change that needs to be submitted. For the most part, statements will be SQL
statements.

The Batch Update
The DataSet object can submit data to the database in batch mode by using the data
adapter's Update method, as shown in the following code. Data can be submitted only
on a per-table basis. When you call Update without specifying a table name, the code
assumes a default name of Table. If no table exists with that name, an exception is
raised.

adapter.Update(dataSet, tableName);
The Update method first examines the RowState property of each table row. It then
prepares and calls a tailor-made INSERT, UPDATE, or DELETE statement for each
inserted, updated, or deleted row in the specified DataTable object. The Update method
belongs to a data adapter object, so you need a connection string, or a connection
object, to proceed.
Rows are scanned and processed according to their natural order (their position in the
table's Rows collection). If you need to process rows in a particular order, you must
divide the overall update process into various subprocesses, each working on the
selected rows you need. For example, if you have parent/child–related tables, you
might want to start by updating rows in both tables. Next you delete rows in the child
table and then in the parent table. Finally, you insert new rows in the parent table and
finish with child insertions.

The following code shows how to submit only the rows that have been added to the in-
memory table:

// Submit all the rows that have been added to a given table

DataRow[] arrayOfRows = table.Select("", "",

 DataViewRowState.Added);

adapter.Update(arrayOfRows);

This arrangement is made possible by the fact that one of the Update overloads takes
an array of DataRow objects, which provides for the greatest flexibility.

Detecting and Resolving Update Conflicts
Data disconnection is based on a clearly optimistic vision of concurrency. What
happens if, by the time you attempt to apply your changes to the back-end system,
someone else has modified the same records? Technically speaking, in this case, you
have a data conflict. How conflicts are handled is strictly application-specific, but the
reasonable options can be easily summarized in three categories, as follows:

 First-win The conflict is resolved by silently and automatically dropping
the latest change—that is, the change that you were trying to submit. To
implement a first-win approach, you simply set the
ContinueUpdateOnError property on the data adapter to true. If
ContinueUpdateOnError is set to true, no exception is thrown when an
error occurs during the update of a row. The error information is stored

 384

in the RowError property of the corresponding row. The batch update
process continues with subsequent rows.

 Last-win Your change is applied regardless of the current status of the
row. To implement this approach, you have only to ensure that the SQL
command used to carry the update is not too restrictive to generate a
data conflict. A data conflict occurs when the SQL command finds no
row to affect. If you build the SQL command so that it updates or deletes
rows that match a primary key field, no data conflict will ever be raised.
Conflict-aware SQL code is code generated by ADO.NET command
builders in which the WHERE clause ensures that the current status and
the original status of the row match prior to proceeding with the
statement.

 Ask-the-user Take this route when neither of the two preceding options
will work in all possible cases you foresee handling. By default, a data
conflict raises a DBConcurrencyException exception. This exception is
not raised if you set the ContinueUpdateOnError property to true. The
Row property of the exception class returns a reference to the row in
error. By reading the properties of such a DataRow object, you have
access to both proposed and original values. You have no access to the
underlying value, but you can obtain that value by issuing another query
against the database. Resolving the conflict ultimately means opting
either for a first-win or a last-win approach, but you let the user decide
which. Your goal is to provide the user with enough information to make
the correct choice.

The following code uses the "ask-the-user" approach for resolving update data
conflicts:

OleDbDataAdapter da = new OleDbDataAdapter();

da.ContinueUpdateOnError = true;

da.SelectCommand = new OleDbCommand("SELECT * FROM employees",

 m_conn);

OleDbCommandBuilder cb = new OleDbCommandBuilder(da);

da.Update(m_dataSet, "Employees");

Figure 10-10 shows the sample application when a change fails.

 385

Figure 10-10: The user interface of the application when the batch update fails on a row.

Notice the custom error message on the row in error. This message is obtained using
the following code:

// Select all the rows in error after the batch update

foreach(DataRow row in

 m_dataSet.Tables["Employees"].GetErrors())

{

 string msg = row.RowState.ToString() + "row. Failed.";

 row.RowError = msg;

}

Updating conflicts and reconciling tables after a batch update procedure can be
expensive. Sometimes, it might be even more costly than working connected. Choosing
the right application perspective is a delicate task with quite a simple guideline: go for
disconnection if you have a low degree of data contention and your tables aren't
updated frequently with highly volatile data.

Conclusion

If you've recently programmed data-driven applications, disconnected programming is
nothing new for you. Disconnected scenarios are key in the era of the Internet, as they
let you gain in scalability and mobility, bringing simplification to the software and to the
user. For disconnected applications, effective local copies of the data are more than
vital—they're absolutely mandatory.
For .NET Framework applications, the DataSet object is the ideal candidate to take the
position of the client-side data container in disconnected, intermittent applications. In
this chapter and in Chapter 9, we analyzed various options for serializing the contents
of a DataSet object to output streams. In this chapter in particular, we analyzed a
stateful way to persist the DataSet contents.
In general, there are two different angles from which you should look at the DataSet
object's serialization. One is the physical layout of the data when stored to disk; the
other is the statefulness of the format. Normally, a DataSet object serializes itself using
a couple of XML blocks—schema and data. This data can then be saved as is to a text
or SOAP output stream or saved to a more compact binary stream. In this case,

 386

however, the verbosity of XML patently wins over the compactness of binary data. As a
result, the size of the final stream is often unacceptably large. You must resort to tricks
such as the ghost class discussed in Chapter 9 to overcome this difficulty.
As for the data format, you can choose between the stateless ADO.NET normal form,
the DiffGram format, and the DiffGram with a schema. In the first case, you take a
snapshot of the current data, disregarding original values, ongoing changes, and
pending row errors. The DiffGram format is stateful and maintains a history of the
changes and pending errors. Unfortunately, the DiffGram format does not include
schema information. Schema information is fundamental for constructing a DataSet
object from XML data. By using the XML serializer class, you obtain a new XML format
in which schema and DiffGram data are grouped under a common umbrella.
Incidentally, XML serializers are the topic of Chapter 11.

Further Reading

In my book Building Web Solutions with ASP.NET and ADO.NET (Microsoft Press,
2002), I devoted Chapter 7 to disconnected applications and batch updates. In that
chapter, I discuss save-and-resume applications from the Web perspective. A wider
coverage of disconnected ADO.NET can be found in Francesco Balena's Programming
Visual Basic .NET (Microsoft Press, 2002) and David Sceppa's Microsoft ADO.NET
Core Reference (Microsoft Press, 2002). Both books will more than get you started, so
deciding which works better for you is more of a matter of personal preference. If you
want to focus on ADO.NET, go for Sceppa's book; if you want to look at ADO.NET as a
part of the larger .NET Framework, pick up Balena's book.
Data binding is a key enhancement in the .NET Framework. Although based on a
shared model such as ADO.NET, data binding is implemented in radically different
ways in Windows Forms and Web Forms applications. Insights into Windows Forms
data binding can be found in the following Microsoft Developer Network (MSDN)
articles: http://msdn.microsoft.com/library/en-us/dndive/html/data06132002.asp and
http://msdn.microsoft.com/msdnmag/issues/02/02/cutting/cutting0202.asp.

 387

Part IV: Applications Interoperability

Chapter List
Chapter 11: XML Serialization
Chapter 12: The .NET Remoting System
Chapter 13: XML Web Services
Chapter 14: XML on the Client
Chapter 15: .NET Framework Application Configuration

Part Overview

 388

Chapter 11: XML Serialization

Overview
Serialization is the run-time process that converts an object, or a graph of objects, to a
linear sequence of bytes. You can then use the resultant block of memory either for
storage or for transmission over the network on top of a particular protocol. In the
Microsoft .NET Framework, object serialization can have three different output forms:
binary, Simple Object Access Protocol (SOAP), and XML. We touched on binary
serialization in Chapter 9 while examining how to work around XML DiffGram code in
serialized DataSet and DataTable objects. In this chapter, we'll look briefly at SOAP
serialization and then move on to the core topic—XML serialization.
Run-time object serialization (for example, binary and SOAP) and XML serialization are
significantly different technologies with different implementations and, more important,
different goals. Nevertheless, both forms of serialization do just one key thing: they
save the contents and the state of living objects out to memory, and from there to any
other storage media. Run-time serialization is governed by .NET Framework formatter
objects. XML serialization takes place under the aegis of the XmlSerializer class.
The XML serialization process converts the public interface of an object to a particular
XML schema. Such a mechanism is widely used throughout the .NET Framework as a
way to save the state of an object into a stream or a memory buffer. In Chapter 10, we
saw XML serialization used as a way to persist DiffGram with schema scripts that
describe a DataSet object. Web services use the XmlSerializer class to encode object
instances being returned by methods.

The Object Serialization Process

In the .NET Framework, object serialization is offered through the classes in the
System.Runtime.Serialization namespace. These classes provide type fidelity and
support deserialization. As you probably know, the deserialization process is the
reverse of serialization. Deserialization takes in stored information and recreates
objects from that information.
Object serialization in the .NET Framework allows you to store public, protected, and
private fields and automatically handles circular references. A circular reference occurs
when a child object references a parent object and the parent object also references
the child object. Serialization classes in the .NET Framework can detect these circular
references and resolve them. Serialization can generate output data in multiple formats
by using different made-to-measure formatter modules. The two system-provided
formatters are represented by the BinaryFormatter and SoapFormatter classes, which
write the object's state in binary format and SOAP format.
Classes make themselves serializable through formatters in two ways: they can either
support the [Serializable]attribute or implement the ISerializable interface. With the
[Serializable] attribute, the class author has nothing else to do, as the serialization takes
place governed by caller applications and the class data is obtained through reflection.
The ISerializable interface, on the other hand, enables the class author to exercise
closer control over how the bits of the living object are actually persisted.
A formatter is the .NET Framework object that obtains the serialized data from the
target object. Data is requested either by calling the GetObjectData method on the
ISerializable interface or through the services of the FormatterServices static class. In
particular, the GetSerializableMembers method returns all the serializable members for
a particular class.
In the .NET Framework, formatters are of two types, depending on the nature of the
underlying stream they use. The binary formatter (available through the
BinaryFormatter class) saves data to a binary stream. The SOAP formatter (available

 389

through the SoapFormatter class) saves data to a text stream, automatically encoding
information in a SOAP message before writing.

The SOAP Formatter
To use the SOAP formatter, you must reference a distinct assembly—
System.Runtime.Serialization.Formatters.Soap. You add this separate assembly
through the Add Reference dialog box or manually on the compiler's command line
through the /reference switch. In addition to linking the assembly to the project, you still
have to import the namespace with the same name as the assembly, as shown here:

using System.Runtime.Serialization.Formatters.Soap;
At this point, you prepare the output stream, instantiate the SOAP formatter, and call
the Serialize method, as follows:

// emp is the object instance to process

StreamWriter writer = new StreamWriter(filename);

SoapFormatter soap = new SoapFormatter();

soap.Serialize(writer.BaseStream, emp);

writer.Close();

Note that the Serialize method accepts only a stream object, which makes serializing to
in-memory strings a little more difficult.
Let's consider a rather simple class, such as the following Employee class:

[Serializable]

public class Employee

{

 public int ID;

 public string FirstName;

 public string LastName;

 public string Position;

 public int[] Territories;

}

Upon instantiation, only the numeric ID field has a determined value (0). All the other
members are null, as shown here:

Employee emp = new Employee();
After the Employee class has been instantiated, the SOAP formatter generates the
following script:

<SOAP-ENV:Envelope

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:clr="http://schemas.microsoft.com/soap/encoding/clr/1.0"

 SOAP-ENV:encodingStyle=

 "http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

 390

 <a1:Employee id="ref-1"

 xmlns:a1=

"http://schemas.microsoft.com/clr/nsassem/XmlNet.SoapStuff/

 SoapFormatter_CS%2C%20Version%3D1.0.922.19048%2C%20

 Culture%3Dneutral%2C%20PublicKeyToken%3Dnull">

 <ID>0</ID>

 <FirstName xsi:null="1"/>

 <LastName xsi:null="1"/>

 <Position xsi:null="1"/>

 <Territories xsi:null="1"/>

 </a1:Employee>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

As you can see, the class representation is perfect, and the fidelity between the SOAP
description and the class is total. Information about the namespace is preserved and
null values are listed. But what about types?

Retrieving Type Information
The formatter's TypeFormat property lets you indicate how type descriptions are laid
out in the serialized stream. By default, TypeFormat is set to TypesWhenNeeded,
which means that type information is inserted only when strictly necessary. This is true
for arrays of objects, generic Object objects, and nonprimitive value types. If you want
to force type description, use either the TypesAlways or the XsdString option. The
difference between these two options is in the format used to describe the type: SOAP
in the former case; XSD in the latter. All the type format options are gathered in the
FormatterTypeStyle enumeration.

Serializing to Strings
Because the SOAP formatter and the binary formatter write only to streams, to avoid
creating disk files you can use the MemoryStream object, as shown here:

// emp is the object instance to process

MemoryStream ms = new MemoryStream();

SoapFormatter soap = new SoapFormatter();

soap.Serialize(ms, emp);

Reading back data is a bit trickier. First you must get the size of the serialized stream.
This information is stored in the Length property of the MemoryStream class. Bear in
mind, however, that Length moves the internal pointer ahead to the end of the stream.
To be able to read the specified number of bytes, you must first reset the internal
pointer. The Seek method serves just this purpose, as shown here:

int size = (int) ms.Length; // Moves the pointer forward

byte[] buf = new byte[size];

ms.Seek (0, SeekOrigin.Begin);

ms.Read(buf, 0, size);

ms.Close();

 391

string soapText = Encoding.UTF8.GetString(buf);

The MemoryStream object reads data only as bytes. Especially in a strong-typed
environment like the .NET Framework, an array of bytes and a string are as different as
apples and oranges. Fortunately, the encoding classes provide for handy conversion
methods. The Encoding static class belongs to the System.Text namespace.

Deserializing Objects
To rebuild a living instance of a previously serialized object, you call the Deserialize
method on the specified formatter. The deserializer returns an object that you cast to
the particular class type you need, as shown here:

StreamReader reader = new StreamReader(filename);

Employee emp1 = (Employee) soap.Deserialize(reader.BaseStream);

reader.Close();

The .NET Framework serialization mechanism also allows you to control the post-
deserialization processing and explicitly handle data being serialized and deserialized.
In this way, you are given a chance to restore transient state and data that, for one
reason or another, you decide not to serialize. Remember that by marking a field with
the [NonSerializable]attribute, you keep it out of the serialized stream.
By implementing the IDeserializationCallback interface, a class indicates that it wants to
be notified when the deserialization of the entire object is complete. The class can
easily complete the operation by re-creating parts of the state and adding any
information not made serializable. The OnDeserialization method is called after the type
has been deserialized.
Finally, it goes without saying that you can't serialize to, say, SOAP, and then pretend
to deserialize using the binary formatter. See the section "Further Reading," on page
518, for more information about run-time binary and SOAP serialization.

From SOAP to XML Serialization

A second, very special type of .NET Framework serialization is XML serialization.
Compared to ordinary .NET Framework object serialization, XML serialization is so
different that it shouldn't even be considered another type of formatter. It is similar to
SOAP and binary formatters because it also persists and restores the object's state, but
when you examine the way each serializer works, you see many significant differences.
XML serialization is handled by using the XmlSerializer class, which also enables you
to control how objects are encoded into elements of an XML schema. In addition to
differences in goals and implementation details, the strongest difference between run-
time and XML serialization is in the level of type fidelity they provide.
Run-time object serialization guarantees full type fidelity. For this reason, binary and
SOAP serialization are particularly well-suited to preserving the state of an object
across multiple invocations of an application. For example, .NET Framework remoting
(see Chapter 12) uses run-time serialization to marshal objects by value from one
AppDomain to another. Whereas run-time serialization is specifically aimed at
serializing object instances, XML serialization is a system-provided (as opposed to
object-provided) mechanism for serializing the data stored in an object instance into a
well-formed schema.

The primary goal of XML serialization is making another application, possibly an
application running on a different platform, effectively able to consume any stored data.
Let's recap the key differences between run-time and XML serialization:

 Persisted properties Run-time serialization takes into account any
properties, regardless of the scope a property has in the context of the
class. XML serialization, on the other hand, avoids private, protected, and

 392

read-only properties; does not handle circular references; and works only
with public classes. In addition, if one property is set to null in the
particular instance being serialized, the XML serializer just ignores the
property. The XML serializer never includes type information.

 Object identity Run-time serialization maintains information about the
original class name, namespace, and assembly. All this information—the
object's identity—is irreversibly lost with XML serialization.

 Control of the output Run-time serialization lets you indicate the data to
serialize by adding values to a cargo collection. You can't control how
these values are actually written, however. The schema of the persisted
data is fixed and hard-coded in the formatter. In this respect, the XML
serializer is much more flexible. The XML serializer lets you specify
namespaces, the name of the XML element that will contain a particular
property, and even whether a given property should be rendered as an
attribute, text, or an element.

Important
During serialization, the .NET Framework formatters get information
dynamically from the target object and write any bytes to the
specified stream. The XML serializer uses any object information to
create a couple of highly specialized reader and writer classes in a
C# source file. The file is then silently compiled into a temporary
assembly. As a result, XML serialization and deserialization for an
object are actually performed using the classes in the temporary
assembly. (More on this in the section "The Temporary Assembly,"
on page 513.)

One final note about SOAP and XML serialization: Although it's more powerful in terms
of the information carried, SOAP is significantly more verbose than XML serialization
and of course much less flexible. In fact, SOAP is just a particular XML dialect with
vocabulary and syntax rules defined by the SOAP specification. With XML serialization,
you define the schema you want, and the process is designed to return a more compact
output.

The XML Serializer
The central element in the XML serialization architecture is the XmlSerializer class,
which belongs to the System.Xml.Serialization namespace. The XML serialization
process is articulated in the following steps:

1. The serializer generates an XSD schema for the target class that includes
all the public properties and fields.

2. Using this XSD schema, the serializer generates a C# source file with a
made-to-measure reader and writer class. The source file is compiled into
a temporary assembly.

The Serialize and Deserialize methods are simply higher level interfaces for those
writer and reader classes. This list does not cover all the features of XML serialization,
but it certainly focuses on the key aspects. Let's look more closely at these key aspects
before we move on to more advanced issues such as customizing the XSD schema
being generated and hooking up the deserialization process.

The Programming Interface
TheXmlSerializer class has a rather limited programming interface, with no properties,
only a few methods, and a handful of events. XmlSerializer has several constructors
with important functionalities, however. As you'll see in the following sections, the
constructor is the place where most of the serializer's activity occurs.

 393

The XmlSerializer Class's Constructors
Table 11-1 lists all the public constructors available in the XmlSerializer class. This list
does not include the default class constructor because it is declared as protected and,
as such, is not intended to be used directly from the user's code.

Table 11-1: Constructors of XmlSerializer

Constructor Description

XmlSerializer(Type) Serializes objects of the specified type.

XmlSerializer(XmlTypeMapping) Allows you to customize the default
mapping between properties and XSD
elements. Adds type information to
elements. Useful if you don't have the
source code for the class being
serialized.

XmlSerializer(Type, string) Serializes objects of the specified type
using XML elements in the given default
namespace.

XmlSerializer(Type, Type[]) Serializes objects of the specified type
and all child objects listed in the
specified array of extra types.

XmlSerializer(Type,
XmlAttributeOverrides)

Allows you to customize the default
mapping between properties and XSD
elements. No type information is added
to elements. Useful if you don't have the
source code for the class being
serialized.

XmlSerializer(Type,
XmlRootAttribute)

Allows you to specify the root element of
the XML output.

XmlSerializer(Type,
XmlAttributeOverrides, Type[],
XmlRootAttribute, string)

Sums up all the previous settings and
provides a signature to set any
combination of features in a single shot.

Let's review the code necessary to set up and use an XML serializer class:

[Serializable]

public class Employee

{

 protected int m_ID;

 public int ID

 {

 get {return m_ID;}

 }

 public string FirstName;

 public string LastName;

 public string Position;

 public int[] Territories;

 394

 public Employee()

 {

 m_ID = -1;

 }

 public Employee(int empID)

 {

 m_ID = empID;

 }

 public override string ToString()

 {

 return LastName + ", "+ FirstName;

 }

}

This class has one read-only member (ID), a couple of constructors, and a protected
member. To begin, let's use the simplest constructor and see what happens:

Employee emp = new Employee(1);

emp.LastName = "Esposito";

emp.FirstName = "Dino";

StringWriter writer = new StringWriter();

XmlSerializer ser = new XmlSerializer(typeof(Employee));

ser.Serialize(writer, emp);

string xmlText = writer.ToString();

writer.Close();

The output generated is rather compact and does not include null and less than public
fields, as shown here:

<?xml version="1.0" encoding="utf-16"?>

<Employee

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <FirstName>Dino</FirstName>

 <LastName>Esposito</LastName>

</Employee>

The read-only ID property is ignored, as are all protected members. In addition, public
properties set to null are blissfully discarded.

Caution If the class being serialized does not provide the default
constructor, an exception is thrown and the class won't be
processed further. The XmlSerializer class raises an
InvalidOperationException exception stating that the class can't

 395

be successfully reflected. The true reason for the exception is
slightly more subtle, however. The XmlSerializer class needs to
create internally an instance of the target class to collect all the
information necessary to create the serialization reader and
writer objects. The serializer can't make assumptions about the
constructors available on the class, so it always uses the default
constructor. If there is no such constructor, an exception is
thrown.

Configuring the Root Node
By default, the root element is defined by the serializer. However, the serializer gives
you a chance to intervene and change things around a bit. For example, you can create
an XmlRootAttribute object, set some of its properties, and pass it on to the serializer
constructor, as shown here:

XmlRootAttribute root = new XmlRootAttribute();

root.ElementName = "NorthwindEmployee";

root.Namespace = "urn:dino-e";

root.IsNullable = true;

XmlSerializer ser = new XmlSerializer(typeof(Employee), root);

The subsequent output is shown here:

<?xml version="1.0" encoding="utf-16"?>

<NorthwindEmployee

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="urn:dino-e">

 <FirstName>Dino</FirstName>

 <LastName>Esposito</LastName>

</NorthwindEmployee>

Alternatively, instead of creating an XmlRootAttribute object, you can simply set another
attribute to the class being serialized, as shown here:

[XmlRootAttribute(ElementName="NorthwindEmployee")]

public class Employee

{ ... }

Although the final effect on the XML code is the same, the two approaches are not
identical. To set the attribute, you must have access to the source code for the class. If
you resort to the XmlRootAttribute object, you can change the root node of each class,
including those classes available only in a compiled form.
The XmlRootAttribute object, both as an attribute and as an object, lets you set a
default namespace for all elements in the XML document being generated. If you want
to set only the namespace, however, use another constructor overload, as follows:

XmlSerializer ser = new XmlSerializer(typeof(Employee),

 "urn:dino-e");

In this case, the root node remains intact but an extra xmlns attribute is added.

 396

Methods of the XmlSerializer Class
Table 11-2 describes the methods exposed by the XmlSerializer class. As you'd expect,
this list does not include methods such as ToString and Equals that are inherited from
Object and overridden.

Table 11-2: Methods of the XmlSerializer Class

Method Description

CanDeserialize Indicates whether the contents pointed to by the specified
XmlReader object can be successfully deserialized using
this instance of the serializer class.

Deserialize Deserializes an XML document read from a stream, text,
or an XML reader.

FromTypes Static method that returns an array of XmlSerializer
objects created from an array of types. Useful for
speeding operations when you need to create multiple
serializers for different types.

Serialize Serializes an object into an XML document.

As with the Deserialize method, the output for the Serialize method can be a stream,
text, or an XML writer.
Events of the XmlSerializer Class
Table 11-3 lists the events that the XmlSerializer class triggers during the
deserialization process.

Table 11-3: Events of the XmlSerializer Class

Event Description

UnknownAttribute Fires when the deserializer encounters an XML
attribute of unknown type.

UnknownElement Fires when the deserializer encounters an XML
element of unknown type.

UnknownNode Fires when the deserializer encounters any XML
node, including Attribute and Element.

UnreferencedObject Fires when the deserializer encounters a recognized
type that is not used. Occurs during the
deserialization of a SOAP-encoded XML stream.
(More on this topic in the section "Deserializing XML
Data to Objects," on page 496.)

UnknownNode is a more generic event that fires for all nodes. It reaches the client
application before more specific events such as UnknownAttribute and
UnknownElement arrive.

Serializing Objects to XML
The[Serializable] attribute, which makes a class serializable through formatters, is not
inheritable and must be explicitly assigned to derived classes. No such explicit
conditions exclude some classes from the benefits of the XML serialization technique.
This certainly does not mean that all the classes can be serialized to XML, however.

 397

The most restrictive condition in qualifying for XML serialization is not having circular
references. A lot of relatively complex .NET Framework classes can't be serialized to
XML for this reason. Want an illustrious example? Consider the DataTable class.
If you try to serialize an instance of the DataTable class, you get a fairly unclear error
message. Try the following code:

DataTable dt = new DataTable();

XmlSerializer ser = new XmlSerializer(typeof(DataTable));

ser.Serialize(writer, dt);

The debugger stops on the constructor line and displays a message about a certain
error that occurred during reflection of the DataTable class. Like many other Microsoft
ADO.NET and XML classes, the DataTable class has circular references. For example,
DataTable contains the Rows property, which is a collection of DataRow objects. In
turn, each DataRow object has a Table property that points to the parent DataTable
object. This is clearly a circular reference, and, as such, is an appropriate justification
for the run-time error.

Why Is the DataSet Object XML-Serializable?
The DataSet class (and the XmlNode and XmlElement classes) contains at least one
circular reference—specifically, the Tables collection, whose child DataTable objects
reference the parent DataSet object. Nevertheless, the DataSet object is serializable
through the XmlSerializer class. Why is this so?
The internal module that imports the XML schema for the type to serialize—the same
module that does not handle circular references—specifically checks for the DataSet
type. If the object turns out to be a DataSet object, the standard schema importation
process aborts, and an alternative schema is applied. The schema importer uses the
methods of the IXmlSerializable interface to serialize and deserialize a DataSet object.
The MSDN documentation only touches on the IXmlSerializable interface, which is
defined in the System.Xml.Serialization namespace. This interface is not intended to
be used by applications—at least not yet. IXmlSerializable defines three methods:
GetSchema, ReadXml, and WriteXml. Despite their names, these ReadXml and
WriteXml methods have nothing to do with the methods we saw in Chapter 9 and
Chapter 10. Serialization methods are void, private, and accept only a single Xml-
Reader argument.

You can serialize XML classes with no circular references, the default constructor, and
at least one public property. If the class implements the ICollection or IEnumerable
interface, other constraints apply. In addition to these classes, the XML serializer
supports three more classes as an exception to the previous rules: DataSet, XmlNode,
and XmlElement.

The XmlSerializerNamespaces Class
A few of the Serialize overloads can take an extra parameter that denotes the XML
namespaces and prefixes that the XmlSerializer uses to generate qualified names. The
XmlRootAttribute class we examined in the section "Configuring the Root Node," on
page 486, is useful for defining the default namespace but provides no way for you to
use more namespaces and prefixes.
The XmlSerializerNamespaces class can be used to cache multiple namespace URIs
and prefixes that the target class will reference through attributes. You populate the
namespace container as follows:

XmlSerializer ser = new XmlSerializer(typeof(Employee));

XmlSerializerNamespaces ns = new XmlSerializerNamespaces();

 398

ns.Add("d", "urn:dino-e-xml");

ns.Add("x", "urn:mspress-xml");

ser.Serialize(writer, emp, ns);

After it is populated, the instance of the XmlSerializerNamespaces class is passed on
to one of the overloads of the Serialize method. The source class can associate
properties with namespaces using a couple of attributes, XmlType and XmlElement, as
shown in the following code. In particular, you use XmlType to provide a namespace to
all the members of a class. XmlElement applies the namespace information to only the
current element. Of course, you can use XmlType and XmlElement together, but can't
use XmlType with a property. We'll return to XML attributes in the section "The
XmlElement Attribute," on page 501.

[XmlType(Namespace ="urn:dino-e-xml")]

public class Employee

{

 public string FirstName;

 [XmlElement(Namespace ="urn:mspress-xml")]

 public string LastName;

 public string Position;

 ...

}

The resultant XML code is shown here. All the elements have the d prefix except the
element that maps to the LastName property.

<?xml version="1.0" encoding="utf-16"?>

<Employee xmlns:d="urn:dino-e-xml" xmlns:x="urn:mspress-xml">

 <d:FirstName>Dino</d:FirstName>

 <x:LastName>Esposito</x:LastName>

 <d:Position>CEO</d:Position>

</Employee

Serializing Arrays and Collections
Class members that evaluate to an array of some type are rendered using a subtree of
nodes in which each node renders a single array element. For example, let's initialize
the Territories property of the Employee class as follows:

emp.Territories = (int[]) Array.CreateInstance(typeof(int), 3);

emp.Territories[0] = 1;

emp.Territories[1] = 2;

emp.Territories[2] = 3;

The corresponding XML serialized stream creates three child nodes below
<Territories>, one for each element in the array, as shown in the following code. Child
nodes are then serialized as instances of the particular type—in this case, integer.

<?xml version="1.0" encoding="utf-16"?>

<Employee xmlns:d="urn:dino-e-xml" xmlns:x="urn:mspress-xml">

 <d:FirstName>Dino</d:FirstName>

 399

 <x:LastName>Esposito</x:LastName>

 <d:Position>CEO</d:Position>

 <d:Territories>

 <d:int>1</d:int>

 <d:int>2</d:int>

 <d:int>3</d:int>

 </d:Territories>

</Employee>

Classes that must be serialized to XML can't use most of the more common collection
classes. For example, the ArrayList class is serializable, but NameValueCollection,
Hashtable, and ListDictionary are not. The reason lies in the extra constraints set for
the classes that implement ICollection and IEnumerable.
In particular, a class that implements IEnumerable must also implement a public Add
method that takes a single parameter. This condition filters out dictionaries and hash
tables but keeps ArrayList and StringCollection objects on board. In addition, the type of
the argument you pass to Add must be polymorphic with the type returned by the
Current property of the underlying enumerator object.
A class that implements the ICollection interface can't be serialized if it does not have
an integer indexer—that is, a public Item indexed property that accepts integer indexes.
The class must also have a public Count property of type integer. The type of the
argument passed to Add (only one argument is allowed) must be compatible with the
type returned by Item.

Serializing Enumerated Types
XML serialization supports enumerated types. The serialized stream contains the
named constant that identifies the value. The enum value is stored as a string, and
neither the actual value nor the type are serialized. During deserialization, the named
value is reassociated with the underlying enum value through the Enum.Parse static
method.

The Notion of Serializability

Having the Add method take exactly one argument is a strong, but rather inevitable,
constraint that is needed to wed consistency with effectiveness of coding. Unlike run-
time serialization, XML serialization never actively involves objects. XML serialization
instead treats objects as passive entities. It parses their interface through reflection
and irrevocably decides whether a given object can be serialized.

The basic notion of serializability is different in the two approaches. Run-time
serialization is a more rigorous process based on the assumption that classes make
themselves serializable by taking clear actions. XML serialization, on the other hand,
is a centralized process that involves classes only for the details of the final XML
schema. The XML serialization process makes assumptions about what the classes
should do (or, better yet, should have done) to be serializable.

Collection classes, in particular, are seen simply as a collection of objects of a given
type. By enforcing this basic concept, the XML serializer discards all collections that
do not provide such an interface—that is, the Add method to append new objects of
that type and the Item property (or the enumerator) to return a particular object of that
type.

 400

When designing classes destined to be serialized to XML, either avoid collection
classes altogether or express their contents as an array of basic objects. One possibility
is to use the ArrayList class as the container and a user-defined class to store element
information. Alternatively, you could write your own collection class. In this case,
however, consider that no public or private properties on the collection class would be
serialized, only the child objects would be.

Tip As mentioned, XML serialization skips over read-only data members.
You can overcome this built-in behavior with a simple and
inexpensive trick. Add an empty set accessor to a read-only property,
as shown in the following code, and the serializer will treat the
member as a read/write property. The empty set accessor will still
prevent the variable from being updated, however.
public int ID
{
 get {return m_ID;}
 set {}
}

The only drawback is that no compile error will be raised for
(innocuous) lines of code that might attempt to assign a value to the
property.

Serializing Child Classes

If a class contains a public member that belongs to a nonprimitive, user-defined class,
that member would be recursively serialized as an element nested within the main XML
document. Let's see what happens with the following classes:

public class Employee

{

 ...

 public Order LastOrder;

 public ArrayList Orders;

 ...

}

public class Order

{

 public int ID;

 public DateTime Date;

 public double Total;

}

The Orders member is intended to be a collection of Order objects, as shown here:

emp.LastOrder = new Order();

emp.LastOrder.ID = 123;

emp.LastOrder.Date = new DateTime(2002,8,12);

emp.LastOrder.Total = 1245.23;

emp.Orders = new ArrayList();

 401

Order ord1 = new Order();

ord1.ID = 98;

ord1.Date = new DateTime(2002,7,4);

ord1.Total = 145.90;

emp.Orders.Add(ord1);

Order ord2 = new Order();

ord2.ID = 101;

ord2.Date = new DateTime(2002,7,24);

ord2.Total = 2000.00;

emp.Orders.Add(ord2);

After initializing the members as shown in the preceding code, the final output looks like
this:

<?xml version="1.0" encoding="utf-16"?>

<Employee xmlns:d="urn:dino-e-xml" xmlns:x="urn:mspress-xml">

...

 <d:LastOrder>

 <d:ID>123</d:ID>

 <d:Date>2002-08-12T00:00:00.0000000+02:00</d:Date>

 <d:Total>1245.23</d:Total>

 </d:LastOrder>

 <d:Orders>

 <d:anyType d3p1:type="d:Order"

 xmlns:d3p1="http://www.w3.org/2001/XMLSchema-instance">

 <d:ID>98</d:ID>

 <d:Date>2002-07-04T00:00:00.0000000+02:00</d:Date>

 <d:Total>145.9</d:Total>

 </d:anyType>

 <d:anyType d3p1:type="d:Order"

 xmlns:d3p1="http://www.w3.org/2001/XMLSchema-instance">

 <d:ID>101</d:ID>

 <d:Date>2002-07-24T00:00:00.0000000+02:00</d:Date>

 <d:Total>2000</d:Total>

 </d:anyType>

 </d:Orders>

</Employee>

As you can see, the XML code being generated contains very little type information.
This is not a specific feature of XML serialization, however. The run-time object
serialization process also considers type information optional—at least in most cases.
This standpoint is quite reasonable. Serialization is just a way to persist the state of an
object. During deserialization, an instance of the object will be created from the

 402

referenced assembly and its properties configured with the stored information. The
serialization process needs mapping information rather than type information.
That said, you can see in the preceding listing that the ArrayList object is serialized with
type information in the <anyType>node. This happens because the ArrayList class
manages generic object references, whereas concrete types are needed for
serialization and deserialization. To force .NET Framework for-matters to include type
information, you simply set the TypeFormat property of the serializer. Let's look at how
to accomplish this with the XML serializer.

Adding Type Information
One of the constructors of the XmlSerializerclass takes a second argument of type
XmlTypeMapping. The XmlSerializer class is used to encode and serialize an object to
SOAP. The following code is used to add XSD type definitions to a serialized class:

SoapReflectionImporter imp = new SoapReflectionImporter();

XmlTypeMapping tm = imp.ImportTypeMapping(typeof(Employee));

XmlSerializer ser = new XmlSerializer(tm);

Let's assume the following class definition:

public class Employee

{

 public int ID;

 public string FirstName;

 public string LastName;

}

The typed XML output looks like this:

<?xml version="1.0" encoding="utf-8"?>

<Employee

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
id="id1">

 <ID xsi:type="xsd:int">4</ID>

 <FirstName xsi:type="xsd:string">Dino</FirstName>

 <LastName xsi:type="xsd:string">Esposito</LastName>

</Employee>

The final output gets a bit more complicated if custom types are involved. For example,
consider the following nested classes:

public class Employee

{

 public int ID;

 public string FirstName;

 public string LastName;

 public Order LastOrder;

}

public class Order

{

 403

 public int Number;

 public DateTime Date;

 public double Total;

}

In this case, when SOAP encoding is involved, the serializer does not generate a well-
formed XML document. More precisely, the XML code is correct, but the document has
no root, because the child class is written at the same level as the parent class. If you
don't explicitly serialize to a writer with a user-defined root, a writing exception is
thrown.
The following code demonstrates how nested classes are encoded. As you can see,
without the custom <wrapper>element, the XML serializer would have generated only
an XML fragment.

<wrapper>

 <Employee xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi=

 "http://www.w3.org/2001/XMLSchema-instance" id="id1">

 <ID xsi:type="xsd:int">4</ID>

 <FirstName xsi:type="xsd:string">Dino</FirstName>

 <LastName xsi:type="xsd:string">Esposito</LastName>

 <LastOrder href="#id2" />

 </Employee>

 <Order id="id2" d2p1:type="Order"

 xmlns:d2p1="http://www.w3.org/2001/XMLSchema-instance">

 <Number xmlns:q1="http://www.w3.org/2001/XMLSchema"

 d2p1:type="q1:int">55</Number>

 <Date xmlns:q2="http://www.w3.org/2001/XMLSchema"

 d2p1:type="q2:dateTime">

 2002-07-04T00:00:00.0000000+02:00</Date>

 <Total xmlns:q3="http://www.w3.org/2001/XMLSchema"

 d2p1:type="q3:double">2000</Total>

 </Order>

</wrapper>

SOAP type mapping can also be used to map one type to another. In other words,
while generating type information, you can also rename elements and slightly change
the structure of the final serialized document. To exploit this feature in depth, you create
attribute overrides, as shown here:

SoapAttributes attrib1 = new SoapAttributes();

SoapElementAttribute elem1 =

 new SoapElementAttribute("FamilyName");

attrib1.SoapElement = elem1;

SoapAttributeOverrides sao = new SoapAttributeOverrides();

sao.Add(typeof(Employee), "LastName", attrib1);

 404

The preceding code creates an attribute override based on an element named
FamilyName. This new element is added to an attribute overrides collection. In
particular, the FamilyName attribute overrides the LastName element on the Employee
type. The following code snippet shows how to hide a source element—in this case,
FirstName:

SoapAttributes attrib2 = new SoapAttributes();

attrib2.SoapIgnore = true;

sao.Add(typeof(Employee), "FirstName", attrib2);

The attribute overrides are gathered in the SoapAttributeOverrides collection, which is
then used to initialize the SoapReflectionImporter class, as shown here, and then can
be used in the type mapping in the serializer:

SoapReflectionImporter imp = new SoapReflectionImporter(sao);
We'll return to this topic in the section "XML Serialization Attributes," on page 499. In
particular, you'll learn how to add type information to plain XML serialization, when no
SOAP-encoded types are involved.

Deserializing XML Data to Objects
The deserialization process is controlled by the Deserialize method for a variety of
sources, including streams, XML readers, and text readers. Remember that by using
the trick discussed in Chapter 2 for XML readers (packing a string into a StringReader
object), you can also easily deserialize from strings.
Although officially you can deserialize from streams and text readers, the
deserialization process is actually a matter of invoking an XML reader—more precisely,
a very special breed of XML reader, optimized for serialization and for the specific class
involved. Connected to the deserialization process is the Can-Deserialize method. This
method returns a Boolean value indicating whether the XML reader is correctly
positioned on the start element of the XML data. In addition, CanDeserialize ensures
that the start element of the XML data is compatible with the originally saved class.
Normally, you call CanDeserialize in the context of a more general strategy designed to
trap as many errors and exceptions as possible. If the application always deserializes
data that the XML serializer has previously created, a call to CanDeserialize can easily
be redundant. The call becomes crucial, how-ever, as soon as your application begins
to deserialize XML data whose genuineness and quality are not guaranteed. It is worth
noting that CanDeserialize works only on XML readers, whereas Deserialize can
successfully handle streams and text readers too.

From a programming perspective, deserializing is not rocket science, as the following
code clearly demonstrates:

StreamReader reader = new StreamReader(fileName);

Employee emp = (Employee) ser.Deserialize(reader);

reader.Close();

During the deserialization stage, a few events can be fired. In particular, the
UnknownElement, UnknownAttribute, and UnknownNode events signal when unknown
and unexpected nodes are found in the XML text being deserialized. The
UnknownNode event is more generic than the other two and triggers regardless of the
node type on which the exception is detected. In case of unknown element or attribute
nodes, the UnknownNode event is fired first.

 405

Hooking Up the Deserialization Process
The following code demonstrates how to register event handlers for the events
described in the previous section:

XmlSerializer ser = new XmlSerializer(typeof(Employee));

ser.UnknownElement +=

 new XmlElementEventHandler(GotUnknownElement);

ser.UnknownAttribute +=

 new XmlAttributeEventHandler(GotUnknownAttribute);

ser.UnknownNode += new XmlNodeEventHandler(GotUnknownNode);
Each event requires its own event handler class and passes a distinct data structure to
the client code. All the event data structures share the properties listed in Table 11-4.

Table 11-4: Common Properties of Deserialization Event Handlers

Property Description

LineNumber Gets the line number of the unknown XML
attribute

LinePosition Gets the column number in the line of the
unknown XML attribute

ObjectBeingDeserialized Gets the object being deserialized

In addition, the XmlElementEventArgs, XmlAttributeEventArgs, and Xml-
NodeEventArgs classes add some extra and more specific properties. Figure 11-1
shows a sample application that lets you enter some XML code.

Figure 11-1: Tracing deserialization events.

The application then attempts to map the code to the following class:

public class Employee

{

 public string LastName;

 406

 public string FirstName;

 public string Position;

}

Any exceptions are traced in the bottom pane of the window. As shown in Figure 11-1,
the ID attribute and the Title node have nothing to do with the target schema. By
default, the deserializer ignores unknown nodes.
The XmlElementEventArgs class has an extra property named Element whose type is
XmlElement. Likewise, XmlAttributeEventArgs features an extra Attr property that is an
instance of the XmlAttribute type. The XmlNodeEvent-Args class also includes a group
of additional properties that look like a subset of the XmlNode class properties.

Importing Unmatched Data
The most compelling reason to use deserialization events is that they enable you to
attempt to fix incoming data that doesn't perfectly match your target schema. For
example, our target class contains a Position member, so the deserializer expects to
find a <Position>element in the source code. If a needed element is not found, no event
is triggered. However, if an unexpected node is found, the user code receives a
notification.
If you know that the contents of one or more unknown elements can be adapted to
populate target members, an event handler is the best place in which to have your
custom code plug in and do the job. For example, suppose that the node <Title>
contains the same information as Position, but expressed with a different element
name. The following code shows how to fix things up and have the information fill the
Position property in the target class:

void GotUnknownElement(object sender, XmlElementEventArgs e)

{

 if (e.Element.Name == "Title")

 {

 Employee emp = (Employee) e.ObjectBeingDeserialized;

 emp.Position = e.Element.InnerText;

 }

}

You can also easily combine information coming from multiple unknown elements. In
this case, however, you must figure out an application-specific way to cache crucial
information across multiple invocations of the event handler. The event handler is
invoked for each unknown node, although the event's ObjectBeingDeserialized property
is cumulatively set with the results of the deserialization.

Shaping the XML Output

XML serialization enables you to shape the final form of the XML data being created.
Although the code of the class is not directly involved in the generation of the output,
the programmer is given a couple of tools to significantly influence the serialization
process.

The first approach is fairly static and works by setting attributes on the various
members of the class to be serialized. According to the attribute set, a given member
can be rendered as an attribute, an element, or plain text, or it can be ignored

 407

altogether. The second approach is more dynamic and, more importantly, does not
require the availability of the class source code. This approach is particularly effective
for achieving a rather odd yet realistic result: shaping an XML flow you can't control to
fit into a data structure you can't modify.

XML Serialization Attributes
The XmlAttributes class represents a collection of .NET Framework attributes that let
you exercise strict control over how the XmlSerializer class processes an object. The
XmlAttributes class is similar to the SoapAttributes class mentioned in the section
"Adding Type Information," on page 494. Both classes perform the same logical
operation, but the former outputs to XML, whereas the latter returns SOAP-encoded
messages with type information.
Each property of the XmlAttributes class corresponds to an attribute class. The
available XmlAttributes properties and their corresponding attribute classes are listed
here:

 XmlAnyAttribute Corresponds to the XmlAnyAttributeAttribute attribute
and applies to properties that return an array of XmlAttribute objects. A
property marked with this attribute is populated with any unknown attribute
detected during the deserialization process.

 XmlAnyElements Corresponds to the XmlAnyElementAttribute attribute
and applies to properties that return an array of XmlElement objects. A
property marked with this attribute contains all the unknown elements
found.

 XmlArray Corresponds to the XmlArrayAttribute attribute and applies to
all properties that return an array of user-defined objects. This attribute
causes the contents of the property to be rendered as an XML array. An
XML array is a subtree in which child elements are recursively serialized
and appended to a common parent node.

 XmlArrayItems Corresponds to the XmlArrayItemAttribute attribute and
applies to all properties that return an array of objects. Tightly coupled with
the previous attribute, XmlArrayItemAttribute describes the type of the
items in the array. XmlArrayItemAttribute specifies how the serializer
renders items inserted into an array.

 XmlAttribute Corresponds to the XmlAttributeAttribute attribute and
applies to public properties, causing the serializer to render them as
attributes. By default, if no attribute is applied to a public read/write
property, it will be serialized as an XML element.

 XmlChoiceIdentifier Corresponds to the XmlChoiceIdentifierAttribute
attribute and implements the xsi:choice XSD data structure. The xsi:choice
data type resembles the C++ union structure and consists of additional
properties, only one of which is valid for each instance. The
XmlChoiceIdentifierAttribute attribute lets you express the choice of which
data member to consider for serialization.

 XmlDefaultValue Corresponds to the XmlDefaultValueAttribute attribute
and gets or sets the default value of an XML element or attribute.

 XmlElement Corresponds to the XmlElementAttribute attribute and forces
the serializer to render a given public field as an XML element.

 XmlEnum Corresponds to the XmlEnumAttribute attribute and specifies
the way in which an enumeration member is serialized. You use this
attribute class to change the enumeration that the XmlSerializer generates
and recognizes when deserializing.

 XmlIgnore Corresponds to the XmlIgnoreAttribute attribute and specifies
whether a given property should be ignored and skipped or serialized to

 408

XML as the type dictates. The attribute requires no further properties to be
specified.

 XmlRoot Corresponds to the XmlRootAttribute attribute and overrides any
current settings for the root node of the XML serialization output, replacing
it with the specified element.

 XmlText Corresponds to the XmlTextAttribute attribute and instructs the
XmlSerializer class to serialize a public property as XML text. The property
to which this attribute is applied must return primitive and enumeration
types, including an array of strings or objects. If the return type is an array
of objects, the Type property of the XmlTextAttribute type must be set to
string, and the objects will then be serialized as strings. Only one instance
of the attribute can be applied in a class.

 XmlType Corresponds to the XmlTypeAttribute attribute and can be used
to control how a type is serialized. When a type is serialized, the
XmlSerializer class uses the class name as the XML element name. The
TypeName property of the XmlTypeAttribute class lets you change the
XML element name. The IncludeInSchema property lets you specify
whether the type should be included in the schema.

The XmlElement Attribute
The key XML attributes are XmlElement and XmlAttribute. XmlElement, in particular,
has a few interesting properties: IsNullable, DataType, ElementName, and Namespace.
IsNullable lets you specify whether the property should be rendered even if set to null.
DataType allows you to specify the XSD type of the element the serializer will generate.
ElementName indicates the name of the element. Finally, Namespace associates the
element with a namespace URI. If you want to use a namespace prefix, add a
reference to that namespace using the XmlSerializerNamespaces class, as shown
here:

[XmlElement(Namespace ="urn:mspress-xml", IsNullable=true,

 DataType="nonNegativeInteger", ElementName="FamilyName")]

When the IsNullable property is set to true and the property has a null value, the
serializer renders the element with a nil attribute that equals true, as shown here:

<x:FirstName xsi:nil="true"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" />

If you specify the DataType attribute, the type name must match exactly the XSD type
name. Specifying the DataType attribute does not actually change the serialization
format, it affects only the schema for the member.

The XmlAttribute Attribute
The XmlAttribute attribute also supports the DataType and the Namespace properties.
IsNullable is not supported. In addition, you can replace the default name of the
attribute with the string assigned to the AttributeName property. As with elements, the
default name of the attribute is the name of the parent class member.

The XmlEnum Attribute
If your class definition contains an enumeration type, the XmlEnum attribute lets you
modify the named constants used to define each value member, as shown here:

public enum SeatsAvailable

{

 409

 [XmlEnum(Name = "AisleSeat")]

 Aisle,

 [XmlEnum(Name = "CentralSeat")]

 Central,

 [XmlEnum(Name = "WindowSeat")]

 Window

}

You use the Name property to modify the name of the enum member.

The XML Schema Definition Tool

Installed as part of the .NET Framework SDK, the XML Schema Definition Tool
(xsd.exe) has several purposes. When it comes to XML serialization, the tool is helpful
in a couple of scenarios. For example, you can use xsd.exe to generate source class
files that are the C# or Microsoft Visual Basic .NET counterpart of existing XSD
schemas. In addition, you can make the tool scan the public interface exposed by
managed executables (DLL or EXE) and extrapolate an XML schema for any of the
contained classes.

In the first case, the tool automatically generates the source code of a .NET
Framework class that is conformant to the specified XML schema. This feature is
extremely handy when you are in the process of writing an application that must cope
with a flow of XML data described by a fixed schema. In a matter of seconds, the tool
provides you with either C# or Visual Basic source files containing a number of
classes that, when serialized through XmlSerializer, conform to the schema.

Another common situation in which xsd.exe can help considerably is when you don't
have the source code for the classes your code manages. In this case, the tool can
generate an XML schema document from any public class implemented in a DLL or
an EXE.

Overriding Attributes

A fairly common scenario for XML serialization is when you call into middle-tier class
methods, get back some XML data, and then map that information onto other classes.
In real-world situations, you can't control or modify the layout of the incoming XML data
or the structure of the target classes.

This is certainly nothing new for experienced developers who have been involved in the
design and development of distributed, multitiered systems. Normally, you resolve the
issue by writing adapter components that use hard-coded logic to transform the
inbound XML flow into fresh instances of the target classes. Although the map of the
solution is certainly effective and reasonable, a number of submerged obstacles can
make your trip through the data long and winding.

First you must parse the XML data and extrapolate significant information. Next you
copy any pieces of information into a newly created instance of a target class. The XML
serialization mechanism was designed to resolve this difficulty, thus making the process
of initializing classes from XML data both effective and efficacious.

Adapting Data to Classes
Reading incoming XML data is itself a kind of deserialization. However, as we've seen,
the XML deserializer can only re-create an instance of the type you pass when you

 410

create the XmlSerializer object. How can you comply with any difference in the schema
of the target class and the incoming XML data? That task is handled by the attribute
overrides process for the XMLSerializer object, shown in Figure 11-2.

Figure 11-2: Attribute overrides are crucial architectural elements to allow effective XML-to-
class mapping.

The XML serializer works on top of a particular type—the target class. While
deserializing, the deserializer engine attempts to fit incoming data into the properties of
the target class, taking into careful account any attributes set for the various properties.
What happens if the source and the destination follow incompatible schemas? This
might seem a rather odd situation—how could you deserialize data that you haven't
previously serialized?—but in practice it exemplifies the real goal of XML serialization.
Beyond any technological and implementation details, XML serialization is simply a way
to automatically instantiate classes from XML data.

This is not simply the problem of transforming one schema into another; instead, you
must transform a schema into a class. If you don't want to write an ad hoc piece of
code, you have only the following few options:

 Modify the source data to make it fit the target class through default
XML serialization. This solution is impractical if you don't have access to
the component that generates this flow.

 Modify the target class with static attributes to make it support in
deserialization the schema of the incoming data. This solution is
impractical if you don't have access to the source code for the class—for
example, if the class is deployed through an assembly.

 Override the attributes of the target class using dynamic hooks provided
by the objects you can create and store in an XmlAttributeOverrides
class. We'll examine this solution more closely in the section "The
XmlAttributeOverrides Class," on page 505.

 If the differences involve data, too, and therefore can't be addressed
with schema elements, resort to deserialization events, as described in
the section "Deserializing XML Data to Objects," on page 496.

Attribute overriding is a technique that lets you change the default way in which
serialization and deserialization occur. In addition to the case just mentioned, attribute
overrides are also useful for setting up different (and selectable)
serialization/deserialization schemes for a given class.

The XmlAttributeOverrides Class
You pass an instance of the XmlAttributeOverrides class to the XmlSerializer
constructor. As a result, the serializer will use the data contained in the

 411

XmlAttributeOverrides object to override the serialization attributes set on the class.
The XmlAttributeOverrides class is a collection and contains pairs consisting of the
object types that will be overridden and the changes to apply.
As shown in the following code, you first create an instance of the XmlAttributes class—
that is, a helper class that contains all the pairs of overriding objects. Next you create
an attribute object that is appropriate for the object being overridden. For example,
create an XmlElementAttribute object to override a property. In doing so, you can
optionally change the element name or the namespace. Then store the override in the
XmlAttributes object. Finally, add the XmlAttributes object to the XmlAttributeOverrides
object and indicate the element to which all those overrides will apply.

// Create the worker collection of changes

XmlAttributes changes = new XmlAttributes();

// Add the first override (change the element's name)

XmlElementAttribute newElem = new XmlElementAttribute();

newElem.ElementName = "New name";

changes.XmlElements.Add(newElem);

// Create the list of overrides

XmlAttributeOverrides over = new XmlAttributeOverrides();

// Fill the overrides list (Employee is the target class)

over.Add(typeof(Employee), "Element-to-Override", changes);

The instance of the XmlAttributeOverrides class is associated with the XML serializer at
creation time, as shown here:

XmlSerializer ser = new XmlSerializer(typeof(Employee), over);

Note Attribute overriding also enables you to use derived classes in lieu
of the defined classes. For example, suppose you have a property
of a certain type. To force the serializer (both in serialization and
deserialization) to use a derived class, follow the steps outlined in
the preceding code but also set the Type property on the overriding
element, as shown here:
// Manager is a class that inherits from Employee
newElem.Type = typeof(Manager);

Attribute overriding is a useful technique, and in the next section, we'll see it in action.

Mapping SQL Server Data to Classes

In Chapter 8, we saw the ExecuteXmlReader method exposed by the SqlCommand
class in the SQL Server–managed provider. The ExecuteXmlReader method executes
a command against the database and returns an XML reader if the output of the
command can be expressed as a well-formed XML document or fragment. Let's see
what's needed to transform that output into an instance of a class. The following code is
at the heart of the example. You call into a method, the method executes an SQL XML

 412

command, the data flows into the serializer, and an instance of a particular class is
returned.

Employee emp = LoadEmployeeData(empID);

The following code shows the body of the LoadEmployeeData method:

private Employee LoadEmployeeData(int empID)

{

 // Create the serializer

 XmlSerializer ser = PrepareEmployeeTypeSerializer();

 // Prepare the connection and the SQL command

 SqlConnection conn = new SqlConnection(NWindConnection);

 SqlCommand cmd = PrepareSqlCommand(empID, conn);

 conn.Open();

 // Execute the command

 Employee emp = null;

 XmlTextReader reader =

 (XmlTextReader) cmd.ExecuteXmlReader();

 // Deserialize the incoming data

 if(ser.CanDeserialize(reader))

 emp = (Employee) ser.Deserialize(reader);

 else

 Console.WriteLine("Cannot deserialize");

 // Clean-up

 reader.Close();

 conn.Close();

 return emp;

}

The serializer is tailor-made for the Employee class shown here:

public class Employee

{

 public string FirstName;

 public string LastName;

 public string Position;

 public DateTime Hired;

}

The SQL command used in our example is shown here:

SELECT firstname, lastname, title, hiredate FROM employees

 413

WHERE employeeid=@empID

FOR XML AUTO

The final XML output takes the following form:

<employees firstname="..." lastname="..." title="..."

 hiredate="..." />

As you can see, the class requires some attribute overrides to adapt to the actual XML
stream coming from SQL Server. In general, you can modify either the SQL command
or the class source to make each fit the other's structure. This is not always possible,
however. When it's not possible, attribute overrides are the only safe way to make two
immutable and incompatible flows of data interoperate.

Overriding the Class Name
In this scenario, the serializer is used only to deserialize data coming from SQL Server.
No previous serialization has been explicitly done. The deserializer reads the inbound
data and determines an ad hoc class structure. It then matches this inferred structure
with the specified type to be deserialized to—in this case, Employee.
The first issue to consider is the name of the class. The deserializer takes the class
name from the root of the stream. In our example, the inferred class name would be
employees. This issue is easily resolved by creating an alias for the SQL Server table.
Add an AS Employee clause to the table name, and you're done. As mentioned,
however, this solution is not possible at all if you don't have enough rights to modify
hard-coded SQL code. An XmlRoot attribute is another way to work around the
problem.

The attribute can be assigned either statically or dynamically. Again, static attributes
require that you have access to the class source code. Let's create attributes
dynamically, as follows:

XmlAttributes changesRoot = new XmlAttributes();

XmlRootAttribute newRoot = new XmlRootAttribute();

newRoot.ElementName = "employees";

changesRoot.XmlRoot = newRoot;

You create an XmlRootAttribute object and set its ElementName property to the name
of the source root tag—in this case, employees. Next you assign the newly created
element attribute to the XmlRoot property of the XmlAttributes object that gathers all the
attribute overrides for a particular element—in this case, the class as a whole. To
become effective, the changes must be added to an XmlAttributeOverrides object,
which will then be passed to the type-specific serializer's constructor, as shown here:

XmlAttributeOverrides over = new XmlAttributeOverrides();

over.Add(typeof(Employee), changesRoot);

Overriding Class Properties
Each property of the Employee class must be renamed and remapped to match one of
the source XML attributes because we assume we're working on the data flow of a
FOR XML AUTO, in which each field is rendered as an attribute. No remapping would
be needed if you assumed the data flow of a FOR XML AUTO ELEMENTS, in which
fields are represented with elements.
Renaming properties is necessary because the deserializer works in a strictly case-
sensitive fashion and considers firstname completely different from FirstName, as you
can see by running the following code:

 414

XmlAttributes changesFirstName = new XmlAttributes();

XmlAttributeAttribute newFirstName =

 new XmlAttributeAttribute();

newFirstName.AttributeName = "firstname";

changesFirstName.XmlAttribute = newFirstName;

over.Add(typeof(Employee), "FirstName", changesFirstName);

You need a distinct XmlAttributes object for each element you want to override. The
XmlAttributes object collects all the overrides you want to enter for a given element. In
this case, after creating a new XmlAttributeAttribute object, we change the attribute
name and store the resultant object in the XmlAttribute property of the overrides
container.
When the overrides are for a specific element, you use a particular overload of the
XmlAttributeOverrides class's Add method. In this case, you specify a third argument—
the name of the element being overridden. The following code replaces the current
settings of the FirstName property:

over.Add(typeof(Employee), "FirstName", changesFirstName);

The code is slightly different if you need to override an element instead of an attribute,
as shown here:

XmlAttributes changesFirstName = new XmlAttributes();

XmlElementAttribute newFirstName = new XmlElementAttribute();

newFirstName.ElementName = "firstname";

changesFirstName.XmlElements.Add(newFirstName);

over.Add(typeof(Employee), "FirstName", changesFirstName);

A different attribute class is involved—XmlElementAttribute—with a slightly different
programming interface.

Similar code should be written for each class property you want to map to a source
XML attribute or element.

Caution If the name of the XML root does not match the name of the

target class, the deserializer can't proceed further, and the
CanDeserialize method returns false. If the root and class
names match, the deserialization can take place. Any
unmatched attributes and elements are treated as unknown
objects, and the proper deserialization event is fired.

Mixing Overrides and Events
Up to now, we have considered a simple scenario in which a direct mapping exists
between elements in the source XML and properties in the target class. In this case, all
of your overrides end up changing the structure of the XML code being deserialized.
But what if you need to apply some logic in the middle of your code? Let's consider a
scenario in which the XML source contains a birthdate field but your class contains an
Age property instead. In this case, an attribute override is no longer useful and hooking
the deserialization process is the only way.
Earlier in this chapter, we discussed deserialization events. If the birthdate value is
expressed as an attribute, you write an UnknownAttribute handler; otherwise, resort to
an UnknownElement event handler. The following code snippet shows how to
determine the correct value for the Age property based on birthdate:

 415

// Unknown attribute detected

if (e.Attr.Name == "birthdate")

{

 Employee emp = (Employee) e.ObjectBeingDeserialized;

 DateTime dt = DateTime.Parse(e.Attr.Value);

 emp.Age = (int) (DateTime.Now.Year - dt.Year);

}

Populating Collection Properties
An even more complex scenario arises when the source XML contains embedded data,
the result of INNER JOIN operations being rendered in XML. Consider the following
statement:

SELECT firstname, lastname, title, hiredate, birthdate,

 terr.territorydescription

FROM Employees As employees

INNER JOIN EmployeeTerritories AS empterr

 ON employees.employeeid=empterr.employeeid

INNER JOIN Territories AS terr

 ON empterr.territoryid=terr.territoryid

WHERE employees.employeeid=@empID

FOR XML AUTO

The XML output for the empID parameter that equals 1 is shown here:

<employees firstname="Nancy" lastname="Davolio" ...>

 <terr territorydescription="Wilton" />

 <terr territorydescription="Neward" />

</employees>

This output changes a little bit if you use the ELEMENTS clause, as follows:

<employees>

<firstname>Nancy</firstname>

<lastname>Davolio</lastname>

...

<terr>

 <territorydescription>Wilton</territorydescription>

 <territorydescription>Neward</territorydescription>

</terr>

</employees>

The application is always notified of any <terr> elements through an UnknownElement
event. Suppose you also want any territory description to populate a StringCollection
property in the Employee class. The following code shows how to handle the event and
accumulate the data for an unknown element in the string collection:

if (e.Element.Name == "terr")

 416

{

 if (emp.Territories == null)

 emp.Territories = new StringCollection();

 object o =

 e.Element.Attributes["territorydescription"].Value;

 emp.Territories.Add(o.ToString());

}

If the territory description is not expressed as an attribute, you can use the InnerText
property of the terr element to get its value.
Figure 11-3 shows the sample application in action. The application retrieves the data
for a particular employee, copies the data into an instance of the Employee class, and
then displays the data through the user interface.

Figure 11-3: Using the XML serializer to deserialize the output of a SQL Server XML query.

Note The query used in this sample application restricts the output to at
most one record so that the final XML output will be an XML
document instead of an XML fragment. XML fragments are not read
by the XML serializer.

Performance Considerations

The first time you write test code that invokes the XML serializer, you'll notice that it
takes a while to complete when compared to SOAP or binary serialization. When the
serializer object is created, an unknown assembly is loaded. If you run the sample
application and monitor the output window, you'll see something like this :

'Sql2Class_CS.exe': Loaded 'qsxgw21i', No symbols loaded.

 417

The name of the first assembly varies each time you create the XML serializer, a clear
sign that it is a temporary assembly created on the fly. We'll examine the internal
architecture of the XML serializer in the next section.
For now, consider that each instantiation of the XmlSerializer class results in an ad
hoc assembly being created and loaded. After that, the reading and writing
performance you get from the XML serializer is not different from that of other types of
reading/writing tools. The creation of the assembly takes several milliseconds—
probably several hundred milliseconds—as compared to the one or two milliseconds
that serializing a class might take. This means that using the XML serializer taxes you
for about half a second each time you instantiate the XmlSerializer class.

This book's sample files include a console application named Perf-Test that
demonstrates the differences in performance you get when using XML serialization
and ad hoc user code. The output is the same, but custom code runs significantly
faster. On the other hand, the XML serializer saves you from writing and testing
complex code for complex classes. Keep these issues in mind if you are using XML
serialization and want to improve the overall performance.

Note The full source code for the sample application demonstrating the
deserialization of SQL Server XML queries to .NET Framework
classes is available in this book's sample files. The application is
named Sql2Class. The application demonstrates attribute overriding
and works with FOR XML and FOR XML ELEMENTS queries. In
addition, it compares the performance of the serializer and a piece
of ad hoc code mapping XML data to the same class.

Inside the XML Serializer

The XML serializer is a powerful tool that can transform a fair number of .NET
Framework classes into portable XML code. The key thing to note is that the serializer
is a kind of compiler. It first imports type information from the class and then serializes it
to the output stream. It also works the other way around. The serializer reads XML data
and maps elements to the target class members.

Normally, serialization and deserialization are functions that each class implements in
whatever way it determines is more convenient for its data. This is precisely what
happens with run-time object serialization. XML serialization works differently, however.
With the XML serializer, you have a compiler tool that takes information out of the class
and conveys it to the stream. Each class is particular and, in a certain way, unique.
How can a generic tool work efficiently on all possible classes? This is where the
temporary assembly comes in.

The Temporary Assembly
The following listing shows the pseudocode that makes up the constructor of the
XmlSerializer class:

public XmlSerializer(Type type)

{

 // Looks up for the assembly in the internal cache

 tempAssembly = Cache[type];

 // If no assembly is found, create a new one

 if (tempAssembly == null)

 418

 {

 // Import type mapping information

 XmlReflectionImporter importer =

 new XmlReflectionImporter();

 XmlTypeMapping map = importer.ImportTypeMapping(type);

 // Generate the assembly and add it to

 // the cache for that type

 tempAssembly = GenerateTempAssembly(map);

 Cache.Add(type, tempAssembly);

 }

}

The XmlSerializer class maintains an internal table of type/assembly pairs. If no known
assembly exists to handle the type, a new assembly is promptly generated and cached;
otherwise, the existing assembly is used to serialize and deserialize. (More on the
assembly's contents in the next section.)
Each instance of the XmlSerializer class maintains a reference to the assembly to be
used for reading and writing operations. In the preceding pseudocode, tempAssembly
is the name of this data member. Both the Serialize method and the Deserialize method
use this reference to obtain the tailor-made reader and writer objects to work on the
particular type.

The Assembly Cache
The assembly cache is built around a hash table that contains objects of type
TempAssembly. As the ILDASM shows in Figure 11-4, the assembly cache
corresponds to a class named TempAssemblyCache. The XmlSerializer class holds a
static TempAssemblyCache member that is shared by all instances of the XmlSerializer
you might create.

Figure 11-4: Peeking into the System.Xml.Serialization namespace.

The TempAssembly class maintains information about the assembly that provides
reader and writer classes optimized to XML serialize and XML deserialize classes of a
certain type. To build a type-specific assembly, the serializer needs fresh information
about the type being serialized. An internal class named XmlReflectionImporter
retrieves this information through the .NET Framework reflection API. The type data is
packed into an XmlTypeMapping structure and then passed to the internal method that
provides for the assembly generation.

 419

Caution The main purpose of the assembly cache is to save you from

repeatedly re-creating the assembly for the same type in the
same application session. Unfortunately, this seems to work only
if you use the simplest XmlSerializer constructor, as shown here:
XmlSerializer ser = new XmlSerializer(type);

All other constructors—that is, those that can accept
namespaces, type mapping, and attribute overrides—never look
into the cache to find matching assemblies. The net effect of this
behavior is that if you use, say, attribute overrides, as we did
earlier, the assembly for the type is generated each time you
create the constructor, even if the type is always the same.
To work around this, use global instances of the XmlSerializer
class, one for each type you plan to work on. This workaround is
not strictly required if you use the simple constructor, but using a
global serializer for each type results in slightly more efficient
code because you avoid any access to the cache, and not doing
so will certainly result in significantly slower code. Generating
the assembly pays for itself in a single serializing or deserializing
operation.

Assembly Creation
The assembly is created from dynamically generated C# source code. The code
contains two classes whose names are hard-coded as XmlSerializationReader1 and
XmlSerializationWriter1. The former class works like a tailor-made reader for the type
being deserialized. The latter class is an ad hoc writer that dumps out to XML the
contents of the specified object instance. The classes are generated in the
Microsoft.Xml.Serialization.GeneratedAssembly namespace.
The serializer's constructor uses an internal code-writer object to transform all type
information stored in XmlTypeMapping into C# source code. The C# source file, as well
as the assembly, are generated in a temporary folder—the path returned by
Path.GetTempPath. Normally, the following temporary path is used:

C:\Documents And Settings\[user name]\Local Settings\Temp
If you monitor this folder with a tool like the one shown in Figure 11-5, you'll discover
what really happens when you call the XmlSerializer constructor.

Figure 11-5: Unveiling the clandestine life of the temporary assembly.

 420

As you can see, the first file created is a C# source file whose name has been randomly
generated. Next the serializer invokes the C# compiler, and the assembly is soon
created! The files are cached in memory and deleted from disk immediately after having
been created. It's almost impossible to programmatically catch those files and make a
copy for further perusal. The XML Serialization Notifier tool (XmlSerial_CS) shown in
Figure 11-5 (and available in this book's sample files) uses the FileSystemWatcher
class to monitor file system events that take place in a given folder. The only trick I've
come up with to get my hands on the serializer's internal files is dropping the delete
permission on the folder.
Figure 11-6 shows the files generated using this trick for the serializer instance shown
in Figure 11-5.

Figure 11-6: The ILDASM view of the temporary assembly's contents.

Serialization Writers and Readers
Let's take a brief look at what happens under the hood of the XmlSerialization-Reader
and XmlSerializationWriter classes. The MSDN documentation touches on these two
classes, which form the substrate of the classes contained in the temporary assembly.
The XmlSerializationReader and XmlSerializationWriter classes are internal and are not
intended to be used directly from user code. More interesting than the actual contents
of the classes is how the Serialize and Deserialize methods interact with them.

Serializing to XML
The Serialize method first gets a reference to the class-specific type writer. An instance
of the XmlSerializationWriter1 class is returned by the TempAssembly class that
represents the temporary assembly. Once the Serialize method holds a reference to the
actual serialization writer, it calls the write method that outputs XML code to a text
writer.

Deserializing from XML
Although a CanDeserialize method is provided, the Deserialize method never calls it. If
the type is not fully serializable, or if errors occurred somewhere along the way, the
Deserialize method fails, throwing an exception.
If no errors occur, the Deserialize method asks the temporary assembly to return a
reference to the reader object to be used. The reader object is simply an instance of the
XmlSerializationReader1 class. The method that actually returns the object is one of the
ReadN_XXX methods, where N is the method index and XXX is the type.

 421

Conclusion

The XML serializer is a double-edged sword. On one hand, it lets you serialize and
deserialize even complex .NET Framework classes to and from XML with very few lines
of code. To accomplish this, the serializer needs to create an assembly on the fly. If you
don't use a global instance of the serializer for each type, you can easily add hundreds
of milliseconds of overhead to each call—definitely not a pleasant prospect.

On the other hand, appropriately used, XML serialization produces more compact code
than run-time SOAP serialization. If you add type information, and SOAP type
information in particular, the ratio changes, however. The moral of this story is don't
ever mix XML and SOAP—use only the process you need.

Serialization is one of the new frontiers of XML. It is not clear yet whether today's
SOAP, extensions to SOAP, or a brand-new dialect will become the universal platform
for describing objects. Currently, XML serialization is a hybrid, incomplete, technology.
Originally designed as a tool running underneath the .NET Framework implementation
of Web services, XML serialization entered prime time a bit too early, or if not too early,
certainly not optimized.
If you look at XML serialization as a way to save and resume objects to and from a tag-
based description, the current architecture makes sense because it is fairly unobtrusive
and even efficient. The apparently odd use of a temporary assembly is fully justified in a
Web service context. As we'll see in Chapter 13, the return type of a Web method is
serialized back to the caller using an instance of the XmlSerializer class. In this context,
a Web service class does not need to use attribute overriding or other features that
require a rich constructor. This could be just the unofficial explanation for the fact that
assembly caching is enabled only for the simplest constructor. This was originally the
core of what we know today as XML serialization. All the rest was untidily tacked on
when someone pushed XML serialization into prime time.
If you look at object serialization from a broader perspective, you can't help wondering
why run-time object serialization and XML serialization are so different. My hunch is
that XML serialization was initially designed as an internal tool and was tailor-made for
use with Web services. In that context, a dynamic assembly is useful and speeds up
the process. The XML serializer then came to be seen, and with good reason, as a
more powerful and useful tool to be made public and with a richer programming
interface. This project is still incomplete. Overall, XML serialization touches a
programmer's sensitive nerve, but at least in this version of the .NET Framework, it
comes with a clearly inconsistent design, although with some great ideas sprinkled here
and there. It's as if the technology was rushed out the door with no further thought. A
glimpse of the potential future of the XML serialization is buried in the recesses of the
DataSet object—in the IXmlSerializable interface. Forcing objects to make themselves
XML serializable by implementing a particular interface is a clean way toward much
faster, better designed, consistent, and more effective code.

Further Reading
This chapter focused on XML serialization. For a more thorough coverage of object
serialization in general, look at Programming Visual Basic .NET by Francesco Balena
(Microsoft Press, 2002). Chapter 11 of that book provides a comprehensive explanation
of run-time object serialization in the .NET Framework, including XML serialization.
SOAP was also repeatedly mentioned in this chapter. A good introduction to SOAP that
successfully weds philosophy and technology can be found in Don Box's article "Young
Person's Guide to the Simple Object Access Protocol: SOAP Increases Interoperability
Across Platforms and Languages," in MSDN Magazine, March 2000.

 422

A good source for learning about SOAP in general terms and not specifically from a
.NET Web service perspective is Understanding SOAP, by Kennard Scribner and Mark
Stiver (SAMS, 2000). For an in-depth reference discussing both SOAP and Web
services from a .NET Framework angle, try Building XML Web Services for the
Microsoft .NET Platform, by Scott Short (Microsoft Press, 2002).

 423

Chapter 12: The .NET Remoting System

The Microsoft .NET Framework infrastructure for remoting is the set of system services
that enable .NET applications to communicate and exchange data and objects. In this
chapter and Chapter 13, you'll find an annotated overview of the two technologies that
constitute the .NET answer to the universal demand for a seamless and effective
mechanism for building distributed and interoperable applications: .NET Remoting and
Web services.

Before we begin our technical examination of the .NET Remoting architecture, a
broader perspective is necessary to understand how .NET Remoting—that is, a non-
XML technology—fits into a book about XML.

Interprocess Communications in the .NET Framework

Web services and .NET Remoting are distinct, stand-alone technologies that share a
common root but have different sets of features and, more important, different goals.
Both Web services and .NET Remoting let you publish functions over a network and
handle incoming calls. Both share an architectural design that includes layers for
request/response handling, object serialization, and data transportation. Both share
underlying network protocols such as Simple Object Access Protocol (SOAP) and
HTTP.

Overall, Web services and .NET Remoting are two distinct and independent sides of
the same coin. Web services—a clearly XML-based technology—are a special case of
the .NET Remoting infrastructure. The .NET Framework infrastructure for remoting can
be seen as an abstract approach to interprocess communication. Web services and
.NET Remoting are technologies that represent concrete implementations of that
abstract interface. As distinct implementations, they end up using different building
blocks to set up constituent features such as object serialization, type description, and
reflection. The actual underlying technologies that make Web services and .NET
Remoting happen are chosen according to the final goal of each technology.

Web services are targeted to cross-platform communication and heterogeneous
systems. .NET Remoting doesn't allow for cross-platform communication, but it is highly
optimized for .NET-to-.NET communication. In a nutshell, .NET Remoting takes in the
best aspects of its Microsoft Win32 predecessor—Distributed Component Object Model
(DCOM)—and elegantly fills in the gaps.
In this chapter and Chapter 13, we'll examine the major features of each technology
and demonstrate that a common, platform-independent piece of code—say, a .NET
Framework class—can be exposed in both models and perform in the same way in
.NET Framework as well as Win32 and Linux applications.

.NET Remoting as a Better DCOM

Prior to the advent of the .NET Framework, DCOM was the underlying technology of
choice for any sort of remote communication between Microsoft Windows applications.
Based on a proprietary binary protocol, DCOM has suffered since its conception from a
number of shortcomings. For this reason, DCOM never charmed its way into the
average programmer's heart, although it did prove to be functional and effective.

DCOM is somewhat quirky to set up and configure, and under certain, but relatively
frequent, circumstances, it also raises serious interoperability exceptions that basically
put you in the unenviable position of having to change the connectivity engine for the
sake of the application or simply give up.

 424

Note Some programmers believe that .NET Remoting is even harder to
set up than DCOM. They point out that DCOM, at least, has a tool
(dcomcnfg.exe) to help with the setup and configuration of remote
components; .NET Remoting has no such tool (although the Control
Panel applet called the .NET Framework Configuration tool
[mscorcfg.msc] provides a minimal amount of configuration
support). My personal opinion, however, is that the tasks required to
set up a .NET Remoting application are far simpler to understand
than the equivalent DCOM tasks.

Aware of the ubiquity of HTTP, which allows you to legitimately penetrate any system
through the always open port 80, at a certain point users began asking more and more
for distributed applications capable of interconnecting and interoperating with any sort
of remote system. For a time, the most natural response to such a demand seemed to
be taking the official Windows Component Object Model (COM) and attaching a logical
wire to both ends. DCOM became the network extension of COM, thus building a new
infrastructure on the same successful component technology. Seamless integration, a
short learning curve, and a concrete possibility of retaining existing investments in
COM-based applications and tools were understandably the most intriguing benefits of
DCOM.

DCOM works as a wrapper for COM components. DCOM takes care of all that boring
stuff about low-level network protocols and leaves you free to concentrate your efforts
on the bread and butter of your business: planning and realizing great and effective
solutions for customers.

DCOM is a binary protocol that has in its favor a theoretically excellent measure of
performance, especially when compared to text-based interactions such as those taking
place over HTTP and the Internet. DCOM applications are fundamentally location-
independent, as the protocol infrastructure covers the physical distance between users
in the way it finds best. For example, DCOM automatically creates a pair of proxy/stub
modules for any interprocess and intermachine communication and resolves the call
within the boundary of the current process, whenever this is possible and plausible. So
where are the jarring notes with DCOM?

DCOM Shortcomings

In many Internet scenarios, the level of connectivity allowed between a client and a
server is subject to a variety of restrictions. For example, on its way to the remote
server component, a client component might run across a proxy server that filters and
controls outbound network traffic. As a result, the proxy might prevent the client from
properly interacting with the object of its software desire. Furthermore, a firewall might
filter any incoming Internet requests to protect the server components from any
unauthorized contact. A firewall normally defines the combination of network ports,
packets, and protocols that is acceptable for the safety and the health of the network
environment running behind it.

The ultimate effect of such restrictions is that a DCOM client and a server can set up
and carry out a conversation only through a quite narrow set of protocol and port
combinations. When opening a port and sending out the packets that constitute a
method request, DCOM dynamically selects a network port in the range 1024 through
65,535. Unfortunately, system administrators normally prohibit inbound Internet traffic
from passing through these ports and penetrating into intranet microcosms.

Using DCOM over the Internet is not particularly reliable—or, at least, not as reliable as
it is in intranet scenarios. The fact that DCOM can use such a wide range of ports

 425

makes coding significantly easier. In fact, programmers don't have to worry about
possible conflicts with other applications attempting to access the same port. In
addition, dynamic port allocation also increases the overall level of flexibility because
the particular communication port doesn't have to be hard-coded or persisted
somewhere as an application-specific argument. On the down side, system
administrators don't usually agree to leave such a wide range of ports open to inbound
traffic because doing so could leave a major hole in security.

Note The DCOM security model is based on the assumption that

developers and administrators configure the security settings
properly for each component. The net effect of this approach is that
the same binary code works unchanged both in environments in
which the security is of no concern (for example, on a local single
machine) and in environments in which the code needs to be
processed in a secure fashion (as in a fully distributed environment).

DCOM Extensions for the Internet

Over the years, DCOM has been extended to work around this security issue. In
particular, the COM Internet Services (CIS) layer has given DCOM the capability to
work over port 80 thanks to a new transportation protocol called Tunneling
Transmission Control Protocol (TTCP). CIS works as an Internet Server Application
Programming Interface (ISAPI) filter and requires Microsoft Internet Information
Services (IIS) 4.0 or later to run on the server machine. Basically, TTCP works by
fooling the firewall. At the very beginning of each DCOM operation, TTCP shakes
hands with the server, declaring its intention to use HTTP over port 80. If the firewall
agrees, what follows is a traffic pattern of non-HTTP packets that are blissfully delivered
over port 80 of those firewalls that are lazy enough to accept binary packets over
HTTP. All in all, CIS gives DCOM a good chance of entering through a window when it
finds that the front door is locked. This peculiarity also affects the way DCOM
components work. In fact, server components can't call back the client component to
sink events or send notifications.

.NET Remoting to the Rescue

What's new and better with .NET Remoting? The advent of the .NET Framework
pushed COM-related technology aside, and DCOM is no exception. The .NET
Framework architecture for remoting arose completely redesigned, with two key goals
to pursue: allowing for seamless and location-independent coding while providing a fully
operational way of interacting with restricted servers.

Note The previous statement about the diminished status of COM-related

technologies doesn't imply that existing COM components are
obsolete in the new .NET world. On the contrary, the .NET
Framework integrates seamlessly with COM components and the
Win32 API through ad hoc interoperability mechanisms such as
COM Callable Wrappers (CCWs) and P/Invoke. By adopting a
"leave-no-COM-object-behind" philosophy, the .NET Framework
designers ensured the continued success of existing COM-related
technologies even as developers migrate to the .NET Framework.

The .NET Remoting classes allow for optimized and effective communication between
.NET Framework applications. They don't offer even the possibility of being used in any
other scenario. For cross-platform scenarios in which heterogeneous environments are

 426

involved, you must use Web services. But if you need to set up communication
between two .NET Framework applications, nothing is better and more efficient than
.NET Remoting.

What Is .NET Remoting?

The entire set of services that enable .NET Framework applications to communicate
with each other falls under the umbrella of .NET Remoting. Such applications can
reside on the same computer, can work on different computers in the same LAN, and
can even be scattered across the world in heterogeneous networks but on
homogeneous platforms—that is, platforms that can host the common language
runtime (CLR) and access the .NET Framework.

The .NET Remoting architecture enables you to use different transportation protocols,
serialization formats, object lifetime schemes, and modes of object creation. In addition,
programmers can directly plug into the flow of messages that each communication
originates and can hook up activities at various stages of the process.

At a lower level of abstraction, however, the only thing .NET Remoting can do for you is
enable communication and data exchange between different application domains
(AppDomains).

Application Domains
The .NET Framework CLR provides a feature-rich execution environment for code.
Within the CLR, code finds available services like garbage collection, security,
versioning, and threading. Executable code must be loaded into the CLR to be
managed while running, however.

Note Currently, only the Microsoft Windows XP operating system is
equipped with a CLR-aware program loader capable of running a
.NET Framework executable within the context of a CLR instance.
For compatibility with all non-XP Windows operating systems, all
.NET Framework executables include a tailor-made stub program
that operating systems automatically launch when executables don't
match the current system platform. This stub passes the control to
another piece of code that instantiates the CLR and loads the
managed code into it. See the section "Further Reading," on page
559, for additional resources on this topic.

To run an application's code, the instance of the CLR must obtain a pointer to an
AppDomain. AppDomains are separate units of processing that the CLR recognizes in
a running process. All .NET Framework processes run at least one AppDomain—
known as the default AppDomain—that is created during the CLR initialization. An
application can have additional AppDomains. Each AppDomain is independently
configured and given personal settings for security, reference paths, and configuration
files.
AppDomains are separated and isolated from one another in a way that resembles
process separation in Win32. The CLR enforces isolation by preventing direct calls
between objects residing in different AppDomains. From the CPU perspective,
AppDomains are much more lightweight than Win32 processes and provide for a more
lightweight mechanism of isolation between processing units. The .NET Framework
provides the remoting API as a tailor-made set of system services to access an object
that resides in an external AppDomain. Figure 12-1 illustrates such an inter-AppDomain
communication.

 427

Figure 12-1: Inter-AppDomain communication in the .NET Framework.

Why AppDomains Do It Better
Managed code needs an AppDomain to run, but it must also pass through a verification
process before it can be run. Code that passes such a test is said to be type-safe.
Type-safe code never reads memory that has not been previously written, never calls a
method using an incorrect number of arguments, and always assigns a return value to
functions. In summary, type-safe code can't cause memory faults, which in Win32 were
one of the reasons to have a physical separation between process memory contexts.
The certainty of running type-safe code allows the CLR to provide a level of isolation as
strong as process boundaries, but more cost-effective because an AppDomain is a
logical process and as such is more lightweight than a true process.

Note Direct use of pointers is allowed in C# as long as you explicitly mark
your code (classes, methods, and interfaces) as unsafe by using the
unsafe keyword. Unsafe code loads and runs in an AppDomain, just
like managed code, but isn't verified to be type-safe. Unsafe code is
supported by the C# compiler only.

Unlike Win32 processes, you can have several AppDomains running within the
boundaries of the same .NET Framework application. Individual domains can be
stopped without stopping the entire process, but you can't unload only a single
assembly within an AppDomain. Managed code running in an AppDomain is carried out
by a particular thread. However, threads and AppDomains are orthogonal entities in the
sense that you can have several threads active during the execution of the
AppDomain's code, but a single thread is in no way limited to running only within the
context of a given AppDomain.

Location Transparency

From an application's standpoint, an external AppDomain can transparently be another
AppDomain in the same process, the default AppDomain in another process on the
same machine, and even an AppDomain residing on a physically distant machine. All
the low-level details that make each of these scenarios unique are transparently

 428

handled by .NET Remoting; the user is responsible only for higher-level aspects such
as actual network paths or the URLs used to set up the communication.

Remotable Objects

The overall architecture that makes .NET Remoting happen is extremely modular and
flexible enough to let you customize several aspects of the service. For example, you
can decide whether remote objects should be marshaled on the local platform by value
or by reference. Similarly, you can control how objects are activated and whether the
activation should take place on the client or on the server. Programmers also can
intervene in the object's lifetime and specify the most suitable communications channel
and formatter module for transporting messages to and from remote applications.

A remotable object can be implemented in one of two ways. One possibility is that you
design the class to be serializable so that its instance data can be marshaled from the
server to the client. At the receiving end, the client unmarshals the data and creates
another instance of the class with the same values as the instance on the server. This
approach is referred to as marshal by value (MBV). The other possibility is that the
class allows for its object reference to be marshaled. When unmarshaled on the client,
the object reference becomes a proxy to the remote instance. This second approach is
known as marshal by reference (MBR). Unlike MBV, MBR preserves the object's
identity.

No matter how you design your remotable objects—MBV or MBR—a network
connection must always exist between the client application and the remote object for
.NET Remoting to work.

Note .NET Remoting doesn't support the automatic download of the

assembly containing the type of the instance that is being
marshaled (unlike other remote access technologies, such as Java's
Remote Method Invocation [RMI]). Instead, the assembly for the
type needs to exist on the client beforehand. How the assembly
gets on the client is outside the purview of .NET Remoting.

Marshaling Objects by Value

Marshaling by value downloads the entire object's contents to the client, which uses the
instance data to initialize a client-side object of that type. The client obtains a perfect
local clone of the original object and can work with it completely oblivious to the fact
that the object data has been downloaded from a remote location.

In general, MBV is not recommended when you have to cope with large objects with
several properties. With MBV, you take the risk of consuming a significant portion of
bandwidth to perform the full object's data download, thus subjecting the client to a
potentially long wait to execute only one or two methods. MBV also imposes some
constraints on the remotable objects. In particular, any objects that need to be
consumed by value must qualify as serializable—which is not the case for all objects. In
addition to objects that deliberately make themselves nonserializable, some objects are
objectively hard to serialize. In this list, you certainly find classes that represent or
contain database connections. More generally, the list includes all those objects that
can't be reasonably represented outside their native environment. This happens when
all or part of the information stored in an object does not make sense once the object is
transferred to the client. If the object has any implicit dependencies on server-side
resources, you can't just use it from the client. For example, if the class has a method
that accesses a SQL Server table, you could call it from the client only if the same SQL
Server table is accessible from the current location.

 429

When to Marshal by Value

So how do you know when MBV is a good option? Let's say that MBV is a compelling
option when the following conditions are true:

 The object is not particularly large and complex.
 You're going to make intensive use of the object.
 You have no special security concerns.
 The object has no dependencies on remote resources such as files,

databases, devices, or system resources.
Some rather illustrious .NET Framework classes that support remoting through the
MBV technique are the DataSet and DataTable classes.

MBV Objects
The .NET Remoting system serializes all the internal data of MBV objects and passes
the stream to the calling AppDomain, as illustrated in Figure 12-2.

Figure 12-2: How .NET Remoting marshals objects by value.

After the data is in the client AppDomain, a new local object is instantiated and
initialized and starts handling calls. To write remotable objects that are exchanged by
value, you need to make them serializable, either by declaring the SerializableAttribute
attribute or by implementing ISerializable. Aside from this, nothing else is required for
instances of the class to be passed by value across AppDomains.

Marshaling Objects by Reference
When an object is marshaled by reference, the client process receives a reference to
the server-side object, rather than a copy. This means that any call directed to the
object is always resolved on the server within the native context of the object. The
remoting infrastructure governs the call, collecting all information about the call and
sending it to the server process. On the server, the correct object is located and asked
to execute the call using the client's arguments. When the call is finished, the results
are packaged and sent back to the client. Unlike MBV, MBR uses the network only for
transmitting arguments and return values. Figure 12-3 shows the architecture of MBR
remoting.

 430

Figure 12-3: How .NET Remoting marshals objects by reference.

The .NET Remoting implementation of MBR provides for a proxy/stub pair and a
physical channel for network transportation. The proxy represents the remote object to
the client, as it simply mirrors the same set of methods and properties. Each client
invocation of a remote method actually hits the local proxy, which, in turn, takes care of
routing the call down to the server. A method invocation originates a message that
travels on top of a channel and a transmission protocol.
Each message passes through a chain of hook objects (called sinks) on each side of
the transport channel. Sinks are nearly identical to Windows hooks. By defining and
registering a sink, the programmer can perform a specific operation at a specific stage
of the remoting process. Because the creation of the proxy takes place automatically,
the programmer has little to do other than creating an instance of the target object and
issuing the call.
If the object resides in an external AppDomain, the remoting infrastructure creates a
local proxy for it to perform the requested operation. But how can the code determine
whether a given object is local, lives in a remote AppDomain, or just doesn't exist? In
spite of the sophisticated code that constitutes the remoting infrastructure,
programming remote objects is mostly a matter of setup. Once the client has been
properly configured, you normally create a new instance of the remote class using the
new operator, no matter what type of class you're calling and where it resides. Clients
must declare to the CLR which classes are remote and provide connection information.
Remote objects, in turn, must be publicly available and bound to a given channel.

The MarshalByRefObject Class
Inheriting from the MarshalByRefObject class is the key that enables user classes to be
accessed across AppDomain boundaries in applications that support remoting.
MarshalByRefObject is the base class for objects that communicate across
AppDomains. Serializable classes that do not inherit from MarshalByRefObject, when
instantiated from a remote assembly, are implicitly marshaled by value. Other classes
are simply considered nonremotable.
So if you want to write a remote component that uses the network efficiently and always
runs on the server, the only thing you have to do is create the class inheriting from
MarshalByRefObject, as follows:

public class NorthwindService : MarshalByRefObject

 431

{

 public DataSet GetSalesReport(int year);

}

For example, the NorthwindService class shown here is ideally suited to act as a
remote console that clients access through transparent proxies.

Note When creating a remotable object, you normally limit the class to
inheriting from MarshalByRefObject. In some situations, however,
you might want to override some of the parent class's methods. In
particular, you might want to replace the InitializeLifetimeService
method and configure the object's lifetime. We'll return to this topic
in the section "Memory Management," on page 551.

The ObjRef Class
When a MarshalByRefObject object is being remoted, the .NET Remoting system
packs all the relevant information into an ObjRef object. An ObjRef object is a
serializable representation of the original MBR object. This intermediary object enables
the .NET Remoting system to transfer an object reference across the boundaries of
AppDomains. In effect, the entire action of marshaling by reference can be summarized
with the creation an ObjRef object.
An ObjRef object contains information that describes the type and the class of the
object being marshaled, the exact location, and any communicationrelated information
such as port and protocols. The ObjRef instance is created on the server when the
MBR object is first referenced; next it is transferred into the target AppDomain, possibly
in another process or on another machine. On the client, the ObjRef object is then
deserialized, and the real proxy is created to access the remote instance of the MBR
object. This operation is globally known as unmarshaling.

The RealProxy Class
RealProxy is an abstract class that represents a remoting proxy. Any remoting client
transparently uses an instance of this class to issue calls to the remote object. The
overall .NET Framework model for distributed programming is designed to create the
illusion that remote objects are actually working locally. This is true for .NET Remoting
as well as for Web services, even though the effect is obtained with radically different
techniques.

Note .NET Remoting creates the local instance of the remote object using
dynamically created proxies that result from the run-time
deserialization process. Basically, the deserialization of the ObjRef
class generates a transparent proxy to handle user calls. With Web
services, a proxy class is statically added to the application's project
at design time when the Web service is referenced as an external
library. The generation of the source code for the class and the
subsequent addition to the project are automatically handled by
Visual Studio .NET. However, the wsdl.exe utility (part of the .NET
Framework SDK) allows you to generate the class yourself.

The RealProxy class hidden behind the software creates the illusion that remoting
clients actually work locally. The proxy is transparently invoked whenever a method is
called on the remote object. The RealProxy class executes the method by forwarding
any calls to the real object using the remoting infrastructure.

 432

If you want to play with the transparent proxy object yourself, you can get a reference to
it by using the following code:

RemotingServices.GetRealProxy(localObject);

The variable localObject is the local instance of the remote object that you have created
using the new operator. (More on this in a moment.) As mentioned, RealProxy is only
an abstract class. The actual proxy object belongs to the RemotingProxy class in the
System.Runtime.Remoting.Proxies namespace.

Building a Remote Service
Let's take the plunge into .NET Remoting and start building a service that can be
exploited and consumed from remote clients. In Chapter 13, we'll extend the service to
make it openly available to Internet clients too. In this way, you can really grab the
essence of .NET Framework distributed programming and understand the key
differences that keep .NET Remoting and Web services separate even though they're
both children of a common model for remotable objects.
A .NET Remoting server and a Web service are both .NET Framework classes. As
such, they can inherit from a parent class and can be left open to further inheritance. As
you'll see in more detail in Chapter 13, a Web service class can optionally inherit from
the WebService class, but there is no syntax obligation. A .NET Remoting server class
must inherit from MarshalByRefObject.

The object-oriented nature of the .NET Framework makes sharing classes between a
.NET Remoting server and a Web service straightforward. However, because of the
inheritance difference just mentioned, you can't have the Web service and the .NET
Remoting server descend from the same base class of functionality. The .NET
Framework, in fact, does not permit inheritance from multiple classes.
We'll start by writing a helper class that constitutes the programming interface for both
the .NET Remoting server in this chapter and the Web service we'll create in Chapter
13. The remote service is actually a class built around the Northwind database that lets
you obtain gross sales information on a per-year basis. A nice feature of this service is
that it lets you obtain information in two ways: as raw tabular data to format and analyze
or as a ready-to-print, snazzy bar chart.

Writing the Data Provider Class
Because our final goal is exposing a common set of functionalities through both the
.NET Remoting server and the Web service interfaces, let's group all the needed core
code into a separate middle-tier class that both higher-level layers can easily call. We'll
call this helper class SalesDataProvider and bury into its code all the details about
connection strings, SQL commands, and bar chart creation. The class outline is shown
here:

namespace XmlNet.CS

{

 public class SalesDataProvider

 {

 // Constructor(s)

 public SalesDataProvider() {...}

 // Internal properties

 433

 private string m_conn =
"DATABASE=northwind;SERVER=...;UID=sa;";

 private int m_Year = 0;

 // Returns sales details for the specified year

 public DataTable GetSalesReport(int theYear) {...}

 // Create a bar chart with the sales data for the
specified year

 public string GetSalesReportBarChart(int theYear) {...}

 // INTERNAL METHODS

 // Fetch the data

 private DataTable ExecuteQuery(int theYear) {...}

 // Draw the bar chart based on the data in the specified
table

 private string CreateBarChart(DataTable dt) {...}

 // Encode the specified bitmap object as BinHex XML

 private string SaveBitmapAsEncodedXml(Bitmap bmp)

 }

}

The class contains only a couple of public methods—GetSalesReport and
GetSalesReportBarChart. These methods will also form the public interface of the .NET
Remoting server we'll build in this chapter and the Web service slated for Chapter 13.

Implementation Details
GetSalesReport takes an integer that indicates the year to consider and returns a
DataTable object with two columns—one containing employee last names and one
showing total sales for the year for each employee. The method runs the following SQL
query against the Northwind database:

SELECT e.lastname AS Employee, SUM(price) AS Sales FROM

 (SELECT o.employeeid, od.orderid,
SUM(od.quantity*od.unitprice)

 AS price

 FROM Orders o, [Order Details] od

 WHERE Year(o.orderdate)=@TheYear AND od.orderid=o.orderid

 GROUP BY o.employeeid, od.orderid

)AS t1

 INNER JOIN Employees e ON t1.employeeid=e.employeeid

 GROUP BY t1.employeeid, e.lastname

 434

The query involves three tables—Employees, Orders, and Order Details—and basically
calculates the total amount of each order issued in the specified year by a particular
employee. Finally, the amounts of all orders are summed and returned together with the
employee's last name.
GetSalesReportBarChart works in two steps: first it gets the sales data by calling
GetSalesReport, and then it uses this information to create the bar chart. The bar chart
is generated as an in-memory bitmap object and is drawn using the GDI+ classes in the
System.Drawing namespace. To make the image easily transportable over the wire for
.NET Remoting clients as well as for Web service clients, the GetSalesReportBarChart
method converts the bitmap to JPEG, encodes the bits as BinHex, and puts the results
in an XML string.

Using GDI+ to Create Charts

GDI+ is the latest incarnation of the classic Windows Graphical Device Interface (GDI),
a graphics subsystem that enables you to write device-independent applications. The
.NET Framework encapsulates the full spectrum of GDI+ functionalities in quite a few
managed classes that wrap any GDI+ low-level functions, thus making them available
to Web Forms and Windows Forms applications.
GDI+ services fall into three broad categories: 2-D vector graphics, imaging, and
typography. The 2-D vector graphics category includes drawing primitives such as
lines, curves, and any other figures that are specified by a set of points on a coordinate
system. The imaging category includes functions for displaying, manipulating, and
saving pictures as bitmaps and metafiles. The typography category concerns the
display of text in a variety of fonts, sizes, and styles. Only the imaging functions are key
to the GetSalesReportBarChart implementation.
In GDI+, the Graphics class represents the managed counterpart of the Win32 GDI
device context. You can think of it as the central console from which you call all
primitives. Everything you draw, or fill, through a Graphics object acts on a particular
canvas. Typical drawing surfaces are the window background (including control
backgrounds), the printer, and in-memory bitmaps.
The following code creates a new bitmap object and gets a Graphics object from it:

Bitmap bmp = new Bitmap(500, 400);

Graphics g = Graphics.FromImage(bmp);

g.Clear(Color.Ivory);

From this point on, any drawing methods called on the Graphics object will result in
changes to the bitmap. For example, the Clear method clears the bitmap's background
using the specified color.
Creating a bar chart is as easy as creating and filling a certain number of rectangles, as
shown in the following code. We need to create a bar for each employee in the
DataTable object and give it a height that is both proportional to the maximum value to
draw and based on the scale given by the bitmap's size.

// Save the names of the fields to use to get data

string fieldLabel, fieldValue;

fieldLabel = dt.Columns[0].ColumnName;

fieldValue = dt.Columns[1].ColumnName;

// For each employee...

for(int i=0; i<dt.Rows.Count; i++)

 435

{

 //

 // Set up some internal variables to determine

 // size and position of the bar and the

 // companion text

 //

 // Draw the value (top of the bar)

 g.DrawString(dt.Rows[i][fieldValue].ToString(),

 fnt, textBrush, x, yCaption);

 // Draw the bar

 Rectangle bar = new Rectangle(x, yBarTop, barWidth - 10,
barHeight);

 LinearGradientBrush fill = new LinearGradientBrush(bar,

 Color.SpringGreen, Color.Yellow,

 LinearGradientMode.BackwardDiagonal);

 g.FillRectangle(fill, bar);

 fill.Dispose();

 // Draw the employee name (bottom of the bar)

 g.DrawString(dt.Rows[i][fieldLabel].ToString(),

 fnt, textBrush, x, barBottom + textHeight);

}

At the end of the loop, the bar chart is completely rendered in the Bitmap object. The
bitmap is still held in memory in an intermediate, internal format, however. Two more
steps are necessary: converting the bitmap to a public format such JPEG, BMP, or GIF,
and figuring out a way to persist or transfer its content.

Encoding Images as BinHex
Converting a Bitmap object to one of the commonly used image formats is a nonissue.
You call the Save method on the Bitmap object, pick up one of the supported formats,
and you're done. The real difficulty has to do with the planned use of this helper class.

Remember, we designed this class for later use within a .NET Remoting server and a
Web service. When Web services in particular are involved, having the helper class
save the image to persistent storage just doesn't make sense. An alternative approach
would be saving the bitmap locally on the server in a location accessible for download
via FTP or HTTP. Creating files on the server might pose security problems, however,
and normally forces the system administrator to change default settings to allow for
local files being created.
The SalesDataProvider helper class was designed to return the dynamically created
image as an encoded text string packed in an XML document. This approach is not
optimal in a .NET Remoting scenario, but it probably represents the only option if you
have to also publish the function through a Web service.

 436

As we saw in Chapter 4, the XmlTextWriter class provides methods for encoding and
writing arrays of bytes, and an image—no matter the format—is just an array of bytes.
A further step is needed to transform the Bitmap object into an array of bytes that make
up a JPEG image. To convert a Bitmap object to a real-world image format, you must
use the Save method. The Save method can accept only a file name or a stream,
however.
To solve this problem, you first save the bitmap as a JPEG image to a memory stream.
Next you read back the contents of the stream as an array of bytes and write it to an
XmlTextWriter object as BinHex or base64 code, as shown here:

// Save the bitmap to a memory stream

MemoryStream ms = new MemoryStream();

bmp.Save(ms, ImageFormat.Jpeg);

int size = (int) ms.Length;

// Read back the bytes of the image

byte[] img = new byte[size];

img = ms.GetBuffer();

ms.Close();

The preceding code snippet converts the instance of the Bitmap object that contains the
bar chart to an array of bytes—the img variable—that represents the JPEG version of
the bitmap.

As the final step, you encode the bytes as BinHex (or base64, if you prefer) and write
them to an XML stream, as shown here:

// Prepare the writer

StringWriter buf = new StringWriter();

XmlTextWriter xmlw = new XmlTextWriter(buf);

xmlw.Formatting = Formatting.Indented;

// Write the XML document

xmlw.WriteStartDocument();

xmlw.WriteComment("Sales report for "+ m_Year.ToString());

xmlw.WriteStartElement("jpeg");

xmlw.WriteAttributeString("Size", size.ToString());

xmlw.WriteBinHex(img, 0, size);

xmlw.WriteEndElement();

xmlw.WriteEndDocument();

// Extract the string and close the writer

string tmp = buf.ToString();

xmlw.Close();

buf.Close();

 437

The XmlTextWriter object is still a stream-based component that needs a destination to
write to. Unlike the Bitmap object, however, the XmlTextWriter object can be forced to
write the output to a string. To do that, you initialize the XML text writer with an instance
of the StringWriter object. The final string with the XML code can be obtained with a call
to the StringWriter object's ToString method.

The format of the XML text returned is shown here:

<?xml version="1.0" encoding="utf-16" ?>

<!-- Sales report for 1997 -->

<jpeg Size="20146">

 FFD8FF...E00010

</jpeg>

Notice that the comment and the size of the file are strictly call-specific parameters. The
Size attribute refers to the size of the BinHex-encoded text. As you'd expect, this value
is significantly larger than JPEG size. Having that value available is not strictly
necessary, but once it's on the client, it can simplify the task of transforming the XML
stream back into a JPEG image.

StringWriter and Unicode Encoding
The XML output generated by the GetSalesReportBarChart method uses the Unicode
encoding scheme—UTF-16—instead of the default UTF-8. This would be fine if not for
the fact that Microsoft Internet Explorer returns an error when you double-click the
XML file. The error has nothing to do with the XML itself; it is more a bug (or perhaps
even a feature) of Internet Explorer and the internal style sheet Internet Explorer uses
to display XML documents.
In general, UTF-16 is used whenever you write XML text to a StringWriter object.
When a TextWriter object (StringWriter inherits from TextWriter) is passed to the
XmlTextWriter constructor, no explicit encoding argument is allowed. In this case, the
XmlTextWriter object transparently inherits the encoding set contained in the writer
object being passed. The StringWriter class hard-codes its Encoding property to UTF-
16—there's no way for you to change it, because the property is marked as read-only.
If you want to generate XML strings with an encoding scheme other than UTF-16,
drop StringWriter objects in favor of memory streams.

The helper class shared by the remotable object and the Web service is now ready to
use. Let's look more closely at the remote service component.

Writing the Remote Service Component
As mentioned, a remotable component has just one requirement: the class that
represents the object must be inherited from MarshalByRefObject. Unless you need to
exercise stricter control over the object lifetime, you don't need to override any of the
methods defined in the base class for MBR objects.

Apart from the parent class, a remotable class is not different from any other class in
the .NET Framework. All of its public methods are callable by clients, the class can
implement any number and any type of interfaces, and the class can reference any
other external class.
Because we already put all the core code in the SalesDataProvider class, writing the
remote service class—ServiceSalesProvider—is a snap. The class is a simple wrapper
for SalesDataProvider, as shown here:

public class ServiceSalesProvider : MarshalByRefObject

 438

{

 // Properties

 protected SalesDataProvider m_dataManager;

 // Constructor

 public ServiceSalesProvider()

 {

 m_dataManager = new SalesDataProvider();

 }

 // GetSalesReport

 public DataSet GetSalesReport(int theYear)

 {

 DataSet ds = new DataSet();

 ds.Tables.Add(m_dataManager.GetSalesReport(theYear));

 return ds;

 }

 // GetSalesReportBarChart

 public string GetSalesReportBarChart(int theYear)

 {

 return m_dataManager.GetSalesReportBarChart(theYear);

 }

}

The SalesDataProvider protected member is initialized only once, when the
ServiceSalesProvider class instance is constructed. After that, any call to the various
methods is resolved using the same instance of the helper class.
The ServiceSalesProvider class has two public methods with the same names as the
methods in SalesDataProvider. The implementation of these methods is straightforward
and fairly self-explanatory. The only aspect worth noting is that the remotable
GetSalesReport method adds the DataTable object returned by the corresponding
method on the SalesDataProvider class to a newly created DataSet object. The
DataSet object is then returned to the caller.

Note When writing remotable classes, be sure that all the methods use
and return serializable classes. No extra steps are required if you
decide to write your own, user-defined classes as long as they
include SerializableAttribute or implement the ISerializable interface.

Publishing the Remote Service Component

To be usable in a distributed environment, a remotable class must be configured and
exposed so that interested callers can reach it. A remotable object needs a running
host application to handle any incoming calls. In addition, the object must specify what
protocol, port, and name a potential client must use to issue its calls. All requirements
that callers must fulfill are stored in the remote object's configuration file.

 439

The Host Application

The host application can be IIS or a custom program (for example, a console
application or a Microsoft Windows NT service) written by the same team that authored
the class. Unlike DCOM, the .NET Remoting system does not automatically start up the
host application whenever a client call is issued. To minimize network traffic, .NET
Remoting assumes that the host application on the server is always up, running, and
listening to the specified port. This is not an issue if you choose IIS as the host, as IIS is
generally up all the time.

If you use a custom host, you must make sure it is running when a call is issued. A
simple, yet effective, host program is shown here:

// MyHost.cs -- compiled to MyHost.exe

using System;

using System.Runtime.Remoting;

public class MyHost

{

 public static void Main()

 {

 RemotingConfiguration.Configure("MyHost.exe.config");

 Console.WriteLine("Press Enter to terminate...");

 Console.ReadLine();

 }

}

The key statement in the preceding code is this:

RemotingConfiguration.Configure("MyHost.exe.config");
The host program reads the given configuration file and organizes itself to listen on the
specified channels and ports for calls directed to the remote object. The configuration
file contains information about the remote class name, the assembly that contains the
class, the required activation mode (Client, Singleton, or SingleCall), and, if needed, the
object URI. Here is the configuration file that fully describes the ServiceSalesProvider
class:

<configuration>

 <system.runtime.remoting>

 <application>

 <service>

 <wellknown mode="SingleCall"

 type="XmlNet.CS.ServiceSalesProvider,
ServiceSalesProvider"

 objectUri="ServiceSalesProvider.rem" />

 </service>

 <channels>

 <channel ref="http" />

 </channels>

 440

 </application>

 </system.runtime.remoting>

</configuration>

We'll look more closely at channels and activation modes in a moment. For now, keep
in mind that the contents of this configuration file tell the host application (whatever it is)
which channels and ports to listen to and the name and the location of the class. In this
example, the host application listens to the HTTP channel, and therefore the port must
be 80.

Predefined Channels
A channel is the element in the .NET Remoting architecture that physically moves bytes
from one endpoint to the other. A channel takes a stream of bytes, creates a package
according to a particular protocol, and routes the package to the final destination across
remoting boundaries. A channel object listens for incoming messages and sends
outbound messages. The messages it handles consist of packets written in accordance
with a variety of network protocols.
The .NET Framework provides two predefined channels, tcp and http, both of which are
bidirectional and work as senders and receivers. The tcp channel uses a binary
formatter to serialize data to a binary stream and transport it to the target object using
TCP through the specified port. The http channel transports messages to and from
remote objects using SOAP and always through port 80. A channel can connect two
AppDomains in the same process as well as two machines over a network.
An object can legitimately decide to listen on both channels. In this case, the
<channels> subtree in the configuration file changes as follows:

<channels>

 <channel ref="http" />

 <channel ref="tcp" port="3412" />

</channels>

A client can select any of the channels registered on the server to communicate with
the remote object. At least one channel must be registered with the remoting system on
the server.

Using IIS as the Remoting Host
If you write your own host application, you can make it as flexible as you need. If you
decide to use IIS as the host, some constraints apply. To use IIS instead of a
handcrafted host as the activation agent, you must first create a virtual directory (say,
SalesReport) and copy the object's assembly in the BIN subdirectory. The configuration
file must have a fixed name—web.config—and must reside in the virtual directory's
root, as shown in Figure 12-4.

 441

Figure 12-4: The SalesReport virtual directory created to make the remotable object
accessible.

If you choose IIS as the activation agent, you must be aware of a few things. IIS can
listen only to the http channel; any other channel you indicate is simply ignored. The
way IIS applies the information read from the web.config file is hard-coded and can't be
programmatically controlled or changed. However, you can create a global.asax file in
the virtual folder, hook the Application_Start event, and then execute some custom
code. In addition, the inevitable use of SOAP as the underlying protocol increases the
average size of network packets.

Note As often happens, the use of IIS as the activation agent has pros
and cons. You don't need to write any extra code, but you lose a bit
in flexibility. Regaining the lost flexibility is still possible, but at the
price of writing nontrivial code. For example, you can write an
Application_Start event handler and apply extra binary formatters at
both ends of the http channel. In this way, the SOAP packets will
contain binary data and you'll save some bytes.

Using IIS as the activation agent is natural when you plan to expose the same remote
service through .NET Remoting and Web services. So let's assume in our example
application that IIS is the activation agent and SalesReport is the virtual directory.

Activation Policies
In addition to the remotable object's identity, channels, and ports, the server
configuration file also contains another important piece of information—the object
activation policy. An MBR remotable object can be either server-activated or client-
activated. Server-activated objects are created by the server only when the client
invokes the first method through the local proxy. Client-activated objects are created on
the server as soon as the client instantiates the object using either the new operator or
methods of the System.Activator class.
In addition, server-activated objects can be declared as Singleton or SingleCall objects.
A Singleton object has exactly one instance to serve all possible clients. A SingleCall
object, on the other hand, requires that each incoming call is served by a new instance
of the remotable object. A remotable object declares its required activation policy in the
configuration file through specific subtrees placed below the <application> node.

Server-Side Activation
Server-activated objects are remotable objects whose entire life cycle is directly
controlled by the host application. Server-activated objects are instantiated on the

 442

server only when the client calls a method on the object. The object is not instantiated if
the client simply calls the new operator or the methods of the System.Activator object.
This policy is slightly more efficient than client-side activation because it saves a
network round-trip for the sole purpose of creating an instance of the target object. In
addition, this approach makes better use of server memory by delaying as much as
possible the object instantiation.
What happens when the client code apparently instantiates the remote object?
Consider the following client-side sample code:

ServiceSalesProvider ssp = new ServiceSalesProvider();

string img = ssp.GetSalesReportBarChart(theYear);

The remoting client treats the remote object as a local object and calls the new operator
on it. The object has been previously registered as a well-known type, so the .NET
Remoting system knows about it. In particular, the .NET Remoting system knows that
any object of type ServiceSalesProvider is just a local proxy for a remote object. When
the client calls new or System.Activator on the well-known type, only the remoting proxy
is created in the client application domain.
The real instantiation of the object will take place on the server at a later time, when a
non-null instance is needed to serve the first method call. Because the constructor is
called implicitly and outside the control of the client, only the default constructor is
supported. This means that if your class has a constructor that takes some arguments,
that constructor is never taken into account by the host application and never used to
create instances of the remotable class.

Note As part of the .NET Framework reflection API, the System.Activator
object provides a CreateInstance method that you can use to create
instances of dynamically determined types. (Instantiating types this
way is a kind of .NET Framework late binding.) Interestingly, this
method supports a nice feature that would have fit well in the .NET
Remoting system too (and hopefully will in a future version). The
CreateInstance method has an overload that takes an array of
object objects. It then uses the size of the array and the actual types
boxed in the various objects to match one of the constructors
declared on the target type. However, maybe for performance
concerns or perhaps just to simplify the feature, the .NET Remoting
infrastructure does not supply this facility.

If you need to publish a remotable type whose instances must be created using a
specific, nondefault constructor, you should resort to client activation.

Well-Known Objects
From the perspective of a .NET Remoting client, server-activated objects are said to be
well-known objects. Well-known objects have two possible working modes: Singleton
and SingleCall. In the former case, one instance of the object services all calls from all
clients. In the latter case, a new instance of the object is created to service each call.
A well-known object declares its working mode using the <wellknown> tag in the
configuration file under the <service> tag, as shown here:

 <service>

 <wellknown mode="SingleCall"

 type="XmlNet.CS.ServiceSalesProvider,
ServiceSalesProvider"

 objectUri="ServiceSalesProvider.rem" />

 443

 </service>

The mode attribute specifies the working mode of the well-known object. Allowed
values are Singleton and SingleCall, defined in the WellKnownObjectMode
enumeration. The type attribute contains two pieces of information. It is a comma-
separated string in which the first token represents the fully qualified name of the
remotable type and the second part of the string points to the assembly in which the
remotable type is defined. You must use the display name of the assembly without the
DLL extension. The assembly must be located either in the global assembly cache
(GAC) or on the server in a location that the host application can reach.

If the host application is a normal console application or a Windows NT service, the
directory of the application's executable is a safe place to store the remotable type's
assembly. Similarly, you can store the assembly in any other path for which the host
application is configured to probe when searching for assemblies. If you use IIS as the
activation agent, all the assemblies needed for the remotable type must be located in
the BIN directory of the host application.

Giving Well-Known Types a URI

A well-known type also needs to be identified by a unique URI. The URI must be unique
for the type and not for the object. This name represents remote objects of a certain
type and is the means by which the client gets a proxy pointing to the specified object.
The server-side remoting infrastructure maintains a list of all published well-known
objects, and the object URI is the key to access this internal table. Well-known objects
must explicitly indicate the URI. For client-activated objects, a unique URI is
transparently generated (and used) for a particular instance of the class.
When an object is hosted in IIS, the objectUri name must have a .soap or .rem
extension, as shown in Figure 12-5. This naming convention enables IIS to recognize
the incoming call as a remoting request that must be routed to a particular handler.

 444

Figure 12-5: The IIS application mapping table for .rem and .soap URIs.

When IIS detects a remoting call, it passes the call to the ad hoc HTTP handler
registered to handle .soap and .rem resources. Although the object URI gives the
impression of being a URL—that is, a true server-side resource—it is only a name and
should in no way correspond to a physical file. Whether the URI should be a string or
the name of a physical resource depends on the expectations of the handler. The
remoting handler uses .soap and .rem URIs as strings to retrieve the proxy for the type.

Singleton Objects
When an object declares itself as a Singleton type, the host application uses only a
single instance of the object to service all incoming calls. So when a call arrives, the
host attempts to locate the running instance of the object. If such an instance exists, the
request for execution is processed. Otherwise, the host creates the unique instance of
the remote class (using the default constructor) and forwards the request to it.
What happens if two requests arrive at the same time? The .NET Remoting subsystem
arranges for them to be automatically serviced by distinct threads. This requires that
Singleton objects be thread-safe. Note that this is not a mandatory programming rule
but is more of a practical guideline for real-world scenarios.
State management for Singleton objects is certainly possible in theory, but it must be
coded in the body of the object in much the same way as you do with Active Server
Pages (ASP) and Microsoft ASP.NET pages and even Web services. The idea is that
you use a shared cache that all clients can access (a sort of ASP.NET Application
object), unless you apply a filter on a per-client basis (a sort of ASP.NET Session
object).
The lifetime of a Singleton well-known object is managed by the .NET Remoting system
through a special module called the lease manager (LM). (See the section "Memory
Management," on page 551, for more information.)

 445

SingleCall Objects
A well-known type declared as a SingleCall object has a new instance of it created
whenever a request arrives. The host application creates a new instance of the
SingleCall object, executes the requested method, and then routes any return values
back to the client. After that, the object goes out of scope and is left to the garbage
collector.
Although it's not completely impossible, preserving state from one call to the next is
realistically a bit impractical for SingleCall objects. In this case, the lifetime of the object
instance is extremely short and barely covers the duration of the method call. You can
try either storing information in a database (or any sort of persistent storage medium) or
parking data in other objects with a different lifetime scheme.

Client-Side Activation
Client-activated objects are instantiated on the client as the result of a call to the new
operator or to the System.Activator object. Each remoting client runs its own copy of the
object and can control it at will. For example, the client can use any of the available
constructors. In addition, persisting the state during the session is straightforward and
does not require any special coding. On the down side, sharing state between clients is
difficult, and to do so, you must resort to a database, a disk file, or any other global
object in the current AppDomain.
The following code snippet shows how to change the contents of the <service> tag to
reflect a client-activated object. Instead of the <wellknown> tag, you use the
<activated> tag. This tag supports only the type attribute. No object URI is necessary
with client-activated objects. More precisely, the URI is still necessary, but because the
activation occurs on the client and at a very specific moment in time, the URI can be
silently generated by the .NET Remoting infrastructure and attached to each call.

<service>

 <activated

 type="XmlNet.CS.ServiceSalesProvider, ServiceSalesProvider"
/>

 </service>

As with Singleton objects, the lifetime of a client-activated object is controlled by the
LM. The instance of the object remains active until the proxy is destroyed.

Choosing the Activation Mode That Fits
Theoretically, all the working modes examined up to now don't affect in any shape or
fashion the way in which you code your remotable classes. For example, a client-
activated object is in no way different from a Singleton object. All options can be set
declaratively and, again speaking theoretically, each object can be configured to work
in different ways simply by changing a few entries in the server's configuration file.
Intriguing as this possibility is, such flexibility is not realistic in practice because a real-
world object might want to exploit in depth the specific features of a working mode. In
other words, you should thoughtfully and carefully choose the configuration options for
your remote object and then stick to that configuration as long as the user's
requirements are stable. For example, if you determine that the Singleton mode is
appropriate for your component, you will probably want to implement an internal state
management engine to share some variables. When at a later time you decide to set
the object to work—say, in SingleCall mode—the state management engine is
somewhat useless.
Let's analyze our ServiceSalesProvider class to determine the most appropriate
options. To begin, the object needs to query a back-end database (Northwind). Even

 446

this little requirement is enough to lead us to discard the option of making the object
available by value. As an MBR object, the remotable class can be client-activated or
server-activated. What's better to us?
The ServiceSalesProvider class doesn't need a nondefault constructor, so both client-
activated and server-activated modes are fine. The object is expected to work as a one-
off service and has no need to maintain per-client state, so you can discard the client-
activated option and go for the server-driven activation. OK, but should you opt for
Singleton or SingleCall ?
SingleCall—that is, a short-lived instance that serves the request and dies—is certainly
an option. If you use the object as a Singleton, however, you can architect slightly more
efficient code and avoid having to query SQL Server each and every time a request
comes in. The remoting code included in this book's sample files makes use of the
ServiceSalesProvider class configured to run as a SingleCall object.

Memory Management
SingleCall objects present no problems in terms of memory management. They require
a new object instance that is extremely volatile and does not survive the end of the
method's code. Singleton and client-activated objects, on the other hand, need a
mechanism to determine when they can be safely destroyed. In COM, this issue was
resolved by implementing reference counting. In the .NET Remoting system, the same
tasks are accomplished using a new module: the LM.

Unlike reference counting, the LM works on a per-AppDomain basis and allows objects
to be released even though clients still hold a reference. Let's quickly review the
differences between these two approaches.

Old-Fashioned Reference Counting

Reference counting requires clients—including, of course, distributed and remote
clients—to communicate with the server each time they connect or disconnect. The
object maintains the number of currently active client instances, and when the count
goes to 0, the object destroys itself.
In the presence of an unreliable network, however, chances are good that some objects
might remain with a reference count that never goes to 0. If this weren't bad enough,
the continual sequence of AddRef/Release calls would generate significant network
traffic.

The Lease Manager (LM)
The idea behind leasing is that each object instance is leased to the client for a given
amount of time fixed by the LM. The lease starts when the object is created. By default,
each Singleton or client-activated object is given 5 minutes to process incoming calls.
When the interval ends, the object is marked for deletion. During the object's lifetime,
however, any processed client call resets the lease time to a fixed value (by default, 2
minutes), thus increasing or decreasing the overall lease time.

Note that leasing is managed exclusively on the server and doesn't require additional
network traffic, apart from the traffic needed for normal method execution. The initial
lease time and the renewal period can be set both programmatically and declaratively
in the configuration file.

Getting a Sponsor
Another mechanism for controlling an object's lifetime is sponsorship. Both clients and
server objects can register with the AppDomain's LM to act as sponsors of a particular
object. Prior to marking an object for deletion when its lease expires, the .NET
Remoting run time gives sponsors a chance to renew the lease. By implementing

 447

sponsors, you can control the lifetime of objects based on logical criteria rather than
strict time intervals.
In summary, nothing can guarantee that clients will always find their server objects up
and running. When a remoting client attempts to access an object that is no longer
available, a RemotingException exception is thrown. One way to resolve the exception
is by creating a new instance of the remote object and repeating the operation that
failed.

Calling a Remote Service

Let's see what a client must do to call a method on a remote object. To begin, add a
project reference to the assembly that contains the remote object by rightclicking
References in Solution Explorer, choosing Add Reference from the shortcut menu, and
traversing the network to locate the target assembly. The project reference lets the
client application know about the types defined in the assembly.

Note Even if your remotable object is hosted by IIS, when you reference

the assembly from a remoting client, choose the Add Reference
option. The Add Web Reference command on the same shortcut
menu is reserved for Web services and, more importantly, starts a
completely different linking procedure. (More on this in Chapter 13.)

Referencing a remote assembly is only the first step to being able to call any of its
methods.

Configuring the Caller

The remote object must be registered with the local application before you can
successfully use it. The .NET Remoting system must be aware that objects of certain
types represent instances of remote objects. In this way, ad hoc code can be generated
to obtain the necessary proxy.
You configure the client application either through a configuration file or
programmatically by calling the RegisterWellKnownClientType method on the static
RemotingConfiguration object, as shown here:

RemotingConfiguration.RegisterWellKnownClientType(

 typeof(ServiceSalesProvider),

"http://www.contoso.com/SalesReport/ServiceSalesProvider.rem");

To register a well-known type, you pass in the type and object URI. If the object is not
server-activated, and therefore is not a well-known object, you use the
RegisterActivatedClientType instead, as follows:

RemotingConfiguration.RegisterActivatedClientType(

 typeof(ServiceSalesProvider),

 "http://www.contoso.com/SalesReport");

In this case, you don't need to pass an explicit object URI. However, you still need to
indicate the remote path for the target object. Because we are working with IIS as the
host, the remote path must be the URL of the virtual directory. If a custom host is used,
instead of the URL, you use a TCP address and the port, as shown here:

RemotingConfiguration.RegisterActivatedClientType(

 448

 typeof(ServiceSalesProvider),

 "tcp://192.345.34.1:8082");

You can also direct the caller application to read setup information from a configuration
file located in the same path as the executable. In this case, the convention is to give
the file the same name as the executable plus a .config extension. You then pass the
file name to the Configure method, as shown here:

RemotingConfiguration.Configure("MyClient.exe.config");

The following script shows the layout of a client configuration
file:

<configuration>

 <system.runtime.remoting>

 <application name="MyClient" >

 <client>

 <wellknown

 type="XmlNet.CS.ServiceSalesProvider,
ServiceSalesProvider"

url="http://server/SalesReport/ServiceSalesProvider.rem" />

 </client>

 <channels>

 <channel ref="http" />

 </channels>

 </application>

 </system.runtime.remoting>

</configuration>

As you can see, the differences between the client and the server-side configuration
files are minimal and are all related to the use of the <client> tag instead of <service>.
The server object publishes the list of supported channels, and based on that list, the
client can decide which channel to use. Note that servers must register at least one
channel. Clients are not required to indicate a channel. If a client doesn't indicate a
channel, the .NET Remoting system uses one of the default channels. On the other
hand, a client that plans to use a given channel must first register with it. The
application can run the channel registration procedure personally or let it run by default
under the control of the RemotingConfiguration object.

Channels are registered on a per-AppDomain basis and must have unique names in
that context. On physical machines, however, only one channel can listen to a given
port. In other words, at any time you can't have more than one channel registered to
work on a given port on a given machine.
A client enabled to make remote calls on a remote object simply creates an instance of
the desired class using the language-specific operator for instantiation—new in C# and
Visual Basic. Alternatively, the client can use the System.Activator object—a managed
counterpart of the VBScript CreateObject and GetObject functions.

 449

Writing the Client Component
Figure 12-6 shows the initial user interface of the client application we'll use to query for
sales reports and bar charts. You select the year of interest and click one of the two
buttons—Get Data to display sales information as a DataSet object, or Get Chart to
display the information as a bar chart saved as a JPEG image. The form contains a
DataGrid control (invisible by default) and a PictureBox control. Needless to say, the
DataGrid object will display the contents of the DataSet object, whereas the PictureBox
object will show the image.

Figure 12-6: The sample application in action, waiting for user input.

Accessing the Raw Data
Once the remote assembly has been referenced by the project and the remote type
configured in the form's Load event, you can write the client application and use the
remote type as if it were a local type. The following code shows what happens when
you click to get raw data:

private void ButtonGetData_Click(object sender, System.EventArgs
e)

{

 // Get the year to process

 int theYear = Convert.ToInt32(Years.Text);

 // Instantiate the object and issue the call

 ServiceSalesProvider ssp = new ServiceSalesProvider();

 DataSet ds = ssp.GetSalesReport(theYear);

 // Turn on and fill the DataGrid control

 // Also and turn off the picture box

 PictureContainer.Visible = false;

 Data.Visible = true;

 Data.DataSource = ds.Tables[0];

 // Update the UI

 Title.Text = "Sales Report for "+ theYear.ToString();

 450

}

The code in boldface demonstrates that, at this point, using the remote object is in no
way different from using any other local, or system, class.
Figure 12-7 shows the sales information displayed in DataSet format.

Figure 12-7: The sample application displaying downloaded sales data in DataSet format.

Accessing BinHex-Encoded Images
Calling the GetSalesReportBarChart method is not all that different from calling the
GetSalesReport method, but more work is needed to make the downloaded data
usable. As mentioned, the GetSalesReportBarChart method draws a bar chart,
converts it to JPEG, encodes the image as a BinHex string, and packs everything into
an XML document. The content of the document is then returned as a string, as shown
here:

ServiceSalesProvider ssp = new ServiceSalesProvider();

string encImage = ssp.GetSalesReportBarChart(theYear);

The next step is transforming the string into a bitmap and displaying it in the PictureBox
control. The following procedure takes the BinHex image description and creates an
equivalent Bitmap object. Because the string is an XML document, an XmlTextReader
object is needed to parse the contents and then decode the BinHex data.

private Bitmap EncodedXmlToBitmap(string encImage)

{

 Bitmap bmp = null;

 // Parse the XML data using a string reader

 StringReader buf = new StringReader(encImage);

 XmlTextReader reader = new XmlTextReader(buf);

 reader.Read();

 reader.MoveToContent();

 // The root node of the document is <jpeg>

 if (reader.LocalName == "jpeg")

 {

 451

 // Get the size of the BinHex data

 int encodedSize =
Convert.ToInt32(reader["Size"].ToString());

 // Read and decode the BinHex data

 byte[] img = new byte[encodedSize];

 reader.ReadBinHex(img, 0, encodedSize);

 // Transform the just read bytes into an Image object

 MemoryStream ms = new MemoryStream();

 ms.Write(img, 0, img.Length);

 bmp = new Bitmap(ms);

 ms.Close();

 reader.Close();

 return bmp;

 }

}

You decode the image data using the ReadBinHex method on the XmlTextReader
class. Next you copy the resultant array of bytes into a temporary memory stream. This
step is necessary because a Bitmap object can't be created directly from an array of
bytes.
Finally, the returned Bitmap object is bound to the PictureBox control in the form, as
shown in the following code:

PictureContainer.SizeMode = PictureBoxSizeMode.StretchImage;

PictureContainer.Image = bmp;

Figure 12-8 shows the results.

Figure 12-8: The sample application displaying an encoded bar chart.

The client can easily create a local copy of the JPEG file. The following code snippet
shows how to proceed:

// img is the array of bytes obtained from ReadBinHex

FileStream fs = new FileStream(fileName, FileMode.Create);

 452

BinaryWriter writer = new BinaryWriter(fs);

writer.Write(img);

writer.Close();

Tip When converting a Bitmap object to JPEG, you can control the
compression ratio to obtain a better image. However, JPEG is not a
compression scheme designed for text and simple figures like bar
charts. In fact, JPEG was originally designed to effectively compress
photographic images. To ensure a better image, you might want to
use the GIF format or control the compression ratio of the final JPEG
image. You can do that by using one of the overloads of the Bitmap
object's Save method.

Using the System.Activator Class
A remoting client can obtain a proxy to make calls to a remote object in two ways: by
using the new operator or by using methods of the System.Activator class. The
Activator class provides two methods—CreateInstance and GetObject. Clients of well-
known objects use GetObject, whereas clients of client-activated objects use
CreateInstance.
GetObject returns a proxy for the well-known type served at the specified URL location,
as shown in the following code. GetObject is a wrapper placed around the global
RemotingServices.Connect method. The proxy is built on the client from the remote
object metadata and exposed to the client application as the original type.

ServiceSalesProvider ssp;

ssp = (ServiceSalesProvider) Activator.GetObject(

 typeof(ServiceSalesProvider),

 "http://www.contoso.com/SalesReport");

From this relatively simple explanation, it should be clear that .NET Remoting is no less
quirky than DCOM, but unlike DCOM, the .NET Framework successfully hides a great
wealth of low-level details.
CreateInstance differs from GetObject in that it actually creates a new remote instance
of the object, as shown here:

// Set the URL of the remote object

object[1] attribs;

attribs[0] = new Activation.UrlAttribute(url);

// Create the instance of the object

ServiceSalesProvider ssp;

ssp = (ServiceSalesProvider) Activator.CreateInstance(

 typeof(ServiceSalesProvider), null, attribs);

Conclusion

The .NET Remoting system enables you to access .NET Framework objects across the
boundaries of AppDomains. It represents the actual implementation of a programming

 453

model designed for interprocess communication. Another facet of this model is .NET
XML Web services. Although .NET XML Web services allow you to expose .NET
Framework objects to any client that can use HTTP, .NET Remoting is optimized for
.NET-to-.NET communication. Communication between the client and the remotable
object can take place using SOAP or binary payloads transported over HTTP or TCP.
.NET Remoting can transfer any serializable CLR types; it is not limited to XML Schema
Definition (XSD) types or complex custom types as rendered by the .NET XML
serializer.

This chapter illustrated the key features of the .NET Remoting system and showed you
how to set up a remotable object that exposes nontrivial functionalities. In particular,
you learned how to expose JPEG images through XML documents. Of course, if the
goal of your distributed system is simply to create and return dynamic images, .NET
Remoting might not be for you. But from a broader standpoint that encompasses Web
services, .NET Remoting not only makes sense, it is also compelling. The example
we've constructed in this chapter has two aims. First, it demonstrates that .NET
Remoting and Web services are just two remoting interfaces and that the same core
class can outfit both. Second, it shows that to come up with truly efficient and effective
code, you must always take the most appropriate route and create specialized code
instead of pursuing the promises of code universality and platform independence.
This chapter covered only the first side of remoting—.NET Remoting for CLR types. In
Chapter 13, we'll look at Web services—a truly interoperable infrastructure ideal for
rolling up your functionalities and making them available to a potentially infinite set of
clients.

Further Reading

Although this chapter touched on all the key aspects of the .NET Remoting technology,
it revealed only the tip of the iceberg. Throughout the chapter, I've noted several
aspects of .NET Remoting whose coverage was simply beyond the scope of a book
about XML. Principal among the resources that cover these topics in more detail is the
MSDN .NET Framework documentation, but many other appropriate resources are also
available.
I mentioned that Windows XP and newer systems boast a modified loader that looks
directly into the source Portable Executable (PE) file to find .NET Framework-specific
metadata. To understand the entire loading process of managed executables in
Windows XP as well as in Windows 2000, I know just one resource: Jeffrey Richter's
excellent book Applied Microsoft .NET Framework Programming (Microsoft Press,
2002).

In the October 2002 issue of MSDN Magazine, you can find an article of mine that, like
this chapter, attempts to explain the ABCs of .NET Remoting. In that article, you'll find a
deeper discussion of architectural aspects—channels, formatters, and sink chains—
than we've covered here.
The internal engine that performs memory management for instances of remote objects
is the lease manager (LM). Jeff Prosise, in Chapter 15 of his book Programming
Microsoft .NET (Microsoft Press, 2002), explains a lot about it.
Finally, if you're just looking for a complete .NET Remoting book, here it is: Microsoft
.NET Remoting, by Scott McLean, James Naftel, and Kim Williams (Microsoft Press,
2002).

 454

Chapter 13: XML Web Services

Overview
The term Web service is relatively new, but the idea behind Web services has been
around for a while. A Web service is an interface-less Web site designed for
programmatic access. This means that instead of invoking URLs representing Web
pages, you invoke URLs that represent methods on remote objects. Similarly, instead
of getting back colorful and animated HTML code, you get back XML Schema Definition
(XSD) data types packed in XML messages. Aside from these higher-level differences,
the underlying models for a Web site and a Web service are the same. In addition, any
security measure you can implement on a Web site can be duplicated in a Web service.
To summarize, the Web service model is just another programming model running on
top of HTTP.

A Web service is a software application that can be accessed over the Web by other
software. Web services are applicable in any type of Web environment, be it Internet,
intranet, or extranet. All you need to locate and access a Web service is a URL. In
theory, a number of Internet-friendly protocols might be working through that URL. In
practice, the protocol for everyday use of Web services is always HTTP.

How is a Web service different from a remote procedure call (RPC) implementation of
distributed interfaces? For the most part, a Web service is an RPC mechanism that
uses the Simple Object Access Protocol (SOAP) to support data interchange. This
general definition represents the gist of a Web service, but it focuses only on the core
behavior. A Web service is more than just a business object available over an HTTP-
accessible network. A number of evolving industry standards are supported today,
including the Universal Description, Discovery, and Integration (UDDI) standard and the
Web Services Description Language (WSDL); others, such as the Web Services
Security (WS-Security) and the Global XML Web Services Architecture (GXA), will be
supported soon. These industry standards contribute to setting up a full and powerful
environment for remote object-oriented access and programming.
In this chapter, we'll look at implementing and programming Web services in the
Microsoft .NET Framework. We'll also take a look at the Web infrastructure that makes
these services available and at the functionalities you can obtain and publish. To
demonstrate the breakthrough that Web services represent in the software industry,
we'll rewrite the .NET Remoting code example from Chapter 12 to make it work as a
Web service. In doing so, we'll also be able to examine the differences between the
.NET Remoting and Web service architectures and determine in which scenarios each
architecture is suitable.

The .NET Framework Infrastructure for Web Services

Although Web services and the .NET Framework were introduced at roughly the same
time, there is no strict dependency between the two, and the presence of one does not
necessarily imply the presence of the other. The .NET Framework is simply one of the
platforms that support Web services and that provide effective tools and system classes
to create and consume Web services. No one person invented Web services, but all the
big players in the IT arena are rapidly adopting and transforming the raw idea of
"software callable by other software" into something that fits their respective
development platforms.

Regardless of how a Web service is created—and whether it is vendor-specific or
platform-specific—the way in which a Web service is exposed to the public is the same.

 455

Any Web service can be imported and incorporated into vendor-specific and platform-
specific solutions, as long as the service adheres to accepted standards, like HTTP,
SOAP, and WSDL, to name a few. Web services guarantee interoperability because
they are based entirely on open standards. By rolling your functionalities into a Web
service, you can expose them to anyone on the Web who speaks HTTP and
understands XML. Of course, for this to happen, some infrastructure that deals with
Web communication and data transportation is still required. No worries, though—this is
just what the major IT players are building into their development platforms.
The primary factor in industry-wide adoption of Web services is SOAP. Although it is a
bit verbose, SOAP offers a standard way to define the method to call and the
arguments to pass. In addition, SOAP exploits a standard, rich, and extensible type
system—the XSD type system. In the .NET Framework, the XSD type system is
extended with a set of .NET Framework classes—the classes that the XML serializer
can handle. (Chapter 11 covers the XML serializer in detail.)

Note Web service clients are not forced to use SOAP as the protocol for
issuing their calls. HTTP-GET and HTTP-POST are effective as
well, and even more compact if you look at the size of the individual
payload. SOAP is not a stand-alone protocol; it simply defines the
XML vocabulary used to express method invocations. The SOAP
payload does need a transportation protocol, however, and usually,
SOAP packets travel over HTTP-POST commands.

The Simple Object Access Protocol (SOAP)

SOAP is a simple, lightweight XML-based protocol for exchanging information on the
Web. SOAP defines a messaging framework that is independent from any application
or transportation protocol. Although, as mentioned, SOAP packets travel mostly as
HTTP-POST commands, SOAP neither mandates nor excludes any network and
transportation protocol.

The most important part of the SOAP specification consists of an envelope for
encapsulating data. The SOAP envelope defines a one-way message and is the atomic
unit of exchange between SOAP senders and receivers. The SOAP specification also
needs a request/response message exchange pattern, although it does not mandate a
specific message pattern. The remaining, optional parts of the SOAP specification are
data encoding rules for representing application-defined data types and a binding
between SOAP and HTTP.

Note Although SOAP is often associated with HTTP alone, it has been

designed according to general principles so that you can use SOAP
in combination with any transportation protocol or mechanism that is
able to transport the SOAP envelope, including SMTP and FTP.

The following code shows a simple SOAP envelope that invokes a GetSalesReport
method on the specified Web server:

POST /salesreport/SalesReportService.asmx HTTP/1.1

Host: expo-star

Content-Type: text/xml; charset=utf-8

Content-Length: length

SOAPAction: "xmlnet/cs/0735618011/GetSalesReport"

<?xml version="1.0" encoding="utf-8"?>

 456

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <GetSalesReport xmlns="xmlnet/cs/0735618011">

 <theYear>int</theYear>

 </GetSalesReport>

 </soap:Body>

</soap:Envelope>

SOAP is not magic—it is a simple XML-based, message-based protocol whose packets
normally travel over HTTP. The Web server must have a special listener ready to catch
incoming calls on port 80. These listeners are integrated with the Web servers, as is the
case with Internet Information Services (IIS).

IIS Support
A .NET Framework Web service is a Microsoft ASP.NET application with an.asmx
extension that is accessed over HTTP. ASP.NET, as a whole, is part of the .NET
Framework that works on top of IIS, taking care of files with special extensions such as
.aspx and .asmx. One of the key components of the ASP.NET infrastructure is the
Internet Server Application Programming Interface (ISAPI) filter that IIS involves when it
gets a call for files with a certain extension. For example, Figure 13-1 shows the
settings in the IIS Configuration Manager that associate .asmx files with a system
module named aspnet_isapi.dll.

Figure 13-1: The IIS mapping between .asmx files and the appropriate ASP.NET ISAPI
filter.

As mentioned, calls for Web services always come through port 80. For .NET
Framework Web services, such calls are always directed to URLs with an .asmx
extension. IIS intercepts these calls and passes all the related packets on to the
registered ASP.NET ISAPI filter (aspnet_isapi.dll). The filter connects to a worker
process named aspnet_wp.exe, which implements the HTTP pipeline that ASP.NET
uses to process Web requests. Both executables are made of ordinary Win32 code.
The ASP.NET layer built atop IIS is shown in Figure 13-2.

 457

Figure 13-2: The ASP.NET architecture to process page and Web service requests.

The connection between the IIS process (the executable named inetinfo.exe) and the
HTTP pipeline (the worker executable named aspnet_wp.exe) is established through a
named pipe—that is, a Win32 mechanism for transferring data over a network. As you'd
expect, a named pipe works just like a pipe: you enter data in one end, and the same
data comes out at the other end. Pipes can be established both locally to connect
processes and between remote machines.
After the ASP.NET worker process receives a request, it routes that request through
the .NET Framework HTTP pipeline. The entry point of the pipeline is the HttpRuntime
class. This class is responsible for packaging the HTTP context for the request, which
is nothing more than familiar Active Server Pages (ASP) objects such as Request,
Response, Server, and the like. These objects are packed into an instance of the
HttpContext class, and then a .NET Framework application is started.

The WebService Class
In the .NET Framework, a Web service is an ordinary class with public and protected
methods. The Web service class is normally placed in a source file that is saved with an
.asmx extension. Web service files must contain the @ WebService directive that
informs the ASP.NET run time about the nature of the file, the language in use
throughout, and the main class that implements the service, as shown here:

<%@ WebService Language="C#" Class="MyWebServiceClass" %>
The Language attribute can be set to C#, VB, or JS. The main class must match the
name declared in the Class attribute and must be public, as shown here:

 458

public class MyWebService : WebService

{

 ⋮
}

Indicating the base class for a .NET Framework Web service is not mandatory. A Web
service can also be architected starting from the ground up using a new class.
Inheriting the behavior of the WebService class has some advantages, however. A
Web service based on the System.Web.Services.WebService class has direct access
to common ASP.NET objects, including Application, Request, Cache, Session, and
Server. These objects are packed into an HttpContext object, which also includes the
time when the request was made. If you don't have any need to access the ASP.NET
object model, you can do without the WebService class and simply implement the Web
service as a class with public methods. With the WebService base class, however, a
Web service also has access to the ASP.NET server User object, which can be used to
verify the credentials of the current user executing the method.

Note The Class attribute is normally set to a class residing in the same
file as the @ WebService directive, but nothing prevents you from
specifying a class within a separate assembly. In such cases, the
entire Web service file consists of a single line of code:
<%@ WebService Language="C#"
Class="MyWebService,MyAssembly" %>

The actual implementation is contained in the specified class, and
the assembly that contains the class must be placed in the Bin
subdirectory of the virtual folder where the Web service resides.

The @ WebService directive supports two additional attributes: Debug and
CodeBehind. The former is a Boolean property that indicates whether the Web service
should be compiled with debug symbols. The latter specifies the source file that
contains the class implementing the Web service when the class is neither located in
the same file nor resident in a separate assembly.

The WebService Attribute
The WebService attribute is optional and does not affect the activity of the Web service
class in terms of what is published and executed. The WebService attribute is
represented by an instance of the WebServiceAttribute class and enables you to
change three default settings for the Web service: the namespace, the name, and the
description.
The syntax for configuring the WebService attribute is declarative and somewhat self-
explanatory. Within the body of the WebService attribute, you simply insert a comma-
separated list of names and values, as shown in the following code. The keyword
Description identifies the description of the Web service, whereas Name points to the
official name of the Web service.

[WebService(

 Name="Northwind Sales Report Web Service",

 Description="The Northwind Sales Report Web Service")]

public class SalesReportWebService : WebService

{

⋮

 459

}

Changing the name and description of the Web service is mostly a matter of
consistency. The .NET Framework assumes that the name of the implementing class is
also the name of the Web service; no default description is provided. The Name
attribute is used to identify the service in the WSDL text that explains the behavior of
the service to prospective clients. The description is not used in the companion WSDL
text; it is retrieved and displayed by the IIS default page only for URLs with an .asmx
extension.

Changing the Default Namespace
Each Web service should have a unique namespace that makes it clearly
distinguishable from other services. By default, the .NET Framework gives each new
Web service the same default namespace: http://tempuri.org. This namespace comes
with the strong recommendation to change it as soon as possible and certainly prior to
publishing the service on the Web.

Note Using a temporary name does not affect the overall functionality, but
it will affect consistency and violate Web service naming
conventions. Although most namespace names out there look like
URLs, you don't need to use real URLs. A name that you're
reasonably certain is unique will suffice.

The only way to change the default namespace of a .NET Framework Web service is
by setting the Namespace property of the WebService attribute, as shown in following
code. This example uses a custom path that merges the namespace of the class
providing the sample service with the ISBN of this book.

[WebService(

 Namespace="xmlnet/cs/0735618011",

 Name="Northwind Sales Report Web Service",

 Description="The Northwind Sales Report Web Service")]

The namespace information is used extensively in the WSDL definition of the Web
service.

Building a .NET Web Service

As mentioned, a Web service is a class that optionally inherits from WebService. As
such, the class can implement any number of interfaces and, as long as you don't need
to directly access common ASP.NET objects, can also inherit from any other .NET
Framework or user-defined class. The definition of the class must necessarily be coded
in an .asmx file. The file is made available to potential clients through a Web server
virtual directory and is accessed through a URL. Any client that can issue HTTP
commands can connect to the Web service unless security settings restrict the client's
access to the service.

What happens after a client points to the URL is the focus of the rest of this chapter.
Let's start by analyzing the internal structure of the Web service class.

Exposing Web Methods
Unlike the .NET Framework remotable classes described in Chapter 12, in a Web
service class, public methods are not automatically exposed to the public. To be

 460

effectively exposed over the Web, a Web service method requires a special attribute in
addition to being declared as public. Only methods marked with the WebMethod
attribute gain the level of visibility sufficient to make them available over the Web.

The WebMethod Attribute
In practice, the WebMethod attribute represents a member modifier similar to public,
protected, or internal. Only public methods are affected by WebMethod, and the
attribute is effective only to callers invoking the class over the Web. This characteristic
increases the overall flexibility of the class design. A software component allowed to
instantiate the Web service class sees all the public methods and does not necessarily
recognize the service as a Web service. However, when the same component is
invoked as part of a Web service, the IIS and ASP.NET infrastructure ensure that
external callers can see only methods marked with the WebMethod attribute. Any
attempt to invoke untagged methods via a URL results in a failure.
The WebMethod attribute features several properties that you can use to adjust the
behavior of the method. Table 13-1 lists the properties.

Table 13-1: Properties of the WebMethod Attribute

Property Description

BufferResponse Set to true by default, this property indicates that the
IIS run time should buffer the method's entire response
before sending it to the client. Even if set to false, the
response is partially buffered; however, in this case,
the size of the buffer is limited to 16 KB.

CacheDuration Specifies the number of seconds that the IIS run time
should cache the response of the method. This
information is useful when you can foresee that the
method will handle several calls in a short period of
time. Set to 0 by default (meaning no caching), the
caching engine is smart enough to recognize and
cache page invocations that use different parameter
values.

Description Provides the description for the method. The value of
the property is then embedded into the WSDL
description of the service.

EnableSession Set to false by default, this property makes available to
the method the Session object of the ASP.NET
environment. Depending on how Session is
configured, using this property might require cookie
support on the client or a Microsoft SQL Server 2000
installation on the server.

MessageName Allows you to provide a publicly callable name for the
method. When you set this property, the resulting
SOAP messages for the method target the name you
set instead of the actual name. Use this property to
give distinct names to overloaded methods in the
event that you use the same class as part of the
middle tier and a Web service.

TransactionOption Specifies the level of COM+ transactional support you
want for the method. A Web service method can have
only two behaviors, regardless of the value assigned

 461

Table 13-1: Properties of the WebMethod Attribute

Property Description

to the standard TransactionOption enumeration you
select: either it does not require a transaction or it must
be the root of a new transaction.

The following code snippet shows how to set a few method attributes:

[WebService(

 Namespace="xmlnet/cs/0735618011",

 Name="Northwind Sales Report Web Service",

 Description="The Northwind Sales Report Web Service")]

public class SalesReportWebService : WebService

{

 [WebMethod(CacheDuration=60,

 Description="Returns sales for the specified year")]

 public DataSet GetSalesReport(int theYear)

 {

 ⋮
 }

Don't be fooled by appearances: attributes must be strongly typed in the declaration. In
other words, the value you assign to CacheDuration must be a true number and not a
quoted string containing a number. This is a general rule for attributes in the .NET
Framework—not a peculiarity of Web services.

Transactional Methods

The behavior of a Web service method in the COM+ environment deserves a bit of
attention. The inherent reliance of Web services on HTTP inevitably prevents them from
being enlisted in running transactions; in the case of a rollback, it would be difficult to
track and cancel performed operations. For this reason, a Web method can do either of
two things: it can work in nontransacted mode, or it can start a nondistributed
transaction.
For consistency, the TransactionOption property of the WebMethod attribute takes
values from the .NET Framework's TransactionOption enumeration. The behavior of
some of the values in this enumeration, however, is different from what their names
suggest. In particular, the Disabled, NotSupported, and Supported values from the
TransactionOption enumeration always cause the method to execute without a
transaction. Both Required and RequiresNew, on the other hand, create a new
transaction.

Note When a transactional method throws an exception or an externally
thrown exception is not handled, the transaction automatically
aborts. If no exceptions occur, the transaction automatically
commits at the end of the method being called.

 462

Format of SOAP Messages for a Web Method
Although SOAP dictates that the messages being exchanged between the Web service
and its clients must be in XML, it says nothing about the actual schema of the XML. The
.NET Framework provides an attribute-based mechanism to let you control the format
of the XML packed in the SOAP message. To customize the structure of a SOAP
message, you can intervene in two places: you can modify the layout of the information
being packed beneath the <soap:body> tag, and you can change the way in which
parameter values are formatted.
The options available for formatting the body of the message are RPC and Document;
the latter is the default format for the .NET Framework. The Document style refers to
formatting the body of the method call according to an XSD schema. Typically, the body
is given by a sequence of message parts whose actual syntax is specified by other
properties such as Use and ParameterStyle. The RPC style formats the body of the
SOAP message according to the formatting rules outlined in the SOAP specification,
section 7.
The SoapDocumentMethod and the SoapRpcMethod attributes apply to an individual
method. If you want the same attributes to apply to all methods in the Web service, use
the SoapDocumentService and SoapRpcService attributes with the same syntax.

The SoapDocumentMethod Attribute
As mentioned, the Document body style is set by default. If you need to change some
of its default settings, you can use the SoapDocumentMethod attribute implemented in
the SoapDocumentMethodAttribute attribute class. The Use property of the attribute
specifies whether parameters are formatted in the Encoded or Literal style. (Both
values come from the SoapBindingUse enumeration.)
The Literal flag formats parameters using a predefined XSD schema for each
parameter, whereas Encoded encodes all message parts using the encoding rules set
in the SOAP specification, section 5. Literal is the default option.
The ParameterStyle specifies whether the parameters are encapsulated within a single
message part following the <soap:body> element or whether each parameter is an
individual message part. The second option is the default. To encapsulate the
parameters, set the ParameterStyle attribute to SoapParameterStyle.Wrapped.

The following code snippet attempts to return a string encoded in a SOAP message
instead of described by an XSD document:

[WebMethod(CacheDuration=60)]

[SoapDocumentMethod(Use=SoapBindingUse.Encoded)]

public string GetSalesReportBarChart(int theYear)

{

⋮
}

This script represents the SOAP request message for the method when the request is
SOAP-encoded:

POST /salesreport/SalesReportService.asmx HTTP/1.1

Host: expo-star

Content-Type: text/xml; charset=utf-8

Content-Length: length

SOAPAction: "xmlnet/cs/0735618011/GetSalesReportBarChart"

 463

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:tns="xmlnet/cs/0735618011"

 xmlns:types="xmlnet/cs/0735618011/encodedTypes"

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body

soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <types:GetSalesReportBarChart

 xsi:type="types:GetSalesReportBarChart">

 <theYear xsi:type="xsd:int">int</theYear>

 </types:GetSalesReportBarChart>

 </soap:Body>

</soap:Envelope>

The default request for the same method is shown here:

POST /salesreport/SalesReportService.asmx HTTP/1.1

Host: expo-star

Content-Type: text/xml; charset=utf-8

Content-Length: length

SOAPAction: "xmlnet/cs/0735618011/GetSalesReportBarChart"

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body>

 <GetSalesReportBarChart xmlns="xmlnet/cs/0735618011">

 <theYear>int</theYear>

 </GetSalesReportBarChart>

 </soap:Body>

</soap:Envelope>

Caution The DataSet object can't be used with a Web service method if
the parameters for the method are SOAP-encoded. This means
that you can't use the SoapRpcMethod attribute with the method.
In addition, when you use the default SoapDocumentMethod
attribute, be sure that the Use property is set to
SoapBindingUse.Literal.

 464

The SoapRpcMethod Attribute
The RPC format is expressed by the SoapRpcMethod attribute and specifies that all
parameters are encapsulated within a single XML element named after the Web service
method, as shown in the following code. The RPC style does not support the Literal
binding mode; only the SOAP-encoded binding mode (Encoded) is accepted.

POST /salesreport/SalesReportService.asmx HTTP/1.1

Host: expo-star

Content-Type: text/xml; charset=utf-8

Content-Length: length

SOAPAction: "xmlnet/cs/0735618011/GetSalesReportBarChart"

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:tns="xmlnet/cs/0735618011"

 xmlns:types="xmlnet/cs/0735618011/encodedTypes"

 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Body

soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <tns:GetSalesReportBarChart>

 <theYear xsi:type="xsd:int">int</theYear>

 </tns:GetSalesReportBarChart>

 </soap:Body>

</soap:Envelope>

You must include the System.Web.Services.Protocols and
System.Web.Services.Description namespaces in the Web service source to use
SOAP formatting attributes.

Note Web service methods in which the OneWay property of either the
SoapRpcMethod attribute or the SoapDocumentMethod attribute is
set to true do not have access to ASP.NET objects packed in the
HttpContext object. References to these objects are still allowed,
but null is always returned.

The Sales Report Web Service
To see a concrete example of a Web service, let's transform the remote service created
in Chapter 12 into a Web service. The Web service class makes externally available a
group of functions nearly identical to that of the .NET Remoting component. In doing so,
it also uses the same internal class, thus demonstrating a true reuse of code.

 465

The SalesReportService.asmx file is located in the same virtual folder as the remote
object. The following code shows the implementation of the Sales Report Web service.
The main class is named SalesReportWebService.

<%@ WebService Language="C#" Class="SalesReportWebService" %>

<%@ Assembly Name="SalesDataProvider" %>

using System;

using System.Web.Services;

using System.Data;

using System.Data.SqlClient;

using XmlNet.CS;

[WebService(

 Namespace="xmlnet/cs/0735618011",

 Name="Northwind Sales Report Web Service",

 Description="The Northwind Sales Report Web Service")]

public class SalesReportWebService

{

 [WebMethod(CacheDuration=60)]

 public DataSet GetSalesReport(int theYear)

 {

 SalesDataProvider m_dataManager;

 m_dataManager = new SalesDataProvider();

 DataSet ds = new DataSet();

 ds.Tables.Add(m_dataManager.GetSalesReport(theYear));

 return ds;

 }

 [WebMethod(CacheDuration=120)]

 public string GetSalesReportBarChart(int theYear)

 {

 SalesDataProvider m_dataManager;

 m_dataManager = new SalesDataProvider();

 return m_dataManager.GetSalesReportBarChart(theYear);

 }

}

The class features two methods—GetSalesReportBarChart and GetSalesReport—that
are simply wrappers around the same methods of the SalesDataProvider class. As we
saw in Chapter 12, the SalesDataProvider class provides the implementation of
business logic, including the code necessary to draw graphics.

 466

If you compare this code with the remotable object in Chapter 12, you can't help but
notice a close resemblance. For the most part, this similarity depends on the use of an
intermediate, common class. Just this fact proves the extreme flexibility of the .NET
Framework. Rolling your own functionalities into an interface-less Web site is just one
side of a coin that has on its other side .NET Remoting accessibility. Later in this
chapter, after we finish our implementation of a Web service, we'll complete the
comparison between .NET Remoting and Web services. Figure 13-3 shows the typical
user interface that IIS and ASP.NET provide for Web services, mostly for testing
purposes.

Figure 13-3: The standard user interface for .NET Framework Web services.

If you test the Web service using a Netscape browser, you might get a slightly different
user interface, depending on the version of the browser and the level of support it
provides for cascading style sheets (CSS). Also bear in mind that the Web service
console shown in Figure 13-3 assumes that your client machine has a program
registered to handle XML files. The response of the method is saved to a local XML file
that is then displayed through the registered program. On many Microsoft Windows
machines, the default handler of XML files is Internet Explorer.
Figure 13-4 shows what happens when you test the GetSalesReport method with the
default (and test-only) user interface.

 467

Figure 13-4: Testing the GetSalesReport Web method.

Under the Hood of a Web Method Call
Any call made to a Web service method is resolved by an HTTP handler module tailor-
made for Web services. In the ASP.NET and IIS architectures, an HTTP handler is a
Web server extension that handles all the URLs of a certain type. Once the incoming
call has been recognized as a Web service call, an instance of the
WebServiceHandlerFactory class is created. The just-created object compiles the Web
service class into an assembly (only the first time). Next the Web service factory class
analyzes the request bits and parses the contents of the messages (probably, but not
necessarily, a SOAP payload). If successful, the request is transformed into method
information. An ad hoc data structure contains information such as the name of the
method, the list of formal and actual parameters, whether the method is void, and the
returned type.
The method information is then passed to a call handler that will actually take care of
executing the method. According to the information specified in the request, the call
handler can contain context information (for example, Session) and work either
synchronously or asynchronously. Finally, the server object is instantiated, the method
is invoked, and the return value is written to the output stream. Figure 13-5 illustrates
the process.

 468

Figure 13-5: Processing a Web service call.

Setting Caching Properties
As mentioned, the CacheDuration property of the WebMethodAttribute class sets the
length of time in seconds that the Web service should cache the page output. This
feature demonstrates once again the tight integration between Web services and the
ASP.NET run-time infrastructure. The CacheDuration property is implemented using
the ASP.NET Cache object. Just before instantiating the server object, the Web service
handler configures the Cache object. In particular, the Web service handler sets the
cache to work on the server, as shown here:

Response.Cache.SetCacheability(HttpCacheability.Server);

In addition, the Web service handler sets the expiration time and configures the caching
subsystem for parametric output, as follows:

Response.Cache.VaryByHeaders["SOAPAction"] = true;

Response.Cache.VaryByParams["*"] = true;

 469

The VaryByHeaders property enables you to cache multiple versions of a page,
depending on the value of the HTTP header (or headers) you specify—in this example,
the header value is SOAPAction. The VaryByParams property, on the other hand, lets
you maintain different caches for each set of distinct values of the specified parameters.
In this case, using the asterisk (*) indicates that all parameters must be considered
when caching a page.

Note Under certain conditions, the CacheDurationattribute can constitute
a significant improvement for your Web services. Ideally, you might
want to set this attribute when your method returns a large amount
of data (for example, a DataSet object) but receives quite a few
requests distributed throughout the day. The caching mechanism—
the same mechanism available to all ASP.NET applications—lets
you distinguish cached copies of the output that are also based on
parameters. Under these circumstances, generating a new data set
every time the method is called isn't efficient—unless, of course,
user requirements mandate that you return fresh data. The
advantage in performance can be relevant and significant. In my
experimentation, I was able to get response times up to 8 times
faster, with 2 or 3 times faster being the average.

The Role of the XML Serializer
As shown in Figure 13-5, the return value of the method call is packed as XML using
the XML serializer that we saw in action in Chapter 11. The following script represents
the pseudocode that creates the response for a Web service method:

Response.ContentType = ContentType.Compose("text/xml",

 Encoding.UTF8Encoding);

ser.Serialize(outputStream, returnValue);

The XML serializer can't process all .NET Framework types. Remember, the XML
serializer doesn't work with types that have circular references and only packs public
and read/write members. The XML serializer doesn't ensure type fidelity but simply an
effective XSD (or SOAP-encoded) representation of the data.

Note A Web service can't return an ADO.NET object other than the

DataSet object for the simple reason that the XmlSerializer class
doesn't know how to handle them. On the other hand, XmlSerializer
can normally handle arrays of primitive objects, and this can help
when you're creating workarounds for returning complex data like
that stored in many ADO.NET objects.

Disabling HTTP-POST and HTTP-GET
As we'll see in more detail in the section "Invoking a Web Service Through Script," on
page 586, you can invoke a Web service method using a SOAP message as well as a
plain HTTP-POST or HTTP-GET command. The latter two protocols have been
introduced to make accessing a Web service easier than ever. However, leaving the
Web service door open to HTTP packets can constitute a potential security hole.
If you want to disable the HTTP-POST and HTTP-GET support on a machine-wide
basis, do as follows. First locate the machine.config file (more on configuration files in
Chapter 15) in the local system. The file is normally located in the config subdirectory of
the .NET Framework installation path. A typical path is shown here:

c:\winnt\microsoft.net\framework\v1.0.3705\config\machine.config

 470

The machine.config file is an XML file that contains a
<webServices> section similar to the following:

<webServices>

 <protocols>

 <add name="HttpSoap"/>

 <add name="HttpPost"/>

 <add name="HttpGet"/>

 <add name="Documentation"/>

 </protocols>

 ⋮

To disable HTTP-POST and HTTP-GET support for all Web services on the server,
simply comment out the lines corresponding to "HttpPost" and "HttpGet". You can also
disable HTTP-POST and HTTP-GET support on a perservice basis. In this case, do not
enter any changes in the machine.config file; instead, create a web.config file in your
Web service's virtual directory and add the following XML to the file:

<configuration>

 <system.web>

 <webServices>

 <protocols>

 <remove name="HttpPost" />

 <remove name="HttpGet" />

 </protocols>

 </webServices>

 ⋮
 </system.web>

 ⋮
</configuration>

Note If you open up the machine.config file and look in the
<webServices> section, you can't help but notice the special
Documentation protocol. This protocol is the key that enables the
ASP.NET run time to deliver a help page, such as the one shown in
Figure 13-3, when you point your browser to an .asmx resource.
The default help page is generated by a file named
DefaultWsdlHelpGenerator.aspx, which is located in the same folder
as machine.config. The page is modifiable, but if you need to enter
changes, I'd recommend that you create and register your own
generator page. The generator page can be changed with the
following configuration code:
 <webServices>
 <wsdlHelpGenerator href="YourGeneratorPage.aspx"/>
 </webServices>

Of course, the help page can be customized for all Web services by
adding the preceding code to maching.config, or it can be
customized for a particular Web service by adding the code to the

 471

service's web.config file.

Building a .NET Framework Web Service Client

Whether you use Microsoft Visual Studio .NET or a simple text editor to code the .asmx
file, writing Web services using the .NET Framework is definitely an easy task. And as
you'll see, writing client applications to use those services is even easier.
You can call a Web service through a URL using either the HTTP-GET or the HTTP-
POST command. You can do that also from within an ASP.NET page using the
WebRequest .NET Framework class. From within Visual Studio .NET, referencing a
Web service is nearly identical to adding a reference to another assembly. What you
get is a proxy class through which your Windows Forms or Web Forms application can
reach its URL across port 80, just like a user's browser. In doing so, firewall problems
disappear and HTTP on top of Secure Sockets Layer (SSL) or any other form of
encryption can be used to transfer data.

Connecting to a Web service is similar to connecting to a .NET Framework remotable
object in that in both cases you end up using a proxy class. The big difference is in the
characteristics of the proxy. The .NET Remoting proxy is a dynamically created object
that works transparently under the hood of the remote object instance. The client has
the impression that it is working with a local object that silently posts all calls to the
remote object.

The Web service proxy is a statically created class that must be compiled and linked to
the project. The .NET Framework provides a tool to generate such a class. This tool,
named wsdl.exe, takes the Web service WSDL script and generates a Microsoft Visual
Basic .NET or a C# class (the default) that mirrors methods for synchronous and
asynchronous calls. From the client perspective, calling into the proxy class is a local
call. Each call, however, results in a roundtrip to the server. The following command
line generates the C# proxy for the previously written Web service:

wsdl.exe http://server/salesreport/salesreportservice.asmx?wsdl

The wsdl.exe utility is part of the .NET Framework SDK, and among its other options, it
allows you to specify the protocol for the call and the language for the source code. The
utility is also silently invoked by Visual Studio .NET when you reference a Web service
using the Add Web Reference menu command in Solution Explorer.

The Proxy Class
The proxy class generated for a Web service is added to the project and is in effect a
local class. The difference in the remoting architecture is that .NET Remoting uses a
dynamically generated class whose method information is hard-coded in the object
information being marshaled—the ObjRef object. With a Web service, there is no
dynamic class creation. The following source code represents the proxy for the Sales
Report Web Service:

using System;

using System.Xml.Serialization;

using System.Web.Services.Protocols;

using System.Web.Services;

[System.Web.Services.WebServiceBindingAttribute(

 Name="Northwind Sales Report Web ServiceSoap",

 472

 Namespace="xmlnet/cs/0735618011")]

public class NorthwindSalesReportWebService :

 SoapHttpClientProtocol

{

 public NorthwindSalesReportWebService()

 {

 // Feel free to change this URL

 this.Url =

 "http://expo-
star/salesreport/salesreportservice.asmx";

 }

[SoapDocumentMethodAttribute("xmlnet/cs/0735618011/GetSalesRepor
t",

 RequestNamespace="xmlnet/cs/0735618011",

 ResponseNamespace="xmlnet/cs/0735618011",

 Use=SoapBindingUse.Literal,

 ParameterStyle=SoapParameterStyle.Wrapped)]

 public DataSet GetSalesReport(int theYear)

 {

 object[] results = Invoke("GetSalesReport",

 new object[] {theYear});

 return ((DataSet)(results[0]));

 }

 public IAsyncResult BeginGetSalesReport(int theYear,

 AsyncCallback callback, object asyncState)

 {

 return BeginInvoke("GetSalesReport", new object[] {

 theYear}, callback, asyncState);

 }

 public DataSet EndGetSalesReport(IAsyncResult asyncResult)

 {

 object[] results = EndInvoke(asyncResult);

 return ((DataSet)(results[0]));

 }

 [SoapDocumentMethodAttribute(

 "xmlnet/cs/073561801/GetSalesReportBarChart",

 RequestNamespace="xmlnet/cs/0735618011",

 473

 ResponseNamespace="xmlnet/cs/0735618011",

 Use=SoapBindingUse.Literal,

 ParameterStyle=SoapParameterStyle.Wrapped)]

 public string GetSalesReportBarChart(int theYear)

 {

 object[] results = Invoke("GetSalesReportBarChart",

 new object[] {theYear});

 return ((string)(results[0]));

 }

 public IAsyncResult BeginGetSalesReportBarChart(int
theYear,

 AsyncCallback callback, object asyncState)

 {

 return BeginInvoke("GetSalesReportBarChart",

 new object[] {theYear}, callback, asyncState);

 }

 public string EndGetSalesReportBarChart(IAsyncResult
asyncResult)

 {

 object[] results = EndInvoke(asyncResult);

 return ((string)(results[0]));

 }

}

In addition to the class constructor, the proxy contains a public method for each Web
method defined on the Web service. The proxy also provides a pair of Begin and End
members for each Web method; these members are used to set up asynchronous calls.

Note This proxy class uses the SoapDocumentMethod attribute. Up to
now, we've used the SoapDocumentMethod and SoapRpcMethod
attributes for server files. One thing developers often miss is that the
SOAP-related settings you use on the server must be repeated on
the client. Normally, the wsdl.exe utility takes care of this for
formatting attributes. However, if you use SOAP extensions, you
have to assign the same attributes to the proxy class manually—in
addition, of course, to making the necessary assemblies available
on the client.

Changing the Web Service Reference
The proxy constructor sets the Url property of the proxy class to the original URL of the
Web service. The value of the property can be changed at design time and even
programmatically. The Url property is inherited from the base class
WebClientProtocol—one of the proxy's ancestors.

 474

In situations in which the URL can't be determined unequivocally or might change on a
per-user basis or because of other run-time factors, you can ask the wsdl.exe utility not
to hard-code the URL in the source. By using the /urlkey command-line switch, you
instruct the utility to dynamically read the Web service URL from the application's
configuration file. If you use a switch such as /urlkey:ActualUrl, the proxy class
constructor changes as follows:

using System.Configuration;

⋮
public NorthwindInfoService()

{

 String urlSetting =
ConfigurationSettings.AppSettings["ActualUrl"];

 if ((urlSetting != null))

 this.Url = urlSetting;

 else // Defaults to the URL used to build the proxy

 this.Url =
"http://server/salesreport/salesreportservice.asmx";

}

ConfigurationSettings.AppSettings is a special property that provides access to the
application settings defined in the <appSettings> section of the configuration file.
Configuration files are XML files that allow you to change settings without recompiling
the application. Configuration files also allow administrators to apply security and
restriction policies that affect how applications run on various machines. (We'll cover
configuration files in Chapter 15.)

The name and location of the configuration file depends on the nature of the
application. For ASP.NET pages and Web services, the file is named web.config and is
located in the root directory of the application. You can also have other web.config files
located in child directories. Child configuration files inherit the settings defined in
configuration files located in parent directories. For Windows Forms applications, the
configuration file takes the name of the executable plus a .config extension. Such a file
must be resident in the same folder as the main executable.

Issuing Calls to the Web Service

Once a client application is linked to the Web service, it simply creates a new instance
of the proxy class and calls its methods. Consider that calling into a Web service is a
potentially lengthy operation that might take a few seconds to complete. If you find that
the method call is too long, go for an asynchronous call.
This book's sample files include a Windows Forms application that uses the Web
service proxy to get data from the site. Surprisingly enough, the code is nearly identical
to the related application we built in Chapter 12 as a remoting client. (See the following
listing.) The key difference is in the name of the class to call. In addition, with a Web
service you don't need to initialize the class in the form's Load event because the proxy
class is statically linked to the project.

NorthwindSalesReportWebService service;

service = new NorthwindSalesReportWebService();

string img = service.GetSalesReportBarChart(theYear);

 475

Figure 13-6 shows the Windows Forms client in action.

Figure 13-6: A Windows Forms Web service client in action.

Invoking a Web Service Through Script

A Web service is always invoked by using an ordinary HTTP packet that contains
information about the method to call and the arguments to use. This HTTP packet
reaches the Web server by traveling as a GET or POST command. You can invoke a
Web service method using one of these commands:

 A POST command that embeds a SOAP request
 A POST command that specifies the method name and parameters
 A GET command whose URL contains the method name and parameters

To invoke a method in a Web service, SOAP is not strictly necessary. You can use
GET or POST commands, which results in a more compact body. However, the
benefits of using SOAP become clearer as the complexity of data increases. GET and
POST commands support primitive types, including arrays and enumerations. SOAP,
on the other hand, relies on a portable and more complex type system based on XML
schemas. In addition, in the .NET Framework, Web services also support classes that
the XML serializer can handle.

A Windows Script Host Example
To give you a practical demonstration of how Web services are really just HTTP-
accessible software agents, let's write a Windows Script Host (WSH) script that allows
plain Microsoft Visual Basic, Scripting Edition (VBScript) code to download information
from a remote server. To send HTTP commands from VBScript code, we'll use the
Microsoft.XmlHttp object—a native component of Microsoft Internet Explorer 5.0 and
MSXML 3.0 and later versions. The following script calls the method GetSalesReport by
using a GET command:

Const HOST = "http://expo-star/"

Const URL = "salesreport/salesreportservice.asmx/"

 476

Const TheYear = 1997

' Create the HTTP object

Set xmlhttp = CreateObject("Microsoft.XMLHTTP")

xmlhttp.open "GET", _

 HOST & URL & "GetSalesReport?TheYear="& TheYear, _

 False

' Send the request synchronously

xmlhttp.send ""

' Store the results in a file named RAW_OUTPUT.XML

Set fso = CreateObject("Scripting.FileSystemObject")

Set f = fso.CreateTextFile("raw_output.xml")

f.Write xmlhttp.responseText

f.Close

The resultant XML string—the body of the response—is stored in a local XML file.

Extracting a JPEG Image from the XML Output

We've now built a Web service that returns JPEG images, BinHex-encoded and packed
in an XML string. Let's see how to get the image and save it locally as a distinct JPEG
file. And because we used a GET command in our previous example, we'll use a POST
command this time.

With POST commands, you have to use a URL without parameters and store the
parameter information in the body of the message, as shown in the following code. In
addition, you must indicate the content type of the message.

Const HOST = "http://expo-star/"

Const URL = "salesreport/salesreportservice.asmx/"

Const TheYear = 1997

' Create the HTTP object

Set xmlhttp = CreateObject("Microsoft.XMLHTTP")

xmlhttp.open "POST", _

 HOST & URL & "GetSalesReportBarChart", _

 False

' Set the Content-Type header to the specified value

xmlhttp.setRequestHeader "Content-Type", _

 "application/x-www-form-urlencoded"

' Send the request synchronously

xmlhttp.send "TheYear="& TheYear

 477

' Get the results as a XMLDOM

Set xmldoc = xmlhttp.responseXml

' Extract the XML-based image description from the response

img = xmldoc.text

' Store the results in a file named RAW_OUTPUT.XML

Set fso = CreateObject("Scripting.FileSystemObject")

Set f = fso.CreateTextFile("raw_output.xml")

f.Write img

f.Close

' Extract the JPEG image from raw output

Set shell = CreateObject("WScript.Shell")

shell.Run "jpegextractor.exe raw_output.xml image.jpg"

This script first invokes the method and gets the results as an XML Document Object
Model (XML DOM) object. The inner text of the document is saved to a local variable
and then to a temporary file (raw_output.xml). Finally, a small managed utility
(jpegextractor.exe) parses the XML stream, extracts and decodes the JPEG bits, and
saves them to a file. The result is a JPEG file representing the sales report for the year
you specify.

Note The jpegextractor.exe utility is available as source code in this

book's sample files, along with the Web service, the scripts, and the
client applications discussed in this chapter.

.NET Remoting vs. Web Services

Web services were designed to overcome a few Web architecture problems—
particularly in the area of component interoperability. Web services are key tools for
accessing otherwise inaccessible functionalities exposed over heterogeneous hardware
and software platforms.

If we stopped our analysis here, the conclusion would be rather obvious: Web services
are the first fundamental software development of the new millennium. Although Web
services will certainly represent a milestone in the history of computer programming,
the more we design them and use them, the more we realize they have serious
limitations. Subsequently, and perhaps unfortunately, using a Web service isn't always
the best solution.

Which Came First?

I perceive the .NET Framework Web services as a special case of .NET Remoting, but
one could argue for the opposite scenario as well. Putting Web services at the center of
the interoperability universe and considering .NET Remoting as a platform-specific

 478

implementation does make a lot of sense. In general, the way you look at the newest
Microsoft remoting technologies depends on your individual perspective.

If you look at interoperability from a .NET Framework–specific viewpoint, you will
probably agree with my perception and put Web services on a secondary plane. If your
situation spans more vendors and more platforms, you'll recognize that the
unquestionable similarity between the Web service API and the .NET Remoting API
stems from the fact that .NET Remoting has stolen some features from the Web service
specification.

So which came first, the .NET Remoting egg or the Web service chicken? If you're
considering .NET Remoting, you are looking at Microsoft's remoting technologies
mostly from a .NET Framework perspective. The key issue is slightly different, however.
Instead of focusing on which technology came first, you should ask what each
technology can do for you. And your final choice should favor the technology that most
closely meets your needs.

When to Use .NET Remoting

.NET Remoting is ideal for .NET-to-.NET communication. More exactly, it's been
designed for precisely that purpose. As a .NET Framework–specific technology, .NET
Remoting lets you use all common language runtime (CLR) types, detects and handles
local calls differently, and distinguishes the atomic unit of processing at a different
level—the application domain (AppDomain) level instead of the process level. And
.NET Remoting increases its performance by allowing the use of binary protocols.

The Special Case of Win32/COM

If you need to set up communication between a .NET Framework application and a
Win32 or COM application, you might consider an ad hoc DLL, a COM object, or even a
memory mapped file as an alternative to using Web services. In this scenario, you can't
use .NET Remoting because one of the applications is either a Win32 or a COM
application—that is, a non-.NET-Framework application.

When to Use Web Services

Web services are ideal in a couple of scenarios. First, they are the only safe way to go
if your goal is targeting a non-Microsoft platform. If you have to access code running on
Linux or want to make your .NET Framework component available to a Linux client, by
all means, go for Web services. Second, you should use Web services when,
irrespective of the involved platforms, the user requirements mandate that the
application must be programmatically accessible through a URL.

Web Service Issues

As a software application that makes itself available only through Internet connections,
a Web service is at risk of being, or becoming, a slow application. For this reason,
optimization is more than ever a critical factor. Overall performance is affected mostly
by the network latency but also, in small part, by the format of the protocol being used.
HTTP and SOAP are both based on text, and SOAP in particular is a quite verbose
protocol. This results in packets significantly larger than those typical of binary protocols
such as Common Object Request Broker Architecture (CORBA) or even Distributed
COM (DCOM).

When trying to improve the usability of a Web service (the area in which you should
focus your optimization efforts), you should address the following tasks:

 Performing asynchronous calls

 479

 Compressing packets using a SOAP extension
 Minimizing round-trips
 Enhancing the interface of the Web service with mobile code

Asynchronous calls let an application invoke a method and continue running as usual
until the response is downloaded on the client. The mechanism exploits the features of
asynchronous programming in the .NET Framework.

A SOAP extension is like a hook that you register with the Web service to access the
raw SOAP XML either as it is about to be transmitted or as it is received. A SOAP
extension works both on the client, by using proxy classes, and on the server. When
you want to perform tricks or customize the underlying XML, SOAP extensions provide
the right connection point. One valid use of SOAP extensions is for encrypting or
compressing method parameters for improved performance and security.

The last two tasks, minimizing round-trips and creating mobile code, are somewhat
more complex. Minimizing round-trips is a key aspect of optimization that goes deeper
than simply improving performance using software tricks. Mobile code is a concept that
is quite popular in the Java community and involves software agents that execute some
user code on the server. Let's look at these two topics in more detail.

Minimizing Round-Trips

Each call addressing a Web service method requires a round-trip. Because all Web
service activity takes place over the Internet, you can't always expect a rapid response.
And because the round-trip is permanently tied to the request of an operation on the
Web service, the best—and possibly the only—way to minimize round-trips is to merge
more logically distinct functions. The open issue in this approach concerns using
additional methods in the interface or additional parameters in the prototype of certain
methods. Simple, succinct, and direct methods enhance overall design but certainly do
not minimize round-trips, because to execute two functions, you need at least two
round-trips.

On the other hand, incorporating more functionality in the body of a single and more
complex method is effective in terms of performance but not necessarily in terms of the
service usability. A client might receive more information than needed, paying the price
in increased downloading time. Moreover, a client might be forced to use an overly
complex signature, exposing itself to the risk of getting the requested information by
trial and error.

Creating Mobile Code

Although the .NET Framework environment attempts to make you comfortable with
Web service client programming, you must still call into remote methods over the
Internet. Minimizing round-trips with a smart design is only the first step. What if you
can't easily come up with a sequence of operations to pack into a new method? What if
the next step depends on run-time conditions? In the database world, you use stored
procedures to concatenate multiple SQL calls with some logic. Why can't the same
concept be ported to the Web?
Mobile code technology has already been tested on other platforms, although with
slightly different purposes, and sooner or later it will make its way to the .NET
Framework run time. By mobile code, I mean the ability that certain server applications
(for example, Web services) might have to execute code sent by clients. Created to
allow software agents to transport code to specialized servers for longtime executions,
mobile code is a concept that proves useful also in the land of Web services.
Interestingly enough, mobile code can solve many problems but exacerbate others.

 480

Mobile code allows you to send C# or Visual Basic .NET code to a Web service, where
it can be compiled and executed on the fly. Once the user code has been given access
to the methods of the Web service, it can execute any operations and combine the Web
service calls in any suitable order—all in a single round-trip.

Mobile code is not perfect, however. But the problems it makes more acute tend to be
problems that you'll have to address anyway for the sake of the Web service's stability
and success. For example, using mobile code poses serious security concerns. How
can you ensure that the code accepted by the Web service is safe for the Web server?
You can work around this issue in several ways: You can enable the compilation
feature only for authorized users. Or, better yet, you can allow the resulting dynamic
assembly to run in a sort of sandbox, where potentially dangerous calls are simply
forbidden.

True Interoperability

Another issue that must be consistently addressed to guarantee the widespread
acceptance and success of Web service technology is data interoperability. Although
several recent articles claim that interoperability is the key feature of Web services, the
truth is that Web services are currently fully interoperable only within the boundaries of
the .NET Framework.
At this time, you can safely transmit over the Web only primitive types that are included
in the XSD type system. What happens to a .NET Framework class or a user-defined
class? In the section "The Role of the XML Serializer," on page 579, you saw that the
XML serializer takes care of writing the return value of a Web service method call. The
XML serializer is actually responsible for the data types—custom and .NET Framework
classes—that will be sent to callers. The XML serializer is not perfect, and more
important, it is not standard. So how could a Java application quickly and easily
understand and deserialize the XML stream it gets from the XmlSerializer class? Only
when a recognized standard for serializing classes to XML is available will true
interoperability between platforms be realized.

Conclusion
Web services are often presented as the perfect tool for today's programmers. Web
services are interoperable, are based on open standards such as SOAP and WSDL,
and, more importantly, are fully integrated with the .NET platform. This apparent point
of strength in Web services—the perfect and seamless integration with the rest of the
.NET Framework—on closer examination turns out to be, if not a weakness, a reliable
indicator of where Web services are limited. Aspects such as security, interoperability,
and code optimization are undermining the stability of the technology. Don't be fooled
by the hype that vendors are attaching to the blanket term Web service. A lot of work
has been done, but a lot still remains.

In this chapter, we looked at Web services from the perspective of usability instead of
as a programming topic. We examined the key operations you might want to
accomplish with a Web service and the core code that makes this happen. We did not
touch on topics such as state management, authentication, and service discovery,
which are bread and butter for serious Web service developers. Instead, we focused on
comparing Web services with .NET Remoting.
In Chapter 14 and Chapter 15, we'll address some ancillary topics related to application
interoperability. One of these topics regards the use of XML data from the client side of
a Web application—specifically, an ASP.NET application.

 481

Further Reading
This chapter provides an essential introductory reference to .NET Framework Web
services; for a thorough guide, have a look at Scott Short's Building XML Services for
the Microsoft .NET Platform (Microsoft Press, 2002). Concrete examples covering a
possible .NET Framework implementation of the mobile code feature can be found in
the article "Using an Eval Function in Web Services," in the September 2002 issue of
MSDN Magazine.
For more information about Web service–related standards, here are some useful
URLs: You'll find the SOAP specification at http://www.w3.org/TR/soap. The UDDI
official Web site is http://www.uddi.org. From that Web site, I recommend the "UDDI
Executive White Paper," which is available for download at
http://www.uddi.org/pubs/uddi_executive_white_paper.pdf. Notes about the WSDL
standard can be found at http://www.w3.org/tr/wsdl. Finally, if you need an introduction
to the WS-Security initiative, get a copy of the June 2002 issue of MSDN Magazine and
read the "XML Files" column.

 482

Chapter 14: XML on the Client

Overview

All the technologies and programming interfaces we've looked at up to now work
regardless of the surrounding environment—be it the Microsoft Windows desktop, an
MS-DOS console, or a Web server. As long as the Microsoft .NET Framework is
available, XML-based code works just fine. When you move on to Web applications,
however, things change a little bit. Using XML on the client side of a Web application
poses a few extra problems and affects the browsers you can use.

In this chapter, you'll learn how to embed XML data in the body of server-side
generated HTML pages and how to access that data using script code on the client. To
do this, you don't need managed code or the XML classes of the .NET Framework.
We'll also investigate a little-used feature of the .NET Framework and Component
Object Model (COM) interaction and import a Windows Forms application into an HTML
page as a special type of Microsoft ActiveX control. Finally, we'll review the possible
ways to make the embedded Windows Forms application access the XML data nested
in the same HTML page.

To use this chapter's Web applications included with the book's sample files, follow this
procedure:

1. Copy the EmbReaders subfolder to your Web server's root (usually
c:\inetpub\wwwroot).

2. Create an IIS virtual folder named EmbReaders, and point it to the
preceding folder.

3. Point your browser to the dataisland.aspx and dataislandstep2.aspx files
in the EmbReaders IIS virtual folder.

XML Support in Internet Explorer

Internet Explorer versions 5.0 and later provide good support for XML on the client.
Among the supported features are direct browsing and data islands. Direct browsing is
the browser's ability to automatically apply an Extensible Stylesheet Language
Transformation (XSLT) to the XML files being viewed. In particular, Internet Explorer
uses a default, built-in style sheet unless the document points to a specific style sheet.
The default style sheet produces the typical tree-based view of nodes you're familiar
with. If, as mentioned in Chapter 7, the XML document includes its own style sheet
reference (the xml-stylesheet processing instruction), the direct browsing function
automatically applies the style sheet and displays the resulting HTML code.
A data island is an XML document that exists within an HTML page. In general, a data
island can contain any kind of text, not just XML text. Since version 5.0, Internet
Explorer provides extra support for XML data islands. If you use the special <xml> tag
to wrap the text, the browser automatically exposes the contents as an XML Document
Object Model (XML DOM) object and allows you to script against the document. The
XML DOM object is expressed as a COM object created by the MSXML parser. The
advantage for developers is that the XML data travels with the rest of the page and
doesn't have to be loaded using ad hoc script or through the <object> tag. On the other
hand, because the XML data is an integral part of the page, the size of the page itself
grows. Determining the best way to include XML data for client-side processing is
application-specific, but the <xml> tag certainly represents an interesting and
compelling option.

 483

The Data Island (<xml>) Tag
The <xml> tag marks the beginning of a data island, and the ID attribute provides the
name you use to reference the XML DOM object. The XML text can be inserted in the
data island either in-line or through an external reference to a URL. The following code
snippet shows an XML data island with in-line text:

<html>

<xml id="xmldoc">

<Employees>

 <Employee ID="1">

 <LastName>Davolio</LastName>

 <FirstName>Nancy</FirstName>

 </Employee>

</Employees>

</xml>

</html>

The <xml> tag simply wraps the XML data; it is not part of the data. Internet Explorer
does not throw an exception if the XML text is not well-formed, but if the XML data is
not well-formed, the MSXML parser fails to load it, and no XML DOM object is made
available to client-side scripts.
The following code snippet demonstrates the use of the src attribute with the <xml> tag.
If this attribute is specified, the XML data and the host page from the specified URL are
downloaded separately.

<html>

<xml id="xmldoc" src="EmployeesData.xml" />

</html>

The contents of the XML data island are not displayed as a portion of the page. This
means that if you attempt to view any of the preceding HTML pages using Internet
Explorer, an empty page will be displayed. In fact, the pages have no contents other
than the data island.

Note The XML data island should not include a nested <xml> tag. If this

happens, no error is returned, but the nested end tag </xml> closes
the data island's open <xml> tag. As a result, the XML text that
follows the nested <xml> element becomes part of the HTML body
and is treated as displayable contents.

The Role of the MSXML Parser

Internet Explorer uses the COM-based MSXML parser to load the contents of the XML
data island into a programmable XML DOM object. The parser is included in the
Internet Explorer installation, so for this feature to work, you don't have to install an
additional tool. Of course, the availability of a client-side XML parser is a necessary
condition for handling XML data on the client.
In the next section, we'll review alternative ways to embed nondisplayable XML data in
HTML pages. Some of these tricks also work with Internet Explorer 4.0 and old
Netscape browsers. Bear in mind, however, that although you can figure out several
ways to embed XML data in HTML pages, you always need a client-side, script-

 484

accessible XML parser to consume that data effectively. COM objects and Java classes
are probably the most popular and broadly available tools to process client-side XML. In
this chapter, we'll look at a third approach that requires the availability of the .NET
Framework.

Accessing Data Islands Through Script

Let's expand the previously created HTML pages with some script code to see what's
needed to programmatically access the embedded XML data island. The following
HTML page contains a button that, when clicked, prompts you with the XML contents of
the data island:

<html>

<xml ID="xmldoc">

<Employees>

<Employee ID="1">

 <LastName>Davolio</LastName>

 <FirstName>Nancy</FirstName>

</Employee>

</Employees>

</xml>

<script language="javascript">

function getDataIsland() {

 alert(xmldoc.XMLDocument.xml);

}

</script>

<body>

<input type="button" value="Outer XML"
onclick="getDataIsland()">

</body>

</html>

Figure 14-1 shows the page in action.

 485

Figure 14-1: Extracting and displaying the contents of the XML data island.

As mentioned, when Internet Explorer encounters the <xml> tag, it extracts the XML
data and initializes an XMLDOMDocument COM object. The object is created and
returned by an internal instance of the MSXML parser. Internet Explorer calls the
loadXML method on the parser and initializes the XML DOM object using the data
island contents. The document instance is then added to the HTML object model and
made available to scripts via the document.all collection, as shown here:

var doc = document.all("xmldoc");

The document.all property is a name/value collection that contains all the elements
found in the HTML page. To simplify coding, Internet Explorer also provides an object
instance named as the ID of the data island. The data island contents can be
referenced using either the document.all collection or the property with the same name
as the ID.
Once you hold the reference to the data island, you use the XMLDocument property to
access the actual contents, as shown here:

var dataIslandText = xmldoc.XMLDocument.xml;

This expression demonstrates how to access the entire XML text stored in the data
island. If you need to access a subset of the XML DOM object, you can narrow the set
of nodes by using an XPath query or by moving to a particular root node.

Handling Parsing Errors
If errors occur during the parsing of the data island contents, Internet Explorer does not
raise exceptions; any error is silently trapped and a null object is returned. The code
shown in the previous section for accessing the data island does not produce run-time
errors in the case of badly formed XML text, but an empty string is returned. To check
for errors, use the parseError property of the XMLDOMDocument object.
The parseError property is a reference to an XMLDOMParseError object. The
XMLDOMParseError object returns information about the last parser error. This
information includes the error number, line number, character position, and a text
description.

 486

The following code shows a version of the script code from the previous section
modified to provide error handling:

<script language="javascript">

function getDataIsland()

{

 if(xmldoc.parseError.errorCode == 0)

 alert(xmldoc.XMLDocument.xml);

 else

 alert("ERROR: "+ xmldoc.parseError.reason);

}

</script>

Note All the code we've looked at up to now as part of a static HTML
page can be dynamically generated by Active Server Pages (ASP)
or Microsoft ASP.NET code. Later in this chapter, in the section
"Creating Data Islands in ASP.NET," on page 603, we'll examine
ASP.NET pages that produce HTML code with child XML data
islands.

Other Ways to Embed XML Data
The main reason for embedding XML data in a special tag is that an XML document is
formed by a sequence of markup delimiters that in most cases are unrecognized by a
Web browser. By using a special tag like the <xml> tag, you instruct the browser to
treat the embedded information in an appropriate way. Note that although an XML data
island is a general concept, the <xml> special tag is a peculiarity of Internet Explorer
versions 5.0 and later. Other browsers, including older versions of Internet Explorer,
don't support the <xml> tag and don't provide alternative specific tags.

Normally, Web browsers ignore any tag they encounter that is not part of the predefined
HTML vocabulary. Most browsers don't raise errors; instead, they send all the text
found between the start and end tags in the main body of the page. Consider the
following HTML page:

<html>

<body>

<specialtext>Hello, world</specialtext>

</body>

</html>

This page produces the following output when viewed with Internet Explorer 5.0 and
Netscape Communicator 4.5 and later versions. Neither browser recognizes the
<specialtext> tag; they simply ignore the tag and inject the inner text in the body.

Hello, world

Data islands let you embed external blocks of data so that they have no impact on the
final page being rendered but are accessible programmatically. In other words, the
contents of a data island must be invisible to the user but not to the other child
components of the page.

 487

Let's look briefly at how to simulate data islands with Internet Explorer 4.0 and older
HTML 3.2 browsers such as Netscape 4.x. This information will be useful if you create
ASP.NET pages with embedded islands of data that can be viewed through a variety of
browsers.

Data Islands in Internet Explorer 4.0

Internet Explorer 4.0 already provides great support for Dynamic HTML (DHTML). For
our purposes, this means that once you've assigned an ID to a tag, you can later
retrieve the tag by name and run a script against it. Internet Explorer 4.0 also provides
good support for cascading style sheets (CSS), which means that you can use ad hoc
attributes to control the visibility style of any tag you want.
If you plan to embed XML text in an HTML page using an ordinary tag, keeping the text
invisible is only half the task. The key is forcing the browser not to process the
embedded text as HTML. In Internet Explorer 4.0, the <pre> tag is one of few that offers
this capability. When you combine display styles and implicit ID-based object
references, you can write code similar to the following:

<pre id="xmldoc" style="display:none">

 <xmldata>XML data island</xmldata>

</pre>

You wrap the XML code in any HTML or custom tag you want, making sure to assign it
a unique ID and set the CSS display attribute to none. As a result, the contents of the
XML data island will be accessible through the expression shown here and, more
important, won't affect the page rendering:

xmldoc.innerHTML

What you get using this technique is not an XML DOM object, however, but a plain
string. Initializing a valid XML DOM object and actually parsing and manipulating the
XML contents is completely up to you.

Using Hidden Fields
HTML 3.2-compliant browsers make things slightly more difficult. You can't count on
CSS support, and you can't expect to find a rich object model attached to all tags. A
good compromise can be assigning the XML source code to an INPUT control marked
as hidden, as shown here:

<form>

<input name="xml" type="hidden" value="XML code">

</form>

Assigning a name attribute to the INPUT tag lets you retrieve the XML code later
through the following code:

oForm = document.forms[0];

oInput = oForm["xml"];

alert(oInput.value);

Be sure to use the exact case for names, and be sure to wrap the INPUT tag in a
FORM tag. Both things arent't necessary with Internet Explorer, but Netscape's
browsers require it.

 488

Note In general, you can name the outer form as well and use the name
to select the particular form that contains the hidden field. However,
bear in mind that if you use this technique from within ASP.NET
pages, only one form is available.

The <script> Tag
Another possible trick for embedding XML data in an HTML page entails using the
<script> tag. There are two possible ways of overloading the <script> element so that it
accepts XML contents. The approaches differ in the trick they use to inform the <script>
tag that it is actually handling XML data.
You can use the language or the type attribute. Set the language attribute to xml, or set
the type attribute to text/xml, as shown in the following code:

<script type="text/xml" id="xmldoc1">

 XML content here

</script>

<script language="xml" id="xmldoc2">

 XML content here

</script>

You can also reference the XML data through the src attribute by making the attribute
point to an external URL, as shown here:

<script language="xml" src="EmployeesData.xml"></script>
In all these cases, you should give the tag a unique ID and use it to access the XML
data either directly or through the document.all collection.

Note Overall, if you can control the version of the client browser, the
<xml> tag is by far the most preferable and flexible solution.
Otherwise, I suggest that you embed any XML data in a hidden
field.

Creating Data Islands in ASP.NET
To create data islands in ASP.NET, you can use the <asp:xml> server control to inject
XML code in the body of the HTML <xml> tag. We saw this technique in action in
Chapter 7 when we examined XSLT and used the <asp:xml> control to apply server-
side transformations. The <asp:xml> control can also be used to inject plain XML code
without any preliminary transformation.
The following code demonstrates an ASP.NET page that is functionally equivalent to
the HTML page discussed in the previous section. The page creates a couple of data
islands by importing the contents of a local XML file and then using a hidden field. The
page contains two buttons bound to client-side scripting to read the XML source.

<%@ Page Language="C#" %>

<%@ Import Namespace="System.Xml" %>

<%@ Import Namespace="System.Xml.Xsl" %>

<script runat="server">

void Page_Load(object sender, EventArgs e)

{

 button1.Attributes["onclick"] = "getDataFromXmlTag()";

 489

 button2.Attributes["onclick"] = "getDataFromHiddenField()";

 RegisterHiddenField("xml", "<xmldata>my data</xmldata>");

}

</script>

<html>

<script language="javascript">

function getDataFromXmlTag() {

 // Get the data island content from the IE5+ <xml> tag

 if(xmldoc.parseError.errorCode == 0)

 alert(xmldoc.XMLDocument.xml);

 else

 alert("ERROR: "+ xmldoc.parseError.reason);

}

function getDataFromHiddenField() {

 // Get the data island content from a hidden field

 oForm = document.forms[0];

 oInput = oForm["xml"];

 alert(oInput.value);

}

</script>

<body>

<h1>Creating Data Islands</h1>

<!-- Client-side XML data island -->

<xml id="xmldoc">

 <asp:xml runat="server" documentsource="employees.xml" />

</xml>

<!-- End of the data island -->

<form runat="server">

 <asp:button runat="server" id="button1"

 text="From <xml> tag..." />

 <asp:button runat="server" id="button2"

 text="From hidden field..." />

</form>

</body>

</html>

 490

To create a hidden field, you can use the plain INPUT HTML tag with the type attribute
set to the hidden keyword. In ASP.NET, however, you can also use the new
RegisterHiddenField method exposed by the Page object. The advantage of this
technique is that you can create and add the field dynamically. The following code
shows how it works:

RegisterHiddenField("xml", "<xmldata>my data</xmldata>");

The method takes two arguments: the unique name of the input field and the contents
to be output. When the method executes, no actual HTML code is generated, but a
reference is added to an internal collection to keep track of the hidden fields to be
created. The hidden input field is actually added to the output when the HTML code for
the page is rendered.

Embedding .NET Framework Components in Internet Explorer

The one key reason for creating data islands or, more generally, for embedding XML
data in the folds of an HTML page is to cache data on the client to outfit some of the
controls on the page. In the previous section, we saw how to embed a data island and
how to retrieve its contents. Once retrieved, the XML data can be passed on to client-
side components for further processing or can be manipulated via script. As you can
imagine, the latter option is less effective because it is based on interpreted code and
because, in general, script languages aren't particularly rich in programming features.

So far, COM objects and Java classes have been the most popular technologies used
by developers to write client-side components running in the context of Web pages.
COM objects and Java classes can be passed, or can directly access, XML data stored
in embedded blocks and can then apply some business logic. Both COM objects and
Java classes require special support from the browser.

The advent of the .NET Framework added a third option to this list. In addition to writing
COM components (including ActiveX controls) or Java classes (including applets), you
can now write Windows Forms controls and embed them in HTML pages and
ASP.NET-generated Web forms.

In the rest of this chapter, we'll examine the foundation of Windows Forms controls and
the tools and techniques you need to know to embed these controls in HTML pages.
Next we'll build a sample control that imports the contents of a data island, parses the
XML text using a .NET Framework reader, and finally displays the resultant data
through a data-bound control.

Building Windows Forms Controls for HTML Pages
Internet Explorer versions 5.5 and later support a special syntax for the <object> tag
that lets you embed managed objects in Web applications. The object must be an
instance of a class that inherits from the System.Windows.Forms.Control class either
directly or indirectly. The assembly that contains the class is downloaded to the client if
it is not already cached. Of course, for this feature to work, the .NET Framework must
be installed on the client.

The following code shows how to embed a .NET Framework user-defined class into a
Web page:

<object id="grid"

 classid="http:DataListView.dll#XmlNet.CS.DataListView"

 491

 height="300" width="100%">

</object>

The id attribute identifies the instance of the control, whereas the width and height
properties specify the dimensions of the control's site. The key attribute to consider is
classid. Normally, classid identifies the CLSID of the COM object or the ActiveX control
to embed. Its typical syntax consists of the keyword clsid followed by a colon and the
text representation of the object's CLSID, as shown here:

<object id="myCtl"

 classid="clsid:8AD3067A-B3FC-11CF-A560-00A0C9081C21">

Since version 5.5, Internet Explorer supports an extended format that looks like this:

classid="http:[assembly URL]#[full class name]"
To instruct the browser to download the DataListView assembly from the root of the
virtual directory, use the following code snippet:

classid="http:DataListView.dll#XmlNet.CS.DataListView"

The class to instantiate is XmlNet.CS.DataListView. The class must be referenced with
its fully qualified name. The assembly doesn't necessarily have to be a DLL; it can be
an EXE file instead.

Note The size of the object must be set explicitly; otherwise, the control
will not be displayed in the HTML page. The size can be specified in
one of two ways: you can set the width and height attributes of the
<object> tag, or you can indicate a size in the control class
constructor.

Locating Assemblies
The HTML document can provide information about the locations of the assemblies to
download as well as a configuration file in which additional information can be stored.
Applications hosted in Internet Explorer indicate the location of the configuration file
through the <link> tag and the following syntax:

<link rel="Configuration" href="[location]">

The href attribute indicates the URL of the configuration file. By default, Internet
Explorer creates a unique application domain (AppDomain) over the entire site that
contains the HTML page, which means that all the managed components involved run
in the same AppDomain. This is not necessarily a bad thing; however, it is a setting that
can be overridden using configuration files. When a configuration file is specified, all
pages that point to the same file are created in the same domain.
All dependent assemblies should be available in the same directory as the control—that
is, the URL indicated through the classid attribute. If needed, however, you can
download assemblies from other Web sites using the <code-base> setting in a
configuration file. The <codebase> setting specifies where the common language
runtime (CLR) can find a needed assembly. The syntax of the <codebase> setting is
shown here:

<codeBase

 version="Assembly version"

 href="URL of assembly" />

 492

To load assemblies from directories other than the application base directory, you can
resort to the <probing> element in the configuration file. In this case, you dictate that
the run time searches for assemblies in the listed subdirectories of the application base.
The application base is the directory that contains the configuration file or the directory
that contains the control, if no configuration file is used.

Note If your control references only assemblies stored in the global
assembly cache, you don't need to take any additional measures.
Those assemblies are always correctly located.

Setting Up the Virtual Directory

To successfully test HTML pages that contain managed controls, you should create an
ad hoc virtual directory and access the page through Internet Information Services (IIS).
In other words, you can't simply prepare an HTML document and double-click it from
Windows Explorer.
In addition, the virtual directory must have the Execute Permissions setting configured
to Scripts Only, as shown in Figure 14-2.

Figure 14-2: The virtual directory for the page that embeds a managed control must be
configured to run only scripts.

The reason for this is that if you configure Execute Permissions to Scripts And
Executables, IIS will be fooled by the assembly's .dll or .exe extension and will treat the
control's assembly as an ISAPI application. As a result, the control won't be hosted by
the browser.

A Data Display Custom Control
The browser control class must be derived from Control or from another Control derived
class. The control can't be a form or a Windows Forms-derived type. In addition, the
control class must be publicly accessible and must contain a public default constructor

 493

that takes no parameters. Aside from these requirements, a browser-embeddable
control is nothing special and does not require you to take any particular steps other
than those you would take for any other kind of Windows Forms control.
Let's build a sample control named DataListView and make it inherit from the Windows
Forms ListView control. We will also add a new method that receives an XML string and
loads the parsed text into a DataSet object. If successful, the DataSet object will then
be used to populate the view. The input XML string can be set programmatically from
any source and in particular can be extracted from a data island.
The DataListView Control
The DataListView class inherits from ListView, but unlike the parent class, it always
works in Details mode. The view mode and the font are set during the initialization
phase. The following code is invoked from within the constructor:

protected void SetupControl()

{

 this.View = View.Details;

 this.Font = new Font("Verdana", 8f);

 this.FullRowSelect = true;

}

Although the control is automatically configured to work in Details mode, no columns
are added to the view until the user interface is populated with data. The Details view
provides clickable columns of data arranged in a grid.

Populating the Control's User Interface
Load is the key method of the DataListView control. It is also the only extension made
to the programming interface of the parent class, as shown here:

public void Load(string xmldata)
The Load method expects to receive an XML string that can be successfully parsed into
a DataSet object. The resultant object, if any, is used to populate the ListView class.
Unlike other list controls, the ListView class does not fully support the .NET
Framework's complex data-binding. In fact, the ListView class does not provide for a
DataSource property. To populate its user interface with data read out of data-bindable
object, you must loop through the rows and update the list items yourself.
The following code illustrates the behavior of the Load method:

public void Load(string xmldata)

{

 DataSet ds = new DataSet();

 StringReader reader = new StringReader(xmldata);

 ds.ReadXml(reader);

 reader.Close();

 // Store the current data source and its view object

 m_data = ds.Tables[0];

 m_viewOfData = new DataView(m_data);

 // Add columns

 this.Columns.Clear();

 for(int j=0; j<m_data.Columns.Count; j++)

 494

 {

 int size = 130;

 this.Columns.Add(m_data.Columns[j].ColumnName,

 size, HorizontalAlignment.Left);

 }

 // Add rows

 FillTable();

}

The first task accomplished is transforming the input XML data into a DataSet object.
The XML data is read and parsed by the ReadXml method of the DataSet object.
ReadXml normally works on streams and files, but you can force it to work on a string if
you specify the string through a StringReader object.
Once the input XML data has been transformed into a DataSet object, the first table in
the DataSet object is extracted and its columns and rows processed. (In this example,
the control arbitrarily processes only the first table.) For each column in the table, the
DataListView control creates and adds a new column with default settings and size.
Next the table rows are enumerated. Each row becomes a new line in the ListView
object. The first column maps to the ListView primary item; the other columns are
rendered as ListView subitems, as shown in the following code:

private void FillTable()

{

 // Clear existing rows

 this.Items.Clear();

 // Add new rows

 for(int i=0; i<m_viewOfData.Count; i++)

 {

 ListViewItem lvi = null;

 for(int j=0; j<m_viewOfData.Table.Columns.Count; j++)

 {

 string elem = m_viewOfData[i][j].ToString();

 if (j==0)

 lvi = this.Items.Add(elem);

 else

 lvi.SubItems.Add(elem);

 }

 }

}

The rows are enumerated through a DataView object to allow for sorting and filtering.
We'll return to this topic in the upcoming section "Adding Sorting and Filtering
Capabilities." For now, let's see how to connect the data island with the control.

 495

Accessing the Data Island Contents
In the previous section, we learned how to extract the contents of an XML data island,
regardless of the technique that was used to store it in an existing HTML page. The
content of an XML data island is a plain string and as such can be passed on to the
Load method for further processing. The following code demonstrates how:

<script language="javascript">

function getDataFromXmlTag()

{

 // Get the data island content from the IE5+ <xml> tag

 if(xmldoc.parseError.errorCode == 0)

 {

 g = document.all("grid");

 var data = xmldoc.XMLDocument.xml;

 g.Load(data);

 }

 else

 alert("ERROR: "+ xmldoc.parseError.reason);

}

</script>

The content of the data island is extracted, parked in a temporary variable, and then
passed on to Load. In the next section, we'll see a sample page in action.

Adding Sorting and Filtering Capabilities
To make the DataListView control even more useful, you can add advanced view
capabilities. Adding sorting and filtering capabilities to the DataListView control is
surprisingly simple thanks to the programming power of the .NET Framework. To add
sorting and filtering features, you use the Sort and RowFilter properties of the
embedded DataView object.
Data sorting is triggered when the user clicks on the column's header. The base
ListView control already provides the ColumnClick event and an ad hoc delegate (the
ColumnClickEventHandler class) to handle the event, as shown in the following code.
The event data, gathered in the ColumnClickEventArgs structure, provides a Column
member that indicates the zero-based index of the column clicked. The actual sorting of
the displayed data is up to you.

// Execute when the user clicks on a column's header

private void SortData(object sender, ColumnClickEventArgs e)

{

 // Prepare a view with sorted data

 PrepareSortedDataView(e.Column);

 // Refresh the view to reflect sorting

 FillTable();

}

// Configure the internal DataView to support sorting

 496

private void PrepareSortedDataView(int colPos)

{

 // Set the column to sort by

 m_viewOfData.Sort = m_data.Columns[colPos].ColumnName;

 // Arrange the auto-reverse sorting

 if (m_columnSorted == colPos)

 {

 // If the same column is clicked twice,

 // invert the direction

 m_viewOfData.Sort += "DESC";

 m_columnSorted = -1;

 }

 else

 // Store the index of the currently sorted column

 m_columnSorted = colPos;

}

Implementing row filtering is even easier. You simply expose a read/write property
called, say, RowFilter and make it work as a wrapper around the DataView object's
RowFilter property, as shown here:

private string m_rowFilter = "";

public string RowFilter

{

 get {return m_rowFilter;}

 set

 {

 // Store the filter string

 m_rowFilter = value;

 // Pass the information on to the DataView

 m_viewOfData.RowFilter = m_rowFilter;

 // Refresh the view

 FillTable();

 }

}

What we have built so far is a ListView -based control that features data-binding
functionalities along with advanced capabilities for sorting and filtering the data. This
control can be initialized from an XML string that can be deserialized to a DataSet
object. The DataListView control can be used with any Windows Forms application, but
when embedded in an HTML or ASP.NET page, the programming interface lends itself
very well to filling the control with the contents of an XML data island.

 497

Tip To significantly improve your programming experience when

developing browser-embeddable Windows Forms controls, you might
want to create a simple test application that hosts the control. Only
when the control works as expected should you write the test HTML
or ASP.NET page. Testing a control embedded in Internet Explorer
can be quite frustrating because the CLR does not redownload
assemblies that already figure in the cache. This means that you
have to physically empty the assembly cache or replace the local
copy of the assembly before you can see changes in action.

Putting It All Together

The DataListView control is an effective tool for displaying a snapshot of data cached
on the client. An ASP.NET page that makes use of the DataListView control differs in
some respects from any other ordinary data-bound ASP.NET page. First and foremost,
using the DataListView control or similar controls in a Web application requires a rich
client such as Internet Explorer and requires that the .NET Framework is installed on
the client. As you might expect, these requirements make such a Web application more
suitable for controlled environments like an intranet than for the Internet.
On the other hand, caching data on the client allows you page through data, as well as
sort and filter rows, without repeated access to the database and without tying up Web
server memory with server-side cached objects. Writing a browser-managed control
also lets you exploit the power of the .NET Framework on the client, although with
some limitations. The DataListView control will run as partially trusted code, and
although the control can administratively receive more privileges and permissions, the
core code you write should not presume itself to be more than a partially trusted
application. In particular, this means that file I/O should be avoided to the extent that it
is possible and replaced with isolated storage whenever data persistence becomes a
strong necessity.

Note The GetSalesReportBarChart method of the Web service built in
Chapter 13 creates the JPEG image that represents the chart as an
in-memory image just to avoid security restrictions for file I/O. For
the most part, the location of the assembly determines the
restrictions it will be subject to. Locations are articulated in zones,
including MyComputer, Intranet, and Internet.

Registry, clipboard, and network access are restricted also. Network access is
restricted to the URL from which the control's assembly was downloaded. Printing is
allowed only through the Windows Forms common dialog box, and no direct access to
the resource is permitted. Finally, both run-time and XML serialization are considered
restricted functionalities whose full access is reserved for fully trusted applications.
With these considerations in mind, let's finalize the DataListView control and build an
ASP.NET page that makes use of it. A sneak preview of the final page is shown in
Figure 14-3.

 498

Figure 14-3: An ASP.NET page that creates and consumes an XML data island.

Serializing DataSet Objects to Data Islands
The sample page shown in Figure 14-3 is named dataisland.aspx and is available in
this book's sample files, along with the source code for the DataListView control. The
following code shows the body of the page. Key parts of the code are shown in
boldface—in particular, the data island definition and the managed control declaration.

<html>

<body>

<h1>Consuming Data Islands</h1>

<!-- Client-side XML data island -->

<xml id="xmldoc">

 <asp:xml runat="server" documentsource="employees.xml" />

</xml>

<!-- End of the data island -->

<form runat="server">

 <input type="button" value="Display Data Island Content"

 onclick="getDataFromXmlTag()">

 <object id="grid"

 classid="http:DataListView_CS.dll#XmlNet.CS.DataListView"

 height="300" width="100%">

 </object>

</form>

</body>

</html>

 499

The data island is created using the <asp:xml> server control, which reads a previously
created XML file. The employees.xml file is simply the XML normal form of a DataSet
object. The DataSet object is serialized to the data island, and the page is sent to the
browser. On the client, some Javascript code takes care of extracting the data island
contents as XML text and passing it on to a method—Load—on the managed control.
Internally, the Load method rebuilds the DataSet object and uses it to populate its own
user interface. Figure 14-4 shows the ASP.NET page in action, with a filter applied and
with the data sorted in ascending order by last name.

Figure 14-4: Sorting and filtering data on the client.

Note When embedding script code in Web pages to be consumed over
the Internet, you should use the Javascript language to reach the
widest possible range of browsers. VBScript is limited to Internet
Explorer. In this example, however, we're making serious
assumptions about the capabilities of the client—.NET Framework
installed, support for the extended syntax of the <object> tag, and
ability to host managed code. This means that your browser must
be Internet Explorer 5.5 or, more likely, Internet Explorer 6.0 or
later. So in this case you can reasonably drop Javascript in favor of
VBScript.

From MSXML Documents to .NET XML Documents
When Internet Explorer detects the <xml> tag in a client page, it automatically extracts
the page's contents, creates an internal instance of the MSXML parser, and makes the
data available through an XMLDOMDocument object. Note that XMLDOMDocument is
not a managed object created from any of the .NET Framework classes but rather an
instance of a COM object that constitutes the XML DOM representation of the data
island contents. The following pseudocode, written in JScript, illustrates this point; the
variable xmldoc is an XMLDOMDocument object.

// Extract the data island contents

// xmldoc is the ID of the <xml> tag

var xmldata = document.all("xmldoc").innerHTML;

// Instantiate MSXML

 500

var parser = new ActiveXObject("Microsoft.XMLDOM");

// Parse the contents of the data island and makes

// it available as a XML DOM object. The object is given

// the same name as the <xml> tag's ID

var xmldoc = parser.loadXML(xmldata);

If your final goal is consuming the data island within the body of a managed control,
there is no need to pass through a COM-based intermediate representation of the XML
data. In this case, in fact, the parser that will actually process the data is the .NET
Framework XML reader. The reader needs only a string of XML data, not a COM
object. On the other hand, whenever you use the <xml> tag, Internet Explorer
automatically creates the XMLDOMDocument object. So if the final destination of the
data island is a Windows Forms control, you might want to speed things a little bit by
not using the <xml> tag, which will produce a useless COM XML DOM object. Using a
hidden field offers the same functionality at a lower price. But keep in mind that this
option is valid only if you plan to consume the data island contents through embedded
managed code.

The Role of Script Code

To establish a connection between the host environment and the managed control, you
must use script code—Javascript in particular. For this reason, while you're designing
the interface of the managed control, don't forget what the actual callers of those
methods will be. A Javascript client has different capabilities than a .NET Framework
client, so you should keep the signature of public methods as simple as possible and
avoid using arrays and other complex and user-defined types.
In the dataisland.aspx sample code, the connection between the data island and the
managed control is made through the Load method. The Load method accepts a simple
string, which results in a signature that the Javascript code can easily match, as shown
here:

// At this point, Internet Explorer has already created

// the XMLDOMDocument. You can retrieve the content of the

// data island either through the XMLDocument object or

// the innerHTML property.

var data = xmldoc.XMLDocument.xml;

// Pass the data island content to the managed control

var listView = document.all("grid");

listView.Load(data);

Avoiding Problems with Submit Buttons
While developing the sample ASP.NET page to test the DataListView object, I ran into
an interesting snag. I originally used the <asp:button> tag to insert a button to load the
data island into the control. As a result, the data island was correctly read and the
control filled, but a moment later the page refreshed, and the control lost its state and
was displayed as empty. What happened? The reason for this strange behavior is that
the <asp:button> tag always generates a submit button, as shown here:

<input type="submit" name="button1" value="Click me" />

 501

As a result, the page first executes the client-side script associated with the HTML
button and fills the control with the XML data. Next the browser posts the page back to
the server as the submit button type mandates. This behavior is undesired for a couple
of reasons. First, it produces an unneeded round-trip to the Web server. Second, the
round-trip cancels the changes to the user interface that have been made on the client
and that constitute the core of our efforts and our main reason for building and using a
managed control. On the other hand, the Windows Forms control is not a server-side
control and does not have access to the ViewState property to control its state when
the page posts back.
This problem has a simple workaround: don't use the <asp:button> tag to insert a
button that is expected to interact with the managed control through client-side script
code. Instead, use the <input> tag and explicitly set the type attribute to button, as
shown in the following code:

<input type="button" value="Display Data Island Content"

 onclick="getDataFromXmlTag()">

Also, don't set the runat attribute; if you do, the onclick attribute will be mistaken for
server-side code to be executed. In this way, the browser executes the associated
client-side script code and refreshes the page accordingly, but no postback occurs.

Using Hidden Fields and SQL Queries
Despite the fact that the <xml> tag is the official way of defining XML data islands with
Internet Explorer, a hidden field is probably a better solution. With a hidden field,
Internet Explorer doesn't preprocess the XML data into a COM-based XML DOM
object. This feature is welcome if you are going to process the XML data using script
code. No parsing is needed if you only plan to pass the XML data island to a managed
control, however. Using a hidden field or a hidden tag is a valid approach to inserting
XML data in the body of an HTML page.
The following code illustrates how to create a hidden field that contains dynamically
generated XML data. The data is the output you get from the XML normal form of a
DataSet object. In this sample code, the DataSet object is obtained by running a query
against the Customers table in the Northwind database.

<script runat="server">

private void Page_Load(object sender, EventArgs e)

{

 if (!IsPostBack)

 {

 string xmldata = GetDataAsXml();

 RegisterHiddenField("xml", xmldata);

 }

}

private string GetDataAsXml()

{

 SqlDataAdapter adapter = new SqlDataAdapter(

 "SELECT customerid, companyname, contactname,

 contacttitle, city, country FROM customers",

 502

 "SERVER=localhost;DATABASE=northwind;UID=sa;");

 DataSet ds = new DataSet();

 adapter.Fill(ds);

 return ds.GetXml();

}

</script>

Figure 14-5 shows the sample page in action.

Figure 14-5: The sample page now shows filtered data from the Customers table. The XML
data has been carried using a hidden field.

Note Another key technique you can use to refresh the page using client-
side data leverages DHTML. Although this approach can be
effective and powerful, it doesn't combine well with managed code.
DHTML refers to the page object model and is designed for
scripting. The page object model is exposed as a suite of COM
objects, and driving it from within managed code is certainly
possible but not particularly easy.

Conclusion

Using XML data islands to import sensitive data into HTML pages is a technique that
deserves further investigation. Creating XML data islands is easier with ASP.NET but
was not rocket science even prior to the advent of the .NET Framework. Accessing the
contents of a data island on the client is still based on Javascript code, and therefore is
not a feature that has been affected by the .NET Framework. So what's the problem
with using XML and the .NET Framework on the client?
The .NET Framework classes provide a far richer object model that has a lot to offer in
terms of XML data manipulation, as we saw in Chapter 8, Chapter 9, and Chapter 10.
Exploiting this bounty of functions on the client is possible thanks to the browser-
deployable Windows Forms controls that we examined in this chapter. Code that uses
XML and the .NET Framework on the client, although based on ASP.NET code, is not
Internet-oriented because it imposes two key restrictions on the client environment: the

 503

browser must be Internet Explorer 5.5 (or later), and the .NET Framework must be
installed on the client machine. (Because you often end up installing Internet Explorer
6.0 with the .NET Framework, this is really a single requirement.)

Passing data to managed controls is relatively easy; each component can define its
own interface. However, any interaction between the user and the control can take
place only through script code. Keep this in mind when you're designing the
programming interface of the managed controls.
The key concept that this chapter has pursued is that you can split your Web functions
and balance them between the client and the server without renouncing managed code
and the power of the .NET Framework. To do so, you create a Windows Forms rich
client and embed it in an HTML or ASP.NET page using the <object> tag. Next you
pass server-side data (for example, the results of a SQL query) to the client using XML
data islands and script code to invoke properties and methods on the managed
controls.

Admittedly, the concepts illustrated in this chapter are probably not the most common
way to use XML in a .NET Framework environment. In my ADO.NET and XML
seminars, however, I often get questions that touch on, directly or indirectly, the use of
XML in a client-side scenario. This chapter should answer some of the most frequently
asked questions.
In Chapter 15, we'll finish our examination of XML in the .NET Framework, including
application configuration, the format of .config files, and ways to extend and customize
them.

Further Reading
In an article published in MSDN Magazine in June 2000 ("Creating and Optimizing
Performance for XML Document/View Web Applications"), I discussed ways to use
XML on the client using COM technologies. In particular, I explored XML
implementations of the document/view architecture. The book XML Programming Core
Reference (Microsoft Press, 2002) also contains chapters that illustrate the use of XML
on the client.
Internet Explorer has played a key role in this chapter as the richest browser available
today. You can get an inside look at the expanded capabilities of Internet Explorer 6.0
through the Microsoft Internet Explorer 6 Resource Kit, (Microsoft Press, 2001).
Finally, Jason Clark's excellent piece "Code Access Security and Distribution Features
in .NET Enhanced Client-Side Apps" (MSDN Magazine, June 2002) celebrates the
return of the rich client in the Windows Forms platform. Among other things, this article
covers .NET Framework browser controls and provides a handful of useful caveats and
tips.

 504

Chapter 15: .NET Framework Application
Configuration

Overview

To the extent that it is possible, all applications, regardless of platform, should be
designed in a parametric way and should read some of their settings from an external
file. Simply by updating the configuration file, developers and system administrators can
change the way in which the application works as well as elements of the user
interface. In Microsoft Windows 3.x, user preferences and application settings were
usually stored in INI files located in the Windows folder or in the application's main
directory. This practice was retained in Microsoft Win32, although since Windows 95,
the system registry has become the recommended store for Win32 and Component
Object Model (COM) application settings. With both INI files and the registry, however,
the developer had a certain degree of freedom in designing the layout of the data.
Various guidelines have been suggested over time, but in fact the structure of INI files
and registry subtrees was different from one application to the next.

The Microsoft .NET Framework defines a tailor-made, XML-based API to access
configuration files and, in doing so, forces developers to adopt a common, rich, and
predefined schema for storing application settings. Using configuration files,
administrators can control which resources a user can access, which versions of
assemblies an application will use and from where, and which connection strings
should be used. Configuration files can also include application-specific settings such
as the buttons to be displayed on the toolbar, the size and position of controls, and
other, more specific, state information. Using configuration files, you give your
application a bunch of dynamic properties and eliminate the need to recompile every
time different settings should be applied.
.NET Framework configuration files are XML files saved with the .config extension and
named and located according to the type of the application. Managed code can use the
classes in the System.Configuration namespace to read settings from the configuration
files but not to write settings to those files. Configuration files are considered plain XML
files, and appropriate XML writers should be used to edit their contents.

In this chapter, we'll delve into the .NET Framework configuration engine, reviewing the
characteristics of the main classes involved and how key tasks are accomplished. We'll
analyze the various types of configuration files and their overall schemas, and you'll
learn how to customize a .config file with custom tags and custom contents.

Configuration Files

The .NET Framework provides three basic types of configuration files: machine,
application, and security. Despite their different contents and goals, all configuration
files are XML files and share the same schema. For example, all configuration files
begin with a <configuration> node and then differentiate their contents and child nodes
according to the final goal and the information contained. In this chapter, we'll focus
primarily on application configuration files, but this section also provides a quick
introduction to the other types of configuration files.

 505

The XML Schema for Configuration Settings

As mentioned, configuration files are standard XML files that follow a particular schema.
This schema defines all possible configuration settings for machine, security, and
application configuration files. The .NET Framework provides you with ad hoc classes
to read configuration settings, but no writing can be performed. You need to be familiar
with XML readers and writers if you want to directly edit the configuration files. (In light
of this, bear in mind that XML elements and attribute names are case-sensitive.)
All the configuration files are rooted in the <configuration> element. Table 15-1 lists the
first-level children of the <configuration> element. Each node has a specified number of
child elements that provide a full description of the setting. For example, the
<system.web> element optionally contains the <authorization> tag, in which you can
store information about the users who can safely access the URL resources.

Table 15-1: Children of the <configuration> Element

Element Description

<appSettings> Contains custom application settings
in the specified XML format.

<configSections> Describes the configuration sections
for custom settings. If this element is
in a configuration file, it must be the
first child of the <configuration> root.

<mscorlib>\<cryptographySettings> Cryptography schema; describes the
elements that map friendly algorithm
names to classes that implement
cryptography algorithms.

<runtime> Run-time settings schema; describes
the elements that configure assembly
binding and run-time behavior.

<startup> Startup settings schema; contains the
elements that specify which version
of the common language runtime
(CLR) must be used.

<system.diagnostics> Describes the elements that specify
trace switches and listeners that
collect, store, and route messages.

<system.net> Network schema; specifies elements
to indicate how the .NET Framework
connects to the Internet, including the
default proxy, authentication
modules, and connection parameters.

<system.runtime.remoting> Settings schema; configures the
client and server applications that
implement remoting.

<system.web> Microsoft ASP.NET configuration
section schema; contains the
elements that control how ASP.NET
Web applications behave.

 506

Because we're focusing on application configuration files in this chapter, for our
purposes, two of these elements have particular importance: <appSettings> and
<configSections>. The <configSections> element defines the sections that will be used
in the rest of the document to group information. The <appSettings> element contains
user-defined nodes whose structure has been previously defined in the
<configSections> node.

Armed with this working knowledge of the internal layout of configuration files, let's
learn a bit more about the two configuration file types that won't receive an in-depth
exposure in this chapter—machine and security configuration files.

Machine Configuration Files

Machine configuration files are named machine.config and are located in the CONFIG
subdirectory of the .NET Framework installation path. A typical path is shown here:

C:\WINNT\Microsoft.NET\Framework\v1.0.3705\CONFIG

The machine.config file contains machine-wide settings that apply to assembly binding,
built-in remoting channels, and the ASP.NET runtime. In particular, the machine.config
file contains information about the browser capabilities, registered HTTP handlers, and
page compilation. The following listing provides an excerpt from a machine.config file:

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

 <configSections>

 <section name="runtime"

 type="System.Configuration.IgnoreSectionHandler,
System,

 Version=1.0.3300.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089"
allowLocation="false" />

 <section name="mscorlib"

 type="System.Configuration.IgnoreSectionHandler,
System,

 Version=1.0.3300.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089"
allowLocation="false" />

 <section name="appSettings"

 type="System.Configuration.NameValueFileSectionHandler,
System,

 Version=1.0.3300.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089" />

 ⋮
 </configSections>

 ⋮
</configuration>

 507

The machine.config file typically contains remoting, ASP.NET, and diagnostics
sections, plus the <configSections> element. Declaring a section in the machine.config
file enables you to use that section in any configuration file on that computer, unless the
setting is explicitly overwritten in the application configuration file.

Security Configuration Files

Security configuration files contain information about the code groups and the
permission sets associated with a policy level. A policy level describes all the security
measures for a given context. There are three policy levels for security: enterprise,
machine, and user. The CLR grants permissions to an assembly based on the
minimum set of permissions granted by any of the policy levels.

Note A code group is a logical grouping of code that specifies certain

conditions for membership. Any code that meets the given criteria
can be included in the group. Code groups have associated
permission sets. A permission set, in turn, defines the resources
that can be accessed at execution time.

The name and the location of the security configuration file depend on the policy level.
The configuration file for the enterprise policy level is named enterprisesec.config and
resides in the same directory as the machine.config file. Contained in the same folder
but with a different name, the security.config file characterizes the machine policy level.
The enterprise level groups security settings for the entire enterprise; the machine
policy level, on the other hand, defines the security for the local machine. Both levels
can be configured only by an administrator.

The user policy configuration file is configurable by the current logged-on user. It is
named security.config and resides in a folder under the user profile subtree. A typical
path is shown here:

C:\Documents and Settings\[UserName]\Application Data\Microsoft\CLR Security Co

nfig\v1.0.3705

Note The paths for security configuration files are specific to each

operating system. The paths mentioned here refer to Microsoft
Windows 2000. For other systems' paths, refer to the MSDN
documentation.

Editing the contents of the file, and thereby modifying the security policies, is a
potentially critical task that should be accomplished using the .NET Framework
Configuration tool (a Control Panel applet named mscorcfg.msc) or the Code Access
Security Policy tool (caspol.exe).

Application Configuration Files

As the name suggests, application configuration files are designed to contain settings
specific to an application. The settings stored in the file are consumed by the CLR as
well as by the application itself. The CLR reads information such as assembly binding
policy, the location of remoted objects, and ASP.NET settings, if applicable. The
application reads settings that correspond to the parameters it needs to work.

The name and the location of the application configuration file depend on the
application's model, which can be one of the following: Windows Forms or console

 508

executable, ASP.NET application or Web service, or Internet Explorer– hosted
application.

The Configuration File for Executables

For Windows Forms and console-based applications, the configuration file resides in
the same directory as the application. The name of the file is the name of the
application (including the .exe extension) followed by a .config extension. For example,
if the application is named MyProgram.exe, the configuration file must be named
MyProgram.exe.config.

Note Windows Forms applications, as well as any other type of .NET

Framework applications, can in some situations use a configuration
file with a custom name and format. This is possible when the only
information stored in the file is application-specific settings.

The ASP.NET web.config File

ASP.NET and Web service configuration files are named web.config and are located in
the root of the virtual directory. When you request a particular page, however, the
ASP.NET runtime determines the correct settings by looking at all web.config files
found, proceeding from the virtual folder root down to the actual path of the requested
resource—typically a child directory.

Innermost configuration files can overwrite settings defined at an outer level. Likewise,
pages located in internal folders inherit the settings of configuration files found at upper
levels. For example, you have two web.config files, one in the root of the Web
application and one in the OtherPages subfolder. The innermost configuration file is in
no way involved when the URL points to a page in the root folder. However, when a
page in the OtherPages subfolder is requested, the contents of the two web.config files
are merged. In the case of conflicting settings, the innermost values win.

Internet Explorer–Hosted Applications
As we saw in Chapter 14, managed controls hosted in Internet Explorer can also have
a configuration file. The name of this file doesn't have to follow specific rules, but the
location of the file must be in the same virtual directory as the application. You simply
indicate the file and its location using the <link> tag, as shown here:

<link rel="configuration" href="location">
In this declaration, location is a placeholder that denotes the URL to the actual
configuration file. Whatever the name of the file, the format must be compliant with the
standard XML schema described in the section "The XML Schema for Configuration
Settings," on page 624.

Managing Configuration Settings

Application settings, including general user preferences and state information, are
saved in the <appSettings> section of a configuration file. The following code snippet
shows some typical output:

<configuration>

 <appSettings>

 <add key="LastLeftTopPosition" value="100,200" />

 <add key="LastSize" value="300,400" />

 509

 </appSettings>

</configuration>

The settings in the preceding sample file refer to the position and size of a window
when the application is closed. The syntax of the <appSettings> section is defined as
follows:

<appSettings>

 <add key="..." value="..." />

 <remove key="..." />

 <clear />

</appSettings>

The <add> element adds a new setting to the internal collection. This new setting has a
value and is identified by a unique key. The <remove> element removes a specified
setting from the collection. The setting is identified using the key. Finally, the <clear>
element clears all the settings that have previously been defined in the section.

Note The <remove> and the <clear> elements are particularly useful in
ASP.NET configuration files in which a hierarchy of files can be
created. For example, you can use the <clear> element to remove
all settings from your application that were defined at a higher level
in the configuration file hierarchy.

In general, the requirement that an application setting must be composed of a
name/value pair is arbitrary. By default, the <appSettings> section is configured to use
the name/value form. All sections used in a configuration file, including the
<appSettings> section, must be declared in the initial <configSections> block. The
following code snippet demonstrates the standard declaration of the <appSettings>
section:

<configSections>

 <section

 name="appSettings"

 type="System.Configuration.NameValueFileSectionHandler,
..." />

</configSections>

The <section> element takes two attributes—name and type. The name attribute
denotes the name of the section being declared. The type attribute indicates the name
of the managed class that reads and parses the contents of the section from the
configuration file. The value of the type attribute is a comma-separated string that
includes the class name and the assembly that contains it.
The <section> element also has two optional attributes: allowDefinition and
allowLocation. These attributes apply only to ASP.NET applications and are ignored
when other types of applications are running. AllowDefinition specifies in which
configuration files the section can be used—everywhere, the machine configuration file
only, or the machine and the application configuration file. This attribute provides a way
to control ASP.NET settings inheritance. The <allowLocation> attribute specifies
whether the section can be used within the <location> section.

 510

Note User applications don't need to declare the <appSettings> section
because the section is already declared in the system's
machine.config file, as we saw in the section "Machine
Configuration Files," on page 626. You don't need to repeat the
<appSettings> declaration unless you want to modify some of the
attributes, including the name/value format of the settings.

The ConfigurationSettings Class
To programmatically read application settings, you use the ConfigurationSettings class.
ConfigurationSettings is a small, sealed class that simply provides one static method
(GetConfig) and one static property (AppSettings).
The AppSettings property is a read-only NameValueCollection object designed to get
the information stored in the <appSettings> section. If no setting is specified, or if no
<appSettings> section exists, an empty collection is returned.

Note To have a read-only NameValueCollection object, you need to use
a class that derives from NameValueCollection and sets the
protected member IsReadonly to true. This is exactly what happens
under the hood of the AppSettings property. The helper collection
class that the AppSettings property returns is an undocumented
class named ReadOnlyNameValueCollection.

The GetConfig method returns the configuration settings for the specified section, as
shown here:

public static object GetConfig(string sectionName);
Although the method signature indicates an object return type, the actual return value
you get from a call to GetConfig is a class derived from NameValueCollection. In
particular, the class is ReadOnlyNameValueCollection if the section is <appSettings>.

Note In general, the object returned by GetConfig is determined by the
handler class specified for the section. If the handler is
NameValueSectionHandler or a related class, you get settings
stored in a name/value collection. As we'll see chapter in the section
"Types of Section Handlers," on page 640, other options exist that
could result in a different way of packing settings for applications.

The AppSettings property acts as a wrapper for the GetConfig method. The actual
implementation of the property consists of a call to GetConfig in which the section name
defaults to <appSettings>. The following pseudocode demonstrates:

public static NameValueCollection AppSettings

{

 get {return GetConfig("appSettings");}

}

The real code is a bit more sophisticated than this, however. After GetConfig returns,
the get accessor verifies that the returned value is not null. GetConfig returns null if the
specified section is empty or does not exist. If the returned object is null, the get
accessor of the AppSettings property creates an empty collection and returns that to
the caller. The pseudocode is shown here:

public static NameValueCollection AppSettings

{

 511

 get

 {

 ReadOnlyNameValueCollection o = GetConfig("appSettings");

 if (o == null)

 {

 o = new ReadOnlyNameValueCollection();

 o.IsReadOnly = true;

 }

 return o;

 }

}

Internally, the GetConfig method first determines the name and location of the
configuration file to access and then proceeds by creating a specialized XML text
reader to operate on the XML document. Each XML node read is parsed and the
contents stored as name/value pairs in a ReadOnlyNameValueCollection object. To
parse the contents of each XML node found, the method uses an instance of the
section handler class specified in the section declaration within the <configSections>
block. To read the <appSettings> section, GetConfig resorts to the
NameValueSectionHandler handler. This handler parses all the <add> nodes below
<appSettings> and adds entries to the collection. We'll look at section handler objects
in more detail in the section "Customizing the XML Schema for Your Data," on page
646.

The <appSettings> Section Handler
In our sample machine.config file, the <appSettings> section is read through an
instance of the NameValueFileSectionHandler class. What's the difference between
this class and the NameValueSectionHandler class?
The MSDN documentation doesn't provide further information about the
NameValueFileSectionHandler class; it notes only that the class is intended to be used
only by the .NET Framework. But the NameValueFileSectionHandler class is actually a
wrapper for NameValueSectionHandler class, which provides an extra, although
undocumented, feature. In particular, the NameValueFileSectionHandler section
handler allows the application settings to be stored in a separated file in accordance
with the following syntax:

<appSettings file="myfile.config" />

The file pointed to by the file attribute is read as if it is an <appSettings> section in the
configuration file. Note that the root element of the myfile.config file must match the
section that refers to it. So if the file attribute belongs to the <appSettings> section, the
root element of the file being pointed to must be named <appSettings>.
The NameValueFileSectionHandler object processes the contents of the embedded file
using the NameValueSectionHandler class. If no file is embedded in the <appSettings>
section but the default documented schema is used, the two section handlers are
functionally equivalent.

Although undocumented, the following code represents a perfectly valid schema for the
application's configuration file. The sample application AppSettings, available in this
book's sample files, demonstrates how to take advantage of this syntax.

 512

<configuration>

 <appSettings file="myfile.config" />

</configuration>

The myfile.config file contains the actual settings, as shown here:

<appSettings>

 <add key="LastLeftTopPosition" value="100,200" />

 <add key="LastSize" value="300,400" />

</appSettings>

Using Settings Through Code
Now that you know how to read settings, let's create a sample application that uses
persistent settings to refresh its own user interface. This application, shown in the
following code, is a simple Windows Forms program that always appears at the same
size and in the same position as when it was last closed. The settings are stored in a
myfile.config file and are read using the AppSettings property of the
ConfigurationSettings class.

private void Form1_Load(object sender, System.EventArgs e)

{

 // Read settings

 string wndPos =

 ConfigurationSettings.AppSettings["LastLeftTopPosition"];

 string wndSize =
ConfigurationSettings.AppSettings["LastSize"];

 // Update internal members

 string[] tmp;

 if (wndPos != null)

 {

 int m_top, m_left;

 tmp = wndPos.Split(',');

 m_left = Convert.ToInt32(tmp[0]);

 m_top = Convert.ToInt32(tmp[1]);

 this.Location = new Point(m_left, m_top);

 }

 if (wndSize != null)

 {

 int m_width, m_height;

 tmp = wndSize.Split(',');

 m_width = Convert.ToInt32(tmp[0]);

 m_height = Convert.ToInt32(tmp[1]);

 this.Size = new Size(m_width, m_height);

 }

 513

}

At loading, the form reads the settings from the configuration file, extracts position and
size information, and updates the Location and Size properties. Next the form is
displayed in the same location and at the same size as when it was closed.

Enumerating All Settings
The AppSettings property is a static member shared by all instances of
ConfigurationSettings running in the application domain (AppDomain). If you need to
access all the application settings, or simply to count them, you don't need to read one
property after the next. The property already contains all the settings in an easily
manageable NameValueCollection object. The following code shows how to enumerate
all the settings in a drop-down list:

foreach(string s in ConfigurationSettings.AppSettings)

 SettingList.Items.Add(s);

SettingList.SelectedIndex = 0;

Figure 15-1 shows the sample application in action. The drop-down list contains all the
settings.

Figure 15-1: Reading and using configuration settings programmatically.

Updating Settings
The .NET Framework does not provide any facilities for updating a configuration file.
How you create and maintain the application's file is up to you and might require
different approaches for different cases. As long as the size of the file is limited to just a
few KB, loading the entire document into an Xml-Document object is plausible and
results in an effective and familiar programming interface. To add new nodes, you use
the methods of the XML Document Object Model (XML DOM); to locate a particular
node to update, you use XPath queries. (XML DOM is covered in Chapter 5, and XPath
expressions are covered in Chapter 6.)
Let's proceed to persisting the location and size of the form. When the form is about to
close, a Closing event is fired to let users perform some clean-up operations and other
finalizing tasks—for example, persisting state information. The following code illustrates
the event handler used in the sample application:

private void Form1_Closing(object sender, CancelEventArgs e)

{

 // Load the config file as an XML document

 // (Assume that the config file exists)

 string configFile;

 configFile = Assembly.GetExecutingAssembly().Location +
".config";

 XmlDocument doc = new XmlDocument();

 doc.Load(configFile);

 514

 // Some internal variables

 XmlNodeList settings;

 XmlElement node, appSettingsNode;

 string query;

 // Get the <appSettings> node

 query = "configuration/appSettings";

 appSettingsNode = (XmlElement) doc.SelectSingleNode(query);

 if (appSettingsNode == null)

 return;

 ⋮
}

This code first loads the configuration file into an instance of the XmlDocument class.
The name of the file is obtained by combining the name of the currently executing
assembly with the .config extension. Next the code gets a reference to the
<appSettings> node. The reference to the <appSettings> node is obtained through an
XPath query executed by SelectSingleNode. By design, the<appSettings> subtree is
always a direct child of the <configuration> root node. The following code demonstrates
how to update—or, if needed, to create—a setting.

// Get the LastLeftTopPosition setting

query =
"configuration/appSettings/add[@key='LastLeftTopPosition']";

settings = doc.SelectNodes(query);

// If the node does not exist, create it

if (settings.Count >0)

 node = (XmlElement) settings[0];

else

{

 // Create the node <add key="..." value="..." />

 node = doc.CreateElement("add");

 XmlAttribute attKey = doc.CreateAttribute("key");

 attKey.Value = "LastLeftTopPosition";

 node.Attributes.SetNamedItem(attKey);

 XmlAttribute attVal = doc.CreateAttribute("value");

 node.Attributes.SetNamedItem(attVal);

 // Append the node

 appSettingsNode.AppendChild(node);

}

// Update the value attribute

 515

node.Attributes["value"].Value = String.Format("{0},{1}",

 this.Left, this.Top);

Finally, you save the file and persist the changes, as shown here:

doc.Save(configFile);

The XmlDocument class is particularly useful for performing this kind of task because it
allows you to selectively access a particular node. If you have dozens of settings to
persist, you might want to take a different route and rewrite the configuration file from
scratch each time. In this case, using an XML writer can result in more effective code.
If the configuration file contains information other than application settings and this
information takes up a lot of room, referencing an external configuration file from the
<appSettings> node can become an attractive option. Although the <appSettings>
node's file attribute is not documented, it works just fine and enables you to separate
application and user settings from the rest of the settings.

The AppSettingsReader Class
A more specialized tool for reading application settings is the AppSettingsReader class.
This class provides a single method, named GetValue, for reading values of a particular
type from the configuration file. The GetValue method takes two arguments—the name
of the setting to retrieve and the type to return—as shown here:

public object GetValue(string key, Type type);
The GetValue method retrieves the value of the given setting using the AppSettings
property and then performs an automatic cast to the specified type. Unlike the
AppSettings property of the ConfigurationSettings object, which always returns a string,
the GetValue method works in a strongly typed way. Suppose that you have the
following setting:

<add key="ReleaseDate" value="10-9-02" />
You can load the value directly into a DateTime object. Here's
how:

AppSettingsReader reader = new AppSettingsReader();

DateTime relDate = (DateTime) reader.GetValue("ReleaseDate",

 typeof(DateTime));

MessageBox.Show(relDate.ToShortDateString());

Note that the GetValue method is not marked as static, which means that you need a
fresh instance of the AppSettingsReader class to call the method. As mentioned, the
GetValue method is a simple wrapper for the AppSettings property, which is a static
member. If you plan to use AppSettingsReader in your application, you're better off
instantiating the object only once during the startup phase.

Creating New Configuration Sections
The <appSettings> section is one of many predefined configuration sections provided
by the .NET Framework. Programmers can also create their own sections. To create a
new section, you need to accomplish two basic tasks: declare the section in the
<configSections> block, and fill the section with custom data.

One of the key bits of information you need to specify while declaring a new section is
the name of the section handler class. The section handler class can be one of the
predefined classes provided by the .NET Framework or a class that you write from

 516

scratch or inherit from an existing class. The section handler object is responsible for
reading and parsing the actual contents of the setting.

Declaring a New Section
The<configSections> node contains the declarations of all the sections in the various
configuration files. The predefined sections are declared in the machine.config file that
the .NET Framework installs. Custom sections must be registered by the application
that plans to use them. The application's configuration file is a good place for inserting
this information.
The <configSections> node can accept up to four child nodes: <section>,
<sectionGroup>, <remove>, and <clear>. The <remove> element removes a previously
defined section, or a section group, from the <configSections> block. The <clear>
element clears all previously defined sections and section groups.

Note The <remove> and <clear> elements don't affect the actual data
stored in the configuration file. Removing a section doesn't erase
the related data from the file, but the data becomes unreachable
because of the missing section declaration.

A new section is registered using the <section> element. As mentioned, the name
attribute of this element specifies the name of the section and the type attribute
specifies the name of the section handler class. The name of the configuration section
class should contain full assembly information, including version, culture, and public key
token, if any. All the predefined handlers are defined in the same assembly and
therefore share the same information, as in the following example:

System, Version=1.0.3300.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089

Note When you create a custom assembly with no strong name (a strong

name is necessary if you want to put the assembly in the global
assembly cache), the version number is defined in the assemblyinfo
file that Microsoft Visual Studio .NET automatically adds to the
project. The culture is neutral, and the public key token is null.
Here's an example:
AppSettings_CS, Version=1.0.9.0, Culture=neutral,
 PublicKeyToken=null

The custom section follows the <configSections> block and contains the actual
configuration settings. The following code creates a new section named
userPreferences that accepts name/value pairs:

<configuration>

 <configSections>

 <section name="userPreferences"

 type="System.Configuration.NameValueFileSectionHandler,

↴
 System, Version=1.0.3300.0, Culture=neutral, ↴
 PublicKeyToken=b77a5c561934e089" />

 </configSections>

 <userPreferences>

 <add key="ReleaseDate" value="10-9-02" />

 517

 </userPreferences>

</configuration>

Sections can be grouped under a <sectionGroup> element. Declaring a section group
creates a namespace and ensures that no naming conflicts arise with other
configuration sections defined by someone else. Section groups can also be nested
within each other. The following code snippet declares the userPreferences section
nested in the AppName group:

<sectionGroup name="AppName">

 <section name="userPreferences"

 type="System.Configuration.NameValueSectionHandler, ↴
 system, Version=1.0.3300.0, Culture=neutral, ↴
 PublicKeyToken=b77a5c561934e089" />

</sectionGroup>

A node with the group name must also wrap the settings subtree,
as shown here:

<AppName>

 <userPreferences>

 <add key="ReleaseDate" value="10-9-02" />

 </userPreferences>

</AppName>

To read the settings of a custom section, you use the GetConfig method, passing the
fully qualified name of the section to retrieve. For example, the following code returns
the settings in the <userPreferences> section:

NameValueCollection settings;

settings =
ConfigurationSettings.GetConfig("AppName/userPreferences");

MessageBox.Show(setting["ReleaseDate"]);

Note A new section, or section group, that is defined in the
machine.config file is visible to all applications. This setting can be
changed using the allowDefinition attribute for ASP.NET
applications only. In contrast, sections defined in the application
configuration file are visible only to the local application.

Types of Section Handlers
A section handler is a .NET Framework class that implements the
IConfigurationSectionHandler interface. It interprets and processes the configuration
settings stored in a configuration section and returns a configuration object based on
the configuration settings. The returned object is accessed by the GetConfig method.
The data type returned by the GetConfig method depends on the section handler
defined for the particular section.
The .NET Framework provides a few predefined section handlers, listed in Table 15-2.
All of these section handlers belong to the System.Configuration namespace and are
implemented in the System assembly.

 518

Table 15-2: Predefined Section Handlers

Class Description

DictionarySectionHandler Reads name/value pairs and groups them
in a hash table object.

IgnoreSectionHandler The System.Configuration classes ignore
the sections marked with this handler
because their contents will be processed
by other components. This handler is an
alternative to using and declaring custom
handlers.

NameValueFileSectionHandler Reads name/value pairs from a file
referenced in the <appSettings> section
and groups them in a
NameValueCollection object.

NameValueSectionHandler Reads name/value pairs and groups them
in a NameValueCollection object.

SingleTagSectionHandler Reads settings from attributes stored in a
single XML node. The data is returned as
a hash table.

In the .NET Framework, the classes in the System.Configuration namespace are
responsible for parsing the contents of the configuration files. These classes are
designed to process the entire contents of the configuration files. The classes also
throw an exception when a configuration section lacks a corresponding entry in the
<configSections> block and when the layout of the data does not match the declaration.
Of the five section handlers, we have examined NameValueSectionHandler and
NameValueFileSectionHandler. The DictionarySectionHandler class is very similar; it
differs only in that it stores settings in a hash table instead of in a NameValueCollection
object. Collection objects are more efficient if they are used to store a small number of
items (ideally fewer than 10), whereas a hash table provides better performance with
large collections of items. The IgnoreSectionHandler and SingleTagSectionHandler
classes deserve a bit more attention, and we'll look at them next.

The IgnoreSectionHandler Section Handler
A few subsystems in the .NET Framework store configuration data in the
machine.config file but process the data themselves, without relying on the services
provided by the System.Configuration classes. For example, the machine.config file
contains remoting and startup information that is processed outside the configuration
engine. To prevent the configuration file from parsing exceptions, you can use a dummy
section handler—IgnoreSectionHandler. This handler handles sections of configuration
data rather than relying on the classes in System.Configuration. It could be argued that
such data should be stored in a system configuration file, like the machine.config file, or
in a custom file. Looking at the following excerpt from the machine.config file, you can
see that remoting configuration settings are processed by the remoting classes,
whereas HTTP run-time configuration settings are processed by a custom handler:

<!-- Tell the .NET Framework to ignore these sections -->

<section name="system.runtime.remoting"

 type="System.Configuration.IgnoreSectionHandler, System,

 Version=1.0.3300.0, Culture=neutral,

 PublicKeyToken=b77a5c561934e089" />

 519

<!-- Employ a custom section handler -->

<section name="httpRuntime"

type="System.Web.Configuration.HttpRuntimeConfigurationHandler,

 System.Web, Version=1.0.3300.0, Culture=neutral,

 PublicKeyToken=b03f5f7f11d50a3a" />

In both cases, configuration settings need a customized and more sophisticated layout
than name/value pairs. In the first scenario, the handler is embedded in the remoting
subsystem; in the second scenario, the handler conforms to the configuration
guidelines but is simply not one of the predefined handlers. As mentioned, because by
design the configuration classes read through all the contents of a configuration file and
throw exceptions whenever they encounter something wrong, custom settings handled
outside the configuration namespace must have a section handler, although one that
does nothing—the IgnoreSectionHandler handler.

The SingleTagSectionHandler Section Handler
The SingleTagSectionHandler class supports a simpler schema for storing
configuration settings. Unlike NameValueSectionHandler, which supports name/value
pairs defined within <add> nodes, the SingleTagSectionHandler class uses a single
XML node with as many attributes as needed. Each attribute maps to a setting, and the
name of the attribute is also the key to access the value.
In other words, the SingleTagSectionHandler class provides an attribute-based view of
the configuration settings, whereas the NameValueSectionHandler class (and
DictionarySectionHandler as well) provides an element-based representation. The
following code shows the way in which settings are stored by a single tag section
handler:

<configuration>

 <configSections>

 <section name="MyCountries"

 type="System.Configuration.SingTagSectionHandler" />

 </configSections>

 <MyCountries country1="USA"

 country2="Italy"

 country3="Iceland" />

</configuration>

Under the Hood of Section Handlers
As mentioned, a configuration section handler is simply a managed class that
implements the IConfigurationSectionHandler interface. The classes that implement the
IConfigurationSectionHandler interface define the rules for transforming pieces of XML
configuration files into usable objects. The created objects can be of an arbitrary type.
The following code shows the interface signature:

public interface IConfigurationSectionHandler

{

 object Create(object parent, object configContext,

 XmlNode section);

}

 520

The interface includes a single method, Create, that configuration readers call to obtain
an object that represents the contents of a particular setting. This method takes three
arguments: a parent object, a context object, and a section XML node. In general, the
configuration object can be obtained by combining the information read and composed
in a parent directory with the current settings. This information is stored in the parent
argument. A configuration setting can't always have a parent path, however; this is
possible only with web.config files, which are specifically designed to support
configuration inheritance. For all other configuration files, the parent argument of the
Create method is always null. The parent argument being passed should not be altered,
and if a modification is necessary, you first clone the object and then modify it.

Note If it isn't null, the parent argument is guaranteed to be an object
returned by a previous call made to the Create method on the same
section handler object. Therefore, by design, the type of the parent
argument is identical to the return type of the current
implementation of Create. For example, if the Create method
returns a NameValueCollection object, the parent argument can
only be an object of type NameValueCollection or null.

A section handler object might be used in any configuration file, including a web.config
file. For this reason, when implementing the IConfigurationSectionHandler interface,
you should check the value in the parent argument and act accordingly. We'll look at an
example of this in the section "Implementing the DataSet Section Handler," on page
653.
The configContext argument is non-null only if you use the section handler within a
web.config file in an ASP.NET application. In this case, the argument evaluates to an
object of type HttpConfigurationContext, whose only significant member is a property
named VirtualPath. The VirtualPath property contains the virtual path to web.config with
respect to the ongoing Web request. In this way, you can determine the level of
configuration nesting at which your handler is called to operate.
Finally, the section argument is the XML DOM node object rooted at the section to be
handled. The argument is an XML DOM subtree that represents the data to be
processed.

Note To better understand the rather symbolic role played by the
IgnoreSectionHandler section handler class, consider what the
implementation of its Create method looks like:
object Create(object parent, object context,
XmlNode section)
{
 return null;
}

No information is returned, but neither is an exception thrown.

Customizing Attribute Names
Configuration settings are stored using predefined attribute names: key for the setting's
name, and value for the actual contents. Such names are hard-coded as protected
members in the NameValueSectionHandler and DictionarySectionHandler classes.
Their associated properties are named KeyAttributeName and ValueAttributeName,
respectively. To customize those names, you must derive a new class, override the
properties, and use the new class as your section handler.

 521

The following code demonstrates a class that inherits from NameValueSectionHandler
and simply renames the attributes to be used for the settings. Instead of the default
names key and value, SettingKey and SettingValue are used.

public class CustomNameValueSectionHandler:
NameValueSectionHandler

{

 public CustomNameValueSectionHandler(): base()

 {

 }

 protected override string KeyAttributeName

 {

 get{return "SettingKey";}

 }

 protected override string ValueAttributeName

 {

 get{return "SettingValue";}

 }

}

Note that the KeyAttributeName and ValueAttributeName properties are read-only,
protected, and virtual. You must retain the same modifier and override the properties in
a new class. There is no need to make the properties read/write. The preceding class is
defined in the sample application AppSettings_CS available in this book's sample files
and enables you to access the configuration file shown here:

<configuration>

 <configSections>

 <sectionGroup name="AppName">

 <section name="CustomSection"

 type="AppSettings_CS.CustomNameValueSectionHandler,

 AppSettings_CS" />

 </sectionGroup>

 </configSections>

 <AppName>

 <CustomSection>

 <add SettingKey="Property" SettingValue="My value" />

 </CustomSection>

 </AppName>

</configuration>

The beauty of these section handlers is that they encapsulate all the logic necessary to
access settings in the configuration file. The application is not affected by the actual
layout of the setting. As a result, reading the preceding value requires the same high-
level code, regardless of the attribute names you use, as shown here:

 522

NameValueCollection coll;

coll = ConfigurationSettings.GetConfig("AppName/CustomSection");

MessageBox.Show(coll["Property"]);

Customizing the XML Schema for Your Data

The predefined XML schema for configuration files fits the bill in most cases, but when
you have complex and structured information to preserve across application sessions,
none of the existing schemas appear to be powerful enough. At this point, you have two
possible workarounds. You can simply avoid using a standard configuration file and
instead use a plain XML file written according to the schema that you feel is appropriate
for the data. Alternatively, you can embed your XML configuration data in the standard
application configuration file but provide a tailor-made configuration section handler to
read it. A third option exists. You could insert the data in the configuration file, register
the section with a null handler (IgnoreSectionHandler), and then use another piece of
code (for example, a custom utility) to read and write the settings.
Before we look more closely at designing and writing a custom configuration handler
according to the XML schema you prefer, let's briefly compare the various approaches.
In terms of performance and programming power, all approaches are roughly
equivalent, but some key differences still exist. In theory, using an ad hoc file results in
the most efficient approach because you can create made-to-measure, and
subsequently faster, code. However, this is only a possibility—if your code happens to
be badly written, the performance of your whole application might still be bad. The
System.Configuration classes are designed to serve as a general-purpose mechanism
for manipulating settings. They work great on average but are not necessarily the best
option when an effective manipulation of the settings is key to your code. On the other
hand, the System.Configuration classes, and the standard configuration files, require
you to write a minimal amount of code. The more customization you want, the more
code you have to write, with all the risks (mostly errors and bugs) that this introduces.
As a rule of thumb, using the standard configuration files should be the first option to
evaluate. Resort to custom files only if you want to control all aspects of data reading
(for example, if you want to provide feedback while loading), if performance is critical, or
if you just don't feel comfortable with the predefined section handlers. Finally, although
it's reasonable to use the IgnoreSectionHandler handler in the context in which the
.NET Framework uses it, I don't recommend using IgnoreSectionHandler in user
applications. A custom section handler or a custom file is preferable.
If you're considering creating a custom file based on a customized XML schema,
DataSet objects present an interesting option. Assuming that the data to be stored
lends itself to being represented in a tabular format, you could write an XML
configuration file using the Microsoft ADO.NET normal form and load that data into a
DataSet object. Loading data requires a single call to the ReadXml method, and
managing data is easy due to the powerful interface of the DataSet class. We'll look at
an example of the DataSet section handler next.

Note In the section "Customizing Attribute Names," on page 645, we
analyzed a custom section handler inherited from the
NameValueSectionHandler class. That trivial handler was simply
aimed at overriding some of the standard features of one of the
predefined handlers. A truly custom section handler is a more
sophisticated object that uses an XML reader to access a portion of
the configuration file and parse the contents.

 523

Creating a DataSet Section Handler
Let's look at a practical example of a new section handler named
DatasetSectionHandler. This section handler reads XML data from a configuration file
and stores it in a new DataSet object. The data must be laid out in a format that the
ReadXml method can successfully process. The typical format is the ADO.NET normal
form that we examined in Chapter 9.
Along with the custom section handler, let's write an application that can handle
configuration data through a DataSet object. Suppose you have a Windows Forms
application that can be extended with plug-in modules. We won't look at the details of
how this could be done here; instead, we'll focus on how to effectively store
configuration data as XML. (In the section "Further Reading," on page 655, you'll find a
reference to a recent article that addresses this topic fully.) We'll analyze the plug-in
engine for Windows Forms applications only, but the same pattern can be easily
applied to Web Forms applications as well.

Extending Windows Forms Application Menus
The sample application shown in Figure 15-2 allows users to add custom menu items
below the first item on the Tools menu. Such menu items are linked to external plug-in
modules. In this context, a plug-in module is simply a class dynamically loaded from an
assembly. More generally, the plug-in class will need to implement a particular
interface, or inherit from a given base class, because the application needs to have a
consistent way to call into any plug-in class. (For more information and a complete
example of extensible .NET Framework applications, check out the article referenced in
the section "Further Reading," on page 655. In our sample application, we'll limit
ourselves to creating a context-sensitive MessageBox call for each new registered
plug-in.

Figure 15-2: A Windows Forms application that can be extended with plug-in modules that
integrate with the menu.

At loading, the sample application calls the following routine to set up the menu:

private void SetupMenu()

{

 // Access the menu config file

 string path = "TypicalWinFormsApp/PlugIns";

 DataSet configMenu = (DataSet)
ConfigurationSettings.GetConfig(path);

 // Add dynamic items to existing popup menus

 524

 if (configMenu != null)

 AddMenuToolsPlugIns(configMenu);

}

The configuration settings—that is, the menu items to be added to the Tools menu—are
read from the configuration file using the ConfigurationSettings class, as usual. Nothing
in the preceding code reveals the presence of a custom section handler and a
completely custom XML schema for the settings. The only faint clue is the use of a
DataSet object.
After it has been successfully loaded from the configuration file, the DataSet object is
passed to a helper routine, AddMenuToolsPlugIns, which will modify the menu. We'll
return to this point in the section "Invoking Plug-In Modules," on page 650; in the
meantime, let's review the layout of the configuration file.

The XML Layout of the Configuration Settings
The data corresponding to plug-in modules is stored in a section group named
TypicalWinFormsApp. The actual section is named PlugIns. Each plug-in module is
identified by an assembly name, a class name, and display text. The display text
constitutes the caption of the menu item, whereas the assembly name and the class
name provide for a dynamic method call. As mentioned, in a realworld scenario, you
might force the class to implement a particular interface so that it's clear to the calling
application which methods are available for the object it is instantiating.
Here is a sample configuration file for the application shown in Figure 15-2:

<configuration>

 <configSections>

 <sectionGroup name="TypicalWinFormsApp">

 <section name="PlugIns"

 type="XmlNet.CS.DatasetSectionHandler,

 DatasetSectionHandler" />

 </sectionGroup>

 </configSections>

 <appSettings>

 <add key="LastLeftTopPosition" value="358,237" />

 <add key="LastSize" value="472,203" />

 </appSettings>

 <TypicalWinFormsApp>

 <PlugIns>

 <MenuTools>

 <Text>Add new tool...</Text>

 <Assembly>MyToolsPlugIns</Assembly>

 <Class>MyPlugIn.AddNewTool</Class>

 </MenuTools>

 <MenuTools>

 <Text>Special tool...</Text>

 <Assembly>MyToolsPlugIns</Assembly>

 <Class>MyPlugIn.SpecialTool</Class>

 525

 </MenuTools>

 </PlugIns>

 </TypicalWinFormsApp>

</configuration>

I deliberately left a few standard application settings (the <appSettings> section) in this
listing just to demonstrate that custom sections can happily work side by side with
standard system and application settings. In particular, the sample application depicted
in Figure 15-2 also supports the same save and restore features described in the
section "Using Settings Through Code," on page 634.
The <section> element points to the class XmlNet.CS.DatasetSectionHandler, which is
declared and implemented in the DatasetSectionHandler assembly. The net effect of
this section declaration is that whenever an application asks for a PlugIns section, the
preceding section handler is involved, its Create method is called, and a DataSet object
is returned. We'll look at the implementation of the section handler in the section
"Implementing the DataSet Section Handler," on page 653.

Invoking Plug-In Modules
The AddMenuToolsPlugIns procedure modifies the application's Tools menu, adding all
the items registered in the configuration file. The following code shows how it works:

private void AddMenuToolsPlugIns(DataSet ds)

{

 DynamicMenuItem mnuItem;

 DataTable config;

 // Get the table that represents the settings for the menu

 config = ds.Tables["MenuTools"];

 if (config == null)

 return;

 // Add a separator

 if (config.Rows.Count >0)

 menuTools.MenuItems.Add("-");

 // Start position for insertions

 int index = menuTools.MenuItems.Count;

 // Populate the Tools menu

 foreach(DataRow configMenuItem in config.Rows)

 {

 mnuItem = new
DynamicMenuItem(configMenuItem["Text"].ToString(),

 new EventHandler(StdOnClickHandler));

 mnuItem.AssemblyName =
configMenuItem["Assembly"].ToString();

 mnuItem.ClassName = configMenuItem["Class"].ToString();

 526

 menuTools.MenuItems.Add(index, mnuItem);

 index += 1;

 }

}

The DataSet object that the section handler returns is built from the XML code rooted in
<PlugIns>. This code originates a DataSet object with one table, named MenuTools.
The MenuTools table has three columns: Text, Assembly, and Class. Each row in the
table corresponds to a plug-in module.
The preceding code first adds a separator and then iterates on the rows of the table
and adds menu items to the Tools menu, as shown in Figure 15-3. MenuTools is just
the name of the Tools pop-up menu in the sample application.

Figure 15-3: Registered plug-in modules appear on the Tools menu of the application.

To handle a click on a menu item in a Windows Forms application, you need to
associate an event handler object with the menu item. Visual Studio .NET does this for
you at design time for static menu items. For dynamic items, this association must be
established at run time, as shown here:

DynamicMenuItem mnuItem;

mnuItem = new DynamicMenuItem(

 configMenuItem["Text"].ToString(),

 new EventHandler(StdOnClickHandler));

A menu item is normally represented by an instance of the MenuItem class. What is
that DynamicMenuItem class all about then? DynamicMenuItem is a user-defined class
that extends MenuItem with a couple of properties particularly suited for menu items
that represent calls to plug-in modules. Here's the class definition:

public class DynamicMenuItem: MenuItem

{

 public string AssemblyName;

 public string ClassName;

public DynamicMenuItem(string text, EventHandler onClick):

 base(text, onClick)

 {}

}

 527

The new menu item class stores the name of the assembly and the class to use when
clicked. An instance of this class is passed to the event handler procedure through the
sender argument, as shown here:

private void StdOnClickHandler(object sender, EventArgs e)

{

 // Get the current instance of the dynamic menu item

 DynamicMenuItem mnuItem = (DynamicMenuItem) sender;

 // Display a message box that proves we know the
corresponding

 // assembly and class name

 string msg = "Execute a method on class [{0}] from assembly
[{1}]";

 msg = String.Format(msg, mnuItem.ClassName,
mnuItem.AssemblyName);

 MessageBox.Show(msg, mnuItem.Text);

}

In a real-world context, you can use the assembly and class information to dynamically
create an instance of the class using the Activator object that we encountered in
Chapter 12, as follows:

// Assuming that the class implements the IAppPlugIn interface

// asm is the assembly name, cls is the class name

IAppPlugIn o = (IAppPlugIn) Activator.CreateInstance(asm,
cls).Unwrap()

// Assume that the IAppPlugIn interface has a method Execute()

o.Execute();

Figure 15-4 shows the message box that appears when you click a custom menu item
in the sample application. All the information displayed is read from the configuration
file.

Figure 15-4: The message box that appears when a custom menu item is clicked.

 528

Implementing the DataSet Section Handler

To top off our examination of section handlers, let's review the source code for the
custom section handler that we've been using, shown here:

using System;

using System.Data;

using System.Xml;

using System.Configuration;

namespace XmlNet.CS

{

 public class DatasetSectionHandler:
IConfigurationSectionHandler

 {

 // Constructor(s)

 public DatasetSectionHandler()

 {

 }

 // IConfigurationSectionHandler.Create

 public object Create(object parent,

 object context, XmlNode section)

 {

 DataSet ds;

 // Clone the parent DataSet if not null

 if (parent == null)

 ds = new DataSet();

 else

 ds = ((DataSet) parent).Clone();

 // Read the data using a node reader

 DataSet tmp = new DataSet();

 XmlNodeReader nodereader = new XmlNodeReader(section);

 tmp.ReadXml(nodereader);

 // Merge with the parent and return

 ds.Merge(tmp);

 return ds;

 }

 }

}

 529

The DatasetSectionHandler class implements the IConfigurationSectionHandler and
provides the default constructor. The most interesting part of this code is the Create
method, which reads the current section specified through the section argument and
then merges the resultant DataSet object with the parent, if a non-null parent object has
been passed. Because configuration inheritance proceeds from top to bottom, the base
DataSet object for merging is the parent.
The XML data to be parsed is passed via an XmlNode object—that is, an object that
represents the root of an XML DOM subtree. To make an XML DOM subtree parsable
by the DataSet object's ReadXml method, you must wrap it in an XmlNodeReader
object—that is, one of the XML reader objects that we encountered in Chapter 2 and
Chapter 5. When called to action on the configuration file from the section "The XML
Layout of the Configuration Settings," on page 649, the XmlNode object passed to the
handler points to the <PlugIns> node.

Conclusion

The .NET Framework API for reading configuration settings is designed to greatly
simplify the code needed on the client. This API represents the perfect example of
smooth XML integration. No matter how the configuration data is organized and where
the data is located, the code you use to access the data is nearly identical. The only
significant drawback I've noticed in the current implementation of the configuration API
is that you can't rely on a common and official API to update settings. However, as this
chapter showed, using XML writers or, better yet, XML DOM documents provides a
quick and effective workaround.

In this chapter, we reviewed the fundamentals of the .NET Framework configuration
subsystem, the files in which it is articulated, and their related locations. Next we
reviewed the properties and methods commonly used to access configuration settings.
The final part of the chapter addressed the topics and the tasks involved in an in-depth
customization of configuration files. In particular, you learned how to create new
sections and new section handlers, and we examined a comprehensive example.

Reading
The configuration API is described in detail in the MSDN documentation. I've noticed
only a few omissions and a few points about which that text is unclear, and I've tried to
include that information in this chapter. The final example presented in this chapter
represents a hot topic for many developers: building desktop applications that can be
extended with external plug-in modules. I discussed this topic at length and with
extensive code examples in an article that appeared in the "Cutting Edge" column of
the July 2002 issue of MSDN Magazine.

 530

Afterword

Overview

While writing this book, I accumulated a few thoughts that I'd like to share with you as
my final considerations about XML and the Microsoft .NET Framework. If you consider
these ideas individually, they might appear completely unrelated to one another, but
considered all together, they form a sort of filter through which you can reconsider and
review this book's contents from a higher level perspective. These are the four main
concepts:

 XML is a native data type in the .NET Framework.
 We need a parsing model that falls in the middle between the XML Document

Object Model (XML DOM) and Simple API for XML (SAX).
 The capability to query data effectively is key.
 We need more than the Simple Object Access Protocol (SOAP) and the XML

Schema Definition (XSD) for true interoperability.
Some of these ideas address cross-platform issues whose solution is beyond the
capabilities and interests of individual vendors. The W3C is working on XQuery, an
evolution of the XPath query language, which will provide a data model for XML
documents as well as a set of operators for that data model and a query language
based on these operators. (For more information, refer to
http://www.w3.org/XML/Query.)
To date, the recent WS-I initiative (see http://www.ws-i.org) appears to be the Web
services counterpart to the W3C. The goal of the consortium behind the WS-I initiative
is to promote true interoperability across Web services implementations. To the extent
that I can envision things, the most effective way to make this happen is by defining
new XML-based standards at least for security and object representation.

Native XML in the .NET Framework

Prior to the advent of the .NET Framework, we were used to writing XML-driven
Microsoft Windows applications based on the MSXML COM-based library. Unlike
classes in the .NET Framework, however, MSXML is a bolted-on API that
communicates with the rest of the application but does not really integrate with it.
Communication entails the activity or the process of passing information to others. It is
based on some set of signals that both parties understand and that encode the
information being exchanged. Integration, on the other hand, means that items are
combined so that they are closely linked and form one unit. This distinction is
significant.
The MSXML library can be imported into your code but remains an external, self-
contained black box that acts as a server component. .NET Framework applications, on
the other hand, use XML classes along with other classes in the .NET Framework,
resulting in a homogeneous combination of "equal-sized" pieces. As a self-contained
component, the MSXML must provide itself with advanced features such as
asynchronous parsing. This feature is apparently lacking in the XML classes of the
.NET Framework. By integrating XML classes with other classes in the .NET
Framework, however, you can easily obtain the same functionality and even gain more
control over the overall process.

 531

Neither XML DOM nor SAX

The .NET Framework supports the XML DOM but not SAX. The XML DOM is the
classic way to process XML documents, but it also turns out to be ineffective for certain
classes of documents—mostly very large and volatile documents. The SAX model was
developed to provide an alternative approach. The idea behind SAX is great; the actual
programming model is much less ideal. SAX uses the push model, whereas a pull
model is certainly more effective and flexible.

The .NET Framework provides a third parsing model based on the concept of the
reader. The reader is a kind of read-only, forward-only cursor that doesn't cache
anything—it just reads as quickly as possible.

Programmers need classes that implement the XML DOM because the XML DOM is a
recognized standard and because it is useful in a number of realistic scenarios.
However, XML DOM can't be the only API available to work with XML documents. A
lower level set of tools is needed. The .NET reader is just this. In fact, the XML DOM
implementation in the .NET Framework is built using readers.

Query Is Key

An XML document is primarily a repository of information and as such must be
searchable. But how? XPath was the first answer to the demand for a query tool to
extract node-sets out of XML documents. But more powerful tools are needed. Today,
XPath 2.0 is on the way, with XQuery 1.0 running close behind.

XPath as we know it today, and as supported by the .NET Framework, is a language for
addressing parts of an XML document. XPath 2.0 presents itself as an expression
language for processing sequences of text. It also comes with built-in support for
querying XML documents. But what's the difference between addressing and querying?
And between XPath and XQuery?

I think that the difference between addressing and querying can be summarized by
resorting to a SQL metaphor. A simple SELECT statement with a WHERE clause
addresses a subset of rows; a more complex SELECT statement that includes UNION,
GROUP BY, INNER JOIN, and temporary tables does much more and actually
performs a query.

XPath 1.0 addresses parts of the documents; XQuery performs complex queries and
supports more data types. From a syntax point of view, XPath 2.0 is a subset of XQuery
but with a number of key features already included. Stepping from XPath 1.0 to XPath
2.0 positions you nicely for a further jump to XQuery when it becomes a W3C
recommendation.
A good reference for clearing up any confusion you might have about XPath and
XQuery is the following: http://www.xml.com/pub/a/2002/03/20/xpath2.html.

The Dream of True Interoperability
That XML can be exchanged between heterogeneous platforms and understood
anywhere is a fact. Web services are a relatively new type of software that exploits this
aspect of XML. The rub lies in the fact that in the real world, data must be used once it
has been transferred. XML data must be converted to usable objects. But which tool
can take care of this mapping process? An easy answer would be the parser, but the
parser is a generic tool that processes XML data and returns an XML-specific object,

 532

not an application-specific object. For example, while parsing employee data, the
parser can create an XML DOM object that contains a tree of nodes set to employee
data. There is no way for the parser to return an application-specific object such as an
Employee class with properties and methods.

Just as SOAP provides a universal technique for defining a method call, another
protocol should provide the ability to describe a class. I'd like to have a simple class
definition protocol that would let servers and clients exchange documents that contain
structure and data of a given class instance. A specialized type of parser would be
needed with the extra ability to deserialize the class description into a valid instance of
a type. Sound confusing? Think of the .NET Framework XML serializer (or the SOAP
formatter). The XML serializer provides the ability to save and restore instances of
classes. The saved data contains information about the structure of the class and its
instance data. I believe that the .NET Framework already contains a prototype of the
parser of the future.

It will be interesting to see how many of the features predicted or called for in this book
will find their place in the next version of the .NET Framework (code-named Whidbey).

