
M A N N I N G

Neal Ford

STRUTS

TAPESTRY

COMMONS

VELOCITY

JUNIT

AXIS

COCOON

INTERNETBEANS

WEBWORK

ARTOF

JAVA WEB
DEVELOPMENT

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Art of Java
Web Development

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Art of Java
Web Development

STRUTS, TAPESTRY, COMMONS, VELOCITY, JUNIT,
AXIS, COCOON, INTERNETBEANS, WEBWORK

NEAL FORD

M A N N I N G

Greenwich
(74° w. long.)

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, go to
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2004 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Liz Welch
209 Bruce Park Avenue Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN: 1-932394-06-0

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 08 07 06 05 04 03

www.allitebooks.com

http://www.allitebooks.org

 To Chuck,

who still teaches me stuff daily

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

brief contents
PART I THE EVOLUTION OF WEB ARCHITECTURE

AND DESIGN ... 1

1 ■ State-of-the-art web design 3

2 ■ Building web applications 27

3 ■ Creating custom JSP tags 61

4 ■ The Model 2 design pattern 91

PART II WEB FRAMEWORKS .. 131

5 ■ Using Struts 133

6 ■ Tapestry 159

7 ■ WebWork 199

8 ■ InternetBeans Express 227

9 ■ Velocity 261

10 ■ Cocoon 283

11 ■ Evaluating frameworks 311

www.allitebooks.com

http://www.allitebooks.org

viii BRIEF CONTENTS

PART III BEST PRACTICES .. 327

12 ■ Separating concerns 329

13 ■ Handling flow 371

14 ■ Performance 409

15 ■ Resource management 445

16 ■ Debugging 475

17 ■ Unit testing 521

18 ■ Web services and Axis 543

19 ■ What won’t fit in this book 563

www.allitebooks.com

http://www.allitebooks.org

ix

contents
preface xvii

acknowledgments xix

about the book xxi

about the cover illustration xxx

PART I THE EVOLUTION OF WEB ARCHITECTURE

AND DESIGN ... 1

1 State-of-the-art web design 3
1.1 A brief history of Java web development 4

1.2 The importance of design patterns 6

The Model-View-Controller design pattern 7 ■ The emergence of
Model 2 9 ■ Evolution 10

1.3 Using frameworks 11

A flavor of the Struts framework 12 ■ A flavor of the Turbine
framework 14 ■ Objectively choosing a framework 20

1.4 Best practices 20

Business rules 20 ■ Where should the rules reside? 22
Leveraging best practices 24

1.5 Summary 25

x CONTENTS

2 Building web applications 27
2.1 Building web applications with servlets 29

The eMotherEarth servlet application 29

Evaluating the servlet approach 50

2.2 Building web applications with JSP 50

The JSP eMotherEarth application 51

Evaluating the JSP approach 59

2.3 Summary 60

3 Creating custom JSP tags 61
3.1 The case for custom tags 62

3.2 The tag interfaces 63

The Tag interface 63 ■ The IterationTag interface 64

The BodyTag interface 65

3.3 Building simple tags 66

The HtmlSqlResult tag 66 ■ Registering the tag 71

3.4 Validating tag attributes 75

Adding DbPool to the application tag 75

3.5 Using prebuilt tags 80

Using JSTL 81 ■ Using other taglibs 84

3.6 Custom tag considerations 86

Resource usage 87 ■ Building a framework 88

3.7 Now that we’re here, where are we? 88

3.8 Summary 89

4 The Model 2 design pattern 91
4.1 Using Model 2 as your framework 92

The Model 2 schedule application 93

Options in Model 2 116

4.2 Parameterizing commands with controller servlets 117

An example of parameterizing commands 118
Advantages and disadvantages 127

4.3 Summary 128

CONTENTS xi

PART II WEB FRAMEWORKS .. 131

5 Using Struts 133
5.1 Building Model 2 Web applications with Struts 134

The Struts schedule application 134 ■ Value objects as form
beans 136 ■ Objectifying commands with Struts’ actions 137
Configuring Struts applications 139 ■ Using Struts’ custom tags
to simplify JSP 142 ■ Internationalization with Struts 145
Struts’ support for data entry 147 ■ Declarative validations 151

5.2 Evaluating Struts 156

5.3 Summary 157

6 Tapestry 159
6.1 Overview 160

6.2 The architecture 160

6.3 A simple Tapestry application 162

Tapestry Hello, World 162

6.4 The Tapestry framework 167

Framework classes and interfaces 167 ■ Components 170

6.5 Scheduling in Tapestry 173

Bootstrapping the application 173 ■ The Home page 176
The custom table component 180 ■ The Add page 185

6.6 Evaluating Tapestry 192

Documentation and samples 192 ■ Debugging support 195
Using Tapestry 196

6.7 Summary 197

7 WebWork 199
7.1 Overview 200

The architecture 201 ■ The configuration 202

7.2 Key concepts 203

Actions 204 ■ Key interfaces 204 ■ The value stack 205
Expression language 206 ■ BeanInfo classes 207
Templates 207

xii CONTENTS

7.3 Scheduling in WebWork 208

The configuration 208 ■ The View page 209

The Add page 214 ■ Validations 220

7.4 Evaluating WebWork 224

7.5 Summary 226

8 InternetBeans Express 227
8.1 Overview 228

8.2 The architecture 230

DataExpress 230 ■ InternetBeans Express 233

8.3 InternetBeans Express components 234

ixPageProducer 234 ■ ixComponents 236

8.4 Scheduling with InternetBeans 237

Data connectivity 238 ■ The View page 242 ■ The Add

page 245 ■ Validations 249

8.5 JSP custom tags 255

8.6 Evaluating InternetBeans Express 257

Documentation and samples 257

Using InternetBeans Express 258

8.7 Summary 259

9 Velocity 261
9.1 Overview 262

9.2 The architecture 263

9.3 Key concepts 265

Setting up Velocity 265 ■ The Velocity Template

Language 268 ■ Context 269

9.4 Scheduling with Velocity 269

The View page 271 ■ The Add page 274

Validations 278

CONTENTS xiii

9.5 Evaluating Velocity 281

Documentation and samples 281 ■ Using Velocity 282

9.6 Summary 282

10 Cocoon 283
10.1 Overview 284

10.2 The architecture 285

The publishing framework 285 ■ The web framework 288

10.3 Key concepts 289

The publishing framework 289 ■ The sitemap 295

The web framework 299

10.4 Scheduling in Cocoon 302

The sitemap 303 ■ The action 304 ■ The view 305

10.5 Evaluating Cocoon 307

Documentation and samples 307 ■ Source code 308
Debugging 308

10.6 Summary 309

11 Evaluating frameworks 311
11.1 Evaluation criteria 312

Suitability to the application 312 ■ Documentation 315

Source code 316 ■ Tool support 317 ■ External criteria 318

11.2 Design considerations 319

Adherence to good design principles 319 ■ The user

interface 320 ■ Innovative features 321
Insularity 322 ■ “Feel” 322

11.3 What I like 323

Transparent infrastructure 323 ■ Innovative ideas 323

Ultra-high cohesion and low coupling 324

Evaluating frameworks as a hobby 324

11.4 Summary 324

xiv CONTENTS

PART III BEST PRACTICES .. 327

12 Separating concerns 329
12.1 Using interfaces to hide implementation 330

JDBC interfaces 331 ■ Interfaces in frameworks 331
Decoupled classes 332

12.2 Using JavaBeans 333

Model beans 334

12.3 Using Enterprise JavaBeans 337

The EJB architecture 338 ■ Porting from JavaBeans to Enterprise
JavaBeans 340 ■ Using EJBs in web frameworks 360
Managing JNDI context 361

12.4 Performing validations with model beans 362

Client-side validations 362
Building client-side validations from the server 365

12.5 Summary 368

13 Handling flow 371
13.1 Application usability options 372

Building the base: eMotherEarth.com 372 ■ Page-at-a-time
scrolling 378 ■ Sortable columns 384
User interface techniques in frameworks 389

13.2 Building undo operations 390

Leveraging transaction processing 391 ■ Using the Memento
design pattern 394 ■ Undo in frameworks 401

13.3 Using exception handling 401

The difference between technical and domain exceptions 401
Creating custom exception classes 402 ■ Where to catch and
handle exceptions 403 ■ Exceptions in frameworks 406

13.4 Summary 407

14 Performance 409
14.1 Profiling 410

Measuring memory 410 ■ Performance profiling 412
Load testing 419 ■ Performance of profiling frameworks 421

CONTENTS xv

14.2 Common performance pitfalls 421

Object creation 422 ■ Extraneous object references 424
String usage 426

14.3 Pooling 427

Simple object pools 427 ■ Soft and weak references 428
Commons pools 433 ■ Pooling in frameworks 440

14.4 Designing for scalability 440

When to scale up to EJB 441
Molding your architecture for the future 441

14.5 When to optimize 442

14.6 Summary 443

15 Resource management 445
15.1 Caching strategies 446

Caching with the Flyweight design pattern 447 ■ Caching with
the Façade design pattern 453 ■ Resource management
in frameworks 469

15.2 Other resources you need to manage 470

Effectively using JNDI 470 ■ Using lazy instantiation 472
Working with web collections 472

15.3 Summary 473

16 Debugging 475
16.1 Debugging web applications 476

16.2 Debugging with the SDK 483

Starting the debugger 483 ■ Running the debugger 486
Breakpoints and steps 489 ■ Accessing variables 490
Effectively using jdb 492

16.3 Debugging with IDEs 493

Debugging with NetBeans 493 ■ Debugging with JBuilder 498
Differences between debuggers 502

16.4 Evaluating debuggers 505

16.5 Debugging in frameworks 506

Struts 506 ■ Tapestry 507 ■ WebWork 507
 InternetBeans Express 507 ■ Velocity 508 ■ Cocoon 508

xvi CONTENTS

16.6 Logging 508

General logging concepts 509 ■ SDK logging 512
log4j logging 516 ■ Choosing a logging framework 519

Logging in frameworks 519

16.7 Summary 520

17 Unit testing 521
17.1 The case for testing 522

Agile development 522 ■ Unit testing in web applications 524

17.2 Unit testing and JUnit 525

Test cases 525 ■ Testing entities 525 ■ Running tests 528

Test suites 529 ■ Testing boundaries 530 ■ Tool support 534

17.3 Web testing with JWebUnit 536

JWebUnit TestCases 537 ■ Testing complex elements 539

17.4 Summary 541

18 Web services and Axis 543
18.1 Key concepts 544

18.2 Axis 545

Architecture of Axis 546 ■ Axis tools 547

18.3 Calling web services 551

18.4 eMotherEarth web services 553

Configuration 553 ■ Orders 556 ■ Calling the web service 559

18.5 Summary 562

19 What won’t fit in this book 563
19.1 Persistence 564

Plain old Java objects 564 ■ Enterprise JavaBeans 564
Java data objects (JDO) 565 ■ Hibernate 566

19.2 HTML and the user interface 566

HTML/XHTML 567 ■ Cascading Style Sheets 567

19.3 JavaScript 568

19.4 Summary 569

 bibliography 570

 index 571

xvii

preface
In ancient China (approximately 500 B.C.), Sun Tzu wrote The Art of War. In it, he
described the state of the art in warfare. The book took a universal approach,
describing wide-ranging topics that related to one another only through how they
applied to warfare. In 1961, Julia Child published the classic Mastering the Art of

French Cooking. In her book, she described the essentials of mastering French
cooking. Her book covered an extensive array of topics, including both kitchen
techniques and recipes.

 Both of these influential books offered a comprehensive look at the current
thinking in their fields. Each covered a variety of topics, discussing specific tech-
niques and underlying theories. They included concrete, practical advice, and
they talked about the tools available to make the job of warfare (or cooking) easier.
Art of Java Web Development strives for the same breadth and depth of coverage for
web development in Java. It is not a random selection of topics. Rather, it encom-
passes topics that web developers must master to deliver state-of-the-art software. It
also examines the evolution of the cutting edge in web development architecture
and design, describes the best tools (or weapons) available to developers, and
explains specific, practical techniques for improving your web applications.

 Most development books today fall into one of two categories: API or best prac-
tices. The API books focus on a single API, either from J2EE and Java or, for exam-
ple, an open-source project. A perfect example is Manning’s excellent Struts in

Action, by Ted Husted et al. It takes you through everything you need to know

xviii PREFACE

about how to use Struts. The best (or worst) practices books focus on individual
topics, examining design patterns and coding samples that represent the best (or
worst) ways to perform a certain task. Art of Java Web Development overlaps some of
the topics from these other types of books, but it does so in a synergistic manner,
discussing how all these pieces (and others) combine to create real-world web
applications.

www.allitebooks.com

http://www.allitebooks.org

xix

acknowledgments
Writing any book is a daunting task, and the nature of this book made it even
more so. This means that my supporting structure (i.e., my family and friends)
suffered with and supported me even more than usual. For that, they have my
undying gratitude. First, to all my immediate and extended family, thanks for all
your support, especially my mother, Hazel, who bears the most responsibility for
who I am today. Also, thanks to my dad, Geary, along with Sherrie, Elisha, and the
whole menagerie for their support. I would also like to thank Lloyd, Michelle,
John, Madison, and Max (a force of nature) for all their fun and companionship,
along with Mechelle, Mark, Wyatt, and Wade. The whole Shephard clan deserves
a nod, because they care a lot more about me learning to cook the secret family
recipe for Death by Candied Yams than what I put to paper.

 I would also like to thank my surrogate family here in Atlanta, as fine a bunch
of people as you will ever meet: Margie, Wright, Melissa, Julie, Walker, Jim, Randy,
and Karen. They have taken Candy and me into their family and made us feel like
one of them.

 There are several instructors whom I feel I should acknowledge as well. Being
an instructor myself, I have insight into what it takes to do it right, and these peo-
ple showed me all I know about it. I would like to thank K. N. King at Georgia
State for excellence in computer science, Robert Goetzman for teaching me to
appreciate literature at a finer level, and James Head for being the finest instruc-
tor whose classes I’ve had the pleasure to attend. Dr. Head and the others are

xx ACKNOWLEDGMENTS

shining examples of how quality instructors make fundamental changes to peo-
ple’s lives every day.

 The entire crew at DSW deserves thanks and acknowledgment. I cannot imag-
ine working with a finer group of people, who keep me technically sharp and
firmly planted: Allan, Brooks, David, Emerson, Jamie, Mike, Noah, Shanna, Steve,
and Tim. As long as I’m acknowledging technical folks, the most insane person I
know, Glenn (but he’s from Australia, so that’s OK), belongs here, along with my
good friends from Vancouver, Michael and Maggie. From the other side of the
world, Masoud, Frank, and Stepan in Frankfurt are also friends whom I see too lit-
tle and too briefly. Among technically inclined friends, I should include a thanks
and acknowledgment to Chris (and his Evil Twin, Dallas), who is currently lost in
Louisiana. I should also thank Steve Mikel, whom I admire because he shows that
it is possible to have an interesting and diverse life.

 I would also like to thank everyone at Manning, the best publisher I’ve ever
encountered. Everyone there from the publisher down embodies what a book
company should be. A special thanks goes out to my technical editor, Luigi Vig-
giano, for keeping me honest, along with the rest of the Manning cast, including
(but not limited to) Marjan Bace, Liz Welch, Mary Piergies, Susan Capparelle,
Ann Navarro, and Dottie Marsico. I would also like to thank all the technical
reviewers who spent a great deal of time to make this book better: Jason Carreira,
Erik Hatcher, Shahram Khorsand, Howard Lewis Ship, Steve Loughran, Ted
Neward, Eitan Suez, and Luigi Viggiano. I appreciate their insights, comments,
criticisms, and feedback.

 It is virtually impossible to exist in this field if you don’t have activities that fall
completely outside the technical realm. For that I have other circles of friends,
who are vaguely aware of what I do for a living, but frankly could care less. These
include my neighbors, Jamie, Diane, Kitty, and Gail. Another large support group
consists of all my triathlete buddies, who only know me as the slow guy behind
them: Jon, Joan, Jane, and Robert all fall into that group of people who help keep
me sane.

 There aren’t many people who span all the above groups (plus some other
groups that I didn’t even mention). In fact, there is really only one: Terry, who
deserves special thanks for support and friendship, who is a good travel partner,
geek, and Tri-geek. And thanks to Stacy for letting him do all that stuff.

 Last but certainly not least is the person who both likes and dislikes this book
the most. My beautiful and wonderful wife, Candy, whom I love more than any-
thing, has spent far too long in the company of only Winston and Parker and
deserves more of my time. Honey, this book is finally done, and I’m all yours again.

xxi

about the book
This book is for every Java web developer, regardless of his or her level of exper-
tise. It is designed primarily for intermediate to advanced developers, who under-
stand the specifics of the various web APIs in Java but haven’t yet mastered the best
way to apply them. It is perfect for developers who have heard terms like Model-
View-Controller and Model 2, but weren’t present for the series of events that led
to the widespread adoption of these best practices. It is also perfect for designers
and architects of web applications because it discusses the implications of archi-
tecture and design at every opportunity.

 This book is also well suited to developers who have looked at (and possibly
struggled with) one of the many web frameworks on the market. It is unique in its
coverage of web frameworks, giving equal weight to six different frameworks and
comparing them on equal ground. Whether you are planning to use a framework
or you want to write your own, understanding the similarities and differences
between the existing frameworks will save you a great deal of time. Art of Java Web

Development also illustrates new possibilities for those who are using a framework
but aren’t happy with it.

 In addition, this book is aimed at developers who must create applications in
the real world. Many of the best practices books treat each tip as the sole focus of
a chapter, with no discussion of integrating it into a real application. Real applica-
tions are messy, requiring lots of moving parts working together seamlessly. The
best practices in this book are presented in the context of a working e-commerce

xxii ABOUT THE BOOK

application, with all the places that the real world intersects with the academia of
the pattern discussed.

How this book is organized

Art of Java Web Development consists of three parts. It begins with coverage of the his-
tory of the architecture of web applications, highlighting the uses of the standard
web API to create applications with increasingly sophisticated architectures. The
discussion leads to the development of industry-accepted best practices for archi-
tecture. Instead of simply pronouncing one architecture as the best, Art of Java Web

Development shows the history and evolution of each architecture.
 The second part of the book provides a unique overview of the most popular

web application frameworks. Trying to evaluate a framework is difficult because its
documentation typically stresses its advantages but hides its deficiencies. This
book builds the same application in six different frameworks, encouraging you to
perform an “apples to apples” comparison. The last chapter of part 2 provides a
candid evaluation of the pros and cons of each framework to assist you in making
a decision or in evaluating a framework on your own.

 The selection of the correct framework is only the beginning of the life cycle of
an application. Part 3 examines best practices, including sophisticated user inter-
face techniques, intelligent caching and resource management, performance tun-
ing, debugging, testing, and web services.

Part 1

Chapter 1 serves as the jumping-off point for the book. It highlights all the topics
to come in the subsequent chapters and explains my primary motivation for writ-
ing the book.

 Chapter 2 begins our discussion of the evolution of web applications. The idea
behind this chapter is to present an application built by a developer who is very
good with Java and understands the web APIs but hasn’t yet applied best practices
and architecture. The first pass at the application uses only servlets (which was the
only tool available when the web APIs first debuted). Then we build the same
application using just JSP. In both cases, we highlight the strengths and weak-
nesses of the resulting applications.

 Chapter 3 carries the evolution a step further with custom tags. It takes the JSP

application built in the second chapter and improves it using custom JSP tags.
 Chapter 4 represents the culmination of the evolution of architecture and

design. Here, we rewrite our sample application as a Model 2 application. You’ll
also learn how to leverage design patterns to improve the Model 2 application.

ABOUT THE BOOK xxiii

Part 2

Part 2 covers six web frameworks. In chapter 5, you’ll learn about Struts. We intro-
duce this framework in chapter 1, but here we “deconstruct” it and describe all
the important moving parts. Chapter 6 examines Tapestry, another Model 2–based
open-source framework. We show you how the Tapestry API completely encapsu-
lates the web APIs in Java. Chapter 7 takes a look at WebWork, another open-source
Model 2 framework. It includes some innovative ideas for passing just-in-time
information between the layers of Model 2.

 Chapter 8 covers the only commercial framework in the book, InternetBeans
Express, which is the framework included with Borland’s JBuilder. It is a rapid
application development environment that lets you create web applications in
record time.

 Chapter 9 examines Velocity, which can act as a replacement for JSP and other
visual representation languages. Velocity is a popular open-source framework that
is very cohesive and single-purpose. In chapter 10, you’ll learn about Cocoon, an
open-source publishing framework that also includes capabilities as a Model 2
web framework.

 Chapter 11 offers an evaluation of all six frameworks. It lays out the criteria we
used to judge them, and gives you the information you need to evaluate frame-
works on your own.

Part 3

Part 3 looks at best practices and helpful techniques for building web applications
in the real world. The topic coverage is very broad, but we focus on various tech-
niques and tools for building web applications.

 Chapter 12 discusses techniques for separating concerns between the tiers of
the application. Chapter 13 describes user interface techniques for managing the
flow of information in web applications. It shows you how to build page-at-a-time
displays and sortable columns without sacrificing clean Model 2 architecture. We
also discuss building “undo” operations in web applications, using either transac-
tion processing or the Memento design pattern. Chapter 14 focuses on perfor-
mance. You’ll learn how to profile web applications to determine whether
performance bottlenecks exist, using both SDK-supplied and commercial tools.
Next, we look at performance pitfalls and common mistakes and offer solutions.
Then we delve into object pooling and explain how to implement it using either
Java references or Jakarta Commons pooling.

 Chapter 15 complements the previous chapter by showing you how to conserve
resources. We examine several sophisticated caching techniques using both the

xxiv ABOUT THE BOOK

Flyweight and Façade design patterns. In this chapter, we build caching into the
sample eMotherEarth application.

 Chapter 16 moves away from specific design techniques and focuses on debug-
ging and logging. You’ll learn how to debug web applications using nothing but
the tools supplied with the SDK (i.e., the command-line debugger). We also show
you how to use commercial and open-source debuggers, including JBuilder and
NetBeans. The last part of the chapter examines the Java 1.4 SDK logging package
and log4j, a popular open-source logging package.

 In chapter 17, you’ll learn about unit testing, an often-neglected part of applica-
tion development, especially in web applications. We show you how to build tests
for your web applications and discuss JUnit and JWebUnit, both very popular
open-source testing frameworks.

 Chapter 18 wraps up the best practices portion of the book by examining web
services and explaining how to incorporate them into your existing web applica-
tions. Finally, chapter 19 highlights some important topics that are simply beyond
the scope of this book. The bibliography at the end of this book includes refer-
ences to the books cited throughout the chapters.

Notes about the samples

Art of Java Web Development contains many samples, mostly based around two main
web applications. The samples also embody some of my ideas about the structure
of source code. The samples illustrate the techniques covered in the chapter, but
the coding technique may look a little unusual if you aren’t used to the style.
However, once you see my rationale for writing code like this, you may well adopt
it yourself.

The samples

Two primary samples appear throughout the chapters. The use of only two sam-
ples is intentional, but the reasons are different for each instance. The samples
are designed to illustrate the topics in the chapters, including the architecture,
design, and specific techniques.

The eMotherEarth.com sample

The architecture and technique samples revolve around the fictitious eMother-
Earth e-commerce site. This site sells earth products, like dirt, leaves, mountains....
Fortunately, we don’t have to worry about delivering the products; we’re just pre-
senting a catalog. The application is a simple four-page web application that allows
logon, catalog display, checkout, and confirmation. Even though it’s small, this site
is sufficient for us to highlight navigation, techniques, and architecture.

ABOUT THE BOOK xxv

 We use the eMotherEarth application in the early chapters to illustrate the
architecture of web applications and how it has evolved from servlets, to JSP and
custom tags, to the currently accepted industry standards. In later chapters, we use
the same sample application to illustrate various techniques for creating user inter-
faces, implementing caching, managing resources, and other advanced topics.

The schedule sample

The other primary sample in Art of Java Web Development is the schedule applica-
tion. It is a simple two-page application that manages scheduling information,
and it appears in all the framework chapters. One of the goals of our book is to
show the various web frameworks in a manner that permits direct, head-to-head
comparison of features. Evaluating the frameworks based on their samples and
documentation doesn’t allow you to perform this “apples to apples” comparison
because there is no ANSI standard web application sample.

 The framework chapters all build the same schedule application, each using
the framework discussed in that chapter. Unless otherwise noted, all the samples
use the same infrastructure for database access and representation of entities. The
difference in each case is the framework itself. It is remarkable how different the
versions of this sample end up, given the similarities of the basic architecture of
most of the frameworks and the common elements used to build them. However,
as you will see, the framework makes a tremendous difference in the implementa-
tion of a web application.

Sample setup

Art of Java Web Development is an intermediate to advanced book on web frame-
works and best practices. As such, we do not cover the basics of setting up a devel-
opment environment for the samples. You must handle that yourself. However, it
is exhaustively covered in other books and on the Internet. Two infrastructure
pieces are needed for the samples: a database server and a servlet engine. Each
sample does include an Ant file to build the sample using the Ant build utility. Ant
is available at ant.apache.org and is covered extensively in Manning’s book Java

Development with Ant, by Erik Hatcher and Steve Loughran.

The database

Virtually all the samples in this book connect to a database because most real-
world applications also have to retrieve data from a database. We use the MySQL

database (available at www.mysql.com) because it is open source (and therefore
free for developer use) and because it is a great database server. However, you
aren’t forced to use it to run the samples. With each of the samples, we include a

xxvi ABOUT THE BOOK

generic SQL setup script that builds the database for the application. The setup
script is designed around MySQL but can be easily modified to work in any ANSI

standard database server. To run the samples with MySQL, you must download it
and set it up yourself. You’ll find a hyperlink on the book’s web site (www.man-
ning.com/ford) that leads you to the MySQL site.

The servlet engine

The web applications in this book utilize standard Java web development code, so
they all run in any Java 2 Enterprise Edition (J2EE)-compliant servlet engine.
Unless otherwise noted, we generally use Tomcat for the samples because it is
open source and is the reference implementation of the servlet API. Because the
samples are J2EE compliant, they will run in any servlet engine.

 The exceptions to the previous rule of thumb are applications that illustrate
particular J2EE features not found in Tomcat. For example, chapter 12 features
Enterprise JavaBeans and uses the JBoss application server instead of Tomcat. In
any case, the samples all run in any servlet engine or application server that
matches the standard J2EE architecture.

The frameworks

Part 2 of Art of Java Web Development covers various web development frameworks.
These chapters include links where you can download the framework. We also
include links to the frameworks on the book’s web site (www.manning.com/ford).
Because of the nature of open-source frameworks and the Internet in general, it is
possible that the frameworks will have moved. For example, during the develop-
ment of the book, the Tapestry framework moved from SourceForge to Jakarta.
Don’t be discouraged if you can’t find the framework using the link provided in
the chapter. Most of the frameworks featured in this book are well established,
meaning that they shouldn’t go away anytime soon. If you can’t find a framework,
either search using your favorite search engine or go to the book’s resources web
pages (www.dswgroup.com/art and www.nealford.com/art), which will have
updated links.

The code structure

As you read the code in this book, you will notice some unusual characteristics
about the structure of the code itself. For the structure of the code, I rely on a
combination of the Template Method and Composed Method design patterns.
The first is from the classic Design Patterns: Elements of Reusable Object-oriented Soft-

ware by Gamma, Helm, Johnson, and Vlissides, (the “Gang of Four”), and the sec-
ond appears in Kent Beck’s Smalltalk Best Practice Patterns.

ABOUT THE BOOK xxvii

 The Template Method design pattern mandates extremely small, cohesive
methods so that common behavior may be pushed up higher in the class hierar-
chy. It encourages extremely granular, single-purpose methods that perform only
one task. The Composed Method design pattern encourages the same structure
with extremely cohesive methods, but also adds the characteristic of very readable
method names.

 The problem we attack with these patterns is the tendency for embedded com-
ments (i.e., the comments inside the method definition) to “lie.” They don’t
mean to lie—and they generally don’t when first written. However, over time as
the code changes, the comments fail to stay in sync. The solution to the less-than-
truthful comments is to get rid of them. The method names themselves should
indicate what the method does without the need for comments. Note that I’m not
referring to method- and class-level comments (captured with JavaDoc). Those
comments should remain in your code. The embedded comments should go.

 To help enforce this coding style, we have a rule of thumb at our office that no
method exceed 20 lines of code. If it is longer than that, it should be refactored
into smaller, more cohesive (i.e., more composed) methods. Once you have this
level of granularity, it is much easier to identify the methods that should move up
in the class hierarchy (because they are generic) and apply the Template Method
design pattern.

 Using these coding techniques, the public methods of your class read like out-
lines of the intended actions of the method, which are in turn the private meth-
ods that perform the actual work. If the method names are clear enough,
embedded comments (the ones that lie) aren’t needed—the code “speaks” to
you. For example, here is the doPost() method from one of the more complex
samples:

public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws

 ServletException, IOException {

 HttpSession session = request.getSession(true);
 ensureThatUserIsInSession(request, session);

 ProductDb productDb = getProductBoundary(session);
 int start = getStartingPage(request);

 int recsPerPage = Integer.parseInt(
 getServletConfig().getInitParameter("recsPerPage"));
 int totalPagesToShow = calculateNumberOfPagesToShow(

 productDb.getProductList().size(), recsPerPage);
 String[] pageList = buildListOfPagesToShow(recsPerPage,
 totalPagesToShow);

 List outputList = productDb.getProductListSlice(
 start, recsPerPage);
 sortPagesForDisplay(request, productDb, outputList);

xxviii ABOUT THE BOOK

 bundleInformationForView(request, start, pageList,

 outputList);
 forwardToView(request, response);
}

The intent of the doPost() method relies on the internal composed method
names, each of which performs one atomic unit of work. If this method isn’t work-
ing, it is a fault in one of the private methods, which are each small and thus easy
to trace into.

 All the code in our book uses this coding technique. I have used it for years,
and I firmly believe that it leads to higher quality code. With the tools available in
the Java world for refactoring, it is easier than ever to either create code like this
or modify existing code to take advantage of this technique.

 The other semi-controversial coding artifact seen in my code is the absence of
unnecessary braces, particularly around decisions and loops. While this is a com-
mon defensive coding technique, I find that I don’t like to code defensively. If you
understand how the language works, defensive coding isn’t necessary. However, I
understand that many of my colleagues really like the extra braces. If you have
trouble reading code that doesn’t contain the extraneous braces, I recommend
that you download the code and apply one of the source code beautifiers (like
Jalopy, at sourceforge.net/projects/jalopy/) to "fix" the code.

Source code

All the code generated for Art of Java Web Development is available online, either at
www.manning.com/ford or from my web site, www.nealford.com. My site has a
page devoted specifically to this book at www.nealford.com/art. There is also a
link to the samples on my company’s site, www.dswgroup.com/art.

Typographic conventions

Italic typeface is used to introduce new terms.
Courier typeface is used to denote code samples as well as program elements.

Author Online

The purchase of Art of Java Web Development includes free access to a private web
forum run by Manning Publications, where you can make comments about the
book, ask technical questions, and receive help from the author and from other
users. To access the forum and subscribe to it, point your web browser to
www.manning.com/ford. This page provides information on how to get on the
forum once you are registered, what kind of help is available, and the rules of con-
duct on the forum.

www.allitebooks.com

http://www.allitebooks.org

ABOUT THE BOOK xxix

 Manning’s commitment to our readers is to provide a venue where a mean-
ingful dialogue between individual readers and between readers and the author
can take place. It is not a commitment to any specific amount of participation on
the part of the author, whose contribution to the AO remains voluntary (and
unpaid). We suggest you try asking the author some challenging questions lest
his interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s web site as long as the book is in print.

About the author

NEAL FORD is the chief technology officer at The DSW Group Ltd. in Atlanta, GA.
He is an architect, designer, and developer of applications, instructional materi-
als, magazine articles, and video presentations. Neal is also the author of Develop-

ing with Delphi: Object-Oriented Techniques (Prentice Hall PTR, 1996) and JBuilder 3

Unleashed (SAMS Publishing, 1999). His language proficiencies include Java, C#/
.NET, Ruby, Object Pascal, C++, and C. Neal’s primary consulting focus is the
building of large-scale enterprise applications. He has taught on-site classes
nationally and internationally to all phases of the military and many Fortune 500
companies. He is also an internationally acclaimed speaker, having spoken at
numerous developers’ conferences worldwide.

 Neal is also an avid (but slow) Ironman triathlete, competing in several races a
year of varying distance. He is also a voracious reader, loves to listen to very eclec-
tic music, watch high-quality movies, travel to exotic locales, and eat at fine restau-
rants (sometimes enjoying combinations of the above). He has also been known
to sit in front of a computer for vast amounts of time. When at home, Neal enjoys
the company of his wife, Candy, and two cats, Winston and Parker.

xxx

about the cover illustration
The figure on the cover of Art of Java Web Development is a "Nukahiviens avec un Tat-
ouage Tout Different," a resident of Nukahiva Island in the Marquesas in French
Polynesia. Marquesans were known for their elaborate tatoos which, over a life-
time, would cover almost all of their bodies. Marquesan craftsmen also developed
great skill in carving and decorating wood, stone and bone, and developed a rich
repertory of surface designs and patterns, some of a type to be found throughout
Polynesia, others distinctively Marquesan in origin and concept.

 The illustration is taken from a French travel book, Encyclopedie des Voyages by
J. G. St. Saveur, published in 1796. Travel for pleasure was a relatively new phe-
nomenon at the time and travel guides such as this one were popular, introduc-
ing both the tourist as well as the armchair traveler to the inhabitants of other
regions of France and abroad.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years
ago. This was a time when the dress codes of two regions separated by a few dozen
miles identified people uniquely as belonging to one or the other. The travel
guide brings to life a sense of isolation and distance of that period and of every
other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life two
centuries ago brought back to life by the pictures from this travel guide.

Part I

The evolution
of web architecture

and design

Look at the computer sitting in front of you, and you see the culmina-
tion of architecture and design going all the way back to Charles Bab-
bage’s steam-powered analytical engine. You can use a computer without
knowing anything at all about the workings of the underlying mechanism.
However, if you know how it evolved to the point where it is now, you have
a much richer understanding of why it works the way it does. For the same
reason, understanding how the design and architecture of web applica-
tions has evolved provides valuable insight into how and why the architec-
ture is sound.

Part 1 covers the evolution of the architecture and design of state-of-
the-art web applications. It does not discuss servlets, JSP, and custom tag
development from an API standpoint because plenty of other texts are
available that focus on those topics. Instead, we examine these APIs from
a design and architecture perspective, describing how to build web appli-
cations that are scalable, maintainable, and robust. Chapter 1 provides an
overview of the topics for the entire book. Chapter 2 covers the evolution
of web development in Java; chapter 3 explores that evolution through
custom JSP tags. Chapter 4 discusses the preferred design and architec-
ture option, Model 2, along with some architectural options.

3

State-of-the-art
web design

This chapter covers

■ A brief history of Java web development

■ The importance of design patterns

■ An introduction to the Struts and Turbine
frameworks

■ A working definition of business rules

4 CHAPTER 1

State-of-the-art web design

The World Wide Web is a perfect example of how a simple idea (pages linked via

hypertext) can lead to extraordinary richness. Originally envisioned as a way to

provide static pages (now affectionately known as “brochure-ware”), the medium

quickly grew to embrace dynamic content. These original efforts were written in

languages like C and Perl. As time and technology progressed, new application

programming interfaces (APIs) sprang into existence, each building and improv-

ing on the preceding technologies. New APIs appear because developers discover

limitations in existing languages and tools. Limitations in existing APIs led to the

repurposing of Java for building dynamic web content, first as servlets, then as

JavaServer Pages (JSP). The history leading from Perl, Common Gateway Inter-

face (CGI), and C is well documented in just about every book on the servlet and

JSP core APIs.

 Developers coming from more traditional application development (for exam-

ple, client/server applications) discover that building web applications is funda-

mentally different in many ways. Even if you are fluent in Java, the architecture

and design of web applications doesn’t necessarily come naturally. Just as the

switch from console applications to event-driven applications required a major

shift in thinking, the switch from event-driven applications to the stateless world

of web development requires a paradigm shift as well. Even an understanding of

the basic infrastructure of web applications won’t immediately reveal the most

effective architecture and design. Many decisions made early in the design and

development process have unforeseen repercussions later in the process. Because

of the oft-quoted and well-documented cost of architectural and design changes

late in the application lifecycle, it behooves you to get it right from the outset.

 This chapter provides an overview of the topics we cover in this book. First, we

discuss the evolution of Java web development and the importance of design pat-

terns. Next, we examine web application frameworks (which are the topic of

part 2 of this book). Finally, we examine best practices (the focus of part 3), along

with a hot-button issue that falls under that heading. The main goal of this book is

to show you how to apply best software-engineering practices to the development

of web applications in Java.

1.1 A brief history of Java web development

Java began life as a programming language designed for building traditional

applications and applets. But as developers realized the benefits of Java, it

A brief history of Java web development 5

quickly expanded into other realms of development, including distributed and

web development.

 When Java took its first baby steps into the world of distributed web applica-

tions, it was with servlets. The benefits of the servlet architecture have been cov-

ered extensively in other books, and we won’t rehash them here. We are more

interested in why servlets were being used.

 In the beginning, developers used servlets to create dynamic web content.

Managers quickly realized that the talents that make a good Java developer do not

necessarily overlap with the talents needed to create an attractive user interface

(UI) in HTML. (This isn’t unique to Java developers—Perl, C, and other develop-

ers are similarly disadvantaged.) The person you wanted designing the UI for your

web application tended to be more of a layout expert, usually with a penchant for

Macintosh computers. So, to utilize the right people for the right jobs, managers

had the art school folks crafting the UI while the Java developers worked on the

functionality. At some point the UI gurus passed their carefully crafted HTML to

the Java developers to incorporate into the dynamic content. This created a chal-

lenge for the Java developers: merging the HTML from the art majors into the

servlets that generated dynamic content.

 However, once this was done, the pain still wasn’t over. Invariably, the presi-

dent of the company would get a new online service disc in the mail over the

weekend, stumble his way over to some web site he had never seen before, and

come in on Monday morning with the mandate, “We’re changing the look and

feel of our company web site.” The HTML coders had to implement the new

Grand Vision. Meanwhile, the Java developers realized that their job had just got-

ten worse. Now, not only did they have to merge the HTML into the servlets, they

also had to selectively replace the existing HTML without breaking anything. The

verdict on servlets was too much HTML mixed in with the Java code.

 Clever developers quickly cooked up their own template strategies. Special

markers in the HTML were parsed and replaced as needed. In other words, the

developers sprinkled special HTML comments into the UI, such as:

Customer Name: <!-- $customerName -->

As the page displayed, the servlet would search through the code, looking for

these “magic markers” to replace with dynamic content. To render a page, the

servlet was forced to parse and process the HTML before it was output to the

browser. Each development team created its own tags, so no level of standardiza-

tion existed for the syntax and use of these custom tags. Some companies created

standard tags across development teams, but that was the extent of tag reusability.

6 CHAPTER 1

State-of-the-art web design

 Using templates is a big improvement because it separates dynamic content

from the UI. However, the approach suffers from a scalability problem. Parsing

HTML to render content is an expensive operation in terms of machine resources,

including central processing unit (CPU) and input/output (I/O) subsystems. For

very busy web sites with lots of concurrent users, the I/O burden of parsing alone

could grind the servlet engine to a virtual standstill. Nonetheless, from a design

standpoint, this was still better than mixing the HTML and Java together. In fact,

several template designers developed clever workarounds to this problem that still

exist. One such template system, Velocity, is discussed in chapter 9.

 This situation led to the development of JavaServer Pages. JSPs validated the

template concept and implemented a clever way around the expensive parsing

operation. JSPs are parsed only once, converted to a servlet, and then executed.

The template language for JSP consists of JavaBean components, scriptlets, and

custom tags. Developers discovered that they could now mix the logic and content

more gracefully. The idea was for the HTML developers to create the initial JSPs

and then pass them to the Java developers to add the dynamic aspects. Unfortu-

nately, this led to another serious problem. Because this process encouraged the

mixing of UI and functional code, JSPs quickly degenerated into a maintenance

nightmare. I have seen too many JSPs that mortified and depressed me because of

this coupling. It is possible to create the worst possible type of coding horrors in

JSP because it relies so much on “magic” symbols and encourages the unwhole-

some mixture of code and UI. The verdict on JSP is too much Java in the HTML.

 Fortunately, a solution to this problem already exists. To get to the elegant

answer to this issue, a diversion into design issues is called for.

1.2 The importance of design patterns

In the mid-twentieth century, an architect named Christopher Alexander noticed

in his travels that architects tended to solve the same problems in more or less the

same ways. This realization led him to the creation of a book of design patterns for

architects. A design pattern “describes a problem which occurs over and over

again in our environment, and then describes the core of the solution to that

problem, in such a way that you can use this solution a million times over, without

ever doing it the same way twice.” Alexander was talking about architecture in the

traditional sense, but in 1994 the book Design Patterns: Elements of Reusable Object-

Oriented Software, by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-

sides (the “Gang of Four,” or “GoF”), applied Alexander’s ideas to software

The importance of design patterns 7

design. A pattern is a template that solves a particular problem that may appear in

difference contexts. In the GoF book, a pattern has the following characteristics:

1 The pattern name is a succinct, easy-to-remember moniker for the pattern.

The name is considered important because it becomes a part of the vocabu-

lary of general design. It should be one or two words and describe the

essence of the pattern.

2 The problem is a statement describing the difficulty and its context. This

description includes all the details needed to understand the problem

and the implications surrounding it, such as the class structure and a list

of conditions where this problem arises.

3 The solution describes the software artifacts that solve this problem—design

elements, class and object relationships, aggregations, and collaborations.

4 The consequences are the results and trade-offs of applying the pattern. A

classic example of a trade-off is speed versus space. The pattern should list

all known consequences to allow developers to make an informed deci-

sion as to whether they should use it.

The GoF book was influential in the software community, and numerous books

have appeared to carry on the identification of more patterns. Design patterns are

widely regarded as an evolutionary step beyond object-oriented programming

(OOP) because they combine the atomic classes and objects defined by OOP into

patterns that solve specific problems.

1.2.1 The Model-View-Controller design pattern

If you are familiar with design patterns, you have probably heard of the Model-

View-Controller (MVC) pattern. MVC is the poster child for design patterns. In the

GoF book, MVC appeared in the introductory chapters as the example pattern.

MVC has its origins in Smalltalk, where it was used in the graphical user interface

(GUI) for “traditional” (non-web) applications. It is a design pattern for separat-

ing data from its representation. The developers of Smalltalk realized that it is a

Bad Thing to have the data and the view of a system coupled together too closely.

Any change in either the data or the view requires changes to the other. MVC mit-

igates this problem by separating the parts of the system based on their function.

Figure 1.1 shows a graphical view of the artifacts that make up MVC.

 The model is responsible for the data and rules in the system. It coordinates

business logic, database access, and all the other critical nonvisual parts of the

system. In a spreadsheet, the model represents the numbers and formulas that

8 CHAPTER 1

State-of-the-art web design

make up the data. The view in MVC renders the display of the data. In the spread-

sheet example, you can look at the numbers in a grid, a chart, or a graph. The

numbers are the same; only the visual representation differs. The grid can

become a chart (or vice versa) without you touching the underlying values of the

numbers. The controller is the mechanism by which the view and the model com-

municate. In a spreadsheet, the controller can be the keyboard, the mouse, or

some pen-based input device. In any case, the controller changes the value shown

by the view and in turn changes the underlying model value. The controller acts

as a conduit between the model and the view.

 A good example of MVC in action is the Swing UI controls in Java. In Swing,

each control (even components like JButton) has an underlying model that con-

trols its content. This is why it is so easy to change the look and feel of a Java appli-

cation—you are changing the view without touching the model. If you have

written code for the more complex controls (like the JTable or JTree), you have

ample experience in writing models. In Java, models are most frequently imple-

mented as interfaces. You can think of the interface as a list of questions you must

answer about the data being modeled. If you can answer the questions, the con-

troller can take care of rendering the correct view.

123

582

7531

2

7345

91483

19

Model

100 90 80 70

ControllerView

X-Axis

Keyboard

Mouse

Y
-A

x
is

Figure 1.1

The MVC design pattern separates the parts of an

application into the model (the data), the view (the

visual representation), and the controller (which allows

the model and view to interact).

www.allitebooks.com

http://www.allitebooks.org

The importance of design patterns 9

 MVC was created to handle the GUI portion of Smalltalk applications. The

underlying idea is a good one. However, MVC as it is stated in the GoF book and

elsewhere doesn’t seem to mesh well with the web application world. It wasn’t

until recently that this pattern was extended to make it suitable for the distributed

web world.

1.2.2 The emergence of Model 2

Let’s return to the problems we mentioned earlier regarding the shortcomings of

servlet-centric and JSP-centric application development. Managers and belea-

guered developers both reached the same conclusion: There had to be a better

way to build web applications. This dilemma is the same one that spawned MVC in

the first place: the desire to separate business logic from the user interface. MVC

was designed with traditional applications in mind; the UI portion has rich capa-

bilities and is closely tied to the rest of the application. Web applications are dif-

ferent. The UI is rendered as HTML, which is then interpreted by the browser.

This UI model is more “decoupled” than in traditional development environ-

ments like Smalltalk or desktop Java applications. In other words, the code that

generates the content is not directly tied to the UI code. It must go through a

translation layer to HTML, which is in turn rendered by a browser.

 Designers looked at MVC and modified it to work within this new development

paradigm. This work led to what is now popularly called “Model 2” (to distinguish

it from the desktop-centric MVC). Model 2 doesn’t change the definition of MVC;

it just casts it in terms of web development. In Model 2 for Java web applications,

JavaBeans represent the model. Notice that this may include simple JavaBeans,

Enterprise JavaBeans (EJBs), or JavaBeans that act as proxies for EJBs. The view is

rendered with JSP, which makes sense because JSP is closely tied to HTML. The

controller is a servlet, well suited to executing Java code. This plays to the

strengths of servlets, utilizing the services of the servlet container for lifecycle and

invocation without forcing servlets to generate mixed Java code and HTML.

 The typical Model 2 scenario is shown in figure 1.2. The user invokes a control-

ler servlet (more about this design later). The servlet instantiates one or more

JavaBeans that perform work. The servlet then adds the bean(s) to one of the JSP

collections and forwards control to a JSP. The JSP extracts the JavaBeans and dis-

plays the results.

 One of the key concepts in this design mandates that no real logic be per-

formed by the JSP. The JSP is just the view and shouldn’t be involved in any code

that could be better implemented in the model. The model beans in this design

should not be aware that they are being used in a web application. If you ever find

10 CHAPTER 1

State-of-the-art web design

yourself importing any of the web development packages (such as javax.serv-

let.*), you have erred. The model beans should be useful in non-web applica-

tions. Just as in traditional MVC, the controller servlet acts as a facilitator between

the model and the view.

 In contrast to more haphazard design, Model 2 features a clean separation of

responsibilities between the parts of an application.

1.2.3 Evolution

Talking about design and partitioning of the UI from business rules is a necessary

first step. However, it doesn’t really hit home until you see for yourself both the

problem and the solution. To that end, chapter 2 presents web applications writ-

ten the “traditional” way, without the use of design patterns or other refined tech-

niques. Our goal is to create a web application in the way a Java developer

would—a developer who is familiar with how the web APIs work, but who hasn’t

been exposed to design patterns and other state-of-the-art design techniques.

Chapter 3 expands on the samples written in chapter 2; it improves the design by

showing you how to create custom JSP tags to clean up the JSP code. Chapter 4

takes the same applications and changes them into Model 2 applications. Our

intent is to show the evolution of web development.

Browser

1) Request 2) Create

DataModel
Beans

View (JSP)

3) Forward

4) Extract5) Response

Controller
Servlet

Figure 1.2 The Model 2 design pattern separates the working parts of the application into

specialized parts.

Using frameworks 11

1.3 Using frameworks

Model 2 is a perfectly good design foundation for building web applications. As

developers build applications and become more experienced, they start discover-

ing common parts that can be used over and over. They quickly learn that many of

these parts are generic and can be combined to form larger generic parts. For

example, the controller servlets that are generated in Model 2 applications have

many identical features. These generic parts can be built in such a way as to foster

reusability. Design patterns facilitate building these types of reusable artifacts.

Chapter 4 contains an example of using design patterns to create a reusable

generic component of web applications.

 Once you have a collection of prebuilt, generic parts, you have the beginnings

of a framework. A framework is a set of related classes and other supporting ele-

ments that make application development easier by supplying prebuilt parts.

Building application-specific parts from generic parts is an example of using a

framework. In essence, frameworks provide infrastructure for application develop-

ment. Similar to the foundation that exists when you construct a building, a frame-

work provides the skeleton on which you can hang the specifics of the application.

 Just as builders can choose among numerous kinds of frameworks when con-

structing a house, you can choose among many web application frameworks.

Some offer specific, limited infrastructure, whereas others provide everything but

the kitchen sink. Table 1.1 lists a few of the available frameworks. This list is far

from exhaustive; dozens of frameworks are available.

Table 1.1 Web application frameworks

Framework Download from Description

Struts http://jakarta.apache.org/struts A lightweight, open–source framework

primarily designed for building Model 2

applications.

Velocity http://jakarta.apache.org/velocity A Java-based template engine. Velocity per-

mits anyone to use the simple yet powerful

template language to reference objects

defined in Java code.

Tapestry http://jakarta.apache.org/tapestry A framework that is positioned primarily as

an alternative to JavaServer Pages. It

replaces the scripting and code generation of

JSPs with a full-fledged component object

model.

continued on next page

12 CHAPTER 1

State-of-the-art web design

Because so many are available, you can find a framework to fit virtually any

project. Most are free or open source. The only expensive frameworks are those

that incorporate some type of proprietary technology. For example, BEA sells a

framework called Jolt for incorporating its Tuxedo messaging service with its

application server.

 Given the wealth of availability, which framework should you choose? Should

you use one at all? The rate of turnover in the technology world frequently gener-

ates questions like this. Before choosing a framework, you should be careful to

understand the distinction between a design pattern and a framework. Model 2 is

a design pattern; Struts is a framework that utilizes the Model 2 design pattern.

Turbine is also a framework that uses the Model 2 design pattern. Part 2 of this

book discusses both these and other frameworks. In the construction world, the

framework to create a doghouse is different from a skyscraper framework. Now

matter how sexy a framework is, choosing the wrong one can impede your

progress rather than enhancing it.

 To give you an idea of how a framework fits together and how you might use it,

the following sections provide an overview of the architecture and capabilities of

two of the more popular frameworks: Struts and Turbine.

1.3.1 A flavor of the Struts framework

Struts is an open-source framework for building Model 2 web applications. It is

part of the Jakarta project hosted by Apache. You can download Struts (including

the documentation) at the Struts home page (http://jakarta.apache.org/struts).

The primary areas of functionality in Struts are:

■ A controller servlet that dispatches requests to appropriate action classes

provided by the application developer

WebWork http://sourceforge.net/projects/

opensymphony

A community project conducted using the

open-source process, aimed at providing

tools and a framework for building complex

web sites in a short amount of time that are

easy to understand and maintain.

Turbine http://jakarta.apache.org/turbine A large, open-source, services-based frame-

work for building extensive web applications

such as e-commerce sites.

Table 1.1 Web application frameworks (continued)

Framework Download from Description

Using frameworks 13

■ JSP custom tag libraries and associated support in the controller servlet that

assists developers in creating interactive form-based applications

■ Utility classes that support XML parsing, automatic population of JavaBeans

properties based on the Java reflection APIs, and internationalization of

prompts and messages

The information flow of an application based on the Struts framework is shown in

figure 1.3.

 In Struts, the information flow is similar to that of plain Model 2 applications.

All requests are dispatched through a single controller servlet that is part of the

framework. This controller provides numerous application-wide services, such as

database connection pooling and automatic request dispatching. The controller

creates action classes, which are built by the developer to perform the work of the

application. These action classes extend the Struts Action class. This is a perfect

example of a reusable framework part—the controller is designed to create

Action subclasses to perform work. This aspect of Struts is based on the Com-

mand design pattern, which allows for parameterizing activities. Chapter 4 exam-

ines the Command design pattern and describes how it is used in web applications

(with or without Struts).

 The action instances create model beans that perform domain-specific activi-

ties. Examples of these activities include executing business logic, connecting to

Data

Browser

1) Request

2) Dispatch

Model
Beans

View (JSP)

4) Forward

5) Extract

6) Response

Controller

Servlet

Actions

3) Update

Figure 1.3 Struts provides a framework consisting of a generic controller servlet, classes (to encapsulate

actions), and infrastructure (to pass information within the web application).

14 CHAPTER 1

State-of-the-art web design

databases, and calling other bean methods. The model beans encapsulate the real

work of the application, just as in Model 2. Once the action instance has utilized

the model beans to perform work, it forwards the models that contribute to the

display via the controller to a view component, generally a JSP (although other

view options are possible; see the discussion on Velocity in chapter 9). The view

extracts the model beans and presents the visual results to the user. As you can

see, this is the same general information flow described in Model 2. Struts pro-

vides a great deal of the infrastructure to make it easy to accommodate this infor-

mation flow.

 Struts handles other details of application development as well. The frame-

work includes numerous custom JSP tags to help you construct the view. It also

provides classes that aid in internationalization, database connection pooling, and

flexible resource mapping. Chapter 5 covers Struts in great detail and includes a

sample application.

 Struts is a fairly lightweight framework whose primary job is to facilitate build-

ing web applications using Model 2. I estimate that Struts saves from 35 to 40 per-

cent of the typical amount of effort to build a Model 2 application. One of Struts’

strengths is its cohesiveness—it doesn’t supply services outside those needed for

building Model 2 applications. Other frameworks are much more extensive; the

Turbine framework is one of them.

1.3.2 A flavor of the Turbine framework

Turbine is a much broader web application framework than Struts. It is an open-

source project available from the Jakarta web site hosted by Apache. (You can

download the framework at http://jakarta.apache.org/turbine.) Turbine is a

large, services-based framework. It is similar to the hardware bus on a computer,

where you can plug in parts to provide capabilities. Figure 1.4 shows this concept.

Turbine acts as a foundation for services covering a wide variety of capabilities.

You can use as many or as few as you need to implement your application. The

classes that define the services are registered with Turbine through a configura-

tion properties file.

 The Turbine framework consists of numerous classes (over 200) to handle a

wide variety of pluggable services. A list of the base services provided by or sup-

ported by Turbine appears in table 1.2.

Using frameworks 15

Table 1.2 Turbine services

Service Description Use

Assembler

Broker

The service that allows assemblers

such as Screens, Actions, Layout, and

Scheduled Jobs to be loaded.

Facilitates building Model 2 applications

within Turbine.

Cache Provides a persistent object storage

mechanism within your application.

Allows you to cache object references (for

example, serialized beans).

Castor Provides support for the Castor object-

relational database-mapping tool and

Java-to-XML binding. Castor is a well-

known open-source project that is sup-

ported by Turbine.

Used to model relational database tables

and rows as objects and to model Java to

XML. See www.castor.org.

DB A common front end to all database sys-

tems, it handles database connectivity

within Turbine. This service also pro-

vides the brokers for Connection Pooling

and Database Map Objects.

Handles database management and inter-

action within the framework.

Factory A service for the instantiation of objects

with either the specified loaders or

default class loaders.

Acts as an object factory to abstract the

creation of objects.

continued on next page

T U R B I N E

JSP

WebMacroVelocity

XML-RPC

DB Security

Resources Localization

Figure 1.4 Turbine acts as a loose framework where services can be “plugged in” to build up the

behavior of the web application.

16 CHAPTER 1

State-of-the-art web design

FreeMarker An alternative to JSP for rendering HTML

output. This service processes

FreeMarker files inside the Turbine Lay-

out/Navigations and Screen structure.

Use FreeMarker instead of JSP or Velocity

for the user interface part of your web

application.

Intake Provides input validation along with a

standard parameter-naming framework.

Executes validation code for web applica-

tions (such as range checking, format-

ting, etc.).

JSP A set of classes that process JSP files

inside the Turbine Layout/Navigations

and Screen structure.

Supports the use of JSP as the user inter-

face for the web application.

Localization A single point of access to all localiza-

tion resources.

Used for building internationalized and

localized applications.

Logging The default Logging implementation for

Turbine.

Allows custom logging for errors and

application events.

Mime Type Maintains the mappings between MIME

types and corresponding filename exten-

sions as well as between locales and

character encoding.

Handles the valid document types for the

web application as well as character set

definitions.

Naming Provides Java Naming and Directory

Interface (JNDI) naming contexts.

Provides support for JNDI, which allows

resources such as Enterprise JavaBeans

to be referenced.

Pool A service for the pooling of instantiated

Objects, allowing for the recycling and

disposal of Objects in the pool.

Provides support for generic object pool-

ing. It provides the same kind of pooling

mechanism that the Servlet engine uses

for servlets but exposes it to the applica-

tion developer.

Pull Manages the creation of application

tools that are available to all templates

in a Turbine application.

Enables the developer to create tools

(such as image processors) and makes

them available to the web application via

the standard attribute collections.

Resources The set of classes and the functionality

that allows for the reading and access-

ing of data from within properties files.

Supports accessing configuration infor-

mation from properties files.

RunData The service that manages the higher-

level operations surrounding requests

and responses.

Provides an infrastructure around the

standard request and response mecha-

nism of the Servlet engine.

continued on next page

Table 1.2 Turbine services (continued)

Service Description Use

Using frameworks 17

Scheduler Manages the schedule queue giving

cron-like functionality.

Allows the application to configure and

run scheduled tasks.

Security A service for the management of Users,

Groups, Roles, and Permissions in the

system, allowing for those Objects to

interact with either Database or LDAP

back ends.

Handles authentication and authorization

via this centralized service. This is similar

to how most application servers handle

security.

Servlet Encapsulates the information provided

by the ServletContext API and makes it

available from anywhere in the code.

Provides infrastructure to make informa-

tion from the Servlet engine available to

the web application.

Template A service for the mapping of templates

to their screens and actions.

Supports user interfaces built from tem-

plate languages (like Velocity).

Unique ID Allows for the creation of Context unique

and pseudo random identifiers.

Provides a generic mechanism for gener-

ating unique and random identifiers; use-

ful for database keys or random number

generation.

Upload Manages multipart/form-data POST

requests, storing them temporarily in

memory or locally.

Provides the infrastructure to handle com-

plex information passed to the web appli-

cation from an HTML form tag, such as

images or video.

Velocity The service for the processing of Veloc-

ity templates from within the Turbine Lay-

out/Navigations and Screen structure.

Used as the UI generator of the web appli-

cation. Velocity is an open-source tem-

plate engine for generating web output

(i.e., HTML).

WebMacro The service for the processing of Web-

Macro templates from within Turbine

Layout/Navigations and Screen

structure.

Used as the UI generator. WebMacro is

an open-source template engine for gen-

erating web output (i.e., HTML).

XML-RPC Manages XML-RPC calls to a remote

server.

Allows the application to handle remote

procedure calls, such as Simple Object

Access Protocol (SOAP) requests. This is

an important component of service-

oriented programming.

XSLT Used to transform XML with an XSLT

stylesheet.

Allows XML output of the web application

that is transformed into suitable output

(i.e., HTML) via Extensible Stylesheet Lan-

guage Transformations (XSLT).

Table 1.2 Turbine services (continued)

Service Description Use

18 CHAPTER 1

State-of-the-art web design

 Many of the services listed in table 1.2

are not a part of Turbine per se. Rather,

they are external APIs that are supported

by the Turbine framework. For example,

you can easily use Castor (which is an inde-

pendent, open-source project) without

using Turbine. Turbine is designed to be a

loose framework with pluggable services.

 Building Model 2 web applications

with Turbine is only a small part of the

overall framework. It is designed to offer

one-stop shopping for just about any kind

of service you might need when building

a web application. As you can see in table 1.2, it covers a vast range of capabilities

via its services. When building Model 2 applications with Turbine, several services

interact to produce results. You can see the general relationship of these services

in figure 1.5.

 Assemblers in Turbine are classes that build (or assemble) things and are part of

the Assembler Broker service. For example, the Screen assembler is responsible

for building the body of a response page, whereas the Navigation assembler builds

Data

Browser

1) Request
Actions

2) Dispatch

4) Update

6) Extract

7) Response

Controller
Servlet Page

Assembler

3) Match

Navigation Assembler

Navigation Assembler

Screen Assembler

5) Dispatch

Layout Assembler

Model
Beans

Figure 1.6 Turbine uses granular assemblers to build the appropriate response to a request.

Action Screen

Layout Navigation Page

Assemblers

extendsextends

extends extends extends

Figure 1.5 To produce Model 2 applications

using Turbine, these Assembler types

cooperate to encapsulate both business logic

and visual layout.

www.allitebooks.com

http://www.allitebooks.org

Using frameworks 19

the navigation header or footer for the page. Each of the assemblers is responsi-

ble for a small part of the overall handling of the request. This granular approach

is good because the assemblers can be easily mixed and matched to customize the

required behavior.

 When you’re building Model 2 applications in Turbine, the flow of informa-

tion is similar to Struts. This flow appears in figure 1.6.

 The page assembler is the outer-level container for the other modules in a

Model 2 application. It processes a request, which is analogous to the controller

servlet in Struts. When a request is received, the page matches an action class to

the request and executes it. The Action module in Turbine is very much like the

Action implementation in Struts. After the action has executed, the Page assem-

bler uses the Screen, Layout, and Navigation assemblers to generate output. The

Layout assembler is responsible for the general layout of the output. The Naviga-

tion assemblers provide an easy mechanism for header- and footer-style navigation

on the page. The Screen assembler is the interior of the generated page. The rela-

tionship between these assemblers is shown in figure 1.7.

 As you can see, more “moving parts” are involved when you’re building a

Model 2 application in Turbine. This is because Turbine is a more general frame-

work. Each aspect of the web application is handled by

a specific service, and the services can be changed in a

modular fashion without affecting other services. The

advantage of a framework like Turbine lies in the flexi-

bility and options it provides developers. For example,

the Screen and Navigation assemblers may be written

in JSP (as in Struts). However, other services can be

“plugged into” Turbine to handle the UI rendering.

The Turbine developers themselves prefer the Velocity

template engine (see chapter 9) to JSP for generating

UIs in web applications.

 The disadvantage of Turbine is its complexity.

Because of its service-based architecture, building

Model 2 applications in Turbine is more complex

than with Struts.

 I have only touched on the Model 2 aspects of Tur-

bine in this chapter. As you can see, Turbine is a more

extensive framework, providing numerous services

beyond those needed to build Model 2 applications.

Because it is so extensive (certainly a book’s worth), we

Navigation

Screen

Navigation

Layout

Page

Figure 1.7 The Page

assembler encapsulates the

other assemblers to construct

a complete page. The Layout

assembler handles the general

layout of the page, which

consists of one or more

Navigation assemblers and a

Screen assembler.

20 CHAPTER 1

State-of-the-art web design

don’t cover Turbine any further in this book. However, in part 2 we do examine

numerous other frameworks, some similar to Turbine (Tapestry, for example).

We discussed it here to illustrate a services-based framework and to compare it to

a lightweight framework like Struts.

1.3.3 Objectively choosing a framework

With so many available, how can you choose a suitable framework? Part 2 of this

book attempts to answer that question. It compares frameworks by building the

same application in a variety of frameworks, comparing and contrasting along the

way. Our goal is to allow you to see how various frameworks handle the same

issues and solve the same problems. By building the same (or as close to the same

as possible) application, you can objectively weigh the relative merits of each.

Chapter 11 sums up the similarities and differences between the frameworks and

provides a checklist to help you choose the one most suitable for your project.

1.4 Best practices

Developers build up a repertoire of solutions to common problems over time.

Whereas design patterns deal primarily with design issues (thus the name),

another category of solutions exist that are generally lumped under the term

“best practices.” How they are implemented vary broadly, but the intent is always

the same: solve some common problem in a generic and (it is hoped) graceful

way. An example of a best practice follows from the Model-View-Controller discus-

sion earlier. MVC forces the developer to partition the concerns of the application

into their own tiers, which is a design issue. However, deciding what to separate

lies more in the realm of best practices. Let’s look at an example of a best practice

for determining business rules.

1.4.1 Business rules

“Business rules” is one of the most used, yet least understood, concepts in all

application development (not just web applications). Both managers and devel-

opers use this term, and frequently each has his or her own definition. Of course,

no standard definition exists. It is not a technical term in the sense that it has an

objective meaning. It is a useful concept because it affects the design of your

applications, including web applications. So that we can discuss the design issues

around this concept, let’s first provide a working definition.

Best practices 21

Defining “business rules”

As much as I would like to provide the ultimate, end-all definition of this term, I’m

afraid it is impossible to do that. The problem with a comprehensive definition for

a subjective term lies with the fact that different business domains have different

criteria to define what constitutes a business rule. The rules that describe one busi-

ness don’t apply to other businesses. Even the common rules may have different

levels of importance. For example, if you are selling sensitive, classified docu-

ments, you must meet stringent rules as to where items can be shipped. If you are

selling a novel, the only thing you care about is how cheaply you can ship it. Both

businesses are selling written works, but they have different rules that determine

what it means to sell their product.

 The only way to create a working definition of “business rules” is to find com-

mon ground that every business would agree on. Choosing the overlapping

region in each business’s domain where the unambiguous business rules reside is

the only way to create a generic definition (see figure 1.8).

A working definition

With the realization that only a fool would attempt to define something as nebu-

lous as “business rules,” I proceed. Here is a simple working definition for this

vague subjective concept:

Business rules relate to why you write the application, not how.

How you write the application is all about the technology used, the architecture,

the design, the tools, how the application is hosted, and many other details. Why

you write the application has nothing to do with the technology or design, but

All

Domains

Domain BDomain A

Domain C

Figure 1.8

The only way to create even a working definition

of “business rules” is to encompass the

unambiguous areas that every business would

agree constitutes a business rule.

22 CHAPTER 1

State-of-the-art web design

concerns the business problem you are trying to solve. Typically, business rules

change more frequently than other parts of the application, making them good

candidates for partitioning.

 A common business rule is a validation, in which user input is checked against

rules established to ensure that the input is legal. Validations are a classic why

because the business domain determines the rules enforced by the validations.

Even criteria such as a phone number format (Where do the parentheses go? Is

the area code required?) are examples of business rules. Questions like “How

should we calculate raises for employees?” and “What is the chemical formula for

our soda?” are also examples of business rules.

 Only the people for whom the application is written can determine the busi-

ness rules. This role is typically filled by a business analyst but can certainly be

filled in a less formal way. Business rules come directly from the requirements

documents for the application. They determine why you are writing the applica-

tion in the first place. You may have the most wonderful, elaborate, scalable,

maintainable application in the world, but if it doesn’t implement the business

rules correctly, it is not successful.

1.4.2 Where should the rules reside?

The most important question for web developers is not the definition of the rules

(that definition is someone else’s job) but rather where the rules should reside.

Should the rules be coded so that they are a part of the server or the client? If on

the server, should they be coded as part of the database (in the form of triggers

and stored procedures) or in Java code? This question is of paramount impor-

tance because it affects important design decisions of the application and has a

direct effect on scalability, maintainability, and extensibility.

Placing the rules in the database server

Fortunately, the Model 2 design pattern helps. JavaBeans designed to handle busi-

ness rules and database connectivity are part of the Model 2 design. These beans

are the perfect place for business rules to reside. If all your logic resides in Java-

Beans, it is easy to change it because you won’t have to hunt throughout the appli-

cation for the code. You can also use the object-oriented nature of JavaBeans to

model the real-world objects in your application. This allows your application to

grow along with what you are modeling.

 Another option for server-based rules is to place them into a relational data-

base in the form of triggers and stored procedures. Here are a couple of reasons why I

think that this is a bad idea. First, if you place your rules in triggers and stored

Best practices 23

procedures, you must write them in Structured Query Language (SQL). This is a

bad choice for implementing your business rules because SQL is a set-based lan-

guage, not procedural or object-oriented. SQL is highly optimized to return result

sets from relational databases, but it lacks most of the facilities of Java for string

processing, numerical analysis, and all the other rich support classes found in the

Java libraries. SQL is also not really a standard language. Although an ANSI stan-

dard exists for SQL, it is a weak standard, so database vendors implement their

own proprietary extensions. From a practical standpoint, SQL is not portable

across databases. Some database servers now allow stored procedures to be written

in Java, but they rely on a specific infrastructure and aren’t portable across data-

base vendors.

 Second, the model part of the application is designed for business rules. Your

application in Model 2 is really a three-tier application, with the presentation han-

dled by JSP and the browser, the business rules handled by the model beans, and

the persistence handled by the database server. You can take advantage of this

inherent design by building the business logic in this middle tier. Using this

approach lets you avoid having the rules split between the database and model

beans. This is important because you may need to eventually scale the application

into a larger distributed application using EJBs. In that case, your JavaBeans

become proxies, calling the methods of the EJBs to handle business logic. (You’ll

learn more about this design option in chapter 12.) If you have rules in the data-

base, you cannot easily migrate your application logic to EJBs.

Rules that do belong in the database server

The exception to the previous rule concerns data integrity and key generation.

Database servers are optimized to handle such issues as referential integrity,

ensuring that your data doesn’t accidentally become corrupted because of errant

code. Data integrity lies in the gray area of our business rules definition because it

is an infrastructure issue and thus belongs more in the how category than the why.

However, all the whys in the world won’t help if your data isn’t properly stored.

 The same exception exists for key generation. Like it or not, most of today’s

applications must handle the messy business of reconciling an object-oriented lan-

guage (Java) with set-based relational databases. A part of this relationship is the

keys that define the relationships between the data in your tables. Most database

servers have a mechanism for handling key generation, and it would be a lot of

extra work to try to implement it yourself. Again, this is more in the realm of archi-

tecture and doesn’t concern our definition of the why of business rules.

24 CHAPTER 1

State-of-the-art web design

Placing rules in the client

The option of placing your rules in the client is easier in traditional applications

because you have “real” code executing the client portion, not just a browser. To

place the rules here in a web application means that you must write the rules in a

scripting language (normally JavaScript) that the browser can interpret. This

design is desirable because it allows you to perform instant validations and execute

other code without having to call back to the web server. This is a big advantage

because trips to the server can be expensive in terms of time and server resources.

Placing rules in the client becomes a tempting option. Developers frequently want

to mimic the behavior of desktop applications, where responses to input (such as

validations) are instantaneous. This approach makes for a more responsive appli-

cation. You also have greater control over the UI through client-side code for such

behaviors as disabling controls based in input, creating dynamic dropdown lists,

and other niceties. You should not succumb to temptation!

 However, if you must place some business rules in the form of a scripting lan-

guage in the UI, you can still do so without harming the architecture of your appli-

cation. Chapter 12 shows you how to achieve the best of both worlds by generating

the scripting business rules from the server.

1.4.3 Leveraging best practices

Like design patterns and frameworks, best practices ultimately lead you to better-

performing web applications. Part 3 of this book catalogs a variety of best practices

harvested from web development projects. Chapter 12 expands on the discussion

started here on separating concerns and shows examples of how to accomplish this

separation, including an example of porting a well-designed web application

(developed in an earlier chapter) to use EJBs. Chapter 13 demonstrates how to

handle workflow situations, including transaction processing and advanced UI

techniques. Chapter 14 discusses performance tuning and examines how your web

application can best utilize its resources. Chapter 15 covers resource management,

including such topics as caching. Chapter 16 covers debugging, and chapter 17

covers testing—required reading for those of us who don’t produce perfect code

the first time. Chapter 18 covers web services, which fundamentally change distrib-

uted computing; Axis, an open-source web services engine; how to create new

applications that rely on web services; and how to retrofit existing web applica-

tions. Finally, chapter 19 covers topics important to state-of-the-art web develop-

ment that are too broad or complex to include in this book.

Summary 25

1.5 Summary

Designing web applications is not like designing any other type of application. It

represents a serious paradigm shift from traditional application development.

Understanding the base technology and APIs is the first step to writing that work

well. However, an understanding of the design problems and solutions that are

available is also critical. Choosing to build web applications with Model 2 greatly

reduces your development and maintenance headaches. Once you’ve written sev-

eral Model 2 applications, the common pieces start coming into focus, and you

have the beginnings of a framework. Or you may decide to use one of the existing

frameworks to speed up your development and cut down on the amount of hand-

crafted code. As your design becomes more refined, you can start looking to other

avenues (such as best practices) to improve your web applications.

 Unfortunately, none of the design paradigms discussed here will guarantee a

well-designed application. You must police the design and architecture at every

opportunity (especially early in the development cycle) to ensure that you don’t

end up with an application that looks partitioned but that is, in reality, a mess of

misplaced code.

 In chapter 2, we look at creating web applications through the eyes of a devel-

oper who understands the web APIs but has no experience building well-

architected applications. It covers design and architecture when you’re using serv-

lets and JSP without the benefits of design patterns or other best practices.

27

Building web applications

This chapter covers

■ Building web applications with servlets

■ Building web applications with JSP

■ Evaluating the design and architecture of
servlet and JSP-centric applications

28 CHAPTER 2

Building web applications

Java 2 Enterprise Edition (J2EE) contains a rich application programming inter-

face (API) for building web applications. Starting with the foundation of servlets,

this API has grown into a state-of-the-art interface. Understanding the details of

the servlet and JavaServer Pages (JSP) APIs is an important first step in becoming

an effective web developer. However, being familiar with the APIs will not make

you an experienced distributed web application developer. Web applications are

distributed applications, placing them in the family of the most difficult type of

application development. Distributed applications require careful attention to

resource allocation, cross-process communication, and a host of other complexi-

ties not faced in desktop applications.

 Two aspects of building web applications arise from their distributed nature.

The first is the interaction of the application with the API. A good example is the

way threading is handled in web applications. Knowing how to protect your serv-

lets (and, because they are a type of servlet, your JSPs) from multithreaded access

is essential. However, the second part of the equation, and one often ignored else-

where, is the design of the application—that is, the way in which you organize the

artifacts in the application (classes, user interface elements, etc.) to fulfill the

goals of the application development. Design and architecture are as critical to

the long-term success of your application as recognizing how the APIs work—

maybe more so. This book focuses primarily on that aspect of web development.

 To realize why improving design is so important, you must start with something

that is not well designed. This may be an application that appears to work but per-

haps the elements that make up the application don’t work well together. You

have to consider architecture, coding decisions, how the user interface works, and

a host of other issues. The intent here is not to create a “straw man argument,”

building something that any competent developer would recognize as inferior.

Rather, our goal is to build an application from the perspective of someone who

understands all the moving parts of the APIs but has no advanced experience. Ide-

ally, the applications we build in this chapter should resemble the first attempt by

most developers to build web applications in Java.

 In this chapter, we build a minimal e-commerce site using only servlets, and

then we build the same site using only JSP. Along the way, we talk about what is

good and bad in each approach. Subsequent chapters improve the design, keep-

ing the good and discarding the bad.

www.allitebooks.com

http://www.allitebooks.org

Building web applications with servlets 29

2.1 Building web applications with servlets

You are reading this book, which means you have already chosen Java as your web

development platform and don’t need to be convinced of its capabilities. This sec-

tion walks you through a simple web application built with the “default” servlet API.

 This application uses several classes, including servlets and helpers. Figure 2.1

illustrates the relationship between the classes. We discuss the source for these

classes as we examine each aspect of the application.

2.1.1 The eMotherEarth servlet application

Our sample application built with servlets is a four-page e-commerce application

called eMotherEarth. It allows you to buy products such as leaves, dirt, oceans, and

other “earthy” wares. This application is concerned only with the technology and

not with the logistics of delivery! The source code for this application appears in

the source code archive as art_emotherearth_servlet.

«servlet»

EMotherServletBase

«servlet»

HttpServlet

«servlet»

Catalog
«servlet»

ShowCart

«servlet»

Confirmation

Order Lineitem

1 *

ShoppingCartShoppingCartItem 1*

Figure 2.1 The eMotherEarth application consists of a variety of classes, including servlets

and helper classes.

30 CHAPTER 2

Building web applications

The first page: Welcome

The first page of the site is a simple login page, written in HTML (because at this

point there is no need for dynamic content). The first page of the site appears in

figure 2.2; the source for this page is shown in listing 2.1.

<html>
<head><title>Welcome to eMotherEarth.com</title></head>
<body>
<h1>Welcome to eMotherEarth.com</h1>
<p><h3>Your 1-Stop Shop for Earth Products</h3><p>
Please enter your login info:<p>
<form action="catalog" method="post">
<p>Name: <input type="text" name="username"></p>
<p><input type="submit" name="Submit" value="Login">
</form>
</body>
</html>

The second page: Catalog

The Welcome page posts to a servlet called Catalog, which shows a catalog of

products. The Catalog page appears in figure 2.3.

 The servlet that generates the Catalog page has multiple duties to perform. It

must:

1 Create a database connection pool for all servlets to share.

2 Validate the user and either:

■ Welcome the user back.

■ Add the user to the user database.

3 Display the catalog.

Listing 2.1 The simple login form for Welcome.html

Figure 2.2

The login page for eMotherEarth

is a simple HTML form.

Building web applications with servlets 31

The first portion of the catalog servlet appears in listing 2.2.

package com.nealford.art.history.servletemotherearth;

import com.nealford.art.history.servletemotherearth.lib.*;
import java.io.*;
import java.sql.*;

import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Catalog extends EMotherServletBase {
 static final private String SQL_INS_USERS =
 "insert into users (name) values (?)";

 static final private String SQL_SEL_USERS =
 "select name from users where name = ?";
 static final private String SQL_SEL_PRODS =

 "select * from products";
 private String dbUrl;
 private String driverClass;

 private String user;
 private String password;

 public void init() throws ServletException {

 getPropertiesFromServletContext();
 addPoolToApplication(createConnectionPool());
 }

 private void getPropertiesFromServletContext() {

Listing 2.2 The declaration and init() sections of the Catalog servlet

Figure 2.3

The Catalog page shows all the wares

available from eMotherEarth.com.

Initializes global
resources

32 CHAPTER 2

Building web applications

 ServletContext sc = getServletContext();

 dbUrl = sc.getInitParameter("dbUrl");
 driverClass = sc.getInitParameter("driverClass");
 user = sc.getInitParameter("user");

 password = sc.getInitParameter("password");
 }

 private void addPoolToApplication(DbPool dbPool) {

 getServletContext().setAttribute(CONN_POOL_ID, dbPool);
 }

 private DbPool createConnectionPool() {

 DbPool p = null;
 try {
 p = new DbPool(driverClass, dbUrl, user, password);

 } catch (SQLException sqlx) {
 getServletContext().log("Connection Pool Error", sqlx);
 }

 return p;
 }

The Catalog class starts by declaring constants for SQL access and for member

variables. The first of the servlet-specific declarations is for the init() method.

Because it is the first servlet called in the application, it is responsible for creating

the database connection pool used by the rest of the application. It is a common

practice to use connection pools in web applications, and most application servers

and frameworks include connection pool classes. Our sample uses a homegrown

connection pool class called DbPool, which offers rudimentary database connec-

tion pooling. The source for it is trivial and is available as part of the source code

archive, but won’t be shown here for space considerations.

 The init() method handles two jobs: getting the init parameters from the

servlet context and adding the connection pool to the application context. The

database connection definitions appear in the web.xml file as global init parame-

ters. This is a common practice because it allows the developer to change such

characteristics as the driver class and login information without having to recom-

pile the application. The getPropertiesFromServletContext() method retrieves

the pertinent values from the configuration file and populates the servlet’s mem-

ber variables.

 The second chore handled by the init() method is to create the connection

pool and place it in a location where all the other servlets can access it. The cre-

ateConnectionPool() method builds the connection pool from the supplied

parameters and returns it. If an error occurs, the cause of the exception is logged

Building web applications with servlets 33

via the servlet context’s log() method. The pool is then placed in the servlet

context for the application. This is the global context, meaning that the pool will

be accessible to the other servlets.

 The next method of interest in the Catalog servlet is the doPost() method. It

appears in listing 2.3.

public void doPost(HttpServletRequest request,
 HttpServletResponse response)

 throws ServletException, IOException {
 PrintWriter out = generatePagePrelude(response, "Catalog");
 String userName = validateUser(request, out);

 DbPool pool = getConnectionPool();
 Connection con = null;
 try {

 con = pool.getConnection();
 handleReturnOrNewUser(out, userName, con);
 out.println("</h3><p>");

 addUserToSession(request, userName);
 displayCatalog(out, con);
 generatePagePostlude(out);

 } catch (SQLException sqle) {
 getServletContext().log("SQL error", sqlx);
 } finally {

 pool.release(con);
 }
}

The general rule of thumb in high-quality applications (and indeed for the rest of

the code in the book) is to create very granular, cohesive methods. Cohesive

methods perform a single task and no more. Making your methods cohesive leads

to granularity, meaning the methods are very small (like grains of sand) and

numerous. If successful, the public methods in a class should read like an outline

of what the method does, with the details submerged in private methods. Applica-

tions using this coding pattern also generate more readable stack traces when

you’re debugging. The doPost() method in the Catalog servlet is an example of

this technique.

 The first job of this method concerns the generation of the page prelude. This

code must appear at the top of the HTML document generated by this servlet. To

handle this job, the doPost() method calls the generatePagePrelude() method

(see listing 2.4).

Listing 2.3 The doPost() method of the Catalog servlet

34 CHAPTER 2

Building web applications

private PrintWriter generatePagePrelude(HttpServletResponse response)
 throws IOException {
 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head><title>Logon</title></head>");
 out.println("<body>");
 return out;
}

This method creates a print writer object (which it returns) and uses it to create

the standard HTML elements for the top of the page. This method does not appear

in the Catalog servlet. It appears instead in a base class servlet named EMoth-

erServletBase. As with any application, common tasks exist that every servlet must

perform. For example, every servlet in this application must get a reference to the

connection pool and generate headers and footers for the HTML document. One

of the side benefits of creating granular, cohesive methods is the ability to float

them up in the hierarchy to the base class. In other words, it helps you identify the

methods that may be generalized into a parent class, making the code easier to

reuse. The more single-purposed the methods are, the more likely that they can be

reused. The common methods for this application have been promoted to the

base class servlet, which appears in listing 2.5.

package com.nealford.art.history.servletemotherearth;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;
import com.nealford.art.history.servletemotherearth.lib.DbPool;
import java.sql.SQLException;

public class EMotherServletBase extends HttpServlet {
 static final protected String CONN_POOL_ID = "DbPool";
 static final protected String CONTENT_TYPE = "text/html";

 protected DbPool getConnectionPool() {
 DbPool pool = (DbPool) getServletContext().
 getAttribute(CONN_POOL_ID);
 if (pool == null)
 getServletContext().log("Pool cannot be loaded");
 return pool;
 }

Listing 2.4 The generatePagePrelude() method

Listing 2.5 EMotherServletBase consolidates common servlet methods.

Building web applications with servlets 35

 protected PrintWriter generatePagePrelude(

 HttpServletResponse response, String title)
 throws IOException {
 response.setContentType(CONTENT_TYPE);

 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head><title>" + title + "</title></head>");

 out.println("<body>");
 return out;
 }

 protected void generatePagePostlude(PrintWriter out) {
 out.println("</body></html>");
 }

 protected HttpSession getSession(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException {

 HttpSession session = request.getSession(false);
 if (session == null)
 response.sendRedirect("Welcome.html");

 return session;
 }
}

Creating a base class servlet to consolidate common methods is a common prac-

tice, made more effective by cohesive methods.

 The next task that Catalog’s doPost() method handles is to validate the user.

Validation is handled in the method validateUser(), which returns the user-

name. Listing 2.6 shows this method.

private String validateUser(HttpServletRequest request,

 PrintWriter out) {
 String userName = request.getParameter("username");
 if (userName.equals(""))

 out.println("<h1>Error! You must enter a user name!");
 out.println("<h3>Hello, " + userName + ".");
 return userName;

}

The doPost() method next sets up the servlet to handle database access. To do so,

it calls the getConnectionPool() method from the base class (see listing 2.5).

 Note the disassociation of the init() method from the remainder of the serv-

let. This servlet is the one that placed the pool in the application context in the

Listing 2.6 The validateUser() method ensures that the user entered a value.

36 CHAPTER 2

Building web applications

beginning, so it could avoid going back to the servlet context to get a reference to

the pool. Instead, it could hold onto the reference generated at the top. However,

we chose to go ahead and get the connection in this servlet exactly as the others

would: by using the common method. This approach adds consistency to the

application and ensures that nothing will break if you need to add code to the

base class later to enhance its functionality.

 The doPost() method next establishes a database connection within a try …

finally block to ensure that the connection always closes. This resource-protection

requirement drives the structure of the interior of this method, because the con-

nection must be established and freed within this context. Next, doPost() gener-

ates a different message for existing or new users, which is handled by the handle-

ReturnOrNewUser() method (see listing 2.7).

private void handleReturnOrNewUser(PrintWriter out,
 String userName,
 Connection con)
 throws SQLException {
 if (isNewUser(con, userName))
 out.println("Welcome back to the store!");
 else {
 addUser(con, userName);
 out.println("Welcome to the store! We'll add " +
 "you to the user database");
 }
 out.println("</h3><p>");
}

This method is itself composed of other helper methods, with the goal of creating

the most granular code possible. The isNewUser() method (listing 2.8) checks to

see whether the user is already present in the database.

private boolean isNewUser(Connection c, String userName)
 throws SQLException {

 PreparedStatement ps = c.prepareStatement(SQL_SEL_USERS);
 ps.setString(1, userName);
 ResultSet rs = ps.executeQuery();

 return rs.next();
}

Listing 2.7 This method decides what message to present and whether to add a new

user to the database.

Listing 2.8 The isNewUser() method

Building web applications with servlets 37

If the ResultSet contains a record, then that means the user is already present in

the database and the next() method returns true. Otherwise, the user does not

currently exist, so the application automatically adds that user. This is not typical

behavior for most e-commerce sites, which go through a vetting process to add

new users. Our vendor doesn’t care, and will gladly add new users (even if they

typed in the wrong username by accident). Of course, we could write more code

to expand this behavior.

 If a user must be added, the addUser() method handles the task. This method

is shown in listing 2.9.

private void addUser(Connection c, String userName)
 throws SQLException {

 PreparedStatement psi = c.prepareStatement(SQL_INS_USERS);
 psi.setString(1, userName);
 psi.executeUpdate();

}

The next task performed by the doPost() method is to create a session and add

the user to it. This task is handled by a very short method:

private void addUserToSession(HttpServletRequest request,
 String userName) {

 HttpSession session = request.getSession(true);
 session.setAttribute("user", userName);
}

It is worth creating separate methods even for two lines of code (in fact, it is some-

times worthwhile for a single line of code). The entries in the public methods

should be consistent and perform the same level of work. It is undesirable to inter-

sperse utility code like this among other high-level method calls. The high-level

method calls should be descriptive enough to eliminate the need for additional

comments. Maintaining comment synchronization is error-prone, so let the code

speak for itself. Use method, variable, class, and interface names that don't need

comments to convey their purpose. It is also likely that more code will accrue over

time, making the public method longer. Any candidate for a nice cohesive method

should be extracted. The code is consequently much more readable.

 The display of the catalog occurs next. It is handled by the aptly named dis-

playCatalog() method, which appears in listing 2.10.

Listing 2.9 This method adds new users to the database.

38 CHAPTER 2

Building web applications

private void displayCatalog(PrintWriter out, Connection con) {
 HtmlSQLResult output = new HtmlSQLResult(SQL_SEL_PRODS, con);

 output.setShoppingForm(true);
 out.println("<h1>Products</h1><p>");
 out.println(output.toString());

}

At first glance, it would seem that this method would be much more complex. It

offloads much of the complexity to a helper class named HtmlSQLResult. This

utility class takes a database connection and a SQL statement and renders the

results into an HTML table. It also has an option for creating another column

with a text field and a button that allows the user to purchase items. This class

appears in listing 2.11.

package com.nealford.art.history.servletemotherearth.lib;

import java.sql.*;

import java.text.NumberFormat;

public class HtmlSQLResult {
 private String sql;

 private Connection con;
 private boolean shoppingForm;

 public HtmlSQLResult(String sql, Connection con) {

 this.sql = sql;
 this.con = con;
 }

 /**
 * The <code>toString()</code> method returns a
 * <code>java.sql.ResultSet</code> formatted as an HTML table.

 *
 * NB: This should be called at most once for a given set of
 * output!

 * @return <code>String</code> formatted as an HTML table
 * containing all the elements of the result set

 */
 public String toString() {
 StringBuffer out = new StringBuffer();

 try {
 Statement stmt = con.createStatement();
 stmt.execute(sql);

 ResultSet rs = stmt.getResultSet();
 ResultSetMetaData rsmd = rs.getMetaData();

Listing 2.10 displayCatalog() shows the entire catalog of products.

Listing 2.11 The HtmlSQLResult class

Generates the
table from the

ResultSet

www.allitebooks.com

http://www.allitebooks.org

Building web applications with servlets 39

 int numCols = rsmd.getColumnCount();

 setupTable(out);
 generateHeaders(out, rsmd, numCols);

 while (rs.next()) {

 generateStandardRow(rs, rsmd, numCols, out);
 generateShoppingForm(out, rs.getInt("id"));
 endRow(out);

 }

 endTable(out);
 } catch (SQLException e) {

 out.append("</TABLE><H1>ERROR:</H1> " +e.getMessage());
 }

 return out.toString();

 }

 private void endTable(StringBuffer out) {
 out.append("</TABLE>\n");

 }

 private void endRow(StringBuffer out) {
 out.append("</TR>\n");

 }

 private void generateShoppingForm(StringBuffer b,
 int currentId) {

 if (shoppingForm) {
 b.append("<TD>");
 b.append("<form action='ShowCart' method='post'>");

 b.append("Qty: <input type='text' size='3' " +
 "name='quantity'>");
 b.append("<input type='hidden' name='id' " + "value='"+

 currentId + "'>");
 b.append("<input type='submit' name='submit' " +
 "value='Add to cart'>");

 b.append("</form>");

}

 }

 private void generateStandardRow(ResultSet rs,
 ResultSetMetaData rsmd,

 int numCols, StringBuffer out)
 throws SQLException {
 NumberFormat formatter = NumberFormat.getCurrencyInstance();

 out.append("<TR>");
 for (int i = 1; i <= numCols; i++) {

 Object obj = rs.getObject(i);
 if ((obj != null) &&
 (rsmd.getColumnType(i) == java.sql.Types.DOUBLE))

 out.append("<TD align='right'> " +

Iterates over the ResultSet
and generates rows

Builds a form element
for each row

40 CHAPTER 2

Building web applications

 formatter.format(rs.getDouble(i)));

 else if (obj == null)
 out.append("<TD> ");
 else

 out.append("<TD>" + obj.toString());
 }
 }

 private void generateHeaders(StringBuffer out,
 ResultSetMetaData rsmd,
 int numcols)

 throws SQLException {
 for (int i = 1; i <= numcols; i++) {
 out.append("<TH>");

 out.append(rsmd.getColumnLabel(i));
 }

 if (shoppingForm)

 out.append("<TH>" + "Buy");

 out.append("</TR>\n");
 }

 private void setupTable(StringBuffer out) {
 out.append("<TABLE border=1>\n");
 out.append("<TR>");

 }

 public boolean isShoppingForm() {
 return shoppingForm;

 }

 public void setShoppingForm(boolean value) {
 shoppingForm = value;

 }
}

We included listing 2.11 primarily to make a point about developing with servlets.

Anytime you need to generate a large HTML data structure like a table, you are

always better off building it generically because the complexity of the mixed Java

and HTML generation is overwhelming. This code is best developed once and

reused rather than generated anew for ad hoc situations. In the next section,

you’ll see how JSP offers an alternative for this problem.

 With the help of the utility class in listing 2.11, the remainder of Catalog’s

doPost() method, the generatePagePostlude() method, comes free of charge

from the base class (listing 2.5). This method generates the required footer infor-

mation for the page.

Building web applications with servlets 41

The third page: ShowCart

The third page (and corresponding servlet) in the application shows the contents

of the user’s shopping cart thus far, with an option at the bottom for completing

the purchase. This page is shown in figure 2.4. The source for the ShowCart servlet

appears in its entirety in listing 2.12.

package com.nealford.art.history.servletemotherearth;

import com.nealford.art.history.servletemotherearth.lib.*;
import java.io.*;

import java.sql.*;
import java.util.*;
import javax.servlet.*;

import javax.servlet.http.*;

public class ShowCart extends EMotherServletBase {
 static final private String SQL_GET_PRODUCT =

 "select * from products where id = ?";

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)

 throws ServletException, IOException {
 PrintWriter out = generatePagePrelude(response, "Cart");
 HttpSession session = getSession(request, response);

 String userName = (String) session.getAttribute("user");
 ShoppingCart sc = getShoppingCart(session);
 out.println("<h3>" + userName +

 ", here is your shopping cart:</h3>");
 int itemId = Integer.parseInt(request.getParameter("id"));

Listing 2.12 This servlet shows the contents of the shopping cart.

Figure 2.4

The Shopping Cart page of the

application shows the current

contents of the shopping cart and

allows the user to specify credit card

information to make the purchase.

Isolates HTML generation

42 CHAPTER 2

Building web applications

 int quantity =

 Integer.parseInt(request.getParameter("quantity"));
 Connection con = null;
 DbPool pool = getConnectionPool();

 try {
 con = pool.getConnection();
 if (!addItemToCart(con, itemId, quantity, sc))

 out.println("Error: Failed to add item to cart");
 } catch (SQLException sqlx) {
 getServletContext().log("SQL error adding item:",sqlx);

 } finally {
 pool.release(con);
 }

 out.println(sc.toHtmlTable());
 session.setAttribute("cart", sc);
 outputCheckoutForm(userName, out);

 generatePagePostlude(out);
 }

 private ShoppingCart getShoppingCart(HttpSession session) {

 ShoppingCart sc =
 (ShoppingCart) session.getAttribute("cart");
 if (sc == null)

 sc = new ShoppingCart();
 return sc;
 }

 private boolean addItemToCart(Connection c, int itemId,
 int quantity, ShoppingCart sc)
 throws SQLException {

 PreparedStatement ps = c.prepareStatement(SQL_GET_PRODUCT);
 ps.setInt(1, itemId);
 ResultSet rs = ps.executeQuery();

 boolean status;
 if (status = rs.next()) {
 int id = rs.getInt("id");

 String name = rs.getString("name");
 double price = rs.getDouble("price");
 ShoppingCartItem sci = new ShoppingCartItem(id, name,

 quantity, price);
 sc.addItem(sci);
 }

 return status;
 }

 private void outputCheckoutForm(String user, PrintWriter out) {

 out.println("<p><p><a href=\"catalog?username=" + user +
 "\"> Click here to return to catalog");

 out.println("<p>");
 out.println("<h3>Check out</h3>");
 out.println("<form action='confirmation' method='post'>");

 out.println("Credit Card # <input type='text' " +

Manages database
connection and

records insertion

Outputs the shopping
cart as an HTML table

Adds item to
the database

Outputs an HTML
form for checkout

Building web applications with servlets 43

 "name='ccNum'>
");

 out.println("Credit Card Type <select name='ccType'>");
 out.println("<option value='Visa'>Visa</option>");
 out.println("<option value='MC'>MC</option>");

 out.println("<option value='Amex'>Amex</option>");
 out.println("</select>");
 out.println("Credit Card Exp Date <input type='text' " +

 "name='ccExp'>
");
 out.println("<input type='submit' value='Check out'>");
 out.println("</form>");

 }
}

Like the previous servlet, this one extends EMotherServletBase, taking advantage

of the generic methods declared there. The first item of note in the doPost()

method of this servlet is the call to getShoppingCart(), one of the helper methods

in this servlet. The servlet must handle two cases; the first time the user hits this

page, the shopping cart does not yet exist, so it must be created. In every subse-

quent visit to this page, the shopping cart comes from this user’s session. This

method handles both cases.

 The ShoppingCart class is a helper class in this application. It encapsulates a

collection of ShoppingCartItem objects. The ShoppingCartItem class is a simple

value class (an entity in Unified Modeling Language [UML] terms), with fields for

all the pertinent information about an item, such as the item ID, quantity, and so

forth. This class is so simple that we won’t include it here for space considerations.

However, the ShoppingCart class contains some methods of interest and appears

in listing 2.13.

package com.nealford.art.history.servletemotherearth.lib;

import java.text.NumberFormat;
import java.util.*;

public class ShoppingCart {
 private List items = new Vector(5);

 public String toHtmlTable() {

 NumberFormat formatter = NumberFormat.getCurrencyInstance();
 StringBuffer out = new StringBuffer();
 out.append("<TABLE border=1>\n");

 out.append("<TR>");
 out.append("<TH> ID");
 out.append("<TH> Name");

 out.append("<TH> Quantity");

Listing 2.13 The ShoppingCart holds ShoppingCartItems.

44 CHAPTER 2

Building web applications

 out.append("<TH> Price");

 out.append("<TH> Total");
 out.append("</TR>\n");

 Iterator it = items.iterator();

 while (it.hasNext()) {
 ShoppingCartItem item = (ShoppingCartItem) it.next();
 out.append("<TR>");

 out.append("<TD> " + item.getItemId());
 out.append("<TD> " + item.getItemName());
 out.append("<TD> " + item.getQuantity());

 out.append("<TD align='right'> " +
 formatter.format(item.getItemPrice()));
 out.append("<TD align='right'> " +

 formatter.format(item.getTotal()));
 out.append("</TR>\n");
 }

 out.append("</TABLE>\n");
 return out.toString();
 }

 public void addItem(ShoppingCartItem sci) {
 items.add(sci);
 }

 public double getCartTotal() {
 Iterator it = items.iterator();
 double sum = 0;

 while (it.hasNext())
 sum += ((ShoppingCartItem)it.next()).getExtendedPrice();
 return sum;

 }

 public List getItemList() {
 return items;

 }

 public String getTotalAsCurrency() {
 return NumberFormat.getCurrencyInstance().

 format(getCartTotal());
 }
}

This class includes a method that outputs the contents of the shopping cart as an

HTML table. While this is certainly handy in our example, it violates one of the

rules we encounter later concerning the separation of logic and presentation.

However, in this case, it is an expedient way to output the shopping cart. This class

also contains methods to both calculate the cart total and show it as currency.

Building web applications with servlets 45

 Let’s turn our attention back to the doPost() method in listing 2.12. The

method retrieves the parameters passed from the catalog, establishes a connec-

tion to the database, and adds a new record to the shopping cart. The catalog

servlet passes only the item ID and quantity, so the addItemToCart() method must

use that to build up all the information about an item in the cart. It returns suc-

cess or failure, which is acted on by the servlet. Next, the servlet calls the helper

method outputCheckoutForm() to generate the HTML that appears at the bottom

to accept payment information. This method is simply a series of HTML genera-

tion lines. Finally, the servlet adds the updated cart back to the session and gener-

ates the footer.

The fourth page: confirmation

The fourth and final page of the application adds a new order (with corre-

sponding line items) and provides a confirmation number to the user. The page

output appears in figure 2.5. The source for the Confirmation servlet appears in

listing 2.14.

package com.nealford.art.history.servletemotherearth;

import com.nealford.art.history.servletemotherearth.lib.*;

import java.io.*;
import java.sql.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class Confirmation extends EMotherServletBase {

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

Listing 2.14 The Confirmation servlet inserts the new order

and provides a confirmation number.

Figure 2.5

The Confirmation page indicates

that the order was placed

successfully, implying a series of

behind-the-scenes activities.

46 CHAPTER 2

Building web applications

 response.setContentType(CONTENT_TYPE);

 PrintWriter out = generatePagePrelude(response,
 "Confirmation");
 HttpSession session = getSession(request, response);

 String user = (String) session.getAttribute("user");
 ShoppingCart sc =
 (ShoppingCart) session.getAttribute("cart");

 DbPool dbPool = getConnectionPool();
 Order order = insertOrder(request, session, response, out,
 user, sc, dbPool);

 if (order == null) {
 getServletContext().log("Failed inserting order");
 out.println("<h1>Error processing order</h1>");

 generatePagePostlude(out);
 return;
 }

 generateConfirmation(out, user, order.getOrderKey());
 generatePagePostlude(out);
 session.invalidate();

 }

 private Order insertOrder(HttpServletRequest request,
 HttpSession session,

 HttpServletResponse response,
 PrintWriter out, String user,
 ShoppingCart sc, DbPool pool)

 throws IOException {
 Order order = new Order();
 order.setDbPool(pool);

 String ccNum = request.getParameter("ccNum");
 String ccType = request.getParameter("ccType");
 String ccExp = request.getParameter("ccExp");

 try {
 order.addOrder(sc, user, ccNum, ccType, ccExp);
 } catch (SQLException sqlx) {

 getServletContext().log("Order insert error", sqlx);
 }
 return order;

 }

 private void generateConfirmation(PrintWriter out, String user,
 int orderKey) {

 out.println("<h1>");
 out.println(user + ", thank you for shopping at " +
 "eMotherEarth.com");

 out.println("</h1>");
 out.println("<h3>");

 out.println("Your confirmation number is " + orderKey);
 out.println("</h3>");
 out.println("<p>");

 out.println("<P>");
 out.println(" " +

Gathers
artifacts
needed to
complete the
order

Inserts the order
into the database

Building web applications with servlets 47

 "Click here to return to the store");

 out.println("</P>");
 out.println("</P>");
 }

}

Even though the output is minimal, the Confirmation servlet has one of the most

complex tasks to perform. It must accept both the shopping cart and payment

information and generate an order (which consists of order and line item infor-

mation) in the database. Fortunately, the Order and Lineitem classes handle most

of the work. The Lineitem class is very simple, containing accessors and mutators

for each of the fields of the object. The only method of interest posts a line item

to the database using a PreparedStatement. We omit the Lineitem class code here

for space considerations. The Order class must do the lion’s share of the work

because it has to enter orders within a transaction. The Order class consists of a

large number of accessors and mutators, along with the methods that perform

unique work. Portions of the Order class (minus the accessors and mutators)

appear in listing 2.15.

private static final String SQL_GET_USER_KEY =
 "SELECT ID FROM USERS WHERE NAME = ?";

private static final String SQL_INSERT_ORDER =
 "INSERT INTO ORDERS (USER_KEY, CC_TYPE, CC_NUM, CC_EXP) " +
 "VALUES (?, ?, ?, ?)";

private static final String SQL_GET_GENERATED_KEY =
 "SELECT LAST_INSERT_ID()";

public void addOrder(ShoppingCart cart, String userName,

 String ccNum, String ccType, String ccExp)
 throws SQLException {
 Connection c = null;

 try {
 c = dbPool.getConnection();
 c.setAutoCommit(false);

 int userKey = getUserKey(userName, c);
 addTheOrder(c);
 orderKey = getOrderKey(c);

 insertLineItems(cart, c);
 c.commit();

 } catch (SQLException sqlx) {

 c.rollback();
 throw sqlx;

Listing 2.15 The Order class encapsulates order information

and adds orders to the database.

Inserts order and
line items within a
transaction

Rolls back transaction
upon failure

48 CHAPTER 2

Building web applications

 } finally {

 dbPool.release(c);
 }
}

private void insertLineItems(ShoppingCart cart, Connection c)
 throws SQLException {
 Iterator it = cart.getItemList().iterator();

 Lineitem li = new Lineitem();
 while (it.hasNext()) {
 ShoppingCartItem ci = (ShoppingCartItem) it.next();

 li.addLineItem(c, orderKey, ci.getItemId(),
 ci.getQuantity());
 }

}

private int getOrderKey(Connection c) throws SQLException {
 ResultSet rs = null;

 Statement s = null;
 int orderKey = -1;
 try {

 s = c.createStatement();
 rs = s.executeQuery(SQL_GET_GENERATED_KEY);
 if (rs.next())

 orderKey = rs.getInt(1);
 else {
 throw new SQLException(

 "Order.addOrder(): no generated key");
 }
 } finally {

 rs.close();
 s.close();
 }

 return orderKey;
}

private void addTheOrder(Connection c) throws SQLException {

 int result = -1;
 PreparedStatement ps = c.prepareStatement(SQL_INSERT_ORDER);
 try {

 ps.setInt(1, userKey);
 ps.setString(2, ccType);
 ps.setString(3, ccNum);

 ps.setString(4, ccExp);
 result = ps.executeUpdate();
 if (result != 1)

 throw new SQLException(
 "Order.addOrder(): order insert failed");

 } finally {
 ps.close();
 }

}

Iterates over a
collection of line
items and
inserts each

Building web applications with servlets 49

private int getUserKey(String userName, Connection c)

 throws SQLException {
 PreparedStatement ps = null;
 ResultSet rs = null;

 int userKey = -1;
 try {
 ps = c.prepareStatement(SQL_GET_USER_KEY);

 ps.setString(1, userName);
 rs = ps.executeQuery();
 if (!rs.next()) {

 throw new SQLException(
 "Order.addOrder(): user not found");
 }

 userKey = rs.getInt(1);
 } finally {
 rs.close();

 ps.close();
 }
 return userKey;

}

The addOrder() method first gets a connection from the pool, and then sets the

autoCommit property of the connection to false. In the database, orders consist of

both order information (such as credit card, status, etc.) and order line items,

which reside in another table. To enter an order in the database, records must

atomically post to both the Order and Lineitem tables. Therefore, transaction

processing is required.

 The next task performed by addOrder() is the retrieval of the user’s ID from

the user table. The name is the only piece of information about that user passed

from servlet to servlet, so the name is used to retrieve the user’s key (which is one

of the foreign keys in the Order table). Next, the addTheOrder() method executes

a PreparedStatement to add the new order to the database.

 The database used for this example is MySQL, an open-source database server.

One of the characteristics of MySQL (shared by almost all database servers) is the

automatic generation of key values. The table column for the primary key is

defined as a certain type, and the database takes care of generating the unique

keys. This is an obvious benefit for the developer, because key-generation code

can become quite complex. However, the developer must consider how keys are

generated when dealing with master/detail relationships like the one represented

by orders and line items in this database. For MySQL, a special stored procedure

exists that returns to the database the last key generated for a particular table for

this connection. Database servers handle this in this different ways—there is no

50 CHAPTER 2

Building web applications

standard SQL way of dealing with this issue. The getOrderKey() method, called

from addOrder(), calls the MySQL specific stored procedure to get the newly gen-

erated order key, which is then used to add line item records via the call to the

insertLineItems() method.

 The last order of business for the addOrder() method is to commit the changes

to both tables via the commit() method of the connection. The catch block

ensures that the entire transaction is rolled back upon failure via the call to roll-

back(). The Confirmation servlet in turn displays the ID number of the order as

the confirmation number for the user. This completes the servlet version of the

eMotherEarth application.

2.1.2 Evaluating the servlet approach

While the eMotherEarth site is certainly a functioning application, it is also clearly

flawed. Its flaws lie not with its application of the servlet API or its visual design

(which is sparse on purpose). Instead, it is flawed in the design of the application.

If you look over the code for the servlets, you’ll see that the visual and logic

aspects of this application are hopelessly coupled. Any change to either aspect

requires careful consideration to make sure that the other aspect isn’t broken.

Even splitting the methods of the servlet into small, cohesive chunks doesn’t

decouple the user interface from the logic. Creating helper classes and methods

to handle generic HTML generation, such as the ShoppingCart class in this appli-

cation, helps create reusable building blocks at the expense of embedding presen-

tation code deep within library routines.

 To address this problem, developers of complex sites introduced workarounds,

which for the most part improved the situation. However, the workarounds

became unnecessary as the servlet and JSP APIs evolved, so I won’t investigate

them here. One of the main changes in the servlet API that helped the presenta-

tion layer was the development of JavaServer Pages.

2.2 Building web applications with JSP

JSP aided the development of the presentation layer immensely by helping to elim-

inate embedded HTML in servlet code without losing the benefits of compiled

code (JSPs end up as binary servlets). JSP applications are generally easier to write

than servlet-only applications because the JSP API automatically handles much of

the infrastructure. You simply build the pages and let the servlet engine handle

compilation and deployment. Of course, JSP introduces its own shortcomings. The

Building web applications with JSP 51

next example illustrates both the benefits and shortcomings of the JSP approach to

application development.

2.2.1 The JSP eMotherEarth application

Our next example is the eMotherEarth application rewritten in JSP. Keep in

mind that this is not a port from the servlet version but rather the application as

written by a developer who understands JSP. As before, the intent is to present

the type of application that a traditional application developer might create as

the first pass at a web project. This application appears in the source code archive

as art_emotherearth_jsp.

The first page: Welcome

The Welcome page of this application is the same as the Welcome page for the

servlet application. Both are rendered as simple HTML documents. This Welcome

page is identical to the one shown in figure 2.2 and listing 2.1.

The second page: Catalog

The Catalog page, a JSP, appears in figure 2.6. The source for the catalog JSP must

perform the same kinds of tasks that the servlet version had to perform: it must

establish the connection pool, validate the user, and show a list of catalog items.

The top of the page includes imports and declarations of methods that will

Figure 2.6

The Catalog page of the JSP

application is designed to meet

the same requirements as the

servlet version, so they look

virtually identical.

52 CHAPTER 2

Building web applications

appear outside the scope of the service() method of the JSP. Listing 2.16 shows

this code.

<%@ page import="com.nealford.art.history.emotherearthjsp.*" %>
<%@ page import="java.util.*" %>
<%@ page import="java.sql.*"%>

<%@ page import="java.text.NumberFormat"%>

<%!
private static final String SQL_PRODUCTS = "SELECT * FROM PRODUCTS";

public void jspInit() {
 String driverClass =
 getServletContext().getInitParameter("driverClass");

 String dbUrl = getServletContext().getInitParameter("dbUrl");
 String user = getServletContext().getInitParameter("user");
 String password =

 getServletContext().getInitParameter("password");
 DbPool dbPool = null;
 try {

 dbPool = new DbPool(driverClass, dbUrl, user, password);
 getServletContext().setAttribute("DbPool", dbPool);
 } catch (SQLException sqlx) {

 getServletContext().log("Connection exception", sqlx);
 }
}

private ResultSet getResultSet(Connection c) throws SQLException {
 Statement s = null;
 ResultSet rs = null;

 s = c.createStatement();
 rs = s.executeQuery(SQL_PRODUCTS);
 return rs;

}

%>

The first task performed by the JSP is the establishment of the connection pool.

Because this is the first dynamic page of the application the user accesses, the

jspInit() method of this page is overridden to handle the job. It pulls init param-

eters from the web.xml file and builds the same type of connection pool used in

our first example. The other declared method at the top of the page returns a

result set containing all products. This is a helper method used later in the page.

 The next portion of the code for this page appears before the first content but

outside the jspInit() method, so it appears within the service() method of the

Listing 2.16 The top portion of the catalog JSP

Building web applications with JSP 53

generated servlet rather than the init() method. A regular JSP scriptlet block

rather than a declaration block contains this code (see listing 2.17).

<%
 String userName = request.getParameter("username");
 if (userName == null || userName.equals(""))

 userName = (String) session.getAttribute("user");
 NumberFormat formatter = NumberFormat.getCurrencyInstance();
 DbPool dbPool = null;

 Connection connection = null;
 try {
 dbPool = (DbPool)getServletContext().getAttribute("DbPool");

 connection = dbPool.getConnection();
 ResultSet resultSet = getResultSet(connection);
 ResultSetMetaData metaData = resultSet.getMetaData();

%>

This code retrieves the username, creates a result set and the result set metadata,

and establishes the connection from the connection pool. The block ends with an

open try clause, which must be closed before the bottom of the page. This block is

designed to protect the connection and ensure that it is eventually released.

 The next code on the Catalog page handles the user interface. This file con-

tains mixed HTML, scriptlet, and expression code (see listing 2.18).

<%@ page contentType="text/html; charset=iso-8859-1" language="java"
 errorPage="GeneralErrorPage.jsp" %>

<head>
<title>Catalog</title>
</head>

<body>
<h3>Hello, <%= userName %>. Welcome back to the store!</h3>

<h1>Products </h1>

<table border="1">
 <tr>

 <%
 for (int i = 1; i <= metaData.getColumnCount(); i++) {
 %>

 <td><%= metaData.getColumnName(i) %></td>
 <%
 }

 %>

Listing 2.17 The setup code for the Catalog page

Listing 2.18 The main body of the Catalog page

Prints out
column headers

54 CHAPTER 2

Building web applications

 <td> </td>

 </tr>
 <%
 while (resultSet.next()) {

 %>
 <tr>
 <%

 for (int i = 1; i <= metaData.getColumnCount(); i++) {
 if (metaData.getColumnType(i) == Types.DOUBLE) {
 %>

 <td align='right'>
 <%= formatter.format(resultSet.getDouble(i)) %>
 </td>

 <%
 } else {
 %>

 <td>
 <%= resultSet.getObject(i).toString() %>
 </td>

 <%
 }
 }

 %>

 <td><form method="post" action="ShowCart.jsp">
 Qty:

 <input type="text" size='3' name="quantity" />
 <input type="hidden" name="id"
 value='<%= resultSet.getInt("id") %>' />

 <input type="submit" name="Submit" value="Add to Cart"/>
 </form></td>
 </tr>

 <%
 }
 %>

</table>
<p> </p>
<%

 session.setAttribute("user", userName);
%>
</body>

</html>
<%
 } finally {

 dbPool.release(connection);
 }

%>

Prints out rows

Handles the special
case for currency

Building web applications with JSP 55

The messy code on this page uses the result set and metadata to build the table

view of the catalog. Some of the cells must be formatted as currency, so multiple

decisions are made in-line to accommodate the correct presentation. At the end

of the page, the user’s name is added to the session and the try block started in

the initial scriptlet code is finished off with a resource protection block to release

the database connection.

 The body of this page illustrates the main disadvantage of JSP. To generate out-

put, you end up with lots of mixed scriptlets, expressions, and HTML. Because JSP

relies on specific delimiters, it is very unforgiving of syntax errors. These pages

are consequently difficult to maintain because they become fragile. Necessary

changes to this page may accidentally break another part of the page because of

the heavy mixture of presentation and code elements. It is also difficult for more

than one developer to work on the pages at the same time. Many large organiza-

tions have dedicated user interface designers, whose job is the generation of the

presentation layer. When the code and presentation are mixed, it is difficult to

separate responsibilities.

The third page: ShowCart

The third page (figure 2.7) shows the contents of the user’s shopping cart.

Listing 2.19 contains the code for the Shopping Cart page.

Figure 2.7

The JSP Shopping Cart page

shows the contents of the cart

and allows the user to add

purchasing information.

56 CHAPTER 2

Building web applications

<%@ page import="com.nealford.art.history.emotherearthjsp.*" %>
<%@ page import="java.util.*" %>

<%@ page import="java.sql.*"%>
<%@ page import="java.text.NumberFormat"%>

<%!

 static final private String SQL_GET_PRODUCT =
 "select * from products where id = ?";

 private ShoppingCart getCart(HttpSession session) {

 ShoppingCart cart =
 (ShoppingCart) session.getAttribute("shoppingCart");
 if (cart == null)

 cart = new ShoppingCart();
 return cart;
 }

 private boolean addItemToCart(Connection c,
 int itemId,
 int quantity,

 ShoppingCart sc)
 throws SQLException {
 PreparedStatement ps = c.prepareStatement(SQL_GET_PRODUCT);

 ps.setInt(1, itemId);
 ResultSet rs = ps.executeQuery();
 boolean status;

 if (status = rs.next()) {
 int id = rs.getInt("id");
 String name = rs.getString("name");

 double price = rs.getDouble("price");
 ShoppingCartItem sci = new ShoppingCartItem(id, name,
 quantity, price);

 sc.addItem(sci);
 }
 return status;

 }
%>
<%

 DbPool dbPool = null;
 Connection connection = null;
 ShoppingCart cart = getCart(session);

 String userName = (String) session.getAttribute("user");
 int itemId = Integer.parseInt(request.getParameter("id"));
 int quantity = Integer.parseInt(

 request.getParameter("quantity"));
 try {
 dbPool =(DbPool)getServletContext().getAttribute("DbPool");

 connection = dbPool.getConnection();

Listing 2.19 The Shopping Cart JSP

The top scriptlet, which
contains most of the code

Building web applications with JSP 57

%>

<%@ page contentType="text/html; charset=iso-8859-1" language="java"
 errorPage="GeneralErrorPage.jsp" %>
<html>

<head>
<title>Shopping Cart</title>
</head>

<body>
<%
 if (! addItemToCart(connection, itemId, quantity, cart)) {

%>
 Error! Could not add item to cart!
<%

 }
%>
<h3><%= userName %>, here is your shopping cart:</h3>

<%= cart.toHtmlTable() %>

<p>Click here to return to the store </p>

<h3>Check out</h3>

<form method="post" action="Confirmation.jsp">
 <p>Credit Card #
 <input type="text" name="ccNum">

 </p>
 <p>Credit Card Type
 <select name="ccType">

 <option value="Amex">Amex</option>
 <option value="Visa">Visa</option>
 <option value="MC">MC</option>

 </select>
 Credit Card Exp Date:
 <input type="text" name="ccExp">

 </p>
 <p>
 <input type="submit" name="Submit" value="Check out">

 </p>
</form>
<p> </p>

</body>
</html>
<%

 session.setAttribute("shoppingCart", cart);
 } finally {

 dbPool.release(connection);
 }
%>

58 CHAPTER 2

Building web applications

This page is structured much like the previous example. At the beginning, we

have helper methods used in the body, followed by the beginning of the code that

will make up the service() method, and then the mixed presentation and logic.

The same helper classes (ShoppingCart and ShoppingCartItem) are used, includ-

ing the toHtmlTable() method of ShoppingCart that creates an HTML table repre-

senting the cart. For better presentation flexibility, the table should be generated

by hand (as in the Catalog page) or relegated to a JSP custom tag.

The fourth page: Confirmation

The fourth and final page of our application (see figure 2.8) resembles the

corresponding page in the servlet sample. The code for this page is shown in

listing 2.20.

<%@ page import="com.nealford.art.history.emotherearthjsp.*" %>

<%@ page import="java.sql.*"%>

<%@ page contentType="text/html; charset=iso-8859-1" language="java"
 errorPage="GeneralErrorPage.jsp" %>

<%!
 private Order insertOrder(HttpServletRequest request,
 HttpSession session,

 String user,
 ShoppingCart sc,
 DbPool pool) {

 Order order = new Order();
 order.setDbPool(pool);
 order.setCcNum(request.getParameter("ccNum"));

 order.setCcType(request.getParameter("ccType"));;
 order.setCcExp(request.getParameter("ccExp"));
 try {

 order.addOrder(sc, user);
 } catch (SQLException sqlx) {

Listing 2.20 The Confirmation JSP source

Figure 2.8

The Confirmation page inserts the

order and presents the user with a

confirmation number.

Building web applications with JSP 59

 getServletContext().log("Order insert error", sqlx);

 }
 return order;
 }

%>
<%
 DbPool dbPool = null;

 Connection connection = null;
 ShoppingCart cart =
 (ShoppingCart) session.getAttribute("shoppingCart");

 if (cart == null)
 throw new Exception("Nothing in shopping cart!");
 String userName = (String) session.getAttribute("user");

 try {
 dbPool = (DbPool)getServletContext().getAttribute("DbPool");
 connection = dbPool.getConnection();

 Order newOrder = insertOrder(request, session, userName,
 cart, dbPool);
%>

<html>
<head>
<title>Confirmation</title>

</head>

<body>
<h1><%= userName %>, thank you for shopping at eMotherEarth.com</h1>

<h3>Your confirmation number is <%= newOrder.getOrderKey() %></h3>
<p>Click here to return to the store</p>
</body>

</html>
<%
 } finally {

 dbPool.release(connection);
 }
%>

This page also makes heavy use of the helper class Order to post the order and line

items to the database. The presentation part of this page is trivial and appears at

the bottom.

2.2.2 Evaluating the JSP approach

The JSP version of this application solves many of the presentation problems of

the servlet version but adds some of its own. Although much of the business logic

is encapsulated into helper classes (both utility classes such as ShoppingCart and

business classes like Order), the pages still quickly become a mess of mixed pres-

entation and logic.

60 CHAPTER 2

Building web applications

 As in the servlet example, there is nothing inherently wrong with the function

of a web application built like this one. However, the faults appear when it comes

time to maintain or enhance the application. JSP by its nature encourages the

mixing of code and presentation logic, which makes the pages fragile. It also hin-

ders parallel development by a specialized development team. In addition, JSP

makes it more difficult to create granular, reusable methods. An intimate knowl-

edge of the inner workings of the JSP API is required before you can leverage com-

mon behavior from a base class. For example, the kind of code reuse achieved in

the servlet example is more difficult in the JSP case.

2.3 Summary

While the servlet and JSP APIs are powerful, they don’t force developers to use

them in the most effective way. Servlets become very labor intensive when presen-

tation code must be emitted from Java source code. You can employ template

strategies and other techniques to mitigate this problem, but they introduce their

own problems, such as the high processor cost of parsing every page to replace

templates. Servlets are certainly the best option when it comes to writing code to

perform work. Because they are standard classes, you can use good coding prac-

tices, such as granular methods and inheritance, to improve the structure of the

code. However, melding the functional code with the presentation layer becomes

a problem, especially in cases where the presentation layer requires major updates

but the function has to remain the same.

 When writing JSPs, you are spending your time in the presentation layer, which

makes it easy to build the visual aspect of your application, which is the most diffi-

cult part of using servlets. At the same time, though, good coding practices are

either more difficult or impossible in JSP. It seems a shame to discard your hard-

earned knowledge of code structure for the benefit of easier-to-use user inter-

faces. JSP works extremely well for simple sites, where development time is short

and maintenance is not a big concern. Yet, as the size of the application grows, JSP

becomes harder to manage.

 We designed the examples in this chapter to give you a baseline reference of

how web applications are too often created. Subsequent chapters show you how to

move away from this starting point and truly leverage the potential of web devel-

opment in Java. In chapter 3, we solve some of the shortcomings of servlets and

JSP by using JSP custom tags.

61

Creating custom JSP tags

This chapter covers

■ Building custom JSP tags

■ Using the Java Standard Tag Library

■ Using other third-party JSP tags

62 CHAPTER 3

Creating custom JSP tags

In chapter 2, we used the building blocks of web applications to create a simple

program. While our web application was fully functional, it suffered in the design

department. In both the servlet and JSP versions of the application, a clear sepa-

ration of presentation and logic was missing. Custom tags offer one way to solve

that problem.

 While JSP is excellent for handling presentation, the amount of code embed-

ded within scriptlets poses maintenance problems. A good way to get rid of some

of that code is to encapsulate it with custom JSP tags. We will be doing so through-

out this chapter. Our goal is to solve the problems inherent in the design and

architecture of the applications from chapter 2 by utilizing custom tags. We’ll

cover handwritten, standard, and third-party tags.

 This chapter presents a brief overview of the custom tag facilities in Java. This

is a large topic, and entire books are available that delve into the finer details of

tag creation. An excellent example is JSP Tag Libraries, by Gal Shachor, Adam

Chace, and Magnus Rydin (Manning Publications, 2001). This chapter focuses on

creating custom tags to improve the code we used in chapter 2. We also discuss

using tags developed by others, including the standard set of tag libraries intro-

duced with JSP 1.2.

3.1 The case for custom tags

The developers of the JSP technology included capabilities for expanding and cus-

tomizing the API by creating a custom tag facility. Custom tags appear in the

Extensible Markup Language (XML) syntax for tags, similar to the JSP tags for

manipulating JavaBeans:

<jsp:setPropertry name="emp" property="salary" value="120.00" />

Custom JSP tags may be used for a variety of purposes, including encapsulating

complex snippets of code away from the page developer. Because of their reus-

able nature, custom tags are also used to build frameworks, displacing standard

HTML controls; to build logic into pages; and any other behavior a web developer

can imagine.

 Tag development appears here as a design option for reducing the complexity

of too busy JSP pages. We do not mean to suggest that this is the primary or even

the best use of tags. Tag development is a broad topic, and it appears in other

guises later in the book. This chapter concerns the evolution of web development

in Java, and tag development is the next step.

The tag interfaces 63

3.2 The tag interfaces

To create a custom tag, you must implement one of several interfaces defined in

the servlet API. The tag API consists of a series of interfaces. Depending on the

type of tag you are creating, you implement either the Tag or BodyTag interface.

The Tag interface supports the building of tags that do not include a body;

BodyTag includes additional helper method signatures for supporting a tag with a

body (which is a tag with code between the begin and end elements).

 The custom tag API defines a hierarchy of interfaces and supporting objects

utilized by tag developers. While it is beyond the scope of this book to delve

deeply into the details of this API, a look at the base classes helps set the founda-

tion for building tags. The remainder of this section highlights the key interfaces

and classes in the custom tag API. You must be familiar with the methods of these

interfaces to write custom tags.

3.2.1 The Tag interface

 The Tag interface includes the callback methods and other infrastructure that

support JSP. You must implement this interface to create a custom tag. An abbrevi-

ated version (minus the JavaDoc comments) appears in listing 3.1.

package javax.servlet.jsp.tagext;

import javax.servlet.jsp.*;

public interface Tag {
 public final static int SKIP_BODY = 0;
 public final static int EVAL_BODY_INCLUDE = 1;

 public final static int SKIP_PAGE = 5;
 public final static int EVAL_PAGE = 6;

 void setPageContext(PageContext pc);

 void setParent(Tag t);
 Tag getParent();
 int doStartTag() throws JspException;

 int doEndTag() throws JspException;
 void release();

}

This interface includes constants that are returned from the callback methods
doStartTag() and doEndTag(), which determine the control flow of the tag.

Listing 3.1 The Tag interface from the servlet API

Control
flow flags

B

Infrastructure
support methods

C

Tag-processing methodsD

Infrastructure support methodsC

B

64 CHAPTER 3

Creating custom JSP tags

The first three methods provide infrastructure support (setting the page context
and the parent). The parent in this case is another tag, which supports building
nested tags. It is sometimes necessary to get information provided in the parent
tag from the child tag. For example, a Database tag might propagate connection
information to all the statement tags enclosed within its body. The last method,
release(), provides support for cleaning up any resources allocated by the tag
(such as database connections and file streams). This method is guaranteed to be
called by the JSP when the processing of this tag is complete. The method pro-
vides good encapsulation of your tag code so that you don’t have to force the user
to worry about resource allocation done by the custom tag.

The workhorse methods defined in this interface are doStartTag() and doEnd-
Tag(). These methods are the ones the developer overrides to perform tasks
within the custom tag. As their names imply, the doStartTag() method executes at
the start of tag processing and doEndTag() executes at the end. Both methods
return integers, with the intention of returning one of the constants defined in
this interface to inform the JSP about the control-flow intention.

Frequently, you may need to implement the Tag interface but don’t have to supply

method definitions for all the methods declared in the interface. Instead of writ-

ing stub method bodies, you can create adaptor classes instead. An adaptor class

implements an interface and provides either default or stub (i.e., no code) imple-

mentations for all the methods. This allows the user of the interface to extend the

adaptor rather than implementing the interface directly. This is a common pat-

tern in event handlers in Java, and it appears in this API as well (see Swing/AWT

Event Listeners, for example). Instead of implementing Tag directly, you have the

option of extending TagSupport, a base class with default implementations for the

methods defined in Tag. From a practical standpoint, you always extend TagSup-

port instead of implementing Tag directly, which frees you from writing empty

method bodies for methods you don’t need for your tag.

3.2.2 The IterationTag interface

The IterationTag interface extends Tag and adds support for tags that must iterate

over some collection. The interface includes only one constant and one method

signature (see listing 3.2; we omitted the JavaDoc comments).

package javax.servlet.jsp.tagext;

import javax.servlet.jsp.*;

public interface IterationTag extends Tag {

C

D

Listing 3.2 IterationTag adds support for iterating over a collection.

The tag interfaces 65

 public final static int EVAL_BODY_AGAIN = 2;

 int doAfterBody() throws JspException;
}

This interface adds the EVAL_BODY_AGAIN constant as a legal return value from the

status methods of a tag. It also defines a doAfterBody() method that supports

body tags.

 This interface was added in the JSP 1.2 specification to incrementally add sup-

port for tags with a body. The method and constant formerly appeared (in slightly

different form) in the BodyTag interface. Splitting it out into its own interface lets

you take a more granular approach to building tags. This interface is the step-

ping-stone to building a tag that includes body elements, which we look at next.

3.2.3 The BodyTag interface

The other primary interface for tag development is BodyTag, which supports

building tags that include body elements. A body element is content (either other

tags or output elements such as HTML) encapsulated between the beginning and

end of the tag. An example of this type of tag from the standard tag API is the use-

Bean tag, which may include body elements that initialize a bean when the JSP

must create it rather than pull it from a collection:

<jsp:useBean id="item"

 scope="session"
 class="com.nealford.art.history.customtags.ShoppingCartItem">
 <jsp:setProperty name="item" property="itemId" value="0" />

 <jsp:setProperty name="item" property="quantity" value="0"/>
 <jsp:setProperty name="item" property="itemName"
 value="None" />

 <jsp:setProperty name="item" property="itemPrice"
 value="0.0" />
</jsp:useBean>

The BodyTag interface (minus JavaDoc comments) appears in listing 3.3.

package javax.servlet.jsp.tagext;

import javax.servlet.jsp.*;

public interface BodyTag extends IterationTag {

 public final static int EVAL_BODY_TAG = 2;
 public final static int EVAL_BODY_BUFFERED = 2;

 void setBodyContent(BodyContent b);

Listing 3.3 The BodyTag interface provides callback methods for body tags.

66 CHAPTER 3

Creating custom JSP tags

 void doInitBody() throws JspException;

}

The BodyTag interface builds on the doAfterBody() method defined in its inter-

face (IterationTag) by adding constants and a couple of methods. The con-

stants defined here are status codes returned by the various “do” methods of a

tag. The setBodyContent() method is called by the JSP runtime to supply you

with a BodyContent object, which encapsulates information about the tag body

and the implicit “out” object. The doInitBody() method is called at the start of

the body processing for the tag. The doAfterBody() method, defined in Itera-

tionTag and therefore in this interface by virtue of inheritance, is called at the

end of body processing.

3.3 Building simple tags

The best way to understand custom tag development is to build a custom tag

one step at a time, including both the code and the registration process to uti-

lize the tag.

3.3.1 The HtmlSqlResult tag

The HtmlSqlResult custom tag generates an HTML table for a ResultSet, making it

easy to output the results from a SQL statement. For this example, we don’t need a

body, so we will implement the Tag interface through the TagSupport adaptor.

This custom tag is related to code that originally appeared in listing 2.11. It is a

modified version of the class named HtmlSqlResult. The original class accepted a

SQL string and a Connection object and generated an HTML table based on the

ResultSet. It also contained code that generated a shopping form via a flag set on

the instance of the class. This class eliminated the task of handwriting a table

based on a query.

 This class is a perfect candidate for conversion into a custom tag and a good

example of utility code that has potential for reuse across multiple applications.

One of the principle governing criteria of the usefulness of writing a custom tag

should hinge on the reusability of the code. Because it requires more effort to cre-

ate a custom tag than to create the code in the first place, it is a waste of time to

build a tag for a single use. However, most applications have this kind of code

lurking around, waiting for the chance to be abstracted into a more generic place.

Building simple tags 67

When you find code like this, placing it in a custom tag saves development and

debugging time for later projects.

 Following the coding style we’ll use in the rest of the book, the methods in our

custom tag are as granular as possible, with public methods acting as the driving

force for private methods. Some of the methods of the custom tag appear virtually

unchanged from the original class. The top of the class and some of the private

methods appear in listing 3.4.

package com.nealford.art.history.customtags;

import java.io.IOException;

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.ResultSetMetaData;

import java.sql.SQLException;
import java.sql.Statement;
import java.text.NumberFormat;

import javax.servlet.jsp.JspException;
import javax.servlet.jsp.JspWriter;
import javax.servlet.jsp.tagext.TagSupport;

public class HtmlSqlResult extends TagSupport {
 private String sql;
 private String dbPool;

 private String formActionDestination;
 private String shoppingForm;

 private Connection getConnection()

 throws SQLException, JspException {
 DbPool dbPool = (DbPool) pageContext.getServletContext().
 getAttribute(this.dbPool);

 Connection c = dbPool.getConnection();
 if (c == null)
 throw new JspException("Couldn't get connection");

 return c;
 }

 private void releaseConnection(Connection con) {

 DbPool dbPool = (DbPool) pageContext.getServletContext().
 getAttribute(this.dbPool);

 dbPool.release(con);
 }

The HtmlSqlResult class extends TagSupport only because it isn’t necessary for

this tag to implement all the methods mandated by the Tag interface—this class

Listing 3.4 The prelude to the HtmlSqlResult custom tag

68 CHAPTER 3

Creating custom JSP tags

doesn’t need to override the infrastructure support methods because the imple-

mentation supplied by TagSupport is sufficient. The HtmlSqlResult class includes

some standard member variables and helper methods for getting and releasing a

database connection from a pool. A change in this code from the previous incar-

nation is the presence of the JspException in the method signature of the get-

Connection() method. JspException appears so that problems getting the

database connection can propagate up through the JSP runtime, allowing for con-

sistent error handling in the JSP. Both the getConnection() and releaseConnec-

tion() methods rely on the application context containing an instance of the

connection pool class.

 The next private methods of this class deal with the generation of HTML and

appear in listing 3.5.

 private void setupTable(StringBuffer out) {
 out.append("<table border=1>\n");
 out.append("<tr>");

 }

 private void generateHeaders(StringBuffer out,
 ResultSetMetaData rsmd,

 int numcols)
 throws SQLException {
 for (int i = 1; i <= numcols; i++) {

 out.append("<th>");
 out.append(rsmd.getColumnLabel(i));
 }

 if (shoppingForm.equalsIgnoreCase("true"))
 out.append("<th>" + "Buy");

 out.append("</TR>\n");

 }

 private void generateStandardRow(ResultSet rs,
 ResultSetMetaData rsmd,

 int numCols, StringBuffer out)
 throws SQLException {
 NumberFormat formatter = NumberFormat.getCurrencyInstance();

 out.append("<tr>");
 for (int i = 1; i <= numCols; i++) {
 Object obj = rs.getObject(i);

 if ((obj != null) &&
 (rsmd.getColumnType(i) == java.sql.Types.DOUBLE))
 out.append("<td align='right'> " +

 formatter.format(rs.getDouble(i)));
 else if (obj == null)

Listing 3.5 The private HTML generation methods

Generates the prefix
for the table

Uses ResultSetMetaData
to generate headers

Outputs a row of
the table based on
the result set

Building simple tags 69

 out.append("<td> ");

 else
 out.append("<td>" + obj.toString());
 out.append("</td>");

 }
 }

 private void endRow(StringBuffer out) {

 out.append("</tr>\n");
 }

 private void generateShoppingForm(StringBuffer b,

 int currentId) {
 if (shoppingForm.equalsIgnoreCase("true")) {
 b.append("<td>");

 b.append("<form action='" + formActionDestination +
 "' method='post'>");
 b.append("Qty: <input type='text' size='3' " +

 "name='quantity'>");
 b.append("<input type='hidden' name='id' " + "value='" +
 currentId + "'>");

 b.append("<input type='submit' name='submit' " +
 "value='Add to cart'>");
 b.append("</form>");

 }
 }

 private void endTable(StringBuffer out) {

 out.append("</table>\n");
 }

All of these private methods are building blocks, used by the public methods of

the class to build a single piece of the resulting table. This separation of responsi-

bilities is desirable because it makes the code more readable and exposes previ-

ously unseen opportunities for code reuse.

 The remainder of the custom tag consists of public accessors and mutators

(omitted here for brevity’s sake) and the vitally important doStartTag() method,

shown in listing 3.6.

public int doStartTag() throws javax.servlet.jsp.JspException {

 StringBuffer out = new StringBuffer();
 Connection con = null;
 try {

 con = getConnection();
 Statement stmt = con.createStatement();
 stmt.execute(sql);

Listing 3.6 The doStartTag() method

Cleans up the
end of the row
definition

Generates a column
to select items for
purchase

Cleans up the end
of the table

70 CHAPTER 3

Creating custom JSP tags

 ResultSet rs = stmt.getResultSet();

 ResultSetMetaData rsmd = rs.getMetaData();
 int numCols = rsmd.getColumnCount();

 setupTable(out);

 generateHeaders(out, rsmd, numCols);

 while (rs.next()) {
 generateStandardRow(rs, rsmd, numCols, out);

 generateShoppingForm(out, rs.getInt("id"));
 endRow(out);
 }

 endTable(out);
 pageContext.getOut().write(out.toString());
 } catch (SQLException e) {

 out.append("</table><h1>ERROR:</h1> " + e.getMessage());
 } catch (IOException ex) {
 pageContext.getServletContext().log(

 "Error generating output", ex);
 } finally {
 releaseConnection(con);

 }

 return SKIP_BODY;
}

The doStartTag() method is the callback method invoked by the JSP runtime

when the beginning of the custom tag is encountered. Because this tag doesn’t

include a body, this method solely defines what the tag is going to do. It consoli-

dates the private methods and puts them to work. As in the previous version, all

the HTML is generated into a StringBuffer for efficiency before output. This

method creates a connection, builds the table, optionally generates the shopping

form, and ends the table. The details appear in the private methods.

 The next order of business is to output the generated HTML to the JSP run-

time, which occurs at the line

pageContext.getOut().write(out.toString());

This method attaches the output buffer used by the JSP runtime to the tag. The

getOut() method of the page context gives the developer access to the buffered

output stream, and the write() method outputs the StringBuffer containing the

table.

 After the tag handles the potential exceptions and releases the database con-

nection back to the pool, its final task is to return an integer value to the JSP run-

time to inform it of the intended control flow. In this case, any body that exists for

Building simple tags 71

this tag is irrelevant to the tag, so we inform the runtime to skip the body and con-

tinue processing the rest of the page. Tags without a body usually return the

SKIP_BODY constant.

3.3.2 Registering the tag

The next step is to create the tag library descriptor for your custom tag. This infor-

mation is kept in a file with a .tld extension. It is an XML document (validated by a

document type definition [DTD] specified by Sun Microsystems) that is part of the

custom tag API. This DTD and the documentation for it reside in the JSP specifica-

tion document, created and maintained by Sun (see http://java.sun.com/prod-

ucts/jsp/download.html#specs). The specification is a PDF file that contains a

well-documented version of the DTD. The descriptor specifies name, parameters,

and other characteristics of a group of custom tags. Listing 3.7 shows our TLD file,

emotherearth.tld.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"

 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>

 <tlibversion>1.0</tlibversion>

 <jspversion>1.1</jspversion>
 <shortname>emotherearth</shortname>
 <uri>http://com.nealford.art.emotherearth</uri>

 <tag>
 <name>htmlSqlResult</name>
 <tagclass>

 com.nealford.art.history.customtags.HtmlSqlResult
 </tagclass>
 <bodycontent>empty</bodycontent>

 <attribute>
 <name>sql</name>
 <required>true</required>

 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>

 <name>dbPool</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>

 </attribute>
 <attribute>
 <name>formActionDestination</name>

Listing 3.7 emotherearth.tld

72 CHAPTER 3

Creating custom JSP tags

 <required>true</required>

 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>

 <name>shoppingForm</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>

 </attribute>
 </tag>

</taglib>

The information at the top of the descriptor applies to all the tags declared in this

file. The information starting with tag specifies the characteristics specific to this

tag. It includes the short name, fully qualified class name, the presence of a tag

body, and the collection of attributes available for this tag. Each attribute allows

you to mandate that the tag is required and that a runtime expression may be

included as content. Including a runtime expression allows the user to use JSP

markup (for example, a JSP expression) for the contents of the tag. It tells the JSP

engine to process the content before passing it to the attribute.

 It is possible to automate the generation of the TLD file using an open-source

tool called XDoclet, available from http://xdoclet.sourceforge.net/. You place

JavaDoc comments directly in the source code for your custom tag, and XDoclet

generates the TLD for you. XDoclet is a general-purpose tool for generating XML

descriptors (it was actually created to create Enterprise JavaBeans [EJB] deploy-

ment descriptors) and works in the same way as the standard JavaDoc mechanism.

 Once you have written the TLD for the tag, you still must tell the web applica-

tion where to find the file. You do this in the application’s web.xml document.

One of the legal entries is a reference to a location for tag libraries available for

this application:

 <taglib>
 <taglib-uri>http://com.nealford.art.emotherearth</taglib-uri>
 <taglib-location>/WEB-INF/emotherearth.tld</taglib-location>

 </taglib>

The last step you need to complete before you can use your custom tag is to place

a directive in the JSP that uses the tag. Generally at the top of the page (although

it is legal anywhere on the page), the taglib page directive points to the URI spec-

ified in the web.xml file and provides a short, friendly name for use on the page:

 <%@ taglib uri="http://com.nealford.art.emotherearth"

 prefix="emotherearth" %>

Building simple tags 73

The tag can now be used on the page, using the emotherearth prefix:

 <emotherearth:addDbPoolToApplication initUser="user"

 initPassword="password" initUrl="dbUrl"
 initDriverClass="driverClass" />

You aren’t forced to use the short name defined in the descriptor—it is a page-

specific shortcut to the custom tag. The result of using this tag appears in figure 3.1.

The code underlying the page is much cleaner, as you can see in listing 3.8. Com-

pare that to listing 2.18. We’ve eliminated the large group of mixed scriptlet and

presentation code by using the custom tag.

<%@ taglib uri="http://com.nealford.art.emotherearth"

 prefix="emotherearth" %>

<%@ page import="com.nealford.art.history.customtags.*" %>
<%@ page import="java.util.*" %>

<%@ page import="java.sql.*"%>
<%@ page import="java.text.NumberFormat"%>

<%!

private static final String SQL_PRODUCTS = "SELECT * FROM PRODUCTS";

private ResultSet getResultSet(Connection c) throws SQLException {
 Statement s = null;

 ResultSet rs = null;

Listing 3.8 The Catalog page featuring the custom tag

Figure 3.1

The Catalog page of the application

looks the same to the user, but the

markup is greatly improved by the use

of a custom tag.

74 CHAPTER 3

Creating custom JSP tags

 s = c.createStatement();

 rs = s.executeQuery(SQL_PRODUCTS);
 return rs;
}

%>
<emotherearth:addDbPoolToApplication initUser="user"
 initPassword="password" initUrl="dbUrl"

 initDriverClass="driverClass" />
<%
 String userName = request.getParameter("username");

 if (userName == null || userName.equals(""))
 userName = (String) session.getAttribute("user");
%>

<%@ page contentType="text/html; charset=iso-8859-1" language="java"
 errorPage="GeneralErrorPage.jsp" %>
<head>

<title>Catalog</title>
</head>
<body>

<h3>Hello, <%= userName %>. Welcome back to the store!</h3>

<h1>Products </h1>
<emotherearth:htmlSqlResult dbPool="DbPool"

 sql="<%= SQL_PRODUCTS %>"
 formActionDestination="ShowCart.jsp"
 shoppingForm="true" />

<p> </p>
<%
 session.setAttribute("user", userName);

%>
</body>
</html>

Using tags in this manner greatly reduces the complexity of the page. The tag

code still includes a great deal of mixed Java and HTML code (emitted by the tag),

but the code in the tag is written only once and can be reused in numerous appli-

cations. In general, better ways exist to handle the functionality shown here, using

the techniques we describe in subsequent chapters. For example, embedding

HTML directly into a tag avoids the use of Cascading Style Sheets (CSS) to control

the visual aspects of the page where this tag resides. This does not itself represent

a best practice, but rather a step in the evolution of web development that leads to

the best practices and designs starting in chapter 4.

Replaces the
original
scriptlet code

Validating tag attributes 75

3.4 Validating tag attributes

The custom tag API provides a facility for validating the correctness of the tag

attributes. This facility allows for compile-time checking of the correctness of the

tags. You should exploit every opportunity to get the compiler and framework to

perform more work on your behalf. By validating the attributes of the tag, you can

ensure that a developer uses the tag correctly and guards your tag code against

invalid or missing attributes. Thus, validating the attributes as part of the tag elim-

inates the need for extra error-handling code.

3.4.1 Adding DbPool to the application tag

Our next example builds a custom tag that encapsulates the code necessary to

add a database connection pool to the application context as the application ini-

tializes. Every page must use this database connection pool to retrieve a connec-

tion to the database, and the first page accessed pulls init parameters from the

application to build the pool. Recall from the example in listing 2.16 that the first

JSP page in the application included scriptlet code at the top of the page that

added a connection pool instance to the servlet context collection. This scriptlet

code appears in listing 3.9.

<%!
private Connection connection = null;

private static final String SQL_PRODUCTS = "SELECT * FROM PRODUCTS";

public void jspInit() {
 String driverClass =

 getServletContext().getInitParameter("driverClass");
 String dbUrl = getServletContext().getInitParameter("dbUrl");
 String user = getServletContext().getInitParameter("user");

 String password =
 getServletContext().getInitParameter("password");
 DbPool dbPool = null;

 try {
 dbPool = new DbPool(driverClass, dbUrl, user, password);

 getServletContext().setAttribute("DbPool", dbPool);
 connection = dbPool.getConnection();
 } catch (SQLException sqlx) {

 getServletContext().log("Connection exception", sqlx);
 }
}

%>

Listing 3.9 Scriptlet code for adding a connection pool to the application

76 CHAPTER 3

Creating custom JSP tags

The code in jspInit() pulls init parameters from the application scope (Servlet-

Context), constructs a database connection pool, and adds it to the application

context. This listing exemplifies the type of code that clutters up the presentation

aspects of a JSP.

 Our example custom tag replaces the previous code with a single call to the

AddDbPoolToApplication tag (see listing 3.10).

<emotherearth:addDbPoolToApplication initUserName="user"
 initPasswordName="password" initUrlName="dbUrl"
 initDriverClassName="driverClass" />

As you can see, the addDbPoolToApplication custom tag allows for much cleaner

presentation. The properties of the tag specify the names of the attributes in the

application configuration file used to create the DbPool object. These names are

used to access the corresponding init parameters in the custom tag. The tag

source is shown in listing 3.11.

package com.nealford.art.history.customtags;

import java.sql.SQLException;
import javax.servlet.jsp.tagext.*;

public class AddDbPoolToApplication extends TagSupport {

 private String initUrlName;
 private String initDriverClassName;
 private String initUserName;

 private String initPasswordName;

 public int doStartTag() {
 String driverClass = pageContext.getServletContext()

 .getInitParameter(initDriverClassName);
 String dbUrl = pageContext.getServletContext()
 .getInitParameter(initUrlName);

 String user = pageContext.getServletContext()
 .getInitParameter(initUserName);
 String password = pageContext.getServletContext()

 .getInitParameter(initPasswordName);
 DbPool dbPool = null;
 try {

 dbPool = new DbPool(driverClass, dbUrl, user, password);
 pageContext.getServletContext().setAttribute("DbPool",
 dbPool);

 } catch (SQLException sqlx) {

Listing 3.10 The custom JSP tag invocation that replaces the jspInit() code

Listing 3.11 The source for the custom tag addDbPoolToApplication

Extends
TagSupport

Contains the callback
method from the tag API

Validating tag attributes 77

 pageContext.getServletContext().log(

 "Connection exception", sqlx);
 }
 return SKIP_BODY;

 }

 public void setInitUrlName(String initUrl) {
 this.initUrlName = initUrl;

 }

 public void setInitDriverClassName(String initDriverClass) {
 this.initDriverClassName = initDriverClass;

 }

 public void setInitUserName(String initUser) {
 this.initUserName = initUser;

 }

 public void setInitPasswordName(String initPassword) {
 this.initPasswordName = initPassword;

 }
}

The code in doStartTag() resembles the code that used to appear at the top of

the page. The primary difference is the use of the pageContext object for getting a

reference to the page’s instance of the servlet context. Custom tags have access to

all the same facilities of the underlying JSP (which in turn have access to all the

facilities of the generated servlet) through the pageContext object. This code is

called from the servlet generated by the JSP compiler, so you are free to access the

servlet’s collections (session, request, and servlet context), request, response, and

other implicit objects.

 The addDbPoolToApplication tag includes set methods for identifying the

attributes of the tag. These strings correspond to the names of the init parame-

ters, which in turn point to the objects in the application deployment descriptor

file. The user of this tag must include all the attributes—the tag cannot possibly

work without them because they are all required to successfully connect to the

database. So, to force the user to include all the attributes, we create a TagEx-

traInfo class. This abstract class allows you to add validation and other metadata

to the tags. TagExtraInfo appears (without the JavaDocs) in listing 3.12.

package javax.servlet.jsp.tagext;

public abstract class TagExtraInfo {

Listing 3.12 The TagExtraInfo class from the JSP API

Defines
constants

78 CHAPTER 3

Creating custom JSP tags

 public VariableInfo[] getVariableInfo(TagData data) {

 return new VariableInfo[0];
 }

 public boolean isValid(TagData data) {

 return true;
 }
 public final void setTagInfo(TagInfo tagInfo) {

 this.tagInfo = tagInfo;
 }

 public final TagInfo getTagInfo() {

 return tagInfo;
 }

 private TagInfo tagInfo;

}

This class provides a method (getVariableInfo()) for retrieving tag metadata and

a validation method (isValid()) for tag attributes. Even though the class includes

no abstract methods, it is still designated as abstract to force developers to extend

it and override some or all of the methods.

 For the addDbPoolToApplication tag, validation is the only extra behavior

needed. To that end, the isValid() method is overloaded to ensure that the user

has supplied all the attributes necessary for the tag to work. Listing 3.13 shows the

implementation of AddDbPoolTagExtraInfo.

package com.nealford.art.history.customtags;

import javax.servlet.jsp.tagext.TagData;
import javax.servlet.jsp.tagext.TagExtraInfo;

public class AddDbPoolTagExtraInfo extends TagExtraInfo {

 public boolean isValid(TagData data) {
 return checkData(data.getAttribute("initDriverClass")) &&
 checkData(data.getAttribute("initUrl")) &&

 checkData(data.getAttribute("initUser")) &&
 checkData(data.getAttribute("initPassword"));
 }

 private boolean checkData(Object toBeChecked) {
 return (toBeChecked != null) &&
 (((String) toBeChecked.trim()).length() > 0);

 }
}

Listing 3.13 The Tag Extra Info class for the custom tag validates the attributes.

Validating tag attributes 79

The AddDbPoolTagExtraInfo class utilizes a helper method that verifies that the

attribute isn’t null and that it isn’t a zero length string. The overridden isValid()

method calls the helper on all the attributes defined by the tag.

 To associate the TagExtraInfo class with the tag, an extra entry appears in the

TLD file for registration purposes. The portion of the TLD file that registers this

tag appears in listing 3.14.

 <tag>
 <name>addDbPoolToApplication</name>
 <tagclass>

 com.nealford.art.history.customtags.AddDbPoolToApplication
 </tagclass>
 <teiclass>

 com.nealford.art.history.customtags.AddDbPoolTagExtraInfo
 </teiclass>
 <bodycontent>empty</bodycontent>

 <attribute>
 <name>initUser</name>
 <required>true</required>

 <rtexprvalue>false</rtexprvalue>
 </attribute>
 <attribute>

 <name>initPassword</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>

 </attribute>
 <attribute>
 <name>initUrl</name>

 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>

 <attribute>
 <name>initDriverClass</name>
 <required>true</required>

 <rtexprvalue>false</rtexprvalue>
 </attribute>
 </tag>

Once the Tag Extra Info class is associated with the addDbPoolToApplication tag,

the JSP runtime automatically calls the isValid() method for you, ensuring that

all attributes have a valid value.

 The addDbPoolToApplication custom tag replaces the messy code at the top of

the JSP shown originally in listing 2.18 and cleans it up as shown in listing 3.8.

Listing 3.14 The TLD entry for this tag includes the Extra Info class.

80 CHAPTER 3

Creating custom JSP tags

Like the HtmlSqlResult tag, it is used to encapsulate common code that is useful

across multiple pages. Every database application will need this behavior, so it

makes sense to build a tag to handle it cleanly.

3.5 Using prebuilt tags

You don’t always have to write your own tags. As you would guess, JSP development

includes many common tasks that are needed in every application. To serve this

purpose, a wide variety of prebuilt custom tags is available. Sun realized the need

for tag behavior outside the rudimentary facilities built into JSP, so it sponsored a

Java Specification Request (JSR) through the Java Community Process to create a

standard set of tag libraries that encapsulates common needs. JSR 52 specifies a

Java Standard Tag Library (JSTL) for JavaServer Pages. You can find information

about this JSR at http://www.jcp.org/en/jsr/detail?id=52. You can also download

the complete specification from this location, which details all the tags included

in the library and how to use them. In addition to the JSTL tags, a wide variety of

custom tags are available for download. One excellent repository of custom tags is

the Jakarta site at http://jakarta.apache.org/taglibs/doc/standard-doc/

intro.html, and some of these tags appear in section 3.5.2.

 Building the specification is an important first step, but in order for it to be

useful, someone must write code that adheres to the specification. One of the

first implementations of the JSTL specification is available from the Jakarta site,

hosted by Apache. You can download an implementation of JSTL at http://

jakarta.apache.org/taglibs. It is open source, so you are free to download the

source as well.

 The JSTL includes tags in a variety of categories, each providing tags for solving

a particular problem or performing some task. Table 3.1 highlights JSTL catego-

ries, the URI, and the prefix used in code.

Table 3.1 The JSTL tags

Functional Area URI Prefix

Core http://java.sun.com/jstl/core c

XML processing http://java.sun.com/jstl/xml x

I18N capable formatting http://java.sun.com/jstl/fmt fmt

relational db access (SQL) http://java.sun.com/jstl/sql sql

Using prebuilt tags 81

Each of the functional areas in table 3.1 (especially core) is further subdivided

into general common functionality groups. JSTL represents an extensive library of

reusable tags. To provide a snapshot of the types of tags available, table 3.2

describes some of the tags.

3.5.1 Using JSTL

Our goal for this chapter has been to clean up the JSP in our sample application

in an attempt to achieve better separation of functional areas. JSTL looks like an

easy way to help remove some of the extraneous scriptlet code from the applica-

tion. To use JSTL, you must download an implementation (like the one at the

Jakarta site), add the library JAR file to your web application, and add the TLD to

the web.xml configuration file:

Table 3.2 Selected JSTL categories and tags

Common Group Tag Description

General Purpose <c:out> Evaluates an expression and outputs the result of the

evaluation to the current JspWriter object.

General Purpose <c:set> Sets the value of an attribute in any of the JSP

scopes.

General Purpose <c:remove> Removes a scoped variable.

General Purpose <c:catch> Catches a java.lang.Throwable thrown by any of

its nested actions.

Conditional <c:if> Evaluates its body content if the expression specified

with the test attribute is true.

Conditional <c:choose> Provides the context for mutually exclusive conditional

execution.

Conditional <c:when> Represents an alternative within a <c:choose> action.

Iteration <c:forEach> Repeats its nested body content over a collection of

objects, or repeats it a fixed number of times.

Iteration <c:forTokens> Iterates over tokens, separated by the supplied

delimiters.

SQL <sql:query> Queries a database.

SQL <sql:update> Executes an SQL INSERT, UPDATE, or DELETE state-

ment and may also be used with Data Definition Lan-

guage (DDL) statements.

SQL <sql:transaction> Establishes a transaction context for its

<sql:query> and <sql:update> subtags.

82 CHAPTER 3

Creating custom JSP tags

<taglib>

 <taglib-uri>http://java.sun.com/jstl/core</taglib-uri>
 <taglib-location>/WEB-INF/c.tld</taglib-location>
</taglib>

Listing 3.15 shows the refactored portion of the ShowCart page from the

eMotherEarth application. It still uses the custom tags developed earlier in the

chapter, but it now also uses JSTL tags to iterate through the list of items, format-

ting when appropriate.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib uri='http://java.sun.com/jstl/fmt' prefix='fmt'%>
<h3>

 <sess:attribute name="userName"/>, here is your shopping cart:
</h3>

<table border="1">

 <tr>
 <c:forEach var="column" items="ID,Name,Quantity,Price,Total">
 <th><c:out value="${column}"/></th>

 </c:forEach>
 </tr>

 <c:forEach var="cartItem" items="${items}">

 <tr>
 <td><c:out value="${cartItem.itemId}" /></td>
 <td><c:out value="${cartItem.itemName}" /></td>

 <td><c:out value="${cartItem.quantity}" /></td>
 <fmt:formatNumber type="currency" var="itemPriceAsCurrency"
 value="${cartItem.itemPrice}"/>

 <fmt:formatNumber type="currency" var="extendedPriceAsCurrency"
 value="${cartItem.extendedPrice}"/>
 <td align='right'>

 <c:out value="${itemPriceAsCurrency}" />
 </td>
 <td align='right'>

 <c:out value="${extendedPriceAsCurrency}" />
 </td>
 </tr>

 </c:forEach>
</table>

The code in listing 3.15 shows the table portion of the page. The previous version

of this sample contained code that generated the table showing the items in the

cart embedded in the ShoppingCart class. Generally, it is not a good idea to

Listing 3.15 The refactored ShowCart page features the use of JSTL tags to handle iter-

ation and formatting.

Using prebuilt tags 83

embed HTML directly into a class (unless you are building a custom tag) because

it destroys the separation of code and presentation. If you have a presentation spe-

cialist working on the page, he or she has no control over the formatting emitted

from code.

 The forEach tag offers a couple of options for the items over which you iterate.

In listing 3.15, the headers of the table are placed in a comma-delimited string,

and the forEach tag takes care of separating them as it executes. The second use

of the tag is more sophisticated. It will also iterate over a standard Java collection.

However, in this case, items is a pageContext variable containing a java.util.List

of ShoppingCartItems. JSTL used the ${…} syntax to identify variables within tags,

so the ${items} reference retrieves a page-level variable, notices that it is a List,

and makes it available under the name cartItem (another attribute of the tag) for

the body of the tag. Within the body of the tag, you can use the standard dot nota-

tion to reference fields of an object. Just as in the other parts of the JSP API, the

property ${cartItem.itemId} actually calls the cartItem.getItemId() method of

the object. This syntax is a little less cumbersome than the standard JSP expression

syntax. The JSTL out tag allows you to output values embedded in page-level vari-

ables, so it is used to output the items from the list. This syntax will be added to

JSP 2.0 Specification as “Expression Language” functionality—or just “EL”—to

minimize the use of JSP expression <%= … %>. This leads to less Java code in HTML

and therefore makes applications easier to maintain.

 JSTL also includes tag libraries to make it easy for you to format numbers, both

for localization and internationalization. For the table output in listing 3.15, two

of the numbers should appear as currencies. The formatNumber tag lets you apply

formatting to a number and place the result into another page-level variable:

<fmt:formatNumber type="currency" var="itemPriceAsCurrency"
 value="${cartItem.itemPrice}"/>

Here, instead of accessing cartItem.itemPrice directly in the table, we use the

itemPriceAsCurrency value.

 You can use JSTL to improve the readability of the page without resorting to

encapsulating HTML into Java classes that have no business generating presenta-

tion code. The intent of JSTL is to build a standard set of generic tags to make

common tasks easier. Almost every web application needs to iterate over a collec-

tion at some point. A great deal of reusable flexibility is embodied in the JSTL

library. Because it is a standard, many implementations are possible, so it is less

likely that a particular vendor or open-source taglib will disappear.

84 CHAPTER 3

Creating custom JSP tags

3.5.2 Using other taglibs

JSTL is not the only game in town. Java developers haven’t waited around for Sun

to create a specification for reusable tags. Tag libraries already exist, from various

vendors, to address needs not handled in JSTL. Many of these tag libraries predate

JSTL but have moved the JSTL behaviors into a library that supports the standard.

 The Jakarta Taglibs project includes the categories listed in table 3.3.

Table 3.3 The Taglibs project

Taglib Description

Application Contains tags that can be used to access information contained in the Serv-

letContext for a web application.

Benchmark Aids in the performance testing of other taglibs and JSP pages in general.

BSF An architecture for incorporating scripting into Java applications and applets.

Cache Lets you cache fragments of your JSP pages.

DateTime Contains tags that can be used to handle date- and time-related functions.

DBTags Contains tags that can be used to read from and write to a SQL database.

I18N Contains tags that help manage the complexity of creating internationalized web

applications.

Input Lets you present HTML <form> elements that are tied to the ServletRequest

that caused the current JSP page to run.

IO Contains tags that can be used to perform a variety of input- and output-related

tasks from inside JSP.

JMS Contains tags that can be used to perform a variety of Java Message Service-

related operations, such as sending and receiving messages from inside JSP.

JNDI Creates an instance of a javax.naming.Context based on the values of the

attributes providing some of the standard values.

Log Allows you to embed logging calls in your JSP that can be output to a variety of

destinations thanks to the power of the log4j project.

Mailer Used to send email.

Page Contains tags that can be used to access all the information about the Page-

Context for a JSP page.

Random Used to create random string and number generators.

Regexp Contains tags that can be used to perform Perl syntax regular expressions.

continued on next page

Using prebuilt tags 85

As you can see, some of these libraries (like XTags and SQL) overlap the capabili-

ties already found in JSTL. In these cases, the Taglibs project does things a little

differently than JSTL, so a parallel implementation is suitable, for both backward

compatibility and developer preference.

 You can download each of these libraries separately, and each has documenta-

tion and samples to show how they work. All the needed artifacts (the JAR files,

TLDs, and web.xml entries) are part of the download. Use these libraries as you

would as any other library.

Other taglibs

The custom taglibs from Jakarta allow more cleanup of the scriptlet code that

resides on a JSP page. These tags encapsulate common functionality normally

handled by scriptlets and reliance on implicit JSP objects. For this example, we

have refactored the Catalog page of the eMotherEarth application. The custom

tags created specifically for this application are still in use, but using the custom

tags cleaned up some of the scriptlet and JSP expression code. Listing 3.16 shows

the entire refactored Catalog page.

<%@ taglib uri="http://jakarta.apache.org/taglibs/request-1.0"
 prefix="req" %>

<%@ taglib uri="http://jakarta.apache.org/taglibs/session-1.0"
 prefix="sess" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

Request Contains tags that can be used to access all the information about the HTTP

request for a JSP page.

Response Contains tags that can be used to set all the information for an HTTP response

for a JSP page.

Scrape Lets you scrape, or extract, content from web documents and display the content

in your JSP.

Session Provides tags for reading or modifying client HttpSession information.

String Used to manipulate Strings.

XTags Lets you use XML.

Listing 3.16 The Catalog page written with Taglib tags

Table 3.3 The Taglibs project (continued)

Taglib Description

86 CHAPTER 3

Creating custom JSP tags

<%@ taglib uri="http://com.nealford.art.emotherearth"

 prefix="emotherearth" %>

<%@ page import="com.nealford.art.history.customtags.stl.*" %>
<%@ page import="java.util.*" %>

<%@ page import="java.sql.*"%>
<%@ page import="java.text.NumberFormat"%>

<emotherearth:addDbPoolToApplication initUserName="user"

 initPasswordName="password" initUrlName="dbUrl"
 initDriverClassName="driverClass" />

<sess:existsAttribute name="userName" value="false">

 <sess:setAttribute name="userName"><req:parameter name="userName"/>
 </sess:setAttribute>
</sess:existsAttribute>

<%@ page contentType="text/html; charset=iso-8859-1" language="java"
 errorPage="GeneralErrorPage.jsp" %>
<head>

<title>Catalog</title>
</head>
<body>

<h3>Hello, <sess:attribute name="userName"/>
 . Welcome back to the store!</h3>

<h1>Products </h1>

<emotherearth:htmlSqlResult dbPool="DbPool"
 sql="SELECT * FROM PRODUCTS" formActionDestination="ShowCart.jsp"
 shoppingForm="true" />

<p> </p>
</body>
</html>

As you can see, the Catalog page is now free of all scriptlet and JSP expression

code, leaving only HTML, custom tags, and tags from the Jakarta Taglibs project.

In this page, the request parameter of userName is pulled from the request vari-

able and placed in the session upon first invocation. The session tags from Taglibs

allow you to check for the existence of a session attribute and conditionally add it.

In the listing, the value of the session attribute comes from a request attribute.

3.6 Custom tag considerations

The samples in this chapter represent only the tip of the iceberg when it comes to

custom tags. Only the simplest features of the API appear here. Yet these features

are enough to improve the readability and maintainability of the pages of our web

Custom tag considerations 87

application and to give you a flavor of what can be done using JSP tag extension

features. Any time you can separate responsibilities and encapsulate them into

their own niche, you create code that is better organized and easier to manipu-

late. Adding custom tags (whether your own or third-party) changes the design of

the application and introduces new concerns.

3.6.1 Resource usage

One downside to the JSPs implemented with custom tags in this chapter is the hid-

den resource cost. Web development features several finite pools of resources.

The most obvious is memory—every computer has a limited amount of mem-

ory—but there are other resource pools as well. For example, most servlet engines

pool threads so that pages are dispatched more quickly. Another finite resource is

database connections.

 These resource constraints highlight the problems with code resembling the

addDbPoolToApplication tag presented in this chapter. The addDbPoolToApplica-

tion tag makes use of the application context to store information. In doing so, it

stealthily uses some memory in the application context. Storing the database con-

nection pool in the application collection is necessary within the context of the

application and all applications like it. It’s not as if you can stop storing needed

objects and information in the global context. However, by encapsulating code

that references global resources in a custom tag, you hide the fact that it is hap-

pening to the casual users of the tag. If the code appears on the page, everyone

sees it (which is both good and bad). I don’t mean to imply that encapsulating

code in this manner is a bad practice, but you should be aware of the conse-

quences. It is acceptable to handle common resources (like database connections,

memory caches, etc.) with custom tags as long as the consequences are well docu-

mented for the users of the tags. It is less advisable to use tags to create ad hoc

consumers of shared resources.

 To manage the finite resource pools of web applications, many very scalable

applications employ a “session cop.” This is a member of the development team

who looks after the shared memory collections in the web application to make

sure that no one is abusing them by placing extraneous information there. If you

allow anyone free access to shared resources, someone will inadvertently harm the

scalability of the application by using that space as a “magic repository” for his or

her stuff. The point here is that if you create a custom tag that uses global

resources, it should be well documented so that the users of the tag are aware of

the consequences of using it.

88 CHAPTER 3

Creating custom JSP tags

3.6.2 Building a framework

You should always think about how the custom tags you build are used, in both

the current application and future ones. For example, the addDbPoolToApplica-

tion tag could have been written to place hard-coded values in the application

context. Instead, it was written so that the user specifies the name of the values in

the web.xml document, making it easier to use in other applications. The

amount of work involved in creating the class wasn’t significantly greater, but the

reusability achieved is considerable. When you write custom tags to encapsulate

behavior, think about other applications where the tag might be used and build

for the future.

 Building tags that are reusable across multiple applications is the start of build-

ing your own framework. A framework is a collection of interrelated classes that

make it easier to build applications of a certain type (such as web applications).

Building reusable assets is the first step in building a framework. As you will see in

subsequent chapters, it isn’t the only step, but it is the start.

3.7 Now that we’re here, where are we?

One of the early goals of this chapter was to decrease the complexity and high

coupling of the applications created in the previous chapter. The question is:

have we achieved that goal? If you look at listing 3.16, you can see that we have

certainly managed to remove Java code from the page. By using custom-built tags

to handle database functionality and tags downloaded from Jakarta, we’re down

to just JSP code with no Java. Is this page more readable? That is debatable. It is

certainly more homogeneous, without the unwholesome mixture of various types

of elements.

 The same could be said of the refactored ShowCart page in listing 3.15. By

using JSTL and Jakarta tags, we made the page much more homogeneous. Some

scriptlet code still appears at the top of the page (not shown in listing 3.15), but

you could eventually chase away all the scriptlet code using a combination of

handwritten and additional taglibs.

 We’ve managed to clean up the syntax, but have we really attacked the funda-

mental problems of the design of the application? There is still a high degree of

coupling between the logic and presentation of the application. This grows even

more if we eliminate the SQL code currently embedded in the Java classes (like

Order) and use the JSTL SQL tags instead. When you need to make a change to the

application, how many places do you have to touch? If you want to build a large

Summary 89

application, how easy is it to split the developer team into specialized areas and

allow them to work more or less independently of one another? All these ques-

tions address the amount of coupling in the application.

 Don’t think for a moment that I am denigrating the custom tag facility. It is a

very nice tool in the arsenal of web development. But it still hasn’t gotten me to

where I want to be. I want an application that offers good separation of responsi-

bilities, with high cohesion and low coupling between the working parts of the

application. I would like to be able to make major changes to one part of the

application without affecting (or at least having a minor effect on) the other parts

of the application. Custom tag libraries help, but aren’t the end-all solution to

these problems. In the evolution of web development we have another tool, but

we don’t have a good blueprint yet. Wait—it’s coming.

3.8 Summary

The code for the examples in this chapter appears in the project directory art_

emotherearth_customtags_stl. This chapter showed you how to use custom JSP

tags to help mitigate some of the complexity and brittleness of typical JSP applica-

tions. We presented two custom tags. The first built an HTML table from a SQL

statement, greatly reducing the amount of hand-coding required. It replaced a

large chunk of mixed scriptlet and HTML code, and improved the readability and

maintainability of our page. The second tag performed the typical web application

task of placing a database connection pool into the global application context,

making it available to all subsequent pages. This tag also featured validation of the

attributes, which should always be included in custom tag development.

 You also learned how to use custom tag libraries that are already available.

These fall into two broad categories: the Java Standard Tag Library (JSTL) and

other custom tag libraries. We incorporated both JSTL and Jakarta Taglibs into

our application, making the syntax more homogeneous.

 The most important point of this chapter is the architectural considerations

implied by the use of tags to encapsulate messy code. Clearly, the pages produced

using this technique are cleaner, and include less logic, than their predecessors.

But it still doesn’t diminish the core concerns for building truly state-of-the-art

web applications. As a web developer who has evolved to this point in thinking

about building web applications, you might be thinking that there should still be a

better way. There is. In chapter 4, we look at how design patterns and best prac-

tices solve many of the problems highlighted in the first three chapters.

91

The Model 2
design pattern

This chapter covers

■ Using the Model 2 design patterns as an
architectural framework

■ Improving web application design by
separating concerns

■ Parameterizing commands to create a
generic controller servlet

92 CHAPTER 4

The Model 2 design pattern

All too often, web applications use the design path of least resistance. In other

words, the design sort of “happens” while you are building the application. Gener-

ally, you are under severe deadline pressure, so you focus on getting the require-

ments of the application implemented correctly without giving much thought to

the bigger design picture. This model works to a point. Just as you can construct a

doghouse without blueprints, you can build small applications while designing on

the fly. However, the larger the house (or application), the more critical the

design becomes.

 This chapter emphasizes the implementation of the design. Chapter 1 intro-

duced the Model 2 design pattern and discussed its origins and theoretical under-

pinnings. However, we did not show a working application that applies the

pattern. To understand abstract concepts, it helps to see them implemented. The

examples in this chapter are small but working applications that illustrate proper

design principles. When you build applications to illustrate a point, other interest-

ing points pop up that are also important but not direct reflections on design per

se. Because applications are the sum of parts, the interaction of the parts is always

important. The focus of this chapter is the implementation of Model 2, but some

interesting sideline topics crop up as well.

 We’ll look at two implementations of this design pattern. The first shows how

to build a simple web application with Model 2. The next demonstrates how to

take advantage of design patterns to make building Model 2 applications easier.

4.1 Using Model 2 as your framework

As you’ll recall, in chapter 1 we discussed the use of Model 2 as a way to separate

the parts of the application. In particular, it mandates that the model (i.e., the

data access and business rules) be kept separate from the user interface (UI) and

that the controller be the intermediary between them. To that end, the model is

implemented as JavaBeans, the UI as JSP, and the controller as a servlet.

 On a fundamental level, web applications are just collections of related

request/response pairs. When looking at the pieces of the Java web API, JSP is the

clear choice for the response because it is already a type of output document.

Servlets are the clear choice for the request because the servlet API already han-

dles much of the details of HTTP. Plain old Java classes are optimally suited for

executing code that performs work, such as database access, business logic, and so

forth. Model 2 web applications reflect the suitability of each building block by

using the simple rule “use what is most naturally suited to solving the design prob-

lem of web applications.”

Using Model 2 as your framework 93

 Model 2’s separation of responsibilities allows the various aspects of the appli-

cation to be built concurrently. Thus, the Java developers can concentrate on

building the models and controllers and the UI designers can build user inter-

faces. When you have several people working on an application at the same time,

it is important that everyone agrees on the information flow before significant

work begins. The JSPs rely on information pulled from model JavaBeans. There-

fore, it is critical that the bean authors and UI designers agree on what informa-

tion will be required. This avoids headaches later in the process when the UI

cannot effectively pull information from the model without an inordinate amount

of work. It is enough to agree on the accessors and mutator method names of the

beans and define other required methods. This tells the UI designers what infor-

mation is available (through the methods they may call) and the model writers

what information to provide (through the methods they must write). You might

also consider extracting all the methods needed by the UI designers into an inter-

face implemented by the models. This creates a firmer contract between the two

teams. The UI designers write to the interface and the model writers adhere to it.

 If you are the sole author, you have a choice as to whether you want to write the

models or the UI first. If the project is based on information from a database, it

makes sense to create the models first. The flow of the application will depend on

the structure of the database. The JSPs you create will rely on the model beans for

dynamic information. Even if you plan to tackle the models first, you might want

to develop a UI prototype to make sure you are creating models for the informa-

tion you need to display. A UI prototype also allows the application’s users to see

the UI and make comments earlier, reducing the amount of change later in the

application's lifecycle. Just as in the concurrent development case, it is important

to think about this early on in the process. Essentially, the roles of model writer

and UI designer collapse to one person (you). You will find it just as unrewarding

yelling at yourself about a poor design as yelling at someone else. The prototype

can be the beginnings of the full-fledged JSP, with static data in lieu of the “real”

data. For the sample application for this chapter, the models are built first because

the UI is simple.

4.1.1 The Model 2 schedule application

Our first implementation of this model is a web application that tracks a user’s

schedule. It will consist of two pages. The first page (figure 4.1) is a list of the cur-

rently scheduled events, and the second page allows the user to add more events.

The complete source code for this application appears in the source code archive

under the name art_sched_mvc.

94 CHAPTER 4

The Model 2 design pattern

As you can see, the UI is very sparse. This is intentional so that the design and

architecture of the application become the center of attention. The information

flow in Model 2 applications can sometimes be hard to see from the code.

Because each artifact that the user sees is the culmination of several classes and

JSPs, it is useful to see a collaboration diagram of the interaction before the code.

Figure 4.2 shows the interaction between the classes and JSPs discussed.

 In the diagram in figure 4.2, the solid lines represent control flow and the dot-

ted lines represent a user relationship. Views use the model to show information,

and the controller uses the model to update it. The user invokes the ViewSchedule

controller, which creates the appropriate model objects and forwards them to

ScheduleView. The view allows the user to invoke the ScheduleEntry controller,

which also uses the model. It forwards to the ScheduleEntryView, which posts to

the SaveEntry controller. If there are validation errors, this controller returns the

entry view. Otherwise, it forwards back to the main view to show the results of the

addition. Let’s take a look at the code that makes all this happen.

Building the schedule model

The ScheduleBean class is the main model of the application. It is responsible for

pulling schedule information from the database. The database structure for this

application is simple, as shown in figure 4.3.

Figure 4.1 The Model 2 Schedule

application’s first page shows the events

scheduled for a busy person.

Using Model 2 as your framework 95

Browser

<controller>
ViewSchedule

<model>
ScheduleBean

<value>
ScheduleItem

<controller>
ScheduleEntry

<controller>
SaveEntry

<view>
ScheduleView

<view>

ScheduleEntryView

Figure 4.2 The controller servlets create and manipulate the model beans, eventually forwarding the

ones with displayable characteristics to a view JSP.

event

PK event_key

start

duration

description

event_type

FK1 event_type_key

event_types

PK event_type_key

event_text

Figure 4.3 The database schema diagram for the schedule

application shows that it is a simple database structure.

96 CHAPTER 4

The Model 2 design pattern

 The first part of ScheduleBean establishes constants used throughout the class.

It is important to isolate strings and numbers so that they can be changed easily

without searching high and low through code. The first part of ScheduleBean is

shown in listing 4.1.

package com.nealford.art.mvcsched;

import java.sql.*;
import java.util.ArrayList;

import java.util.List;

import javax.sql.DataSource;
import java.util.*;

public class ScheduleBean {
 private List list;
 private Map eventTypes;

 private Connection connection;
 private static final String COLS[] = {"EVENT_KEY", "START",
 "DURATION", "DESCRIPTION", "EVENT_TYPE"};

 private static final String DB_CLASS =
 "org.gjt.mm.mysql.Driver";
 private static final String DB_URL =

 "jdbc:mysql://localhost/schedule?user=root";
 private static final String SQL_SELECT = "SELECT * FROM event";
 private static final String SQL_INSERT =

 "INSERT INTO event (start, duration, description, " +
 "event_type) VALUES(?, ?, ?, ?)";
 private static final String SQL_EVENT_TYPES =

 "SELECT event_type_key, event_text FROM event_types";

 private Connection getConnection() {
 //-- naive, inefficient connection to the database

 //-- to be improved in subsequent chapter
 Connection c = null;
 try {

 Class.forName(DB_CLASS);
 c = DriverManager.getConnection(DB_URL);
 } catch (ClassNotFoundException cnfx) {

 cnfx.printStackTrace();
 } catch (SQLException sqlx) {
 sqlx.printStackTrace();

 }
 return c;
 }

Listing 4.1 The declarations and database connection portions of ScheduleBean

Using Model 2 as your framework 97

The constants define every aspect of this class’s interaction with the database,

including driver name, URL, column names, and SQL text. Because these values

are likely to change if the database type or definition changes, it is critical that

they appear as constants. Many of these values could also appear in the deploy-

ment descriptor configuration file (and will in subsequent examples).

 Note that the two collections used in this class are declared as the base inter-

faces for the corresponding collection classes. For example, the List interface is

the basis for all the list-based collection classes, such as Vector and ArrayList.

Obviously, you cannot instantiate the collection using the interface—a concrete

class must be assigned to these variables. However, you should always use the most

generic type of definition possible for things like lists. This gives you the flexibility

to change the underlying concrete class at some point in time without changing

much code. In fact, you should just be able to change the actual constructor call

for the list, enabling more generic and flexible code. You can always declare an

object as a parent, an abstract parent, or an interface as long as you instantiate it

with a concrete subclass or implementing class.

 List eventTypes = new ArrayList();Vector and ArrayList offer the same func-

tionality. The key difference between them relates to thread safety: the Vector

class is thread safe and the ArrayList class is not. A thread-safe collection allows

multiple threads to access the collection without corrupting the internal data

structures. In other words, all the critical methods are synchronized. Thread

safety imposes a performance penalty because each operation is locked against

multithreaded access. A non-thread-safe collection doesn’t include these safe-

guards and is therefore more efficient. If you know that your collections are never

accessed from multiple threads, then you don’t need thread safety and you can

use the more efficient ArrayList class. If in the future you need thread safety, you

can change the declaration to create a Vector instead, enhancing your code to

make it thread safe with a small change. Vector is left over from earlier versions of

Java. If you need a thread-safe collection, you should use Collections.synchro-

nizedCollection(Collection c), which encapsulates any collection in a thread-

safe wrapper. For more information about collections and thread safety, consult

the Collections class in the SDK documentation.

 The getConnection() method in listing 4.1 creates a simple connection to the

database. This practice does not represent a good technique for creating connec-

tions. You generally shouldn’t create direct connections to the database from

model beans because of scalability and performance reasons. The preferred way

to handle database connectivity through beans is either through Enterprise Java-

Beans (EJBs) or database connection pools. This is a quick-and-dirty way to

98 CHAPTER 4

The Model 2 design pattern

connect to the database for the purposes of this sample. We discuss better ways to

manage database connectivity in chapter 12.

 The next slice of code from ScheduleBean (listing 4.2) handles database con-

nectivity for the bean.

public void populate() throws SQLException {
 //-- connection to database
 Connection con = null;

 Statement s = null;
 ResultSet rs = null;
 list = new ArrayList(10);

 Map eventTypes = getEventTypes();
 try {
 con = getConnection();

 s = con.createStatement();
 rs = s.executeQuery(SQL_SELECT);
 int i = 0;

 //-- build list of items
 while (rs.next()) {
 ScheduleItem si = new ScheduleItem();

 si.setStart(rs.getString(COLS[1]));
 si.setDuration(rs.getInt(COLS[2]));
 si.setText(rs.getString(COLS[3]));

 si.setEventTypeKey(rs.getInt(COLS[4]));
 si.setEventType((String) eventTypes.get(
 new Integer(si.getEventTypeKey())));

 list.add(si);
 }
 } finally {

 try {
 rs.close();
 s.close();

 con.close();
 } catch (SQLException ignored) {
 }

 }
}

public void addRecord(ScheduleItem item) throws

 ScheduleAddException {
 Connection con = null;
 PreparedStatement ps = null;

 Statement s = null;
 ResultSet rs = null;
 try {

 con = getConnection();
 ps = con.prepareStatement(SQL_INSERT);
 ps.setString(1, item.getStart());

Listing 4.2 The database population and addition code for ScheduleBean

Using Model 2 as your framework 99

 ps.setInt(2, item.getDuration());

 ps.setString(3, item.getText());
 ps.setInt(4, item.getEventTypeKey());
 int rowsAffected = ps.executeUpdate();

 if (rowsAffected != 1) {
 throw new ScheduleAddException("Insert failed");
 }

 populate();
 } catch (SQLException sqlx) {
 throw new ScheduleAddException(sqlx.getMessage());

 } finally {
 try {
 rs.close();

 s.close();
 con.close();
 } catch (Exception ignored) {

 }
 }
}

The methods populate() and addRecord() are typical low-level Java Database

Connectivity (JDBC) code. In both cases, the unit of work is the ScheduleItem

class. The populate() method builds a list of ScheduleItem instances and the

addRecord() method takes a ScheduleItem to insert. This is an example of using a

value object. A value object is a simple class, consisting of member variables with

accessors and mutators, that encapsulates a single row from a database table. If

the value object has methods beyond accessors and mutators, they are utilitarian

methods that interact with the simple values of the object. For example, it is com-

mon to include data-validation methods in value objects to ensure that the

encapsulated data is correct.

 When populate() connects to the database in the ScheduleBean class, it builds

a list of ScheduleItems. A design alternative could be for the populate() method

to return a java.sql.ResultSet instance, connected to a cursor in the database.

While this would yield less code, it should be avoided. You don’t want to tie the

implementation of this class too tightly to JDBC code by using a ResultSet because

it reduces the maintainability of the application. What if you wanted to port this

application to use EJBs for your model instead of regular JavaBeans? In that case,

the EJB would need to return a list of value objects and couldn’t return a ResultSet

because ResultSet isn’t serializable and therefore cannot be passed from a server

to a client. The design principle here is that it is preferable to return a collection

of value objects from a model than to return a specific instance of a JDBC class.

100 CHAPTER 4

The Model 2 design pattern

 The only disadvantage to using the collection is that it will occupy more mem-

ory than the ResultSet. Because a ResultSet encapsulates a database cursor, the

data stays in the database and is streamed back to the ResultSet only as requested.

This is much more efficient than storing the results in the servlet engine’s mem-

ory—the records are stored in the database’s memory instead. This should be a

decision point in your application: do you want to enforce good design practices

at the expense of memory usage, or is the memory issue more important? Fortu-

nately, this isn’t a binary decision. It is possible to write the populate() method

more intelligently to return only a portion of the results as a list and retrieve

more on demand. Generally, it is better to put a little more effort at the begin-

ning into keeping the design correct than to try to “fix” it later once you have

compromised it.

 The populate() method includes a throws clause indicating that it might

throw a SQLException. The throws clause appears because we don’t want to han-

dle the exception here in the model. Ultimately, we need to write the exception

out to the log file of the servlet engine (and perhaps take other actions to warn

the user). However, the model class doesn’t have direct access to the ServletCon-

text object, which is required to write to the error log. Therefore, our model class

is deferring its error handling to the servlet that called it. The controller servlet

can take the appropriate action based on the exception.

 One incorrect solution to this problem is to pass the ServletContext object

into the model object. The model should not be aware that it is participating in a

web application (as opposed to a client/server application). The goal is reusabil-

ity of the model object. Tying it too closely with a web implementation is a design

error, going against the concept of clean separation of responsibilities underlying

Model 2 implementations.

 The addRecord() method takes a populated ScheduleItem and adds it to the

database via typical JDBC calls, using a parameterized query. The executeUpdate()

method of PreparedStatement returns the number of rows affected by the SQL

statement. In this case, it should affect exactly one row (the newly inserted row). If

not, an exception is thrown. In this case, a ScheduleAddException is thrown

instead of a SQLException. The ScheduleAddException (listing 4.3) is a custom

exception class created just for this web application.

package com.nealford.art.mvcsched;

public class ScheduleAddException extends Exception {

 public ScheduleAddException() {

Listing 4.3 The ScheduleAddException custom exception

Using Model 2 as your framework 101

 super();

 }

 public ScheduleAddException(String msg) {
 super(msg);

 }
}

This exception class allows an explicit message to be sent back from the model

bean to the controller—namely, that a new record could not be added. This is

preferable to throwing a generic exception because the catcher has no way of dis-

cerning what type of exception occurred. This technique demonstrates the use of

a lightweight exception. A lightweight exception is a subclass of Exception (or Run-

timeException) that permits a specific error condition to propagate. Chapter 14

discusses this technique in detail.

 The last portion of ScheduleBean, shown in listing 4.4, returns the two impor-

tant lists used by the other parts of the application: the list of event types and the

list of schedule items.

public Map getEventTypes() {
 if (eventTypes == null) {
 Connection con = null;
 Statement s = null;
 ResultSet rs = null;
 try {
 con = getConnection();
 s = con.createStatement();
 rs = s.executeQuery(SQL_EVENT_TYPES);
 eventTypes = new HashMap();
 while (rs.next())
 eventTypes.put(rs.getObject("event_type_key"),
 rs.getString("event_text"));
 } catch (SQLException sqlx) {
 throw new RuntimeException(sqlx.getMessage());
 } finally {
 try {
 rs.close();
 s.close();
 con.close();
 } catch (Exception ignored) {
 }
 }
 }
 return eventTypes;
}

Listing 4.4 The getEventTypes() and getList() methods of ScheduleBean

102 CHAPTER 4

The Model 2 design pattern

public List getList() {

 return list;
}

The getEventTypes() method retrieves the records in the event_types table shown

in figure 4.2. Because this list is small and practically constant, it isn’t efficient to

execute a query every time we need a mapping from the foreign key event_type in

the event table to get the corresponding name. To improve efficiency, this method

caches the list upon the first request. Whenever this method is called, it checks to

see whether the map has been created yet. If it has, it simply returns the map. If

the table hasn’t been created yet, the method connects to the database, retrieves

the records, and places them in a HashMap. This is an example of “lazy loading,”

a caching technique in which information isn’t gathered until it is needed, and is

kept for any future invocation, avoiding having to reload the same data every

time. Chapters 15 and 16 discuss this and other performance techniques.

 The other item of note in both these methods is the use of the generic inter-

face as the return type rather than a concrete class. Remember that the public

methods of any class form the class’s contract with the outside world. You should

be free to change the internal workings of the class without breaking the contract,

which requires other code that relies on this class to change.

Building the ScheduleItem value object

Applications that access rows from SQL tables commonly need an atomic unit of

work. In other words, you need a class that encapsulates a single entity that forms

a unit of work that cannot be subdivided. This unit of work is usually imple-

mented as a value object. Methods in model classes, such as the model bean dis-

cussed earlier, can use the value object to operate on table rows. If the value

object contains methods other than accessors and mutators, they are usually

methods that interact with the internal values. Range checking and other valida-

tions are good examples of helper methods in a value object.

 The schedule application uses a value object to encapsulate the event table.

The ScheduleItem class is shown in listing 4.5.

package com.nealford.art.mvcsched;

import java.io.Serializable;
import java.util.ArrayList;

import java.util.List;

Listing 4.5 The ScheduleItem value object

Using Model 2 as your framework 103

public class ScheduleItem implements Serializable {

 private String start;
 private int duration;
 private String text;

 private String eventType;
 private int eventTypeKey;

 public ScheduleItem(String start, int duration, String text,

 String eventType) {
 this.start = start;
 this.duration = duration;

 this.text = text;
 this.eventType = eventType;
 }

 public ScheduleItem() {
 }

 public void setStart(String newStart) {

 start = newStart;
 }

 public String getStart() {

 return start;
 }

 public void setDuration(int newDuration) {

 duration = newDuration;
 }

 public int getDuration() {

 return duration;
 }

 public void setText(String newText) {

 text = newText;
 }

 public String getText() {

 return text;
 }

 public void setEventType(String newEventType) {

 eventType = newEventType;
 }

 public String getEventType() {

 return eventType;
 }

 public void setEventTypeKey(int eventTypeKey) {
 this.eventTypeKey = eventTypeKey;
 }

 public int getEventTypeKey() {
 return eventTypeKey;

104 CHAPTER 4

The Model 2 design pattern

 }

 public List validate() {
 List validationMessages = new ArrayList(0); // never null!
 if (duration < 0 || duration > 31)

 validationMessages.add("Invalid duration");
 if (text == null || text.length() < 1)
 validationMessages.add("Event must have description");

 return validationMessages;
 }

}

Most of this class consists of the member declarations, the constructors, and the

accessor/mutator pairs. The sole helper is the validate() method. This method

checks the validity of the duration and text fields of the schedule item, and then

returns a list of validation errors. The caller of this method checks to see if the list

is empty (the result of this method will never be null). If not, then at least one

error has returned. The list of errors returns as a generic java.util.List so that

the implementation could change in the future to another list structure without

breaking code that calls this method.

 The ScheduleBean and the ScheduleItem classes make up the entire model for

this application. Ideally, you could use these exact two classes in a client/server

version of the same application. Because changes are required for either the web

or client/server application, the changes to the model shouldn’t break the other

application. In fact, the ScheduleItem class doesn’t use any of the java.sql.*

classes—the ScheduleBean is responsible for “talking” to the database, and it is

the only class in the application that needs to do so. It is good design to partition

the functionality of the application into discrete elements as much as possible.

Chapter 12 discusses model objects (including value objects) and the theory

behind them.

Building the main controller

In Model 2 applications, the controller servlet is the first point of contact with the

user. It is the resource the user invokes in the web application, and it is responsi-

ble for creating the models, making them perform work, and then forwarding the

results to an appropriate view. In the schedule application, the first controller is

the Welcome page (listing 4.6).

Using Model 2 as your framework 105

package com.nealford.art.mvcsched;

import java.io.IOException;

import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.nealford.art.mvcsched.boundary.ScheduleBean;

public class ViewSchedule extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws

 ServletException, IOException {
 ScheduleBean scheduleBean = new ScheduleBean();
 try {

 scheduleBean.populate();
 } catch (Exception x) {
 getServletContext().log(

 "Error: ScheduleBean.populate()", x);
 }
 request.setAttribute("scheduleItems",

 scheduleBean.getList());
 RequestDispatcher rd = request.getRequestDispatcher(
 "/ScheduleView.jsp");

 rd.forward(request, response);
 }
}

Controllers in Model 2 applications tend to be small, and this one is no exception.

This servlet starts the application by creating a new ScheduleBean, populating it,

and then adding it to the request attribute. A RequestDispatcher is created that

points to the appropriate view, and the request is forwarded to that view. The

model bean is already constructed and populated when it passes to the view.

Notice that it would be a mistake to defer creating the model bean and populat-

ing it in the view. The view consists of UI code and nothing else. The relationship

between the controller, model class, and view is illustrated in figure 4.4.

Building the main view

To complete this request, the view JSP named ScheduleView accepts the forwarded

scheduleBean and displays the results. This JSP appears in listing 4.7.

Listing 4.6 The ViewSchedule controller

106 CHAPTER 4

The Model 2 design pattern

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<jsp:useBean id="scheduleItems" scope="request"
 type="java.util.List" />

<html>
<head>
<title>

Schedule Items
</title>
</head>

<body>

<p><h2>Schedule List</h2></p>
<table border="2">

 <tr bgcolor="yellow">
 <c:forEach var="column" items="Start,Duration,Text,Event">
 <th><c:out value="${column}"/></th>

 </c:forEach>
 </tr>
 <tr>

 <c:forEach var="item" items="${scheduleItems}">
 <tr>
 <td><c:out value="${item.start}" /></td>

 <td><c:out value="${item.duration}" /></td>

Listing 4.7 The introductory view page ScheduleView.jsp

<<servlet>>
<<controller>>
ViewSchedule

Browser

<<class>>
<<boundary>>
ScheduleBean

<<jsp>>
<<view>>

ScheduleView

1) request

2) create
3) populate

4) forward

6) response

5) extract

request
attribute

Figure 4.4 The controller servlet creates and populates the model class, then forwards it to

the view via a request attribute. The view extracts the viewable information and generates

the response for the user.

Passes a collection
as a generic List

B

Uses a JSTL iterator C

Using Model 2 as your framework 107

 <td><c:out value="${item.text}" /></td>

 <td><c:out value="${item.eventType}" /></td>
 </tr>
 </c:forEach>

</table>
<p>

Add New Schedule Item

</body>
</html>

This JSP uses the list supplied by the ScheduleBean model from the controller in
listing 4.6 via the request collection.

The JSP uses a JSTL iterator to avoid placing scriptlet code on the page.

Depending on how often the user needs to see updated schedule information,

this list of schedule items could have been added to the user’s session instead. The

advantage of that approach would be fewer database accesses for this user upon

repeated viewing of this page. The controller could check for the presence of the

list and pull it from the session on subsequent invocations. The disadvantage of

adding it to the user session is threefold. First, because the List object exists for

the lifetime of the user’s session, it will occupy more server memory. Second, if

changes are made and the populate() method isn’t called to refresh the list, the

user will see stale data. When building an application, you must consider tradeoffs

between scalability for speed (adding model lists to the session) and speed for

scalability (adding model lists to the request). (The topics of performance and

scalability reappear in chapters 14 and 15.) Third, in a clustered system, either

you need a router to redirect calls to the same server or you must have a way of

sharing session data across all instances of the application on all machines,

depending on how the session replication works for the servlet engine or applica-

tion server you are using. If you don’t handle caching via one of these two mecha-

nisms, you end up with one cached copy per server.

 When using Model 2 design methodology, the primary goal is to place as little

scriptlet/expression code as possible in the JSP. In the view JSP in listing 4.7, all

the scriptlet code that could be present for iterating over the collection has been

replaced by core JSTL tags. As a rule of thumb, each occurrence of a scriptlet tag

doubles the potential maintenance headaches. One way to mitigate this problem

is to create custom JSP tags to replace this generic scriptlet code. Look back at

chapter 3 for some examples of this technique.

B

C

108 CHAPTER 4

The Model 2 design pattern

 This completes the first page of the application. The user invokes the control-

ler, which creates the model and forwards the results to the view.

Building the entry controller

The main page of the application has a link at the bottom that allows the user to

add new schedule items. This link leads the user to the entry portion of the appli-

cation, shown in figure 4.5. Listing 4.8 contains the code for the entry controller,

ScheduleEntry.

package com.nealford.art.mvcsched;

import javax.servlet.*;

import javax.servlet.http.*;
import java.io.*;
import java.util.*;

public class ScheduleEntry extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws

 ServletException, IOException {
 request.getRequestDispatcher("/ScheduleEntryView.jsp").
 forward(request, response);

 }
}

Listing 4.8 The entry controller

Figure 4.5

The entry part of the application allows the user to

add new schedule entries.

Using Model 2 as your framework 109

The ScheduleEntry controller is extremely simple. In fact, this controller is tech-

nically not even necessary—the link on the previous page could simply point

directly to the JSP dispatched by this controller. However, it is still a good idea to

have a controller, for a couple of reasons. First, it makes the application consis-

tent. You always link or post to a controller servlet but not a JSP. Second, chances

are excellent that sometime in the future code will become necessary in this con-

troller. If the controller is already present, you won’t have to modify any of the

code surrounding it; you can simply add the required functionality.

Building the entry view

The view page forwarded by ScheduleEntry in listing 4.8 is much more complex

than the previous JSP. This page is responsible for two tasks: allowing the user to

enter a new record and handling validation errors that are returned for an unsuc-

cessful entry. The first portion of this JSP appears in listing 4.9.

<%@ page import="java.util.*" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<jsp:useBean id="scheduleItem" scope="request"
 class="com.nealford.art.mvcsched.ScheduleItem" />

<jsp:useBean id="errors" scope="request"
 class="java.util.ArrayList" type="java.util.List" />
<jsp:useBean id="scheduleBean" scope="page"

 class="com.nealford.art.mvcsched.ScheduleBean" />
<jsp:setProperty name="scheduleItem" property="*" />

<HTML>

<HEAD>
<TITLE>
Add Schedule Item

</TITLE>
</HEAD>
<BODY>

<H3>
Add New Schedule Entry
</H3>

At the top of the page, there is a declaration for a scheduleItem reference. This
declaration is scoped to the request, indicating that this object may have been
passed to this JSP. The controller servlet in listing 4.8 passes nothing to this
page. We’ll see that the validation controller may pass an invalid record back via
this variable.

Listing 4.9 The header of the entry view

Request scoped
schedule itemB

Request scoped
generic error list

C

ScheduleBean
created with
Page scope for
combobox

D
E

Automatic repopulation of
fields from request

B

110 CHAPTER 4

The Model 2 design pattern

An errors bean is declared. Referring back to the ScheduleItem.validate()
method in listing 4.5, a failed validation generates a List object, which is returned
to this page so that the list of errors may appear. You can pass generic versions of
concrete objects by using the type attribute of the useBean tag. The type attribute
is designed for exactly this situation. Even though the class identifies it as an
ArrayList, it can be passed as the more generic List class. However, notice that
both the class and type attributes are included, which is unusual. Both are
needed in this case because in the initial case, no errors list is passed to this JSP. If
just the type attribute appears, an error will be generated when no list is passed to
this JSP because it cannot automatically instantiate the bean. In this case, we
include both, which allows the page to create an empty ArrayList when no list is
passed and use the List when it is.

ScheduleBean is declared with page scope on this page. It is required only to get
the list of event types, so it can be instantiated locally.

The last part of the prelude is a call to populate the scheduleItem instance with
any parameter values passed in the request, which is also used in the validation
case.

The next portion of the page, shown in listing 4.10, handles validation errors.

<c:if test="${! empty errors}">
 <hr/>

 <u>Validation Errors</u><//b3>

 <c:forEach var="error" items="${errors}">

 <c:out value="${error}" />

 </c:forEach>

 <hr/>
</c:if>

The section of the JSP shown in listing 4.10 determines whether any errors have

been passed back by checking the errors collection for records. If the JSP was

called in response to a validation error, the errors list will not be empty. The JSP

runtime ensures that all beans have been instantiated, either as a result of being

passed to the page or via automatic construction. Therefore, this errors object will

never be null. If errors are present, the list is iterated over (using JSP Standard Tag

Library, or JSTL, tags), printing out each error in turn before showing the rest of

the page. Figure 4.6 shows the result when a user has entered invalid data.

Listing 4.10 The validation display section of ScheduleEntryView.jsp

C

D

E

Using Model 2 as your framework 111

The last portion of the page handles the data-entry chores (listing 4.11).

<!-- Data entry form -->
<form action="saveentry" method="post">
<table border="0" width="30%" align="left">

 <tr>
 <th align="right">
 Duration

 </th>
 <td align="left">
 <input name="duration" size="16"

 value="<jsp:getProperty name="scheduleItem"
 property="duration"/>">
 </td>

 </tr>
 <tr>
 <th align="right">

 Event Type
 </th>
 <td align="left">

 <select name="eventTypeKey">
<%
 //-- get the list of allowable event types from bean

 int currentValue = scheduleItem.getEventTypeKey();
 Map eventMap = scheduleBean.getEventTypes();
 Set keySet = eventMap.keySet();

 Iterator eti = keySet.iterator();
 while (eti.hasNext()) {

Listing 4.11 The data-entry portion of ScheduleEntryView.jsp

Figure 4.6

When the user enters invalid data, the

application redirects him or her back to the

entry page and displays a list of errors for the

user to repair.

Generates items for
<select> from the model

112 CHAPTER 4

The Model 2 design pattern

 int key = ((Integer) eti.next()).intValue();

%>
 <option value='<%= key %>'<%= (currentValue == key ?
 "selected" : "") + ">" +

 eventMap.get(new Integer(key)) %>
<%
 }

%>
 </select>
 </td>

 </tr>
 <tr>
 <th align="right">

 Start
 </th>
 <td align="left">

 <input name="start" size="16" value="<jsp:getProperty
 name="scheduleItem" property="start"/>"/>
 </td>

 </tr>
 <tr>
 <th align="right">

 Text
 </th>
 <td align="left">

 <input name="text" size="16" value="<jsp:getProperty
 name="scheduleItem" property="text"/>"/>
 </td>

 </tr>

 <tr>
 <td align="right">

 <input type="submit" name="Submit" value="Submit">
 </td>
 <td align="right">

 <input type="reset" value="Reset">
 </td>
 </tr>

</table>
</form>

</body>

</html>

The portion of the ScheduleEntryView JSP shown in listing 4.11 has the requisite

HTML elements for entry, including both inputs and a select tag. Notice that in

each of the inputs the value appears as a call to the scheduleItem bean. This

results in no value when the page is initially called but allows the values of the

Using Model 2 as your framework 113

input form to be re-populated when a validation error occurs. Using this property

tag syntax means that the user doesn’t have to reenter the valid values.

 The code for the HTML <select> tag is more convoluted. The <select> tag

encapsulates a set of <option> tags, one of which may be flagged as selected. The

list of items should never be hard-coded into the JSP. This information must come

from the model because it is a business rule for this application. It is a serious mis-

take to sprinkle hard-coded values throughout the view portion of the application

because it breaks Model 2’s clean separation of responsibilities. It also becomes a

maintenance nightmare when (not if) those values change. Even when using

Model 2 for separation of concerns, complexity still manages to creep in because

of the necessary interface between display and logic.

Building the Save controller

The last file in the Model 2 schedule application is the SaveEntry controller,

which handles validation and updates. It appears in Listing 4.12.

package com.nealford.art.mvcsched.controller;

import java.io.IOException;

import java.util.List;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.nealford.art.mvcsched.boundary.ScheduleDb;
import com.nealford.art.mvcsched.entity.ScheduleItem;
import com.nealford.art.mvcsched.util.ScheduleAddException;

public class SaveEntry extends HttpServlet {

 public void doPost(HttpServletRequest request
 HttpServletResponse response) throws

 ServletException, IOException {
 ScheduleItem newItem = populateNewItemFromRequest(request);
 List validationErrors = newItem.validate();

 if (!validationErrors.isEmpty())
 returnToInput(request, response, newItem,
 validationErrors);

 else {
 addNewItem(newItem);
 forwardToSchedule(request, response);

 }
 }

Listing 4.12 The SaveEntry controller performs validation and updates.

Provides a top-level
outline of the behavior

B

114 CHAPTER 4

The Model 2 design pattern

 private void addNewItem(ScheduleItem newItem) throws

 ServletException, IOException {
 try {
 new ScheduleDb().addRecord(newItem);

 } catch (ScheduleAddException sax) {
 getServletContext().log("Add error", sax);
 }

 }

 private void forwardToSchedule(HttpServletRequest request,
 HttpServletResponse response)

 throws ServletException, IOException {
 RequestDispatcher dispatcher =
 request.getRequestDispatcher("/viewschedule");

 dispatcher.forward(request, response);
 }

 private void returnToInput(HttpServletRequest request,

 HttpServletResponse response,
 ScheduleItem newItem,
 List validationErrors) throws

 ServletException, IOException {
 RequestDispatcher dispatcher =
 request.getRequestDispatcher(

 "/ScheduleEntryView.jsp");
 request.setAttribute("scheduleItem", newItem);
 request.setAttribute("errors", validationErrors);

 dispatcher.forward(request, response);
 return;
 }

 private ScheduleItem populateNewItemFromRequest(
 HttpServletRequest
 request) {

 ScheduleItem newItem = new ScheduleItem();
 populateDuration(request, newItem);
 populdateEventTypeKey(request, newItem);

 populateStart(request, newItem);
 populateText(request, newItem);
 return newItem;

 }

 private void populateText(HttpServletRequest request,
 ScheduleItem newItem) {

 String text = request.getParameter("text");
 if (text != null)

 newItem.setText(text);
 }

 private void populateStart(HttpServletRequest request,

 ScheduleItem newItem) {
 String start = request.getParameter("start");
 if (start != null)

Adds a new item
to the databaseC

Forwards back to
the Schedule page

D

Returns to the input page
(with an error list)

E

Creates a new
item from request
parameters

F

Assigns values
from the
request to
ScheduleItem

G

Using Model 2 as your framework 115

 newItem.setStart(start);

 }

 private void populdateEventTypeKey(HttpServletRequest request,
 ScheduleItem newItem) {

 String typeKey = request.getParameter("eventTypeKey");
 try {
 if (typeKey != null)

 newItem.setEventTypeKey(Integer.parseInt(typeKey));
 } catch (NumberFormatException nfx) {
 getServletContext().log("Conversion error:eventTypeKey",

 nfx);
 }
 }

 private void populateDuration(HttpServletRequest
 request, ScheduleItem newItem) {
 String duration = request.getParameter("duration");

 try {
 if (duration != null)
 newItem.setDuration(Integer.parseInt(duration));

 } catch (NumberFormatException nfx) {
 getServletContext().log("Conversion error:duration",
 nfx);

 }
 }
}

The top-level public method performs the step-by-step behavior of the controller
servlet. It populates a new item from request parameters, performs a validation on
the item, and either dispatches to the input page (if errors exist) or adds the item
and forwards them to the main view.

The addNewItem() method adds a new item to the database via the boundary
object.

The forwardToSchedule() method performs a request dispatcher forward back to
the main page of the application.

The returnToInput() method bundles the error list and newly created item into
the request collection and forwards back to the input page. Because the errors
collection is populated, the errors will appear at the top of the form and the val-
ues present in newItem will appear in the form fields.

The populateNewItemFromRequest() method takes care of populating a new
ScheduleItem object with the values passed in the request parameters. This
method performs its work by calling additional helper methods to handle the val-
idation and assignment of the individual fields.

B

C

D

E

F

116 CHAPTER 4

The Model 2 design pattern

The populateText() method is representative of the other helper methods that
validate and assign values from request parameters to the new item.

4.1.2 Options in Model 2

The Model 2 schedule application demonstrates the servlet-centric approach to

Model 2 applications. Note that we could have used JSPs throughout, replacing

the controller servlets with JSP pages. In particular, much of the code that appears

in listing 4.12 could be replaced with a single line of code that populates the bean

from request parameters:

<jsp:setProperty name="scheduleItem" property="*"/>

However, this contradicts the idea that JSPs should be used only for display and

servlets for code. In general, placing non-UI code in a JSP is a mistake, no matter

how convenient it may be. That convenience comes at a price. First, this practice

dilutes the consistency of your architecture. If you follow Model 2 to the letter,

you can always be assured that every JSP is a UI element and that every servlet exe-

cutes code with no UI. Not every servlet is a controller, and no servlet contains UI

code. Second, pitfalls exist in some of JSP’s automatic behavior. The automatic

population of properties we discussed earlier can cause problems for fields of the

bean that you don’t want overwritten. For example, the user can pass a parameter

on the URL and inadvertently replace a value by automatically calling the mutator

method. Like many scripting languages, JSP is powerful—but that power breeds

danger. Even though the servlet code is more verbose, you shouldn’t relinquish

control for the sake of expediency. You might prefer to create a utility class that

automatically populates the fields from the request parameters. Several web

frameworks discussed in part 2 use this approach.

Disadvantages of Model 2

The advantages in Model 2 have been spelled out in the sample code of this chap-

ter, but there are disadvantages as well. First, more source files are generated.

Generally, you have at least three files for every unit of work in the web applica-

tion. However, these files are usually small and (more important) highly cohesive.

Each file is responsible for one task and never blurs its responsibility into other

facets of the application where it has no business. Many small, single-purpose files

are better than a few, highly coupled files.

 Second, when using Model 2 you must be diligent not to violate the architec-

ture. If you start allowing model code into the view, you end up with the worst of

all worlds—more source files, each of which is a tangle of spaghetti-like coupled

code. Instead of searching through one poorly designed file, you must search

G

Parameterizing commands 117

with controller servlets

through a set of them. A perfect example of this kind of diligence appears in the

entry view of our sample application, and particularly in listing 4.11. It would be

easy (and involve less code) to place the event types directly into the HTML

<select> tag on the JSP. This embodies the kind of design that must be avoided.

When the event types change, the model changes and propagates through the

application. Model 2 requires close attention to architecture and design through-

out the project. Especially for teams who are new to this practice, code reviews

should be conducted early and often to make sure that no undesirable code is

slipping into the wrong place.

 Third, Model 2 appears more complex than ad hoc web applications. However,

once the development team understands the architecture, it makes development

(and particularly maintenance) so much easier. Sometimes it is hard to convince

developers to buy into Model 2. However, they will quickly see the improved main-

tainability and lead happier lives!

4.2 Parameterizing commands with controller servlets

One of the problems with Model 2 applications is the explosion of virtually identi-

cal controller servlets. Because you tend to have a controller per type of user

request, you end up with numerous servlets. To consolidate these controller serv-

lets, the Command design pattern from the Gang of Four (GoF) book seems

appropriate.

 The Command design pattern states its intent as:

Encapsulate a request as an object, thereby letting you parameterize clients with
different requests, queue, or log requests, and support undoable operations.

The Command pattern includes the kind of structure we need: an abstract class

that allows subclasses to substitute generically for the parent. The intent is to cre-

ate a combination of classes (a controller servlet and an action class) that com-

bine to create much of the infrastructure common to all controller servlets.

 Every controller servlet has set responsibilities. It should receive requests,

optionally create beans, call methods on them, and forward to another resource,

frequently a JSP. It is desirable to automate as much of this behavior as possible.

Command encapsulates the common elements into an abstract super class, in this

case called Action. This class includes methods for receiving requests, responses,

and a servletContext. It also includes an abstract execute() method. Concrete

child classes inherit from Action and override the execute() method to perform

work. A sample inheritance tree looks like figure 4.7.

118 CHAPTER 4

The Model 2 design pattern

Once the Action class is in place, you can write a generic controller servlet that

will have the job of creating action objects, which in turn do work and forward

requests. The generic controller uses a reference list that matches requests to

actions. This is often referred to as the Front Controller design pattern.

4.2.1 An example of parameterizing commands

The sample application that illustrates parameterizing commands is a simple web

application that shows a list of all Java keywords and provides a link at the bottom

for submitting requests for new keywords. Figure 4.8 shows the main page. This sam-

ple application appears in the source code archive as art_parameterizedcommands.

Action

-request:HttpServletRequest
-response:HttpServletResponse

-servletContext:ServletContext

+execute:void
+forward:void

EntryAction

+execute:void

SaveAction

+execute:void

ListingAction

+execute:void

Figure 4.7

The Command design pattern

abstracts commands into objects

instead of switch statements,

allowing for easy extendibility.

Figure 4.8

A sample application that shows Java’s keywords and

implements the Command design pattern to generically

handle requests.

Parameterizing commands 119

with controller servlets

Building the model

Listing 4.13 shows most of the Model class.

package com.nealford.art.parameterizedrequests;

import java.util.*;

public class TheModel {
 private List keywords = new Vector(10, 5);
 private List proposedKeywords = new Vector(5, 2);

 public TheModel() {
 keywords.add("abstract");
 keywords.add("default");

 keywords.add("if");

//-- lines ommitted for brevity’s sake

 keywords.add("goto");

 keywords.add("package");
 keywords.add("synchronized");
 }

 public List getKeywords() {
 return keywords;
 }

 public List getProposedKeywords() {
 return proposedKeywords;
 }

 /**
 * Allows the user to add a new proposed keyword to the
 * langauge. Note that the new keywords aren't persisted

 * anywhere because a) This is a simple example and b) I
 * don't want people arbitrarily adding keywords to Java!
 */

 public void addKeyword(String newKeyword) {
 proposedKeywords.add(newKeyword);
 }

}

The model for this sample is simple. Most of the constructor doesn’t appear due

to space considerations. The deleted code is left to the reader’s imagination. This

model maintains two lists: one for existing keywords and the other for proposed

keywords. The proposed keywords aren’t persisted anywhere because this is a sim-

ple example.

Listing 4.13 The Model class for the parameterized requests sample

120 CHAPTER 4

The Model 2 design pattern

The abstract Action class

Listing 4.14 shows the important portions of the abstract Action class.

package com.nealford.art.parameterizedrequests;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;
import javax.servlet.*;
import java.io.IOException;

abstract public class Action {
 private HttpServletRequest request;
 private HttpServletResponse response;

 private ServletContext servletContext;

 abstract public void execute();

 public void forward(String forwardResource) {

 try {
 RequestDispatcher rd =
 getRequest().getRequestDispatcher(

 forwardResource);
 rd.forward(getRequest(), getResponse());
 } catch (IOException iox) {

 servletContext.log("Forward Error", iox);
 } catch (ServletException sx) {
 servletContext.log("Servlet Error", sx);

 }
 }

The Action class is an abstract class with a few concrete methods. It is an abstract

class and not an interface because there is some behavior that can be defined in

this class. The private member variables are declared at the top, and their public

accessors and mutators appear at the bottom of the class (we omitted them for

space considerations). The key method of this class is the abstract execute()

method. It is the sole abstract method in the class and the one that is overridden

to perform real work by the child classes. The forward() method is a helper

method that accepts a resource and handles the details of creating a RequestDis-

patcher and forwarding the request. The forward() method is forced to handle

the checked exceptions generated by the RequestDispatcher. One of the reasons

that the Action class contains the ServletContext member variable is to allow for

graceful logging of errors via servletContext.log(). We cover graceful logging in

depth in chapter 16.

Listing 4.14 The Action class declaration, execute(), and forward() methods

Overridden in
each child action

Generic forward()
method for all actions

Parameterizing commands 121

with controller servlets

Concrete actions

Three concrete subclasses of Action appear in the parameterized command appli-

cation (the classes shown in figure 4.6). The first Action subclass is the entry point

of the application, ListingAction (listing 4.15). The code in listing 4.15 looks

very much like servlet code. However, instead of directly referencing a request

variable, the getRequest() method, the accessor method from the parent Action

class is called. When the controller creates the ListingAction object, it automati-

cally populates the request, response, and servletContext.

package com.nealford.art.parameterizedcommands;

import java.util.Collections;

import java.util.List;
import javax.servlet.http.HttpSession;

public class ListingAction extends Action {

 public void execute() {
 TheModel model = getOrCreateModel();
 List sortedKeywords = getSortedKeywords(model);

 bundleAttributesForView(model, sortedKeywords);
 forwardToView();
 }

 private TheModel getOrCreateModel() {
 HttpSession session = getRequest().getSession(true);
 TheModel model = null;

 model = (TheModel) session.getAttribute("model");
 if (model == null) {
 model = new TheModel();

 session.setAttribute("model", model);
 }
 return model;

 }

 private List getSortedKeywords(TheModel model) {
 List sortedKeywords = model.getKeywords();

 Collections.sort(sortedKeywords);
 return sortedKeywords;
 }

 private void bundleAttributesForView(TheModel model,
 List sortedKeywords) {
 getRequest().setAttribute("keywords", sortedKeywords);

 getRequest().setAttribute("proposed",
 model.getProposedKeywords());
 }

Listing 4.15 The entry point of the application

Gets model from session
or creates new one

B

Sorts the collection
of keywords

C

Places displayable
attributes in the request D

122 CHAPTER 4

The Model 2 design pattern

 private void forwardToView() {

 forward("/Listing.jsp");
 }
}

ListingAction creates a session and checks to see if a model object is already
there. If not, a new one is created and placed into the session. The getOrCreate-
Model() method handles the situation where a user has added proposed keywords
to the model and returned to this page. In fact, this builds a type of singleton
access for the model—each user will have only one model object (until his or her
session times out).

Next, ListingAction gets the list of keywords and sorts them, using the standard
Collections.sort() method.

The keywords and proposed keywords are bundled into the request collection.

The request is dispatched to the JSP for display.

The target JSP, shown in listing 4.16, is simple and straightforward.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ page import="java.util.*" %>
<jsp:useBean id="keywords"

 scope="request" class="java.util.List" />
<jsp:useBean id="proposed"
 scope="request" class="java.util.List" />

<html>
<head>
<title>Listing</title>

</head>
<body>
<hr><h1>Listing of Java Keywords</h1><hr>

<p><c:forEach var="keyword" items="${keywords}">
 <code><c:out value="${keyword}"/></code>

</c:forEach></p>

<hr><h2>Proposed New Keywords</h2><hr>
<p><c:forEach var="propKeyword" items="${proposed}">
 <code><c:out value="${propKeyword}"/></code>

</c:forEach></p>
<form method="post" action="controller?cmd=formEntry">

<input type="submit" name="Add Keyword" value="Add New Keyword">
</form>
<hr>

</body>
</html>

Listing 4.16 The listing JSP that corresponds to the listing action

Uses the inherited
forward()E

B

C

D

E

Parameterizing commands 123

with controller servlets

Near the bottom of listing 4.16, the HTML <form> tag that allows users to add new

proposed keywords appears. The URL invokes the main servlet, passing a cmd

parameter for formEntry. This servlet is the generic controller servlet. It accepts a

parameter that indicates which action should be created to handle the request.

The formEntry action is shown in listing 4.17.

package com.nealford.art.parameterizedcommands;

public class EntryAction extends Action {

 public void execute() {
 forward("/EntryForm.jsp");
 }

}

The EntryAction class could hardly be simpler. It is similar to the controller serv-

let from listing 4.8 in that it could be eliminated—the dispatcher could map

directly to the JSP. However, as we explained earlier, there are benefits to having

trivial actions present to ensure consistency and maintainability. Eventually, it is

likely that code will need to execute to set up the entry page. If the link from the

previous view page points directly to the JSP, this action will have to be added. If it

is already in place, only the new code has to be added. Thus, using a simple action

(or controller) unifies the navigation in the application, making it consistent

throughout the application.

 The EntryForm JSP is also simple (listing 4.18).

<html>

<head>
<title>
EntryForm

</title>
</head>
<body>

<h1>
Add New Java Keyword
</h1>

<form method="post" action="controller?cmd=saveAction">

Enter new keyword : <input name="keyword">

<input type="SUBMIT" name="Update" value="Submit">

Listing 4.17 The formEntry action

Listing 4.18 The EntryForm JSP

124 CHAPTER 4

The Model 2 design pattern

</form>

</body>
</html>

In fact, the entry page isn’t technically a JSP at all, but a straight HTML document.

In web applications, it is still a good idea to make any document that might ever

contain code a JSP. In the future, code could easily be added to this page without

changing any of the actions or servlets that reference it as a JSP. The entry page’s

form command maps to a save action, which appears in listing 4.19.

package com.nealford.art.parameterizedcommands;

public class SaveAction extends Action {

 public void execute() {
 TheModel model = (TheModel) getRequest().getSession().
 getAttribute("model");

 model.addKeyword(getRequest().getParameter("keyword"));
 forward("controller?cmd=listing");
 }

}

The SaveAction class retrieves the model from the user’s session, adds the new

keyword, and dispatches back to the main listing page. This action completes the

circle for the web application, returning to the initial page via the main action

class. The controller servlet is referenced by its short name, controller, and

passed a parameter indicating which action it should invoke. The controller can

be referenced by its short name because it has a servlet alias defined in the

web.xml file for the project. The servlet mapping is shown in listing 4.20.

 <servlet>
 <servlet-name>controller</servlet-name>

 <servlet-class>
 com.nealford.art.parameterizedcommands.MainController
 </servlet-class>

 <init-param>
 <param-name>mapping</param-name>
 <param-value>/WEB-INF/mappings.properties</param-value>

 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

Listing 4.19 SaveAction saves changes to the model.

Listing 4.20 The servlet tag from the application’s web.xml

Parameterizing commands 125

with controller servlets

The controller servlet mapping includes an init parameter that points to a prop-

erties file. The properties file is the cross-reference that maps the command

parameters to the corresponding action classes. The mapping file is shown in

listing 4.21.

#Initial generation
#Thu Jan 24 17:11:27 CST 2002
formEntry=com.nealford.art.parameterizedcommands.EntryAction

listing=com.nealford.art.parameterizedcommands.ListingAction
saveAction=com.nealford.art.parameterizedcommands.SaveAction

Depending on the implementation of the controller servlet, the mapping might

not be necessary. However, it would mean that every request would have to specify

the formal action class name. As you can see from this example, the action class

names can become quite long and cumbersome to type. The mapping document

allows you to alias the commands and use a short name.

Building the generic controller

The generic controller servlet, shown in listing 4.22, is the last piece of this appli-

cation. It is generic in that it isn’t tied to this project at all. It will work equally well

in any project with any set of actions. In fact, you should never need to change

this controller.

package com.nealford.art.parameterizedcommands;

import javax.servlet.*;
import javax.servlet.http.*;

import java.io.*;
import java.util.*;

public class MainController extends HttpServlet {

 private Properties mappings;

 public void init(ServletConfig config) throws

 ServletException {
 super.init(config);
 InputStream is = null;

 try {
 String location =
 config.getInitParameter("mapping");

 is = getServletContext().getResourceAsStream(
 location);
 mappings = new Properties();

 mappings.load(is);

Listing 4.21 The mapping file for this application

Listing 4.22 The declaration and init() method of the MainController servlet

Loads mappingsB

Loads properties via
init parameter

C

126 CHAPTER 4

The Model 2 design pattern

 } catch (IOException iox) {

 getServletContext().log("I/O Error", iox);
 iox.printStackTrace();
 } finally {

 try {
 is.close();
 } catch (IOException ignored) {

 }
 }
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws
 ServletException, IOException {

 String command = request.getParameter("cmd");
 String actionClass = (String) mappings.get(command);
 Action action = null;

 try {
 action =
 (Action) Class.forName(actionClass).newInstance();

 } catch (ClassNotFoundException cnfx) {
 getServletContext().log("Class Not Found", cnfx);
 cnfx.printStackTrace();

 } catch (IllegalAccessException iax) {
 getServletContext().log("Security Exception", iax);
 } catch (InstantiationException ix) {

 getServletContext().log("Instantiation Exception",
 ix);
 }

 action.setRequest(request);
 action.setResponse(response);
 action.setServletContext(getServletContext());

 action.execute();
 }

 public void doPost(HttpServletRequest request,

 HttpServletResponse response) throws
 ServletException, IOException {
 doGet(request, response);

 }
}

The MainController is a standard HttpServlet. It contains a single private mem-
ber variable of type java.util.Properties that contains the mappings.

The init() method of the servlet locates the mappings file via the init parameter
from web.xml and loads it into memory. Note that thread safety isn’t an issue
because the init() method is called only once per servlet instance. Once init()
has executed, the servlet “owns” a copy of the mappings. This means that this

Translates request
parameter into class name

D

Dynamically loads Action E

Executes
the action

F

B

C

Parameterizing commands 127

with controller servlets

servlet doesn’t support the dynamic modification of the mappings—it only reads
them as it is instantiated by the servlet engine.

The doGet() method retrieves the requested action parameter from the request.
Next, it matches that command string with a class found in the mappings file.
Note that because this is a global object in the servlet, thread safety is an issue.
However, we don’t have to worry about it in this case because mapping is a
Properties object, a descendent of Hashtable, which is inherently thread safe.
Additionally, the properties are only read, not modified, after the original
access. If this mappings document changes in the future (for example, to an
XML document) and becomes dynamic, you must ensure that this variable
remains thread safe.

The Action class is dynamically loaded into memory and instantiated. The feature
of this design that makes this dynamic instantiation possible is the existence of the
abstract Action class. All the actions are created as if they were just an Action,
when in reality they are subclasses that have implemented execute() methods. If
the mappings are misspelled in the properties file, an exception will be generated
as the class attempts to load.

Once the action has been created, the common properties are assigned and the
execute() method is invoked.

4.2.2 Advantages and disadvantages

The advantage of parameterizing the commands and building a generic control-

ler servlet lies in the fact that you never have to create any more controller serv-

lets. The action classes are simpler than full-blown servlets and are tightly focused

on their job. Part of the plumbing of the web application has been written generi-

cally and can thus be used whenever it is needed. A disadvantage of servlets in

large Model 2 applications is that they stay in memory until evicted by the servlet

engine. Action objects, on the other hand, are just regular Java objects and can be

garbage-collected when they go out of scope. This can be an advantage on sites

with several pages that are viewed infrequently. Using servlets for controllers

means that you have a large number of quiescent servlets in memory.

 The fact that Action objects don’t stay in memory can be a disadvantage in

applications that have a few very busy pages. In such an application, you can miti-

gate this problem in a couple of ways. You create the controllers for the busiest

parts of the applications as “regular” controller servlets and leave the action infra-

structure in place for the less busy parts. Nothing in the design using parameter-

ized commands prevents you from mixing and matching actions and servlets.

Another approach is to create your own caching scheme for Action objects,

D

E

F

128 CHAPTER 4

The Model 2 design pattern

perhaps adding a flag in the properties file for the ones you want to cache. Then,

when you create a cacheable action you can add it to a collection maintained by

the controller servlet. When subsequent requests appear for that resource, you

pull it from the collection instead of creating it anew.

 Another advantage is that the displayed page in the browser’s address bar will

always be “controller” (you can use hidden fields to send the cmd parameter) so

the user cannot bookmark pages embedded within the application. If users do

create bookmarks, they will be taken to the main page when they use the book-

mark, not to the bookmarked page. This gives the web developer more control

over the access to the pages of the application.

 The important aspect of the parameterized commands sample is the generic

controller servlet. Everything else represents the simplest number of moving parts

to demonstrate it. Nothing ties it specifically to this application. You can take the

controller (with a different properties file) and use it in a variety of situations.

4.3 Summary

This chapter contained complete implementations of the design topics discussed

in chapter 2. As you can see, the prime benefit of Model 2 is the clean separation

between the responsibilities in the application. In practical applications, you must

be diligent in policing this design. The worst problem facing Model 2 applications

is the stealthy leaking of code outside its designated place. For example, it is all

too easy to place items such as lists of values into JSPs rather than delivering them

from a model bean. Once this has happened, you have crippled the main advan-

tage of Model 2’s clean separation and instead you now have a poorly designed

application with more source files. It is critical to avoid this problem when you are

new to Model 2. I recommend that a “design cop” be assigned to new projects to

make sure everyone is implementing the pattern correctly.

 The judicious use of design patterns can improve the efficiency and maintain-

ability of your application while reducing the amount of code necessary. Using

the Command design pattern, we were able to create a generic, reusable control-

ler, which is an example of the benefits of good design. It is a fallacy that using

design patterns leads to more code. Instead, frequently you end up with more

classes but less code. In general, you should try to create more cohesive classes.

Classes should be as single-purpose as possible. It is easier to reuse 10 single-

purpose, highly cohesive classes than to reuse one class that does 10 separate

Smmary 129

things. Of course, while using design patterns isn’t the only way to gain this bene-

fit, it frequently results from their use.

 The second example of this chapter showed you how to create code that is

reusable in other web applications. It is, in fact, the beginnings of a web applica-

tion framework. The next chapter expands on this idea.

Part II

Web frameworks

A framework is a set of related classes and other supporting elements
that make application development easier by supplying prebuilt parts.
Frameworks become popular because they solve common problems and
do so without seriously compromising the intent of the application they
support. As development becomes more intricate, we rely on frameworks
to ease complexity, enabling us to write at a higher level of abstraction. Just
as frameworks become more abstract and powerful, the applications we
write become increasingly complex. To reap the full benefit of using a
framework, you must evaluate it in the context of the problem you are try-
ing to solve (i.e., for the application you are currently writing). If the
framework makes your job easier without forcing you to compromise, it is
a good match. If you constantly have to code around the framework and
“kludge” together solutions to problems caused by it, you should discard it.

The chapters in part 2 highlight a variety of frameworks that make
building web applications easier. Most of them adhere to the Model 2
design pattern covered in part 1. Even though the same application
appears in each chapter, the number of viable frameworks that exist to
solve the same problem is surprising.

133

Using Struts

This chapter covers

■ Building Model 2 applications with Struts

■ Using ActionForms as entities

■ Validating user input using validators

134 CHAPTER 5

Using Struts

In the previous chapter, you saw how the judicious use of design patterns can help

you consolidate common code into reusable assets—the first step in constructing

your own framework. If you extrapolate this behavior to multiple developers and

multiple projects, you have a generic framework, built from parts that are com-

mon to most applications. For example, many web applications need a database

connection pooling facility—which is a perfect candidate for a framework compo-

nent. Fortunately, you don’t have to build each framework for web development

from scratch; they already exist in abundance. Chapter 1 provided an overview of

some available frameworks without showing how they are used to build real appli-

cations. This chapter does just that: it shows an example application built with the

open-source Model 2 framework we described in chapter 1: Jakarta Struts. As the

example unfolds, notice how this project is similar (and how it is different) from

the two projects that appear in chapter 4.

5.1 Building Model 2 Web applications with Struts

Refer back to chapter 1 (section 1.3.1) for download instructions and for an over-

view of Struts’ capabilities. The application we’ll build next is similar in behavior

to the schedule application from chapter 4, allowing for easy comparison and

contrast. In the Struts schedule application, most of the “plumbing” code is han-

dled by Struts. This sample application is available from the source code archive

under the name art_sched_struts and uses Struts version 1.1.

5.1.1 The Struts schedule application

The first page of our Struts application shows a list of the currently scheduled

events, and the second page allows the user to add more events. The first page

appears in figure 5.1.

 The user interface is quite sparse because we wanted to avoid cluttering the

functionality of the code underneath. As in the Model 2 schedule application, the

first order of business is the creation of the model.

 The data access in this application uses virtually the same model beans for

database access developed in chapter 4. Because Struts is a Model 2 framework, its

architecture is similar enough that we can utilize the same type of model objects.

However, one change appears in the ScheduleDb boundary class that makes build-

ing the input JSP much easier. Instead of returning a Map of the associations

between the event key and the event, the Struts version of ScheduleDb returns a

Struts object named LabelValueBean. The updated getEventTypeLabels()

method appears in listing 5.1.

Building Model 2 Web applications with Struts 135

 public List getEventTypeLabels() {
 if (eventTypeLabels == null) {

 Map eventTypes = getEventTypes();
 eventTypeLabels = new ArrayList(5);
 Iterator ei = eventTypes.keySet().iterator();

 while (ei.hasNext()) {
 Integer key = (Integer) ei.next();
 String value = (String) eventTypes.get(key);

 LabelValueBean lvb = new LabelValueBean(value,
 key.toString());
 eventTypeLabels.add(lvb);

 }
 }
 return eventTypeLabels;

 }

The built-in LabelValueBean class creates a mapping between a label (typically a

String) and a value (typically also a String, although other types are possible).

This is useful in cases where you need to show the user one text content (the label)

but map it to a type used internally in the application (the value). The HTML

<select> tag contains nested <option> tags, which consist of label-value pairs. The

Listing 5.1 LabelValueBean encapsulates an association between a label and value.

Figure 5.1

The Struts schedule

application displays a schedule

of upcoming events.

136 CHAPTER 5

Using Struts

user selects the label from the display, but the value is what the <select> returns.

LabelValueBeans are classes that encapsulate this label-value relationship.

5.1.2 Value objects as form beans

Struts manages value objects for the developer, providing such services as auto-

matic population of values and validation that fires automatically when perform-

ing an HTML form POST. We discuss the mechanics of validation in a moment. To

utilize Struts’ value object infrastructure, your form-based value objects extend

the Struts ActionForm class, transforming them into ActionForms. The Schedule-

Item ActionForm is shown in listing 5.2.

package com.nealford.art.strutssched;

import java.io.Serializable;
import javax.servlet.http.HttpServletRequest;

import org.apache.struts.action.*;

public class ScheduleItem extends ActionForm
 implements Serializable {

 private String start;
 private int duration;
 private String text;

 private String eventType;
 private int eventTypeKey;

 public ScheduleItem(String start, int duration, String text,

 String eventType, int eventTypeKey) {
 this.start = start;
 this.duration = duration;

 this.text = text;
 this.eventType = eventType;
 this.eventTypeKey = eventTypeKey;

 }

 public ScheduleItem() {
 }

 public void setStart(String newStart) {
 start = newStart;
 }

 public String getStart() {
 return start;
 }

 public void setDuration(int newDuration) {
 duration = newDuration;
 }

Listing 5.2 The ScheduleItem ActionForm class

Building Model 2 Web applications with Struts 137

 public int getDuration() {

 return duration;
 }

 public void setText(String newText) {

 text = newText;
 }

 public String getText() {

 return text;
 }

 public void setEventType(String newEventType) {

 eventType = newEventType;
 }

 public String getEventType() {

 return eventType;
 }

 public void setEventTypeKey(int eventTypeKey) {

 this.eventTypeKey = eventTypeKey;
 }

 public int getEventTypeKey() {

 return eventTypeKey;
 }
}

This ActionForm is mostly a collection of properties with accessor and mutator

methods and is identical to the similar value object from the Model 2 schedule

application (also named ScheduleItem), except for the super class.

 The ScheduleDb collection manager and the ScheduleItem ActionForm make

up the model for this application. Directly extending the Struts ActionForm in

ScheduleItem does tie this value object to the Struts framework, diminishing its

usefulness in non-Struts applications. If this is a concern, you may implement the

entity as a separate class and allow the ActionForm to encapsulate the entity. In this

scenario, the ActionForm becomes a proxy for the methods on the entity object. In

this application, the entity directly extends ActionForm for simplicity’s sake.

5.1.3 Objectifying commands with Struts’ actions

Chapter 4 (section 4.2) illustrated the use of the Command design pattern to

parameterize commands. We used an abstract Action class and a master controller

servlet written in terms of that generic Action. For new pages, the developer

extended Action and wrote page-specific behavior. The Action and controller

combination handled much of the basic infrastructure of dispatching requests,

138 CHAPTER 5

Using Struts

freeing the developer to concentrate on the real work of the application. Struts

employs the same pattern. The Struts designers have already implemented the

controller servlet that understands Struts Action classes, which are classes that

extend the Struts Action class and encapsulates a great deal of behavior within the

framework. These actions act as proxies for the controller servlet, so they are

responsible for the interaction between the models and the views. The first action

invoked is ViewScheduleAction, which appears in listing 5.3.

package com.nealford.art.schedstruts.action;

import java.io.IOException;

import java.sql.SQLException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import javax.sql.DataSource;

import org.apache.struts.action.*;
import com.nealford.art.schedstruts.boundary.*;

import javax.servlet.*;

public class ViewScheduleAction extends Action {
 private static final String ERR_POPULATE =

 "SQL error: can't populate dataset";

 public ActionForward execute(ActionMapping mapping,
 ActionForm form,

 HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 DataSource dataSource = getDataSource(request);
 ScheduleDb sb = new ScheduleDb();
 sb.setDataSource(dataSource);

 try {
 sb.populate();
 } catch (SQLException x) {

 getServlet().getServletContext().log(ERR_POPULATE, x);
 }
 request.setAttribute("scheduleBean", sb);

 return mapping.findForward("success");
 }

}

The Struts developers have created helper classes that handle many of the details

of building a Struts application. For example, notice that the execute() method

Listing 5.3 The ViewScheduleAction is the first action invoked.

DataSource
retrieval from
the Struts
controller

Building Model 2 Web applications with Struts 139

returns an ActionForward instance via the mapping parameter. This is a class that

facilitates forwarding a request. It encapsulates the behavior of a RequestDis-

patcher and adds more functionality. The ViewScheduleAction first retrieves the

DataSource instance created by the controller servlet by calling the getData-

Source() method, which it inherits from Action. It then creates a ScheduleDb,

populates it, adds it to the request, and dispatches to the appropriate view. The

controller servlet is responsible for two tasks in the ViewScheduleAction class.

First, it creates the connection pool and adds it to the appropriate collection. Sec-

ond, it manages the mapping between requests and the appropriate Action

instances.

5.1.4 Configuring Struts applications

The connection pool, mappings, and other configuration information for Struts

appear in the Struts configuration XML file, which is shown in listing 5.4. The

Struts framework defines this document’s format.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE struts-config PUBLIC

"-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"
"http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd">

<struts-config>

 <data-sources>
 <data-source
 type="com.mysql.jdbc.jdbc2.optional.MysqlDataSource">

 <set-property property="url"
 value="jdbc:mysql://localhost/schedule" />
 <set-property property="user" value="root" />

 <set-property property="password" value="marathon" />
 <set-property property="maxCount" value="5" />
 <set-property property="driverClass"

 value="com.mysql.jdbc.Driver" />
 <set-property value="1" property="minCount" />
 </data-source>

 </data-sources>
 <form-beans>

 <form-bean name="scheduleItem"
 type="com.nealford.art.schedstruts.entity.ScheduleItem"
 dynamic="no" />

 </form-beans>
 <action-mappings>
 <action

 type="com.nealford.art.schedstruts.action.ViewScheduleAction"
 path="/sched">

Listing 5.4 The Struts XML configuration file

DataSource
definition

B

Form bean definitionC

Action definitionsD

140 CHAPTER 5

Using Struts

 <forward name="success" path="/ScheduleView.jsp" />

 </action>
 <action
 type="com.nealford.art.schedstruts.action.ScheduleEntryAction"

 path="/schedEntry">
 <forward name="success" path="/ScheduleEntryView.jsp" />
 </action>

 <action name="scheduleItem"
 type="com.nealford.art.schedstruts.action.AddToScheduleAction"
 validate="true" input="/ScheduleEntryView.jsp"

 scope="session" path="/add">
 <forward name="success" path="/sched.do" />
 <forward name="error" path="/ScheduleEntryView.jsp" />

 </action>
 </action-mappings>
 <plug-in className="org.apache.struts.validator.ValidatorPlugIn">

 <set-property
 property="pathnames"
 value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>

 </plug-in>
</struts-config>

The top section defines a Java Database Connectivity (JDBC) data source that is
delivered from the Struts connection pooling utility class. This configuration file
allows you to define all the characteristics of your database connection.

This section of the document allows you to define form beans. These are the
ActionForm subclasses utilized by the framework. The ScheduleItem class defined
in listing 5.2 is the example declared here.

This section of the document lists the action mappings. Each action mapping
may define local forwards, which are web resources the Action may reference. In
the ViewScheduleAction in listing 5.3, the return value is the mapping for suc-
cess, which maps to the local forward defined in the configuration document for
the /sched action.

Struts allows you to define properties beyond the mapping for each action. The

path definition in the configuration file becomes the resource you request in the

servlet engine. Typically, either a prefix mapping or extension mapping exists in

the web.xml file for the project that allows you to automatically map resources to

the Struts controller servlet. In this sample, we are using extension mapping. In

the web.xml deployment descriptor, the following entry maps all resources with

the extension of .do to the Struts controller:

 <servlet-mapping>
 <servlet-name>action</servlet-name>

B

C

D

Building Model 2 Web applications with Struts 141

 <url-pattern>*.do</url-pattern>

 </servlet-mapping>

When this application executes, you request the sched.do resource from the web

site. The extension-mapping mechanism maps the extension to the Action servlet.

The Action servlet consults the struts-config document and maps sched to the

class com.nealford.art.schedstruts.action.ViewScheduleAction. Thus, you can

freely reference resources in your web application with the .do extension and rely

on them being handled by the Struts controller. We aren’t forced to use Struts for

every part of the application. Any resource that should not be under the control

of Struts can be referenced normally.

Struts configuration for the web application

The Struts controller is automatically loaded in the web.xml configuration docu-

ment for the web application. It is a regular servlet instance that is configurable

via init parameters. The web.xml file for this sample is shown in listing 5.5.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <servlet>

 <servlet-name>action</servlet-name>
 <servlet-class>
 org.apache.struts.action.ActionServlet

 </servlet-class>
 <init-param>
 <param-name>application</param-name>

 <param-value>
 com.nealford.art.strutssched.Schedule
 </param-value>

 </init-param>
 <init-param>
 <param-name>config</param-name>

 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <init-param>

 <param-name>debug</param-name>
 <param-value>2</param-value>
 </init-param>

 <load-on-startup>2</load-on-startup>
 </servlet>
 <servlet-mapping>

 <servlet-name>action</servlet-name>

Listing 5.5 The web.xml configuration document for the schedule application

Struts controller
servlet configuration

Extension mapping
for the Action servlet

142 CHAPTER 5

Using Struts

 <url-pattern>*.do</url-pattern>

 </servlet-mapping>
 <session-config>
 <session-timeout>30</session-timeout>

 </session-config>
 <taglib>
 <taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>

 <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
 </taglib>
 <taglib>

 <taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-html.tld</taglib-location>
 </taglib>

 <taglib>
 <taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-logic.tld</taglib-location>

 </taglib>
 <taglib>
 <taglib-uri>/WEB-INF/struts-template.tld</taglib-uri>

 <taglib-location>/WEB-INF/struts-template.tld</taglib-location>
 </taglib>
</web-app>

The configuration document for the web application loads the Struts controller

on startup so that it need not to be loaded on first invocation. The parameters for

this servlet specify the locations of a couple of configuration documents. The first

is the struts-config.xml document (shown in listing 5.4). The other is under the

application parameter, which points to a properties file. We’ll explore the useful-

ness of this properties file shortly. The rest of this document defines URL patterns

and the custom Struts tag libraries that make building the view JSPs easier.

5.1.5 Using Struts’ custom tags to simplify JSP

The ViewScheduleAction eventually forwards the request to ScheduleView.jsp,

which is shown in listing 5.6.

<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<html>
<head>
<title>

<bean:message key="title.view" />
</title>

Struts taglib definitions

Listing 5.6 The main display JSP for the Struts version of the schedule application

Pulls text labels
properties

Building Model 2 Web applications with Struts 143

</head>

<body>
<h2><bean:message key="prompt.listTitle" /></h2></p>
<table border="2">

 <tr bgcolor="yellow">
 <th><bean:message key="prompt.start" /></th>
 <th><bean:message key="prompt.duration" /></th>

 <th><bean:message key="prompt.text" /></th>
 <th><bean:message key="prompt.eventType" /></th>
 </tr>

<logic:iterate id="schedItem"
 type="com.nealford.art.schedstruts.entity.ScheduleItem"
 name="scheduleBean" property="list" >

 <tr>
 <td><bean:write name="schedItem" property="start" />
 <td><bean:write name="schedItem"

 property="duration" />
 <td><bean:write name="schedItem" property="text" />
 <td><bean:write name="schedItem"

 property="eventType" />
 </tr>
</logic:iterate>

</table>
<p>
 Add New Schedule Item

</body>
</html>

While the Action class is very similar to the controller from the Model 2 schedule

application in chapter 4 (section 4.1.1), this JSP is significantly different. The first

major difference is the declaration of a number of taglibs at the top of the file.

Struts defines numerous custom tags, in four different categories, to aid you in

building JSPs. The four categories are listed in table 5.1.

Table 5.1 Struts custom tags

Name TLD File Description

Bean tags struts-bean.tld The struts-bean tag library contains JSP custom tags useful in

defining new beans (in any desired scope) from a variety of

possible sources, as well as a tag that renders a particular

bean (or bean property) to the output response.

HTML tags struts-html.tld The struts-html tag library contains JSP custom tags useful in

creating dynamic HTML user interfaces, including input forms.

continued on next page

Iterates with Struts tag

144 CHAPTER 5

Using Struts

Continuing with the analysis of ScheduleView in listing 5.6, the next item of

interest concerns the text labels. In the Model 2 schedule application, the title

was placed directly inside the JSP page. However, Struts defines a mechanism

whereby you can isolate the labels and other user interface (UI) elements into a

separate resource file and reference those resources via a Struts tag. The exter-

nal resource is a PropertyResourceBundle, which has the same format as a prop-

erties file, and the key attribute indicates the key value for the string resource.

The resource properties file for this application is shown in listing 5.7.

prompt.duration=Duration
prompt.eventType=Event Type
prompt.start=Start Date

prompt.text=Text
prompt.listTitle=Schedule List
prompt.addEventTitle=Add New Schedule Entry

title.view=Schedule Items
title.add=Add Schedule Items

button.submit=Submit

button.reset=Reset

errors.header=Validation Error
errors.ioException=I/O exception rendering error messages: {0}

error.invalid.duration=
 Duration must be positive and less than 1 month
error.no.text=You must supply text for this schedule item

errors.required={0} is required.
errors.minlength={0} can not be less than {1} characters.
errors.maxlength={0} can not be greater than {1} characters.

errors.invalid={0} is invalid.

Logic tags struts-logic.tld The struts-logic tag library contains tags that are useful in man-

aging conditional generation of output text, looping over object

collections for repetitive generation of output text, and applica-

tion flow management.

Template tags struts-template.tld The struts-template tag library contains tags that are useful in

creating dynamic JSP templates for pages that share a com-

mon format. These templates are best used when it is likely

that a layout shared by several pages in your application will

change.

Listing 5.7 The resource properties file for our application

Table 5.1 Struts custom tags (continued)

Name TLD File Description

Building Model 2 Web applications with Struts 145

errors.byte={0} must be a byte.

errors.short={0} must be a short.
errors.integer={0} must be an integer.
errors.long={0} must be a long.

errors.float={0} must be a float.
errors.double={0} must be a double.

errors.date={0} is not a date.

errors.range={0} is not in the range {1} through {2}.
errors.creditcard={0} is an invalid credit card number.
errors.email={0} is an invalid e-mail address.

This mapping mechanism serves two purposes. First, it allows you to ensure com-

mon labels and titles throughout the application. If you have a specific label for a

button that appears in multiple locations, you can reference the same resource

and change it everywhere with a simple change to the resource. The other benefit

involves internationalization, which we look at in the next section.

5.1.6 Internationalization with Struts

You can define the resource bundle keys used by Struts custom tags independently

of the language of the labels and other resources. The location of this properties

file is the application init parameter in the web.xml file in listing 5.5. Struts allows

you to create a properties file in a particular language (in our case, American

English) as the default resource file. You can then create additional resource files

that have the same name with an additional locale code suffix. The international-

ization characteristics provided by Struts supports the standard capabilities in the

SDK using ResourceBundles. For example, to create a French version of the prop-

erties file, you would create schedule_fr.properties. When a request arrives from a

browser, part of the request information indicates the user’s locale, which is a pre-

defined two- or four-digit identifier indicating the language of that user. If a user

accesses the web application using a browser that identifies it as a French speaker,

Struts automatically pulls the labels from the localized properties file named

schedule_fr.properties. If the user is Canadian, Struts will look for a properties file

with the fr_CA suffix. If it doesn’t exit, the user gets the generic French localized

properties. If a language is requested that doesn’t have a specific properties file,

the user gets the default one. A partial listing of some locales appears in table 5.2.

 The next item of interest in listing 5.6 is the iterate tag. In the Model 2 sched-

ule application in chapter 4 (in particular, listing 4.7), one of the few places in the

JSP where we were forced to resort to scriptlet code and/or JSP Standard Tag

146 CHAPTER 5

Using Struts

Table 5.2 Some character locales supported by Struts

Locale Language Country

da_DK Danish Denmark

DE_AT German Austria

DE_CH German Switzerland

DE_DE German Germany

el_GR Greek Greece

en_CA English Canada

en_GB English United Kingdom

en_IE English Ireland

en_US English United States

es_ES Spanish Spain

fi_FI Finnish Finland

fr_BE French Belgium

fr_CA French Canada

fr_CH French Switzerland

fr_FR French France

it_CH Italian Switzerland

it_IT Italian Italy

ja_JP Japanese Japan

ko_KR Korean Korea

nl_BE Dutch Belgium

nl_NL Dutch Netherlands

no_NO Norwegian (Nynorsk) Norway

no_NO_B Norwegian (Bokmål) Norway

pt_PT Portuguese Portugal

sv_SE Swedish Sweden

tr_TR Turkish Turkey

zh_CN Chinese (Simplified) China

zh_TW Chinese (Traditional) Taiwan

Building Model 2 Web applications with Struts 147

Library (JSTL) tags was when we needed to iterate over a list of items. Struts

handles this situation with the iterate custom tag. This tag uses the attributes

listed in table 5.3.

The iterate tag works with a variety of collections of objects, including arrays.

This is a powerful tag because it takes care of typecasting and assignment for you.

Within the tag body, you can freely reference the properties and methods of the

objects from the collection without worrying about typecasting. Also notice that

there is no longer any scriptlet code in the JSP, not even a useBean declaration.

The code on this page is much cleaner than the corresponding code in a typical

Model 2 application.

 At the bottom of the file, an HTML <href> tag appears that points to SchedEn-

try.do. Clicking on this link invokes another Action object (ScheduleEntryAction)

through the Struts controller.

5.1.7 Struts’ support for data entry

ScheduleEntryAction is the action invoked when the user clicks on the hyper-

link at the bottom of the view page. It leads to the data-entry screen, shown in

figure 5.2.

 ScheduleEntryAction is responsible for setting up the edit conditions. The

code appears in listing 5.8.

Table 5.3 The Struts iterate tag attributes

Attribute Value Description

id schedItem The local (i.e., within the tag body) name of the

object pulled from the collection.

type com.nealford.art.sched-

struts.entity.ScheduleItem

The type of objects found in the collection. The tag

automatically casts the items it pulls from the col-

lection to this class.

name scheduleBean The name of the bean that you want to pull from a

standard web collection (in this case, schedule-

Bean from the request collection).

property list The name of the method on the bean that returns

the collection.

148 CHAPTER 5

Using Struts

package com.nealford.art.schedstruts.action;

import javax.servlet.http.*;
import javax.servlet.ServletException;

import java.io.IOException;
import org.apache.struts.action.*;

import javax.sql.DataSource;
import com.nealford.art.schedstruts.boundary.*;

public class ScheduleEntryAction extends Action {

 private static final String ERR_DATASOURCE_NOT_SET =
 "ScheduleEntryAction: DataSource not set";

 public ActionForward execute(ActionMapping mapping,

 ActionForm form, HttpServletRequest request,
 HttpServletResponse response) throws IOException,
 ServletException {

 ScheduleDb sb = new ScheduleDb();
 DataSource ds = getDataSource(request);
 if (ds == null)

 throw new ServletException(ERR_DATASOURCE_NOT_SET);
 sb.setDataSource(ds);
 //-- place the scheduleBean on the session in case the

 //-- update must redirect back to the JSP -- it must be
 //-- able to pull the scheduleBean from the session, not
 //-- the request

 HttpSession session = request.getSession(true);

Listing 5.8 The ScheduleEntryAction action subclass sets up editing.

Figure 5.2

ScheduleEntryAction allows the user to enter

new schedule items and performs automatic

validation through the ActionForm associated

with AddToScheduleAction.

Building Model 2 Web applications with Struts 149

 session.setAttribute("eventTypes", sb.getEventTypeLabels());

 return mapping.findForward("success");
 }
}

The view JSP for this page must be able to pull event types from the ScheduleDb to

display in the HTML select control. Adding the ScheduleDb to the request and for-

warding it to the JSP could normally accomplish this. However, the automatic vali-

dation functionality of Struts adds some complexity to this scenario. More about

this issue appears in section 5.1.8. For now, trust that the session, not the request,

must be used here. Before this mystery is unraveled, let’s discuss the view portion

of this request.

Building the entry view

The action in listing 5.8 forwards the schedule bean to the entry view JSP, which

appears in listing 5.9.

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>

<html>

<head>
<title><bean:message key="title.add" /></title>
</head>

<body>
<h3><bean:message key="prompt.addEventTitle" /></h3>
<logic:messagesPresent>

 <h3>
 <bean:message key="errors.header"/>
 </h3>

 <html:messages id="error">
 <bean:write name="error"/>

 </html:messages>

 <p/>

</logic:messagesPresent>

<html:form action="add.do">
<table border="0" width="30%" align="left">

 <tr>
 <th align="right">
 <bean:message key="prompt.duration"/>

 </th>

Listing 5.9 ScheduleEntryView.jsp provides the insertion user interface.

150 CHAPTER 5

Using Struts

 <td align="left">

 <html:text property="duration" size="16"/>
 </td>
 </tr>

 <tr>
 <th align="right">
 <bean:message key="prompt.eventType"/>

 </th>
 <td align="left">
 <html:select property="eventTypeKey">

 <html:options collection="eventTypes" property="value"
 labelProperty="label"/>
 </html:select>

 </td>
 </tr>
 <tr>

 <th align="right">
 <bean:message key="prompt.start"/>
 </th>

 <td align="left">
 <html:text property="start" size="16"/>
 </td>

 </tr>
 <tr>
 <th align="right">

 <bean:message key="prompt.text"/>
 </th>
 <td align="left">

 <html:text property="text" size="16"/>
 </td>
 </tr>

 <tr>
 <td align="right">
 <html:submit>

 <bean:message key="button.submit"/>
 </html:submit>
 </td>

 <td align="right">
 <html:reset>
 <bean:message key="button.reset"/>

 </html:reset>
 </td>
 </tr>

</table>
</html:form>

</body>
</html>

Struts’ <select> tag

Building Model 2 Web applications with Struts 151

This JSP provides two fertile topics, and they are covered in reverse order. The first

topic appears in the body of the page with the custom Struts JSP tags. Using Struts

tags instead of standard HTML tags provides at least two benefits for this page.

The first benefit is the ability to define the text labels in the application-wide

properties file, discussed earlier. The second benefit is the immense simplification

of some HTML constructs. If you refer back to the Model 2 schedule application

in listing 4.11, you will find that 17 lines of mixed HTML and scriptlet code are

required to generate the list of select options from the database. That code is ugly

and hard to maintain. The annotation in listing 5.9 shows how the same behavior

is accomplished with Struts.

5.1.8 Declarative validations

Another topic of interest on the ScheduleEntryView page is validation. One of the

most common tasks in web applications is the validation of data entered by the

user via an HTML POST. Generally, this is handled in the controller where the

page posts. If the validations fail, the user is redirected back to the page to correct

the errors. A friendly web application will replace all the values the user typed in

so that the user only has to correct the errors, not type all the values back into the

page. This behavior is coded by hand, frequently using the JSP * setProperty com-

mand to automatically repopulate the fields:

<jsp:setProperty name="beanName" property="*" />

However, this command presents some problems in that it isn’t very discriminating.

 Struts provides a graceful alternative. Referring back to the struts-config docu-

ment in listing 5.8, one of the action entries (AddToScheduleAction) is associated

with a <form-bean> tag. The tag associates a name (addItem) with a class that is in

turn associated with the add action. Struts allows you to associate action forms with

actions via the <form-bean> tag. In those cases, Struts performs some special han-

dling of the action form classes. When a form bean is associated with an action

and that action is invoked, Struts looks for an instance of the form bean in the

user’s session. If it doesn’t find one, it automatically instantiates it and adds it to

the session.

 Struts is intelligent enough to pull data automatically from the form bean and

populate the HTML fields with the values. So, for example, if you have a getAd-

dress() method in your form bean and an HTML input called address, Struts

automatically fills in the value of the field. This mechanism makes it easy to build

wizard-style interfaces with Struts, where the user supplies information across a

series of screens. This mechanism also assists in validation.

152 CHAPTER 5

Using Struts

 Declarative validations allow the developer to define rules in a configuration

document that are automatically enforced by the framework. Many web applica-

tions have simple validation needs, usually falling into the categories of required

fields, minimum and maximum values, and input masks. To configure declarative

validations, you must first define the validation rules for your form in an XML doc-
ument, whose format is mandated by Struts. The validation document for the

Struts 1.1 schedule application is shown in listing 5.10.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!-- DTD omitted for space considerations -->

<form-validation>
 <formset>

 <form name="scheduleItem">
 <field property="duration"
 depends="required,integer,intRange">

 <arg0 key="prompt.duration"/>

 <arg1 name="intRange"
 key="${var:min}" resource="false"/>

 <arg2 name="intRange"
 key="${var:max}" resource="false"/>

 <var>

 <var-name>min</var-name>
 <var-value>0</var-value>
 </var>

 <var>
 <var-name>max</var-name>
 <var-value>31</var-value>

 </var>
 </field>
 <field property="text"

 depends="required,minlength">
 <arg0 key="prompt.text"/>
 <arg1 name="minlength"

 key="${var:minlength}" resource="false"/>
 <var>
 <var-name>minlength</var-name>

 <var-value>1</var-value>
 </var>

 </field>
 </form>
 </formset>

</form-validation>

Listing 5.10 The validation.xml rules file for the Struts schedule application

Validation
declaration for

duration

B

Message resource
key for validation
message

C

Variable
declarations
defining
validation
criteria

D

Variable values for
validation criteria

E

Validation declaration
for the text field

F

Building Model 2 Web applications with Struts 153

This mapping creates a validation for the duration property of the scheduleItem
class, validating that a value for the field exists (required) and that it is an integer
(integer), and defining a range (intRange).

The first argument is a mapping into the application’s resource file, pulling the
same prompt value for the field used on the form.

The fields may contain several arguments. In this case, the minimum and maxi-
mum arguments are supplied as replaceable variables, defined in the entry in the
file. The syntax for referencing the variables is the now common ${x} syntax used
by JSTL.

The last part of the field definition includes the variable values used in the pre-
ceding arguments. In this example, the min and max values define the minimum
and maximum duration values.

The text field validation requires a value and it must be at least one character in
length.

The next step in configuring declarative validations is the addition to the struts-

config file of the validator plug-in. The Struts configuration file supports plug-ins

to provide additional behavior (like validations); listing 5.11 shows the plug-in

portion of the struts-config document.

 <plug-in className="org.apache.struts.validator.ValidatorPlugIn">

 <set-property
 property="pathnames"
 value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>

 </plug-in>

The validator plug-in specifies two XML configuration documents: the document

particular to the application (validation.xml, shown in listing 5.10) and validator-

rules.xml, which is generic across all Struts applications. The presence of the plug-

in and the configuration documents enable declarative validations.

 The results of the validation are shown in figure 5.3.

 Declarative validation is ideal for situations like the schedule application,

where the validation requirements fit into the scope of the validator plug-in

(namely, required fields and minimum values). Struts also includes a more robust

validation mechanism for more complex cases. The ActionForm class includes a

validate() method, which may be overridden in child ActionForms. When post-

ing to an action, Struts performs declarative validations and then checks to see if a

Listing 5.11 The struts-config document’s <plug-in> tag with the validator plug-in

B

C

D

E

F

154 CHAPTER 5

Using Struts

form bean has a validate() method. This method returns a collection of Action-

Error objects. If the collection is empty, Struts continues with the execution of the

action. If there are items in the collection, Struts automatically redirects back to

the input form that invoked the controller, passing the form bean back with it.

 Struts tags placed on the page test for the presence of validation failures and

display the results. For example, the top of the ScheduleEntryView page in

listing 5.9 includes the following code:

<logic:messagesPresent>
 <h3>
 <bean:message key="errors.header"/>
 </h3>

 <html:messages id="error">
 <bean:write name="error"/>
 </html:messages>

 <p/>
</logic:messagesPresent>

If validation error messages are present in the collection, the messages (pulled

from the application’s properties file) are displayed, yielding the result shown in

figure 5.3.

Figure 5.3 The validation in the Struts 1.1 version of the schedule application uses validations

declared in the validations.xml configuration file.

Building Model 2 Web applications with Struts 155

Building the AddToScheduleAction

The last piece of the Struts schedule application is the action object that is posted

from the entry JSP. AddToScheduleAction is shown in listing 5.12.

package com.nealford.art.schedstruts.action;

import java.io.IOException;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import com.nealford.art.schedstruts.boundary.ScheduleDb;

import com.nealford.art.schedstruts.entity.ScheduleItem;
import com.nealford.art.schedstruts.util.ScheduleAddException;
import org.apache.struts.action.Action;

import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

public class AddToScheduleAction extends Action {
 private static final String ERR_INSERT =
 "AddToScheduleAction: SQL Insert error";

 public ActionForward execute(ActionMapping mapping,
 ActionForm actionForm, HttpServletRequest request,
 HttpServletResponse response) throws IOException,

 ServletException {
 ScheduleDb sb = new ScheduleDb();
 sb.setDataSource(getDataSource(request));

 ScheduleItem si = (ScheduleItem) actionForm;
 try {
 sb.addRecord(si);

 } catch (ScheduleAddException sax) {
 getServlet().getServletContext().log(ERR_INSERT, sax);
 sax.printStackTrace();

 }
 //-- clean up extraneous session reference to eventTypes
 HttpSession session = request.getSession(false);

 if (session != null)
 session.removeAttribute("eventTypes");
 return mapping.findForward("success");

 }
}

Notice that no code appears in the AddToScheduleAction class to handle the valida-

tion. When the action is invoked, Struts “notices” that the form bean is associated

Listing 5.12 AddToScheduleAction inserts the record.

156 CHAPTER 5

Using Struts

with it in the struts-config.xml document. Because the form bean was created on

the page that posted to this action, Struts validates the form based on the declara-

tive validations. Failure of the validation automatically redirects to the entry JSP

and fills in the form values. If the validation was successful, this action is invoked

normally. To get the values entered via the form bean, we need only cast the

actionForm instance that is passed to the execute() method. Once we have

retrieved the value object, we pass it to the ScheduleDb to add it to the database and

forward back to the listing page.

 Because of the automatic form validation, this action may not be executed

immediately. The event type list must be present for the HTML <select> tag to

access the event types. However, if the user is automatically redirected back to the

JSP because of a validation error, the list will no longer be available on the request.

Thus, the event type list must be added to the session before invoking the page

the first time. While it is generally a bad idea to place long-lived objects on the ses-

sion, this action is careful to remove it when it has completed its work.

 The last order of business is the forward to the next resource via the mapping

object. In this case, the target is another action object via Struts, not a JSP. The

ActionForward (like a RequestDispatcher) can be directed to any web resource,

not just a JSP.

5.2 Evaluating Struts

As frameworks go, Struts is not overbearing. Many times, frameworks are so exten-

sive that you can’t get anything done outside the context of the framework. Or, 80

percent of what you want to do is extremely easy to do in the framework, another

10 percent is possible but difficult, and the last 10 percent cannot be accom-

plished because, of or in spite of, the framework. Struts is a much more light-

weight framework. It fits into standard Model 2 type applications but doesn’t

preclude your writing code that doesn’t need or want to fit into Struts. I estimate

that Struts saves developers from having to write between 30 and 40 percent of the

plumbing code normally required for a typical web application.

 Struts provides support for building Model 2 applications by supplying a large

part of the code necessary for every web application. It includes a variety of pow-

erful custom tags to simplify common operations. It offers a clean automatic vali-

dation mechanism, and it eases building internationalized applications. Its

disadvantages chiefly lie in its complexity. Because there are numerous moving

parts in Struts, it takes some time to get used to how everything fits together. It is

Summary 157

still a new framework, so you may experience some performance issues with

extremely busy sites. However, my company has used it for several moderately

busy web applications and been pleased with its performance and scalability, and

the lack of serious bugs. Struts is now in its second release (Struts 1.1) and has

garnered considerable developer support.

 One apparent disadvantage of Struts goes hand in hand with one of its advan-

tages. To fully exploit Struts’ custom tags, you must write your JSPs in terms of

Struts elements, replacing the standard HTML elements like <input>, <select>,

and so on. However, one of the stated goals of the Model 2 architecture is a sepa-

ration of responsibilities, ideally allowing the graphics designers to work solely on

the user interface. If they are forced to use Struts tags, they can no longer use

their design tools.

 The Jakarta web site contains links to resources for Struts. One of these is a

plug-in that allows you to use custom JSP tags within Dreamweaver UltraDev, one

of the more popular HTML development environments. By using this extension,

your HTML developers can still drop what looks like standard HTML elements

(like inputs, selects, etc.), and the tool generates Struts tags. The extension is

nice enough to allow the HTML developer to fill in attribute values for tags and

generally work seamlessly with the Struts tags. We have used this within our com-

pany, and HTML designers who know virtually nothing about Java quickly become

accustomed to working in this environment. Now you can have the Model 2

advantages of separation of responsibilities and still use Struts. Check out http://

jakarta.apache.org/taglibs/doc/ultradev4-doc/intro.html for information on this

and other useful Struts extensions.

 If you are using more recent versions of Dreamweaver, it already offers support

for all custom JSP tags, which includes the Struts tags. Several Java development

environments are adding support for Struts. Starting with version 8, Borland’s

JBuilder development environment has wizards and other designers to facilitate

Struts development.

5.3 Summary

Struts has found the middle ground of being useful, powerful, but not too com-

plex. Using Struts is easy to anyone familiar with Model 2, and it helps developers

build highly effective web applications. This chapter covered the open-source

Struts framework. We walked you through the development of the schedule appli-

cation, building the parts that accommodate the framework along the way. Struts

158 CHAPTER 5

Using Struts

contains many elements and can be daunting because of the perceived complex-

ity, but once you understand it, it fits together nicely.

 This chapter covered the basic classes necessary for the application, including

the boundary and entity classes. We then discussed Struts Actions, comparing

them to the Parameterized Command example from chapter 4. The discussion of

actions led to the description of the main Struts controller servlet; we explained

how to configure it through both the web.xml and struts-config.xml files. We

described how action mappings work and how the controller dispatches requests.

You learned about the user interface elements of Struts, including several of the

Struts custom tags. Our schedule application showed you how to create pages with

little or no Java code, relying on the custom tags. You also learned about complex

HTML elements like <select>, and the concept of internationalization.

 Next, we turned to validations and the automatic validation built into the

framework. Finally, we discussed the advantages and disadvantages of using Struts.

 In the next chapter, we look at Tapestry, another framework for building

Model 2 applications that has virtually nothing in common with Struts.

159

Tapestry

This chapter covers

■ The design and architecture of Tapestry

■ Building applications using Tapestry

■ Evaluating Tapestry

160 CHAPTER 6

Tapestry

Up to this point, we’ve looked at frameworks that are closely tied to the web APIs

available in Java. A close tie to the web APIs is a natural preference when you’re

creating a web application; however, it is not a strict requirement. As you’ll see in

this chapter, Tapestry moves away from strictly web-based APIs and allows you to

create web applications that feel more like traditional applications. Instead of wor-

rying about such web topics as session tracking, URLs, and other minutia of HTTP

and the Web in general, Tapestry builds a framework that effectively hides all

these details. It uses an object model similar to traditional graphical user interface

(GUI) development. Tapestry doesn’t prevent you from accessing the servlet API,

but it encapsulates it to the point where you don’t need to very often. This

approach means that developers coming from a desktop development back-

ground can capitalize on their skills without getting too far into web-specific APIs.

 The goal of the Tapestry developers is to create a highly productive framework,

where you shouldn’t have to write any unnecessary, repetitive, or mechanical

code. This chapter, like the other chapters highlighting frameworks, creates the

schedule application using the Tapestry framework. As you will see, even though

the application looks the same to the user, the internals are vastly different from

the “straight” Model 2 or Struts versions.

6.1 Overview

Tapestry is an open-source Java framework for creating web applications in Java. It

was developed by Howard Lewis Ship and is part of the Jakarta project at Apache.

You can download it at http://jakarta.apache.org/tapestry. The version we use for

this chapter is 2.2; version 3 was in beta at the time this book was written.

 Tapestry is a large framework, more like Turbine than Struts. It provides a

wealth of prebuilt components for handling such details as object pooling, session

management, and HTML components. Because of the nature of the framework, it

provides a high level of reusability for commonly needed elements in a web appli-

cation. Coding in Tapestry is in terms of objects, properties, and methods, not

URLs and query parameters. The framework handles all the low-level web details

of the application.

6.2 The architecture

For presentation, Tapestry uses an alternative to scripting languages, such as JSP

and Velocity. It provides an all-encompassing framework using a combination of

The architecture 161

Java reflection, the JavaBeans API, and HTML templates. Much of the interaction

between components in Tapestry takes place through interfaces designed into the

framework. The framework defines the flow of logic through the system with a

collection of specifications (written as XML documents) and framework objects.

 A Tapestry application starts when the user accesses the application through

the browser by pointing to the Tapestry ApplicationServlet. The servlet acts as

the universal controller. It creates the Application Engine, which is the framework

object that handles a user’s interaction with the application. An instance of the

engine is created for each user and acts as a proxy for that user. The engine reads

the application specification from a configuration file, which defines the pages.

The engine then reads the page specification and template for the requested

page to determine the contents of the page, and uses this information to render

the page for the user. Most of the configuration documents are cached in mem-

ory, so this process isn’t as resource intensive as it might appear. The overall archi-

tecture is shown in figure 6.1.

 The specification documents (both application and page) are XML docu-

ments. The template is an HTML document with replaceable portions. It is not a

JSP or template-based view like Velocity (covered in chapter 9). Instead, the

HTML elements serve as placeholders, replaced by the controls and JavaBeans

Browser

Application
Engine

ApplicationServlet

<<view>>
Template

1) Access

2) Creates

3) Reads

Home
Page

3a) References

4) Reads

4a) References

5) Renders

Application
Specification

Figure 6.1 The application servlet bootstraps the Application Engine, which

reads the specifications for the application and renders the results.

162 CHAPTER 6

Tapestry

referenced in the specification document. The application servlet acts as the

entry point into the framework. Once it has created the engine, there are no

other parts of the “traditional” web API in a Tapestry application. Tapestry con-

tains several “moving” parts. Because the framework handles so much of the

application for you, it must perform a lot of work.

 Tapestry’s actions are driven by specification documents. The application,

pages, components, and libraries are all referenced through these documents.

Generally, the first access to a resource by Tapestry is through the specification doc-

ument, which leads to the other resources Tapestry must load to fulfill the request.

You must understand the specification documents to use Tapestry successfully.

 This overview shows the basics of Tapestry’s architecture and includes a work-

ing application. Rather than delve immediately into the schedule application, we

think Tapestry is complex enough to warrant a “Hello, World” application to give

you a flavor of its moving parts.

6.3 A simple Tapestry application

It is traditional when learning new language to create a “Hello, World” applica-

tion to show the basic processes required to get an application up and running.

We use this simple application because it includes the parts required for every

Tapestry application.

6.3.1 Tapestry Hello, World

The Tapestry Hello, World application consists of the application servlet, the

application and Home page specifications, and the Home page template.

The application servlet

The entry point for a Tapestry application is the application servlet. This is the

bridge between the web world and the Tapestry world. In the web application con-

figuration, it is the only registered servlet. That means that it is the only point

where you can connect your application to the typical kinds of facilities from the

web API, such as context parameters (as you will see, a Tapestry alternative exists

for these). Fortunately, the ApplicationServlet class contains several protected

methods you can override to plug in such information as the Locale, log file loca-

tions, and the application URL path. Listing 6.1 contains a typical web.xml file for

a Tapestry application.

A simple Tapestry application 163

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC

 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>

 <context-param>
 <param-name>log-file-location</param-name>
 <param-value>c:/logs/tapestry.log</param-value>

 </context-param>
 <servlet>
 <servlet-name>welcome</servlet-name>

 <servlet-class>hellotapestry.Welcome</servlet-class>
 </servlet>
 <servlet-mapping>

 <servlet-name>welcome</servlet-name>
 <url-pattern>/welcome</url-pattern>
 </servlet-mapping>

</web-app>

The first setting in this file is a context parameter for the location of the log file.

Tapestry’s treatment of logging is first rate. (For more information about logging

for other frameworks, see chapter 16.) The logging configuration information

can also appear in another location (discussed later in section 6.5.1), but it is tra-

ditional to place it here where it is easily accessible to the application servlet. The

only other entries in this configuration file are the servlet registration and the

URL pattern for the servlet. The hellotapestry.Welcome servlet (listing 6.2) in

this application extends ApplicationServlet.

package hellotapestry;

import net.sf.tapestry.ApplicationServlet;

import net.sf.tapestry.RequestContext;
import org.apache.log4j.ConsoleAppender;
import org.apache.log4j.FileAppender;

import org.apache.log4j.Level;
import org.apache.log4j.Logger;

import org.apache.log4j.SimpleLayout;

public class Welcome extends ApplicationServlet {

Listing 6.1 The application servlet is the only registered servlet

in a Tapestry application.

Listing 6.2 The ApplicationServlet subclass

164 CHAPTER 6

Tapestry

 protected String getApplicationSpecificationPath() {

 return "/tutorial/hello/HelloWorld.application";
 }

 protected void setupLogging()

 throws javax.servlet.ServletException {
 super.setupLogging();
 logger.getRootLogger().addAppender(

 new ConsoleAppender(new SimpleLayout()));
 String logFileLocation = getServletContext()
 .getInitParameter("log-file-location");

 try {
 logger.getRootLogger().addAppender(
 new FileAppender(new SimpleLayout(),

 logFileLocation));
 } catch (IOException ex) {
 logger.error(ex);

 }
 logger.setLevel(Level.INFO);
 }

}

The only entry required in this servlet is the getApplicationSpecificationPath()

method. The return from this method points to the application-specification doc-

ument (which appears in listing 6.3). The other optional entry in the welcome

servlet is an override of a protected method, setupLogging(), which is one of the

protected methods you can override to customize the behavior of the framework.

Tapestry uses the Jakarta log4j logging facility (discussed in chapter 16). The

setupLogging() method allows you to add your own customized logging to the

logging already present in Tapestry. In listing 6.2, we added both a console and a

file log.

 The welcome servlet is where the context parameter comes into play. The

application servlet is the ideal place in Tapestry to read and respond to context

parameters. If no configuration is required, you can directly reference the Appli-

cationServlet in web.xml without subclassing it.

The application specification

The next step in the Tapestry process is the processing of the application specifi-

cation file. This is the document returned from the getApplicationSpecifica-

tionPath() method of the application servlet. This XML document specifies the

page mappings and engine used by the application. The specification for the

Hello World application appears in listing 6.3.

A simple Tapestry application 165

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC

 "-//Howard Lewis Ship//Tapestry Specification 1.3//EN"
 "http://tapestry.sf.net/dtd/Tapestry_1_3.dtd">
<application

 name="Hello World Tutorial"
 engine-class="net.sf.tapestry.engine.SimpleEngine">

 <page name="Home"

 specification-path="/tutorial/hello/Home.page"/>

</application>

The engine created for this application is an instance of the SimpleEngine class.

For more complex applications, you might use a subclass of SimpleEngine to

either override existing behavior or provide additional services. The other entries

in the specification are the names of the pages in the application, which map to a

specification path. The path in turn points to a .page file, which contains the defi-

nition of a Tapestry page. A mapping in this document may also point to a new

component specification (an example of which appears later in the schedule

application). In this simple application, only the Home page exists. Every Tapes-

try application must have a Home page; it is by definition the first page of the

application and automatically launches when the Tapestry application starts.

The Home page specification

The page specification is a configuration document that binds together the HTML

template and the components that appear on the page. Each visible page in Tap-

estry consists of a combination of a page specification and the corresponding user

interface template. The page specification for the Hello World application is very

simple and is shown in listing 6.4.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE page-specification PUBLIC

 "-//Howard Lewis Ship//Tapestry Specification 1.3//EN"
 "http://tapestry.sf.net/dtd/Tapestry_1_3.dtd">

<page-specification class="net.sf.tapestry.html.BasePage"/>

Listing 6.3 The application specification HelloWorld.application

for the Hello World project

Listing 6.4 The Home page specification

166 CHAPTER 6

Tapestry

This very simple application has no Tapestry components on the page (i.e., no

elements that will be replaced by components), so the page specification simply

consists of the base class for the page. In more complex applications, you typically

subclass BasePage to add your own dynamic behavior to the page.

The Home page template

The last piece of the application is the user interface template. In this case, it fea-

tures no dynamic content, so it is a standard HTML document. When you’re using

dynamic Tapestry components, the HTML elements become placeholders for the

dynamic elements, which is illustrated in the Tapestry schedule application in

section 6.5. The Home page template appears in listing 6.5.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head>
 <title>Hello World</title>
</head>

<body>

Welcome to your first Tapestry Application.

</body>

</html>

The Hello, World application is now complete. To deploy it, package all the files

shown here into a Web archive (WAR) file along with the Tapestry libraries and

deploy it to a servlet engine. The running application is shown in figure 6.2.

Listing 6.5 The Home page template Hello.html

Figure 6.2

The running Tapestry

“Hello, World” application

The Tapestry framework 167

6.4 The Tapestry framework

The sample application shown in the previous section utilizes many of the key

classes in Tapestry. It shows the lifecycle of a typical (albeit simple) application.

Because Tapestry encapsulates the entire web API, it is important to understand

the key classes in Tapestry. When writing a Tapestry application, all of your time

is spent on the framework and its classes rather than on the web API, so let’s

focus on some of the key classes in the framework and their responsibilities.

Many of the classes covered here are represented as interfaces, which Tapestry

identifies with an initial capital I. This is a good example of loose coupling, dis-

cussed at length in chapter 12.

6.4.1 Framework classes and interfaces

The Tapestry framework is loosely divided into support classes and interfaces and

the components that make up visual elements.

IEngine

The IEngine interface in Tapestry defines the core, session-persistent object used

to run the application. When a client invokes the application, that client owns an

instance of the class that implements IEngine. The engine provides core services

to the pages and components that make up the application. Because each user has

his or her own instance of the engine, it is persisted in the user’s session (although

this is invisible to the developer). Almost every class and component in the frame-

work has a getEngine() method that returns this user’s instance of the engine.

Visit

Because Tapestry eschews the traditional web APIs, it must provide a mechanism

for the developer to pass information from one page to another. That mechanism

is the Visit object. This object is included in the application specification and is

automatically maintained by the engine. Because it is part of the engine, which

resides in the session, both the engine and the encapsulated Visit object may be

serialized (thus, your Visit object should implement Serializable).

 Visit is a concept that does not implement a particular interface or extend a

base class. The Visit object is any object you create and register with the page

specification. This means that it can include any information and behavior you

want. Typically, it is implemented as a JavaBean, with standard accessors and muta-

tors, but even that isn’t required. It is more flexible than HttpSession because it

isn’t restricted to name-value pairs. Just as in HttpSession, you must be careful

168 CHAPTER 6

Tapestry

about how much information you encapsulate in Visit. Because each user owns

an engine instance, each user owns the Visit object as well, which can lead to

scalability problems if too much information is kept there. Pages can also store

server-side state. An application stores global information in Visit but stores

page-specific state as page properties. Tapestry uses object pooling and other tech-

niques internally to make this efficient.

 The engine includes getVisit() and setVisit() methods, both written in

terms of the Object class. When retrieving the Visit from the engine, you must

typecast it to the appropriate type. The Visit object is listed in the application

specification as a property. Listing 6.6 shows the application specification for the

Hangman tutorial supplied with Tapestry, which includes the property definition

for the tutorial.hangman.Visit object. This specification also shows the syntax

for declaring multiple pages.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC

 "-//Howard Lewis Ship//Tapestry Specification 1.3//EN"
 "http://tapestry.sf.net/dtd/Tapestry_1_3.dtd">

<application name="Tapestry Hangman"

 engine-class="net.sf.tapestry.engine.SimpleEngine">

 <property name="net.sf.tapestry.visit-class">
 tutorial.hangman.Visit

 </property>

 <page name="Home"
 specification-path="/tutorial/hangman/Home.page"/>

 <page name="Guess"
 specification-path="/tutorial/hangman/Guess.page"/>

 <page name="Failed"

 specification-path="/tutorial/hangman/Failed.page"/>

 <page name="Success"
 specification-path="/tutorial/hangman/Success.page"/>

</application>

The Visit object is automatically constructed upon first request (in other words,

the first time it is retrieved from the engine), using the default constructor. If the

class doesn’t implement a default constructor, the engine method createVisit()

is called instead. The developer must supply this method to create the Visit.

Listing 6.6 The Visit object is created as a property of the application.

Specified as a
property

The Tapestry framework 169

IRequestCycle

One of the goals of Tapestry is to encapsulate much of the stateless nature of web

applications through its framework classes. However, the application must

respond to requests because it is still a web application. This behavior is handled

by the IRequestCycle interface. The implementing object (RequestCycle) han-

dles a single request cycle, or an access by the client to a page in the web applica-

tion. The request in Tapestry triggers the following sequence of events:

■ Responds to the URL by finding the IEngineService object (provided by the

IEngine) for this user

■ Determines what the resulting page will be by consulting the configuration

documents

■ Renders the page, which includes creating the components and merging

them with the user interface template

■ Releases the temporary resources

While this sequence is occurring, the framework also handles the following jobs:

■ Exception handling

■ Loading of pages and templates from resources

■ Tracking of changes to page properties and restoring of pages to prior

states

■ Pooling of page objects

The RequestCycle also handles some pooling and rendering of components. The

request cycle is broken into two phases. The first phase is called the rewind phase.

This phase exists primarily to support form submissions. Because of the loose

coupling between components on a page and the page that contains them, it is

necessary to “rediscover” some of those relationships when a form is submitted by

re-rendering. This effectively discards the previous output back to a certain point.

This facility provides the ability to undo previously generated output on the cur-

rent page. For example, if a page encounters an exception during rendering, the

request cycle can rewind the state of the components on the page back to a speci-

fied point. Once the rewind has completed, the ActionListener associated with

this page is notified and can update the state of the page or select an entirely new

output page.

 The second phase of the request cycle is the render phase. During this phase,

the page is rendered (in other words, the page is generated from the combination

of components and the user interface template) and output to the browser.

170 CHAPTER 6

Tapestry

 The Tapestry framework provides as much desktop application functionality as

possible. The components are developed much like user interface widgets for a

desktop application. Tapestry also includes event handling, much like a desktop

application. For example, you can register ActionListener objects with forms in

Tapestry. Of course, the full complement of desktop behavior isn’t available for a

web application.

 The RequestCycle encapsulates much of the functionality that makes Tapestry

an effective framework. For example, it takes care of pooling page objects for reuse.

In other frameworks, the developer must write code to handle this. Tapestry does

a lot of work behind the scenes to make this process efficient and transparent to the

developer. This behavior represents both the good and the bad in a framework that

provides numerous services for you. If the code is well written and does exactly the

job you want, it is a perfect match. On the other hand, if the code doesn’t do exactly

what you want, you must find a way to separate the behavior from the framework

and do it yourself. This is one of the reasons that Tapestry is written largely in terms

of interfaces. If there is a part (such as the request cycle) that you need to replace,

you can write your own class that implements the interface and plug it into the

framework seamlessly by subclassing BaseEngine and overriding the factory-like

methods it implements. It is important in extensive frameworks that mechanisms

exist to customize its behavior without major surgery.

6.4.2 Components

Tapestry components are built much like the user interface widgets for desktop

applications, particularly Swing components. Tapestry components use the

Model-View-Controller (MVC) design pattern, using the information represented

by the component as a model class and the user interface as a template.

AbstractComponent and BaseComponent

The foundation for components in Tapestry is the AbstractComponent class, which

encapsulates the key characteristics of all user interface elements. It implements

the IComponent interface, which defines dynamic content in Tapestry by enforcing

common semantics and properties. For example, every component must have an

Id property, which is defined here as an accessor and mutator pair (and imple-

mented with properties in AbstractComponent). In all, IComponent contains more

than 25 methods.

 The IRender interface contains only a single method signature: render(). This

method is implemented by any component that must paint itself for a particular

writer (identified by the IMarkupWriter interface) during a request cycle (identified

The Tapestry framework 171

by the IRequestCycle interface). This is the method overridden in each compo-

nent that renders itself in the appropriate format. Currently, the Tapestry compo-

nents render themselves as HTML. However, you could create a set of classes that

render as XML (to be passed to a transformation engine) or even a user interface

framework like Velocity (covered in chapter 9). Because all components must ren-

der themselves, IComponent implements the IRender interface.

 AbstractComponent is an abstract class that implements the IComponent inter-

face. This pattern is similar to the relationship in the Software Development Kit

(SDK) between the TableModel interface and the AbstractTableModel class.

AbstractComponent implements the interface and provides helper methods to

keep subsequent inheritors from having to provide the entire infrastructure

imposed by the interface. BaseComponent is one step beyond AbstractComponent. It

is an instantiable class that serves as the direct ancestor to the user interface classes

in Tapestry. Figure 6.3 shows the relationship between these classes and interfaces.

We provide an example of building a new Tapestry component in section 6.5.

AbstractComponent

BaseComponent

«interface»

IComponent

«interface»

IRender

Object

User Interface

Components
Figure 6.3

The Tapestry framework contains a well-organized

hierarchy of user interface components similar to Swing.

172 CHAPTER 6

Tapestry

ITableModel

The last of the infrastructure components we’ll cover is the ITableModel and its

related interfaces and classes. One of the common user interface elements used

in both desktop and web applications is the table. Tapestry has created an elabo-

rate structure for both displaying and accessing table data. Like the JTable and

related classes and interfaces in Swing, Tapestry’s table components create a well-

organized (but complex) hierarchy.

 Two important branches of this tree handle the data portions of the table.

The ITableModel interface is similar to Swing’s JTable. It includes methods for

getting columns, current row, counts, and other information needed to render

the control. The ITableDataModel interface handles concrete data requirements

for the rows. This interface has two primary methods—getRowCount() and

getRows()—which return an Iterator over the rows of data. Tapestry splits the

responsibilities for the definition of the columns and the values in the rows into

two separate interfaces.

 The SimpleTableModel class is a concrete class that serves as a simple generic

table model implementation. It encapsulates an Object array for row values and

creates simple column structures. When creating your own table, you may either

implement the ITableModel directly or subclass SimpleTableModel and selectively

override methods.

 The ITableDataModel hierarchy has more members. The immediate imple-

menter of this interface is the AbstractTableDataModel. Like Swing’s Abstract-

TableModel, it provides a simple List-based implementation for ITableDataModel.

It is an abstract class, so the intent is for developers to subclass it and provide

implementations for the getRows() and getRowCounts() methods. To make life

easier for developers, Tapestry already provides two concrete subclasses: Simple-

ListTableDataModel and SimpleSetTableDataModel. These classes are TableData-

Models backed by Lists and Sets, respectively.

 You must understand a fair amount of framework hierarchy to implement

tables in Tapestry. The relationship between these interfaces and classes is shown

in figure 6.4.

 To create a table component, you must supply a TableModel, a TableDataModel,

and a user interface template. Creating a table in Tapestry is more complex than

creating one in Swing. In Swing, you have a single table model that encapsulates

both row and column information. In Tapestry, those responsibilities are split

between two hierarchies.

Scheduling in Tapestry 173

Fortunately, building a table isn’t quite as overwhelming as it seems. In the next sec-

tion, we show you a sample application that builds a simple table with a minimum

amount of coding. Like all things in Tapestry, an attempt has been made to create

a rich, robust hierarchy that doesn’t force developers to create huge piles of code

to perform simple tasks. On the other hand, the hierarchy is present that allows

you to build highly complex artifacts with careful implementation and overriding.

6.5 Scheduling in Tapestry

As in the other framework chapters, we will build the two-page schedule applica-

tion using Tapestry. The boundary and entity classes are exactly the same as in

previous chapters, preserving our goal of keeping the framework separate from

the model aspect of the application. The schedule application in this section rep-

resents a Model 2 web application built using the Tapestry framework. It is avail-

able in the source code archive as art_sched_tapestry.

6.5.1 Bootstrapping the application

The first two items in a Tapestry application are the application specification and

the servlet that extends ApplicationServlet to bootstrap the application into

the framework.

«interface»

ITableModel

SimpleTableModel AbstractTableDataModel

«interface»

ITableDataModel

SimpleListTableDataModel SimpleSetTableDataModel

Figure 6.4 The Table hierarchy in Tapestry features separate branches for

the user interface and data.

174 CHAPTER 6

Tapestry

The application specification

The Tapestry application specification is an XML document that defines the appli-

cation, global properties (Tapestry’s equivalent of context parameters), the pages

in the application, and the custom components. The application specification for

the schedule application appears in listing 6.7.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE application PUBLIC
 "-//Howard Lewis Ship//Tapestry Specification 1.3//EN"
 "http://tapestry.sf.net/dtd/Tapestry_1_3.dtd">

<application name="sched-tapestry"
 engine-class="net.sf.tapestry.engine.SimpleEngine">
 <property name="driverClass">com.mysql.jdbc.Driver</property>

 <property name="dbUrl">
 jdbc:mysql://localhost/schedule
 </property>

 <property name="user">root</property>
 <property name="password">marathon</property>

 <page name="Home" specification-path="/resources/Home.page"/>

 <page name="Add" specification-path="/resources/Add.page" />

 <component-alias type="SchedTable"
 specification-path="/resources/SchedTable.jwc"/>

 <library id="contrib"
 specification-path="/net/sf/tapestry/contrib/Contrib.library"/>

</application>

The specification defines the application as using the Tapestry SimpleEngine class.

This code defines properties for database connectivity, which are defined here
rather than in the web.xml file.

This code defines the two pages in the application along with the locations of the
page specification files.

This code defines the custom SchedTable component, pointing to its component
specification file (with a .jwc extension) and the library on which is it based. The
table controls in Tapestry reside in another library. The library is a Tapestry con-
struct, which allows you to group and register classes logically within the frame-
work. The library resides in another specification document, parsed by the
framework, which defines the grouping of objects. It is not a requirement to
group items together in libraries; it is strictly an organizational construct.

Listing 6.7 Schedule application specification

Application definition B

Database
configuration

parameters

C

Page path definitions D

Custom component definitions E

B

C

D

E

Scheduling in Tapestry 175

The application servlet

The second part of the bootstrapping process is the application servlet. It provides

the connection between the web APIs and the Tapestry world. For this application,

it is the welcome servlet (see listing 6.8).

package com.nealford.art.schedtapestry.util;

import java.io.IOException;
import net.sf.tapestry.ApplicationServlet;

import net.sf.tapestry.RequestContext;
import org.apache.log4j.ConsoleAppender;
import org.apache.log4j.FileAppender;

import org.apache.log4j.Level;
import org.apache.log4j.Logger;
import org.apache.log4j.SimpleLayout;

public class Welcome extends ApplicationServlet {
 private static Logger logger = Logger.getLogger(Welcome.class);

 protected String getApplicationSpecificationPath() {

 return "/resources/sched-tapestry.application";
 }

 protected void setupLogging()

 throws javax.servlet.ServletException {
 super.setupLogging();
 logger.getRootLogger().addAppender(

 new ConsoleAppender(new SimpleLayout()));
 String logFileLocation = getServletContext().
 getInitParameter("log-file-location");

 try {
 logger.getRootLogger().addAppender(
 new FileAppender(new SimpleLayout(),

 logFileLocation));
 } catch (IOException ex) {
 logger.error(ex);

 }
 logger.setLevel(Level.INFO);
 }

}

The only method required by this servlet is getApplicationSpecification-

Path(), which points to the application specification. Once this method has

returned the path to the specification, you have left the traditional web world

Listing 6.8 The welcome servlet bootstraps the application by pointing to the applica-

tion specification file.

176 CHAPTER 6

Tapestry

and are ensconced in Tapestry for the remainder of the application. The other

method that appears here sets up logging for the application by overriding the

setupLogging() method. This isn’t strictly necessary; logging configuration may

be handled by properties files, as we explain in chapter 16.

6.5.2 The Home page

The first page in every Tapestry application is the Home page. Each page consists

of at least these elements: the page specification, the class, and the HTML tem-

plate. The Home page for the schedule application is shown in figure 6.5.

The Home page specification

The specification shown in listing 6.9 defines the components and behavior for

our Home page.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE page-specification PUBLIC
 "-//Howard Lewis Ship//Tapestry Specification 1.3//EN"

 "http://tapestry.sf.net/dtd/Tapestry_1_3.dtd">

<page-specification
 class="com.nealford.art.schedtapestry.page.Home">

 <component id="schedTable" type="SchedTable" />

 <component id="Add" type="PageLink">
 <static-binding name="page">Add</static-binding>

 </component>
</page-specification>

The class attribute points to the Java class that implements the components and

properties for the page. This page includes two components: the table and the

hyperlink at the bottom. The link at the bottom includes a static-binding prop-

erty for the link. A static binding is one that won’t be supplied by a property from

the backing class for this page. In other words, it is a value that won’t change. For

this link, we supply the name of the page from the application specification docu-

ment to which the link points.

The Home page template

The Home page user interface template for this page is very simple. It is shown in

listing 6.10.

Listing 6.9 The Home page specification defines the components and behavior

for the page.

Scheduling in Tapestry 177

<html>
<head>
<title>Schedule</title>

</head>
<body>

<h2>Schedule</h2>

<p>Add a new Schedule Item

</body>
</html>

The entries in the user interface template don’t have to be the same type as the

underlying component. If you want to supply some property values for them (for

example, the width of the control), you can use the control as the template place-

holder. However, Tapestry completely replaces whatever component resides in the

template. Frequently, you can use the HTML span control as the placeholder. This

is what we did for the table component in this page. The table component is a

Listing 6.10 The Home page template defines placeholders

for the Tapestry components.

Figure 6.5

The Home page of the schedule

application displays the first page

of schedule items with navigation

at the top.

178 CHAPTER 6

Tapestry

custom-built table (which appears in the next section). The only representative for

the component needed on this page is an HTML element (like) that

includes the jwcid attribute identifying this control. This attribute is required for

every control that Tapestry will replace on the page, and it maps to the component

name registered in the page specification. When this page is rendered, the table

replaces the tag and the hyperlink replaces the <anchor> tag. Tapestry refers

to the HTML document as a template, and that is really the extent of it. The actual

controls that are ultimately rendered are Tapestry user interface components.

The Hello page class

The third piece of the Hello page is the underlying class. The name of the class

appears in the page specification as the class attribute. This class supplies prop-

erty values and lifecycle events for the page. The definition of this class is shown in

listing 6.11.

package com.nealford.art.schedtapestry.page;

import com.nealford.art.schedtapestry.boundary.ScheduleDb;
import com.nealford.art.schedtapestry.util.ScheduleException;
import net.sf.tapestry.IEngine;
import net.sf.tapestry.html.BasePage;
import org.apache.log4j.ConsoleAppender;
import org.apache.log4j.Level;
import org.apache.log4j.Logger;
import org.apache.log4j.SimpleLayout;

public class Home extends BasePage {
 static Logger logger = Logger.getLogger(Home.class);
 private ScheduleDb scheduleDb;

 static {
 logger.addAppender(new ConsoleAppender(new SimpleLayout()));
 logger.setLevel(Level.DEBUG);
 }

 public Home() {
 logger.debug("Entering Home page constructor");
 }

 public ScheduleDb getScheduleDb() {
 if (scheduleDb == null)
 scheduleDb = createScheduleDb(getEngine());
 try {
 scheduleDb.populate();
 } catch (ScheduleException ex) {
 logger.error("Home.getScheduleDb", ex);
 }
 return scheduleDb;

Listing 6.11 The Home class provides the underlying infrastructure for the Home page.

Sets up logging

Returns a populated
boundary class

Scheduling in Tapestry 179

 }

 private ScheduleDb createScheduleDb(IEngine engine) {
 String dbUrl = engine.getSpecification().
 getProperty(
 "dbUrl");
 String driverClass = engine.getSpecification().
 getProperty("driverClass");
 String user = engine.getSpecification().
 getProperty(
 "user");
 String password = engine.getSpecification().
 getProperty(
 "password");
 return new ScheduleDb(driverClass, dbUrl, user,
 password);
 }

 protected void firePageBeginRender() {
 super.firePageBeginRender();
 try {
 scheduleDb.populate();
 } catch (ScheduleException ex) {
 logger.error("Home.beginResponse()", ex);
 }

 }
}

The Home class extends BasePage, the base class for all underlying pages. You pro-

vide properties and override lifecycle methods to customize the behavior of the

page. The first section of code sets up logging for this page, using the log4j log-

ging built into Tapestry. Next, a couple of support classes for accessing the

boundary class appear. The createScheduleDb() method is responsible for creat-

ing the boundary class. In previous applications, the configuration information

for the connection appeared in the web.xml file. Here, however, that information

appears in the application specification, and the engine.getSpecification()

method accesses it. This method lazily instantiates a new instance of the schedule

boundary if it doesn’t already exist.

 The other method on this page is a framework callback, overridden from the

parent BasePage class. The overridden firePageBeginRender() method is an

example of several callback methods that provide access to the rendering pipe-

line. In this method, we want to make sure that the page (and the table on it)

responds to changes to the underlying database. The populate() method on the

boundary class refreshes the list of items. By placing it in this method, we ensure

that the information is updated every time the page is drawn for this user.

Creates the
boundary class
using init
parameters

Is invoked when the
page is drawn

180 CHAPTER 6

Tapestry

6.5.3 The custom table component

One notable omission from the Home page is any information about the table

itself. The table is its own component and handles its own rendering and events.

As with all artifacts in Tapestry, custom components consist of three parts: the spec-

ification, the template, and the backing class. Tables in Tapestry are split into two

definitions: one for the data rows and another for the columns. Each of these def-

initions flows from different inheritance hierarchies (see section 6.4.2 for details).

The table specification

The first part of the custom table component is the specification, shown in

listing 6.12.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE component-specification PUBLIC

 "-//Howard Lewis Ship//Tapestry Specification 1.3//EN"
 "http://tapestry.sf.net/dtd/Tapestry_1_3.dtd">

<component-specification

 class="com.nealford.art.schedtapestry.component.SchedTable"
 allow-body="no" allow-informal-parameters="yes">

 <component id="table" type="contrib:Table">

 <binding name="tableModel" expression="tableModel"/>
 </component>

</component-specification>

The SchedTable specification indicates the backing class’s fully qualified name,

whether this component will have a body, and other properties. The body of the

component is the encapsulated Table component from the contrib library, which

is registered with this application via the application specification in listing 6.7.

The lone property for this component is the table model used to populate the

table. The expression tableModel maps to a getTableModel() method in the back-

ing class file.

The table template

The user interface template for the custom table control is very simple because

the default characteristics of the built-in table component are sufficient. The tem-

plate consists of a single line, specifying the jwcid and border attributes:

<table border="1" jwcid="table" />

Listing 6.12 The specification for the custom table component

Scheduling in Tapestry 181

As do the user interface page templates, the table template contains placeholders

for the actual Tapestry components that will replace them. In this case, the Tapes-

try table component will replace this one with the added characteristic of a single-

width border. Note that the component definitions for both specifications and

templates are the same. Once you understand how Tapestry handles artifacts,

you’ll see that it handles them consistently throughout.

The table class

The real purpose of creating the table component as a custom control is to con-

trol the columns and data that appear in it. Obviously, the template doesn’t highly

customize the appearance. Listing 6.13 shows the first part of the SchedTable class.

package com.nealford.art.schedtapestry.component;

import com.nealford.art.schedtapestry.boundary.ScheduleDb;

import com.nealford.art.schedtapestry.entity.ScheduleItem;
import com.nealford.art.schedtapestry.page.Home;
import net.sf.tapestry.BaseComponent;

import net.sf.tapestry.ComponentAddress;
import net.sf.tapestry.contrib.table.model.ITableColumn;
import net.sf.tapestry.contrib.table.model.ITableColumnModel;

import net.sf.tapestry.contrib.table.model.ITableModel;
import net.sf.tapestry.contrib.table.model.simple.
 SimpleListTableDataModel;

import net.sf.tapestry.contrib.table.model.simple.SimpleTableColumn;
import net.sf.tapestry.contrib.table.model.simple.
 SimpleTableColumnModel;

import net.sf.tapestry.contrib.table.model.simple.SimpleTableModel;
import org.apache.log4j.Logger;

public class SchedTable extends BaseComponent {
 private ScheduleDb scheduleDb;

 public ITableModel getTableModel() {

 scheduleDb = ((Home) getPage()).getScheduleDb();
 SimpleListTableDataModel listTableDataModel =
 new SimpleListTableDataModel(scheduleDb.getList());

 return new SimpleTableModel(listTableDataModel,
 createColumnModel());
 }

A huge number of classes collaborate to create the SchedTable control, mostly

from the Tapestry framework. The component itself extends from BaseComponent,

which defines all the common component elements. The getTableModel()

Listing 6.13 The declaration and table model portion of the custom table backing class

182 CHAPTER 6

Tapestry

method returns the rows for the table. To do this, it must get a reference to the

boundary class.

 Tapestry provides a couple of ways to access the boundary class in this situa-

tion. If we were passing the information from one page to another, we would use

a Visit object, discussed in section 6.4.1. In this case, we’re passing the informa-

tion via another mechanism. Because the table resides on the page that instanti-

ates the boundary object, we can get to the underlying page directly and access

the class. The BaseComponent class includes a getPage() method that returns the

page definition for the page this component resides on. For the SchedTable com-

ponent, we cast getPage() to our Home page and directly access the getSched-

uleDb() method.

 The next order of business is to create the table model, which is similar in

intent to the table models defined by Swing. Fortunately, Tapestry already

includes a SimpleListTableDataModel class, which constructs a table model

around an existing list. Because our boundary class returns a list of items, we can

wrap it into the Tapestry helper with no additional work. It certainly pays to look

around in the Tapestry classes to see if they already define something you need.

Chances are good, especially if what you need is generic, that a helper class

already exists.

 The last line of the method returns the simple table model constructed

around the listTableDataModel and the method call to createColumnModel().

Listing 6.14 contains the remainder of this class, which includes the classes and

methods that build the column model.

 private ITableColumnModel createColumnModel() {
 String[] col = ScheduleDb.getColumns();

 return new SimpleTableColumnModel(new ITableColumn[] {
 new StartColumn(col[1]),
 new DurationColumn(col[2]),

 new TextColumn(col[3]),
 new EventTypeColumn(col[4])});
 }

 private class StartColumn extends SimpleTableColumn {
 public StartColumn(String colName) {

 super(colName);
 }

 public Object getColumnValue(Object row) {

 return ((ScheduleItem) row).getStart();
 }

Listing 6.14 The last part of the table definition creates the table column model.

Method that
returns an array of

ITableColumn objects

Custom
column for
start

Scheduling in Tapestry 183

 }

 private class DurationColumn extends SimpleTableColumn {
 public DurationColumn(String colName) {
 super(colName);

 }

 public Object getColumnValue(Object row) {
 return new Integer(((ScheduleItem) row).getDuration());

 }
 }

 private class TextColumn extends SimpleTableColumn {

 public TextColumn(String colName) {
 super(colName);
 }

 public Object getColumnValue(Object row) {
 return ((ScheduleItem) row).getText();
 }

 }

 private class EventTypeColumn extends SimpleTableColumn {
 public EventTypeColumn(String colName) {

 super(colName);
 }

 public Object getColumnValue(Object row) {

 return ((ScheduleItem) row).getEventType();
 }
 }

}

Each column in the column model requires definition. The Tapestry Simple-

TableColumn class is sufficient for simple display columns. The primary method in

all the private column subclasses is the getColumnValue() method. It is passed a

row object, which is derived from the TableDataModel’s underlying value. In this

case, it is cast to the entity type (ScheduleItem) and returned as an object. It is

typical to define the column classes as private nested classes inside the TableData-

Model because they are typed to a particular entity (the one passed as the row). It

is possible to create them as higher-level objects if there is an opportunity to

reuse them.

 The remaining method is createColumnModel(). This method obtains the list

of columns from the boundary class and instantiates a SimpleTableColumnModel

that wraps an array of instances of the column classes defined at the bottom of the

Custom
column for
duration

Custom
column for
text

Custom
column for
eventType

184 CHAPTER 6

Tapestry

class. This column model is ultimately returned to the constructor of the Simple-

TableModel class.

 The combination of the specification, template, and class completes the defini-

tion of the table component. This component resides on the Home page, which is

defined in that page’s specification. The component specification (with a .jwc

extension), the template file, and the class that creates both the row and column

models define the table.

 You may have noticed that the table shown in figure 6.5 automatically handles

multipage scrolling. This is a feature built into the Tapestry table component. We

didn’t write any code to make it work—it works “out of the box” that way.

 The table component in Tapestry is very powerful. One of the examples that

come with Tapestry shows off the capabilities of the table component when cus-

tomized, and it appears in figure 6.6.

 The customized table component example illustrates the ability to place non-

text controls in cells (the first column), automatic paging (like the table used in

the schedule application), and the ability to sort column headers. Notice that the

right-hand column has a sorting direction indicator.

 The elaborate capabilities of the customized table component illustrate our

earlier point that Tapestry attempts to create a framework like Swing where the

components are easily customizable. The fact that they are ultimately rendered as

HTML is irrelevant. The component is written to the framework, which takes care

of rendering it at the appropriate time. Building your own paging and sortable

columns (without using Tapestry) is covered in chapter 13.

Figure 6.6 The Tapestry table component is quite powerful when customized. This

example shows automatic paging, controls in columns, and sortable columns.

Scheduling in Tapestry 185

6.5.4 The Add page

The second page of the schedule application also illustrates how Tapestry handles

the interaction between the user interface and the backing class. This is the page

that is linked via the hyperlink on the Home page. It allows the user to add new

schedule items (with validation). Figure 6.7 shows the Add page.

The Add page specification

As usual, the first order of business in Tapestry is the specification for the page.

This specification is considerably longer than previous ones because this page

contains more components. The specification consists of two logical sections. The

first handles the controls and their relationships to the form (listing 6.15); the

second handles the validations for the form.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE page-specification PUBLIC
 "-//Howard Lewis Ship//Tapestry Specification 1.3//EN"

 "http://tapestry.sf.net/dtd/Tapestry_1_3.dtd">

<page-specification class="com.nealford.art.schedtapestry.page.Add">

 <component id="form" type="Form">

 <binding name="listener" expression="listeners.formSubmit"/>
 <field-binding name="stateful" field-name="Boolean.TRUE"/>
 </component>

 <component id="startDate" type="TextField">
 <binding name="value" expression="startDate"/>
 </component>

Listing 6.15 The top of the Add page specification

Figure 6.7 The Add page allows the user to add new schedule items.

186 CHAPTER 6

Tapestry

 <component id="eventType" type="PropertySelection">

 <binding name="model" expression="events"/>
 <binding name="value" expression="eventType"/>
 </component>

 <component id="duration" type="TextField">
 <binding name="value" expression="duration"/>
 </component>

 <component id="text" type="TextField">
 <binding name="value" expression="description"/>
 </component>

 <component id="addSubmit" type="Submit">
 <binding name="listener" expression="listeners.formSubmit"/>
 </component>

The Add page specification defines the class that backs this page as an attribute of

the page specification root. It also defines a form for this page. The form includes

in its definition a property for a listener. As with Swing and other GUI frameworks,

you may register listeners for form events. The backing class includes methods for

the page. In this case, when the user submits the form, the framework invokes the

Add class’s formSubmit() method. The form is also defined as stateful, meaning

that the framework will keep field values between invocations. Behind the scenes,

the form checks to ensure that the HttpSession exists and displays an error mes-

sage if the HttpSession has been lost (due to inactivity). This check has been

improved (and is less intrusive) in Tapestry version 3.

 Each of the components that appear on the form has definitions in this specifi-

cation. The expressions bind them to properties of the backing page class. For

example, the startDate expression maps to a getStartDate() method on the

underlying page class. Any class property or method is legal here, but the proper-

ties (following the standard JavaBean naming conventions) on the page class are

referenced as regular fields.

The Add page template

Like the Add page specification, the template has more elements than the previ-

ous example as well. It appears in listing 6.16.

<html>
<head>

<title>
Add Schedule Item

Listing 6.16 The Add page template

Scheduling in Tapestry 187

</title>

</head>
<body>
<h3>Add New Schedule Entry</h3>

<form jwcid="form">

<table>
 <tr>
 <td>Start:</td>

 <td></td>
 </tr>
 <tr>

 <td>Event Type:</td>
 <td></td>
 </tr>

 <tr>
 <td>Duration:</td>
 <td></td>

 </tr>
 <tr>
 <td>Description:</td>

 <td></td>
 </tr>
 <tr><td> </td><td>

 <input type="submit" jwcid="addSubmit" value="Add Item"/>
 </td></tr>

</table>

</form>

</body>
</html>

The controls on the Add page are almost all represented by span placeholders.

The key property is the jwcid field, which maps to the component definition in

the page specification. The eventType field appears on the running form as an

HTML <select> control. It is defined in the page specification as a PropertySe-

lection with two fields. However, in the template it appears as just another span

placeholder. To understand how the PropertySelection component works, you

must first see the backing class file. We will return to it (and the validation errors

at the top of the page) after discussing the Add class.

188 CHAPTER 6

Tapestry

The Add class

The Add class includes the code for populating the fields of the template, han-

dling errors, and saving new records. The first portion of this class is shown in

listing 6.17.

package com.nealford.art.schedtapestry.page;

import com.nealford.art.schedtapestry.boundary.ScheduleDb;
import com.nealford.art.schedtapestry.entity.ScheduleItem;
import com.nealford.art.schedtapestry.util.ScheduleException;
import net.sf.tapestry.IMarkupWriter;
import net.sf.tapestry.IRequestCycle;
import net.sf.tapestry.form.IPropertySelectionModel;
import net.sf.tapestry.form.StringPropertySelectionModel;
import net.sf.tapestry.html.BasePage;
import org.apache.log4j.Logger;

public class Add extends BasePage {
 private String startDate;
 private int duration;
 private String eventType;
 private String description;
 private java.util.List errors;
 private String error;
 private ScheduleDb scheduleDb;
 private IPropertySelectionModel events;

 public void beginResponse(IMarkupWriter markupWriter,
 IRequestCycle requestCycle) throws
 net.sf.tapestry.RequestCycleException {
 super.beginResponse(markupWriter, requestCycle);
 String dbUrl = getEngine().getSpecification().
 getProperty("dbUrl");
 String driverClass = getEngine().getSpecification().
 getProperty("driverClass");
 String user = getEngine().getSpecification().
 getProperty("user");
 String password = getEngine().getSpecification().
 getProperty("password");
 scheduleDb = new ScheduleDb(driverClass, dbUrl, user,
 password);
 events = new StringPropertySelectionModel(scheduleDb.
 listEventTypes());
 }

 public IPropertySelectionModel getEvents() {
 return events;
 }

Listing 6.17 The Add class handles the details of adding a new item.

Scheduling in Tapestry 189

Like most of the classes built with Tapestry, the Add class includes a large number

of framework references. It extends BasePage and declares a variety of private

fields. They fall into several categories: logging, fields that back the components

in the specification, error lists, the boundary class, and the PropertySelection

component support.

 The beginResponse() method performs two tasks: it creates a new boundary

class and builds the selection model for the select control. The boundary class is

re-created here for convenience. Rather than re-creating it, we could have placed

it on a Visit object in the Home page and passed the instance to this page. How-

ever, we took the simple approach for expediency. For a more robust application,

you would use Tapestry object pooling to handle both database connection pool-

ing and object pooling.

 The last part of the method creates the PropertySelectionModel interface,

which defines the semantics for an HTML select control (i.e., a combobox). The

interface (IPropertySelectionModel) includes methods for accessing the option,

label, value, and number of options. As usual, you can implement this interface

directly to provide customized behaviors. For simple cases (like the one for the

schedule application), the StringPropertySelectionModel wraps a PropertySe-

lectionModel around an existing list. Again, Tapestry provides a helper class for

the common cases.

 From the page specification in listing 6.15, the PropertySelection component

accepts two binding properties instead of one:

 <component id="eventType" type="PropertySelection">
 <binding name="model" expression="events"/>

 <binding name="value" expression="eventType"/>
 </component>

The model property points to an instance of a class that implements IProperty-

SelectionModel, and the value property maps to the set method for the field

whose value is selected by the control. The backing class includes a getEvents()

method that returns the PropertySelectionModel and an accessor/mutator pair

for get/setEventType().

 The remainder of the class handles updating and error handling; it appears in

listing 6.18.

 public void formSubmit(IRequestCycle cycle) {
 ScheduleItem item = new ScheduleItem(startDate, duration,

 description, eventType);

Listing 6.18 The remainder of the Add class includes event handling and

error generation.

190 CHAPTER 6

Tapestry

 errors = item.validate();

 if (errors.isEmpty()) {
 try {
 scheduleDb.addRecord(item);

 } catch (ScheduleException ex) {
 logger.error("AddPage.formSubmit()", ex);
 }

 cycle.setPage("Home");
 } else
 cycle.setPage("Add");

 }

 public java.util.List getErrors() {
 return errors;

 }

 public void setErrors(java.util.List errors) {
 this.errors = errors;

 }

The rest of the Add class consists of accessor and mutator pairs for the private

fields of the class (we’ve omitted that here for space considerations). The form-

Submit() method is called when a user clicks the form’s Submit button. Notice

how much Tapestry mimics desktop applications. The design decision in Tapestry

to create the backing class with the specification and template becomes clearer. If

you’re using “normal” HTML forms, it is much harder to hide the HTTP GET/

POST semantics. However, in Tapestry, the framework is only executing code on

the backing class and the included components, which are written with this infra-

structure in mind. By completely replacing the standard web API, Tapestry can

mimic statefulness and other desktop application behavior.

 This formSubmit() method creates a new ScheduleItem object from the fields

on the form. The framework has already called the mutators for all the private

fields as part of the POST operation. The mutators are mapped to the compo-

nents in the specification document. The ScheduleItem class features a vali-

date() method that returns a list of error messages. The list consists of simple

strings, packaged in a List. The ScheduleItem entity object creates the list of

errors in the validate() method, shown in listing 6.19.

public List validate() {
 List validationMessages = new ArrayList(0);

 if (duration < 0 || duration > 31)
 validationMessages.add("Invalid duration");

Listing 6.19 ScheduleItem's validation method

Scheduling in Tapestry 191

 if (text == null || text.length() < 1)

 validationMessages.add("Event must have description");
 return validationMessages;
}

If no errors return, the boundary class inserts the new schedule item and uses the

request cycle to return to the Home page.

Validations

If the schedule item returns a list of errors in the formSubmit() method of the Add

class, the request cycle returns to the Add page. The Add page includes code at

the top of the template for outputting the list of validation errors. The results of a

failed validation are shown in figure 6.8.

 The error output is handled by entries in both the specification and the tem-

plate. Listing 6.20 contains the last part of the page specification.

 <!-- handle errors -->
 <component id="foreachError" type="Foreach">
 <binding name="source" expression="errors"/>

 <binding name="value" expression="error"/>
 </component>

 <component id="error" type="Insert">

 <binding name="value" expression="error"/>
 </component>
</page-specification>

Listing 6.20 The Add page specification includes components that iterate over a list.

Figure 6.8

When an item validation fails, the

application returns to the input page

and displays a list of errors at the top.

192 CHAPTER 6

Tapestry

This specification slice shows a different kind of Tapestry component. All the

components we’ve covered thus far have been user interface widgets. Tapestry

also includes programming constructs as components. The Foreach component

iterates over a collection (either a List, Array, or Map) and makes each item avail-

able for processing. The Insert component provides a mechanism for outputting

an HTML label on the form. The template includes the Foreach block at the top,

represented as a span:

If the list of errors is empty, there is nothing to iterate over, so this code produces

no output. If the errors list is not empty, the Foreach construct iterates over the

list, printing out the error message. This completes the Tapestry version of the

schedule application.

6.6 Evaluating Tapestry

As demonstrated by even the basic examples in this chapter, Tapestry is a complex

framework. To create the simplest web application, you must understand a fair

amount about the architecture and components. Because it is all-encompassing,

you can’t rely on your prior knowledge of the web APIs in Java. It is much like

learning a completely new user interface framework from scratch. Fortunately,

the authors did not reinvent the entire wheel. If you have used other GUI frame-

works, you can see many familiar features in Tapestry. In particular, it leverages

the JavaBeans component model for much of its automatic functionality (like

matching accessor and mutator names to properties on a page).

6.6.1 Documentation and samples

When you’re learning a completely new framework, two elements are critical: the

documentation and the samples. Tapestry excels in both these areas; it supplies

well-written documentation in two formats and good examples. Because Tapestry is

complex, the success of the framework hinges on the quality of the documentation.

Documentation

The documentation in Tapestry is stellar, particularly for an open-source applica-

tion. In fact, it is better than some commercial tools. The JavaDoc API reference is

Evaluating Tapestry 193

good, with most of the properties and methods documented. In particular, the

JavaDoc for the components features two sets of pages. The first is a standard Java-

Doc page describing the component and its fields and methods. A representative

sample appears in figure 6.9.

 However, the description of the fields and methods for a Tapestry component

only tells part of the story. The other critical piece of information is the syntax for

declaring it in the page specification. Each of the component JavaDoc pages also

includes a Component Reference hyperlink (see the lower right-hand corner in

figure 6.9). This leads to a detailed page that explains how to declare the compo-

nent and includes numerous examples. A representative sample of one of these

pages is shown in figure 6.10.

 For additional documentation on Tapestry, check out Tapestry in Action, by

Howard Lewis Ship (January, 2004.) Ship is the original author and primary con-

tributor to the Tapestry project, so his book on the subject is authoritative.

Samples

Another key feature of a framework is the sample applications. Most developers

want to see code before they read hundreds of pages of documentation. The sam-

ples are simple but good. The tutorial is well written and paced well, which is par-

ticularly important in an enveloping framework like Tapestry. No one could ever

Figure 6.9 The JavaDoc pages for components feature good descriptions.

194 CHAPTER 6

Tapestry

figure out how to start a Tapestry application without some assistance! The tuto-

rial creates a trivial application to illustrate how the triad of artifacts works for

each page: the specification, the template, and the backing class.

 The tutorial continues with a Hangman game, which illustrates interaction

and behaviors that are more complex. It then moves on into some more advanced

Tapestry topics, like internationalization. Although the tutorial starts well and

contains useful samples, it doesn’t go very far into the real workings of Tapestry.

However, it does introduce you to the framework so that you can start experiment-

ing on your own.

Figure 6.10 The additional Component Reference pages are critical for the page specifications and

for using the full features of the components.

Evaluating Tapestry 195

 Note that the tutorial can build and run itself with the Ant build tool. The

ant run target builds the appropriate artifacts and starts its own web server

(Jetty) to host the sample. This is a more comprehensive approach than I’ve seen

before. Generally, frameworks give you a web archive (WAR) or Enterprise

Archive (EAR) file to deploy in your servlet engine of choice. Tapestry even pro-

vides the servlet engine.

6.6.2 Debugging support

Another outstanding feature of Tapestry is the debugging support provided by

the framework. The stack traces delivered to the browser are informative and con-

tain both Tapestry internal messages and the full Java stack trace, which makes it

easy to track down bugs.

 Tapestry also includes a handy tool for helping you debug your running Tapes-

try applications. Because it handles so many details of the application for you, you

want to find out what’s going on within the framework from time to time. Tapestry

includes a debugging aid called the “Inspector.” You can enable it for your appli-

cation while debugging. This tool shows up as an icon in the lower-right side of

the browser page, as shown in figure 6.11.

 Clicking on the Inspector icon launches a new window with statistics and

details about the page you are looking at, along with some framework informa-

tion. The results of clicking the Inspector icon on the page in figure 6.11 are

shown in figure 6.12.

 The exception pages are also first-rate in Tapestry. The standard exception

page “unwinds” nested exceptions and displays all the servlet API and Java system

Figure 6.11 The Tapestry Inspector appears in the lower right.

196 CHAPTER 6

Tapestry

properties as well. Many developers move to Tapestry just for the debugging sup-

port alone. In version 3.0, the exception support has gotten even better, with pre-

cise line number reports for errors.

6.6.3 Using Tapestry

The Tapestry version of the schedule application is vastly different from the

“straight” Model 2 or Struts versions. In fact, it is not like any other version of the

schedule application in this book! This application touches only the tip of the ice-

berg of the Tapestry framework. It is a huge code base, covering a large number of

topics. The authors of this framework have gone to great lengths both to hide the

underlying web APIs and to provide a desktop look and feel to the code written

within the framework. The ApplicationServlet is the jumping-off point for the

framework, and virtually no standard web API code exists beyond that point.

 Tapestry handles a great deal of complexity behind the scenes. Many of the

objects created by the framework are pooled and cached for you. The framework

Figure 6.12 The Inspector shows information about the current page and the

state of the components on it.

Summary 197

handles the serialization and persistence of the engine instances it maintains for

each user. The framework also creates pseudo-events that mimic desktop applica-

tions. The component model is also familiar in intent (if not in implementation)

to Swing and other GUI frameworks. Once you understand the basic concepts

behind how Tapestry wants you to work, you’ll find it a productive environment.

 Good debugging support is important in Tapestry. When developing applica-

tions using it, you might find the complexity of the framework to be overwhelm-

ing. If the debugging support wasn’t so good, it would be a much more difficult

framework in which to develop. Even so, the sheer volume of the framework is fre-

quently daunting.

 To make effective use of this framework, it helps to immerse yourself in it for a

long period of time. More than any other framework mentioned in this book

(with the possible exception of Turbine), Tapestry requires a great deal of effort

to master. However, the trade-off may be worth it for some types of development.

If you want to create web applications that look and feel more like desktop appli-

cations, Tapestry is built for you.

 Tapestry is in version 2.2 as of this writing and seems very stable. It “feels” like a

mature framework. The hierarchies are well defined and laid out, with good

abstractions and loose coupling. The documentation is helpful even by commer-

cial product standards. If you can afford the time investment, Tapestry is a worth-

while choice. It clearly supports building Model 2 applications, although in

Tapestry they may be closer to the original Model-View-Controller paradigm. One

of the most compelling reasons to use Tapestry is the reduction of the amount of

code required to create applications. Because Tapestry performs so much work

for you within the framework, it frees you from writing that code yourself. Once

you overcome the learning curve for the API, you’ll find Tapestry a productive

framework.

6.7 Summary

In this chapter, we built our schedule application using Tapestry. Tapestry is a well-

designed, mature framework that allows you to develop sophisticated applications

that are built like traditional desktop applications but that run as web applica-

tions. Each artifact consists of a specification, a user interface template, and a

backing class. Some of the common user interface controls (like HTML tables)

rely on table and column models to supply data. Other user interface elements

can generally be implemented with a built-in helper class. However, you must still

198 CHAPTER 6

Tapestry

understand how to supply the data to the helper class. The documentation and

samples provided by Tapestry are excellent, on par or better than most commer-

cial products. The documentation includes both JavaDoc reference help and spe-

cific help for the Tapestry components, including all their attributes.

 In the next chapter, we look at another Model 2 web framework, WebWork.

199

WebWork

This chapter covers

■ The architecture and design of WebWork

■ Building applications using WebWork

■ Evaluating WebWork

200 CHAPTER 7

WebWork

WebWork is an open-source web development framework for building Model 2

applications. Philosophically, it is closer to Struts than Tapestry. It works within

the existing web APIs in Java rather than attempting to replace them completely.

WebWork contains several concepts and constructs that are unique and that set it

apart from other frameworks, such as the Pull Hierarchical Model-View-Control-

ler design and the value stack, which supplies values to their custom JSP tags. As

with the other framework chapters, we begin with a history and background of the

framework. We then explore some key concepts and constructs that are vital when

you’re working with the framework. Of course, the centerpiece of the chapter is

the schedule application, written in WebWork. As always, the principles of

Model 2 development provide the guidelines for the samples and dictate a firm

separation of concerns.

7.1 Overview

WebWork is produced by the Open Symphony project (www.opensymphony.com).

This project includes many embedded projects; WebWork is just one of them. The

framework is currently at version 1.3, and you can download it from the Open Sym-

phony web site. It is based on best practices and design patterns that have long-

standing records of accomplishment—patterns such as Model-View-Controller,

the Java 2 Enterprise Edition (J2EE) Front Controller, and others. It is also based

on a strong motivation to keep things as simple as possible while maintaining flex-

ibility (which the creators acknowledge is a difficult balancing act).

 WebWork implements what its documentation calls “Pull Hierarchical Model-

View-Controller,” or “Pull HMVC.” This is the creators’ own take on the Model 2

design. The “pull” part of this definition indicates that the view component is

responsible for pulling the model information from the controller on demand.

This is different from the traditional Model 2, where the view accesses informa-

tion that has been placed within the model and passed to it from the controller.

In this case, the view understands what information it wants and accesses it with-

out necessarily having to wait for a controller to make it available. This architec-

ture requires the presence of a repository of data available to all views, which

access it on a just-in-time (JIT) basis.

 The “hierarchical” part of the description describes the repository of view data.

In the case of WebWork, the “value stack” is used to provide information to the

view. (We describe this construct in section 7.2.4.) The rest of the architecture is

Model-View-Controller. That means that WebWork enforces the normal semantics

Overview 201

of Model 2, but with a different twist on how that model information is made

available. WebWork is not the only project to use this approach. Turbine’s docu-

mentation and white papers, discussed in chapter 1, also refer to this “pull” para-

digm of Model 2.

 WebWork takes advantage of the web APIs in Java rather than hiding them.

However, it doesn’t rely on them as much as unadorned Model 2 or Struts. Like

Struts, WebWork includes a central controller, based on the J2EE Front Controller

design pattern, which creates Action objects (thus using the Command design

pattern described in chapter 4). However, the return and packaging of model

information is different in WebWork.

7.1.1 The architecture

The architecture of WebWork follows the common architecture of most Model 2

web application frameworks. Figure 7.1 shows the overall architecture and flow.

 You can configure WebWork through configuration files. When WebWork

starts, the ServletDispatcher is invoked. This is the main controller for Web-

Work, similar to other Model 2 frameworks. The ServletDispatcher reads several

configuration files (covered in section 7.1.2) and uses that information to create

an Action object to handle the request. The action in turn creates model beans,

which access data, mutate it, and otherwise perform the real work of the applica-

tion. WebWork does not require the use of model beans. Properties can appear

Browser

ServletDispatcher

Actions

Config

Action

Views

Config

Data

Model

Beans

Config

File(s)

View (JSP)

1) access
3) invoke

5) return

2a) read
2b) read

6) get mapping
4a) create

4b) update

8) extract

7) dispatch

Figure 7.1 The WebWork architecture has much in common with unadorned Model 2 and Struts, with changes

in information flow from the model objects.

202 CHAPTER 7

WebWork

directly in the Action class but shouldn’t for most Model 2 applications because

such an arrangement violates the separation of responsibilities.

 The action returns a response code, used by the ServletDispatcher to look up

the appropriate view. The ServletDispatcher dispatches control to the view com-

ponent, which can be any view framework (for example, JSP or Velocity), or it can

be an action chain, which will execute another action. The view extracts informa-

tion needed from the value stack. The framework maintains this construct by

caching information from both actions and model beans for use by the view. The

value stack is discussed in section 7.2.4.

 On the surface, WebWork looks just like the architectural diagram for Struts.

However, the details of information flow are different. WebWork makes accessing

information kept in actions and model objects easier by handling much of the

information transport for you. WebWork includes numerous custom JSP tags that

are savvy about the information flow within the framework.

 Validation is also handled differently in WebWork. It allows you to create meta-

data classes around standard HTML controls to handle formatting, validation, and

other facilities. In this regard, the HTML elements become much more like desk-

top user interface (UI) widgets.

7.1.2 The configuration

Configurability is one of the hallmarks of WebWork. The framework includes a

default properties file and allows you to override these settings in additional appli-

cation-specific properties files. WebWork uses the properties files shown in

table 7.1 to configure the application.

Table 7.1 WebWork properties files

Properties File Purpose

webwork This is the primary configuration file for the framework. It includes package names,

UI settings, and entries that point to the other configuration files.

default This is the default properties file for WebWork. The framework reads all these val-

ues, then selectively overrides them from the webwork properties file.

views This file contains all mappings for visible resources in the application. It includes

mappings for actions and UI elements. The actions return values that reside in this

file to point to a destination resource.

continued on next page

Key concepts 203

Each of these properties files is loaded from the classpath. You can place them

anywhere on the classpath (including the classes directory under WEB-INF in the

web application). One of the properties in both the default and webwork proper-

ties files is webwork.configuration.properties, which points to all the other prop-

erties files. If you want to store most of the properties files in another location,

you can point to that location from this property in the main configuration file.

The framework looks for and tries to load both the default and webwork files

upon startup. All the other files can load based on property settings in one of the

two main files. Developers sometimes like to keep all configuration files together

and away from the output classpath, so WebWork facilitates that design via its

property-loading mechanism.

 Some of these files may also be XML files. In particular, WebWork includes a

document type definition (DTD) to use with an XML document for view map-

pings. If you prefer to keep view information in XML, WebWork can support that.

The webwork.configuration.xml property in the webwork properties file allows

you to specify an XML view file instead of the standard properties file.

 To make it easier for you to set up the directory and configuration file struc-

ture WebWork expects, the framework install includes a “skeleton” project named

skeleton-project.zip that resides in the /etc directory. This zip file includes a rea-

sonable directory structure, libraries, an Ant build file, templates, and configura-

tion files. This is an excellent starting point for building a WebWork project

rather than setting it up on your own.

7.2 Key concepts

Like all nontrivial frameworks, WebWork contains some key concepts that you

must understand before you can leverage the framework to its best potential.

WebWork includes Action classes, which are an implementation of the Com-

mand design pattern; the ServletDispatcher, which is modeled after the Front

log4j This file is used to set up logging for WebWork. WebWork uses the Commons log-

ging framework, whose default logging implementation is log4j. This properties file

is a standard log4j file (see chapter 16 for more information on log4j).

Action-specific Internationalization is handled through properties files mapped to actions. Each

action can have a properties file that defines the visual elements exposed to that

action’s view.

Table 7.1 WebWork properties files (continued)

Properties File Purpose

204 CHAPTER 7

WebWork

Controller design pattern (discussed in chapter 4); and an innovative data struc-

ture called the value stack, which makes it easy to pass information from the con-

troller to the view.

7.2.1 Actions

Like most frameworks that use the Command design pattern to create a central

controller servlet, WebWork includes a base class for all actions. This class, named

ActionSupport, is a convenience class that implements the ActionInterface. It

provides access to result view mapping, error handling, and internationalization.

The Action interface includes some handy mappings (implemented as constants)

to standard views that frequently reside in the view configuration document (for

example, the SUCCESS constant).

 In WebWork, the developer creates action subclasses that handle the individ-

ual page code for the application. The actions reside in a package or packages

specified in the webwork.properties file and map to a particular extension (the

default is .action). The names of the actions themselves appear in the views.prop-

erties file, which maps the action back to the action package. To invoke an action,

the user types a URL that includes the web application name, followed by the map-

ping name of your action with the .action suffix. The suffix matches a URL pattern

in the web.xml file, pointing it to the WebWork dispatch servlet. Once that servlet

has the action, it follows the normal framework flow of events shown in figure 7.1.

This structure is similar to Struts, particularly the way the controller servlet acts,

but with additional configuration files.

 One key difference from other frameworks lies in the fact that WebWork

actions are not coupled to the servlet API. Actions are essentially just JavaBeans,

with no intrinsic knowledge of constructs like HttpServletRequest. The actions

can be made aware of these objects via interfaces, but the action itself knows noth-

ing about what context it is running within. This makes WebWork actions more

loosely coupled than Struts actions. In fact, WebWork documentation warns you

when you try to use the interfaces to couple your application to the web API.

While it is unlikely you would write a WebWork application that isn’t a web appli-

cation, a more loosely coupled application has greater flexibility.

7.2.2 Key interfaces

WebWork attaches behavior to actions and other classes via the use of interfaces.

For example, if you need one of your actions to interact with HttpServletRequest,

your action must implement the ServletRequestAware interface. This interface

includes only a single method (setServletRequest()), which is called by the

Key concepts 205

framework on any action that implements the interface. Your action can include a

private request member variable that is set through this method. In WebWork 1.3,

this interface has been replaced with a call to the static method ServletAction-

Context.getRequest().

 An interesting variant on this theme is the SessionAware interface. It provides

access to this user’s session. Like ServletRequestAware, it includes a single set

method (setSession()). However, the type passed as the user’s session is a

java.util.Map, not HttpSession. WebWork maintains the session information for

you, keeping it in a Map instead of HttpSession. This means that you can support

session tracking without being tied to the servlet API. In WebWork 1.3, this interface

has been replaced with a call to the static method ActionContext.getContext().

 Most of the behavior that isn’t intrinsic to the framework is attached to individ-

ual classes using interfaces. The interfaces are very cohesive, generally offering a

single method. This provides an elegant means of enabling behavior without over-

burdening the framework with unneeded functionality.

7.2.3 The value stack

One of the built-in facilities of the framework is the value stack. This is a utility

class that supports the access of information from the view. Semantically, it is a

stack of values, implicitly placed there by actions in the course of execution. The

WebWork expression language (covered next) uses the value stack heavily.

 Regardless of the implementation, the value stack makes writing view elements

(i.e., JSP) much easier than other frameworks do. For example, consider the use

of localized properties for holding the label text for the fields on a page. As the

page is loaded, the framework calls the getText() method on your action, passing

the key, which looks up the message body from the ResourceBundle. It then places

that value on the value stack. For example, to populate the label for a textfield

(one of WebWork’s UI components) with the value from the properties file, you

can use the value stack method text:

<ww:textfield label="text('input.duration')"

 name="'duration'"
 value='<webwork:property value="duration"/>' />

As a developer, you can use the value stack as a JIT repository of data, provided by

either your actions or by the framework itself. This primary underlying class sup-

ports the “pull” and “hierarchical” parts of “Pull HMVC.” Generally, it is invisible,

providing information through its methods just as it is needed.

 The stack in value stack has meaning. It is implemented as a stack, with ele-

ments needed for a particular page or component pushed on the stack and then

206 CHAPTER 7

WebWork

popped off when they are no longer needed. For example, consider the common

case of iterating over a list of values in a JSP. In WebWork, the iterator tag places

the value at the top of the value stack, and the property tag pops the value off the

stack. Behind the scenes, the property tag looks up the value attribute passed to it

(which defaults to .) using the stack, then pushes it back:

<webwork:iterator value="columns">
 <th><webwork:property/></th>

</webwork:iterator>

The property tag inside the iterator doesn’t need any additional information

about the property to access it. When you use the property tag with no attributes,

it automatically pops the topmost value off the stack. In this case, the iterator

pushes the current value of the columns collection (either a List, Array, or Map)

on the stack, and the property tag pops the topmost value on the stack. Of course,

the property tag also supports attributes for qualifying the property name, but

they aren’t needed in this case.

 The value stack is an innovative structure, and it is used heavily and naturally

throughout WebWork. As a stack, it can readily supply JIT values on the top of the

stack, ready to be popped off. The developer also has more direct access to the

value stack if needed, testing for the presence of values and explicitly manipulat-

ing it via push and pop methods.

7.2.4 Expression language

WebWork’s expression language is designed to enhance the syntax of JSP to make

it more programmable. It interacts with the value stack, possessing the ability to

traverse the stack and flatten out objects to retrieve the desired data. It makes JSPs

more readable by compressing the sometimes-verbose JSP syntax into terser, more

expressive constructs. For example, it allows developers to use simpler notation

when accessing a property from a JavaBean:

<webwork:property value="guessBean/numGuesses"/>

In this example, the getGuessBean() method of the underlying action is called,

followed by a call to the getNumGuesses() method on the bean. The correspond-

ing JSP syntax for this code would be

<jsp:getProperty name="guessBean" property="numGuesses" />

The expression language also has special support for standard collections in the

web API. Consider this example:

<webwork:property value="@timer/total"/>

Key concepts 207

The @ symbol indicates that this object resides in page, request, or session scope.

The expression language will find the most tightly scoped instance of this object,

retrieve it from the scope, and call the getTotal() method on it.

 The expression language may be used within any property of a WebWork cus-

tom taglib except the id property. The interaction of the expression language and

the value stack create JSP pages that have much less “plumbing” code in them

because the framework handles so much of it.

7.2.5 BeanInfo classes

WebWork borrows a convention from the JavaBeans API to add support for for-

matting and validation. The Action classes in WebWork are the primary active

element. Each Action class can have a BeanInfo class associated with it to handle

meta-property information (i.e., property information about properties). Bean-

Info classes are part of the JavaBeans specification to supply meta-component

information to development environments. For example, if you create a UI wid-

get for a Swing application, you must provide support for a development envi-

ronment to set and get properties. For complex properties, you can create

property editors to assist the user in correctly setting the values of the properties.

These editors aren’t included in the code for the widget itself because they have

no purpose at runtime—they are design-time-only artifacts. The JavaBeans API

uses the convention for a BeanInfo class to supply property editors and other

design time metadata for the component. If you create Widget.class, you can

create WidgetBeanInfo.class and the development environment will automati-

cally use the metadata class.

 WebWork uses this mechanism to handle type conversions and validations for

public properties of actions. The public properties (accessor and mutator pairs)

for actions are made available via the value stack to the expression language ele-

ments on JSP pages. To handle validations, you can create BeanInfo classes for

your actions and register editor classes for the properties. WebWork will automat-

ically apply the editors for your fields to the input elements on the page. An

example of this appears in the input elements of the schedule application in

section 7.3.3.

7.2.6 Templates

WebWork by default is designed to create HTML-based web applications. However,

the UI element rendering is governed by a set of templates. The skeleton project

contains JSP pages to handle the output for Cascading Style Sheets, “normal”

HTML, and Extensible Hypertext Markup Language (XHTML). These templates

208 CHAPTER 7

WebWork

are used when WebWork renders the controls for display. Configuration parame-

ters allow you to specify a different format via a set of templates. For example, you

could create a set of templates for XML generation, place them in your web

project, and tell WebWork to use them instead. None of the code in the applica-

tion would need to change, but the output would become XML instead of HTML.

The templates used by the framework are themselves WebWork pages and make

heavy use of the expression language to determine property settings and interna-

tionalization options.

7.3 Scheduling in WebWork

At this point, let’s build the two-page schedule application in WebWork. The

boundary and entity classes are exactly the same as in the other framework chap-

ters, preserving our goal of keeping the framework separate from the model

aspect of the application. The WebWork schedule application represents a Model

2 application, built using the WebWork framework. It utilizes some of the unique

features of WebWork, such as the Action classes and the value stack. This sample

appears in the source code archive as art_sched_webwork.

7.3.1 The configuration

The first step in a WebWork application is setting up the configuration docu-

ments. For this application, we’re using the default properties document and a

custom webwork.properties file to override a few elements. Listing 7.1 shows the

webwork.properties file, which resides in the classes directory under WEB-INF.

WebWork configuration
See webwork/default.properties for full list of properties that
can be configured here
webwork.action.packages=com.nealford.art.schedwebwork.action

override default log4j config
you can use .properties or .xml
if you want to use default set property to null by an empty =
webwork.log4j.configfile=log4j.properties

The only two settings in the webwork.properties configuration file are the pack-

age where the actions reside and the location of the log4J configuration file.

 The next configuration document is for the views. This document contains all

the mappings for user-reachable resources in the application. It defines both the

Listing 7.1 The webwork.properties file for the schedule application

Scheduling in WebWork 209

action names and the result destinations for actions. This document is similar to

the action mapping section in the Struts configuration file. Listing 7.2 contains

the view.properties configuration document.

viewschedule.action=ViewSchedule
viewschedule.success=ViewSchedule.jsp

scheduleentry.action=AddScheduleEntry
scheduleentry.input=AddScheduleEntry.jsp
scheduleentry.success=viewschedule.action

scheduleentry.error=AddScheduleEntry.jsp

addscheduleitem.action=AddScheduleItem
addscheduleitem.success=AddScheduleEntry.jsp

The action suffixes indicate action objects that WebWork will create. The input,

success, and error suffixes represent views to which the actions will dispatch. The

entries in the view.properties file become the resources within the web applica-

tion to which the actions can forward. The ViewSchedule action in the next sec-

tion illustrates this.

 The other configuration document in the schedule application is the log4j

configuration, which contains nothing specific to WebWork, so we have omitted it.

7.3.2 The View page

The first page in the application is the View page, which shows all the current

schedule entries. It appears in figure 7.2.

The action

The first part of the page is the Action class, called by the ServletDispatcher. List-

ing 7.3 shows the ViewSchedule Action class.

package com.nealford.art.schedwebwork.action;

import java.io.IOException;

import java.util.Arrays;
import java.util.List;
import java.util.Map;

import javax.servlet.ServletContext;
import com.nealford.art.schedwebwork.boundary.ScheduleDb;
import org.apache.log4j.FileAppender;

Listing 7.2 The view.properties for the schedule application

Listing 7.3 The ViewSchedule Action class defines properties and methods

for the first page of the application.

210 CHAPTER 7

WebWork

import org.apache.log4j.Logger;

import org.apache.log4j.SimpleLayout;
import webwork.action.ActionContext;
import webwork.action.ActionSupport;

public class ViewSchedule extends ActionSupport {
 private static final Logger logger = Logger.getLogger(
 ViewSchedule.class);

 private String driverClass;
 private String dbUrl;
 private String user;

 private String password;
 private ScheduleDb scheduleDb;
 private List scheduleItems;

 private String[] columns;
 private Map eventTypes;

 static {

 try {
 logger.addAppender(new FileAppender(new SimpleLayout(),
 "c:/temp/sched-webwork.log"));

 } catch (IOException ex) {
 logger.error("Can't create log file");
 }

 }
 private void getDatabaseConfigurationParameters() {
 ServletContext sc = ActionContext.getContext().

 getServletContext();
 driverClass = sc.getInitParameter("driverClass");
 dbUrl = sc.getInitParameter("dbUrl");

Figure 7.2

The WebWork View page shows

all the schedule items, with a

link for adding more.

Extends
ActionSupport

B
Contains
private
members and
logging
definitions

C

Loads
database
configuration
from
ServletContext

D

Scheduling in WebWork 211

 user = sc.getInitParameter("user");

 password = sc.getInitParameter("password");
 }

 protected String doExecute() throws java.lang.Exception {

 getDatabaseConfigurationParameters();
 scheduleDb = new ScheduleDb(driverClass, dbUrl, user,
 password);

 scheduleDb.populate();
 scheduleItems = scheduleDb.getList();
 columns = scheduleDb.getColumns();

 eventTypes = scheduleDb.getEventTypes();
 return SUCCESS;
 }

 public List getScheduleItems() {
 return scheduleItems;
 }

 public List getColumns() {
 String[] uiColumns = new String[columns.length - 1];
 System.arraycopy(columns, 1, uiColumns, 0,

 columns.length - 1);
 return Arrays.asList(uiColumns);
 }

}

This class extends ActionSupport. It does not explicitly need access to any of the
servlet API objects (such as request), so it does not implement any of the Aware
interfaces (such as RequestAware or SessionAware). It does need access to the serv-
let context object (to retrieve database parameters), but this access is provided by
the ActionContext object.

The top of the class defines private member variables and sets up log4j logging.

The getDatabaseConfigurationParameters() method is a helper method that
retrieves the database information from the web.xml file.

The doExecute() method is the active method of this class. ActionSupport defines
this method so that the developer can override it to perform work. This method is
similar to an action method in other frameworks. It builds the boundary object,
populates this action’s list of schedule items, and populates both the columns and
eventTypes member variables. All three of these class members (scheduleItems,
columns, and eventTypes) are published with public accessors from this class.
scheduleItems is the list of ScheduleItem entities that represent the records from
the database. The columns array is a list of the display columns, also derived from
the boundary class. The eventTypes map is the lookup relationship between the
two tables that make up the data for this application. All three of these variables

Executes the action

E

Returns a list of ScheduleItems
from boundaryF

Returns a list of columns
from boundary

G

B

C

D

E

212 CHAPTER 7

WebWork

play a part in the display. The return from doExecute() is the predefined SUCCESS
value defined in ActionSupport (via the Action interface). When this action
returns, the ServletDispatcher looks up the value for the SUCCESS view for this
action. It makes the properties of this action object available on the value stack
and forwards control to that page.

The getScheduleItems() accessor method returns the populated list of schedule
items (courtesy of the doExecute() method) to the view.

The getColumns() method returns only the displayable columns from the com-
plete column list supplied by the boundary class.

The view

The view portion of this page makes heavy use of WebWork custom tags, the value

stack, and the WebWork expression language. It appears in listing 7.4.

<%@ taglib uri="webwork" prefix="webwork" %>

<html>
<head>
<title>
 <webwork:text name="'view.title'"/>
</title>
</head>
<body>
<h3><webwork:text name="'view.title'"/></h3>
<table border="1" >
 <tr>
 <webwork:iterator value="columns">
 <th><webwork:property/></th>
 </webwork:iterator>
 </tr>

 <webwork:iterator value="scheduleItems" >
 <tr>
 <td><webwork:property value="start"/></td>
 <td align="center"><webwork:property value="duration"/></td>
 <td><webwork:property value="text"/></td>
 <td><webwork:property value="eventType"/></td>
 </tr>
 </webwork:iterator>
</table>
<p><a href="<webwork:url value="'addscheduleitem.action'"/>">
 <webwork:text name="'view.addlink'"/></p>
</body>
</html>

Listing 7.4 The view for the schedule page uses a few of the WebWork custom tags.

F

G

Contains the
WebWork taglib

B

Loads text values
from a resource file

C

Outputs
column
headers

D

Outputs table contents E

Scheduling in WebWork 213

The taglib definition at the top points to the WebWork tag library, which is the
only taglib used on this page.

The first tag used is the text tag. The name property makes use of a special syntax
from the expression language. The single quotes around the name of the field
indicate that the value should come from a properties file that defines the labels
for the page. The single quotes keep the value from being evaluated by the
expression language. Otherwise, it would try to use the attribute value as the prop-
erty name to look up against the value stack. This is used both for separation of
text values from code and for internationalization.

This section of code uses the WebWork iterator tag. The value of columns auto-
matically calls the getColumns() method from the action that submitted this page,
accessed via the value stack. The iterator tag pushes the values from the columns
list onto the stack and then pops it off in the close tag as the iteration progresses.
The embedded WebWork property tag (with no attributes) peeks at the top value
of the stack and outputs it to the page.

This section is the iterator that outputs the item objects. Another feature of the
expression language and value stack is the way embedded properties work. The
references within the iterator tag are relative to the item iterated over. As the
iterator tag works, it pulls the schedule item references from the list and uses
reflection to call the accessor method using the name specified by the property
tag. The values from the properties within the iterator tag are assumed to be
accessors from the object pulled from the collection iterated over. The result of
this combination maps the property value start to scheduleItem.getStart() on
the object currently on the stack, placed there by the iterator tag, and so on for
other properties of objects in the iterated List. (It takes much longer to explain it
than to use it!) Once you get used to it, this approach is an intuitive way to look at
the ways properties are accessed within the iterator over a collection. Of course, if
one of the properties does not match an accessor on the iterator object, the
Action class is consulted to find a matching accessor.

You should now start to see the symbiotic relationship between the value stack, the

expression language, and the custom WebWork tags. The combination of all three

creates a simple yet powerful display language for JSP. The underlying idea behind

this facility is to simplify the job of the UI designer. Ideally, he or she shouldn’t

need to know anything about scoping, object references, or anything else. As long

as the UI designer understands a few rules about how to access data, he or she can

write pages quickly without being bogged down in programming details.

 It is worth noting that WebWork provides a custom table component so that you

don’t have to create one by hand with iterators. Like Tapestry’s table component,

B

C

D

E

214 CHAPTER 7

WebWork

it encapsulates several advanced features, such as sortable column heads. This cus-

tom table component is shown in figure 7.3.

7.3.3 The Add page

The Add page of the schedule application allows the user to add new schedule

items. It appears in figure 7.4.

 The Add page consists of three classes: a base class to handle common ele-

ments (AddScheduleBase), the initial add class (AddScheduleItem), and the save

entry (AddScheduleEntry) class. A single UI page exists for adding records, which

is shared by both the AddScheduleItem and AddScheduleEntry actions.

The AddScheduleBase class

Both the initial Add page and the Save page must have fields available to popu-

late the UI part of the form. Rather than duplicate the same fields in two classes,

we consolidated the common elements into a single base class. This class is shown

in listing 7.5.

Figure 7.3

WebWork’s custom table component

features several advanced features.

Notice that the column headers have

a sort icon next to the column label.

Figure 7.4

The Add page allows the user

to add new schedule items.

Scheduling in WebWork 215

package com.nealford.art.schedwebwork.action;

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import java.util.Map;
import javax.servlet.ServletContext;
import com.nealford.art.schedwebwork.boundary.ScheduleDb;

import com.nealford.art.schedwebwork.entity.ScheduleItem;
import webwork.action.ActionContext;
import webwork.action.ActionSupport;

public class AddScheduleBase extends ActionSupport {
 private List events;
 protected ScheduleItem scheduleItem;

 private ScheduleDb scheduleDb;
 private String driverClass;
 private String dbUrl;

 private String user;
 private String password;

 public AddScheduleBase() {

 buildEventList();
 scheduleItem = new ScheduleItem();
 }

 public List getEvents() {
 return events;
 }

 private void buildEventList() {
 events = new ArrayList(5);
 scheduleDb = getScheduleBoundary();

 Map m = scheduleDb.getEventTypes();
 Iterator it = m.entrySet().iterator();
 while (it.hasNext()) {

 Map.Entry entry = (Map.Entry) it.next();
 EventType et = new EventType();
 et.setKey(((Integer) entry.getKey()).intValue());

 et.setEvent((String) entry.getValue());
 events.add(et);
 }

 }

 public class EventType {
 private int key;

 private String event;

 public int getKey() {
 return key;

 }

Listing 7.5 The AddScheduleBase class is the base class for both entry pages.

216 CHAPTER 7

WebWork

 public void setKey(int key) {

 this.key = key;
 }

 public String getEvent() {

 return event;
 }

 public void setEvent(String event) {

 this.event = event;
 }
 }

The AddScheduleBase class extends ActionSupport, so it is an Action class. The

fields of the class represent database configuration information, a list of events,

and an embedded entity object. Most of the details of this class involve establish-

ing a boundary object to populate and add the entity and accessor/mutator pairs

for the properties of the page. All these methods have been omitted because of

space. The key methods of this class relate to the list of events.

 A recurring theme in all the scheduling examples for each framework con-

cerns how a particular framework handles the rather ugly HTML <select> tag,

with its embedded options. Each framework has its own solution to this problem.

WebWork’s solution is its select custom tag. This tag expects a list of items that

resolve to objects with a property for the key and the value. To that end, the

AddScheduleBase class builds an embedded EventType class that consists solely of

the key-value pairs necessary for the select tag to work correctly. The build-

EventList() method gets the map of key-value pairs from the boundary object

and builds the structure expected by the select tag, placing it in the events field

of the class. The getEvents() method returns this list of objects.

The AddScheduleItem class

The AddScheduleItem class (listing 7.6) is the Action class first accessed when a

user adds a new item. It subclasses AddScheduleBase.

package com.nealford.art.schedwebwork.action;

import java.io.IOException;

import org.apache.log4j.FileAppender;
import org.apache.log4j.Logger;
import org.apache.log4j.SimpleLayout;

public class AddScheduleItem extends AddScheduleBase {

Listing 7.6 The AddScheduleItem class is the first Add page.

Scheduling in WebWork 217

 private static final Logger logger = Logger.getLogger(

 AddScheduleItem.class);

 static {
 try {

 logger.addAppender(new FileAppender(new SimpleLayout(),
 "c:/temp/sched-webwork.log"));
 } catch (IOException ex) {

 logger.error("Can't create log file");
 }
 }

 protected String doExecute() throws java.lang.Exception {
 return SUCCESS;
 }

}

Almost all the functionality provided by the class comes from the parent class. In

fact, more code is devoted to setting up logging than actual execution. Ostensi-

bly, all this class does is immediately return the SUCCESS flag. However, it also

includes the event list structure and the empty schedule item object created by its

parent class.

The AddSchedule view

The view portion for adding a new schedule item appears in listing 7.7.

<%@ taglib uri="webwork" prefix="ww" %>
<html>

<head>
<title>
<ww:text name="'view.title'"/>

</title>
</head>
<body>

<h3>
<ww:text name="'view.title'"/>
</h3>

<form action="scheduleentry.action" method="post">
<table border="0" width="30%" align="left">

 <tr><td>
 <ww:textfield label="text('input.duration')"
 name="'duration'"

 value='<webwork:property value="duration"/>' />
 </td></tr>
 <tr><td>

 <ww:select label="text('input.eventType')"

Listing 7.7 The View page allows the user to add new schedule items.

218 CHAPTER 7

WebWork

 name="'eventType'"

 list="events"
 listKey="'key'"
 listValue="'event'"/>

 </td></tr>
 <tr><td>
 <ww:textfield label="text('input.start')"

 name="'start'"
 value='<webwork:property value="start"/>' />
 </td></tr>

 <tr><td>
 <ww:textfield label="text('input.text')"
 name="'text'"

 value='<webwork:property value="text"/>' />
 </td></tr>
 <tr><td align="right">

 <input type="submit" name="Submit"
 value="<ww:text name="'input.submit'"/>">
 </td></tr>

</table>
</form>

</body>

</html>

The only dynamic values on this page are the ones placed in the HTML <select>.
The <select> tag retrieves the value of events by calling AddSchedule-

Item.getEvents(), as specified by the attribute list. You may notice that the
getEvents() method is absent in AddScheduleItem: it is inherited from the super
class AddScheduleBase.

The AddScheduleEntry JSP page makes heavy use of the WebWork custom taglibs.

An interesting feature of this page is the absence of HTML text elements to iden-

tify the input fields. WebWork’s textfield component handles that with a prop-

erty value. The name attribute of the textfield becomes the label associated with

the HTML input. Note that the name actually comes from the properties file that

defines the values of all the text elements. The text values properties file for this

page (AddScheduleItem.properties) is shown in listing 7.8.

view.title=Add Schedule Item

input.start=Start
input.duration=Duration
input.eventType=Event Type

input.text=Description

Listing 7.8 The AddScheduleEntry.properties resource file

Boundary-supplied eventsB

B

Scheduling in WebWork 219

input.submit=Save

error.schedule.duration=Invalid duration
error.schedule.text=Event must have description

The other interesting characteristic of the WebWork custom tags on the View-

ScheduleEntry page is the select tag. This tag uses several attributes, which are

listed with their meanings in table 7.2.

The AddScheduleEntry JSP page highlights the powerful triad of WebWork’s value

stack, custom taglibs, and expression language. The combination of these features

is greater than the sum of their parts. The resulting View page is very clean and

features only view elements, but it doesn’t give up any flexibility.

Saving the record

The last action in the application saves the changes to the database. The Add-

ScheduleEntry action appears in listing 7.9.

package com.nealford.art.schedwebwork.action;

import java.io.IOException;
import java.util.Map;

import com.nealford.art.schedwebwork.boundary.ScheduleDb;
import org.apache.log4j.FileAppender;
import org.apache.log4j.Logger;

import org.apache.log4j.SimpleLayout;

public class AddScheduleEntry extends AddScheduleBase {

Table 7.2 Attributes of the select tag

Attribute Value Use

label text('input.eventType') The label for the field on the HTML page

name 'eventType' The action field the value of the control will map to upon sub-

mission of the form

list events The list of objects that implement the name-value pair mapping

listKey 'key' The key field of the class that implements the name-value pair

mapping

listValue 'event' The value field of the class that implements the name-value

pair mapping

Listing 7.9 The AddScheduleEntry action saves the changes to the boundary.

220 CHAPTER 7

WebWork

 private static final Logger logger = Logger.getLogger(

 AddScheduleEntry.class);

 static {
 try {

 logger.addAppender(new FileAppender(new SimpleLayout(),
 "c:/temp/sched-webwork.log"));
 } catch (IOException ex) {

 logger.error("Can't create log file");
 }
 }

 protected String doExecute() throws java.lang.Exception {
 Map errors = scheduleItem.validate();
 if (!errors.isEmpty())

 return ERROR;
 ScheduleDb scheduleDb = getScheduleBoundary();
 scheduleDb.addRecord(scheduleItem);

 return SUCCESS;
 }

}

The AddScheduleEntry Action class inherits most of its capabilities from AddSched-

uleBase. In the doExecute() method, it validates the scheduleItem and returns the

ERROR flag upon failure. If the validations pass, the record is added to the bound-

ary and the SUCCESS flag returns the user to the initial application page.

 The validations performed here are perfunctory. The real validations take

place in the individual field editors, which are covered in the next section.

7.3.4 Validations

The last topic we’ll cover for the schedule application is validations. As before, the

entity object contains validation code to prevent illegal values for either duration

or text. You may have noticed that the View page contains no code whatsoever to

handle validations. Section 7.2.5 alluded to the mechanism used by WebWork to

handle validations and other field-level criteria. WebWork uses BeanInfo classes to

attach additional behavior to the Action classes. The JavaBean specification allows

you to register editor classes to handle validation, formatting, and any other trans-

formation you want to perform on the input.

Editors

Two types of validations are needed for this application. Both of these validations

ultimately map back to the entity, which is the keeper of all business rules (like val-

idations). To that end, we’ve upgraded the entity class to include static methods

Scheduling in WebWork 221

that validate each field in turn. The previous validation method is still present

(although we’ve rewritten it to take advantage of the new individual validation

methods). The new methods in the ScheduleItem class are shown in listing 7.10.

 public static String validateDuration(String duration) {
 int d = -1;
 String result = null;

 try {
 d = Integer.parseInt(duration);
 } catch (NumberFormatException x) {

 result = "Invalid number format: " + x;
 }
 if (d < MIN_DURATION || d > MAX_DURATION)

 result = ERR_DURATION;
 return result;
 }

 public static String validateText(String text) {
 return (text == null || text.length() < 1) ?
 ERR_TEXT :

 null;
 }

 public Map validate() {

 Map validationMessages = new HashMap();
 String err = validateDuration(String.valueOf(duration));
 if (err != null)

 validationMessages.put("Duration", err);
 err = validateText(text);
 if (err != null)

 validationMessages.put("Text", err);
 return validationMessages;
 }

Now that we have cohesive validation methods, it is trivial to write custom editors

that take advantage of these rules. Listing 7.11 contains the editor for duration.

package com.nealford.art.schedwebwork.util;

import com.nealford.art.schedwebwork.entity.ScheduleItem;
import webwork.action.ValidationEditorSupport;

public class DurationEditor extends ValidationEditorSupport {

Listing 7.10 The ScheduleItem class has undergone an upgrade to create more

cohesive validation methods.

Listing 7.11 The DurationEditor handles validating a duration value against the

ScheduleItem’s validation method.

222 CHAPTER 7

WebWork

 public void setAsText(String txt) {

 String error = ScheduleItem.validateDuration(txt);
 if (error != null)
 throw new IllegalArgumentException(error);

 setValue(txt);
 }
}

The DurationEditor class extends ValidationEditorSupport, which is a WebWork

framework class. The lone method that must be implemented is setAsText().

This method can either set the value of the field or throw an IllegalArgumentEx-

ception. The WebWork framework catches the exception and associates the error

string from the exception with the field. Figure 7.5 shows a validation failure for

both duration and text.

 No additional code was added to the View page. The framework automatically

added the validation exception text to the field. The class to handle text valida-

tion is virtually the same, so we don’t show it here.

 The last step in validation is the association with the property editors with

the Action classes. This is done through a BeanInfo class. The BeanInfo class for

AddScheduleEntry (named, not surprisingly, AddScheduleEntryBeanInfo) appears

in listing 7.12.

package com.nealford.art.schedwebwork.action;

import java.beans.BeanInfo;

import java.beans.Introspector;
import java.beans.PropertyDescriptor;
import java.beans.SimpleBeanInfo;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import org.apache.log4j.FileAppender;
import org.apache.log4j.Logger;
import org.apache.log4j.SimpleLayout;

public class AddScheduleEntryBeanInfo extends SimpleBeanInfo {
 private static final Logger logger = Logger.getLogger(

 AddScheduleEntryBeanInfo.class);

 static {
 try {

 logger.addAppender(new FileAppender(new SimpleLayout(),

Listing 7.12 The AddScheduleEntryBeanInfo class registers the custom property

editors to the appropriate Action class.

Scheduling in WebWork 223

 "c:/temp/sched-webwork.log"));

 } catch (IOException ex) {
 logger.error("Can't create log file");
 }

 }

 public PropertyDescriptor[] getPropertyDescriptors() {
 try {

 List list = new ArrayList();
 PropertyDescriptor descriptor;

 descriptor = new PropertyDescriptor("duration",

 AddScheduleEntry.class);
 descriptor.setPropertyEditorClass(com.nealford.art.
 schedwebwork.util.DurationEditor.class);

 list.add(descriptor);

 descriptor = new PropertyDescriptor("text",
 AddScheduleEntry.class);

 descriptor.setPropertyEditorClass(com.nealford.art.
 schedwebwork.util.TextEditor.class);
 list.add(descriptor);

 return (PropertyDescriptor[]) list.toArray(new
 PropertyDescriptor[list.size()]);

 } catch (Exception x) {

 logger.error("AddScheduleEntryBeanInfo", x);
 return super.getPropertyDescriptors();
 }

 }
}

Figure 7.5

WebWork automatically

associates the error text

with the field whose

validation failed.

224 CHAPTER 7

WebWork

Notice that the AddScheduleEntryBeanInfo class does not import or use any class

from the WebWork framework. Everything here is either standard Java or part of

the logging package. This is a standard BeanInfo class, just like the one you would

register for a UI widget. The lone method creates an array of PropertyDescrip-

tors. A property descriptor registers a property editor to the property of a partic-

ular class. In this method, we are registering the DurationEditor and TextEditor

for the AddScheduleEntry class.

Generic validations

The validation code in the previous section reveals one of the architecture and

design pitfalls faced by developers. By creating specific editors for the Duration

and text fields of the ScheduleItem class, we can carefully tie the business logic val-

idation to the UI. However, this becomes cumbersome if we have hundreds of

fields that must be validated. If we follow this paradigm, we will have hundreds of

almost identical validation editors.

 Three approaches help solve this problem. First, you could create several

generic editors that handle the lion’s share of validations. For example, if your

application needs to validate non-negative numbers in many locations, a NonNega-

tiveNumber editor can easily handle the task. The second approach creates prop-

erty editors that can use reflection to determine the type of the entity they are

validating and call the validations automatically for the fields. Standard interfaces

for entities are used to force common semantics across all entities so that they are

all validated in the same way. Smart property editors can take advantage of this

characteristic. The third approach uses the Decorator design pattern to decorate

the entities with property editors that handle the validations.

 These approaches are not mutually exclusive. It is quite common to create

generic validation editors to handle common situations. Interfaces are useful

when you have objects that share common semantics (usually enforced by inter-

faces). Decorator is useful when you have a disparate set of objects that share com-

mon validation needs.

7.4 Evaluating WebWork

When deciding whether to use a framework, you should consider the documenta-

tion (including the samples) and the “feel” of the framework. In WebWork, the

documentation and samples go hand in hand. In fact, the best documentation for

the custom tags is included in the samples.

Evaluating WebWork 225

 The WebWork documentation is sufficient. (It is posted on the OpenSym-

phony web site and is included with the download.) The creators have even gone

so far as to customize the doclet used by JavaDoc to make the API JavaDoc look

more like the OpenSymphony web site. However, it is a minor change and it

doesn’t impede the readability. The biggest problem with the documentation is

the absence of comments on many methods. The classes themselves have reason-

able, if terse, comments; but many of the methods have only the standard gener-

ated JavaDoc information and nothing else. While this didn’t cause me any

headaches, it is a glaring deficiency in such a well-designed framework.

 WebWork lacks Tapestry’s excellent documentation for the custom tags. In

fact, the best documentation for the custom tags was in the sample applications.

This characteristic seems to be common with custom tags. The JavaDoc com-

ments don’t serve custom tags very well. JSTL suffers from this same syndrome—

the samples are more useful than the documentation. The WebWork documenta-

tion for the custom tags is no worse than any other framework’s documentation

for the same kind of tags. However, all frameworks pale in comparison to Tapestry

in this area.

 I was looking for and never found a comprehensive list of the interactions

between the value stack, expression language, and custom tags. The material is

present; it is just scattered around a bit. It would be nice if it were summarized

somewhere. As the application in this chapter shows, it is vitally important to

understand the interaction between these constructs. Most of what I found con-

cerning the interactions between these three constructs came from the tutorials

and samples, not the JavaDocs.

 The samples are good in WebWork. They suffer a bit from poor organization.

The web application resources are in one directory and the source code is in

another branch entirely. Once you figure out where everything lives, the samples

help considerably.

 One thing you should note: the samples are themselves WebWork pages, so

they should be run through the servlet engine. Even though you can open the

static HTML pages, some of the pages are dynamic. If you are looking at an exam-

ple of a custom tag and it seems as if most of the tag code is missing, you are prob-

ably not running it properly.

 The sample’s index page categorizes the samples well. It starts with simple

capabilities samples (such as how to use the taglibs) and moves to more complex,

complete applications. The last samples illustrate how to incorporate UI frame-

works like Velocity into WebWork.

226 CHAPTER 7

WebWork

 WebWork meets its stated goals. It makes web development easier without com-

promising good design and reliance on design patterns. I particularly like the

combination of the value stack, expression language, and custom taglibs. Once I

understood how they worked, it made writing pages simple. In fact, in one case I

actually wrote some code, ran it, saw that it worked, and then had to figure out

why! Some of the interactions between these three elements happen so seamlessly

that they seem instinctive.

7.5 Summary

This chapter covered OpenSymphony’s WebWork, a “Pull Hierarchical MVC”

framework for building web applications. We discussed the value stack, the expres-

sion language, and the custom properties. The interaction of these three ele-

ments is the primary distinguishing characteristic of this framework.

 We built our schedule application in WebWork and explained the many con-

figuration options, including the variety of configuration files. Then, we built the

artifacts necessary to create the two pages of the schedule application. Each page

in a WebWork application requires an Action class and a UI page. The UI page

sets this framework apart from others because of the powerful behind-the-scenes

behavior of the three key elements mentioned earlier.

 We showed you how WebWork uses property editors and Java’s BeanInfo mech-

anism to provide a way to create custom property editors for fields. We used the

editors to validate the user input on the form. Finally, we discussed the documen-

tation, samples, and the “feel” of WebWork. It is a powerful framework that does

not sacrifice good design or architecture.

 In the next chapter, we look at a commercial web framework, InternetBeans

Express.

227

InternetBeans Express

This chapter covers

■ The design and architecture of
InternetBeans Express

■ Building applications with InternetBeans
Express

■ Evaluating the framework

228 CHAPTER 8

InternetBeans Express

Most of the frameworks and tools covered in this book are open source. The Java

world contains a wealth of open-source code, some of it with state-of-the-art qual-

ity. However, my emphasis on open source should not suggest that commercial

frameworks don’t exist. Many large organizations have undertaken huge frame-

work initiatives. This chapter focuses on a framework supplied with a best-selling

commercial integrated development environment (IDE), Borland’s JBuilder. It

includes a Rapid Application Development (RAD) framework called Internet-

Beans Express for building web applications that leverage component-based

development. It builds on the already strong components that already exist in

JBuilder for building client/server applications.

 This framework presents a departure in another manner as well. Most of the

frameworks we’ve covered have been architecture and process intensive. Most of

the open-source frameworks concern themselves with designing and building

applications that leverage design patterns and other industry best practices.

Clearly, I prefer this kind of thought and practice in designing applications. How-

ever, none of these frameworks addresses RAD development. RAD has fallen out of

favor over the last few years because it doesn’t necessarily address best practices

and other design criteria. However, using these tools you can create applications

significantly faster than without them.

 The purpose of this chapter is twofold. The first is to show a RAD web develop-

ment framework so that you can compare it to the others shown in the book. The

other goal is to find a partial way to reconcile the worlds of RAD development with

the ideas prevalent in this book. As in the other framework chapters, we’ll be

building the schedule application, this time with InternetBeans Express.

8.1 Overview

InternetBeans Express is a feature of the Enterprise version of JBuilder, the version

that includes web development. It consists of a series of components that integrate

with servlets and a custom taglib for use in JSP. These components are primarily

concerned with the presentation tier of a web application. JBuilder contains other

components for handling database connectivity. InternetBeans Express compo-

nents use static template HTML documents and inserts dynamic content from a

live data model. It is designed to make it quick and easy to generate database-

aware servlets and JSPs.

 The components fall roughly into three categories:

Overview 229

■ InternetBeans, components that deal directly with the dynamic generation

of HTML pages and the handling of HTTP.

■ The JSP custom tag library, which uses the InternetBeans components inter-

nally. This includes JSP tag handlers that provide event-handling semantics

to a web application.

■ Data model support through JBuilder’s DataExpress components.

The InternetBeans Express components appear in the development environment

of JBuilder alongside the other components used to create desktop applications.

InternetBeans Express has its own palette in the designer, as shown in figure 8.1.

See section 8.3.1 for a complete discussion of these components.

 Building an application with InternetBeans Express is extremely fast in the

best tradition of RAD development tools. The general steps are as follows:

1 Create a new project.

2 Create a new web application.

3 Create the data model for the application (using DataExpress compo-

nents).

4 Create the user interface template as an HTML document.

5 Create a servlet to act as a controller.

6 Use the designer to drop InternetBeans Express components on the

servlet.

7 Use the property inspector to set the property value of the components.

8 Write any event handlers needed.

9 Add a single line of boilerplate code to the servlet’s doGet() and doPost()

methods.

The details of many of these steps are covered later. Before developing an appli-

cation, you need to understand the architecture and some key concepts about

these components.

Figure 8.1 The InternetBeans Express components appear alongside the other components in JBuilder’s

design view.

230 CHAPTER 8

InternetBeans Express

8.2 The architecture

The architecture of the InternetBeans Express components relies on other com-

ponents that exist in the JBuilder development environment, primarily the

DataExpress components. The DataExpress components have existed and

evolved since the first version of JBuilder. They represent a solid, well-architected

wrapper around Java Database Connectivity (JDBC). Most of the behavior in

DataExpress started as support for building client/server applications. As the

focus in Java has moved more to the server side, the DataExpress components

have migrated as well.

8.2.1 DataExpress

To use the DataExpress components, you must understand the relationship

between these controls and standard JDBC and the support classes JBuilder pro-

vides to handle containership and instancing. The DataExpress components pro-

vide a component-based alternative to writing JDBC code by hand. JBuilder also

contains support classes, such as DataModules, to make it easy to use DataExpress

in both desktop and web applications.

DataExpress and JDBC

DataExpress is a moniker for the components in JBuilder that encapsulate stan-

dard JDBC classes. Figure 8.2 shows the relationship between the DataExpress

components and JDBC classes.

 The DataExpress Database component contains both the DriverManager and

Connection classes. It holds a persistent connection to the database tied to a

QueryDataSet

Database

DriverManager

Connection

DataSet

ResultSetMetaData

ResultSet

Statement

PreparedStatement

ProcedureDataSet

CallableStatement Figure 8.2

The DataExpress

components

encapsulate the JDBC

classes.

The architecture 231

particular user’s login. DataSet is an abstract class that encapsulates both Result-

Set and ResultSetMetaData. This class also includes numerous DataExpress-spe-

cific classes that manipulate data from a database server. The concrete subclasses

of DataSet are QueryDataSet, which encapsulates both Statement and Prepared-

Statement, and ProcedureDataSet, which encapsulates CallableStatement.

 When using the DataExpress components, you never have to write any SQL or

other low-level JDBC code. The components generate all the code for you.

Designers exist within JBuilder that help you build SQL statements for queries

and set properties for the DataSets and the individual columns returned from

the DataSets. DataExpress also defines a series of events for these controls, allow-

ing the developer to attach code to events within the lifecycle of the component.

DataModules

A DataModule is a class created by JBuilder for managing DataExpress compo-

nents. The original purpose for DataModules was to allow multiple user interface

frames in a desktop application to share the same database connection. A Data-

Module is a class that acts as a factory for either creating instances of itself or

returning a shared instance of itself. Thus, a DataModule is a factory implemented

as a singleton object. DataModules also automatically generate accessor methods

for any DataExpress component added to it. Listing 8.1 shows a DataModule with a

single database component on it.

package com.nealford.art.ixbeans.servlet.db;

import com.borland.dx.dataset.DataModule;

import com.borland.dx.sql.dataset.ConnectionDescriptor;
import com.borland.dx.sql.dataset.Database;

public class DataModuleSched implements DataModule {

 static private DataModuleSched myDM;
 private Database dtbsSchedule = new Database();

 public DataModuleSched() {

 try {
 jbInit();
 } catch (Exception e) {

 e.printStackTrace();
 }
 }

 private void jbInit() throws Exception {
 dtbsSchedule.setConnection(new ConnectionDescriptor(
 "jdbc:mysql://localhost/schedule", "root",

Listing 8.1 A simple DataModule with a single database component on it

232 CHAPTER 8

InternetBeans Express

 "marathon", false, "com.mysql.jdbc.Driver"));

 }

 public static DataModuleSched getDataModule() {
 if (myDM == null) {

 myDM = new DataModuleSched();
 }
 return myDM;

 }

 public com.borland.dx.sql.dataset.Database getDtbsSchedule() {
 return dtbsSchedule;

 }
}

Typical for a singleton object, the class includes a static reference to itself named

myDM. However, this class has a public constructor instead of the more typical pri-

vate one. A DataModule is not a true singleton because situations may arise when a

new instance is required. Thus, the DataModule supports both kinds of instantia-

tion. The jbInit() method is common in any class whose component properties

are set through the JBuilder designer. With this method, JBuilder writes all the

code generated by the design tools. Finally, the database component automati-

cally generates an accessor method when the component is dropped on the Data-

Module in the designer.

 DataModules can contain any component, though the designer creates acces-

sors only for DataExpress components. Because they are normal classes, you can

have as many as you like in your application. For large applications, it is typical to

have a main DataModule that contains the database component and many other

DataModules that contain DataSet components. However, in small applications you

may place the database and DataSet components on the same DataModule.

JBuilder has special designers that make it easy to generate a database component

and several DataSets that use it.

 Other classes use the DataModule to connect to the database. Typically, a class

that contains user interface elements (either a client/server desktop or Internet-

Beans Express class) connects to the DataModule by creating a reference to it. The

data-aware components then use their DataSet property to connect to one of the

controls on the DataModule. This process is shown in figure 8.3.

 The user interface element class contains a reference (either shared or

unique) to the DataModule, and the data-aware controls point to a DataSet on the

DataModule.

The architecture 233

Disconnected updates

One of the features of DataExpress is the concept of cached data. When a DataSet

is connected to a database, it does not keep a database cursor open for the table.

It instead caches a set of the rows locally, either in memory or on disk. The local

cache contains three sections: metadata, data, and deltas. The metadata keeps col-

umn information locally. The data is the snapshot of the data in the underlying

table. The deltas are changes that have been made to the local data but have not

been resolved to the database yet. Changes made to the local cached data (kept in

the deltas) are not updated in the database until the saveChanges() method on

the DataSet is called.

 It is important to realize that a call to the post() method of the DataSet posts

the changes only to the local cache. To make the changes permanent, you must

call saveChanges(). This architecture is in place to make client/server applica-

tions more flexible and to allow for disconnected data applications. This has little

impact on web applications because typically you post and save changes at the

same point in time.

8.2.2 InternetBeans Express

The InternetBeans Express controls are data-aware controls that are declared in a

servlet and that replace HTML template elements when the servlet renders the

page. The component that controls the rendering process and binds the various

data-aware controls together is the PageProducer. The relationship among the var-

ious controls is shown in figure 8.4.

Data

DataModule

Database

DataSet

DataSet

User Interface Element

Data Aware Control

Data Aware Control

Data Aware Control

Figure 8.3 DataModule contains DataExpress components, which are set as property values for the

data-aware controls in the user interface class.

234 CHAPTER 8

InternetBeans Express

The controller servlet contains the PageProducer component as well as the decla-

rations and property settings for the Internet Express Controls (known generically

as “ixControls”). When the user connects to the web application, the controller

servlet creates a reference to the DataModule, which in this case acts as both a

boundary and entity class. It encapsulates both the database connectivity and the

data from the table into a single component. The PageProducer then merges the

contents of the ixControls with their corresponding controls on the HTML tem-

plate to produce output.

8.3 InternetBeans Express components

The InternetBeans Express components consist of the PageProducer and all the

user interface controls. The PageProducer acts as the driving force in the applica-

tion, controlling rendering and dispatching. The user interface controls connect

to the PageProducer for event notification and coordination.

8.3.1 ixPageProducer

The PageProducer is the key component in InternetBeans Express. This compo-

nent acts as the glue between the DataExpress components and the other Inter-

netBeans Express components. Only this component is both data and servlet

aware. It is typically instantiated as a member of a servlet along with the other

ixControls. The other controls have a PageProducer property that associates them

Browser

<<controller>>
Servlet

<<boundary>>
<<entity>>

DataModule

PageProducer

<<view>>
HTML Template

Data

IxControl IxControl

1) access
2) connect

3) merge

IxControl IxControl

Figure 8.4

The overall architecture of the internetBeans Express

controls, showing the controller servlet, the

DataModule, the PageProducer, and the HTML

template.

InternetBeans Express components 235

with a particular producer. The PageProducer has three distinct roles in an Inter-

netBeans Express application: rendering pages, handling request parameters, and

handling events.

Rendering pages

The PageProducer handles the merging of the other ixControls with the static

HTML template used for the user interface. The HTML elements are placeholders

for the dynamically generated, data-aware ixControls. This is similar to the way

that Tapestry handles user interface elements and templates. The relationship

between the PageProducer and the controls it renders is established at design time.

Each ixControl has a PageProducer property that points to its rendering control.

 To invoke the rendering, the servlet’s doGet() method should call the

PageProducer’s servletGet() method. Typically, the only line of code in the

doGet() method of a servlet acting as the controller for an InternetBeans

Express application is

ixPageProducer.servletGet(this, request, response);

The parameters to this method are the servlet itself and the normal request/

response pair passed to the doGet() method.

Handling request parameters

To handle the parameters passed to the servlet from a form post, the doPost()

method of the servlet calls the servletPost() method of the PageProducer:

ixPageProducer.servletPost(this, request, response);

This call to servletPost() automatically applies the request parameters to the

matching controls governed by the PageProducer. Generally, this method call is

followed by whatever action you want to take after the posting operation. If you’re

updating the current page, a call to the doGet() method of the servlet will update

the fields by chaining to the PageProducer’s servletGet() method. Alternatively,

you can redirect to another page in the application.

 A great deal of behavior is encapsulated within the call to servletPost(). If the

controls attached to the PageProducer are data aware, their values are automati-

cally updated by the values passed as form parameters. Creating an application

that shows values from a database query on a page, allowing the user to change

the values, and updating the database is largely taken care of by the framework.

To complete the update, you need only call the post() and saveChanges() meth-

ods on the DataSet bound to the controls.

236 CHAPTER 8

InternetBeans Express

Handling submit events

The last action of the servletPost() method is to determine if there is a request

parameter matching an ixSubmitButton associated with the PageProducer. If so,

the PageProducer calls the submitPerformed() method of the button. This mecha-

nism allows the post of the servlet to act as an event in a desktop application.

Each Submit button may have an associated event handler. The parameter passed

to the event handler (of type SubmitEvent) gives the developer access to session-

specific data.

 The PageProducer handles a session-specific DataModule (and the associated

DataSets) for the user. To access this user’s instance of the DataModule, you use the

SubmitEvent’s methods. For example, to get access to a user-specific DataModule

instance, you can use the following code in the submitPerformed() event handler:

DataModuleSched dm = (DataModuleSched)
 ixPageProducer.getSessionDataModule(e.getSession());

The framework automatically handles generating a new instance of the DataModule

per user, in effect giving each user a connection to the database. For scalability pur-

poses, it is possible to override this behavior. However, it is in tune with this frame-

work’s attempt to make web development mimic desktop application development.

8.3.2 ixComponents

The other ixComponents all function in the same manner. They all encapsulate

(and replace) their corresponding HTML controls on the user interface template

when rendered by the PageProducer. Table 8.1 contains a listing of the compo-

nents and their purpose.

Table 8.1 The ixComponents

Component Description

ixControl A generic control that can take on the characteristics of any HTML control when

rendered. This component may be used in a JSP without a PageProducer.

ixTable Generates an HTML table from a DataSet or table model.

ixImage Represents an image used for display or as a link.

ixLink Represents a link. If URL Rewriting is necessary, this component handles it by call-

ing response.encodeURL().

ixSpan Replaces read-only content on the HTML template page.

ixCheckBox Represents a check box.

continued on next page

Scheduling with InternetBeans 237

Virtually all of these controls are data aware, meaning that they have properties

that point them to a DataSet and a column. When the contents of the control

change, the underlying value in the row of the DataSet changes as well. However,

the changes are not made permanently to the cached DataSet until the row

pointer is changed (in other words, the DataSet moves to another row) or the

post() method of the DataSet is called. The changes are not permanent in the

database until the saveChanges() method on the DataSet is called.

8.4 Scheduling with InternetBeans

This section features the ubiquitous schedule application, written using Internet-

Beans Express. The major change in this version of the application is the RAD

nature of the framework. This will not be a Model 2 application—this framework

is not designed to work in that context. However, a reasonable separation of con-

cerns is still possible without doing battle with the framework. For the most part,

we’re going to let the RAD nature of the framework dictate the architecture of the

application and retrofit it to improve the structure.

 Unlike all the previous versions, this schedule application does not use the

boundary and entity classes created for the generic Model 2 application. Instead,

it uses a DataExpress DataModule to handle both boundary and entity responsibili-

ties. None of the infrastructure (except the database itself) from the previous

ixComboBox Represents a combo box.

ixHidden Represents a hidden HTML input field.

ixImageButton Represents an image that submits the form when clicked.

ixListBox Represents a list box.

ixPassword Represents a password field.

ixPushButton Represents a client-side button (that executes JavaScript).

ixRadioButton Represents a radio button.

ixSubmitButton Represents a form submit button. If the button that matches this component is

the button that submits the form, the submitPerformed() method of the servlet

will fire.

ixTextArea Represents a text area.

ixTextField Represents an input field.

Table 8.1 The ixComponents (continued)

Component Description

238 CHAPTER 8

InternetBeans Express

version is used in this one. Yet developing this application from scratch takes

much less time than developing in one of the other frameworks using the existing

infrastructure. Welcome to the world of RAD!

8.4.1 Data connectivity

The first piece of the application is the data connectivity. Let’s create a Data-

Module with a database and two QueryDataSet components (for event and

event_type) on it. The first part of the DataModule is used for the basic connec-

tivity and the first page of the application. The latter part of the DataModule is

needed for validation and user input, so it will appear later. Listing 8.2 shows

the first part of the DataModuleSchedule.

package com.nealford.art.ixbeans.servlet.db;

import java.util.ArrayList;

import java.util.ResourceBundle;
import com.borland.dx.dataset.CalcFieldsListener;
import com.borland.dx.dataset.Column;

import com.borland.dx.dataset.ColumnChangeAdapter;
import com.borland.dx.dataset.DataModule;
import com.borland.dx.dataset.DataRow;

import com.borland.dx.dataset.DataSet;
import com.borland.dx.dataset.DataSetException;
import com.borland.dx.dataset.Locate;

import com.borland.dx.dataset.ReadRow;
import com.borland.dx.dataset.Variant;
import com.borland.dx.sql.dataset.ConnectionDescriptor;

import com.borland.dx.sql.dataset.Database;
import com.borland.dx.sql.dataset.Load;
import com.borland.dx.sql.dataset.QueryDataSet;

import com.borland.dx.sql.dataset.QueryDescriptor;
import com.borland.jb.util.TriStateProperty;
import com.nealford.art.ixbeans.servlet.entity.ScheduleItemBizRules;

public class DataModuleSchedule implements DataModule {
 ResourceBundle sqlRes = ResourceBundle.getBundle(
 "com.nealford.art.ixbeans.servlet.db.SqlRes");

 static private DataModuleSchedule myDM;
 private Database dbSchedule = new Database();

 private QueryDataSet qryEvents = new QueryDataSet();
 private QueryDataSet qryEventType = new QueryDataSet();
 private Column column2 = new Column();

 private Column column3 = new Column();
 private Column column4 = new Column();
 private java.util.List errorList;

 private Column column5 = new Column();

Listing 8.2 The first portion of the Schedule DataModule

The class that
implements
DataModule

B

Scheduling with InternetBeans 239

 public DataModuleSchedule() {

 try {
 jbInit();
 errorList = new ArrayList(2);

 } catch (Exception e) {
 e.printStackTrace();
 }

 }

 private void jbInit() throws Exception {
 column5.setColumnName("description");

 column5.setDataType(com.borland.dx.dataset.Variant.STRING);
 column5.setPrecision(50);
 column5.setEditable(true);

 column5.setTableName("event");
 column5.setServerColumnName("description");
 column5.setSqlType(12);

 column5.addColumnChangeListener(new ColumnChangeAdapter() {
 public void validate(DataSet dataSet, Column column,
 Variant value) throws Exception,

 DataSetException {
 column5_validate(dataSet, column, value);
 }

 });
 column4.setColumnName("duration");
 column4.setDataType(com.borland.dx.dataset.Variant.INT);

 column4.setRequired(true);
 column4.setTableName("event");
 column4.setServerColumnName("duration");

 column4.setSqlType(4);
 column4.addColumnChangeListener(new ColumnChangeAdapter() {
 public void validate(DataSet dataSet, Column column,

 Variant value) throws Exception,
 DataSetException {
 column4_validate(dataSet, column, value);

 }
 });
 column3.setColumnName("event_type");

 column3.setDataType(com.borland.dx.dataset.Variant.INT);
 column3.setTableName("event");
 column3.setVisible(TriStateProperty.FALSE);

 column3.setServerColumnName("event_type");
 column3.setSqlType(4);
 column2.setCalcType(com.borland.dx.dataset.CalcType.CALC);

 column2.setCaption("Event Type");
 column2.setColumnName("Event Type");

 column2.setDataType(com.borland.dx.dataset.Variant.STRING);
 column2.setPreferredOrdinal(2);
 column2.setServerColumnName("NewColumn1");

 column2.setSqlType(0);
 qryEventType.setQuery(new QueryDescriptor(dbSchedule,

Public constructor
that calls jbInit()

C

jbInit() method,
including all designer-
generated code

D

240 CHAPTER 8

InternetBeans Express

 sqlRes.getString("event_types"), null, true,

 Load.ALL));
 qryEvents.setQuery(new QueryDescriptor(dbSchedule,
 "select * from event", null, true, Load.ALL));

 qryEvents.addCalcFieldsListener(new CalcFieldsListener() {
 public void calcFields(ReadRow changedRow,
 DataRow calcRow, boolean isPosted) {

 qryEvents_calcFields(changedRow, calcRow, isPosted);
 }
 });

 dbSchedule.setConnection(new ConnectionDescriptor(
 "jdbc:mysql://localhost/schedule", "root",
 "marathon", false, "com.mysql.jdbc.Driver"));

 qryEvents.setColumns(new Column[] {column2, column4,
 column5, column3});
 }

 public static DataModuleSchedule getDataModule() {
 if (myDM == null) {
 myDM = new DataModuleSchedule();

 }
 return myDM;
 }

 public Database getDbSchedule() {
 return dbSchedule;
 }

 public QueryDataSet getQryEvents() {
 return qryEvents;
 }

 public QueryDataSet getQryEventType() {
 return qryEventType;
 }

 void qryEvents_calcFields(ReadRow changedRow, DataRow calcRow,
 boolean isPosted) {
 if (!qryEventType.isOpen())

 qryEventType.open();
 if (!qryEvents.isOpen())
 qryEvents.open();

 DataRow locateRow = new DataRow(qryEventType,
 "event_type_key");
 locateRow.setInt("event_type_key",

 changedRow.getInt("event_type"));
 qryEventType.locate(locateRow, Locate.FIRST);

 calcRow.setString("event type",
 qryEventType.getString("event_text"));
 }

Static factory
method for
shared
instancing

E

Accessor for
Database component

F

Calculated field
definition

G

Scheduling with InternetBeans 241

This class implements the DataModule interface, which is all that is required for
the designer to implement its special behaviors (such as the automatic generation
of accessor methods).

The constructor is public (whereas a “true” singleton class would have a private
constructor) to give the users of the class a choice as to how it is instantiated. The
constructor primarily calls the jbInit() method.

The jbInit() method contains all the code generated by the design tool. All
property settings created through the object inspector in the designer generate
code in this method.

This method is the static factory method for returning the shared, singleton
instance of the DataModule.

JBuilder generates accessor methods automatically whenever a DataExpress com-
ponent is dropped on a DataModule. These three methods represent generated
accessors for the three corresponding controls. The designer is not intelligent
enough to remove the accessors if you remove one of the components—you must
delete the accessor by hand.

The only code not generated by the designer is the definition of the calculated
field. The information from the database resides in two tables, but we need the
foreign key lookup to be transparent for the data-aware controls. To achieve that
goal, we created a calculated column. DataSets contain a collection of Column
objects, and the developer can create new calculated columns that behave exactly
like the intrinsic columns. In the qryEvents_calcFields() method, we first make
sure both DataSets are open. Then, we create a scoped DataRow. A scoped DataRow
is an empty row of data that takes on the metadata structure of a table. To create a
scoped DataRow that contains a single column from the referenced DataSet, we
call the constructor that expects the DataSet and the column that we want in our
scoped DataRow. If we needed all the rows to be present, we would use a different
constructor. Once we have the scoped DataRow, we can fill in the value of the field
for which we are looking. The locate() method will move the record pointer to
the first row whose column matches the value in locateRow. We set the value of
the calculated column to the matching column value in the lookup DataSet. The
data-aware controls can now use this column.

One of the options you have available when creating a DataModule is to isolate the

SQL statements in a list resource bundle. This arrangement makes it easier to find

and change them in the future. We selected this option, and JBuilder automati-

cally created the SqlRes class in the same package as the DataModule. This class

appears in listing 8.3.

B

C

D

E

F

G

242 CHAPTER 8

InternetBeans Express

package com.nealford.art.ixbeans.servlet.db;

public class SqlRes extends java.util.ListResourceBundle {
 private static final Object[][] contents = new String[][]{
 { "event", "select * from event" },

 { "event_types", "select * from event_types" }};
 public Object[][] getContents() {
 return contents;

 }
}

JBuilder automatically maintains this file for the application and places references

to it in the appropriate locations in the DataModule.

8.4.2 The View page

The View page for the InternetBeans Express schedule application consists of two

parts: the servlet with the ixComponents and the HTML template. It is shown in

figure 8.5.

Listing 8.3 The SqlRes class

Figure 8.5

The InternetBeans Express schedule

application’s View page is the

combination of DataExpress,

InternetBeans Express components,

and an HTML template.

Scheduling with InternetBeans 243

The View servlet

The ViewSchedule servlet appears in listing 8.4.

package com.nealford.art.ixbeans.servlet.ui;

import java.io.IOException;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;
import com.borland.internetbeans.IxLink;
import com.borland.internetbeans.IxPageProducer;

import com.borland.internetbeans.IxTable;
import com.nealford.art.ixbeans.servlet.db.DataModuleSchedule;

public class ViewSchedule extends HttpServlet {

 IxPageProducer ixPageProducer1 = new IxPageProducer();
 IxTable ixTable1 = new IxTable();
 DataModuleSchedule dataModuleSchedule;

 IxLink ixLink1 = new IxLink();

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws

 ServletException, IOException {
 ixPageProducer1.servletGet(this, request, response);
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws
 ServletException, IOException {

 DataModuleSchedule dm =
 (DataModuleSchedule) ixPageProducer1.
 getSessionDataModule(request.getSession());

 dm.getQryEvents().refresh();
 ixPageProducer1.servletGet(this, request, response);
 }

 public ViewSchedule() {
 try {
 jbInit();

 } catch (Exception e) {
 e.printStackTrace();
 }

 }

 private void jbInit() throws Exception {
 dataModuleSchedule = com.nealford.art.ixbeans.servlet.db.

 DataModuleSchedule.getDataModule();
 ixTable1.setDataSet(dataModuleSchedule.getQryEvents());
 ixTable1.setRowCount(20);

Listing 8.4 The ViewSchedule servlet

ViewSchedule, a
standard servlet

B

Standard doGet()
method

C

Standard doPost()
method

D

Designer-generated
jbInit() method

E

244 CHAPTER 8

InternetBeans Express

 ixPageProducer1.setDataModule(dataModuleSchedule);
 ixLink1.setPageProducer(ixPageProducer1);
 ixTable1.setPageProducer(ixPageProducer1);
 ixPageProducer1.setHtmlFile("root/sched-template.html");
 ixPageProducer1.setRootPath(".");
 ixTable1.setElementId("scheduletable");
 ixLink1.setElementId("addlink");
 ixLink1.setLink("/sched-ixbeans/addscheduleentry");
 }
}

This servlet extends HttpServlet and includes several ixComponents.

The doGet() method is characteristic for InternetBeans Express applications—it
calls the servletGet() method on the PageProducer.

The doPost() method first retrieves the session-specific DataModule and refreshes
the data. This code handles the case when this page is posted from another servlet
(for example, the successful result of the Add servlet). The last thing the doPost()
method does is call servletGet(), causing the control to be rendered.

The remainder of this class consists of the designer-generated jbInit() method.
Notice the relationship between the PageProducer, DataModule, and ixCompo-
nents. The PageProducer points to the DataModule (to handle the session-specific
instancing), and the ixComponents point to the PageProducer.

The View template

The template for this page (listing 8.5) is also simple. The HTML controls act as

placeholders for the ixComponents.

<html>

<head>
<title>
Schedule

</title>
</head>
<body>

<p><h2>Schedule List</h2></p>
<table id="scheduletable" border="2">

 <tr bgcolor="yellow">

 <th>Start</th>
 <th>Event Type</th>
 <th>Duration</th>

 <th>Description</th>
 </tr>

Listing 8.5 The HTML template (sched-template.html) for the View page

B

C

D

E

Scheduling with InternetBeans 245

 <tr>

 <td>01-01-2003</td>
 <td>Conference</td>
 <td align="center">3</td>

 <td>Template Text</td>
 </tr>
</table>

<p>
Add New Schedule Item
</body>

</html>

The sched-template HTML page includes dummy data to serve as placeholders for

the dynamic controls. This makes it easier to design; the dynamic controls pay no

attention to the contents but only to the relative location of the static controls on

the page. However, the controls do respect meta-information embedded in the

tags. The third column of the table includes an align attribute, and the resulting

dynamic table respects that attribute. The servlet (in this case, ViewSchedule) uses

the id attribute to match dynamic controls to their static counterparts, using the

setElementId() method of each dynamic control.

8.4.3 The Add page

The Add page uses the same DataModule as the View page. The two unique items

for this page are the Add servlet and the HTML template.

The Add servlet

The Add servlet has two modes of operation. When the doGet() method is called,

it must display the controls, using the PageProducer to render the dynamic con-

trols. The Add page appears in figure 8.6.

Figure 8.6

The Add page allows the user

to add new items.

246 CHAPTER 8

InternetBeans Express

The first portion of the servlet handles the initial display. Listing 8.6 contains this

code.

package com.nealford.art.ixbeans.servlet.ui;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.borland.dx.dataset.DataRow;
import com.borland.dx.dataset.Locate;
import com.borland.dx.sql.dataset.QueryDataSet;
import com.borland.internetbeans.IxComboBox;
import com.borland.internetbeans.IxPageProducer;
import com.borland.internetbeans.IxPushButton;
import com.borland.internetbeans.IxSubmitButton;
import com.borland.internetbeans.IxTextField;
import com.borland.internetbeans.SubmitEvent;
import com.nealford.art.ixbeans.servlet.db.DataModuleSchedule;

public class AddScheduleEntry extends HttpServlet {
 private IxPageProducer ixPageProducer1 = new IxPageProducer();
 private IxSubmitButton ixSubmitButton1 = new IxSubmitButton();
 private IxTextField ixtxtDuration = new IxTextField();
 private IxTextField ixtxtStart = new IxTextField();
 private IxTextField ixtxtText = new IxTextField();
 private IxComboBox ixcbEventType = new IxComboBox();
 private DataModuleSchedule dataModuleSchedule;
 private QueryDataSet referenceForInsert;
 private IxPushButton ixPushButton1 = new IxPushButton();

 public AddScheduleEntry() {
 try {
 jbInit();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 private void jbInit() throws Exception {
 dataModuleSchedule = com.nealford.art.ixbeans.servlet.db.
 DataModuleSchedule.getDataModule();
 ixcbEventType.setColumnName("Event Type");

Listing 8.6 The first portion of the Add servlet

Scheduling with InternetBeans 247

 ixcbEventType.setDataSet(dataModuleSchedule.getQryEvents());
 ixcbEventType.setControlName("eventTypeKey");
 ixtxtStart.setColumnName("start");
 ixtxtStart.setDataSet(dataModuleSchedule.getQryEvents());
 ixtxtStart.setControlName("start");
 ixtxtText.setColumnName("description");
 ixtxtText.setDataSet(dataModuleSchedule.getQryEvents());
 ixtxtText.setControlName("text");
 ixSubmitButton1.setControlName("submit");
 ixSubmitButton1.setElementId("submit");
 ixSubmitButton1.addSubmitListener(new com.borland.
 internetbeans.SubmitListener() {
 public void submitPerformed(SubmitEvent e) {
 ixSubmitButton1_submitPerformed(e);
 }
 });
 ixtxtDuration.setColumnName("duration");
 ixtxtDuration.setDataSet(dataModuleSchedule.getQryEvents());
 ixPushButton1.setPageProducer(ixPageProducer1);
 ixSubmitButton1.setPageProducer(ixPageProducer1);
 ixcbEventType.setPageProducer(ixPageProducer1);
 ixtxtText.setPageProducer(ixPageProducer1);
 ixtxtStart.setPageProducer(ixPageProducer1);
 ixtxtDuration.setControlName("duration");
 ixtxtDuration.setPageProducer(ixPageProducer1);
 ixPageProducer1.setHtmlFile(
 "/root/AddScheduleEntry.html");
 ixPageProducer1.setRootPath(".");
 ixPageProducer1.setDataModule(dataModuleSchedule);
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws
 ServletException, IOException {
 ixcbEventType.setOptions(getEventTypeList(request));
 ixPageProducer1.servletGet(this, request, response);
 }

 private List getEventTypeList(HttpServletRequest request) {
 DataModuleSchedule dm = (DataModuleSchedule)
 ixPageProducer1.getSessionDataModule(
 request.getSession());
 dm.getQryEventType().open();
 dm.getQryEventType().first();
 List items = new ArrayList(10);
 while (dm.getQryEventType().inBounds()) {
 items.add(dm.getQryEventType().getString("event_text"));
 dm.getQryEventType().next();
 }
 return items;
 }

Populates the
combobox

B

Builds a list of
events mapped
to event types

C

248 CHAPTER 8

InternetBeans Express

Before the requisite call to servletGet() to render the controls, the values for the
combo box must be populated. The IxComboBox control has a setOptions()
method, which accepts either a List or an Array of items to appear in the pull-
down list.

To generate the list required by the IxComboBox, the getEventTypeList()
method iterates through the DataSet associated with the event_type table. First, it
opens the DataSet, moves the row pointer to the first row, and loops over the
DataSet while there are more records remaining. The inBounds() method of the
DataSet returns true until the row pointer is beyond the last record.

Notice in figure 8.6 that the fields are already populated with values. When the

user selects this page, the bound controls show the record where the DataSet is

currently pointing. The bound controls go so far as to generate the selected

attribute on the HTML select control generated from the IxComboBox control.

This is the effect of data-aware controls.

The Add template

The Add template consists of simple HTML placeholders for the dynamic con-

trols. It appears in listing 8.7.

<html>
<head>
<title>

Add Schedule Entry
</title>
</head>

<body>
<h3>
Add New Schedule Entry

</h3>
<hr>
<form method="post">

<table border="0" width="30%" align="left">
 <tr><th align="right">Duration</th>
 <td align="left">

 <input id="duration" name="duration" size="16" value="12">
 </td>

 </tr>
 <tr><th align="right">Event Type</th>
 <td align="left">

 <input id="eventType" name="eventTypeKey" />
 </td>
 </tr>

 <tr><th align="right">Start</th>

Listing 8.7 The Add page’s HTML template

B

C

Event type
appears here as
an input field

B

Scheduling with InternetBeans 249

 <td align="left">

 <input id="start" name="start" size="16" value="01-01-03"/>
 </td>
 </tr>

 <tr><th align="right">Text</th>
 <td align="left">
 <input id="text" name="text" size="16" value="Description"/>

 </td>
 </tr>

 <tr>

 <td align="right">
 <input id="submit" type="submit" value="Save Changes" >
 </td>

 </tr>
</table>
</form>

</body>
</html >

The eventType field is not even a select component. The type of the component
in the HTML template is not important. The id attribute is the property binding
the dynamic control to the HTML element. It is the only attribute required of the
template fields for the dynamic rendering to occur.

8.4.4 Validations

Validations in InternetBeans Express cover three areas. First, the events tied to the

columns in the DataModule fire as the record is inserted. Second, the appropriate

validation code is executed, preferably on the entity classes. Third, the errors

must be displayed to the user.

 The validation for the columns happens in the DataModule as the attempt is

made to insert the record. The remainder of the DataModule (including the vali-

dation methods) is shown in listing 8.8.

 public java.util.List getErrorList() {
 return errorList;

 }

 void column4_validate(DataSet dataSet, Column column,
 Variant value)

 throws Exception, DataSetException {
 ScheduleItemBizRules bizRule = ScheduleItemBizRules.getInstance();
 String error = bizRule.validateDuration(value.getAsInt());

 if (error != null)

B

Listing 8.8 The DataModule contains the code for validating the inserted data.

250 CHAPTER 8

InternetBeans Express

 errorList.add(error);

 }

 void column5_validate(DataSet dataSet, Column column,
 Variant value)

 throws Exception, DataSetException {
 ScheduleItemBizRules bizRule = ScheduleItemBizRules.getInstance();
 String error = bizRule.validateText(value.getString());

 if (error != null)
 errorList.add(error);
 }

}

The DataSet in DataExpress defines column objects, based on the metadata for

the query. The columns have properties (such as the data type and display name)

as well as events. The events are automatically fired at the appropriate time in the

lifecycle of the DataSet. One of the events for each column is the validate()

event. This event handler is fired any time the user attempts to update the col-

umn. In a client/server application, this takes place as the user types a new value

and moves away from the field. However, a web application cannot be as event

driven as a desktop application. Therefore, for web applications the column vali-

dations occur as the information is moved from the data-aware control into the

inserted row in the DataSet. For our schedule application, two columns must be

validated: the duration and text columns. The event handlers column4_validate()

and column5_validate() handle these validations. If an error occurs, it updates a

List kept by the DataModule indicating the error. This too is contrary to how these

event handlers work in a client/server application, where exceptions are thrown

from the events to instruct the DataSet not to post the records.

 The natural location to place the validation rules are in these event handlers.

However, that arrangement violates all the best practices that have driven the

development of the applications in this book so far. Placing these validations in

the boundary class means that they are hopelessly scattered throughout the appli-

cation, losing the good separation of responsibilities. The DataModule already han-

dles all the data for the entities. What is needed is a way to decouple the business

rules activities away from the DataModule’s event handlers.

 The solution to this problem lies in a business rules class. This class acts as

an adjunct to the DataModule and supplies behaviors for the entities in the appli-

cation. It contains the business rules methods that pertain to the data values

kept in the DataModule and DataSets. Listing 8.9 shows the business rules class

for this application.

Scheduling with InternetBeans 251

package com.nealford.art.ixbeans.servlet.entity;

public class ScheduleItemBizRules {
 private static ScheduleItemBizRules internalInstance;
 private static final int MIN_DURATION = 0;
 private static final int MAX_DURATION = 31;
 private static final String ERR_DURATION = "Duration must be " +
 "between " + MIN_DURATION + " and " + MAX_DURATION;
 private static final String ERR_TEXT = "Text must have a value";

 private ScheduleItemBizRules() {
 }

 public static ScheduleItemBizRules getInstance() {
 if (internalInstance == null)
 internalInstance = new ScheduleItemBizRules();
 return internalInstance;
 }

 public String validateDuration(int duration) {
 String result = null;
 if (duration < MIN_DURATION || duration > MAX_DURATION)
 result = ERR_DURATION;
 return result;
 }

 public String validateText(String text) {
 String result = null;
 if (text == null || text.length() == 0)
 result = ERR_TEXT;
 return result;
 }
}

This class is a singleton with two methods, one for each validation rule. The crite-

ria for the validation (the minimum and maximum durations) appear in this class

as constants along with the error strings. When the DataModule’s validate()

methods validate the data fields, it creates an instance of this class and calls these

methods. While not the ideal separation of concerns, this is the most expedient

way to take advantage of the framework without hopelessly compromising the

overall architecture of the application.

 InternetBeans Express attempts to create an event-driven paradigm for web

applications, mimicking desktop applications. However, it doesn’t go as far as Tap-

estry, which replaces the entire web API with its own. InternetBeans Express allows

the developer to tie event-handling code to a Submit button on a form. The last

Listing 8.9 The business rules for our entities reside in a class separate from

the DataModule.

252 CHAPTER 8

InternetBeans Express

job of servletPost() is to check whether the button that submitted the form has

an associated event handler. If so, it dispatches to that event handler. The servlet’s

doPost() method is still called first (after all, this is a servlet responding to an

HTML POST). Therefore, you must understand the interaction between doPost()

and the event handler.

 The remainder of the AddScheduleEntry servlet relates to validating and add-

ing a new record. It appears in listing 8.10.

 public void doPost(HttpServletRequest request,

 HttpServletResponse response) throws
 ServletException, IOException {
 DataModuleSchedule dm = (DataModuleSchedule)

 ixPageProducer1.getSessionDataModule(
 request.getSession());
 List errorList = (List) request.getAttribute("errorList");

 if (errorList != null)
 outputErrors(request, response, errorList);
 else {

 dm.getQryEvents().insertRow(false);
 ixPageProducer1.servletPost(this, request, response);
 }

 }

 private void outputErrors(HttpServletRequest request,
 HttpServletResponse response,

 List errorList) throws
 IOException {
 PrintWriter out = response.getWriter();

 Iterator err = errorList.iterator();
 out.println("");
 while (err.hasNext())

 out.println(err.next() + "
");
 out.println("");
 errorList.clear();

 ixPageProducer1.servletGet(this, request, response);
 }

 void ixSubmitButton1_submitPerformed(SubmitEvent e) {

 DataModuleSchedule dm = (DataModuleSchedule)
 ixPageProducer1.getSessionDataModule(
 e.getSession());

 lookupEventKeyAndUpdateRowValue(e, dm);
 RequestDispatcher rd = null;
 List errors = dm.getErrorList();

 if (errors.size() > 0) {
 forwardToErrorView(e, rd, errors);
 return;

Listing 8.10 The remainder of the AddScheduleEntry servlet

Routes to a
page
depending on
successful
validation

B

Outputs the
errors to
the servlet

C

Handles
errors for
the form’s
Submit
button

D

Scheduling with InternetBeans 253

 }
 saveChangesToDatabase(dm);
 dm.getErrorList().clear();
 rd = e.getRequest().getRequestDispatcher(
 "/viewschedule");
 try {
 rd.forward(e.getRequest(), e.getResponse());
 } catch (ServletException ex) {
 ex.printStackTrace();
 } catch (IOException ex) {
 ex.printStackTrace();
 }

 }

 private void saveChangesToDatabase(DataModuleSchedule dm) {
 dm.getQryEvents().post();
 dm.getQryEvents().saveChanges();
 }

 private void lookupEventKeyAndUpdateRowValue(SubmitEvent e,
 DataModuleSchedule dm) {
 DataRow lookupRow = new DataRow(dm.getQryEventType(),
 "event_text");
 DataRow resultRow = new DataRow(dm.getQryEventType());
 lookupRow.setString("event_text",
 e.getRequest().
 getParameter("eventTypeKey"));
 if (dm.getQryEventType().lookup(lookupRow, resultRow,
 Locate.FIRST))
 dm.getQryEvents().setInt("event_type",
 resultRow.getInt("event_type_key"));
 }

 private void forwardToErrorView(SubmitEvent e,
 RequestDispatcher rd,
 List errors) {
 e.getRequest().setAttribute("errorList", errors);
 rd = e.getRequest().getRequestDispatcher(
 "/addscheduleentry");
 try {
 rd.forward(e.getRequest(), e.getResponse());

 } catch (ServletException sx) {
 e.getSession().getServletContext().log(
 "Formard error from submit", sx);
 } catch (IOException ix) {
 e.getSession().getServletContext().log(
 "Forward error from submit", ix);
 }
 }
}

Updates the
database

E

Handles
updating data

F

Reposts
back to
same page
with errors
added

G

254 CHAPTER 8

InternetBeans Express

When a user is entering a new schedule item, the post method must determine
whether an error has already been generated. When the new record is validated
and fails, it returns to the same page so that the user can correct the errors. When
the user clicks the Submit button again, the servlet must decide if this is a re-post
from an error listing or a new post request. The doPost() method of this servlet
handles this contingency by looking at the contents of the list of errors. If there
are no errors, the method assumes that this is a first-time post and that it should
try to add a new record. It does so by inserting a new row into the database and
calling servletPost(), which activates the event handler.

This method iterates over the errors collection and prints each error to output
stream.

The ixSubmitButton1_submitPerformed() method does the work of trying to
insert a new record. It gets the key value for the selected eventType using the
lookupEventKeyandUpdateRowValue() method (which appears at #5). It then gets
the list of errors from the DataModule. Notice that we didn’t have to call any meth-
ods to generate this list. It is automatically generated when the servletPost()
method binds the request parameters back to the data-aware controls.

If the error list is empty, we call the saveChangesToDatabase() method, which per-
forms the post() and saveChanges() methods on the DataSet. The last order of
business is to redirect to the View page.

This method performs a lookup to get the key for the selected eventType using a
scoped DataRow.

If errors are discovered, the servlet redirects back to itself, performing a postback
and using the error list as a request attribute. The doPost() method checks to see
whether the errorList attribute is present. If it is, it calls the outputErrors()
method. The result of this call is shown in figure 8.7.

B

C

D

E

F

G

Figure 8.7

If validation errors occur, the

servlet posts back to itself and

displays the errors at the top

of the page.

JSP custom tags 255

The error list appears at the top of the page. This is one of the disadvantages of

using a servlet-only framework. To generate the error list, we hijacked the normal

response stream, placing our elements at the top. Although this approach works,

it doesn’t provide many options for placement. An improved version of this is pos-

sible if we use JSP and custom tags to handle the error processing.

 This completes the servlet-based InternetBeans Express schedule application.

This application generated a lot of source code but, ironically, you had to type

much less code for this application than for the other versions of the schedule

application. The RAD framework generated most of the code, either automatically

or through properties and events.

8.5 JSP custom tags

The schedule application in this chapter was created solely with the servlet-based

controls in InternetBeans Express. InternetBeans Express also contains a collec-

tion of custom JSP tags. They are similar in intent to the SQL tags in the JSP Stan-

dard Tag Library (JSTL), but they predate the JSTL tags. To provide a flavor of

these tags, we’ll show the initial schedule page, written as a JSP and using the

InternetBeans Express taglib. The output of this page (see figure 8.8) resembles

that of most of the schedule View pages.

 The source for this page (the only artifact in the application) appears in

listing 8.11.

Figure 8.8

We used the JSP custom tags

from InternetBeans Express to

generate the View page of the

schedule application.

256 CHAPTER 8

InternetBeans Express

<%@ page import="com.borland.internetbeans.*,
 com.borland.dx.dataset.*,

 com.borland.dx.sql.dataset.*" %>
<%@ taglib uri="/internetbeans.tld" prefix="ix" %>

<ix:database id="scheduleDb" driver="com.mysql.jdbc.Driver"

 url="jdbc:mysql://localhost/schedule" username="root"
 password="marathon">

<ix:query id="qryEvent"

 statement="select e.duration as 'Duration', et.event_text as
 'Event Type', e.start as 'Start', e.description as 'Description'
 from event e, event_types et where e.event_type =

 et.event_type_key" >
<html>
<head>

<title>
Schedule Items
</title>

</head>
<body>

<p><h2>Schedule List</h2></p>

<ix:table dataSet="qryEvent">
<table border="1">

 <tr bgcolor="yellow">

 <th>Duration</th>
 <th>Event Type</th>
 <th>Start</th>

 <th>Description</th>
 </tr>
 <tr>

 <td>5</TD>
 <td>Conference</td>
 <td>01-01-01</td>

 <td>Description</td>
 </tr>
</table>

</ix:table>
<p>

Add New Schedule Item

</ix:query>
</ix:database>

</body>

</html>

Listing 8.11 The JSP page that generated the InternetBeans

Express taglib Schedule page

Evaluating InternetBeans Express 257

The custom tags instantiate ixComponents underneath. So, the ixTable custom

tag is using the same ixTable component used in the servlet-based version of this

application. The tags used on this page are the ixDatabase, ixQuery, and ixTable

components. The containership of the tags is important. The query uses the data-

base that the tag is nested within. Similarly, the ixTable component only has

access to the query that it is nested within.

 We provided this example to show that InternetBeans Express does have a JSP

collection of tags. However, this application violates many of the rules of separa-

tion touted in the other chapters of this book. This approach might suffice for a

quick-and-dirty application, but it is not suitable for serious development. The

same applies to the similar JSTL tags mentioned in chapter 3.

8.6 Evaluating InternetBeans Express

This evaluation of InternetBeans Express is a little different from the other evalu-

ations. I conceded at the beginning of this chapter that this framework does not

embody the criteria used to judge many of the frameworks in this book. However,

given that limitation, I will discuss the documentation, samples, and the use of

InternetBeans Express.

8.6.1 Documentation and samples

The documentation is of special interest because InternetBeans Express is gener-

ally considered the Achilles heel of open-source frameworks. A commercial prod-

uct’s offering should surpass the open-source efforts. The documentation of

InternetBeans Express is a part of the overall documentation of JBuilder. It is a

subset of the “Building Web Applications” help book included with the JBuilder

help system. The documentation is good, with a polished look and feel that

matches the rest of the JBuilder documentation. The coverage is well done but

brief. However, this isn’t a large framework, so a lot of verbiage isn’t necessary.

 The documentation consists of a narrative introduction to the topic, with links

to the sample application and links to the appropriate JavaDoc documentation. It

is informative and well done. It doesn’t feature any of the “TO BE DONE” entries

that you sometimes see in open-source documentation. The JavaDoc is very com-

prehensive and complete. Even though it is good, I don’t think it is significantly

better than the documentation for some open-source frameworks (Velocity is the

gold standard in that respect).

258 CHAPTER 8

InternetBeans Express

 A single sample application is available for the servlet InternetBeans Express

controls and another for the InternetBeans Express JSP taglibs. The examples are

sufficient to lead to a good understanding of the framework but could have been

better. They were single-page applications with postbacks, so some of the coupling

issues we dealt with in the schedule application didn’t come up. Both of these

frameworks are fairly simple, and the sample application is sufficient to illustrate

the main points.

8.6.2 Using InternetBeans Express

The $64,000 question is: Does the speed of development using the RAD frame-

work overcome the compromises imposed by it? This problem is common in the

RAD world and one of the reasons that it has fallen somewhat out of favor. There

is no question about the productivity of using a RAD framework: building an appli-

cation is much faster than with other frameworks. That makes it eminently suit-

able for quick-and-dirty applications that don’t need the industrial strength

underpinnings of Model 2 and other best practices.

 The problem with this mindset is that applications never exist in a vacuum. If

they are useful, they tend to outlive their supposed lifetime. The developers who

wrote COBOL code in the 1960s never imagined that their code would still be run-

ning in 2000. Applications tend to grow over their lifetimes. Even if it is designed

to be quick and dirty at the outset, it is hard to predict how it might evolve. This is

exactly the trouble faced by RAD today. Many developers have been burnt by using

frameworks that started to collapse as the application outgrew the framework.

 This is particularly true with web applications. At least with client/server appli-

cations, you could reasonably predict the number of users it needed to support.

With web applications, the number of users can multiply overnight. Using a

framework because it is quick becomes the death toll for the application if it lacks

reasonable design.

 Given this dire warning, if you still decide to use a framework like this one, you

have ways to mitigate the risk. All RAD frameworks lay out a path of least resistance

for development. This is the path the designers thought would yield the best

results in the shortest amount of time. The problem arises when you try to get

underneath the framework. For example, you could design a completely Model 2

application using InternetBeans Express. However, you will spend a great deal of

time trying to get the framework to do things it wasn’t meant to do. In such a case,

you have stepped off the path of least resistance.

 The trick is to find a way to stay on the path without hopelessly compromising

your design. In this chapter, we used business rules classes. While not as pure a

Summary 259

design as Model 2, this approach still achieved some of the goals of Model 2 (sep-

aration of business rules from the main line of development) without stepping off

the path. To use a framework like this one successfully, you must find an effective

way to work within the framework rather than fight it.

 We’ve used InternetBeans Express as an example of RAD-based application

frameworks. It is certainly not the only one available. We also don’t want to leave

you with the impression that it is the only game in town if you use JBuilder. The

latest versions of JBuilder include JSTL and Struts libraries and designers. Borland

is leveraging open-source frameworks like the rest of the world.

8.7 Summary

This chapter covered the InternetBeans Express framework that is included with

Borland’s JBuilder. To understand the framework, you must understand other

parts of JBuilder’s component hierarchy. The DataExpress components in

JBuilder encapsulate the lower-level JDBC classes to make data access easier. Inter-

netBeans Express attempts the same with the web API, creating a component layer

over the lower-level classes and interfaces.

 The InternetBeans Express schedule application demonstrated how to build

HTML templates for user interfaces, how to handle display and update of data,

and how validations are performed. It utilized the event-handler infrastructure,

dealing with both strengths and weaknesses in its implementation. In particular,

the servlet-only framework presents limited options for outputting errors and

other non-ixControl-based output.

 InternetBeans Express also includes a set of custom JSP tags, which we used to

build only the first page of the schedule application. These tags are similar in

intent to the SQL tags that are part of JSTL, which don’t easily support building

Model 2 applications.

 InternetBeans Express features good documentation and reasonable but small

sample applications. It is a good framework for small applications or where a

clean Model 2 architecture isn’t needed. It is extremely productive, reflecting the

RAD philosophy that underlies its design.

 In the next chapter, we cover the template language Velocity and how it con-

tributes to Model 2 applications.

261

Velocity

This chapter covers

■ The design of Velocity

■ Building web applications with Velocity

■ Evaluating Velocity

262 CHAPTER 9

Velocity

The frameworks we’ve covered in this book so far have been multifaceted. In

other words, they have included several areas of web development: connection

pooling, resource management, page generation, and so forth. Different frame-

works varying degrees of comprehension. The next framework we’ll cover is more

cohesive and includes only a single area of web development. Technically, it might

not be considered an entire framework. However, it justifies treatment here

because it elegantly solves a common problem in web development and is very

popular. In fact, its popularity verges on cult status in some circles of Java web

development. It is also orthogonal to the other frameworks we’ve discussed,

meaning that it can be used in conjunction with, not as a replacement for, most of

the other frameworks.

 Velocity is a replacement for JSP and other view technologies. Most of the

frameworks can use Velocity as a plug-in replacement instead of whatever technol-

ogy they are using to generate user interfaces. Some frameworks strongly favor

Velocity over the alternatives, such as JSP. For example, the Turbine framework

developers prefer Velocity over JSP.

 Velocity is a template language designed to replace JSP, PHP Hypertext Preproc-

essor (PHP), and other presentation techniques. It is designed to work hand in

hand with servlet-based web development (although it may work in other environ-

ments as well). If you are using open-source web development tools and frame-

works, you should at least be familiar with Velocity.

 This chapter discusses the Velocity architecture, some key concepts (such as

how to set it up and some of the language elements), and building applications.

As in the other framework chapters, we build the Velocity version of the sched-

ule application. It uses the generic Model 2 application as the base, replacing

the presentation layer with Velocity.

9.1 Overview

Velocity is a Java-based template engine. It is useful as a stand-alone utility for gen-

erating any text-based information, such as source code, HTML, XML, SQL, and

reports. It also includes facilities for incorporating itself into Java web applications

via a servlet. It is an open-source project, hosted on the Jakarta site at Apache. You

can download it at http://jakarta.apache.org/velocity. The first (beta) release was

on March 26, 2001, and the current version as of this writing is 1.3.1, released on

March 31, 2003.

The architecture 263

 Velocity provides an implementation for something that is elusive in the devel-

opment world: a simple, powerful scripting language that handles presentation

chores in a web application. It is easier and friendlier than either JSP or JSTL but

provides a superset of the capabilities of those techniques. It has found that sweet

spot of unobtrusive usefulness without compromising the performance or design

of the web application, which is no small feat.

 Velocity allows web user interface designers to embed simple Velocity script-

ing elements in web pages. It is not like JavaScript, which is interpreted by the

browser. Instead, all processing takes place as the page is rendered so that the

end result is a simple HTML page. It helps enforce Model 2 architecture, allow-

ing straightforward user interface scripting. It does not violate the separation of

concerns important to good design. Velocity does not encourage placing busi-

ness logic or other model code within the page because the scripting language is

not well suited to writing that type of code. Rather, it helps make the job of the

user interface designer easier by providing a simple scripting language for auto-

mating presentation.

9.2 The architecture

Velocity works either as a stand-alone template engine or through a servlet. When

using it as a servlet, the developer extends the VelocityServlet included with the

framework. This servlet becomes the controller for a page. Generally, each page

has its own controller servlet. The developer adds code to the context object

(which the template language uses to store name-value pairs) and merges the

template and the context object to produce output. The template is an HTML

document that includes Velocity template language constructs. The process of

building a web application using Velocity is shown in figure 9.1.

 The general steps to using Velocity are:

1 Initialize Velocity. The VelocityServlet handles this for you for web appli-

cations. Initialization parameters are specified in a properties file.

2 Create a Context object. This is passed as one of the parameters for the

method you override in the servlet.

3 Add data objects as name-value pairs to the Context.

4 Choose a template.

5 Merge the template and the Context to produce output.

264 CHAPTER 9

Velocity

When extending VelocityServlet, you must override a single method, handleRe-

quest(), which returns a template. This method takes as parameters the Http-

ServletRequest, HttpServletResponse, and a Context object.

 If you do not want to extend the Velocity servlet, you can create and initialize

the Velocity engine yourself. You should do this if you are using Velocity outside

the web API or if you are implementing another framework that takes the place of

servlets. For example, you could initialize the Velocity engine within an action in

Struts, bypassing the JSP presentation layer. To create the Velocity engine yourself,

the steps are the same as the ones we listed previously. Listing 9.1 shows the gen-

eral template used to bootstrap Velocity.

import java.io.StringWriter;
import org.apache.velocity.Template;
import org.apache.velocity.VelocityContext;

import org.apache.velocity.app.Velocity;
import org.apache.velocity.exception.MethodInvocationException;
import org.apache.velocity.exception.ParseErrorException;

import org.apache.velocity.exception.ResourceNotFoundException;

public class Test {
 public doIt() {

 Velocity.init();

 VelocityContext context = new VelocityContext();

Listing 9.1 Instantiating the Velocity engine

Data

Browser

<<controller>>
VelocityServlet

<<view>>
Velocity

Template

Model
Beans

1) request
5) response

2) create
3) invoke

4) merge template

Figure 9.1

In Velocity, the VelocityServlet instance acts as

the controller, driving model objects and merging the

resulting data with the Velocity language template,

which generates the user interface.

Initializes the
Velocity engine

Creates the
Velocity context

Key concepts 265

 context.put("name", new String("Velocity"));

 Template template = null;

 try {
 template = Velocity.getTemplate("mytemplate.vm");

 } catch (ResourceNotFoundException rnfe) {
 // couldn't find the template
 } catch (ParseErrorException pee) {

 // syntax error : problem parsing the template
 } catch (MethodInvocationException mie) {
 // something invoked in the template

 // threw an exception
 } catch (Exception e) {
 }

 StringWriter sw = new StringWriter();

 template.merge(context, sw);
 }

}

9.3 Key concepts

As with any framework, Velocity contains some concepts that are critical to suc-

cessfully using it. To start using Velocity, you must first configure it by installing

library JAR files and configuration documents. You should become familiar with

the Velocity language as well as the Context object, which allows you to pass infor-

mation to the page.

9.3.1 Setting up Velocity

The Velocity distribution contains quite a few directories when unzipped, but the

only two items you must have are the two JAR files: velocity-1.3.1.jar and velocity-

dep-1.3.1.jar. The first JAR file contains the Velocity classes, and the other file con-

tains all the classes Velocity depends on. When used in a web application, the two

JAR files should end up in the web application’s WEB-INF/lib directory.

Configuration

A properties file is used to configure Velocity. In a web application, it may appear

as an initialization parameter for the servlet that extends VelocityServlet:

 <servlet>
 <servlet-name>SaveEntry</servlet-name>

 <servlet-class>
 com.nealford.art.schedvelocity.controller.SaveEntry

Inserts a string
into the context

Gets the
template

Creates the
output buffer

Merges the template
with the context

266 CHAPTER 9

Velocity

 </servlet-class>

 <init-param>
 <param-name>properties</param-name>
 <param-value>/velocity.properties</param-value>

 </init-param>
 </servlet>

Resource loading

The properties file contains entries for resource loading and logging. You have

four ways to load resources (which encompasses both templates and other

resources loaded via Velocity’s #include() directive). Table 9.1 summarizes the

resource-loading options.

It is possible to use a combination of different resource loaders in an application.

For web applications, the easiest resource loader is the ClasspathResourceLoader.

The templates and other resources are placed in a JAR file and deployed to the

WEB-INF/lib directory.

Instancing options

Velocity gives the developer options for how the Velocity engine itself is instanced

in the application. The typical approach is to treat the Velocity engine as a single-

ton object. In this model, a single instance of the engine handles all requests for

Table 9.1 Velocity's resource loading options

Loader Description

FileResourceLoader This loader is the default. It loads files directly from the file system. The

loader is inflexible when used with servlets because the template loca-

tion must be relative to the servlet engine. The servlet engine has the

option not to expand the WAR file housing the application, which causes

this loader to fail.

JarResourceLoader This loader gets resources from specific JAR files. It is similar in use to

the FileResourceLoader.

ClasspathResourceLoader This loader gets its resources from the class loader used by the applica-

tion. It loads template JAR files from the classpath. It is the most

convenient option for web applications because the templates can

reside in a JAR file in the WEB-INF/lib directory or in any other directory

under WEB-INF. Notice that it is not a good idea to put template files out-

side the WEB-INF directory because the WEB-INF directory ensures that

the templates will not be reachable from the client browser.

DataSourceResourceLoader This loader loads resources from a DataSource. To use this loader, you

must configure Velocity to include the J2EE JAR files.

Key concepts 267

the application. Prior to version 1.2, this was the only model available. However,

developers now have the choice of creating multiple instances of the engine. This

approach is useful when you need to support multiple configurations (different

resource loaders, log files, etc.). This is also useful in a clustered environment in

which you must provide load balancing for the engine.

 To create a new instance rather than rely on the singleton model, you need

only fire the constructor on the VelocityEngine class, a sample of which appears

in listing 9.2.

import org.apache.velocity.Template;
import org.apache.velocity.app.VelocityEngine;

public class Test {

 public doIt() {
 //-- create a new instance of the engine
 VelocityEngine ve = new VelocityEngine();

 //-- configure the engine. In this case, we are using
 //-- ourselves as a logger (see logging examples..)
 ve.setProperty(VelocityEngine.RUNTIME_LOG_LOGSYSTEM, this);

 //-- initialize the engine
 ve.init();

 Template t = ve.getTemplate("foo.vm");

 }
}

When you use the VelocityServlet, always select the singleton model. If you

don’t want to use this model, you must not use the VelocityServlet and should

instead create the engine yourself.

 Because Velocity acts as a singleton, make sure that the Velocity JAR files are

deployed separately with each web application that uses Velocity. For example, if

you place the Velocity JAR files in the servlet engine’s classpath (rather than in the

WEB-INF/lib directory of your web applications), the singleton instance will exe-

cute across web applications. While it will still function, it will not allow you to

have separate configurations for different web applications and will limit your

options for template and resource locations.

Listing 9.2 The VelocityEngine separate instancing

268 CHAPTER 9

Velocity

9.3.2 The Velocity Template Language

The Velocity Template Language (VTL) is a scripting language meant to be sim-

ple enough for nonprogrammers (i.e., web designers) to learn quickly. It consists

of references, directives, and statements. This section discusses only a few of

these constructs. Velocity comes with an excellent user’s guide that acts as a lan-

guage reference.

References

Three types of references exist in VTL: variables, properties, and methods. Every-

thing coming from a reference is treated as a String. Variables in VTL are pre-

ceded with $. Here are some examples of VTL variables:

$foo
$hyphen-var

$under_score

The second type of reference is a property. Properties use the familiar dot nota-

tion used by Java with the $ character indicating a VTL variable name. Examples of

property references are

$scheduleItem.Start

$customer.Balance

A property notation may have two meanings. It could represent a Hashtable name-

value pair. For example, the notation would be the same as the Java code if cus-

tomer was a Hashtable and Balance was the key:

customer.get("Balance");

It may also refer to the accessor method for the customer object. For example, the

previous example could also evaluate to

customer.getBalance();

This is an example of a method reference. Other methods (not just accessors) are

called in the same way.

Directives

Directives are the basic programming constructs in VTL. VTL contains a variety of

directives to handle looping, conditional statements, setting of variables, and

other tasks. Directives are distinguished by the # prefix. To use the #set directive,

you write

#set ($ravenSpeak = "nevermore")
#set ($raven.Quote = $ravenSpeak)

Scheduling with Velocity 269

The first statement sets the value nevermore to the VTL variable ravenSpeak. The

second calls the setQuote() method on the raven object to the string nevermore.

 Directives also encompass conditional statements and looping. Here is an

example of an if construct:

#if ($foo < 10)

 Go North
#elseif($foo == 10)
 Go East

#elseif($bar == 6)
 Go South
#else

 Go West
#end

Examples of the foreach directive appear in section 9.4.1.

Statements

A statement is a combination of a directive and variable references, similar to a

statement in Java. VTL also contains a number of other constructs and rules for

handling string literals, math operations, and so forth.

9.3.3 Context

The last of the key concepts in Velocity is the Context object. Context is defined as

an interface that mimics the behavior (but not the implementation) of a Map. The

primary use of the Context interface in Velocity is through the VelocityContext

instance of the interface. It is used to pass information from the Java layer into

VTL, where references can access the contents of the Context.

 It is used just like a Map in Java. The primary methods are put() and get(),

both of which act like their Map counterparts. The same restrictions exist for the

Context: every value must derive from Object, you cannot use primitives (you

must wrap them in type wrappers), and you cannot use null as a value.

 The Context has special support for the foreach directive. This directive sup-

ports several collection types when pulled from the Context. These are summa-

rized in table 9.2.

9.4 Scheduling with Velocity

Now that we’ve covered the basic characteristics of Velocity, it is time to put it to

work. As the starting point of the Velocity schedule application, we’re using the

generic Model 2 application from chapter 4 (section 4.1.1). The boundary and

270 CHAPTER 9

Velocity

entity classes are exactly the same. The differences in this application are the new

controller servlets (utilizing Velocity) and the Velocity user interface. The Velocity

schedule application appears in the source code archive as art_sched_velocity.

 The first step in using Velocity is the configuration of the engine. We discussed

the configuration issues in section 9.3.1, and there is no special setup needed

beyond what we described in that section.

Table 9.2 foreach collection types

Collection Description

Object[] No special treatment required. VTL iterates over the array from first to

last.

java.util.Collection Velocity creates an iterator() over the collection. If you have imple-

mented your own collection, you must ensure that your iterator()

method returns a proper iterator.

java.util.Map Velocity uses the values() method of the interface to get a Collection

reference. It then uses this reference to get an iterator over the values.

java.util.Iterator You can pass a “raw” iterator into the foreach directive. However, if you

try to use it from the Context for more than one foreach, it will fail

because iterators have no semantics for “rewinding” themselves.

java.util.Enumeration Same as above. You can place it in the Context, but you must avoid

using it in more than one foreach loop because the Enumeration cannot

rewind itself.

Figure 9.2

The schedule application

written in Velocity looks like

the other versions.

Scheduling with Velocity 271

9.4.1 The View page

The first page of the schedule application displays the list of schedule items (see

figure 9.2).

 This page consists of two elements: the VelocityServlet and the template.

The Velocity servlet

The first item of interest is the Velocity servlet, which appears in listing 9.3.

package com.nealford.art.schedvelocity.controller;

import java.io.IOException;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;
import com.nealford.art.schedvelocity.boundary.ScheduleDb;
import org.apache.velocity.Template;

import org.apache.velocity.context.Context;
import org.apache.velocity.exception.ParseErrorException;
import org.apache.velocity.exception.ResourceNotFoundException;

import org.apache.velocity.servlet.VelocityServlet;

public class ViewSchedule extends VelocityServlet {
 private final String BOUNDARY_SESSION_KEY = "scheduleDb";

 public Template handleRequest(HttpServletRequest request,
 HttpServletResponse response,
 Context context) throws

 ServletException, IOException {

 ScheduleDb scheduleDb = getOrCreateBoundary(request);
 String[] displayColumns = buildDisplayColumns(scheduleDb);

 populateContext(context, scheduleDb, displayColumns);
 Template template = null;
 try {

 template = getTemplate("ViewSchedule.vm");
 } catch (ParseErrorException pex) {
 log("ViewSchedule: ", pex);

 } catch (ResourceNotFoundException rnfx) {
 log("ViewSchedule: ", rnfx);
 } catch (Exception x) {

 log("ViewSchedule: ", x);
 }

 return template;
 }

 private void populateContext(Context context,

 ScheduleDb scheduleDb,

Listing 9.3 The ViewSchedule servlet extends the VelocityServlet.

Acts as the primary
servlet method

B

Retreives the
Velocity page
for return

C

Populates the
items to be passed
to the viewD

272 CHAPTER 9

Velocity

 String[] displayColumns) {

 context.put("columnHeaders", displayColumns);
 context.put("scheduleList", scheduleDb.getList());
 }

 private ScheduleDb getOrCreateBoundary(HttpServletRequest
 request) {
 HttpSession session = request.getSession(true);

 ScheduleDb scheduleDb = (ScheduleDb) session.getAttribute(
 BOUNDARY_SESSION_KEY);
 if (scheduleDb == null) {

 scheduleDb = new ScheduleDb();
 session.setAttribute(BOUNDARY_SESSION_KEY, scheduleDb);
 }

 try {
 scheduleDb.populate();
 } catch (Exception x) {

 log("Error: ScheduleBean.populate()", x);
 }
 return scheduleDb;

 }

 private String[] buildDisplayColumns(ScheduleDb scheduleBean) {
 int numOfDisplayColumns = scheduleBean.

 getDisplayColumnHeaders().length -1;
 String[] displayColumns = new String[numOfDisplayColumns];
 System.arraycopy(scheduleBean.getDisplayColumnHeaders(),

 1, displayColumns, 0, numOfDisplayColumns);
 return displayColumns;
 }

}

The required method when extending VelocityServlet is handleRequest(),
which is the first method of this servlet. It is the responsibility of this method to
perform the work of the page, build the Context object, and retrieve the template.

The getTemplate() method retrieves the named template from the JAR file. The
last order of business is to return the template.

The first method called in handleRequest() is the getOrCreateBoundary()

method, which either creates a new instance of the boundary class or retrieves it
from the session.

This method is the first Velocity-specific method call. The populateContext()
method takes the two objects that contribute to the display and places them in the
Context object. This context is passed as a parameter of handleRequest(), so we
don’t have to create it. The two passed objects are the list of column headers and
the list of schedule item records.

Gets (or
creates) a
populated
boundary

object

E

Builds a list of
column heads from

boundary

F

B

C

D

E

Scheduling with Velocity 273

This method builds a list of display columns. This method takes the “raw” list of
all columns from the boundary class and creates an array of just the columns that
are displayed.

After the Context has been populated with the data coming from the model, the

handleRequest() method returns the template. The VelocityServlet.service()

method merges the Context with the template.

The template

The template for the View page appears in listing 9.4.

<html>
<head>
<title>

Schedule Items
</title>
</head >

<body >
<p><h2>Schedule List</h2></p>
<table border="2">

 <tr bgcolor="yellow">
 #foreach ($columnHead in $columnHeaders)
 <th>$columnHead</th>

 #end
 </tr>
 <tr>

 #foreach ($scheduleItem in $scheduleList)
 <tr>
 <td>$scheduleItem.Start</td>

 <td align="center">$scheduleItem.Duration</td>
 <td>$scheduleItem.Text</td>
 <td>$scheduleItem.EventType</td>

 </tr>
 #end
</table>

<p>
Add New Schedule Item
</body>

</html>

The foreach directive iterates over the array of column headers placed in the Con-
text object from the view servlet. It allows you to reference the collection element
by the variable named in the foreach directive within the body of the directive.

Listing 9.4 The ViewSchedule template contains a mixture of HTML and VTL.

F

Generates column headersB

Generates table dataC

B

274 CHAPTER 9

Velocity

The second use of foreach is the body of the table. In this case, we pull the list
of schedule items from the List placed in the Context. For each of the ele-
ments, we use the property notation to invoke the accessor methods for each of
the properties.

As you can see, the use of the foreach construct in Velocity is like the foreach con-

struct in JTSL. However, the syntax in Velocity is cleaner because Velocity doesn’t

have to produce proper HTML. The template generates the eventual HTML page

after interpreting the VTL and merging the results.

9.4.2 The Add page

The Add page is also similar to previous versions of the schedule application. It

appears in figure 9.3.

 As does the View page, this page consists of a servlet and a template document.

However, two separate pages—one for data entry, the other for validation and sav-

ing—handle this page’s functionality. Both pages have in common the need to

access the boundary class. Rather than create the same code in two different serv-

lets, we created a base class. The ScheduleSaveBase class appears in listing 9.5.

package com.nealford.art.schedvelocity.util;

import javax.servlet.http.HttpSession;
import com.nealford.art.schedvelocity.boundary.ScheduleDb;
import org.apache.velocity.servlet.VelocityServlet;

public abstract class ScheduleSaveBase extends VelocityServlet {
 protected final String BOUNDARY_SESSION_KEY = "scheduleDb";

 protected ScheduleDb getBoundary(HttpSession session) {

 if (session == null)
 return null;
 return (ScheduleDb) session.getAttribute(

 BOUNDARY_SESSION_KEY);
 }
}

This is a simple class that extends VelocityServlet and has a single protected

getBoundary() method that returns the boundary class from the session.

 Now that we have the base class, the next page is the one that generates the

input page. It appears in listing 9.6.

C

Listing 9.5 The ScheduleSaveBase servlet

Scheduling with Velocity 275

package com.nealford.art.schedvelocity.controller;

import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;
import com.nealford.art.schedvelocity.boundary.ScheduleDb;
import com.nealford.art.schedvelocity.entity.ScheduleItem;

import com.nealford.art.schedvelocity.util.ScheduleSaveBase;
import org.apache.velocity.Template;
import org.apache.velocity.context.Context;

import org.apache.velocity.exception.ParseErrorException;
import org.apache.velocity.exception.ResourceNotFoundException;

public class ScheduleEntry extends ScheduleSaveBase {

 public Template handleRequest(HttpServletRequest request,
 HttpServletResponse response,
 Context context) throws

 ServletException, IOException {
 ScheduleDb scheduleDb =
 getBoundary(request.getSession(false));

 context.put("eventTypes", scheduleDb.getEventTypes());
 context.put("scheduleItem", new ScheduleItem());
 Template template = null;

 try {
 template = getTemplate("ScheduleEntryView.vm");
 } catch (ParseErrorException pex) {

 log("ScheduleEntryView: ", pex);
 } catch (ResourceNotFoundException rnfx) {
 log("ScheduleEntryView: ", rnfx);

 } catch (Exception x) {
 log("ScheduleEntryView: ", x);

Listing 9.6 The ScheduleEntry servlet

Figure 9.3

The Add page allows the

users to add new items.

276 CHAPTER 9

Velocity

 }

 return template;
 }
}

This Velocity servlet implementation gets the schedule boundary class from the

session and adds two items to the Context: the map of event types and a new

instance of a ScheduleItem object. It then merges with the Velocity page to show

the input.

 Listing 9.7 contains the template for adding new records.

<html>

<head>
<title>
Add Schedule Item

</title>
</head>
<body>

<h3>
Add New Schedule Entry
</h3>

#if ($errors)
 <hr>
 <u>Validation Errors</u>

 #foreach ($error in $errors)
 $error

 #end

 <hr>

#end
<form action="saveentry" method="post">
<table border="0" width="30%" align="left">

 <tr>
 <th align="right">Duration</th>
 <td align="left">

 <input name="duration" size="16"
 value="$scheduleItem.Duration">
 </td>

 </tr>
 <tr>

 <th align="right">Event Type</th>
 <td align="left">
 <select name="eventTypeKey"

 value="$scheduleItem.EventTypeKey" >

Listing 9.7 The ScheduleEntryView

Scheduling with Velocity 277

 #foreach ($key in $eventTypes.keySet())

 #set ($eventType = $eventTypes.get($key))
 <option value="$key"
 #if ($key == $scheduleItem.EventTypeKey)

 "selected"
 #end
 >$eventType</option>

 #end
 </select>
 </td>

 </tr>
 <tr>
 <th align="right">Start</th>

 <td align="left">
 <input name="start" size="16" value="$scheduleItem.Start"/>
 </td>

 </tr>
 <tr>
 <th align="right">Description</th>

 <td align="left">
 <input name="text" size="16" value="$scheduleItem.Text"/>
 </td>

 </tr>
 <tr>
 <td align="right">

 <input type="submit" name="Submit" value="Submit">
 </td>
 <td align="right">

 <input type="reset" value="Reset">
 </td>
 </tr>

</table>
</form>

</body>
</html>

Most of this page is straightforward HTML mixed with VTL. The new Schedule

Item object sent to this page (with no values for the fields) shows up as empty

fields, ready for input. This is necessary, not for this page but the next, when vali-

dations must refill the values as it generates the page again.

 Unlike some of the other frameworks we’ve examined, Velocity has no substi-

tute for the standard HTML <select> tag. You must still generate the list of items

by hand. However, compare this to the code from chapter 4, listing 4.11 (dupli-

cated here), which uses standard HTML and JSP to generate this same list:

278 CHAPTER 9

Velocity

 <select name="eventTypeKey">

<%
 int currentValue = scheduleItem.getEventTypeKey();
 Map eventMap = scheduleBean.getEventTypes();

 Set keySet = eventMap.keySet();
 Iterator eti = keySet.iterator();
 while (eti.hasNext()) {

 int key = ((Integer) eti.next()).intValue();
%>
 <option value='<%= key %>'<%= (currentValue == key ?

 "selected" : "") + ">" +
 eventMap.get(new Integer(key)) %>
<%

 }
%>
 </select>

In JSP, it takes 17 lines of mixed Java and HTML to generate the select. In Veloc-

ity, it takes 11 lines of code with mixed HTML and VTL, which is easier to read

because you don’t have to worry as much about delimiters.

 One possible pitfall lies in Velocity’s handling of special characters, such as

double quotes. If one of the strings merged by the template engine includes dou-

ble quotes, the result does not render correctly. For example, if the schedule-

Item.getText() method returns the string "Hello, \"World", Velocity produces

the following HTML output:

<input name="text" size="16" value="Hello, "World/>

The output on the page does not show “World,” only “Hello,” because the second

double quote isn’t escaped in HTML—it appears as a double quote. To handle this

correctly, Velocity should encode the embedded double quote as ".

 If the possibility exists that your users might include problem characters

(i.e., characters not permitted in HTML, such as double quotes, ampersands,

and brackets), you must code defensively to prevent improper output. You

could use the Decorator design pattern to add functionality to Velocity’s Con-

text object to automatically encode special HTML characters.

9.4.3 Validations

The foreach at the top of the page in listing 9.7 prints out a list of errors if they

are present. Figure 9.4 illustrates this behavior.

 Notice that the if directive will accept a null value as false and non-null as true.

This is contrary to the Java language, but a convenience in a scripting language.

The error list is generated by the SaveEntry servlet, which is shown in listing 9.8.

Scheduling with Velocity 279

package com.nealford.art.schedvelocity.controller;

import java.io.IOException;
import java.util.List;
import javax.servlet.RequestDispatcher;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.nealford.art.schedvelocity.boundary.ScheduleDb;
import com.nealford.art.schedvelocity.entity.ScheduleItem;
import com.nealford.art.schedvelocity.util.ScheduleAddException;

import com.nealford.art.schedvelocity.util.ScheduleSaveBase;
import org.apache.velocity.Template;
import org.apache.velocity.context.Context;

import org.apache.velocity.exception.ParseErrorException;
import org.apache.velocity.exception.ResourceNotFoundException;

public class SaveEntry extends ScheduleSaveBase {

 public Template handleRequest(HttpServletRequest request,
 HttpServletResponse response,
 Context context) throws

 ServletException, IOException {
 ScheduleItem newItem = populateItemFromRequest(request);
 Template template = null;

 try {
 ScheduleDb scheduleDb = getBoundary(
 request.getSession(false));

 List validationErrors = newItem.validate();
 if (! validationErrors.isEmpty()) {
 populateContext(context, newItem, scheduleDb,

 validationErrors);

Listing 9.8 The SaveEntry servlet

Figure 9.4

Validation errors appear at the top of

the page, indicating that the record

did not post and that the user should

correct the errors.

Dispatches
based on
validation
errorsB

280 CHAPTER 9

Velocity

 template = getTemplate("ScheduleEntryView.vm");

 } else {
 scheduleDb.addRecord(newItem);
 RequestDispatcher dispatcher = request.

 getRequestDispatcher(
 "/viewschedule");
 dispatcher.forward(request, response);

 }
 } catch (ScheduleAddException sax) {
 log("Add error", sax);

 } catch (ParseErrorException pex) {
 log("SaveEntry: ", pex);
 } catch (ResourceNotFoundException rnfx) {

 log("SaveEntry: ", rnfx);
 } catch (Exception x) {
 log("SaveEntry: ", x);

 }
 return template;
 }

 private void populateContext(Context context,
 ScheduleItem newItem,
 ScheduleDb scheduleDb,

 List validationErrors) {
 context.put("scheduleItem", newItem);
 context.put("errors", validationErrors);

 context.put("eventTypes", scheduleDb.getEventTypes());
 }

 private ScheduleItem populateItemFromRequest(HttpServletRequest

 request) {
 ScheduleItem newItem = new ScheduleItem();
 String duration = request.getParameter("duration");

 try {
 if (duration != null)
 newItem.setDuration(Integer.parseInt(duration));

 } catch (NumberFormatException nfx) {
 log("Conversion error:duration", nfx);
 }

 String typeKey = request.getParameter("eventTypeKey");
 try {
 if (typeKey != null)

 newItem.setEventTypeKey(Integer.parseInt(typeKey));
 } catch (NumberFormatException nfx) {
 log("Conversion error:eventTypeKey", nfx);

 }
 String start = request.getParameter("start");

 if (start != null)
 newItem.setStart(start);
 String text = request.getParameter("text");

 if (text != null)

Populates the
ScheduleItem
from request

parameters

C

Evaluating Velocity 281

 newItem.setText(text);

 return newItem;
 }
}

This servlet extends ScheduleSaveBase to provide access to the boundary class.
The primary method in this class is handleRequest(). It populates the new item
from request parameters via the populateItemFromRequest() method and vali-
dates the new item, using the validation code in the entity class. If the validation
fails, it populates the context with the invalid schedule item entity, the error list,
and the list of event types (to populate the select field). It then re-merges with the
user interface template. If the record validates successfully, the servlet redirects to
the main view page. Notice that, in the successful case, the Velocity servlet returns
null. The framework handles this, not by merging with a template, but by respect-
ing any redirects or forwards.

This method matches request parameters to the fields of the scheduleItem entity
object, populating it with the values entered by the user.

9.5 Evaluating Velocity

If Velocity is considered a framework, it is a very small one. However, it is a cohe-

sive way to handle user interface generation. As with any framework, the quality of

the documentation and samples dictates how easy it is to learn. Each framework

must also justify its existence either by making a hard job easier or by creating

something you couldn’t create without it. Velocity takes the former approach.

9.5.1 Documentation and samples

The documentation for Velocity sets the gold standard for any product, commer-

cial or open source. It consists of a few “getting started” guides and similar docu-

ments. However, the meat of the documentation is the developer’s and the user’s

guides. The developer’s guide walks through setup, architecture, and issues like

“To Singleton or Not to Singleton.” It is well written and easy to follow.

 The heart of the documentation for the Velocity Template Language is in the

user’s guide. It is a narrative-style reference that explains the capabilities and char-

acteristics of the language. It is easy to follow and written at a level that makes it

easy for web-savvy nonprogrammers (for example, web designers) to learn every-

thing they need to know about Velocity.

B

C

282 CHAPTER 9

Velocity

 The samples are also excellent. The user’s guide has numerous embedded sam-

ples, and the framework itself includes samples for more esoteric uses of Velocity

(such as generating XML using Velocity or using Velocity outside web applications).

9.5.2 Using Velocity

Velocity successfully straddles the line between power and ease of use. It is easy to

use yet yields more benefits than JSTL or “vanilla” JSP. It doesn’t try to encapsulate

HTML controls into custom tags like most of the frameworks do, so it does require

extra coding for complex elements like tables and selects.

 Unfortunately, no good debugging support is available for Velocity except the

log files maintained by Velocity itself. However, that is sufficient. Velocity never

attempts to do anything complex enough for serious debugging.

 Velocity can replace virtually any of the user interface elements present in the

other frameworks we’ve covered (except perhaps Tapestry). If you use Velocity in

Struts, the actions create the template engine and perform the merge instead of

forwarding to a JSP. WebWork has a property setting for using Velocity as the user

interface layer. This highlights one of the best things about Velocity: it is highly

cohesive and doesn’t have a big impact on the other parts of the architecture of

the application. The primary difference (besides the use of VTL on the page) is

the presence of the Context object. However, you must pass information from

the controller to the user interface somehow, and the Context is as good as any

other mechanism.

9.6 Summary

This chapter discussed Velocity, the Java-based template language for generating

user interface elements. Velocity defines a simple but powerful scripting language

that is executed on the server during page render, generating HTML or other

markup, such as XML.

 The schedule application we built in this chapter used Velocity as the user

interface layer. We demonstrated several techniques, including building an

HTML <select> control using the Velocity Template Language and iterating

over collections.

 Velocity is a highly cohesive tool for assisting in the user interface portion of

Model 2 applications. It doesn’t impose itself on the application to the exclusion

of other technologies. It is a popular framework for exactly those reasons.

 In the next chapter, we look at Cocoon, a publishing framework and a web

application framework.

283

Cocoon

This chapter covers

■ The Cocoon publishing framework

■ Cocoon design and architecture

■ Building Model 2 applications with Cocoon

■ Evaluating Cocoon

284 CHAPTER 10

Cocoon

Cocoon is more than one type of framework. It provides some of the same facili-

ties as the other web frameworks we’ve discussed, but Cocoon contains an entire

additional personality: that of a publishing framework. Cocoon automatically trans-

forms documents based on the request context. It presents a new kind of applica-

tion service, leveraging XML technologies to create web sites with unprecedented

flexibility. It also embodies another dimension of Model-View-Controller, in

which the framework handles all the view generation automatically.

 Cocoon is also a complicated framework. It relies on XML technologies, such

as Extensible Stylesheet Transformation Language (XSLT). Because it does so

much, there are myriad configuration and development issues. As such, this chap-

ter serves only as an introduction to Cocoon in both its guises as a publishing

framework and as a web application framework.

 A working knowledge of XML technologies will help but shouldn’t be neces-

sary. Because of the complexity of the framework, we’re going to build only a part

of the schedule application with this framework.

10.1 Overview

Stefano Mazzocchi founded the Cocoon project in 1999 as an open-source

Apache project. It started as a simple servlet for on-the-fly transformations of XML

documents using Extensible Stylesheet Language (XSL) stylesheets. It was based

on the memory-intensive Document Object Model (DOM) API, which loaded the

entire document in memory to process it. This quickly became a limiting factor.

To drive the transformations, the XSL stylesheet was either referenced or embed-

ded inside the XML document. While convenient, it caused maintenance prob-

lems for dynamic web sites.

 To solve these problems, Cocoon 2 included a complete rewrite of the frame-

work, incorporating the lessons learned from Cocoon version 1. Cocoon 2

changed from DOM to the much more memory- and processing-thrifty Simple

API for XML Processing (SAX) technique of parsing the XML documents. It also

created the concept of a pipeline to determine the processing stages that a docu-

ment must traverse, and included numerous performance and caching improve-

ments. Legend has it that the time elapsed between the two releases was partially

due to the principal developer deciding to go back to college to complete his

degree. Only in the open-source world can this happen to a state-of-the-art piece

of software!

The architecture 285

 For this chapter, we’re using Cocoon version 2.0.4. You can download Cocoon

at http://xml.apache.org/cocoon/. This site allows you to download either

Cocoon 1 or 2, although Cocoon 1 is provided only for backward compatibility.

10.2 The architecture

Cocoon’s two parts, the publishing and web application frameworks, are related at

the core level but may not seem so from the surface. It turns out that the web

framework is another aspect of the publishing framework. For the purposes of

architecture, we’ll show them as distinct elements. First, we’ll discuss the architec-

ture of the publishing framework, then of the web framework.

10.2.1 The publishing framework

A publishing framework is a tool that automates part of the generation of client-

specific documents from a common base. Figure 10.1 shows this architecture.

 In the diagram in figure 10.1, two separate client devices are making a request

of the publishing framework, which is running as part of a web application. The

browser requests the document. The publishing framework notifes the user agent

of the request (which is part of the HTTP header information) and the requested

resource. Once it starts to return the resource, it applies an XSLT transformation

to it and generates an HTML document suitable for the browser. A wireless device

(like a cell phone) makes a request for the same resource from the same publish-

ing framework. However, because the user agent is different, a different stylesheet

Publishing

Framework
Browser

Transformation

XML

Data

(static or

dynamic)XML

HTML Content

Producer

HTTP

XML

HTTP

WML

Figure 10.1

A publishing framework

performs automatic

transformations

depending on the device

making the request.

286 CHAPTER 10

Cocoon

transformation is applied and the cell phone receives a Wireless Markup Lan-

guage (WML) document.

 The benefits of a publishing framework are twofold. First, for the developers of

the content, they no longer have to worry about creating different types of con-

tent for different devices. The developers produce XML documents. Stylesheet

designers create XSLT stylesheets for the various types of devices the application

must support. This step is completely separate from the content-generation step.

The second benefit is the flexibility of the application. When a new device

appears, the content designers don’t have to change anything about the applica-

tion. A new stylesheet is all that is required to support the new device.

 The problems with this approach are also twofold. First, the transformation

process is very resource intensive on the servlet engine. Parsing text and applying

transformations in XML takes a great deal of processor resources. Memory man-

agement has gotten better with Cocoon moving to SAX instead of DOM, but it is

still an issue. The other problem lies with the complexity of the XSLT stylesheets.

It is an entirely new language for developers to learn, and it is not very readable or

friendly. Currently, few tools do anything to ease the process of creating the

stylesheets. For the time being, developers must create the stylesheets by hand.

Because good stylesheet developers are hard to find, the practicability of wide use

of publishing frameworks is limited. However, tool support will eventually come

and the process will become much easier.

Pipelines

Cocoon 2 introduced the idea of a pipeline to handle a request. A pipeline is a

series of steps for processing a particular kind of content. Usually, a pipeline

consists of several steps that specify the generation, transformation, and serial-

ization of the SAX events that make up the generated content. This is shown in

figure 10.2.

request File
Generator

XSLT
Transformer

HTML
Serializer

response

SAX SAX

Figure 10.2 A pipeline is a series of steps that contribute to the transformation of one type of

content to another.

The architecture 287

As the request is processed, it moves from stage to stage in the pipeline. Each

stage is responsible for a part of the generation or transformation of the content.

Cocoon allows you to customize the steps a particular type of content incurs.

Between each stage of the pipeline, SAX events are fired so that you can further

customize the processing of the content. In figure 10.2, a file is generated, passed

to an XSLT transformation, and then passed to an HTML serializer to produce the

output file. The result is the automated transformation of an XML document into

an HTML document.

 A pipeline may consist of four types of steps (generator, transformer, aggrega-

tor, and serializer), which always occur in the same order. You can, however, apply

multiple processing steps of the same type at each stage. This is shown in

figure 10.3.

 The types of processing to which content is subjected is defined in a sitemap. It

is the major configuration document for the publishing framework. The format

of this document is covered in section 10.3.2.

Generator
source

document

stylesheet

Transformer

Aggregator

Serializer

stylesheetstylesheet

request

output

document Figure 10.3

A document goes through up to four

steps (with as many iterations as

possible through each step) during

the transformation.

288 CHAPTER 10

Cocoon

10.2.2 The web framework

As a web framework, Cocoon is also a publishing framework. You could configure

Cocoon on a case-by-case basis to apply custom stylesheets to your content to pro-

duce HTML documents. If this were the extent of the web framework, you would

spend most of your time getting the plumbing correct. In addition, you would

have to write all the stylesheets yourself. Wouldn’t it be better to create a set of

stylesheets that always apply to web-development content? That is what the design-

ers of Cocoon have done. You can create Model 2 web applications using built-in

classes and stylesheets, relying on the existing transformers for most work, and

then customize them for special circumstances. The web framework aspect of

Cocoon is shown in figure 10.4.

 For a Cocoon web application, the user makes a request to the Cocoon servlet.

The servlet determines that it is a request for web-application content via the

sitemap and instantiates a matching action. In this case, the sitemap serves the

same purpose as the Struts configuration document. The action references model

beans, both boundary and entity, and performs work. The resulting information is

packaged into a standard web collection (request, session, or application) and

Browser

<<controller>>
Cocoon Servlet

sitemap

<<view>>
XSP

Action

Data

Model
Beans

1) invoke
3) invoke
6) return

4) create
5) invoke

2) read

7) transform8) result

XSLT

7) transform

Figure 10.4 The Cocoon servlet already knows how to handle common Model 2 web-application content.

Key concepts 289

passed back to the Cocoon servlet. It then selects the appropriate user interface

file and transformation from the sitemap and forwards the request to it. The

transformation is applied, and the response is sent back to the user.

 Cocoon has created the concept of Extensible Server Pages (XSP). These

pages are similar to JSPs but use a stricter XML syntax and some different con-

structs on the page themselves. The differences are covered in section 10.3.3.

10.3 Key concepts

To understand the web framework aspect of Cocoon, you must understand some

of the publishing framework as well. In this section, we discuss some key concepts

of the publishing framework, move to configuration and the sitemap, and then

examine web actions and XSP.

10.3.1 The publishing framework

XML is a data-centric document format, whereas HTML is view-centric. The prob-

lem with the data in HTML documents is that it has no intrinsic meaning beyond

the presentation tags. For example, if you search the World Wide Web for infor-

mation on “cardinals,” you will find documents on birds, baseball, and churches.

The search engines cannot determine what kind of “cardinal” you are searching

for because the documents returned contain only presentation markup. XML

solves this problem by creating tags that have inherent meaning.

 Eventually, XML needs to be displayed or transformed into another document

format, which is the purpose of XSL and XSLT. XSL defines a syntax for transform-

ing XML documents into other formats, such as other XML or HTML documents.

This transformation is the core of how a publishing framework functions.

Transformations

To understand the publishing framework aspect of Cocoon, you must understand

how XSLT transformations work. XSL is an open standard for applying transforma-

tions to XML documents to change them into another document type. It is used

for XML to XML, XML to HTML, XML to WML, and XML to binary format (like

PDF) transformations. XSL can take any XML document and transform it into

another document with the same information (or a subset of it).

 Consider the XML document in listing 10.1. It contains a short list of planetary

information. (I’ll bet you didn’t already know that most of the moons of Uranus

were named after Shakespearean characters!)

290 CHAPTER 10

Cocoon

<Planets>

<Planet Rings="no">
 <Name>Venus</Name>
 <Diameter Units="km">12104</Diameter>

 <Mean-Orbital-Velocity Units="km/sec">
 35.03
 </Mean-Orbital-Velocity>

 <Rotation-Period Units="Earth days">
 -243
 </Rotation-Period>

 <Gravity>0.9</Gravity>
 <Escape-Velocity Units="km/sec">
 10.36

 </Escape-Velocity>
</Planet>

<Planet Rings="no">

 <Name>Earth</Name>
 <Diameter Units="km">12756</Diameter>
 <Mean-Orbital-Velocity Units="km/sec">

 29.79
 </Mean-Orbital-Velocity>
 <Rotation-Period Units="Earth days">

 1
 </Rotation-Period>
 <Gravity>1.0</Gravity>

 <Escape-Velocity Units="km/sec">
 11.18
 </Escape-Velocity>

 <Moon><Name>Moon</Name></Moon>
</Planet>

<Planet Rings="yes">

 <Name>Uranus</Name>
 <Diameter Units="km">51118</Diameter>
 <Mean-Orbital-Velocity Units="km/sec">

 6.81
 </Mean-Orbital-Velocity>
 <Rotation-Period Units="Earth days">

 -0.72
 </Rotation-Period>
 <Gravity>0.89</Gravity>

 <Escape-Velocity Units="km/sec">
 21.29
 </Escape-Velocity>

 <Moon><Name>Cordelia</Name></Moon>
 <Moon><Name>Ophelia</Name></Moon>
 <Moon><Name>Bianca</Name></Moon>

 <Moon><Name>Cressida</Name></Moon>
 <Moon><Name>Desdemona</Name></Moon>

Listing 10.1 An XML document containing planetary information

Key concepts 291

 <Moon><Name>Juliet</Name></Moon>

 <Moon><Name>Portia</Name></Moon>
 <Moon><Name>Rosalind</Name></Moon>
 <Moon><Name>Belinda</Name></Moon>

 <Moon><Name>Puck</Name></Moon>
 <Moon><Name>Miranda</Name></Moon>
 <Moon><Name>Ariel</Name></Moon>

 <Moon><Name>Umbriel</Name></Moon>
 <Moon><Name>Titania</Name></Moon>
 <Moon><Name>Oberon</Name></Moon>

 <Moon><Name>Caliban</Name></Moon>
 <Moon><Name>Sycorax</Name></Moon>
 <Moon><Name>Prospero</Name></Moon>

 <Moon><Name>Setebos</Name></Moon>
 <Moon><Name>Stephano</Name></Moon>
 <Moon><Name>1986 U 10</Name></Moon>

</Planet>
</Planets>

To transform this document into an HTML document containing a list of planets,

you apply the stylesheet in listing 10.2.

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="Planets">
 <html>
 <body>

 <xsl:apply-templates/>
 </body>
 </html>

 </xsl:template>

 <xsl:template match="Planet">
 <P>

 Name is: <xsl:value-of select="Name"/>

 Diameter is: <i><xsl:value-of select="Diameter"/></i>

 <xsl:apply-templates select="Moon"/>

 </P>

 </xsl:template>

 <xsl:template match="Moon">
 <xsl:apply-templates/>

 </xsl:template>

Listing 10.2 A stylesheet that transforms the planets document into an HTML document

Rule that
encompasses the
whole document

B

Rule for
processing
Planet

C

Rule for
Moon

D

292 CHAPTER 10

Cocoon

 <xsl:template match="Name">

 <xsl:apply-templates/>

 </xsl:template>
</xsl:stylesheet>

This first rule creates the HTML header and body elements, and then applies the
remaining templates. The resulting HTML document must start with the <html>
tag and end with the corresponding </html> tag.

The rule for Planet selects the name and diameter, then applies the transforma-
tions for Moon inside a list.

The rule for the Moon element places the moon names within a list.

The rule for Name applies the bold font to all names, whether for planets or
moons.

The result of this transformation is shown figure 10.5.

 Taking the same root document, let’s apply the transformation that appears in

listing 10.3, which generates a comparison table.

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="/">
 <html>

 <head>
 <title>
 Planetary Diameter and Escape Velocity

 </title>
 </head>
 <body>

 <xsl:apply-templates select="Planets"/>
 </body>
 </html>

 </xsl:template>

 <xsl:template match="Planets">

 <h1>Diameter vs. Escape Velocity</h1>
 <table border="1" >
 <th>Planet</th>

 <th>Diameter</th>
 <th>Escape Velocity</th>
 <xsl:apply-templates select="Planet"/>

Listing 10.3 This stylesheet generates an HTML table

Rule for any
Name

E

B

C

D

E

Key concepts 293

 </table>

 </xsl:template>

 <xsl:template match="Planet">
 <tr>

 <td><xsl:value-of select="Name"/></td>
 <td align="right">
 <xsl:value-of select="Diameter"/>

 </td>
 <td align="right">
 <xsl:value-of select="Escape-Velocity"/>

 </td>
 </tr>
 </xsl:template>

</xsl:stylesheet>

The transformation in listing 10.3 defines a table, with elements from the base

XML document selected to fill the table cells. The result of this transformation

appears in figure 10.6.

 This is a simple example, and it utilizes only a small portion of the capabili-

ties (and complexity) of XSLT. However, it demonstrates the underlying concept

for a publishing framework. The same core data documents can drive a variety of

completely different user interfaces. In these examples, we were generating only

HTML. You can easily generate other document formats, even binary ones.

 This is a new spin on the Model-View-Controller design pattern. Now the

model becomes the XML document (whether static or dynamic), the controller is

Figure 10.5

The XSLT transformation of the Planets XML

document yields a very different HTML document.

294 CHAPTER 10

Cocoon

the publishing framework, and the view is automatically generated based on just-

in-time information about the client making the request. Many developers

believe this concept will eventually replace much of the content generation as we

know it now.

Pipeline

The pipeline model adopts an assembly-line approach to generating content. The

pipeline in Cocoon always begins with a generator, continues with one or more

transformers, and ends with a serializer. This is similar to the servlet-chaining con-

cept for a web application, in which each servlet contributes one service to the

overall request.

Generator

A generator is always the starting point for a pipeline. It is responsible for delivering

the document and SAX events along the subsequent stages of the pipeline. The

simplest example of a generator is the FileGenerator, which loads an XML docu-

ment from a file system, parses it, and sends the SAX parsing events down the

pipeline. Generators do not have to be file based. They can be network streams,

sockets, or any other source that can generate SAX events (even if they don’t orig-

inate from an XML document).

Transformer

A transformer is the Cocoon equivalent to an XSL transformation. It accepts an

XML document (or a stream of SAX events) and generates another XML docu-

ment (or SAX events). The simplest transformer is based on the XSLT engine

Xalan, which is maintained by the Apache site. The XalanTransformer applies

XSL to the SAX events it receives.

Figure 10.6

If we use the same source document, vastly

different results are possible by applying

different stylesheets.

Key concepts 295

Serializer

A serializer is responsible for generating output from a stream of SAX events.

Cocoon includes serializers for generating HTML, XML, PDF, Virtual Reality

Modeling Language (VRML), and Wireless Application Protocol (WAP). It also

includes the API that allows you to create your own. The simplest of the serializ-

ers is the XMLSerializer. It receives SAX events and returns an XML document

that is indented and formatted so that it is human readable.

10.3.2 The sitemap

One of the main changes from Cocoon 1 to Cocoon 2 was the advent of the

sitemap. This document defines all the pipelines, generators, and other configura-

tion information for a Cocoon application. It also maps URIs to resources. A com-

plete sitemap for even a trivial application is too long to show here; for example,

the sitemap accompanying Cocoon that defines its samples is 1482 lines long! It

contains a fair number of comments, but there is still more content than com-

ments. Even a simple sitemap can easily stretch to hundreds of lines. Fortunately,

Cocoon documents the contents of the sitemap well. You’ll learn about the perti-

nent parts of the sitemap for the schedule application in section 10.4.1.

 The sitemap consists of two parts—components and pipelines—and pipelines

are made up of components. The first part of the sitemap contains the compo-

nent definitions, broken down into component types. The following sections

highlight some important portions of the sitemap but are not an exhaustive treat-

ment. The sitemap included with the samples is well documented.

Generator configuration

Generators are components; thus, they are defined within the sitemap. All pipe-

lines consist of at least two components:

■ A generator, which produces the content

■ A serializer, which is responsible for persisting the document and delivering

it to the requesting client

Within a sitemap, each generator must have a unique name, and one generator is

declared as the default, which acts if no specific generator is associated with a

pipeline. A small portion of the components section in a sitemap appears in

listing 10.4.

296 CHAPTER 10

Cocoon

 <map:generators default="file">
 <map:generator label="content,data"

 logger="sitemap.generator.file"
 name="file"
 pool-grow="4"

 pool-max="32"
 pool-min="8"
 src="org.apache.cocoon.generation.FileGenerator"/>

 <map:generator label="content,data"
 logger="sitemap.generator.serverpages"
 name="serverpages"

 pool-grow="2"
 pool-max="32"
 pool-min="4"

 src="org.apache.cocoon.generation.ServerPagesGenerator"/>

The label attribute is optional (it relates to one of the later categories in the
sitemap).

The logger attribute allows you to specify a different logging mechanism for
each component. If the component doesn’t specify a logger, it uses the default
for the application.

The pool attributes are used by the component manager part of the framework to
specify resource allocation.

The src attribute is poorly named—it is not the source code but rather the fully
qualified class name of the generator class.

Transformers

Transformers also appear in the component section. They sit in the pipeline

between the generator and the serializer, and each pipeline can have as many

transformers as needed. Some of the transformers have custom configuration

information associated with them as child attributes. These custom components

are declared in another file, Cocoon.xconf, which is the configuration file format

for the Avalon meta-framework on which Cocoon is based. This file defines the

components and specifies additional information (like configuration parame-

ters) for them. Listing 10.5 shows a couple of transformer declarations in the

sitemap file.

Listing 10.4 The components section of the sitemap defines components

that are used in pipelines.

Contains an
optional attribute

B
Configures
logging

C

Configures pool
resources

D Defines the
generator class

E

B

C

D

E

Key concepts 297

 <map:transformers default="xslt">

 <map:transformer logger="sitemap.transformer.xslt"
 name="xslt"
 pool-grow="2"

 pool-max="32"
 pool-min="8"
 src="org.apache.cocoon.transformation.TraxTransformer">

 <use-request-parameters>false</use-request-parameters>
 <use-browser-capabilities-db>
 false

 </use-browser-capabilities-db>
 <use-deli>false</use-deli>
 </map:transformer>

 <map:transformer logger="sitemap.transformer.log"
 name="log"
 pool-grow="2"

 pool-max="16"
 pool-min="2"
 src="org.apache.cocoon.transformation.LogTransformer"/>

Actions

Actions are executed during pipeline setup. Their purpose is to execute code nec-

essary for the pipeline to execute. For example, the action might pull information

from a database to populate the document consumed by the generator. Their exe-

cution may succeed or fail. If the action fails, the pipeline segment defined inside

the action will not execute.

 Actions are the prime execution context in Cocoon. They are used in web-

application development, much like the actions in Struts. Defining a pipeline with

embedded actions provides most of the programmability for the way the pipeline

execution proceeds. A couple of example action declarations are shown in

listing 10.6.

<map:action name="sunRise-login"
 src="org.apache.cocoon.sunshine.sunrise.acting.LoginAction"/>
<map:action name="sunRise-logout"

 src="org.apache.cocoon.sunshine.sunrise.acting.LogoutAction"/>

Listing 10.5 Transformers consume SAX events and emit SAX events.

Listing 10.6 Actions are the execution context of a Cocoon pipeline.

298 CHAPTER 10

Cocoon

Pipelines

The second part of the sitemap consists of the pipeline definitions. Pipelines spec-

ify how the processing of content is done. In most cases, pipelines consist of a gen-

erator, zero or more transformers, and a serializer. The invocation of a pipeline

depends on a URI mapping either of a single document or by extension or wild-

card, if you want a particular pipeline to apply to a variety of content. Examples of

several pipeline definitions appear in listing 10.7.

<map:match pattern="sample-*">

 <map:generate src="docs/samples/sample-{1}.xml"/>
 <map:transform src="stylesheets/simple-samples2html.xsl"/>
 <map:serialize/>

</map:match>

<map:match pattern="news/slashdot.xml">
 <map:generate src="http://slashdot.org/slashdot.xml"/>

 <map:transform src="stylesheets/news/slashdot.xsl"/>
 <map:serialize/>
</map:match>

This pipeline matches the URI “sample-*”—meaning any URI that starts with “sam-
ple-” followed by anything matches this pipeline.

The generator is a document located at docs/samples/sample-{1}.xml. The {1}
token matches the part of the URI handled by the asterisk. For example, if the
user requested the URI http://localhost:8080/cocoon/sample-foo, the pipeline
generator would use the document docs/samples/sample-foo.xml as the source
for the pipeline.

The transformation is the standard transformation for sample documents to
HTML.

The serializer is the default serializer (which generates the output of the transfor-
mation directly).

The second pipeline example utilizes a feature of the SlashDot web site, which

returns the current front page news as an XML document. Cocoon uses a

stylesheet defined in its examples to perform a transformation on the content to

produce the page shown in figure 10.7.

Listing 10.7 Pipelines define content processing.

Pipeline URI B Pipeline
generatorC

Default serializerE Pipeline
transformer

D

B

C

D

E

Key concepts 299

Editing the sitemap

The Cocoon sitemap is a large, complex XML document. Editing XML by hand is

error prone and not anyone’s idea of fun. It is particularly cumbersome for a con-

figuration document like this one because you can’t tell whether the document is

broken until you deploy and run the application, which is time consuming.

 To solve this problem, an open-source XML editor named Pollo, which

resides at SourceForge, “understands” the sitemap format of Cocoon. (Pollo is

available for download at http://sourceforge.net/projects/pollo/.) It is a desk-

top application, written in Java and Swing, which allows drag-and-drop editing of

XML documents. It was written especially for Cocoon and has special support

for it. Figure 10.8 shows the Cocoon sitemap in Pollo.

10.3.3 The web framework

The web framework in Cocoon is one aspect of the publishing framework. It

encompasses two areas suited for web development. The first, actions, applies to

any pipeline. The second, XSP, is aimed at web development.

Actions

Cocoon uses the concept of an action as an execution context, which is simi-

lar to Struts’ actions. A pipeline invokes an action to perform some processing

before the rest of the pipeline takes over. Actions are used as the active ele-

ments for pipelines in the publishing framework. They are used in the web

Figure 10.7

The Cocoon pipeline defines the

Slashdot news site as an XML

generator and applies a

stylesheet to create an

alternate view of the new.

300 CHAPTER 10

Cocoon

framework side of Cocoon as controller proxies to perform work before for-

warding to a view component.

 Actions are executed during pipeline setup. Therefore, the action itself has no

effect on the pipeline once the processing has started. The action is used to set up

conditions suitable for the pipeline to work, passing dynamic content over to the

generator to process.

 Actions are based on the Cocoon Action interface, which defines a single

act() method. Cocoon also includes an AbstractAction class, which implements

the interface and extends the AbstractLoggable class. This class provides access to

the logger defined for this component via the getLogger() method.

 Actions return a java.util.Map object. The contents of this map are used in

the pipeline as replaceable variables (like the ones shown in the pipeline example

in listing 10.7). Any name-value pairs returned by the action become parameters.

If a particular action does not need to supply any values, it should return an

empty Hashmap (the AbstractAction has a constant defined for this purpose). If

the action needs to indicate failure, it should return null.

Figure 10.8 The Pollo open-source editor makes it easier to edit Cocoon sitemap files (and

other XML documents as well).

Key concepts 301

XSP

XSP is a Cocoon technology built on the ideas behind JSP. XSP is similar to JSP with

two exceptions. First, the pages are all XML pages, not necessarily HTML. There-

fore, they can undergo the same kind of transformations as XML documents in

the Cocoon publishing framework. Second, XSP pages are not tied to Java as the

underlying language. An implementation exists in Cocoon for a JavaScript version

of XSP. Listing 10.8 shows an example of a simple XSP page.

<xsp:page language="java">

 <page>
 <log:logger filename="xsp-sample.log" name="xsp-sample"/>
 <log:debug>Processing the beginning of the page</log:debug>

 <title>A Simple XSP Page</title>

 <content>
 <para>Hi there! I'm a simple dynamic page generated by XSP

 (eXtensible Server Pages).</para>

 <para>I was requested as the URI:
 <xsp-request:get-uri as="xml"/></para>

 <para>The following list was dynamically generated:</para>

 <xsp:logic>

 <![CDATA[
 for (int i=0; i<3; i++) {]]><![CDATA[
]]>

 Item <xsp:expr>i</xsp:expr>

 <![CDATA[
 }]]><![CDATA[
]]>

 </xsp:logic>

 <xsp:element>

 <xsp:param name="name">
 <xsp:expr>"P".toLowerCase()</xsp:expr>

 </xsp:param>
 <xsp:attribute name="align">left</xsp:attribute>
 <i>

 This paragraph was dynamically generated by logic
 embedded in the page
 </i>

 </xsp:element>

Listing 10.8 XSP pages resemble JSP pages.

302 CHAPTER 10

Cocoon

 <para>

 Request parameter "name" as XML:
 <xsp-request:get-parameter as="xml"
 default="Not provided" name="name"/>

 </para>

 <para>
 Request parameter "name" as String:

 <xsp-request:get-parameter
 default="Not provided" name="name"/>
 </para>

 </page>
</xsp:page>

While XSP is similar to a JSP, there are notable differences. First, notice that the

<para> tags used to delimit the paragraphs and other elements are not HTML; they

are instead defined as XSP. Second, embedded code in XSP appears in a <logic>

tag. An unfortunate side effect of XSP pages adhering strictly to the XML standards

is that the normal operators in Java for “less than” and “greater than” are illegal

within tags. To use them (as in a for loop), you must either escape them within a

CDATA block or use the XML-friendly equivalent (for <, use <).

 XSP pages have a transformer predefined by Cocoon. To create a web applica-

tion in Cocoon, the developer defines a pipeline that includes one or more

actions that place items in a standard web collection. Then, the pipeline forwards

to an XSP document, which is picked up by the XSPGenerator and passed to the

XSP-to-HTML transformer, which generates the output for the user. This sequence

occurs in the schedule application in the next section.

10.4 Scheduling in Cocoon

The schedule application in Cocoon takes advantage of the web application

framework. However, as you have seen, you can’t use that framework without also

using the publishing framework. For this example, we’re using pipelines, actions,

and XSP pages. Unlike the other versions of scheduling, we’re implementing only

the first (View) page of the application because of space considerations. This

project consists of sitemap definitions, the action class, and the XSP. The running

Cocoon schedule application appears in figure 10.9.

Scheduling in Cocoon 303

10.4.1 The sitemap

The first step in a Cocoon project is the creation of the sitemap. More accurately,

the first step is the modification of an existing sitemap. (Complex XML docu-

ments like this are never created from scratch; they are always “borrowed” and

modified.) For this application, we register an action component and define the

pipeline for the application. These declarations appear in separate sections of the

sitemap, but we’ve compressed them here to fit into a single listing. The sitemap

elements required for this application are shown in listing 10.9.

<map:actions>

 <map:action name="view-schedule"
 src="com.nealford.art.schedcocoon.action.ViewSchedule" />
</map:actions>

<!-- sections of sitemap omitted -->

<map:pipeline>
 <map:match pattern="">

 <map:redirect-to uri="home.html" />
 </map:match>

 <map:match pattern="viewschedule">

 <map:act type="view-schedule">
 <map:generate type="serverpages"
 src="viewschedule.xsp" />

Figure 10.9

The Cocoon schedule application

uses custom actions and an XSP for

generating the user interface.

Listing 10.9 The sitemap for the schedule application

Action definitionB

Pipeline pattern
definitions

C
Default
pattern

D

viewschedule
pattern

E

304 CHAPTER 10

Cocoon

 </map:act>

 <map:serialize/>
 </map:match>

 <map:handle-errors>

 <map:transform src="stylesheets/system/error2html.xsl"/>
 <map:serialize status-code="500" />
 </map:handle-errors>

</map:pipeline>

The action definition registers the action from section 10.4.3 as a component.

The pipeline creates three patterns to match.

The first pattern is a stopgap for any unrecognized content to map to a Home
page.

The second pattern is the important one for this application. Any URI that maps
to viewschedule will go through this pipeline. It creates an instance of the cus-
tom action. If the action succeeds, it uses the XSP generator to point to the XSP

for this page.

The last mapping handles error conditions, taking the default XML error message
from Cocoon and generating an HTML document. It is a good idea to include this
mapping in every project because it makes the error messages while debugging
much more readable.

10.4.2 The action

The action is similar in intent to an action in Struts or any other web frame-

work that uses the Command design pattern. The ViewSchedule action appears

in listing 10.10.

package com.nealford.art.schedcocoon.action;

import java.util.HashMap;

import java.util.Map;
import com.nealford.art.schedcocoon.boundary.ScheduleDb;

import org.apache.avalon.framework.parameters.Parameters;
import org.apache.cocoon.acting.AbstractAction;
import org.apache.cocoon.environment.ObjectModelHelper;

import org.apache.cocoon.environment.Redirector;
import org.apache.cocoon.environment.Request;
import org.apache.cocoon.environment.SourceResolver;

public class ViewSchedule extends AbstractAction {

Error
mapping

F

B

C

D

E

F

Listing 10.10 The ViewSchedule action builds the dynamic content

needed for the view XSP

Scheduling in Cocoon 305

 public Map act(Redirector redirector, SourceResolver resolver,
 Map objectModel, String source, Parameters par)
 throws java.lang.Exception {
 ScheduleDb scheduleDb = new ScheduleDb();
 scheduleDb.populate();
 Request request = ObjectModelHelper.getRequest(objectModel);
 request.setAttribute("scheduleItemList",
 scheduleDb.getList());
 request.setAttribute("columnHeaders",
 generateDisplayColumns(scheduleDb));
 return EMPTY_MAP;
 }

 private String[] generateDisplayColumns(ScheduleDb scheduleDb) {
 int numDisplayHeaders =
 scheduleDb.getDisplayColumnHeaders().length;
 String[] displayColumns = new String[numDisplayHeaders - 1];
 System.arraycopy(scheduleDb.getDisplayColumnHeaders(), 1,
 displayColumns, 0, numDisplayHeaders - 1);
 return displayColumns;
 }
}

The ViewSchedule class extends the Cocoon AbstractAction class and overrides

the lone abstract method, act(). This method builds a new boundary object and

populates it. To pass information to the XSP, the action must have access to one of

the standard collections. The ObjectModelHelper class is a Cocoon class that

returns an instance of the Cocoon request object. This is not an HttpServletRe-

quest object but rather one defined by Cocoon, though it does have the same col-

lection semantics.

 Once we have the request, we can add the two pieces of information to it

(namely, the list of items and the column headers to display) and return. This

action does not need to supply any parameter values to the pipeline, so we return

an empty map, using the predefined protected field from the parent class.

10.4.3 The view

The View page of the schedule application is an XSP page. It appears in

listing 10.11.

<xsp:page
 xmlns:xsp="http://apache.org/xsp"
 xmlns:xsp-request="http://apache.org/xsp/request/2.0">

 <xsp:structure>

Listing 10.11 The view portion of the application is an XSP page.

306 CHAPTER 10

Cocoon

 <xsp:include>java.util.Iterator</xsp:include>

 <xsp:include>

com.nealford.art.schedcocoon.entity.ScheduleItem

 </xsp:include>
 </xsp:structure>

<page>

<html>
<head>
<title>

Schedule Items
</title>
</head>

<body>

<p><h2>Schedule List</h2></p>
<table border="2">

 <tr bgcolor="yellow">
 <xsp:logic>{
 String[] headers = (String [])

 <xsp-request:get-attribute name="columnHeaders"/>;
 for (int i = 0; i < headers.length; i++) {
 <th><xsp:expr>headers[i]</xsp:expr></th>

 }
 }</xsp:logic>
 </tr>

 <xsp:logic>{
 List itemList = (List)
 <xsp-request:get-attribute name="scheduleItemList"/>;

 Iterator it = itemList.iterator();
 while (it.hasNext()) {
 ScheduleItem item = (ScheduleItem) it.next();

 <tr>
 <td><xsp:expr>item.getStart()</xsp:expr></td>
 <td><xsp:expr>item.getDuration()</xsp:expr></td>

 <td><xsp:expr>item.getText()</xsp:expr></td>
 <td><xsp:expr>item.getEventType()</xsp:expr></td>
 </tr>

 }
 }</xsp:logic>
</table>

<p/>

Add New Schedule Item

</body>
</html>
</page>

</xsp:page>

XSP importB

Iteration
with the
logic tag

C

Evaluating Cocoon 307

XSP has tags that are defined to perform imports (which XSP calls includes) within
a <structure> tag.

The dynamic parts of this page resemble the same parts from a JSP. We chose in
this example to escape the < sign within the for loop for the column headers to
avoid the equally ugly CDATA section. One benefit of the nature of XML and the
<logic> tag is that you can freely mix presentation and markup within the
<logic> tag. This makes the blocks less scattered than in JSP.

While not the complete schedule application, this example should give you a feel

for what web development looks like in Cocoon. Once you understand how to set

up pipelines and the interaction of the publishing framework with the web frame-

work, the web coding is straightforward.

10.5 Evaluating Cocoon

Cocoon is the most complex framework in this book. Of course, it is more than

just a web-application framework, which is almost an afterthought. However, the

criteria used to evaluate Cocoon are the same as those for the other frameworks.

Let’s look at the documentation and samples, the source code, and how to debug

Cocoon applications.

10.5.1 Documentation and samples

The documentation for Cocoon is rather scattered. It isn’t well organized at all

(ironic for a publishing framework). I frequently had the experience of knowing

that I had seen a topic but not being able to remember where it was or how I got

to it. The documentation is separated into categories, but some of them are

incomplete. The phrase “Here will soon appear an overview of …” turns up in

numerous places.

 The documentation proceeds in a narrative fashion that is useful as a tutorial

but frustrating as reference material. I could not find a comprehensive index for

all the topics. The table of contents page includes numerous side-panel topics.

The side-panel topics include hyperlinks to other topics, which also have side-

panel topics, which have hyperlinks to other topics, and so on. The best documen-

tation for the sitemap is in the sample sitemap file itself as comments. This file fea-

tures a good overview of each section and embedded comments when something

out of the ordinary pops up.

 The samples are good but not voluminous enough for my taste. I like numer-

ous samples, which is particularly important for a complex framework like

B

C

308 CHAPTER 10

Cocoon

Cocoon. One of the problems with the samples is the way they are packaged. All

the samples reside in a single web application (which also contains all the docu-

mentation). Configuring Cocoon is no simple matter, and it makes it difficult to

look at the configuration for the samples because they are all in one place. I

would like to have a few simple sample applications that stand alone from the

large archive.

10.5.2 Source code

Like any open-source project, the source code is downloadable as well. When

evaluating a framework, the only time I mention the source code explicitly is

when I see frightening things. In several places as I was debugging in Cocoon, I

saw large areas of code commented out. Comments often appear in a release ver-

sion, but not in a beta. While this isn’t a crime, it is usually a sign of undisciplined

developers. Every project of this size uses version control, so it is never necessary

to leave commented code lying around. If you need to get back to it, get it out of

version control.

 In a specific example, the following comment appears in the sample sitemap,

under the Pipelines section:

1) The top level elements are executed in order of appearance until

 one signals success. These top level elements are usually
 matchers. AFAIK other components are not supported for this.

The “AFAIK” comment frightens me a little (in case you don’t know, it is an acro-

nym for “As Far As I Know”). If the commenter of the sample sitemap file doesn’t

know, I’m afraid to ask who does. This is in the pipelines section, which is not a

trivial section, of this critical file. I don’t dispute the information—it is probably

true that this is a rare or never seen situation. However, the comment is still discon-

certing because it indicates that there may be other sections in the code like this.

10.5.3 Debugging

Debugging a Cocoon application is nice because the error messages are very

informative. The errors come back as XML, and they are transformed to HTML for

debugging web applications. It is certainly a good idea to include the handle-

errors mapping in your pipeline:

<map:handle-errors>
 <map:transform src="stylesheets/system/error2html.xsl"/>
 <map:serialize status-code="500" />

</map:handle-errors>

Summary 309

This will ensure that all the errors appear as nicely formatted HTML instead of the

raw XML error output.

10.6 Summary

Cocoon is a very powerful idea. It takes the concept of separation of content and

presentation to a completely new level. It is also complex. In its current incarna-

tion, it is more suited for certain web applications than others. If your web appli-

cation already has the need to generate different output based on requests (in

other words, it has a need for a publishing framework), Cocoon is the obvious

choice. In the near future, it won’t be an option any more—every web application

will need to handle this kind of functionality.

 The main problem that hampers Cocoon now is the complexity of the underly-

ing open standards it is built on. XSLT is a complex transformation language, and

not much expertise or enough tools exist to mitigate that. Including transforma-

tions in your content generation adds a significant layer of complexity to your web

application. Of course, you don’t have to do this—you can use the web framework

as it is and use XSP as a substitute for JSP or some other presentation technology.

But if you do that, you aren’t taking advantage of the strengths of Cocoon.

 In the next chapter, we turn to the evaluation of web frameworks.

311

Evaluating frameworks

This chapter covers

■ Evaluation criteria for frameworks

■ Design considerations

■ What I like in frameworks

312 CHAPTER 11

Evaluating frameworks

The previous chapters have focused on a single framework, highlighting its design

and unique characteristics. That works fine for you if the framework you are con-

sidering appears in one of those chapters and I hit on all the high points that inter-

est you. Chances are good, though, that I didn’t cover exactly the features or even

the frameworks that interest you, so this chapter provides some tips on evaluating

frameworks on your own. These are the factors I take into account when deciding

whether I want to use a new framework. I work as the Chief Technical Officer at a

small consulting company. I bring this up because consultants in my position have

a unique advantage over people who work for a single company. I have seen hun-

dreds of projects over the years and contributed significantly to dozens. Just as

learning new languages provides insights into your primary language, seeing

numerous development efforts teaches firsthand what works and what doesn’t

work. Most of the opinions I have formed concerning design and architecture

come from direct experience: Some designs look great at the start, and then get

uglier as time progresses. In this chapter, I am sharing some of the lessons I’ve

learned as they apply to using frameworks.

 I’ve used all of the frameworks described in this book to one degree or

another, and I’ve seen many more. It is my job to figure out what framework and

architecture should be used for various projects my company undertakes. Thus,

evaluating the quality of frameworks and other tools isn’t a hobby. It is the differ-

ence between six months to a year of hassle and grief versus happiness and light.

 This chapter is devoted to generating an objective and a subjective view of a

web application framework. Many of these criteria work for other frameworks and

tools as well, but the primary focus is on web development frameworks. At the

end, I’ve included a section in which I tell what my favorites are and why.

11.1 Evaluation criteria

A developer comes to you and wants to start using “Bob’s Framework” for develop-

ing an application. Never having seen Bob’s Framework, you must evaluate it to

determine whether it’s a good idea to trust your application to it. To make an edu-

cated judgment, you need objective criteria you can apply to the framework to see

if it is suitable for the task.

11.1.1 Suitability to the application

Unfortunately, there is no one-size-fits-all framework, especially for web applica-

tion development. Different applications have different needs. Making the right

Evaluation criteria 313

decision for a distributed application is harder than for a desktop or client/server

application because of the uncertain nature of scalability. The following sections

highlight some decision points.

Speed of development

How long do you have to build the application? Some applications will be useless

if they take a year to produce. Of course, every manager in the world will tell you

that he or she wants it “yesterday” with more features than an operating system

and fewer bugs than NASA software. Once you return your manager to this planet,

the speed of development versus complexity is one of the primary factors. For

example, you can build an application much faster using a Rapid Application

Development (RAD) framework than you can using a more architecturally pure

framework. However, if the application must live for a long time, you end up

spending more time on patching and workarounds toward the end of the lifecycle

than you saved at the beginning.

 This is a sticky question and one that has haunted client/server development

for years. Back in the mid-1990s, everyone built applications using RAD tools (and

their corresponding frameworks), where the greatest concern was speed of devel-

opment. However, as these applications’ maintenance and upgrade cycle length-

ened, many of them started collapsing under the weight of the framework. Even

in cases where raw speed wasn’t an issue (for example, compiled versus inter-

preted languages), the design and architecture couldn’t support changes without

Herculean effort. Generally, this reveals itself as super high coupling and poor

separation of responsibilities. Most of you have probably worked on a project with

The Guy, who knew that if you changed this part of the application, then that

would affect Part A, Part D, Part E, and Part W. And, of course, it’s a dependency

tree, so Part A’s dependencies must be managed, and Part D’s, and so on. For

many organizations, if a bus hits The Guy, they need to rewrite the application

from the ground up.

 This is the dark side of RAD development. However, that isn’t to say it is always

a bad thing. If you have a web application that

■ Is small in scope

■ Doesn’t need to be scalable

■ Won’t have a long lifetime

then using a RAD framework is the best choice. You can write the application

quickly, glossing over the design compromises that come up, and move on to other

projects. If you do this, you need to get guarantees from The Boss (preferably

314 CHAPTER 11

Evaluating frameworks

written in stone) that those characteristics will not change. You might get an agree-

ment stating that when they do change (and they always do), you get to rewrite the

application in a more suitable framework.

 Some development falls in between RAD frameworks and more methodologi-

cally pure ones. As an example, consider the “forbidden” SQL tags in JSTL. It isn’t

that these tags are inherently bad. They are certainly a bad idea if you are building

a large application because it mixes presentation, SQL access, and business logic

all on the same page. However, for a small application that meets the criteria we

just listed, these tags might be the perfect tool to do the job. Few things are always

bad. Ultimately, they are all tools. Finding the right tool for the job is better than

forcing a tool to perform a task for which it is not suited.

 Even if you are short on time, it pays on the back end to use good design up

front. Unless the application meets all the criteria, you should do it right. Even

though there is constant schedule pressure, you end up using less time for good

design than you do by hurrying through a bad design. If speed of development is

a critical risk factor, you might choose one of the lighter-weight frameworks (like

Struts) rather than invest the time in learning one of the heavier-weight ones

(like Tapestry). You will probably end up writing many of the same services by

hand that Tapestry already provides, but the ramp-up time is shorter for a sim-

pler framework.

Scalability

Scalability is a killer for web applications and techniques to mitigate. Generally,

more scalable is better than less, even if that scalability comes with some added

complexity. You should look at the scalability of the framework to make sure it

meets your needs. Of course, the framework isn’t going to publish a report show-

ing how scalable it is, but, you can look at the architecture and glean some insight

into this aspect. If you have serious scalability needs, you might consider writing a

small representative proof-of-concept application and load-test it, using either

one of the open-source tools (like HttpUnit, covered in chapter 14) or one of the

commercial tools. Chapter 14 covers performance and profiling.

 Of course, the ultimate scalability solution lies with Enterprise JavaBeans

(EJBs) because the application server that hosts them provides the necessary infra-

structure to support caching, pooling, and other scalability services. If you go that

route, make sure that the framework fits nicely into that environment. For exam-

ple, InternetBeans Express’s reliance on DataExpress doesn’t work as nicely as

Struts for EJBs.

Evaluation criteria 315

Lifetime and maintainability

Application lifespan and maintainability is the other side to our RAD discussion.

You are free to use a more RAD-based framework if the application is going to

have either a short lifetime or it isn’t going to evolve much. If you expect your

application to have a long life, consider using a framework in which it is easy to

move to EJB because the longer the application lives, the more likely it will eventu-

ally need the scalability provided by EJB. All the frameworks that support Model 2

apply here (and that encompasses most of the frameworks in this book).

11.1.2 Documentation

We covered this topic individually for each of the frameworks in previous chap-

ters. Particularly for open-source projects, the quality of the documentation is

critical because producing it is not the most enjoyable part of building the frame-

work. As the complexity of the framework increases, the documentation should

follow suit. I firmly believe that the reason more people don’t use the Turbine

framework is the format of the documentation. Because open-source projects

don’t have marketing departments, they must rely on developers picking up their

framework and understanding enough to use it. Documentation exists in two dif-

ferent formats for frameworks: the written documentation (including tutorials)

and JavaDocs.

Developer guides

As you look at the documentation, make sure that it is complete. Several open-

source documents have “TBD” (To Be Done”) sections, some of which have sur-

vived several iterations of the framework. If that covers a complex part of the

framework, you are on your own.

 The quality of the documentation is more important than the quantity. Some

frameworks have both (like Velocity), but that is rare. Well-written documentation

is as hard (or harder) to come by as well-written code. One of the shortcomings of

Cocoon is the confusing format of the documentation.

 Another documentation pitfall is out-of-date material. Sometimes the docu-

mentation doesn’t stay current with the code base. The reverse is true in Cocoon.

In several sections on web development, the documentation is ahead of the

release of the framework. To take advantage of some of the documented features

in the significantly updated web framework, you must download and build the lat-

est nightly releases. This is at least better than lagging documentation, but not

very helpful if you are using the current release version of the framework.

316 CHAPTER 11

Evaluating frameworks

 Some frameworks have documentation that comes in several formats. Most of

the frameworks covered in this book have both formal reference documentation

and tutorials. Tutorials are best for getting the flavor of a framework because they

let developers see what they want to see most: code. However, by their nature tuto-

rials don’t delve into the complexity or real feature set of the framework.

 The Tapestry framework goes the extra mile as far as documenting its custom

tags. The tags are complex and have two aspects: the Java code that implements

the tag (which is documented with JavaDocs) and the usage documentation. The

usage documentation is valuable because it shows you which properties are avail-

able for the control and some examples of use. The usage documentation is

linked within the JavaDoc, so finding it is easy. Tapestry sets the gold standard for

documenting custom tags.

JavaDocs

Every Java project uses JavaDocs to one degree or another. JavaDocs are the pri-

mary reference documentation for many projects. The key to a good JavaDoc is

the level of detail. Most projects have adequate class-level JavaDocs. The real dif-

ferentiating factor is the method-level JavaDoc. Some of the frameworks don’t

have anything at the method level. This is unfortunate because even the sim-

plest method should tell something about itself. The exceptions to this rule are

accessors and mutators, which are well-understood entities in the Java world and

don’t require documentation unless they have side effects of which the devel-

oper should be aware.

 Generally, your development tool of choice will allow you to include the Java-

Doc (and the source) along with the classes that make up the project. This places

the JavaDoc under your fingertips, making it easier to access, particularly when

you’re debugging. For example, the Configure Libraries dialog box in JBuilder

allows you to define the binaries, source, and documentation that should be

included with a framework, as shown in figure 11.1.

11.1.3 Source code

An advantage of the open-source frameworks is the availability of the source code.

For either open-source or commercial frameworks, if you have the source code

you should browse through it. This doesn’t mean that you should try to read all

the code. Just open it up at some random locations and see what you find. It

should be well organized, from both a class-hierarchy level and individual-file

level. Check for consistent indentation and brace matching across files, particu-

larly ones not written by individual developers. This consistency isn’t critical to the

Evaluation criteria 317

function of the framework, but most open-source projects have coding guidelines.

If some developers are not following the guidelines, in what other ways are they

not cooperating with the overall vision of the project?

 One red flag in source code is the presence of commented-out code. Every

project the size of a framework uses version control, which allows developers to

retrieve previous versions of code if needed. Especially for a release version of

the software, commented-out code is bad sign because it shows a lack of organi-

zation. Again, this might not affect the functioning of the framework, but it

raises questions.

11.1.4 Tool support

The question of tool support may be more of a luxury than a hard requirement.

Some frameworks have tools that other developers have built to make it easier to

use the framework. For example, several tools have emerged that make it easier to

edit Struts configuration files. The goal of the Pollo project is to assist in creating

XML files generally and Cocoon sitemaps specifically. Many of the integrated

development environments (IDEs) now support specific frameworks. For example,

the latest version of JBuilder supports Struts development with editors and wizards.

 Even if the tool doesn’t directly support it, most Java IDEs and editors feature a

plug-in architecture, which enables developers to write tools that plug into the

IDE. Numerous such plug-ins exists for JBuilder, JEdit, Eclipse, and a host of other

development tools.

Figure 11.1

JBuilder allows you to

associate the JavaDocs with

the binaries.

318 CHAPTER 11

Evaluating frameworks

 User interface designer tools are getting smarter about frameworks as well.

Macromedia’s Dreamweaver supported JSP custom tags in its version 4 with a

plug-in from Apache’s site. The newest version (Dreamweaver MX) supports cus-

tom tags natively. When you’re using a framework that implements custom tags

(JSTL, Struts, Tapestry), it makes a big difference if the user interface designer

can use the tool to generate exactly the kind of user interface elements supported

by the library.

 You shouldn’t base your decision on whether to use a particular framework on

tool support alone. But tool support—or the lack thereof—can help you distin-

guish between two frameworks that have similar characteristics.

11.1.5 External criteria

External criteria are those criteria that don’t necessarily reflect technical aspects of

the framework. These are factors beyond the control of the authors of the frame-

work but can still contribute to your decision.

Critical mass

For open-source projects, critical mass is important. They don’t have to sell

more copies to stay in business, but popularity is important. No matter how

technically brilliant, would any project stay afloat if no one used it? The more

popular an open-source project is, the more likely that an active community

exists to answer questions and that tool support will appear. In addition, it is

easier to hire developers who are already familiar with a framework. Struts has

practically become a standard in Java web development, and the more success it

has, the more entrenched it becomes. Most developers have at least heard of

Struts, and many have experience with it.

 At the same time, one of the problems with open source is companies’ fears

that the developers will lose interest and just stop working on it. Because of the

nature of open source, you have the source code. In the worst-case scenario, the

developers stop making enhancements. However, if a framework does the job that

you need now and it is relatively free of bugs, this fear shouldn’t stop you from

using it. A mentality of upgrade-or-die exists because of commercial software. I

know of many software packages that should never have been upgraded past a cer-

tain point. I believe that a piece of software, particularly if it is highly cohesive, can

reach a point of equilibrium where it doesn’t need enhancements anymore. This

is particularly true of infrastructure software like frameworks.

Design considerations 319

The developer community

A strong developer community is also an asset for any framework. This relates to

how easy it is to get answers to questions. Open-source software doesn’t have tech

support lines. The best way to get answers to questions are mailing lists and news-

groups. The more developers using a framework, the more likely that someone

can (and will be willing) to answer your question. Some of the framework sites

contain a link to point you to a gathering place for like-minded developers.

Places in use

Some framework developers have a list of success stories or sites that are using

their framework. It is interesting to browse those sites to see what kinds of things

they have gotten the framework to do. It can give you ideas for your own sites.

Because they were written in the framework, you know that it is possible (just not

how difficult). A framework with many success stories can indicate how much pen-

etration the framework has out in the world.

11.2 Design considerations

No matter how good the documentation or how many people are using it, a poorly

designed framework is still not a bargain. Just because it enjoys wide use doesn’t

mean it is good. It is important to know what constitutes good design and apply

that knowledge to the framework to see whether the framework supports good

design principles.

 Some frameworks have multiple modes of operation. For example, it is a bad

idea for a large project to mix presentation logic and user interface. Yet JSTL has

custom tags that allow you to place business logic and database access right on the

page. While the user interface elements of JSTL are useful, it would be a mistake

to use the other tags. Using a framework doesn’t absolve you of policing the

design and architecture of what you produce.

11.2.1 Adherence to good design principles

Practicing good design applies to both the source code of the framework and the

kind of code you can produce with the framework. These are two completely dif-

ferent issues. The most elegantly crafted framework in the world that forces you to

write poorly designed applications is a disaster for you.

 You must understand what constitutes good design. That type of information is

littered throughout this book. However, I certainly don’t claim to be the last word

on the topic. Understanding object-oriented programming is the first step—and I

320 CHAPTER 11

Evaluating frameworks

mean really understanding it, beyond just the syntax for making objects work. You

should know why high cohesion and low coupling are desirable, how to use inter-

faces to create loosely coupled systems, when inheritance is suitable, and various

other things. Most developers today should be well versed in design patterns and

other industry-accepted best practices.

 Once you understand these issues, you should apply them to the design of

your application and see whether the framework you are considering helps or

hampers that goal. Some frameworks won’t help or hurt your design. Some will

actively interfere, and some will force you toward the right direction. However, I

don’t know of any that are foolproof. You must always be diligent to make sure

that the architecture and design are what you want.

 Setting the architecture and design early and forgetting about it is also danger-

ous. You must constantly police the use of the framework, particularly if you have

developers who are new to it. Once a group of developers has used a framework

correctly and successfully for a while, the policing becomes easier.

11.2.2 The user interface

Most of the frameworks covered in this book contain a user interface element. It

is evaluated along with the rest of the framework. User interfaces have their own

criteria for deciding suitability for a given project.

Ease of use

This section might be more appropriately titled “Not Too Hard to Use,” which is

more important than how easy it is to use. This topic and the next (“Power”) go

hand in hand and are sometimes at opposite poles. The user interface part of

the framework should be easy to use without compromising the overall design.

Most of the frameworks covered in this book feature custom tags for user inter-

face development.

 If you are working in specialized groups in which the user interface designers

are not Java developers, you should evaluate how hard it will be for the designers

to make use of the tags. Tool support is nice here because if the tool allows you to

use the tags invisibly, the web designers don’t have to know much about the inter-

nal workings. For the frameworks that use templates instead of custom tags, the

job of user interface designers becomes easier because they are back doing the

work of pure HTML. However, they don’t get as good a sense of what the result will

be because the template replacement sometimes generates a different look than

what it replaces.

Design considerations 321

Power

Power is the other side of “ease of use.” A set of powerful user interface compo-

nents can make the job of designing the user interface more difficult. Alterna-

tively, the components can provide the kind of powerful user interface that is

virtually impossible with lesser components.

 Most of the frameworks covered in this book use custom tags to perform their

work, and the others use replaceable templates. Generally, the ones that use tem-

plates can’t get the behavior they want through the tag API. A good example of

this is Tapestry. This framework attempts to mimic the development of desktop

applications. It goes to the extent of enabling you to create user interface compo-

nents that resemble the corresponding Swing controls. The Tapestry controls

offer a lot of power but are much more difficult to create. Tapestry is excellent for

developers who have a strong background in building desktop applications and

models for Swing controls. The framework hides many of the details of web devel-

opment, even in the controls. Tapestry is powerful, but easy to use for only a cer-

tain type of developer.

Flexibility

Frequently, you are not required to use the user interface portion of the frame-

work. Several of the frameworks we discussed give you the option of plugging in

some other user interface element. Some of the ones that don’t explicitly give you

that option support alternative user interface frameworks anyway. The most likely

candidate to displace the user interface part of another framework is Velocity. If the

framework supports this, you have the option of using a best-of-breed approach.

 One replacement element that is useful in all the custom tags–based frame-

works is JSTL. The iterators and other controls in JSTL are sometimes better than

the ones in other frameworks. Because they are all just custom tags, you can eas-

ily substitute one for the other. Of course, if you are using a framework that has

special support for its tags (like WebWork and its value stack), you can’t drop in

a replacement.

11.2.3 Innovative features

Some of these frameworks have clever features that make them easier to use. One

of my favorites among the frameworks presented in this book is the value stack

concept in WebWork. It is a good combination of power and ease of use because it

generally works just the way you would want it to. Another example of an innova-

tive feature is the way that Tapestry wrestles control away from the servlet API and

creates its own world.

322 CHAPTER 11

Evaluating frameworks

 These features are ultimately the distinguishing characteristics between frame-

works. You can compare them head to head on such criteria as support for

Model 2, whose custom tags are better. However, the unique features of the frame-

work set one apart from another. This is where the decision gets tough—you will

almost certainly like some of the features of all the frameworks. One way to help

decide is to “grade” the value of a particular feature. In other words, have your

developers assign a numerical value to the features they like. Whichever frame-

work gets the best grade wins.

11.2.4 Insularity

Insularity is a measure of how tightly the framework holds its grip on you. Some

frameworks are very insular. Once you are in the code of the framework, you can’t

get out. The most likely candidate in this book is Tapestry. Because it is such an

elaborate framework, once you are running in the framework it doesn’t seem as if

you are writing a web application anymore. Many of these frameworks replace the

common HttpServletRequest with their own Request object. Some of the behav-

ior is the same, but not all of it. Most of the frameworks (including Tapestry) pro-

vide hooks to get you back to the web world. A stark contrast is a framework like

Struts, which relies on the web API to perform its work.

 Insularity itself is not an undesirable characteristic. How much the insularity is

enforced is the issue. You may have had the experience of writing within a frame-

work where 80 percent of what you wanted was easy, the next 10 percent was diffi-

cult but possible, and the last 10 percent could not be done within the confines of

the framework. You must watch out for frameworks that don’t give you any access

to the world outside (or make it so difficult that you never try).

11.2.5 “Feel”

This last criterion is strictly subjective. No matter how objective you try to be,

some frameworks will “feel” better than others will. Your experience with other

frameworks, your personality, your last project, and what you had for breakfast all

feed into this evaluation criterion. This probably has something to do with the

nonverbal, pattern-matching part of your brain recognizing something you like.

Ultimately, this is why so many frameworks are available. If everyone went by

strictly objective criteria, we would probably have only one framework (and one

language for that matter).

 You shouldn’t discount this as a measurement. If you pick a framework for all

the right reasons but it “feels” wrong, you aren’t going to be happy. On the other

What I like 323

hand, don’t pick a framework that has nasty characteristics just because it “feels”

good. Some things that feel good aren’t good for you.

11.3 What I like

As a developer, I have been living with frameworks (and building some of my

own) for a while and have formed some opinions on what I like. I’ve tried to be

objective in the chapters on frameworks, yet I tend to like some things more than

others. This certainly has more to do with my personality than anything else.

 Having stated my disclaimer, here are my criteria for choosing a framework. I

don’t mean to “disrespect” any of these frameworks. All the ones we covered in

this book are excellent works of craftsmanship.

11.3.1 Transparent infrastructure

I tend to like frameworks that have a virtually transparent infrastructure. Struts

falls nicely into this category. If you understand web development and design

patterns, you can understand how Struts works after using it for an afternoon.

This probably stems from the fact that I’ve used too many annoying heavyweight

frameworks, mostly predating Java. Struts is a nice mixture of transparent power

and ease of use. I suspect that this is one of the reasons it is so popular. Struts

combined with either JSTL or Velocity is a favorite combination of mine.

 Tapestry, Cocoon, and Turbine are the polar opposites of this principle. All

of these frameworks are powerful but have a huge amount of code backing up

that power. You must surrender yourself to the framework to use them. For

building complex sites, I firmly believe that you could get it done faster, with

less code, using one of these heavier frameworks. However, I can’t help but

think that I’ll eventually find myself in a corner that I can’t escape. In other

words, I’ll reach a point where I need to do something and the support offered

by the framework becomes a prison. Of these heavier-weight frameworks, Tapes-

try is the best because of its attention to detail (like the documentation) and the

excellent design. Tapestry is a case study in low coupling.

11.3.2 Innovative ideas

I tend to be drawn to innovative ideas, especially ones that are obvious in hind-

sight. The winner in this category is WebWork and the combination of the value

stack and the expression language. Of the medium-weight frameworks, I’m drawn

to this one more than the others. It still uses JSP for the presentation layer (open-

324 CHAPTER 11

Evaluating frameworks

ing the door to mix and match JSTL). I think Cocoon also fits into this category

but has other characteristics for which I don’t care.

11.3.3 Ultra-high cohesion and low coupling

I am very enthusiastic about high cohesion and low coupling. I have seen the ben-

efits for these two principles too much not to admire any framework (or piece of

software) that exhibits these characteristics. Velocity fits into this category. It is a

single-purpose tool for creating the user interface of web applications. It plugs

into a variety of different frameworks because it is so modular.

 Struts also falls into this category. It does one thing and does it well: it offers

plumbing for Model 2 applications. Again, I think this is one of the reasons it is

so popular. The code in Tapestry also exhibits low coupling. Everything in Tap-

estry that the developer sees is an interface, with backing concrete classes. From

a coding standpoint, I think Tapestry has done a good job of creating a flexi-

ble architecture.

11.3.4 Evaluating frameworks as a hobby

On a personal note, I must say that it has been fascinating delving into the details

of all these frameworks. For the ones I already knew about, it is interesting to see

how my perspective changed once I started digging into them, sometimes for the

better and sometimes for the worse. Each one is like an admittedly geeky birthday

gift, with surprises around every corner. It is fascinating to see all the ways devel-

opers have taken the core problem (creating Model 2 web applications) and

spawned so much variety. While evaluating frameworks is enormously time con-

suming, it yields much insight into building a certain type of software.

11.4 Summary

This chapter details the characteristics used to evaluate frameworks. If you must

evaluate one of the frameworks not covered in this book, this chapter gives you

guidelines. First, you must choose the right type of framework for the job at hand.

If you have a simple web application, you may be better off picking either a RAD

or user interface-centric framework like JSTL with its SQL tags. Next, you must

consider the documentation, including tutorials and JavaDocs. Then, read the

source code of the framework to get a feel for the structure of the code and its

adherence to standards. Be sure to evaluate the tool support for a given frame-

work and determine the importance of this factor for your project.

Summary 325

 Next, you should evaluate which design criteria and what kind of design ele-

ments appear in a framework. This includes an adherence to good design princi-

ples. Also consider the user interface portion of web frameworks, including the

option of replacing this entire layer. Weigh the importance of innovative features

like WebWork’s value stack and expression language, and consider how the insu-

larity of the framework affects your efforts and whether the benefits of the frame-

work offset the restrictions. Finally, don’t disregard the “feel” of the framework,

which may not be objective but is still an important criterion.

 I tend to like frameworks that are highly cohesive and feature low coupling. I

generally don’t enjoy using frameworks that are overly insular because I suspect

that they will eventually keep me from implementing something that should be

possible. I appreciate innovative ideas and try to leverage them whenever possible.

I like modular systems that can be used as a replacement for other framework

pieces, such as user interface elements.

 In chapter 12, we begin looking at best practices and how to partition the con-

cerns of your applications.

Part III

Best practices

Once you understand the architecture and have decided on a frame-
work (or decided not to use one), you still have to solve some common
problems to implement the application. A host of issues arises when you
build sophisticated web applications that address caching, resource man-
agement, resource allocation, and other strategies.

Part 3 covers a collection of best practices and related materials that
pertain to building web applications. These chapters differ from similar
best practices books in that we rely on the knowledge you’ve gathered
thus far in the book. The best practices we present are written with the
correct architecture in mind, and not as an afterthought. Web applica-
tions are coupled to their architecture, so providing a best practice or
technique without a consideration of the surrounding code is a disservice.

The chapters that follow cover topics that contributed to the idea of
Art of Java Web Development. The goal of the book is to provide a well-
rounded coverage of Java web development, leaving no stone unturned.
It is time to turn over the stones of best practices.

329

Separating concerns

This chapter covers

■ Using interfaces to hide implementation

■ Using JavaBeans

■ Using Enterprise JavaBeans

■ Performing validations

330 CHAPTER 12

Separating concerns

One of the modern trends in software engineering is the separation, or partition-

ing, of responsibilities. Modern languages such as Java support this concept via

interfaces. Even languages that don’t facilitate this separation still strive for this

ideal. When you separate the concerns of an API, you free the writers of the API

from too much specificity. The concerns of an application may include many

things: caching, persistence to permanent storage, interaction with a framework,

and others. By “concern,” we mean anything that developers must concern them-

selves with when building the application. As long as you know how something is

supposed to work, you shouldn’t care how it works. The concept of encapsulation

in object-oriented languages reflects this notion.

 This chapter investigates many ways to separate the concerns of an application.

You will notice that this further extends the ideas put forth in chapter 4’s discus-

sion of Model 2 about separating logic from the user interface. This chapter

describes how to use JavaBeans correctly and shows you how to avoid potential

misuses. We also discuss how to port the models in your Model 2 application to

Enterprise JavaBeans (EJBs), enhancing the application’s scalability. Finally, we

explore separating your business rules from the user interface even if you need

the immediacy of client-side validations.

12.1 Using interfaces to hide implementation

Interface-like mechanisms appeared before the concept of an interface officially

appeared in languages. In C++, a pure virtual class was used for the same behavior

that interfaces support now. A pure virtual class was an abstract class that con-

tained no implementation code whatsoever. While this functioned as an interface

does, it required the developer to enforce the convention that it contain only

method signatures and no code. In other words, nothing prevented a developer

from coming along and adding code to the class.

 The advantage of using interfaces to hide implementation details lies in the

potential to decouple the behavior of an API from its implementation. If you

always interact with an API through an interface, you cannot know how the authors

of the API actually implemented it. This frees the authors of the API to change how

the internals work without breaking code written against the API (as long as they

don’t break the interface). Tapestry and WebWork do an excellent job of using

interfaces to hide implementation details.

Using interfaces to hide implementation 331

12.1.1 JDBC interfaces

Most of the APIs that extend Java’s core behavior also rely on interfaces to hide

implementation details. One of the most common encounters with the concept

appears in the JDBC API. The java.sql package contains the interfaces that make

up a large part of JDBC. Why didn’t the developers of the Software Development

Kit (SDK) write concrete classes to handle all these responsibilities? Because they

couldn’t (and didn’t want to) distinguish all the possible types of database details

required to create concrete classes.

 By developing a carefully crafted API, the SDK creators allow the Java developer

to write to JDBC without regard to the database running at the back end. In fact,

the actual implementation of one of the classes (for example, the Driver class) is

vastly different between Oracle and MySQL. As a developer, you don’t care about

the internal differences between the Driver class implementations because you

always access it via JDBC.

 Not all the classes in JDBC are interfaces or abstract classes. The key to creating

a useful API lies in understanding what can be a concrete (in other words, a non-

abstract) class and what can be deferred to the implementer of the API. For exam-

ple, the java.sql.Date class is a concrete subclass of java.util.Date. If the JDBC

developers left the entire API as a set of interfaces, it would hamper the interrela-

tionship with the other parts of the SDK because other parts of the API depend on

certain behaviors (not just method signatures) of the concrete classes. Building a

well-designed API as a mix of interfaces and classes is difficult because the implica-

tions of design decisions (such as what should be an interface) have a broad

impact on both usability and flexibility.

12.1.2 Interfaces in frameworks

Several of the frameworks featured in part 2 make excellent use of interfaces to

hide implementation details. The best example of this technique is Tapestry.

Everything in Tapestry is represented as an interface, creating a highly decou-

pled architecture.

 The problem with building so many interfaces to define characteristics is the

rigidity of the interface as a contract. In Java, you have no choice as to which of

the methods of the interface you implement; you must implement them all. To

solve this problem, both the SDK and Tapestry create abstract “helper” classes

based on their interfaces. The abstract class implementing the interface handles

the most common behavior and leaves the specialization to the developer. You get

the best of both worlds because you still have the full decoupling power of the

interface for unique situations but can rely on the abstract helpers most of the

332 CHAPTER 12

Separating concerns

time. Swing uses the same technique for its user interface models. The TableModel

interface is the “pure” interface, but AbstractTableModel implements the most

common behaviors for you. Look at chapter 6 (sections 6.4.1 and 6.4.2) for exam-

ples of Tapestry’s use of interfaces, both for the framework itself and for building

user interface components in Tapestry.

 Generally, state-of-the-art frameworks (such as the ones covered in this book)

rely on interfaces a great deal. Good examples of implementation hiding using

interfaces can be found in virtually every framework.

12.1.3 Decoupled classes

Using interfaces to decouple the implementation from the semantic definition

is a useful technique when you’re creating your own applications. For example,

imagine that you are writing an application that must support a wide range of

types of users. They all have common characteristics, and you must perform the

same kinds of operations on all users. Rather than create a concrete “User”

interface, you should create an interface that encapsulates all the common

properties (implemented via accessor and mutator pairs) and operations on all

users. Then, write the entire application in terms of the User interface instead

of a particular instance of the interface, as illustrated in figure 12.1

 In this example, the entire API (wherever possible) is written in terms of the

UserIntf interface, not one of the concrete classes that implement the interface.

This makes it easy to write new kinds of users into the application by subclassing

an existing concrete class or implementing the interface directly.

 This type of decoupling may be performed with abstract classes as well. How-

ever, using interfaces gives you more power because they allow you to create

cross-cutting APIs. A cross-cutting API is a relationship that isn’t limited to the sin-

gle-inheritance relationship of classes, but instead may be used in a variety of sce-

narios, thus cutting across the inheritance hierarchy. For example, in figure 12.1

the concrete classes may implement any number of interfaces. When it is conve-

nient, the Military class can appear to the rest of the API as a UserIntf type. In

other parts of the API, the Military class appears as a MediatorIntf. The single-

inheritance model in Java limits the number of ways you can create APIs with

inheritance, but you can create as many relationships between classes and inter-

faces as you like using interfaces.

Using JavaBeans 333

12.2 Using JavaBeans

The servlet and JSP specifications stipulate that the requirements for a Java class

be considered a JavaBean and describe how JavaBeans behave in web applications.

Every book on the basics of Java web development covers these topics. However,

some topics do not appear in introductory materials that are nevertheless impor-

tant to the effective construction of web applications.

 The characteristics found in table 12.1 define the difference between a “reg-

ular” Java class and a JavaBean. Any class that meets these criteria is considered

a JavaBean.

 The requirements in table 12.1 mandate what it takes to be a JavaBean. How-

ever, the table doesn’t cover some of the nuances that developers of web applica-

tions encounter. It turns out that there are some often-overlooked aspects of using

JavaBeans in web applications.

+getName() : String

+setName() : void

«interface»

UserIntf

+getId() : int

+setId() : void

«interface»

Identifiable

+getUser(in id : int) : UserIntf

+getUsers() : List

«boundary»

UserDb

GovernmentUser CorporateUser

Military Civilian

1*

«boundary»

MediatorDb

+mediateDispute() : void

«interface»

MediatorIntf

1
*

Figure 12.1 Using interfaces to build the API decouples the supporting classes from the direct

implementation of the classes.

334 CHAPTER 12

Separating concerns

12.2.1 Model beans

In chapters 1 and 4, we discussed the concept and definition of the “model” class,

from Model-View-Controller. In Model 2 applications, the model encapsulates all

the details of the data and rules for the application. In formal terms, two types of

model objects exist. The first is a value object; the second is a boundary, or aggre-

gator. It is important to understand the formal definition and use of these terms

to facilitate standardization and communication.

Value objects (entity classes)

Value objects (sometimes also called Data Transfer Objects, or DTOs) represent

individual entities in the application. Frequently, a value object encapsulates the

data from a single row in a table from a relational database. Up until this point, we

have referred to these objects simply as value objects. However, there is a more

formal definition of objects in this role from the Unified Modeling Language

Table 12.1 Criteria for JavaBeans

Requirement Description

Parameterless constructor The class must include a no-parameter public constructor.

Standard property management The class must use standard accessor and mutator methods (i.e.,

getters and setters) to access the properties of the class.

JDK 1.1 or greater event model The class must support the JDK 1.1 event model. (This appears

primarily to prevent classes from implementing the deprecated JDK

1.02 event model.)

Persistence The class must support persistence, the ability to save a snapshot

of an object instance to external storage (memory, disk, file

stream, etc.) and restore it. Except in extraordinary cases, Java

handles this automatically through serialization (i.e., the bean

should implement the java.io.Serializable interface).

Introspection The class must support the ability for another Java class to dis-

cover at runtime the methods and types defined by the class. This

behavior appears automatically in Java classes via the Reflection

API. The requirement appears here to support JavaBeans written in

other languages (for example, JPython).

Application builder support The class must support standard application builder helper behav-

iors. For example, it must support the packaging of design-time

artifacts such as editors and icons in a BeanInfo class to assist

automated design tools (like Borland’s JBuilder or Sun’s Net-

Beans). This requirement generally has little effect on JavaBeans

used in web development.

Using JavaBeans 335

(UML). UML is the standard object-oriented dia-

gramming notation, created by the “three amigos”

(Grady Booch, James Rumbaugh, and Ivar Jacob-

son) of Rational Software. In UML, a class diagram

consists of a three-sectioned rectangle. The top of

the rectangle represents the class name, the middle

contains the attributes (properties), and the bottom

contains the method signatures. Figure 12.2 shows a

typical UML diagram of a class. The indicator before

the name of the attribute or operation shows the

scoping of that element. The plus sign (+) indicates

public, the minus sign (–) indicates private, the number sign (#) indicates pro-

tected, and the tilde (~) indicates a package.

 Technically, a UML diagram shows all the attributes and operations of a class.

However, most Java classes contain private internal member variables and public

accessor and mutators. To prevent excessive clutter in the class diagrams, a com-

mon practice omits the accessors and mutators and instead shows the attributes as

public. While not absolutely accurate, this strategy improves the readability of the

diagram. Any special cases (such as read-only properties) appear according to the

formal definition.

 In UML, an entity class models information and behavior that is generally

long-lived. It reflects a real-world entity or performs tasks internal to the applica-

tion. Frequently, it lives independently of a single application. UML distin-

guishes between categories of classes by the use of a stereotype. A stereotype is a

specifically formatted label for the class indicating

the class’s role in the application. In the sample

application in chapter 4 (section 4.1.1), the Sched-

uleItem class acts in the role of an entity class in

the application; it is shown in figure 12.3 tagged

with the “entity” stereotype.

 Remember that the ScheduleItem class does not

interact directly with the database. It represents a

single row in a table from the database but does not

have intrinsic knowledge of that fact. In other

words, it contains no code for persisting or retriev-

ing itself from the database. Boundary classes han-

dle persistence and retrieval.

+ScheduleItem() : ScheduleItem
+validate() : java.util.List

+duration : int

+start : String

+eventType : int

+text : String

ScheduleItem

Figure 12.2 UML notation for a

class shows the name at the top,

the attributes (properties) in the

middle, and the operations

(methods) at the bottom.

+ScheduleItem() : ScheduleItem
+validate() : java.util.List

+duration : int

+start : String

+eventType : int

+text : String

<<entity>>

ScheduleItem

Figure 12.3 The

ScheduleItem class represents

an entity in the schedule

application and should appear in

diagrams with the entity

stereotype.

336 CHAPTER 12

Separating concerns

Aggregators (boundary classes)

The other type of model class appearing in the Model 2 application in chapter 4

(and all subsequent Model 2 applications) is an aggregator class. It interacts

with the relational database and creates collections of entity objects. In UML

terms, this represents a boundary class. A boundary class handles communica-

tion between the system surroundings and the inside of a system. Generally, it

provides an interface to either a user or another subsystem (such as a data-

base). Examples of boundary classes include databases, helper classes, and nam-

ing services. The boundary class represents any model object in the application

that facilitates the use of but does not represent an entity. The UML stereotype

for boundary classes is the label <<boundary>>.

 In the schedule application in chapter 4 (section 4.1.1), the ScheduleBean class

acts as a boundary class. It provides a list of ScheduleItem objects and the map-

pings between event types and their keys. The UML diagram for the ScheduleBean

class is shown in figure 12.4.

 Understanding the relationship between entity and boundary JavaBeans is

important because the definition carries with it a predefined role. If you know

that entities should never try to persist themselves in a database, you are much less

likely to include database code in them by mistake. While ultimately they are all

JavaBeans, each type has a role to play in Model 2 applications. The partitioning

of functionality extends beyond the user interface and web APIs. It applies to the

composition and use of the Java components as well.

+ScheduleItem() : ScheduleItem
+validate() : java.util.List

+duration : int

+start : String

+eventType : int

+text : String

<<entity>>

ScheduleItem

+addRecord() : void

+populate() : void

-COLS : String

-DB_CLASS : String

-DB_URL : String

-SQL_EVENT_TYPES : String

-SQL_INSERT : String

-SQL_SELECT : String

-connection : java.sql.connection

+eventTypes : java.util.Map

+list : java.util.List

<<boundary>>

ScheduleBean

1 *

Figure 12.4 The ScheduleBean class is a boundary class that creates lists of the

ScheduleItem entities, pulling them from a database table.

Using Enterprise JavaBeans 337

12.3 Using Enterprise JavaBeans

One of the scariest prospects of building web applications is the danger of their

becoming too popular. The company eToys.com now exists only as a warning that

the worst thing that can happen is success. This company launched itself with

great fanfare, with Super Bowl advertisements and a huge campaign to convince

shoppers to buy their toys from them. It worked magnificently. Shoppers arrived

at their site in droves just as the Christmas shopping season kicked into full swing.

It turns out that they spent too much money on the advertising and not enough

on the application. Because they experienced more success than they had antici-

pated, the infrastructure of the web application couldn’t support the number of

simultaneous users. Connections dropped, orders were lost, and their customer

service department couldn’t staunch the flow of complaints. In other words, the

application architecture didn’t scale well enough to accommodate their users.

They were so successful that they are no longer in business.

 Scalability is a critical component of distributed applications and of web appli-

cations in particular. Applications that perform useful tasks have a tendency to

not go away. Frequently, a small application moves to production as a stopgap

measure or to solve a little problem. This application performs a useful service, so

instead of the developer building new applications, functionality grows onto the

existing one. Over time, the intended quick-and-dirty little application becomes

the cornerstone of a large application infrastructure. It is difficult to grow client/

server applications larger and larger if they suffer from poor design; it is almost

impossible to do so with web applications because they are multitier distributed

applications and thus have more components.

 How do you build web applications that can start small and gracefully grow

into very busy, scalable applications? The key lies in creating modular applica-

tions, whose parts interchange cleanly with the other parts of the application,

making it easy to change one module for another. This clean separation of con-

cerns forms the foundations of the Model-View-Controller and Model 2 design

patterns. If you build your applications with scalability in mind from the outset,

scaling them up becomes much easier.

 Of course, you can design and build every web application to industrial-

strength specifications. Obviously, if you build it to scale from the outset, it scales

nicely. The problem lies in the fact that it is more difficult and time consuming to

build highly scalable applications. If you need a small application quickly, you fre-

quently don’t have time to build the necessary infrastructure for scalability. This

338 CHAPTER 12

Separating concerns

section discusses how to migrate Model 2 applications into more scalable web

applications by utilizing Enterprise JavaBeans (EJBs).

12.3.1 The EJB architecture

If you are already familiar with the architecture of EJB, you can safely skip this sec-

tion. It briefly introduces application servers and EJB. This topic has entire books

devoted to it, and covering it in detail lies well beyond the scope of this book.

However, it is an important topic for scalability because it represents the primary

mechanism for super scalable web applications in the Java world. If you are unfa-

miliar with EJBs and need to build truly scalable web applications, I urge you to

study this topic further (after you finish this book, of course!).

 Even though their names are similar, a great many differences exist between

JavaBeans and Enterprise JavaBeans. The rules that specify what makes a class a

JavaBean appear in table 12.1. Creating JavaBeans is so easy that you can create a

JavaBean by accident when you create a class. EJBs are much more complex. EJBs

are componentized business logic and behavior. Like servlets, EJBs run inside the

context of a container, an application server. The creation, destruction, and man-

agement of EJBs fall under the control of the application server. There are three

fundamental types of EJBs, with subtypes within the main types (see table 12.2).

 When using an application server, the web application runs alongside the EJBs,

frequently in the same Java Virtual Machine (JVM). Stateless session beans handle

single-call business logic methods. One of the scalability techniques employed by

Table 12.2 Types of Enterprise JavaBeans

EJB Type Subtype Description

Session Stateless Stateless components that perform single method

invocations. These beans are used for business

logic.

Stateful Stateful components that act as a proxy for client

applications. These components keep their state

between method invocations.

Message Stateless components tied to the Java Message Ser-

vice, allowing for asynchronous method invocations.

Entity Component Managed (CMP) Stateful component that encapsulates a database

entity. The application server generates the code for

connecting to a specified database.

Bean Managed (BMP) Stateful component that encapsulates a more com-

plex database entity. The developer must write the

database access code.

Using Enterprise JavaBeans 339

application servers utilizes pools of objects. Because new object instantiation is a

process-intensive and memory-consuming task, the application server creates a

large number of objects and associates them with a client request as the request

appears. Rather than allowing the object to go out of scope and become garbage

collected, the application server returns it to the pool so that it can be reused

instead of being destroyed and later re-created. One of the secrets for creating

scalable applications is to cache as much as possible. The application server per-

forms this service automatically, freeing the developer to concentrate on the func-

tionality of the application.

 The relationship between the web part of the application (i.e., the servlets and

JSPs) and the EJB part of the application is shown in figure 12.5.

 The flow of an EJB web application has the user accessing either a servlet or a

JSP. The servlet creates a link to a stateful session bean that in turn makes calls to

stateless session beans (for behavior) and entity beans (for database access). Serv-

lets can also directly access entity beans if the state of the application resides at the

web layer rather than the EJB layer—that is the simplest way for web applications

to utilize EJBs. However, the simplest way is not always best: accessing entity EJBs

directly from the web tier is not the best choice in most cases. Servlets may access

Application Server

Client

Data

Data

Servlet/

JSP

Servlet/

JSP

Servlet/

JSP
Session

Session

Session

Entity

Entity

Entity

Entity

Entity

Figure 12.5 The relationship between servlets, JSP, and the various types of EJBs and

databases show that the web components call into both session beans and entity beans,

which in turn make calls into a relational database.

340 CHAPTER 12

Separating concerns

stateless session beans instead of stateful ones. Stateless session beans are light-

weight objects and can accomplish tasks with little overhead. In this design, the

stateless session bean acts as a façade proxy for the entity layer, simplifying the

APIs exposed to the web tier. The stateless session beans coordinate entity EJBs to

accomplish the requested tasks, isolating the business logic in the EJB tier and

minimizing traffic between servlets and EJBs. Either architecture is acceptable,

depending on the specific needs of the application.

 Application servers work their magic by caching object instances, database con-

nections, threads, and just about every other cacheable resource. The advantage

of using the application server lies in the fact that you don’t have to write code to

do this yourself. For example, every web application benefits from database con-

nection pooling. Application servers offer one-stop shopping for an entire range

of such services. Application servers also contain code that allows them to cluster

together so that multiple machines can load-balance requests for the application.

This approach allows you to create clustered applications without having to mod-

ify the application code. The clustering is built into the application server.

 Application servers represent complex code bases, much more complex than

database servers. As with database servers, a wide range of prices and capabilities

exist. For this book, we will be using the open-source JBoss application server.

Like much open-source software, it is very capable and, of course, free of charge.

Because our samples write to the Java 2 Enterprise Edition (J2EE) API, the code is

interchangeable with other application servers.

12.3.2 Porting from JavaBeans to Enterprise JavaBeans

One of the key benefits of the Model 2 architecture is the ease with which you

can port the application from a regular web application to one that uses EJBs. In

this scenario, the model beans that used to contain the business logic become

proxies for the EJBs, which handle both database connectivity and business logic.

Figure 12.6 shows a Model 2 application utilizing EJBs.

 The only parts of the application that must change are the boundary classes

that connect the models to the database and the validation rules found in the

entity classes. The database connectivity moves to entity EJB objects, and the busi-

ness rules move to stateless session beans. The advantage of Model 2 shines

through here: neither the controller classes nor the JSPs require any changes.

The EJB schedule application

The word has come down from management: the schedule application is so use-

ful that thousands of users need access to it. Thus, you must scale it up to handle

Using Enterprise JavaBeans 341

the newly acquired load. The first order of business requires that you create

beans for the database connectivity. Even though entity beans represent entities

from the database, you should really create them only when you need to insert,

update, or delete a record. In other words, it is a waste of time to create all the

entity objects if you are just going to display a list. Entity beans are designed to

make permanent changes to database entities, not display them. To that end, the

schedule application creates stateless session beans to provide lists of schedule

items and entity beans to manipulate them further. This sample appears in the

source code archive as art_sched_ejb.

The EventDBBean EJB

We create the first EJB, a stateless session bean, to access the list of schedule items

appearing in the database. EJBs always come in at least three parts: the bean code,

the remote interface, and the home interface. First, let’s look at the bean code.

Listing 12.1 shows the prelude and database-connectivity portions of EventDBBean.

package com.nealford.art.ejbsched.ejb;

import java.rmi.*;

import javax.ejb.*;
import java.util.*;
import javax.naming.*;

Listing 12.1 The prelude to the EventDBBean stateless session bean

Data

Browser

1) Request

2) Create

Model
Beans

View (JSP)

3) Forward

4) Extract
5) Response

Controller
Servlet

Entity

EJBEntity

EJBEntity

EJBEntity
EJB

Session

EJBSession
EJB

Persistence

Business Rules

Figure 12.6 Model 2 applications port to EJB applications by converting the model beans into proxies for the

EJBs, which in turn handle both database connectivity and business rules.

342 CHAPTER 12

Separating concerns

import javax.sql.*;

import java.sql.*;
import com.nealford.art.ejbsched.model.ScheduleItem;
import javax.rmi.PortableRemoteObject;

public class EventDbBean implements SessionBean {
 private SessionContext sessionContext;
 private static final String SQL_SELECT = "SELECT * FROM event";

 private static final String COLS[] = {"EVENT_KEY", "START",
 "DURATION", "DESCRIPTION", "EVENT_TYPE"};

 public void ejbCreate() {

 }

 public void ejbRemove() {
 }

 public void ejbActivate() {
 }

 public void ejbPassivate() {

 }

 public void setSessionContext(SessionContext sessionContext) {
 this.sessionContext = sessionContext;

 }

 private DataSource getDataSource() throws RemoteException {
 DataSource ds = null;

 try {
 Context c = new InitialContext();
 Object o = c.lookup("java:/MySQLDS");

 ds = (DataSource) PortableRemoteObject.narrow(o,
 DataSource.class);
 }

 catch (ClassCastException ex) {
 throw new RemoteException("Cast exception",
 ex.getMessage());

 }catch (NamingException ex) {
 throw new RemoteException("Naming exception",
 ex.getMessage());

 }
 return ds;
 }

The class EventDbBean implements SessionBean, which resides in the J2EE specifi-

cation. Note that this is an interface, meaning that the EJB infrastructure relies on

interfaces (as opposed to concrete classes) to ensure flexibility. The SessionBean

interface defines a handful of methods, most of which are left blank for this bean.

These methods represent callback hooks for the application server to manage the

Using Enterprise JavaBeans 343

lifecycle of the bean. For example, the pair of methods for ejbActivate() and

ebjPassivate() allow the developer to write code for a situation in which the

application server needs to move the object out of memory temporarily. In this

case, you can leave them blank but they must be present because of the interface.

The next method accepts a SessionContext object. SessionContext is analogous

to ServletContext—it is an object passed to this bean by the application server

upon creation. It provides a connection to the application server’s facilities.

 The remaining method in this snippet returns a DataSource that allows the bean

to connect to the database. The application server keeps the database connections

in a pool. To access any resource of the application server, you create a Java Nam-

ing and Directory Interface (JNDI) context and ask for the resource by name. The

lookup() method of Context returns an object reference to the requested resource

(or null if the resource doesn’t exist). This object is cast to the appropriate type via

the narrow() method and returned.

 The method for establishing the database connection pool within the applica-

tion server is different with each application server. To create the named connec-

tion for JBoss, you edit the jboss.jcml configuration file and add the entries shown

in listing 12.2.

<mbean code="org.jboss.jdbc.JdbcProvider"
 name="DefaultDomain:service=JdbcProvider">
 <attribute name="Drivers">

 org.hsqldb.jdbcDriver,org.gjt.mm.mysql.Driver
 </attribute>
</mbean>

<mbean code="org.jboss.jdbc.XADataSourceLoader"
 name="DefaultDomain:service=XADataSource,name=MySQLDS">
 <attribute name="PoolName">MySQLDS</attribute>

 <attribute name="DataSourceClass">
 org.jboss.pool.jdbc.xa.wrapper.XADataSourceImpl
 </attribute>

 <attribute name="URL">
 jdbc:mysql://localhost/schedule
 </attribute>

 <attribute name="JDBCUser">root</attribute>
 <attribute name="Password">marathon</attribute>
 <attribute name="MinSize">0</attribute>

 <attribute name="MaxSize">5</attribute>
</mbean>

Listing 12.2 Jboss.jcml entries that establish a named connection pool

344 CHAPTER 12

Separating concerns

The next order of business is to retrieve the schedule items from the connection

delivered via the DataSource in the getDataSource() method. This code appears

in listing 12.3.

 private ResultSet getResultSet() throws RemoteException,
 SQLException {

 return getDataSource().getConnection().createStatement().
 executeQuery(SQL_SELECT);
 }

 public List getScheduleItems() throws RemoteException {
 ResultSet rs = null;
 List list = new ArrayList(10);

 Map eventTypes = getEventTypes();
 try {
 rs = getResultSet();

 addItemsToList(rs, list, eventTypes);
 } catch (SQLException sqlx) {
 throw new RemoteException(sqlx.getMessage());

 } finally {
 try {
 rs.close();

 rs.getStatement().getConnection().close();
 } catch (SQLException ignored) {
 }

 }
 return list;
 }

 private void addItemsToList(ResultSet rs, List list,
 Map eventTypes) throws SQLException {
 while (rs.next()) {

 ScheduleItem si = new ScheduleItem();
 si.setStart(rs.getString(COLS[1]));
 si.setDuration(rs.getInt(COLS[2]));

 si.setText(rs.getString(COLS[3]));
 si.setEventTypeKey(rs.getInt(COLS[4]));
 si.setEventType((String) eventTypes.get(

 new Integer(si.getEventTypeKey())));
 list.add(si);
 }

 }

The getResultSet() method simply returns a result set from the SQL query defined

in a constant at the top of the class. This method is used by the getScheduleItems()

method to execute the query. It creates the necessary data structures and in turn

Listing 12.3 Retrieving the schedule items and returning them as a List

Using Enterprise JavaBeans 345

calls the addItemsToList() method to populate the individual ScheduleItems into

the list. This code is similar to the non-EJB code that appears in chapter 4

(listing 4.2) in the original version of this application.

 To use an EJB, you must first create it. To create a bean, you must look up the

name of the home interface for the bean from JNDI. The home interface returns

an object that implements the remote interface defined with the bean. In other

words, the home interface is a factory for creating instances of EJBs. Listing 12.4

contains the code that creates an EventDb reference.

Object o = context.lookup("EventDb");
EventDbHome home =
 (EventDbHome) PortableRemoteObject.narrow(o,

 EventDbHome.class);
EventDb eventDb = home.create();

One technique used by application servers for scalability involves indirection. The

application server manages the actual objects and returns to the user a remote ref-

erence to the object. If the developer doesn’t have a direct link to the object, the

application server can manage the resources for the EJB much more effectively

behind the scenes. When you get a reference to an EJB, you invoke the create()

method on the home interface. The home interface returns a remote reference,

which the application server attaches to a “real” object. In the code in listing 12.4,

we look up the home interface for the EventDb bean, create an instance of the

bean through its home interface, and return the EventDb reference. The home

interface for EventDbBean is shown in listing 12.5.

package com.nealford.art.ejbsched.ejb;

import java.rmi.*;
import javax.ejb.*;

public interface EventDbHome extends EJBHome {
 public EventDb create() throws RemoteException, CreateException;
}

The home interface includes only a single method, which returns an EventDb ref-

erence. The EventDb reference is a Remote Method Invocation (RMI) interface

Listing 12.4 Creating an EventDb reference so that you can call its methods

Listing 12.5 The home interface for EventDbBean

346 CHAPTER 12

Separating concerns

that exposes the methods available through this object to the caller. It appears in

listing 12.6.

package com.nealford.art.ejbsched.ejb;

import java.rmi.*;
import javax.ejb.*;

import java.util.List;

public interface EventDb extends EJBObject {
 public List getScheduleItems() throws RemoteException;

}

The public interface for EventDbBean exposes only one method, which returns a

List of schedule items. Thus, this is the only method that is callable from the EJB.

This remote reference represents the “outside world’s” link to the code written

inside the EJB. Once you have created a home reference and used it to create this

remote reference, you call this method of the remote reference, which in turn

calls the corresponding method of the bean:

scheduleItems = eventDb.getScheduleItems();

The EventTypeDbBean EJB

The other table whose items appear in the web application is the event_types table.

The EventTypeDbBean stateless session bean encapsulates the application’s access

to this resource. The source for the EventTypeDbBean is shown in listing 12.7.

package com.nealford.art.ejbsched.ejb;

import java.rmi.*;
import java.sql.*;

import java.util.*;

import javax.ejb.*;
import javax.naming.*;

import javax.rmi.*;
import javax.sql.*;

public class EventTypeDBBean implements SessionBean {
 private SessionContext sessionContext;
 private static final String SQL_EVENT_TYPES =

 "SELECT event_type_key, event_text FROM event_types";

 public void ejbCreate() {

Listing 12.6 The remote interface for EventDbBean

Listing 12.7 The EventTypeDBBean encapsulates the event_types table values.

Using Enterprise JavaBeans 347

 }

 public void ejbRemove() {

 }

 public void ejbActivate() {

 }

 public void ejbPassivate() {

 }

 public void setSessionContext(SessionContext sessionContext) {

 this.sessionContext = sessionContext;

 }

 public Map getEventTypes() throws RemoteException {

 Map eventTypes = new HashMap();

 Connection con = null;

 Statement s = null;

 ResultSet rs = null;

 try {

 con = getDataSource().getConnection();

 s = con.createStatement();

 rs = s.executeQuery(SQL_EVENT_TYPES);

 eventTypes = new HashMap();

 while (rs.next())

 eventTypes.put(rs.getObject("event_type_key"),

 rs.getString("event_text"));

 } catch (SQLException sqlx) {

 throw new RemoteException(sqlx.getMessage());

 } finally {

 try {

 rs.close();

 s.close();

 con.close();

 } catch (Exception ignored) {

 }

 }

 return eventTypes;

 }

 private DataSource getDataSource() throws RemoteException {

 DataSource ds = null;

 try {

 Context c = new InitialContext();

 Object o = c.lookup("java:/MySQLDS");

 ds = (DataSource) PortableRemoteObject.narrow(o,

 DataSource.class);

 }

 catch (ClassCastException ex) {

 throw new RemoteException(ex.getMessage());

 }catch (NamingException ex) {

348 CHAPTER 12

Separating concerns

 throw new RemoteException(ex.getMessage());

 }
 return ds;
 }

}

The EventTypeDbBean class is similar to the EventDbBean class. The primary differ-

ence lies in the return type of the getEventTypes() method, which returns a Map

instead of a List. The home and remote interfaces also resemble the ones from

EventDbBean and don’t appear here.

 Both EventDbBean and EventDbTypeBean are stateless session beans that return

collections of items from the database. These EJBs populate the views of the appli-

cation but don’t provide a way of modifying one of the items they encapsulate.

Entity beans are used for that purpose.

The event entity EJB

The only updatable item in the application is a schedule item. To update records

in a database in an EJB application, entity beans are used. Like session beans,

entity beans implement a standard J2EE interface. Two types of entity beans exist:

container-managed persistence (CMP) and bean-managed persistence (BMP).

Container-managed entity beans use code generated by the application server to

interact with the database. Each application server includes mapping tools that

generate the appropriate JDBC code for creating, updating, deleting, and finding

records. Container-managed beans offer ease of use—the developer doesn’t have

to write any JDBC code. However, these beans can work only in generic circum-

stances. For example, if the entity modeled spans multiple tables, most applica-

tion servers cannot generate code to handle this contingency. In these cases,

bean-managed persistence is the alternative.

 In bean-managed persistence, the developer of the bean writes the necessary

JDBC code to create, update, delete, and find objects inside the bean. While this

approach involves much more work (and debugging), it offers infinite flexibility.

In the case of the schedule application, it would seem that we could use container-

managed persistence. After all, we’re accessing a very simple table. However, the

database server generates the keys for the records upon insert, which frees us

from coming up with a scheme to ensure unique keys. Most database servers offer

an auto-increment facility, and the MySQL database used in this application is no

exception. Because the database server generates the key (and not the devel-

oper), we cannot use container-managed persistence and must rely on bean-man-

aged persistence instead.

Using Enterprise JavaBeans 349

 Another requirement for entity beans is a primary key class. Because they

model database entities, each record must have a primary key. Generally, these key

classes are simple encapsulated single values, but the infrastructure exists for com-

plex compound keys. Listing 12.8 shows the primary key class for the event bean.

package com.nealford.art.ejbsched.ejb;

import java.io.*;

public class EventPk implements Serializable {

 public int key;

 public EventPk() {
 }

 public EventPk(int key) {
 this.key = key;
 }

 public boolean equals(Object obj) {
 if (this.getClass().equals(obj.getClass())) {
 EventPk that = (EventPk) obj;

 return this.key == that.key;
 }
 return false;

 }

 public int hashCode() {
 return key;

 }
}

The EventPk class is a serializable class with a single public member variable,

which is typical for EJB primary key classes. It contains two constructors, including

a parameterless one. It also contains overridden equals() and hashCode() meth-

ods. Including the equals() and hashCode() methods is a requirement for EJB

and is critical to ensure that the application server can correctly compare two pri-

mary keys via the equals() method and can place them into hashtables via hash-

Code(). Listing 12.9 contains the prelude for EventBean.

package com.nealford.art.ejbsched.ejb;

import java.rmi.*;

import javax.ejb.*;

Listing 12.8 EventPk, the primary key class for EventBean

Listing 12.9 The prelude for EventBean

350 CHAPTER 12

Separating concerns

import javax.sql.DataSource;

import java.sql.*;
import javax.naming.Context;
import javax.naming.InitialContext;

import javax.rmi.PortableRemoteObject;
import javax.naming.NamingException;

public class EventBean implements EntityBean {

 private EntityContext entityContext;
 private static final String SQL_SELECT = "SELECT * FROM event" +
 " where event_key = ?";

 private static final String SQL_INSERT =
 "INSERT INTO event (start, duration, description, " +
 "event_type) VALUES(?, ?, ?, ?)";

 private static final String SQL_EVENT_TYPES =
 "SELECT event_type_key, event_text FROM event_types";
 private static final String SQL_UPDATE =

 "UPDATE event SET start = ?, duration = ?, " +
 "description = ?, event_type = ? WHERE event_key = ?";
 private static final String SQL_DELETE =

 "DELETE FROM event WHERE event_key = ?";
 private static final String SQL_LAST_INSERT_ID =
 "SELECT distinct last_insert_id() k from event";

 public String start;
 public int duration;
 public String text;

 public int eventType;
 public int eventKey;

The EventBean class implements the EntityBean interface from J2EE. It contains a

large number of constants that handle the SQL needed to perform its work. It also

includes public member variables for the fields of the entity. It is common in

entity beans for the fields to be public, which seems like a violation of encapsula-

tion. However, the application server code itself is the only code that has access to

these public fields. Remember that the user always accesses the bean through the

remote interface. The ejbCreate() method (listing 12.10) creates a new record in

the database.

 public EventPk ejbCreate(String start, int duration,
 String text, int eventType)
 throws CreateException {

 this.start = start;
 this.duration = duration;
 this.text = text;

 this.eventType = eventType;

Listing 12.10 ejbCreate() creates a new Event entity.

Using Enterprise JavaBeans 351

 Connection con = null;

 PreparedStatement ps = null;
 Statement s = null;
 ResultSet rs = null;

 int newKey = -1;
 try {
 con = getDataSource().getConnection();

 ps = con.prepareStatement(SQL_INSERT);
 ps.setString(1, start);
 ps.setInt(2, duration);

 ps.setString(3, text);
 ps.setInt(4, eventType);
 if (ps.executeUpdate() != 1) {

 throw new CreateException("Insert failed");
 }

 //-- get the generated id

 s = con.createStatement();
 rs = s.executeQuery(SQL_LAST_INSERT_ID);
 rs.next();

 newKey = rs.getInt("k");

 } catch (SQLException sqlx) {
 throw new CreateException(sqlx.getMessage());

 } finally {
 try {
 if (rs != null)

 rs.close();
 if (ps != null)
 ps.close();

 if (s != null)
 s.close();
 if (con != null)

 con.close();
 } catch (Exception ignored) {
 }

 }
 EventPk eventPk = new EventPk();
 eventPk.key = newKey;

 return eventPk;
 }

 public void ejbPostCreate(String start, int duration,

 String text, int eventType)
 throws CreateException {
 }

The ejbCreate() method accepts parameters for all the fields except the key field,

which comes from the database. The getDataSource() method of this bean is

identical to the one in listing 12.1. This code performs a SQL INSERT command

Pulls the key from
the database

352 CHAPTER 12

Separating concerns

and checks to ensure that the insert was successful. After the insert, the generated

key is collected from the database. Each database has a proprietary way of generat-

ing and delivering keys, which explains why we must use bean-managed persis-

tence for this entity bean. The EJB specification mandates that the ejbCreate()

method returns the primary key of the inserted record, so we create a new

eventPk instance and return it from the method.

 The EJB specification also mandates that we include an ejbPostCreate()

method with parameters matching each ejbCreate() method—there is a one-to-

one relationship between them. In our case, we don’t need to perform any post-

create tasks, so the ejbPostCreate() method is left blank. The next method of

EventBean loads an entity from the database (see listing 12.11).

 public void ejbLoad() {
 EventPk eventPk = (EventPk) entityContext.getPrimaryKey();

 Connection con = null;
 PreparedStatement ps = null;
 ResultSet rs = null;

 try {
 con = getDataSource().getConnection();
 ps = con.prepareStatement(SQL_SELECT);

 ps.setInt(1, eventPk.key);
 rs = ps.executeQuery();
 start = rs.getString("start");

 duration = rs.getInt("duration");
 text = rs.getString("text");
 eventType = rs.getInt("event_type");

 } catch (SQLException sqlx) {
 throw new EJBException(sqlx.getMessage());

 } finally {
 try {
 if (rs != null)

 rs.close();
 if (ps != null)
 ps.close();

 if (con != null)
 con.close();

 } catch (Exception ignored) {
 }
 }

 }

Listing 12.11 The ejbLoad() method loads an entity from the database.

Using Enterprise JavaBeans 353

The ejbLoad() method is a relatively simple method that executes a SQL SELECT

command to fill the fields of the entity. All the methods prepended with ejb rep-

resent methods called automatically by the application server. Note that the

developer cannot call these methods—they do not appear in the remote inter-

face for the bean. The application server decides when it is appropriate to call

these methods and does so behind the scenes. The ejbStore() method, shown in

listing 12.12, performs the opposite operation from ejbLoad().

 public void ejbStore() {
 EventPk eventPk = (EventPk) entityContext.getPrimaryKey();

 Connection con = null;
 PreparedStatement ps = null;
 ResultSet rs = null;

 try {
 con = getDataSource().getConnection();
 ps = con.prepareStatement(SQL_UPDATE);

 ps.setString(1, start);
 ps.setInt(2, duration);
 ps.setString(3, text);

 ps.setInt(4, eventType);
 ps.setInt(5, eventPk.key);
 int rowsAffected = ps.executeUpdate();

 if (rowsAffected != 1)
 throw new EJBException("Update failed");
 } catch (SQLException sqlx) {

 throw new EJBException(sqlx.getMessage());
 } finally {
 try {

 if (rs != null)
 rs.close();
 if (ps != null)

 ps.close();
 if (con != null)
 con.close();

 } catch (Exception ignored) {
 }
 }

 }

The ejbStore() method takes the values from inside the fields and performs a

SQL UPDATE in the database. Finally, the ejbRemove() method, which is shown in

listing 12.13, deletes a record from the database.

Listing 12.12 The ejbStore() method updates the entity to the database.

354 CHAPTER 12

Separating concerns

 public void ejbRemove() throws RemoveException {

 EventPk eventPk = (EventPk) entityContext.getPrimaryKey();
 Connection con = null;
 PreparedStatement ps = null;

 ResultSet rs = null;
 try {
 con = getDataSource().getConnection();

 ps = con.prepareStatement(SQL_DELETE);
 ps.setInt(1, eventPk.key);
 int rowsAffected = ps.executeUpdate();

 if (rowsAffected != 1)
 throw new EJBException("Delete failed");
 } catch (SQLException sqlx) {

 throw new EJBException(sqlx.getMessage());
 } finally {
 try {

 if (rs != null)
 rs.close();
 if (ps != null)

 ps.close();
 if (con != null)
 con.close();

 } catch (Exception ignored) {
 }
 }

 }

The remainder of the EventBean class (omitted for brevity’s sake) consists of pub-

lic accessor and mutator methods for all the fields of this entity.

 Just as with the session beans, the EventBean entity bean has both a home and a

remote interface. As you can see in listing 12.14, the home interface is much like

the ones for the session beans.

package com.nealford.art.ejbsched.ejb;

import java.rmi.*;
import javax.ejb.*;

public interface EventHome extends EJBHome {
 public Event create(String start, int duration, String text,
 int eventType) throws

 RemoteException, CreateException;
 public Event findByPrimaryKey(EventPk primKey) throws

Listing 12.13 The ejbRemove() method deletes records from the database.

Listing 12.14 The home interface for the Event entity bean

Using Enterprise JavaBeans 355

 ObjectNotFoundException, RemoteException,

 FinderException;
}

A key difference between EventBean’s home interface and the previous ones lies

in the presence of the findByPrimaryKey() method. Entity beans may include

finder methods that return either a single reference or a collection of references.

In this application, we never need to find an entity (the application currently

doesn’t allow editing for simplicity’s sake). Otherwise, the home interface is func-

tionally the same.

 The remote interface for entity beans differs considerably from session beans.

The remote interface for the EventBean is shown in listing 12.15.

package com.nealford.art.ejbsched.ejb;

import java.rmi.*;
import javax.ejb.*;

public interface Event extends EJBObject {
 public void setStart(String start) throws RemoteException;
 public String getStart() throws RemoteException;

 public void setDuration(int duration) throws RemoteException;
 public int getDuration() throws RemoteException;
 public void setText(String text) throws RemoteException;

 public String getText() throws RemoteException;
 public void setEventType(int eventType) throws RemoteException;
 public int getEventType() throws RemoteException;

 public void setEventKey(int eventKey) throws RemoteException;
 public int getEventKey() throws RemoteException;
}

The Event remote interface includes the accessors and mutators for the fields of

the entity. When the client accesses an entity EJB, it must do so through this remote

interface. The client doesn’t have access to the publicly created fields of the entity

bean because the application server actually holds that object reference. Thus, the

client’s view of the entity must come entirely through this interface. Note the use

by the application server of interfaces to hide implementation details.

Listing 12.15 The remote interface for the entity EJB EventBean

356 CHAPTER 12

Separating concerns

Business rules in session beans

The last of the EJBs that contribute to this project are stateless session beans that

encapsulate the business logic of the application. The primary business rules in

this application validate the inserted data. Listing 12.16 shows ScheduleItemRules,

the stateless session bean that handles this chore.

package com.nealford.art.ejbsched.ejb;

import java.rmi.*;
import javax.ejb.*;
import java.util.*;

import com.nealford.art.ejbsched.model.ScheduleItem;

public class ScheduleItemRulesBean implements SessionBean {
 private SessionContext sessionContext;

 static private final int MIN_DURATION = 0;
 static private final int MAX_DURATION = 31;

 public void ejbCreate() {

 }

 public void ejbRemove() {
 }

 public void ejbActivate() {
 }

 public void ejbPassivate() {

 }

 public void setSessionContext(SessionContext sessionContext) {
 this.sessionContext = sessionContext;

 }

 public List validate(ScheduleItem item) {
 List validationMessages = new ArrayList(0);

 if (item.getDuration() < MIN_DURATION ||
 item.getDuration() > MAX_DURATION)
 validationMessages.add("Invalid duration");

 if (item.getText() == null || item.getText().length() < 1)
 validationMessages.add("Event must have description");
 return validationMessages;

 }
}

The primary method of interest in ScheduleItemRulesBean is validate(). If you

compare it to the validate() method appearing in the non-EJB version of this

application (see chapter 4, listing 4.5), they are identical. The difference lies in

Listing 12.16 The ScheduleItemRules stateless session bean handles data validation.

Using Enterprise JavaBeans 357

the architecture. The application server maintains a pool of ScheduleItemRules

objects and pulls one from the pool to perform validations. Contrast this with the

normal behavior of a web application, which must create an instance of a class to

perform the same function. In this case, the object is created by the application

server and the invocation is much faster.

 The home and remote interfaces to this class resemble the other stateless ses-

sion beans and, in the interest of space, appear only in the chapter samples.

Changes to the models

The EJB infrastructure is now in place, and we’ve updated the web application to

reflect the architectural change. The most radical change to the existing web

application lies in the boundary class ScheduleBean. The populate() method for-

merly created a connection to the database, executed a query, and built a list of

results to return as a list. The populate() method has now become a proxy for the

real work, which occurs in the EJBs. The revised ScheduleBean populate() method

is shown in listing 12.17.

 public void populate() {
 try {
 Object o = context.lookup("EventDb");
 EventDbHome home =
 (EventDbHome) PortableRemoteObject.narrow(o,
 EventDbHome.class);
 EventDb eventDb = home.create();
 scheduleItems = eventDb.getScheduleItems();
 } catch (RemoteException ex) {
 ex.printStackTrace();
 } catch (ClassCastException ex) {
 ex.printStackTrace();
 } catch (NamingException ex) {
 ex.printStackTrace();
 } catch (CreateException ex) {
 ex.printStackTrace();
 }
 }

ScheduleBean defers all work to the application server. The populate() method

creates a remote reference and calls the getScheduleItems() method on it, which

returns a list of ScheduleItem objects from the application server. Note that the

ScheduleItems returned by this method are not remote references to anything—it

is virtually the same ScheduleItem class used before in the application. The differ-

ence lies in the way the list is generated.

Listing 12.17 The revised populate() method has become a proxy for an EJB.

358 CHAPTER 12

Separating concerns

 The addRecord() method has undergone a similar transformation, as shown in

listing 12.18.

 public void addRecord(ScheduleItem item) throws
 ScheduleAddException {
 try {
 Context context = new InitialContext();
 Object o = context.lookup("Event");
 EventHome home =
 (EventHome) PortableRemoteObject.narrow(o,
 EventHome.class);
 home.create(item.getStart(),
 item.getDuration(),
 item.getText(),
 item.getEventTypeKey());
 } catch (RemoteException ex) {
 ex.printStackTrace();
 } catch (ClassCastException ex) {
 ex.printStackTrace();
 } catch (NamingException ex) {
 ex.printStackTrace();
 } catch (CreateException ex) {
 ex.printStackTrace();
 }
 }

To add a new record, the create() method of the home interface is called. The

new item to be added passes into this method, and a new entity is created via the

home interface to the EventBean. In this case, we never access a remote reference

to the newly created item. If we need one, the create() method returns the newly

generated primary key, so we can use the findByPrimaryKey() method of the

home interface to return the reference.

 The getEventTypes() method has also changed to accommodate the port to

EJB. It creates a reference to the EventTypeDbBean to get the mappings between

event type key and event type description. This method appears in listing 12.19.

 public Map getEventTypes() {

 try {
 if (eventTypes == null) {
 Context context = new InitialContext();

 Object o = context.lookup("EventTypeDB");
 EventTypeDBHome home =

Listing 12.18 The addRecord() method has also become a proxy for an EJB.

Listing 12.19 The getEventTypes() method returns a mapping.

Using Enterprise JavaBeans 359

 (EventTypeDBHome)
 PortableRemoteObject.narrow(o,
 EventTypeDBHome.class);
 EventTypeDB eventTypeDB = home.create();
 eventTypes = eventTypeDB.getEventTypes();
 }
 } catch (RemoteException ex) {
 ex.printStackTrace();
 } catch (ClassCastException ex) {
 ex.printStackTrace();
 } catch (NamingException ex) {
 ex.printStackTrace();
 } catch (CreateException ex) {
 ex.printStackTrace();
 }
 return eventTypes;
 }

As before, the method shown in listing 12.19 caches the mappings. The eventType

map is a class-level variable, and the method checks to see if it is already popu-

lated. This means that each instance of the ScheduleBean contains a cached copy

of the mappings. This approach is safe because the mappings so rarely change.

 The only change to the ScheduleItem local entity class is the deferment of

the validation business rule to the stateless session bean. In both versions of the

application, the ScheduleItem class consists of only accessors, mutators, and a

single validate method. However, in the EJB version, the server handles the

validation logic. Listing 12.20 shows the updated validate() method of the

ScheduleItem class.

public List validate() {
 try {
 Object o = context.lookup("ScheduleItemRules");
 ScheduleItemRulesHome home = (ScheduleItemRulesHome)
 PortableRemoteObject.narrow(o,
 ScheduleItemRulesHome.class);
 ScheduleItemRules rules = home.create();
 return rules.validate(this);
 } catch (Exception ex) {
 List errors = new ArrayList();
 errors.add("EJB exception: " + ex);
 return errors;
 }
}

Listing 12.20 The validate() method is a proxy for business logic

from a stateless session bean.

360 CHAPTER 12

Separating concerns

The session bean accepts a ScheduleItem object as the parameter, and this class

passes itself. This illustrates the distinction between remote objects, accessible

through their remote interfaces, and local objects. It is important to distinguish

when it is appropriate to use a local object versus using a remote interface. In this

case, the local object holds all the schedule item information and defers to the

remote object to handle validations. When it comes time to create a new entry in

the database, the local object is passed as a parameter to the addRecord() method

of the ScheduleBean, which in turn creates a new entity.

 In general, remote objects should be coarse grained, meaning that it is prefer-

able to pass objects around as chunks of information rather than create remote

interfaces with numerous small methods. Calling remote methods taxes the mem-

ory and resources of the application server more than simple objects—remote

interfaces incur a significant overhead. It is better for local (non-remote) objects

to encapsulate data and pass the local objects to bulk remote methods to handle

persistence and highly scalable business rules.

Changes to the controllers and views

There are no changes to either the controller or the views—which illustrates the

advantage of the clean separation of responsibilities in a Model 2 architecture.

Because the original application used Model 2 to separate the parts of the appli-

cation, it enabled us to change the infrastructure of one of the key parts (the

model) without affecting the other parts. The model now acts as a proxy for the

EJBs, which handle both persistence and business rules. The controller still cre-

ates local models and passes them to the views. The only difference lies in the

encapsulated behavior of the model objects themselves.

12.3.3 Using EJBs in web frameworks

Most of the frameworks featured in part 2 of Art of Java Web Development adhere to

the Model 2 architecture. As such, a similar transformation to EJB is possible. In

fact, that is why we chose the generic Model 2 application as the base. The only

framework we cover that prevents an easy porting to EJB is the sole Rapid Applica-

tion Development (RAD) framework, InternetBeans Express. While it’s certainly

possible to incorporate EJBs into that framework, it would require a massive

rewrite. InternetBeans Express relies heavily on its data-aware controls, which

aren’t designed to work with EJB.

 Generally, web frameworks shouldn’t care about the persistence layer of the

application. When your application is built on Model 2, the clean separation of

responsibilities mandates that you are free to implement the persistence layer in

Using Enterprise JavaBeans 361

whatever manner you choose. Truly modular applications, with clean separation

of concerns, make it easy to update (and replace) one module without breaking

the others. Effective partitioning is an advantage of low coupling and high cohe-

sion, both desirable characteristics in any framework.

12.3.4 Managing JNDI context

One of the services provided by application servers is a naming service. A naming

service allows you to look up resources by name from a provider. The standard

naming service in Java is the Java Naming and Directory Interface (JNDI). JNDI lets

you find resources (such as database connections) by searching for them by name.

The application server can deliver those resources within the same application or

across machine boundaries. You can think of JNDI as a white pages phone book

lookup for resources. If you know the resource name, JNDI can deliver it to you.

 The JNDI context represents a single user’s connection to the application

server. The appropriate analogy is that of a connection to a database server. The

JNDI context encapsulates the user’s credentials (such as username and password)

for the application server. In fact, you can consider this as a drop-in replacement

for access control and security from the application server rather than the data-

base. Notice that you can no longer use the access control features of the database

server because the application server creates the database connections for you in

a pool.

 Just like database connections, the web application can create and destroy con-

nections to the application server at will. However, also like database connections,

establishing the connection is time consuming. Therefore, it is always a good idea

to cache the JNDI context for the user in the user’s session. The updated version

of the schedule application does just that. The ViewSchedule controller creates a

context for the user and places it in the user’s session. Upon each subsequent

request, it checks to see if the context is available. The pertinent methods from

ViewSchedule appear in listing 12.21.

 private Context establishContext(HttpServletRequest request) {

 HttpSession session = request.getSession(true);
 Context c = (Context) session.getAttribute("context");
 if (c == null) {

 c = getInitialContext();
 session.setAttribute("context", getInitialContext());
 }

 return c;
 }

Listing 12.21 The controller caches the context object in the user’s session.

362 CHAPTER 12

Separating concerns

 private Context getInitialContext() {

 Context c = null;
 try {
 c = new InitialContext();

 }
 catch (NamingException ex) {
 ex.printStackTrace();

 }
 return c;
 }

Of course, any time you store a link to an external resource in the user’s session,

you must anticipate the possibility of the user not cleaning up the session cor-

rectly. One of the annoying characteristics of web applications is that the user can

just go away without telling you by closing the browser. You should add a session

event listener to clean up the JNDI context if the user’s session times out.

12.4 Performing validations with model beans

I’m sure you have figured out by now that I am a strong advocate of separating the

concerns of the application by designing to the Model 2 architecture. Part of that

philosophy states that the business rules in the application must reside in the

model, whether locally or as an EJB in an application server. We’ve demonstrated

how to perform server-side validations, both here and in chapter 4. However,

there always exists a strong desire to make web applications act more like “tradi-

tional” client/server applications, which include immediate validations for user

input errors. If you handle validations at the server, the user must wait for the

round trip to the server.

12.4.1 Client-side validations

The way to avoid the wait on server-side validations is to create client-side valida-

tions using JavaScript or JScript. This scripting code runs in the browser, so the cli-

ent gets immediate results, and this is its prime benefit. The disadvantages of

client-side scripting are many. Scripting languages don’t support modern software

engineering practices like strong typing and extensible object systems, and they

have a host of other deficiencies. Scripting languages work well for small, nar-

rowly scoped tasks. However, developers who try to build too much behavior in

scripting languages find that the code is hard to maintain.

Performing validations with model beans 363

 If you must have application-like behavior, use scripting. Its usefulness out-

weighs the inconvenience in many situations. To that end, you should perform cli-

ent-side validations in a way that has the least negative impact on the application.

Scheduling with client-side validation

The updated version of the Model 2 schedule application now incorporates Java-

Script to perform input validation. Note that this section is not meant to be an

introduction to JavaScript; many books are available that cover JavaScript thor-

oughly. This sample appears in the source code archive as art_sched_js.

 A common practice when including JavaScript places the code in a separate

file and includes it for the pages that need it. This file is a resource that must

be addressable from the browser, so in this version of the application it appears

in the same directory as the JSPs. The form validation JavaScript code is shown

in listing 12.22.

<!--

function SubmitValidate(numberfield, datefield) {
 var StatusNum, StatusDate

 StatusNum = CheckNum(numberfield);

 StatusDate = CheckDate(datefield);
 if (! StatusNum && ! StatusDate) {
 alert('Invalid number and/or date fields');

 } else {
 document.forms[0].submit();
 }

}

function CheckNum(numfield) {
 var numstat, nval, snum

 numstat = true;
 nval = numfield.value
 for (snum=0; snum < nval.length; snum++) {

 if (isNaN(parseInt(nval.charAt(snum)))) {
 numstat = false;
 }

 }
 if (numstat)

 nval = parseInt(numfield.value);
 return numstat && (nval > 0 && nval < 30);
 //return numstat;

}

function CheckDate(datefield) {
 var dstat, dval, dformat, sp, ddel

Listing 12.22 JavaScript code included to assist in client-side data validation

Validates all the
fields on the form

B

Validates a
duration

C

Validates a dateD

364 CHAPTER 12

Separating concerns

 dstat = true;

 dval = datefield.value;
 ddel = "/";
 dformat = "mm" + ddel + "dd" + ddel + "yyyy";

 if (dval.length == dformat.length) {
 for (sp = 0; sp < dformat.length; sp++) {
 if (dformat.charAt(sp) == "m" ||

 dformat.charAt(sp) == "d" ||
 dformat.charAt(sp) == "y") {
 if (isNaN(parseInt(dval.charAt(sp)))) {

 dstat = false;
 }
 } else if (dformat.charAt(sp) ==

 ddel && dval.charAt(sp) != ddel) {
 dstat = false;
 }

 }
 } else {
 dstat = false;

 }

 return dstat;
}

-->

The SubmitValidate() method executes upon the HTML form’s submit request.

The other two methods, CheckNum() and CheckDate(), are helpers that are called
from SubmitValidate() and are also called on the onBlur event of the pertinent
HTML elements. This event corresponds to the focusLost() event for a Swing
JTextField.

To use this JavaScript, you must include this file in any JSP that needs it, accom-

plished by a script element:

<script language="JavaScript" src="formval.js"></script>

Adding the script element with an src attribute is equivalent to including the

JavaScript directly on the page.

 To use the JavaScript methods, you attach them to the proper elements. For

example, the form element in the ScheduleEntryView JSP changes to

<form action="saveentry" method="post"
 onsubmit="SubmitValidate(document.forms[0].duration,

 document.forms[0].start);return false;">

and both the duration and start elements feature a similar modification:

B

DC

Performing validations with model beans 365

 <input name="duration" size="16"

 value="<jsp:getProperty name="scheduleItem"
 property="duration"/>"
 onBlur="if (! CheckNum(this))

 alert('Duration must be a positive number > 0 and < 30');"/>

When this application runs and the user inputs invalid values, the browser catches

the error immediately and displays a JavaScript alert dialog box, as shown in

figure 12.7. As you can see, users receive instant feedback if they enter invalid data.

 From a usability standpoint, the application is easier to use. However, from a

design and architecture standpoint, it has degenerated badly. The business rules

now exist in two locations: in the model beans and in the user interface. Chang-

ing the rules means that you now must find the code in more than one location.

Once this slide begins, it accelerates and the application quickly degrades into an

architectural mess. But there is a way to get the desirable client-side behavior with-

out ruining the careful design; let’s take a look.

12.4.2 Building client-side validations from the server

If you must have client-side validations and other business rules, it is a given that

you have to use JavaScript—you have no other universally available options. But

the previous flawed architecture is salvageable. Because the business rules should

appear in the model, place them in the model as JavaScript. This technique places

the JavaScript as constant strings in the proper model components with accessors

to return the fully formed JavaScript to the user interface.

Server-generated client-side validation

This version of the schedule application uses client-side validation in JavaScript

generated from the model objects. First, place the JavaScript in the model objects

as constants with an accessor. This is demonstrated in listing 12.23.

Figure 12.7

Using JavaScript allows the user to get instant

feedback whenever invalid data is entered.

366 CHAPTER 12

Separating concerns

 private static final String JS_ITEM_VALIDATION =
" <script language='javascript'>\n" +

" function SubmitValidate(numberfield, datefield) {\n"+
" var StatusNum, StatusDate\n"+
"\n"+

" StatusNum = CheckNum(numberfield);\n"+
" StatusDate = CheckDate(datefield);\n"+
" if (! StatusNum && ! StatusDate) {\n"+

" alert('Invalid number and/or date fields');\n"+
" } else {\n"+
" document.forms[0].submit();\n"+

" }\n"+
" }\n"+
"\n"+

" function CheckNum(numfield) {\n"+
" var numstat, nval, snum\n"+
"\n"+

" numstat = true;\n"+
" nval = numfield.value\n"+
" for (snum=0; snum < nval.length; snum++) {\n"+

" if (isNaN(parseInt(nval.charAt(snum)))) {\n"+
" numstat = false;\n"+
" }\n"+

" }\n"+
" if (numstat)\n"+
" nval = parseInt(numfield.value);\n"+

" return numstat && (nval > 0 && nval < 30);\n"+
" //return numstat;\n"+
" }\n"+

"\n"+
" function CheckDate(datefield) {\n"+
" var dstat, dval, dformat, sp, ddel\n"+

" dstat = true;\n"+
" dval = datefield.value;\n"+
" ddel = \"/\";\n"+

" dformat = \"mm\" + ddel + \"dd\" + ddel + \"yyyy\";\n"+
"\n"+
" if (dval.length == dformat.length) {\n"+

" for (sp = 0; sp < dformat.length; sp++) {\n"+
" if (dformat.charAt(sp) == \"m\" ||\n"+
" dformat.charAt(sp) == \"d\" ||\n"+

" dformat.charAt(sp) == \"y\") {\n"+
" if (isNaN(parseInt(dval.charAt(sp)))) {\n"+
" dstat = false;\n"+

" }\n"+
" } else if (dformat.charAt(sp) ==\n"+
" ddel && dval.charAt(sp) != ddel) {\n"+

" dstat = false;\n"+

Listing 12.23 JavaScript validations in server models

Performing validations with model beans 367

" }\n"+

" }\n"+
" } else {\n"+
" dstat = false;\n"+

" }\n"+
"\n"+
" return dstat;\n"+

" }\n"+
" </script>\n";
 private static final String JS_FORM_VALIDATION =

 "SubmitValidate(document.forms[0].duration," +
 "document.forms[0].start);return false;";
 private static final String JS_START_VALIDATION =

 "if (! CheckNum(this)) " +
 "alert('Duration must be a positive number > 0 and < 30');";
 private static final String JS_DATE_VALIDATION =

 "if (! CheckDate(this)) " +
 "alert('Invalid Date (MM/DD/YYYY');";

 public String getItemValidationJS() {

 return JS_ITEM_VALIDATION;
 }

 public String getFormValidationJS() {

 return JS_FORM_VALIDATION;
 }

 public String getStartValidationJS() {

 return JS_START_VALIDATION;
 }

 public String getDateValidationJS() {

 return JS_DATE_VALIDATION;
 }

The JS_ITEM_VALIDATION code is exactly the same as the code from listing 12.22,

encoded as a long Java constant string. The public accessor methods return the

constants. The JSP already has a reference to the ScheduleItem bean, so it is a sim-

ple matter to call the accessors in the appropriate places, as shown in listing 12.24.

<jsp:getProperty name="scheduleItem" property="itemValidationJS" />

<form action="saveentry" method="post"
 onSubmit="<jsp:getProperty name="scheduleItem"

 property="formValidationJS"/>">

 <input name="duration" size="16"
 value="<jsp:getProperty name="scheduleItem"

Listing 12.24 The ScheduleEntryView JSP calls the model bean’s accessors.

368 CHAPTER 12

Separating concerns

 property="duration"/>"

 onBlur="<jsp:getProperty name="scheduleItem"
 property="startValidationJS"/>"/>

The end result for the user is exactly the same as embedding the JavaScript into

the page. However, from an architectural standpoint, this version is much better.

Now when the inevitable change of business rules occurs, the developer can go to

a single location (the model objects) and make modifications with confidence,

knowing that additional code isn’t lurking somewhere in the user interface.

 Placing JavaScript as a long constant string in the models is not very pretty.

The code is written and debugged somewhere else and pasted into the model.

However, the short-term inconvenience of placing the rules here outweighs the

long-term disadvantage of compromising the architecture of the application. In

general, use JavaScript as sparingly as possible. It is designed for small, single-pur-

pose tasks (like validations, specialized navigation, etc.), and it is appropriate for

these tasks.

 Chapter 5 includes an example of the Jakarta Commons Validator, which

allows for declarative validation rules in Struts (although it works outside of Struts

as well). The Validator can also generate client-side JavaScript based on the

declarative validation rules. If you need extensive client-side validation, you

should use the Validator framework instead of writing your own.

12.5 Summary

Understanding where to put things is more than half the battle. The trend in soft-

ware engineering decouples applications as much as possible. The use of design

patterns is an example of this trend, as is the use of business component technol-

ogies like EJBs. It helps to see applications that successfully manage this separa-

tion. That is one of the goals of this chapter. Understanding the terminology and

best practices is also important because only then can you communicate ideas

effectively to other developers outside your team. Understanding at least parts of

some core concepts makes communication easier. Design patterns, UML, and

advanced Java language concepts (such as the way interfaces are used in enter-

prise systems) have become the lingua franca of Java web developers.

 Changing fundamental infrastructure parts of your application is easy—if you

have designed it to be extensible. Otherwise, doing so is a nightmare. This chap-

ter provides the payoff of the groundwork laid in chapter 4. The Model 2 design

Summary 369

pattern sprang into life to facilitate exactly the kind of transformation illustrated

in section 12.3.1. The models changed significantly, new model pieces were con-

structed using EJBs, but neither the controller nor the view required a single

change. The concerns of the application were separated enough to replace large

pieces without breaking the whole.

 In the next chapter, we look at handling the workflow and user interface of the

application using Model 2.

371

Handling flow

This chapter covers

■ Application usability options

■ Building undo operations

■ Handling exceptions

372 CHAPTER 13

Handling flow

In this chapter, we take a look at the usability and flow of a web application from a

design standpoint. The greatest application in the world won’t be used much if its

flow doesn’t meet the needs of its users, or if it doesn’t handle exceptions grace-

fully and thus frustrates your users.

 By studying flow, you can address both of these concerns. First, we look at how

to reconcile often-requested usability elements (such as column sorting and page-

at-a-time scrolling) with the design principles we’ve already discussed. We use the

Model 2 version of the eMotherEarth e-commerce site introduced in chapter 4 as

a base for this and future chapters.

 You must also handle more infrastructural elements of flow, such as exception

handling. Your application should be designed for robustness in the face of both

user and application errors. In this chapter, you’ll see how to build sortable col-

umns, page-at-a-time scrolling, undo operations, and robust exception handling.

13.1 Application usability options

Users have an annoying habit of asking for features that seem easy and intuitive to

use but that are difficult for the developer to implement. For example, two com-

mon features that users expect are sortable columns in tables and page-at-a-time

scrolling. When adding bells and whistles to your application, you must avoid

compromising its design and architecture. No matter how “pretty” it becomes, the

developer who must maintain it later makes the final judgment on an applica-

tion’s quality.

13.1.1 Building the base: eMotherEarth.com

To illustrate these requests, an application must be in place. This and subsequent

chapters use a simulated toy e-commerce site named eMotherEarth. The begin-

nings of this application appeared in chapter 2 to illustrate the evolution of web

development from servlets and JSP. However, this version of the application is

reorganized into a Model 2 application (see chapter 4). This section discusses the

new architecture, and the following sections show how to incorporate usability

options into a Model 2 application.

Packages

The application now appears in four major packages, shown in figure 13.1.

 The boundary package contains two boundary classes, ProductDb and OrderDb,

to persist the entities into the database. The application contains four entities:

Product, Order, Lineitem, and CartItem. Only two boundary classes are required

Application usability options 373

because Order and Lineitem are handled by the same

boundary class; there is never a case in the applica-

tion where you can add line items without adding an

order, and the CartItem entity is never persisted. Car-

tItem is a helper class that holds information until

the time that an order is generated. The controller

package contains the controller servlets for the appli-

cation, and the util package contains miscellaneous

utility classes, such as the database connection pool

and the shopping cart.

 For the sake of brevity, we show only the code that

is unique to this application. The entire application is

available with the source code archive as art_emotherearth_base. So, we won’t

show listings of classes that consist primarily of accessors and mutators and discuss

only the interesting methods of the controller servlets.

Welcome

The first page of the application is a simple logon page, as shown in figure 13.2.

 The welcome controller does more than just forward to a JSP with an entry

field. It sets up global configuration items, like the database connection pool. List-

ing 13.1 shows the entire welcome controller.

public class Welcome extends HttpServlet {

 public void init() throws ServletException {

 String driverClass =
 getServletContext().getInitParameter("driverClass");
 String password =

 getServletContext().getInitParameter("password");
 String dbUrl =
 getServletContext().getInitParameter("dbUrl");

 String user =
 getServletContext().getInitParameter("user");
 DBPool dbPool =

 createConnectionPool(driverClass, password, dbUrl,
 user);
 getServletContext().setAttribute("dbPool", dbPool);

 }

 private DBPool createConnectionPool(String driverClass,
 String password,

 String dbUrl,
 String user) {

Listing 13.1 The welcome controller

controller

boundary entity

util

Figure 13.1 The Model 2

version of eMotherEarth.com is

organized into four packages,

each with different

responsibilities.

374 CHAPTER 13

Handling flow

 DBPool dbPool = null;

 try {
 dbPool = new DBPool(driverClass, dbUrl, user, password);
 } catch (SQLException sqlx) {

 getServletContext().log(new java.util.Date() +
 ":Connection pool error", sqlx);
 }

 return dbPool;
 }

 public void doGet(HttpServletRequest request,

 HttpServletResponse response)
 throws ServletException, IOException {
 RequestDispatcher dispather =

 request.getRequestDispatcher("/WelcomeView.jsp");
 dispather.forward(request, response);
 }

}

The real action in the welcome controller occurs before the doGet() method is

called. This method gets configuration parameters from the web.xml file and uses

them to create the database connection pool that is utilized by the remainder of

the application. Once the pool is created, it is added to the global collection. The

doGet() method does nothing but forward directly to the view for the welcome.

Catalog

The next page of the application shows the user a catalog of all the items available

for purchase. This page is shown in figure 13.3.

 While the Welcome page strongly resembles the original version of the applica-

tion from chapter 2, the Catalog page has some significant changes. First, it allows

the user to click on the column heads to sort the items based on that column. Sec-

ond, it offers multiple pages of items. Instead of showing all the items at the outset

Figure 13.2

This page allows the user to log on,

while the servlet underneath sets up the

web application.

Application usability options 375

(a potentially long list), it shows a subset with hyperlinks at the bottom that allow

the user to choose the display page.

 Catalog is the workhorse controller in the application because it must execute

the code that makes all the display techniques possible. Ideally, the JSP should

have as little logic as possible—all the “real” code should execute in the control-

ler. Figure 13.4 shows a UML sequence diagram highlighting the classes and meth-

ods called by the catalog controller. The real work in the controller is split up

among the methods that appear in the sequence diagram. The doPost() method,

which is fired from the Welcome page, appears in listing 13.2.

public void doPost(HttpServletRequest request,

 HttpServletResponse response) throws
 ServletException, IOException {

 HttpSession session = request.getSession(true);

 ensureThatUserIsInSession(request, session);
 ProductDb productDb = getProductBoundary(session);
 int start = getStartingPage(request);

 int recsPerPage = Integer.parseInt(getServletConfig().
 getInitParameter("recsPerPage"));
 int totalPagesToShow = calculateNumberOfPagesToShow(

 productDb.getProductList().size(), recsPerPage);
 String[] pageList =
 buildListOfPagesToShow(recsPerPage,

 totalPagesToShow);

Listing 13.2 The catalog controller’s doPost() method breaks the work down

into smaller chunks.

Figure 13.3

The Catalog page shows users the first of

several pages of items they can buy from

the site.

376 CHAPTER 13

Handling flow

 List outputList = productDb.getProductListSlice(start,

 recsPerPage);
 sortPagesForDisplay(request, outputList);

 bundleInformationForView(request, start, pageList,

 outputList);
 forwardToView(request, response);
}

The catalog controller makes sure the user is in the session. If the user isn’t in

the session (for example, upon the first invocation of the page), the ensure-

ThatUserIsInSession() method adds the user to the session, pulling the name

from the request collection. Either way, this method guarantees that the user is in

the session.

Catalog ProductDbSession

getSession()

ensureThatUserIsInSession()

Request

getProductBoundary()

getStartPage()

getRecsPerPage()

calculateNumOfPagesToShow()

buildListOfPages()

getProductListSlice()

bundleIntoToView()

CatalogView

forwardToView()

Figure 13.4 This sequence diagram shows the interactions and method calls from the

catalog controller.

Application usability options 377

 Next, the servlet starts to gather the components and information needed to

build the display for the user. It calls the getProductBoundary() method to get the

boundary class for product entities. This method is shown in listing 13.3.

private ProductDb getProductBoundary(HttpSession session) throws
 NumberFormatException {
 ProductDb products = (ProductDb) session.getAttribute(

 "productList");

 if (products == null) {
 products = new ProductDb();

 products.setDbPool(
 (DBPool) getServletContext().getAttribute(
 "dbPool"));

 session.setAttribute("productList", products);
 }
 return products;

}

The product boundary class encapsulates access to individual product entities,

which it pulls from a database. All the data access code appears in the boundary

class, leaving the product entities to include only product-specific domain infor-

mation. The ProductDb class includes a property that is a java.util.List of Prod-

uct entities. Figure 13.5 illustrates the relationship between these classes.

 The application is designed so that every user gets a copy of this product

boundary object. The controller’s getProductBoundary() method is designed to

place a copy of this object in the user’s session upon first request. This behavior is

a design decision whose goal is to ensure that every user has a copy of the object.

The design represents a classic trade-off of memory versus speed. Although this

strategy occupies more memory (a bound-

ary object per user), the speed of access to

the data is faster. If we wanted to create a

more scalable application, we would handle

the boundary differently. Chapters 14 and

15 include discussions of various caching

and pooling mechanisms that are alterna-

tives to this approach. The design decision

to cache the boundary object in the user’s

Listing 13.3 The getProductBoundary() method either retrieves or creates a product

boundary object.

<<entity>> <<boundary>>

1*

Product ProductDB

Figure 13.5 The ProductDb class includes

an aggregation of Product objects and

delivers them via a method that returns a

java.util.List.

378 CHAPTER 13

Handling flow

session highlights the fact that performance and scalability must illuminate every

decision made in a web application.

13.1.2 Page-at-a-time scrolling

The page-at-a-time scrolling interface technique concerns the volume of informa-

tion and the usability of the application. If you have a data-driven web application,

you don’t want to inundate the user with several thousand records on a single

page. Most web sites handle this with page-at-a-time scrolling. When using this

technique, the user sees only a single page worth of data and a list of pages. If

users want to see more records, they can navigate to another page.

 To implement this technique, the controller gathers some values from the

request collection to help determine the number of pages to show at the bottom

of the page. It calls the getStartPage() method, which appears in listing 13.4.

private int getStartingPage(HttpServletRequest request) {

 String recStart = request.getParameter("start");
 int start = 0;

 if (recStart != null)

 start = Integer.parseInt(recStart);
 return start;
}

This method pulls the start parameter from the request, parses it, and returns it.

This parameter is available because the view encodes it into self-posting requests

back to the controller for this page. Note that this method is designed to work in

cases where the start parameter is not available (such as the first invocation of

the page).

 Users must specify the page they want through the view, which is specified by

the series of hyperlinks at the bottom of the page. The values of these hyperlinks

(in other words, the generated HTML for them) are shown in listing 13.5.

<p> Pages:
1
2
3
4

Listing 13.4 The getStartMethod() from the controller calculates

the starting page number.

Listing 13.5 The page links at the bottom allow the user to navigate between pages.

Application usability options 379

 Each of the page links contains a reference to the controller (catalog) and the

starting record for that page. You will notice in listing 13.5 that each page starts six

records beyond the previous page. The getStartPage() method of the controller

pulls the start parameter value from the request and uses it to calculate which

records should appear on the page. The number of records per page is set through

a servlet configuration parameter. In this case, it is set to six records per page. The

next line of code in the controller is the retrieval of that value from the servlet-

Config object.

 The next method called by the controller is the calculateNumberOfPages-

ToShow() method, which appears in listing 13.6.

private int calculateNumberOfPagesToShow(int numInList,

 int recsPerPage) {
 int totalToShow = numInList / recsPerPage;

 if (numInList % recsPerPage != 0)

 ++totalToShow;
 return totalToShow;
}

The calculateNumberOfPagesToShow() method accepts the total number of rec-

ords available and the requested records per page, and then calculates the num-

ber of pages required. Note that the contingency of having a last page that isn’t

completely full is handled with the use of the modulus operator (%) to ensure that

enough pages exist.

 The next method called is buildListOfPagesToShow(), which builds up an

array of strings containing the displayable hyperlinks. This method is shown in

listing 13.7.

private String[] buildListOfPagesToShow(int recsPerPage,
 int totalPagesToShow) {
 String[] pageList = new String[totalPagesToShow];

 StringBuffer work = new StringBuffer(20);
 int currentPage = 0;

 for (int i = 0; i < totalPagesToShow; i++) {

 work.setLength(0);
 work.append("<a href='catalog?start=").append(

Listing 13.6 This method calculates the number of pages it will take to show

all the requested records.

Listing 13.7 This method builds the list of hyperlinks embedded at the bottom

of the page.

380 CHAPTER 13

Handling flow

 currentPage).append("'>").append(i + 1).append(

 " ");
 pageList[i] = work.toString();
 currentPage += recsPerPage;

 }
 return pageList;
}

The buildListOfPagesToShow() method builds up a list of hyperlinks with the

appropriate page and start record information embedded in them. It iterates over

a list up to the total number of pages to show, building a StringBuffer with the

appropriate hyperlink and display data. Eventually, it returns the array of strings

that includes the page list. This page list is passed to the view in a request parame-

ter (it is one of the parameters to the bundleInformationForView() method).

 The view extracts that information and places it on the bottom of the page.

Listing 13.8 shows the snippet of code at the bottom of the page that builds this

list of pages.

<%-- show page links --%>
<p> Pages:

<%
 String[] pageList = (String[]) request.getAttribute("pageList");
 if (pageList != null) {

 for (int i = 0; i < pageList.length; i++) {
 out.println(pageList[i]);
 }

 }
%>

The scriptlet in listing 13.8 walks over the pageList passed from the controller

and outputs each of the links. The spacing is already built into the HTML in the

pageList, simplifying the job of the scriptlet code.

Using JSTL

The kind of scriptlet code that appears in listing 13.8 is generally not required if

you are using a modern JSP specification (and of course a servlet container that

supports this specification). The JSP Standard Tag Library (JSTL) includes custom

JSP tags that handle common chores like iteration. The JSTL version of this code is

shown in listing 13.9

Listing 13.8 The CatalogView page uses the pageList to build the list of hyperlinks

at the bottom.

Application usability options 381

 .

<% pageContext.setAttribute("pageList",
 (String[]) request.getAttribute("pageList")); %>
<p> Pages:
<c:forEach var="page" items="${pageList}">
 <c:out value="${page}" escapeXml="false"/>
</c:forEach>

This code is much better than the scriptlet alternative because the custom JSTL tag

handles conditions like null properties by just ignoring the tag. This is a case in

which using JSTL does greatly improve the readability and maintainability of your

code without compromising the clean separation of model, view, and controller.

 JSTL is also used to show the rows of data on this view page. Listing 13.10 con-

tains the code that displays the products available for purchase.

<%
 Integer start = (Integer) request.getAttribute("start");
 int s = start.intValue();
%>
Catalog of Items
</h1>
<table border=1>
 <tr><th><a href="catalog?sort=id&start=<%= s %>">ID</th>
 <th><a href="catalog?sort=name&start=<%= s %>">NAME</th>
 <th><a href="catalog?sort=price&start=<%= s %>">PRICE</th>
 <th>Buy</th></tr>
 <c:forEach var="product" items="${outputList}">
 <tr>
 <td><c:out value="${product.id}"/></td>
 <td><c:out value="${product.name}"/></td>
 <td align='right'>
 <c:out value="${product.priceAsCurrency}"/>
 </td>
 <td>
 <form action="showcart" method="post">
 Qty: <input type="text" size="3" name="quantity">
 <input type="hidden" name="id"
 value=<c:out value="${product.id}"/>>
 <input type="submit" value="Add to cart">
 </form>
 </td>
 </tr>
 </c:forEach>
</table>

Listing 13.9 JSTL provides custom tags to help with iteration over a collection.

Listing 13.10 The Catalog page uses JSTL tags to help the readability of the JSP code.

382 CHAPTER 13

Handling flow

You can contrast this code with the similar code in chapter 3 (section 3.5.2 and

listing 3.16). This version is much better because the JSTL tag is used to output

the values of the individual properties of the bean passed to this page by the con-

troller. The version in listing 3.16 used a custom tag to output the HTML directly

from Java code. In listing 13.10, a presentation expert has full access to the fields

and can make changes to the look and feel of the application without touching

any Java code.

 Another powerful feature of JSTL is the ability to use dot notation to access

embedded property values of objects. Consider the ShowCart JSP page for this

Model 2 version of eMotherEarth. It appears in listing 13.11.

<%
 pageContext.setAttribute("cartItems", cart.getItemList());

%>
<table border=1>
 <tr>

 <c:forEach var="col" items="ID,NAME,PRICE,QUANTITY,TOTAL">
 <th><c:out value="${col}"/></th>
 </c:forEach>

 </tr>
 <c:forEach var="cartItem" items="${cartItems}">
 <tr>

 <td><c:out value="${cartItem.product.id}"/></td>
 <td><c:out value="${cartItem.product.name}"/></td>
 <td><c:out value="${cartItem.product.priceAsCurrency}"/></td>

 <td><c:out value="${cartItem.quantity}"/></td>
 <td><c:out value="${cartItem.extendedPriceAsCurrency}"/></td>
 </tr>

 </c:forEach>
 <tr>
 <td> </td>

 <td> </td>
 <td> </td>
 <td align='right'>Grand Total =</td>

 <td align='right'><%= cart.getTotalAsCurrency() %></td>
 </tr>
</table>

The CartItem and Product classes are related to each other. The CartItem class

encapsulates a Product object so that it won’t have to duplicate the information

already encapsulated by Product. The ShoppingCart class composes the CartItem

class because it includes a collection of CartItems. It is a composition relationship

Listing 13.11 The ShowCart JSP uses JSTL to access the embedded product object

in the CartItem class.

Application usability options 383

rather than an aggregation because the ShoppingCart class is responsible for the

creation and destruction of the CartItem objects. The relationship between these

classes is illustrated in figure 13.6.

 Because of the relationship between CartItem and Product, you may find it dif-

ficult to cleanly access the encapsulated Product object. Using regular iteration

scriptlets, you end up with code that looks like listing 13.12.

<table border=1>
<tr><th>ID</th><th>NAME</th><th>PRICE</th>
 <th>QUANTITY</th><th>TOTAL</th></tr>
<%
 Iterator iterator = cart.getItemList().iterator();
 while (iterator.hasNext()) {
 CartItem ci = (CartItem) iterator.next();
 pageContext.setAttribute("ci", ci);
 Product p = ci.getProduct();
 pageContext.setAttribute("p", p);
%>
<tr><td><jsp:getProperty name="p" property="id" /></td>
<td><jsp:getProperty name="p" property="name" /></td>
<td align='right'><jsp:getProperty name="p"
 property="priceAsCurrency" /></td>
<td align='right'><jsp:getProperty name="ci"
 property="quantity" /></td>
<td align='right'><jsp:getProperty name="ci"
 property="extendedPriceAsCurrency" /></td>
</tr>
<%
 }
%>
<tr><td> </td><TD> </td><TD> </td>
<td align='right'>Grand Total =</td>
<td align='right'><%= cart.getTotalAsCurrency() %></td>
</tr>

</table>

Listing 13.12 The embedded objects make iteration complex.

-quantity : int

CartItem
-id : int

-name : String

-price : double

Product

1 1

ShoppingCart

1 0..*

Figure 13.6 The ShoppingCart, CartItem, and Product classes are related.

ShoppingCart composes CartItem, which has a one-to-one association with a Product.

384 CHAPTER 13

Handling flow

In the iteration code, to be able to access both CartItem and Product through the

standard JSP tags, you must add both to the pageContext collection as you iterate

over the collection.

 JSTL makes this job much easier. The syntax for embedded objects is much

cleaner because you can directly access the embedded object using dot notation.

The code in listing 13.11 performs the same task but is less cluttered by the use of

the JSTL forEach tag instead of handcrafted iteration. Note that the chain of

method calls follows the same standard Java guidelines. To get to the Name prop-

erty of the product embedded inside cartItem, you write the following Java code:

cartItem.getProduct().getName()

This code is exactly equivalent to the JSTL code:

cartItem.product.name

In other words, the JSTL tag isn’t looking for a public member variable when

using the dot notation but rather a method that follows the standard Java naming

convention for accessing methods.

13.1.3 Sortable columns

Users are accustomed to being able to manipulate data that they see on the screen.

Most applications allow them to do so to one degree or another. Selective sorting

is a facility that users are familiar with from such applications as spreadsheets and

databases. When the user clicks on the title for a particular column, all the results

are sorted based on that column.

 As with much of the functionality users have come to expect in traditional

applications, implementing this kind of dynamic behavior is more difficult in the

HTTP/HTML-governed world of web applications. For a Model 2 application, the

sorting is provided by the model, and the selection must be specified through the

view. Like the page-at-a-time scrolling technique, sorting is handled through

hyperlinks that post back to the Catalog page, passing a parameter indicating the

desired sorting criteria.

 Listing 13.2, the code for the catalog controller’s doPost() method, includes the

method call that handles sorting. Named sortPagesForDisplay(), this method

appears in listing 13.13.

private void sortPagesForDisplay(HttpServletRequest request,
 ProductDb productDb,

 List outputList) {

Listing 13.13 This method handles the sorting of the records for display.

Application usability options 385

 productDb.sortList(request.getParameter("sort"),

 outputList);
}

The sortPagesForDisplay() method is called after the output list has already

been generated. Note that it must appear after the code that decides what page’s

worth of records to show. The sorting must apply to the records that appear on

the current page and not to the entire set of records from all pages. Thus, the

sorting operation takes place on the list subset already generated by the previ-

ous methods.

 The list for display is a java.util.List type, so the standard sorting mecha-

nism built into Java is applicable. We need to be able to sort by a variety of criteria,

so it is not sufficient to allow the Product class to implement the Comparable inter-

face. The Comparable interface is used when you have a single sort criterion for a

member of a collection. It allows you to specify the rules for how to sort the enti-

ties. The sort routines built into Java use these rules to determine how to sort the

records. While it is possible to make the single compareTo() method of the Compa-

rable interface handle more than one sort criterion, it is always a bad idea. This

method becomes a long, brittle series of decision statements to determine how to

sort based on some external criteria.

 If you need to sort based on multiple criteria, you are much better off creating

small Comparator subclasses. All the sort routines built into Java (for both the

arrays and collections helpers) take an additional parameter of a class that imple-

ments the Comparator interface. This interface (minus the JavaDocs) appears in

listing 13.14.

package java.util;

public interface Comparator {

 int compare(Object o1, Object o2);

 boolean equals(Object obj);
}

For the Product sorting operation, you need the ability to sort on name, price,

and ID. To that end, three Comparator implementers exist. Because of their simi-

larity, only one of the three created for this application is shown (listing 13.15).

Listing 13.14 The Comparator interface allows the user to specify

discrete sorting criteria.

386 CHAPTER 13

Handling flow

package com.nealford.art.emotherearth.util;

import java.util.Comparator;

import com.nealford.art.emotherearth.entity.Product;

public class PriceComparator implements Comparator {

 public int compare(Object o1, Object o2) {

 Product p1 = (Product) o1;
 Product p2 = (Product) o2;
 return (int) Math.round(p1.getPrice() - p2.getPrice());

 }

 public boolean equals(Object obj) {
 return this.equals(obj);

 }
}

The recipe for creating Comparator’s compareTo() methods is always the same: cast

the two objects passed to you by the sort routine into the type of objects you are

comparing, and then return a negative, positive, or zero number indicating which

object appears before the other when sorted.

 Once Comparators exist, the sorting routines can use them to sort arrays or

collections. The sortPagesForDisplay() method from listing 13.13 looks for a

request parameter named sort. The actual sorting is done in the boundary class

for products. The method called from the controller, sortList(), appears in

listing 13.16.

public List sortList(String criteria, List theList) {
 if (criteria != null) {
 Comparator c = new IdComparator();

 if (criteria.equalsIgnoreCase("price"))
 c = new PriceComparator();
 else if (criteria.equalsIgnoreCase("name"))

 c = new NameComparator();

 Collections.sort(theList, c);
 }

 return theList;

}

Listing 13.15 The PriceComparator class sorts Product objects based on price.

Listing 13.16 The sortList() method is a helper method that sorts the list based on the

column name passed to it.

Application usability options 387

If it is present, the appropriate Comparator class is applied to the output list. This

output list is bundled in a request parameter and sent to the View page for display

by the controller. The View page doesn’t have to perform any additional work to

display the sorted records—all the sorting is done in the boundary class, called by

the controller.

 The last piece of the sorting puzzle resides in the view portion, where the user

specifies the sort criteria. Listing 13.10 shows the CatalogView JSP. The sorting

portion of that page appears in listing 13.17.

<%
 Integer start = (Integer) request.getAttribute("start");
 int s = start.intValue();

%>
Catalog of Items
</h1>

<table border=1>
 <tr><th><a href="catalog?sort=id&start=<%= s %>">ID</th>
 <th><a href="catalog?sort=name&start=<%= s %>">NAME</th>

 <th><a href="catalog?sort=price&start=<%= s %>">PRICE</th>
 <th>Buy</th></tr>

The hyperlinks in listing 13.17 supply two values for reposting to the catalog con-

troller. The first is the sort criteria to apply, and the second is the starting page.

When the user clicks on one of these hyperlinks, the page reposts to the catalog

controller, which uses these parameters to modify the contents of the page before

redisplaying it.

 Note that, as much as possible, the real workflow part of the application is per-

formed in the controller. The data portions of the application are performed in

the model classes. The view is very lightweight, handling display characteristics

and supplying values, which allows the user to change the view via parameters sent

to the controller.

Using factories

The sortList() method uses a simple set of if comparisons to determine which

Comparator to apply to the list. This is sufficient for a small number of criteria but

quickly becomes cumbersome if a large number of options are available. In that

case, a factory class simplifies the code in the boundary class by handling the deci-

sion itself. An example of such a factory class appears in listing 13.18.

Listing 13.17 The sorting criteria are embedded in hyperlinks at the top of the page.

388 CHAPTER 13

Handling flow

package com.nealford.art.emotherearth.util;

import java.util.Comparator;

public class ProductComparatorFactory {

 private static ProductComparatorFactory internalReference;

 private ProductComparatorFactory() {
 }

 public static ProductComparatorFactory getInstance() {
 if (internalReference == null)
 internalReference = new ProductComparatorFactory();

 return internalReference;
 }

 public synchronized final Comparator getProductComparator(

 String criteria) {
 String className = this.getClass().getPackage().getName() +
 '.' + toProperCase(criteria) + "Comparator";

 Comparator comparator = null;
 try {
 comparator = (Comparator) Class.forName(className).

 newInstance().;
 } catch (Exception defaultsToIdComparator) {
 comparator = new IdComparator();

 }
 return comparator;
 }

 public String toProperCase(String theString) {
 return String.valueOf(theString.charAt(0)).toUpperCase() +
 theString.substring(1);

 }
}

The ProductComparatorFactory class is implemented as a singleton object (so that

only one of these objects will ever be created) via the static getInstance() method

and the private constructor. This factory uses the name of the sort criteria to

match the name of the Comparator it dynamically creates. When the developer

sends a sort criterion (like name) to this factory, the factory builds up a class name

in the current package with that criterion name plus “Comparator.” If an object

based on that class name is available in the classpath, an instance of that Compara-

tor is returned. If not, the default IdComparator() is returned.

Listing 13.18 The ComparatorFactory class offloads the decision process

to a singleton factory.

Builds Comparator name
from string parameter

Dynamically instantiates Comparator

Defaults to
idComparator if an
exception occurs

Application usability options 389

 Using a factory in this way allows you to add new sorting criteria just by adding

new classes to this package with the appropriate name. None of the surrounding

code has to change. This is one of the advantages to deferring such decisions to a

factory class, which can determine which instances to return.

 This factory could be improved by removing the reliance on the name of the

class. A superclass Comparator with a method indicating to what fields it is tied

would remove the reliance on the name of the class matching the name of the cri-

teria. In that case, the factory would iterate through all the potential Comparators

and call the getField() method until it finds the appropriate Comparator object.

This is easier if all the Comparators reside in the same package so that the factory

could iterate over all the classes in that package.

13.1.4 User interface techniques in frameworks

Implementing page-at-a-time scrolling and sortable columns in the frameworks

from part 2 is accomplished with varying degrees of difficultly. Some of the frame-

works already include this behavior, whereas InternetBeans Express prevents it.

Struts

Using Struts to build the user interface elements that we’ve seen in the previous

sections is easy. In fact, the code presented in this chapter works with few modifi-

cations. In Struts, you move the controller code to actions, but the model and

view code remains the same. Of course, you can move the iteration and other dis-

play characteristics to Struts tags, but the fundamental code remains the same.

Because Struts is close to a generic Model 2 application, the framework doesn’t

interfere with building code like this.

Tapestry

Tapestry already encapsulates the two user interface elements discussed in the

previous sections. The built-in table component supports both page-at-a-time

scrolling and sortable columns (see chapter 6, figure 6.6). The sortability in Tap-

estry is accomplished through interfaces that define the column headers. This

behavior highlights one of the advantages of an all-encompassing framework like

Tapestry. Chances are good that it already implements many of the common char-

acteristics you would build by hand in other frameworks. The disadvantage

appears when you want to build something that isn’t already there. Because the

framework is more complex, it takes longer to build additions.

390 CHAPTER 13

Handling flow

WebWork

Like Tapestry, WebWork also includes a table component that features sortable

columns and page-at-a-time scrolling (see chapter 7, figure 7.3). Although imple-

mented differently from Tapestry, this behavior is still built into the framework.

Even though WebWork generally isn’t as complex as Tapestry, it still requires a fair

amount of work to build something that isn’t already supported.

InternetBeans Express

The architecture of InternetBeans Express effectively prevents this kind of cus-

tomization without digging deeply into the components that make up the frame-

work. While building applications quickly is this framework’s forte, customizing

the behavior of those applications is not. This is a shortcoming of overly restrictive

frameworks and is common with Rapid Application Development (RAD).

Velocity

Our user interface code could easily be written using Velocity. Velocity’s syntax

would simplify the view portion of the code even more than JSTL. Generally,

Velocity isn’t complex enough to prevent adding features like the ones in this

chapter. Because it is a simple framework, it tends to stay out of your way.

Cocoon

Using Extensible Server Pages (XSP), it shouldn’t be difficult to build our user

interface techniques in Cocoon. XSP generally follows similar rules to JSP, so the

user interface portion isn’t complicated. Because the web portion of Cocoon

relies on Model 2, the architecture we presented in the previous sections falls

right in line with a similar Cocoon application.

13.2 Building undo operations

Another common flow option in traditional applications is the ability to perform

an undo operation. This feature is usually implemented as a conceptual stack,

where each operation is pushed onto the stack and then popped off when the

user wants to undo a series of operations. The stack usually has a finite size so that

it doesn’t negatively affect the operating system. After all, an infinite undo facility

must either consume more memory or build a mechanism to offload the work to

permanent storage of some kind.

 Undo may also encompass traditional transaction processing. Ultimately, trans-

actions that roll back can be thought of as sophisticated undo operations for a set

Building undo operations 391

of tables when the operation is unsuccessful. Either a database server or an appli-

cation server working in conjunction with a database server normally handles

transaction processing. You have two options when building undo operations for

a web application: either using database transaction processing or building an in-

memory undo.

13.2.1 Leveraging transaction processing

Most database servers handle transactions for you, at varying degrees of sophisti-

cation. The Java Database Connectivity (JDBC) API allows you to handle transac-

tions via the setAutoCommit() method, which determines whether every atomic

operation occurs within a transaction or if the developer decides the transaction

boundaries. If the developer controls the transactions, then either a commit() or a

rollback() method call is eventually issued. Modern JDBC drivers (those that sup-

port the JDBC 3 API) will also allow you to create save-points and roll back to a

save-point within a larger transaction.

Transactions in Model 2 applications

In a Model 2 application, the transaction processing and other database-related

activities occur in the boundary classes. In fact, if you ever find yourself importing

java.sql.* classes into other parts of the application, you have almost certainly

violated the clean separation of responsibilities.

 In the eMotherEarth application, the transaction processing occurs within the

Order boundary class. It must ensure that both order and line item records are

completely written or not at all. The addOrder() method composes all the other

methods of the class and appears in listing 13.19.

public void addOrder(ShoppingCart cart, String userName,
 Order order) throws SQLException {

 Connection c = null;
 PreparedStatement ps = null;
 Statement s = null;

 ResultSet rs = null;
 boolean transactionState = false;
 try {

 c = dbPool.getConnection();
 transactionState = c.getAutoCommit();
 int userKey = getUserKey(userName, c, ps, rs);

 c.setAutoCommit(false);
 addSingleOrder(order, c, ps, userKey);
 int orderKey = getOrderKey(s, rs);

Listing 13.19 The OrderDb boundary class’s addOrder() method

392 CHAPTER 13

Handling flow

 addLineItems(cart, c, orderKey);

 c.commit();
 order.setOrderKey(orderKey);

 } catch (SQLException sqlx) {

 s = c.createStatement();
 c.rollback();
 throw sqlx;

 } finally {
 try {
 c.setAutoCommit(transactionState);

 dbPool.release(c);
 if (s != null)
 s.close();

 if (ps != null)
 ps.close();
 if (rs != null)

 rs.close();
 } catch (SQLException ignored) {
 }

 }
}

The addOrder() method retrieves a connection from the connection pool and

saves the transaction state for the connection. This behavior allows the transaction

state to be restored before it is placed back into the pool. If you are creating your

own connections every time you need one, you don’t have to. If you are reusing

connections from a pool or cache, you should also make sure that they go back

into the pool with the same state they had when they came out.

 The addOrder() method gets a connection, starts a transaction implicitly by

calling setAutoCommit(false), and calls the addSingleOrder() method. After

obtaining the key of the new order, it adds the line items associated with this

order and commits the transaction. If any operation fails, a SQLException is gener-

ated and the entire operation is rolled back.

 None of the code in any of the called methods is in any way unusual—it is typ-

ical JDBC code for entering values into a table. Note that all database access,

including the transaction processing, occurs in the boundary class. The boundary

class accepts entity objects and handles persisting them into the database. It

would be easy to change database servers (even to change to something radically

different, like an object-oriented database server) and modify the code in this

boundary class only. Chapter 12 describes the process of taking a Model 2 appli-

cation and porting it to Enterprise JavaBeans by making changes to only the

boundary classes.

Building undo operations 393

Handling generated keys

One behavior that is not handled in a standard way across database servers is key

generation. Most database servers have a facility for generating keys automatically.

However, key generation is not part of the ANSI SQL standard, so each database

server is free to implement it in any way it likes. In our sample, this detail is han-

dled in the addOrder() method via the call to getOrderKey(), which uses the fea-

tures specific to MySQL to retrieve the last-generated key. Listing 13.20 shows the

getOrderKey() method.

private int getOrderKey(Statement s, ResultSet rs) throws
 SQLException {
 rs = s.executeQuery("SELECT LAST_INSERT_ID()");

 int orderKey = -1;
 if (rs.next())
 orderKey = rs.getInt(1);

 else
 throw new SQLException(
 "Order.addOrder(): no generated key");

 return orderKey;
}

MySQL includes a built-in stored procedure that returns the last key generated for

this connection to the database. This procedure protects against a large number

of concurrent users inserting new records because it returns the key for the

record associated with this connection. Notice that this forces our application to

use the same connection across method calls because the key generation is tied to

the database connection.

 Because this procedure is not standardized across database servers, you

should always be careful to isolate this behavior into its own method, decoupling

it from the rest of the application. If you change database servers, you should be

able to change this single method and not have to change the surrounding code.

Separation of responsibilities and loose coupling works on both a micro and a

macro level.

Transactions via JSTL

JSTL includes SQL-specific custom tags that allow transaction processing within

the JSP. It works with the SQL-based tags also defined in JSTL. Listing 13.21 shows a

couple of examples of using the transaction tag in JSTL.

Listing 13.20 The getOrderKey() method retrieves the last key generated

for this connection to the database.

394 CHAPTER 13

Handling flow

<h2>Creating table using a transaction</h2>

<sql:transaction dataSource="${example}">

 <sql:update var="newTable">
 CREATE TABLE PRODUCTS (
 ID INTEGER NOT NULL AUTO_INCREMENT,

 NAME VARCHAR(100),
 PRICE DOUBLE PRECISION,
 CONSTRAINT PK_ID PRIMARY KEY (ID)

)
 </sql:update>
</sql:transaction>

<h2>Populating table in one transaction</h2>

<sql:transaction dataSource="${example}">
 <sql:update var="updateCount">

 INSERT INTO PRODUCTS (NAME, PRICE) values ("Snow", 2.45);
 </sql:update>
 <sql:update var="updateCount">

 INSERT INTO PRODUCTS (NAME, PRICE) values ("Dirt", 0.89);
 </sql:update>
 <sql:update var="updateCount">

 INSERT INTO PRODUCTS (NAME, PRICE) values ("Sand", 0.15);
 </sql:update>
</sql:transaction>

The ability to handle transactions directly within a JSP page is handy for small

applications, but you should avoid using it in most applications. This facility was

intended to make it easy for you to create web applications completely within

JSP—without being forced to embed scriptlet code. One of its goals is to create

RAD kinds of environments for JSP. The problem with this code is that it violates

the tenets of Model 2 applications, namely the separation of responsibilities.

While convenient, it introduces undesirable design flaws in your application.

Therefore, I recommend that you don’t use these tags, and use a cleaner Model 2

architecture instead.

13.2.2 Using the Memento design pattern

Transaction processing works nicely for information persisted in relational data-

bases. It is the best kind of code to leverage—someone else wrote it, debugged it,

and stands behind it! However, situations arise when you don’t want to make use

of transaction processing. For example, you may want to keep information in

memory and not bother persisting it to permanent storage until a certain mile-

Listing 13.21 JSTL includes a transaction tag that works with the SQL tags.

Building undo operations 395

stone is reached. The perfect example of this kind of information is the shopping

cart in an e-commerce application. The shopper may never check out but instead

abandon the shopping cart and wander away to another site without notifying

your application. Beyond transaction-processing behavior, you might also want to

make available undo behavior in your web application. This amounts to a kind of

in-memory transaction processing, although the semantics are different.

 Undo operations in traditional applications are typically handled via the

Memento design pattern. The intent behind this pattern is to capture and

externalize an object’s internal state so that the object can be restored to the

original state, all without violating encapsulation. Three participant classes exist

for Memento, as shown in table 13.1.

The relationship between these participants is illustrated in figure 13.7.

 The Originator is the class whose state needs to be stored, and the Memento is

where that state is stored. The Caretaker holds onto the Memento until the Origi-

nator needs it back. The Caretaker may encapsulate a collection of Mementos.

When used for undo, the Caretaker usually keeps the Mementos in an undo stack.

Creating bookmarks in eMotherEarth

Using the Memento design pattern in a web application is slightly different than

the implementation in traditional applications. This is a frequent side effect of

applying design patterns to architectures beyond their original intent. For the

Table 13.1 Participant classes of the Memento design pattern

Participant Function

Memento Stores the state of the original object and protects against access of that

state by external objects.

Originator Creates the Memento containing a snapshot of its state and uses the

Memento to restore its state.

Caretaker Holds onto the Memento without operating on it or spying on its internal state.

+setMemento()

+createMemento()

-state

Originator

+getState()

+setState()

-state

Memento
Caretaker**

Figure 13.7 The participant classes in the Memento design pattern revolve

around their relationship to the Memento class.

396 CHAPTER 13

Handling flow

eMotherEarth application, we will allow the user to create bookmarks in their

shopping cart. For example, the user can buy several related items, create a book-

mark, and then later roll back to that bookmark. The bookmark facility uses a

stack, which means users can create as many bookmarks as they like and unroll

them in the reverse order from which they were created.

 The first step is to create the Memento class. This class must access the private

data of the ShoppingCart class without exposing it to the outside world. The best

way to handle this in Java is with an inner class. Inner classes can access the pri-

vate member variables of the outer class without exposing the encapsulated data

to the rest of the world. The updated version of the ShoppingCart class is shown

in listing 13.22.

package com.nealford.art.memento.emotherearth.util;

import java.io.Serializable;

import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.Iterator;

import java.util.List;

import com.nealford.art.memento.emotherearth.entity.CartItem;

public class ShoppingCart implements Serializable {

 private List itemList;
 private static final NumberFormat formatter =
 NumberFormat.getCurrencyInstance();

 public ShoppingCart() {
 itemList = new ArrayList(5);
 }

 public void addItem(CartItem ci) {
 itemList.add(ci);
 }

 public double getCartTotal() {
 Iterator it = itemList.iterator();
 double sum = 0;

 while (it.hasNext())
 sum += ((CartItem) it.next()).getExtendedPrice();

 return sum;
 }

 public String getTotalAsCurrency() {

 return formatter.format(getCartTotal());
 }

 public java.util.List getItemList() {

Listing 13.22 The updated ShoppingCart class

Building undo operations 397

 return itemList;

 }

 public ShoppingCartMemento setBookmark() {
 ShoppingCartMemento memento = new ShoppingCartMemento();

 memento.saveMemento();
 return memento;
 }

 public void restoreFromBookmark(ShoppingCartMemento memento) {
 this.itemList = memento.restoreMemento();
 }

 public class ShoppingCartMemento {
 private List itemList;

 public List restoreMemento() {

 return itemList;
 }

 public void saveMemento() {

 List mementoList = ShoppingCart.this.itemList;
 itemList = new ArrayList(mementoList.size());
 Iterator i = mementoList.iterator();

 while (i.hasNext())
 itemList.add(i.next());
 }

 }

}

The important change to the ShoppingCart class is the inclusion of the inner class

ShoppingCartMemento. It includes a single private member variable of type List.

This is the variable that will hold the current state of the shopping cart list when a

bookmark is set. The restoreMemento() method simply returns the list. The save-

Memento() method is responsible for taking a snapshot of the state of the shop-

ping cart. To do this, it must access the private member variable from the outer

shopping cart class. The syntax for this in Java uses the class name followed by

this, followed by the member variable:

List mementoList = ShoppingCart.this.itemList;

Even though itemList is private in ShoppingCart, it is available to the inner class.

This relationship is perfect for the Memento pattern, where the Memento needs

access to the private member variables of the Originator without forcing the

Originator to violate encapsulation.

 The ShoppingCart class has two new methods: setBookmark() and restoreFrom-

Bookmark(). The setBookmark() method creates a new Memento, saves the current

Sets a
bookmark

Restores a
bookmark

Stores state
information

398 CHAPTER 13

Handling flow

state, and returns it. The restoreFromBookmark() method accepts a Memento and

restores the state of the itemList back to the list kept by the Memento.

The Caretaker

For a web application, the session object is the perfect Caretaker for the Memento.

It is tied to a particular user and contains arbitrary name-value pairs. However, sav-

ing a single Memento isn’t very useful, and saving a stack of Mementos is just as easy

as saving one. So, in the eMotherEarth application we allow the user to keep a

stack of Mementos. This process is managed by the controller servlet. The updated

doPost() method in the ShowCart controller servlet appears in listing 13.23.

public void doPost(HttpServletRequest request,

 HttpServletResponse response) throws
 ServletException, IOException {
 RequestDispatcher dispatcher = null;

 HttpSession session = redirectIfSessionNotPresent(
 request, response, dispatcher);
 ShoppingCart cart = getOrCreateShoppingCart(session);

 Stack mementoStack = (Stack) session.getAttribute(
 MEMENTO_STACK_ID);
 if (request.getParameter("bookmark") != null)

 mementoStack = handleBookmark(cart, mementoStack);
 else if (request.getParameter("restore") != null)
 handleRestore(session, cart, mementoStack);

 else
 handleAddItemToCart(request, session, cart);
 if (mementoStack != null && !mementoStack.empty()) {

 request.setAttribute("bookmark", new Boolean(true));
 session.setAttribute(MEMENTO_STACK_ID, mementoStack);
 }

 dispatcher = request.getRequestDispatcher("/ShowCart.jsp");
 dispatcher.forward(request, response);
}

The ShowCart controller servlet now has three distinct paths of execution. The

first path is the one from the previous version: adding an item to the shopping

cart and forwarding to the show cart view. Two additional execution paths have

been added. The first allows the user to set a bookmark, and the second allows

the user to restore from a bookmark. The path of execution is determined by

request parameters that are encoded if the show cart JSP reposts to this page. The

body of the doPost() method checks for these request parameters and routes

control appropriately.

Listing 13.23 The ShowCart controller acts as the Memento Caretaker.

Building undo operations 399

 The handleBookmark() method (listing 13.24) is invoked if the user has decided

that he or she wants to bookmark the shopping cart.

private Stack handleBookmark(ShoppingCart cart,
 Stack mementoStack) {
 if (mementoStack == null) {

 mementoStack = new Stack();
 }
 mementoStack.push(cart.setBookmark());

 return mementoStack;
}

The handleBookmark() method checks to see if a stack already exists; if not, it cre-

ates one. In either case, it generates a new Memento from the cart object and pushes

it onto the stack. The symmetrical handleRestore() method (listing 13.25) does

the opposite—it pops the Memento off the stack and restores the cart contents.

private void handleRestore(HttpSession session,
 ShoppingCart cart,

 Stack mementoStack) {
 if (mementoStack == null)
 return;

 cart.restoreFromBookmark(
 (ShoppingCart.ShoppingCartMemento)
 mementoStack.pop());

 if (mementoStack.empty()) {
 session.removeAttribute(MEMENTO_STACK_ID);
 }

}

The handleRestore() method also removes the Memento stack from the session if

the stack is empty, effectively relieving the session from its caretaker role.

 The user interface for the shopping cart must change marginally to provide the

user with a way to create and restore bookmarks. To that end, we’ve added a Cre-

ate Bookmark button and, in case the Memento stack exists, we’ve added a Restore

From Bookmark button as well. The updated user interface appears in figure 13.8.

 The last portion of the controller servlet that manages bookmarks appears

near the bottom of the doPost() method. It checks to see if a Memento stack exists

Listing 13.24 This method handles generating a bookmark and saving it.

Listing 13.25 The handleRestore() method restores the state back

to the most recent bookmark.

400 CHAPTER 13

Handling flow

and, if it does, it adds a request parameter as a flag to the view to create the

Restore button. It also updates the session with the current Memento stack.

 The user interface JSP checks to see if the request parameter is available and

shows the Restore button if it is. The updated portion of the ShowCart JSP

appears in listing 13.26.

<form action="showcart" method="post">
<input type="submit" name="bookmark" value="Create bookmark">

<%
 if (request.getAttribute("bookmark") != null) {
%>

<input type="submit" name="restore" value="Restore from bookmark">
<%
 }

%>
</form>

Listing 13.26 The ShowCart JSP must check to see if restoring from a bookmark should

be presented as an option.

Figure 13.8

The user interface for the ShowCart

page now incorporates buttons for

managing bookmarks.

Using exception handling 401

The user interface currently does not provide any visual feedback indicating

which records appear at each bookmark marker. It is certainly possible to color-

code the records or provide some other indication of the bookmark boundaries.

 As with other user interface techniques in Model 2 applications, most of the

work appears in the model and controller, with supporting elements in the JSP.

Undo using the Memento design pattern is fairly easy to implement in web appli-

cations because of the ready availability of the session, which is an ideal caretaker.

The use of inner classes helps achieve the original intent of the pattern, exposing

the inner workings of the Originator only enough to enable the snapshot and res-

toration through the Memento.

13.2.3 Undo in frameworks

Because most of the activity in building undo with transaction processing appears

in the boundary classes, it is easy to add it to the Model 2 frameworks. Internet-

Beans Express also facilitates this type of undo operation because the data-aware

components are transaction aware. Thus, adding transaction processing to that

framework is even simpler (it consists of setting a property).

 Using Memento is also easy in Model 2 frameworks. For the lighter-weight

ones, the same pattern of code that appears in the previous section works because

they all support the standard web APIs, like HttpSession. The other medium-to-

heavyweight frameworks also support using Memento, albeit with different mech-

anisms for the caretaker. In Tapestry, the caretaker moves to the Visit object,

which is available to all the pages. In WebWork, it moves to WebWork’s own ses-

sion object, which is similar in intent but different in implementation to the stan-

dard HttpSession. Cocoon supports HttpSession, so no change is necessary.

13.3 Using exception handling

Java developers are familiar with exception handling and how exception-handling

syntax works in the language, so I won’t rehash that material here. However, many

developers are reluctant to create their own exception classes. It is also important

to distinguish between fundamental types of exceptions.

13.3.1 The difference between technical and domain exceptions

The Java libraries define a hierarchy of exception classes, starting with Throwable

at the top of the tree. Most methods in libraries in Java throw exceptions tuned to

the kinds of potential problems in that method. All these exceptions fall into the

402 CHAPTER 13

Handling flow

broad category of technical exceptions. A technical exception is one that is raised for

some technical reason, generally indicating that something is broken from an

infrastructure level. Technical exceptions are related to the area of how you are

building the application, not why. Examples of technical exceptions are Class-

NotFoundException, NullPointerException, SQLException, and a host of others.

Technical exceptions come from the Java libraries or from libraries created by

other developers. Frequently, if you use a framework developed by others, they

have included technical exceptions in their methods to indicate that something is

either broken or potentially broken.

 Domain exceptions are exceptions that relate to the problem domain you are

writing the application around. These exceptions have more to do with a business

rule violation than something broken. Examples of domain exceptions include

ValidationException, InvalidBalanceException, NoNullNameException, and any

other exception you create to signify that some part of the application is violating

its intended use. Domain exceptions are ones you create yourself and use within

the application to help with the application flow.

13.3.2 Creating custom exception classes

Java makes it easy to create your own exception classes. At a minimum, you can

subclass the Exception class and provide your own constructor that chains back to

the superclass constructor. Listing 13.27 shows an example of such a lightweight

exception class.

public class InvalidCreditCardNumberException extends Exception {
 public InvalidCreditCardNumber(String msg) {
 super(msg);

 }
}

Instead of creating a lightweight class like this, it is possible to generate a new

Exception object and pass the error message in it:

throw new Exception("Invalid Credit Card Number");

The problem with this approach is not the generation of the exception but the

handling of it. If you throw a generic exception, the only way to catch it is with a

catch block for the Exception class. It will catch your exception, but it will also

catch every other exception that subclasses Exception, which encompasses most

Listing 13.27 A custom exception that provides a new child of the Exception class

Using exception handling 403

of the exceptions in Java. You are better off creating your own exception sub-

classes to handle specific problems. There is no penalty for creating lots of classes

in Java, so you shouldn’t scrimp on exception classes.

 If you extend Exception, you must provide a throws clause in any method

where your exception might propagate. Checked exceptions and the mandated

throws clause are actually one of the better safety features of the Java language

because they prevent developers from delaying writing exception-handling code.

This type of code isn’t glamorous, so many developers like to put it off or avoid it.

Other languages (such as C++) make it all too easy to do this. The checked

exception mechanism in Java forces developers to handle exceptions where they

occur and deal with them. Often, developers will say something like, “I know I

should have some error-handling code here—I’ll come back later and add it.”

But “later” never comes because one rarely has the luxury of extra time at the

end of a project.

 If you feel you must short-circuit the propagation mechanism in Java (and

occasionally there are legitimate reasons for doing so), you can create your excep-

tion to subclass RuntimeException instead of Exception. RuntimeException is the

parent class for all unchecked exceptions in Java, such as NullPointerException,

ArrayIndexOutOfBoundsException, and many more. The semantic distinction

between Exception and RuntimeException lies with their intended use. Runtime-

Exception and its subclasses are bugs lying in the code, waiting for repair. They

are unchecked because the developer should correct the code and the applica-

tion cannot reasonably handle them. While it is possible to create domain excep-

tions based on RuntimeException, it is not recommended. RuntimeExceptions

represent a flaw in the infrastructure code of the application and shouldn’t mix

with domain exceptions. Forcing developers to handle checked domain excep-

tions is not a burden but an opportunity afforded by the language to make your

code more robust.

13.3.3 Where to catch and handle exceptions

It is impossible to generalize too much about where exceptions occur and are

handled in Model 2 applications. Entities typically throw domain exceptions;

boundary classes and other infrastructure classes tend to throw technical excep-

tions. In both cases, the controller is usually where the exception is handled. For

example, in the eMotherEarth application, each boundary class must have a refer-

ence to the database connection pool. If they don’t, they throw an exception. For

this purpose, a PoolNotSetException class resides in the project (listing 13.28).

404 CHAPTER 13

Handling flow

package com.nealford.art.emotherearth.util;

public class PoolNotSetException extends RuntimeException {
 private static final String STANDARD_EXCEPTION_MESSAGE =

 "Pool property not set";

 public PoolNotSetException(String msg) {
 super(STANDARD_EXCEPTION_MESSAGE + ":" + msg);

 }
}

The custom exception class in listing 13.28 extends RuntimeException to prevent

it from cluttering up controller code by forcing an exception catch. It also con-

tains a predefined message, to which the users of this exception can add as they

generate the exception. This exception is used in the ProductDb boundary class:

if (dbPool == null) {

 throw new PoolNotSetException("ProductDB.getProductList()");
}

Rethrowing exceptions

Often, you are writing low-level library code that is called from many layers up by

application code. For example, if you are writing a Comparator class to make it easy

to sort within a boundary object, you have no idea what type of application (desk-

top, web, distributed, etc.) will ultimately use your code. You must handle an excep-

tion, but you don’t really know the proper way to handle it within the method you

are writing. In these cases, you can catch the checked exception and rethrow it as

another kind, either as a RuntimeException or as a custom domain exception. An

example of this technique appears in the getProductList() method (listing 13.29)

of the ProductDb boundary class.

public List getProductList() {
 if (dbPool == null) {
 throw new PoolNotSetException(

 "ProductDB.getProductList()");
 }
 if (productList.isEmpty()) {

 Connection c = null;
 Statement s = null;

Listing 13.28 This custom exception class is thrown when the pool property isn’t set on

one of the boundary classes.

Listing 13.29 The getProductList() method rethrows a SQLException

rather than handling it.

Using exception handling 405

 ResultSet resultSet = null;

 try {
 c = dbPool.getConnection();
 s = c.createStatement();

 resultSet = s.executeQuery(SQL_ALL_PRODUCTS);
 while (resultSet.next()) {
 Product p = new Product();

 p.setId(resultSet.getInt("ID"));
 p.setName(resultSet.getString("NAME"));
 p.setPrice(resultSet.getDouble("PRICE"));

 productList.add(p);
 }
 } catch (SQLException sqlx) {

 throw new RuntimeException(sqlx.getMessage());
 } finally {
 try {

 dbPool.release(c);
 resultSet.close();
 s.close();

 } catch (SQLException ignored) {
 }
 }

 }
 return productList;
}

Empty catch blocks

One of the frowned-upon tendencies in some Java developers is to create empty

catch blocks to get code to compile. This is a bad thing because now the checked

exception is raised and swallowed, and the application continues (or tries to con-

tinue) to run. Usually, the application will break in a totally unrelated place, mak-

ing it difficult to track down the original error. For this reason, empty catch blocks

are discouraged.

 However, there is one situation where they make sense. If you look at the end

of listing 13.29, the database code must close the statement and result set in the

finally block. Both the close() methods throw checked SQLExceptions. In this

case, as you are cleaning up, the worst thing that can happen is that the statement

has already closed. In this case, it makes sense to include an empty catch block. To

keep from having to write a comment to the effect of “I’m not lazy—this catch

block intentionally left blank,” name the instance variable in the catch block

ignored. This is a self-documenting technique that keeps you from having to doc-

ument it because it is documented by the variable name.

Rethrows an
exception

406 CHAPTER 13

Handling flow

Redirecting to an error JSP

One of the nice automatic facilities in JSP is the ability to flag a page as the generic

error page for the application. If any unhandled exceptions occur from other

JSPs, the user is automatically redirected to the error page specified at the top of

the source page. The error page has access to a special implicit exception object

so that it can display a reasonable error message.

 When you’re building Model 2 applications, the controller won’t automati-

cally forward to an error page if something goes wrong. However, you can still for-

ward to the error page yourself and take advantage of the implicit exception

object. Before you forward to the error page, you can add the exception with a

particular name that the error page is expecting. The CheckOut controller in

eMotherEarth handles an insertion error by redirecting to the JSP error page.

See this code in listing 13.30.

try {
 orderDb.addOrder(sc, user, order);

} catch (SQLException sqlx) {
 request.setAttribute(
 "javax.servlet.jsp.jspException", sqlx);

 dispatcher = request.getRequestDispatcher("/SQLErrorPage.jsp");
 dispatcher.forward(request, response);
 return;

}

The JSP error page looks for a request attribute named javax.serv-

let.jsp.jspException to populate the implicit exception object. The destination

page has no idea if the JSP runtime or the developer added this attribute. This

approach allows you to consolidate generic error handling across the application.

If you want more control over the application-wide exception handling, you can

write your own controller/view pair to handle exceptions generically.

13.3.4 Exceptions in frameworks

The Model 2 frameworks’ exception-handling code generally follows the guide-

lines we stated earlier. Entities typically throw domain exceptions, and boundary

classes and other infrastructure classes typically throw technical exceptions. In

both cases, the controller is where the exception is handled. The frameworks

themselves frequently throw exceptions, which fall under the category of technical

Listing 13.30 The CheckOut controller forwards to the JSP error page to inform the user

that an exception occurred.

Summary 407

exceptions. These exceptions are best handled in the controller or controller

proxy classes (i.e., an Action class).

 Handling exceptions in the two frameworks that try to mimic the event-driven

nature of desktop applications is more difficult. An exception in a desktop appli-

cation represents a state, and the propagation depends on the current call stack.

It is much harder to emulate this call stack state in a web application, because the

user always sees a fully unwound call stack. Tapestry has good mechanisms in

place for both mimicking event-driven behaviors and handling exceptions. Inter-

netBeans Express makes artificial exception state management more difficult

because it uses a thinner veneer over the components it uses.

13.4 Summary

Users tend to request features in web applications that they have seen in desktop

or other web applications. Many of these requests relate to the flow of informa-

tion in the application. Building usable web applications in Model 2 applications

generally touch all three moving parts: the controller, the model, and the view.

These three pieces work together to provide an attractive application.

 The flexibility of Model 2 applications makes it easy to implement even the

most complex user requirements. Keeping the application well partitioned and

the parts separate requires diligent effort, but it pays off in the long run with easy-

to-maintain and scalable applications.

 In the next chapter, we look at performance in web applications and how to

measure and improve it.

409

Performance

This chapter covers

■ Profiling

■ Common performance pitfalls

■ Pooling

■ Designing for scalability

410 CHAPTER 14

Performance

It is rare for users to complain that an application is simply “too fast to use.” How-

ever, the opposite problem is common. Performance is a critical part of any web

application. It is more important to consider performance early in the design and

architecture phases of web projects than in traditional applications. Sometimes,

traditional applications may be retrofitted to increase their performance. But

because of the distributed nature of web applications, you may find it more diffi-

cult to improve performance after the fact. This is particularly true if the applica-

tion is poorly designed.

 In this chapter, we explore optimizing the performance of your web applica-

tions. We discuss memory management, including ways to measure memory (so

that you’ll know how much is being wasted) as well as optimization techniques.

Several areas are candidates for optimization, and we examine each in turn. We

also take a look at designing an application for scalability from the outset and dis-

cuss the ultimate scalability option in Java: Enterprise JavaBeans. Finally, we look

at pooling options, one of the keys to building truly efficient, high-performance

web applications.

14.1 Profiling

How can you tell how efficient an application is unless you have a way to measure

that efficiency? Even though you may think that you know where a bottleneck

exists in your application, until you have a technique of objective measurement

you can’t be certain. By measuring memory usage and other characteristics, you

can get an objective look at your application and determine where you should

spend your best efforts to improve it.

 Using an objective measurement is also important if you are dealing with a

variety of infrastructure elements. By definition, you are dealing with a distrib-

uted application when you build web applications, and frequently this involves

external resources such as databases, web servers, and other elements out of your

direct control. By creating accurate measurements, you can stop the acrimonious

finger-pointing that occurs in some organizations (“It’s the network … No, it’s

the database server … No, it’s the application”) and start to solve the real under-

lying problem.

14.1.1 Measuring memory

The first step in optimizing the memory of an application is to measure it. How-

ever, there is no simple way to determine the actual amount of memory your

Profiling 411

application is using, partly because of the technique used by the Java Virtual

Machine (JVM) to measure memory.

 The JVM manages its own memory and therefore maintains its own memory

heap, separate from the underlying operating system. Most VMs are designed to

allocate memory from the operating system as needed by the application, up to a

maximum you specify as the VM starts up. You can specify the maximum memory

that the VM is allowed to allocate by using the -Xmx flag:

java –Xmx128m <other options>

This command utilizes one of the -X command-line switches, which are VM

extensions and therefore nonstandard (and subject to change in future ver-

sions of the VM). You can also tune the VM to start with a specific heap size by

using the -Xms switch:

java –Xms64m <option options>

In any case, the VM manages its own memory once it has allocated that memory

from the operating system.

 This behavior complicates the process of measuring how much memory a

given Java application is actually using. If you use the tools provided with the oper-

ating system, you see only how much memory is allocated to the VM, not how

much memory your application is currently using. In other words, you only see

the heap size, not the actual memory allocated on the heap. For example, the

Windows Task Manager shows you how much is allocated for Tomcat but not how

much your application is using, as shown in figure 14.1.

Figure 14.1

The Windows Task Manager shows you

how much memory is allocated to the

VM, but not how much of that memory is

actually in use at the current time.

412 CHAPTER 14

Performance

Even if you could determine how much memory is in use for the VM (rather than

how much is allocated), you’d still have a problem. The amount of memory isn’t

independent of the container running your code. By definition, if you are run-

ning a web application, it must be running in a servlet engine. Thus, the memory

measurements are of the servlet engine, not your code. The prospect of finding

out how much your application is using is so daunting that it seems like it isn’t

even worth trying. However, there are techniques and tools that can help.

Using the Java Runtime class to determine memory

The VM can report to you how much memory it is using versus the amount allo-

cated on the heap. The Runtime class has a few memory-related methods, shown

in table 14.1.

To put these methods to work, you must write code in your application that peri-

odically takes “snapshots” of the memory and generates statistics. This is time con-

suming but effective, because you can decide precisely where you want to measure

memory statistics. One option is to output memory information to the console

window via calls to System.out.println(). Another alternative is to use the log-

ging facilities discussed in chapter 16.

14.1.2 Performance profiling

Memory isn’t the only resource worth measuring. Frequently, a combination of

memory use, CPU cycles consumed, network throughput, and other factors con-

tribute to the performance of the application. Tools are available to help you mea-

sure these elements, including some that are built into the Software Development

Kit (SDK).

Using the SDK profiler

The VM includes a memory profiler, activated by an -X command-line switch. Like

the other extension switches, it is nonstandard and may go away in the future

(although it has survived for a very long time):

Table 14.1 The Java Runtime class’s memory-related methods

Method Description

freeMemory() Returns the amount of free memory in the VM

totalMemory() Returns the total amount of memory in the VM

maxMemory() Returns the maximum amount of memory the VM will attempt to use

Profiling 413

java –Xrunhprof <other options>

This compiler switch has a variety of configuration options. To get a full list of the

options, run it with the help option:

java –Xrunhprof:help

This command prints out a list of the available profiling options and parameters.

A typical version of the command line is something like this:

java –Xrunhprof:cpu=samples,heap=sites,file=c:/temp/java.hprof.txt

This command line specifies that the memory heap information is organized by

sites and that the output is sent to the specified file.

 The built-in profiler uses the method-sampling technique of memory profil-

ing, meaning that it takes a snapshot of the call stack at regular (frequent) inter-

vals. The theory behind this type of profiler relies on the statistical fact that

methods that appear more often at the top of the call stack are being called more

often and/or are taking longer to execute. This common technique isn’t code

invasive, which means that you don’t have to make changes to your source code to

get it to work.

 The profiler generates a large text file named java.hprof.txt (you can change

the name via a command-line switch). The file is text by default, but a binary for-

mat is also available. The output may be streamed through a socket, which sup-

ports the creation of a remote profiling setup. The file is separated into multiple

sections; each section covers a specific kind of information about the profile, as

shown in table 14.2.

Table 14.2 Profiler output sections

Section Description

THREAD START / END Marks the beginning and ending of each thread’s lifetime.

TRACE A series-truncated Java stack trace (the number of entries is controlled by

a command-line option). Each trace is numbered, and a profile file con-

tains hundreds or thousands of traces.

HEAP DUMP A complete snapshot of all the live objects currently allocated on the heap.

SITES A sorted list of all the allocation sites and the trace that generated them.

CPU SAMPLES A statistical profile of program execution. These are generated by the regu-

lar snapshots by the VM and consist of traces. The top-ranked traces are

hotspots in the program.

continued on next page

414 CHAPTER 14

Performance

The document created by the profiler is very large. For a sample two-page web

application running under Tomcat, the profiler output consisted of 90,150 lines,

weighing in at 5.21MB. The best way to make use of this document is to use one

section to discover the information you need in another section. Here is a recipe

for gleaning useful information from this profile output:

1 Use the CPU SAMPLES section to find out which methods are taking the

most time.

2 Find the TRACE information about that entry.

3 Refer to the TRACE section to find out what method is being called and

whether it can be optimized.

4 Repeat for a reasonable number of CPU SAMPLES.

To use the profiler with your servlet engine of choice, you need to modify the

startup command for the servlet engine to include the profiler command line.

Most servlet engines will allow you to get to their startup command. For this sam-

ple, we changed the batch file that starts Tomcat (called catalina.bat) to include

the command-line switch to enable profiling. To avoid breaking anything (and to

make it easy to switch back and forth), we created a new version of the startup file

named catalina_prof.bat. Now, we can run Tomcat in the profiler—or not,

depending on how it starts.

 Here is a sample. For the profile generated from our simple site, let’s look at

the CPU SAMPLES section. The top part appears in listing 14.1.

CPU SAMPLES BEGIN (total = 2177) Mon Jan 27 09:52:53 2003
rank self accum count trace method

 1 30.23% 30.23% 658 16000 java.net.PlainSocketImpl.socketAccept
 2 3.95% 34.18% 86 269 java.util.zip.ZipFile.read

CPU TIME Measures the time spent in a particular method, identified by its trace.

MONITOR TIME A measure of thread contentions caused by the monitor thread waiting to

enter a method.

MONITOR DUMP A complete snapshot of all monitors and threads in the system.

Listing 14.1 The top portion of the CPU SAMPLES section generated by the VM profiler

Table 14.2 Profiler output sections (continued)

Section Description

Profiling 415

 3 2.02% 36.20% 44 5051 java.io.WinNTFileSystem.canonicalize

 4 1.98% 38.17% 43 960 java.io.WinNTFileSystem.canonicalize
 5 0.96% 39.14% 21 8274 java.lang.Object.clone
 6 0.92% 40.06% 20 178 java.lang.StringBuffer.expandCapacity

By looking at the last entry for CPU_SAMPLES, you can see that the StringBuffer’s

expandCapacity() method is using less than 1 percent of the accumulated execu-

tion time and that it is tied to trace 178. By searching in the TRACE section, you

can see the stack trace for trace 178, which appears in listing 14.2.

TRACE 178:
 java.lang.StringBuffer.expandCapacity(StringBuffer.java:202)
 java.lang.StringBuffer.append(StringBuffer.java:392)

 java.util.zip.ZipFile.getEntry(ZipFile.java:148)
 java.util.jar.JarFile.getEntry(JarFile.java:184)

Using the trace, we find that the ZipFile getEntry() method is the one calling the

StringBuffer’s expandCapacity() method, which is occupying a lot of time rela-

tive to the other methods in our application.

Analyzing the results

In this case, it isn’t likely that we will replace the java.util.zip.ZipFile class with

one of our own to speed it up (assuming that we could write a more efficient ver-

sion). Working through this file frequently uncovers a lot of SDK classes and meth-

ods that aren’t possibilities for replacement for optimization. We didn’t choose

one of the methods for our sample because the highest-ranking one came in at a

measly 651 in the CPU SAMPLES section, and it was the Struts action we had writ-

ten for the application. None of the boundary JavaBeans even made the list.

 What this indicates is that you should apply logic and reasoning to the results.

Why did the ZipFile class occupy so much processor time? When we ran the

application, we started Tomcat, went to the two pages generated by our applica-

tion, and halted the servlet engine. So, most of the time the application was run-

ning, Tomcat was managing web archive (WAR) file expansion. Thus, the ZipFile

class spent a lot of time being sampled by the profiler, and it (mistakenly) looks

like a hotspot.

Listing 14.2 The TRACE section for the time-consuming operation

found from the CPU SAMPLES

416 CHAPTER 14

Performance

 To create realistic results, simulating a large number of concurrent users, we

ran the same application with 110 simulated requests for both pages, spread out

over a few minutes This time, one of our classes made it all the way up to 217,

highlighting one of our database access methods. The TRACE entry appears in

listing 14.3.

TRACE 16541:
 com.nealford.art.strutssched.ScheduleBean.populate
 (ScheduleBean.java:38)

 com.nealford.art.strutssched.ViewScheduleAction.perform
 (ViewScheduleAction.java:28)
 org.apache.struts.action.ActionServlet.processActionPerform

 (ActionServlet.java:1787)
 org.apache.struts.action.ActionServlet.process
 (ActionServlet.java:1586)

We can do something about this method! However, looking at the CPU SAMPLES,

this method occupies only 0.06 percent of the CPU time. Even though it is the top

of our methods, it still isn’t a bottleneck in the application. Only a method that is

occupying a significant amount of the CPU time is a candidate for optimization.

 Keep in mind that your application doesn’t execute in a vacuum. The mea-

surements we’ve gathered here are hopelessly intertwined with the code from the

servlet engine (Tomcat in this case). The results you obtain must be filtered to

look at the code you can improve. For example, we would get completely different

results if we ran this application through another servlet engine (although I

would hope that the relative performance of our application elements would

remain constant).

Using commercial profilers

The profile output generated by the SDK is useful, but analyzing this voluminous

text file is time consuming. The results are in plain text (the binary version of the

file contains the same information), so there is no easy way to view the results

graphically. While the SDK profiler is useful, using it is labor intensive. The appro-

priate analogy here is a comparison to the debugger that ships with the SDK.

While certainly functional, it is so complex and time consuming that most devel-

opers opt for an external tool to handle the job.

Listing 14.3 The profiler identified one of the database methods in our application as a

potential hotspot.

Profiling 417

 Numerous commercial profilers are available for Java, both for applications

and web applications. These tools are relatively easy to set up, and most integrate

nicely into commercial (and some open-source) integrated development environ-

ments (IDEs). Generally, these tools provide real-time analysis of memory alloca-

tion and CPU usage, and provide graphs and other niceties.

 One example is Borland’s Optimizeit profiler, which encompasses all the pro-

filing capabilities from the SDK and more. In addition, it generates its output in

real-time graphs to display the profiled characteristics of the application.

 Figure 14.2 shows the Optimizeit graphs for a running application. The upper-

left corner shows the VM heap, both graphically and numerically. The upper-right

pane shows the garbage collector activity. The lower-left pane shows the number

of threads running, and the lower right shows the number of classes currently

loaded. As you can see, this provides a valuable snapshot of the running applica-

tion’s characteristics.

 Another view provided by Optimizeit is the CPU profiling information (like that

generated by the SDK profiler). Like the SDK profiler, it uses the CPU sampling

technique of taking snapshots of the call stack at regular intervals. Figure 14.3

shows the CPU Samples window.

 One of the shortcomings of the SDK profiler is that you can’t filter the infor-

mation it generates to find information you consider useful. Optimizeit’s Filters

text field allows you to eliminate all the classes except the ones you want to see.

Figure 14.2 The commercial Optimizeit profiler shows a variety of VM metrics in

real time, both graphically and numerically.

418 CHAPTER 14

Performance

Figure 14.4 shows the result of filtering our display to see the performance of the

classes within our application’s package (com.nealford.*).

 This display allows you to quickly see exactly how your classes compare to the

other code running in your application. That way, you can quickly pinpoint candi-

dates for optimization in your code.

 Of course, this tool also mixes your code in with the servlet engine. They are,

after all, running in the same VM. However, Optimizeit provides views that let you

Figure 14.3

The CPU Samples

window shows the

same information as

the SDK profiler, with

graphical bars of

relative time added.

Figure 14.4

The CPU Samples page

allows you to filter the

display to look at certain

categories of classes.

Profiling 419

filter out the code that isn’t your code (such as the servlet engine, database driver,

and any third-party frameworks you are using). This feature is typical of the com-

mercial profilers on the market. All of them allow you to focus quickly on particu-

lar hotspots in your application and identify candidates for improvement.

14.1.3 Load testing

Load-testing tools are a category of testing tools that goes hand in hand with per-

formance profilers. These tools simulate a large number of users accessing pages

in a web application to see how well it performs under load. To get a reasonable

reading from any profiler on how your application will act in the real world, you

need to stress-test it beyond the efforts of a single developer. One company I

worked with used its intercom system to signal a large number of developers to hit

the site at the same time. The only purpose this served was to annoy the reception-

ist (who quickly became wise to their ploy and refused further cooperation). It

was not a reasonable test of the performance of the application. Load-testing tools

aren’t profilers, but they are symbiotic with profilers.

 Numerous commercial products are available. Mercury Interactive’s Load Run-

ner is generally considered one of the best (http://www.mercuryinteractive.com).

However, it is expensive, as are most tools geared toward enterprise development.

An open-source load-balancing tool named JMeter offers some of the same facili-

ties; let’s take a look.

JMeter

JMeter is a Swing application designed to simulate a variety of requests made to an

application, including web applications. It allows the developer to set up thread

groups, each with a particular purpose. You can set up a thread group to simulate

HTTP requests on a regular basis to a particular page and send specific request

parameters. JMeter also allows you to establish FTP, JDBC, and a host of other load-

testing requests.

 JMeter includes graphs and tables that show the results of the load testing. You

can set up test plans and customize them to include a variety of load tests.

Figure 14.5 shows one of the graphs that display the throughput for an applica-

tion being accessed randomly by a variety of simulated users.

 In figure 14.5, the top line of the graph displays the throughput over time with

2000 individual samples; the bottom line shows the deviation from the average;

the next-to-bottom line shows data throughput; and the second line from the top

shows the average throughput. All this data is customizable and can be saved to a

file. The test plan is kept in a specific file format and is reusable.

420 CHAPTER 14

Performance

JMeter provides numerous listeners that can report on the results of the load test-

ing under way. Listeners are reporting tools attached to a particular test. The graph

in figure 14.5 is one example; another example is shown in figure 14.6, which dis-

plays the spline graph of average throughput over time. This graph can reveal

how many users (threads) your application can handle before performance starts

to degrade. JMeter doesn’t require that you show the results of tests in any partic-

ular format. The listeners exist to allow you to attach the type of result you want to

a given test.

Figure 14.5 JMeter includes graphs that show throughput, deviation, and

average response time for an HTTP request.

Figure 14.6 The spline graph is one of a variety of listeners that are attached to tests.

Common performance pitfalls 421

JMeter contains a large number of prebuilt test artifacts as well as the capability to

build your own. It is highly customizable and provides a nonvisual mode that

enables you to automate the testing. JMeter is open source, so the cost for using it

consists of the time to learn how to use it. Once you have mastered it, you might

consider moving to the more expensive and more capable commercial products if

your needs warrant.

14.1.4 Performance of profiling frameworks

The performance characteristics of frameworks depend in large part on their rel-

ative size. Generally, the lighter-weight frameworks (like Struts) use less memory

and other resources than the heavier-weight ones (like Tapestry or Cocoon).

However, this measurement is deceiving. Even though it appears that Struts is

more efficient, it isn’t performing as much work as Tapestry. Tapestry already

includes many of the performance-enhancing techniques covered here and in

chapter 15. For example, it already pools many of the resources in the applica-

tion. This fact makes it impossible to perform an “apples to apples” comparison

between the two frameworks.

 You can, however, perform reasonable load testing against two frameworks.

After all, a load test more closely resembles the performance of the running appli-

cation. In this case, the extra code in Tapestry should make it run better under

high loads. After all, that is the reason for the extra code.

 This strategy won’t work on a framework like Cocoon, which is more than just

a web framework. Cocoon also includes the publishing framework code, so it will

generally run more slowly because it is performing more work. In the end, you

have to decide why and how you want to use the framework and judge its perform-

ance accordingly.

14.2 Common performance pitfalls

Profiling is an important technique for finding and removing bottlenecks in your

applications. However, the better practice is not to include bottlenecks in the first

place! This way of thinking is similar to the philosophy that you wouldn’t need

debuggers if you just wouldn’t include bugs in your code. However, it makes more

sense to avoid obvious inefficiencies in your applications and let the profiler find

the not-so-obvious problems.

422 CHAPTER 14

Performance

14.2.1 Object creation

One of the most expensive operations in any object-oriented language is the con-

struction of objects. It requires the VM to allocate memory and may entail many

chained constructor calls before the object is available for use. One of the easiest

ways to improve the performance of your application is to optimize the creation

of objects as much as possible.

Stateless classes

One of the ways you can avoid creating new objects is to make all your classes state-

less. Making a class stateless implies the following characteristics:

■ No state information is kept in nonstatic member variables.

■ The constructor can’t set up any information (although static initializers are

possible).

■ All methods must be static.

■ They can’t be serialized (there is nothing there to serialize anyway!).

Generally, you make a class stateless by making all the methods static, which turns

the class into a shell for related methods. Also, the constructor for the class

should be made private so that no one will mistakenly attempt to create an

instance of it. Notice that leaving a constructor off isn’t sufficient, because Java

will generate a parameterless constructor if no other constructor exists. Making it

private prevents construction.

 If the class is never constructed, then you don’t have to worry about too many

of them occupying memory. Conversely, you can’t take any advantage of some of

the object-oriented characteristics built into Java. You must decide on a case-by-

case basis if the desire to manage the number of objects created entails going all

the way to statelessness.

 The type of class most suited for statelessness is boundary classes. These classes

frequently have independent methods and don’t need to keep state information

internally. Frequently, boundary classes that act as a conduit to retrieve entities

from a database avail themselves of statelessness because each method takes an

entity as a parameter and does something with it. In this case, the only state infor-

mation (the entity) is localized to the method and doesn’t need to be shared with

the other methods.

 Statelessness is also a good strategy if you think that some of the business rules

will end up in stateless session EJBs. If you think there is a good chance that the

Common performance pitfalls 423

project will migrate to use EJBs, you might want to make an extra effort to create

stateless methods in order to make the transition easier.

 Many developers prefer singleton objects to stateless classes, which is consid-

ered a more object-oriented way to handle statelessness. Singletons also have

advantages over stateless classes. First, because the singleton is an object instance,

threading is easier because the singleton object can act as the synchroniza-

tion point. Second, singletons can be built to create a finite number of object

instances (rather than just one), which makes the singleton a factory as well.

Third, some design patterns (like Strategy) rely on object instances that imple-

ment a particular interface and disallow stateless classes that are not object

instances. For a good example of a singleton object, look at the factory example

in chapter 13, section 13.1.3.

Object reuse

Another technique aimed at keeping the number of object constructions in

check is to reuse the objects rather than create new ones. With this strategy, you

don’t allow objects to go out of scope when you have finished using them.

Instead, you keep the object reference alive and reuse it by supplying new values

for the properties.

 Consider the class in listing 14.4, in particular the reset() method. Instead of

allowing an object based on this class to go out of scope, you call the reset()

method to return it to the same state that it had immediately after construction.

package com.nealford.art.objects;

import java.io.Serializable;

public class ScheduleItem implements Serializable {
 private int duration;

 private String description;

 public ScheduleItem(int dureation, String description) {
 this.duration = duration;

 this.description = description;
 }

 public void setDuration(int duration) {
 this.duration = duration;
 }

 public int getDuration() {
 return duration;
 }

Listing 14.4 The ScheduleItem class has a reset() method to facilitate reuse.

424 CHAPTER 14

Performance

 public void setDescription(String description) {

 this.description = description;
 }

 public String getDescription() {

 return description;
 }

 public void reset() {

 this.duration = -1;
 this.description = "";
 }

}

Reusing existing object references is much more efficient than creating new ones.

This approach works well for entity classes, which usually consist of lightweight

classes with accessors, mutators, and a few business rules methods. In fact, the

Struts ActionForm includes a reset() method for this very purpose so that Struts

can reuse object references rather than re-create them.

 One issue you face with reusing object references is where to put them. You

can’t let the objects go out of scope because they will be garbage-collected by the

VM. The obvious choice is to place them in a pool, where they are retrieved just

like database connections from a connection pool. In section 14.3, we investigate

using pools to increase performance.

14.2.2 Extraneous object references

One performance pitfall that strikes many Java developers is keeping extraneous

object references lying around. Java’s garbage collection is designed to handle

memory deallocation for you, but it can’t do so if you keep “extra” references to

objects. While every Java developer knows this, it is harder to guard against than it

sounds. This is the source of apparent memory leaks in Java. A memory leak is an

area of memory that is no longer accessible from a variable reference. Leaks are a

serious problem in languages like C and C++, where the developer is responsible

for memory allocation and deallocation. It is possible in these (and other lan-

guages) to allocate memory for a variable and allow it to go out of scope before

the memory is reclaimed. Fortunately, it is impossible to leak memory in Java as in

other languages because all memory that isn’t referenced is automatically

reclaimed. However, it is still possible to forget about object references.

 Developers do not often create two independent variables that point to the

same memory location and then forget to allow one of them to go out of scope.

However, it is common to create references to variables in collections and forget

Use reset() instead of
allowing garbage collection

Common performance pitfalls 425

about the second reference held by the collection. This scenario is depicted in

figure 14.7.

 Once the variable object reference goes away, the memory allocated for the

object is still alive because the collection reference still exists. Figure 14.8 illus-

trates this point.

 The stray reference problem is acute in web development because so many col-

lections are available and scoped for different lifetimes. For example, it is easy to

place an object on the user’s session and forget that it is there. Performance prob-

lems result if you have a large number of users, each with extraneous object refer-

ences in their sessions. The session references will eventually go away when the

session times out, but you have (by default) 30 minutes of wasted memory and

performance waiting for that to happen.

 As soon as an object is no longer needed in any collection, you should manu-

ally remove it. If the entire collection goes away (like the request collection), you

don’t have to worry about it because the collection will take the extra references

Collection

Variable Object

ReferenceMemory

Allocated for

Object

Collection

Reference

Figure 14.7

Collections hold on to memory references

independently of the original object reference.

Collection

Variable object

reference now out

of scope, its

reference released

Memory

Allocated for

Object

Collection

Reference

Figure 14.8

Variable object reference has been reclaimed, but

the garbage collection cannot clean up the memory

because the collection still holds a reference.

426 CHAPTER 14

Performance

with it. However, for session and application collections, you must be diligent in

cleaning them up; otherwise, you will inadvertently use extra memory and poten-

tially harm the performance of your application.

 It is a good rule of thumb to invalidate the user’s session manually as soon as

the user no longer needs it. This process is typically accomplished on a logout

page (which is a good reason to have a logout page). However, users are finicky, so

they don’t always reliably log out. You hope that enough users cooperate to keep

the session’s memory from growing too rapidly. If they don’t log out, the memory

reclamation won’t occur until the session times out.

14.2.3 String usage

This topic is well covered in almost any Java performance book, but it is worth

reiterating here because using strings correctly makes an enormous difference in

efficient memory usage. Web applications use strings extensively (after all, what

the user eventually sees is a big long string formatted as HTML). Using strings

wisely can speed up your application noticeably.

 The immutability of the String class is well documented in Java, along with the

implications of using the + operator to build strings. However well known a per-

formance drag this is, many developers still use strings to build dynamic content

instead of the more performance-friendly StringBuffer. The performance penal-

ties of too much object creation is highlighted in section 14.2.2 and the + is one of

the worst offenders.

 Consider this line of code:

String s = "<BODY>" + someObj.someValue() + "</BODY>";

Depending on the intelligence of the compiler, you could get either of two trans-

lations. The first, using the concat() operator of String, is very inefficient:

String s = "<BODY>".concat(someObj.someValue()).concat("</BODY>");

This implementation creates two intermediate string objects that are discarded at

the end of the line. The better implementation uses StringBuffer instead:

String s = (new StringBuffer()).append("<BODY>").

 append(someObj.someValue()).append("</BODY").toString();

Creating only two objects (no matter how many concatenations are performed) is

the optimal solution. The implementation details of how a compiler handles this

are not mandated by Sun, so compiler writers are free to choose whatever imple-

mentation they like. It makes sense to avoid this whole issue by using a String-

Buffer from the outset.

Pooling 427

 When using a StringBuffer, you should always specify an initial size. When

Java collections and StringBuffers must grow, it is very time consuming because

they have to allocate memory to do so. All the collections API classes handle this

task by doubling by default when they need to grow. While not a collection in the

strictest sense, a StringBuffer acts in the same way. If you give the StringBuffer a

reasonable default size, you reduce the likelihood that it will need to grow multi-

ple times. Even if you don’t have the exact size, at least take your best guess. It is

pretty certain that you can guess better than the compiler.

 The StringBuffer’s append() method (along with other methods) returns the

StringBuffer on which you are working. That means you can chain a number of

append statements together:

StringBuffer sb = new StringBuffer(80);
sb.append("<body>").append(duration).append('\t').

 append(description).append('\n').append("</body>");

This is not more efficient than placing the code on separate lines, but it involves

less typing. Whether you use the style of code with a StringBuffer is a matter of

personal preference. Some developers think this is ugly, and others think it is the

pinnacle of cool.

14.3 Pooling

If you have reusable object references, you have to place them somewhere. An

object pool is a collection of memory, usually keyed, where object references can

wait until they are needed to perform work. By creating a large number of objects

up front and reusing them from the pool, you cut down on the constructor calls

that take place while the application is running. Application servers use object

pools to speed up object manipulation. In fact, application servers pool every-

thing—database connections, threads, messages, objects, EJBs, and so forth. One

of the secrets to high performance is to create resources in bunches rather than

wait until they are needed.

14.3.1 Simple object pools

Object pools can range from very simple to very sophisticated. A simple object

pool can consist of one of the collection classes from the SDK. For example, you

can create a stack or queue to hold a collection of preconstructed entities. In a

web application, this pool is initialized on application startup and placed in the

application context, where it will be available to resources that need the objects.

428 CHAPTER 14

Performance

Alternatively, you can use a lazy-loading technique to build the pool; in this sce-

nario, objects are created as needed but instead of going out of scope, they are

placed back in the pool for subsequent use. The first users of the site get the “nor-

mal” performance, whereas later users see improved performance because of

cached resources.

 If you implement your own pools, you do have to worry about keeping track of

the objects and setting the attributes of your pool, such as minimum and maxi-

mum size. Some pools test the validity of the object as it is returned by calling a

method that tests the “health” of the object. If a damaged object is returned, the

pool automatically discards the object and retrieves another one.

 Creating your own pool can be as simple as caching objects in the application

context rather than re-creating them. However, simple object pools tend to grow

in complexity over time as you realize that you need more facilities. In this case,

you should move to one of the more sophisticated pools, such as the Commons

pool discussed in section 14.3.3.

14.3.2 Soft and weak references

One problem with maintaining your own pools is the amount of memory they

occupy. Ideally, you want the pool to enhance the application’s performance by

caching premade objects—and not hinder its performance by consuming all the

memory. One way to mitigate this problem is to use soft or weak references. Both

of these reference types resemble a regular object reference except that they

interact more intelligently with the memory manager of the VM. If an object is

held only by either a soft or a weak reference and the memory for the application

becomes constrained, the VM has the option to reclaim the memory held by refer-

ences. Note that this works only for object references held solely by either a soft or

a weak reference.

 The difference between a soft and a weak reference lies in how the VM treats

them. The VM will attempt to keep soft references at the expense of weak ones. In

other words, weak references are reclaimed before the soft ones. According to

JavaDoc, weak references are intended for canonicalizing mappings. Canonicaliz-

ing objects refers to replacing multiple copies of an object with just a few objects.

It is most efficient if you need a large number of reference objects. For example, if

you require a large number of Integer objects from zero to five, it is more effi-

cient to create six canonical objects and reuse them. This is shown in listing 14.5.

Pooling 429

public class IntegerHelper {
 public static final Integer ZERO = new Integer(0);

 public static final Integer ONE = new Integer(1);
 public static final Integer TWO = new Integer(2);
 public static final Integer THREE = new Integer(3);

 public static final Integer FOUR = new Integer(4);
 public static final Integer FIVE = new Integer(5);
}

public class Tester {
 public void doIt(Integer i) {
 if (i == IntegerHelper.ONE) {

 doSomething();
 } else if (i == IntegerHelper.TWO) {
 doSomethingElse();

 } else . . .

You can create a class that stores a list of canonical integers as weak references,

caching them unless the garbage collector needs to reclaim the memory. The

class takes care of populating the list of references and either returning Integer

objects from the list or re-creating them (see listing 14.6).

package com.nealford.art.references;

import java.lang.ref.WeakReference;

import java.util.ArrayList;
import java.util.List;

public class CanonicalInt {

 private static CanonicalInt internalReference = null;
 private static final int MAX = 100;
 private List intList;

 private CanonicalInt() {
 intList = new ArrayList(MAX);
 buildIntsToMax();

 }

 public static CanonicalInt getInstance() {

 if (internalReference == null)
 internalReference = new CanonicalInt();
 return internalReference;

 }

 private void buildIntsToMax() {

Listing 14.5 An example of canonicalizing objects

Listing 14.6 Canonical Integers stored as weak references

Gets the singleton
reference

430 CHAPTER 14

Performance

 for (int i = 0; i < MAX; i++)

 intList.add(new WeakReference(new Integer(i)));
 }

 public synchronized Integer getCanonicalInteger(int i) {

 //-- only handle integers within range
 if (i > intList.size())
 return new Integer(i);

 Integer canonicalInt = null;
 WeakReference ref = (WeakReference) intList.get(i);
 if (ref == null ||

 ((canonicalInt = (Integer) ref.get()) == null)) {
 canonicalInt = new Integer(i);
 intList.set(i, new WeakReference(canonicalInt));

 }
 return canonicalInt;
 }

}

Weak references are ideal for this type of optimization because the VM will

reclaim the weak references first, meaning that you must go back to creating

your own Integer objects but preserving memory. Soft references are designed

for memory-intensive caches, which is the purpose of this discussion.

Soft references

Java includes a SoftReference class, which is designed to encapsulate a regular

object reference and “soften” it. An example of using a SoftReference appears

in listing 14.7.

package com.nealford.art.references;

import java.lang.ref.SoftReference;
import java.util.ArrayList;

import java.util.List;

public class SoftReferenceTest {

 public SoftReferenceTest() {

 List softList = new ArrayList(5);

 StringBuffer s1 = new StringBuffer("Now is the time");

 softList.add(new SoftReference(s1));

 softList.add(new SoftReference(
 new StringBuffer("for all good men")));
 softList.add(new SoftReference(

 new StringBuffer("to come to the aid")));

Listing 14.7 An example of encapsulating an object reference inside a SoftReference

Handles out-of-
range requests Gets the

reference

Checks the
reference

Pulls the object from
the reference

Re-adds the reference

StringBuffers
are wrapped in
SoftReferences

Pooling 431

 s1 = null;

 for (int i = 0; i < softList.size(); i++) {
 StringBuffer s = (StringBuffer)
 ((SoftReference) softList.get(i)).get();

 System.out.print("List item # " + i + '\t');
 if (s == null)
 System.out.println(" has been reclaimed");

 else
 System.out.println(s);
 }

 }

 public static void main(String[] args) {
 new SoftReferenceTest();

 }
}

In the SoftReferenceTest example, an ArrayList of soft references (serving as a

cache) is created. The first StringBuffer is explicitly created, placed in the list as

a soft reference, and then dereferenced. The other objects are directly added as

soft references. The code is equivalent, and no advantage exists for either version.

The SoftReference class contains a get() method that returns the object to which

the reference points. When an item is pulled from the cache, it must be cast twice.

The object returned from the list is a SoftReference, whose get() method is

called to get the underlying object.

 It is important if you use SoftReferences to implement a cache that no hard

references exist to the objects in the collection. Any hard references prevent the

garbage collector from reclaiming the objects. Any time you pull a soft reference

from a collection, you must check to see whether the object still exists. Because

SoftReferences are reclaimable at any time, you must always perform a null

check on the returned object. If the object has been reclaimed, you have no way

to get it back. It must be re-created. That means that this mechanism is not suit-

able for objects whose states must be persistent. This use of SoftReference is best

for objects that have been reset to their original state and are ready to be pulled

from a pool.

Weak references

The same issues exist for weak references. However, the SDK includes a collec-

tion specifically designed to make it easy to use weak references. The WeakHash-

Map class is semantically like a regular HashMap. The difference is that all the

The list item must be cast
twice upon retrieval

432 CHAPTER 14

Performance

references in the WeakHashMap are weak references. Listing 14.8 illustrates the use

of a WeakHashMap.

package com.nealford.art.references;

import java.util.Iterator;
import java.util.Map;

import java.util.Set;
import java.util.WeakHashMap;

public class WeakReferenceTest {

 public WeakReferenceTest() {
 StringBuffer s1 = new StringBuffer("Now is the time");

 Map weakMap = new WeakHashMap(5);

 weakMap.put("No. 1", s1);
 weakMap.put("No. 2", new StringBuffer("for all good men"));
 weakMap.put("No. 3", new StringBuffer("to come to the aid"));

 s1 = null;

 Set keySet = weakMap.keySet();
 Iterator keys = keySet.iterator();

 while (keys.hasNext()) {
 String key = (String) keys.next();
 System.out.print("Key = " + key + '\t');

 Object o = weakMap.get(key);
 if (o == null)
 System.out.println("object has been reclaimed");

 else
 System.out.println(o);
 }

 }

 public static void main(String[] args) {
 new WeakReferenceTest();

 }
}

As with SoftReferences, you must always check the object you get back to ensure

that it still points to a real object. Also, like SoftReferences, weak references may

disappear at any time. A WeakHashMap is not thread-safe (although it can be

wrapped in Collections.synchronizedMap() like any standard Map). However,

even if it is synchronized, this collection acts as if another thread is removing

objects if the garbage collector needs to reclaim memory.

Listing 14.8 The WeakHashMap is a Map that holds all references as weak references.

Pooling 433

 As with a collection backed with soft references, you should not store any

objects in a WeakReference or WeakHashMap that you must keep. Both these collec-

tions are suitable for pools of objects in an expendable state.

14.3.3 Commons pools

Pooling is such a common requirement for web applications that the Jakarta

project has provided a generic solution. As stated in section 14.3.1, simple pools

have a habit of growing in complexity as the needs of the application grow. Before

long, what started as a simple caching mechanism grows into a full-blown object-

pooling solution, with bells and whistles galore.

 The Pooling component of the larger Commons project includes classes that

make it relative easy to add sophisticated object pools to your application. The

starting point to creating your own pools it to implement the KeyedPoolable-

ObjectFactory interface, which appears in listing 14.9.

public abstract interface KeyedPoolableObjectFactory {
 Object makeObject(Object object)
 throws Exception;

 void destroyObject(Object object, Object object1)
 throws Exception;

 boolean validateObject(Object object, Object object1);

 void activateObject(Object object, Object object1)
 throws Exception;

 void passivateObject(Object object, Object object1)

 throws Exception;
}

The KeyedPoolableObjectFactory interface includes callback methods used by

the pool to manage the lifecycle events for the pool. The makeObject() method is

called whenever the pool needs to create a new instance of one of your pooled

objects. The destroyObject() method does the opposite and handles any cleanup

required by your object (for example, returning resources such as database con-

nections). The validateObject() method provides a callback that allows you to

determine whether the object is a valid instance and should be returned. Finally,

the activateObject() and passivateObject() methods enable you to write code

in case the pool needs to move your objects out of memory. An example of a task

performed in these methods is dropping a database connection upon passivation

Listing 14.9 The Commons KeyedPoolableObjectFactory interface

434 CHAPTER 14

Performance

and restore it upon activation. An instance of your class that implements this

interface is passed to the GenericKeyedObjectPool constructor, which creates a

keyed pool of any object you wish.

eMotherEarth with pooled boundary classes

To show how to implement the GenericKeyedObjectPool pool, we’ve modified

the eMotherEarth e-commerce site to store the boundary classes in a pool. This

version of the application features a customized view for each user (allowing

the user to sort records and utilize page-at-a-time scrolling for the catalog).

Therefore, each user needs his or her own boundary objects. This version

issues boundary objects from a pool, which are restored when the user leaves

the site. Because it is a large application, only the portions pertinent to pool-

ing appear here. The complete sample appears in the source code archive as

art_emotherearth_cachingpool.

 The first order of business is to create a class that implements the KeyedPool-

ableObjectFactory interface. This class is shown in listing 14.10.

package com.nealford.art.cachingpool.emotherearth.util;

import org.apache.commons.pool.KeyedPoolableObjectFactory;
import com.nealford.art.cachingpool.emotherearth.boundary.ProductDb;
import com.nealford.art.cachingpool.emotherearth.boundary.OrderDb;

public class KeyedBoundaryPoolFactory
 implements KeyedPoolableObjectFactory {

 public Object makeObject(Object key) {

 if (key.equals(com.nealford.art.cachingpool.
 emotherearth.boundary.ProductDb.class)) {
 return new ProductDb();

 } else if (key.equals(com.nealford.art.
 cachingpool.emotherearth.boundary.OrderDb.class)) {
 return new OrderDb();

 } else
 return null;
 }

 public void destroyObject(Object key, Object obj) {
 }

 public boolean validateObject(Object key, Object obj) {
 return true;
 }

 public void activateObject(Object key, Object obj) {

Listing 14.10 The KeyedBoundaryPoolFactory class

Pooling 435

 }

 public void passivateObject(Object key, Object obj) {
 }
}

The KeyedBoundaryPoolFactory class contains the callback methods for the gen-

eric pool class. So, in the makeObject() method of this class, we must determine

how to store the keyed values in the pool and how to create new ones. Because we

are storing boundary objects, it makes sense to differentiate them by their class.

The object passed in as the key to makeObject() is the instance of the class itself,

which is available via the .class member of any class. Using the class reference

will absolutely ensure that we only get an instance of the type of class that we

need. Two boundary classes exist in the application (ProductDb and OrderDb), so

makeObject() has the facilities to make either type.

 We have no special need in this application for cleanup, so let’s leave the

destroyObject() method empty. Similarly, we don’t bother to validate the objects,

so we return true from validate. In addition, we have no need for special code to

activate or passivate the objects.

 Now that we have the class, we can create the generic pool. This code has been

moved into a servlet named StartupConfiguration. This is a GenericServlet sub-

class that handles creating both the database connection pool and the boundary

object pool and adds both pools to the application collection. Listing 14.11 shows

this servlet.

package com.nealford.art.cachingpool.emotherearth.servlet;

import javax.servlet.*;

import javax.servlet.http.*;
import java.io.*;
import java.util.*;

import com.nealford.art.cachingpool.emotherearth.util.DBPool;
import java.sql.SQLException;
import org.apache.commons.pool.impl.GenericKeyedObjectPool;

import org.apache.commons.pool.KeyedObjectPoolFactory;
import org.apache.commons.pool.KeyedPoolableObjectFactory;
import com.nealford.art.cachingpool.emotherearth.util.

 KeyedBoundaryPoolFactory;

public class StartupConfiguration extends GenericServlet {
 private static final String DRIVER_CLASS = "driverClass";

Listing 14.11 The StartupConfiguration servlet

436 CHAPTER 14

Performance

 private static final String PASSWORD = "password";

 private static final String DB_URL = "dbUrl";
 private static final String USER = "user";
 private static final String CONNECTION_POOL = "dbPool";

 private static final String BOUNDARY_POOL = "boundaryPool";
 private static final String POOL_MAX_ACTIVE = "poolMaxActive";
 private static final String POOL_WHEN_EXHAUSTED =

 "poolWhenExhausted";

 public void init() throws javax.servlet.ServletException {
 String driverClass =

 getServletContext().getInitParameter(DRIVER_CLASS);
 String password =
 getServletContext().getInitParameter(PASSWORD);

 String dbUrl =
 getServletContext().getInitParameter(DB_URL);
 String user =

 getServletContext().getInitParameter(USER);
 DBPool dbPool =
 createConnectionPool(driverClass, password, dbUrl,

 user);
 getServletContext().setAttribute(CONNECTION_POOL, dbPool);

 GenericKeyedObjectPool boundaryPool = createBoundaryPool();

 getServletContext().setAttribute(BOUNDARY_POOL,
 boundaryPool);
 }

 private GenericKeyedObjectPool.Config getPoolConfiguration() {
 GenericKeyedObjectPool.Config conf =
 new GenericKeyedObjectPool.Config();

 conf.maxActive = Integer.parseInt(getServletContext().
 getInitParameter(POOL_MAX_ACTIVE));
 conf.whenExhaustedAction = Byte.parseByte(

 getServletContext().getInitParameter(
 POOL_WHEN_EXHAUSTED)) ;
 return conf;

 }

 private GenericKeyedObjectPool createBoundaryPool() {
 GenericKeyedObjectPool pool = null;

 try {
 pool = new GenericKeyedObjectPool(
 new KeyedBoundaryPoolFactory());

 pool.setConfig(getPoolConfiguration());
 }

 catch (Throwable x) {
 System.out.println("Pool creation exception: " +
 x.getMessage());

 x.printStackTrace();
 }
 return pool;

B

Initializes
the servlet,

creating
pools and

caches

Returns pool
configuration

parameters

C

Creates the
boundary
object pool

D

Pooling 437

 }

 private DBPool createConnectionPool(String driverClass,
 String password,
 String dbUrl,

 String user) {
 DBPool dbPool = null;
 try {

 dbPool = new DBPool(driverClass, dbUrl, user, password);
 } catch (SQLException sqlx) {
 getServletContext().log(new java.util.Date() +

 ":Connection pool error", sqlx);
 }
 return dbPool;

 }

 public void service(ServletRequest req,
 ServletResponse res)

 throws javax.servlet.ServletException,
 java.io.IOException {
 //-- This method must be present because of the base class.

 //-- It is intentionally left blank in this servlet.
 }
}

The StartupConfiguration servlet sets up the pools and other infrastructure used
by the rest of the application. It never services an HTTP request, so we subclass it
from GenericServlet instead of HTTPServlet. In fact, the service() method is
blank—all the behavior we need occurs in the init() method. The load on startup
flag in the web.xml file ensures that this servlet executes on startup. The first part
of the init() method handles setting up the database connection pool, and there
is nothing worth noting about that code.

The GenericKeyedObjectPool has so many configuration options that the design-
ers of the class created an inner class to hold all the options. To make it easy to
tweak the configuration options, we created a separate method that returns a Gen-
ericKeyedObjectPool.Config object. In our case, we set two configuration options
in the web.xml file. These options are extracted and set to members of the Config
object. All the options take on default values, so we only have to override the ones
we want to differ from the defaults.

The createBoundaryPool() method sets up the GenericKeyedObjectPool. The
constructor for this class is an instance of our class that implements the Keyed-
PoolableObjectFactory interface (which appears in listing 14.10).

Creates the
database
connection
pool

Contains an empty
(but required)
service() method

B

C

D

438 CHAPTER 14

Performance

After the pool is created, the servlet adds it to the application collection, which

makes it available to all subsequent servlets. Note that this servlet will stay in mem-

ory for the duration of the application, which means that it occupies a bit of mem-

ory. Ideally, the setup code could move to the welcome servlet, but in this case, the

memory impact is so small that we preferred to have it in its own class.

 Now that the pool is available, the catalog servlet can make use of it to get a

ProductDb boundary class. The catalog servlet is extensive, so listing 14.12 shows

only the getProductBoundary() method.

private ProductDb getProductBoundary(HttpSession session) {

 ProductDb products = (ProductDb)session.getAttribute(
 "productBoundary");

 if (products == null) {

 GenericKeyedObjectPool boundaryPool =
 (GenericKeyedObjectPool) getServletContext().
 getAttribute("boundaryPool");

 try {
 products = (ProductDb)
 boundaryPool.borrowObject(ProductDb.class);

 }
 catch (Throwable x) {
 System.out.println("Pool exception");

 getServletContext().log("Object pool exception", x);
 }
 products.setDbPool(

 (DBPool)getServletContext().getAttribute(
 "dbPool"));

 session.setAttribute("productList", products);

 int recsPerPage = Integer.parseInt(getServletConfig().
 getInitParameter("recsPerPage"));
 products.setRecordsPerPage(recsPerPage);

 }
 return products;
}

In this application, each user must have an instance of the boundary class, because

it holds the cached view of data that this user sees (including customizations). To

keep from having to build the result set multiple times, we place this boundary

class in the user’s session upon first creation. This method checks to see if the

boundary object already resides in the session and returns it if it does. If not, it

Listing 14.12 The getProductBoundary() method, which retrieves a boundary class

from the pool

Pooling 439

must retrieve an instance from the boundary pool. That process entails getting the

boundary pool from the application context and calling the borrowObject()

method, passing the class type of the type of object requested from the keyed col-

lection. Once the object has been returned, it is associated with a database con-

nection pool and added to the session.

 The same code exists to retrieve an OrderDb boundary in the checkout servlet.

Once the user has finished with these boundary classes, they should be returned

to the pool, which makes them available for other users. This cleanup occurs in

two methods, called from the doPost() method of the checkout servlet. These

methods appear in listing 14.13.

private void cleanUpUserResources(HttpSession session,

 GenericKeyedObjectPool boundaryPool, OrderDb orderDb) {
 returnBoundaryObjectsToPool(session, boundaryPool, orderDb);
 session.invalidate();

}

private void returnBoundaryObjectsToPool(HttpSession session,
 GenericKeyedObjectPool boundaryPool, OrderDb orderDb) {

 ProductDb productDb =
 (ProductDb) session.getAttribute("productList");
 try {

 if (productDb != null)
 boundaryPool.returnObject(ProductDb.class,
 productDb);

 if (orderDb != null)
 boundaryPool.returnObject(OrderDb.class, orderDb);
 }

 catch (Exception x) {
 getServletContext().log("Pool exception", x);
 }

}

The first of the controller methods returns the boundary objects, and then

invalidates the user’s session, cleaning up any leftover memory associated with

this user. The returnBoundaryObjectsToPool() method is passed the instance of

the OrderDb boundary class and must retrieve the ProductDb class from the appli-

cation collection. Each object is returned to the pool via the returnObject()

method, passing both the key (which is the class type) and the actual object that

was borrowed.

Listing 14.13 The pooled objects must return to the pool once the user has

finished with them.

440 CHAPTER 14

Performance

 The setup for the GenericKeyedObjectPool is fairly extensive, although minor

compared to the facilities it provides. The Commons project has done a good job

of writing most of the elaborate code necessary to implement a robust object

pool. The only requirement for the user to make use of this pool is to implement

a single simple interface to tell the pool how to manage a particular type of object.

 If your needs are not extensive, implementing your own pool, especially using

SoftReferences (which the GenericKeyedObjectPool doesn’t support), should suf-

fice. But if you need robust object pooling, the Commons pool is a good choice.

14.3.4 Pooling in frameworks

The pooling code in the previous section should work without modification in all

the Model 2 frameworks because it involves boundary classes. The setup code

could move to the native setup code for the framework. For example, when using

Struts, you may find it better to subclass its Action servlet and perform the setup

code for the pool in it, and then pass control to the parent servlet. The code in

the controllers moves to the Action classes in Struts and to the corresponding

controller proxies in the other frameworks.

 This level of pooling generally isn’t necessary in Tapestry because that frame-

work implements its own pooling code. You can add your own objects to Tapes-

try’s pools through its API. InternetBeans Express doesn’t support the previous

code because it doesn’t use boundary classes.

14.4 Designing for scalability

Web applications are unique because you may not always be able to judge how

many peak concurrent users you will have—especially if you have a public site.

You must be diligent in your design to ensure that your site can scale gracefully.

The servlet API already handles a large part of the scalability for web applications;

it allows a single instance of a servlet to handle many simultaneous requests—that

is, unless you are implementing the SingleThreadModel interface in your servlets.

This interface is the answer to the question “How can I cripple the scalability of

my web application?” Do yourself a favor and learn to deal with the threading

issues and avoid this interface.

Designing for scalability 441

14.4.1 When to scale up to EJB

Fortunately, when you are building web applications in Java, you have a ready-

made scalability option in Enterprise JavaBeans (EJBs). The benefits of EJBs can

easily fill entire books. EJBs achieve scalability by creating as much as possible in

advance: object pools, database connection pools, thread pools, and so forth.

We’re interested in using them for building scalable web applications. The

mechanics of using EJBs in web applications are discussed in chapter 12. The

question to be answered here is when you should start using EJBs.

Why not use them for every project?

You can use EJBs for every web application and never worry about scalability.

However, a cost is involved with using them, both in money and time. When

building a web application, you may use any number of servlet engines, some of

which are freely available. However, to use EJBs you must have a full-blown appli-

cation server. While open-source application servers exist, they are rare indeed.

Commercial application servers are very expensive, on the scale of enterprise

database servers.

 A greater concern is the complexity of writing EJBs. As the specification has

matured, it has gotten easier to write them (especially entity beans). However, it is

never an easy undertaking. Including distributed components adds a great deal of

work throughout the application. A well-partitioned application insulates you

from this to a degree, but the setup and debugging time will not be trivial.

14.4.2 Molding your architecture for the future

The good news is that you don’t have to make the decision to move to EJB right

away. If you follow the design guidelines highlighted throughout this book, you

should be able to port your project to EJB without too much work. As long as you

have been diligent about the separation of user interface, database logic, and

business logic, you can port to EJB by replacing a single layer of your application.

 The key to being able to support EJBs (or another persistence mechanism for

that matter) is a clean separation between boundary classes and entities. The

boundary classes should handle all persistence details in the non-EJB application.

When it is time to move to EJB, the boundary layer becomes a proxy layer to the

EJBs running in the application server. Chapter 12 walks through a complete

example of taking a well-partitioned Model 2 application and moving it to EJB.

Partitioning is the key.

442 CHAPTER 14

Performance

14.5 When to optimize

Rules of Optimization:
 Rule 1: Don’t do it.
 Rule 2 (for experts only): Don’t do it yet.

—M.A. Jackson

More computing sins are committed in the name of efficiency (with-
out necessarily achieving it) than for any other single reason—includ-
ing blind stupidity.

—W.A. Wulf

We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil.

—Donald Knuth

The best is the enemy of the good.

—Voltaire

The gist of these quotes is pretty clear: you should not optimize prematurely.

Make sure there is a need to change architecture, design, and code before you

launch into an optimization effort that gains almost nothing in performance but

that takes a great deal of time and obfuscates your code. It is a classic blunder to

assume that some part of the application will be a bottleneck. After you take a

great deal of time to fix it before the fact, it turns out that the months of work

have yielded a performance gain of a few microseconds, while an unexpected part

of the application takes minutes to run.

 It is important to get the architecture right from the outset. For every project,

you should write proof-of-concept projects (called “Architectural Spikes” in agile

programming methodologies). That way, you ensure that no major problems crop

up in the overall design and architecture. Then, as the project progresses, it is fine

to performance-test subsystems as they become available. When you have identi-

fied a genuine hotspot, spend the time to fix it, then test some more. Note the

quote that admonishes “Don’t do it yet.” Make sure that you get a reasonable bang

for the buck out of your optimizations.

 You should rely on tools to help you identify the problems in your applica-

tion. If you guess (no matter how educated your guess might be), you are proba-

bly wrong. Even if you just use the profiler that ships with the SDK, at least you

Summary 443

have an objective tool to tell you facts, not speculation, about the performance

of your application.

14.6 Summary

To determine the performance of an application, you must measure it objectively.

Measuring memory in web applications is difficult because of the way the Java Vir-

tual Machine interacts with the operating system and because of the presence of

the servlet engine. Profiling the “hotspots” in your code is possible via the built-in

profiler in the VM, invoked via command-line options. You can analyze the very

large profile document generated by the profiler to determine application

performance bottlenecks. Commercial profilers also exist that make it much eas-

ier to measure memory.

 Another category of performance monitoring is load testing, where you simu-

late large numbers of users. The open-source JMeter project allows you to set up

tests and reports on the results in a variety of formats. Commercial load testers are

also available but are typically quite costly.

 Web development offers a variety of performance pitfalls. The expense of

object creation can be mitigated by creating stateless classes or by building an

object reuse infrastructure. You must also watch for extraneous object references,

especially from collection classes. StringBuffers should always be used instead of

Strings for dynamic string manipulation.

 Object pooling allows you to create a large number of preconstructed objects

and retrieve them rather than create new objects as needed. Pools can be created

using either SoftReferences or WeakReferences, which both hold object refer-

ences unless the application runs short of memory. The WeakHashMap class is a col-

lection class that uses WeakReferences to make it easy to create a loosely held

cache. If you have more elaborate pooling needs, the Commons pool from the

Jakarta project provides sophisticated object-pooling facilities. The eMotherEarth

application incorporates the Commons pool to handle customized boundary

classes for users.

 The ultimate scalability option lies with Enterprise JavaBeans. However, there

is overhead involved in creating and using them, so you should decide whether

the cost outweighs the benefits. If the application is well architected, it is easy to

port to EJB.

444 CHAPTER 14

Performance

 Make sure that you are performing useful work when optimizing your applica-

tion. Many times developers assume that parts of the application will be slow and

spend a great deal of time optimizing them, only to discover that other parts are

slower. You must also measure performance objectively and optimize where you

get the largest return on investment.

 In the next chapter, we look at how to manage the resources in your applica-

tions.

445

Resource management

This chapter covers

■ Caching strategies

■ Managing non-memory resources

■ Using design patterns

446 CHAPTER 15

Resource management

The previous chapter covered various aspects of performance in Java web applica-

tions. However, if the resources in your application are poorly handled, it doesn’t

matter how much effort you expend toward performance tuning. In other words,

you must have a good base design to enable many of the optimization techniques

covered in chapter 14. This is the realm of resource management—the topic of

this chapter.

 Web applications have a variety of resources, some that the developer can con-

trol and others that are maintained by the application server or servlet engine.

Examples of resources that the developer cannot control are threads, file handles,

and other low-level characteristics of the application server and underlying oper-

ating system. The only solution to problems with such resources is to either

upgrade/replace your application server or upgrade/replace your hardware. We

will not try to help you manage that process here!

 Instead, we focus on resources that you can control, either explicitly or implic-

itly. One example is memory. Although you can’t control the way your application

server allocates memory, you certainly can control how much your application

uses and, more important, how it uses that memory. We discuss several strategies

for managing the resources in your application. We first look at a couple of varia-

tions on caching implementations. We introduce two design patterns, Flyweight

and Façade, which are well adapted for saving and sharing resources. We also dis-

cuss optimizing Java Naming and Directory Interface (JNDI) usage and resource

issues that arise when you’re using standard collections in Java. We also examine

the topic of when to use lazy instantiations, and how their use can improve

resource usage but might hurt performance.

15.1 Caching strategies

Memory is a constant bottleneck for large, busy applications. It is also the area in

web development where the most abuse occurs and where the most benefit may

be gained. In some cases, effective caching strategies can both lower the memory

footprint and speed up the application. Caching is a well-known optimization

technique because it keeps in memory items that have been recently used, antici-

pating that they will be needed again. Caching can be implemented in numerous

ways, including the judicious use of design patterns.

Caching strategies 447

15.1.1 Caching with the Flyweight design pattern

The first caching scheme uses the Flyweight design pattern. This pattern appears

in the Gang of Four book, which is the seminal work on patterns in software devel-

opment. The pattern uses sharing to support a large number of fine-grained

object references. With the Flyweight strategy, you keep a pool of objects available

and create references to the pool of objects for particular views. This pattern uses

the idea of canonical objects. A canonical object is a single representative object

that represents all other objects of that type. For example, if you have a particular

product, it represents all products of that type. In an application, instead of creat-

ing a list of products for each user, you create one list of canonical products and

each user has a list of references to that list.

 The default eMotherEarth application is designed to hold a list of products

for each user. However, that design is a waste of memory. The products are the

same for all users, and the characteristics of the products change infrequently.

Figure 15.1 shows the current architectural relationship between users and the

list of products in the catalog.

 The memory required to keep a unique list for each user is wasted. Even

though each user has his or her own view of the products, only one list of prod-

ucts exists. Each user can change the sort order and the catalog page of products

he or she sees, but the fundamental characteristics of the product remain the

same for each user.

 A better design is to create a canonical list of products and hold references to

that list for each user. Figure 15.2 illustrates this user/product relationship.

 In this scenario, each user still has a reference to a particular set of products (to

maintain paging and sorting), but the references point back to the canonical list of

products. This main list is the only actual product object present in the applica-

tion. It is stored in a central location, accessible by all the users of the application.

User A User CUser B

Lists of Products Figure 15.1

In the eMotherEarth

application, each user has his

or her own list of products when

viewing the catalog. However,

even though users have

different views of the products,

they are still looking at the

same list of products.

448 CHAPTER 15

Resource management

Implementing Flyweight

Because the eMotherEarth application is already modular, it is easy to change it to

use the Flyweight design pattern. This version of the eMotherEarth application

appears in the source code archive with the name art_emotherearth_flyweight.

 The first step is to build the canonical list of products and place it in a globally

accessible place. The obvious choice is the application context. Therefore, we’ve

changed the welcome controller in eMotherEarth to build the list of products and

place them in the application context. The revised init() and new buildFly-

weightReferences() methods of the welcome controller are shown in listing 15.1.

public void init() throws ServletException {

 String driverClass =
 getServletContext().getInitParameter("driverClass");
 String password =

 getServletContext().getInitParameter("password");
 String dbUrl =
 getServletContext().getInitParameter("dbUrl");

 String user =
 getServletContext().getInitParameter("user");
 DBPool dbPool =

 createConnectionPool(driverClass, password, dbUrl,
 user);

Listing 15.1 The welcome controller builds the list of flyweight references and stores it

in the application context.

User A User CUser B

Canonical List of
Products

References into
List

Figure 15.2 A single list of product objects saves memory, and each user can keep a reference

to that list for the particular products he or she is viewing at any given time.

Caching strategies 449

 getServletContext().setAttribute("dbPool", dbPool);

 buildFlyweightReferences(dbPool);
}

private void buildFlyweightReferences(DBPool dbPool) {

 ProductDb productDb = (ProductDb) getServletContext().
 getAttribute("products");
 if (productDb == null) {

 productDb = new ProductDb();
 productDb.setDbPool(dbPool);
 List productList = productDb.getProductList();

 Collections.sort(productList, new IdComparator());
 getServletContext().setAttribute("products",
 productList);

 }
}

The buildFlyweightReferences() method first checks to verify that it hasn’t been

built by another user’s invocation of the welcome servlet. We are probably being

more cautious than necessary because the init() method is called only once for

the servlet, as it is loaded into memory. However, if we moved this code into

doGet() or doPost(), it would be called multiple times. This is an easy enough test

to perform, and it doesn’t hurt anything in the current implementation.

 If the canonical list doesn’t exist yet, it is built, populated, and placed in the

global context. Now, when an individual user needs to view products from the cat-

alog, the user is pulling from the global list. We’ve changed the catalog controller

to pull the products for display from the global cache instead of creating a new

one. The doPost() method of the catalog controller is shown in listing 15.2.

public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws
 ServletException, IOException {

 HttpSession session = request.getSession(true);
 ensureThatUserIsInSession(request, session);

 List productReferences =
 (List) getServletContext().getAttribute("products");

 int start = getStartingPage(request);

 int recsPerPage = Integer.parseInt(getServletConfig().
 getInitParameter("recsPerPage"));
 int totalPagesToShow = calculateNumberOfPagesToShow(

 productReferences.size(), recsPerPage);
 String[] pageList =

Listing 15.2 The Catalog controller pulls products from the global cache rather than

building a new list of products for each user.

450 CHAPTER 15

Resource management

 buildListOfPagesToShow(recsPerPage,

 totalPagesToShow);
 List outputList = getProductListSlice(productReferences,
 start, recsPerPage);

 sortPagesForDisplay(request, outputList);

 bundleInformationForView(request, start, pageList,
 outputList);

 forwardToView(request, response);
}

The previous version of the catalog controller called a method that created and

populated a ProductDb boundary class. However, we simplified this version; it can

safely assume that the product records already exist in memory. Thus, the entire

getProductBoundary() method is no longer present in this version of the applica-

tion. This is a rare case of less code, faster performance, and less memory!

 However, one other minor change was required to accommodate the caching.

Previously, the sortPagesForDisplay() method did nothing if no sorting criteria

were present in the request parameter—it simply returned the records without

sorting them. The controller is now designed to return a slice of the canonical list

in the getProductListSlice() method. This method appears in listing 15.3.

private List getProductListSlice(List productReferences,

 int start, int recsPerPage) {
 if (start + recsPerPage > productReferences.size()) {
 return productReferences.subList(start,

 productReferences.size());
 } else {
 return productReferences.subList(start,

 start + recsPerPage);
 }
}

Previously, the lack of a sort criterion didn’t cause any problems because every

user had his or her own copy of the “master” list. This method returned a subset

of that user’s list. But now all users are sharing the same list. The subList()

method from the collections API does not clone the items in the list; it returns ref-

erences to them. This is a desirable characteristic because if it cloned the list items

as it returned them, caching the product list would be pointless.

Listing 15.3 The getProductListSlice() method returns a subset

of the entire canonical list.

Caching strategies 451

 However, because there is now only one actual list, the members of the list

are sorting in page-sized chunks as the user gets a reference to some of the

records in the list and applies the sortPagesForDisplay() method. Listing 15.4

shows this method.

private void sortPagesForDisplay(HttpServletRequest request,

 List outputList) {
 String sortField = request.getParameter("sort");

 Comparator c = new IdComparator();

 if (sortField != null) {
 if (sortField.equalsIgnoreCase("price"))
 c = new PriceComparator();

 else if (sortField.equalsIgnoreCase("name"))
 c = new NameComparator();
 }

 Collections.sort(outputList, c);
}

The previous version of sortPagesForDisplay() called the sort method only if the

user had specified a Comparator in the request parameter (which is generated

when the user clicks on one of the column headers in the view). However, if that

implementation remained, then a new user logging into the application would get

the same sorted list as the last user to sort the page-sized chunks of records. This is

because a new user hasn’t specified a sort criterion (in other words, no one has

had a chance yet to click on a column header and generate the sorting flag). To

prevent this behavior, we moved the IdComparator out of the if statement and

applied that sorting characteristic if no others are present. The side effect of this

caching technique is that every user is sorting the list of products in page-sized

chunks. Even though that involves changing the position of records for a given

page-sized chunk, each user applies his or her own sorting criteria to the list

before seeing the records. This implementation could be improved to prevent this

side effect, but with a small number of records, it doesn’t hurt the performance.

 One characteristic of this controller makes it easy to retrofit to use this design

pattern. The user chooses his or her page of records before sorting them. If the

sorting occurred before the user specified a subset of records, this controller

would have to be changed. However, it is unlikely that users would make such a

request—they would have to guess on which page their sorted record ended up.

Listing 15.4 The sortPagesForDisplay() method sorts the sublist of product references

for display.

452 CHAPTER 15

Resource management

Flyweight considerations

The effectiveness of the Flyweight pattern as a caching mechanism depends

heavily on certain characteristics of the data you are caching:

■ The application uses a large number of objects.

■ Storage (memory) cost is high to replicate this large number for multiple

users.

■ Either the objects are immutable or their state can be made external.

■ Relatively few shared objects may replace many groups of objects.

■ The application doesn’t depend on object identity. While users may think

they are getting a unique object, they actually have a reference from the

cache.

One of the key characteristics enabling this style of caching is the state informa-

tion in the objects. In the previous example, the product objects are immutable as

far as the user is concerned. If the user is allowed to make changes to the object,

then this caching scenario wouldn’t work. It depends on the object stored in the

cache being read-only. It is possible to store non-immutable objects using the Fly-

weight design pattern, but some of their state information must reside externally

to the object, as shown in figure 15.3.

 It is possible to store the mutable information needed by the reference in a

small class that is associated to the link between the flyweight reference and the

flyweight object. A good example of this type of external state information in

eMotherEarth is the preferred quantity for particular items. This is information

particular to the user, so it should not be stored in the cache. However, there is a

discrete chunk of information for each product. This preference (and others)

would be stored in an association class, tied to the relationship between the

Product

Collection

Product Reference

External State

1 1

1

*

Figure 15.3

The Flyweight design pattern

supports mutable objects in

the cache by adding additional

externalizable information to

the link between product and

reference.

Caching strategies 453

reference and the product. When you use this option, the information must take

very little memory in comparison to the flyweight reference itself. Otherwise, you

don’t save any resources by using the flyweight.

 The Flyweight design pattern is not recommended when the objects in the

cache change rapidly or unexpectedly. It would not be a suitable caching strategy

for the eMotherEarth application if the products changed several times a day.

However, with our application’s inventory, that scenario seems unlikely. This solu-

tion works best when you have an immutable set of objects shared between most

or all of your users. The memory savings are dramatic and become more pro-

nounced the more concurrent users you have.

15.1.2 Caching with the Façade design pattern

Another approach to caching makes use of the Façade design pattern. This

design pattern helps hide complex interactions between objects by creating a

unified interface to them. It is designed to make it easy to use a complex sub-

system by providing a friendly interface to that subsystem so that the user doesn’t

have to understand the complexities of the interactions between the objects.

Consider figure 15.4.

 In this diagram, the outer objects must understand too much about the rela-

tionship of the subsystem objects to easily use the subsystem. Façade solves this

problem by creating a class (or classes) that hides the complexities of the sub-

system by providing an easy-to-use interface to access the subsystem. The Façade

solution appears in figure 15.5.

 Unlike Flyweight, which is a caching strategy in its own right, Façade is more

useful for hiding the details of a complex caching subsystem from the everyday

Figure 15.4

A complex subsystem (represented by the enclosed

box) is difficult for other systems to use without

understanding the complex interactions between

the subsystem objects.

454 CHAPTER 15

Resource management

developer. Façade is broadly useful in many places in your applications. Fre-

quently, you may need to call code that exists in a reusable library that has com-

plex interactions between the classes of that library. You can use this design

pattern to wrap that complex API into one that is easy to use for the developers of

the current application.

 We’re going to apply Façade to a complex subsystem that already exists in one

of the iterations of the eMotherEarth application. In chapter 14, we created a

Commons pool for boundary objects. The interface that we must use for the Com-

mons GenericKeyedObjectPool is detailed, with multiple objects and factories that

interact. The developers of the application shouldn’t have to know the relation-

ship between those objects. In fact, developers shouldn’t know or care that the

ones they are using actually come from a cache. In that way, a façade may act as a

kind of factory object, delivering objects without forcing the developers to under-

stand how it was obtained.

Automating façade creation

The version of eMotherEarth used as the starting point of this example is from

chapter 14 (section 14.3.3), which uses the Jakarta Commons pool facility to pool

the boundary objects in the application. Along the way, we’ll change a few other

aspects of the application to update it to the latest web APIs. This version of the

eMotherEarth application appears in the source code archive under the name

art_emotherearth_facade.

 The first change in the application involves the creation of the pools. In the

previous example, we introduced a GenericServlet subclass with a startup

Facade

Figure 15.5

Façade defines a higher-level interface that

makes a complex subsystem easier to use.

Caching strategies 455

configuration parameter designed to automatically launch it. The startup servlet

ensured that its init() method would be called during the startup of the applica-

tion. When you’re using older servlet specifications, this is the best way to ensure

that code will execute upon application startup. Now, an alternative technique

exists, and we will implement it here. Instead of creating a servlet that initializes

the pools, we create a ServletContextListener (which became available with the

servlet 2.3 API). A ServletContextListener allows the developer to tie an event to

the application object (the ServletContext). The listener class is an interface with

two method signatures, which appears (without comments) in listing 15.5.

package javax.servlet;

import java.util.EventListener;

public interface ServletContextListener extends EventListener {

 public void contextInitialized (ServletContextEvent sce);
 public void contextDestroyed (ServletContextEvent sce);
}

The ServletContextListener interface allows the developer to execute code as

the application object (i.e., the ServletContext) is initialized and destroyed. To

use this interface, the developer creates an implementing class and registers that

class in the web configuration file. For our example, we have created a class

named StartupConfigurationListener that implements this interface. To associ-

ate this listener with the application, add the code in listing 15.6 to web.xml.

 <listener>
 <listener-class>

 com.nealford.art.emotherearth.util.StartupConfigurationListener
 </listener-class>
 </listener>

The StartupConfigurationListener class initializes both the database connection

pool and the boundary class pool. It appears in listing 15.7.

Listing 15.5 The ServletContextListener interface defines callback methods called by

the application upon initialization.

Listing 15.6 Web application listeners are registered in web.xml.

456 CHAPTER 15

Resource management

package com.nealford.art.facade.emotherearth.util;

import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;

import javax.servlet.ServletContext;
import org.apache.commons.pool.impl.GenericKeyedObjectPool;
import java.sql.SQLException;

public class StartupConfigurationListener implements
 ServletContextListener, AttributeConstants {

 public void contextInitialized(ServletContextEvent sce) {

 initializeDatabaseConnectionPool(sce.getServletContext());
 BoundaryFacade.initializeBoundaryPool(
 sce.getServletContext());

 }
 public void contextDestroyed(ServletContextEvent sce) {
 }

 private void initializeDatabaseConnectionPool(
 ServletContext sc) {
 DBPool dbPool = null;

 try {
 dbPool = createConnectionPool(sc);
 } catch (SQLException sqlx) {

 sc.log(new java.util.Date() + ":Connection pool error",
 sqlx);
 }

 sc.setAttribute(DB_POOL, dbPool);
 }

 private DBPool createConnectionPool(ServletContext sc)

 throws SQLException {
 String driverClass = sc.getInitParameter(DRIVER_CLASS);
 String password = sc.getInitParameter(PASSWORD);

 String dbUrl = sc.getInitParameter(DB_URL);
 String user = sc.getInitParameter(USER);
 DBPool dbPool = null;

 dbPool = new DBPool(driverClass, dbUrl, user, password);
 return dbPool;
 }

}

Because we don’t have any particular cleanup to perform as the application exits,

we left the contextDestroyed() method in StartupConfigurationListener empty,

although it must be present because it is part of the interface. The real action in

this class is in the contextInitialized() method, which creates all the global

Listing 15.7 The contextInitialized() method executes as the web application

is launching.

Caching strategies 457

resources the web application will need. The actual details of the GenericKeyedOb-

jectPool and supporting classes are hidden in the façade class.

Establishing the façade class

The façade class is responsible for hiding the details of how objects are obtained

and returned to the pool, along with the setup information for the pool. The

pooling subsystem details are complex enough to warrant hiding them from the

body of the application, leaving the façade class as the only code that needs to

understand anything about how the object pools work.

 The BoundaryFacade class is a singleton class, meaning that all other classes

that need to use it share a single instance. The declaration and the initialization

methods are shown in listing 15.8.

public class BoundaryFacade implements AttributeConstants {
 private static BoundaryFacade singleton;

 private BoundaryFacade() {
 }

 public static BoundaryFacade getInstance() {

 if (singleton == null)
 singleton = new BoundaryFacade();
 return singleton;

 }

 public void initializeBoundaryPool(ServletContext context) {
 GenericKeyedObjectPool boundaryPool =

 createBoundaryPool(context);
 context.setAttribute(BOUNDARY_POOL, boundaryPool);
 }

 private GenericKeyedObjectPool.Config getPoolConfiguration(
 ServletContext context) {
 GenericKeyedObjectPool.Config conf =

 new GenericKeyedObjectPool.Config();
 conf.maxActive = Integer.parseInt(context.getInitParameter(
 POOL_MAX_ACTIVE));

 conf.whenExhaustedAction = Byte.parseByte(context.
 getInitParameter(POOL_WHEN_EXHAUSTED));

 return conf;
 }

 private GenericKeyedObjectPool createBoundaryPool(

 ServletContext context) {
 GenericKeyedObjectPool pool = null;
 try {

Listing 15.8 The BoundaryFacade class hides the details of creating object pools from

the application.

Contains the internal
singleton referenceContains the private

singleton constructor

Contains the
singleton access

Initializes and persists
boundary pool

Returns
object pool

configuration

Creates the
boundary pool

458 CHAPTER 15

Resource management

 pool = new GenericKeyedObjectPool(

 new KeyedBoundaryPoolFactory());
 pool.setConfig(getPoolConfiguration(context));
 } catch (Throwable x) {

 System.out.println("Pool creation exception: " +
 x.getMessage());
 x.printStackTrace();

 }
 return pool;
 }

The code that initializes GenericKeyedObjectPool is the exact same as the code in

chapter 14, listing 14.10, which first describes the use of this class and its support-

ing classes. The only difference in this code is the location—it moved from the

startup servlet or listener to this façade class. Note that this class is a classic single-

ton. It contains a static reference to itself, a private constructor, and a static getIn-

stance() method to allow access.

Using façade to borrow objects

The next method in the façade class is the borrowOrderBoundary() method,

which returns a boundary object for the Order entity from the pool. This method

is shown in listing 15.9.

public OrderDb borrowOrderBoundary(HttpSession session) {
 ServletContext sc = session.getServletContext();

 OrderDb orderDb = null;
 try {
 GenericKeyedObjectPool boundaryPool =

 (GenericKeyedObjectPool) sc.getAttribute(
 BOUNDARY_POOL);

 orderDb = (OrderDb) boundaryPool.borrowObject(OrderDb.class);

 } catch (Exception x) {
 session.getServletContext().log("Pool exception", x);
 }

 orderDb.setDBPool((DBPool) sc.getAttribute(DB_POOL));
 return orderDb;
}

Listing 15.9 This method returns an instance of a boundary class

 that delivers Order objects.

Caching strategies 459

The semantics of the borrowOrderBoundary() method are also similar to listing 14.11

in chapter 14. This method retrieves the boundary pool from the servlet context

and borrows an OrderBoundary class based on the class type of the entity that it

returns. After the façade retrieves the object, it associates the boundary with an

instance of the database connection pool and returns it.

 The other boundary class in the application is the ProductDb class. Pulling this

object from the pool works the same as for the OrderDb boundary. However, for

efficiency’s sake, we are allowing caching the Product boundary in the user’s ses-

sion. The reasoning here is that users will need to access product information a

number of times during their access to the catalog page of the application. This is

the primary page and we can assume that users will spend most of their time

there. As you may recall, this boundary keeps the list of products and returns a

page-at-a-time slice of products to the user. Thus, it makes sense to associate this

boundary with the user. In addition, this solution illustrates the flexibility of selec-

tively caching objects that come from the pool.

 Because this boundary has different behavior, it has its own method for return-

ing an instance of it, either from the user’s session or from the pool. The getProd-

uctBoundary() method appears in listing 15.10.

public ProductDb getProductBoundary(HttpSession session) {

 ServletContext sc = session.getServletContext();

 boolean cacheInBoundaryInSession =
 Boolean.valueOf(sc.getInitParameter(

 CACHE_BOUNDARY_IN_SESSION)).
 booleanValue();
 ProductDb productDb = null;

 if (cacheInBoundaryInSession)
 productDb = (ProductDb) session.getAttribute(
 PRODUCT_BOUNDARY);

 if (productDb == null) {
 GenericKeyedObjectPool boundaryPool =
 (GenericKeyedObjectPool) sc.getAttribute(

 BOUNDARY_POOL);
 try {
 productDb = (ProductDb)

 boundaryPool.borrowObject(ProductDb.class);
 } catch (Throwable x) {
 sc.log("Object pool exception", x);

 }

Listing 15.10 This method returns a Product boundary from either the pool or the user’s

session.

460 CHAPTER 15

Resource management

 productDb.setDBPool((DBPool) sc.getAttribute(DB_POOL));
 if (cacheInBoundaryInSession)
 session.setAttribute(PRODUCT_BOUNDARY, productDb);
 }
 return productDb;
}

The getProductBoundary() method first checks a flag set as an init parameter to

see whether the application is configured to cache the boundary in the session. By

placing the flag in the configuration file, you can easily change the caching strat-

egy just by editing the configuration and avoiding recompiling the application.

Doing so also means that a nonprogrammer can change the setting.

 If caching is turned on, the façade tries to get the boundary from the session.

If that is unsuccessful, it goes to the object pool and borrows a boundary from the

pool. At the end of the method, it stores the retrieved boundary object in the ses-

sion for the next access if caching is turned on.

Using the façade to return objects

Objects borrowed from the pool must be returned to the pool. When returning

the Product boundary, we have to check for the presence of the caching flag and

return the boundary object accordingly. This job is split between two methods:

one to conditionally return the object to the pool, based on the caching flag in

the session, and the other to always return the object. The code for both these

façade methods appears in listing 15.11.

public void returnProductBoundary(ProductDb productDb) {
 try {
 boundaryPool.returnObject(ProductDb.class,
 productDb);
 } catch (Throwable x) {
 session.getServletContext().log(
 "Pool return exception: " +
 x.getMessage());
 }
}

public void conditionallyReturnProductBoundary(
 ProductDb productDb) {
 ServletContext sc = session.getServletContext();
 boolean cacheInBoundaryInSession =
 Boolean.valueOf(sc.getInitParameter(
 CACHE_BOUNDARY_IN_SESSION)).
 booleanValue();

Listing 15.11 Returning the Product boundary must take caching into account.

Caching strategies 461

 if (! cacheInBoundaryInSession && productDb != null) {
 GenericKeyedObjectPool boundaryPool =
 (GenericKeyedObjectPool)
 session.getServletContext().getAttribute(
 BOUNDARY_POOL);
 returnProductBoundary(productDb);
 }
}

The code in returnProductBoundary() is typical code for returning a borrowed

object to the pool. The conditionallyReturnProductBoundary() method returns

the object only if it isn’t cached in the session.

 This work is split between two methods, in case the user wanders away from

the application without finishing the order. As web developers are well aware,

users of a web application can lose interest at any time and never notify the appli-

cation that they are leaving. The session’s timeout will eventually fire, removing

the session. However, removing the session only nullifies the reference to the

Product boundary held by the session—it does not return the boundary to the

pool. To solve this problem, we’ve added another listener to the application for

handling the event in which the user doesn’t complete the interaction with the

application normally, but instead leaves the session to time out. The Http-

SessionAttributeListener interface was introduced with the servlet 2.3 specifica-

tion. It allows the developer to attach event handlers to session attribute events.

In this case, we’ve attached code to the attributeRemoved() method to handle

this special case. When the session times out, it removes all its attributes and fires

the code that removes the cached Product boundary. Listing 15.12 shows the Ses-

sionScrubber listener.

package com.nealford.art.facade.emotherearth.util;

import javax.servlet.ServletContext;
import javax.servlet.http.HttpSessionAttributeListener;
import javax.servlet.http.HttpSessionBindingEvent;

import com.nealford.art.facade.emotherearth.boundary.ProductDb;

public class SessionScrubber implements
 HttpSessionAttributeListener, AttributeConstants {

 public void attributeAdded(HttpSessionBindingEvent se) {
 }

 public void attributeRemoved(HttpSessionBindingEvent se) {
 ServletContext sc = se.getSession().getServletContext();

Listing 15.12 The SessionScrubber handles the case in which the user never logs out.

462 CHAPTER 15

Resource management

 if (se.getName().equals(PRODUCT_BOUNDARY))
 BoundaryFacade.getInstance().
 returnProductBoundary((ProductDb) se.getValue());
 }
 public void attributeReplaced(HttpSessionBindingEvent se) {
 }
}

While returning an Order boundary would seem to be less complicated (because it

doesn’t have any caching options), the solution is not as simple as just returning

the Order boundary. The Order boundary is used at the end of the user’s interac-

tion with the web application. Generally, when the user has placed an order, he or

she has finished using the web site and is preparing to leave. Thus, it is very

unlikely that the user will use the product catalog again for this session. Taking

the use of the web application into consideration, we return the Product bound-

ary class if it is cached in the session at the same time we return the Order bound-

ary. The code for returnBoundaries() appears in listing 15.13.

public void returnBoundaries(HttpSession session,
 OrderDb orderDb) {
 ServletContext sc = session.getServletContext();
 boolean cacheInBoundaryInSession =
 Boolean.valueOf(sc.getInitParameter(
 CACHE_BOUNDARY_IN_SESSION)).
 booleanValue();

 ProductDb productDb =
 (ProductDb) session.getAttribute(PRODUCT_BOUNDARY);
 GenericKeyedObjectPool boundaryPool =
 (GenericKeyedObjectPool) sc.getAttribute(
 BOUNDARY_POOL);

 try {
 if (productDb != null && !cacheInBoundaryInSession)
 boundaryPool.returnObject(ProductDb.class,
 productDb);
 if (orderDb != null)
 boundaryPool.returnObject(OrderDb.class,
 orderDb);
 } catch (Exception x) {
 sc.log("Pool exception", x);
 }
}

Listing 15.13 The returnBoundaries() method returns both Order

 and Product boundaries.

Caching strategies 463

The returnBoundaries() method pulls the Product boundary from the session if it

exists and returns it at the same time the Order boundary is returned. If the user

decides to return to the Catalog page and place an additional order, the Product

boundary will no longer exist in the user’s session, but the façade handles this

invisibly by borrowing another Product boundary from the object pool.

Façade benefits

Our goal in choosing the Façade design pattern to implement caching was to hide

the details of the object cache and the caching layer in the user’s session. We have

been successful in meeting this goal. Both the catalog and checkout controllers

have been greatly simplified. As an illustration, listing 15.14 contains the doPost()

method of the simplified checkout controller. The use of the Façade pattern

reduced the code from the previous version by more than 30 lines. And, more

important, the new version of the controller doesn’t import any of the classes

from the Commons library that implements object pools. You will also note that

the SessionScrubber listener also uses the façade to hide the details of interacting

with the pool code. All the code in the entire application that understands how

the Commons pools work resides in the façade.

public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws

 ServletException, IOException {
 RequestDispatcher dispatcher = null;
 HttpSession session = redirectIfSessionNotPresent(

 request, response);
 String user = (String) session.getAttribute(USER);
 ShoppingCart sc =

 (ShoppingCart) session.getAttribute(CART);
 BoundaryFacade facade = BoundaryFacade.getInstance();
 OrderDb orderDb =

 (OrderDb) facade.borrowBoundary(session, OrderDb.class);
 Order order = createOrderFrom(request);
 validateOrder(request, response, order);

 addOrder(request, response, user, sc, orderDb,
 order);

 cleanUpUserResources(session);
 buildConfirmationViewProperties(request, user, order);
 forwardToConfirmation(request, response);

}

Listing 15.14 The CheckOut controller’s doPost() method is greatly simplified by the

use of the façade.

464 CHAPTER 15

Resource management

Making the façade more generic

The façade we’ve created is effective because it isolates the caching code in a sin-

gle location. However, the way it is implemented doesn’t make it easy to add more

boundary classes to the application. If the façade must be modified every time

another boundary is added, it will soon collapse under the weight of maintaining

it. Therefore, we created a more generic version of the boundary façade that takes

advantage of the reflection API in Java.

 The first way to generalize the creation of the boundaries is to make sure they

all extend the same base. Fortunately, we already have a BoundaryBase class, which

encapsulates the association of the database connection pool with a boundary

subclass. Listing 15.15 shows the BoundaryBase class.

package com.nealford.art.facade.emotherearth.boundary;

import com.nealford.art.facade.emotherearth.util.DBPool;

public class BoundaryBase {
 private DBPool dBPool;

 public BoundaryBase() {
 }

 public DBPool getDBPool() {

 return dBPool;
 }

 public void setDBPool(DBPool dBPool) {

 this.dBPool = dBPool;
 }
}

Once we know that all boundary classes are really specialized versions of the base

class, we can write a method in the façade that returns boundaries in terms of the

base class. The façade becomes a factory for returning boundaries keyed to a par-

ticular entity. Thus, we can write a generic borrowBoundary() method in the

façade that can return any type of boundary object. This improved method

appears in listing 15.16.

public BoundaryBase borrowBoundary(HttpSession session,
 Class boundaryClass) {

 ServletContext sc = session.getServletContext();

Listing 15.15 The BoundaryBase class serves as the parent of all boundary classes.

Listing 15.16 The borrowBoundary() method is generic for all kinds of boundary objects.

Caching strategies 465

 boolean cacheInBoundaryInSession =

 Boolean.valueOf(sc.getInitParameter(
 CACHE_BOUNDARY_IN_SESSION)).
 booleanValue();

 BoundaryBase boundary = null;
 if (cacheInBoundaryInSession)
 boundary = (BoundaryBase) session.getAttribute(

 boundaryClass.getName());
 if (boundary == null) {
 try {

 GenericKeyedObjectPool boundaryPool =
 (GenericKeyedObjectPool) sc.getAttribute(
 BOUNDARY_POOL);

 boundary = (BoundaryBase) boundaryPool.
 borrowObject(boundaryClass);
 if (cacheInBoundaryInSession &&

 boundary instanceof Cacheable)
 session.setAttribute(boundaryClass.getName(),
 boundary);

 } catch (Exception x) {
 session.getServletContext().log("Pool error", x);
 }

 boundary.setDBPool((DBPool) sc.getAttribute(DB_POOL));
 borrowedObjects.add(boundary);
 }

 return boundary;
}

The borrowBoundary() method takes advantage of the reflection API in Java to

supply a parameter that is actually a class (i.e., it is an instance of the Class class).

The second parameter is the class of the boundary that this method returns. An

example of its invocation comes from the catalog controller:

BoundaryFacade facade = BoundaryFacade.getInstance();

ProductDb products = (ProductDb) facade.borrowBoundary(session,
 ProductDb.class);

Every class in Java has a property named class, so invoking the class name with a

.class modifier returns the Class object for this class. This object has methods

and properties that pertain to the class itself, not to instances of the class. By pass-

ing the class as a parameter to the borrowBoundary() method, we can use the class

information to determine what kind of boundary object we eventually return.

 The borrowBoundary() method begins by gathering state information from the

servlet context to determine how to handle caching boundaries. If caching is

turned on, it attempts first to retrieve the boundary from the user’s session. The

466 CHAPTER 15

Resource management

boundaries are stored in both the pool and the session by their class names, which

are unique because they include the package name. Because of the way packages

in Java must correspond to physical locations, it is impossible to have two classes

with the same fully qualified name (because you can’t have two files with the same

name in a directory). If the method can’t retrieve a boundary from the session, it

goes to the object pool to get the boundary.

 As you know from the discussion in chapter 14, section 14.3.3 (particularly

listing 14.10), the Commons pool relies on a class that implements the Keyed-

PoolableObjectFactory interface to return the appropriate object from the pool.

The pool uses this class to construct and name the objects that it pools. To pool

and store the boundaries by their class names, we use the KeyedBoundaryPoolFac-

tory class shown in listing 15.17.

package com.nealford.art.facade.emotherearth.util;

import org.apache.commons.pool.KeyedPoolableObjectFactory;
import com.nealford.art.facade.emotherearth.boundary.ProductDb;

import com.nealford.art.facade.emotherearth.boundary.OrderDb;

public class KeyedBoundaryPoolFactory
 implements KeyedPoolableObjectFactory {

 public Object makeObject(Object key) {
 if (key.equals(com.nealford.art.facade.emotherearth.
 boundary.ProductDb.class)) {

 return new ProductDb();
 } else if (key.equals(com.nealford.art.facade.emotherearth.
 boundary.OrderDb.class)) {

 return new OrderDb();
 } else
 return null;

 }

 public void destroyObject(Object key, Object obj) {
 }

 public boolean validateObject(Object key, Object obj) {
 return true;
 }

 public void activateObject(Object key, Object obj) {
 }

 public void passivateObject(Object key, Object obj) {

 }
}

Listing 15.17 The KeyedBoundaryPoolFactory populates the object pool.

Caching strategies 467

You must exercise caution when caching objects in both an object pool and the

user's session. If you have 60 objects in the pool with session caching enabled, and

you have 60 concurrent users, each user will have an instance from the pool

checked out, residing in his or her session cache, which means no objects are left

in the pool. You can solve this problem by turning off session caching (which

slows down each user’s interaction slightly because the boundary is no longer

cached in the user’s session) but lowering the memory requirements for the

entire application and supporting more concurrent users. You can also solve this

problem by creating pools that automatically grow so that you never run out of

boundary objects from the pool. Design decisions pitting users’ response time

against scalability frequently arise in web applications.

The Cacheable interface

One other item of note in the borrowBoundary() method is the use of an interface

named Cacheable. This is a tagging interface, built as part of the application, that

serves as a flag to indicate which boundary classes we want to cache in the applica-

tion. This interface appears in listing 15.18.

package com.nealford.art.facade.emotherearth.util;

public interface Cacheable {

}

The Cacheable interface allows a developer to flag a particular boundary class as

one that should be cached. Because it contains no methods, its use is restricted to

acting as a discriminator via the instanceof operator. To specify that a class is

cached, the definition of the class should implement this interface:

public class ProductDb extends BoundaryBase implements Cacheable {

The borrowBoundary() method tests both the deployment flag from the servlet

context and the presence of this interface via instanceof to determine if a bound-

ary is placed in the session when it is borrowed from the pool.

Generically returning boundaries

We’ve also modified the returnBoundaries() method to accommodate the generic

boundary façade. The new method appears in listing 15.19.

Listing 15.18 Cacheable allows a boundary to specify that it should be cached.

468 CHAPTER 15

Resource management

public void returnBoundaries(HttpSession session,
 boolean preserveCachedBoundaries) {

 GenericKeyedObjectPool boundaryPool =
 (GenericKeyedObjectPool) session.getServletContext().
 getAttribute(BOUNDARY_POOL);

 boolean cacheInBoundaryInSession =
 Boolean.valueOf(session.getServletContext().
 getInitParameter(CACHE_BOUNDARY_IN_SESSION)).

 booleanValue();
 Iterator borrowedObject = borrowedObjects.iterator();
 while (borrowedObject.hasNext()) {

 Object o = borrowedObject.next();
 if (o instanceof BoundaryBase)
 if (cacheInBoundaryInSession &&

 preserveCachedBoundaries &&
 o instanceof Cacheable)
 break;

 else {
 try {
 boundaryPool.returnObject(o.getClass(), o);

 } catch (Exception x) {
 session.getServletContext().log(
 "Pool return exception: " +

 x.getMessage());
 } finally {
 borrowedObject.remove();

 }
 }
 }

}

One of the changes required in the generic façade class is the class-level member

variable that keeps track of all the objects referenced by the façade so that it can

gracefully remove them. The returnBoundaries() method receives two parame-

ters: the user’s session and a Boolean flag indicating whether the cached bound-

ary objects should be preserved. The method uses the session to gather session-

and context-level variables, and then iterates over the list of borrowed objects,

conditionally returning them based on the cache settings, whether the caller

wants the caches preserved, and the cacheability of the object. Once the objects

are returned to the pool, they are removed from the list.

 The list of borrowed objects is not necessary if the objects are cached in the ses-

sion. However, not all boundaries will be cached in the session, so an additional

Listing 15.19 The returnBoundaries() method

Caching strategies 469

reference is kept within the façade to ensure the successful return of the pooled

objects.

 The other change to the application for the generic façade appears in the Ses-

sionAttributeListener, which is also simplified. The attributeRemoved()

method shrinks to a mere two lines:

public void attributeRemoved(HttpSessionBindingEvent se) {
 BoundaryFacade facade = BoundaryFacade.getInstance();

 facade.returnBoundaries(se.getSession(), false);
}

You never want the boundaries preserved in the cache, so the Boolean parameter

is passed as false to ensure that all the objects are returned. This method serves as

insurance in case the user abandons the application and allows the session to

time out.

 The result for all the classes that use the façade is even greater simplification.

For example, each controller that needs a boundary can call the façade with the

appropriate class and call returnBoundaries() when their work is completed. All

the intelligence about caching, pooling, and other management issues is strictly

encapsulated inside the façade.

15.1.3 Resource management in frameworks

Both design patterns introduced in this chapter work well with the Model 2 frame-

works in part 2. As in the last chapter, these strategies pertain mostly to the bound-

ary and entity classes, leaving the infrastructure to the framework. The only

framework that might not benefit from these patterns is Tapestry, simply because

much of the object pooling and caching is built into that framework.

 Notice the trend in the best practices chapters thus far. Once you have a clean

Model 2 application, either with or without a framework in place, the main cod-

ing focus for resource management and optimization moves to the boundary and

entity layer. Frameworks are built to manage plumbing for you, freeing you to

focus your coding efforts on the parts of the application where you can have the

most impact. This is not an accident, but the result of using a well-thought-out

architecture like Model 2. You will also notice that the framework where most of

these optimizations aren’t possible is the non-Model 2 framework, InternetBeans

Express. While quicker to build in the initial case, the RAD framework imposes so

many restrictions that it ends up not being flexible enough.

470 CHAPTER 15

Resource management

15.2 Other resources you need to manage

The chapter has so far concentrated on memory usage; we’ve discussed several

design patterns that support caching strategies. Memory is perhaps the most

important resource you must manage. However, it isn’t the only one. You must

also be aware of other external resources, such as the JNDI lookup context for

application servers, as well as internal resources, such as the various collections.

15.2.1 Effectively using JNDI

If you use JNDI to handle database connection pooling or Enterprise JavaBeans,

you must manage the connection maintained on behalf of the user. The JNDI con-

nection to the application server is similar to a connection to a database for a

client/server application. Both handle authentication, and each takes a relatively

long time to establish.

 It is important to establish the connection to JNDI on behalf of the user and

hold that connection. Because it holds the login to the application server, the con-

nection is unique to a particular user. Thus, a connection cannot be pooled like

other objects. The typical strategy when using JNDI is to establish the connection

for the user at logon and place the context in the user’s session. This is illustrated

in the sample application from chapter 12, section 12.3.1 (the Model 2 schedule

application rewritten to use EJBs). This sample appears in the source code archive

under the name art_sched_ejb. The ViewSchedule controller servlet is a good

example of the effective use of JNDI; it appears in listing 15.20.

package com.nealford.art.ejbsched.controller;

import java.io.IOException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;
import com.nealford.art.ejbsched.model.ScheduleBean;

public class ViewSchedule extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws
 ServletException, IOException {

Listing 15.20 This controller establishes and holds the JNDI context for this user.

Other resources you need to manage 471

 Context c = establishContext(request);
 forwardToView(request, response, populateModel(c));
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws
 ServletException, IOException {
 doGet(request, response);
 }

 private void forwardToView(HttpServletRequest request,
 HttpServletResponse response,
 ScheduleBean scheduleBean) throws
 ServletException, IOException {
 request.setAttribute("scheduleBean", scheduleBean);
 RequestDispatcher rd = request.getRequestDispatcher(
 "/ScheduleView.jsp");
 rd.forward(request, response);
 }

 private ScheduleBean populateModel(Context c) {
 ScheduleBean scheduleBean = new ScheduleBean();
 scheduleBean.setContext(c);
 try {
 scheduleBean.populate();
 } catch (Exception x) {
 getServletContext().log(
 "Error: ScheduleBean.populate()");
 }
 return scheduleBean;
 }

 private Context establishContext(HttpServletRequest request) {
 HttpSession session = request.getSession(true);
 Context c = (Context) session.getAttribute("context");
 if (c == null) {
 c = getInitialContext();
 session.setAttribute("context", getInitialContext());
 }
 return c;
 }

 private Context getInitialContext() {
 Context c = null;
 try {
 c = new InitialContext();
 } catch (NamingException ex) {
 ex.printStackTrace();
 }
 return c;
 }

}

Creates and saves the
JNDI context

472 CHAPTER 15

Resource management

The establishContext() method checks to see if the context has already been

added to this user’s session. If not, it executes the relatively time-expensive opera-

tion of establishing the context and places it in the session for future use.

 Generally, in applications with a resource like JNDI, the developer provides

both a logon and a logout page to handle the resources. Of course, users aren’t

forced to visit the logout page, so it is also a good idea to create a SessionAt-

tributeListener to take care of cleaning up resources when the user’s session

times out. You still waste those resources for exactly the amount of time you have

set as the session timeout, but at least you are sure that the resources are eventu-

ally reclaimed properly.

15.2.2 Using lazy instantiation

Lazy instantiation is a resource-allocation strategy that lets you put off creating

resources until they are absolutely needed. This approach works best for relatively

heavyweight resources that may or may not be required for a user. For example,

suppose you have an administration part of your web application that must con-

nect to a variety of databases, gather a lot of records, and make web service calls,

in addition to other time-consuming stuff. Because it is used only by a handful of

users, you should put off building resources for it until they are necessary.

 This strategy runs counter to the way that most servlet engines and application

servers work. One of the keys to performance is pre-creation, pooling, and cach-

ing. Application servers can afford to do this because all the resources they allo-

cate are generally infrastructural in nature. It is a safe bet that all web applications

will need database connections, threads, and other boundary kinds of resources.

Lazy instantiation is a more useful strategy for domain-level artifacts, such as

administration modules or other resource-intensive items. This strategy presents

you with the classic trade-off of saving resources at the expense of taking more

time to deliver the resource when it is needed.

15.2.3 Working with web collections

Any Java developer who has gotten this far in our book has a good understanding

of the attribute collections available through the Java web APIs. The collections are

well documented in numerous books. However, it seems that developers are fix-

ated on the session collection as a magical repository when sometimes other col-

lections are better suited. In particular, most of the code I end up seeing makes too

little use of the request collection in favor of session. I bring this up because mis-

use of the standard collections is a classic resource waster. You should always pick

the attribute collection that has the narrowest scope that will get the job done.

Summary 473

Session cops

It is a good idea to establish the position of “session cop” on the development

team for resource-intensive web applications. This person’s duty is to monitor all

the items developers are placing in collections to ensure that the application isn’t

going to be overwhelmed when it comes time to deploy it. Specifically, the session

cop should verify that:

■ The correct collection is being used.

■ Collection attributes are cleaned up as quickly as possible.

■ Developers aren’t placing large data structures in memory that will harm

the scalability of the application.

■ Developers have a good justification for placing an object in the collection.

The session cop should warn the technical leader of the project when cross-

developer contentions over collections usage arise (for example, two groups of

developers absolutely must cache large chunks in the session, but the infrastruc-

ture can’t handle both).

15.3 Summary

The Java web APIs provide a wealth of opportunities for managing resources.

Caching is an effective way to manage resources, and two design patterns offer

good alternatives for creating caches. The Flyweight design pattern creates a col-

lection of canonical objects, which are representatives of all objects of that type.

The Façade design pattern creates a simple interface to a large number of com-

plex, interrelated classes. While Façade isn’t a caching strategy per se, it is effec-

tive for hiding the details of elaborate caching scenarios behind an easy-to-use

façade of classes.

 You must manage other resources as well, such as JNDI connections and the

standard collections. You should always save the JNDI context for the user rather

than establishing it when needed. To handle collections correctly, choose the

most suitable collection for the job at hand. Careless use of these collections can

needlessly harm the scalability of the application. The establishment of a “session

cop” to act as an application-wide overseer helps complex applications manage

resources gracefully and lets you spot problems quickly.

 In chapter 16, we look at debugging and logging in web applications.

475

Debugging

This chapter covers

■ Debugging web applications

■ Debugging with the SDK and IDEs

■ Logging with the SDK and log4j

476 CHAPTER 16

Debugging

I don’t have to tell you that debugging is a necessary evil of software development.

If by some chance you write perfect code that never requires debugging, you can

safely skip this chapter.

 Debugging web applications creates unique difficulties. The problems are not

easy to reproduce and generally don’t show up until you have a number of people

accessing the application (which typically doesn’t happen until it moves to pro-

duction). This chapter covers several avenues for debugging. First, we look at

debugging with no tools except what is provided with the Software Development

Kit (SDK). While primitive, that strategy works. Next, we look at debugging in two

different integrated development environments (IDEs): the free, open-source

NetBeans and the commercial IDE JBuilder.

 Creating application logs is the “poor man’s debugger.” Although some nega-

tive connotations surround the use of logging as a low-tech solution to chasing

bugs, it can be quite effective, particularly for distributed applications such as web

applications. It is difficult to debug an application in-place after deployment on a

server, and logging can solve this problem by providing a debugging hook no mat-

ter where the application is running. The other benefit of logging is that the code

can stay in the application after deployment and provide a constant roadmap of

problems that pop up.

 This chapter concludes with a discussion of logging techniques and how they

can provide benefits related to debugging. We cover both the logging support

built into the SDK starting with version 1.4 and the open-source log4j project.

16.1 Debugging web applications

Debugging is the bane of many a programmer’s existence and is often viewed as

an onerous chore. However, until you can write perfect code the first time, you

must debug your applications. Debugging web applications is especially difficult

for five reasons. First, a web application is distributed, which means that it will

eventually run on multiple machines. Even if you aren’t debugging it on multiple

physical machines, you are still dealing with logical machines, or boundaries

between the application and what is running the application (the browser). Sec-

ond, web applications are multithreaded. Even though the web APIs in Java effec-

tively hide almost all the threaded nature of the servlet engine from you at

development time, you must deal with it as you are debugging the application.

Local variables in Java exist in terms of the thread that owns them. Thus, you can-

not avoid threads if you need to look at the values of local variables. Some debug-

gers in IDEs simplify this task for you.

Debugging web applications 477

 Third, you don’t control the execution context of your application. By their

nature, web applications run inside the context of the servlet engine, which

does most of the method invocations for you. If you are accustomed to having

complete control over the code that executes your code, this detail results in

some frustration.

 Fourth, if you are dealing with JSPs, you don’t even have direct access to the

source code that is running. The JSP is compiled into a servlet, which is executed

by the servlet engine. You can have the servlet engine save the source code for

you, but you must perform the mapping from the generated source back to the

page where the code executes.

 Fifth, the debugger might modify the behavior of the code, making bugs dis-

appear when you’re debugging but reappear when the code is running outside

the debugger. This scenario is less common in Java than in other languages but is

still possible.

 Consider the very simple JSP in listing 16.1. Then, consider the excerpt from

the generated servlet source shown in listing 16.2.

<html>
<head>
<title>

Hello
</title>
</head>

<body bgcolor="#ffffff">
<h3>Hello!</h3>
<p>

<% for (int i = 1; i < 6; i++) { %>
 Hello for the <%=i%><%= i == 1 ? "st" : i == 2 ? "nd" :
 i == 3 ? "rd" : "th" %> time

<% } %>
</P>
</body>

</html>

// HTML // begin [file="/Hello.jsp";from=(0,0);to=(9,0)]

 out.write("<html>\r\n<head>\r\n<title>\r\nHello\r\n</title>"+
 "\r\n</head>\r\n<body bgcolor=\"#ffffff\">\r\n<h3>Hello!"+
 "</h3>\r\n<p>\r\n");

// end
// begin [file="/Hello.jsp";from=(9,2);to=(9,34)]
 for (int i = 1; i < 6; i++) {

Listing 16.1 The source for a simple Hello JSP

Listing 16.2 A portion of the servlet engine’s generated source for the Hello page

478 CHAPTER 16

Debugging

// end

// HTML // begin [file="/Hello.jsp";from=(9,36);to=(10,22)]
 out.write("\r\n Hello for the ");

// end

// begin [file="/Hello.jsp";from=(10,25);to=(10,26)]
 out.print(i);
// end

// begin [file="/Hello.jsp";from=(10,31);to=(11,33)]
 out.print(i == 1 ? "st" : i == 2 ? "nd" :
i == 3 ? "rd" : "th");

// end
// HTML // begin [file="/Hello.jsp";from=(11,35);to=(12,0)]
 out.write(" time
\r\n");

// end
// begin [file="/Hello.jsp";from=(12,2);to=(12,6)]
 }

// end
// HTML // begin [file="/Hello.jsp";from=(12,8);to=(16,0)]
 out.write("\r\n</P>\r\n</body>\r\n</html>\r\n");

// end

As you can see, the generated code is an ugly mess. At least the servlet engine is

“kind enough” to include comments that indicate the column and row where the

source originates. Debugging through a JSP by matching line numbers in the serv-

let’s source back to the JSP page is very labor intensive.

 This situation becomes even worse if you use a custom tag library, like the JSP

Standard Tag Library (JSTL). Consider listing 16.3, the revised example in which

we use JSTL to simplify the coding of the page.

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<html>
<head>

<title>
Hello
</title>

</head>
<body bgcolor="#ffffff">

<h3>Hello!</h3>
<p>
<c:forEach var="i" begin="1" end="5">

Hello for the <c:out value="${i}" />
 <c:choose>

Listing 16.3 JSTL simplifies writing the code by removing the scriptlet tags.

Debugging web applications 479

 <c:when test="${i == 1}">

 <c:out value="st" />
 </c:when>
 <c:when test="${i == 2}">

 <c:out value="nd" />
 </c:when>
 <c:when test="${i == 3}">

 <c:out value="rd" />
 </c:when>
 <c:otherwise>

 <c:out value="th" />
 </c:otherwise>
 </c:choose>

</c:forEach>
</P>

</body>
</html>

This code is a little more verbose but doesn’t suffer from mixed HTML and scriptlet

code. Generally, JSPs made with JSTL are easier to read and much easier for non-

Java programmers to understand. However, this code creates a debugging night-

mare. Consider listing 16.4, which includes only the beginning of the forEach tag

and one of the choose tags.

// begin [file="/HelloSTL.jsp";from=(10,0);to=(10,37)]
/* ---- c:forEach ---- */

org.apache.taglibs.standard.tag.el.core.
 ForEachTag _jspx_th_c_forEach_0 = new org.apache.taglibs.standard.
 tag.el.core.ForEachTag();

_jspx_th_c_forEach_0.setPageContext(pageContext);
_jspx_th_c_forEach_0.setParent(null);
_jspx_th_c_forEach_0.setVar("i");

_jspx_th_c_forEach_0.setBegin("1");
_jspx_th_c_forEach_0.setEnd("5");
try {

 int _jspx_eval_c_forEach_0 = _jspx_th_c_forEach_0.doStartTag();
 if (_jspx_eval_c_forEach_0 ==
 javax.servlet.jsp.tagext.BodyTag.EVAL_BODY_BUFFERED)

 throw new JspTagException(
 "Since tag handler class org.apache.taglibs.standard.tag."+

 "el.core.ForEachTag does not implement BodyTag, it can't "+
 "return BodyTag.EVAL_BODY_TAG");
 if (_jspx_eval_c_forEach_0 !=

 javax.servlet.jsp.tagext.Tag.SKIP_BODY) {

Listing 16.4 The generated servlet source for a JSTL page is very convoluted.

480 CHAPTER 16

Debugging

 do {

 // end
 // HTML // begin [file="/HelloSTL.jsp";
 // from=(10,37);to=(11,14)]

 out.write("\r\nHello for the ");
 // end
 // begin [file="/HelloSTL.jsp";from=(11,14);to=(11,36)]

 /* ---- c:out ---- */
 org.apache.taglibs.standard.tag.el.core.
 OutTag _jspx_th_c_out_0 = new org.apache.taglibs.

 standard.tag.el.core.OutTag();
 _jspx_th_c_out_0.setPageContext(pageContext);
 _jspx_th_c_out_0.setParent(_jspx_th_c_forEach_0);

 _jspx_th_c_out_0.setValue("${i}");
 try {
 int _jspx_eval_c_out_0 =_jspx_th_c_out_0.doStartTag();

 if (_jspx_eval_c_out_0 !=
 javax.servlet.jsp.tagext.Tag.SKIP_BODY) {
 try {

 if (_jspx_eval_c_out_0 !=
 javax.servlet.jsp.tagext.Tag.EVAL_BODY_INCLUDE) {
 out = pageContext.pushBody();

 _jspx_th_c_out_0.setBodyContent(
 (javax.servlet.jsp.tagext.BodyContent) out);
 _jspx_th_c_out_0.doInitBody();

 }
 do {
 // end

 // begin [file="/HelloSTL.jsp";from=(11,14);to=(11,36)]
 } while (_jspx_th_c_out_0.doAfterBody() ==
 javax.servlet.jsp.tagext.BodyTag.EVAL_BODY_AGAIN);

 } finally {
 if (_jspx_eval_c_out_0 !=
 javax.servlet.jsp.tagext.Tag.EVAL_BODY_INCLUDE)

 out = pageContext.popBody();
 }
 }

 if (_jspx_th_c_out_0.doEndTag() ==
 javax.servlet.jsp.tagext.Tag.SKIP_PAGE)
 return;

} finally {
 _jspx_th_c_out_0.release();
}

// end
// HTML // begin [file="/HelloSTL.jsp";from=(11,36);to=(12,2)]

out.write("\r\n ");
// end
// begin [file="/HelloSTL.jsp";from=(12,2);to=(12,12)]

/* ---- c:choose ---- */
org.apache.taglibs.standard.tag.common.core.

Debugging web applications 481

 ChooseTag _jspx_th_c_choose_0 =

 new org.apache.taglibs.standard.tag.common.core.ChooseTag();
_jspx_th_c_choose_0.setPageContext(pageContext);
_jspx_th_c_choose_0.setParent(_jspx_th_c_forEach_0);

try {
 int _jspx_eval_c_choose_0 = _jspx_th_c_choose_0.doStartTag();
 if (_jspx_eval_c_choose_0 ==

 javax.servlet.jsp.tagext.BodyTag.EVAL_BODY_BUFFERED)
 throw new JspTagException("Since tag handler class org."+
 "apache.taglibs.standard.tag.common.core.ChooseTag does not"+

 "implement BodyTag, it can't return BodyTag.EVAL_BODY_TAG");
 if (_jspx_eval_c_choose_0 !=
 javax.servlet.jsp.tagext.Tag.SKIP_BODY) {

 do {
 // end
 // HTML // begin [file="/HelloSTL.jsp";from=(12,12);to=(13,4)]

 out.write("\r\n ");
 // end
 // begin [file="/HelloSTL.jsp";from=(13,4);to=(13,29)]

 /* ---- c:when ---- */
 org.apache.taglibs.standard.tag.el.core.
 WhenTag _jspx_th_c_when_0 = new org.apache.taglibs.

 standard.tag.el.core.WhenTag();
 _jspx_th_c_when_0.setPageContext(pageContext);
 _jspx_th_c_when_0.setParent(_jspx_th_c_choose_0);

 _jspx_th_c_when_0.setTest("${i == 1}");
 try {
 int _jspx_eval_c_when_0 =

 _jspx_th_c_when_0.doStartTag();
 if (_jspx_eval_c_when_0 ==
 javax.servlet.jsp.tagext.BodyTag.EVAL_BODY_BUFFERED)

 throw new JspTagException("Since tag handler class"+
 "org.apache.taglibs.standard.tag.el.core.WhenTag "+
 "does not implement BodyTag, it can't return "+

 "BodyTag.EVAL_BODY_TAG");
 if (_jspx_eval_c_when_0 !=
 javax.servlet.jsp.tagext.Tag.SKIP_BODY) {

 do {
 // end
 // HTML // begin [file="/HelloSTL.jsp";

 // from=(13,29);to=(14,6)]
 out.write("\r\n ");
 // end

 // begin [file="/HelloSTL.jsp";from=(14,6);to=(14,26)]
 /* ---- c:out ---- */

 org.apache.taglibs.standard.tag.el.core.
 OutTag _jspx_th_c_out_1 = new org.apache.taglibs.
 standard.tag.el.core.OutTag();

 _jspx_th_c_out_1.setPageContext(pageContext);
 _jspx_th_c_out_1.setParent(_jspx_th_c_when_0);

482 CHAPTER 16

Debugging

 _jspx_th_c_out_1.setValue("st");

 try {
 int _jspx_eval_c_out_1= _jspx_th_c_out_1.doStartTag();
 if (_jspx_eval_c_out_1 !=

 javax.servlet.jsp.tagext.Tag.SKIP_BODY) {
 try {
 if (_jspx_eval_c_out_1 != javax.servlet.jsp.tagext.

 Tag.EVAL_BODY_INCLUDE) {
 out = pageContext.pushBody();
 _jspx_th_c_out_1.setBodyContent(

 (javax.servlet.jsp.tagext.BodyContent) out);
 _jspx_th_c_out_1.doInitBody();
 }

 do {
 // end
 // begin [file="/HelloSTL.jsp";from=(14,6);to=(14,26)]

 } while (_jspx_th_c_out_1.doAfterBody() ==
 javax.servlet.jsp.tagext.BodyTag.EVAL_BODY_AGAIN);
 } finally {

 if (_jspx_eval_c_out_1 !=
 javax.servlet.jsp.tagext.Tag.EVAL_BODY_INCLUDE)
 out = pageContext.popBody();

 }
 }
 if (_jspx_th_c_out_1.doEndTag() ==

 javax.servlet.jsp.tagext.Tag.SKIP_PAGE)
 return;
} finally {

 _jspx_th_c_out_1.release();
}
// end

Debugging this code is so difficult that it generally isn’t done. The generated serv-

let for the original JSP consists of 91 lines of code. The generated servlet for the

exact same page using JSTL consists of 419 lines! Of course, one of the benefits of

using custom tags is the lack of debugging required for code that is already

debugged. What about the developer who writes the custom tag and must debug

it during development?

 Now that we’ve painted an impossibly bleak picture of debugging web applica-

tions, let’s discuss some strategies for handling this chore. First, we’ll look at

debugging with just the tools supplied by the SDK, namely the jdb debugger.

Then, we’ll cover two debuggers in IDEs.

Debugging with the SDK 483

16.2 Debugging with the SDK

The SDK comes with a command-line based debugger named jdb. Using a com-

mand-line debugger to debug a distributed web application may seem like a less-

than-optimal way to spend your time. However, once you learn to use this

debugger, you can glean important information from it. Given the choice, any

developer would use a graphical debugger, such as the ones found in IDEs. How-

ever, this is exactly the reason you should at least become familiar with the SDK

debugger. Situations will arise when you don’t have access to anything but the

SDK. For example, it is unlikely that the production application server running

your application will have an IDE installed alongside your application. If you

need a quick-and-dirty look at the internals of the application, you can use the

SDK debugger. Also, if you work as a consultant, you generally don’t have a

choice of the tools that are available. Because it is part of the SDK, the jdb debug-

ger is always there for you.

16.2.1 Starting the debugger

The jdb debugger documentation is provided in the JavaDocs for the SDK and

reveals the basic details of how to start it and the available command-line options.

Two startup options exist for the jdb debugger. The jdb command can act as a

replacement for the java command to start the application. The debugger laun-

ches a debug virtual machine (VM). The other option allows you to attach to an

existing VM that is already running, either on a local or remote machine.

 If you connect to a VM running on a remote server, that VM must have started

with certain command-line options. In other words, you must have determined

that you want the remote machine to be debugged. Otherwise, anyone could

attach to any VM and start snooping around at the values of its variables. Table 16.1

shows the two options you must use to invoke the VM to enable debugging.

Table 16.1 Attachment command-line options

Option Purpose

-Xdebug Enables debugging support in the VM

-Xrunjdwp:transport=dt_shmem,server=y,suspend=n Loads the in-process debugging libraries and

selects the transport mechanism for

communication

484 CHAPTER 16

Debugging

The second option in the table specifies the default values for loading the librar-

ies. This option uses the shared memory model to exchange information, which is

available only on Windows because it uses Windows shared memory primitives to

communicate information between debugger applications and the target VM. To

launch the VM in debug mode, use a command line like this (on a single line):

java -Xdebug -Xrunjdwp:transport=dt_shmem,address=jdbcon,server=y,
 suspend=n MyClass

Once the application is running, you can start the debugger and attach to it with

the following command line:

jdb -attach jdbcon

where jdbcon is the address specified with the VM that was invoked.

 Using shared memory isn’t possible when the VM runs on a remote machine.

The other transport mechanism, dt_socket, is available for all platforms and for

cross-machine communication. It allows the debugger and VM to communicate

via a socket. This mechanism takes advantage of the Java Platform Debugger

Architecture (JPDA) and command-line options. To launch a debug session using

socket transport, use a similar syntax to the one shown earlier but with dt_socket

as the transport parameter. A large number of tuning options exist for the second

parameter passed to the VM; they are summarized in table 16.2.

Table 16.2 jdwp options

Name Required? Default Value Description

help No none Prints a brief help message and exits the VM.

transport Yes none Contains the name of the transport you want to use

when connecting to the debugger.

server No n If y, listens for a debugger application to attach;

otherwise, attaches to the debugger application at

the specified address. If y and no address is speci-

fied, chooses a transport address at which to listen

for a debugger application, and prints the address

to the standard output stream.

address Yes, if

server=n;

no, otherwise

Contains the transport address for the connection.

If server=n, attempts to attach to debugger appli-

cation at this address. If server=y, listens for a

connection at this address.

continued on next page

Debugging with the SDK 485

As an example, this command line (invoked on a single line) enables debugging

with socket transport on a server using socket 8000:

java -Xdebug -Xrunjdwp:transport=dt_socket,
 server=y,address=8000 MyClass

The options listed in table 16.2 apply to the starting of the VM that hosts your

application. In a web application, the servlet engine governs that VM. Different

servlet engines have different startup semantics, but most allow you to modify the

startup parameters (and frequently the complete command line). In that case,

launch No none At completion of Java Debugging Wire Protocol

(JDWP) initialization, launches the process given in

this string. This option is used in combination with

onthrow and/or onuncaught to provide just-in-

time debugging, in which a debugger process is

launched when a particular event occurs in this VM.

onthrow No none Delays initialization of the JDWP library until an

exception of the given class is thrown in this VM.

The exception class name must be package-quali-

fied. Connection establishment is included in JDWP

initialization, so it will not begin until the exception

is thrown.

onuncaught No n If y, delays initialization of the JDWP library until an

uncaught exception is thrown in this VM. Connec-

tion establishment is included in JDWP initializa-

tion, so it will not begin until the exception is

thrown.

stdalloc No n By default, the JDWP reference implementation

uses an alternate allocator for its memory alloca-

tion. If y, the standard C runtime library allocator

will be used. This option is mainly for testing; use it

with care. Deadlocks can occur in this VM if the

alternative allocator is disabled.

strict No n If y, assumes strict Java Virtual Machine Debugging

Interface (JVMDI) conformance. This will disable all

workarounds to known bugs in JVMDI implementa-

tions. This option is mainly for testing and should

be used with care.

suspend No y If y, VMStartEvent has a suspendPolicy of

SUSPEND_ALL. If n, VMStartEvent has a sus-

pendPolicy of SUSPEND_NONE.

Table 16.2 jdwp options (continued)

Name Required? Default Value Description

486 CHAPTER 16

Debugging

you can either substitute the command options listed in the table or change the

invocation of the servlet engine from java to jdb.

 The servlet engine used for most of the examples in this book is Tomcat, cur-

rently at version 4. The developers of Tomcat anticipated the need to use jdb to

debug web applications, so the startup batch file (named Catalina.bat) includes a

debug command-line option. If you invoke Tomcat with this switch, you’ll see the

results shown in figure 16.1.

16.2.2 Running the debugger

Once you start the debugger, it pauses, waiting for the next command. It does

not actually invoke the servlet engine yet. There is a possibility that you’ll want

to investigate some options (like classpath) or set a breakpoint before the appli-

cation starts. To see a list of all the commands available for the debugger, enter a

question mark at this prompt. A small portion of this list of commands appears

in figure 16.2.

 The first command runs the application. Invoking the run command starts the

servlet engine, and you will see the normal startup logging information for the

servlet engine. At that point, you can invoke one of the applications through a

browser. Table 16.3 summarizes some important debugger options.

 Notice that the first few commands (thread, threads, resume, suspend) pertain

to threads. Because the servlet engine is multithreaded, you must discover the

Figure 16.1

Starting Tomcat with the

debug option prints

configuration information and

pauses at a command prompt

for the debugger.

Figure 16.2

The help command (a

question mark) lists all the

commands available for

the debugger.

Debugging with the SDK 487

Table 16.3 Useful debugger commands

Command Description

run [class [args]] Starts execution of the application’s main class.

threads [threadgroup] Lists all the threads in the application, both running

and suspended.

thread <thread id> Sets the default thread.

suspend <thread id> Suspends threads (the default suspends all

threads).

resume [thread id(s)] Resumes threads (the default resumes all threads).

where [thread id] | all Dumps a thread’s stack.

up [n frames] Moves up a thread’s stack.

down [n frames] Moves down a thread’s stack.

kill <thread> <expr> Kills a thread with the given exception object.

print <expr> Prints the value of an expression.

dump <expr> Prints the information for an entire object.

set <lvalue> = <expr> Assigns a new value to a field/variable/array ele-

ment.

locals Prints all local variable information.

fields <class id> Lists a class’s fields.

stop in <class id>.<method>[(argument type,

…)]

Sets a breakpoint in a method (if the method is over-

loaded, you must supply the parameter signature).

stop at <class id>:<line> Sets a breakpoint at a particular source line.

clear <class id>.<method>[(argument type, …)] Clears a method breakpoint.

clear <class id>:<line> Clears a line number breakpoint.

catch [uncaught|caught|all] <exception class id> Breaks when an exception occurs.

watch [access|all] <class id>.<field name> Sets a watch for access/modification to a field.

unwatch [access|all] <class id>.<field name> Cancels the watch previously set.

trace methods [thread] Traces method entry and exit.

step Executes the current line.

step up Executes until the current method returns.

next Steps one line (steps over method calls).

cont Continues execution from a breakpoint.

continued on next page

488 CHAPTER 16

Debugging

thread ID that your application is using. Issuing the threads command shows you

all of the currently running threads in the servlet engine. A sample invocation of

this command appears in figure 16.3.

 A hexadecimal number appearing on the left-hand side of the output identi-

fies the threads. To find the one for your application, look for the name on the

right and match it with the thread ID on the left. Matching the rows exactly is dif-

ficult if you have a large number of entries. In Windows, you can enable the mark

list [line number|method] Prints the source code.

use (or sourcepath) [source file path] Makes the source code accessible for listing.

classpath Prints the current classpath information.

pop Pops the stack through and includes the current

frame.

redefine <class id> <class file name> Redefines the code for a class.

!! Repeats the last command.

<n> <command> Repeats the command n times.

help (or ?) Lists all commands.

exit (or quit) Exits the debugger.

Table 16.3 Useful debugger commands (continued)

Command Description

Figure 16.3 The threads command shows all currently running threads in the servlet engine.

Debugging with the SDK 489

feature of the console window to highlight the row, which makes it easy to match

the web application name to the thread. The thread ID for your application is

important because most of the other commands are thread-centric, meaning that

you must specify a thread ID along with the command. Another useful command

is thread, which allows you to set a thread as the default thread for this debug-

ging session.

 One of the important options in the debugger lets you list portions of your

source code while the application is running. To enable this option, you must set

a path to your source files. You set the source path on the command line using the

sourcepath command-line option. However, if you don’t have direct access to the

command line (which is often the case for servlet engines), the sourcepath

debugger command allows you to set this option after the debugger has started.

16.2.3 Breakpoints and steps

Breakpoints are set at the method level, on a line number, or for an uncaught

exception. To set a breakpoint, you issue the stop in, stop at, or catch com-

mand. In figure 16.4, we’ve set a line number breakpoint before the execution of

the application.

 After you run the servlet engine (via the run command), you can access your

web application from a browser and interact with it until you reach the class con-

taining the breakpoint. At that point, the application will stop and allow you to

analyze it. For information purposes, you can issue a list command to see the

context in which the breakpoint occurred. Figure 16.5 shows a breakpoint hit, fol-

lowed by a list command that reveals the context.

 Now that the application is stopped, you can step through it to investigate

variable values and other characteristics. The step command moves you to the

next line of code and enters methods if the current line features a method call. If

you don’t want to trace into a method, use the next command instead. The

thread command is important here. If you haven’t set a default thread for the

application, then step and next will take you to the next line of code to be exe-

cuted by the servlet engine, which is likely to be in another web application (or

Figure 16.4

Breakpoints are best set

before the beginning of the

application’s execution.

490 CHAPTER 16

Debugging

in the servlet engine code itself). Using the thread command keeps the execu-

tion context within the current thread (although the other threads continue to

run—you just don’t step or trace through them).

 Once you have stepped through the code, you can issue the cont command to

continue execution at full speed. The servlet engine will execute code until it hits

another breakpoint. You must keep an eye on the browser as you are running the

debugger. If you execute enough code to complete the request, the debugger is

no longer stopped in a thread. It waits on the user of the application to do some-

thing that it can debug again.

16.2.4 Accessing variables

When the debugger stops at a breakpoint, you need to access the values of vari-

ables to understand what your application is doing. Several commands are avail-

able for printing out the values of variables and expressions. The locals command

prints out the values of the local variables in scope for the current thread. The

results of this command are shown in figure 16.6.

 The locals command shows the values of the primitives and the class type of

the object references. If you want to further investigate the object references, use

the dump command. It allows you to access more details on variables and fields.

Figure 16.7 shows an invocation of the dump command.

Figure 16.5 The breakpoint halts the application and the list command shows the current

execution context.

Figure 16.6

The locals command

prints a list of all the local

variables in scope for the

current thread context.

Debugging with the SDK 491

When viewing the “dump” of the ProductDb instance, you can see the values of all

the fields. The primitives and strings display their values, and the object refer-

ences show their class type and reference ID. Using the dump command, you can

further drill into the fields of the object. For example, you can investigate the

properties of the productList variable inside the productDb instance. This debug-

ger (like all debuggers in Java) allows you to see the values of private member vari-

ables, which are normally inaccessible.

 The syntax for dump (as well as some of the other investigative commands)

also accepts an expression. You can use any legal Java expression that eventually

returns a value represented as a string. Even if you return object references, the

debugger can call the toString() method on them. Figure 16.8 shows the results

of two such invocations of the dump command. The first dumps the contents of

the outputList variable. The second invocation evaluates an expression for the

contents of the first element of the list. Notice that type casts, method calls, and

other legal Java syntax is permitted with this command.

Figure 16.7 The dump command allows you to investigate the contents of

object references. In this case, it shows all the fields of the ProductDb

class, including the values of the primitives and strings.

Figure 16.8

The dump command in conjunction

with expressions is a powerful way to

determine the contents of variables,

including values that require method

calls to retrieve.

492 CHAPTER 16

Debugging

16.2.5 Effectively using jdb

The previous sections provided numerous details about the commands in jdb.

However, discussing the commands doesn’t provide a roadmap for effective use.

The following section walks through a debug session with jdb and provides a rec-

ipe for interactions with this debugger.

 First, start the servlet engine using the debug flag. This step may be as easy as

running Tomcat with the debug command-line option or as difficult as editing a

startup configuration file to replace java with jdb. In any case, you should get to

the point where the debugger is running in a console window. Once it has com-

pleted initializing, use the sourcepath or use command to point to the source code

for your project. This is a reference to the source root path for your code. Next, set

one or more breakpoints at methods, line numbers, or exceptions. Then, run the

servlet engine with the run command.

 Once the servlet engine is running, you can determine the thread ID for your

application via the threads command. Once you have the thread ID, use it to set

the default thread via the thread command. Next, invoke your application

through a browser and interact with it until you reach code that will trigger a

breakpoint. The browser will “hang,” waiting for the servlet engine to complete

the request. Go to the debug window and use the commands for determining val-

ues and stepping through code to determine what the bug is and how to fix it. If

you need to make a change to one of the source files, you can change it, recom-

pile it, and use redefine to load the new class into memory. Continue this process

until your application is bug free.

 Here is a quick summary of the process we’ve outlined in this section:

1 Start the servlet engine in debug mode.

2 Attach to the source path for your code.

3 Set one or more breakpoints, either on line numbers or contingent on

method invocations.

4 Run the application.

5 Find the thread ID for your application.

6 Set it as the default thread.

7 Invoke your application in a browser and interact with it until you hit a

breakpoint.

8 Use step and/or next to walk through your code.

9 Use dump, locals, and eval to analyze your variables.

Debugging with IDEs 493

10 If you need to make a small change to a file and test it, use redefine to

load the new class file.

11 Use cont to resume execution of the application until the next break-

point.

12 Iterate until done.

Of course, jdb would not be most people’s first choice as a debugger for Java

applications. Using it is labor intensive and time consuming. While it does provide

most of the information that more sophisticated debuggers give you, it is harder

to access because of the command-line nature of the tool. However, being familiar

with its use may be a lifesaver because it is the only debugger that you know for

sure will always be present.

16.3 Debugging with IDEs

A lot of Java development, especially web development, may be done without elab-

orate IDEs. With a good text editor and Ant, developers can build an effective

development environment. This process is more labor intensive because the

developer must configure everything by hand, but it also provides the ultimate

amount of control. However, one area where you need an IDE is for debugging.

16.3.1 Debugging with NetBeans

NetBeans is an open-source Java IDE available from www.netbeans.org. Its code

base originated with Forte for Java, although it has been heavily modified since

those roots and is now called SunONE Studio. It is owned by Sun Microsystems

and serves as the basis for its commercial IDE. However, the core IDE is open

source and freely available.

 NetBeans is modular, with a variety of add-ons that you may install. Some of

these plug-ins enhance the web development and debugging support in Net-

Beans, including adding support for such tasks as debugging in JSPs. NetBeans

supports all the same operations as the jdb debugger, but in a much friendlier and

intuitive environment. The examples shown in this section assume that you’ve

installed the latest web development plug-ins.

Starting the debugger

To start debugging a web project in NetBeans, you have to import the application

into the NetBeans IDE. This is a straightforward and well-documented process, so

I won’t cover it here. Once you’ve imported the project, create a web module that

494 CHAPTER 16

Debugging

points to the document root of your project’s web application. The base eMother-

Earth project is the subject of debugging for this example; the NetBeans Explorer

view of this project is shown in figure 16.9.

 When you choose to debug a web project, NetBeans will automatically launch

Tomcat for you from within the environment. Once the application is running,

NetBeans switches over to the debug view, which appears in figure 16.10.

 The NetBeans debug environment is customizable. The left-hand side features

properties sheets for a variety of views. The buttons at the top of the view act as

toggles to turn properties sheets on and off. From left to right, this tool allows you

to see data on sessions (an instance of the servlet engine running), threads, the

call stack, local variables, “all in one” (a view of multiple pieces of information in

one page), watches, loaded classes, breakpoints, and properties. The view in

figure 16.10 has local variables, watches, and breakpoints toggled on. The right-

hand side of the environment shows the source code. In figure 16.10, the editor is

stopped on a breakpoint on line 36. The bottom right-hand side shows the output

from Tomcat that you would normally see at the command prompt. The toolbar

buttons at the top right allow you to control execution, with Step Over, Step Into,

Step Out, and Continue Execution. Buttons also appear here for adding new

breakpoints and watches.

Watches

NetBeans allows you to set watches for variables and expressions. The watches

appear in the left-hand side pane when the Watches button is toggled on. The

watches show the name, type, and value of the variable. For primitives and strings,

the value displays the actual values, and for objects an identifier is shown that cor-

responds to the object instance. There is no intrinsic meaning to this value, but it

Figure 16.9

The web module in NetBeans points to the document root

of your web application and also includes a link to the

project source for compilation purposes.

Debugging with IDEs 495

can be used to determine whether two objects point to the same memory loca-

tion. The Watches pane is shown in figure 16.11.

 The toolbar buttons on the left, under the view toggles, allow you to specify

which aspects of variables you’ll see. For example, notice in figure 16.11 that the

Figure 16.10 The NetBeans debug view features status sheets along the left, and code and command-line

output along the right. The tool buttons at the top allow for code execution.

Figure 16.11

The Watches pane shows the

variable (both primitives and

objects), the type, and the

current value.

496 CHAPTER 16

Debugging

super class appears, along with all fields of the object, both private and public. You

can set toggles to only display variables of a certain scope and restrict the view of

the super class reference.

Local variables

Watches are fine for values that you want to watch change over time. However,

suppose you only care about the current value of a variable or field. NetBeans

allows you to see the values of variables by moving the cursor over them in the edi-

tor and pausing. Figure 16.12 shows this effect in the source editor.

 The other way to learn the values of local variables is to check the pane dedi-

cated to them on the left. Figure 16.13 shows the Local Variables pane.

Breakpoints

You set breakpoints in NetBeans by clicking in the editor’s gutter next to the line

of code. The breakpoints show up as highlighted lines. Figure 16.10 shows a

breakpoint set on a line in a servlet. NetBeans also allows you to set breakpoints in

JSP pages. Figure 16.14 shows two breakpoints set in a JSP, followed by the execu-

tion line. NetBeans allows you to set breakpoints and single-step through code in

Figure 16.12 To see the value of a variable in the editor, you can position your mouse cursor

over it and pause, and the value will appear.

Figure 16.13

The Local Variables pane shows

the values and types of all

variables currently in scope.

Debugging with IDEs 497

JSPs. It also lets you see the corresponding line of code in the generated servlet. If

you expand the breakpoint view, it shows the line number in the generated serv-

let, and you can double-click on it to go to the code.

Other tools

NetBeans also includes a tool named HttpMonitor, shown in figure 16.15. It shows

you information about the HTTP aspects of your running application, such as the

cookies, the values of variables maintained by the servlet engine, and other data.

This tool launches automatically when you debug a web application, or you can

select it from the Tools menu.

Debugging with NetBeans

Debugging an application in NetBeans is obviously easier than the command-line

jdb debugger. The tool consolidates information and places it at your fingertips

instead of forcing you to wrestle with a command line. With plug-ins available that

support web development, NetBeans makes a nice environment for developing

Figure 16.14 NetBeans allows the developer to set breakpoints on code in a JSP.

498 CHAPTER 16

Debugging

and debugging web applications. It is one of the better open-source IDEs for debug-

ging tasks.

16.3.2 Debugging with JBuilder

Having looked at the open-source world of web application debugging, let’s now

turn to the commercial world. Borland’s JBuilder is widely regarded as the best

overall Java development environment, and it is one of the finest developer IDEs

on the market for any language. From a cost standpoint (over two thousand dol-

lars for the Enterprise Edition), it lies on the other end of the spectrum from the

open-source NetBeans IDE. JBuilder does have a free Community Edition, but it

doesn’t support web development or debugging, so we’re using the Enterprise

version for this section.

Projects

As with other IDEs, you must first establish a context for your application. In

JBuilder, this is done with a project, which encapsulates such information as the

paths (source path, classpath, etc.) used for the application. The project also spec-

ifies the target VM (any VM can be targeted from JBuilder). In addition, a project

lets you establish what JBuilder calls “libraries.” Libraries are root directories or

JAR files containing classes that you can add to a project in order to utilize their

code. JBuilder takes the libraries for the project and places the corresponding

classes on the classpath for the compiler and VM when it runs the project.

 JBuilder supports a variety of application servers and servlet engines. You can

specify the server you want to use in the Project Properties dialog box, shown in

figure 16.16. JBuilder allows you to run projects under different application

Figure 16.15

The HTTPMonitor tool

shows numerous web

aspects of your running

application, including

attributes and parameters.

Debugging with IDEs 499

servers so that they don’t interfere with one another. Once you have established

an application server for a project, JBuilder runs the project within the IDE using

that application server. This means that you can set breakpoints and otherwise

debug your application regardless of which server the project uses. Testing (and

debugging) the application under a different application server is as simple as

changing a project setting. JBuilder makes it easy to move from one application

server to another.

 Even if you are using a servlet engine or application not natively supported by

JBuilder, you can still set up JBuilder to run the application server within the envi-

ronment (which in turn allows you to debug your application within that environ-

ment). You specify the run context for a project in the project’s properties, which

in turn encapsulates the run configurations for that project. Each project can have

an unlimited number of runtime configurations, allowing you to specify main

classes, parameters, and other execution information. To enable JBuilder to run

an application server that it doesn’t natively support, you must know the startup

class name and the required parameters to start the server. If you already know

how to start the server from a command line, you probably already know enough

to incorporate it into JBuilder.

 For example, as of this writing Macromedia’s JRun server is not natively sup-

ported by JBuilder. To set up a web application for debugging using JRun, you

need the JRun libraries, the name of the main JRun class, and the application’s

Figure 16.16

JBuilder’s Project

Properties dialog box lets

you assign the application

server and its

characteristics on a project-

by-project basis.

500 CHAPTER 16

Debugging

startup parameters. Include the JRun libraries in the properties for the project,

and then open the Runtime Configuration Properties dialog box. Figure 16.17

shows this dialog box after we added JRun’s information. The configuration infor-

mation for JRun is summarized in table 16.4.

 Since JBuilder isn’t built with prior knowledge of JRun, you must also create a

runtime configuration to stop the server. The only difference between the start

and stop runtime configuration is that you include the stop flag instead of start.

Figure 16.18 shows the eMotherEarth application running in debug mode inside

JBuilder, which launched the JRun server from within the environment.

 This flexibility is an important feature. JBuilder is designed to support capabil-

ities beyond those built in by the JBuilder development team. It is a hallmark of a

well-designed application when you can extend it gracefully, using the framework

that is already in place.

Table 16.4 The JRun configuration information

Configuration Item Value

JRun libs directory (used to create a JBuilder library) {jrun.home}\lib

Main class jrunx.kernel.JRun

Application parameters: to start and specify the server -start emotherearth

Figure 16.17

Setting up alternate servers requires setting the main

class name and the required parameters.

Debugging with IDEs 501

Starting the debugger

JBuilder’s debug command launches the VM with the debugging information you

specified, automatically supplied on the command line. When you run the appli-

cation in the debugger, JBuilder’s message pane at the bottom of the screen adds

new tabs along the left-hand side. You can see the new tabs in figure 16.18. The

content of these tabs is summarized in table 16.5.

Figure 16.18 Here JBuilder debugs the eMotherEarth application running in JRun (launched from JBuilder).

Table 16.5 The debug view tabs in JBuilder

Tab Description

Console Output Shows the console window output from the application server. If

another tab is selected when new output appears, this tab glows

green.

Threads Shows the running threads and all local variables in scope for that

thread.

continued on next page

502 CHAPTER 16

Debugging

JBuilder supports all the common behaviors of IDE-based debuggers. It allows you

to view the output console, set watches, create breakpoints using a variety of crite-

ria (five different ways in all), and view threads. These are all features that

JBuilder has in common with NetBeans, so we won’t bother to highlight them

here. The user interface you use to get to these elements is slightly different, but

the functionality is the same. For example, both debuggers allow you to float your

cursor over a variable to see its current value.

16.3.3 Differences between debuggers

Let’s now focus on the ways that JBuilder significantly differs from NetBeans. Each

of the tabs in the JBuilder message pane is detachable. Simply right-click on any

of the tabs (except the Console tab) and detach it via the pop-up menu into a

floating window. This feature comes in handy when you want to see two pieces of

information maintained by debugger tabs simultaneously. For example, if you

want to see the watch values and the console at the same time, float and dock each

of these tabs independently.

Investigating values

The thread view in JBuilder contains a vast amount of information about the run-

ning application. Local variables in Java are kept in the thread’s stack frame, so

looking at the characteristics of a thread also reveals information about the vari-

ables the thread owns. Figure 16.19 shows the thread view in JBuilder.

 The threads appear in the left-hand pane, and the variables referenced by

each thread appear on the right. The object references on the right are in outline

form and you can expand a reference to display the values of the variables. Unlike

NetBeans, JBuilder shows you the drilled-into values of the objects right from this

thread view in addition to the internal ID of the object reference. This view is use-

ful because it consolidates so much information into a small place.

Watches Shows the values of the watches that have been set.

Loaded Classes Shows a list of all classes that have been loaded by the

application.

Breakpoints Shows details of all breakpoints that the user has set.

Classes With Tracing Disabled Shows a list of classes flagged to disable tracing. This tab allows

you to flag some classes (like the ones from the SDK) that you

don’t want to accidentally step into.

Table 16.5 The debug view tabs in JBuilder (continued)

Tab Description

Debugging with IDEs 503

Another useful view in JBuilder is the loaded classes view, shown in figure 16.20.

This view consists of an outline of all the classes loaded by the application, catego-

rized by package. Each class view in turn displays the values of the class-level vari-

ables defined in that class. This view is handy for debugging dynamic class loading,

particularly when you’re using a factory class to load other classes.

Evaluate and modify

Perhaps the most powerful of JBuilder’s debugging views is the Evaluate/Modify

dialog box, which you open by selecting Evaluate/Modify from the Run menu.

This dialog box allows you to evaluate variables and expressions while the debug-

ger is stopped on a breakpoint. As you can see in figure 16.21, the dialog box

Figure 16.19 The thread view in JBuilder shows both the stack frame and values of all variables referenced by

that thread. You can expand each of the object references to show its contents.

Figure 16.20 The loaded classes view shows you a summary of all the

classes used by the application in addition to class-level values of variables.

504 CHAPTER 16

Debugging

shows the typical JBuilder view of an outline of the fields of an object reference. In

figure 16.21, we are evaluating a List object. The Evaluate/Modify dialog box lets

you drill all the way to the contents of the list.

 The ability to view the list contents is useful in its own right. However, this dia-

log box goes even further. One of the compelling reasons to use IDEs for Java

development is the help they provide while you’re coding. Every environment has

its own copyrighted name for this feature; JBuilder calls it Code Insight. You enter a

Figure 16.21

The Evaluate/Modify dialog box allows you to

view the contents of any field or local variable.

Figure 16.22 Code Insight in JBuilder extends all the way into the

expression field of the Evaluate/Modify dialog box.

Evaluating debuggers 505

variable name, followed by a period, and you can view a list of all the fields’ meth-

ods available for that object. Once you get used to this feature, you’ll find it hard

to work without it.

 JBuilder goes even further with Code Insight, extending it into the debug dia-

log box. The Evaluate/Modify dialog box supports Code Insight in the Expression

text box at the top. As you are typing in expressions to evaluate, it provides a list of

the available methods, as shown in figure 16.22.

 One more feature of this dialog box is worth mentioning. The Expression text

box takes an expression, which can be an arbitrarily complex Java expression.

With the help of Code Insight, you can build complex expressions for evaluation

during your debug session. This feature lets you dynamically investigate the con-

text of your application, as illustrated in figure 16.23.

16.4 Evaluating debuggers

Debugging is one aspect of development—particularly in the area of web applica-

tions—where proficiency is critical to the success of the project. Which debugger

should you use, given the spectrum of choices? Several factors should influence

your decision.

 If you are interested in a no-cost debugger, you can choose between the SDK

debugger or one of the open-source offerings. The SDK debugger is for hard-core

command-line junkies. While you can use it to glean useful information, it is

much more labor intensive than the IDE-based alternatives. However, proficiency

using the SDK debugger is important. It is the only debugger that you know will

always be available. And, it may be your only choice when you need quick-and-

Figure 16.23

The Expression field of the

Evaluate/Modify dialog

box can include complex

Java expressions.

506 CHAPTER 16

Debugging

dirty debugging of a deployed application that’s running on servers far away from

your IDE of choice.

 If you are considering either the open-source or free world, I think that open

source is better. Getting the project set up to run in the IDE takes a little effort,

but it is a one-time operation and you more than make up for it in the time you

save using the debugger. Debugging is a task that requires a wide variety of dispar-

ate information, and an environment that organizes information that makes it

easier to see saves time and effort. We’ve discussed NetBeans, but of course it is

not the only open-source debugger. In fact, the debuggers in Java generally have

improved significantly of late, so it is rare to find a truly deficient one.

 For the ultimate in productivity and flexibility, you can’t beat commercial IDEs.

These products are more polished and generally easier to set up and run than the

open-source or free offerings. The great ones are well designed enough to offer

extreme flexibility. Almost every commercial IDE extends beyond the open-source

alternatives in the niceties associated with debugging. In other words, all the mod-

ern debuggers support watches, breakpoints, and the other tasks common to all

debuggers. The commercial products generally go beyond the base capabilities;

for example, JBuilder (which I personally like the best) offers views that consoli-

date a valuable combination of information. A variety of commercial products are

available (some based on open-source IDEs) that offer similar advantages.

 The real question is whether it’s worth the extra money to get an IDE for

debugging. I would have to say yes. The answer to this question lies in the value of

developer time. Paying developers is expensive. If you can provide a tool to make

them more productive—even 10 percent more productive—it will always pay off

in the end. The initial cost of a commercial IDE pales in comparison to the

months and years spent paying the salaries of developers.

16.5 Debugging in frameworks

In part 2, we discussed the debugging aspects of each framework in turn. How-

ever, this seems like a good place to summarize that information. Ease of debug-

ging is one of the evaluation criteria for choosing a framework.

16.5.1 Struts

Debugging in Struts is essentially the same as debugging any other Model 2 appli-

cation because the framework is so relatively lightweight. Struts includes no addi-

tional debugging support (like Tapestry’s Inspector) but doesn’t really need it.

Debugging in frameworks 507

 One shortcoming that Struts shares with all JSP custom tag–based frameworks

is the inability by debuggers to evaluate the custom tags within the JSP. You can

single-step through the code in the generated servlet, but that code is so convo-

luted that rarely will anything of value will emerge.

16.5.2 Tapestry

Tapestry has good support for debugging, including specialized tools. The stack

traces delivered to the browser are very informative; they contain both Tapestry

internal messages and the full Java stack trace, so you can track down bugs. The

Inspector tool included with Tapestry makes it easy to discover information about

the interaction of the framework and the web API it encapsulates. The exception

pages in Tapestry are state of the art, unwinding nested exceptions automatically.

When you’re using Tapestry and you get an exception, you may find the volume

of information generated overwhelming. However, more information is always

better than less. Some developers are moving to Tapestry just because the debug-

ging support is so good. The next version of Tapestry (version 3) includes even

better debugging support.

 It is easy to debug JSPs in Tapestry because it doesn’t use them! All the code in

Tapestry is embedded in the framework itself, so there is never a need to try to

debug a custom tag.

16.5.3 WebWork

WebWork includes no specific special support for debugging. In particular, it

would be useful if it provided some mechanism (like Tapestry’s Inspector) for

looking at the value stack because so much of WebWork’s behavior revolves

around it. WebWork makes extensive use of custom JSP tags, which causes a prob-

lem for debuggers because it is difficult to debug custom tags. This difficulty is

particularly acute in WebWork because the custom tags interact so much with the

built-in data structures.

16.5.4 InternetBeans Express

Debugging InternetBeans Express typically involves using JBuilder’s debugger

(because InternetBeans Express is only available with JBuilder). The stack traces

and other information provided by this framework are detailed and to the point.

The event-driven nature and reliance on postback servlets makes debugging a lit-

tle tricky because you must fight with the framework’s use of event handlers. How-

ever, this is more a characteristic of the framework itself, not of debugging per se.

508 CHAPTER 16

Debugging

16.5.5 Velocity

The worst part of debugging Velocity is the lack of an interactive debugger for the

Velocity Template Language. It forces you into an iterative “hunt and destroy”

method of debugging. It is possible to set breakpoints in the Velocity servlet, but

doing that doesn’t give you access to the template language.

 In Velocity’s defense, it is not a complex framework, so there really isn’t much

to debug. I can’t remember struggling with Velocity trying to get things to work

and needing more extensive debugger support. Simplicity is its redeeming feature.

16.5.6 Cocoon

Debugging Cocoon is difficult because it is a dual-purpose framework: part pub-

lishing engine and part web framework. The error messages are particularly non-

intuitive, and it is frequently difficult to determine if the message relates to the

publishing side or the framework side. Cocoon relies on the complex sitemap

configuration document, which is unforgiving of errors. The messages generated

when errors occur are not very intuitive.

16.6 Logging

Logging is in some ways related to debugging. Before there were IDEs (when all

development was done with code editors), logging was one of the key weapons

against bugs. One of the better quotes advocating logging as a debugging tech-

nique comes from the book The Practice of Programming, by Brian Kernighan (one

of the fathers of the C language) and Rob Pike:

As personal choice, we tend not to use debuggers beyond getting a stack trace or
the value of a variable or two. One reason is that it is easy to get lost in details of
complicated data structures and control flow; we find stepping through a pro-
gram less productive than thinking harder and adding output statements and
self-checking code at critical places. Clicking over statements takes longer than
scanning the output of judiciously placed displays. It takes less time to decide
where to put print statements than to single-step to the critical section of code,
even assuming we know where that is. More important, debugging statements
stay with the program; debugging sessions are transient.

Logging first came to prominence in Java with the open-source log4j package,

hosted on the Jakarta web site. However, with the release of the 1.4 SDK, logging

is now part of the core Java Runtime Environment (JRE). Let’s look at logging

Logging 509

with both these APIs and see how to use this tried and true technique to improve

your applications.

16.6.1 General logging concepts

Developers have written log packages for decades and have learned some best

practices and patterns that make their packages more powerful and easier to

configure. Both of the packages covered in this chapter take advantage of these

best practices.

Hierarchies

When working with logging packages, you should understand the concept of a

hierarchy of loggers. Frequently, several logging jobs exist in your application. It

would be nice if you could create various loggers, each focused on a particular

job. Creating logger hierarchies allows you to do this. Both logging packages that

we discuss here use the Factory design pattern to deliver a logger object to you.

The creation of the logger associates a name with the logger instance. For exam-

ple, you could create a logger named com.nealford.art.db that deals strictly

with database methods. At the same time, you could create another logger

named com.nealford.art.web that deals with the web aspects of your applica-

tion. Neither of these loggers will interfere with each other, even if they appear

in the same class.

 This approach results in a flat hierarchy of logger objects. However, Java

already features a well-defined hierarchy for its classes. Rather than tie the loggers

to a particular task, you can instead use the names of classes, including the pack-

age names, to define your hierarchy of loggers. It is likely that your database

classes exist in common packages, so using the package structure would automati-

cally create loggers for database access.

 The other enabling factor that makes it popular to use the fully qualified name

of a class (i.e., the package name and class name) is the behavior of loggers cre-

ated for higher-level classes. Each logger keeps track of its “parent” logger, which

is the logger one level higher in the namespace hierarchy. Loggers in Java “know”

about package name hierarchies. In other words, it is assumed that the loggers

themselves will be named with the dot notation common in Java packages.

 For example, if you have a logger named com.nealford.art.emotherearth.log-

ging.boundary, its parent logger would be com.nealford.art.emotherearth.log-

ging. Changes to the parent logger will flow down the hierarchy to the child

loggers. If we set the logging level of the parent logger to a value (for example,

Level.SEVERE), the child logger will automatically take that setting if it doesn’t have

510 CHAPTER 16

Debugging

its own setting. This hierarchy exists for all sorts of configuration elements of log-

gers. It allows the developer to make broad changes to the characteristics of a large

number of loggers just by changing properties of loggers higher in the hierarchy.

Regardless, any child logger can override a setting inherited by a parent by setting

its own value for that property. You may decide that there are some events that must

have log entries that occur in classes deep in the package hierarchy. You can set

properties for such classes and not affect the other classes at the same level that

inherit their logging characteristics.

 Both the SDK logging and log4j use the same kind of hierarchy of loggers.

Once you understand how the logger hierarchy works, you’ll find it to be a power-

ful mechanism because it lets you control large sections of your logging behavior

with a few changes.

Levels

While you are debugging an application, you want to have as much information

as possible about the objects and events in the application. However, once it is

debugged and in production, you only want to be notified when critical errors

and situations arise. It is too cumbersome to add logging code for debugging

and later strip it out for production—you may need that code again to investi-

gate problems.

 Modern loggers handle this by defining levels of logging. Logging activation is

encapsulated into a Level class in both logging packages. Differences exist in the

Level class implementations, but the semantics are basically the same. The levels

defined by the SDK appear in table 16.6.

Table 16.6 Logger levels defined by the SDK

Level Description

ALL Indicates that all messages should be logged.

CONFIG Provides a message level for static configuration messages.

FINE Provides tracking information.

FINER Provides fairly detailed tracking information.

FINEST Provides highly detailed tracking information.

INFO Contains informational messages.

OFF Turns off all logging levels.

SEVERE Indicates serious failure.

WARNING Indicates a potential problem.

Logging 511

The level is set as one of the properties of the logger instance. If a logger lower in

the hierarchy doesn’t have a level setting, it takes on the level of the parent logger

using the rules specified earlier.

Testing

If the logging code is going to stay in the application, it should have as little impact

on performance as possible. Both of the logging APIs discussed in this chapter

have made the initial test very fast to determine if logging is enabled. The test for

whether logging is turned on and the test to see if a particular logging event

should occur (for example, based on logging level) are designed to have as little

impact as possible on your application.

Formatting

The format of the resulting log is configurable in both logging APIs. They handle

this behavior with different classes, but the results are the same. Both support typ-

ical formats like plain text files, but they both also output logs as XML documents.

The default output format for the SDK logger is an XML document, whereas the

default is a text file for log4j. Each API has a variety of format classes, creating a

hierarchy that may be extended by developers.

 Of the two APIs, log4j has more formatting options. The list of formatters, their

API, and a brief description appear in table 16.7.

Table 16.7 Formatters for both platforms

Formatter API Description

SimpleFormatter SDK Prints a brief summary of the LogRecord in a human-readable for-

mat. The summary will typically be one or two lines.

XMLFormatter SDK Formats a LogRecord into a standard XML format. The DTD speci-

fication is provided in the Java Logging APIs specification.

DateLayout log4j Takes care of all the date-related options and formatting work.

HTMLLayout log4j Outputs events in an HTML table.

PatternLayout log4j Allows you to completely customize every aspect of the log display.

SimpleLayout log4j Consists of the level of the log statement, followed by " - " and

then the log message itself.

XMLLayout log4j Outputs a portion of an XML document, based on a DTD supplied

with log4j.

512 CHAPTER 16

Debugging

Output

Both APIs support a wide variety of output destinations. For example, you can log

records to the console, to a file, or to a socket. These output classes are called

appenders in log4j and handlers in the SDK. The APIs treat these output objects as

multicast, meaning that you can register as many as you want to a particular log-

ger. For example, you may want logging messages to go to both the console and to

a file. You can register handlers for both types of output, and the API will take care

of the rest.

16.6.2 SDK logging

Beginning with the SDK 1.4, Sun included a logging class and other support-

ing classes in the SDK. This class is based on best logging practices, many of

them from the log4j package itself. The main logging class is java.util.Log-

ging. It defines the basic characteristics of the logger and provides hooks for

plugging in formatters, output handlers, and the other behaviors discussed ear-

lier. The example art_emotherearth_logging in the source code archive shows a

version of the eMotherEarth application that features logging in some of the

methods. This example takes advantage of handlers, levels, and the hierarchi-

cal nature of loggers.

Logging eMotherEarth with the SDK

The first order of business in the eMotherEarth appli-

cation is to establish the logging characteristics. For

this application, we’ll create two logging hierarchies.

The package hierarchy for this application is shown in

figure 16.24.

 The first logger applies to the entire application

and is tied to the top-level package name com.neal-

ford.art.logging.emotherearth. This is the base pack-

age for all other packages. It will capture all the logging

messages for the entire application. The second logger

is tied just to the boundary classes. We want to sepa-

rately log all database access, including information

about the number of records returned and the order

added. The second logger is tied to the package

com.nealford.art.logging.emotherearth.boundary.

Figure 16.24 The package

hierarchy for the project also

becomes the logging hierarchy.

Logging 513

 The welcome controller is the first one executed in the application, so we set

up the first logger here. Listing 16.5 shows the class declaration, which includes

the logger declaration, and the setupLogger() method.

public class Welcome extends HttpServlet {
 private static Logger logger = Logger.getLogger(
 Welcome.class.getPackage().getName().substring(0,

 Welcome.class.getPackage().getName().lastIndexOf('.')));

 private void setupLogger() {
 Handler outputHandler = null;

 try {
 outputHandler = new FileHandler("/tmp/basic_log.xml");
 } catch (Exception x) {

 logger.severe("Create handler: "+ x.getMessage());
 }
 if (outputHandler != null)

 logger.addHandler(outputHandler);
 String logLevel = getServletContext().
 getInitParameter("logLevel");

 if (logLevel != null)
 logger.setLevel(Level.parse(logLevel.toUpperCase()));
 else

 logger.setLevel(Level.SEVERE);
 }

The declaration of the logger is pretty elaborate, but it serves to capture the pack-

age name above the current package. The declaration is static and makes the log-

ger available throughout the class. Loggers are retrieved through the getLogger()

method, and a string identifying the name of the logger is the parameter. In this

case, we take the name of the current package and snip off the last term, leaving

the top-level package name as the logger name. As we create other loggers in this

application, they will inherit the characteristics (such as the level and handler)

created in the setupLogger() method.

 The setupLogger() method creates an output handler tied to a file. It also sets

the logging level based on a setting in the web configuration file. That way, you

can set the logging level without recompiling the application. Listing 16.6 shows

code that utilizes the logger to output messages.

Listing 16.5 The Welcome controller declares and sets up the logging keyed to the

package for the entire application.

514 CHAPTER 16

Debugging

public void init() throws ServletException {
 setupLogger();

 logger.entering(this.getClass().getName(), "init()");
 String driverClass =
 getServletContext().getInitParameter("driverClass");

 String password =
 getServletContext().getInitParameter("password");
 String dbUrl =

 getServletContext().getInitParameter("dbUrl");
 String user =
 getServletContext().getInitParameter("user");

 DBPool dbPool =
 createConnectionPool(driverClass, password, dbUrl,
 user);

 getServletContext().setAttribute("dbPool", dbPool);
 logger.exiting(this.getClass().getName(), "init()");
}

The SDK logger has convenience methods for entering and exiting a method,

which is a common logging chore. These methods map to the Level.FINER log-

ging level.

 Setting up additional loggers for classes that inherit these characteristics is easy.

The catalog controller has a single declaration that creates a logger with inherited

properties:

public class Catalog extends HttpServlet {
 static Logger logger =Logger.getLogger(Catalog.class.getName());

The output from these loggers appears in the XML document specified by the han-

dler in the welcome servlet. A portion of that document is shown in listing 16.7.

<record>

 <date>2003-03-03T13:13:03</date>
 <millis>1046715183560</millis>
 <sequence>1</sequence>

 <logger>com.nealford.art.logging.emotherearth</logger>
 <level>FINER</level>

 <class>
 com.nealford.art.logging.emotherearth.controller.Welcome
 </class>

 <method>init()</method>
 <thread>10</thread>
 <message>RETURN</message>

Listing 16.6 Using the logger

Listing 16.7 The SDK logger automatically uses the XMLFormatter.

Logging 515

</record>

<record>
 <date>2003-03-03T13:13:06</date>
 <millis>1046715186564</millis>

 <sequence>2</sequence>
 <logger>
 com.nealford.art.logging.emotherearth.controller.Catalog

 </logger>
 <level>FINER</level>
 <class>

 com.nealford.art.logging.emotherearth.controller.Catalog
 </class>
 <method>doPost()</method>

 <thread>10</thread>
 <message>ENTRY</message>
</record>

The other logger established for this application is tied to the boundary classes.

We want to log database access information in its own log file. For this purpose,

let’s create a new named logger in the ProductDb class, which is the first of the

boundary classes accessed. This declaration uses the package name of the bound-

ary classes as the logger:

public class ProductDb {

 private static Logger logger = Logger.getLogger(
 ProductDb.class.getPackage().getName());

As before, we assign the properties for this logger in the first accessed class and

each child class inherits those properties from the logger hierarchy. The unique

property for this set of boundary loggers is a logging file with a different name

that contains only database information.

 Entry and exit are not the only activities that can be logged. Listing 16.8 shows

the getProduct() method of the boundary class, which logs entry, exit, and infor-

mation of interest to the reader of this log file.

public Product getProduct(int id) {
 logger.entering(this.getClass().getName(), "getProduct");
 Iterator it = getProductList().iterator();

 while (it.hasNext()) {
 Product p = (Product) it.next();
 if (p.getId() == id) {

 logger.info("Found product: " + p);
 return p;

Listing 16.8 The getProduct() method logs entry, exit, and the product found

by the user.

516 CHAPTER 16

Debugging

 }

 }
 logger.info("Product for id[" + id + "] not found");
 return null;

}

The logging method logger.log(), which includes an overloaded version that

accepts a logging level, string, and object, is the default method for logging. So,

typical logging code might look like this:

logger.log(Level.INFO, "This is a log message");

To help eliminate extra typing, the Logger class also includes methods that

already set the level for you—you need only supply the description. The call to

logger.info() here is an example of a convenience method that logs a message at

the INFO level.

16.6.3 log4j logging

What’s the worst part of the logging API included with the SDK? The fact that it

appeared so late (in the 1.4 SDK). If you are using an earlier version of the SDK

(for example, because your application server hasn’t updated to the newest ver-

sion yet), you cannot use it. You can, however, use log4j. It is an open-source

project that has been around for a long time. The code base is refined and well

established. In fact, it was influential in the design of the logging API in the SDK.

log4j supports all the features highlighted in section 16.6.1. While the class names

are different, it features the same functionality (and in some cases more) than the

SDK logger.

Logging eMotherEarth with log4j

The primary distinction between the two logging APIs is the difference in class

and method names. log4j has a larger variety of output formats than the SDK,

including a pattern formatter that allows developers to handcraft exactly the for-

mat they want. The sample that uses log4j appears in the source code archive

under the name art_emotherearth_log4j.

 The loggers are set up the same way, using the same hierarchy as before. The

code for creating the top-level logger appears in the welcome controller, which is

shown in listing 16.9.

Logging 517

public class Welcome extends HttpServlet {
 static Logger logger = Logger.getLogger(

 Welcome.class.getPackage().getName().substring(0,
 Welcome.class.getPackage().getName().lastIndexOf('.')));

 private void setupLogger() {

 Appender outputAppender = null;
 try {
 outputAppender = new FileAppender(new XMLLayout(),

 "/temp/log4j_basic.xml");
 } catch (IOException x) {
 logger.error("Appender error", x);

 }
 logger.addAppender(outputAppender);

 String logLevel = getServletContext().

 getInitParameter("logLevel");
 if (logLevel != null)
 logger.setLevel(Level.toLevel(logLevel));

 else
 logger.setLevel(Level.FATAL);
 }

The primary differences between listing 16.9 and listing 16.5 are the layered syn-

tax used to create the appender and the technique for converting a string repre-

sentation of a level to the Level representation. The SDK uses a static parse()

method to perform the conversion whereas log4j uses a static toLevel() method.

One is not preferred over the other; they merely represent two ways to achieve the

same results.

 Another difference between the logger in the SDK and log4j is the presence in

the SDK of the entering() and exiting() methods. In log4j, you must invoke

info() methods as a substitute. Listing 16.10 shows an example of logging entry

and exit using log4j.

private void forwardToView(HttpServletRequest request,
 HttpServletResponse response) throws

 ServletException, IOException {
 logger.info(this.getClass().getName()+"fowardToView enter");
 RequestDispatcher dispatcher = request.getRequestDispatcher(

Listing 16.9 The welcome controller creates and configures the log4j logger instance.

Listing 16.10 Using the info() method to mimic the SDK’s entering() method

518 CHAPTER 16

Debugging

 "/CatalogView.jsp");

 dispatcher.forward(request, response);
 logger.info(this.getClass().getName()+"forwardToView exit");
}

The XML format produced by the two APIs differs as well. log4j doesn’t try to gen-

erate a fully formed XML document. It produces XML fragments, suitable for

embedding into a larger XML document. A portion of the log file created for our

sample application appears in listing 16.11.

<log4j:event
 logger="com.nealford.art.logging.emotherearth"
 timestamp="1046666191595"

 level="INFO"
 thread="HttpProcessor[8080][0]">

 <log4j:message><![CDATA[

 com.nealford.art.logging.emotherearth.controller.Welcome:
 init() entry]]></log4j:message>
</log4j:event>

<log4j:event
 logger="com.nealford.art.logging.emotherearth"
 timestamp="1046666191635"

 level="INFO"
 thread="HttpProcessor[8080][0]">
 <log4j:message><![CDATA[

 com.nealford.art.logging.emotherearth.controller.Welcome:
 init() exit]]></log4j:message>
</log4j:event>

This XML is a “rawer” format than the one provided by the SDK. However, log4j

includes numerous customization features for formatters. Developers could easily

subclass the built-in XMLFormatter and generate whatever format XML they like.

 log4j has extensive configuration options. One of the important areas of inter-

est is the ease with which it installs into a web application. The documentation for

log4j includes considerable information on how best to configure it for web appli-

cations, including where to place resource files and how to control the output and

Listing 16.11 The XML produced by log4j is designed for encapsulation within a larger

XML document.

Logging 519

other properties through configuration documents. In this area, log4j surpasses

the SDK.

16.6.4 Choosing a logging framework

Both frameworks provide the important aspects of logging and are state-of-the-art

logging packages. They have many similarities. Some of the classes are named dif-

ferently, but the same basic functionality exists for both. Here is a list of the crite-

ria you should use to determine which framework best suits you:

 Choose the SDK logging framework if:

■ You don’t want to use a third-party framework.

■ You are using SDK 1.4 or later.

■ You don’t have a need for sophisticated configuration information to set

properties.

log4j is better when:

■ You can’t use the latest SDK.

■ You need more control over the format of the log entries.

■ You need a great deal of control over the configuration information.

If you must use an earlier version of the SDK, log4j is the obvious choice. log4j has

the benefit of a long product cycle compared with the SDK logging facilities,

which are a recent addition. However, logging is so well understood that the sta-

bility of either package shouldn’t be in question. In fact, it is likely that the SDK

logging package is heavily based on log4j, which explains many of the similarities.

If you need logging in your application, you can’t go wrong with either choice.

16.6.5 Logging in frameworks

Logging is generally orthogonal to frameworks, meaning that it has no impact on

the design or implementation of the application. None of the frameworks are

hostile to logging—logging generally falls outside the scope of what the frame-

work manages.

 Several of the frameworks already include log4j, which is almost universally

used in the Java world. Both Tapestry and WebWork already include log4j and

have specific configuration parameters that allow you to set it up. See chapters 6

and 7 for examples of log4j integration into Tapestry and WebWork.

520 CHAPTER 16

Debugging

16.7 Summary

Debugging and logging are necessary chores when you’re building applications.

Debugging web applications is difficult because of the presence of the multi-

threaded servlet engine that hosts the application code. Learning to use the SDK

debugger is a good idea because it is always available. The debugger provides

numerous commands that allow you to interact with the running application. It

lets you set breakpoints, step through code, and print out values from both primi-

tives and objects.

 Integrated development environments feature richer, more interactive debug-

gers. NetBeans is an open-source IDE that provides the same information from the

SDK in a more attractive, easier-to-use interface. It also allows you to debug JSPs.

 Commercial IDEs tend to have even richer feature sets, and Borland’s JBuilder

is a good example. It includes all the features of NetBeans as well as very powerful

dialog boxes that provide detailed information on the running application. In

particular, the Evaluate/Modify dialog box offers impressive flexibility when eval-

uating variables.

 Logging is an adjunct to debugging that supplies some of the same informa-

tion but in a more permanent form. Starting in version1.4, the SDK includes a log-

ging framework similar to the popular log4j open-source framework. Both loggers

feature the concept of logging hierarchies, and they support levels, differing out-

put formats, and efficient logging tests.

 In the next chapter, we look at unit testing web applications.

521

Unit testing

This chapter covers

■ The motivation for unit testing

■ The JUnit testing framework

■ The JWebUnit testing framework

522 CHAPTER 17

Unit testing

One of the key best practices that has risen to prominence recently is the task of

unit testing. Unit testing refers to the testing of atomic functionality for the meth-

ods of a class. It differs from functional testing in its scope. The ideal unit test

examines one small aspect of the behavior of a method. Unit tests are typically

small and cohesive. It is not unusual for a single method to generate several test

methods, each testing one piece of behavior.

 Developers have long known that they should test their code. However, testing

was viewed as something that consumed valuable time while development was under

way and that didn’t yield equivalent time savings at the end of the project. This is

not the case; a good testing strategy repays effort several times. This chapter dis-

cusses testing in general and covers the most well-known testing framework, JUnit.

17.1 The case for testing

Why talk about unit testing in a book about web development? First, it falls under

the heading of a best practice. It is a well-known fact that code that is tested as it is

developed is higher quality. Like regular physical exercise, it is an activity that we

all know we should do but that we still have a difficulty getting around to doing.

Second, it supports aggressive development schedules. Development has sped up

to the point that the special term “Internet time” was coined for it. Ten years ago,

the development schedule for a typical client/server application was positively

pastoral compared to the typical schedule for web applications today. Managers

have discovered that time to market is an important characteristic, sometimes out-

weighing all others. Thus, time schedules have compressed over the last few years.

17.1.1 Agile development

Project time compression, among other factors, has led to the development of

more agile development methodologies. Over the last decade, developers have

researched traditional heavyweight methodologies and found them deficient for

“Internet time” projects. Many of the past methodologies focused heavily on doc-

umentation and up-front design (and are now referred to as “BDUF” projects—

“Big Design Up Front”). While it is true that some projects are healthier if much

of the design occurs up front than later in the process, the time required to do so

is a luxury.

 Another problem facing traditional development is the rapidity at which

changes to the requirements occur. It is a rare project indeed where the require-

ments remain stable and well known for the entire lifecycle of the project. This

The case for testing 523

has led to agile development methodologies like Extreme Programming, Scrum

(named after a rugby scrum as a model for an informal meeting), and the Crystal

methodologies, among others. Each of these methodologies are well documented

online and in other books. What they have in common is a style of development

that relishes change rather than avoids it. It is typical in each of these methodolo-

gies to put off much of the design and requirements gathering for an iteration of

the project until it is time to actually code it. This strategy allows the project to

grow with the requirements and has the side effect of producing high-quality code

very early in the development cycle, which helps to mitigate the time-to-market

pressure. You can find out more about agile programming by referring to

www.extremeprogramming.org (for information on Extreme Programming) or

http://collaboration.csc.ncsu.edu/agile/Bibliography.htm (for links to a variety

of agile methodologies).

 If you are using an agile methodology, you must be able to respond quickly to

design changes in production code that were not anticipated when the code was

written. In other words, you must refactor existing code mercilessly, without fear

of breaking working code. Unit testing is a tool that gives you the confidence to

change working code without accidentally breaking something. Once you have a

suite of unit tests for a body of code, you can run them as regression tests. Regres-

sion testing refers to running older tests again that have passed against the body of

code to ensure that nothing has accidentally broken because of subsequent

development. The typical agile project runs the entire suite of tests every night,

making sure that code hasn’t been broken by changes made that day. In many

agile methodologies, the unit tests are written before the code they are testing is

written (called test-first coding or test-driven development). The unit tests become the

final step of requirements gathering. If you know how to test something, you

must understand how it works, and you are therefore more prepared to write

code for it.

 Many managers and developers think that taking the time to build tests slows

the project’s progress. When testing is done properly, the opposite is true. If you

haphazardly write tests just when you feel like it, you don’t have a body of tests

that reasonably covers the scope of the project. If you have been writing tests all

along, you have the freedom to make major changes in the design and implemen-

tation of code without worrying that you have caused an unfortunate side effect.

But even if you have, the regression test run that night will expose it and allow you

to fix it before it affects the rest of the system.

524 CHAPTER 17

Unit testing

17.1.2 Unit testing in web applications

In properly designed Model 2 applications, the code is partitioned enough to

allow easy access to the individual modules so that you can test them. One of the

problems with code that isn’t very cohesive is that it is difficult to write tests for it.

If the code you are touching with the test affects every other part of the applica-

tion, you end up writing one massive test, which takes more time than it is worth.

 Within well-designed modules, creating very granular methods also assists in

unit testing. If the methods are in fact a single unit of work, it is easy to create a

unit test that examines that unit of work. On the other hand, if the methods are

huge and perform dozens of tasks, you’ll find it much more difficult to write tests

because the tests themselves must be so comprehensive. Here is another argu-

ment for writing small, cohesive methods that combine to form the public meth-

ods of the application.

 In Model 2 web applications that access a database or other external resource,

the code in the boundary classes is generally the most complex. This makes

sense—the boundaries between the application and the rest of the world tend to

be complicated. The boundary classes are the ones that most benefit from unit

tests. For example, you need to be sure that the entities in the application update

the database correctly.

 Entities are easy to test if they are properly limited in functionality. Accessors

and mutators generally don’t have to be tested unless they have some side effect

that occurs along with the assignment or access. The business rules methods of

entities must be checked thoroughly. It is a good idea to let a developer who

hasn’t written the code create some of the tests. Programmers tend not to be com-

prehensive testers for code they have written. If you write code, you make certain

assumptions. When you write tests for that code, you make the same assumptions

you made when you wrote it. This is also why unit testing alone isn’t enough in an

application. You also need domain experts to test the application to make sure it

solves the targeted problem and performs in the expected manner.

 Controller servlets are among the most difficult to test. Because they are serv-

lets, they must run in the context of the servlet engine. They don’t lend themselves

well to the atomic level of testing provided by unit tests. Later in this chapter, we’ll

look at a testing framework built on top of JUnit and HttpUnit that makes it easier

to test entire pages in the application, which includes the controllers.

Unit testing and JUnit 525

17.2 Unit testing and JUnit

JUnit is an open-source testing framework, written originally for Java. However, it

has become so popular that it has been ported to a variety of other languages and

platforms. It provides a simple but powerful framework against which you can

write unit tests. It features just the right level of abstraction for usefulness without

placing unnecessary constraints on developers. This project is credited with finally

making unit tests acceptable for a large body of developers.

 You can download the JUnit binaries and documentation from www.junit.org.

This web site contains links to the entire xUnit family of tools, which encompasses

the ports to other languages as well as ancillary tools that make unit testing easier.

17.2.1 Test cases

The core unit of work in JUnit is the TestCase, a class designed to serve as the

base class for your tests. It includes some helper methods for creating and run-

ning your tests. When you execute a TestCase, it automatically runs every method

in the class that begins with test. This means that you don’t have to register your

test methods anywhere or do anything special to add new test methods. If you

need to add a new test method, simply define it (be sure to include test at the

beginning of the method name), and JUnit will automatically include it in the test

run. JUnit uses reflection to determine which tests to run, making it easy for you

to add new test methods to existing test cases.

 TestCase also includes methods for implementing fixtures. A fixture is a con-

stant artifact against which you run tests. It is not something you are testing but

a resource that is required for the test to run. For example, if you are testing

database access, you need a Connection object to access database tables. You

aren’t interested in testing the connection itself, but the connection is required

before you can write the rest of the test. The test case will include a Connection

as a fixture.

 Two methods that are overridden in a TestCase facilitate fixtures. The setUp()

method is automatically called by the framework before each test is run. Similarly,

the tearDown() method is called after each test is run. For example, in a database

connection fixture, setUp() establishes the connection to the database and tear-

Down() closes it.

17.2.2 Testing entities

To begin, we’ll look at a unit test for the shopping cart class, which is part of the

eMotherEarth application. The source for this project appears in the source

526 CHAPTER 17

Unit testing

code archive under the name art_emotherearth_junit. The primary code in the

shopping cart for testing is the getCartTotal() method, which returns the sum

of the extended prices for all items in the shopping cart. Listing 17.1 shows the

TestShoppingCart test case.

package com.nealford.art.emotherearth.util.test;

import com.nealford.art.emotherearth.entity.CartItem;
import com.nealford.art.emotherearth.entity.Product;

import com.nealford.art.emotherearth.util.ShoppingCart;
import junit.framework.TestCase;

public class TestShoppingCart extends TestCase {

 protected ShoppingCart shoppingCart = null;
 static int productNum = 0;
 protected CartItem[] items;

 public TestShoppingCart(String name) {
 super(name);
 }

 protected void setUp() throws Exception {
 super.setUp();
 shoppingCart = new ShoppingCart();

 items = new CartItem[4];
 for (int i = 0; i < items.length; i++) {
 items[i] = generateRandomCartItem();

 shoppingCart.addItem(items[i]);
 }
 }

 protected void tearDown() throws Exception {
 shoppingCart = null;
 items = null;

 super.tearDown();
 }

 public void testGetCartTotal() {

 double expectedReturn = 0.0;
 for (int i = 0; i < items.length; i++) {
 expectedReturn += items[i].getExtendedPrice();

 }
 double actualReturn = shoppingCart.getCartTotal();
 assertEquals("cart total", expectedReturn, actualReturn,

 0.01);
 }

 private CartItem generateRandomCartItem() {

 CartItem c = new CartItem();
 c.setProduct(getProduct());

Listing 17.1 The TestShoppingCart test case tests the getCartTotal() method.

Extends
TestCase

Required
by JUnit

Fires before
each test

Fires after
each test

Tests validity of
getCartTotal()

Generates a
random cart item

Unit testing and JUnit 527

 c.setQuantity((int) Math.round(Math.random() * 100));

 return c;
 }

 private Product getProduct() {

 Product p = new Product();
 p.setName("Test Product " + ++productNum);
 p.setPrice(Math.random() * 1000);

 return p;
 }

The TestShoppingCart class extends JUnit’s TestCase, inheriting the framework’s

methods for running tests. The setUp() method, which runs before each test, cre-

ates the fixture against which we will run the tests. For the getCartTotal() method

to work, the shopping cart must have items. To generate items, you must have

products. Thus, several methods exist for generating the necessary supporting

objects to create a nontrivial test of the getCartTotal() method. The setUp()

method calls the superclass setUp() method to handle any initialization needed in

the parent class. Then, it creates a new ShoppingCart object and an array of Car-

tItems. It iterates over the array, calling the generateRandomCartItem() method to

fill in the items array. The generateRandomCartItem() method works by calling

getProduct(), which generates a nonsense product object with a random price,

and setting a random quantity for the cart item. We don’t need to go to the data-

base and get a real product for this test. The only characteristic of a product we

care about is the price, for which a random number suffices. And the only charac-

teristic we care about for the cart item is the quantity, which also accommodates a

random number. These two values drive the shopping cart’s total.

 The items array is used in two places. The test code we ultimately write must

check to ensure that the shopping cart is adding items correctly. To perform this

check, we must manually calculate the total of all the items in the cart. This is

the main unit of work in the testGetCartTotal() method. It manually iterates

through the array and calculates the expected total of the items. Then, the shop-

ping cart’s actual method is called. The comparison is performed by the

assertEquals() method, which is part of the JUnit framework. The framework

contains a number of methods for testing values against one another. A long list

of assertEquals() methods exists, along with assertSame(), assertTrue(),

assertNotNull(), and others. These methods form the main evaluation aspect of

JUnit. The goal of tests is to generate the expected value and the actual value,

and then compare them. If the expected and actual values equal, the test passes.

Each of these methods includes a descriptive string that identifies the test. The

Generates a
product

528 CHAPTER 17

Unit testing

assertEquals() method is heavily overloaded, with versions that take all Java

primitives and objects. The versions of the method that check floats and doubles

include an additional parameter for an error factor. Comparing two floating-

point numbers for equality almost never yields the same result. The last parame-

ter is the delta, indicating the maximum tolerance for inequality.

17.2.3 Running tests

JUnit features a couple of ways to run the tests. The framework includes text-

based and Swing-based test runners. The test runners point to an individual test

case or a package containing test cases and runs everything that begins with test.

When pointed at a package, it loads every class starting with Test that implements

TestCase and tries to run the methods starting with test. In this way, JUnit allows

you to create new tests that are automatically picked up and run. The results of

running the AllTests suite (which includes TestShoppingCart) in the Swing-

based test runner are shown in figure 17.1.

 The test runner displays the test class name at the top, along with a Run button.

When invoked, the test runner performs the tests. The bar in the center turns

either green or red, with obvious connotations. If a single test fails to run, the bar

turns red and the test was a failure. The results window under the progress bar

shows the tests that were run, along with the results. The successful tests show up

with green checkmarks, and the failures show up in red. The Failures tab shows a

stack trace for the failed test runs.

Figure 17.1

The Swing-based test runner

automatically runs the test cases found

in a particular package.

Unit testing and JUnit 529

Figure 17.2 shows the results when one of the tests in the suite fails to run.

 In this case, the testGetCartTotal() test failed, dooming the entire test run to

failure.

17.2.4 Test suites

Figures 17.1 and 17.2 show a collection of tests running. JUnit allows you to bun-

dle a group of tests together into a test suite. The test suite is a collection of individ-

ual test cases that run as a group. Our project includes two test cases that are

related and thus should be run in the same suite. The AllTests suite appears in

listing 17.2.

package com.nealford.art.emotherearth.test;

import junit.framework.*;

public class AllTests extends TestCase {

 public AllTests(String s) {
 super(s);
 }

 public static Test suite() {
 TestSuite suite = new TestSuite();
 suite.addTestSuite(com.nealford.art.emotherearth.

 boundary.test.TestOrderDb.class);

Figure 17.2

The results progress

bar glows red when

even a single test fails

to run.

Listing 17.2 The AllTests suite registers tests that run as a group.

530 CHAPTER 17

Unit testing

 suite.addTestSuite(com.nealford.art.emotherearth.

 util.test.TestShoppingCart.class);
 return suite;
 }

}

The AllTests test suite is very simple. It is itself a TestCase child that includes a

static suite() method. Inside this method, a new TestSuite is created, and each

test case class is added to it. The parameter for addTestSuite() is a Class class, so

the passed values are the class objects for the test case classes. When the frame-

work encounters a test suite, it executes the test cases inside it in order. JUnit is

designed to automatically pick up test cases in a particular package. The test suite

lets the developer control which tests are run together.

17.2.5 Testing boundaries

Testing boundary classes is difficult because of the elaborate fixtures that must

exist to support the tests. In the case of the eMotherEarth application, the most

complex (and therefore most critical to test) boundary is the one that adds new

orders to the database. Because it uses so many classes and must interact with the

database, this boundary class is more complex than the test case shown earlier.

The first portion of the class is shown in listing 17.3.

public class TestOrderDb extends TestShoppingCart {
 private OrderDb orderDb = null;
 private int addedOrderKey;

 private DBPool dbPool;
 private Connection connection;
 private static final String SQL_DELETE_ORDER =

 "delete from orders where order_key = ?";
 private static final String SQL_SELECT_ORDER =
 "select * from orders where order_key = ?";

 private static final String DB_URL =
 "jdbc:mysql://localhost/eMotherEarth";
 private static final String DRIVER_CLASS =

 "com.mysql.jdbc.Driver";
 private static final String USER = "root";

 private static final String PASSWORD = "marathon";
 private static final String TEST_CC_EXP = "11/1111";
 private static final String TEST_CC_NUM = "1111111111111111";

 private static final String TEST_CC_TYPE = "Visa";
 private static final String TEST_NAME = "Homer";
 private static final int TEST_USER_KEY = 1;

Listing 17.3 The declaration section of TestOrderDb

Unit testing and JUnit 531

 public TestOrderDb(String name) {

 super(name);
 }

The first item of note in the TestOrderDb class is the parent class, which is the Test-

ShoppingCart unit test created earlier. We subclass it because one of the fixture

items we need is a populated shopping cart. The TestShoppingCart test case needs

the same fixture, so we inherit from it to cut down on the duplicate code we would

need otherwise. The top of this class consists primarily of constants that define the

characteristics of SQL statements and test data. The constants for connecting to the

database reside in this class because we cannot easily get them from the web appli-

cation deployment descriptor. This test case is not part of the web application and

does not have access to the services provided by the servlet engine.

 The next two methods of the TestOrderDb test case are the inherited setUp()

and tearDown() methods, shown in listing 17.4.

protected void setUp() throws Exception {
 super.setUp();

 orderDb = new OrderDb();
 dbPool = new DBPool(DRIVER_CLASS, DB_URL, USER, PASSWORD);
 orderDb.setDbPool(dbPool);

 connection = dbPool.getConnection();
}

protected void tearDown() throws Exception {

 deleteOrder(addedOrderKey);
 dbPool.release(connection);
 orderDb = null;

 super.tearDown();
}

The setup() and teardown() methods are typically protected so that other test

cases may inherit from them just as we have done. It is important to remember to

invoke the superclass’s setUp() as the first line of the setUp() method and invoke

the superclass’s tearDown() as the last line of that method. The setUp() method

creates the necessary fixtures for an Order object and gets a connection for use by

the non-order code in the test case. The tearDown() method releases resources

and deletes the order added by the test case. For perfectly encapsulated tests, you

should make sure that the test cleans up after itself. Depending on the database in

Listing 17.4 The setUp() and tearDown() methods of the TestOrderDb test case

532 CHAPTER 17

Unit testing

use, you might not have to do this. For example, if you know that the application

is always tested with a test database where partial and meaningless records are tol-

erated, you don’t have to make sure that the test cases clean up after themselves.

However, if there is any chance that the test runs against production data, you

should make sure that the test is well encapsulated.

 The next two methods (listing 17.5) are part of the fixture of the test. They get

an inserted order from the database (to compare against the one that was added)

and delete the new order upon tear-down.

private Order getOrderFromDatabase() {
 Order o = new Order();
 PreparedStatement ps = null;

 ResultSet rs = null;
 try {
 ps = connection.prepareStatement(SQL_SELECT_ORDER);

 ps.setInt(1, addedOrderKey);
 rs = ps.executeQuery();
 rs.next();

 o.setOrderKey(rs.getInt("order_key"));
 o.setUserKey(1);
 o.setCcExp(rs.getString("CC_EXP"));

 o.setCcNum(rs.getString("CC_NUM"));
 o.setCcType(rs.getString("CC_TYPE"));
 } catch (Exception ex) {

 throw new RuntimeException(ex.getMessage());
 } finally {
 try {

 if (ps != null)
 ps.close();
 } catch (SQLException ignored) {

 }
 }
 return o;

}

private void deleteOrder(int addedOrderKey) {
 Connection c = null;

 PreparedStatement ps = null;
 int rowsAffected = 0;
 try {

 ps = connection.prepareStatement(SQL_DELETE_ORDER);
 ps.setInt(1, addedOrderKey);
 rowsAffected = ps.executeUpdate();

 if (rowsAffected != 1)
 throw new Exception("Delete failed");

Listing 17.5 These two methods are part of the database fixture of the test case.

Unit testing and JUnit 533

 } catch (Exception ex) {

 throw new RuntimeException(ex.getMessage());
 } finally {
 try {

 if (ps != null)
 ps.close();
 if (c != null)

 c.close();
 } catch (SQLException ignored) {
 }

 }

}

The last method of the test case is the actual test method. It creates a simulated

order, uses the Order object to add it to the database, and then compares the results

by querying the database to retrieve the record. Listing 17.6 shows this method.

public void testAddOrder() throws SQLException {
 Order actualOrder = new Order();

 actualOrder.setCcExp(TEST_CC_EXP);
 actualOrder.setCcNum(TEST_CC_NUM);
 actualOrder.setCcType(TEST_CC_TYPE);

 actualOrder.setUserKey(TEST_USER_KEY);
 orderDb.addOrder(shoppingCart, TEST_NAME, actualOrder);
 addedOrderKey = orderDb.getLastOrderKey();

 Order dbOrder = getOrderFromDatabase();
 assertEquals("cc num", actualOrder.getCcNum(),
 dbOrder.getCcNum());

 assertEquals("cc exp", actualOrder.getCcExp(),
 dbOrder.getCcExp());
 assertEquals("cc type", actualOrder.getCcType(),

 dbOrder.getCcType());
 assertEquals("user key", actualOrder.getUserKey(),
 dbOrder.getUserKey());

 deleteOrder(addedOrderKey);
}

Unlike the test case in listing 17.1, the test case in listing 17.6 has numerous assert

methods for checking the various characteristics of the order. This method gener-

ates an order using the shopping cart generated by the inherited setUp() method

and the constants defined at the top of the class. Next, it adds the order by using

Listing 17.6 The lone test method in the boundary test case

534 CHAPTER 17

Unit testing

the addOrder() method. Once the order has been added, the record is retrieved

from the database to ensure that the values are correct.

 If you refer back to figure 17.1, you will notice that when this test case runs, it

also runs the test case from its parent class, testGetCartTotal(). Because the

order test case inherits from the shopping cart test case, both tests are run via

the framework.

 Building test cases for boundaries is complex because of the amount of hand-

generated SQL required. Here is a case where using helper classes eliminates the

redundant nature of this kind of code. For example, it is quite common to build a

JDBCFixture class that encapsulates most of the generic details of interacting with

the database. Alternatively, you can use components normally reserved for client/

server development to ease generating test code. For example, many IDEs include

components that wrap much of the complexity of JDBC. While you might be reluc-

tant to use the components in your web applications because of the overhead, the

speed of development is more important in unit tests, and scalability and over-

head are secondary concerns.

 One of the utilities available on the JUnit web site is a set of helper classes

called DbUnit, which automates much of the testing of boundary classes. If you

don’t want to write the database access code yourself, DbUnit makes it easy to gen-

erate test code against relational databases.

17.2.6 Tool support

Many IDEs, both commercial and open source, now support JUnit. Like the Ant

build tool, it has become ubiquitous in Java development circles. IDE support

ranges from predefined test case templates for building the main infrastructure to

test runners that run tests inside the IDE.

Figure 17.3

JBuilder includes prebuilt

fixtures and other support

classes for JUnit.

Unit testing and JUnit 535

JBuilder’s JUnit support

Figure 17.3 shows the JBuilder New gallery, which features an entire page of pre-

built JUnit test classes.

 Figure 17.4 shows the TestOrderDb test running inside the JBuilder IDE, which

supplies its own graphical test runner.

NetBean’s JUnit support

The NetBeans IDE also includes support for JUnit, both in test generation and test

running. For any class, you can right-click, choose Tools, and let NetBeans gener-

ate JUnit tests for you. Figure 17.5 shows the dialog box that lets you specify what

JUnit characteristics you want to implement in your test case.

 NetBeans also has a custom test runner, based on the JUnit text test runner.

Automating regression testing

You must run unit tests as regression tests to receive the full benefit of unit testing.

However, no one wants to sit at a computer and run regression tests all day. One

of the aspects of testing that make it useful is the invisibility of needless details.

Figure 17.4 The JBuilder test runner runs tests inside the IDE with its own test

runner interface.

Figure 17.5

NetBeans assists in creating JUnit

tests for any class.

536 CHAPTER 17

Unit testing

 Another open-source tool you are probably already using facilitates running

regression tests. The Ant build tool includes a JUnit task in its optional tasks.

Using Ant, you can set up a build file that runs the unit tests for multiple suites

overnight. Depending on how much you want to automate the process, you can

run the tests with Ant and have it email you a list of the tests that failed so that you

can address them the next morning. Listing 17.7 shows a sample Ant invocation

of the JUnit task.

<junit printsummary="withOutAndErr" haltonfailure="yes" fork="true">
 <classpath>

 <pathelement location="${build.tests}" />
 <pathelement path="${java.class.path}" />
 </classpath>

 <formatter type="plain" />

 <test name="my.test.TestCase" haltonfailure="no"
 outfile="result" >

 <formatter type="xml" />
 </test>

 <batchtest fork="yes" todir="${reports.tests}">

 <fileset dir="${src.tests}">
 <include name="*Test.java" />
 <exclude name="**/AllTests.java" />

 </fileset>
 </batchtest>
</junit>

Ant is an extraordinarily popular build tool, used by virtually every Java project

under the sun. You can find out much more about Ant from the excellent Java

Development with Ant, by Erik Hatcher and Steve Loughran.

17.3 Web testing with JWebUnit

One of the most difficult kinds of applications to unit test are web applications.

Web applications rely on a deployment platform, the browser, which is completely

out of the control of the developers of the application. Web applications also have

a strong visual component, for which it is also difficult to automate testing. Com-

mercial products are available to test web applications; they generally allow a user

to interact with the application while recording keystrokes and mouse gestures.

Listing 17.7 The Ant JUnit task simplifies the setup and execution of JUnit tests.

Web testing with JWebUnit 537

These records are then played back to simulate a user’s interaction. These tools

are specialized and very expensive. The open-source world hasn’t produced a tool

exactly like the commercial ones yet.

 However, the open-source world hasn’t totally ignored this problem. One of

the adjuncts to the JUnit project was a project named HttpUnit. It features exten-

sions to JUnit for building a framework that tests applications running over HTTP.

It is an effective tool for verifying that the actual output is what you expected.

Other open-source tools are aimed at testing atomic behavior of web applications.

For example, tools exist that test the JavaScript on a web page.

 Recently, another project popped up on the JUnit site that combines many of

the existing open-source web testing frameworks, including HTTPUnit. Like its

precursors, JWebUnit is an open-source testing framework. It encapsulates many

of the existing open-source tools to create a more comprehensive package. It also

provides new classes that encapsulate many of the existing HTTPUnit classes to

reduce the amount of code a developer must write. You can download JWebUnit

from the JUnit web site. You should also download HTTPUnit while you are there

because JWebUnit relies on some classes that come from HTTPUnit.

17.3.1 JWebUnit TestCases

Because JWebUnit is based on JUnit, the concepts of test cases, suites, and fixtures

are the same. Let’s create tests for a couple of the pages of the eMotherEarth

application as an example. One of the setup items common to all the test cases in

JWebUnit is the BaseURL. All the other URLs in the test case are based on this URL.

Instead of replicating the same setup code across multiple test cases, let’s create a

base test case that handles this setup chore. The BaseWebTestCase appears in

listing 17.8.

package com.nealford.art.emotherearth.test;

import net.sourceforge.jwebunit.WebTestCase;

public class BaseWebTestCase extends WebTestCase {

 public BaseWebTestCase(String name) {

 super(name);
 }

 public void setUp() throws java.lang.Exception {

 super.setUp();

Listing 17.8 The BaseWebTestCase handles setting the base URL for all test cases that

inherit from it.

538 CHAPTER 17

Unit testing

 getTestContext().setBaseUrl(

 "http://localhost:8080/emotherearth");
 }
}

Once the base test case is established, we can subclass it to create tests for pages in

the web application. The first test is for the logon page. We want to ensure that

the proper elements appear on the page and that it forwards successfully to the

catalog page. The TestLogonPage test case is shown in listing 17.9.

package com.nealford.art.emotherearth.test;

public class TestLogonPage extends BaseWebTestCase {

 public TestLogonPage(String name) {
 super(name);
 }

 public void testIntro() {
 beginAt("/welcome");
 }

 public void testLogonElements() {
 beginAt("/welcome");
 assertFormPresent("welcomeform");

 assertFormElementPresent("user");
 assertFormElementPresent("gotocatalog");
 }

 public void testForwardToCatalog() {
 beginAt("/welcome");
 setFormElement("user", "Homer");

 submit();
 }
}

HttpUnit has extended the standard assert methods in JUnit to include web-

specific assertions. The testLogonElements() method checks to see if the

required elements are on the page. The framework also includes methods that

allow the developer to programmatically interact with the application. The

testForwardToCatalog() method lets the developer fill in form values, “click” but-

tons, and otherwise interact with the web application.

 The test runners defined for JUnit also work for JWebUnit. The primary differ-

ence is that the web application must be running before you can conduct the tests.

Listing 17.9 This test case tests the elements on the logon page.

Web testing with JWebUnit 539

In other words, the test runner will not automatically spawn the web application.

The results appear just as in other JUnit tests, with green and red bars. You do not

see any interaction with the web application. All the code is directly accessing the

application via HTTP.

17.3.2 Testing complex elements

JWebUnit contains methods for testing sophisticated HTML elements such as

tables. Listing 17.10 shows a test case that tests some of the table properties of the

catalog page.

package com.nealford.art.emotherearth.test;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.PrintStream;

public class TestCatalogPage extends BaseWebTestCase {
 private static String LOG_DIR = "c:/temp/emotherearth/";

 public TestCatalogPage(String name) {
 super(name);
 }

 public void setUp() throws java.lang.Exception {
 super.setUp();
 File outputDir = new File(LOG_DIR);
 if (!outputDir.exists())
 outputDir.mkdir();
 }

 public void testCatalog() {
 beginAt("/welcome");
 beginAt("/catalog?user=Homer");
 assertTablePresent("catalogTable");
 assertTextInTable("catalogTable",
 new String[] {"ID", "NAME", "PRICE", "Buy"});
 PrintStream ps = null;
 try {
 ps = new PrintStream(new FileOutputStream(
 "c:/temp/emotherearth/catalogText.txt"));
 } catch (FileNotFoundException ex) {
 ex.printStackTrace();
 }
 dumpTable("catalogTable", ps);
 }
}

Listing 17.10 This test case tests for the presence and validity of table elements.

540 CHAPTER 17

Unit testing

The testCatalog() method of the test case in listing 17.10 first issues two

beginAt() method invocations. We cannot create a test case that goes directly to

the catalog page because the welcome page executes code that establishes con-

nection pools and other global resources. To solve this problem, we issue a

beginAt() command that invokes the welcome page and then immediately moves

to the catalog page, passing the parameter normally supplied by the welcome

page. JWebUnit includes methods that ensure the presence of a table and that

check the contents of individual rows. The assertTextInTable() method verifies

that the header row contains the correct elements.

 One of the more powerful table tests is the ability to dump the entire contents

of the table to a file. The dumpTable() method accepts a table name and a Print-

Stream and outputs the entire contents of the table to the file. The contents of the

catalogText file appear in listing 17.11.

catalogTable:
 [ID][NAME][PRICE][Buy]

 [1][Ocean][$1,393,456,200.00][Qty:]
 [2][Leaves (green)][$3.50]Qty:]
 [3][Leaves (brown)]$0.0]Qty:]

 [4][Mountain]$2,694,381.3]Qty:]
 [5][Lake]$34,563.1]Qty:]
 [6][Snow]$2.4]Qty:]

Even the simple tests defined in this chapter begin to show the power of automat-

ing tests against web applications. Although the generated output doesn’t look

like the original table, it does contain the same data. If you run this test as a

regression test, you can compare the contents from one run to another using a

diff utility. Without ever looking at the table, you can determine that something

has changed in the output and investigate further. Testing visual output by look-

ing at it is a poor way to test. Eyes miss details, and it is labor intensive to force

someone to look at the page whenever you fear something might have broken.

However, dumping the contents to a file where the comparison can be automated

ensures consistent appearance and notifies you of unexpected changes.

 JWebUnit, like many open-source projects, is short on flash but long on

functionality. It provides a powerful framework for automating the consistency

and validity of the visual part of your web application, which is the hardest to

test by hand.

Listing 17.11 The dumpTable() method outputs the table into a formatted text file.

Summary 541

17.4 Summary

Unit testing is not the most glamorous job in a development project, but it is a

critical piece of the development lifecycle. It took agile methodologies and Inter-

net time projects to get developers and managers to see the benefits of unit test-

ing. Like design, writing unit tests seems to take an inordinate amount of time

away from development. However, the time you spend on either of those activities

saves countless hours on the back end of a project.

 Given that you should do unit testing, the choice is easy in the Java world.

JUnit is an open-source project that is so convenient that it is used almost univer-

sally. This chapter focused on the highlights of how JUnit is structured and

showed you how to write test cases, fixtures, and test suites. One of the benefits of

JUnit is that it isn’t complex. Most developers can use it with very little research.

 This chapter also discussed the relative ease of testing entities and the corre-

sponding difficulties involved in testing boundaries. We also highlighted some

strategies, such as inheritance of test cases, that can ease the complexity and vol-

ume of code.

 JUnit has made it relatively easy to write unit tests for everything but servlets

and web user interfaces. JWebUnit, based on JUnit, includes methods that help

automate the testing of the visual aspect of web pages. By constructing tests to

check for the presence of elements and dumping the contents of complex data

structures to files, JWebUnit enables you to test the visual portion of your web

application—the most difficult part to test.

 In the next chapter, we cover web services and how to incorporate them into

web applications.

543

Web services and Axis

This chapter covers

■ Defining web services concepts

■ Using Axis

■ Retrofitting web applications to expose
web services

544 CHAPTER 18

Web services and Axis

Over the last few years, web services have been the industry-specific buzzword du

jour. You cannot read a technical journal or product announcement without the

phrase popping up. It is a very simple mechanism for doing something that has

been done since the 1960s—and that is the point. It is a new way to do something

for which there is a need. The difference this time is that it is based on open stan-

dards upon which the entire industry agrees (for the time being). As web develop-

ers, you cannot avoid this topic. In the near future, you will work on a web

application that must support web services (if you aren’t already).

 This chapter provides a brief overview of web services and, more important,

the issues you face retrofitting an existing web application to take advantage of

this new paradigm. It covers the essentials of web services concepts. (There are

plenty of full books written on this topic.) We cover web services from a pragmatic

approach. For example, as you read all the specifications, you’ll find that a lot of

emphasis is placed on the open nature of the technology. You can transmit Simple

Object Access Protocol (SOAP) over any number of protocols. From a practical

standpoint, everyone uses HTTP. I assume you’re using web protocols and web

application design principles because that is the most common case.

18.1 Key concepts

Web services represent a new paradigm for executing remote procedure calls

(RPC) and stateless messaging. RPCs have existed for many years—since adminis-

trators started having to split the processing load across machine boundaries.

Many protocols have emerged to do this: Component Object Model (COM)/Dis-

tributed COM (DCOM), Common Object Request Broker Architecture (CORBA),

Remote Method Invocation (RMI). Each has advantages and disadvantages. How-

ever, the biggest hurdle to widespread adoption is the fact that no one can agree

on which one to use. Even though CORBA is administered by an open standards

organization (the Object Management Group, or OMG), it has never received

ubiquitous support.

 Even if everyone could agree on the technology, a common technical problem

hampers each one. All these technologies use a binary protocol for transmitting

information over a network. Each has its own protocol, and some of them can

interact. For example, RMI and CORBA can talk to each other over via RMI over

IIOP protocol (the Remote Method Invocation over Internet Inter-operable Orb

Protocol from CORBA). However, they are still binary protocols. This isn’t a prob-

lem for applications over internal networks, but it is a huge problem for Internet

Axis 545

applications. To enable one of these protocols to work across firewalls, you have to

open ports on the firewall for binary data. Anyone who has tried to convince a

network administrator that this is a good idea knows what kind of response to

expect. Opening binary communication to the outside world opens up the net-

work to attacks of various kinds.

 To address this problem, a consortium of companies defined the web services

API. This API is based partially on existing technologies such as XML, HTTP, and

other well-established open standards. Microsoft, DevelopMentor, and Userland

Software created an XML-based protocol for passing procedure call information

over HTTP, then submitted the protocol to the Internet Engineering Task Force

(IETF) for recommendation. It was quickly adopted by the World Wide Web Con-

sortium (W3C), and web services were born. When version 1.1 appeared, many

large corporations joined the project, making it a de facto standard.

 Web services is an umbrella term for making RPCs over HTTP using SOAP as the

data-marshalling mechanism. The web services standard also includes a technol-

ogy for metadata information about the methods and parameters for a remote

method called Web Services Description Language (WSDL). It also includes the

Universal Description, Discovery, and Integration (UDDI) standard for finding

web services, which acts as a web services phone book format.

 Web services are based on existing standard protocols like HTTP. This means

that web services are stateless in nature. As with web applications, you cannot rely

on the state of the object between invocations. Statelessness is a good characteris-

tic for scalability and is one of the reasons that HTTP is such a scalable protocol.

However, this characteristic limits some of the types of code you can write as a web

service. Some frameworks allow you to create stateful web service calls, but this

approach creates problems because you have to include state management and

define who is responsible for maintaining state. Generally, web service methods

must be comprehensive and perform all the required work in a single invocation.

It is not unusual to create web service methods that internally call many other

methods to perform a task. For example, if you have transactional method calls,

they must all execute within the same web service method call.

18.2 Axis

A variety of frameworks are available for using web services in Java. The one

we’ll use is the open-source Axis (Apache Extensible Interaction System) frame-

work from Apache. You can download it at http://ws.apache.org/axis. It is the

546 CHAPTER 18

Web services and Axis

successor to Apache’s SOAP version 2. The developers of that package realized

that it had some shortcomings that were irreparable; the ground-up rewrite is

Axis. Axis includes:

■ A simple stand-alone server (primarily for testing)

■ A server that plugs into servlet engines such as Tomcat

■ Extensive support for WSDL

■ An emitter tool that generates Java classes from WSDL

■ Some sample programs

■ A tool for monitoring TCP/IP packets

18.2.1 Architecture of Axis

The general architecture of Axis appears in figure 18.1. The requestor is any client

that makes a request over any of the protocols supported by Axis. Generally,

HTTP is used. The requestor may be a desktop application, another web applica-

tion, or another web service. The Axis engine acts as a facilitator between the cli-

ent and the web service method, managing the translation to and from web

services standards.

 Axis allows the developer to define a series of handlers, tied to either the

request or the response. These handlers are similar to filter servlets; each handler

performs a specific task and forwards to the next handler in line. Handlers fit

together into a chain, which is a specific set of handlers that a web service request

or a response traverses. This process is shown in figure 18.2.

 Examples of handlers are security components, logging systems, and transfor-

mations. One special handler, known as the pivot point handler, exists for every web

service. This handler performs the actual invocation of the web service method. It

is the point at which the request becomes the response. In other words, this is

where the content defined by the method called as a web service is sent back to

the requesting client.

Requester Axis Engine Web Service

HTTP, SMTP, MQ, ...

Figure 18.1 Axis acts as a facilitator between the client request and the code that executes

as a web service.

Axis 547

Handler chains are defined in a configuration document used by the Axis engine

named (by default) server.config. This file is an XML document that defines con-

figuration parameters for how Axis behaves. An example of a handler definition

appears in section 18.4.2.

18.2.2 Axis tools

Axis comes with tools that make it easy to develop web services in Java. The first is

a facility for creating simple web services; Axis creates the entire infrastructure for

you. The other tools are transformation tools that take WSDL definitions and con-

vert them to Java classes, and vice versa.

Simple web services

To create a simple web service, you can develop a web application that includes

Axis and a publicly accessible file (available from the web application’s root direc-

tory) with a .jws extension. Note that this isn’t a standard extension—both Axis

and WebLogic use this extension to define simple web services, but they aren’t

compatible. Listing 18.1 shows a simple Java source file that Axis will convert into

a web service.

public class Simple {

 public String sayHello(String name) {
 return "Hello, " + name;
 }
}

Requester Axis Engine

Request

Handlers

Response

Handlers

Pivot Point

Handler

Web service specific chain

Figure 18.2 Axis allows the developer to define a series of handlers to partition the work performed on

a web service request or response.

Listing 18.1 A simple Java source file with a .jws extension that Axis will convert into a

web service

548 CHAPTER 18

Web services and Axis

When someone invokes the simple service via HTTP, Axis automatically builds the

necessary infrastructure to make it accessible as a web service. Like a JSP, Axis

generates a Java source file for the web service, compiles it, and redirects the

request to it automatically. If you access this file through a browser (executing a

GET instead of a POST, which calls the method), you see the message shown in

figure 18.3.

 Another facility offered by Axis is the automatic generation of a WSDL file for

any web service (not just the ones created with a JWS file). To access the WSDL for

the simple web service defined above, simply invoke it with ?WSDL tagged onto the

end of the URI. A portion of the resulting WSDL is shown in figure 18.4.

Figure 18.3

Accessing the web service via an HTTP

GET displays a message indicating that a

web service is running at that URI.

Figure 18.4 Axis automatically generates the WSDL for web services when you add

the flag ?WSDL to the HTTP GET request of the web service.

Axis 549

WSDL2Java

To call a web service that already exists, you must generate Java interfaces and

helper classes. Axis includes a tool called WSDL2Java that takes a WSDL file and

generates all the necessary Java classes to call the web service. If you are familiar

with RMI or CORBA, this process is exactly like running the rmic or idl2java com-

pilers used for those distributed platforms. This similarity is not just skin deep.

Every distributed architecture must supply a tool that allows you to translate back

and forth between the native language representation of classes and objects and

the distributed format for the same constructs.

 Let’s look at an example of what WSDL2Java produces. Consider the WSDL file

generated from the simple web service defined in listing 18.1. Running WSDL2Java

on that document produces four Java source files, summarized in table 18.1.

As you can see, WSDL2Java performs a lot of work on your behalf. Fortunately, you

don’t have to understand anything about the internal structure of those gener-

ated classes. The only ones you care about are the interface and the ServiceLoca-

tor. The interface (Simple.java) appears in listing 18.2.

/**
 * Simple.java

 *
 * This file was auto-generated from WSDL
 * by the Apache Axis WSDL2Java emitter.

 */

package localhost;

Table 18.1 WSDL2Java output

Java Source File Description

Simple.java The remotable interface that describes the method available through

this web service (see listing 18.2).

SimpleService.java The Java interface that defines methods that return an instance of a

class implementing the Simple interface defined in Simple.java.

SimpleServiceLocator.java A utility class for locating, binding, and returning a class that imple-

ments SimpleService.java. This is the class you call to bind to the

web service.

SimpleSoapBindingStub.java A class that implements all the details of actually calling the web ser-

vice from the client.

Listing 18.2 The Java class generated from the WSDL for the web service

550 CHAPTER 18

Web services and Axis

public interface Simple extends java.rmi.Remote {

 public java.lang.String sayHello(java.lang.String name)
 throws java.rmi.RemoteException;
}

The ServiceLocator class implements the methods you call to retrieve a class that

implements the interface defined in listing 18.2. The SimpleServiceLocator class

appears in listing 18.3.

package localhost;

public class SimpleServiceLocator

 extends org.apache.axis.client.Service
 implements localhost.SimpleService {
 // Use to get a proxy class for Simple

 private final java.lang.String Simple_address =
 "http://localhost:8080/axis/Simple.jws";

 public String getSimpleAddress() {

 return Simple_address;
 }

 public localhost.Simple getSimple()

 throws javax.xml.rpc.ServiceException {
 java.net.URL endpoint;
 try {

 endpoint = new java.net.URL(Simple_address);
 } catch (java.net.MalformedURLException e) {
 return null;

 }

 return getSimple(endpoint);
 }

 public localhost.Simple getSimple(java.net.URL portAddress)
 throws javax.xml.rpc.ServiceException {
 try {

 return new localhost.SimpleSoapBindingStub(
 portAddress, this);
 } catch (org.apache.axis.AxisFault e) {

 return null; // ???
 }

 }

 public java.rmi.Remote getPort(Class serviceEndpointInterface)
 throws javax.xml.rpc.ServiceException {

 try {

Listing 18.3 The ServiceLocator helper class returns a class that calls the web service

for you.

Calling web services 551

 if (localhost.Simple.class.isAssignableFrom(

 serviceEndpointInterface))
 return new localhost.SimpleSoapBindingStub(
 new java.net.URL(Simple_address), this);

 } catch (Throwable t) {
 throw new javax.xml.rpc.ServiceException(t);
 }

 throw new javax.xml.rpc.ServiceException(
 "There is no stub implementation: " +
 ((serviceEndpointInterface == null)

 ? "null"
 : serviceEndpointInterface.getName()));
 }

}

You’ll read about an example of using the WSDL2Java tool to call a web service not

defined locally in section 18.3.

Java2WSDL

Axis also includes the Java2WSDL utility, which takes a Java interface and generates

the necessary WSDL to implement it as a web service. Using this utility is certainly

more complex than letting the Axis framework automatically generate the WSDL

for you. Use it in cases where you need to customize the WSDL or the deployment

options for your web service.

18.3 Calling web services

Calling web services using Axis is almost trivial. The hardest part is locating a web

service you want to call. Numerous sites publish a list of web services. One of the

very good ones is www.xmethods.com. All you nned to know to call the web ser-

vice is the WSDL—Axis generates everything else you need.

 For example, say you have a need in your application to be able to look up

quotes from Shakespearean plays and get information about the plays. Fortu-

nately, a web service exists to handle this job (you’ll find it on the xmethods web

site). The WSDL in question is www.xmlme.com/WSShakespeare.asmx?WSDL.

 The first step is to run WSDL2Java on this WSDL file, which generates four files.

Next, you can implement your class that needs to call the web service. This class is

shown in listing 18.4.

552 CHAPTER 18

Web services and Axis

package com.nealford.art.ws.clientcall;

import java.rmi.RemoteException;

import javax.xml.rpc.ServiceException;
import com.xmlme.ShakespeareLocator;
import com.xmlme.ShakespeareSoap;

public class ShakespeareQuotes {
 public ShakespeareQuotes() {
 ShakespeareSoap bard = null;

 try {
 bard = new ShakespeareLocator().
 getShakespeareSoap();

 } catch (ServiceException ex) {
 ex.printStackTrace();
 }

 String speech = "To be, or not to be";
 System.out.println("The quote:'" + speech + "'");
 try {

 System.out.println(bard.getSpeech(speech));
 } catch (RemoteException ex1) {
 }

 }

 public static void main(String[] args) {
 new ShakespeareQuotes();

 }

}

The ServiceLocator returns an instance of a class that implements the Shakes-
peareSoap interface. This interface defines the lone method getSpeech(). Once
you have the interface reference, you can treat the object as a local object.

The call to bard.getSpeech() executes the web service and returns the match-
ing speaker, play, and speech. The results of running this application are shown
in figure 18.5.

As you can see, Axis makes it easy to consume web services in Java. One of the

nice characteristics of web services as a distributed execution protocol is the

irrelevance of what language or platform implements the web service method.

The Shakespeare quote service happens to be implemented using the Microsoft

.NET Framework, but I have no idea what language it uses. The only reason I

know the implementation platform is that xmethods lists the technology. Con-

sumers of web services don’t have to care about details like data types, languages,

Listing 18.4 This simple class calls the web service defined by the WSDL.

Uses ServiceLocator
to get web service

B

Calls the
web service

C

B

C

eMotherEarth web services 553

platforms, or operating systems. Web services act as a homogenizing layer for dis-

tributed computing.

18.4 eMotherEarth web services

Now that we’ve shown you how to create simple web services as well as how to con-

sume them, let’s add a couple of web services calls to the eMotherEarth applica-

tion. As you know, this is an existing application, based on the chapter 13 example.

Here, let’s add two web service methods for orders: one to return the order status

and another to return the shipping status. This sample appears in the source code

archive as art_emotherearth_ws.

18.4.1 Configuration

Three configuration changes are required to retrofit the existing application to

use a web service. Two are web service specific; the other is a change in the way we

create database connections.

Changes to web.xml

The first step in adding a web service is to add the Axis JAR files to the existing

project. The Axis JAR files include a servlet that acts as the Axis engine when

embedded in a larger web application. To enable this servlet, add a reference to

the web.xml configuration file along with a URL mapping that uses prefix map-

ping to send anything identified as “service” to the AxisServlet. Listing 18.5

shows these two entries.

Figure 18.5 Running the ShakespeareQuotes application uses the web service to print out the play,

the speaker, and the entire speech.

554 CHAPTER 18

Web services and Axis

 <servlet>
 <servlet-name>AxisServlet</servlet-name>

 <display-name>Apache-Axis Servlet</display-name>
 <servlet-class>
 org.apache.axis.transport.http.AxisServlet

 </servlet-class>
 </servlet>

 <!-- items omitted here -->

 <servlet-mapping>
 <servlet-name>AxisServlet</servlet-name>
 <url-pattern>/services/*</url-pattern>

 </servlet-mapping>

Database connections

The welcome servlet creates the database connection pool when the user first

accesses it. Creating the connection pool in the welcome servlet is a given when it

is solely a web application. However, we can no longer assume that a user will hit

the application first. It is now a service called programmatically. To solve this prob-

lem, we must ensure that the database connection pool is established as soon as

the application starts. Several ways exist to handle this, including using database

connection pooling built into the servlet engine. However, we don’t want to rely

on that because it isn’t standard across servlet engines.

 The web service isn’t implemented as a servlet—it is a simple Java class. There-

fore, it will not have access to the standard web collections. Even when the wel-

come servlet loads on startup, that still doesn’t make it any easier to deliver a

database connection from the pool to the web service.

 The easiest solution is to create a class that has characteristics of both a single-

ton object and a servlet. It isn’t possible to create a singleton servlet (they are

already a kind of singleton), but it is possible to borrow the singleton concept of

allowing a class to hold on to a reference. The servlet engine creates and main-

tains the servlet objects for you. However, it never reveals the name of the object.

Listing 18.6 shows the implementation of a ConnectionPoolProxy class.

package com.nealford.art.emotherearth.util;

import javax.servlet.GenericServlet;

Listing 18.5 Adding Axis support to web.xml

Listing 18.6 The ConnectionPoolProxy is a servlet that maintains an internal reference

to itself.

eMotherEarth web services 555

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;

public class ConnectionPoolProxy extends GenericServlet {

 static private ConnectionPoolProxy cpp;

 public void init() throws ServletException {
 cpp = this;

 }

 public void service(ServletRequest req, ServletResponse res)
 throws javax.servlet.ServletException,

 java.io.IOException {
 //-- intentionally left blank
 }

 public static ConnectionPoolProxy getInstance() {
 return cpp;
 }

 public DBPool getDbPool() {
 return (DBPool) getServletContext().getAttribute("dbPool");
 }

}

The ConnectionPoolProxy class extends GenericServlet so that the servlet engine
can automatically create it.

Like a singleton, the servlet class holds a private static reference to itself.

In the init() method (after the servlet engine has created the servlet object), the
servlet class stores the object reference in the static variable.

The service() method is required but not used in this class.

The getInstance() method is also similar to a singleton—it returns the internal
reference to the object held by the servlet engine.

The getDbPool() method has full access to the servlet context collection, where
the welcome servlet placed the connection pool upon startup.

The web.xml file has both the welcome and ConnectionPoolProxy servlets load

on startup. The web service can use the ConnectionPoolProxy class name to get an

instance of the object owned by the servlet engine.

Server.config

Implementing web services using the JWS file is simple. However, Axis builds a

web service call for every public method in the class. Obviously, there are

Extends
GenericServlet

B

Holds a private
instance of
itself

C

Saves a reference to the object
created by servlet engine

D

Contains a required
(but empty)

service() method

E

Returns an
instance of
the servlet

F

Returns the
connection G

B

C

D

E

F

G

556 CHAPTER 18

Web services and Axis

situations where that would be undesirable. Because we aren’t going to imple-

ment our web service as a JWS file, we must configure Axis to publish it. We can

accomplish that via an XML document named server-config.wsdd, which resides

in the WEB-INF directory. It defines all the handlers for Axis and contains

numerous entries for the built-in handlers for Axis. Listing 18.7 shows the

excerpt for our web service methods.

<!-- service registration for Order Status -->
<service name="OrderStatus" provider="java:RPC">
 <parameter name="className"

 value="com.nealford.art.emotherearth.ws.OrderInfo"/>
 <parameter name="allowedMethods"
 value="getWsDescription, getOrderStatus, getShippingStatus"/>

</service>

The configuration entry in listing 18.7 creates an OrderStatus web service

name, using the RPC semantics to call it. The class that implements the web ser-

vice is OrderInfo, which publishes three methods: getWsDescription(), get-

OrderStatus(), and getShippingStatus(). This entry exposes the methods of

the class as calls that will be available to clients. None of the other methods of

the class are affected.

18.4.2 Orders

The existing application handles orders in the typical Model 2 fashion. An Order

boundary class returns instances of order entity objects. For the purposes of this

web service, we don’t need an entire order object. All we need is the status for a

particular order whose key is passed. While we could have the boundary class

return an entire order entity for this purpose, it is a waste of resources to do so.

 One of the key characteristics of web services is that the method calls are gen-

erally stateless. This is a requirement imposed by the protocol used to call them

(HTTP). As with web pages, the calls to web service methods are stateless. There-

fore, it is always a good idea to make the web services methods as cohesive as pos-

sible so that they don’t perform needless work. Notice that this paradigm fits

nicely with the idea of a stateless session EJB. It is easy to place a web services layer

over an existing stateless session bean method call.

Listing 18.7 The server-config.wsdd entries for the new web services

eMotherEarth web services 557

Order boundary

To add the web services layer, we don’t need the state implied by creating an

entire entity object just to access one field. This is a case wherein a few stateless

methods added to the boundary class supplies all the information we need. For

the web service, we add three new methods to the boundary, and the entity incurs

no changes. Listing 18.8 shows the added methods.

private String getStatusFor(String sql, int orderKey) throws
 SQLException {

 Connection c = null;
 PreparedStatement ps = null;
 ResultSet rs = null;

 String result = "Error: Order not found";
 try {
 c = dbPool.getConnection();

 ps = c.prepareStatement(sql);
 ps.setInt(1, orderKey);
 rs = ps.executeQuery();

 if (rs.next())
 result = rs.getString(1);
 } finally {

 ps.close();
 dbPool.release(c);
 }

 return result;
}

public String getShippingStatus(int orderKey)

 throws SQLException {
 return getStatusFor(SQL_GET_SHIPPING_STATUS, orderKey);
}

public String getOrderStatus(int orderKey) throws SQLException {
 return getStatusFor(SQL_GET_ORDER_STATUS, orderKey);
}

The primary method we added to OrderDb is a helper method that gets the status

for either an order or shipping. Because the infrastructure of both calls is identi-

cal, the single getStatusFor() method handles the details of querying the data-

base. The two methods used by the web service call the helper method with the

appropriate SQL (defined in a constant) and the order key.

Listing 18.8 Methods added to the OrdersDb boundary

558 CHAPTER 18

Web services and Axis

The orders web service

The web service itself is also simple. As we mentioned earlier, Axis handles the

details of creating the web services infrastructure. The developer of the web ser-

vice need only worry about delivering the information. The OrderInfo class that

defines the web service methods appears in listing 18.9.

package com.nealford.art.emotherearth.ws;

import java.sql.SQLException;
import com.nealford.art.emotherearth.boundary.OrderDb;
import com.nealford.art.emotherearth.util.ConnectionPoolProxy;

import com.nealford.art.emotherearth.util.DBPool;

public class OrderInfo {

 public String getWsDescription() {

 return "eMotherEarth order information";
 }

 public String getOrderStatus(int orderKey) {

 OrderDb orderDb = new OrderDb();
 orderDb.setDbPool(getConnectionPool());
 try {

 return orderDb.getOrderStatus(orderKey);
 } catch (SQLException ex) {
 return "error accessing status: " + ex.getMessage();

 }
 }

 public String getShippingStatus(int orderKey) {

 OrderDb orderDb = new OrderDb();
 orderDb.setDbPool(getConnectionPool());
 try {

 return orderDb.getShippingStatus(orderKey);
 } catch (SQLException ex) {
 return "error accessing status: " + ex.getMessage();

 }
 }

 private DBPool getConnectionPool() {

 return ConnectionPoolProxy.getInstance().getDbPool();
 }

}

The OrderInfo class implements a stateless call to the OrderDb boundary class

that gets the status information and a call that returns a simple description.

Listing 18.9 The OrderInfo class defines the web service methods.

eMotherEarth web services 559

The OrderInfo class accesses the connection pool through the ConnectionPool-

Proxy defined in listing 18.6. That class acts as a bridge between the web API

world (which contains the collections that owns the connection pool) and this

simple class.

 The class is itself a proxy for the OrderDb boundary. While you could add these

methods directly to the boundary class, we don’t recommend that. Classes should

be as cohesive as possible. Adding web service methods to a boundary class dilutes

its purpose. No class should perform two distinct jobs. You are much better off

keeping the classes as simple and cohesive as possible. This class utilizes the order

boundary, but it does so by asking the boundary to perform its single job: access-

ing information from the persistence layer.

 Axis automatically maps Java types to the appropriate WSDL types so that the

developer of the implementing class doesn’t have to worry about them. The

Java2WSDL utility will even generate the necessary code for user-defined classes,

making them legal WSDL types. As you are writing classes targeted as web services

like the one shown here, you don’t have to be concerned about typing and other

details of the distributed protocol.

18.4.3 Calling the web service

For testing purposes, JUnit makes a great test client. It contains code external to

the web application with very little infrastructure. It also lets you implement your

web services one feature at a time and apply immediate testing to make sure it

works.

 To utilize the web service that now exists in eMotherEarth, we created a desk-

top application that can check on the status of an order. This application allows

the user to enter an order key and get back the corresponding status information.

This application is shown in figure 18.6.

 To call the web service, we must first call

WSDL2Java on the WSDL returned from the

web service. Executing WSDL2Java yields sev-

eral source files, only two of which are

directly used by the desktop application.

The first is the Java interface that defines

the methods. This interface appears in

listing 18.10.

Figure 18.6 This desktop application calls

the eMotherEarth status web service to find

out the status of an order.

560 CHAPTER 18

Web services and Axis

/**
 * OrderInfo.java

 *
 * This file was auto-generated from WSDL
 * by the Apache Axis WSDL2Java emitter.

 */

package localhost;

public interface OrderInfo extends java.rmi.Remote {

 public java.lang.String getWsDescription()
 throws java.rmi.RemoteException;

 public java.lang.String getOrderStatus(int orderKey)

 throws java.rmi.RemoteException;

 public java.lang.String getShippingStatus(int orderKey)
 throws java.rmi.RemoteException;

}

The OrderInfo interface defines how the client application will make the calls to

the web service. The other file generated by WSDL2Java is the service locator class,

which returns a concrete class that implements the interface.

 Most of the code in the application is Swing user interface code that has no

bearing on the web services aspect of this application, so it won’t be shown. The

only code of interest is the code in the event handler for the button that invokes

the web service. This event handler appears in listing 18.11.

void btnInvokeWs_actionPerformed(ActionEvent e) {
 localhost.OrderInfo ws;
 try {

 ws = new localhost.OrderInfoServiceLocator().
 getOrderStatus();
 } catch (javax.xml.rpc.ServiceException jre) {

 if (jre.getLinkedCause() != null) {
 jre.getLinkedCause().printStackTrace();
 }

 throw new RuntimeException(
 "JAX-RPC ServiceException caught: " + jre);
 }

 try {
 int orderNo =
 Integer.parseInt(jTextField1.getText());

 ws.getShippingStatus(orderNo);

Listing 18.10 The OrderInfo interface, generated by WSDL2Java

Listing 18.11 The event handler code that calls the web service

eMotherEarth web services 561

 lblOrderStatus.setText(ws.getOrderStatus(orderNo));

 lblShippingStatus.setText(
 ws.getShippingStatus(orderNo));
 } catch (java.rmi.RemoteException re) {

 throw new RuntimeException("Web service call failed");
 }
}

The event handler uses the service locator class to get the instance of the web ser-

vice and then calls the methods defined in the interface based on the information

supplied by the user.

Calling the web service from other languages

One of the benefits of using web services is cross-language and cross-platform sup-

port. To illustrate this, we created a simple console application in C# that calls the

eMotherEarth status web service. The C# class appears in listing 18.12.

using System;

namespace art_emotherearth_ws {
 class Class1 {

 [STAThread]
 static void Main() {
 com.nealford.art.emotherearth.OrderInfoService

 orderInfo = new com.nealford.art.emotherearth.
 OrderInfoService();
 Console.WriteLine("Order status for order # 1 is " +

 orderInfo.getOrderStatus(1));
 Console.WriteLine("Shipping status for order # 1 is " +
 orderInfo.getShippingStatus(1));

 }
 }
}

This level of cross-platform and -language support is one of the key factors in mak-

ing web services the dominant distributed computing platform, especially for

stateless information exchange.

Listing 18.12 This C# class calls the eMotherEarth status web services.

562 CHAPTER 18

Web services and Axis

18.5 Summary

Web services is the umbrella term defining RPCs over HTTP using SOAP. The open

standard defines the semantics of the calls, a description service (WSDL), and a

directory mechanism (UDDI). The standard includes capabilities for numerous

protocols, but from a practical standpoint, HTTP is the primary protocol of interest.

 The Axis project is a complete rewrite of the previous open-source project that

enabled SOAP messaging from Java. It includes a framework and tools to make it

easy to add support for web services to Java applications, especially web applica-

tions. Axis includes tools that generate Java classes from WSDL documents and

that generate WSDL documents from Java classes. It also provides a facility similar

to the JSP mechanism that automatically generates the appropriate infrastructure

for a Java class (named with a .jws extension) for making SOAP calls against it. For

any web service defined using Axis, the WSDL for that web service is available by

performing an HTTP GET operation and adding the parameter ?WSDL to the URL.

 Creating a web service in a Model 2 application requires creating stateless

methods that will be called via HTTP. Some infrastructure changes are necessary,

as demonstrated in the eMotherEarth application. Most of the changes dealt with

the logistics of connection pooling and startup code execution because of the

stateless nature of the web services call. The actual methods we added to the

OrderDb boundary class and the web service class itself were minimal.

 Once the web service exists, client applications (written in any language that

supports web services) can call it. The client applications need only access the WSDL

for the web service, which defines all the semantics of how to call the web service.

 Axis lets you easily add web service support to web applications. If the appli-

cation is architected using Model 2, which promotes the separation of responsi-

bilities, the changes required to implement stateless web service methods calls

are simple.

 In the final chapter, we talk about what isn’t covered in this book.

563

What won’t fit in this book

This chapter covers

■ Persistence options

■ HTML and the user interface

■ JavaScript

564 CHAPTER 19

What won’t fit in this book

In lieu of trying to cram all the topics involved in building web applications into a

single volume, we’ve included in this chapter the important items that are beyond

the scope of this book. We chose this arrangement because these topics are too

large to fit into a single chapter (or in some cases, a single book).

 The topics covered here (persistence, the user interface, and JavaScript) are

critical parts of a web developer’s arsenal. You should be familiar with all three

even if you don’t address them daily.

19.1 Persistence

Persistence in this context refers to storing information externally, typically in a

relational database. Although that sounds like a simple chore, a vast amount of

research and code has been written for managing this process. Consequently, sev-

eral options are available to help you achieve data persistence. They range from

simple Java objects to entire complex APIs managed by Sun.

19.1.1 Plain old Java objects

The strategy we’ve adopted throughout most of this book involves using plain old

Java objects (POJOs). This approach entails creating boundary objects in the

application that are “normal” classes and that don’t implement any special persis-

tence API. You can find many examples of this type of database access in virtually

every chapter, including the evolution, framework, and best practices parts of the

book (see chapters 2, 4, and 13). For detailed coverage of the POJOs in use, con-

sult chapter 4, section 4.1.1, which discusses the POJO implementation used for

the generic Model 2 applications as well as the POJOs used for all the frameworks

(except InternetBeans Express).

 The developer attitude has come full circle on the use of POJOs. They were

once ridiculed as too simple to be effective, and numerous other approaches have

been developed (some of which we discuss in the sections that follow). However,

building an effective persistence layer is difficult and requires generating com-

plex APIs. Many developers, especially of small and medium-sized applications,

have come back to POJO as a simple, effective persistence mechanism.

19.1.2 Enterprise JavaBeans

One of the most popular topics in the Java universe is Enterprise JavaBeans

(EJBs). Many books are available that cover this subject in detail. Art of Java Web

Persistence 565

Development covers EJBs in chapter 12, which discusses how well-designed Model 2

applications port easily to EJBs by making the boundary classes proxies for the cor-

responding EJBs.

 The EJB standard is quite complex, with various specifications and versions.

Like most of the solutions from Sun, it is a well-thought-out specification that suc-

cessfully manages to handle the intricate problem of efficient persistence between

Java objects and traditional databases. It has proved its worth in complex, scalable

deployments.

 Developers’ primary complaint against EJBs is the shear complexity of the API

and the code that underpins it. No one denies that a generic persistence layer is a

complicated undertaking, but some wonder if there might be an easier way that

doesn’t mean sacrificing the power and scalability of EJB. In any case, EJB is cur-

rently the gold standard for scalable applications.

19.1.3 Java data objects (JDO)

The Java data object (JDO) provides a persistence mechanism that doesn’t force

the developer to know how to map Java classes to any type of foreign model. For

example, to use POJO and JDBC, you must understand and build the relationship

between your Java objects and the set-based nature of SQL. To use container-man-

aged EJBs, you must define the relationships between the class and the relational

world. JDO allows the developer to create classes with no extraneous code in them

for persistence. The metadata relating to the class resides in an XML document,

and JDO takes care of persistence, transaction management, and similar services.

 Java serialization provides much of the same transparency. However, it is not

suitable for a robust persistence layer because it does not support transaction proc-

essing and other necessary features. JDO is designed as an alternative to container-

managed entity beans because it is much simpler for the developer to implement

while providing some of the same benefits. JDO utilizes an API for generating the

necessary code to handle persistence, which frequently operates on the byte code

of the classes that are to be persisted.

 JDO is an official extension to Java, sanctioned by Sun, and provides a reason-

able alternative to other persistence schemes. Using JDO, the boundary classes

found in Art of Java Web Development would essentially vanish, while JDO would

manage the services provided by the boundaries. JDO is a powerful way to create a

persistence layer that is robust yet simple. Time will tell if it scales well enough to

become the de facto standard for data access.

566 CHAPTER 19

What won’t fit in this book

19.1.4 Hibernate

Hibernate, an open-source alternative to JDO and EJB, is an object/relational per-

sistence and query service. It allows you to create “normal” Java classes and utilizes

all the features of Java’s object-oriented nature. For example, you can use compo-

sition, inheritance, polymorphism, and the collections framework to create your

object hierarchy. Hibernate uses the reflection API in Java to handle persistence.

One of the common rumors in Java is that the reflection API is not efficient. While

that may have been true in the first versions of the SDK, it is no longer the case.

Reflection in Java is efficient and fast in modern SDKs. Hibernate takes advantage

of this language feature by building a persistence mechanism around it. It does

not require any code generation (like EJB) or byte-code processing (like JDO) to

work. Instead, SQL generation occurs at system startup.

 Hibernate handles mappings to all major database vendors. It has defined a

mechanism that maps Java objects to relational databases and leaves the intrinsic

relationships intact. Because it uses its own mapping mechanism, you may find it

difficult to use the tables generated by Hibernate in other, non-Java applications

because you must understand how Hibernate performs its mappings.

 Hibernate is a popular open-source project, with many loyal followers. The

Hibernate developers have taken yet another approach to the object/relational

mapping problem. It combines the desirable characteristics of being lightweight

and providing high performance and is an excellent alternative for applications

that are primarily Java based.

19.2 HTML and the user interface

Not many developers have the ability to create an effective and attractive user

interface (UI). It is a specialized part of software development, best handled by

experts in usability. Developers who write low-level code have produced some

truly hideous UIs.

 One of the benefits of the Model 2 architecture espoused in Art of Java Web

Development is the clean separation of behavior from the UI. Once you achieve that

goal, you can leave the design of the UI to an expert. However, all developers

should know some of the details of building HTML UIs. As you can tell by looking

at the UI of all the samples in this book, I am not, nor do I pretend to be, a user

interface designer. The UI of each sample is left as simple as possible.

HTML and the user interface 567

19.2.1 HTML/XHTML

You can find all kinds of books that cover HTML syntax and programming, as well

as many sophisticated tools. The non-UI developer’s job is twofold: to ensure that

any HTML generated by custom tags or other programming elements adheres to the

HTML standards, and to stay out of the way of the UI designer as much as possible.

 An emerging standard for HTML is Extensible HTML (XHTML), which applies

the stricter rules of XML to HTML. The use of XHTML is an encouraging trend

because it removes the long list of exceptions that browsers must support for stan-

dard HTML. As a developer, you should make the effort to move your HTML to

XHTML for two reasons. First, XHTML will eventually supplant HTML, so building

your artifacts in XHTML anticipates future needs. This includes not only the

explicit UI pieces but also any code generated by custom tags or Java code.

 Second, because XHTML is a variant of XML, you can both check your syntax

and validate the document. That way, you can rest assured that you’re creating

UIs that you know are both syntactically and semantically correct (and render cor-

rectly in different browsers). While HTML can also be validated, the rules and

infrastructure for XML validation are much stronger.

19.2.2 Cascading Style Sheets

The other UI technology with which you should be familiar is Cascading Style

Sheets (CSS). CSS allows you to create templates to achieve a particular look and

feel for output in your HTML document. A CSS can include colors, fonts, and a

host of other UI-related items.

 CSS is the preferred technique for handling as much of the look and feel of the

UI as possible. It is important not to generate any code that conflicts with CSS’s

ability to perform this task. For example, it is a bad idea to hard-code colors, fonts,

and other visual elements in Java code, JSP, servlets, or custom tags. You should

always make your code CSS-friendly, which gives the UI designer full latitude in

creating (and changing) the look and feel of the application.

 This book doesn’t include any HTML that utilizes CSS, but that omission should

not be viewed as a dislike or underappreciation of the power of this facility. Our

goal was to keep the focus strictly on the code and architecture. It is up to a UI

designer to take what we have created and make it suitable for public consumption.

568 CHAPTER 19

What won’t fit in this book

19.3 JavaScript

The topic of JavaScript appears in chapter 12, during our discussion of client-side

validation. That chapter also explained the rationale for using JavaScript to han-

dle client-side chores. JavaScript is a perfectly good language for handling the

problems for which it was designed. Developers get into trouble with it (and other

scripting languages) when they try to build too much in the scripting language.

 Scripting languages are designed for ease of use and quick implementation.

Characteristics of higher-level languages, like strong typing, improved scoping,

and object-oriented features, don’t appear in JavaScript. The emphasis lies with

quick implementation and using the prebuilt object model to manipulate ele-

ments in the HTML document or provide validations.

 In chapter 12, you learned how to avoid placing your business rules solely in

the view part of the application, which violates the tenants of Model 2 architec-

ture. Instead, the JavaScript is generated as a field of the model bean and inserted

using a standard JSP tag:

<input name="duration" size="16"

 value="<jsp:getProperty name="scheduleItem"
 property="duration"/>"
 onBlur="<jsp:getProperty name="scheduleItem"

 property="startValidationJS"/>"/>

Many developers think that this is a radical idea, and that I’m going too far in keep-

ing the business rules so adamantly in the server. The reason I feel so strongly is

simple: I’ve had to maintain too many web applications that suffered from poor

separation of concerns. While extreme, using this technique ensures that all the

business rules reside in a single location.

 I have nothing against JavaScript. In fact, it is one of my favorite scripting lan-

guages. I’m not even opposed to using scripting languages to handle the jobs for

which they were designed. I just want to warn you against the practice of trying to

do too much in the scripting language and thus compromising the overall archi-

tecture, design, and performance of your application.

 JavaScript is necessary for building web applications. As such, it is an

important weapon in the arsenal of web developers. However, it is a weapon

whose use can damage the wielder as much as the target. Some frameworks

(like the Struts Validator) automatically generate JavaScript for you—which is

the best of both worlds because you get the capabilities of JavaScript in the cli-

ent without having to maintain the generated code. Someone else has already

Summary 569

implemented common JavaScript functionality, freeing the developer to focus

on the web application’s server-side implementation.

19.4 Summary

No single book can cover the entire breadth and depth of a topic as large and var-

ied as web development. This book examines the critically important areas of

architecture, design, and effective best practices. However, some topics are simply

too large or too peripheral to provide adequate coverage in one volume.

 Persistence is a pervasive problem in all software development, aggravated by

the impedance mismatch between object-oriented language and relational data-

bases. A couple of alternatives exist for persistence. The first, Java data objects, is

an official Java extension. It manages persistence by modifying byte codes based

on metadata about your classes, stored in an XML configuration document.

Another persistence mechanism is the open-source project Hibernate, which uses

the native Java facilities for reflection to handle automatic persistence of entities.

 Web applications ultimately generate UIs in either HTML or XHTML. Although

UI design is best left to experts, web developers should understand some aspects of

HTML. In particular, web developers must be careful not to generate code within

servlets or custom tags that undermine the work of the visual designers. Cascading

Style Sheets are the preferred way to handle visual elements on web pages, and the

web designer must take care not to interfere with that mechanism, either.

 JavaScript is the best of the client-side scripting languages for browsers (and the

only one universally supported, albeit with slight differences among browser ven-

dors). The use of JavaScript for validations and other simple tasks is a key element

in effective web applications. However, it offers a double-edged sword, because too

much scripting code compromises the maintainability of the application.

570

bibliography
Beck, Kent. Smalltalk Best Practice Patterns. Upper Saddle River, N.J.: Prentice Hall PTR,

1996.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Reading, Mass.: Addison-Wesley, 1994.

Hatcher, Erik, and Steve Loughran. Java Development with Ant. Greenwich, Conn.: Man-
ning Publications, 2002.

Husted, Ted, Cedric Dumoulin, George Franciscus, and David Winterfeldt. Struts in
Action: Building Web Applications with the Leading Java Framework. Greenwich, Conn.:
Manning Publications, 2002.

Kernighan, Brian, and Rob Pike. The Practice of Programming. Reading, Mass.: Addison-
Wesley, 1999.

Lewis Ship, Howard. Tapestry in Action. Greenwich, Conn.: Manning Publications,
2003.

Massol, Vincent and Ted Husted. JUnit in Action. Greenwich, Conn.: Manning Publica-
tions, 2003.

Shachor, Gal, Adam Chace, and Magnus Rydin. JSP Tag Libraries. Greenwich, Conn.:
Manning Publications, 2001.

571

index

Symbols

.NET, as a web services platform 552

A

abstract 331
abstract Action

Parameterized Commands 120
Struts 137

abstract class 330
alternative to interfaces 332

AbstractAction 305
in Cocoon 300

AbstractComponent 170
AbstractLoggable in Cocoon 300
AbstractTableDataModel 172
AbstractTableModel 171–172, 332
accessor method generated by DataExpress 232
action, as proxies for controllers 389
Action class

Command design pattern 120
Command pattern 117
Struts 12
WebWork 203, 213, 216

Action interface in Cocoon 300
action mapping 140
Action objects, advantages 127
Action servlet 141

using object pools 440
ActionContext.getContext() 205
ActionError 154
ActionForm

in Struts 136
reset() method for object reuse 424

ActionForward 139, 156

ActionInterface 204
ActionListener 170

in Tapestry 169
Actions 158

chain 202
comparing Struts to Cocoon 297
in Cocoon 297
Model 2 117
Struts 13
using Velocity in Struts 264
WebWork 201

ActionSupport 204, 211–212, 216
activateObject() 433
adaptor class, definition 64
Add class in Tapestry Schedule application 188
Add page

InternetBeans Express Schedule
application 245

specification 186
Tapestry Schedule application 185
Velocity Schedule application 274
WebWork’s Schedule application 214

Add servlet in InternetBeans Express Schedule
application 245

Add template in InternetBeans Express Schedule
application 248

AddDbPoolTagExtraInfo 78
AddDbPoolToApplication 76
AddSchedule View in WebWork 217
AddScheduleBase in WebWork 214–215
AddScheduleEntry in WebWork 214, 219
AddScheduleEntry servlet in InternetBeans

Express Schedule application 252
AddScheduleEntryBeanInfo 222
AddScheduleItem in WebWork 214, 216
AddScheduleItem.properties 218

572 INDEX

AddToScheduleAction in Struts 155
addUser 37
aggregation compared to composition 383
Aggregator 336
agile

development 522
methodologies, characteristics 523

Alexander, Christopher 6
AllTests suite 530
Ant 195, 203

as an alternative to IDEs 493
automating JUnit regression testing 536
use with JUnit 534

Apache 12, 14, 160, 545
Apache Extensible Interaction System 545
application context

and caching 448
hidden resource cost 87

application deployment descriptor file 77
Application Engine in Tapestry 161
application server required to host EJBs 441
application servlet in Tapestry 162
application specification 180

and Visit 167
in Tapestry 162
in Tapestry Schedule application 179

Application, Jakarta Taglib 84
ApplicationServlet 161–162

for Schedule application 173
Architectural Spikes 442
architecture and process intensive 228
ArrayIndexOutOfBoundsException

as a RuntimeException 403
ArrayList 97

thread safety 97
Arrays 385
Art of War xvii
art_emotherearth_base 373
art_emotherearth_cachingpool 434
art_emotherearth_facade 454
art_emotherearth_flyweight 448
art_emotherearth_junit 526
art_emotherearth_log4j 516
art_emotherearth_ws 553
art_parameterizedcommands 118
art_sched_ejb 341, 470
art_sched_js 363
art_sched_mvc 93
art_sched_struts 134
art_sched_velocity 270
art_sched_webwork 208
Assembler Broker 18

Assemblers 18
assertEquals() 527

characteristics 528
assertions web specific 538
assertNotNull() 527
assertSame() 527
assertTrue() 527
association class 452
attribute collection effective use strategy 472
attribute collections 472
attributeRemoved() 461
authentication 470
autoCommit 49
automatic generation of key values 49
automatic paging in Tapestry 184
automatic population of values in Struts 136
automatic validation in Struts 149, 156
Avalon 296
Axis 24, 545

calling web services 551
characteristics 546
configuration 547
generation of simple web services 548
publishing web services 556
tools 547

AxisServlet 553

B

BaseComponent 171, 181–182
BaseEngine 170
BasePage 179, 189

in Tapestry 166
BaseURL 537
BaseWebTestCase 537
BDUF 522
BEA Jolt framework 12
bean authors in Model 2 applications 93
bean managed 348

entity bean defined 348
Bean tags 143
BeanInfo 207, 220, 222
Beck, Kent xxvi
beginResponse() method 189
Benchmark, Jakarta Taglib 84
best practices, definition 20
Big Design Up Front 522
binary RPC, common technical problem 544
Bob’s Framework 312
body element, definition 65
BodyContent 66
BodyTag 63, 65

INDEX 573

Booch, Grady 335
bookmark pages, preventing 128
bookmarks in eMotherEarth 395
Borland 417
borrowBoundary() 465
borrowObject() 439
borrowOrderBoundary() 458
bottleneck

memory in web applications 446
mistaken optimization 442

boundary and entity classes and resource
management 469

boundary and resource management 469
boundary classes

common characteristics used by Facade 464
decoupled from web services 559
defined 336
encapsulate transaction processing 392
proxies for EJB 565
replaced by JDO 565
stateless classes 422
unit tests 524

boundary façade, generic version 464
boundary package in eMotherEarth 372
boundary pool in eMotherEarth 439
BoundaryBase 464
BoundaryFacade 457
breakpoint 486, 489

command while stopped 490
NetBeans 496

browser, difficulting in testing 536
BSF, Jakarta Taglib 84
build logic into pages 62
buildFlyweightReferences() 448–449
building nested tags 64
business analyst, defining business rules 22
business logic

in Model 2 applications 92
placed in the middle tier 23
business rules 92
exceptions 402
HTML select options 113
unit tests 524
working definition 20

Business Rules Classes 250, 258

C

C 424, 508
.class modifier 465
C Language 4–5
C# as web service client 561

C++ 330, 403, 424
Cache, Jakarta Taglib 84
Cacheable 467

uses 467
cacheable action 128
cached resources 428
caching 468

application servers 339–340
as a concern 330
caution 467
changing through web.xml 460
data 233
defined 446
JNDI context 361
motivation 446
side effect 451
strategies 470
Tapestry 469
using parameterized commands 127
using soft references 431

call stack 407, 413
CallableStatement 231
callback method 70

for pooling objects 433
candidate for optimization 416
canonical

and FlyWeight 449
list 447
object defined 447
objects 428

Caretaker 395
Cascading Style Sheets 74, 567

in WebWork 207
Castor in Turbine 18
Catalina.bat 414
catalog controller

eMotherEarth base 374–375
in servlet-only eMotherEarth 30, 32
JSP-only eMotherEarth 51
refactored using JSTL 85

catch, jdb command 487
catching exceptions 403
CDATA 307
central controller 201
CGI 4
chain 546
chained constructor calls 422
class attribute

JSP 110
Tapestry page specification 176

Class class 465
used in JUnit 530

574 INDEX

class diagram 335
Class object 465
ClassNotFoundException, technical

exception 402
classpath

investigating through the debugger 486
jdb command 488
used in WebWork 203

ClasspathResourceLoader 266
clean separation

boundary classes and entities 441
concept in Model 2 applications 100
responsibilities 113

clear, jdb command 487
client/server 4

advantages and disadvantages 362
application 470
compared to web applications 362
InternetBeans Express 228
model object flexibility 104
scalability 337
timeframe compared to web projects 522
using DataExpress 230
validation 362
validation with DataExpress 250

clustered environment 107
and Velocity 267
application servers 340

COBOL 258
Cocoon 284

advanced user interface techniques 390
debugging 508
documentation of upcoming features 315
documentation shortcomings 315
non-transparent infrastructure 323
performance characteristics 421
performance profiling 421
servlet 288
tool support 317
use of innovatrive ideas 324

Cocoon 2, details 284
Cocoon.xconf, defined 296
code reviews, consistency in Model 2

applications 117
cohesive method 33, 35, 37

and unit testing 524
collaboration diagram 94
collection 385

API 97
disadvantage 100
extraneous object references 424
resizing 427

Collections.synchronizedMap() 432
column object 241, 250
COM/DCOM 544
combination of specification, template, and

class 184
Command design pattern 117

Cocoon 304
Struts 13
Struts implementation 137
WebWork 201, 203

commented out code, warning sign 317
Commercial Profilers 416
commit 50, 391
Common Gateway Interface 4
common resources used by custom tags 87
Commons pool 433, 454
Comparable 385
Comparator 385, 404, 451

defined 385–389
recipe for building 386

ComparatorFactory 388
compareTo() 385
compile-time checking 75
complex interactions between objects and

Façade 453
Component Reference hyperlink 193
component-based development 228
components in Cocoon 295
components to handle database connectivity 228
Composed Method design pattern xxvii
composition compared to aggregation 382
concat() 426
conceptual stack for undo operations 390
concern, defined 330
concurrent development using Model 2 93
concurrent users 6
configuration document in WebWork 208
configuration for Velocity 265
Confirmation

in JSP-only eMotherEarth 58
in servlet-only eMotherEarth 45

Connection 230, 525
connection pool 32, 97, 459

JNDI 470
JSP-only eMotherEarth 51
web services 559

ConnectionPoolProxy 554, 559
consistency in servlet-only eMotherEarth 36
constants for SQL text 97
cont, jdb command 487
container managed entity bean 348

advantages 348

INDEX 575

context object, Velocity 263, 269
context parameter, Tapestry 162
contextInitialized() method 456
contrib library 180
controller

advantages of trivial controllers 109
Cocoon 300
Command pattern 117
eMotherEarth 373
façade 469
frameworks 11
handling exceptions 403, 406
Model 2 9, 92, 94, 104
MVC 8
optional 123
publishing framework 293
servlet and unit testing 524
Struts 139–140
VelocityServlet 263

cookies 497
CORBA 544

hurdles to widespread adoption 544
Core 80
CPU SAMPLES 414
CPU sampling technique 417
create() 358
createColumnModel() 183
cross-cutting API defined 332
Crystal methodologies 523
CSS and generated code 567
custom exception 100, 402
custom JSP tag 10, 157

in WebWork 200, 202
InternetBeans Express 255

custom table component in WebWork 213
custom tag library 6, 320

API 71
compared to JSTL 382
debugging 478, 482
Struts 156–157
Struts configuration 142

custom taglib in InternetBeans Express 228
custom WebWork tags, value stack and expression

language 213

D

.do 140
data

encapsulated by model 387
in cached data 233

data aware 235
controls 233, 248
non-suitability to porting to EJB 360

data connectivity in InternetBeans Express
Schedule application 238

Data Definition Language 81
Data Express 229–230

defined 230
relationship to JDBC 230

data integrity 23
database 230

connection 68
connection, eMotherEarth 374
connection pooling, Struts 13
connection, servlet-only eMotherEarth 30
cursor 233
hosting business rules 22
servers and transaction processing 391
structure for Model 2 Schedule application 94

data-centric 289
DataModule 230, 236

as a singleton 232
as boundary and entity 234
defined 231

DataRow, defined 241
DataSet 231, 250

references DataModule 232
property 232

DataSource 266
use in EJB 343–344
used in Struts 139

DataSourceResourceLoader 266
Date

java.sql.Date 331
java.util.Date 331

DateTime, Jakarta Taglib 84
DBTags, Jakarta Taglib 84
DbUnit 534
deadline pressure 92
debug command 492
debugging

Cocoon 308
cost vs. time savings of IDE 506
difficulties 476
evaluating 505
frameworks 506
no-cost 505
open source vs. commercial 506
problems with web applications 476
support in Tapestry 195

declarative validation 156
defined 152

576 INDEX

declarative validation (continued)
Struts validator 151

Decorator design pattern 278
generic validations in WebWork 224

decoupled classes 332
dedicated user interface designers 55
deltas in cached data 233
deployment descriptor 97
design and architecture using JavaScript 365
design pattern 6, 320, 446

absence of 10
Alexander’s book 6
applied to open source frameworks 228
definition 6
framework facilitators 11

Design Patterns:Elements of Reusable Object-oriented
Software xxvi, 6

designers in JBuilder 231
desktop application 24, 230, 559

compared to distributed applications 28
compared to InternetBeans Express 229, 236
exception handling 407
similarity to Tapestry applications 321
Tapestry 190
web services client 559

destroyObject() 433
DevelopMentor 545
directives, Velocity Template Language 268
disconnected updates 233
discriminator 467
displacing standard HTML controls 62
displayable hyperlink 379
distributed application, web applications 28
doclet 225
Document Object Model 284
documentation for Cocoon 307
doEndTag 63–64
doExecute() method 211
doghouse, design metaphor 92
domain exception

defined 402
thrown by entities 403, 406
using 402

doStartTag 63–64
dot notation 83
down, jdb command 487
Dreamweaver 157, 318

MX 318
UltraDev and integration with Struts 157

DriverManager 230
dt_shmem 483

dt_socket 484
launching the debugger 484

dump, jdb command 487
DurationEditor 222
dynamic content 5–6, 228
dynamic controls 245
dynamic generation of HTML pages 229
dynamic information 93
dynamic instantiation 127

E

ebjPassivate() 343
Eclipse 317
EJB

bean code 341
complexity 441
deployment descriptors 72
disadvantages 565
home interface 341
method prefix 353
remote interface 341

ejbActivate() 343
ejbCreate() 352
ejbLoad() 353
ejbPostCreate() 352
ejbRemove() 353
ejbStore() 353
embedded HTML

directly into a class 83
preventing with JSP 50

embedded properties 213
eMotherEarth

building the base 372
built with only servlets 29
with pooled boundary classes 434

EMotherServletBase 34, 43
empty catch block 405
encapsulation 532

as a concern 330
complex snippets of code 62

entering() 517
Enterprise JavaBean 97

business rules scalability 23
compared to JavaBeans 338
JNDI 470
Model 2 9
persistence layer 564
scaling applications up to 441
used in framework comparison 314

entities
defined 334

INDEX 577

entities (continued)
resource management 469
servlet-only eMotherEarth 43
unit tests 524

entity bean 339
complexity 441
used to update entites 348
when to use 341

entity package in eMotherEarth 372
EntityBean 350
EntryAction in Parameterized Commands 123
equals() 349
ERROR 220
error handling 68

in custom tags 75
Error JSP 406
error log 100
errors bean for validations 110
eToys.com 337
EVAL_BODY_AGAIN 65
event driven 4, 407

paradigm 251
event handlers

using adaptor classes 64
using InternetBeans Express 229

exception 101, 402
handling 401
problems 402

execute
front controllers 117
Struts 138

execution context 477
exit, jdb command 488
exiting() 517
expression language

defined 206
related to value stack and custom tags 213
used with custom tags 213

Extensible Server Pages 289
Extensible Stylesheet Language 284
extension mapping in Struts 140
extraneous object references 424
Extreme Programming 523

F

Façade design pattern 446, 453
benefits 463
benefits of gericity 469
compared to Flyweight 453
effectiveness 464

eMotherEarth 457
façade class 457-462

factory object 454, 464
goal for using 463
making more generic 464

factory 231, 464
factory class 387

class advantages 389
implementation options 389

Factory design pattern 509
used in logging 509

faster performance, using caching 450
fields, jdb command 487
FileResourceLoader 266
findByPrimaryKey() 355, 358
finder method, defined 355
finite resource pools 87
firePageBeginRender()method 179
fixture

example 527
in JUnit 525

Flyweight design pattern 446
and mutable objects 452
characteristics 452
considerations 452
described 447
implementation 448
limitations of mutable objects 453
object 452
reference 452
when it is not suitable 453

focusLost() 364
foreach

debugging 479
in Tapestry 192
in Velocity 273
JSTL 83
simplifying complex relationship notation 384

foreign keys 49, 102
form beans 140, 151
formatNumber tag 83
formatting 207
Forte for Java 493
framework

building from custom tags 88
callback 179
component 134
Critical Mass 318
definition 11
design considerations 319
Developer Community 319

578 INDEX

framework (continued)
Documentation 315
ease of use 320
feel 322
flexibility 321
innovative ideas 323
insularity 322
JavaDoc 316
lifetime and maintainability 315
Model 2 11
places in use 319
power 321
scalability 314
source code 316
speed of development 313
suitability to the application 312
tool support 317
transparent infrastructure 323
user interface 320
using custom tags 62

freeMemory() 412
Front Controller 201

design pattern 118, 204
in WebWork 200

FTP 419

G

Gamma, Helm, Johnson, and Vlissides 6
Gang of Four 117, 447
generator, FileGenerator 294
generic Action 137
generic controller servlet 123

in Model 2 118
generic editors, validations in WebWork 224
generic Exception 101
generic framework 134
generic Model 2 application as base for Velocity

Schedule application 262
generic parts 11
generic type 97
generic versions of concrete objects using the JSP

useBean 110
Generically Returning Boundaries 467
GenericKeyedObjectPool 434, 454, 458

compared to SoftReferences 440
GenericKeyedObjectPool.Config 437
GenericServlet 435, 454
getApplicationSpecificationPath in Tapestry's

Hello, World application 164
getEngine() method 167

getLogger() 513
getOut 70
getPage() method 182
getProductBoundary() 460
getVisit() 168
global properties compared to context

parameters 174
GoF 6
good design practices at the expense of memory

usage 100
granular methods 33

as support for unit testing 524
difficulty in JSP 60

graphic designers, user interfaces in Struts 157

H

handleBookmark() 399
Handler chains 547
handleRequest(), method in Velocity 264
handleRestore() 399
handlers 546

compared to filter servlets 546
examples 546

handling presentation with JSP 62
Hangman tutorial

for Tapestry 168
Tapestry sample 194

hard coded into the JSP 113
hashCode() 349
HashMap

compared to WeakHashMap 431
used for lazy loading 102

Hashtable 127
used in Velocity Template Language 268

heap 411
heavy mixture of presentation and code

elements 55
heavy weight methodologies

characteristics of 522
heavyweight resources 472
Hello, World

in Tapestry 162
help, jdb command 488
Herculean effort 313
Hibernate

described 566
disadvantages 566

hidden resource cost, potential in custom tags 87
high cohesion 89, 320

as a framework consideration 324
desirability in frameworks 361

INDEX 579

high coupling 88
highly cohesive classes in Model 2 116
Historical HTML comments 5
Home class in Tapestry's Schedule application 179
home interface use 345
Home page in Tapestry Schedule application 176
home page 189

specification in Tapestry 162
template in Tapestry 162

hopelessly coupled 50
Howard Lewis Ship 160, 193
HTML

as JSP pages 124
generated from code 567

HTML components
in Tapestry 160

HTML select tag
generating in Model 2 113
in WebWork 216

HTML serializer 287
HTML tables, generating tests 539
HTML tags 143
HTML template 161, 233
HtmlSQLResult 38, 66, 80
HTTP get/post semantics 190
HTTP header 285
HttpMonitor 497
HttpServletRequest 204

and WebWork 204
framework replacements 322

HttpSession
as memento caretaker 401
automatic handling in Tapestry 186
compared to Tapestry's Visit 167
implemented as a Map in WebWork 205

HttpSessionAttributeListener 461
HttpUnit 537

used when evaluating frameworks 314
Husted, Ted xvii

I

I18N 80
I18N, Jakarta Taglib 84
IComponent 170
IdComparator 451
identical controller servlets 117
idl2java, similarity to WSDL2Java 549
IEngine 169

defined 167
IEngineService 169

IllegalArgumentException 222
IMarkupWriter 170
immutable 426, 452

Flyweight design pattern 452
implicit exception object 406
implicit JSP objects replaced by custom tags 85
inBounds() method 248
info() 517
information flow between development teams 93
inheritance, suitability 320
init parameter 32, 75

and Struts controller 141
in Parameterized Commands 125

inner class, used as a memento 396
Input, Jakarta Taglib 84
Insert component 192
Inspector 195

debugging support 507
instanceof 467
Insularity, defined 322
interaction with a framework as a concern 330
interface

decouple implementation, defined 332
hide implementation in frameworks 331
implementation hiding technque 330
Model 2 applications 93

internationalization
in WebWork 204
Struts 13, 145
Tapestry 194
using JSTL 83
WebWork 213

Internet Engineering Task Force 545
Internet Express Controls 234
Internet time 522

as related to unit testing 522
InternetBeans Express 228

advanced user interface techniques 390
and exceptions 407
and transaction processing 401
debugging 507
non-suitability for EJB 314
non-suitability for optimization 469
non-suitability when porting to EJB 360
object pooling 440

intersperse utility code 37
InvalidBalanceException 402
IO, Jakarta Taglib 84
IPropertySelectionModel 189
IRender 170
IRequestCycle 171

defined 169

580 INDEX

ITableDataModel 172
ITableModel 172
iterate

Struts 145
using JSTL 82
WebWork 206

iterator
Tag, definition 64
Tapestry’s ITableDataModel 172
WebWork 206, 213

ixCheckBox 236
ixComboBox 237, 248
ixComponents 257

defined 236
ixControl 234, 236

related to PageProducer 235
ixHidden 237
ixImage 236
ixImageButton 237
ixLink 236
ixListBox 237
ixPassword 237
ixPushButton 237
ixRadioButton 237
ixSpan 236
ixSubmitButton 236–237
ixTable 236, 257
ixTextArea 237
ixTextField 237

J

.jws 547
J2EE 28
Jackson, M.A. 442
Jacobson, Ivar 335
Jakarta 157, 160, 262, 368, 454

Commons Pools 433
JSTL implementation 80
Log4J 508
Struts 12
Turbine 14

JarResourceLoader 266
Java Community Process 80
Java Data Objects 565
Java developers, focus on model building 93
Java Naming and Directory Interface 361
Java reflection 161

Struts 13
Java Server Pages 6
java.hprof.txt 413
java.sql., as alternative to collections 99

Java2WSDL 551
JavaBean

and Tapestry's Visit object 167
API in WebWork 207
as the model 92
compared to EJB 338
criteria 333
hosting business rules 22
in Model 2 9
in Tapestry 161
specification 220
Struts 13
used in JSP 6
using 333

JavaDoc 72
for WebWork 225
in InternetBeans Express 257
in Tapestry 192

JavaScript 363, 568
business rules 24
client-side validation 362
embedded in model 368
including 364
placement in the model bean 365
placement of the code 363
testing 537
used in XSP 301
Velocity comparison 263
when to use 368

javax.servlet.jsp.jspException 406
jbInit() 232
JBoss 340

configuration 343
jboss.jcml 343
JBuilder 228, 257, 259, 498

Code Insight 504
Code Insight and debugging 505
debugger capabilities 502
debugging in alternative servlet engines 499
dynamically investigate variables 505
Enterpise Edition 498
evaluate and modfiy dialog 503
evaluating as a debugger 506
incorporating JRun 499
JavaDoc 316
loaded classes view 503
project setup 498
starting the debugger 501
Struts 157
support for frameworks 317
support for JUnit 535
thread view 502

INDEX 581

jdb
breakpoint options 489
catch command 489
command options 486
cont command 490
description 483
dump command 490
list command 489
locals command 490
motivation for use 483
next command 489
rational for use 493, 505
roadmap for use 492
run command 489
running 486
sourcepath command 489
starting 483
step 489
stop at command 489
stop in command 489
thread command 489
thread command to restict servlet engine 490
threads command 488
viewing expressions 491

JDBC 534
and DataExpress 230
interfaces 331
models 99

JDBCFixture 534
JDO

defined 565
underlying implementation 565

JEdit 317
Jetty 195
JMeter 419, 421
JMS, Jakarta Taglib 84
JNDI 343

compared to database connection 361, 470
defined 361
Jakarta Taglib 84
mangaged resource 470
pooling 470
typical strategy 470

Jolt 12
JRun, incorporating into JBuilder 499
JS_ITEM_VALIDATION 367
JScript 362
JSP 4

as substitute for servlets in Model 2 116
as view framework for WebWork 202
as view in Model 2 9
breakpoints in NetBeans 496

coding horrors in 6
compared to Velocity 262, 282
compared to XSP 289
debugging 477–478
debugging in NetBeans 493
disadvantage 55
ideal for response 92
in Model 2 9

JSP * 151
JSP custom tag library

automatic behavior and pitfalls 116
InternetBeans Express 229
manipulating JavaBeans 62
runtime 68, 70
Struts 13
tool support 318

JSP expression 72
compared to JSTL 83

JSP-centric 9
JspException 68
jspInit 52
JSR 80
JSTL 80, 107

advanced data type handling 381
advantage over scriptlets and expressions 381
combined with Struts 323
debugging 478
dot notation 382
handling complex relationships 384
InternetBeans Express custom tags

comparison 257
JBuilder 259
limitations of some tags 319
Model 2 applications 110
RAD frameworks comparison 314
simplifying usabilty coding 380
tool support 318
transaction processing 393
universal plug-in 321
used in WebWork 324
Velocity comparison 274, 282

JTable 8, 172
JTextField 364
JTree 8
JUnit

assertEquals() 527
assertNotNull 527
assertSame() 527
assertTrue() 527
Automating Regression Testing 535
DbUnit 534

582 INDEX

JUnit (continued)
described 525
fixture 525
Running Tests 528
test suite 529
TestCase 525
to call web services 559

just in time repository of data 205
jwc extension 184
jwcid attribute 178
JWebUnit 536

described 537
similarity to JUnit 537

K

Kernighan, Brian 508
key generation 23, 393

isolation 393
KeyedBoundaryPoolFactory, used in Facade 466
KeyedPoolableObjectFactory 433

defined 433
in eMotherEarth 434
used in Facade 466

kill, jdb command 487
Knuth , Donald 442

L

LabelValueBean 134
large HTML data structure 40
Lazy instantiation

compared to application server caching 472
defined 472

lazy loading 102, 428
less code, using caching 450
less memory, using caching 450
level, used in loggers 510
library

in JBuilder 498
in Tapestry 174

lightweight exception, defined 101
List

EJB 346
eMotherEarth base 377
generic type 97
sorting 385

list, jdb command 488
list resource bundle 241
Listeners, defined 420
listeners, in JMeter 420

ListingAction in Parameterized Commands 121
load balancing using Velocity 267
Load Runner 419
load testing

compared to profilers 419
frameworks 421
motivation 419

local forward 140
local object vs. remote interface 360
local variables

and threads 476, 502
debugging in NetBeans 496

locale 145
in Tapestry 162

localization 83
properties 145, 205

locals, jdb command 487
locate() method 241
log, from servlet context 33
Log, Jakarta Taglib 84
Log4J 508

Appender 512
configuration options 518
described 516
formatting options 511
in Tapestry 164, 179
in WebWork 209
pattern formatter 516

logger
capturing memory measurements 412
choosing 519
configuration elements 510
differences in XML output 518
helper methods 516
hierarchy 509
in frameworks 519
levels 510
Log4J default output format 511
namespace hierarchy 509
output format 511
package name hierarchy 509
parent logger 509
primary differences 516
related to debugging 508
SDK compared to Log4J 512
SDK convenience methods 514
SDK default output format 511
SDK Handlers 512
speed of initial test 511
Velocity 266

Logic tags 144

INDEX 583

loose coupling 197, 204
systems 320

low coupling 89, 320
as a framework consideration 324
desirability in frameworks 361
in Tapestry 323

M

Macintosh Computer 5
Macromedia 499
magic markers 5
Mailer, Jakarta Taglib 84
maintenance

application 60
in Model 2 applications 117
JSP problems 62
too much Java in JSP 6

makeObject() 433
Map

similarity of Velocity Context 269
used in Cocoon 300
used in EJB 348

mapping 156
master controller servlet in Struts 137
maxMemory() 412
Mazzocchi, Stefano 284
measuring memory via the operating system 411
Memento

applied to web applications 395
design pattern 395
impact on Model 2 401
participant classes 395
suitability of inner classes 397

memory 470
intensive cache 430
leak, defined 424
measuring usage 410
motivation for caching 446
profiler 412
speed tradeoff characteristics 377
usage measuring 410

Mercury Interactive 419
mess of mixed presentation and logic 59
messy code in JSP-only eMotherEarth 55
metadata

and scoped DataRow 241
in cached data 233

meta-property information, defined 207
method sampling technique 413
Microsoft and web services 545

mixed HTML and scriptlet debugging 479
mixed Java and HTML 74
mixed scriptlet and presentation code 55

eliminated with custom tags 73
mixing of code and presentation logic 60
model

defined 334
in Model 2 applications 94
in publishing framework 293
MVC 7
order of creation in Model 2 93
to provide sorting 384
used in Model 2 92

Model 2 201
application and InternetBeans Express 237
building modular applications 337
changes required for EJB 360
compared to Tapestry 196
compared to WebWork 201
comparing frameworks 322
definition 9
disadvantages 116
distinction between design pattern and

framework 12
easily optimized architecture 469
Emergence 9
eMotherEarth 372
error pages 406
evolution towards 10
framework 92
in Struts 12
incorporating web services 556
information flow 94
migrating to EJB 340
migration 338
overview 92
porting to EJB 565
related to Pull Hierarchical MVC 200
resource management 469
separating concerns 330
sorting user interface elements 384
Struts 156
suitability for use with EJB 315
transaction processing 391
undo 401
unit testing 524
use of EJB 360
use of model beans 334
user interfaces 566
using Cocoon 288
using memento 401

584 INDEX

model bean
as value objects 102
in Model 2 10
Struts 13
used in WebWork 201

Model-View-Controller 200
and Tapestry components 170
building modular applications 337
definition 7
in Cocoon 284
in Tapestry 197
in WebWork 200
model beans 334
related to publishing framework 293

modular application, defined 337
modulus 379
multi-cast for loggers, defined 512
multi-page scrolling in Tapestry 184
multi-threaded access 28
MVC 7, 9, 20
MySQL 49, 331, 348

key generation 393

N

naming service, defined 361
narrow() method 343
NASA 313
Navigation assembler 18
NetBeans 493

compared to jdb 497
description 493
evaluating as a debugger 506
starting debugger 493
support for JUnit 535

newsgroups 319
next, jdb command 487, 489
NoNullNameException, domain exception 402
NullPointerException

as a RuntimeException 403
as a technical exception 402

O

Object Creation 422
Object Management Group 544
object pool 463

and Tapestry 469
defined 427
in application servers 339
in Tapestry 160, 168, 189

object reference, compared to soft and weak
references 428

Object Reuse, motivation 423
ObjectModelHelper 305
Object-oriented programming 7, 319
OMG 544
onBlur 364
open source 200, 318, 566

application servers 340
compared to commercial frameworks 228
documentation 315
frameworks 12
JSTL 80
JUnit 525
Log4J 516

Open Symphony project 200
opportunities for code reuse 69
Optimizeit 417
Oracle 331
Order boundary class, in eMotherEarth 391
OrderInfo 558
Originator 395
outline, in composed method 33

P

.page in Tapestry 165
package structure, in eMotherEarth 372
packages, advantages of inherent design 466
page

Jakarta Taglib 84
properties 168
specification in Tapestry 165

page-at-a-time scrolling 372
motivation 378

pageContext 77
and scriptlets 384
used in JSTL 83

PageProducer 233–234
as controller 234
defined 234
for event notification 234
related to ixControls 235
roles in the application 235

parallel development hindered by JSP 60
parameterized commands 118

advantages 127
disadvantages 127
in models 100
Struts 137, 158

parameterless constructor in stateless classes 422

INDEX 585

parse() 517
Parsing HTML 6
passivateObject() 433
path of least resistance 258
pattern 7
PDF 289, 295
peak concurrent users 440
performance

keys to effective 472
motivation 410
penalty, using thread safe collections 97
profiling components 412
tuning 24

Perl 4–5
persistence 197

and EJB 360
as a concern 330
defined 564

PHP, replaced by Velocity 262
Pike, Rob 508
pipeline 294

components 295
defined 286, 298
in Cocoon 284
setup 300
stage in Cocoon 287
types of steps 287

pivot point handler 546
Plain Old Java Objects 564

defined 564
pluggable services, Turbine 14
POJO

developer attitude 564
ideal for model 92

Pollo 299, 317
pool of objects 447
pooling page objects

in Tapestry 170
PoolNotSetException 403
pop, jdb command 488
post(), in DataSet 233
post-back servlet 378, 384

debugging in InternetBeans Express 507
premature optimization is the root of all evil 442
PreparedStatement 49, 231
presentation layer, using JSP 50
primary key class 349
print writer 34
print, jdb command 487
private member variables, while debugging 491
private methods, used in composed method 33
private nested classes 183

ProcedureDataSet 231
processor resources in Cocoon 286
product boundary class in eMotherEarth base 377
Profiling, motivation 410
promoted to the base class servlet 34
proof-of-concept 442

application 314
Properties 144

in Velocity 268
tag 206

PropertyDescriptors 224
PropertyResourceBundle 144
PropertySelection 187, 189
PropertySelectionModel 189
proxies for the controller servlet 138
pseudo events 197
publishing framework 284, 289

benefits 286
defined 285

Pull Hierarchical Model-View-Controller 200
Pull HMVC 200
Pull Model 205
pure virtual class 330

defined 330

Q

qryEvents_calcFields() method of DataSet 241
QueryDataSet 231, 238
Queue for object pools 427
quiescent servlets 127

R

RAD 228, 313, 360, 390
and resource management 469
development compared to Model 2 228
framework 255, 313
problems 258
shortcomings 390
web development framework 228
when it makes sense 313

Random, Jakarta Taglib 84
Range checking 102
Rapid Application Development. See RAD
Rational Software 335
redefine 492

jdb command 488
refactor 523

to support composed method xxvii
references, Velocity Template Language 268

586 INDEX

referential integrity 23
reflection 464–465

and efficiency 566
and hibernate 566
in WebWork 213

Regexp, Jakarta Taglib 84
regression test

benefits 540
defined 523

remote object, desirable characteristics 360
remote procedure calls 544
render phase, in Tapestry 169
Rendering Pages, InternetBeans Express 235
Request, Jakarta Taglib 85
request/response pairs 92
RequestCycle 169–170
RequestDispatcher

in Model 2 applications 105
Struts' alternative 139

requestor 546
requirements 92

document business rules 22
reset() method 423
resource allocation, distributed applications 28
resource loading in Velocity 266
resource management 24
resource protection 36
ResourceBundle 205
resources, HTML parsing 6
response code used in WebWork 202
Response, Jakarta Taglib 85
restoreMemento() 397
ResultSet 231

exposing through the model 99
ResultSetMetaData 68, 231
resume, jdb command 487
rethrow 404
returing objects to a pool 460
returnBoundaries() 468
reusable library 454
rewind phase in Tapestry 169
RMI 544

over IIOP protocol 544
rmic, similarity to WSDL2Java 549
rollback 50, 391
root directory 547
Rules of Optimization 442
Rumbaugh, James 335
run 492

jdb command 487
Runtime class, measuring memory 412

run-time expression, custom tag deployment
descriptor 72

RuntimeException 101, 403

S

safety features in Java 403
save points in JDBC 3 391
SaveAction in Parameterized Commands 124
saveChanges() in DataSet 233
SaveEntry in Model 2 94, 113
saveMemento() 397
SAX events 287, 294
scalability 97, 314, 467

concerns 337
problems 6
using web services 545

SchedTable 181
component 174

sched-template
in InternetBeans Express Schedule

application 245
InternetBeans Express schedule

application 244
Schedule Application using EJB 340
Schedule boundary class in Velocity 276
ScheduleAddException in Model 2 100
ScheduleBean

changed to EJB proxy 357
in Model 2 94
in UML 336

ScheduleDb in Struts sample 134
ScheduleEntry in Model 2 94, 109
ScheduleEntryAction in Struts 147
ScheduleEntryView

in Model 2 94
using JavaScript 364

ScheduleItem
as a local entity class 359
changed for WebWork 221
in Struts 136
in Tapestry 183
in Tapestry Schedule application 190
in UML 335
in Velocity 276

ScheduleView
in Model 2 94, 105
in Struts 142

Scheduling application in Cocoon 302
Scrape, Jakarta Taglib 85
Screen assembler 18

INDEX 587

scriptlet
replaced by custom tags 85
to handle complex relationships 383

Scrum 523
SDK profiler, recipe for use 414
secrets to high performance 427
separate resource file in Struts 144
separation of code and presentation 83
separation of concerns 200

in Model 2 113
using Velocity 263
validations 362

separation of logic and presentation 62
violation in servlets 44

separation of responsibilities 69, 202
and Struts 157
failure in using only custom tags 89
in Model 2 93
relating to Model 2 and EJB 360
violated with JSTL SQL tags 394

separation of responsibilities using custom tags 87
serialization 197, 294–295

compared to JDO 565
in Cocoon 286
stateless classes 422
XMLSerializer 295

server.config 547
server-config.wsdd 556
service-based architecture 19
ServiceLocator 549, 552
servlet

2.3 specification 461
API 29
as controllers 116
chaining related to Cocoon 294
configuration parameter 379
context and caching 447
context in custom tags 77
engine 477
ideal for request 92
starting in debug mode 485
to build applications 29

ServletActionContext.getRequest() 205
servlet-centric 9

approach to Model 2 116
servletConfig 379
ServletContext 100, 455

accessibility from models 100
compared to Session Context 343
for logging in abstract Actions 120

ServletContextListener 455
defined 455

ServletDispatcher 201, 203, 209
servletGet() method 235
servlet-only framework, disadvantages 255
ServletRequestAware 204
session

advantages and disadvantages in Model 2 107
advantages as caching mechanism 107
and extraneous object references 425
and facade 459
as a magical repository 472
as caretaker 398
as caretaker for memento 401
disadvantage of caching mechanism 107
Jakarta Taglib 85
manual invalidation 426

Session Bean to encapsulate business rules 356
session cop 473

defined 87
session event listener 362
session management in Tapestry 160
session tracking and Tapestry 160
SessionAttributeListener 469, 472
SessionAware 205
SessionContext, defined 343
SessionScrubber 461

use of Facade 463
session-specific DataModule 244
set based 23
set, jdb command 487
setAutoCommit() method 391
setElementId() method in InternetBeans

Express 245
setUp() 525

overriding 531
setupLogger() 513
setVisit() 168
Shakespearean plays 551
shared memory

and remote machines 484
model 484

ShoppingCart 43
ShoppingCartItem 43
ShoppingCartMemento 397
ShowCart

in JSP-only eMotherEarth 55
in servlet-only eMotherEarth 41
paths of execution with Memento 398

Simple API for XML Processing 284
SimpleEngine 174

in Tapestry 165
SimpleListTableDataModel 172, 182

588 INDEX

SimpleSetTableDataModel 172
SimpleTableColumn 183
SimpleTableModel 172
simulate HTTP requests 419
SingleThreadModel 440
singleton 122, 231, 251, 388, 457–458, 554

Velocity engine 266
singleton servlet 554
sitemap 287–288

debugging 508
defined 295
for Cocoon's Schedule application 303

skeleton in WebWork 203
SKIP_BODY 71
SlashDot 298
slice of canonical list 450
Smalltalk 7, 9
Smalltalk Best Practice Patterns xxvi
SOAP 545

version 2 546
soft reference

class 430
compared to GenericKeyedObjectPool 440
compared to weak 428
defined 428
memory reclamation 428
use 431

sortable columns 372
headers, in Tapestry 184
headers, in WebWork 214
motivation 384

source code for Cocoon 308
SourceForge 299
sourcepath command 492
spaghetti-like coupled code 116
specification document in Tapestry 162
speed of development versus complexity 313
SQL 97, 557

and unit testing 531
in DataExpress 231
JSTL tag 80
portability 23

SQL tags 88, 314
in JSTL 255
transaction processing 393

SQLException
as a technical exception 402
in transactions 392

Stack for object pools 427
standard Java collection 83
standard tag library 80

standard web collection 302
StartupConfiguration servlet 435
StartupConfigurationListener 455
state information in the Flyweight design

pattern 452
stateful forms in Tapestry 186
stateful session bean, defined 339
statefulness 190
stateless 4
stateless classes 422

advantages and disadvantages 422
characteristics 422

stateless messaging 544
stateless session bean

defined 338
used with web services 556
when to use 341

statelessness 545
as optimization 422

Statements 231
Velocity Template Language 268

static binding in Tapestry 176
static controls 245
static data for prototyping 93
static HTML template in InternetBeans

Express 235
static reference 232
static template HTML 228
status codes in custom tags 66
step up, jdb command 487
step, jdb command 487, 489
stereotype, defined 335
stop at, jdb command 487
stop in, jdb command 487
stored procedure 49

for business rules 23
written in Java 23

stray reference 425
stress test 419
String Usage, optimizing 426
String, Jakarta Taglib 85
StringBuffer

and initial size 427
compared to String 426

StringPropertySelectionModel 189
Structured Query Language 23
Struts

Action classes 138
architectural comparison to WebWork 202
books about xviii
brief description 11

INDEX 589

Struts (continued)
Commons Validator, use of 368
compared to WebWork 200
configuration document compared to Cocoon’s

sitemap 288
configuration files tool support 317
configuration XML 139
connection pooling utility 140
debugging 506
debugging custom tags 507
developer support 318
flavor of 12
high cohesion and low coupling 324
how to evaluate 314
in JBuilder 259
incorporating Velocity 282
JavaScript, use of 568
memory profiling 415
non-insular framework 322
object pools 440
object reuse 424
performance profiling 421
suitability for EJB 314
Tapestry comparison 160, 196
tool support 318
transparent infrastructure 323
Turbine comparison 19
Velocity 264
WebWork comparison 201, 204

struts-config 141–142, 156
and validator plug-in 153

SubmitEvent 236
subsystem objects 453
SUCCESS 212, 217, 220

constant 204
Sun Tzu xvii
SunONE Studio 493
suspend, jdb command 487
Swing 8, 172, 184, 186, 197, 207, 299, 321, 528

and Tapestry components 170
use of interfaces 332

synchronized 97
synchronizedCollection 97

T

Table Component in Tapestry 180
TableModel 171, 332
tag API 63
Tag interface 64

definition 63

Tag library
alternatives to JSTL 84
descriptor for custom tag 71

TagExtraInfo, definition 77
tagging interface 467
taglib

page directive 72
Struts 143

TagSupport definition 64
Tapestry 160

advanced user interface techniques 389
advantages 389
and exceptions 407
and resource management 469
and undo 401
as an insular framework 322
brief description 11
compared to InternetBeans Express 235
compared to WebWork 200
component documentation 193
debugging 507
disadvantages 389
documentation quality 316
events compared to InternetBeans Express 251
how to evaluate 314
in Action 193
logging 519
non-suitability of Velocity 282
non-transparent infrastructure 323
object pooling 440
overview 160
performance profiling 421
similarity to Turbine 20
table component compared to WebWork’s table

component 213
tool support 318
use of high cohesion and low coupling 324
use of interfaces 330–331
use of user interface templates 321

task manager 411
tearDown() 525

overriding 531
technical exception

defined 402
from frameworks 407
thrown by boundaries 403, 406

Technical vs. Domain Exceptions 401
template 6, 321

engine Velocity 262–263
strategies 5
tags 144
Template Method design pattern xxvii

590 INDEX

test driven development 523
test first coding 523

benefits 523
test suite, description 529
TestCase 525, 528
Testing boundary classes 530
TestLogonPage 538
TestShoppingCart 527
textfield component in WebWork 218
The Practice of Programming 508
thread

and debugging 486
command 492
debugging 476
in web applications 28
jdb command 487, 489
pooled by servlet engine 87
safe collection defined 97
safety 126–127
safety between ArrayList and Vector 97
setting default for debugging 489
stack frame and local variables 502

Throwable 401
throws 403
timeout 461
TLD 71
toLevel() 517
Tomcat 492

embedded in NetBeans 494
measuring memory usage 411
profiling 414
starting in debug mode 486

totalMemory() 412
trace 414

jdb command 487
tradeoffs between scalability for speed

using session in Model 2 107
traditional GUI development

compared to Tapestry 160
transaction processing 24, 50

and undo 390
defined 390
in servlet-only eMotherEarth 49
saving and restoring 392

transformers 294, 296
transparent infrastructure 323
triggers for business rules 22
Turbine

brief description 12
compared to Struts 19
compared to Tapestry 160, 197
compared to WebWork 201

documentation shortcomings 315
flavor of 14
framework vs. design pattern 12
non-transparent infrastructure 323
use of Velocity 262

Tutorials, as documentation 316
Tuxedo 12
type attribute in JSP 110
typecasting and the Struts iterate tag 147

U

UDDI 545
ugly and hard to maintain 151
UI designers in Model 2 applications 93
UML 43, 335

sequence diagram in eMotherEarth base 375
undo 390

and transaction processing 390
in frameworks 401
motivation 395

Unified Modeling Language. See UML
unit testing

and domain experts 524
as support for refactoring 523
characteristics 522
defined 522
motivation 522
who should develop 524

universal controller, Tapestry's
ApplicationServlet 161

Universal Description, Discovery, and
Integration 545

unwatch, jdb command 487
unwinds nested exceptions 195
up, jdb command 487
URL patterns 142
usability 378

and JavaScript 365
use

command 492
jdb command 488

useBean, absence in Struts 147
user interface

advantages of using JSTL 382
designers 320
designers, focus on user interfaces 93
element rendering 207
in Model 2 92
prototype to help application flow 93
techniques 24

INDEX 591

user interface (continued)
template 166
template in Tapestry 165, 177
using WebWork 213

user's response time 467
Userland Software 545
util package in eMotherEarth 373
utility code, encapsulated into a custom tag 66

V

validate
as business rule 22
custom tag attributes 75
error, implementation in Model 2 110
error, in Model 2 applications 104
in InternetBeans Express Schedule

application 249
in servlet-only eMotherEarth 35
in Struts 136
in Tapestry 191
in Velocity 278
in WebWork 202, 207, 220
user in JSP-only eMotherEarth 51

validate() method
in DataModule 251
in Struts 153

validateObject() 433
validation.xml 152–153
ValidationEditorSupport 222
ValidationException as a domain exception 402
validator 368, 568

plug-in 153
validator-rules.xml 153
value class in servlet-only eMotherEarth 43
value object

defined 99, 334
in Struts 136

value stack 200, 204
as a stack 205
as an innovative feature 321
debugging 507
defined 205
related to expression language and custom

tags 213
Vector 97

alternative to 97
thread safety 97

Velocity 161, 171, 262
advanced user interface techniques 390
Alternative to HTML parsing 6
as a user interface plug-in 321

as view framework for WebWork 202
brief description 11
combined with Struts 323
Context defined 269
debugging 282, 508
distribution 265
documentation 315
documentation compared to InternetBeans

Express 257
engine 264
engine instancing 266
in Turbine 17, 19
incorporating into WebWork 225
JAR file deployment 267
Schedule Application 269
servlet debugging 508
statement defined 269
steps to using 263
use of high cohesion and low coupling 324
used with Struts 14
VTL 268
VTL debugging 508
VTL documentation 281

Velocity Context, defined 269
Velocity Template Language. See velocity, VTL
VelocityContext 269
VelocityEngine class 267
VelocityServlet 263–264
version control used in frameworks 317
very cohesive, WebWork interfaces 205
view

for the schedule page in WebWork 212
in Model 2 applications 94
in MVC 8
in publishing framework 294
to display and select sorting criteria 384

View page
InternetBeans Express Schedule

application 242
Velocity Schedule application 271

view.properties 209
view-centric 289
views.properties 204
ViewSchedule

in Cocoon's Schedule application 304
in EJB Scheduling application 361
in Model 2 94, 105
in WebWork 209

ViewScheduleAction in Struts 138
Visit 182, 189

defined 167–168
memento caretaker 401

592 INDEX

Voltaire 442
VRML 295

W

WAP 295
WAR, impact on profiling 415
watch

in NetBeans 494
jdb command 487

weak reference
compared to soft 428
defined 428
ideal use 430
memory reclamation 428

WeakHashMap 431
web framework in Cocoon 299
web services 24

characteristics 545
cross language benefits 561
defined 545
described 544
implementation details in eMotherEarth 554
statelessness 556

Web Services Description Language 545
web.xml

custom tag definition 72
for eMotherEarth web services 553
for Tapestry 162
in eMotherEarth base 374
in JSP-only eMotherEarth 52
in Struts 140, 145
JSTL declaration 81
load-on-startup flag 437
registering listeners 455
setup for WebWork 204
used by custom tags 88

WebLogic 547
WebWork custom tag 218

advanced user interface techniques 390
and JSTL 321
and undo 401
brief description 12
debugging 507
defined 200
documentation compared to JSTL 225
documentation compared to Tapestry 225
expression language 205
incorporating Velocity 282
library 213
logging 519

property 213
use of innovative ideas 323
use of interfaces 330

webwork.configuration.properties 203
webwork.configuration.xml 203
webwork.properties 204, 208
welcome

in eMotherEarth base 373
in Flyweight eMotherEarth application 448
in servlet-only eMotherEarth 30

welcome page in JSP-only eMotherEarth 51
where, jdb command 487
Windows

and debugging 484
console window marking 488

WML 286, 289
workflow 24

encapsulated in controller 387
World Wide Web 545
WSDL 545, 559

automatic generation 548
mapped to Java types by Axis 559

WSDL2Java 549
in client application 559

Wulf , W.A. 442

X

-Xdebug 483
-Xms flag 411
-Xmx flag 411
-Xrunhprof 413
-Xrunjdwp 483
Xalan 294
XDoclet 72
XHTML 207

defined 567
desirable characteristics 567

xmethods 551–552
XML

and Cocoon 284
and web services 545
processing 80
using Velocity 282

XML deployment descriptors generated
automatically by XDoclet 72

XMLFormatter 518
XSL defined 289
XSLT 285

stylesheets, complexity of 286
stylesheets, used in Cocoon 286

INDEX 593

XSP
advanced user interface techniques 390
compared to JSP 301

XSPGenerator 302
XSP-to-HTML transformer 302
XTags, Jakarta Taglib 85

xUnit 525

Z

ZipFile 415

Neal Ford

S
o you’ve mastered servlets, JSPs, statelessness, and the other founda-
tional concepts of Java web development. Now it’s time to raise your
productivity to the next level and tackle frameworks. Frameworks—

like Struts, Tapestry, WebWork, and others—are class libraries of pre-
built parts that all web applications need, so they will give you a huge
leg up. But first you’ll need a solid understanding of how web apps are
designed and the practical techniques for the most common tasks such
as unit testing, caching, pooling, performance tuning, and more.

Let this book be your guide! Its author, an experienced architect,
designer, and developer of large-scale applications, has selected a core
set of areas you will need to understand to do state-of-the-art web
development. You will learn about the architecture and use of six
popular frameworks, some of which are under-documented. You will
benefit from a certain synergy in the book’s simultaneous coverage of
both the conceptual and the concrete, like the fundamental Model 2
design pattern along with the details of frameworks, the how-tos of
workflow, the innards of validation, and much more. In this book,
combining the general and the specific is a deep and useful way to
learn, even for those who have not used a framework before.

What’s Inside

■ Web frameworks analyzed

■ How to incorporate Web services

■ How-tos of

◆ caching

◆ pooling

◆ workflow

◆ validation

◆ testing

Neal Ford is an architect, designer, and developer of applications,
instructional materials, books, magazine articles, video presentations,
and a speaker at numerous developers’ conferences worldwide. He is
Chief Technology Officer of The DSW Group, Ltd.

M A N N I N G $44.95 US/$67.95 Canada

www.manning.com/ford

Author responds to reader questions

Ebook edition available

AUTHOR
✔

ONLINE

✔

,!7IB9D2-djeagb!:p;o;O;t;P
ISBN 1-932394-06-0

“Great combination of the three

levels: patterns, frameworks,

and code.”

—Shahram Khorsand
NetServ Consulting Sweden

“Covers all facets of web

application development

This book is bold!”

—Eitan Suez
Founder, UpToData Inc.
Creator of DBDoc

“You have two options: read four

or five books plus stuff from all

over the Net—or read this one.”

—Luigi Viggiano, co-founder,
Turin Java Users Group

“I really like what I’m reading

... nice style, very approachable.”

—Howard M. Lewis Ship
Creator of Tapestry

JAVA

ARTOF JAVA WEB DEVELOPMENT
STRUTS, TAPESTRY, COMMONS, VELOCITY, JUNIT, AXIS, COCOON, INTERNETBEANS, WEBWORK

	brief contents
	contents
	preface
	acknowledgments
	about the book
	How this book is organized
	Notes about the samples
	Source code
	Typographic conventions
	Author Online
	About the author

	about the cover illustration
	Part I The evolution of web architecture and design
	State-of-the-art web design
	1.1 A brief history of Java web development
	1.2 The importance of design patterns
	1.2.1 The Model-View-Controller design pattern
	1.2.2 The emergence of Model 2
	1.2.3 Evolution

	1.3 Using frameworks
	1.3.1 A flavor of the Struts framework
	1.3.2 A flavor of the Turbine framework
	1.3.3 Objectively choosing a framework

	1.4 Best practices
	1.4.1 Business rules
	Defining “business rules”
	A working definition

	1.4.2 Where should the rules reside?
	Placing the rules in the database server
	Rules that do belong in the database server
	Placing rules in the client

	1.4.3 Leveraging best practices

	1.5 Summary

	Building web applications
	2.1 Building web applications with servlets
	2.1.1 The eMotherEarth servlet application
	The first page: Welcome
	The second page: Catalog
	The third page: ShowCart
	The fourth page: confirmation

	2.1.2 Evaluating the servlet approach

	2.2 Building web applications with JSP
	2.2.1 The JSP eMotherEarth application
	The first page: Welcome
	The second page: Catalog
	The third page: ShowCart
	The fourth page: Confirmation

	2.2.2 Evaluating the JSP approach

	2.3 Summary

	Creating custom JSP tags
	3.1 The case for custom tags
	3.2 The tag interfaces
	3.2.1 The Tag interface
	3.2.2 The IterationTag interface
	3.2.3 The BodyTag interface

	3.3 Building simple tags
	3.3.1 The HtmlSqlResult tag
	3.3.2 Registering the tag

	3.4 Validating tag attributes
	3.4.1 Adding DbPool to the application tag

	3.5 Using prebuilt tags
	3.5.1 Using JSTL
	3.5.2 Using other taglibs
	Other taglibs

	3.6 Custom tag considerations
	3.6.1 Resource usage
	3.6.2 Building a framework

	3.7 Now that we’re here, where are we?
	3.8 Summary

	The Model 2 design pattern
	4.1 Using Model 2 as your framework
	4.1.1 The Model 2 schedule application
	Building the schedule model
	Building the ScheduleItem value object
	Building the main controller
	Building the main view
	Building the entry controller
	Building the entry view
	Building the Save controller

	4.1.2 Options in Model 2
	Disadvantages of Model 2

	4.2 Parameterizing commands with controller servlets
	4.2.1 An example of parameterizing commands
	Building the model
	The abstract Action class
	Concrete actions
	Building the generic controller

	4.2.2 Advantages and disadvantages

	4.3 Summary

	Part II Web frameworks
	Using Struts
	5.1 Building Model 2 Web applications with Struts
	5.1.1 The Struts schedule application
	5.1.2 Value objects as form beans
	5.1.3 Objectifying commands with Struts’ actions
	5.1.4 Configuring Struts applications
	Struts configuration for the web application

	5.1.5 Using Struts’ custom tags to simplify JSP
	5.1.6 Internationalization with Struts
	5.1.7 Struts’ support for data entry
	Building the entry view

	5.1.8 Declarative validations
	Building the AddToScheduleAction

	5.2 Evaluating Struts
	5.3 Summary

	Tapestry
	6.1 Overview
	6.2 The architecture
	6.3 A simple Tapestry application
	6.3.1 Tapestry Hello, World
	The application servlet
	The application specification
	The Home page specification
	The Home page template

	6.4 The Tapestry framework
	6.4.1 Framework classes and interfaces
	IEngine
	Visit
	IRequestCycle

	6.4.2 Components
	AbstractComponent and BaseComponent
	ITableModel

	6.5 Scheduling in Tapestry
	6.5.1 Bootstrapping the application
	The application specification
	The application servlet

	6.5.2 The Home page
	The Home page specification
	The Home page template
	The Hello page class

	6.5.3 The custom table component
	The table specification
	The table template
	The table class

	6.5.4 The Add page
	The Add page specification
	The Add page template
	The Add class
	Validations

	6.6 Evaluating Tapestry
	6.6.1 Documentation and samples
	Documentation
	Samples

	6.6.2 Debugging support
	6.6.3 Using Tapestry

	6.7 Summary

	WebWork
	7.1 Overview
	7.1.1 The architecture
	7.1.2 The configuration

	7.2 Key concepts
	7.2.1 Actions
	7.2.2 Key interfaces
	7.2.3 The value stack
	7.2.4 Expression language
	7.2.5 BeanInfo classes
	7.2.6 Templates

	7.3 Scheduling in WebWork
	7.3.1 The configuration
	7.3.2 The View page
	The action
	The view

	7.3.3 The Add page
	The AddScheduleBase class
	The AddScheduleItem class
	The AddSchedule view
	Saving the record

	7.3.4 Validations
	Editors
	Generic validations

	7.4 Evaluating WebWork
	7.5 Summary

	InternetBeans Express
	8.1 Overview
	8.2 The architecture
	8.2.1 DataExpress
	DataExpress and JDBC
	DataModules
	Disconnected updates

	8.2.2 InternetBeans Express

	8.3 InternetBeans Express components
	8.3.1 ixPageProducer
	Rendering pages
	Handling request parameters
	Handling submit events

	8.3.2 ixComponents

	8.4 Scheduling with InternetBeans
	8.4.1 Data connectivity
	8.4.2 The View page
	The View servlet
	The View template

	8.4.3 The Add page
	The Add servlet
	The Add template

	8.4.4 Validations

	8.5 JSP custom tags
	8.6 Evaluating InternetBeans Express
	8.6.1 Documentation and samples
	8.6.2 Using InternetBeans Express

	8.7 Summary

	Velocity
	9.1 Overview
	9.2 The architecture
	9.3 Key concepts
	9.3.1 Setting up Velocity
	Configuration
	Resource loading
	Instancing options

	9.3.2 The Velocity Template Language
	References
	Directives
	Statements

	9.3.3 Context

	9.4 Scheduling with Velocity
	9.4.1 The View page
	The Velocity servlet
	The template

	9.4.2 The Add page
	9.4.3 Validations

	9.5 Evaluating Velocity
	9.5.1 Documentation and samples
	9.5.2 Using Velocity

	9.6 Summary

	Cocoon
	10.1 Overview
	10.2 The architecture
	10.2.1 The publishing framework
	Pipelines

	10.2.2 The web framework

	10.3 Key concepts
	10.3.1 The publishing framework
	Transformations
	Pipeline
	Generator
	Transformer
	Serializer

	10.3.2 The sitemap
	Generator configuration
	Transformers
	Actions
	Pipelines
	Editing the sitemap

	10.3.3 The web framework
	Actions
	XSP

	10.4 Scheduling in Cocoon
	10.4.1 The sitemap
	10.4.2 The action
	10.4.3 The view

	10.5 Evaluating Cocoon
	10.5.1 Documentation and samples
	10.5.2 Source code
	10.5.3 Debugging

	10.6 Summary

	Evaluating frameworks
	11.1 Evaluation criteria
	11.1.1 Suitability to the application
	Speed of development
	Scalability
	Lifetime and maintainability

	11.1.2 Documentation
	Developer guides
	JavaDocs

	11.1.3 Source code
	11.1.4 Tool support
	11.1.5 External criteria
	Critical mass
	The developer community
	Places in use

	11.2 Design considerations
	11.2.1 Adherence to good design principles
	11.2.2 The user interface
	Ease of use
	Power
	Flexibility

	11.2.3 Innovative features
	11.2.4 Insularity
	11.2.5 “Feel”

	11.3 What I like
	11.3.1 Transparent infrastructure
	11.3.2 Innovative ideas
	11.3.3 Ultra-high cohesion and low coupling
	11.3.4 Evaluating frameworks as a hobby

	11.4 Summary

	Part III Best practices
	Separating concerns
	12.1 Using interfaces to hide implementation
	12.1.1 JDBC interfaces
	12.1.2 Interfaces in frameworks
	12.1.3 Decoupled classes

	12.2 Using JavaBeans
	12.2.1 Model beans
	Value objects (entity classes)
	Aggregators (boundary classes)

	12.3 Using Enterprise JavaBeans
	12.3.1 The EJB architecture
	12.3.2 Porting from JavaBeans to Enterprise JavaBeans
	The EJB schedule application
	The EventDBBean EJB
	The EventTypeDbBean EJB
	The event entity EJB
	Business rules in session beans
	Changes to the models
	Changes to the controllers and views

	12.3.3 Using EJBs in web frameworks
	12.3.4 Managing JNDI context

	12.4 Performing validations with model beans
	12.4.1 Client-side validations
	Scheduling with client-side validation

	12.4.2 Building client-side validations from the server
	Server-generated client-side validation

	12.5 Summary

	Handling flow
	13.1 Application usability options
	13.1.1 Building the base: eMotherEarth.com
	Packages
	Welcome
	Catalog

	13.1.2 Page-at-a-time scrolling
	Using JSTL

	13.1.3 Sortable columns
	Using factories

	13.1.4 User interface techniques in frameworks
	Struts
	Tapestry
	WebWork
	InternetBeans Express
	Velocity
	Cocoon

	13.2 Building undo operations
	13.2.1 Leveraging transaction processing
	Transactions in Model 2 applications
	Handling generated keys
	Transactions via JSTL

	13.2.2 Using the Memento design pattern
	Creating bookmarks in eMotherEarth
	The Caretaker

	13.2.3 Undo in frameworks

	13.3 Using exception handling
	13.3.1 The difference between technical and domain exceptions
	13.3.2 Creating custom exception classes
	13.3.3 Where to catch and handle exceptions
	Rethrowing exceptions
	Empty catch blocks
	Redirecting to an error JSP

	13.3.4 Exceptions in frameworks

	13.4 Summary

	Performance
	14.1 Profiling
	14.1.1 Measuring memory
	Using the Java Runtime class to determine memory

	14.1.2 Performance profiling
	Using the SDK profiler
	Analyzing the results
	Using commercial profilers

	14.1.3 Load testing
	JMeter

	14.1.4 Performance of profiling frameworks

	14.2 Common performance pitfalls
	14.2.1 Object creation
	Stateless classes
	Object reuse

	14.2.2 Extraneous object references
	14.2.3 String usage

	14.3 Pooling
	14.3.1 Simple object pools
	14.3.2 Soft and weak references
	Soft references
	Weak references

	14.3.3 Commons pools
	eMotherEarth with pooled boundary classes

	14.3.4 Pooling in frameworks

	14.4 Designing for scalability
	14.4.1 When to scale up to EJB
	Why not use them for every project?

	14.4.2 Molding your architecture for the future

	14.5 When to optimize
	14.6 Summary

	Resource management
	15.1 Caching strategies
	15.1.1 Caching with the Flyweight design pattern
	Implementing Flyweight
	Flyweight considerations

	15.1.2 Caching with the Façade design pattern
	Automating façade creation
	Establishing the façade class
	Using façade to borrow objects
	Using the façade to return objects
	Façade benefits
	Making the façade more generic
	The Cacheable interface
	Generically returning boundaries

	15.1.3 Resource management in frameworks

	15.2 Other resources you need to manage
	15.2.1 Effectively using JNDI
	15.2.2 Using lazy instantiation
	15.2.3 Working with web collections
	Session cops

	15.3 Summary

	Debugging
	16.1 Debugging web applications
	16.2 Debugging with the SDK
	16.2.1 Starting the debugger
	16.2.2 Running the debugger
	16.2.3 Breakpoints and steps
	16.2.4 Accessing variables
	16.2.5 Effectively using jdb

	16.3 Debugging with IDEs
	16.3.1 Debugging with NetBeans
	Starting the debugger
	Watches
	Local variables
	Breakpoints
	Other tools
	Debugging with NetBeans

	16.3.2 Debugging with JBuilder
	Projects
	Starting the debugger

	16.3.3 Differences between debuggers
	Investigating values
	Evaluate and modify

	16.4 Evaluating debuggers
	16.5 Debugging in frameworks
	16.5.1 Struts
	16.5.2 Tapestry
	16.5.3 WebWork
	16.5.4 InternetBeans Express
	16.5.5 Velocity
	16.5.6 Cocoon

	16.6 Logging
	16.6.1 General logging concepts
	Hierarchies
	Levels
	Testing
	Formatting
	Output

	16.6.2 SDK logging
	Logging eMotherEarth with the SDK

	16.6.3 log4j logging
	Logging eMotherEarth with log4j

	16.6.4 Choosing a logging framework
	16.6.5 Logging in frameworks

	16.7 Summary

	Unit testing
	17.1 The case for testing
	17.1.1 Agile development
	17.1.2 Unit testing in web applications

	17.2 Unit testing and JUnit
	17.2.1 Test cases
	17.2.2 Testing entities
	17.2.3 Running tests
	17.2.4 Test suites
	17.2.5 Testing boundaries
	17.2.6 Tool support
	JBuilder’s JUnit support
	NetBean’s JUnit support
	Automating regression testing

	17.3 Web testing with JWebUnit
	17.3.1 JWebUnit TestCases
	17.3.2 Testing complex elements

	17.4 Summary

	Web services and Axis
	18.1 Key concepts
	18.2 Axis
	18.2.1 Architecture of Axis
	18.2.2 Axis tools
	Simple web services
	WSDL2Java
	Java2WSDL

	18.3 Calling web services
	18.4 eMotherEarth web services
	18.4.1 Configuration
	Changes to web.xml
	Database connections
	Server.config

	18.4.2 Orders
	Order boundary
	The orders web service

	18.4.3 Calling the web service
	Calling the web service from other languages

	18.5 Summary

	What won’t fit in this book
	19.1 Persistence
	19.1.1 Plain old Java objects
	19.1.2 Enterprise JavaBeans
	19.1.3 Java data objects (JDO)
	19.1.4 Hibernate

	19.2 HTML and the user interface
	19.2.1 HTML/XHTML
	19.2.2 Cascading Style Sheets

	19.3 JavaScript
	19.4 Summary

	bibliography
	index

