
al

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors .. xv

About the Technical Reviewers .. xvii

Acknowledgments .. xix

Introduction .. xxi

Chapter 1: Introduction ■ .. 1

Chapter 2: The Chef Server ■ ... 21

Chapter 3: Installation ■ .. 27

Chapter 4: Workstation ■ ... 43

Chapter 5: Nodes ■ .. 49

Chapter 6: Working with Knife ■ ... 61

Chapter 7: Cookbooks ■ .. 87

Chapter 8: Using Cookbooks ■ ... 119

Chapter 9: Developing a Cookbook ■ ... 153

Chapter 10: Lightweight Resource Providers ■ 169

Chapter 11: High Availability ■ .. 179

Chapter 12: Cloud Provisioning Using Chef ■ 193

Chapter 13: Troubleshooting and Debugging ■ 219

Index .. 233

www.allitebooks.com

http://www.allitebooks.org

xxi

Introduction

Automation through Opscode Chef provides an in-depth understanding of chef, which
is written in Ruby and Erlang for coniguration management, cloud infrastructure
management, system administration, and network management.

Targeted at administrators, consultants, and architects, the book guides them
through the advanced features of the tool that are necessary for infrastructure
automation, DevOps automation, and reporting. he book presumes knowledge of Ruby
and Erlang, which are used as reference languages for creating recipes and cookbooks
and as a refresher to help the reader get on speed with the low of book.

he book provides step-by-step instructions on the installation and coniguration of
chef, usage scenarios of chef, in infrastructure automation with common scenarios such
as virtual machine provisioning, OS coniguration for Windows, Linux, and Unix, and
provisioning and coniguration of web servers like Apache along with popular databases
like MySQL.

It further elaborates on the creation of recipes and cookbooks, which help in the
deployment of servers and applications to any physical, virtual, or cloud location,
no matter the size of the infrastructure.

he book covers advanced features like LWRPs (lightweight resource providers) and
knife and also contains several illustrative sample cookbooks on MySQL, Apache, and
CouchDB deployment using a step-by-step approach.

www.allitebooks.com

http://www.allitebooks.org

1

CHAPTER 1

Introduction

In this chapter we briefly discuss the concept of infrastructure as code and DevOps.
We also touch upon Chef and Ruby and cover some of the use cases of Opscode Chef
and how it is being leveraged to solve technical problems faced by IT (information
technology) departments.

Infrastructure as Code
The advent of public cloud computing has revolutionized the software development
world. Small companies with a good idea can leverage the pay-per-use model provided
by the public cloud computing companies and setup their infrastructure quickly and
without any upfront costs.

For the traditional IT enterprises, the public cloud brings in cost advantages,
flexibility, and the agility to setup their infrastructure environments very quickly
without waiting for the ordering, procurement, and setup cycles involved in traditional
datacenter setup.

Most of the public cloud providers deliverAPIs (application programming
interfaces), which expose the features and functionality of the underlying cloud. Thus
the infrastructure that typically used to be a setup and configuration activity in traditional
datacenters has now become programmable through APIs.

The infrastructure components like Network, Firewalls, Compute, and Storage are
exposed to programmers through APIs and can be consumed through command lines,
REST APIcalls, and so on.

The large-scale infrastructure used by cloud providers and Internet scale companies
like Google, Facebook, and Twitter needs a very different approach to setup, monitoring,
and management from a typical enterprise with a few thousand servers.

Some of the provisioning and deployment models applicable for large-scale Internet
infrastructure are very different from the typical enterprise use cases. The number of
applications and servers are more homogeneous in an online business than the number
of applications and diversity of infrastructure found in an enterprise.

Although AWS (Amazon Web Services) does not share details on its capacity or
the addition of capacity, it states that it is adding capacity equivalent to what Amazon.com
had in 2005 daily. This kind of massive capacity buildup and management of millions of
virtual machines leveraging technologies, processes, and tools built for a smaller scale are
not possible.

www.allitebooks.com

http://amazon.com/
http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION

2

The public cloud is built on principles of scaled-out architecture. Thus, rather than
adding computer resources to a virtual machine, applications quickly spin new machines
when the demand increases and gracefully shut down machines when the demand
decreases. This has become essential since cloud providers charge the customer on the
basis of metered usage of services. Thus, if you are using a virtual machine in a cloud
environment for a few hours, you will only be billed for the hours of usage.

The cloud providers provide integrations and APIs for making the up scaling and
downscaling of resources simple and easy to do. Customers benefit by having capacity
when needed and getting billed for what they use.

Today, a range of new technologies has emerged which makes the task of managing
large-scale infrastructure and application landscape much easier.

Infrastructure as a code emerged in the last few years because of advancement in
two technologies and the rise of consumer IT companies. Cloud computing and new web
frameworks made it simpler and easier to develop out scale applications and created
technologies that enabled infrastructure as a code.

The cloud and the new web frameworks have essentially democratized innovation
and IT. No longer do you need expensive equipment and a datacenter setup to start your
innovative company. The cloud provides seemingly limitless capacity to fulfill the needs
of developers and startup with zero capital expenditure. You can be up and running on
a prototype using your credit card. Thus smaller companies now can compete with their
larger competitors, and the advantage that large organizations have by virtue of capital
and infrastructure no longer remains a differentiator.

The idea of the cloud and the newer web development languages and frameworks
was all about simplicity. The cloud made it simple for organizations to setup
infrastructure, and the new web frameworks and languages like Ruby on Rails made it
simpler, easier, and faster to develop applications.

Startup companies also have to operate within tight budgets; they do not have the
luxury of spending money on operations and operations teams. Thus, the developers had
to find a way to make operations as automated as possible, and the convergence of all
the new technologies, along with the needs of developer communities and large-scale
Internet companies, resulted in the fructification of the concepts of DevOps and
infrastructure as code.

A lot of changes have led to this new breed of configuration management tools that
help in automating your infrastructure. These tools help you in maintaining a blueprint of
your infrastructure by breaking it down into components that interact with each other so
that you can deploy it whenever you want.

It is important to understand that “infrastructure” does not mean infrastructure in
the traditional IT definition, which is network devices, servers, firewalls, and so on. By
infrastructure, we mean a collection of components that are used to deliver a service to
the end user. The components can be virtual machines, network settings, configuration
files, software packages, applications, processes, users, and so on.

Jesse Robins describes the goal of infrastructure as code:

“Enable the reconstruction of the business from nothing but a source code
repository, an application data backup, and bare metal resources.”

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION

3

Thus, infrastructure as code tools like chef came into picture. Chef enables
developers to assemble and consume infrastructure components similarly to the way
software components are designed, assembled, and consumed.

Figure 1-1 shows the different types of components of infrastructure.

File 1

File 2

User

Package

Service

Figure 1-1. Infrastructure components

Infrastructure components are abstracted similarly to the way abstract classes and
interfaces work in a software module.

Chef and other automation tools allow you to define objects and methods for an
object; as an example, you may add and remove methods for installing packages.

The beauty of this approach is that the administrators of the end systems do not have
to worry about the implementation details of how each component is deployed by the
system and can focus on the exact task to be achieved.

Infrastructure is created as a blueprint in a software system which is executed by
a provider on the end device. The provider provides the execution code based on the
capabilities of the end device. Thus, the abstraction of the provider brings simplicity, and
the developers can reuse the providers as per the needs of the application. The provider
model encapsulates the execution aspects of the end system, and thus it greatly simplifies
the work of the administrator.

Once the blueprint has been created, the same model can be applied multiple times
to multiple similar endpoints.

The automation aspects of these tools also allows the endpoints to be audited
to a specific baseline, and if the end points state is different than what it should be,
systems like chef can automatically bring the end point back to the expected state of
configuration.

The blueprint can be used to create various environments easily and quickly, and
you can easily provision development, test, QA, and production environments using chef.

Without infrastructure as code and tools like chef, it would take days of effort from
multiple teams to create these environments.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION

4

The additional benefit of this approach is that the complete environment becomes
documented and modeled in a tool. Thus, using chef as a tool helps organizations to
have a scalable and agile approach to configuration management and the deployment
of infrastructure components. Automation using configuration automation tools like
chef would save precious man-hours, which can be utilized for service improvement and
the creation of new services. This also leads to significant cost savings as well as higher
quality of service because of fewer human errors.

Overview
Chef is a framework that makes it easy to manage your infrastructure. Chef was initially
written in Ruby, but the latest version is a mixture of Erlang and Ruby. A single chef server
can handle upto 10,000 nodes.

With chef, we can

Manage both our physical and cloud servers.•฀

Create perfect clones of our environments.•฀

Easily configure applications that require knowledge about your •฀
infrastructure via ‘Search.’

Once we have automated our infrastructure with chef, we can replicate the whole
infrastructure very easily. Chef can be mainly broken down into three components.

Server: The chef server holds the configuration data for each and •฀
every node registered with it.

Workstation: A workstation basically holds the local chef •฀
repository.

A node is a client that is registered with the chef server. It has an •฀
agent known as chef client installed on it.

Cookbooks, covered in Chapter 7 also are a very important part of chef. Cookbooks
are the basic building blocks of chef. They hold the type of configuration that needs to be
done on a node. Each cookbook defines a complete scenario, like package installation
and configuration.

Nodes
A node can be termed a “virtual” or a “physical” server that is managed by chef. A node
can also be on the cloud. A node needs to have an agent, known as chef client, installed
on it. The agent is used to interact with the chef server. Ohai is a built-in tool that comes
with chef and is used to provide node attributes to the chef client so that a node can be
configured. There are basically two types of nodes that chef can manage.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION

5

1. Cloud-based: It is basically a node that is hosted on any of
the cloud providers (e.g., Amazon or Windows Azure). There
is a chef CLI (command line interface) known as knife which
can be used to create instances on the cloud. Once deployed,
these nodes can be managed with the help of chef.

2. Physical: It can be hardware or a virtual machine that exists in
our own environment.

There are mainly two important components of a node.

1. Chef client: An agent that runs on each node. The agent
contacts the chef server and pulls the configuration that needs
to be done on the node. Its main functions include

a. Registering the node with the chef server.

b. Downloading the required cookbook in the local cache.

c. Compiling the required recipes.

d. Configuring the node and bringing it to the expected state.

2. Ohai: Chef client requires some information about the node
whenever it runs. Ohai is a built-in tool that comes with chef
and is used to detect certain attributes of that particular node
and then provide them to the chef client whenever required.
Ohai can also be used as a stand-alone component for
discovery purposes. Ohai can provide a variety of details from
networking to platform information.

Workstation
A workstation is a system that is used to manage chef. There can be multiple workstations
for a single chef server. A workstation has the following functionalities:

Developing cookbooks and recipes.•฀

Managing nodes.•฀

Synchronizing the chef repository.•฀

Uploading cookbook and other items to the chef server.•฀

There are mainly two important components of a workstation.

1. Knife: A command line tool used to interact with the chef
server. The complete management of the chef server is done
using knife. Some of the functions of knife include

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION

6

a. Managing nodes

b. Uploading cook books and recipes

c. Managing roles and environments

2. Local chef repository: Chef repository is a repository where
everything related to the chef server/nodes is stored.

Server
There is a centrally located server which holds all the data related to the chef server;
this data includes everything related to the server (i.e., cookbooks, the node object, and
metadata for each and every node registered to the chef server).

The agent (chef client) runs on each and every node, and it gets the configuration
data from the server and then applies the configuration to a particular node. This approach
is quite helpful in distributing the effort throughout the organization rather than on a
single server.

There are three different types of chef server.

Enterprise chef•฀

Open source chef•฀

Chef solo•฀

Enterprise Chef

Enterprise chef is the paid version of the chef server which comes with two types of
installations: one is on-premise installation (i.e., in your datacenter behind your own
firewall) and the other is the hosted version in which chef is offered as a service hosted
and managed by Opscode.

The major difference between the enterprise version and the open source version
is that the enterprise version comes with high-availability deployment support and has
additional features on reporting and security.

Open Source Chef

The open source chef has most of the capabilities of the enterprise version. However, this
version of chef server also has certain limitations. The open source version of chef can
be installed only in stand-alone mode (i.e., it is not available in the hosted model). The
open source chef components need to be installed on a single server, and it doesn’t offer
the levels of security available in the enterprise version. It also doesn’t provide reporting
capabilities like the enterprise version.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION

7

ChefSolo

Chefsolo comes with the chef client package and is used to manage a node without any
access to the server. It runs locally on any node, and it requires the cookbook or any of its
dependencies to be present on the node itself. This is generally used for testing purposes.

Cookbooks

A cookbook is a basic unit of configuration and policy definition in chef. A cookbook
essentially defines a complete scenario. As an example, a cookbook for Apache or Tomcat
would provide all details to install and configure a fully configured Apache or Tomcat server.

A cookbook contains all the components that are required to support the installation
and configuration of an application or component, including

Files that need to be distributed for that component.•฀

Attribute values that should be present on the nodes.•฀

Definitions so that we need not write the same code again and again.•฀

Libraries which can be used to extend the functionality of chef.•฀

Recipes that specify the resources and the order of execution of code.•฀

Templates for file configurations.•฀

Metadata which can be used specify any kind of dependency, •฀
version constraints, and so on.

Chef mainly uses Ruby as its reference language for writing cookbooks and recipes.
For writing specific resources, we used extended DSL (Domain Specific Language).

Chef provides an extensive library of resources which are required to support various
infrastructure automation scenarios. The DSL provided by chef can also be extended to
support additional capabilities or requirements.

Figure 1-2 shows the basic chef components and how they are used in automation.

CHAPTER 1 ■ INTRODUCTION

8

Figure 1-3 shows the chef components in detail.

Figure 1-2. Basic structure of chef

CHAPTER 1 ■ INTRODUCTION

9

The Value of Chef
With chef, you can automate your whole infrastructure and rebuild the whole
environment very easily. Chef can automate every task that we perform manually in
our datacenter in our daily routine and can save lots of time. Figure 1-4 shows a typical
environment. We can delete and launch any instance at a point in time, and we do this
manually, but with chef we can automate the whole process.

Figure 1-3. Chef components in detail

CHAPTER 1 ■ INTRODUCTION

10

Why Chef?
As explained previously, chef gives your infrastructure the flexibility, speed, and
efficiency you have always wanted. Automation through chef can provide the speed and
agility needed by business today to compete. Chef can be used to quickly provide IT
solutions and repeatable configurations with minimal human intervention.

Automating your infrastructure with chef could help you to deploy features in
minutes rather than days. Chef can manage any number of servers without much
complexity, and thus it helps you in managing your infrastructure easily, at less cost,
and while avoiding human errors.

Chef helps your enterprise in moving to public clouds and complements the public
cloud model by providing integrations with major public cloud providers.

Core Principles of Chef
Chef is a highly configurable and extensible tool with immense power in the hands of
administrators to automate their infrastructure. It provides flexibility, agility, and speed to
administrators, and they can leverage the tool the way they best deem fit in their scenarios.

The main principles on which chef works are

Idempotence•฀

Thick client, thin server•฀

Order of execution•฀

Memcache

Mysql slave

Mysql master

Web Sphere

app

Zabbix1 2

3 4 5 6

8 9

10 11

12

7

Figure 1-4. A fully automated infrastructure

CHAPTER 1 ■ INTRODUCTION

11

Idempotence
Idempotence means that a chef recipe can run multiple times on the same system and
the return will be identical. Chef ensures that the configuration changes to the end system
(node) are done when the underlying configuration differs from the desired state and no
changes are made to the system if they are not needed.

Thus, administrators can define the end configurations, and chef will ensure that the
nodes have the desired configuration on them.

Thick Client, Thick Server
Chef uses an agent known as chef client to interact with the chef server.

The chef agent does the heavy lifting; it downloads the required files from the chef
server onto a local cache. The chef client is responsible for compiling the client-side code,
and then the code is executed by the agent on the node.

The thick client approach of chef makes it highly scalable, since the heavy lifting is
done by the agent on each node and not on the server. This makes chef an ideal candidate
for large-scale Internet application deployment and management.

Order of Execution
The compilation of recipes on the node is done in the exact order that is specified. The
code execution of the agent is also done in the order that it is specified.

Thus, it is important to ensure that the correct order of execution is followed in the
creation of recipes, so that the desired results are correct.

This approach makes sure that a prerequisite is met first so it becomes easier to
manage.

Who Uses Chef?
Chef is being used very widely. One of chef’s biggest customers is Facebook. Many
Internet companies and enterprises use chef today to automate their infrastructure
environments.

Key Technologies
In this section, we discuss some of the technologies that are used in chef—mainly,
Ruby and Erlang.

Ruby
Ruby is a simple object-oriented programming language which has been developed
and designed in such a way that it is easy to read and understand, and it behaves in a
predictable fashion. Ruby was developed and designed by Yukihiro “Matz” Matsumoto of
Japan in 1995 and is influenced by scripting languages like Python, Perl, Smalltalk, Eiffel,

CHAPTER 1 ■ INTRODUCTION

12

Ada, and Lisp. Ruby borrows heavily from Perl, and the class library is an object-oriented
reorganization of Perl’s functionality. Ruby was launched for the general public in 1995,
and since then it has drawn devoted coders worldwide. Ruby became famous in 2006 and
has been widely used since then.

Chef mainly uses Ruby as its reference language for writing cookbooks and recipes,
with an extended DSL. Here we discuss some of the basic concepts of Ruby that might be
needed while using chef.

Variables

Variables are used to store any kind of value, which can be a string or an integer, which is
then used reference purposes. We need to declare a variable and then assign a value to
that variable, which can be done with the help of assignment operator (=). For example, if
we need to assign a numeric value to a variable, X, we would do the following:

X=20

This would create a variable, X, and would assign a value of 20 to it.
Figure 1-5 shows assigning values to four different variables. It would create four

variables (a, b, c, and d) with values of 10,20,30, and 40, respectively.

Figure 1-6. Assigning values to variables using parallel assignment

Figure 1-5. Assigning values to variables

Ruby also supports parallel assignment of variables. The same result can be achieved
more quickly, using parallel assignment.

Figure 1-6 shows this operation.

CHAPTER 1 ■ INTRODUCTION

13

Working with Strings

Ruby uses the string object to store strings. The string object can also be used to call a number
of methods. These methods can be used to manipulate a string in many ways. To create a new
empty string, we use the new method of the string object as shown in Figure 1-7.

Figure 1-7. Creating an empty string

Figure 1-8. Creating a string with some value

Figure 1-9. Creating a string with some value (kernel method)

If we want to create a new string with some value, we can pass an argument in the
new method as shown in Figure 1-8.

There is another way to create a string which uses the string method provided by
kernel, as shown in Figure 1-9.

The best thing about Ruby is that it takes care of many things. We can create a string
by simply declaring it as shown in Figure 1-10.

Figure 1-10. Initializing a string with some value (direct declaration)

We can use both single quotes (‘) and double quotes (“) to delimit stings in Ruby.
However, there is a difference in both. Double quotes are used when we want to interpret
escaped characters like tabs or newlines while single quotes are used when we need to
print the actual sequence.

Figure 1-11 depicts the difference between the two.

CHAPTER 1 ■ INTRODUCTION

14

Ruby can be easily embedded in a string. Figure 1-12 illustrates this process.

Figure 1-11. Working with single and double quotes

Figure 1-12. Accessing a variable

Figure 1-13. Initializing an empty array

We need to use double quotes if we want to embed Ruby in a string. Single quotes
won’t work in this case.

Arrays

Like a string, a Ruby array is also an object which can contain a single item or more.
These items can be a string, an integer, or a fixnum. We can create an array in Ruby using
a number of mechanisms. We can create an uninitialized array in Ruby using the new
method of array class shown in Figure 1-13.

Figure 1-13 creates an array named days_of_month with nothing in it.
We can also create an array with a fixed number of elements in it by passing the size

as an argument (see Figure 1-14).

Figure 1-14. Initializing an array with five elements

CHAPTER 1 ■ INTRODUCTION

15

Figure 1-14 will create an array of five elements with no value in it. If we need to add
some data to the array, many options are available (see Figure 1-15). One of them would
be to place the same data in each element during the array creation process

Figure 1-16. Populating different value in each element of an array

Figure 1-15. Initializing an array with some value

We can also create an array by using the [] method of the array class and specifying
the elements one after one as shown in Figure 1-16.

We can access any element of a Ruby array by referencing the index of the element.
For example, see Figure 1-17 if you want to access the second element of the array created
in Figure 1-16.

Figure 1-17. Accessing an object in an array

Operators

Ruby has a number of classified operators.

Assignment operators•฀

Math operators•฀

Comparison operators•฀

Bitwise operators•฀

In Ruby, as in other languages, a number of arithmetic operators can be used to
perform a number of functions. Table 1-1 provides a list of these operators.

CHAPTER 1 ■ INTRODUCTION

16

Figure 1-18 shows the use of the division operator; if we don’t want the result to be
truncated then we need to express at least one of the operands as a float.

Table 1-1. Arthimetic Operators

Operator Function

+ Used to add the variables on both sides of the operator.

- Used to subtract the right side operand from the left side operand.

* Used to multiply the values on both sides of the operator.

/ Used to divide the left hand operand by right hand operand.

% Used to divide the left hand operand by right hand operand and return
the remainder.

** Used to perform exponential calculation on operators.

Figure 1-18. Working with operators

If we need to compare two variables then we need to use comparison operators.
Table 1-2 shows a list of comparison operators available in Ruby.

Table 1-2. Comparison Operators

Operator Function

== It is used to check equality. The output would be a true or a false.

.eql? It has the same functionality as == operator.

!= It is used to check for inequality. The output would be false in case equality
and true in case of equality.

< Used to compare two operands. The output will be true if the first operand
is less than the second one and false otherwise.

> Used to compare two operands. The output will be true if the first operand
is greater than the second one and false otherwise.

>= Used to compare two operands. The output will be true if the first operand
is greater than or equal to the second one and false otherwise.

<= Used to compare two operands. The output will be true if the first operand
is less than or equal to the second one and false otherwise.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCTION

17

Figure 1-19 shows the use of comparison operators.

Figure 1-19. Working with operators

Ruby bitwise operators allow operations to be performed on numbers at the bit level.

Methods

Methods in Ruby are used to organize your code in a proper way. Ruby also promotes the
reuse of code so that we do not write the same code again and again.

Ruby helps in organizing your code into groups to call said code whenever required.
The following piece of code shows a typical method:

def name(arg1, arg2, arg3, ...)
 .. ruby code ..
 return value
end

Erlang

Overview

Erlang is a general-purpose concurrent programing language that is mainly used to build
highly available and scalable real-time systems. Erlang is being widely used in many
industries like telecom, e-commerce, and so on. It has a system that provides built-in
support for concurrency, fault tolerance, and distribution.

Along with being a programming language, Erlang also focuses on high reliability
and concurrency. Erlang can perform dozens of task at a time. It uses an actor model
to achieve it (i.e., each actor is treated as a separate process in a virtual machine). For
example, consider yourself to be an actor in Erlang’s world: you would be a person sitting
alone in a dark room waiting for a message, and as soon as you receive a message you
provide a valid response.

CHAPTER 1 ■ INTRODUCTION

18

With the help of this actor model, Erlang is able to perform tasks at a faster rate,
which in turn makes it faster. We can treat this actor model as a world where everyone can
perform a few distinct tasks and just wait to receive a proper message. It means everyone
is dedicatedly working on a specific task and not concerned about what other people are
upto. To achieve this, we write processes (actors) in Erlang, and these actors do not share
any kind of information. Every communication that is taking place is traceable, safe, and
explicit. The ability of Erlang to scale, recover, and organize code makes it more awesome.

The main reason Erlang is able to scale so easily is that the nature of the process is
very light, and a large number of processes exist. Although it is not required to use all of
them at a time, you have them as a backup and can use them if required.

Evolution and History

In 1984, CSLabs at Ericsson conducted on going research on various languages and
methodology approaches that were best suited for the applications in telephony domains.
A few techniques were rule-based programming, imperative programming, declarative
programming, and object oriented programming.

There are some properties that telephony domains demand, such as

•฀ Grained concurrency: Typical telecommunication involves large
equipment, complex real-time systems, and various activities
which should occur concurrently and are handled by processes or
threads.

•฀ Asynchronous message passing: This is a basic requirement of
telephone systems. Asynchronous message passing gives ways to
distribute processing.

The research done on varieties of languages finally confirmed that building a scalable
and distributed telephony application cannot be done by using any of the languages or
with any of the methodologies. There are some parts of an application which can be best
programmed in one methodology and other parts in using some other methodology.

The primary aim of this research was to develop a style of programming which
can lead to beautiful code, and which will also help programmers gain efficiency when
writing bug-free code.

Erlang Creation

Joe Armstrong started another experiment with Prolog, and gave the name Erlang to this
new experimental language after the Danish mathematician Agner Krarup Erlang, creator
of the Erlang loss formula. Erlang can be defined as a concurrent functional programming
language which mainly follows two traditions (see Figure 1-20).

CHAPTER 1 ■ INTRODUCTION

19

•฀ Functional and logic programming languages: Erlang inherits
lists, pattern making, atoms, catch and throw, and so on, from
these languages. Examples of these types of languages are Lisp,
Miranda, Haskel, and ML.

•฀ Concurrent programming languages: Erlang uses features
like process communication modules and processes from these
types of languages. Examples of these types of languages include
Modula, Chill, and Ada.

Erlang was created while keeping in mind various designs that are ideal for
telephony applications. It contains features like concurrency, OS independent, garbage
collection, tail recursion, different data types and collections, support selective message
receive statement, asynchronous message passing, and default error handling.

Erlang Features
Concurrency

Erlang implements concurrency independent of the operating system. Processes in
Erlang have no shared memory. Different processes in Erlang communicate to each
other by sending and receiving messages asynchronously. These processes are very

Concurrent Functional

programming Language

Erlang

Concurrent System

programming Language

like Ada, Module or Chill

Functional Programing languages like ML

or Miranda

Figure 1-20. How Erlang evolved

CHAPTER 1 ■ INTRODUCTION

20

lightweight; hence hundreds and thousands of process can run at a time, but their
memory requirement varies dynamically. Erlang is useful for applications that require
response time of order of milliseconds

Distributed

Erlang supports transparent distribution. An Erlang program can run on more than one
machine which may each have different operating systems running. Erlang processes on
one node and communicates a different process on another node using asynchronous
message passing.

Sequential Erlang

The syntax of Erlang is quite similar to that of ML. It has data types like numbers, lists, and
tuples and it uses pattern matching to select between alternatives. Recursion is used to
construct loops.

Robust

When an Erlang process crashes it will only crash the process, not the entire system.
Erlang processes can monitor each other so that if there is an error in one process, others
can receive the error message. This also provides monitoring processes to take corrective
actions like restart transactions, for example. In distributed systems, nodes can be
configured to provide failover scenarios. Due to this feature of Erlang we are able to design
soft-fail systems. For example, an error in the call of a telecommunication system will bring
down that call only and not the entire system.

Software Upgrading in Running Systems

This function in Erlang can be performed without disturbing the current state of the
system. We can directly change the code in the running system which means we can
upgrade a system without disturbing the currently running operations.

The newly spawned process will use the new version of the module while the
ongoing process will use the old one and remain undisturbed.

Portability

Erlang has been developed mainly in C, so it is available on most of the operating systems
that can run C.

21

CHAPTER 2

The Chef Server

This chapter covers Chef server and its components in detail. First we cover the different
types of chef servers and then move on to discuss the components of the open source
chef server.

The Chef Server
The chef server is the server component of the Opscode chef tool. The server is a
centralized location where data related to chef is stored.

The data that is stored on the server includes cookbooks, node objects, and any policy
that needs to be applied on any node. Each node registered with the chef server has an
agent known as chef client installed on it. The agent contacts the chef servers and pulls
the configuration that needs to be applied on the node. The chef client is responsible for
execution of the actual code on the node. Chef is a thick client architecture tool that enables
the client to do the heavy lifting. Due to this approach the effort is distributed throughout
the infrastructure nodes and not on a single server.

Types of Chef Server
Chef servers can be classified into three types.

1. Hosted enterprise chef

2. Enterprise chef

3. Open source chef server

Hosted Enterprise Chef

This type of chef server is a paid version and is offered as a service. As the name suggests,
it is a cloud-based, highly available, and scalable version of chef. It has all the capability
of chef and one can just sign up to use it. It has to be accessed via the Internet. Thus, a
hosted enterprise chef is a great way for enterprises to leverage a fully supported and hosted
version, such as cloud computing, for their applications. The managed offering frees the
enterprise to focus its efforts on its core applications rather than installing, configuring, and
managing chef.

CHAPTER 2 ■ THE CHEF SERVER

22

Enterprise Chef

This version of chef is the same as the hosted version. The only difference between them
is that this one needs to be installed in the enterprise data centers and is not available as a
hosted and managed offering.

In terms of technical capabilities, it is the same as the hosted version. It also has
dedicated support directly from chef and features such as RBAC (Role-Based Access
Control), built-in support for high availability, and so on.

Open Source Chef Server

This is a free version of the chef server which has many of the capabilities of the
enterprise version but also some limitations. It does not include support directly from
chef but has support from the chef community. The customer needs to manage the
chef instances. High availability and scalability are not offered out of the box. Any data
migration or patching also needs to be done by the user.

Extra Functionalities in Enterprise Chef
Enterprise chef has all the functionalities of the open source chef server along with the
following features:

•฀ Improved RBAC: Enterprise chef comes with built-in RBAC, which
is used to configure fine-grained permissions for users. This is an
important requirement for any automation tool from a security
perspective.

•฀ Built-in support for high availability: Enterprise chef comes with
multiple installation options. The enterprise version of chef can
be installed in a stand-alone mode and also in a high-availability
mode. High availability can be a key requirement for some of the
enterprises.

•฀ Push client jobs: The server can push the configuration to a client
node in enterprise chef. In open source chef server the chef client
needs to pull the data.

•฀ Improved management console for ease of administration.

•฀ Monitoring and reporting: Reporting and monitoring features
are enhanced in enterprise chef; while in open source we have
minimal monitoring and reporting.

•฀ Support directly from chef: It has support directly from chef.

CHAPTER 2 ■ THE CHEF SERVER

23

Components of Open Source Chef Server
The previous versions of chef were written in Ruby. Chef 11 was released in early 2013.
One of the major changes was that the API (application programming interface) server
was written in Erlang.

Erlang is a functional programming language that has many good features, like
fault tolerance, concurrency, and high scalability, and it can also work in distributed
environments. Due to the massive scalable nature of Erlang, it is used in telecom software
and other high-performance real-time systems.

Due to this change and leveraging the Erlang language, this version of chef is more
scalable and provides higher performance.

Figure 2-1 shows the various components that are part of a chef server and how they
are connected to one another.

Search Index/

Chef Solr
Postgres ql Cookbooks

WebUI Erchef Bookshelf

Nginx

M
e
ssa

g
e
 Q

u
e
u

e
s

Figure 2-1. Working of the chef server

Nginx

Nginx is a popular open source http server and reverse proxy. Nginx is a high-performance
http server which can handle heavy workload websites.

CHAPTER 2 ■ THE CHEF SERVER

24

Nginx is leveraged by chef as the http server and every request that comes to the
chef server is routed to Nginx. Then, Nginx forwards the request based on the type of
request. If it’s a cookbook-related–request then it is forwarded to Bookshelf. Bookshelf
then forwards the request to Erchef, and it is handled accordingly. Any request coming is
finally handled by Erchef.

Bookshelf

Bookshelf is a component of chef which holds the cookbooks in the chef server. All
cookbooks that are uploaded to the chef server are stored in Bookshelf. The cookbook
contains different types of files, from templates to recipes, and so on. Bookshelf also
maintains different versions of the cookbooks.

The content in Bookshelf is stored using the checksum; the files are updated only
if the checksum changes. Bookshelf uses flat files to store the content and the content is
separate from the search index repositories.

Figure 2-2 shows how cookbooks are typically stored in the cookbook content. The
path where these files are located is/var/opt/chef-server/bookshelf/data/bookshelf/.

Figure 2-2. How cookbook files are stored

WebUI

The web interface of the chef server is a Ruby on Rails 3.0 application.
Figure 2-3 shows the web interface of a chef server. This is the screen that appears

when you open the web interface for the first time.

CHAPTER 2 ■ THE CHEF SERVER

25

Web UI provides the graphical interface for the administrator and users to work with
the chef tool.

Erchef

The core API of the chef server is written in Erlang and is known as Erchef. As it is written
in Erlang it is much faster compared to its previous versions. The previous versions were
written in Ruby. This version is also compatible with the previous version of the server.
The cookbooks that were written for the previous versions will work in this version also.

The new version provides higher performance and scalability and it was one of the
reasons for rewrite of the API server using Erlang.

Message Queue

Chef uses RabbitMQ for queueing the messages. RabbitMQ is one of the leading open
source message queueing platforms. The messages that are received by the chef server
are sent to the search index using the Message Queue.

All the messages are added to a queue; the chef expander pulls these messages from
the RabbitMQ queue, changes them to the required format, and then sends them to the
chef solr for indexing. Chef solr is a search engine which exposes its Rest API for indexing.

By using message queues, high workloads can be handled through the queue
mechanism and then eventually indexed and made available through the index.

Chef Solr

Chef Solr is the search engine in chef. It wraps Apache solr and exposes its REST API for
searching and indexing. Apache solr is an open source search platform that provides
search capabilities with features like dynamic clustering and integrations with databases.
It is fault tolerant and highly reliable. Solr is written in Java and runs as a stand-alone
full-text search server within a servlet container such as Jetty. Solr uses the Lucene Java
search library at its core for full-text indexing and search, and it has REST-like

Figure 2-3. Web interface of the chef server

CHAPTER 2 ■ THE CHEF SERVER

26

HTTP/XML and JSON (JavaScript Object Notation) APIs that make it easy to use from
virtually any programming language. Solr’s powerful external configuration allows it to
be tailored to almost any type of application without Java coding, and it has an extensive
plug-in architecture when more advanced customization is required.

Postgresql

Postgresql is a leading open source RDBMS (relational database management system).
This forms the database for the chef tool.

Postgresql is used to store the data related to the chef server. The current version of
chef uses postgresql version 9.2.x. By default, chef creates a database named Opscode_Chef.
Figure 2-4 shows the structure of the database.

Figure 2-4. Structure of database

Table 2-1. Ports Used by Chef

Service Port Used

Erchef 8000

ChefServer-WebUI 9462

Postgresql 5432

RabbitMQ 5672

Chef Solr 8983

Bookshelf 4321

Nginx 443/80

Ports

Table 2-1 shows the list of ports that the chef server utilizes.

www.allitebooks.com

http://www.allitebooks.org

27

CHAPTER 3

Installation

This chapter discusses the Installation and configuration of open source chef server.

Install the Chef Server
Prerequisite
System Requirements

Some of the important system requirements that need to be fulfilled before we install the
chef server are

Users: Chef server requires a local user and group to be created. •฀
It will create them automatically if proper privileges are given,
but if we don’t have a restricted access to the environment then
we need to create them manually.

FQDN: The server should have a complete and fully qualified •฀
domain name (FQDN), and it should be resolvable. If we are
working in a production environment we should go for a DNS
(Domain Name System) entry.

Git: Git must be installed on the server so that it is able to •฀
maintain the revisions of internal services.

NTP: As the chef server is sensitive to click drift, the server should •฀
be connected to an NTP server.

Apache Qpid: The daemon should be disabled on CentOS and •฀
Red Hat systems.

Make sure your firewall is configured properly.•฀

Hardware Prerequisite

If we are going to use our chef server for testing purposes, it can be installed on an
m1.small instance on AWS (Amazon Web Services). It can also be installed on a local
virtual machine with 1GB of RAM.

CHAPTER 3 ■ INSTALLATION

28

If we are going for a production environment, then the desired configuration is

RAM—4GB•฀

Cores—4 with 2.0GHz Intel/AMD CPUs•฀

Disk space—5GB in /opt and 5GB free in /var•฀

The following operating systems support the chef server:

Operating System Version Architecture

Ubuntu 10.04, 10.10, 11.04,
11.10, 12.04, 12.10

X86_64 and i686

Enterprise Linux 5,6 X86_64

Hostname

The main prerequisite for chef server is that the hostname of the server should be set
before installing the server. The hostname should meet certain conditions.

1. The hostname should be an FQDN and should include the
domain suffix as well.

2. It should be resolvable. For a production environment, we
should go for a DNS entry; in a testing environment we can
make an entry in /etc/hosts to ensure that the hostname is
resolvable.

To check whether you have configured the hostname properly, run the
"hostname"command. The output should be similar to what we see in Figure 3-1.

Figure 3-1. Verifying a hostname

Figure 3-2. Verifying that a hostname is resolvable

To check whether your hostname is resolvable, run the "hostname –f" command.
The output should be similar to what we see in Figure 3-2.

CHAPTER 3 ■ INSTALLATION

29

Installation
In this section we demonstrate the Installation of chef server version 11.x.

Steps

Several steps need to be taken to install the open source chef server.
The first step is to download the chef server installer available on the chef web site.
Go to the following link and download the OS-relevant setup as shown in Figure 3-3.

www.getChef.com/Chef/install/

Figure 3-3. Downloading the chef server(1)

In the chef server tab, select the operating system (OS), its version, and its
architecture. A list of the chef server versions will come up. Select a version. The
download link for the selected version will come up as shown in Figure 3-4. Click the link
to start downloading. Make the selections as shown in Figure 3-4 as we will be installing
the chef open source version on RHEL (Red Hat Enterprise Linux).

http://www.getchef.com/chef/install/

CHAPTER 3 ■ INSTALLATION

30

We will be installing the chef server on a machine with the RHEL OS. Install the rpm
downloaded on the machine as shown in Figure 3-5.

Figure 3-4. Downloading the chef server(2)

Figure 3-5. Installing the chef server

When the rpm is installed the next step is to run a command that will configure the
chef server. Run the following command (see Figure 3-6):

$ Chef-server-ctl reconfigure

CHAPTER 3 ■ INSTALLATION

31

The foregoing command will install the chef server with default settings. If we need
some custom settings, then we need to create a file from which the chef server will fetch
the settings. We discuss this topic in detail in the section “Configuration.” When the
configuration is complete you will see a screen similar to the one in Figure 3-7.

Figure 3-6. Configuring the chef server

Figure 3-7. \Configuration completed

CHAPTER 3 ■ INSTALLATION

32

To check whether our Installation completed successfully, run the following
command (see Figure 3-8):

$ Chef-server-ctl test

Figure 3-8. TestingInstallation of chef server

Figure 3-9. Testing successful

This is a built-in command that comes with chef. Whenever you invoke the
command, it will run a test against the installed chef server and verify whether everything
is working fine.

A screen similar to the one in Figure 3-9 will let you know if the Installation is working
properly.

CHAPTER 3 ■ INSTALLATION

33

Now, open the WebUI of the chef server using the IP (Internet protocol) address or
the FQDN of the server. You will find a screen similar to the one in Figure 3-10.

Installation on a Virtual Machine
In this scenario we will install the chef server on a virtual machine. The following
requirements are necessary to proceed with the Installation:

A computer running VMware workstation with a configured •฀
virtual machine running RHEL 6.0.

A working browser on the computer running the workstation.•฀

A bridged adaptor to configure our chef server.•฀

The IP or the FQDN of the virtual machine in order to access the •฀
chef server.

Steps

The steps are similar to those of installing the chef server on a server.
First, download the chef server package on the virtual machine.
Go to the following link and download the OS-relevant setup as shown in Figure 3-11.

www.getChef.com/Chef/install/

Figure 3-10. Web interface of chef server

http://www.getchef.com/chef/install/

CHAPTER 3 ■ INSTALLATION

34

In the chef server tab, select the OS, its version, and its architecture. A list of the
chef server versions will come up. Select a version. Figure 3-12 shows the download link
that will come up for the selected version. Click the link to start downloading. Make the
selections as shown in Figure 3-11, as we will be installing the chef open source version
on RHEL.

Figure 3-11. Selection an appropriate Version of Chef-Server

Figure 3-12. Downloading the chef server

We would be installing the chef server on a machine with RHEL OS. Install the rpm
downloaded on the machine as shown in Figure 3-13.

CHAPTER 3 ■ INSTALLATION

35

Once you have installed the rpm, the next step is to run a command that will
configure the chef server. Use the following command, as shown in Figure 3-14:

$ Chef-server-ctl reconfigure

Figure 3-13. Installing the chef server

Figure 3-14. Configuring the chef server

The aforementioned command will install the chef server with default settings.
If we need some custom settings we need to create a file from which the chef server will
fetch the settings. We discuss this topic in detail in the section “Configuration.” When the
configuration is complete you will get a screen similar to the one in Figure 3-15.

Figure 3-15. Configuration completed

CHAPTER 3 ■ INSTALLATION

36

To check whether our Installation completed successfully, run the following
command as shown in figure 3-16:

$ Chef-server-ctl test

Figure 3-16. TestingInstallation of chef server

Figure 3-17. Testing successful

This is a built-in command that comes with chef. Whenever the command is
invoked, it will run a test against the installed chef server and will verify whether
everything is working fine or not.

You will see a screen similar to the one in Figure 3-17 if the Installation is working
properly.

Now the next step would be to set the network adapter of your virtual machine to
bridged. It should look similar to what we see in Figure 3-18.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ INSTALLATION

37

Restart the network services of the virtual machine and run ifconfig command to
get the IP address of the virtual machine as shown in Figure 3-19.

Figure 3-18. Set network adapter as bridged

Figure 3-19. Restarting network services

CHAPTER 3 ■ INSTALLATION

38

Open the web browser and access your chef server. You will see a screen similar the
one in Figure 3-20.

Figure 3-20. Web interface of the chef server

Use the default login credentials available to access the chef server. Now we have set
up a chef server on a virtual machine.

File System locations
Chef server uses the following file locations for installing chef.

•฀ /opt/Chef-server: This directory is used for Installation.

•฀ /etc/Chef-server: This directory is used for storing the key files
and the API configuration.

•฀ /var/opt/Chef-server: All the services in chef are here.

•฀ /var/log/Chef-server: This directory is used for storing the logs.

Configuration
The chef server is installed with default configuration settings. If we need to update any
configuration settings, then we need to create a Chef-server.rb file and specify the
settings that we need to modify.

CHAPTER 3 ■ INSTALLATION

39

After specifying the settings, we need to run the Chef-server-ctl reconfigure
command to apply these settings.

The configuration file is located at /etc/Chef-server/Chef-server.rb.
These settings are optional and are required only if we want to change the default

settings.
Some of the important settings that can be modified are mentioned in the Table 3-1.
The following settings can be added to the Chef-server.rb file to tune it:

Table 3-1. Settings available in chef-server.rb

Setting Description

api_fqdn It is used to define the FQDN of the server. The value should be
same as the FQDN for the server.

bookshelf[‘vip’] The virtual IP address. Default value: node[‘fqdn’]. (This setting
is related to the bookshelf service.)

Bootstrap Default value: true.

notification_email Default value: info@example.com.

Optional Settings
The following settings are often used for performance tuning open source chef in
largerInstallations. When changes are made to the Chef-server.rb file, the open source
chef must be reconfigured by running the Chef-server-ctl reconfigure command.

Bookshelf

Bookshelf services can be tuned by changing the following setting:

Setting Description

bookshelf[‘vip’] The virtual IP address. Default value:node[‘fqdn’].

CHAPTER 3 ■ INSTALLATION

40

Chef Expander

The following setting is often modified from the default as part of the tuning effort for the
opscode-expander service:

Setting Description

Chef_expander[‘nodes’] The number of allowed worker processes. The opscode-

expander service runs on the back end and feeds data to
the opscode-solr service, which creates and maintains
search data used by the server. Additional memory may
be required by these worker processes depending on
the frequency and volume of chef client runs across the
organization, but only if the back-end machines have
available CPU and RAM. Default value: 2.

Chef Solr

The following settings are often modified from the default as part of the tuning effort for
the opscode-solr service:

Setting Description

Chef_solr[‘heap_size’] The amount of memory available to Apache Solr. If there
is not enough memory available, search queries made by
nodes to Apache Solr may fail. The amount of memory that
must be available also depends on the number of nodes
in the organization, the frequency of search queries, and
other characteristics that are unique to each organization. In
general, as the number of nodes increases, so will the amount
of memory.

If Apache Solr is running out of memory, the /var/log/
opscode/Chef_solr-solr/current log file will contain
SEVERE: java.lang.OutOfMemoryError: Javaheap space.

The default value should work for many organizations with
fewer than 25 nodes. Suggested value: 256 for every 25 nodes.
For example, an organization with 300 nodes should have this
value should set to 3072.

Chef_solr[‘max_field_
length’]

The maximum field length (in number of tokens/terms). If a
field length exceeds this value, Apache Solr may not be able
to complete the building of the index. Default value: 100000
(increased from the Apache Solr default value of 10000).

CHAPTER 3 ■ INSTALLATION

41

Update Frequency

At the end of every chef client run, the node object is saved to the server. From the server,
each node object is then added to the SOLR search index. This process is asynchronous.
By default, node objects are committed to the search index every 60 seconds or every
1000 node objects, whichever occurs first.

When data is committed to the Apache Solr index, all incoming updates are blocked.
If the duration between updates is too short, it is possible for the rate at which updates are
asked to occur to be faster than the rate at which objects can be actually committed.

For open source chef, the following settings are configurable in the Chef-server.rb file:

Setting Description

Chef_solr[‘commit_interval’] The frequency (in seconds) at which node objects
are added to the Apache Solr search index. Default
value: 60000 (every 60 seconds).

Chef_solr[‘max_commit_docs’] The frequency (in documents) at which node
objects are added to the Apache Solr search index.
Default value: 1000 (every 1000 documents).

erChef

To tune the opscode-erChef service, the following settings can be changed:

Setting Description

erChef[‘db_pool_size’] This setting specifies the number of open connections to
the database server that are maintained by opscode-erChef
service. The default value is 20. This should be changed
along with the postgresql[‘max_connections’] setting.

erChef[‘s3_url_ttl’] This setting specifies the timeout for chef client. The default
time out is 900.

Postgresql

The tuning of postgresql service can be done by changing the following settings:

Setting Description

postgresql
[‘max_connections’]

The setting specifies the maximum number of allowed
concurrent connections to the database server. This value
should only be tuned when the ErChef[‘db_pool_size’] value
used by the opscode-erChef service is modified. Default value
for the max_connections is 200.

CHAPTER 3 ■ INSTALLATION

42

WebUI

The following setting can be modified from the default as part of the tuning effort for the
opscode-webui service:

Setting Description

Chef_server_webui
[‘worker_processes’]

This setting specifies the number of allowed worker
processes. This setting should be increased or decreased
based on the number of users in an organization who use
the server web user interface. The default value for the
worker_processes is 2.

43

CHAPTER 4

Workstation

A workstation can be defined as a system on which we have chef client installed, and
which has knife configured properly. A workstation holds a local repository for chef
server. It is a place where all the development work takes place, and then that work is
uploaded to the chef server. It provides an interface to interact with the chef server. The
main functions of a workstation can be

Uploading the items from the local chef repository to the •฀
chef server.

Installing chef on the nodes using a knife bootstrap operation.•฀

Creating cookbooks.•฀

Creating roles/environments or any other policies and then •฀
uploading them to the chef server.

Managing nodes using knife.•฀

Prerequisite
Before we start with the installation, we must make sure we meet the prerequisites
required to install and configure a workstation properly.

A working chef server with which we will configure our •฀
workstation.

Chef client requires at least 512MB of RAM, 15GB storage, and •฀
one vCPU (virtual CPU) running properly.

The node should be able to interact with the chef server via •฀
HTTPS.

Ruby should be installed (1.8.7 + versions).•฀

For testing purposes we can use a t1.micro instance on AWS (Amazon Web Services)
to run chef client. However, for a production client we should use instances with at least
2GB of RAM and 15GB of storage.

CHAPTER 4 ■ WORKSTATION

44

Operating System Support
Table 4-1 lists the operating systems (OSs) that currently support chef client.

Table 4-1. List of Operating Systems That Support Chef Client

Operating System Version Architecture

Debian 6 and above i686, x86_64

Enterprise Linux 5.x, 6.x i686, x86_64

Mac OS X 10.6, 10.7 x86_64

openSUSE 12.1 i686, x86_64

Solaris 5.9 Sparc

5.10. 5.11 i386, sparc

SUSE Enterprise 11.2 i686, x86_64

Ubuntu 10.04, 10.10, 11.04, 11.10, 12.04, 12.10 i686, x86_64

Windows 2003 R2, 2008 i686, x86_64

2008 R2, 2012 x86_64

Install and Configure a Workstation
In order to configure a workstation properly, several steps are necessary. Here we
demonstrate the configuration of a workstation on an Enterprise Linux-based OS. The
same steps can be used to configure it on any other OS.

1. Identify the operating system.

2. Install the chef client package.

3. Copy the validator.pem and admin.pem from to the chef server.

4. Configure knife.

5. Install git (optional).

6. Copy the knife configuration and key files in the chef repository.

7. Verify the workstation configuration.

We cover each and every step in detail in the upcoming sections.

Identify the Operating System

This step mainly includes identifying the OS, which will help us in installing the relevant
package on the system.

CHAPTER 4 ■ WORKSTATION

45

Install the Chef Client Package

There are two options to install the chef client package.

1. Use the script provided by chef, which will install the latest
version available.

2. Download the relevant version and install it using a
suitable method.

Go to www.getChef.com/Chef/install/.
Visit the chef client tab and select your OS and its architecture. You will find two ways

to install the package, as shown in Figure 4-1, and you can use either method to install the
package. We demonstrate here by using the second method.

Figure 4-1. Downloading the chef package

Select the chef version and download it to the machine on which we will configure
the workstation.

After downloading the installer, run it using a relevant method based upon your
OS. For Windows, right-click and run as administrator and install (see Figure 4-2). For
Enterprise Linux, download the rpm and install it.

http://D:\\Sadam\\XML\\June\\Sabharwal_2\\XML\\Chapter4\\www.getChef.com\\Chef\\install\\

CHAPTER 4 ■ WORKSTATION

46

Verify the installation by typing chef client –v at the command line. It should return
something like what we see in Figure 4-3.

Figure 4-2. Installing the chef package

Figure 4-3. Verifying installation

Copy the Key Files from the Chef Server

The workstation needs some keys and configuration files to connect and authenticate
with the chef server. The following items are required:

Knife configuration file (•฀ Knife.rb): It can be created using the
knife configure command. We demonstrate this in the next
section.

Knife user key file: It can be created using the knife configure •฀
command.

Chef validator key: This is a private key that is generated by the •฀
chef server when we configure it for the first time. We need to
manually copy this file to .chef folder on the workstation.

Configure Knife

We demonstrate by configuring knife to an open source chef server. Run the knife
configure command to configure the workstation and create the knife configuration file.
Figure 4-4 shows this operation.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ WORKSTATION

47

The following inputs are required to configure knife:

The path (for Linux •฀ /root/.chef and for Windows c:/users/user/.
chef) to keep the configuration file.

The URL (uniform resource locator) of the chef server: It can be •฀
the IP (Internet provider) or the FQDN (fully qualified domain
name) of the server. FQDN is preferred over IP.

Client name for API (application programming interface). The •฀
admin user to be used with knife.

Validation client name: Chef validator client that is automatically •฀
created with chef.

Location of validation key.•฀

Path to a chef repository.•฀

Install Git (Optional)

Git is required on the workstation if we want to clone the repository on github provided
by Opscode. If we don’t want to do so, then we can create our own chef repository. This
step is an optional, required only if we want to clone the repository provided by chef.

Figure 4-4. Configuring knife

CHAPTER 4 ■ WORKSTATION

48

Place the Knife Configuration and Key Files in

the .Chef Directory

By default, Chef looks for the knife configuration in the .Chef directory (for Linux
/root/.chef and for Windows c:/users/user/.chef). So, you need to place the
following items in that directory:

The knife configuration file•฀

The chef validator key file•฀

The user to be used to make the API calls•฀

Verify the Workstation Configuration

To verify that our workstation is properly configured we run a test command.
Knife client list.
The command will list all the clients registered with chef server. The output will be

similar to what we see in Figure 4-5.

Figure 4-5. Verifying that chef is installed properly

49

CHAPTER 5

Nodes

A node can be defined as a server that is managed by chef. It can be either a virtual or a
physical server. “Managed by chef” means that the server has a chef client installed on it
and that it is able to communicate with the chef server.

In this chapter, we try to cover all aspects related to a node. We also cover the
installation and configuration of a node.

Types of Nodes
Nodes can be of different types. They can be virtual, physical, or cloud based. We
consider two types of nodes here: cloud based and physical or virtual servers.

Cloud-based nodes refer to the nodes that are hosted on any of the cloud providers,
such as AWS (Amazon Web Services), Microsoft Windows Azure, or any other cloud
provider. We can provision these types of nodes using knife. Once the nodes are created
chef can easily manage them.

A physical server can be a virtual machine or a server or any device that can send,
receive, and forward information. In simpler terms, it is a device that can communicate
with the chef server and has chef client installed and configured.

Node Names
The node_name is used as a part of the authentication process of the chef server.

The node name can be anything, but should be unique within a chef organization.
We can provide the node name in the client configuration file (client.rb). By

default, chef uses Ohai to get the node name and it is the FQDN (fully qualified domain
name) of the server.

Using the FQDN as the node name, and then allowing Ohai to collect this
information during each chef run is the recommended approach and the easiest way to
ensure that the names of all nodes across the chef organization are unique.

CHAPTER 5 ■ NODES

50

Manage Nodes
Nodes can be managed in chef using various approaches. They can be managed using
knife or using the management console that chef provides.

We can use knife to manage the nodes. Managing covers creating, •฀
editing, tagging, listing, and so on.

We can use knife plug-ins to provision nodes.•฀

We can also manage nodes using the management console.•฀

Chef Client
Chef client is an agent installed on the node, and with its help, the nodes communicate
with the chef server. Whenever chef client is run on a node, it follows certain steps.

The Chef Run
Chef run basically defines the steps that take place whenever chef client is invoked.
Figure 5-1 shows the various steps that occur during a typical chef run.

CHAPTER 5 ■ NODES

51

We discuss each step in detail.
Whenever chef client is run, the following steps occur:

1. Get configuration details

2. Authenticate with chef server

3. Rebuild on the node object

4. Expand the run list

Figure 5-1. Chef run

CHAPTER 5 ■ NODES

52

5. Download the cookbooks on the node

6. Reset node attributes

7. Identify resources

8. Configure the node

9. Update the node object

We cover each step in detail in the following sections.

Get Configuration Details

The client configuration file (Client.rb) is used to store the configuration details. The
configuration includes the node name with which the node (client) is registered with the
chef server. We can provide the node name in the client configuration file if we want the
node to be registered with some specific name. If we don’t provide anything in the client
configuration file, then the node is registered with the FQDN.

Authenticate with Chef Server

To make sure that requests received by chef server are from a known source, it uses an
RSA encryption mechanism. The node name is taken into consideration while generating
the certificate. Whenever the chef client runs for the first time on the node, it takes the
identity of chef validator to generate the RSA key for the node. When we configure a node,
a public and a private key are generated for each node and the server keeps the public key
while the node keeps the private key. Each request that comes from a node to the server
comes in encrypted HTTP headers form which is decrypted using the public key.

Rebuild on the Node Object

The chef client downloads the node object from the chef server to the node. The node
object is a JSON (JavaScript Object Notation) file which contains details like run list,
node-specific attributes (if any), and some other information about that node.

Expand the Run List

The run list in the node object containing the details about every role/recipe that will be
applied to the node is expanded and then placed in the order in which it will be applied
to the node. The recipe that occurs first in the run list will be applied first, and so on.

Download the Cookbooks on the Node

In chef, the processing takes place at the client. So whenever the chef client runs, it downloads
all the cookbooks in the run list of the node to the local cache of the node and then
compiles them. If any file has changed, chef client downloads the new version of the file
and deletes the previous version. The files include recipes, resources, libraries, and so on.

CHAPTER 5 ■ NODES

53

Reset Node Attributes

The next step in the chef run is to reset all the node attributes. The attributes are loaded
from roles, environments, recipes, Ohai, and attribute files according to their precedence
level and are updated on the node object. Chef has various types of precedence levels.
Attributes are applied in chef in the following order, 1 being the lowest precedence and
16 the highest. Table 5-1 also describes the same thing in a different way, where 1 is the
lowest precedence level and 15 is the highest.

Table 5-1. Attribute precedence level

Attribute Files Node/Recipe Environment Role

Default 1 2 3 4

Force_default 5 6

Normal 7 8

Override 9 10 11 12

Force_override 13 14

Automatic 15

Identify Resources

The next step is to identify the resources that would be required for successful compilation
of the recipes. All the definitions and libraries are loaded so that the Ruby classes and
the pseudo resources are available at the time of compilation. The recipe/recipes are
loaded and the blocks within these recipes are evaluated. The recipes are evaluated in a
top-down approach.

Configure the Node

The next step is to configure the node using the information that has been collected in the
aforementioned steps. The resources that were identified in the previous steps are now
mapped to a provider that will perform the desired action. The provider is responsible for
completing the necessary action.

Update the Node Object

The final step is for the chef run to update the node object on the chef server. This action
takes place when all the other actions have been completed. The chef client updates the
node object that was built during the chef run on the chef server. This object would be
used during the next chef run. Thus, the latest version information on a node is available
in the chef server after every configuration of the node.

CHAPTER 5 ■ NODES

54

Install and Configure the Node
In order to configure a node properly, several steps are necessary. We demonstrate the
configuration of a node on an Enterprise Linux-based operating system. The same steps
can be used to configure it on any other operating system:

1. Identify the operating system

2. Install the chef client package

3. Copy the key files from the chef server

Identify the Operating System
This step mainly includes identifying the operating system (OS) which will help us in
installing the relevant package on the system.

The OSs listed in Table 5-2 currently support chef client.

Table 5-2. Operating Systems Supporting Chef Client

Operating System Version Architecture

Debian 6 i686, x86_64

Enterprise Linux 5, 6 i686, x86_64

Mac OS X 10.6, 10.7 x86_64

openSUSE 12.1 i686, x86_64

Solaris 5.9 sparc

5.10. 5.11 i386, sparc

SUSE Enterprise 11.2 i686, x86_64

Ubuntu 10.04, 10.10, 11.04, 11.10,
12.04, 12.10

i686, x86_64

Windows 2003 R2, 2008 i686, x86_64

2008 R2, 2012 x86_64

Install the Chef Client Package

There are two options to install the chef client package:

1. We can directly use the script provided by chef, which will
install the latest version available.

2. We can download the relevant version and install it using a
suitable method.

CHAPTER 5 ■ NODES

55

Go to www.getchef.com/chef/install/.
Visit the chef client tab and select your OS and its architecture.
You can use any of the methods just described to install the chef client.
Figure 5-2 demonstrates installation using the second method. Select the chef

version and download it to the machine on which we will configure the node.

Figure 5-2. Downloading the chef package

Figure 5-3. Installing the chef package

After downloading the installer, run it using a relevant method based upon your OS.
For Windows, double-click and install (see Figure 5-3). For Enterprise Linux, download
the rpm and install it.

Verify the installation by typing chef-client –v at the command line. It should return
something like what we see in Figure 5-4.

http://D:\\Sadam\\XML\\June\\Sabharwal_2\\XML\\Chapter5\\www.getchef.com\\chef\\install\\

CHAPTER 5 ■ NODES

56

Copy the Key Files from the Chef Server

The node needs some keys and configuration files to connect and authenticate with the
chef server. The following items are required:

Client configuration file (•฀ Client.rb): You can create it using the
knife configure command.

Chef validator key: This is a private key that is generated by the •฀
chef server when we configure it for the first time. We need to
manually copy this file to the workstation.

Bootstrap
Bootstrapping is a process whereby when a new node gets into the environment. It gets
configured based on the policies and configuration required for that role.

As explained in earlier chapters, the chef server is the centralized location where all
data is stored. The data stored includes the node object and the cookbooks that define the
configuration and policies.

Thus, the client node uses the chef client to connect to the chef server and download
the configuration details from the chef server. The chef client does the heavy lifting and
processing to do the configuration changes required on the node. Thus, at the end of
configuration, the chef node has the desired configuration based on the policies and role.
The chef client only makes the required changes to the node and does not make any
changes if nothing is required to be changed on the node.

The steps required to bootstrap a node are as follows:

1. Identify the FQDN or IP address for the node.

2. Run the knife bootstrap command.

3. Verify the node on the chef server.

The first step in bootstrapping is to identify the configured FQDN or IP address
assigned to a node.

The knife bootstrap command requires the FQDN or the IP address of the node in
order to complete the bootstrap operation.

After you identify the IP address and FQDN, the administrator has to run the knife
bootstrap command.

knife bootstrap IP –x username –P password –sudo.
The command installs chef on the end client and runs chef client on the node.
The last step in this exercise is to verify that the client is now configured and available

in the chef server for further management (see Figure 5-5). The following command is
used to verify the installation of chef-client and its configuration in the chef-server.

Figure 5-4. Verifying installation

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 ■ NODES

57

Figure 5-5. Verifying bootstrapping

knife client show name_of_node.
The chef server will return something as shown in Figure 5-5.
If something similar to what is shown in Figure 5-5 is returned, then chef has

successfully been installed on your node.

Configuring
Chef client uses a configuration file (Client.rb) to store the configuration. This file is
loaded every time we run chef client. If we are working on a Linux-based box, this file is
normally stored at /etc/chef/client.rb and on a Windows-based server the location is
c:/chef/client.rb.

Various settings can be done via this file. Table 5-3 discusses some of the important
options available in the configuration file.

Table 5-3. Configuration settings available

Setting Description

chef_server_url This is one of the important options of this file. It is used to
specify the address of the chef server.

chef_server_url “https://10.98.241.28”

client_key Chef uses a key to authenticate itself to the chef server. Client
key will be generated during the first chef client run. This
option is used to specify the location of the key file. For example:

client_key “/etc/chef/client.pem”

client_registration_retries This option is used to specify the number the number of
attempts that should be made by a chef client to register
itself with the chef server. The default value is 5.

environment This option is used if we want our node to be in a specific
environment. For example,

environment “testing.”

(continued)

CHAPTER 5 ■ NODES

58

Setting Description

http_proxy This option is used if our environment is using a proxy for
http connections.

For example:

http_proxy “http://yourproxy.com:8080”

http_proxy_pass If our proxy is using a password for connection, then we
need to specify this option.

There is no default value for this option. For example:

http_proxy_pass “1234567890.”

http_proxy_user If our proxy is using a username for connection, then we
need to specify this option.

There is no default value for this option. For example:

http_proxy_user “my_username”

http_retry_count The number of retry attempts. Default value: 5. For example:

http_retry_count 5

http_retry_delay The delay (in seconds) between retry attempts. Default
value: 5. For example:

http_retry_delay 5

https_proxy This option is used if our environment is using a proxy for
https connections.

For example:

https_proxy “http://yourproxy.com:8080”

interval This option is used to specify the time after which chef
client should run.

For example: interval 3000

json_attribs Use to override attributes that are set from other locations,
such as from within a cookbook or by a role. The value
must be entered as JSON data. For example:

json_attribs nil

log_level It is used to specify the level at which logging should be
done. For example:

log_level :debug

Table 5-3. (continued)

(continued)

http://yourproxy.com:8080/
http://yourproxy.com:8080/

CHAPTER 5 ■ NODES

59

(continued)

Setting Description

log_location This option is used to specify the location of the log file.
The default value is STDOUT.

For example:

log_location STDOUT

no_proxy This option is used to specify the list of URLs that do not
need a proxy.

For example:

no_proxy “test.com”

node_name This option is used to specify the name with which the
node would be registered with the chef server. If we do not
supply this value, then the FQDN of the server is taken.

For example:

node_name “mynode.com”

node_path The location in which to look for node-specific recipes.
This has the default value of :/var/chef/node.
For example:

node_path “/var/chef/node”

rest_timeout The time (in seconds) after which an HTTP REST request
will time out. This has the default value: 300. For example:

rest_timeout 300

splay A number (in seconds) to add to the interval that is used to
determine the frequency of chef client runs. This number
can help prevent server load when there are many clients
running at the same time. Default value: nil. For example:

Splay

ssl_ca_file The file in which the OpenSSL key is saved. This setting is
generated automatically by chef and most users will not
need to modify it. For example:

ssl_ca_file nil

ssl_ca_path The path to where the OpenSSL key is located. This setting
is generated automatically by chef and most users will not
need to modify it. For example:

ssl_ca_path nil “/etc/ssl/certs”

Table 5-3. (continued)

http://test.com/
http://mynode.com/

CHAPTER 5 ■ NODES

60

Setting Description

ssl_client_cert The OpenSSL X509 certificate. This setting is generated
automatically by chef and most users will not need to
modify it. For example:

ssl_client_cert “”

ssl_client_key The OpenSSL X509 key. This setting is generated
automatically by chef and most users will not need to
modify it. For example:

ssl_client_key “”

umask The file mode creation mask. This has the default value:
0022. For example:

umask 0022

validation_client_name This option is used to specify the name of the validation
client. A validation client is created automatically when
we install the chef server. This client is used to register any
node on the chef server.

For example:

validation_client_name “chef-validator”

validation_key This option is used to specify the location of the
validation key.

For example:

validation_key “/etc/chef/validation.pem”

Table 5-3. (continued)

61

CHAPTER 6

Working with Knife

Knife is a command line utility that comes with chef and is used to interact with the chef
server which is used to manage chef. Management in chef includes many tasks.

Managing nodes•฀

Uploading cookbooks and recipes from the local chef repository •฀
to the chef server

Managing roles•฀

Managing environments•฀

Managing cloud resources which include provisioning on AWS •฀
(Amazon Web Services), Azure, or any other cloud provider

Bootstrapping chef on nodes•฀

Along with the aforementioned tasks, chef can be used to perform many other tasks
which we discuss in the upcoming sections of this chapter.

Working with Knife
Knife executes its functions from a workstation and is used to interact with the chef
server and also with your infrastructure (see Figure 6-1). The interaction with the
workstation and the chef server is done using the REST API (application programming
interface) that is used by a chef client. The workstation configuration includes knife
configuration, but if we want to change or modify anything, we can directly do it in the
knife configuration file.

CHAPTER 6 ■ WORKING WITH KNIFE

62

There are many subcommands available with knife that are used to manage chef
(Figures 6-2 and 6-3). We discuss some of them in the following sections. Knife –help can
be used to see options common to all subcommands.

Figure 6-1. List of options available with knife

Figure 6-2. List of commands available with knife (1)

CHAPTER 6 ■ WORKING WITH KNIFE

63

You can use the knife subcommand –help to see the options available to that
subcommand.

All the commands in knife are structured in a similar way. They have the form NOUN
verb NOUN (options). Chef server uses RESTful API. The chef server API is RESTful. The
options available for the verb part are

Create (create)•฀

List and show (read)•฀

Edit (update)•฀

Delete (destroy)•฀

knife sub-command [argument] [options]

Some of the knife commands require the environment variable EDITOR to edit or
create some objects, so it’s recommended to have it before using knife.

export EDITOR=vi

Figure 6-3. List of commands available with knife (2)

CHAPTER 6 ■ WORKING WITH KNIFE

64

Bootstrap
A bootstrap is a process by which we install chef client on a target node. This command
takes the IP (Internet provider) or the FQDN (fully qualified domain name) of the node as
an input and installs the chef client package on it.

The syntax for this command is as follows:

knife bootstrap FQDN_or_IP_ADDRESS (options)

We will discuss some of the important options available in the bootstrap command.

--bootstrap-proxy PROXY_URL

This command requires Internet connectivity to be present on the node system.
If the node is using proxy to connect to the Internet, then we need to specify this option.

--bootstrap-version VERSION

We use this option if we want to install a specific version of chef. By default, it installs
the latest version.

-G GATEWAY, --ssh-gateway GATEWAY

The bootstrap command uses SSH to install chef. We use this option if our network
has SSH, an SSH gateway configured, and direct SSH to our target node is blocked or
not allowed.

-i IDENTITY_FILE, --identity-file IDENTITY_FILE

We adopt this option if we are using key-based authentication for SSH rather than a
username and password.

-j JSON_ATTRIBS, --json-attributes JSON_ATTRIBS

We use this option if we want to specify some custom attributes on the first chef run.

-N NAME, --node-name NAME

We use this option to specify the node name by which it would be registered with the
chef server. If we don’t specify this option, the FQDN of the node would be used.

--[no-]host-key-verify

We use this option to skip the host key verifications. It is enabled by default.

-p PORT, --ssh-port PORT

CHAPTER 6 ■ WORKING WITH KNIFE

65

We use this option to specify the port to be used for SSH. If we don’t specify anything,
Port 22 would be used.

-P PASSWORD, --ssh-password PASSWORD

We use this option to provide the password that would be used to log in to the
instance.

-r RUN_LIST, --run-list RUN_LIST

We use this option to specify the list of recipes/roles or both to be applied to the
node in a comma-separated format.

--sudo

If you use this option, then the bootstrap operation will be executed using sudo.

-x USERNAME, --ssh-user USERNAME

We use this option to specify the username that would be used by knife to log in to
the instance.

Figure 6-4 shows the list of options available with the bootstrap subcommand.

Figure 6-4. List of options available with knife bootstrap subcommand

CHAPTER 6 ■ WORKING WITH KNIFE

66

Client
We use the client subcommand to manage the clients that are registered with the chef
server. Many options are available, which we discuss here one by one.

The syntax for this command is as follows:

knife client (options)

Figure 6-5 shows the options available in knife client subcommand.

Figure 6-5. List of options available with knife client subcommand

Figure 6-6. Deleting multiple clients

Bulk Delete

We use this option to delete any client registered with the chef server that matches a
regular expression. Figure 6-6 shows an example.

Create

We use the create option to create a new client. Whenever we run this command, it
generates a new RSA key pair for the client. The server will store the public key and the
private would be displayed as an output. Figure 6-7 shows an example.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 6 ■ WORKING WITH KNIFE

67

The following details are required in order to create an API client:
Name – The name with which the client would be registered.
Public-key – A RSA key pair that would be auto-generated.
Validator – Whether the client would be a validator or not. A validator is a special

type of client which is used to register new clients to the chef server.
Admin – Whether the client would have administration privileges or not. It can either

be true or false.

Delete

This argument is passed if we want to delete only a single registered API client. We need
to provide the name with which the client is registered. Figure 6-8 shows an example.

Figure 6-7. Creating an API client

Figure 6-8. Deleting a client

The syntax for this command is as follows:

knife client delete client_name

Edit

We use this option if we want to edit the details of an already registered API client. We
need to set the environment editor variable before using this option. Knife will use that
editor to open the node object and we can edit the detail we want to. Knife then directly
uploads the changes to the server. Figure 6-9 shows an example.

CHAPTER 6 ■ WORKING WITH KNIFE

68

The syntax for this command is as follows:

knife client edit client_name

List

We use this option to view the list of clients registered with the chef server. Using his
option will return a list of registered clients. Figure 6-10 shows an example.

Figure 6-9. Editing a client

Figure 6-10. List of registered clients

The syntax for this command is as follows:

knife client list

CHAPTER 6 ■ WORKING WITH KNIFE

69

Reregister

We normally use this option when we delete the client key from the client and we want
a new key to be generated. It will regenerate the RSA key pair for the client. Figure 6-11
shows an example.

Figure 6-11. Reregistering a client

The syntax for this command is as follows:

knife client reregister client_name

Show

This option will display the information available about a client. Figure 6-12 shows what
this information will look like.

CHAPTER 6 ■ WORKING WITH KNIFE

70

The syntax for this command is as follows:

knife client show client_name

Configure
We can use the configure command to configure a workstation and client. We have already
covered these things in previous chapters. We can create the knife configuration file
(Knife.rb) and client configuration file (Client.rb) using this command. Figures 6-13 and
6-14 show how to use the command and the options available with the command.

Figure 6-13. Configuring a client

Figure 6-12. Viewing a client

CHAPTER 6 ■ WORKING WITH KNIFE

71

Figure 6-14. Listing of options available with knife configure

The syntax for this command is as follows:

knife configure (options)

The following options are available in this command.

--client DIRECTORY

We use this option to specify the client directory where the client configuration file
would be placed. It reads from the knife configuration file and writes relevant information
to the client configuration file.

-i, --initial

We use this option to create an API client that would be used by knife for
authorization.

-r REPO, --repository REPO

We use this option to provide the path of the local chef repository.

Cookbook
We use the cookbook subcommand to interact with cookbooks that are located on the
chef server or on the local chef repository (see Figure 6-15).

CHAPTER 6 ■ WORKING WITH KNIFE

72

Figure 6-15. Listing of options available with the knife cookbook subcommand

Figure 6-16. Creating a cookbook

The syntax for this command is as follows:

knife cookbook [Argument] (options)

We discuss the arguments available in this subcommand one by one in the following
sections.

Bulk Delete

We use this argument if we want to delete cookbooks that match certain patterns. The
Regex should be written within quotes.

The syntax for this argument is as follows:

knife cookbook bulk delete "REGEX"

Create

We use this argument to create a cookbook in the local repository (see Figure 6-16). It
will create a list of directories and files necessary for a cookbook. We can then upload the
cookbook to the chef server.

CHAPTER 6 ■ WORKING WITH KNIFE

73

Figure 6-17. Deleting a cookbook

The syntax for this command is as follows:

knife cookbook create COOKBOOK_NAME (options)

Delete

We use this subcommand if we want to delete a cookbook or any version of a cookbook
from the chef server (see Figure 6-17).

The syntax for this command is as follows:

knife cookbook delete cookbook_name

Download

We use this subcommand to download a cookbook from the chef server (see Figure 6-18).

Figure 6-18. Downloading a cookbook

The syntax for this command is as follows:

knife cookbook download COOKBOOK_NAME [COOKBOOK_VERSION] (options)

List

We use this argument to list the cookbooks that are present on the chef server. It will list
the latest versions of the cookbooks that are available (see Figure 6-19).

CHAPTER 6 ■ WORKING WITH KNIFE

74

The syntax is as follows:

knife cookbook list

Show

We used this argument to view the information about a cookbook or any file associated
with the cookbook present on the chef server (see Figure 6-20).

Figure 6-19. Listing cookbooks

Figure 6-20. Viewing a version

The syntax for this argument is as follows:

knife cookbook show COOKBOOK_NAME [COOKBOOK_VERSION] [PART...] [FILE_NAME]
(options)

CHAPTER 6 ■ WORKING WITH KNIFE

75

Figure 6-21. Testing a cookbook

Figure 6-22. Uploading a cookbook

Test

We use this argument if we want to check a cookbook for syntax errors. This argument
verifies every file present in the cookbook directory ending with a .rb or a .erb extension.

Figure 6-21 shows the syntax for this argument.

Upload

We require the upload argument if we want to upload any cookbook or associated files
from the local repository to the chef server (see Figure 6-22).

The syntax for the upload argument is as follows:

knife cookbook upload [COOKBOOK_NAME...] (options)

Cookbook Site
We use this subcommand if we want to directly use the cookbooks that Opscode provides.

The syntax for this command is as follows:

knife cookbook site [argument] (options)

The following arguments are available in this subcommand:

Download•฀

Install•฀

List•฀

Search•฀

CHAPTER 6 ■ WORKING WITH KNIFE

76

Share•฀

Show•฀

UnShare•฀

Download

We use this argument if we want to download any cookbook available on the chef server.
This argument has the following syntax:

knife cookbook site download COOKBOOK_NAME [COOKBOOK_VERSION] (options)

It will download the cookbook in the directory we are working as a tar file. Extract the
file and upload it to the chef server for further use.

Install

We use this argument if we want to install any cookbook to a local git repository.
Using this argument does the following:

Creates a new branch for tracking the upstream.•฀

Removes all the previous versions of cookbook from the branch •฀
(if any).

Downloads the cookbook from •฀ https://cookbooks.opscode.com
in the tar.gz format.

Untars the downloaded cookbook and commits its contents to git •฀
and creates a tag.

Merges the newly created branch into the master branch.•฀

This process allows the upstream cookbook in the master branch to be modified
while letting git maintain changes as a separate patch. When an updated upstream
version becomes available, those changes can be merged while maintaining any local
modifications.

This argument has the following syntax:

knife cookbook site install COOKBOOK_NAME [COOKBOOK_VERSION] (options)

List

It is used to view the list of cookbooks that are available in the community.
This argument has the following syntax:

knife cookbook site list

https://cookbooks.opscode.com/

CHAPTER 6 ■ WORKING WITH KNIFE

77

Search

This is used in case we want to search any cookbook available. It will return a list of
cookbooks that match the search criteria.

The syntax for this argument is as follows:

knife cookbook site search SEARCH_QUERY (options)

Show

It can be used to view any information about any cookbook that Opscode provides.
The syntax for this argument is as follows:

knife cookbook site show COOKBOOK_NAME [COOKBOOK_VERSION]

Data Bag
Data bags are objects that are stored as a global variable and can be accessed from the
chef server. This subcommand allows us to create or edit a data bag or any data bag item
(see Figure 6-23).

Figure 6-23. List of options available with knife data bag subcommand

The syntax for this command is as follows:

knife data bag [Argument] (options)

Delete
This command is used in case we want to delete any object from the chef server. It can be
any node, any cookbook, or anything else (see Figure 6-24).

CHAPTER 6 ■ WORKING WITH KNIFE

78

Figure 6-24. List of options available with knife delete subcommand

The syntax for this command is as follows:

knife delete [pattern...] (options)

This subcommand has the following options:

Download
The download subcommand can be used to download any data that exists on the chef
server (see Figure 6-25). This data can include cookbooks, nodes, roles, and environments.

CHAPTER 6 ■ WORKING WITH KNIFE

79

The syntax for this command is as follows:

knife download [PATTERN...] (options)

Environment
Environments in chef are a way to group nodes in chef. We can have environment-specific
attributes. The environment subcommand can be used to manage the environments
that already exist on the chef server or can be used to create new servers also
(see Figure 6-26).

Figure 6-25. List of options available with the knife download subcommand

Figure 6-26. List of options available with knife environment subcommands

CHAPTER 6 ■ WORKING WITH KNIFE

80

The syntax for this command is as follows:

knife environment [Argument] (options)

Node
Any server registered with the chef server can be referred to as a node. The node
subcommand of knife can be used to manage the nodes that are registered with the chef
server (see Figure 6-27). It can also be used to create a new node.

Figure 6-27. List of options available with knife node subcommand

The syntax for this command is as follows:

knife node [argument] (options)

Recipe List
This subcommand is used to view the recipes that are present on the chef server (see
Figure 6-28). By default, it will return all the recipes present and we can reduce the
count by providing a Regex in the search query.

CHAPTER 6 ■ WORKING WITH KNIFE

81

The syntax for this command is as follows:

knife recipe list REGEX

Role
Roles are a way to define certain process or patterns. A role is a collection of run list and
some attributes. For example, a MySQL server role can consist of a MySQL server recipe
and any custom attributes.

We use the knife subcommand to manage the roles that exist on the chef server
(see Figure 6-29).

Figure 6-28. List of options available with knife recipe subcommands

Figure 6-29. List of options available with the knife role subcommand

CHAPTER 6 ■ WORKING WITH KNIFE

82

Usage is as follows:
The syntax for this command is as follows:

Knife role [Argument] (options)

Search
We use the search command to search the information that is indexed on the chef server
(see Figure 6-30). Searches can be employed using the management console.

Figure 6-30. List of options available with knife search subcommand

Show
We use the show command if we want to view anything that is stored on the chef server
(see Figure 6-31).

CHAPTER 6 ■ WORKING WITH KNIFE

83

Figure 6-31. List of options available with knife show subcommand

The syntax for this command is as follows:

knife show [PATTERN...] (options)
e.g. – knife show roles,
Knife show cookbooks

SSH
We use this command if we want to invoke parallel SSH commands on a number of
nodes, based upon a search query (see Figure 6-32).

CHAPTER 6 ■ WORKING WITH KNIFE

84

The syntax for this command is as follows:

knife ssh Search_Query SSH_Command (options)

Following are the options available with the subcommand:

-a SSH_ATTR, --attribute SSH_ATTR

We us this option to specify the attributes that would be used for opening SSH
connections.

-C NUM, --concurrency NUM

This option is used to specify the maximum number of concurrent connections.

-G GATEWAY, --ssh-gateway GATEWAY

We use this option if our network has an SSH gateway configured.

-i IDENTITY_FILE, --identity-file IDENTIFY_FILE

We use this option if we are using key-based authentication.

-p PORT, --ssh-port PORT

Figure 6-32. List of options available with the knife SSH subcommand

CHAPTER 6 ■ WORKING WITH KNIFE

85

We use this option to specify the port that would be used for SSH. By default, a 22
port is used.

-P PASSWORD, --ssh-password PASSWORD

We use this option to pass the password that would be used for SSH into the node.

-x USER_NAME, --ssh-user USER_NAME

We use this option to pass the username that would be used for SSH.

Tag
We use this subcommand if we want to add a custom description to our nodes on the chef
server, to group them based on the custom description (see Figure 6-33).

Figure 6-33. List of options available with knife tag subcommands

The syntax for this command is as follows:

knife tag [arguments]

create—knife tag create •฀ NODE_NAME

delete—knife tag delete •฀ NODE_NAME

list—knife tag list •฀ NODE_NAME

CHAPTER 6 ■ WORKING WITH KNIFE

86

Upload
This subcommand is used to upload anything from the local chef repository to the chef
server (see Figure 6-34).

Figure 6-34. List of options available with knife upload subcommands

The syntax for this command is as follows:

knife upload [Pattern..] (options)

87

CHAPTER 7

Cookbooks

This chapter covers different aspects related to cookbooks.
Cookbooks are the fundamental unit of configuration in chef. Cookbooks determine

what gets deployed on the client.

Basics of Cookbooks
A cookbook is the basic unit of configuration and policy definition in chef. It defines a
complete scenario for the deployment and configuration of an application.

As an example, a cookbook for Apache or Tomcat would provide all details to install
and configure a fully configured Apache or Tomcat server.

A complete cookbook is one that contains all the components required to support
the installation and configuration of an application or component.

It defines the files that need to be distributed for that component •฀
onto the client.

It defines the attribute values that should be present on the nodes.•฀

It provides definitions for reusability of code.•฀

It provides libraries which can be used to extend the functionality •฀
of chef.

It provides recipes that specify the resources and the order of •฀
execution of code on the client.

It provides templates for file configurations.•฀

It provides metadata which can be used specify any kind of •฀
dependency, version constraints, and so on.

We use Ruby as the reference library in chef. For writing specific resources we can
use extended DSL (Domain Specific Language).

Let’s discuss the structure and content of a cookbook in detail.

CHAPTER 7 ■ COOKBOOKS

88

Cookbook Directory Structure
Figure 7-1 shows the typical directory structure of any cookbook.

Figure 7-1. Directory structure of a cookbook

Figure 7-2. Working of a cookbook

The following sections cover all aspects related to the cookbook.
Figure 7-2 shows the working of a cookbook.

Recipes
Recipes are the configuration units in chef that are actually deployed on the client and
are used to configure the system. They are written in Ruby DSL. Recipes are normally
a collection of resources with a bit of Ruby code.

CHAPTER 7 ■ COOKBOOKS

89

A recipe

Helps in configuring the nodes.•฀

Is stored in a cookbook.•฀

Can be used in any other recipe.•฀

Is authored in Ruby.•฀

Is executed in a top-down approach.•฀

Working with Recipes

In this section we discuss the various approaches that are useful while creating recipes.

Using Data Bags in a Recipe

Data bags are a global JSON (JavaScript Object Notification) •฀
variable that can store any kind of data but are normally used to
store passwords. We can access data bags from the chef server.
Chef also indexes them so that they can be easily accessed.

The content of a data bag can be used within a recipe. Figure •฀ 7-3
shows what the data inside a data bag looks like.

Figure 7-3. Contents of a data bag

We can access the created data bag in the recipe using the following syntax:

item = data_bag_item("application", "my_application")

where application is the name of the data bag and my_application is the object name.

We can use a Ruby hash to access data bag items.

item["repository"] #=> "git://github.com/test/my_application.git"

We can also create a data bag using knife as shown in Figure 7-4.

http://git//github.com/test/my_application.git

CHAPTER 7 ■ COOKBOOKS

90

Encrypting Data Bag items

Any item created in a data bag is not encrypted by default, but for creating any sort of
secured environment we should encrypt our data bag items. We can achieve the same by
creating a secret key. Here we use open SSL to create a secret key.

openssl rand –base64 512 | tr –d '\r\n' > Secret_key

The foregoing command will create a secret key named Secret_key by generating a
random number.

Store Keys on Nodes

We can store the encryption key in a file and copy the file to the node that requires it
(see Figure 7-5). We need to pass the location of the file inside an attribute.

Figure 7-4. Creating a databag

Figure 7-5. Storing keys

The EncryptedDataBagItem.load method expects the secret key as the third
argument; we can use EncryptedDataBagItem.load_secret to use the secret file contents
and then pass them.

Using Search Results in a Recipe

Chef server maintains an index of your data (environments, nodes, roles). Search index
easily allows you to query the data that is indexed and then use it within a recipe.

There is a specified query syntax that supports range, wildcard, exact, and fuzzy.
Search can be done from various places in chef; it can be within a recipe, it can be

from the management console.
The search engine in a chef installation is based on Apache Solr.

CHAPTER 7 ■ COOKBOOKS

91

We can use the result of a search query in a recipe. The following code shows an
example of using a simple search query in a recipe:

search(:node, "attribute:value")

The result of a search query can be stored in variable and then can be used anywhere
within a recipe.

The search query in Figure 7-6 will return the servers with the role dbserver and then
will render the template for all those servers.

Figure 7-6. Searching in a recipe

Use Ruby in Recipes

Recipes are written in Ruby, so anything that can be done within Ruby can be done within
a recipe. We cover some of the important concepts in the following sections.

Assign a Value to a Variable

We use the ‘=’ operator to assign a value.
The following code shows an example of the ‘=’ operator.

package_name = "apache2"

It will create a variable named package_name with value “apache2”.

Using the Case Statement

We use the case statement when we need to compare an expression and, based upon it,
execute certain code.

Figure 7-7 shows a piece of code that demonstrates the use of case statement within
a recipe.

CHAPTER 7 ■ COOKBOOKS

92

Check for a Condition

We use the ‘if’ expression to check the ‘true or false’ condition in a chef recipe.
Figure 7-8 shows a piece of code that checks if the node platform is Ubuntu or

Debian and will execute the code accordingly.

Figure 7-8. Checking for a condition

Figure 7-9. Using ‘unless’ statement

Figure 7-7. Using case statement

Unless Expression

We use the ‘unless’ expression to execute a piece of code when the result is FALSE.
Figure 7-9 shows an example. If the platform version is anything other than 5.0, then

the code will be executed.

Include Recipes in Recipes

A recipe can be included in any other recipe by using the include_recipe keyword.

CHAPTER 7 ■ COOKBOOKS

93

The resources of the recipe that is included will be executed in the same order in
which they appear in the original recipe. A recipe can be included in another recipe using
the following syntax:

include_recipe "apache2::mod_ssl"

We can include a recipe within a recipe any number of times, but it will be processed
only for the first time and after that it will be ignored.

Apply Recipes to Run List

If we need to apply any recipe then it needs to be added to the run list using a suitable
name which is defined by the cookbook directory structure.

For example, a cookbook might have the following structure:

cookbooks/
 mysql/
 recipes/
 default.rb
 server.rb

One is the default recipe which has the same name as that of the cookbook and other
recipe is server.rb. Figure 7-10 shows the syntax of a run list.

Figure 7-10. Specifying the run list

Exception Handlers and Log Files

We can write the output of a recipe to a log file. This can be achieved using the Chef::Log.
There can be various levels of logging which include debug, warn, info, fatal, and error.

The following code can be used to capture some information:

Chef::Log.info('some useful information')

Tags

A tag describes a node in a customized way and then we can group our nodes based on
that description.

CHAPTER 7 ■ COOKBOOKS

94

You can check whether or not your machines have a tag. You can also add or remove
tags at any point by using the following command.

tag('mytag')

Tagging can be done using various modes including from knife and from within a
recipe. We can use the following code to check whether or not a machine is tagged:

tagged?('mytag')

To return true or false use

tagged?[array of nodes]

We can use the following untag command to remove the tag from any node:

untag('mytag')

See Figure 7-11 for an example.

Figure 7-11. Example

The output would be as follows:

[Wed, 12Jul 2014 22:23:45 +0000] INFO: Hey I'm a server
[Wed, 12 Jul 2014 22:23:45 +0000] INFO: I don't have a tag.

Recipe DSL

Recipe DSL is mainly Ruby DSL and we use it to declare resources within a recipe.
We use the methods in the recipe DSL to find out the value of a specific parameter,

and then, based on that value, chef takes an action. Anything that can be done with Ruby
can be done in a recipe.

CHAPTER 7 ■ COOKBOOKS

95

We can use attributes, search results, and data bags in the recipe DSL. We can also
use the helper methods available. The helper methods are

•฀ platform?

•฀ platform_family?

•฀ value_for_platform

•฀ value_for_platform_family

Let’s discuss these four helper methods in detail.

Platform?

We use Ohai to detect the value of the node[‘platform’] parameter during every chef run.
We use the platform method in a recipe to run platform-specific actions.

We can use the “platform” method in a recipe with the following syntax:

platform?("parameter","parameter")

We can provide one or more than one parameter in a comma-separated list. Typically,
we use this method along with conditional Ruby (Case, if, or elseif) (e.g., see Figure 7-12).

Figure 7-12. Using platform? method in a recipe

With this method we can create a single cookbook which can be used on multiple
operating systems (OSs).

platform_family?

We use the platform_family? method when we want to execute some actions for a specific
platform family. We use Ohai to detect the platform_family? attribute. The actions will be
executed if one of the listed parameters matched the node['platform_family'].

We can use it in the recipe with the following syntax:

platform_family?("parameter","parameter")

We can provide more than one value of parameters using a comma-separated list.
We also use this method along with conditional Ruby, so that a single cookbook is

used on multiple platforms (e.g., see Figure 7-13).

CHAPTER 7 ■ COOKBOOKS

96

Figure 7-13. Using platform_family? method in a recipe

Figure 7-14. Using value_for_platform? method in a recipe

Figure 7-15. Using value_for_platform? method in a recipe

value_for_platform?

We use this method in a recipe with a hash of a particular value based on node['platform']
and node['platform_version']. Ohai provides the value during each chef run.

We can use it in the recipe with the following syntax:

value_for_platform(["platform"] => { ["version"] => value })

We can provide one or more than one value for platform in a comma-separated list,
and version specifies the version of that platform.

If each value only has a single platform, then the syntax is as shown in Figure 7-14.

It there is more than one platform, the syntax will be as shown in Figure 7-15.

CHAPTER 7 ■ COOKBOOKS

97

The code shown in Figure 7-16 will set the value of package_name variable as httpd if
that platform is CentOS or Red Hat and Apache2 if platform is Debian or Ubuntu.

Figure 7-16. Using value_for_platform? method in a recipe

value_for_platform_family?

We use this method in a recipe with a hash to select value based on node
['platform_family'] attribute detected by Ohai.

We can use it in a recipe with the following syntax:

value_for_platform_family({ platform_family => value })

We can provide one or more than one platform_family using a comma-separated list.
If there is a single platform for each value, then the syntax is as shown in Figure 7-17.

Figure 7-17. Using value_for_platform_family? method in a recipe

If the value has more than one platform, then the syntax is as shown in Figure 7-18.

CHAPTER 7 ■ COOKBOOKS

98

The code shown in Figure 7-19 will set the value of the package variable to
httpd-devel if the platform_family is Red Hat or Fedora or Suse and the value would
be “apache-dev” if the platform_family is Debian.

Figure 7-18. Using value_for_platform_family? method in a recipe

Figure 7-19. Using value_for_platform_family? method in a recipe

Resources and Providers
Resources are the chunks of Ruby blocks that you declare in your recipe and that actually
help in configuring the system. A resource helps us to define the actions that we want our
recipe to do. These actions can be anything like installing a package or starting a service.
The action is completed with the help of a provider.

During a chef run the resources are identified and mapped to a provider. The provider
then executes that action. The resources define the current state of system and the state in
which we want the system to be. Providers are used to define the steps to bring the system
into that state.

An action is decoupled from the steps required to complete that action, which means
that a provider exists for each of the paths that are required to complete the action. This is
important because a single action may require different steps, depending on the platform
of the system on which the action is being taken.

For example, “install a package” is a single action. To install a package onto various
platforms, the steps required for each of those platforms may be different and may
require different providers. On a Red Hat or CentOS machine a provider will use the Yum
package provider to get the package installed and on a Debian or an Ubuntu machine, a
provider will use the APT package installer.

CHAPTER 7 ■ COOKBOOKS

99

The Chef::Platform class maps providers to platforms (and platform versions).
We use Ohai to get the information about the platform. Based upon that data we can

identify the correct provider and then execute the action.
For example, see the resource shown in Figure 7-20.

Figure 7-20. Example of a resource

Resources Syntax

A resource has four components.

Type•฀

Name•฀

Attribute (one or more)•฀

Action (one or more)•฀

The syntax for a resource is as follows:

type "name" do
 attribute "value"
 action :type_of_action
end

The code in Figure 7-21 can be used to install version 1.16.1 of the tar package.

Figure 7-21. Example of a resource used for installing a package

CHAPTER 7 ■ COOKBOOKS

100

There are predefined actions and attributes for each resource in chef and there is a
default value for most of the attributes.

Some attributes are available to all resources; these are sometimes referred to as
“meta” attributes and they are commonly used to send notifications to other resources or
to set up conditional execution rules.

There is a default value for each action. We need to specify only the nondefault
behaviors of actions and attributes.

Attributes associated with resources are not the same as attributes associated with
nodes.

Resources

We can use a number of inbuilt chef resources in configuration. We discuss some of the
important chef resources here.

Cookbook_file

We use this resource if we want to transfer any file with our cookbook. It transfers the files
available in the files/default subdirectory of the cookbook to any specified path. We can
use this resource on any platform.

We can use the cookbook_file resource in a recipe as shown in Figure 7-22.

Figure 7-22. Using the cookbook_file resource

For example,

cookbook_file "test" do
 path "/root/test"
 action :create
end

This would copy the test file to /root/test.
where

•฀ cookbook_file is an inbuilt chef resource and it will use
Chef::Provider::CookbookFile provider during the chef run.

“name” is used to specify the name with which the file will be •฀
stored on the node.

CHAPTER 7 ■ COOKBOOKS

101

attribute is used to provide any attributes that are available with •฀
this resource.

action is the execution that will be done on the node.•฀

The following actions are available with this resource:

Create: This is the default action. We use it to create a file.•฀

Create_if_missing: We use this action when we need to create a •฀
file only when it doesn’t already exist.

Delete: We use this action if we want to delete a file.•฀

There are many attributes available with the resource. Some of the important
attributes are

Backup. We use this attribute to specify the number of backups •฀
that should be kept for a file. The default value is 5.

Cookbook. We use this attribute to specify the name of the •฀
cookbook, if the file is present in some other cookbook.

Path. We use this attribute to specify the path of the file.•฀

cron

We use this resource to manage the cron entries. This resource requires access to a
crontab program to work properly.

We can use the cron resource can be used in a recipe as shown in Figure 7-23.

Figure 7-23. Using the cron resource

For example,

cron "test" do

 hour "3"
 minute "30"
 command "/bin/test"
end

CHAPTER 7 ■ COOKBOOKS

102

This would run a program at the specified interval.
where

cron is an inbuilt chef resource and it will use the •฀
Chef::Provider::Cron provider during the chef run.

“name” is used to provide the name with which the cron entry will •฀
be created.

attribute is used to provide one or more attributes that the •฀
resource will use.

action is the actual execution that will be done on the node.•฀

The following actions are available in the cron resource:

Create: We use this action to create in the crontab file.•฀

Delete: We use this action to delete any entry from the •฀
crontab file.

Some of the important attributes available with the cron resource are:

Day: We use this option to specify the day of the month on which •฀
the job should run. The options available are 1–31.

Hour: We use this option to specify at which hour (0–23) your job •฀
should run. Ute

Minute: We use this option to specify the minute (0–59) at which •฀
the cron entry should run.

Weekday: We use this option to specify the day of the week on •฀
which your job should run. The value can vary from 0–6 where
0 = Sunday.

Directory

We use this resource to manage a directory. Chef should have the permission to the
directory that will be managed.

We can use the directory resource in a recipe with the syntax shown in Figure 7-24.

Figure 7-24. Using the directory resource

CHAPTER 7 ■ COOKBOOKS

103

where

directory is an inbuilt chef resource and it will use the •฀
Chef::Provider::Directory provider during the chef run.

“name” is used to provide the complete path to the directory.•฀

attribute is used to provide one or more attributes that the •฀
resource will use.

action is the actual execution that will be done on the node.•฀

The following actions are available in the directory resource:

Create: We use this action to create any directory.•฀

Delete: We use this action to delete any directory.•฀

Some of the important attributes available with this resource are

Mode: We use the mode attribute to set the permission of the •฀
directory. We need to specify the permissions in octal mode.

Owner: We use the owner attribute to specify the user who will be •฀
the owner of that directory.

Recursive: The value for this attribute can be true or false. We use •฀
it to specify whether the directory created or deleted will be done
recursively or not.

env

The env resource is a Windows-specific resource and we use it to manage environment
variables.

We can use the env resource in a recipe with the syntax shown in Figure 7-25.

Figure 7-25. Using the env resource

CHAPTER 7 ■ COOKBOOKS

104

For example,

env "Test" do

 value "C:\\test\\test.exe"
end

It would create an environment variable named Test with the provided value.

where

env is an inbuilt chef resource and it will use the •฀
Chef::Provider::env provider during the chef run.

“name” is used to provide the name with which the variable will •฀
be created.

attribute is used to provide one or more attributes that the •฀
resource will use.

action is the actual execution that will be done on the node.•฀

The following actions are available in this resource:

Create: We use this action if we want to create a new environment •฀
variable.

Delete: We use this action if we want to delete any environment •฀
variable.

Modify: We use this action in case we want to edit an environment •฀
variable that already exists.

Some of the important attributes available with this resource are

•฀ Delim: We use this attribute to specify the delimiter that will be
used to separate multiple values.

•฀ Key_name: We use this attribute to specify the name of the key
which be managed.

•฀ Value: We use this attribute to set the value of key_name.

execute

We use the execute resource in case we want to execute a command. Idempotency is not
maintained by this resource by default. If we want to maintain the idempotency we need
to use the not_if and only_if parameters.

We can use the execute resource in a recipe with the syntax shown in Figure 7-26.

CHAPTER 7 ■ COOKBOOKS

105

For example,

execute "environment" do

 command "source /etc/environment"
end

This would reload the /etc/environment file.

where

execute is an inbuilt chef resource and it will use the •฀
Chef::Provider::execute provider during the chef run.

“name” is used to provide the name of the command that will run.•฀

attribute is used to provide one or more attributes that the •฀
resource will use.

action is the actual execution that will be done on the node.•฀

The following actions are available with this resource:

Run: This is the default action and it indicates that the command •฀
should run.

Nothing: This action specifies that the command should not run •฀
directly but should run only if some other resource specifies it.

Some of the important attributes available with this resource are

Command: The command that will be executed.•฀

Cwd: We use this option if we want a command to be executed •฀
from a certain directory.

Environment: We use this option to set the environment variable •฀
that will be set before running the commands.

Timeout: We use this option to specify the time a command will •฀
wait before timing out.

User: We use this option to specify the user with which the •฀
command should run.

Figure 7-26. Using the execute resource

CHAPTER 7 ■ COOKBOOKS

106

file

We use this resource in case we need to manage the files that are present on a node.
We can use the file resource in a recipe (as shown in Figure 7-27).

Figure 7-28. Using the file resource

Figure 7-27. Using the file resource

where

file is an inbuilt chef resource and it will use the •฀
Chef::Provider::file provider during the chef run.

“name” is used to provide the name of the file.•฀

attribute is used to provide one or more attributes that the •฀
resource will use.

action is the actual execution that will be done on the node.•฀

The screenshot in Figure 7-28 shows how we can use the file resource.

The following actions are available in the file resource:

Create: This is the default action and we use it to create a file.•฀

create_if_missing: We use this action in case we want to create a •฀
file only if it is not present.

Delete: We use this action to delete a file.•฀

Touch: We use this action to update the access and the file •฀
modification time for a file.

CHAPTER 7 ■ COOKBOOKS

107

Some of the important attributes available with this resource are

Backup: We use this attribute to specify the number of backups •฀
that should be kept for a file.

Content: We use this attribute to specify the string that will be •฀
written to a file.

Path: We use this attribute to specify the complete path of the file.•฀

package

We use this resource to manage packages. The resource uses the native functionality of
the OS to install the packages on the nodes. Although there are OS-specific chef resources
that can be used to manage packages, we recommend using the package resource
wherever possible.

We can use the package resource in a recipe with the syntax shown in Figure 7-29

Figure 7-29. Using the package resource

where

package is an inbuilt chef resource and it will use the •฀
Chef::Provider::package provider during the chef run.

“name” is used to provide the name of the package.•฀

attribute is used to provide one or more attributes that the •฀
resource will use.

action is the actual execution that will be done on the node.•฀

The following actions are available with the package resource:

Install: This is the default action and we use it to install any •฀
package.

Upgrade: We use this action in case we want to upgrade any •฀
package to the latest version.

Reconfig: We use this action in case we want to reconfigure any •฀
package. There should be a response file for this action.

CHAPTER 7 ■ COOKBOOKS

108

Remove: We use this action in case we want remove any installed •฀
package.

Purge: We use this action if we want to purge a package. If used, it •฀
will remove the package as well as the configuration file related to
the package.

Some of the important attributes that are available with this resource are

•฀ Flush_cache: We use this attribute if we want to flus the yum
cache before or after any installation.

•฀ Package_name: We use this option to specify the name of the
package to be installed.

Source: This is an optional attribute and we use it to specify the •฀
source for providers that use a local file.

Version: We use this option if we want to install any specific •฀
version of a package.

powershell_script

This is a Windows-specific resource. We use this resource if we want execute a script
using powershell. This resource is similar to many chef resources with small tweaks.
This resource will create a temporary file rather than running it inline. The commands
executed with this resource are not idempotent by default; we can use the not_if and
only_if meta parameters to maintain the idempotency.

We can use the powershell_script resource in a recipe with the syntax shown in
Figure 7-30.

Figure 7-30. Using the powershell_script resource

where

powershell_script is an inbuilt chef resource and it will use the •฀
Chef::Provider::PowershellScript provider during the chef run.

“name” is used to provide the name of the PowerShell Script.•฀

CHAPTER 7 ■ COOKBOOKS

109

attribute is used to provide one or more attributes that the •฀
resource will use.

action is the actual execution that will be done on the node.•฀

The screenshot in Figure 7-31 shows how to use the powershell_script resource.

Figure 7-31. Using the powershell_script resource

Figure 7-32. Using the remote_file resource

The following actions are available in the powershell_script resource:

Run: This is the default action. It will run the specified script.•฀

Nothing: We use this action if we do not want the resource to be •฀
executed directly.

Some of the important attributes available with this resource are

Code: We use the attribute to specify the set of commands to be •฀
executed.

Command: We use this attribute to specify the name of the •฀
command to execute.

Flags: We use this option to pass the command line flags.•฀

remote_file

We use this resource if we want to transfer a file from a remote location to the node.
The functioning of this resource is similar to that of the file resource.

We can use it in a recipe with the syntax shown in Figure 7-32

CHAPTER 7 ■ COOKBOOKS

110

where

remote_file is an inbuilt chef resource and it will use the •฀
Chef::Provider::RemoteFile provider during the chef run.

“name” is used to provide the name and location of the •฀
remote file.

attribute is used to provide one or more attributes that the •฀
resource will use.

action is the actual execution that will be done on the node.•฀

The screenshot in Figure 7-33 shows how we can use this resource in a recipe.

Figure 7-33. Using the remote_file resource

The following actions are available in the remote_file resource:

Create: We use this action to download the file from the remote •฀
source to the node.

Create_if_missing: We also use it to download the file from the •฀
remote source to the node but only if the file is missing.

Some of the important attributes available with this resource are

Backup: We use this attribute to specify the number of backups •฀
that should be kept for the file.

Checksum: This is an optional setting and we use it if we don’t •฀
need the file to be downloaded again. It will check the checksum.

Source: We use this attribute to specify the source from which the •฀
file should be downloaded.

script

We use this resource to execute the scripts. We can choose the interpreter we want to use.
It creates a temporary file and executes the file rather than running it inline.

The commands that are executed by this resource are not idempotent by nature; to
maintain idempotency we need to use the not_if and only_if meta parameters.

We can use script in a recipe with the syntax shown in Figure 7-34

CHAPTER 7 ■ COOKBOOKS

111

where

script is an inbuilt chef resource and it will use the •฀
Chef::Provider::Script provider during the chef run.

“name” is used to provide the name with which the script will run.•฀

attribute is used to provide one or more attributes that the •฀
resource will use.

action is the actual execution that will be done on the node.•฀

The following actions are available with this resource:

Run: This is the default action and it indicates that the command •฀
should run.

Nothing: This action specifies that the command should not run •฀
directly but should run only if some other resource specifies it.

Some of the important attributes available with this resource are

Command: The command that will be executed.•฀

Cwd: We use this option if we want a command to be executed •฀
from a certain directory.

Environment: We use this option to set the environment variable •฀
that will be set before running the commands.

Timeout: We use this option to specify the time a command will •฀
wait before timing out.

User: We use this option to specify the user with which the •฀
command should run.

service

We use this resource to manage any service on a node.
The syntax for using the service resource in a recipe is shown in Figure 7-35.

Figure 7-34. Using the script resource

CHAPTER 7 ■ COOKBOOKS

112

where

service is an inbuilt chef resource and it will use the provider •฀
based on the OS of the node.

“name” is used to provide the name of the service.•฀

attribute is used to provide one or more attributes that the •฀
resource will use.

action is the actual execution that will be done on the node.•฀

The following actions are available with this resource:

Enable: We use this action if we want to enable a service •฀
on startup.

Disable: We use this action to disable a service.•฀

Start: We use this action to start a service.•฀

Stop: We use this action to stop a service.•฀

Restart: We use this action to restart a service.•฀

Reload: We use this action to reload the configuration files •฀
for a service.

Some of the important attributes available with this resource are

Reload_commmand: The command that will be used to reload •฀
the service.

Restart_command: The command that will be used to restart •฀
the service.

Service_name: The name of the service that will be managed.•฀

Start_command: The command that will be used to start •฀
the service.

Stop_command: The command that will be used to stop •฀
the service.

Figure 7-35. Using the service resource

CHAPTER 7 ■ COOKBOOKS

113

Template

We use this resource if we want to manage the contents of a file. It stores files in an
erb (Embedded Ruby) template. We normally store templates in the template/default
available in the cookbook subdirectory.

We can use the template resource in the recipe as shown in Figure 7-36.

Figure 7-36. Using the template resource

For example,

template "/etc/nginx.conf" do

 source "nginx.conf.erb"
end

We use this resource to configure a file from a template

where

template is an inbuilt chef resource and it will use the •฀
Chef::Provider::Template provider during the chef run.

“name” is used to provide the name of the template file.•฀

attribute is used to provide one or more attributes that the •฀
resource will use.

action is the actual execution that will be done on the node.•฀

Following are the actions that are available with this resource:

Create: This is the default action and we use it to create a file.•฀

Create_if_missing: This action will create a file if the file doesn’t exist.•฀

Some of the important attributes available with this resource are

Backup: We use this option to specify the number of backups that •฀
should be kept for a file.

Path: We use this attribute to provide the complete path to the file.•฀

Source: We use this option to specify the location of the source file.•฀

Variable: We use this option to provide variables in the template file.•฀

CHAPTER 7 ■ COOKBOOKS

114

Attributes Files
Attribute are used to override the settings on any node. During each chef run, the
attributes on a node are compared to those in the cookbook and then, depending upon
the precedence level, the settings are done.

The attribute file is located in the attributes subdirectory of the cookbook. During
each chef run, the attributes in the attributes files are evaluated against the node object.

For example, the mysql cookbook contains the following attribute file (called
default.rb):

default["mysql"]["data_dir"] = "/opt/local/lib/mysql"
default["mysql"]["port"] = ""3306"

The use of the node object is implicit here. The following example is equivalent to
the previous one:

node.default["mysql"]["data_dir"] = "/etc/apache2"
node.default["mysql"]["port"] = '3306'

Chef server keeps the attributes indexed so that they are easy to access.

Attributes Types

The following types of attributes are available:

Default•฀

Force_default•฀

Force_override•฀

Normal•฀

Override•฀

Automatic•฀

Attributes Methods

Various attribute methods can be used in the attribute files of the cookbook or directly in
a recipe. The various attribute methods that are available are

Override•฀

Default•฀

Normal•฀

There is one more method, attribute?, that is available and is used to check the
value of an attribute.

We can use the attribute?() method in an attributes file as shown in Figure 7-37.

CHAPTER 7 ■ COOKBOOKS

115

Similarly, we can use it in a recipe as shown in Figure 7-38.

Figure 7-37. Using attributes

Figure 7-38. Using attributes in recipes

Precedence

During a chef run, saved attributes are retrieved from the chef server and are merged
with the attributes on the local system. The attribute type and the source of the attribute
determine which attribute values have priority over others.

In general, use the default attributes as much as possible (or even all the time).
The merge order for attribute precedence will do most of the work, yet leaving many

levels of precedence available for the situations in which they are truly necessary.
Attribute values are applied in the following order (from low to high priority): 1 being

the lowest and 15 being the highest.

CHAPTER 7 ■ COOKBOOKS

116

In other words, an automatic attribute takes precedence over a forced override
attribute, a forced override attribute takes precedence over an override attribute, an
override attribute takes precedence over a normal attribute, and so on.

Definitions
Definitions are used to create new resources by combing the existing resources. Usually
we use definitions when we are repeating a pattern of resources. Definition is not a
resource or a lightweight resource but is actually a collection of two or more resource
declarations.

There is a separate directory where we create definitions.
A definition is never declared into a cookbook.
There are mainly three components of a definition.

The name of the resource.•฀

The arguments (one or more than one) that will be used to set the •฀
value for the parameters.

A hash that would be used to accessing parameters and •฀
their values.

If we do not set any value for a parameter, we use the default value.
The syntax of a definition is as shown in Figure 7-39.

Figure 7-40. Using definitions

Figure 7-39. Using definitions

Figure 7-40 shows an example of a definition with name apache_site with ‘action’ as
a parameter and ‘enable’ as its argument.

CHAPTER 7 ■ COOKBOOKS

117

Libraries
A library is a way to increase chef functionality. We can implement a Ruby class directly
and then use it in our recipe. There is a separate directory for library where we create
libraries. A library once defined is available to be used anywhere in the cookbook.

The basic syntax of a library is shown in Figure 7-41.

Figure 7-41. Defining libraries

Figure 7-42. Using libraries

Figure 7-43. Creating a library

This syntax can be used in a recipe with the code shown in Figure 7-42.

For example, we could create a simple library that extends Chef::Recipe::,
as shown in Figure 7-43.

CHAPTER 7 ■ COOKBOOKS

118

We can use this library in a recipe as shown in Figure 7-44.

Figure 7-44. Using Library in recipe

Figure 7-45. Metadata

Metadata
We use metadata to store certain information about the cookbook. We use the file
metadata.rb to provide this information. The file is located in the cookbook directory.

The following things can be specified in the cookbook. Figure 7-45 shows the
metadata file of the build-essential cookbook.

A metadata can be used to specify the following important things:

Dependencies: If the cookbook is dependent on any other •฀
cookbook.

Description: What is the cookbook actually doing.•฀

Supported OS list.•฀

Name of the cookbook.•฀

Version of the cookbook.•฀

119

CHAPTER 8

Using Cookbooks

In the previous chapter, we discussed the important components related to a cookbook.
In this chapter we use some cookbooks available from the community. We download and
deploy these cookbooks on a node. We have picked up important cookbooks from the
community and will try to explain exactly how to use them.

MySQL(4.1.2)
This program installs and configures the MySQL client or server. Different recipes are
defined for installing and configuring the MySQL server on different platform machines.

Platform
The following platforms support this cookbook:

Debian/Ubuntu•฀

CentOS 5.x,6.x, Red Hat 5.x,6.x, Fedora(18.x,19.x,20.x)•฀

Mac OS X (Using homebrew)•฀

Dependencies
Requires Opscode’s OpenSSL cookbook for secure password •฀
generation.

Prerequisite
Client machine must have a running Internet connection.•฀

Cookbook Download
You can download the cookbook on the workstation in your corresponding cookbooks
directory, inside your chef repo, on your knife workstation from the Opscode community
web site (see Figure 8-1), by running the following command on your knife workstation:

Knife cookbook site download mysql

CHAPTER 8 ■ USING COOKBOOKS

120

The downloaded cookbook will be in '.tar.gz'. The cookbook can be extracted
from here (see Figure 8-2).

Figure 8-1. Download MySQL cookbook from Opscode community

Figure 8-2. Extracting the cookbook

Once we extract the cookbook, we can move to the next step of uploading the
cookbook to the chef server.

Cookbook Upload
For setting up a MySQL server on a node, we first have to set the attribute values
according to our setup. Certain attributes need to be changed before running the chef
client on the node.

In your chef repo directory on your knife workstation, go to the cookbooks folder and
open the MySQL cookbook directory, open 'attributes/server.rb' file in the editor of
your choice. Set the values for the following attributes:

Default ['mysql']['port'] = 3306 (or any other as per your
settings)

CHAPTER 8 ■ USING COOKBOOKS

121

In the 'attributes/server_rhel.rb', set the values for following attributes:

default •฀ ['mysql']['server']['basedir'] = '/usr'

default •฀ ['mysql']['server']['tmpdir'] = ['/tmp']

default •฀ ['mysql']['server']['directories']['run_dir']
= '/var/run/mysqld'

default •฀ ['mysql']['server']['directories']['log_dir']
= '/var/lib/mysql'

default •฀ ['mysql']['server']['directories']['slow_log_dir']
= '/var/log/mysql'

default •฀ ['mysql']['server']['directories']['confd_dir']
= '/etc/mysql/conf.d'

default •฀ ['mysql']['server']['service_name'] = 'mysqld'

default •฀ ['mysql']['server_root_password'] = 'rootpass'

You upload the cookbook (see Figure 8-3) to the chef server using knife (see Figure 8-3).
Once you upload the cookbook (along with its dependencies), you can add it to the run list of
the node.

Knife cookbook upload mysql

Figure 8-3. Uploading the cookbook

Client Run
For the purpose of this book, a node ‘chef testing’ has been preconfigured and is
utilized here.

Add the recipe to the run list of the node from your knife workstation (see Figure 8-4),
and run chef client on the configured node.

Figure 8-4. Adding cookbook to the run list

CHAPTER 8 ■ USING COOKBOOKS

122

Knife node run_list add node_name ‘recipe[mysql]’
Now, we run the chef client on the configured node (see Figure 8-5).

Figure 8-5. Running chef client

Figure 8-6. Creating log directory for MySQL

Figure 8-7. Creating MySQL configuration file

CHAPTER 8 ■ USING COOKBOOKS

123

After the client run has been ended (see Figure 8-10), we can check on the specified
port to see whether the MySQL service is running (see Figure 8-11).

lsof –i :3306

Figure 8-8. Updating the content of my.conf (from template)

Figure 8-9. Starting MySQL service and setting root password

CHAPTER 8 ■ USING COOKBOOKS

124

Once the cookbook has been converged and all the resources have been updated,
you can access your MySQL database admin by logging in as user 'mysql'.

Figure 8-12 is a snapshot of the '/etc/mysql_grants.sql' file which sets the
password for the root user and also specifies other grant table permissions.

Figure 8-12. Mysql_grants file

Figure 8-10. Chef client run end

Figure 8-11. Checking MySQL service

CHAPTER 8 ■ USING COOKBOOKS

125

You can see the password you specified in the attributes. Now you can log in to the
MySQL console using this password and user as root (see Figure 8-13).

mysql –u root –p 'your_password_here'

Figure 8-13. Log in to the MySQL console

Nginx(2.4.2)
Platform
This cookbook is supported on the following platforms:

Ubuntu 10.04, Ubuntu 12.04•฀

CentOS 5.8, 6.3•฀

Dependencies
The following cookbooks are direct dependencies because they’re used for common
“default” functionality:

Build essential (for •฀ nginx::source)

Ohai (for •฀ nginx::ohai_plugin)

Prerequisite
Client machine must have a running Internet connection.•฀

CHAPTER 8 ■ USING COOKBOOKS

126

Cookbook Download
You can download the cookbook (see Figure 8-14) in your corresponding cookbooks
directory inside your chef repo on the workstation, from the Opscode community web
site, by running the following command on your knife workstation:

knife cookbook site download nginx

Figure 8-14. Downloading the cookbook

Figure 8-15. Extracting the cookbook

The downloaded cookbook will be in '.tar.gz'. You can extract the cookbook from
here (see Figure 8-15).

tar –xvf nginx-2.5.0.tar.gz

CHAPTER 8 ■ USING COOKBOOKS

127

Client Run
Add the recipe to the run list of the node from your knife workstation, and run chef client
on the configured client node.

knife node run_list add node_name 'recipe[nginx]'

Once you extract the cookbook, we can move to the next step of uploading the
cookbook to the chef server.

Cookbook Upload
Edit the following configuration attributes on your cookbook and upload them to the chef
server once again, before running the chef client.

In your chef repo directory on your knife workstation, go to the cookbooks folder and
open Nginx cookbook directory and open 'attributes/default.rb' file in the editor of
your choice. Set the values of the following attributes (these are the values used for the
purpose of this book) according to your settings:

default •฀ ['nginx']['dir'] = '/etc/nginx'

default •฀ ['nginx']['script_dir'] = '/usr/sbin'

default •฀ ['nginx']['log_dir'] = '/var/log/nginx'

default •฀ ['nginx']['binary'] = '/usr/sbin/nginx'

default •฀ ['nginx']['default_root'] = '/var/www/nginx-
default'

default •฀ ['nginx']['upstart']['foreground'] = true

default •฀ ['nginx']['pid'] = '/var/run/nginx.pid'

We upload the cookbook to the chef server using knife (see Figure 8-16). Once
you upload the cookbook (along with its dependencies), you can add it to the run list
of the node.

knife cookbook upload nginx

Figure 8-16. Uploading the cookbook

CHAPTER 8 ■ USING COOKBOOKS

128

There’s some redundancy in that the config handling hasn’t been separated from the
installation method (yet), so use only one of the recipes, default or source.

For the purpose of this book, we have used the default recipe. Run the chef client on
the node.

Chef client (see Figures 8-18 – 8-21)

Figure 8-18. - Creating ohai_plugins directory

Figure 8-19. Setting up directory permissions and merging into node attributes

Figure 8-17. Adding the recipe to the run_list

CHAPTER 8 ■ USING COOKBOOKS

129

Figure 8-20. Creating and updating content of epel definition file in /etc/yum.repos.d

Figure 8-21. Enabling the epel repository

Now, the code to install and configure Nginx will run and all the required directories
and configuration files will be created. (see Figures 8-22 – 8-29).

Figure 8-22. Creating and configuring directory settings

CHAPTER 8 ■ USING COOKBOOKS

130

Figure 8-23. Creating sites-available directory

Figure 8-24. Creating/updating nxensite file

Figure 8-25. Setting directory permissions on /usr/sbin/nxensite file

Figure 8-26. Creating/updating nxdissite template

CHAPTER 8 ■ USING COOKBOOKS

131

Figure 8-29. Client finish

Figure 8-27. Creating/updating nginx.conf file

Figure 8-30. Checking if the service is running

Figure 8-28. Sites-available configuration file

At the end of client run, the recipe starts the nginx service.
We can check (see Figure 8-30) that Nginx is listening on port 80 by running the

following command:

lsof –i :80

CHAPTER 8 ■ USING COOKBOOKS

132

Figure 8-31. Nginx Configuration directory

Figure 8-32. Nginx log directory

Figure 8-31 shows the configuration directory which is created at 'etc/nginx'
location. In the configuration directory, we can see different directories such as sites
available, sites enabled, and the Nginx configuration file that were created by the recipes
during the chef client run.

cd /etc/nginx
ls

We create the log directory (see Figure 8-32) for nginx server at '/var/log/nginx'.

cd /var/log/nginx

Finally, to confirm that the Nginx server is successfully installed and working, you
can visit the Nginx web page (see Figure 8-33) by entering the IP address of the node on
which the n.ginx server is installed.

Figure 8-33. Verifying Nginx install

CHAPTER 8 ■ USING COOKBOOKS

133

Figure 8-34. Downloading the Squid cookbook

Squid(0.4.0)
Platform
The following platforms support this cookbook:

Amazon (> = 0.0.0)•฀

CentOS (> = 0.0.0)•฀

Debian (> = 0.0.0)•฀

Fedora (> = 0.0.0)•฀

Red Hat (> = 0.0.0)•฀

Scientific (> = 0.0.0)•฀

Suse (> = 0.0.0)•฀

Ubuntu (> = 0.0.0)•฀

Cookbook Download
You can download the cookbook for installing and configuring the Squid proxy server in
the corresponding cookbooks directory inside your chef repo on your knife workstation,
from the Opscode community web site, by running the following command on your knife
workstation:

Knife cookbook site download squid

The cookbook you downloaded is in 'tar.gz' format. You have to extract the
cookbook from here (see Figure 8-35), as follows:

tar –xvf squid-0.4.0.tar.gz

CHAPTER 8 ■ USING COOKBOOKS

134

Cookbook Upload
In your chef repo directory on your knife workstation, go to the cookbooks folder and
open Squid cookbook directory and open 'attributes/default.rb' file in the editor of
your choice. Set the values of the attributes according to your settings. Following are the
values used for the purpose of this book.

•฀ node['squid']['port']=' 3128'

Network caching proxy: •฀ node['squid']['network'] = 'your ip
address range'

You can also change the listen interface and cache memory size for the proxy server
by changing the following attributes in default.rb:

default •฀ ['squid']['listen_interface'] = 'eth0'

default •฀ ['squid']['cache_size'] = '100'

default •฀ ['squid']['cache_mem'] = '2048'

Upload the cookbook (see Figure 8-36) to the chef server from your knife
workstation, from inside the chef repo directory.

knife cookbook upload squid

Figure 8-35. Extracting the file

CHAPTER 8 ■ USING COOKBOOKS

135

Add the cookbook to the run list of the node (see Figure 8-37), and run chef client to
install and configure Squid cache.

Knife node run_list add node_name 'recipe[squid]'

Figure 8-36. Uploading the cookbook

Figure 8-37. Adding the cookbook to the run_list

Client Run
Now, we run the chef client (see Figure 8-38) on the node on which we want to install and
configure the Squid proxy server (see Figure 8-39).

Figure 8-38. Chef client run start

CHAPTER 8 ■ USING COOKBOOKS

136

Figure 8-39. Squid install

Figure 8-40. Create mime.conf

Figure 8-41. Create squid.conf

CHAPTER 8 ■ USING COOKBOOKS

137

Figure 8-44. Service status

Figure 8-42. Setting directory permissions and enabling service

Figure 8-43. Chef client finish

Once the client run has finished, we can determine if the Squid server was installed
successfully by checking the Squid service (see Figure 8-44).

service squid status

CHAPTER 8 ■ USING COOKBOOKS

138

Wordpress(2.1.0)
Platform
The following operating systems support this cookbook:

CentOS (> = 0.0.0)•฀

Debian (> = 0.0.0)•฀

Fedora (> = 0.0.0)•฀

Oracle (> = 0.0.0)•฀

Red Hat (> = 0.0.0)•฀

Scientific (> = 0.0.0)•฀

Ubuntu (> = 0.0.0)•฀

Windows (> = 0.0.0•฀

Dependencies
This cookbook is dependent on the following cookbooks:

MySQL, Version > = 1.0.5•฀

PHP, Version > = 0.0.0•฀

Apache2, Version > = 0.99.4•฀

IIS, Version > = 1.6.2•฀

OpenSSL, Version > = 0.0.0•฀

Database, Version > = 1.6.0•฀

Build essential, Version > = 0.0.0•฀

Prerequisite
Client machine must have a running Internet connection.•฀

Cookbook Download
You can download the cookbook (see Figure 8-45) in your corresponding cookbooks
directory inside your chef repo, on the knife workstation, from the Opscode community
web site, by running the following command on your knife workstation:

knife cookbook site download wordpress

CHAPTER 8 ■ USING COOKBOOKS

139

Figure 8-45. Downloading the cookbook

Figure 8-46. Extracting the cookbook

The cookbook that is downloaded is in 'tar.gz' format. The cookbook has to be
extracted from here (see Figure 8-46), as follows:

tar –xvf wordpress-2.1.0.tar.gz

Cookbook Upload
In your chef repo directory on your knife workstation, go to the cookbooks folder and
open Wordpress cookbook directory and open 'attributes/default.rb' file in the
editor of your choice. Set the values of the attributes according to your settings. Following
are the values used for the purpose of this book.

You can mention your own database name, user, and password, or you can use
the defaults.

default •฀ ['wordpress']['db']['name'] = "wordpressdb"

default •฀ ['wordpress']['db']['user'] = "wordpressuser"

default •฀ ['wordpress']['db']['pass'] = nil

CHAPTER 8 ■ USING COOKBOOKS

140

If you want to allow the multisite features for your Wordpress site, you can set the
corresponding attribute value.

default •฀ ['wordpress']['allow_multisite'] = false

For the purpose of this book, we have set this attribute to 'false'. Now, upload the
cookbook to the chef server (see Figure 8-47) by running the following command on your
knife workstation, inside the chef repo directory:

knife cookbook upload wordpress

Figure 8-48. Adding the cookbook to the run list

Figure 8-47. Uploading the cookbook

After you have uploaded the cookbook, add the cookbook to the run list (see Figure 8-48)
of the node on which Wordpress is to be installed, using knife while inside the chef
repo directory.

knife node run_list add node_name wordpress

Client Run
Now, we run the chef client on the node on which we want to install and configure
Wordpress (see Figure 8-49). The chef client command can be run from any location on
the node file system. (However, it is recommended to run from the user’s home folder or
the /root location).

CHAPTER 8 ■ USING COOKBOOKS

141

Figure 8-49. Client run start

Figure 8-50. Installing support package autoconf

CHAPTER 8 ■ USING COOKBOOKS

142

Figure 8-51. Installing support packages

Figure 8-52. Installing MySQL database

CHAPTER 8 ■ USING COOKBOOKS

143

Figure 8-53. Installing and configuring Wordpress

Figure 8-54. Creating wp-config.php file

CHAPTER 8 ■ USING COOKBOOKS

144

Figure 8-55. Chef client run finish

Now, go to a web browser and open the webadmin ui page for your Wordpress
installation (see Figure 8-56).

http://your_ip_address

Figure 8-56. Verifying installation

http://your_ip_address/

CHAPTER 8 ■ USING COOKBOOKS

145

Tomcat(0.15.0)
The following platforms support this cookbook:

Platform
Amazon (> = 0.0.0)•฀

CentOS 6+•฀

Debian (> = 0.0.0)•฀

Fedora (> = 0.0.0)•฀

Red Hat 7+•฀

Ubuntu (> = 0.0.0)•฀

Dependencies
Java, Version (> = 0.0.0)•฀

OpenSSL, Version (> = 0.0.0)•฀

Cookbook Download
You can download the cookbook (see Figure 8-57) for installing and configuring the
Tomcat Server from the Opscode cookbook community site in the cookbooks directory
inside your chef repo, on your knife workstation, as follows:

Knife cookbook site download tomcat

Figure 8-57. Downloading the cookbook

The downloaded cookbook is in 'tar.gz' format. Figure 8-58 shows the extraction
of the cookbook

tar –xvf squid-0.4.0.tar.gz

CHAPTER 8 ■ USING COOKBOOKS

146

Cookbook Upload
In your chef repo directory on your knife workstation, go to the cookbooks folder and
open Tomcat cookbook directory and open 'attributes/default.rb' file in the editor of
your choice.

Following are some important attributes whose values should be set according to the
local setup. We use the values specified for the purpose of this book; they can be changed
in the default.rb attribute file accordingly.

node •฀ ["tomcat"]["port"] – 8080

node •฀ ["tomcat"]["proxy_port"] – nil

The rest of the attribute values can be used as mentioned in the cookbook.
Upload the cookbook (see Figure 8-59) using the following command:

knife cookbook upload tomcat

Figure 8-58. Extracting the cookbook

Figure 8-59. Uploading the cookbook

CHAPTER 8 ■ USING COOKBOOKS

147

Now, add the recipe to the run list of the node on which Tomcat is to be installed and
configured (see Figure 8-60).

knife node run_list add node_name 'recipe[tomcat]'

Figure 8-60. Adding recipe to run list

Figure 8-61. Chef client start

Client Run
Now, we run the chef client on the node on which we want to install and configure
Tomcat (see Figure 8-61). The chef client command can be run from any location on the
node file system. (However, it is recommended to run from the user’s home folder or
the /root location.

CHAPTER 8 ■ USING COOKBOOKS

148

Figure 8-63. Setting Java environment variables

Figure 8-62. Installing Java

CHAPTER 8 ■ USING COOKBOOKS

149

Figure 8-64. Installing the Tomcat package

Figure 8-65. Installing and configuring Tomcat

CHAPTER 8 ■ USING COOKBOOKS

150

Figure 8-66. Creating the Tomcat configuration file

Figure 8-67. Setting read-write permissions on configuration file

CHAPTER 8 ■ USING COOKBOOKS

151

Figure 8-68. Chef client finish

Figure 8-69. Verifying service status

Once the client run is finished, we check the port 8080 to check whether the Tomcat
service is running (see Figure 8-69).

service tomcat6 status

Now, you can go to a web browser and visit the UI using the IP address of the node
on port 8080 (see Figure 8-70).

http://your_ip_address:8080

http://your_ip_address:8080/

CHAPTER 8 ■ USING COOKBOOKS

152

Figure 8-70. Verifying installation

We have tried to cover whatever you need in order to use cookbooks. In the next
chapter we start with the development of cookbooks.

153

CHAPTER 9

Developing a Cookbook

In this chapter, we walk you through the process of creating a cookbook. The chapter
covers all important aspects of developing cookbooks.

Developing Your First Cookbook
Chef uses cookbooks to configure systems the way the administrator wants them to be
configured.

We will assume that you have a chef server, a workstation, and a node already configured.
Cookbooks are created on the workstation using knife and are then uploaded to the

chef server using knife.
We demonstrate the creation of a basic nginx cookbook that installs the Nginx web

server on our node.
Figure 9-1 demonstrates how we will proceed in this chapter.

Creating A cookbook

Writing Recipes

Adding Template

Adding an Attribute

Updating Metadata

Uploading The Cookbook

Figure 9-1. Flow of the chapter

CHAPTER 9 ■ DEVELOPING A COOKBOOK

154

The general syntax for creating a cookbook is

knife cookbook create cookbook_name

Since we are creating an nginx cookbook, we will run the following command,
as shown in Figure 9-2:

knife cookbook create nginx

Figure 9-2. Creating a cookbook

Figure 9-3. Cookbook Directory Structure

Any knife command has to be executed from a workstation only.
The command would create a list of directories that are necessary for a cookbook, as

shown in Figure 9-3.

CHAPTER 9 ■ DEVELOPING A COOKBOOK

155

The cookbook will be created in the directory specified in the knife configuration
file. By default the directory in Windows is c:/chef/cookbooks and in Linux is
/var/chef/cookbooks.

We will start our cookbook with the biggest chunk of configuration (i.e., the recipe).

Writing a Recipe
Go to the recipe subdirectory in the nginx cookbook directory. You will find a file named
default.rb. This is the file that references the nginx recipe, and this is where we will add
our code, as shown in Figure 9-4.

Figure 9-4. Listing the default recipe

Whenever you create a cookbook with knife it creates a default recipe. This recipe is
executed whenever you add the cookbook to the run list of any node. Open the default.
rb file in the text editor of your choice. There may be a commented header in the file as
shown in Figure 9-5.

Figure 9-5. Content of a recipe

The first thing we need to make sure of is that we install the nginx package on the
node. We can achieve this using the package resource as shown in Figure 9-6.

CHAPTER 9 ■ DEVELOPING A COOKBOOK

156

The code in Figure 9-6 will use the native functionality based upon the operating
system and will install the nginx package on it. If nginx is already installed on the node,
then chef agent will do nothing and it will not be reinstalled.

After installing the package, we would like to start the service and enable the service
on startup. This can be achieved using the service resource. The piece of code in Figure 9-7
will help us in achieving that goal.

Figure 9-6. Adding a resource to our recipe

Figure 9-7. Adding another resource

Figure 9-8. Adding the cookbook_file resource

We have included two items in the action. The enable action will enable the nginx
service on startup, and the start action will start the nginx service after installing the package.

After making sure that the package is installed and the service is running properly,
we need to create a file that will be hosted on our nginx server. We will create a file and
will use a cookbook_file resource to distribute the file.

The code shown in Figure 9-8 displays this.

We are done with the recipe writing. You can save and close your recipe. The final
recipe should look like the one shown in Figure 9-9.

CHAPTER 9 ■ DEVELOPING A COOKBOOK

157

Creating the Index File
We have used the cookbook_file resource, which will look for the index.html file in
the files directory of the cookbook. If the file is not present, then the cookbook will not
be compiled properly, so we need to create the index file. Go to the nginx/files/default
subdirectory and create the index file as shown in Figure 9-10.

Figure 9-9. The Recipe

Figure 9-10. Writing a recipe

CHAPTER 9 ■ DEVELOPING A COOKBOOK

158

Changing the Metadata
This is an optional but recommended step in order to create a cookbook. The
metadata file is present in the cookbook subdirectory. By default, it looks like the
example shown in Figure 9-11. We can add or change this file as per the requirement.
We can change the cookbook version and other things. Also, metadata can be used to
provide any dependencies.

Figure 9-11. Changing the metadata

Figure 9-12. Uploading the cookbook

Uploading the Cookbook
The next step would be to upload the cookbook to the chef server so that it can be
deployed on any client. This can be easily done with the help of knife as shown in
Figure 9-12.

knife cookbook upload nginx

Running the Cookbook
After the cookbook has been uploaded to the chef server, we need to add it to the run
list of the node on which we want to deploy it. This can be done with the help of knife, as
shown in Figure 9-13. These commands are executed from a workstation.

knife node run_list add node_name cookbook_name

CHAPTER 9 ■ DEVELOPING A COOKBOOK

159

The next step would be to run the chef client on the node to see the cookbook
execution (see Figure 9-14). Whenever we install chef client it automatically gets added to
the path, and thus it can run from anywhere.

Figure 9-13. Adding to run list

Figure 9-14. Running chef client

To check whether your cookbook has been deployed successfully (see Figure 9-16),
open a web browser and enter http://ipaddressofyourserver. You should be able to
view the contents of the index page.

Figure 9-15. Chef client finished

http://ipaddressofyourserver/

CHAPTER 9 ■ DEVELOPING A COOKBOOK

160

Add an Attribute
Now we will add an attribute to our recipe. An attribute can be used to change the default
settings on the node. We will change the listen port of nginx. By default, nginx services
run on port 80. We will change the port to 82. To change the listen port, add an attribute
in the default.rb file present in the attributes subdirectory as shown in Figure 9-17.

Figure 9-16. Checking whether cookbook is successfully deployed

Figure 9-17. Adding an attribute

Add a Resource to the Default Recipe
The next step would be to add a template resource to our recipe which will help us in
rendering the configuration file. A cookbook template is an Embedded Ruby (ERB)
template that is used to generate files based on the variables and logic contained within
the template. Templates may contain Ruby expressions and statements and are a great
way to manage configuration files across an organization.

Add the template resource as shown in Figure 9-18.

CHAPTER 9 ■ DEVELOPING A COOKBOOK

161

This would render the default.conf.erb file present in templates/default
subdirectory and copy it to /etc/nginx/conf.d/default.conf. We can manage the
permissions of the file using the attributes available in the template resource. Refer to
Chapter 7 for more on this topic.

Add the Template File
We also need to add the template file that would be rendered. Create a file in the
templates/default subdirectory as shown in Figure 9-19.

Figure 9-18. Adding a template resource

Figure 9-19. Adding a template file

At the time of rendering, the listen port will take from the attribute file by default. The
attribute defined earlier is passed on to the template as shown in the code.

The attributes can also be provided in an environment or in roles, and they would be
taken according to the precedence level.

Uploading and Running the Cookbook
Upload the cookbook again to the chef server so that the changes are updated. Run chef
client again on the node to apply the changes (see Figures 9-20 and 9-21).

CHAPTER 9 ■ DEVELOPING A COOKBOOK

162

Knife commands are executed from a workstation and chef client can run on any
node that is under management of chef.

To test whether your changes have been applied, open a web browser and try
opening http://ipaddressofyourserver. An error will come up.

Now try opening http://ipaddressofyourserver:82 and it will open the index page
as shown in Figure 9-22.

Figure 9-20. Testing cookbooks

Figure 9-21. Changing the configuration

Figure 9-22. Testing cookbook

Using Environments
An environment is a way to group our nodes; we can have environment-specific
attributes. We can use environments to map the organization’s policies.

http://ipaddressofyourserver/
http://ipaddressofyourserver:82/

CHAPTER 9 ■ DEVELOPING A COOKBOOK

163

Chef creates a default environment and puts every node in it by default. We
can modify the environment later on by editing the node object. An environment
can be created using knife or the management console. This time, we will create the
environment using the management console.

After a login to the management console, click the environments tab as shown in
Figure 9-23.

Figure 9-23. Creating the environment

Click create to create a new environment. Provide a name for your environment and
add some description to it (see Figure 9-24).

Figure 9-24. Creating an environment

We can add cookbook version constraints if we want to. We will keep it empty for
now. This is used if we want certain configuration on nodes in a particular environment.

The next step is to add some attributes that will be overridden during the next chef
run (see Figure 9-25).

CHAPTER 9 ■ DEVELOPING A COOKBOOK

164

Click create environment to create the environment. After the environment has been
created, we will edit it using knife and add an override attribute to override the listen port
for nginx. This would open up the environment object located on the chef server in the
EDITOR environment variable (see Figure 9-26).

Figure 9-25. Creating an environment

Figure 9-26. Editing an environment

CHAPTER 9 ■ DEVELOPING A COOKBOOK

165

Save the file and it will be updated on the server. The file gets updated on the chef
server database directly. The next step is to change the environment of our node so that
the attributes are overridden. Go to the nodes tab in the management console and select
the node you want to edit. We can also change a node’s environment using knife
(see Figure 9-27).

Figure 9-27. Changing a node’s environment(1)

Click edit and select the environment from the dropdown as shown in Figure 9-28.

Figure 9-28. Changing a node’s environment(2)

CHAPTER 9 ■ DEVELOPING A COOKBOOK

166

Click the save node button to save the changes you made.
Now run chef client on the node to check whether the attribute is getting overridden.

Run chef client on the node where we will deploy the nginx server (Figure 9-30).

Figure 9-30. Changing the configuration file

Figure 9-29. Changing a node’s environment

To test whether your changes have been applied, open a web browser and try
opening http://ipaddressofyourserver:85. The index page should come up as shown
in figure 9-31.

http://ipaddressofyourserver:85

CHAPTER 9 ■ DEVELOPING A COOKBOOK

167

We have demonstrated how environments can be used to manage our nodes.
The implementation of environments is specific to an organization’s policies and processes.
With chef, it becomes simple and easy to manage different environments. As an example,
an organization may have Development, Test, QA, and production environments, each
with different guidelines and policies. A single chef cookbook can be overridden to
provide different attributes for different environments without changing the code in the
cookbook. Thus, environments provide an easy mechanism to change or override the
configuration based on the environment to which a node belongs.

Figure 9-31. Testing the changes

169

CHAPTER 10

Lightweight Resource
Providers

This chapter discusses lightweight resource providers (LWRPs). They are a way to
enhance the functionality of chef to provide new integrations which are not provided for
out-of-box in chef.

Lightweight Resource Providers
A resource is something that defines the action that needs to be taken and a provider is
something that executes that action.

To implement the functionality of a resource and provider in a recipe which is not
an inbuilt resource provider, you can create your own LWRPs. You can use custom Ruby
codes and inbuilt chef resources to create an LWRP.

LWRPs help in achieving the core objective of chef which is idempotence. One can
achieve this state using scripts or recipes by leveraging “if”-type constructs to choose
when to run the script; however, this process becomes fairly complex to manage.

LWRPs help us in achieving idempotence for complex and scalable infrastructure to
provide reliable configuration management.

LWRPs are loaded from files that are saved in the following cookbook subdirectories:

Directory Description

providers/ The subdirectory in which lightweight providers are located.

resources/ The subdirectory in which lightweight resources are located.

The name of the cookbook and the name of the files in the resources/ and
providers/ subdirectories determine the naming patterns of LWRPs.

CHAPTER 10 ■ LIGHTWEIGHT RESOURCE PROVIDERS

170

For example, if a cookbook named example was downloaded to the chef repository,
it would be located under /cookbooks/example/. If that cookbook contained two resources
and two providers, the following files would be part of the resources/ directory:

Files Resource Name Generated Class

default.rb Example Chef::Resource::Example

custom.rb Custom Chef::Resource::ExampleCustom

And the following files would be part of the providers/ directory:

Files Provider Name Generated Class

default.rb Example Chef::Provider::Example

custom.rb Custom Chef::Provider::ExampleCustom

Chef-Maintained LWRPs
Chef maintains a number of LWRPs. We will discuss some of the important LWRPs
maintained by the Opscode community. These are available in cookbooks. If we need to
use them, we need to download the cookbook from the community, upload the cookbook
to our chef server, and then use them in our custom recipes.

Cookbook Description

apt This cookbook is used to configure APT (Advanced Packaging Tool)
for managing APT preferences and repositories.

aws AWS refers to Amazon Web Services. This cookbook can be used to
manage the resources that are running in AWS cloud.

chef_handler This cookbook is used for exception handling. It distributes and
enables the exception and report handlers.

cron Cron is used to schedule something in Unix. This cookbook is used
to install cron and start its service.

daemontools Daemontools are used to manage Unix services. This cookbook is
used to install and configure daemontools.

firewall This cookbook is used to maintain the firewall rules.

homebrew Homebrew is a package manager for Mac OS. This cookbook helps
us to install and configure Homebrew.

iis This is a Windows-based cookbook and can be used to install and
configure IIS (Internet Information Services) server.

(continued)

CHAPTER 10 ■ LIGHTWEIGHT RESOURCE PROVIDERS

171

Cookbook Description

lvm This cookbook is used to install the LVM2 package and then
manage LVM.

nginx This cookbook is used to install and configure Nginx from source
code or package and then set up configuration handling.

php This cookbook can be used to install and configure PHP and
custom modules for PHP.

postfix This cookbook can be used to install and configure Postfix.

powershell This cookbook is used to install the Powershell module on
Windows servers.

rabbitmq This cookbook will install the RabbitMQ-server.

squid This cookbook is used to install and configure Squid as a caching
proxy server.

sudo This cookbook is used install sudo and then configure
the/etc/sudoers file.

windows This cookbook can be used for the built-in Windows commands.

yum This cookbook is used for the yum configuration file.

Creating an LWRP
This section will demonstrate how to create an LWRP. We will create an LWRP to
download Wordpress setup, extract it to the desired location, and then delete the
downloaded file.

1. The first step is to create a cookbook in which we will create
the resource and provider. Create a cookbook named
wp_setup using the knife. We execute the following command
from a workstation:

knife cookbook create wp_setup

2. The command creates the files and directories that are
required for developing a cookbook (see Figure 10-1). The
cookbook will be created in the local chef repository.

(continued)

CHAPTER 10 ■ LIGHTWEIGHT RESOURCE PROVIDERS

172

3. The resource directory is where we create our resource. Create
a default.rb file in the resource directory. In the default.rb,
write the following code:

actions :extract, :remove
attribute :wp_url, :kind_of=> String, default:
"https://wordpress.org/latest.tar.gz"
attribute :wp_path, :kind_of=> String, default: "/var/www"

In this code sample, we are defining the following:

Actions: this defines the actions that need to be taken in this •฀
particular resource. In this case, we are defining two actions:
extract and remove.

Attribute: here we define the attributes that will be passed to •฀
the resource. In this example, we are passing an attribute called
wp_url, which is kind_of string and is a default parameter. The
value of this parameter is the download location of the Wordpress
web site tar file.

A default attribute is specified in the resource file so that if an attribute is not specified
in the recipe or attribute file, chef client will take the default value from the resource file.

4. The next step after defining the resource is to map the actions
that we have defined to actual execution code which is
defined in the provider.

When the chef client identifies a custom resource, it will look for the related actions
method in the provider.

Create a default.rb file under the folder named providers of wp_setup cookbook.
In this file, we define the actions to be performed.
Create methods for the custom actions specified in the resource file.

def whyrun_supported?
 true
end

Figure 10-1. Directory structure

https://wordpress.org/latest.tar.gz

CHAPTER 10 ■ LIGHTWEIGHT RESOURCE PROVIDERS

173

We use the whyrun method if we want chef client to tell the changes that would be
applied to the node without actually applying them when it is run in whyrun mode. Its
value can be true or false. For this example, we will set this value to true. To run the chef
client in whyrun mode, run Chef-client –W.

Now we need to define the code that will be executed on calling of actions that we
defined in the resources. First we will define the extract action. We will use Ruby and
inbuilt chef resources to define the complete set of actions.

In this method we are using the File.exists? method to check if there is an existing
Wordpress folder to achieve idempotency.

Chef::Log class is used to log entries in the log file.
A new_resource.updated_by_last_action method notifies the LWRP if the node has

successfully updated. True or false is passed as an argument to this method to notify the
execution of LWRP.

The converge_by is a wrapper method used when the chef client runs in whyrun
mode and displays a message about that block of code.

if ::File.exists?("#{new_resource.wp_path}/wordpress")

 Chef::Log.info "#{ @new_resource } already exists - nothing to do."
 new_resource.updated_by_last_action(false)

else

converge_by("Downloading wordpress file") do

The remote_file is an inbuilt chef resource that downloads the file from a certain URL
(uniform resource locator) to the node.

remote_file "#{new_resource.wp_path}/wordpress.tar.gz" do

 source "#{new_resource.wp_url}"
 action :create

end

Bash is also an inbuilt chef resource that is used to run bash scripts. We are using the
bash resource to extract the downloaded Wordpress file.

bash "extracting wordpress" do

 code <<-EOH
 cd /var/www
 mkdir wordpress
 tar -xvf wordpres.tar.gz wordpress
 EOH

end

CHAPTER 10 ■ LIGHTWEIGHT RESOURCE PROVIDERS

174

The following snippet shows the whole code clubbed together:

action :extract do

 if ::File.exists?("#{new_resource.wp_path}/wordpress")

 Chef::Log.info "#{ @new_resource } already exists - nothing to do."
 new_resource.updated_by_last_action(false)

 else

 converge_by("Downloading wordpress file") do

 remote_file "#{new_resource.wp_path}/wordpress.tar.gz" do

 source "#{new_resource.wp_url}"
 action :create

 end

 bash "extracting wordpress" do

 code <<-EOH
 cd /var/www
 mkdir wordpress
 tar -xvf wordpres.tar.gz wordpress
 EOH

 end

 end

 new_resource.updated_by_last_action(true)

 end

end

Action: remove: This method contains the inbuilt file resource which will delete the
Wordpress installation file.

Chef::Log class is used to log entries in the log file.
The new_resource.updated_by_last_action method notifies the LWRP if the node

has successfully updated. True or false is passed as argument to this method to notify the
execution of LWRP.

converge_by is a wrapper method used when chef client runs in whyrun mode and
displays a message about that block of code.

CHAPTER 10 ■ LIGHTWEIGHT RESOURCE PROVIDERS

175

File is an inbuilt chef resource that has an action delete, which will delete any file.

action :remove do

 unless ::File.exists?("#{new_resource.wp_path}/wordpress.tar.gz")

 Chef::Log.info "#{ @new_resource } file deleted - nothing to do."
 new_resource.updated_by_last_action(false)

 else

 converge_by("removing the compressed wordpress file") do

 file "#{new_resource.wp_path}/wordpress.tar.gz" do
 action :delete

 end

 directory "/root/chefdemo" do

 action :create

 end

 end

 new_resource.updated_by_last_action(true)

 end

end

5. You can use the resource name in the recipe once the resource
and provider are in place. Since we created the resource and
provider in default.rb files, the resource name will be the
cookbook’s name. If the resource and provider have a name
other than default.rb, that name has to be appended to the
cookbook name while using it in the recipe.

syntax: cookbookname_resourcename
wp_setup "extracting wordpress" do
wp_path node[:wordpress][:path]
wp_url node[:wordpress][:url]
action :extract
end

CHAPTER 10 ■ LIGHTWEIGHT RESOURCE PROVIDERS

176

wp_setup "deleting the installation file" do
wp_path node[:wordpress][:path]
action :remove
end

6. The attributes wp_path and wp_url are passed using the
attribute file.

default[:wordpress][:url] =
"https://wordpress.org/latest.tar.gz"
default[:wordpress][:path] = "/var/www"

7. Upload the cookbook to chef server using knife (see Figure 10-2).
Knife commands are executed from a workstation.

knife cookbook upload wp_setup

Figure 10-2. Uploading the cookbook

8. Run the chef client on the node (see Figure 10-3).

Figure 10-3. Running chef client

https://wordpress.org/latest.tar.gz

CHAPTER 10 ■ LIGHTWEIGHT RESOURCE PROVIDERS

177

9. Confirm the chef client run (see Figure 10-4) by browsing the
Wordpress directory under the /var/www folder.

Figure 10-4. Verifying installation

179

CHAPTER 11

High Availability

The open source chef server does not offer high availability by default. Therefore, we
recommend an enterprise chef production environment, which comes with options for
high availability.

In this chapter, we talk about high availability (Database and Application Layer) that
can be achieved in the open source version. We set up high availability on AWS (Amazon
Web Services) instances.

Prerequisite
It is necessary to have two servers with chef installed. Communication is allowed between
the two servers on required ports. An ELB (Elastic Load Balancer) would route the traffic
between two instances.

Setting Up HA
The first thing in setting up high availability (HA) is to identify the things we need to
replicate for setup.

The following things are required to be replicated in open source chef server:

1. Database replication

2. Bookshelf directory replication (cookbooks replication)

The database used in open source chef is Postgresql, and we will be using native
functionality of postgresql (i.e., streaming replication) to set up database replication.

Streaming Replication
Streaming replication continuously ships and applies the WAL XLog to the standby
servers. The streaming replication uses continuous archiving to create a cluster
configuration with one or more standby servers that can take over if the primary server
fails. This is known as a warm standby or log shipping.

CHAPTER 11 ■ HIGH AVAILABILITY

180

In streaming replication, the primary and the standby servers work together. The
primary server operates in continuous archiving mode, while each standby server
operates in continuous recovery mode, reading the WAL files from the primary server.

No changes to the database tables are required to enable this capability, so it offers
low-administration overhead compared to some other replication solutions.

The impact on the primary server performance is low in this configuration.
We will be setting up streaming replication using a third-party tool, repmgr, which

automates certain manual steps.
The first thing you have to do is check that chef server is installed on both the servers

and is running fine (see Figures 11-1 and 11-2). Run the following command to check:

chef-server-ctl status

Figure 11-1. Chef server status on 1st server

Figure 11-2. Chef server status on 2nd server

Setting Up Repmgr

Repmgr requires you to install GCC (GNU Compiler Collection) on the chef server. Install
it first before continuing (see Figure 11-3).

CHAPTER 11 ■ HIGH AVAILABILITY

181

Download the repmgr package from repmgr’s web site (see Figure 11-4). Internet is
required to complete this process.

Figure 11-3. Installing GCC

Figure 11-4. Downloading repmgr

The downloaded file is a tar file. Untar the file (see Figure 11-5).

CHAPTER 11 ■ HIGH AVAILABILITY

182

The next step is to install repmgr (see Figure 11-6). Go to the repmgr directory.

Figure 11-5. Extracting repmgr

Figure 11-6. Installing repmgr

Repmgr requires the postgres directory to be available in the path. To do this, export
the path (see Figure 11-7).

CHAPTER 11 ■ HIGH AVAILABILITY

183

Add the following directory to your path:

/opt/chef-server/embedded/bin/

To install repmgr (see Figure 11-8), use the following command (see Figures 11-8
and 11-9):

make USE_PGXS=1
make USE_PGXS=1 install

Figure 11-7. Exporting the path

Figure 11-8. Installing repmgr

CHAPTER 11 ■ HIGH AVAILABILITY

184

Installation is complete. To verify the installation (see Figure 11-10), run the
following command:

repmgr -V

Figure 11-9. Installing repmgr

Figure 11-10. Verifying the installation

This process needs to be repeated on the slave node as well. Repeat the steps of
installing repmgr.

Master Node Settings

On the master node, go to the postgre data directory (see Figure 11-11). The default
directory created by chef is as follows:

/var/opt/chef-server/postgresql/data

Figure 11-11. Postgre directory

CHAPTER 11 ■ HIGH AVAILABILITY

185

Open the postgresql.conf file and edit the listen_addresses field so that we are able
to connect to the master server from the slave server (see Figure 11-12).

Figure 11-12. Changing the configuration file

The next thing to edit in the configuration file is the wal_level (see Figure 11-13).
Change it to hot_standby. wal_level determines how much information is written to
the WAL. In hot_standby level, the same information is logged as with archive, plus
information needed to reconstruct the status of running transactions from the WAL.

wal_level = 'hot_standby'

Figure 11-13. Changing the configuration file

As streaming replication uses archiving to create logs, we need to enable archiving
on the master server (see Figure 11-14). The archive command can be anything which
would do nothing. Here we are using cd. You can also use any other command.

archive_mode = on
archive_command = 'cd.'

CHAPTER 11 ■ HIGH AVAILABILITY

186

After the archiving, change the setting seen in Figure 11-15, which will change the
number of sender processes that would ship the log.

max_wal_senders = 10
wal_keep_segments = 5000

Figure 11-14. Setting up archiving

Figure 11-15. Changing the configuration file

The configuration changes have been done. Now we need to set up the trust so that the
master server will accept connections from the standby server (see Figure 11-16). Edit
the pg_hba available in the /var/opt/chef-server/postgresql/data directory and add the
ip/subnets from where you want to add trust.

Figure 11-16. Setting up trust

CHAPTER 11 ■ HIGH AVAILABILITY

187

Restart the chef server on the master node to apply the changes (see Figure 11-17).

Figure 11-17. Restarting the chef server

Run the following command to verify that the configuration on the master server is
fine (see Figure 11-18):

ps aux | grep postgre

Figure 11-18. Verifying a master configuration

A process should come up with description ‘wal writer process’.

Slave Node Settings

For setting up the streaming replication, we need to clone the data directory of the master
server on the standby server (see Figure 11-19).

CHAPTER 11 ■ HIGH AVAILABILITY

188

Change the permission of the pg_xlog folder. The folder in present in the data
directory. The path to the directory is /var/opt/chef-server/postgresql/data.

Restart the chef server to see the changes (see Figure 11-22).

Figure 11-20. Cloning complete

Figure 11-21. Cloning complete

Clear the data directory on the slave node and run the following command:

repmgr -D /var/opt/chef-server/postgresql/data/ -d opscode_chef -p 5432 -U
opscode-pgsql -R root --verbose standby clone $masterip

Where masterip is the IP (Internet protocol), address of the master node.

-D – The data directory. (The default directory is •฀ /var/opt/chef-
server/postgresql/data)

-d – The database to clone.•฀

-p – Port on which server is running on the master node.•฀

-U – The user of the database.•฀

-R – The user with which keyless SSH is present.•฀

Figure 11-19. Cloning the master server

CHAPTER 11 ■ HIGH AVAILABILITY

189

Figure 11-22. Restarting the chef server

Figure 11-23. Verifying the configuration

To verify that the slave configuration is complete, run the command shown in
Figure 11-23.

A process should come up with the description ‘wal receiver process’.

Verifying

To verify that your replication has been set up, create a test database on the master server
(see Figure 11-24).

Figure 11-24. Creating a database

List the database on the master server (see Figure 11-25).

CHAPTER 11 ■ HIGH AVAILABILITY

190

Figure 11-25. Listing databases on the master server

Figure 11-26. Listing databases on the slave server

List the database on the slave server (see Figure 11-26). The database that was
created on the master would be shown in the slave node as well (test).

Cookbook Replication
For the cookbook replication, we can use any shared file system. The directory that needs
to be shared among the two servers is

/var/opt/chef-server/bookshelf/data

Please make sure that the permissions of the folder are the same on the master and
the slave nodes.

As the streaming replication sets up the database replication in a primary-secondary
mode, we need to make sure that chef client requests are routed to the primary server or
else they will not be completed.

The clients will connect to both the chef servers through a load balancer and will
connect to the secondary server in case the primary is down.

CHAPTER 11 ■ HIGH AVAILABILITY

191

What we did is just a workaround for HA. We still need to set up failover/failback,
which will be done manually or can be automated using scripts. In case one of the
database servers fails, the other one is brought up to take the workload. In case of the
failure of the chef server, the other one takes up the load of the application server which is
down since all configuration and cookbooks are available to both of the servers.

Enterprise Chef HA
Enterprise chef comes with different types of deployment scenarios. One of them is built-
in support for HA. It has a fully automated failover for stateful components. The whole
architecture of chef is divided into two tiers.

First would be the web facing tier, which handles the user interface, and the API
(application programming interface) requests that come to the chef server.

The second tier is the application tier or the back-end tier, which handles the data
storage and retrieval, which consist of

CouchDB•฀

PostgreSQL•฀

Opscode solr•฀

RabbitMQ•฀

Redis•฀

Cookbook data•฀

The failover of the application tier or the back-end tier is achieved using the
following:

DRBD (Distributed Replication Block Device) is used to manage •฀
the block-level replication.

A primary and backup cluster election using VRRP (Virtual Router •฀
Redundancy Protocol) over unicast TCP/IP and Keepalived.

A virtual IP address to the primary server, maintained based on •฀
the results of the election done by Keepalived.

The web tier or the front-end tier is a load balancer. Chef recommends a hardware
load balancer with SSL offloading and round robin as the load balancing algorithm
(see Figure 11-27).

CHAPTER 11 ■ HIGH AVAILABILITY

192

Figure 11-27. HA in enterprise chef

193

CHAPTER 12

Cloud Provisioning
Using Chef

Provisioning Using Vagrant and Chef
Until now we have seen how to leverage chef to provision and configure application
and database environments. In this chapter we introduce our readers to how Vagrant
and chef can work together to bring up complete environments including the virtual
infrastructure.

Vagrant is an open source infrastructure provisioning solution that integrates with
VMware, AWS, VirtualBox, and other hypervisor and cloud environments to provision
virtual and cloud infrastructure.

After provisioning of the cloud or virtual infrastructure through Vagrant, chef can be
used to deploy and configure the application servers and databases on the virtual machine.

Thus a combination of Vagrant and chef can provide immense benefits to enterprises
looking to automate the infrastructure and environment and build use cases.

Just as chef has a concept of recipe, Vagrant has the concept of a Vagrantfile which
provides the configuration details for the virtual machine or cloud infrastructure.

A much used use case of the Vagrant tool is to create disposable infrastructure and
environments for developers and testers. As development and test environments need
frequent provisioning and deprovisioning, the power of Vagrant to quickly assemble the
required infrastructure helps the infrastructure and automation teams in fulfilling the
demands of the development and test teams.

With its integrations to various hypervisors and cloud providers the same Vagrant tool
can be used to provision the infrastructure in premise virtual infrastructure and the cloud.

Technically, Vagrant is a Ruby-based application. Vagrant can be easily deployed as a
virtual machine on VirtualBox or VMware workstation.

Vagrant can quickly deploy the environment using a single command “vagrantup”
once the Vagrant tool is up and running and is configured with correct Vagrantfile.

Providers and Provisioners
The development environment can be configured using Vagrant’s providers and
provisioners.

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

194

Providers are the virtual machine solutions such as VirtualBox, VMWare,
Amazon AWS, and Digital Ocean.

Provisioners are used to manage the configuration in your development
environment. Chef and puppet are few examples of provisioners used by Vagrant. Using
provisioners you can automate the application configuration process on a Vagrant box.

Installing Vagrant
Vagrant works on Windows (32 bit and 64 bit), Linux Debian (32 bit and 64 bit),
Linux rpm based (32 bit and 64 bit), and MAC OS X (32 bit and 64 bit) environments.

Install Virtual Box
Vagrant works with virtual box in the back end. So, before installing Vagrant, virtual box
has to be installed in your system. Virtual box has to be installed on a workstation and not
on any virtual machine.

Go to www.virtualbox.org/wiki/Downloads. Download and install the latest virtual
box software.

Install Vagrant on Windows
1. Go to www.vagrantup.com/downloads.

2. Download the Vagrant Windows MSI installer package
(see Figure 12-1).

Figure 12-1. Downloading Vagrant

http://c/Users/Lori/Desktop/Lori's%20Files/Apress/Sabharwal/www.virtualbox.org/wiki/Downloads
http://c/Users/Lori/Desktop/Lori's%20Files/Apress/Sabharwal/www.vagrantup.com/downloads

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

195

3. Run the installer (see Figure 12-2).

Figure 12-2. Running the Vagrant Installer

4. Click next.

Figure 12-3. Installing Vagrant

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

196

5. Accept the license and click next.

Figure 12-5. Selecting a Installation Directory

6. Enter the destination folder for Vagrant and click next.

Figure 12-4. Accepting the Terms

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

197

7. Click install.

Figure 12-6. Installing Vagrant

8. Click finish.

Figure 12-7. Finishing installation

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

198

Verifying Vagrant Installation
Open the windows command prompt and check the Vagrant version to make sure it is
installed in your system (see Figure 12-8).

1. vagrant –v

Figure 12-8. Verifying installation

Figure 12-9. Adding Vagrant box directly

Configuring Vagrant
Vagrant Boxes (OS Images)
Vagrant uses the notion of “boxes” to describe preconfigured base virtual machines
from which we can work. Creating a virtual machine from scratch is a tedious and
time-consuming process. Vagrant, on the other hand, creates a virtual machine quickly
by cloning the preconfigured virtual machines. These preconfigured base images are
termed as boxes in Vagrant.

You can download Vagrant boxes (Linux based) based on your requirement from
here www.vagrantbox.es/.

Note ■ Install git bash on your system to work with Vagrant on Windows since Windows

command line does not support SSH protocol.

Two Methods to Download Vagrant Box
1. Download and add the Vagrant base box (see Figure 12-9)

with preconfigured chef using the following command:

#syntax vagrant box add {boxname} {box provider url}
vagrant box add ubunt12.04 http://files.vagrantup.com/precise32.box

Vagrant boxes will be downloaded to the users/.vagrant.d/boxes folder.

http://c/Users/Lori/Desktop/Lori's%20Files/Apress/Sabharwal/www.vagrantbox.es/
http://files.vagrantup.com/precise32.box

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

199

2. Download the box directly from https://files.vagrantup.com
to your file system and you can add that box to Vagrant by
specifying the local file system path (see Figure 12-10).

vagrant box add vagrant_demo C:\Users\Administrator\centos\CentOS-6.4-i386-v.box

Figure 12-11. Creating a Vagrantfile

Figure 12-10. Adding vagrant box from file system

Vagrantfile
The next step is to configure Vagrant using a Vagrantfile.

1. The first step is to create a root directory. A few configurations
related to Vagrant will be relative to this directory

2. Mention the kind of box and provisioners you need to have in
your environment in the Vagrantfile.

3. Vagrantfile can be created using vagrant-init command. This
command will create a Vagrantfile in your current directory.
Adding the existing box title to the vagrant-init command
will create a Vagrantfile with the configuration details of the
mentioned box.

#syntax vagrant init {box-title}

vagrant init ubunt12.04

The foregoing command creates a Vagrantfile (see Figure 12-11) based on the base
box titled ubunt12.04.

https://files.vagrantup.com/

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

200

Provisioning a New Instance
You can start the virtual machine (see Figure 12-12) using “vagrant up” command. When
you use this command, make sure that your present working directory is the directory
which contains the Vagrantfile.

Here we are using centos box which has already been downloaded using “vagrant
box add” command. The Vagrantfiles relative to centos box are present inside the
c:/users/centos folder.

Connecting to a Virtual Machine
The virtual machine (VM) which got spun up by Vagrant can be connected using the
“vagrant ssh” command. This command will drop you into a full-fledged SSH session.
By default, a Vagrant VM will have username and password “vagrant.”

Figure 12-12. Starting a virtual machine

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

201

The network details are fetched from the Vagrantfile. You can have a host-only access
static IP or dynamic IP allocated by the public network.

Also, you can spin up multiple VMs using one Vagrantfile by defining more than one
VM in the Vagrantfile. By default there will be only a box definition inside a Vagrantfile
(e.g., config.vm.box = "vagrantdemo"). SSH access can be made to individual VMs
using the name given in the definition.

When multiple VMs are launched using a single Vagrantfile, the SSH command
should include the VM name to connect to it (see Figure 12-13).

Figure 12-13. Connecting to a virtual machine

Note ■ All the commands related to the virtual machine have to be run from the root

folder of the VM.

Suspending the Virtual Machine
By suspending the VM, you can get a point in time state of the virtual machine
(see Figure 12-14). The Vagrant “suspend” command will not shut down the machine
completely; you can resume the VM anytime.

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

202

Halting the Virtual Machine
“Vagrant halt” command shuts down the VM (see Figure 12-15). You can provide –f
switch to forcefully shut down the machine. You have to execute this command from the
root folder of the VM.

Figure 12-14. Suspending a virtual machine

Figure 12-15. Halting a virtual machine

Destroying the Virtual Machine
“Vagrant destroy” command will stop the VM and destroys all the resources associated
with it (see Figure 12-16). Once you issue the destroy command, it will ask for
confirmation to destroy the VM.

Figure 12-16. Destroying a virtual machine

Installing Vagrant Plug-Ins
The following command can be executed from anywhere. Plug-ins are necessary to
integrate Vagrant with other services like AWS, Azure, Hyper-V, and so on.

Command: vagrant plugin install <name>
Vagrant plug-ins will be installed from RubyGems and this command also updates

the existing gem. The command “vagrant plugin update” is specifically used to update
the plug-in. You can also install multiple plug-ins by providing multiple names with the
command.

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

203

Vagrant Provisioning Using Chef
Provisioners in Vagrant let you automatically install and configure software on the
Vagrant machine as part of the “vagrantup” process. If you want to just use Vagrant SSH
and install the software by hand, that will work. By using provisioners you can automate
the repeatable tasks. To use provisioners, make sure that the particular provisioner
is included in the Vagrant box you download. For example, if you want to use chef
provisioner, use a box that contains chef client.

The configuration for provisioning by default will be commented out in the
Vagrantfile. We have to work on this file and fill in the required details for chef to work
with Vagrant. The file will look as shown in Figures 12-17 and 12-18. This file will be
present in the root folder you created for the VM.

Figure 12-17. Vagrantfile(1)

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

204

Chef Solo Provisioner
Using chef solo provisioner you can provision a guest OS using chef solo. All the
configurations needed for chef solo have to be mentioned in the Vagrantfile.

Options
This section lists the complete set of available options for the chef solo provisioner. More
detailed examples of how to use the provisioner are available here.

Note that only the chef solo specific options are shown in the following list. There
is also a large set of common options available with both the chef solo and chef client
provisioners.

cookbooks_path (string or array): A list of paths to where cookbooks are stored.
By default this is “cookbooks,” expecting a cookbooks folder relative to the Vagrantfile
location.

data_bags_path (string): A path where data bags are stored. By default, no data bag
path is set.

environments_path (string): A path where environment definitions are located. By
default, no environments folder is set.

environment (string): The environment you want the chef run to be a part of. This
requires Chef 11.6.0 or later, and it requires the environments_path to be set.

recipe_url (string): URL to an archive of cookbooks that chef will download and use.
roles_path (string or array): A list of paths where roles are defined. By default, it is

empty. Multiple role directories are only supported by Chef 11.8.0 and later.

Figure 12-18. Vagrantfile(2)

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

205

Specifying a Run List
The run list specified in the Vagrantfile will be configured when the “vagrantup”
command is issued.

Vagrant.configure("2") do |config|
 config.vm.provision "chef_solo" do |chef|
 chef.add_recipe "httpd"
 end
end

This will make Vagrant run chef solo with the “httpd” cookbook. The cookbook
has to be present in the cookbooks directory of your VM’s root directory. The directory
structure should look as shown in Figure 12-19.

Figure 12-19. Directory structure

Specifying Roles
You can specify chef roles in a Vagrantfile. By default, Vagrant will look for the roles
directory in the VM’s root folder. You can specify the path if the roles folder is in some
other location.

Vagrant.configure("2") do |config|
 config.vm.provision "chef_solo" do |chef|
 chef.roles_path = "vagrant_roles"
 chef.add_role("webserver")
 end
end

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

206

Using Data Bags
You can use data bags with chef solo provisioner. Data bags can be used inside recipes
that chef solo uses. By default, Vagrant will search for the data bags folder in the VM root
directory.

Vagrant.configure("2") do |config|
 config.vm.provision "chef_solo" do |chef|
 chef.data_bags_path = "data_bags"
 end
end

Specifying Node Name
You can set a custom node name by mentioning the node_name option.

Vagrant.configure("2") do |config|
 config.vm.provision "chef_solo" do |chef|
 chef.node_name = "node_name"
 end
end

Custom JSON Data
Additional configuration data for chef attributes can be passed in to chef solo.

You can also pass parameters using JSON (JavaScript Object Notation) in the chef
solo provisioner.

Vagrant.configure("2") do |config|
 config.vm.provision "chef_solo" do |chef|
 chef.json = {
 "httpd" => {
 "listen_address" => "10.0.1.5"
 }
 }
 end
end

Provisioning Chef Client
Using chef client provisioner you can provision a Vagrant guest VM which will be
registered to the existing chef server. You have to mention the validation key and chef
server URL in the Vagrantfile. By default the chef client will look for the validation key
in the VM root directory. If it is not present in the root directory, you have to provide the
path of the validation key in the validation_key_path parameter.

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

207

Vagrant.configure("2") do |config|
 config.vm.provision "chef_client" do |chef|
 chef.chef_server_url = "https://my_chef_server.com:443/"
 chef.validation_key_path = "validation_key.pem"
 end
end

Adding Run List
You can override the run list specified by chef server by providing run list in the
Vagrantfile. The run lists and recipes added to the Vagrantfile will be pulled from the chef
server and applied to the Vagrant VM.

Vagrant.configure("2") do |config|
 config.vm.provision "chef_client" do |chef|
 # Adding a recipe
 chef.add_recipe "apache"
 # adding a role
 chef.add_role "web"
 end
end

Deleting the Node Details
Once a client is registered with the chef server, two entries are registered in the chef
server, a node object and a client entry. These entries have to be deleted for Vagrant VM
which is to be destroyed. It can be done by setting the values of two parameters to true.

chef.delete_node = true
chef.delete_client = true

Verifying Chef Client Registration with Chef Server
1. Run chef client command from the vagrant box by connecting

using Vagrant SSH command to ensure that your vagrant
box has been successfully registered with the chef server
(see Figure 12-20).

Figure 12-20. Verifying chef client installation

https://my_chef_server.com/

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

208

AWS and Chef Provisioning Using Vagrant
Installing the Plug-ins
The following plug-ins have to be installed in Vagrant for instance and chef client
provisioning on AWS (see Figure 12-21):

1. vagrant-aws

Figure 12-21. Installing Vagrant AWS plug-in

2. vagrant-omnibus

This plug-in is used to install chef client on the target AWS instance using the chef
omnibus installer (see Figure 12-22).

Figure 12-22. Installing vagrant-omnibus plug-in

Adding the AWS Box to Vagrant
Install a Vagrant box set with an AWS provider (see Figure 12-23) using the following URL:

https://github.com/mitchellh/vagrant-aws/raw/master/dummy.box

Figure 12-23. Adding a AWS bos to Vagrant

https://github.com/mitchellh/vagrant-aws/raw/master/dummy.box

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

209

Vagrantfile for AWS Provisioner
The Vagrantfile for AWS provisioning should mention the following configurations in
the screenshot (see Figure 12-24). By default, it launches instance to EC2-classic, and if
EC2-classic is not available in that region, it will be launched in the default VPC (virtual
private cloud). For deploying instances in VPC, the following three attributes have to be
mentioned in the Vagrantfile:

aws.private_ip_address = "10.10.10.10"
aws.security_groups = ["sg-123z212d"]
aws.subnet_id = "subnet-23b9e7h1"

Figure 12-25. Provisioning a machine on AWS(1)

Figure 12-24. Vagrantfile for AWS provisioning

Save the Vagrantfile and use the “vagrantup --provider=aws” command to provision
AWS instance with chef client (see Figures 12-25 and 12-26). You have to execute this
command from the root folder.

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

210

You will be able to see the machine being provisioned in the AWS console
(see Figure 12-27).

Log in to your instance and run chef client. It should be able to interact with the chef
server as shown in Figure 12-28.

Figure 12-26. Provisioning a machine on AWS(2)

Figure 12-27. Machine provisioned

Figure 12-28. Chef client run

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

211

Figure 12-29. Installing plug-in

Provisioning Using Knife
Knife EC2 Plug-ins
The knife EC2 plug-in is used to manage or create instances on AWS. In the upcoming
section we cover the installation, configuration, use of the plug-in.

Installing the Plug-in

Chef expects the knife plug-in to be located in the /opt/chef/embedded/bin directory.
Any plug-in for knife can be installed using the following syntax:

/opt/chef/embedded/bin/gem install plugin_name

To install the knife EC2 plug-in (see Figure 12-29) run the following command:

/opt/chef/embedded/bin/gem install knife-ec2

Configuring

After you complete the installation, the next step is to configure the plug-in so that your
plug-in is able to communicate with your AWS account (see Figure 12-30).

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

212

Enter the access key and secret key for your account using the following syntax in the
knife configuration file:

Knife[:aws_access_key_id] = "Your_Access_Key"
Knife[:aws_secret_access_key] = "Your_Secret_key"

Once you complete the configuration, we are ready to use the plug-in. See
Figure 12-31 for the available commands in the EC2 plug-in.

Figure 12-30. Configuring the EC2 plug-in

Figure 12-31. Commands available

To view the list of instances in your account, run the following command.

Knife ec2 server list

This command would list out the servers in us-east1 region by default. If we want
to list out the servers in any other region, we can do it using the –region option
(see Figure 12-32).

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

213

To view the type of instances available for our account, run the following command:

Knife ec2 flavor list

This would list out the type of instances available in your account (see Figure 12-33).

Figure 12-33. Type of instances available

Figure 12-32. Listing the servers

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

214

The next step is to provision the server on EC2 (see Figure 12-34). We will use the
knife EC2 server to create a command for the same.

Figure 12-34. Provisioning an instance(1)

Some of the important options needed in order to provision any instance are

-f or -flavor: The type of instance to provision.•฀

-region: The region in which our instance will be provisioned.•฀

-I or –image: The image to use while provisioning the instance.•฀

-G or –groups: The name of the security group that would be •฀
attached to our instance. If we want to attach more than one
security group we can provide them in a command-separated
format. These groups should be present in our account.

-S or –ssh-key – The key that would be used to log in to our •฀
instance. This key should be created before running the
command.

-x: This option is used to specify the username that would be used •฀
to log in to the instance.

After the instance is provisioned, the details would be displayed on the console
(see Figure 12-35).

Figure 12-35. Provisioning an instance(2)

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

215

To verify that your provisioning has been completed, go to the AWS console
(see Figure 12-36).

Figure 12-37. Installing plug-in

Figure 12-36. Verifying

Knife Azure Plug-ins
Chef expects the knife plug-in to be located in the /opt/chef/embedded/bin directory.
Any plug-in for knife can be installed using the following syntax:

/opt/chef/embedded/bin/gem install plugin_name

To install the knife Azure plug-in (see Figure 12-37), run the following command:

/opt/chef/embedded/bin/gem install knife-azure

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

216

Configuring

After you have completed the installation, the next step is to configure the plug-in (see
Figure 12-38) so that your plug-in is able to communicate with your Azure account.

Figure 12-38. Configuring the Azure plug-in

Enter the access key and secret key for your account using the following syntax in the
knife configuration file:

Knife[:azure_publish_setting_file] = "/path_to_file"

Once you have completed the configuration, we are ready to use the plug-in.
Figure 12-39 shows the commands available in the Azure plug-in.

Figure 12-39. List of commands available

To view the list of images available in your account, run the following command:

Knife azure image list

This command would list out the images available in all the regions (see Figure 12-40).

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

217

The next step is to provision the server on Azure. We will use the knife Azure server
to create a command for the same.

Some of the important options needed in order to provision any instance (see
Figure 12-41) are

-azure-dns-name: The DNS (Domain Name System)that would •฀
be given to our instance

-azure-source-image: The image that would be used to provision •฀
the instance.

-I or –image: The image to use while provisioning the instance.•฀

–winrm-password: The password that would be used to log in to •฀
the instance.

-winrm-user: This option is used to specify the username that •฀
would be used to log in to the instance.

-u: This option is used to specify the UDP (User Datagram •฀
Protocol) ports that would be opened on the instance.

-Z: This option is used to specify the size of the VM. •฀

Figure 12-40. Listing the images

CHAPTER 12 ■ CLOUD PROVISIONING USING CHEF

218

Figure 12-41. Provisioning an instance

After the instance is provisioned, the details would be displayed on the console.
To verify that your provisioning has been completed (see Figure 12-42), go to the

Azure console.

Figure 12-42. Verifying the server provisioned

219

CHAPTER 13

Troubleshooting
and Debugging

Chef Troubleshooting and Debugging
After having gone through the installation, configuration, and development aspects of
chef, let’s now look at how we can troubleshoot and debug if something doesn’t work
in the chef environment. In this chapter, we look at common themes in debugging and
troubleshooting a chef environment.

Debugging Chef Client Run
Several approaches can be used to debug a chef client run.

Running Chef Client with an Empty Run List
At times, you may have issues with a chef client run; it may not run a recipe or may not
behave as it should for chef runs.

Running the chef client with an empty run list will tell us whether the chef client
failed because of recipes in the run list of the node, the chef client configuration of the
node, or the issues with connectivity between the chef server and the client.

If chef client fails with an empty run list, it can be for one of the following reasons:

1. Ports required for a chef client are blocked by a firewall or
the network connectivity between the server and the client is
unavailable. Running an empty run list will indicate whether
the connection has become timed out or there is a network
down error (see Figure 13-1).

CHAPTER 13 ■ TROUBLESHOOTING AND DEBUGGING

220

2. The user does not have permissions to run chef client. When
users do not have the required permissions on the chef client,
they get a permission denied error (see Figure 13-2).

Figure 13-1. Chef client run

Figure 13-2. Permissions error

3. There is an invalid validation key or invalid client.rb file to
access the chef server. In the case of an invalid client.rb file
or invalid validation key, you will see the connection refused
error (see Figure 13-3).

Figure 13-3. Configuration file missing

4. For a hosted chef, if the client node is behind proxy, invalid
proxy settings can lead to failed chef client runs (see
Figure 13-4). Due consideration should be given to correct
proxy configuration to ensure that it allows connection
between chef client and chef server.

Figure 13-4. Proxy setting error

CHAPTER 13 ■ TROUBLESHOOTING AND DEBUGGING

221

Running Chef Client in Debug Mode
Running chef client in debug mode (see Figure 13-5) will give you the verbose output
of each and every action executed by the chef client. You can specify the log level in
the client.rb file get the output in a client.log file or you can run the debug level
command directly from the terminal.

Figure 13-5. Debugging chef client

There are three main levels for debugging chef client runs.

1. Info: To run chef client in this mode run chef-client –l info.

2. Debug: To run chef client in this mode run chef-client –l debug.

3. Warn: To run chef client in this mode run chef-client –l warn.

Using Chef Client Log Files
The log file location has to be mentioned in the client.rb file present inside /etc/chef
folder. Use the following parameter in the client.rb file to set the log details.

log_location "/var/log/chef/chef-client.log

Once the chef client run is finished, you can get insight about the chef client run
from the log file (see Figure 13-6).

CHAPTER 13 ■ TROUBLESHOOTING AND DEBUGGING

222

Types of Log Errors
A log file starts with the internal chef logs. Following are the types of warning and errors
you find in the log file:

WARN: You get a warning when you have situations like an
empty run list.

FATAL: This indicates that the chef resource has failed to
execute. You can find what failed using the ERROR level in the
log file.

ERROR: This indicates that the chef client was unable to load
the exception handlers, when it fails to execute a resource, or
when a package installation fails.

Using Chef Handler Cookbook
Chef handler is a cookbook that helps in handling exceptions happening during a chef
client run. This cookbook can be obtained from the chef community cookbooks. This
cookbook has a chef_handler lightweight resource provider. This cookbook can be used
to make product specific handlers, so that the chef client will handle the exceptions in the
way that you specify in your cookbooks with chef_handler resource.

Put the recipe chef_handler at the start of the node’s run list to make sure that
custom handlers are loaded early on in the chef run and available for the other recipes.

Download the chef_handler cookbook using knife (see Figure 13-7).

Knife cookbook download chef_handler

Figure 13-6. Using log files

CHAPTER 13 ■ TROUBLESHOOTING AND DEBUGGING

223

Untar the cookbook and Upload the cookbook to the chef server.

Knife cookbook upload chef_handler

Add the chef_handler recipe to the nodes run list (see Figure 13-8).

Figure 13-7. Downloading chef handler cookbook

Figure 13-8. Adding the cookbook to the run list

You can include the chef_handler libraries in your recipes by including the
chef_handler recipe to your custom recipe. The chef_handler dependency has to be
added to your cookbooks metadata.

include_recipe 'chef_handler'

Debugging Recipes Using Logs
Chef logs can be used to debug recipes. During a chef client run, the logs are written to
the log file specified in the client.rb file. For debugging information, chef client has to
run in debug mode. This can be set in the client.rb file using log_level parameter value
to :debug.

Common Errors
Cookbook Not Found

We get this error if a cookbook is added to the run list of a node but the cookbook is not
present on the server. In this case the chef client will fail and “cookbook does not exist on
the server” will appear as shown in Figure 13-9.

CHAPTER 13 ■ TROUBLESHOOTING AND DEBUGGING

224

This error can be resolved by adding the cookbook with a relevant name
(see Figures 13-10 and 13-11) to the run list of the node.

Figure 13-9. Cookbook not found

Figure 13-10. Adding the cookbook with the right name

Figure 13-11. Error resolved

Package Installation Error

If the package installation has any errors (see Figure 13-12), you can find the error in the
log file with the package name associated with it.

CHAPTER 13 ■ TROUBLESHOOTING AND DEBUGGING

225

This error can occur for any of the following reasons:

Repository not configured.•฀

Package with that name does not exist in the repository.•฀

This error can be resolved by configuring the repository and ensuring it is reachable.
Also, you must provide a valid name for the package.

Using a Log Resource
A log resource can be used inside recipes to write to log files. For example, if you want to
log an entry when a particular data bag item is used in your recipe, you can use the log
resource in the data bag block to do that. Log resource uses Chef::Provider::Log::ChefLog
during the chef client run. The screenshot in Figure 13-13 shows how to use the breakpoints
in recipes.

Figure 13-12. Unable to install package

Figure 13-13. Using the log resource

Debugging Recipes Using Chef Shell
Chef shell is a recipe debugging tool which runs as an interactive ruby session. Using chef
shell, you can run a recipe on debugging mode to trace the errors.

CHAPTER 13 ■ TROUBLESHOOTING AND DEBUGGING

226

Configuring Chef Shell
The chef shell has three modes:

1. Stand-alone: it is the default mode and no cookbooks will
be loaded in this mode. Chef shell stand-alone mode
(see Figure 13-14) can be started using chef shell command.

Figure 13-14. Stand-alone mode of chef shell

2. Chef solo: in this mode, the chef shell will have the chef solo
functionalities (see Figure 13-15). In this mode, chef shell will
load the chef solo cookbooks and JSON (Java Script Object
Notations) attributes. You can activate the chef solo mode
using “chef shell –s” command.

Figure 13-15. Chef solo mode of chef shell

3. Chef client: in this mode, the chef shell will have the chef
client functionalities (see Figure 13-16). To use this mode you
have to place a chef-shell.rb file with few parameters inside
the /etc/chef folder.

CHAPTER 13 ■ TROUBLESHOOTING AND DEBUGGING

227

You can run the recipes from the nodes run list in debugging mode and you can
trace errors in the recipe (see Figure 13-17). You can activate the chef client mode using
“chef shell –z” command.

Figure 13-16. Chef client mode of chef shell

Figure 13-17. Running recipes

Whenever the chef shell is loaded in chef client mode, all the recipes in the nodes
run list will be loaded to the cache. You can debug the recipes in the run list using run
chef command (see Figure 13-18).

Figure 13-18. Debugging recipes

Debugging Recipes Using Breakpoint Resource
You can do block level debugging using breakpoint resource (see Figure 13-19). While
testing cookbooks include the breakpoint resource after every resource block to have a
block level debugging.

CHAPTER 13 ■ TROUBLESHOOTING AND DEBUGGING

228

To debug a recipe with breakpoint, change the chef shell mode to recipe mode
(see Figure 13-20) using “recipe_mode” command and run the chef client using the
“run_chef” command.

Figure 13-19. Debugging recipes using breakpoint resource

Figure 13-20. Debugging recipes using breakpoint resource with chef shell

The “run_chef” command will run the recipe until the breakpoint specified in
the recipe. Once you have debugged until the breakpoint, run the “chef_run.resume”
command to resume the chef client run from the breakpoint (see Figure 13-21).

Figure 13-21. Resuming the chef client

CHAPTER 13 ■ TROUBLESHOOTING AND DEBUGGING

229

Troubleshooting Chef Client
Chef Client Fails to Run a Recipe Successfully at
Bootstrapping
Run chef client to set up the connection with the chef server. It will run with an empty run
list. After it is connected, log in to http://yourcherver.com:443, add the roles/recipes to
the client node, and run the chef client from the client again.

Reregistering a Removed Client
The reregistration process is required if the client is unable to authenticate itself with
the chef server. To reregister a removed client from the chef server, remove the
client.pem file from /etc/chef folder and run the chef client on the node. Before
running the chef client, make sure that the node object of the removed client is also
removed from the chef server.

Issues Registering Chef Client with the Server
While registering a node with chef server, the registration might fail for the following
reasons:

1. The client name already exists in the chef server
(see Figure 13-22): this issue can be fixed by deleting the
existing client name from the server.

Figure 13-22. The client name that exists in error

2. Invalid chef server URL (uniform resource locator)
(see Figure 13-23): check whether the chef server URL is
specified correctly in the client.rb file of the node.

http://yourcherver.com:443/

CHAPTER 13 ■ TROUBLESHOOTING AND DEBUGGING

230

3. Invalid validation key (Figure 13-24): check whether the
validation key specified in the client.rb file and the validation
key that is present inside the /etc/chef folder are valid.

Figure 13-24. The invalid validation key

Figure 13-23. The URL not valid error

CHAPTER 13 ■ TROUBLESHOOTING AND DEBUGGING

231

Removing chef node from a server:

knife client delete NODENAME
knife node delete NODENAME

On an affected node, remove the client.pem file and run the chef client again.

sudo rm /etc/chef/client.pem
sudo chef-client

Clock Synchronization Error
This error happens when your client node’s clock drifts from the actual time by more
than 15 minutes (see Figure 13-26). You can fix this by syncing your clock with an NTP
(Network Time Protocol) server. Run the chef client after synching the clock.

401 Unauthorized Errors
401 Unauthorized errors happen (see Figure 13-25) for the following reasons:

1. Incorrect client.pem file: this error can be rectified by
deleting the existing client.pem file from the /etc/chef folder
and reregistering the node with the chef server.

Figure 13-25. Authentication error

CHAPTER 13 ■ TROUBLESHOOTING AND DEBUGGING

232

No Such File or Directory: /etc/chef/validation.pem
This error happens when the validation key is not present in the default /etc/chef folder.
This can be rectified by copying the validator key from the chef server to the nodes /etc/
chef folder.

Cannot Find Config File
This error happens when the client.rb file is not present in the default chef directory
on the node (see Figure 13-27). You can work around this issue by adding the path to of
client.rb file using –c switch.

chef-client -c C:\chef\client.rb

Figure 13-27. Not able to find the client configuration file

Figure 13-26. A clock sync error

A, B���������
Amazon web services (AWS), 49
Application programming

interface (API), 47
Attribute iles

deinition, 114
methods, 114–115
precedence, 115–116
types, 114

C���������
Chef server, 1

automated infrastructure, 9
compilation, 11
deinition, 21
description, 10
Erlang

Asynchronous message
passing, 18

features, 19
Grained concurrency, 18
overview, 17
portability, 20

Facebook, 11
features, 22
infrastructure as a code, 2
internet companies

and enterprises, 11
knife (see Knife)
nodes, 4

cloud-based, 5
components, 5
physical, 5

open source chef server
Bookshelf, 24
ChefSolr, 25

cookbook iles, 24
Erchef, 25
message queue, 25
Nginx, 23
ports, 26
Postgresql, 26
structure, 26
WebUI, 24
working of, 23

overview of, 4
principles, 10

chefclient, 11
chefserver, 11
idempotence, 11

Ruby
arrays, 14
methods, 17
operators, 15
strings, 13
variables, 12

server
chefsolo, 7
cookbook, 7
enterprise chef, 6
open source chef, 6

types
enterprise chef, 22
hosted enterprise chef, 21
open source chef server, 22

Vagrant provisioning
chef solo provisioner, 204
JSON, 206
node_name option, 206
node object, 207
roles, 205
run list, 205, 207
using chef client, 206
using data bags, 206

Index

233

Vagrantile, 203–204
veriication, 207

working principles, 5
Cloud provisioning

Knife Azure Plug-ins
installation, 215
Knife azure image

list command, 216–217
syntax, 215–216
veriication, 218

Knife EC2 Plug-ins
coniguration ile, 212
installation, 211
Knife ec2 lavor list command, 213
Knife ec2 server list

command, 212
type of instances, 213–214
usage, 211
veriication, 215

vagrant tool (see Vagrant)
Coniguration ile (Client.rb), 57
Cookbooks, 119

application/component, 87
attribute, 160
creation, 154
directory structure of, 154

attribute iles (see Attribute iles)
deinitions, 116
library, 117
metadata, 118
recipes (see Recipes)
resources and providers (see

Resources and providers)
working principles, 88

environment
coniguration, 166
creation, 163
edit, 164
nodes, 165
testing, 167

low chart, 153
index ile creation, 157
metadata, 158
MySQL (see MySQL)
Nginx

coniguration ile, 131
default function, 125
directory permissions, 130
downloading, 126
epel deinition, 129

installations, 132
internet connection, 125
log directory, 132
nxensite ile, 130
ohai_plugins directory, 128
platform support, 125
run list, 127
uploading, 127

run list, 158
Squid, 133

chef client run, 135
directory permissions, 137
downloading, 133
installations, 136
mime.conf creation, 136
platforms support, 133
uploading, 134

subcommand, 71
bulk delete, 72
creation, 72
delete, 73
download, 73, 76
installation, 76
list, 73, 76
search, 77
show, 74, 77
test, 75
upload, 75

template ile, 160–161
testing, 162
Tomcat

chef client, 147
downloading, 145
ile coniguration, 150
installation, 148, 152
Java environment variables, 148
package, 149
platform, 145
read-write permissions, 150
uploading, 146

uploading, 158
Wordpress

client running, 140
downloading, 138
installation, 143–144
internet connection, 138
package autoconf, 141–142
systems support, 138
uploading, 139–140
wp-conig.php ile, 143

writing recipes, 155

234

■฀INDEX

Chef server (cont.)

D���������
Debugging

breakpoint resource, 227
chef client mode, 227
chef client run, 219
chef handler cookbook, 222–223
chef logs, 223
chef solo mode, 226
cookbook error, 223–224
log errors types, 222
log ile, 221–222
log resource, 225
package installation, 224
permissions error, 220
proxy error, 220
resolved error, 224
running chef client, 219–221
stand-alone mode, 226
tools, 225

Domain Name System (DNS), 217

E, F, G���������
Enterprise chef HA, 191–192
Erlang

asynchronous message passing, 18
concurrent programming

languages, 19
features

concurrency, 19
distribution, 20
robust, 20
sequential, 20

functional and logic programming
languages, 19

grained concurrency, 18
overview, 17

H���������
High availability (HA)

Elastic load balancer (ELB), 179
enterprise chef

application tier/back-end tier, 191
web tier, 191

setup, 179
streaming replication, 179

chef server, 180
cookbook, 190
description, 180

master node, 184
repmgr, 180
slave node, 187
veriication, 189

warm standby/log shipping, 179

I���������
Installation

chef server
coniguration, 31
downloading, 29
foregoing command, 31
RHEL OS, 30
testing, 32
web interface, 33

ile locations, 38
Bookshelf services, 39
chef-server.rb ile, 39
opscode-erChef service, 41
opscode-expander service, 40
opscode-solr service, 40
opscode-webui service, 42
postgresql service, 41
SOLR search index, 41

hardware prerequistie, 27
hostname command, 28
system requirements, 27
virtual machine

built-in command, 36
chef server package, 33–34
coniguration, 35
ifconig command, 37
network adapter, 37
RHEL, 34
testing, 36
web interface, 38

J���������
JavaScript Object Notation (JSON), 52
JavaScript Object Notiication (JSON), 89

K���������
Knife

bootstrap subcommand, 64
client subcommand

creation, 66
delete, 67
edit, 67

235

■฀INDEX

list, 68
multiple deletion, 66
reregister, 69
show, 69

conigure command
client coniguration (Client.rb), 70
knife coniguration (Knife.rb), 71

cookbook subcommand, 71
bulk delete, 72
creation, 73
delete, 73
download, 73, 76
installation, 76
list, 74, 76
search, 77
show, 74, 77
test, 75
upload, 75

data bag subcommand, 77
delete subcommand, 77
download subcommand, 78
environment subcommand, 79
node subcommand, 80
recipes subcommand, 80
role subcommand, 81
search command, 82
show command, 82
SSH command, 83
tag subcommand, 85
upload subcommand, 86
working principles, 61

L���������
Lightweight resource providers (LWRPs)

chef maintainence, 170
creation

Action:remove:method, 174
cookbook uploading, 176
default attribute, 172
directory structure, 172
run bash scripts, 173
run chef client, 176
Veriication, 177
whyrun method, 173
wp_path attribute, 176
wp_url attribute, 176
wrapper method, 173–174

description, 169
directories, 169–170

M���������
Metadata, 118
MySQL

chef testing
chef client running, 122
grant table, 124
log directory creation, 122
logging admin, 124
log in, 125
root password, 123
run end, 124
run list, 121

downloading, 119
internet connection, 119
password generation, 119
platforms support, 119
uploading, 120

N, O, P, Q���������
Nodes

coniguration
Bootstrapping, 56–57
chef client package, 54–56
chef validator key, 56
client coniguration ile

(Client.rb), 56–57
FQDN, 56
OS identifyication, 54
policies, role, 56

deinitions, 49
managed node

attributes, 53
chef client, 50
chef run, 50–51
client coniguration ile, 52
cookbooks, 52
resources identiier, 53
RSA encryption mechanism, 52
run list, 52
update method, 53

node_name, 49
types, 49

R���������
Recipes

assignment operator, 91
case statement, 91–92
data bags creation, 89–90

236

Knife (cont.)

■฀INDEX

DSL, 94
platform_family method, 95
platform method, 95
value_for_platform_family

method, 97–98
value_for_platform method, 96

exception handlers and log iles, 93
if expression, 92
include_recipe keyword, 92
run list, 93
searching in, 91
secret key, 90
Storing keys, 90
tag, 93–94
unless expression, 92

Resources and providers
components, 99–100
cookbook_ile resource, 100
crontab program, 101
deinition, 98
directory, 102–103
env, 103–104
execute command, 104
iles, 106
package, 107–108
platform class maps, 99
powershell_script, 108–109
remote_ile, 109
script, 111
service, 111–112
template, 113

Ruby, 11
array, 14
methods, 17
operators

arithmetic operators, 16
bitwise operators, 17
comparison operators, 16
math operators, 15

string, 13
variables, 12

S���������
Streaming replication, 179

chef server, 180
cookbook, 190
description, 180
master node

archiving, 186
coniguration, 185
postgre directory, 184

restarting, 187
trust setup, 186
veriication, 187

repmgr setup, 180
downloading, 181
extracting, 182
install GCC, 181
path directory, 183
postgres directory, 182
veriication, 184

slave node
cloning, 188
restarting, 189
veriication, 189

veriication, 189

T���������
Troubleshooting, 219

authentication error, 231
chef server registering, 229
client coniguration ile, 232
clock sync error, 232
reregistration process, 229
run chef client, 229
unauthorized errors, 231
validation key, 230, 232

U���������
Uniform resource locator (URL), 47, 229
User Datagram Protocol (UDP), 217

V���������
Vagrant

AWS and Chef
plug-ins installation, 208
Vagrantile, 209

coniguration
Vagrant boxes (Linux based), 198
Vagrantile, 199
VM (see Virtual machine (VM))

deinition, 193
installation

veriication, 198
virtual box, 194
Windows, 194

Plug-Ins installation, 202
providers, 194
provisioners, 194
usage, 193

237

■฀INDEX

Virtual machine (VM)
installation

built-in command, 36
chef server package, 33, 35
coniguration, 35
ifconig command, 37
network adapter, 37
RHEL, 34
testing, 36
web interface, 38

Vagrant
destroy command, 202
halt command, 202
ssh command, 200–201
suspend command, 201
up command, 200

W, X, Y, Z���������
Workstation

prerequisite, 43
coniguring knife, 46–47
Identifying operating system, 44
installation and coniguration, 44
installation chef client package, 45
install git (optional), 47
installing chef package, 46
keys and coniguration iles, 46
knife coniguration in the chef

directory, 48
operating system support, 44
relevant method, 45
veriication, 48

238

■฀INDEX

Automation through
Chef Opscode

A Hands-on Approach to Chef

Navin Sabharwal

Manak Wadhwa

Automation through Chef Opscode

Copyright © 2014 by Navin Sabharwal and Manak Wadhwa

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, speciically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied speciically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6295-4

ISBN-13 (electronic): 978-1-4302-6296-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the beneit of the trademark owner, with no intention of
infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identiied as such, is not to be taken as an expression of opinion as to whether or not they
are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. he publisher makes no warranty, express or implied,
with respect to the material contained herein.

Publisher: Heinz Weinheimer
Lead Editor: Saswata Mishra
Technical Reviewers: Kalyan Kumar and Piyush Pandey
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jef Olson, Jefrey Pepper, Saswata Mishra,
Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade,
Steve Weiss

Coordinating Editor: Mark Powers
Copy Editor: Lori Jacobs
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available
to readers at www.apress.com/9781430262954. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781430262954
www.apress.com/source-code/

Dedicated to the people I love and God whom I trust.

—Navin

Dedicated to all the people who have supported me in
diicult times and have helped me grow into the individual

who I am today, God, and the people I love.

—Manak

vii

Contents

About the Authors .. xv

About the Technical Reviewers .. xvii

Acknowledgments .. xix

Introduction .. xxi

Chapter 1: Introduction ■ .. 1

Infrastructure as Code ... 1

Overview ... 4

Nodes.. 4

Workstation .. 5

Server ... 6

The Value of Chef .. 9

Why Chef? ... 10

Core Principles of Chef .. 10

Idempotence ... 11

Thick Client, Thick Server ... 11

Order of Execution .. 11

Who Uses Chef? .. 11

Key Technologies ... 11

Ruby .. 11

Erlang ... 17

■฀CONTENTS

viii

Chapter 2: The Chef Server ■ ... 21

The Chef Server ... 21

Types of Chef Server ... 21

Extra Functionalities in Enterprise Chef ... 22

Components of Open Source Chef Server .. 23

Chapter 3: Installation ■ .. 27

Install the Chef Server ... 27

Prerequisite .. 27

Installation .. 29

Installation on a Virtual Machine .. 33

File System locations.. 38

Configuration ... 38

Optional Settings .. 39

Chapter 4: Workstation ■ ... 43

Prerequisite ... 43

Operating System Support.. 44

Install and Configure a Workstation .. 44

Chapter 5: Nodes ■ .. 49

Types of Nodes .. 49

Node Names .. 49

Manage Nodes .. 50

Chef Client .. 50

The Chef Run .. 50

Install and Configure the Node .. 54

Identify the Operating System .. 54

Bootstrap .. 56

Configuring .. 57

■฀CONTENTS

ix

Chapter 6: Working with Knife ■ ... 61

Working with Knife .. 61

Bootstrap .. 64

Client .. 66

Configure .. 70

Cookbook .. 71

Cookbook Site ... 75

Data Bag ... 77

Delete ... 77

Download .. 78

Environment ... 79

Node ... 80

Recipe List .. 80

Role... 81

Search .. 82

Show ... 82

SSH ... 83

Tag .. 85

Upload... 86

Chapter 7: Cookbooks ■ .. 87

Basics of Cookbooks ... 87

Cookbook Directory Structure ... 88

Recipes ... 88

Resources and Providers .. 98

Attributes Files ... 114

Definitions .. 116

Libraries .. 117

Metadata .. 118

■฀CONTENTS

x

Chapter 8: Using Cookbooks ■ ... 119

MySQL(4.1.2) ... 119

Platform .. 119

Dependencies ... 119

Prerequisite .. 119

Cookbook Download ... 119

Cookbook Upload .. 120

Client Run ... 121

Nginx(2.4.2) ... 125

Platform .. 125

Dependencies ... 125

Prerequisite .. 125

Cookbook Download ... 126

Cookbook Upload .. 127

Client Run ... 127

Squid(0.4.0) ... 133

Platform .. 133

Cookbook Download ... 133

Cookbook Upload .. 134

Client Run ... 135

Wordpress(2.1.0) ... 138

Platform .. 138

Dependencies ... 138

Prerequisite .. 138

Cookbook Download ... 138

Cookbook Upload .. 139

Client Run ... 140

■฀CONTENTS

xi

Tomcat(0.15.0)... 145

Platform .. 145

Dependencies ... 145

Cookbook Download ... 145

Cookbook Upload .. 146

Client Run ... 147

Chapter 9: Developing a Cookbook ■ ... 153

Developing Your First Cookbook .. 153

Writing a Recipe .. 155

Creating the Index File .. 157

Changing the Metadata ... 158

Uploading the Cookbook ... 158

Running the Cookbook .. 158

Add an Attribute .. 160

Add a Resource to the Default Recipe ... 160

Add the Template File .. 161

Uploading and Running the Cookbook .. 161

Using Environments .. 162

Chapter 10: Lightweight Resource Providers ■ 169

Lightweight Resource Providers ... 169

Chef-Maintained LWRPs ... 170

Creating an LWRP .. 171

■฀CONTENTS

xii

Chapter 11: High Availability ■ .. 179

Prerequisite ... 179

Setting Up HA .. 179

Streaming Replication .. 179

Cookbook Replication ... 190

Enterprise Chef HA .. 191

Chapter 12: Cloud Provisioning Using Chef ■ 193

Provisioning Using Vagrant and Chef .. 193

Providers and Provisioners .. 193

Installing Vagrant ... 194

Install Virtual Box .. 194

Install Vagrant on Windows .. 194

Verifying Vagrant Installation .. 198

Configuring Vagrant ... 198

Vagrant Boxes (OS Images) .. 198

Two Methods to Download Vagrant Box ... 198

Vagrantfile .. 199

Provisioning a New Instance .. 200

Connecting to a Virtual Machine ... 200

Suspending the Virtual Machine ... 201

Halting the Virtual Machine .. 202

Destroying the Virtual Machine ... 202

Installing Vagrant Plug-Ins .. 202

Vagrant Provisioning Using Chef ... 203

Chef Solo Provisioner ... 204

Options ... 204

Specifying a Run List .. 205

Specifying Roles ... 205

■฀CONTENTS

xiii

Using Data Bags ... 206

Specifying Node Name ... 206

Custom JSON Data ... 206

Provisioning Chef Client ... 206

Adding Run List .. 207

Deleting the Node Details ... 207

Verifying Chef Client Registration with Chef Server ... 207

AWS and Chef Provisioning Using Vagrant .. 208

Installing the Plug-ins ... 208

Adding the AWS Box to Vagrant .. 208

Vagrantfile for AWS Provisioner .. 209

Provisioning Using Knife .. 211

Knife EC2 Plug-ins .. 211

Knife Azure Plug-ins ... 215

Chapter 13: Troubleshooting and Debugging ■ 219

Chef Troubleshooting and Debugging .. 219

Debugging Chef Client Run ... 219

Running Chef Client with an Empty Run List .. 219

Running Chef Client in Debug Mode ... 221

Using Chef Client Log Files ... 221

Types of Log Errors ... 222

Using Chef Handler Cookbook .. 222

Debugging Recipes Using Logs ... 223

Common Errors ... 223

Using a Log Resource ... 225

Debugging Recipes Using Chef Shell .. 225

Configuring Chef Shell .. 226

Debugging Recipes Using Breakpoint Resource .. 227

■฀CONTENTS

xiv

Troubleshooting Chef Client .. 229

Chef Client Fails to Run a Recipe Successfully at Bootstrapping 229

Reregistering a Removed Client ... 229

Issues Registering Chef Client with the Server .. 229

401 Unauthorized Errors ... 231

Clock Synchronization Error ... 231

No Such File or Directory: /etc/chef/validation.pem ... 232

Cannot Find Config File ... 232

Index .. 233

xv

About the Authors

Navin Sabharwal is an Innovator, hought Leader, Author, and Consultant in the areas
of cloud computing and lifecycle management, DevOps, automation, and coniguration
management tools such as chef, Puppet, BMC CLM, HP CDA, IBM Jazz, ITOps, runbook
automation, and software product development.

Navin has been involved in the creation of IP Development & Service Delivery in the
areas of cloud computing, AWS, Azure, data center automation, DevOps, and IT analytics.

Manak Wadhwa holds a master’s degree in information technology from Indian Institute
of Information Technology and has been working as DevOps engineer in HCL for the past
two years. He has also worked with various data center automation tools such as chef,
Puppet, and Ansible.

Manak has also been working on various public cloud platforms which include
AWS and Azure.

.

xvii

About the Technical
Reviewers

Kalyan Kumar is the Chief Technologist for HCL Technologies–ISD and leads all the
Global Technology Practices.

In his current role Kalyan is responsible deining Architecture & Technology Strategy,
New Solutions Development & Engineering across all Enterprise Infrastructure, Business
Productivity, Uniied Communication Collaboration & Enterprise Platform/DevOps
Service Lines. Kalyan is also responsible for Business and Service Delivery for Cross
Functional Services & SIAM for HCL across all service lines globally.

Kalyan is widely acknowledged as an expert and path-breaker on BSM/ITSM & IT
Architecture and Cloud Platforms and has developed many IPs for the company in
these domains. He is also credited with building HCL MTaaSTM Service from the
scratch, which has a multi-million turnover today and a proprietary benchmark for
Global IT Infrastructure Services Delivery. His team is also credited with developing
the MyCloudSM platform for Cloud Service Management & MyDevOps, which is a
pioneering breakthrough in the Utility Computing and Hybrid Agile Ops Model space.
He has been presented with many internal and industry awards for his thought
leadership in the IT Management space.

Kalyan also runs the HCL ISD IPDEV Incubator Group where he is responsible
for incubating new services, platforms and IPs for the company. Additionally,
he co-authored the Book Process Excellence for IT Operations: A practical guide to
IT Service Management (http://tinyurl.com/k7u3wyf).

Kalyan has spoken at many prestigious industry platforms and is currently actively
engaged in the Partner Advisory Board of CA Technologies, and IBM Cloud & Smarter
Infrastructure BOA.

In his free time Kalyan likes to jam with his band Contraband as a
drummer /percussionist and reviews Consumer Technology Gadgets and follows
Cricket Games diligently. Kalyan lives in New Delhi, India with his family. He can be
followed on Twitter @KKLIVE and at Linkedin (http://www.linkedin.com/in/kalyankumar).

Piyush Pandey is currently working as Track Lead at HCL Comnet, where he oversees
the DevOps, Service Automation and Cloud Lifecycle Management Practice for HCL’s
UK oice. He is responsible for designing automation solutions for enterprise IT
infrastructure management. In the past four years, he has developed enterprise tools
for the public cloud (AWS, Azure, Google Compute); Automation tools (BMC, HP CA,
Microsoft, Puppet, Chef, and Cobbler); orchestration tools (BMC AO, Microsoft System
Center Orchestrator, and VMWare orchestrator); and monitoring tools (Nagios, Zenoss,
and SCOM).

http://tinyurl.com/k7u3wyf
http://www.linkedin.com/in/kalyankumar

xviii

■฀ABOUT THE TECHNICAL REVIEWERS

He has worked to provide Automation Solutions for Fortune 500 clients such as
AstraZeneca, News International, Cummins, Ingram Micro, SGX, GulfStream and Xerox.
He holds a Bachelor’s degree in computer engineering from NSIT Delhi.

xix

Acknowledgments

Special thanks to Himanshu Tyagi, Bibin W, Piyush Pandey, and Rohit Sharma for all their
help and support. Also, this book would not have been possible without Saswata Mishra,
Mark Powers, and the rest of the team at Apress. It has been wonderful to work with the
Apress team.

hanks for the motivation and review by Kalyan Kumar, who has been instrumental
in guiding us through the journey on automation.

Special thanks to Dheeraj Raghav and Rajendra Prasad who used their creativity to
make the book images look beautiful.

	Contents at a Glance
	Contents
	About the Authors
	About the Technical
Reviewers
	Acknowledgments
	Introduction
	Index

