
www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iv

Contents at a Glance

Contents .. v

About the Authors .. ix

About the Technical Reviewer .. x

Acknowledgments ... xi

Introduction .. xii

■Chapter 1: Harnessing the Power of the Mobile Web 1

■Chapter 2: Twitter Applications: Who's That Tweet? 21

■Chapter 3: Twitter Applications: I Love Ham ... 39

■Chapter 4: Basic Planning and Structuring of Your Application 49

■Chapter 5: Handling Multiple Screen Resolutions with CSS 3 65

■Chapter 6: Handling Different Browser Platforms ... 85

■Chapter 7: Building an Impressive User Experience with jQuery Mobile 99

■Chapter 8: Building Visually Rich Internet Applications 121

■Chapter 9: HTML5 Location-Based Applications ... 145

■Chapter 10: Using Cloud Services: A Transport Application 167

■Chapter 11: Pushing the Limits with Audio and Video 187

■Chapter 12: Supercharging the User Experience with AJAX 211

■Chapter 13: PackagingYour Applications .. 233

Index ... 261

www.allitebooks.com

http://www.allitebooks.org

xii

Introduction

Both of the first author’s (Jon’s) parents were artists. They each could draw fantastical pictures
that resembled real life, and were shocked to see that their son could barely muster up a stick
figure. If you’ve always felt that your inner artist was best expressed through what you could build
with the help of a computer and the Internet, then this book can guide your virtual paintbrush.
The finished product? A mobile web application for Android devices, which can in turn inspire
creativity and productivity in millions of prospective users. It is our hope that this book will give
you all that you need to get up and running and creating your masterpieces in no time.

Who This Book Is For
This book is written at a beginner’s level. For the most part, we assume nothing as we write about
everything from what HTML is to how to apply CSS to querying databases and displaying content
using JavaScript. For some, this may mean that they would like to skim certain introductory
materials (and assuredly miss many bad jokes). However, even advanced users will likely gain
something from the tricks we unroll our sleeves to reveal.

How This Book Is Structured
We’ve split the content in this book into several chapters, with three “unofficial” parts.

In the first part, we introduce you (Chapter 1) to the basic languages of the web: HTML, CSS,
JavaScript, and more. We then jump into two applications (Chapters 2–3) quickly to get your feet
wet, and then back out to discuss planning concerns you might need to address when designing
your own apps (Chapters 4–6)

In the second part, we start to jazz things up a bit. We go into building impressive user
interfaces (Chapter 7) and working with visual content (Chapter 8). We then show you two more
applications (Chapters 9–10) that speak to the unique nature of mobile applications: Using
location information to guide your apps (and users), as well as tapping into the cloud for
information and data.

Finally, in the last part, we talk about the next level of interactivity to add to your
applications. We touch on adding audio and video (Chapter 11), doing things behind the user’s
back to provide impressive functionality (Chapter 12) and wrapping it all up and uploading to the
web or building a full app for your formerly browser-bound creation (Chapter 13).

While we’ve grouped chapters into a logical order, after Chapter 1 you should feel free to
explore the rest of the content. While many topics build upon one another, reading what interests
you first may help you get a good grasp of what concepts from earlier chapters you’ll definitely
want to check out. At the same time, there are nuggets of information in each chapter that will
stand upon their own, especially discussions on design, psychology, and user experience! We
hope you enjoy the journey!

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

xiii

Downloading the code
The code for the examples shown in this book is available on GitHub at
https://github.com/jonwestfall/Beginning-Android-Web-Apps-Development.

Contacting the Author
We’re always happy to hear from our readers, and if you have questions, comments, or thoughts
about the book (or life in general), you can contact any of us through our personal websites or
social media.

Jon Westfall: http://jonwestfall.com Twitter: @jonwestfall
Rocco Augusto: http://nerdofsteel.com/ Twitter: @therocco
Grant Allen: http://www.artifexdigital.com Twitter: @fuzzytwtr

www.allitebooks.com

https://github.com/jonwestfall/Beginning-Android-Web-Apps-Development
http://jonwestfall.com
http://nerdofsteel.com/
http://www.artifexdigital.com
http://www.allitebooks.org

1

 Chapter

Harnessing the Power of
the Mobile Web

Welcome to the first chapter of this book. In this chapter, we’ll endeavor to not only tell

you about what you’ll find in this book, but to also compare it to what has come before.

You see, quite simply, it is only now that the true power of mobile web applications and

mobile-optimized websites is being realized, despite the existence of the “web” on

mobile phones in some form for 10 years.

Before we show off the neat stuff we have planned for this book, it’s probably best to

make sure everyone is on the same page, lingo-wise. So we’ll start talking about the

basic terms in web design. In the second section, we’ll talk about the precursors to

today’s mobile web. And finally, in the last section, we’ll talk about the concepts that will

guide this book and give you a sneak peek at some of the applications we’ll be

developing!

Basics of Web Design
There are a few concepts that it’s best to discuss up front. Forgive us if you’ve heard this

all before. However, if you’re completely new to web design (i.e., you’ve never written a

single web page or blog), then this should be a good place to start. And, if we’re starting at

the beginning, then we should start with the lingua franca of the web: HTML.

Getting Started: HyperText Markup Language (HTML)

In the late 1980s, the computer language we know today as HTML was born. HTML isn’t

a true programming language, per se, in that it isn’t compiled. Rather, HTML is

interpreted by special software called a web browser. Browsers, such as Microsoft

Internet Explorer, Mozilla Firefox, and Google Chrome on your Desktop computer, and

Dolphin HD, Opera Mini, and Skyfire on your Android device, download HTML files from

a web server, interpret them, and display them. This entire process is fairly simple. A

1

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Harnessing the Power of the Mobile Web 2

web server can be any sort of computer that makes a list of files available to other

computers on the network over something called HyperText Transport Protocol (HTTP,

as in http:// at the beginning of web addresses, which are also called URLs). Browsers

download these HTML files over HTTP and read them, looking for special features

known as tags. These tags function in the same way as tags in older word processor

programs did—specifying how text and other elements of the page should look when

displayed in the viewer. Consider the web page in Figure 1–1.

Figure 1–1. An example web page named hello.html

Let’s look at the HTML code that made up the page shown in Listing 1–1:

Listing 1–1. hello.html

<html>
<head>
<title>This is the text that appears in the browser's Title bar!</title>
</head>
<body>
This is normal text. However let's get fancy and make this bold (this
is italicized).

 The tag to the left just made this a new line.
<p> The tag to the left here just made this a new paragraph.</p>
</body>
</html>

The code might look a bit strange, but let’s walk through it line by line. The first line,

which simply reads <html>, lets the browser know that it’s reading an HTML document.

You’ll notice that the last line of the document, </html>, is similar. This line “finishes” the

HTML object—closing the tag and telling the browser that the page is over. By having

sets of tags like this, the browser knows what formatting to apply and where to stop

applying it.

The second through fourth lines of the code are known as the page header. This is

where programmers store important information that the browser needs to know in order

to format the page properly. In this case, the only tag I’ve placed within the header is a

title tag, which specifies what should be shown in the title bar of the user’s web

browser. The header would be the location where one would most commonly finds

certain documents, such as Cascading Style Sheets, JavaScript, and META information

for search engine optimization, special instructions for different browsers, favicons

(those little icons that appear next to a bookmark entry in your browser), and other

important information about the page that is not related to the documents’content,

which brings us to line 5 - the bodytag.

The bodytag tells the browser that the content to display to the user is about to be given.

From here, we see straight text—the same that’s in the rendered page shown in Figure 1–1.

However, you’ll notice a few special tags we’ve added in. The first, , tells the

browser that the text between it and its end tag should be in bold to give it a

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Harnessing the Power of the Mobile Web 3

stronger visual oomph. A second tag, , does the same by emphasizing the content

orby making the content italic.1 A third tag,
, starts a new line (br stands for line

break!). The
 tag is a little different than most HTML tags. Since the tag does not

require itself to enclose content on the page in the same thatthe and tags

do, this tag closes on itself. Finally, the <p> tag starts a new paragraph.

At their cores, all web pages are some form of HTML, although most we’ll discuss in this

book are much more complicated. Thankfully, we’ll walk you through them, so you won’t

be overwhelmed!

If this is your first outing into the world of HTML and web applications, then it would

probably be a good idea to familiarize yourself with the basics of HTML before jumping

full on into the book. One of the best resources on the Internet for learning HTML and

browsing through basic code examples can be found at the W3Schools

(http://www.w3schools.com/). Once you've gotten your feet a little wet with HTML, or in

case you're already soaked from the neck down, it would be time to move on to some of

the more intermediate portions of web application design and technologies that we will

be using in this book.

Getting Stylish: Cascading Style Sheets (CSS)

Imagine that you’re writing up a simple web page to aid in your parenting—a family

chore list. It might look something like the list in Figure 1–2.

Figure 1–2.Family Chore List

By just glancing at the finished product, there does not appear to be a lot going on

here.We have a standard boring black and white document that completely lacks any style

or individuality. Let us take a look at the code behind the scenes shown in Listing 1–2.

Listing 1–2. chores.html

<html>
<head>
<title> Family Chore List </title>
</head>
<body>
<h1>Family Chore List</h1>

1 It’s worth noting that the and <i> tags you may be used to were used in HTML 4

for the same purpose as and respectively. Their use has been

deprecated in HTML5 in favor of the tags above.

www.allitebooks.com

http://www.w3schools.com/
http://www.allitebooks.org

CHAPTER 1: Harnessing the Power of the Mobile Web 4

Tommy: Take out the trash
Beth: Clean out the fridge.
Mittens: catch mice.

</body>
</html>

Let us break down the teensy morsel of code within the bodyelement. Here, the

unordered list on the page is created using the ul tag. An unordered list is great to use

anytime you want to create a bulleted list of items. If your list requires a little more

order,you might opt to use the ol, or ordered list,HTML tag.

While the page is fairly nice and simple, you might want to spice it up. Perhaps around

Christmas time, you’d like splash some color on your family chores page that would

make even the most bah humbug elf smile with glee (see Figure 1–3).

Figure 1–3.Christmas Chore List with green and red adding a holiday feel

Perhaps on the Fourth of July, you might want to fill your family with patriotic gusto (see

Figure 1–4).

Figure 1–4. Patriotic Chore List with the red, white, and blue

Each time we change the colors, we modify the HTML source code by adding in

appropriate tags. Take a look at the patriotic version of chores.html in Listing 1–3.

Listing 1–3. patriotic chores.html

<html>
<head>
<title> Family Chore List </title>
</head>
<body bgcolor=blue>
<h1>Family Chore List</h1>

Tommy: Take out the trash
Beth: Clean out the fridge.
Mittens: catch mice.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Harnessing the Power of the Mobile Web 5

</body>
</html>

Making modifications straight to the HTML is fine for small pages. However, imagine

how much time adding those font tags might take if there were 12 children and

countless pets to coordinate. Or perhaps you have multiple pages, one for each child

and you don’t want them to feel left out if their sibling has nice color combinations and

they don’t. Never fear–we can use something called a Cascading Style Sheet, or CSS, to

keep it all in check. Basically, a CSS file is a small document consisting of a set of styles

to be applied to an HTML document that can be changed at anytime, affecting every

page it is connected to, without ever having to edit the original HTML document(s).

Listing 1–4 provides an example CSS file.

Listing 1–4. patriotic.css

body {background-color: blue}
h1 {color: white}
li {color: red}

Notice how the format of the file is simply the HTML tag you wish to edit (H1 for example

and the attributes you’d like to give it). In this case, we want the color of text within h1 to

be white.We can simplify chores.html to include a link to this CSS file, as shown in the

code of Listing 1–5.

Listing 1–5. chores.html with CSS reference

<html>
<head>
<title> Family Chore List </title>
<link rel="stylesheet" type="text/css" href="patriotic.css" />
</head>
<body>
<h1>Family Chore List</h1>

Tommy: Take out the trash
Beth: Clean out the fridge.
Mittens: catch mice.

</body>
</html>

We’ll get exactly the same output as is shown in Figure 1–4. Now, imagine how this

works if we scale upward. First of all, the parents no longer need to edit the HTML tags

directly to change styles. Depending on the holiday, they simply could have multiple

CSS files they could link to (simply changing the fourth line of the code in Listing 1–5).

Second, they could extend the CSS even further to specify spacing, fonts (Mittens hates

serifs), and more. Finally, if they have more than one page, they could simply link the

CSS sheet at the top of each page to their current “theme” and all the pages would look

alike. While the examples above are extremely simple, they illustrate the power of CSS.

We’ll examine CSS inmore detail as we continue through the book!

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Harnessing the Power of the Mobile Web 6

Getting Interactive: JavaScript

Sometimes great design isn’t enough to make your point. Sometimes you want to do

something a bit flashy, or something unique, or something downright useful. One of the

simplest ways to do that is by using JavaScript. JavaScript is a scripting language that

runs inside the viewer’s web browser. For example, perhaps you’ve gone to a site before

and gotten a pop-up message like the one in Figure 1–5.

Figure 1–5.A JavaScript warning

Typically, you see these messages while filling out a forms page or perhaps in an online

shopping cart telling you that your item is out of stock or some such annoying message.

While you might be used to seeing these messages on web pages on your computer,

they can also be shown in a mobile web browser (see Figure 1–6).

Figure 1–6. A JavaScript warning on an Android phone

CHAPTER 1: Harnessing the Power of the Mobile Web 7

The code that creates these messages is remarkably simple. Listing 1–6 integrated the

code into the chores.html page we saw in the CSS example above.

Listing 1–6. chores.html with JavaScript reference

<html>
<head>
<title> Family Chore List </title>
<link rel="stylesheet" type="text/css" href="patriotic.css" />
<script type="text/javascript">
function ShowWarning() {
alert("Mittens - your mousing numbers are down this week - NO CATNIP FOR YOU");
}
</script>
</head>
<body onload=ShowWarning();>
<h1>Family Chore List</h1>

Tommy: Take out the trash
Beth: Clean out the fridge.
Mittens: catch mice.

</body>
</html>

Let’s start by talking about the new section of code right below the CSS link, inside the

headsection, with the tag script. The scripttag tells the browser that a section of

scripting code (in this case, of the type text/javascript) is about to be given. The

browser then interprets the code. Since it’s in the headsection, the browser simply stores

this code for later use. This piece of code is called a function, which you can think of as

a list of commands wrapped up in a “shortcut”. Here the command is another function

named alert. As you can imagine, JavaScript functions can get quite complex, with

functions including other functions and interacting with user input.

Once the function is loaded into the browser’s menu, we need to tell the browser when

we want to execute it. In this case, I’ve changed the bodytag to include the line

onload=ShowWarning();. This tells the browser that, when the page is loaded, I want it to

run the function ShowWarning. The two parentheses indicate a spot where I could include

information to pass to the function. This becomes useful for creating things like

calculators or for checking input in a form. For example, I could write up something like

Listing 1–7.

Listing 1–7. chores.html with JavaScript reference passing a variable

<html>
<head>
<title> Family Chore List </title>
<link rel="stylesheet" type="text/css" href="patriotic.css" />
<script type="text/javascript">
function ShowWarning(catname) {
alert(catname + " - your mousing numbers are down this week - NO CATNIP FOR YOU");
}
</script>
</head>
<body onload=ShowWarning("Mittens");>
<h1>Family Chore List</h1>

CHAPTER 1: Harnessing the Power of the Mobile Web 8

Tommy: Take out the trash
Beth: Clean out the fridge.
Mittens: catch mice.

</body>
</html>

The code in Listing 1–7 will produce the exact same message as the code in Listing 1–6.

However, in Listing 1–7, I’ve passed the feline’s name as a variable. The function

ShowWarning now expects that I’ll pass a variable to be named “catname”, and it can use

that information in its code. When I call ShowWarning() in the bodytag, I simply add the

cat’s name to be passed to the function. I can pass more than one thing, if I want to. As

mentioned, this could get quite complex, depending on how much I want to chastise

poor Mittens.

As you can see, coupling JavaScript along with HTML and CSS can produce pages that

look good, are easy to update, and can interact with the user. But sometimes you might

need to produce a document that doesn’t give style information–it just gives general

information. A prime example of this is given in the next section, as we start to get into

the wonderful world of XML!

Getting Informative: Extensible Markup Language (XML)

If you spend any time on the Web, you may have noticed an odd little icon on some

pages that looks something like this.

Figure 1–7.An RSS icon

This little orange icon tells the reader about an RSS feed that the current website has

available. RSS feeds look pretty uninteresting and unintelligible to a user (take a look at

Figure 1–8 for the start of an RSS feed). However, other web pages and scripts can use

them to grab a lot of information from one source and display it in different ways to the

user.

CHAPTER 1: Harnessing the Power of the Mobile Web 9

Figure 1–8.The start of a blog’s RSS feed, showing new entries

For example, Figure 1–9 is the beginning of the RSS feed for my personal blog. Each

element contains a variety of data that isn’t very pretty to look at but provides all the

information one might want to view my blog in a special piece of software called an RSS

reader. While certain applications, like Microsoft Outlook, have built-in RSS readers,

many prefer to use a dedicated reader client. One popular RSS reader is Google Reader,

which can take the link to my RSS feed and produce a nice view of my blog so that the

Google Reader user can quickly see` what articles I’ve posted recently.

Figure 1–9. My personal blog, displayed within Google Reader

CHAPTER 1: Harnessing the Power of the Mobile Web 10

Now, you might be asking why I’d want people to view my website somewhere other

than at its usual web address. The simple answer is that it might be more convenient for

my users to view all the blogs they read (mine and others) within one piece of software.

Software, such as Google Reader, can keep track of hundreds of RSS feeds, from news

sources, blogs, and even just simple status updates like my Twitter feed. All of these

pieces of information are retrieved by Google Reader in a format known as Extensible

Markup Language (XML). XML isn’t a format you’d want to have your human viewers

see, but it is one that you’d want to use if you were sharing information between web

pages or between web services.

While the example above shows XML as an output, the web application that powers my

blog (WordPress) produces the XML so other sites like Google Reader can use it. XML

can also be used as an input. For example, I might want to take data (such as sports

scores) and display them on my webpage. Most likely, those sports scores will be

available in XML, which my web page can then open and parse. Parsing is simply a

fancy term that means “read, interpret, and display”. My webpage will read the scores,

interpret them if necessary (i.e., calculate something, aggregate something), and then

display them to the user in some meaningful way.

So to recap, we’ve now seen how to build a basic webpage, how to make it look pretty

(easily), and how to make it interact with a user. Finally, we talked about how webpages

and programs get data between each other by using XML. As we move through the

book, we’ll talk in depth about each of these areas and give you plenty of examples of

how to use them. In fact, coming up in Chapter 2, we’ll discuss how to get data from a

very popular web service and display it in the first full application we’ll create!

JSON: Human-Readable Data Interchange

If you have a brilliant idea for a mobile web application that relies on the application

programming interface, or API, of other services, such as Twitter or Foursquare, then

chances are you will be quickly introduced to JSON (JavaScript Object Notation), which

is one of my favorite technologies.

JSON is a human-readable, super-lightweight data interchange technology that is based

on JavaScript. Basically, it is a JavaScript object that can be used to transmit simple

data structures and arrays of information. When it comes to working with external data

in your web application, I have fallen in love with JSON for its ease of use when

compared to other technologies such as XML. As with all technologies though, your

mileage may vary.Figure 1–10 shows an example of what a JSON document would look

like.

CHAPTER 1: Harnessing the Power of the Mobile Web 11

Figure 1–10. Rocco Augusto's portfolio in JSON format from nerdofsteel.com

The Mobile Web, Yesterday and Today
Many of us first started using the Internet in the late 1990s or, if you weren’t alive in the

late 1990s, perhaps you’ve used it your whole life! While we might be very familiar with

the Internet on our desktop, getting it onto a small screen that can fit in our pocket might

seem a bit strange, especially with different jargon and marketing-speak that is often

heard when it comes to the Web. We’ll start by discussing how fast the data arrives on

your phone and then what sorts of data can be sent.

Knowing the Speeds (Or “What is 3G anyway?”)

Often in commercials for the latest smartphone, you’ll hear a number such as “4G” or

“faster than 3G”. The "G" stands for the generation of the technology. You rarely hear

about 2G, second generation, and there is a good reason for it. The onslaught of data

onto a smartphone coincided with the emergence of the third generation of cellular

network data standards. However, 1G and 2G did exist and, if you owned the first

CHAPTER 1: Harnessing the Power of the Mobile Web 12

iPhone (Released in 2007), you only had 2G speed, using protocols including GPRS,

EDGE, and 1X. Data coming to you over 2G was just about twice as fast as a dial-up

modem, around 115KbpsSo while email and text-based web pages would load

reasonably fast, anything with too many images or multimedia would take approximately

eternity2.

Around 2001, the initial designs for what we consider 3G (or third generation) data

networks were drafted andcould reach theoretical speeds of over 7Mbps These

networks, which include protocols like UMTS, WCDMA, and EV-DO, can move data

much faster than their 2G counterparts. For the first time, thisallowed forinnovations

such as streaming movies and music directly to a phone. The limiting factor in showing

complex web pages was no longer the speed of the data connection but the speed of

the phone. By 2007, most telecom providers had adopted and “rolled-out” a 3G network

and devices, such as mobile broadband cards, became common.

In the past few years (2008-2010), new and approved versions of current 3G

technologies have become available. While there is considerable argument about what

exactly the differences between the 3G technologies we were privy to before and this

newer 3G-based technology that is being dubbed "4G" are, it is obvious that newer

protocols, such asHSPA, HSPA+, WiMAX, and LTE, are faster than their 3G

predecessors. Unfortunately, while all of the major carriers are gradually moving forward

with their plans to increase data speeds and network capacity, those updates and

changes will not become immediately apparent to the end user until they purchase a

phone with the right internal hardware to take advantage of these numerous changes.

One common trap that many web developers who target mobiles may fall into, at least

early on, is the notion that speed is all one needs to consider when developing a mobile

app. If I know my users will need a 3G network to use the feature I’m developing, it

might be tempting to skip streamlining other areas of the app, given the fact I know I’ll

have a faster data connection. However, as mentioned above, speed isn’t the only factor

one needs to consider.The actual processing and software power of the device (i.e., the

capabilities of its web browser) can also slow down an app. If you want evidence of this,

use your own Smartphone or Tablet on Wi-Fi instead of cellular data and observe how

certain sites and apps still lag when connecting to the Internet, despite a connection

much faster (generally) than 3G or 4G. We’ll discuss how to avoid programming bloated

unresponsive apps as we continue through the book.

Languages and Protocols, Yesterday and Today

Now that we know how fast we can go, we should probably talk a bit about how web

pages were shown to handheld users over the past 10 years and the current state of the

mobile world.

In the beginning, handheld devices, such as the earliest modern personal digital

assistants (PDAs), had no direct connection to the Internet. This meant that any content

2 At least it felt that way.

CHAPTER 1: Harnessing the Power of the Mobile Web 13

the user wanted to read from the web needed to be downloaded first and then stored on

the device or cached. A very popular service for this, AvantGo, operated for a little over

a decade before closing up shop in 2009. While these services were somewhat

annoying (in that you needed to manually synchronize your PDA physically to your

computer regularly to get the content you wanted), they generally presented content in a

very basic and easy to read manner. Ironically enough, this type of presentation has

experienced a bit of a revival as users today find content while online and otherwise

busy (i.e. at work) and wish to save it to read later. One popular service, Read It Later

(http://readitlaterlist.com/), even has a mobile client that shows these saved web

pages in a similar format to the old “offline cache” system popular in the late 1990s!

Figure 1–11 shows a cached article on Read It later.

Figure 1–11. Read It Later, on Android, shows the cached version of a Yahoo! Sports article

As PDAs with built-in Wi-Fi radios and smartphones became available, users could

connect directly to a web page and view its content. Before direct access to the

Internet, however, many telecoms delivered phones with WAP browsers. WAP, or

Wireless Application Protocol, was an extremely simple data servicethat allowed users

to navigate simple menus to get to the information they wanted. These menus were

typically all text, with perhaps 1–2 images here and there, and were designed to be

quick portals to things like web–based email, perhaps movie times, or weather

information. Phones with WAP browsers weren’t connecting to the Internet, per se, as

they could only view what their provider had put on the menu, but at least they could

http://readitlaterlist.com/

CHAPTER 1: Harnessing the Power of the Mobile Web 14

view it wherever they had cell coverage, as opposed to downloading it and reading it

offline.

A similar concept to WAP was the Java Platform, Micro Edition, and often abbreviated

j2me. j2me allowed users to load small java applets on their phone that could connect to

specific services in the same way WAP did, providing a similar experience. While j2me

(Java Platform, Micro Edition) was available on phones 2-3 years ago, along with the

ever–popular feature phone–friendly Brew MP operating system from Qualcomm, it was

limited by odd security settings and precautions that providers might put on a phone.

Oddly enough, it was available on phones that already had working web browsers that

could go anywhere. This madeone wonder why you might load up a special Gmail j2me

applet when you could simply visit the mobile version of Gmail.

Finally, by about 2005, most smartphones on the market contained a fairly decent web

browser that one could open, type in a URL, and view an actual web page. These web

pages were typically one of the following two varieties: normal web pages crammed

onto a smaller screen (see Figure 1–12) or specially created mobile versions of a website

(see Figure 1–13). Both had their advantages and disadvantages. The normal page

usually looked horrible on a small screen, with information flowing off the page,

unreadable, or in technical terms, unrenderable (rendering is the process by which a

web page is shown in a browser). While the information was usually horribly displayed, if

one had enough patience and skill, one could usually find what they needed.

Figure 1–12. My personal blog, desktop-view, displayed in a mobile browser

CHAPTER 1: Harnessing the Power of the Mobile Web 15

Mobile versions, on the other hand, are generally easier to navigate, as they are specially

designed for smaller screens using variants of the HTML language like XHTML or

CHTML. These pages look nice and are very usable, but usually lack specific content.

Figure 1–13. My personal blog, displayed in a mobile view, in a mobile browser

The goal of this book is to help you create mobile optimized versions of a website that

contain much the same content as the desktop version might, while still being useable.

As you might expect, users who find your page easy to use will be more likely to

overlook some missing pieces. However, users who need 20 minutes (or as one of our

editors pointed out, 20 seconds!) to find the latest game score or weather report will

likely flock elsewhere.

Concepts We Like—And What’s Ahead!
As we wrap up this chapter, we’d like to take a moment and discuss a few guiding

principles that we like to keep in mind and hope you will to, not only as you read this

book, but as you start programming your own web applications.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Harnessing the Power of the Mobile Web 16

Concept 1: Think Like A User

Think about a website you own, one you’ve contributed to, or just one that you visit

frequently, and ask yourself this: What do most people do when they visit this site? The

answer might come quickly. However, it might be worth thinking deeper about just how

“average” that answer is.

For example, a friend of mine recently published a few blog posts on The Huffington

Post, a site known for the rapidity and outspoken way in which comments are quickly

posted on an article. When he sent me the link to his article, I pulled it up and read

through it. When I was done, I closed my browser and went about my day. Later in the

week, my friend asked me if I saw the article and after I said I had, he asked “What did

you think of all those comments?” The answer was simple. I didn’t think anything about

those comments, certainly not even enough to read them. However, in his mind, since

they were feedback on his own work, the comments were much more interesting than

the article itself (after all, to an author, their own work seems pretty familiar and

uninteresting). Now imagine if my friend had designed the website on which his work

was published. You might not be surprised if you saw user comments highlighted,

perhaps even displayed prominently to the side of the article or somewhere else other

than at the bottom, in smaller print. For my friend, the “average” user would be more

interested in the comments than the article, when in fact, the opposite is likely true.

Thankfully, my friend isn’t a programmer. But as programmers, we must keep track of

what our users are doing with our website or application. If we focus all of our attention

on a feature a user finds trivial, while ignoring needed updates or enhancements to core

features users find essential, we may lose those users en masse.

Concept 2: Don’t Annoy the User

The best example of concept 2 that I can give comes from the evil word “monetization”,

or simply the idea that “Hey, I did a lot of work, I’d like some sort of repayment in the

form of legal tender!” Monetization typically comes from selling advertising; something

that users understand is a fact of life. If you want something for free, you expect that in

some way you might be subjected to an ad every now and then to keep it free. Most find

this preferable to paying for content and, indeed, many publishers report earning more

money through advertising than through sales of their paid products!

However, just because you’re advertising to people doesn’t mean you need to jam

advertisements in their face! You need to use tasteful ads, ads thatpique the user’s

interest, and ads that don’t annoy the user. Ads in every paragraph or on the top, sides,

and bottom of every page are rarely effective.

Similarly, unnecessary content or special effects may also annoy a user. For example,

recently I came across a page that used a special login button that had a nice raised

edge and looked good on my desktop browser. However, on my Android smartphone,

the browser was confused: Was this a button or an image? When I tapped on it, nothing

happened. Finally, through a really odd motion of tapping and slightly holding and

CHAPTER 1: Harnessing the Power of the Mobile Web 17

moving my finger, I got it to log in. The problem would have been solved, if the author of

such a page had simply done one of the following:

1. Tested the page with a mobile browser

2. Used a standard web form button

In this instance, form took precedence over function. Don’t get me wrong, fancy designs

are fine, as long as they don’t detract from usability.

Concept 3: Test-Retest Reliability

In my (Jon’s) day job, I research how individuals make decisions and the effects of those

decisions. In my research life, the concept of test-retest reliability means that results

from one run through of a given task should be the same as the second time through

(and subsequent). I’ll borrow that concept from research methodology to discuss a view

on testing your content.

Similar to Concept 1, users are all different. Most of them will have a slightly different

setup than you have when designing a web page or an app. For example, right now I’m

using a 27’’ monitor, something that as a designer I find very useful, but wouldn’t expect

most people to have. Thus, if I design a web page, I probably shouldn’t assume that

people’s browser window is 1565 pixels wide and 912 pixels high, like mine is right now.

This becomes especially important when working with smaller screens. Some Android

phones and tablets have relatively large screens, while others have smaller screens.

Testing your app or web page on a variety of devices (perhaps with the help of friends)

ensures that your users get the best and most optimal experience every time they visit

the site. One must also be careful about repeat visits, since browsers may cache

content it should update. On the other hand, some of the techniques we’ll highlight in

future chapters make use of templates or frameworks that will make the browser cache

your friend. These techniques reuse content the user has already downloaded!

Concept 4: Keep it Simple Stupid!

Nowadays, you cannot walk down the street without seeing some parent shove their

smartphone in front of their toddler’s face to keep them busy on long car rides or while

at the store. Before this time of magical touch–based, Internet–enabled phones and

tablets and before the time of broadband Internet, which I (Rocco) also like to refer to as

"the time before time," it was considered a great privilege to get into a basic computer

class. It was one of those things that was expected of someone in primary school to do

if they ever wanted to have any sort of successful spreadsheet loving job when they

graduated from high school.

Growing up religiously watching Star Trek with my father every week, you can imagine

how ecstatic I was when I went into the sixth grade and was finally able take my first

official computer class. I mean, come on! How could you not want to be like Scotty and

whip up the formula for Transparent Aluminum in a matter of seconds on a computer

that you were, just a second ago, talking into the mouse and trying to give it voice

CHAPTER 1: Harnessing the Power of the Mobile Web 18

commands?! This is why that entire summer before school started was spent going to

the library checking out every computer book I could find to prepare for what I

thoughtmight be in store for my upcoming beginner’s class to computers. That

excitement quickly turned to disappointmentwhen I learned that the world of computers

was not as glamorous and exciting as Star Trek and every movie with a computer

hacker in it made it appear to be. Instead, the most I learned out of that class was how

to make a copy of the Beverly Hills Cop theme song and put it on a floppy disk, as well

as how to open a HyperCard application (though strangely enough we never learned to

write a HyperCard application.)

That first year, as much of a disappointmentas it was, became the catalyst to my

determination/obsession with computersthat lead me to sign up for a computer class

again during my seventh grade year. Unbeknownst to me,this computer class, this

minuscule hour a day out of my lifewould eventually lead to what has been a lifelong

obsession. See, this was the year that AOL was starting to get really popular in the

United States.Most importantly, this yearsaw the birth of HTML 2.0. My teacher at the

time saw where this technology was going and embraced a vision of a future where

information was exchanged freely. Every day in class, he would hammer home that one

day the "people that create the Internet pages" (this was before the term Web Developer

was coined) would one day be paid as much as doctors and lawyers and would be just

as valuable and important. Of course, we all thought he was a crazy old man but his

excitement for this future that he envisioned was enough to get me hooked and

eventually I started believing in it and preaching it as well. He believed in this vision so

much that the only work we had to do all year was create the school’s entire website.

Out of everything I learned from that class, the most important rule I learned was the

KISS principle, an acronym for "Keep it Simple Stupid." As much as I loved this teacher

for what he gave me in terms of knowledge, there was no denying that he was a grouchy

old jerk. Every time we had a brilliant idea for our school's website, such as adding

animated GIF flames and sprites of Beavis and Butthead, he would always just say

"Keep it simple stupid!" As annoying as it was as a child to constantly be shot down and

basically called an idiot daily, it did wonders in teaching me the art of patience and

restraint. It made me realize that even though Feature X, Y, and Z would be awesome on

any given project I was working on, it was more important to put them on the

backburner so I can get Feature A, B, and C coded and delivered. Now when I am

working on a project, I sit down and map out exactly what I need to do to launch my

project. I set aside any cool ideas I have for extra features that are not mandatory to a

launch so I can work on them later whenthe task at hand will not sidetrack me.

No matter who you are and no matter how long you have been designing or developing,

one thing always rings true. The hardest part of any project is starting that project. The

more awesome features that aren't needed in your project that you end up adding in

because they're awesome (e.g., adding flames to a hot rod to make it go faster), the

harder it is for you to decide where to start with your project to get the ball rolling. So

remember, no matter how incredible that idea you just had is, if it is not absolutely

necessary to get your project off the ground and garner interest in it, then try to think

twice before adding it to the project at this time. Make a mental note or physical note of

this idea and come back to it later. A perfect example of this would be a program such

CHAPTER 1: Harnessing the Power of the Mobile Web 19

as Twitter. When Twitter was released a few years back, it was a very sparse program

built around the very simple idea of "What are you doing now?" As time went on, more

new and exciting features were added as needed. Twitter has now developed from a

silly little site where you could tell the world what you were eating for lunch into a heavily

invested in web application that breaks such newsworthy events as the death of Michael

Jackson and even played a vital role in getting information out of Internet–deprived

countries in the midst of civil war.

Remember that Rome was not built overnight. It was a constantly evolving empire that

was building upon itself everyday and you should look at your next web project the

same way. Start small and add on as you can while not overwhelming yourself in the

process. In essence—Keep it simple, Stupid!

Coming Up
Now that we’ve talked about the nuts and bolts of web design, the acronyms, the odd

stories, and the concepts, let’s talk a little bit about what you’ll find in this book.

Starting off in the next chapter (just pages away!), we’ll develop a simple application

utilizing one of the most popular services on the Web today, Twitter. Twitter is a great

web phenomenon so we’ll stick with it for another small application in Chapter 3. Then

we’ll take a step back and look at the bigger picture—issues like how you develop an

app in the first place (Chapter 4), and how to deal with different screen resolutions and

browser platforms (Chapters 5 & 6). In Chapter 7 we’re going to show off jQuery

Mobile—and importantly, show you how to make your app look professional and ‘pretty’

with it. Chapter 8 will continue with this theme by showing off some nice resources to

use in your user interface design. With that out of the way, we’ll play around with

location based and cloud based applications, and then finish the book with discussions

on using audio and video, Ajax, and prepping your product to ‘ship’. It’s a lot of material

to cover, but we know you’re up for the trip! Also, if you haven’t noticed, our trend is to

give you a lot of information by example, then move back into a more textbook–like

narrative. This way, hopefully, you’ll stay engaged through this nail–biter of a computer

book! (OK, that was a bit sarcastic, although we truly hope this approach will make for

“fun” reading.)

So, without further procrastination, let’s begin with our first application!

21

 Chapter

Twitter Applications:
Who's That Tweet?

Now that we have covered what we will be learning throughout the course of this book,

it’s time to get our hands dirty by jumping in and creating our first mobile web

applications. Both of these applications will be very simple applications that interact with

the Twitter API. An API, or an application programming interface, is an interface used to

interact with a specific application based off a set of rules or parameters given to the

application by the user. More often than not, one would use an API to gather and parse

data from the application’s infrastructure without ever needing to directly connect to the

application’s database to fetch that information.

The first application we will build is the application “Who's That Tweet?”, which will

parse through a small predefined list of verified Twitter users and display a random

tweet on the page, as well as a list of four possible individuals that might have created

that tweet.

The second small web application we will build is called “I Love Ham”, which will also be

borrowing Twitter's fire hose of data to create a quick and fun form of entertaining for

mobile users on the go. “I Love Ham” will focus on very basic game mechanics. The

user is presented with two predefined rhyming Twitter searches to choose from. If they

choose the Twitter search that receives the most results back, then they are the winners.

Both of these mobile web games will rely heavy on HTML5, JavaScript, and a fantastic

piece of technology called JSONP.

In this chapter, we’ll get you up and running with a development environment on your

own personal computer (think of it as your own mini-Internet, which will connect to

Twitter on the real Internet, but mostly live just on your computer) and discuss the Who’s

That Tweet? application. In the next chapter, we’ll continue by discussing the I Love

Ham application. Let’s get started!

2

CHAPTER 2: Twitter Applications: Who's That Tweet? 22

JSONP
You might remember us talking about JSON in chapter one. JSON is a wonderful piece

of technology and chances are if you have worked in the web development field in the

past few years, then you have probably run across it once or twice. If you’ve surfed the

web in the past day, you’ve also probably run across a website using it! If you have ever

worked with the APIs of Flickr, Twitter, or Gowalla, then chances are you are also very

familiar with JSON. For those that skipped over chapter one completely, JSON is a

human readable data interchange technology that is made to be lightweight and is also

an open standard. As a technology, JSON is fairly young with its usage being traced

back originally to a little after the turn of the century with the JSON.org

(http://www.json.org) website launching in 2002.

If you are familiar using JavaScript and creating objects, then JSON should look

relatively familiar to you. However, JSON is to not be confused with a JavaScript object

as they are not the same. As much as I love JSON, there is one tiny little annoying thing

that most developers are not aware of until they spend hours ripping out their own hair

prematurely making themselves go bald and that is a really nasty, little, pesky thing

called cross-domain scripting.

To understand what cross-domain scripting is and why there are hardcoded rules in

place in your browser to prevent you from doing it, you have to first understand what

cross-site scripting (XSS) is. XSS is a type of vulnerability in web sites and applications

that allows an attacker or intruder to basically inject their own scripts and content into

the site or system. An intruder might use an XSS vulnerability to upload a script to your

server that would allow them to simulate a Bash shell (a common UNIX shell or

command-line interface) for your server in their very own browser, or worse yet, possibly

use that vulnerability to steal thousands of usernames and passwords from your

database.

Due to these concerns, your browser will not load JSON data from a domain outside of

your site’s server in most cases. In order to grab and use that data, it would have to be

grabbed on the backend server side before the page is loaded and then served to the

user. This doesn’t seem like that big of a deal until you start building applications that

have thousands upon thousands of users. Then parsing that external data can end up

impacting the performance of your server. To get around this performance issue and

delegate some of those external data parsing requirements to the end user, we will use

JSONP or “JSON with padding”, which will allow our application to request the JSON

data we need because it will be wrapped (or padded) within a JavaScript object.

Setting Up Your Development Environment
Before we can get started coding, we will need to set up a development environment.

For the sake of simplicity, I will assume that we are using a Windows–based operating

systems so I will only go through the steps of setting up a basic WAMP (Windows,

Apache, MySQL, and PHP) server for us to test our code on. I know not everyone uses

http://www.json.org

CHAPTER 1: Twitter Applications: Who's That Tweet? 23

Windows–based systems but chances are, if you are using Linux or OS X, then you are

already familiar with setting up an *AMP environment for testing.

For our testing environment, we will be using the open source and freely available

WAMP server called Uniform Server (http://www.uniformserver.com/). You can

download the WAMP server from their website. The version I am using, and the version

that will be shown in the screenshots in this chapter, will be from version “7.1.2–Orion.”

Setting up the test environment is fairly simple. Just find the downloaded file that you

grabbed from the website and run the self-extracting EXE file. Once you do that, open

the folder. Before running the server, I wanted to go over a few helpful programs that the

Uniform Server team included to make our lives easier. The first application is called

Pre-Check (Run_pre_check.exe).1 Let’s run this application and look at the results in

Figure 2–1.

Figure 2–1. Uniform Server’s Pre-Check application showing that ports 80 and 443 are currently in use

As you can see, if I tried to run the server at this moment in time, it would fail. I currently

have Skype open and it is running on the classic HTTP ports (Ports 80 and 443) that I

need to run the server. There’s a one program to port rule in networking, so we need to

do a bit of simple tweaking. While you do have the ability to edit some configuration files

to change which ports you will use, for the sake of simplicity, I will just shut down Skype

so we can run on a default set up.

Now that we have freed up our ports, we can run the “Start.exe” application that will

open up and place an icon in your system tray. Right click the Uniform Server icon in

your system tray. It looks like a blue box with the numeral 1 in it as seen in Figure 2–2

below. Choose the “Install and Run All Services” option at the top of the menu. Now, if

you open up your web browser and point it toward http://localhost/, you should be

1 You may need to run this, and other commands, as an administrator in Windows. To

do so, right click on the command and choose “Run as administrator.”

http://www.uniformserver.com/

CHAPTER 2: Twitter Applications: Who's That Tweet? 24

presented with the default Uniform Server starter page (localhost is simply another name

for the computer you’re currently working on, as is the IP address 127.0.0.1).

Figure 2–2. Uniform Server menu as seen in your system tray

Now that our server is up and running, we are almost ready to get started writing some

code. The one last thing we have to do is familiarize ourselves with the server’s default

WWW root folder. If you open up the folder where you extracted your copy of Uniform

Server, you will see a folder called www (see Figure 2–3). Anything that you place in this

folder will be visible to any user that is viewing your site via a browser. Since we are

going to be using our own project files, you can feel free to delete everything in this

folder to start fresh. Later you might make use of these files when setting up your

production server. However, for development purposes, they are not needed.

CHAPTER 1: Twitter Applications: Who's That Tweet? 25

Figure 2–3. The default WWW folder view that will house your application project files

Now that you have managed to set up your own web server for local development and

cleaned up the root folder, it is time to start some coding! If you need any help with your

Uniform Server or just want to dig around a little deeper to see what you can do with this

server, you can run the “help.bat” batch file in the Uniform Server directory and that will

present you with some very in-depth documentation (see Figure 2–4).

Figure 2–4. Uniform Server quick help documentation

CHAPTER 2: Twitter Applications: Who's That Tweet? 26

Your First Mobile Web Application
Grab yourself some coffee and do a little stretching because now it is time to start some

coding. The first application we are building, “Who’s That Tweet?”, will be a small and

simple game that takes a collection of verified Twitter users and celebrities and

randomly displays one of their tweets. The user will then be presented with a list of four

Twitter users that could have possibly created that Twitter post. If the end user chooses

the right Twitter user to go along with that post, then they will get 100 points added to

their score and move on to the next random post. If not, they will be presented with a

visual cue that their guessing skills were inferior and will move on to the next random

Twitter post.

The first thing we are going to do is create a very basic HTML layout, or foundation, for

our game. After that, we will move on to styling that bland skeleton layout with a little

CSS3 and, once it looks pretty, we will finally move on to writing our JavaScript, which

will tie everything together in our first mobile web application.

The HTML

Listing 2–1 contains the basic HTML for our game.

Listing 2–1. Basic HTML for Who’s That Tweet?

<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content=" initial-scale=1.0; maximum-scale=1.0; minimum-scale=1.0;
user-scalable=0;" />
<title>Who's That Tweet?</title>
<link href='http://fonts.googleapis.com/css?family=Droid+Sans&v1' rel='stylesheet'
type='text/css'>
<link rel="stylesheet" type="text/css" href="css/style.css">
<script type="text/javascript" src="js/jquery-1.6.1.min.js"></script>
<script type="text/javascript" src="js/main.js"></script>
</head>
<body>
 <header>
 <div class="score">Score: 0</div>
 <h2>Player 1</h2>
 </header>
 <section>
 <div id="tweet">
 <div class="avatar"></div>
 <div class="content"></div>
 </div>

 </section>
 </body>
</html>

The HTML markup for the page is very bland and basic. Starting from the head element,

the first thing you might notice that is slightly different from standard Desktop–based

www.allitebooks.com

http://fonts.googleapis.com/css?family=Droid+Sans&v1
http://www.allitebooks.org

CHAPTER 1: Twitter Applications: Who's That Tweet? 27

web development is the use of the meta element with the name “viewport”. This element

is extremely important when it comes to mobile design and development, and we’ll talk

more about it in Chapter 10. With it, you can control whether or not a user can zoom the

content on your page or even how much the user can zoom into your page. Here we

have the zoom of our viewport set to the default value and have turned off the option to

let the user zoom in and out of the page so we do not have to worry about an end user

accidentally double tapping the display causing your soon-to-be web application to

zoom in or out while frustrating your user.

Once inside the body element, you might notice that we are using several of the “new”

HTML5 elements such as header and section. The header element is a newer tag that is

used to semantically structure your code to indicate the introduction to a page or article

on the web. In our header area, we are using it to house the current score of the player,

which we will update after each round with JavaScript, as well as the player’s name.

Keeping simplicity in mind for the sake of this demo, we will leave the player named

Player 1.

Next up we have the section element, which is used to house the main content of our

demo. Like header, the section element is a new HTML5 tag that is used to semantically

mark the section of a document or a page. Back in the old xHTML days, we would

usually designate sections of a page with a tidal wave of endless div tags, which could

be extremely confusing to search engines and screen readers for the visually impaired.

Now, with the proper use of the section tag, it should be fairly trivial for search engines

and screen readers to better guess at what information on the page is the important

information that should be read aloud or searched.

Inside the main content section of the page, we have a div container with the ID of

tweet, which will be used to house the random tweet that we pull from the array of

verified users, as well as an empty ul (unordered list) element that will be used to

contain the four random verified Twitter users that we will display to the end user.

Inside of the #tweets container, we see two div containers–.avatar and .content. For

those who are unfamiliar with CSS, anytime you see the hash tag (#) when referring to

code in this book, it means that we are referring to the ID of an element. If we are

referring to a tag by its class attribute, it will have a period sign in front of it as, such as

.avatar above.

Now that we have the basic structure setup, it is time for one of my favorite parts of the

whole process–styling the page with CSS!

The CSS

In the last chapter, we discussed CSS. Here, you’ll learn more about it by seeing it in

action. However, don’t get discouraged if you don’t follow everything that’s going on.

We’ll talk more about it throughout this chapter and in the future.

CHAPTER 2: Twitter Applications: Who's That Tweet? 28

With the CSS here, we are not going to do anything super fancy. However, we will take

advantage of Android's Webkit2 rendering engine to use some of the newer CSS3

features that have become popular over the past couple years. Let us start off with

some basic styling resetting and general layout styles and then crawl through our CSS

file section by section. In Listing 2–2, we will comb through the basic HTML elements on

the page and reset their margin and padding, or how they are spaced apart from each

other on the page, as well as reset the size of fonts and the type of font used throughout

the document.

Listing 2–2. Who’s That Tweet? CSS File – Part 1

/*** RESET ***/
html, body, header, section, div, p, ul, li, h2 {
 margin:0; padding:0;
}
ul, li {
 list-style:none;
}

/*** GLOBAL CSS ***/
html, body {
 width:100%;
 overflow-x:hidden;
}
body {
 font-size:14px;
 font-family: 'Droid Sans', Arial, Helvetica, sans-serif;
 background:#06c;
}
h2 {
 font-size:14px;
}

If you have written any CSS in the past, this first bit of styling code should look very

basic and familiar. We start off by resetting the margin and padding of several of the

page elements to zero to guarantee that whatever styles we assign to the page will be

positioned correctly across the vast array of Android–powered devices. This can be

important especially when you keep in mind that Android is a rapidly developing

platform with newer versions being released two times a year or more.

Next thing we are doing is removing any bullets that might be attached to unordered

lists (ul) and list items (li) elements and then setting the pages default font and font

size, as well as the applications background color.

Last but now least, we will be utilizing the “Droid Sans” web font. See, over the past

couple years as the web has been evolving, designers and developers alike have been

screaming and begging for a new and easier way to use those gorgeous fonts you see

time and again in print advertisements on their applications and web sites they are

working on. I mean seriously, who wants to stare of Arial or Times New Roman all day

2 Webkit is an open source web browser engine, which means people can make web

browser software using it. Android uses a custom version of it, as does Apple’s iOS.

CHAPTER 1: Twitter Applications: Who's That Tweet? 29

long? One of the incredible features of CSS3 is the use of including True Type fonts in

your project. From now on, you don't have to rely on poorly compressed images or

horribly intrusive Flash solutions to utilize beautiful typography.

Google has even gone out of their way to do us a favor by creating a free and open

database of web safe fonts to be used to your heart's content. You can visit the Google

Web Fonts website at http://www.google.com/webfonts. Once you find a font that you

would like to use, Google will give you some HTML code to add to your layout to load

the fonts into your browser and call it from your CSS file, as we have called “Droid Sans”

as our page’s default font (see Figure 2–5).

Figure 2–5. Viewing the Droid Sans font on the Google Web Fonts website

In Listing 2–3, we will provide the user with a stylish header that will rest on the top of

their browser and will house the player's fake name as well as their score.

Listing 2–3. Who’s That Tweet? CSS File, Part 2

/*** HEADER ***/
header {
 width:100%;
 font-weight:bold;
 text-transform:uppercase;
 text-shadow: 1px 1px 1px rgba(255,255,255,0.5);
 line-height:40px;
 background-image: -webkit-gradient(
 linear,
 left bottom,
 left top,
 color-stop(0, rgb(135,135,135)),
 color-stop(0.8, rgb(201,201,201))
);
 -webkit-box-shadow:0 0 15px rgba(0,0,0,0.5);
 box-shadow:0 0 15px rgba(0,0,0,0.5);
}
header h2 {
 margin-left:10px;

http://www.google.com/webfonts

CHAPTER 2: Twitter Applications: Who's That Tweet? 30

}
.score {
 float:right;
 margin-right:10px;
}

The HEADER section of the CSS is where we will have a little fun and utilize some of the

magic of CSS3. Before the widespread use of CSS3, if you wanted to create a section of

your page that made use of a gradient background, then you would have to rely on

creating images in a graphics design program and splice them to suite your needs. Now,

just like magic, you can add some not-as-simple-as-it-should-be code to your CSS to

create the same gradient effects you would get with Photoshop with just a few lines of

code. On top of those new nifty gradients, we can also add in a drop shadow to our

header with only one tiny little line of CSS code. It’s like magic!

Listing 2–4 could be considered the entree of our CSS file in that it contains a majority of

the properties that will be used to make our page look awesome.

Listing 2–4. Who’s That Tweet? CSS File, Part 3

/*** SECTION ***/
section {
 margin:20px 10px;
 padding:10px;
 border-radius:7px;
 background:#aaa;
 -webkit- box-shadow:0 0 20px rgba(0,0,0,0.5);
 box-shadow:0 0 20px rgba(0,0,0,0.5);
}

section.fail {
 background:#990000;
 color:#fff;
}
section.win {
 background:#009900;
 color:#fff;
}
section.fail li, section.win li {
 border-bottom:1px solid #fff;
}
section.fail li:first-child, section.win li:first-child {
 border-top: 2px groove #fff;
}
section #tweet {
 width:100%;
 margin-bottom:10px;
 padding-bottom:10px;
}
section .avatar {
 float:left;
 width:48px;
 height:48px;
}
section .content {
 margin-left:58px;
 min-height:48px;

CHAPTER 1: Twitter Applications: Who's That Tweet? 31

}
section .person {
 margin-left:42px;
}
section ul {
 width:100%;
 clear:both;
}
section li {
 margin:0;
 padding:5px 5px 5px;
 height:32px;
 line-height:32px;
 border-bottom:1px solid #666;
}
section li .avatar {
 width:32px;
 height:32px;
}
section li .avatar img {
 width:32px;
 height:32px;
}
section li:first-child {
 border-top: 2px groove #666;
}

The section portion of the CSS, like the HTML document before it, is where most of the

magic happens. The first thing you should notice is another new nifty feature of CSS3

created by the Powers That Be to make our lives easier–border–radius. Now, instead of

spending hours trying to splice together images correctly to have rounded corners in

your document, or worse, relying on bloated JavaScript libraries to take care of our

border radius needs, we can pass off that work to the browser’s rendering engine and

be done with it.

Here we utilize the border-radius CSS property to give our section container a nice

modern smartphone look and then top it off with a nice drop shadow. Afterward, we

define two sets of styles for the .win and .fail classes that we will call each round via

JavaScript as a visual indicator of whether the user chose correctly.

Figures 2–6, 2–7, and 2–8 show our game view, the view after an incorrect answer and

the view after a correct answer, respectively. Now, let’s learn about the JavaScript we

need for producing the user feedback views.

CHAPTER 2: Twitter Applications: Who's That Tweet? 32

Figure 2–6. Who's That Tweet? running in an Android 2.3 web browser

Figure 2–7. Who's That Tweet? display after failing to choose the correct owner of the tweet

CHAPTER 1: Twitter Applications: Who's That Tweet? 33

Figure 2–8. Who's That Tweet? display after selecting the right poster of the tweet

The JavaScript

Now that we have our page laid out and styled, it is time to make it dynamic with some

JavaScript. All of the application demos throughout this book will make use of the

jQuery JavaScript framework. If you are unfamiliar with jQuery, it is a fantastic,

JavaScript library that is used the world over and makes cross-platform JavaScript

development trivial when compared to the olden days of Internet Explorer 6’s

dominance.

There is a bit of JavaScript here, so I will break it up as I did with the CSS before it and

explain what is going on one section at a time. When coding up this demo, I added a

slew of helpful comments in the code along the way that should further help those new

developers amongst us in understanding what is going on.

Listing 2–5 will walk us through a set of default variables that will be used in our

application, as well as give us a very meaty array filled with some of Twitter's most

popular verified users.

Listing 2–5. Who’s That Tweet? Javascript File, Part 1

 /**
 * Who's That Tweet
 * @author: Rocco Augusto
 * @file: js/main.js
**/

/* This array holds a list of verified

CHAPTER 2: Twitter Applications: Who's That Tweet? 34

 Twitter accounts that we will use
 to pull in random tweets for each
 round
*/
var defaultIcon =
'https://si0.twimg.com/sticky/default_profile_images/default_profile_3_normal.png';
var currentRound = [];
var correct = '';
var tweets = [
 'jimmyjohns',
 'sugarsammyk',
 'wilw',
 'JeriLRyan',
 'pattonoswalt',
 'trutriciahelfer',
 'AndrewWK',
 'ChristianKane01',
 'charliesheen',
 'levarburton',
 'edwardjolmos',
 'Rosie',
 'kevinrose',
 'jason',
 'leolaporte',
 'aplusk',
 'StacyKeibler',
 'LilianGarcia',
 'nicolerichie',
 'rainnwilson',
 'ericschmidt',
 'pennjillette',
 'nerdist',
 'Scobleizer'
];

Here we define a few global variables that will be used throughout the application. The

first being the defaultIcon variable which contains a long URL for the image of the

default user Twitter avatar we will be using throughout the script. We could have done

without the variable and just added the code to our script when we needed it but it is

always good practice when coding to cache as much of your code for reuse as possible.

Now when we want to add the defaultIcon anywhere in our script, we do not have to

remember some big long complicated URL that in most cases will just visually muck up

our code.

Next we create an empty array called currentRound which will house all of the data we

pull in from Twitter for the round we are on. We create a predefined array of verified

users to randomly choose from. For this list, I just did a Google search for verified

Twitter users and copied the names of all the users I found on the first page of the

Google search.

If this were a real game based off of the Twitter API and not a demo, we would want to

utilize an online server with a list of all Twitter verified accounts but, since we are starting

small, an array will work just fine for now.

Listing 2–6 shows the second part of the main JavScript file for Who’s That Tweet.

https://si0.twimg.com/sticky/default_profile_images/default_profile_3_normal.png

CHAPTER 1: Twitter Applications: Who's That Tweet? 35

Listing 2–6. Who’s That Tweet? Javascript File, Part 2

// this function will grab a random user from
// the tweets array.
function getRandom() {
 var l = tweets.length; // grab length of tweet array
 var ran = Math.floor(Math.random()*l); // grab random user

 // check if randomly selected user is in list
 if(currentRound.indexOf(tweets[ran]) == -1) {
 if(currentRound.length == 0)
 correct = tweets[ran]; // make first random user the correct user

 //push random user to currentRound array
 currentRound.push(tweets[ran]);

 // grab three additional random users
 if(currentRound.length < 4)
 getRandom();
 }
 else {
 // if random user is already in list then start over
 getRandom();
 }
}

In Listing 2–7, our next function will go through and select a random user from our

tweets array and then grab three other random users for the user to choose between as

seen in the function getRandom(). In this function, we use the JavaScript Math object to

do the heavy lifting in choosing our random user.

Listing 2–7. Who’s That Tweet? Javascript File, Part 3

// grab the user avatars for users in currentRound array
function buildQuiz() {
 var l = currentRound.length;
 for(i=0;i<l;i++) {
 $.getJSON('https://twitter.com/status/user_timeline/' + currentRound[i] +
'.json?count=10&callback=?', function(data) {
 var img = data[0].user.profile_image_url;
 var name = data[0].user.screen_name
 var h = '';

 // crete the html that will be injected into the game screen
 h += '<li rel="' + name + '">';
 h += ' <div class="avatar"></div>';
 h += ' <div class="person">' + name + '</div>';
 h += '';

 // add users and images to page
 $('section ul').append(h);
 });
 }
}

function init() {
 //reset the correct answer and currentRound array
 correct = '';

https://twitter.com/status/user_timeline/

CHAPTER 2: Twitter Applications: Who's That Tweet? 36

 currentRound = [];
 $('ul, section').removeClass();
 $('ul').empty();

 getRandom();

 //display the default twitter account icon
 $('#tweet .avatar').html('');

 //grab a random tweet from the correct user
 $.getJSON('https://twitter.com/status/user_timeline/' + correct +
'.json?count=10&callback=?', function(data) {
 var ran = Math.floor(Math.random()*data.length);

 console.log(data.length);
 console.log(ran);

 $('#tweet .content').html(data[ran].text);

 // randomize the currentRound array so the correct user isnt always first
 currentRound.sort(function() {return 0.5 - Math.random()});

 // grab avatars and display usernames
 buildQuiz();
 });
}

In our next two functions, we will initiate the application by calling the function init().

This function resets all the variables to start a fresh new game, parses the JSONP

Twitter API feed for the randomly selected verified Twitter account, and then passes

everything off to be built and displayed to the user through the buildQuiz() function.

Once the document loads into the browser and the DOM (Document Object Model - a

cross-platform representation of all of the objects in an HTML document) is ready to be

manipulated, the code below (Listing 2–8) runs. In jQuery, you can run your code when

the document is ready–the ondocumentready event in JavaScript land–by using the

following shorthand $(function() { ... code goes here });

Once the document is ready, we will call the init() function, which will reset everything

on the page, grab a random user, and build the quiz as we went through before. We will

also assign the click event to all list items that will be written to the page so they end up

working like buttons. Once a user clicks a list item, the application will replace the

defaultIcon with the correct avatar from the user that posted the Tweet, update the

score if the user chooses correctly, and assign the gameover class to the game, which

will then tell the application to start a new round if the screen is tapped again.

Listing 2–8. Who’s That Tweet? Javascript File, Part 4

$(function(){
 // run the init() function and start the application
 init();

 // check for correct user on user selection
 $('ul li').live('click', function() {
 var name = $(this).attr('rel');

www.allitebooks.com

https://twitter.com/status/user_timeline/
http://www.allitebooks.org

CHAPTER 1: Twitter Applications: Who's That Tweet? 37

 var img = $('li[rel="' + correct + '"] img').attr('src');
 var score = $('.score span');

 // restart the game if game over
 if($('ul').hasClass('gameover')) {
 init();
 }
 else {
 // swap out default avatar for correct avatar
 $('#tweet .avatar img').attr('src', img);

 if(name == correct) {
 score.text(parseInt(score.text())+100);
 $('section').addClass('win');
 }
 else {
 $('section').addClass('fail');
 }

 // add gameover class to page
 $('ul').addClass('gameover');
 }
 });
});

And there you have it! For those of you coding along, congratulations, you have officially

completed your first mobile web application. You can fire up your trusted Android device

now (if you haven't already done so already), connect to the same network that your

computer is on, and view your new application on it. To do so, just point your device’s

browser to the IP address of your computer. You can find your IP address by opening a

command prompt (Windows) and running the ipconfig command (see Figure 2–9) or by

opening a terminal (OS X/Linux) and running the ifconfig command.

Figure 2–9. The command prompt on Windows 7 displaying our server’s IP address

There you have it – your first application.

CHAPTER 2: Twitter Applications: Who's That Tweet? 38

Summary
We’ve covered a lot of “applied” ground here, such as setting up your development

server, writing CSS and JavaScript files, and testing out your new application. We’ll

continue this “applied” writing with another example in the next chapter before stopping

to talk a bit more about the core concepts of web design. Now let’s talk about ham in

Chapter 3!

39

 Chapter

Twitter Applications:
I Love Ham

Now that we have one mobile web application under our belt, I want us to explore using

the Twitter API to do something a little different from the same old classic “displaying

Twitter messages applications” that are cropping up left and right. As we discussed in

Chapter 2, using the Twitter API gives you access to the alwaysplentiful “fire hose” of

data that can be used for all types of applications and games—basically anything you

can imagine.

One idea for which I have always loved using Twitter came from a series of old web

shows that were around a few years ago. While the name of this game changed from

show to show, the main principle behind the game was always the same. A user is

presented with two different search terms that rhyme and would have to guess which

term results in a higher number of tweets. While the rules are simple, this little game,

which we will build and call “I Love Ham,” can yield hours of fun. So without further ado,

let’s fire up our local development environments and start writing some code!

The HTML
The following, Listing 3–1, sets up the basic HTML document that will become the basis

for our application.

Listing 3–1. HTML for I Love Ham

<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8">
<title>I Love Ham</title>
<linkhref='http://fonts.googleapis.com/css?family=Droid+Sans&v1' rel='stylesheet'
type='text/css'>
<linkrel="stylesheet" type="text/css" href="css/style.css">
<script type="text/javascript" src="js/jquery-1.6.1.min.js"></script>
<script type="text/javascript" src="js/main.js"></script>

3

http://fonts.googleapis.com/css?family=Droid+Sans&v1

CHAPTER 3: Twitter Applications: I Love Ham 40

<meta name="viewport" content="width=320, height=device-height, user-scalable=no,
initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0" />
</head>
<body>
<section>
<h2>Which one of these fabulous tweets has more search results?!</h2>
<ul id="choices">

</section>
</body>
</html>

The HTML markup that we are using in this application is going to be a bit sparser than

it was in “Who's That Tweet?”, the previous application we built, and it looks pretty

similar too! For the sake of simplicity, I left the naming convention of the folder tree

layout pretty much the same (see Figure 3–1):

 /index.html

 /css/styles.css

 /js/main.js

Figure 3–1. A clean and easy to read file structure, as seen in Adobe Dreamweaver CS 5.5, will save you plenty of
time and frustration down the road!

When creating files and organizing your project’s folder structure, I found that it is often

useful to stick to naming schemes that are human readable, easy to understand at a

CHAPTER 3: Twitter Applications: I Love Ham 41

glance, and consistent throughout projects. If you end up naming files

“supercooldocument12-667.html,” you make the documents harder for your end users to

find, and it can cause issues down the road if you ever come back to your application to

make future updates and edits.(Trust us: you’ll completely forget what those files do.)

Another tip would be to name files with the current date or to use a version control

system to keep things straight. So remember, when it comes to naming files, keep it

simple and/or meaningful!

The CSS
Our CSS is going to look similar to the previous application we built, as well. There are a

few key differences here and there and a few neat CSS properties that we are

showcasing in this application, such as the text-shadowCSS property, which allows you

to apply some pretty fantastic shadow effects to your text live in the client’s browser.

This doesn’t rely on having a designer to whip up some overly compressed image with

the new fancy text as we would have done back in the old days (and by old days, I mean

a few years ago!).

Listing 3–2 covers the basic resetting of spacing and font sizes of common elements

that will be used throughout our application.

Listing 3–2. CSS for I Love Ham -Part 1

/*** RESET ***/
html, body, header, section, div, p, ul, li, h2 {
margin:0;
padding:0;
}

ul, li {
list-style:none;
}

/*** GLOBAL CSS ***/
html, body {
width:100%;
height:600px;
overflow-x:hidden;
}

body {
font-size:14px;
font-family: 'Droid Sans', Arial, Helvetica, sans-serif;
background:#993366;
}

h2 {
font-size:18px;
color:#fff;
text-shadow:1px 1px 5px rgba(0,0,0,0.9);
}

CHAPTER 3: Twitter Applications: I Love Ham 42

Our h2 tag is going to be the lucky recipient of our text-shadow. If you look in the HTML

markup for this application, you can see that this h2 tag houses a blurb of text that will

be presented to the user. Depending on the current state of the game, the text will

change up to four times and will be updated by the application’sJavaScript. As

previouslymentioned, if we were doing this the old way, we would have had to create

four separate images containing the text we wanted and either manually inject those

images into the page when needed or assign them as background images to CSS

classes to be assigned to our blurb container as needed. While that would not have

been hard to do, it would have required more code to be written as well as more

graphical resources to be loaded on the device, which if the user is in an area with a

slow data connection, can cause a noticeable moment of lag or cause the user to

become emotionally disconnected fromyour app!

In Listing 3–3, we’re going to set up the list items:

Listing 3–3. CSS for I Love Ham– Part 2

/*** SECTION ***/
section {
margin:20px 10px;
padding:10px;
}

sectionul {
width:100%;
margin:25px 0;
}

section li {
margin:10px 0;
padding:10px 5px 10px;
min-height:22px;
line-height:32px;
border-radius:7px;
background:-webkit-gradient(linear, 0% 0%, 0% 100%, from(#a1a1a1), to(#A1A1A1), color-
stop(.6,#8A8A8A));
-webkit- box-shadow:0 0 20px rgba(0,0,0,0.5);
box-shadow:2px 2px 10px rgba(0,0,0,0.8);
}

You will also notice we are doing something a little different with the List Items in our

CSS as well. Here, we are adding a nice gradient background to the buttons to give

them a little more oomph. Unlike the previous gradient backgrounds we created in our

first application, this one is using a three color gradient system to give it more of a

beveled effect. Also, just like our text-shadows, using CSS helps cut back on wasting

our client’s resources, for example loading images that we do not use. I know I'm really

hammering that point home, but that’s because it is a truly important rule to follow!

Never carelessly waste your client’s resources, especially when living in the current

world of outlandish data caps or slow data connections. Last but not least in our CSS

file (See Listing 3–4), I am going to introduce you to two very handy CSS selectors to

familiarize yourself with—the :beforeand :afterselectors.

CHAPTER 3: Twitter Applications: I Love Ham 43

Listing 3–4. CSS for I Love Ham– Part 3

sectionli.fail {
background:#990000;
color:#fff;
}

sectionli.win {
background:#009900;
color:#fff;
}

sectionli.fail, section li.win {
border-bottom:1px solid #fff;
}

sectionblockquote {
margin:0;
padding:0;
}
sectionblockquote:before {
content: "\201c\ ";
font-size:26px;
float:left;
margin-right:5px;
padding-left:5px;
}

sectionblockquote:after {
content: "\201e\ ";
font-size:26px;
margin-left:5px;
padding-left:5px;
}

Now, these selectors are neat, as they allow you to add content either before or after the

element they are attached to. Here, I am attaching them to the blockquote element,

which is an older HTML element used to semantically mark that content as a quote that

should stand out from the rest on thepage.

Now, if you look at the content property, you might be a little confused. In most cases,

people usually add something meaningful to this field like a “>” in place of bullets on an

unordered list, or an ellipsis after a blurb of content that links back to an article. Not a lot

of people are aware, however, that you can also include Hex code in this property to

display characters that are not commonly found on the keyboard, such as the quotation

marks I want to add at the beginning and end of my blockquote content!

The JavaScript
Now that we have a good understanding of how everything is laid out, it is time to jump

in and figure out how all the gears, pulleys, and sprockets are put together and get this

application working! First, just as in our previous application, we start off declaring our

global variables here that will be used throughout the application. In JavaScript, it is very

CHAPTER 3: Twitter Applications: I Love Ham 44

important to understand the difference between using a global variable and a local

variable.

In a nutshell, and I would like to take a moment to stress the fact that this is the most

basic of explanations, a local variable is a variable that can be used inside a function but

is not available for use inside of a different function or as a part of your script. Functions

are basically “short-cuts” that can be reused. For example, I might create a function that

does a bit of math on given input (called “function arguments,”that is, the information

you put inside () after a function call) and re-use that same function throughout my

code. Local variables are used inside function blocks but are not accessible outside.

Think of the inside of your function as a small world apart from the rest of your code in

terms of these variables!

A global variable, on the other hand, as you probably guessed by now, is accessible

globally so you can call it in any function or object in your JavaScript file. While there are

those out there that would scoff at the use of global variables because they cancause

problems down the line. For example, a global variable could be updated from a variety

of functions, causing confusion as to how the variable is changing during the debug

process. However, for the sake of learning, since this is a book for beginners, we will use

them in our examples.

Listing 3–5 sets up a list of global variables to be used throughout our JavaScript file, as

well as an array filled with rhyming demo choices to keep our users entertained for

hours... or minutes.

Listing 3–5. Javascript for I Love Ham -Part 1

/**
 * I Love Ham
 * @author: Rocco Augusto
 * @file: js/main.js
**/

var correct = '';
var choice = '';
varresultLength = 0;
var tweets = [
['I love ham','Earthquake in Japan'],
['Android is awesome', 'I just hit an opossum'],
['Ice cream sandwich','I fell out of my hammock'],
];

Unlike our previous game, we will have a smaller array of choices to be presented to our

users. While I would have loved to add 50 to 100 different rhyming examples,

unfortunately I was only witty enough to create three off the top of my head. For the time

being, I think three is good, but if you are following along at home, try to put in as many

as you can think of! I'm sure a good lot of you are a bit more witty than I am!

Listing 3–6 walks up through the init() function of our application and grabs our

Twitter JSON feed from the API.

CHAPTER 3: Twitter Applications: I Love Ham 45

Listing 3–6. Javascript for I Love Ham -Part 2

functioninit() {
window.scrollTo(0, 1);

//reset the correct answer and currentRound array
correct = '';
choice = getRandom();
$('ul, section').removeClass();
$('ul').empty();

//find out which item has more search results
for(i=0;i<choice.length;i++){
var position = i;
$.getJSON('http://search.twitter.com/search.json?rpp=100&q=' +
choice[i].replace(/\s/g,'%20') + '&callback=?', function(data) {
//check the length of results for each search
//then set them to the "correct" variable
correct.push(data.results.length);
});
}

// generate the buttons for this round
buildQuiz();
}

Here we have our init() function, which will be called and run later in the application

after the DOM (Document Object Model) has loaded. When using the Twitter API, there

are several parameters youcould send with yoursearches. Let's run through them

quickly!

 Rpp tells the API how many results we want back per page. In this

case, we are pulling in the maximum of 100 results per search.

 Q is the parameter that will house our search query.

 Callback is triggered to make sure the API sends back data in a

JSONP format so we are not presented with any cross domain

security issues!

Another thing you will notice above is i in the search query, where we are calling in the

term to search at that time. In that part, I am using the replace() method to search our

string for all spaces and replace them with %20, which is the URL encoded version of a

space. This allows the search to be sent via a normal HTTP request without messing up

where the page really gets pointed to on the web. To get a better understanding of why

this is necessary, imagine this—someone sends you a link to

http://someawesomesite.com/some awesome page. Since the URL is broken up, if the

person you sent that link to clicks it, then they would most likely be navigated to a page

with the URL of http://someawesomesite.com/some, and the rest of the URL would be

ignored, but clicking a URL that looked like http://someawesomesite.com/
some%20awesome%20page would take the user exactly where they intended to go. Always

make sure there are no breaks in the URLs that you create (see Figure 3–2)!

http://search.twitter.com/search.json?rpp=100&q=
http://someawesomesite.com/some
http://someawesomesite.com/some
http://someawesomesite.com/

CHAPTER 3: Twitter Applications: I Love Ham 46

Figure 3–2. Notice the preceding URL from Android Thoughts uses hyphens instead of spaces to present the user
with a much more friendly and human readable URL

After we grab the JSONP data from Twitter, we are going to parse the data for the

data.resultsfield and then grab the length of that array, the number of records in it,

and then push them off to the correctarray that we created earlier, as can be seen in

Listing 3–7.

Listing 3–7. Javascript for I Love Ham -Part 3

// this function will grab a random user from
// the tweets array.
functiongetRandom() {
var l = tweets.length; // grab length of tweet array
var ran = Math.floor(Math.random()*l); // grab random user

return tweets[ran];
}

functionbuildQuiz() {
var h = '';

for(i=0;i<choice.length;i++){
h += '';
h += ' <blockquote>' + choice[i] + '</blockquote>';
h += '';
}

// write buttons to the page
$('ul').html(h);
}

$(function(){
// run the init() function and start the application
init();

// check for correct user on user selection
$('ul li').live('click', function() {
var id = $(this).index();

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3: Twitter Applications: I Love Ham 47

var not = (id == 0) ? 1 : 0;
var result = '';

// restart the game if game over
if($('ul').hasClass('gameover')) {
init();
$('h2').text('Which one of these fabulous tweets has more search results?!');
}
else {
if(correct[id] > correct[not]) {
//congratulate the player
result = 'Congratulations! you are a total rock star!';
$('sectionli:eq('+ id + ')').addClass('win');
}
else if(correct[id] == correct[not]) {
//if it is a tie
result = 'It is a tie! You\'re a winner by default!';
}
else {
//shame the player into playing again
result = 'Boo! You failure!';
$('sectionli:eq('+ id + ')').addClass('fail');
}

// addgameover class to page
$('ul').addClass('gameover');
$('h2').text(result + 'Tap a button to play again!');
}
});
});

Before we continue, it’s worth nothing that we’ve placed a backslash in the “You’re a

winner” line. This is because we’ve used an apostrophe, which JavaScript normally

interprets as the closing of a string. By placing the backslash before it, we’ve ‘escaped’

it, telling JavaScript to use an ‘alternate’ meaning for the following apostrophe (in this

case, the alternate meaning is to simply treat it as part of the string).

The rest of the functions are pretty similar to what we already created, so we will skip

going over them to jump down to code that controls what happens when a button is

pressed. Here in this code, we are grabbing the index, or position in the unordered list,

of the button pressed. We then compare the value of that searchwiththe value of the

other search. If your choice is the one with the greater number, then you win, and the

blurb at the top of the page changes with a nice message congratulating you on your

accomplishment or a message of failure if you choose poorly. In our logic statement, we

also have instructions for what to do in case of a tie game and in casetwo searches have

the same exact number of votes.

Now go ahead and save your work, fire up your browser, and run your newly designed

application (see Figure 3–3)! While it is simple, I am sure you are starting to get a good

idea of how, using HTML5, CSS3, and JavaScript, you can make a pretty fun and

responsive web application in real-time!

CHAPTER 3: Twitter Applications: I Love Ham 48

Figure 3–3. I Love Ham running on an Android 2.3 device

Summary
Not too shabby, if I do say so myself! We managed to take a little bit of code and a

whacky idea and very quickly turn it into a nice looking proof-of-concept to play around

with. We’ve shown another example of tapping into the Twitter API through JavaScript,

and we’ve set up the stage for extending this to other aspects – not just searching

Tweets, but also using trending topics and mentions. With a little more time and effort,

we could build upon this very basic Twitter application and turn it into a full-fledged

game that could suck hours away from our users’ lives!

49

 Chapter

Basic Planning and
Structuring of Your
Application

Thus far, we’ve gotten you straight into coding a few apps, given you some background

information on screen resolutions, JavaScript, and CSS, and we’ve given you a giant

bag of free (and cheap) “stuff” in the form of various resources that you can use while

developing. It would not be difficult for you to, given this information, go completely

crazy coding all sorts of neat things and putting them out there for the world to see and

use. The only problem is, without you actually considering what you’re building, the

world might not be too keen on actually using what you’ve built. And nothing can make

one more depressed than spending hours and hours on a project that only you (and

perhaps a few friends) will ever see.

In this chapter, we’re going to talk about application development in two different ways:

Planning your application, which involves understanding what you’re building and how

you can make sure you don’t overlook vital pieces; and structuring your code, which is a

much simpler idea but just as important for reasons we’ll discuss. This is the “bringing

order into chaos” chapter, and we hope that you’ll heed our warnings and advice!

Know Thy Audience
If you have any sort of passion for creating something, than you might have had the

experience before of thinking, “I wish that I had a tool that did [insert witty idea here] …

I know, I’ll just build it!” At this point you most likely went out and hacked something

together for your own use, and then realized that others might be interested in using it

as well. I know I do this all the time whenever I create a new web or mobile application,

building for my own needs or for people that have needs like my own. Perhaps these

people are your audience.

4

CHAPTER 4: Basic Planning and Structuring of Your Application 50

Or maybe you are just one of those people who see problems that others don’t. You

know that if you put something out there to solve a certain problem, others will latch on

and praise your name. Perhaps they are your audience.

Or finally, maybe you’re an innovator that thinks you have tapped into the next great

game, service, or program that people will be clamoring to use. If you put a little effort

into it (maybe only 50–100 hours of coding), you can see the dollar signs adding up from

the addicted masses—they’re certainly your audience, right?

Well, perhaps your passion, ingenuity, and innovation will be enough, and the audience

will magically appear. But let’s think about this for a moment; in each of the preceding

examples, you’re taking a rather large leap in assuming that your passions, problems,

and joys will generalize to a lot of other people out there. If you were in a company and

pitched these products to others, the first question would be, “How do we know we

have an audience?” Simply answering, “I’d buy it,” is not enough. You’ve got to have

some idea of who you’re targeting and whether they’re interested.

Giving People What They Want

There are a number of ways you might start researching your next application.

Sometimes a need jumps out at you, or you see an obvious opportunity. Other times you

might think something would be a hit but have no idea whether it truly will or not. While

you can watch Twitter and Facebook for complaints you could remedy, or perhaps use

some sort of survey to understand what your audience wants, we’ll present a very easy

method here that speaks to one universal rule: Know what people are looking for. The

followingmethod should give you some indication of how people are spending their time

online, and thus let you know where you may have an opportunity.

We start with a popular advertising system on the web, Google’s Adwords. It is free to

sign up, and even if you never place a single ad, one tool Adwords offers that you might

find very useful is the External Keyword Tool

(https://adwords.google.com/select/KeywordToolExternal). This tool tells you how

many people are searching Google for a particular keyword. It’s a great way to see if

people are actually interested in something you want to build.

For example, a project that I’ve considered building for some time (and actually have

built up, in some sense) would be a web site for aspiring writers to hone their skills. I

envision a web site where a person would get a topic, write some form of prose (short

story, essay, poem, etc.) and have others vote on the piece. Winners of topics would

have some “cred” given to them, and perhaps win real prizes.

How do I find out if there is a market for this? Well, I might use the Keyword Tool to do a

few simple searches, like those in Figures 4–1, for the keywords “writing contest” and

“writing help.”

https://adwords.google.com/select/KeywordToolExternal

CHAPTER 4: Basic Planning and Structuring of Your Application 51

Figure 4–1. Google Keyword Search for “writing contest” and “writing help”

One should remember that Keyword Search is designed to be usedbyadvertisers,

so a bit of deciphering the unfriendly mangled mess of language that is "Marketing

SEO Speak" is important. First, I know that “writing contest” has about 2.5 times

more traffic (in terms of monthly searches on Google) than “writing help.” This is

useful information in that it suggests that there are more people looking for

contests and recognition versus constructive comments on their writing. If my web

site or app is going to have both of these elements, it seems the contest angle

might be better used. If, however, I’m not completely sure what my app or web site

will be, I might find the Keyword Ideas list (Figure 4–2) to be particularly helpful:

Figure 4–2. Partial Keyword Ideas list for the search terms above

Here the “competition” column might be useful in telling me where to go. You see

“competition” according to Google Adwords is how many other advertisers out there are

trying to get their ads to appear when people search for the keyword listed. I’d have stiff

competition for “contest writing” (or another item farther down the list, “free help writing

a business plan”), but very little competition for “essay writing contest” (or another item

not shown: “persuasive writing contest”).

Using the External Keywords tool in Adwords, I can get an idea of not only for what

people are searching, but also for what other companies are advertising. This can help

you better understand if an audience exists for your product (by using keywords you

suspect they’d use in Google) and if there are already a lot of alternatives you’d be up

against. While word–of–mouth advertising can work well for some products, you

shouldn’t underestimate the power of search traffic!

Who Is My User?

Provided that you know an audience exists for your product, you now must figure

out who your user is. Recently, in attending a course filled with bright, young future

4

CHAPTER 4: Basic Planning and Structuring of Your Application 52

MBA–holding executives, I was amazed to find them annoyed at the idea of “targeting”

or finding their niche users and marketing specifically to them. They balked at the idea of

not marketing to “everyone,” without realizing that:a) “everyone” might not be interested

and b) the target user is more motivated to actually use your product than a generic

“everyman” (or “everywoman”) out there.

Learning about your users is best accomplished by studying either your own product (in

its early stages) or other products or web sites already in existence. If you’re building an

app that’s going to track commuter transit arrival and departure times and delays,

perhaps look around at whom competing apps or services are targeting. There is a good

chance you’ll be targeting the same group, and so putting some time and effort into

considering that group’s needs and desires in a product is time well spent.

Let’s talk through an example of this, with the fictional transit application I mentioned

earlier. Identifying an audience can be difficult, and you may need to consider more than

one group of people. One group that seems logical to consider is busy commuters or

business travelers. If I want to target this group, I might ask and answer a few questions,

such as:

 What features in my app or web site will be attractive to busy people?

 What features, nuances, or procedures in my app will slow down a

fast–moving person?

 What features can my app have that would actually be useful to

someone who uses public transportation?

 How can I easily signal to my busy user that something important is

going on (i.e., a late arriving bus or train)?

 How will my application be used? Will it be used to plan a trip, or at

the last minute to reroute? Or both?

The list can go on from there, but you get the picture. By developing a hypothetical

“user” and putting yourself in his or her shoes, you can better understand what you

need to do to make his or her life easier. Make it easier, and you’ll gain a user or

customer! Then simply rerun the same research on your next demographic, perhaps this

time “leisure travelers” or “tourists.”

Not all of this research has to take place in your head; resources exist to tap into what

your potential users are saying. Perhaps take a look at the reviews of your potential

competitors, and see what people are loving and hating about those apps. You can also

check out user groups and forums, and even conduct simple Twitter searches to get a

handle on the “issues” in a given area.

As I mentioned a few paragraphs back, you might also already be in a position to have

this information at hand. If you’ve developed a web site or application in the past, you

might have used a product such as Google Analytics (http://google.com/analytics) or

Flurry Analytics (http://www.flurry.com). These products can track who uses your

application and give you invaluable information that you can later use to define your

“user.”

http://google.com/analytics
http://www.flurry.com

CHAPTER 4: Basic Planning and Structuring of Your Application 53

For example, in one application that I wrote, I had a simple form that people could use

to tell me a bit more about themselves. From there, I found out that the average user of

my app was between 25 and 34 years old, as seen in Figure 4–3.

Figure 4–3. The age distribution for an application

This information can be useful in a number of ways. First, I might think about features

this group would find important and focus on those in future releases. Or perhaps I’ll

shift my small advertising budget away from the teen to early 20’s market and focus

more on 25– to 34–year–olds to attract new users. The more I know about my users, the

better I can understand their needs, and the better my web site or application can serve

them.

One word of caution though: you might notice that my application only has known

information for 17% of users. It happens to be that the portion of my application that

records this information may be more useful to certain demographics, which could skew

my data. Without getting deeply into discussion about this particular program, it is good

to note that you should never rely on one source, especially if you have only a small bit

of data, or feel you may have a skewed sample.

Once I have information from a variety of sourcesabout my audience and my users, I can

create a plan.

Having a Plan
Planning is quite possibly the easiest thing to overlook as a new developer eager to play,

build, and profit. In this section, we’ll discuss issues regarding what type of application

to build, how that application should look, and how the user should move through it. By

understanding all of these from the start, we can keep our priorities in order, and when

coding, simply implement what we’ve already worked out. Let’s start by looking at the

different types of mobile applications or interfaces we could build.

CHAPTER 4: Basic Planning and Structuring of Your Application 54

All Mobile Is Not the Same

The title of this book includes the words “web apps,” which inherently acknowledges

that there are other sorts of apps out there. Let’s talk about the three types of mobile

interfaces or applications.

Native Applications

If you’ve owned or used an Android phone (which I hope you have, if you’re reading this

book), you’ve probably used a few of the applications on it. The web browser is one of

these applications, the contacts application is another, and the calculator application is

still another. These applications, for Android, are generally written using Java and

compiled using special tools known as the Android Software Development Kit, or SDK.

These tools are free to download and use, to create applications that you can publish in

the Android Marketplace.

These applications are called “native” applications in that they execute straight from the

phone. The user has a dedicated icon for them, and tapping it opens the application

(See Figure 4–4). These applications can store data easily on the phone, and can

interface with one another if the user allows. Typically they must be downloaded and

installed via the Marketplace or a publisher’s web site but can also be "side–loaded" or

installed on a device by downloading and running the application’s APK package on

your handset.

CHAPTER 4: Basic Planning and Structuring of Your Application 55

Figure 4–4. FAILboard Pro:a native Android application

Native applications tend to be faster because all pieces of the application live in the

phone’s memory and they also have deeper access to the hardware of the phone, which

the web browser does not have. By the same token, native applications come with

risksto the end–user; the application just installed might really be a trojan trying to steal

information, or the developers, in a haste to push out an update, did not pay attention to

what they were doing and left a security vulnerability in place. This is similar to what

happened to Skype in 2011, when someone discovered that usernames and

passwordswere being saved on users’ handsets in unencrypted human–readable text,

which anyone could easily retrieve. Luckily, a fix for the problem was quickly made

available. For developers, developing a native application may take more time and may

also come with a steeper learning curve, especially if the developer is already versed in

HTML, CSS, JavaScript, and other web technologies.

Mobile Web Sites

A mobile web site, or website optimized for mobile devices, is generally viewed by users

after they navigate either directly to it or to the regular web sitewhich redirects them to

the mobile version. These are still websites, and do not normally store data on the user’s

device or interact with it very closely. Essentially, they are just there to be a presentation

CHAPTER 4: Basic Planning and Structuring of Your Application 56

and not really to interact intensely with your users. This is generally the most basic way

for a company or web site to improve the mobile user experience. Mobile web sites

allow you to conduct some basic operations, but do not interact with you other than to

provide a few simple pages of text and perhaps a form or two.

Because of this, these web sites lack the “full featured-ness” of their bigger brothers on

the desktop (i.e., the full web site) and also may not be particularly optimized for

smartphone or tablet screens (e.g., tablets may see a too–big version, smartphones may

see a too–small version, depending on which device the web site is targeting). While

developers may like this approach, as it’s fairly simple to create, update, and test,

end–users do not think of these mobile web sites as applications. If your goal is to build

something for interactivity or to be seen as a tool, then you will probably want to avoid

the simplicity of this approach in favor of a Web Application.

Web Applications

Finally we get to the union of the first two types of applications we’ve discussed, and the

type of application we’ve been developing in this book. Web applications attempt to

bring the seamlessness of a native app with the relative ease of coding and updating

that comes from a mobile web site. For example, our earlier apps in this book (see

Chapters 2 and 3) had buttons users could easily push, just like the native app shown in

Figure 4–4, but lived inside of a web browser. If the user were to create a shortcut to the

application (or the application itself could ask the user if they’d like to create one), then

the app could have its own icon just like a native app does. There are also techniques

that web apps can use to integrate themselves into the operating system just like native

apps do.

It is best to think of it this way: web applications, just like regular applications, are meant

to be interacted with instead of just viewed.

So Which Do I Build?

By now, you might be wondering what direction you really want to go. And honestly,

while this book focuses on the benefits of web applications (as they are generally easier

to program than native applications, are more full featured than mobile sites, and are

accessible to beginner programmers), you might not be able to use just one solution.

Again we refer to the idea of knowing your user. If your user is in an area where they’ll

always have cellular service, then perhaps a web app will be just as useful as a native

application. If the user uses a variety of different devices (e.g., Android, Windows Phone,

or iOS powered), then a web app might be the easiest way to be on all three of those

platforms at once.

In the end, you must develop your mobile strategy to accommodate your user. Later in

this book (Chapter 13), we’ll tell you how you can “cheat” a bit by turning a web app into

a native app with little to no work (thus allowing you to have at least a web app and a

native application for Android).

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4: Basic Planning and Structuring of Your Application 57

Once you’ve chosen how you want to build your mobile strategy, you should consider

avoiding the urge to jump right in and code something. A good developer plans out his

or her applications, whether they are native, web–based, or mobile web sites. This step

can be grouped under the idea of structuring your application, which we’ll discuss next.

Structuring Your Application

In this section, we’re going to talk about the process of designing your application from

the ground up. This takes the form of three steps, a wireframing or mockup stage, a

graphical designing phase, and a code structuring stage. Let’s start by talking about

design.

Wireframing / Mockup

It can be very tempting to have an idea, and then immediately begin coding it up without

thinking about how the end product is going to look. This can be a bad idea for a

number of reasons:

 It might lock you into a design that doesn’t really look that good in the

end (i.e., it’s too cluttered). Or you might realize that your design isn’t

as efficient as it could have been if you hadn’t jumped right into

creating buttons and boxes!

 It might prevent you from innovating because you don’t “feel like”

changing things to add new features.

 It might stop you from soliciting feedback until the end of the project,

when it may be too time consuming to change things. It’s easier to

show your design to users to see if they find it intuitive, and then tweak

a drawing, rather than show them an app and then recode to make the

design better.

To prevent these things, many designers create wireframe diagrams or “mockups” of

their applications. For example, a very crude mockup for a transit app like the one we

discussed earlier might look like this (Figure 4–5).

CHAPTER 4: Basic Planning and Structuring of Your Application 58

Figure 4–5. A crude mockup of the Tranzit application

As I mentioned, this is a rather crude mockup; in fact, it’s probably not even version

.0001 of the design I’d eventually have. In mocking it up though, I do realize something. I

built buttons for transit times, alerts, and preferences; I set aside space for alerts; and I

even set aside some space at the bottom for an advertisement. However, I have another

bit of screen, labeled “E,” that I have no idea what I might do with. With a mockup, I can

simply erase and redraw to get it right. If I were developing this in real life, though, I

might end up with an empty space there without really realizing it until it was already

near version 1.0.

Obviously, you can create mockups however you like. Figure 4–5 was created using an

application on my tablet which lets me draw freehand (as you can probably tell). One

could also lay out a mockup in a web editor with actual images, buttons, and more (even

though the buttons would not actually work). Another option is to use a program such as

PowerPoint or Keynote, where it is easy to draw boxes, make animations, and create

many similar drawings.

HotGlooand Other Mockup Tools

If you are looking for a web–based tool for creating your mockups, then you might want

to check out HotGloo. The product home page is shown in Figure 4–6

(http://www.hotgloo.com/). This tool, which comes complete with a monthly

subscription, is probably one of the best and easiest–to–use wireframing tools that I

have used. Some wireframing tools I have used provide you with only the basic

wireframes, but HotGloo allows you to do a lot of your visual designing and wireframing

simultaneously, saving you time.

Other products that you may want to consider include LucidChart

(http://www.lucidchart.com) and Pencil Project (http://pencil.evolus.vn), which may

integrate into existing tools you already use, such as Microsoft Visio.

http://www.hotgloo.com/
http://www.lucidchart.com
http://pencil.evolus.vn

CHAPTER 4: Basic Planning and Structuring of Your Application 59

Figure 4–6. The HotGloo web site, which we can safely assume was wireframed in HotGloo

User Movement: Navigation or Storyboard

Once you have your wireframe completed, it is then time to sit down and connect the

dots to figure out how you are going to structure the content on your site, mapping out

all of the pages and the sections to which they will belong. This part of the process is

called site mapping and can be pretty easy and fun if you take your time with it. If your

application isn’t particularly linear (e.g., perhaps it’s a game), you can also think of this

as storyboarding. In the simplest terms, it’s laying out content in an organized and

logical manner.

While creating your map it is best to try and keep content that is similar in similar

sections or groups. This will make it easier when building your app as you can easily see

at a glance what pages in your application need to be associated with each other.In the

case of a game, think of this as presenting your information in a logical manner:keeping

all of the “gold” and things you can buy with it together, orall of the “life points” and

enhancements affecting them together, and so on.

Take a look atFigure 4–7 following to get a better idea of how a traditional sitemap

looks. Notice how it is very similar to those family tree projects that we were all forced to

do in grammar school? Well, it is pretty much the same principle. The parent pages (or

sections) of the site each have child pages that are associated with that section or

category.

Figure 4–7. A simple sitemap for demo application

Home About Contacts Settings

Location

Date/Time

Cache

Company

Products

CHAPTER 4: Basic Planning and Structuring of Your Application 60

For this sitemap, I used a graphic design tool to create the mockup for this book;

butwhenever I am working on a project for personal use, or when I am sitting down with

a client that wants to see something quickly, I will sketch the sitemap and wireframes

out on a napkin or piece of notebook paper.

Use whatever you have available to create your sitemap. No matter how it is created, the

important thing is that yousit down and thinkthrough how your pages are organized to

make building and developing easier on your end.

The last thing any developer wants to do is get 80% through working on a project, only

to have to go back and do something over again because a mistake was made due to a

lack of proper planning!

Now that we know how the app looks and how the content is organized, we can begin

coding. Let’s spend the last few pages of this chapter discussing how best to structure

our development environment for maximum productivity.

Structuring Your Development
With the high–level information set, you’ll also want to consider good practical rules for

development that can keep you organized and efficient while writing your app.

Following, we’ll discuss some ideas for structuring your code and the directories in

which it will be kept.

Code Structure

Now that you have your wireframes completed and you have a rough idea of where you

want all the elements on your page to go, it’s time to start figuring out how you are going

to structure your code so you are not doing more work than is needed when building

your applications.

You’re probably scratching your head right now thinking,“How difficult can it be? I’m just

writing text to a page.”You would be right. However, let’s say you have ten different

pages in your application. You push out an update to your web application and realize

that you have a problem with something in your footer.

If not properly prepared, our hapless developer may have copy and pasted the same

footer throughout ten different HTML pages that make up the application. Now that it is

time to update that code, our fictional developer has to update ten different HTML files

with the new footer information.

An easier way to properly structure this code would have been to take the footer

information, which is the same throughout the entire site, and create a separate file for it.

Then in your code you can include that file into your page templates and display it on

every page as before. If you ever have to change that code in the future, with this

method all you have to do is change the code in one file, making your life a lot easier.

Let’s take a look at the sample following. In Listing 4–1 we have a very sparse page that

is using PHP to pull in that extra page code that we would like to have on each page.

CHAPTER 4: Basic Planning and Structuring of Your Application 61

Listing 4–1. Using a PHP Include Statement We Will Pull In Extra Code to be Included On Our Page

<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8">
<title>Super Cool Web Application</title>
</head>
<body>
<header>Super Awesome Header</header>
<article>
<header>Article Header</header>
<p>Fusce luctus accumsan odio. Cras vel sodales mi. Suspendisse et arcu quis magna
feugiat ultrices sit amet non erat. Etiam malesuada dui venenatis eros gravida aliquet.
Aliquam erat volutpat. Nullam dapibus cursus ultricies. Suspendisse congue accumsan
purus non scelerisque. Phasellus ut sapien libero, vel luctus velit.</p>
</article>

<!-- This is where we use PHP to include another file into our document -->
<?php include('footer.php'); ?>

</body>
</html>

If you look toward the bottom of that listing you will notice that I am pulling in the page

footer.php (see Listing 4–2). I am doing this by wrapping my include function in the

<?php ?> tags. This tells your page to execute PHP code if your server supports it, and

in this code is looking for the footer document that is in the same relative path as the

document listed previously. If you are using the Uniform Server local development server

that we discussed earlier in the book, then this should work like a charm. Otherwise we

may need to specify a relative path; for example, if I put all of my “included” files into a

directory named “includes,” my code may read: include('includes/footer.php'). We’ll

talk about directory structure in a moment, so once you’re done here you’ll know how

the relative path will look to your files.

Now that we know what it looks like to include a file in your document using PHP, we

are going to take a look at what the innards of that PHP file look like, so you can see

how simple it is to structure your code in an easy, reusable fashion.

Listing 4–2. A Look Inside the footer.php File

<footer>

Home
About
Contact
Privacy Policy
Terms and Conditions

<p>© 2011 Super Awesome Site, Inc. All rights reserved.</p>
</footer>

As you can see here, the code in this document is pretty basic. We have an unordered

list that is floated to the right of the document and some copyright text that will float to

the left of it. We will just imagine that somewhere off in the distance there is a stylesheet

created for this document that makes everything pretty.

CHAPTER 4: Basic Planning and Structuring of Your Application 62

Now the cool thing about PHP is that it runs on the server, not on the client side. That

means that none of the PHP code you include in your HTML document (whether this

means including other documents into your template, or custom created classes,

functions, etc.) will ever be visible to the client. What the client will see when he or she

loads the page and views the source is just one seamless HTML document (see

Listing 4–3).

Listing 4–3. Viewing Our Faux Article In a Browser Would Show One Complete HTML Document, With No Server
Side PHP Code

<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8">
<title>Super Cool Web Application</title>
</head>
<body>
<header>Super Awesome Header</header>
<article>
<header>Article Header</header>
<p>Fusce luctus accumsan odio. Cras vel sodales mi. Suspendisse et arcu quis magna
feugiat ultrices sit amet non erat. Etiam malesuada dui venenatis eros gravida aliquet.
Aliquam erat volutpat. Nullam dapibus cursus ultricies. Suspendisse congue accumsan
purus non scelerisque. Phasellus ut sapien libero, vel luctus velit.</p>
</article>

<!-- This is where we use PHP to include another file into our document -->
<footer>

Home
About
Contact
Privacy Policy
Terms and Conditions

<p>© 2011 Super Awesome Site, Inc. All rights reserved.</p>
</footer>

</body>
</html>

Folder Structure

In the previous example we discussed segmenting your files into small structures to

make them more manageable. With more files, you’ll probably also want to create

directories to store specific files grouped by function.

In Figure 4–8, I created a mock folder structure for a make–believe application. Just like

separating your code in your documents, it is also good practice to neatly arrange your

folder structure in such a way that you can easily find the files you need throughout the

development life of your app.

CHAPTER 4: Basic Planning and Structuring of Your Application 63

Figure 4–8. A neatly organized mock folder structure as seen in the file browser of Adobe Dreamweaver CS5.5

Here we are sticking with a very basic structure in which all of the resource directories

(such as our css, img, and js folders) are in the Document Root folder of the site, and

there is a template folder which will hold the template code for the different pages of our

web application.

Inside of the template folder there is an includes folder which we will use to house

documents that are used throughout the application, such as markup code for the

header or footer, and maybe even some random blocks of content. Referring to our

example in the previous section on relative paths, the include line in our index.php

file in Figure 4–8 would reference the footer file as include
('template/includes/footer.php'). This not only keeps things separated, it makes

logical sense as well. The footer is part of the template, and it’s included in pretty much

everything, hence it lives in the includes directory, within the template directory.

Now when it comes time to develop our application or make an update in the future we

won’t have to try and remember where all of our code is located because we can easily

and logically find it at a glance.

If we want to edit the information on the contact page we will just edit the template file

located at /template/contact.php. If we see a problem with the header file we can easily

jump into /template/includes/header.php and make any changes we need to our

hearts’ content, and then have those changes reflected throughout the entire

application.

Summary
Hopefully now that you reached the end of yet another chapter you have a better idea of

what kind of thought process and work goes into the creation of a web application, or

CHAPTER 4: Basic Planning and Structuring of Your Application 64

even a web site, before the actual coding begins. If you were working for an agency or

studio, or other developer–centric business, then you would probably be on a team of

people and each person would be responsible for their own tasks and taking care of

different parts of planning before it was handed off to you as a developer. (You’d

probably also have a lot more in terms of testing teams, development milestones, builds,

etc.) If you are working for yourself, however, you now know what to do to make your life

a little more bearable and your workload just a bit more tidy.

65

 Chapter

Handling Multiple Screen
Resolutions with CSS 3

One of the hardest things to deal with when designing websites is the myriad of different

user configurations you might encounter. Modern web browsers and operating systems

are highly configurable, and different options can affect how your web application is

viewed. In this chapter, we’ll talk specifically about screen resolution—or the number of

pixels on the screen—and how one can accommodate varying resolution settings using

CSS 3.

A History of Tired Eyes and Resolution Evolution
If you’ve ever used a computer late into the night, perhaps after a long day of work, you

might have discovered a helpful trick: You can change the size of the objects on the

screen to make reading them easier on your eyes. This generally involves changing your

computer’s display resolution. The resolution is simply the number of pixels that are

displayed by your screen and is given in two numbers—the first for the number of pixels

wide, the second for the number of pixels tall (i.e., height). By changing resolution, most

often by scaling it down from something high, such as 2560 x 1600 (incidentally, what

I’m using as I type this page at 7 PM at night), to something lower (perhaps 1600 x

1200—a good 11 PM resolution) you’re taking away individual pixels, which means that

items on your screen will appear larger.

In the late 1990s, as people began to surf the web in larger numbers, the standard

resolution was known as VGA (for Video Graphics Array) and it was commonly set as

640 x 480. As time went by and monitors became larger, cheaper, and more efficient,

most users adopted SVGA (the S being for Super—honestly!), at 800 x 600. This gave

way to XGA (Extended Graphics Array—thankfully not Xtreme) at 1024 x 768, and larger.

Today, my monitor is displaying WQHD (Wide Quad High Definition) at the

aforementioned 2560 x 1600.

5

CHAPTER 5: Handling Multiple Screen Resolutions with CSS 3 66

As you can imagine, web designers have struggled with screen resolutions for years,

ever since 640 x 480 went out of style. They eventually diverged into two camps—those

who supported designing for one resolution (a “fixed-width”), and those who designed

for multiple resolutions (“flexible-width”). The fixed-width folks believe that the best web

design is one in which you are absolutely sure that all users are seeing your website as

close to the way you designed it as possible. This means picking a resolution, such as

1024 x 768, and designing your page to make use of that space (see Figure 5–1). If the

user has a larger resolution set, your page will simply have extra space at the sides, but

the tables and placement will remain where you want them, within your 1024-pixel width

(see Figure 5–2). If the user has—horrifyingly—a smaller resolution, then your content

will take up more of the screen than they have to give, and they’ll be forced to use the

absolutely dreaded horizontal scroll bar for your page.

Figure 5–1. An example of a Fixed-Width Webpage at 1024 x 600 resolution

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5: Handling Multiple Screen Resolutions with CSS 3 67

Figure 5–2. The same page at 2048 x 1536 resolution. Note the wide black bars on the sides

In comparison, a flexible-width layout will try to accommodate resolutions

of all sizes (see Figures 5–3 and 5–4).

Figure 5–3. An example of a Flexible-Width Webpage at 1024 x 600 resolution

CHAPTER 5: Handling Multiple Screen Resolutions with CSS 3 68

Figure 5–4. The same page at 2048 x 1536 resolution

By now, you might have started looking at your smartphone or tablet and thought,

“Hmm… wonder what the resolution is on this thing?” You know what? That’s what

most of the designers of mobile web pages are wondering too. Currently, with Android

activations hovering around 350,000 new devices a day, designers and developers alike

are realizing they need to make drastic changes in their approach to web application

development in order to stay relevant with the vast array of devices we use daily to view

the web. It’s a hard game to play if you favor a fixed-width approach: What resolution do

I build my mobile app for? There are some easy answers (“Well, most people have

iPhones, I’ll just build for that”), but they have their downfalls (“What?!? They made a

BIGGER iPhone called an iPad… uh oh…”). By targeting specific devices, you also tend

to annoy users of any device other than your target.

In this chapter, we’ll offer you a bit of “screen resolution.” That is to say, we’ll attempt to

solve the problem by discussing how your mobile web application can actually be

intelligent enough to understand the resolution, and even the orientation, of the device

that your user is using and adapt automatically for it. It’s almost as if you’ll be coding up

a small brain that says “Hmm, this device has a lot of width; let’s show everything we

can” or “Oh, no; this is a small screen. We can’t show this information side by side!” As

a designer, we can harness the small brain and make it even more intelligent, by letting it

display the same content in a variety of different ways to different devices and—by

extension—different users. Let’s begin with an example.

CHAPTER 5: Handling Multiple Screen Resolutions with CSS 3 69

The Daily Droid
Imagine you’ve decided to start publishing a daily newspaper for Android users and

you’ve come up with a great title: The Daily Droid. The only problem is that some of your

users are using a Motorola Xoom, which has a resolution of 2048 x 1536; some are

using a Samsung Galaxy Tab (a 1024 x 600 resolution); and still others are using the

Roccwest XTreme, which for some odd reason has a resolution of 1280 x 800. If you

were to target one of these devices, the other two wouldn’t look quite right using a fixed

width. Thankfully, we can write one page that will look fine in all three—see Figures 5–5

through 5–7:

Figure 5–5. The Daily Droid at 1024 x 600 resolution

CHAPTER 5: Handling Multiple Screen Resolutions with CSS 3 70

Figure 5–6. The Daily Droid at 1280 x 800 resolution

Figure 5–7. The Daily Droid at 2048 x 1536 resolution

Comparing these figures side by side can be very surprising—the content is exactly the

same, but the layout has shifted quite markedly. The even more amazing part is that this

CHAPTER 5: Handling Multiple Screen Resolutions with CSS 3 71

is the same page—our developer was able to create it once and make it smart enough

to react appropriately at these three different resolutions1.

But what about our friends without tablets? Well, with a tiny bit of work, we can also

accommodate them with the Daily Droid Smartphone Edition, as shown in Figure 5–8

(portrait orientation) and Figure 5–9 (landscape).

Figure 5–8. The Daily Droid at 480 x 859 resolution

1 In this case, the developer (Rocco) had no idea what resolutions the guy writing the

narrative (Jon) was going to pick, and yet the page still looks great.

CHAPTER 5: Handling Multiple Screen Resolutions with CSS 3 72

Figure 5–9. The Daily Droid at 859 x 480 resolution

Let’s take a look at the code behind the Daily Droid to discover both how the page is

built, and how we determine if it should say “Smartphone” or “Tablet” edition. We’ll go

over the HTML in the next section and then the CSS in the following section. Reading

through the following code, you should, based on the comments, get a sense of what

each section is doing.

The Daily Droid’s Base HTML Code

We’ve broken the HTML it into several parts, so you can go through it in manageable

pieces. In the first part, shown in Listing 5–1, we create the initial HTML layout and

specify the two different headers.

Listing 5–1. HTML Code for The Daily Droid part 1

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta charset="utf-8">
<title>The Daily Droid</title>
<meta name="description" content="An Android Responsive Web Design Demonstration.">
<meta name="author" content="Rocco Augusto">

<!-- Here we set the viewport so the device knows that this page is not one that can
scale/zoom -->
<meta name="viewport" content="width=device-width; initial-scale=1.0; maximum-scale=1.0;
user-scalable=0;" />
<link href="style.css" rel="stylesheet" type="text/css" >

<!-- Here we pull in two fonts from the Google Font API database -->
<link href="http://fonts.googleapis.com/css?family=UnifrakturCook:bold" rel="stylesheet"
type="text/css">
<link href='http://fonts.googleapis.com/css?family=Bevan' rel='stylesheet'
type='text/css'>

http://fonts.googleapis.com/css?family=Bevan

CHAPTER 5: Handling Multiple Screen Resolutions with CSS 3 73

</head>

<!--
 HEADER
 We are adding two different sub headings (h6) to this page.
 One heading will be for the "Smartphone Edition" of the
 page and the second will be for the "Tablet Edition"
 of the page. Both pages are the same but depending on
 the screen size the pages CSS will tell the browser which
 subheading to display.
-->
<header id="mast">
 <hgroup>
 <h1>The Daily Droid</h1>
 <h6>Smartphone Edition</h6>
 <h6>Tablet Edition</h6>
 </hgroup>
 <time datetime="2011-05–29">May 29th, 2011</time>
</header><!-- /HEADER -->

As you can see from the code in Listing 5–1, both the Smartphone Edition and Tablet

Edition text appear in the HTML. The CSS (discussed in “The Daily Droid CSS” later in this

section) will select the correct one to display. In part 2 of the HTML, shown in Listing 5–2,

we’ll lay out the content and article space, and then finish up the HTML structure.

Listing 5–2. HTML code for The Daily Droid, part 2

<section id="content">
 <!--
 SECTION: FEATURED ARTICLES
 The featured article would be the main article on the page
 that will be featured. Think of it in this sense as the
 front page story on a newspaper - which makes sense since
 this demo's completed code would be a mock vintage newspaper
 layout.

 The article contains several sections. You have the header
 section which contains the title of the article as well as
 a "figure" or image that would be displayed with the article
 and any caption text that would go along with it.
 -->
 <section id="featured">
 <article>
 <header>
 <h1>Title goes here...</h1>
 <figure>

 <figcaption>Figure caption...</figcaption>
 </figure>
 </header>
 <div class="entry">
 <p>Article content goes here...</p>
 </div>
 </article><!-- /ARTICLE -->
 </section><!-- /SECTION: FEATURED ARTICLES -->

 <!--
 SECTION: REGULAR ARTICLES

CHAPTER 5: Handling Multiple Screen Resolutions with CSS 3 74

 The regular articles on this page will be housed in this
 section of the document. The markup of this section is
 exactly the same as the featured articles section. The only
 difference will come down to how they are displayed based
 off their assigned styles.
 -->
 <section id="regular">
 <article>
 <header>
 <h2>Title...</h2>
 </header>
 <div class="entry">
 <p>Body Content...</p>
 </div>
 </article><!-- /ARTICLE-->
 </section><!-- /SECTION: REGULAR ARTICLES -->

</section><!-- /SECTION: CONTENT -->
<body>
</body>
</html>

Now let’s turn to the CSS and the visual presentation of The Daily Droid.

The Daily Droid’s Semi-magical CSS Code

Now here’s the CSS Style Sheet used to set the overall appearance of The Daily Droid.

CSS, as you remember, will take the plain HTML structure explained in the preceding

section and apply various styles to the tags, as we specify. We’ve broken the CSS into

several parts to help explain what it does. The first part, as shown in Listing 5–3, sets

how the body text and some of the headings should look.

 Listing 5–3. CSS Code for The Daily Droid, part 1

/*
 CSS reset code only for the elements that will be
 used in our code. We could use a more robust CSS reset
 solution, but I am a firm believer that you should not
 riddle your stylesheet with code that you have no
 intention of using in your markup.
*/
html, body, h1, h2, h6, p, article, figure, figcaption header, hgroup, section {
 padding:0;
 margin:0;
}
/*
 General global styles to be used throughout the demo
*/
html, body {
 width:100%;
 overflow-x:hidden;
}
body {
 font-size:14px;
 font-family:"Times New Roman", Times, serif;
 line-height:20px;

CHAPTER 5: Handling Multiple Screen Resolutions with CSS 3 75

 background:url(bg.png);
 -webkit-box-shadow: inset 0 -5px 300px rgba(153,99,38,1); /* This inset box-shadow
adds gives the page a nice vintage feel to it */
 box-shadow: inset 0 -5px 300px rgba(153,99,38,1);
}
h1, h2 {
 font-weight:normal;
}
h1 {
 font-size:36px;
 line-height:42px;
}
h2 {
 font-size:20px;
}
h6 {
 font-size:16px;
 text-transform:uppercase;
}
p {
 margin:10px 0;
}
/*
 Header/Mast CSS code
*/
#mast {
 padding:20px 0 0 0;
 text-align:center;
 letter-spacing:1px;
}
#mast h1 {
 font-family:'UnifrakturCook', Georgia, "Times New Roman", Times, serif;
 font-size:62px;
 line-height:48px;
}

Now that we’ve got some of the CSS in place, it’s time to see the code that switches

between the “Tablet” and “Smartphone” edition. By default, we want to display Tablet

Edition, so that code is shown in Listing 5–4:

Listing 5–4. CSS Code for The Daily Droid, part 2

#mast h6 {
 display:none; /* hiding both of the pages subheaders */
}
#mast h6:nth-child(3) {
 display:block; /* displaying the "Tablet Edition" subheader by default */
}
#mast time {
 display:block;
 margin:10px 0;
 border-top:double 6px #000;
 border-bottom:double 6px #000;
 text-transform:uppercase;
 font-size:16px;
 line-height:24px;
}
/*

CHAPTER 5: Handling Multiple Screen Resolutions with CSS 3 76

 Article/Content styles.
 This section will rely heavily on two new features
 of CSS3: Flexible Box Model and Columns.

 The Flexible Box Model is probably one of my favorite
 new features of CSS3. In a nutshell, it allows one to
 take control of how their page is laid out, using a grid
 of flexible boxes and essentially eliminating the need to
 hack together layouts by improperly using floats in one’s
 code.

 CSS3 Columns are another time saving new feature of CSS3
 and allow a designer/developer to take a block of code
 and automatically convert it into a column based layout
 that is just perfect for a newspaper demonstration.
*/
#content {
 padding:0 10px;
 display:-webkit-box; /* here we are using the -webkit-box argument instead of
 plain old "box," so our code will work across newer and
 older Android browsers*'
 */
 -webkit-box-orient: horizontal; /* setting the box orientation to horizontal
 displays the content in this container from
 left to right instead displaying the content
 in the traditional way of top to bottom */
}
#featured {
 max-width:50%; /* our featured article will take up half the width of the display */
 height:100%; /* our featured article will take up all of the available height of the
display */
 box-flex:1; /* tell our child elements to be evenly sized and take up one "box"
space */
 -webkit-box-flex:1;
}
#featured .entry {
 -webkit-column-count: 2; /* this will display our featured content article text in 2
columns */
 -webkit-column-gap: 20px; /* here we add a hearty 20px gap/spacing between our
columns */
 -webkit-column-rule: 1px solid rgba(91,58,21,0.5); /* here we are adding a border to
our columns */
}
#regular {
 margin-left:5px;
 padding-left:10px;
 max-width:49%;
 box-flex:1;
 -webkit-box-flex:1;
 -webkit-column-count: 3;
 -webkit-column-gap: 20px;
 -webkit-column-rule: 1px solid rgba(91,58,21,0.5);
 border-left: 1px solid rgba(91,58,21,0.5); /* here we are adding a border to the
#regular container to match the rest of the columns' borders */
}
#regular article {

CHAPTER 5: Handling Multiple Screen Resolutions with CSS 3 77

 display:inline; /* displaying our articles inline prevents our articles from
stacking on top of each other */
}
article h1, article h2 {
 margin-bottom:10px;
 font-family:Bevan, "Times New Roman", Times, serif;
}
article .entry {
 text-align:justify; /* to give the page a more realistic feel we will justify the
column text */
}
article figure {
 width:90%;
 padding:0;
 margin:10px auto 20px auto;
}
article figcaption {
 font-style:italic;
 text-align:right;
}

Now we’ll set up the Smartphone code (in Listing 5–5) and adjust the layout accordingly.

Listing 5–5. CSS Code for The Daily Droid, part 3

/*
 Android Smartphone Devices
 Here we will use CSS3 media queries to determine
 the resolution of our screen and present the user with
 a completely different layout if their viewing
 does not meet certain requirements.

 Here we are targeting smartphone devices that will,
 on average, have a width of 320px (portrait) and up
 to 569px (landscape).

 This layout will display the content in a more
 commonly used smartphone style layout, presenting the
 user with a list of articles that they can scroll up
 and down to view.
*/
@media screen and (min-width: 320px) and (max-width: 569px) {
 body {
 -webkit-box-shadow: inset 0 -5px 50px rgba(153,99,38,1); /* lessen the shadow on
the page to adjust to the screen's new dimensions */
 box-shadow: inset 0 -5px 50px rgba(153,99,38,1);
 }
 h1 {
 font-size:20px; /* lower the size of the header font to accommodate the smaller
screen resolution */
 line-height:24px;
 }
 h6 {
 font-size:12px; /* same as the h1 above it */
 }
 #mast h1 {
 font-family:'UnifrakturCook', Georgia, "Times New Roman", Times, serif;
 font-size:42px;

CHAPTER 5: Handling Multiple Screen Resolutions with CSS 3 78

 line-height:42px;
 }
 #mast h6:nth-child(2) {
 display:block; /* since we are dealing with a smaller screen we will show the
"Smartphone Edition" subheader */
 }
 #mast h6:nth-child(3) {
 display:none; /* and hide the "Tablet Edition" subheader */
 }
 #mast time {
 font-size:12px;
 line-height:24px;
 }
 section#content {
 -webkit-box-orient: vertical; /* here we are telling this content to display
vertically instead of horizontally */
 padding-bottom:15px;
 }
 #featured {
 max-width:100%; /* take up the entire width of the screen instead of half of it
*/
 }
 #featured .entry {
 -webkit-column-count: 1; /* only display our text in a single column, which is
more appropriate for our screen real estate */
 -webkit-column-gap: 0; /* remove the 20px padding around columns */
 -webkit-column-rule: none; /* remove the border off our columns */
 }
 #regular {
 margin-left:0px;
 padding-left:0px;
 max-width:100%; /* like our featured article we will now take up the entire
width of the page */
 -webkit-column-count: 1; /* like our featured article we will display a single
column of text */
 -webkit-column-gap: 0;
 -webkit-column-rule: none;
 border-left: none;
 }
 #regular article {
 display:block; /* display our articles as blocks so they appear vertical */
 }
 article .entry p, article figure {
 display:none; /* hide all of our article content so the user is not stuck
scrolling into oblivion */
 }
 article .entry p:first-child {
 display:block; /* display only the first paragraph of an article for the user */
 }
 article {
 margin-bottom:10px;
 border-bottom:2px solid rgba(0,0,0,1);
 }
}

f

CHAPTER 5: Handling Multiple Screen Resolutions with CSS 3 79

This is a lot of code for a simple newspaper; however, the beauty of it is in its versatility:

One HTML page and one CSS page to rule all devices—phones, tablets, Android Media

players, and whatever else someone puts Android on! Let’s take a moment to discuss

how this magic happens, using media queries.

Media Queries
When you looked at the preceding code, the first thing that you probably noticed is that

the very fluid vintage newspaper layout that was programmed consists of only two

relatively small files of code. Five to seven years ago, in a land where web developers

had to wear two different hats—web developer hat and Internet Explorer 6 hacker hat—

creating a layout such as this would have been a ridiculously cumbersome task that

would have most likely consisted of two, if not more, completely different layouts. Each

layout would have had to be its own set of HTML and CSS files, displayed to the client

by some backend server code that looked up your device’s user agent string. Mobile

devices would have been served the HTML and CSS templates designed specifically for

mobile devices. Desktop computers would have been served desktop equivalent

templates. There was no melding or fluidity between the code versions.

Fast forward a few years into the future—where we sit at the dawn of HTML5 and

CSS3—and the landscape is completely different. Currently we live in a world where

Desktop Internet browsers are being developed and released faster than most users can

get around to installing the most recent update. On the mobile front, it is almost equally

as progressive, with new versions of the Smartphone's operating systems, and in turn

new feature rich versions of their Internet browsers, being released every six to twelve

months, if not sooner!

What that means for you, the mobile web developer, is that you are not stuck in the

past, coding your sites for browsers that are a decade old if not older. At the most, as a

developer targeting the Android user experience, you really only have to worry about

developing for the last year and a half of Android releases. The ability to focus on newer

devices without worrying about hindering your user’s experience by focusing too much

on past technologies gives developers a certain freedom that we did not possess

before. With that freedom comes innovation and with innovation comes better

technology and features—such as CSS3 media queries—the technology that is

responsible for letting us create the beautiful “The Daily Droid” demo that we previously

built.

Media queries have, in some form or other, been a part of web development since the

days of HTML4. During that dark shadowy time of font tags and nested tables, media

types made their big claim to fame by controlling styles and style sheets associated with

the medium in which the user would be using to view the content (see Figures 5–10 and

5–11). For instance, a developer would assign some styles to the “print” media type to

remove all advertisements from printed articles on a blog so their user would not

unnecessarily use up their expensive ink when trying to print the blog's content (see

Listing 5–6).

CHAPTER 5: Handling Multiple Screen Resolutions with CSS 3 80

Listing 5–6. Media Query Example 1: Hiding or showing a block based on media type

<style type="text/css" media="screen">
 #advertisements {
 display:block;
 }
</style>

<style type="text/css" media="print">
 #advertisements {
 display:none;
 }
</style>

Figure 5–10. The Android Thoughts homepage viewed in a normal Desktop web browser

CHAPTER 5: Handling Multiple Screen Resolutions with CSS 3 81

Figure 5–11. The same Android Thoughts web page viewed when printed

A developer could also assign styles or style sheets to the “projection” media type, to

account for washed out colors in a site’s header when viewing a project on a projector in

a meeting room (see Listing 5–7).

Listing 5–7. Media Query Example 2: Changing background color based on media type

<style type="text/css" media="screen">
 #header {
 background: #444444;
 }
</style>

<style type="text/css" media="projection">
 #header {
 background: #111111;
 }
</style>

However, with CSS3, the concept of media types has evolved into something much

more beautiful and flexible, which gives Cascading Style Sheets the ability not to be just

a “dumb” mechanism for adding style to documents and markup made for the web.

CHAPTER 5: Handling Multiple Screen Resolutions with CSS 3 82

Media queries are something that, when used, feel like they should have been a part of

CSS from the very beginning. I have heard some friends of mine refer to media queries

as “freedom” and have even heard one developer I know—granted, after a very long

night of coding—refer to media queries simply as the new “black magic” of the digital

age. In reality, they are neither. Media queries serve as a tool that, when mastered, will

make your job as a developer easier and at the end of the day will give you a beautifully

flexible layout that instantly transforms to your user’s viewing medium, right before your

eyes!

If you have worked with JavaScript or any other scripting or programming language of

the past, then media queries will probably be easy for you to learn. Basically, what one

is doing is assigning logic to their style sheets that will let the browser on the client side

do all of the heavy lifting when it comes to assigning the right template styles to the right

viewing device. The following is a very basic example of using CCS's media queries:

<link rel="stylesheet" media="screen and (orientation:portrait)" href="portrait.css" />

In this example, we are telling the client’s browser to load the “portrait.css” stylesheet

when the browser is viewing the application, or website, from a mobile device that is in

the vertical position.2 One is not limited to assigning media queries to the link tag. Media

queries can also be added directly to your device’s CSS files, as we saw with the

preceding example of “The Daily Droid”. In fact, one can even go as far as invoking

media queries when using the @import rule to call a CSS file for the correct display as in

the following example:

<style type="text//css">
 @import url(landscape.css) screen and (orientation:landscape);
</style>

In the following example, we will have several @import rules importing in many different

CSS files for different layout types (see Listing 5–8).

Listing 5–8: Media Query Example 3

<style type="text//css">
 <!-- Styles for a smartphone landscape display -->
 @import url(landscape.css) handheld and (orientation:landscape) and (max-
width:480px);

 <!-- Styles for a Honeycomb tablet landscape display -->
 @import url(landscape.css) handheld and (orientation:landscape) and (max-
width:648px);

 <!-- Styles for a portrait display -->
 @import url(landscape.css) all and (orientation:portrait);
</style>

2 Devices that have sensors to detect movement typically will tell the software if the

phone is switched from landscape to portrait view, allowing your web page to reformat

automatically based on the styles you define.

CHAPTER 5: Handling Multiple Screen Resolutions with CSS 3 83

I know exactly what you're thinking, “What if I have to code my web application to

match a Google TV Android device hooked up to a television or device with a 16x9

display?!” Well don't you fret because the flexible nature of CSS3 media queries has you

covered, as it does in the following example:

<link rel="stylesheet" media="all and (device-aspect-ratio: 16/9)" href="television.css"
/>

As you can see from these preceding examples, media queries are an incredible tool in

any web developer’s arsenal in a world that is quickly becoming dominated by HTML5

and CSS3 capable devices and applications. To learn more about the power of Media

Queries, check them out on the W3.org website here—www.w3.org/TR/css3-
mediaqueries/#media0.

Summary
In this chapter, we’ve talked a lot about the size of your web pages and how that size

can change based on the screen used to view the content. Now that we've got the

screen resolution issue out of the way, we'll zoom in a bit and address the best ways to

handle different browsers!

http://www.w3.org/TR/css3-mediaqueries/#media0
http://www.w3.org/TR/css3-mediaqueries/#media0

85

 Chapter

Handling Different
Browser Platforms

So far, we’ve discussed ways to detect the type of device that is accessing your web

page or application and to deal with it appropriately. This has involved special CSS files,

formatting concerns, and more. Like any good baker will tell you, however, it is not

always the wisest of ideas to keep all of your eggs in one basket. That is why, in this

chapter, we’re going to take a step back and discuss methods that you can use to

understand what device is accessing your service and to act appropriately.

The reason for this is simple: Not one solution will fit all problems. For instance, you

might need to allow mobile users to access a web application and you might find it

possible to format pages that look great on the desktop as well as on a phone. For

extremely simple layouts, this is often what developers do. However for more complex

systems, one might need to create a completely separate website. The middle ground is

to build one HTML document that can look good on the desktop, tablet, or phone. In

this chapter, we’re going to give you the tools you need to figure out what device is

looking at your page, and we’ll provide some ideas on how your page can react to each

device. After all, just as no two websites are exactly alike—although similar—no two

devices will behave exactly alike (but thankfully, as with websites, there are similarities).

META Tags and the Viewport
We’ve discussed many things about HTML that are hidden to normal users—the

different tags that are used, the different sections, such as the head and body, and even

how things like CSS and JavaScript can be embedded into an HTML document.

However META tags or elements are special in that, while they aren’t shown to the user,

they do generally impact the user’s experience with the how the page is displayed or

formatted.

6

CHAPTER 6: Handling Different Browser Platforms 86

META tags live in the head section of an HTML page, and generally have two elements,

the name of the element, and the value. For example, the following value specifies the

keywords associated with the particular webpage:

<meta name="keywords" content="android, howto, information" >

A Little META History

Back when search engines first began indexing the Internet, they used the keywords

and description META elements to understand what a given webpage was all about. In

the late 1990s, full-text search engines (such as Google) began indexing and using all of

the text of a given webpage to determine what the page contained, and these META

elements became less important. In fact, an entire industry had sprung up purporting to

help web page owners get more traffic by “optimizing” their web pages, which usually

included updating the META elements search engines used. This industry of “search

engine optimization,” or SEO, still exists today and is in fact a very cutthroat type of

business, although many search engines look for the older “tricks” used and may

penalize pages for using them today. For example, one trick used was known informally

as “keyword stuffing”, which was what it sounded like—stuffing the META keyword

element with many different terms, some of which may score highly to search engines

but weren’t exactly accurate in regards to the page’s actual content. Modern day SEO

firms must rely on a number of other techniques to increase a page’s search rank,

including a number of things we don’t normally consider as designers (e.g., what links

are on the page, page titles, layout, wording, etc…).

One of the interesting things about META tags is that there are considerably fewer

“official” META tags than the total that exist on the web. Various software companies that

produce web browsers, such as Microsoft, may decide to build their browser to detect

“unofficial” META tags and respond to them.

For example, Microsoft pioneered the use of the MobileOptimized META tag, which told

its mobile internet browser (Pocket Internet Explorer or Internet Explorer Mobile) how to

specially render a page that used this tag. Some non-Microsoft produced browsers

supported the tag, but no guarantee could be made that the tag would help users of

rival browsers as much as it did users of Internet Explorer. Similarly, our old friend

AvantGo, mentioned earlier, used a tag named HandheldFriendly for much the same

purpose, with the same problems associated.

The Viewport Element

All of this confusion, rivalry, and non-conforming led to the introduction and fairly wide

acceptance of a new META element known as Viewport that, while still unofficial, is the

most current “special” META tag of interest to mobile developers. The Viewport can be

thought of as a window on top of a web page. Sometimes the entire web page fits into

the window, and other times we want to size the window differently, depending on how

we build the page. One reason that the Viewport tag has been a bit more successful

CHAPTER 6: Handling Different Browser Platforms 87

than previous attempts is the amount of information one can place in it. For example, a

simple Viewport tag might look like this:

<meta name="viewport" content="width=320,height=device-height" />

This code tells the mobile browser that the content of this page should be 320 pixels

wide and as tall as the device’s screen. (If you’re designing for a Tablet, you would

probably adjust this to 800px wide.) To get a better idea of how this would display a

page, take a look at Figure 6–1. It shows the "Who's That Tweet?" game we made in

Chapter 2 using the preceding viewport setting.

Figure 6–1. Here we have the "Who's That Tweet?" game with a viewport set

Notice how the layout of the page is bigger than the available viewing real estate of the

handset? This is because while we set the height to be the height of the device, we set

the width too wide—320px—and the browser doesn’t know anything about the initial

scale, as evidenced by the zoom buttons on the bottom of the page. The browser, in

this case, zoomed in to show the upper left of the page, and provided the zoom buttons

so users can zoom in and out of the page to either view as much or as little of the page

as they choose (While there are times when it is nice to be able to zoom content on a

page, it would be even better if we could disable that feature on this page so we can

guarantee that our layout will appear the way we intended it to). In other words, the

browser made an educated guess on how it should display this page, and it failed

miserably by pulling it to the upper left. It could have also displayed everything zoomed

CHAPTER 6: Handling Different Browser Platforms 88

out, in which case all 320px would have fit, but the text would be really small. We’re

going to give it more information so it displays it right the first time.

Luckily for us, Viewport tags can also contain information regarding the scaling of the

page—including the ability of the user to zoom in and out of the given page. The

following—slightly more complex—Viewport tag specifies all of these things:

<meta name="viewport" content="width=320, height=device-height, user-scalable=no,
initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0" />

This code tells the browser two things. First, it provides scale values, which allow the

browser to know what you consider the largest and smallest scale, and where to set the

scale initially. In this example, we’re telling the browser that we coded the page so that

it’s designed to be seen at 100%, and it shouldn’t be any larger or smaller. The second

item this code adds is the ability to turn off the user’s zoom in and out options, as can

be seen in the following Figure 6–2. Now we don’t have to worry about our design not

being seen the way we intended it to be displayed to the user. Personally, I am a fan of

always taking away the user’s ability to scale the page when building a mobile site or

application. I know some people really like the ability to pinch and zoom their way

through scaling heaven but, in reality, mobile devices have a very limited amount of

screen real estate and I feel, as a designer or a developer, that it is your job to use that

limited screen space to your advantage instead of putting the extra burden of having

your user pinch and zoom to navigate around your finished product.

Figure 6–2. Chapter 2's "Who's That Tweet?" game with the user-scalable turned off

CHAPTER 6: Handling Different Browser Platforms 89

But what if you want the happy medium in the sense that your app should zoom in

automatically, but should also allow the user to modify the zoom if they so wish? And

what about devices that have a higher pixel count (such as the Google Nexus One, with

480px wide)? We can address this in a few ways. The first is to just remove the user-
scalable=no line in the META tag, and adjust the scale values targeted to a certain screen

density. This lets the META tag give the initial values, but doesn’t constrain the user. To

determine if this is the right move, we can conduct a bit of user testing (i.e., surveys to

see what people think of our mobile interface) or if we really are curious, we could

implement some javascript code to see what users are doing and then write it to a log

(This is beyond the scope of this book, although resources do exist, such as the

discussion on this page: http://htmldoodads.appspot.com/zoom-level.html). We can

also build a page that displays differently depending on the device pixel density—

something that we would have to specify in the underlying CSS, using tags for low

density (ldpi), medium density (mdpi), and high density (hdpi), and then specifying

different CSS formatting for each situation.

Finally, if we have the luxury of developing for simply one platform (i.e., only Android

phones), we can look into specific features of the browser. In this case, the Android

Webkit browser reduces the size of text elements automatically so they fit on the screen

(go view an article in an online newspaper and zoom in on a wide block of text to see

this in action). If this is our usage scenario, then no META worries exist for us. While this

can be tempting to rely on, you should thoroughly test your page on an Android device.

It also doesn’t hurt to use the META tags as an extra layer of security to help the built-in

browser.

The User Agent
Sometimes specifying what the browser should do with your page isn’t enough for your

needs. For example, perhaps you know certain information, no matter how it’s zoomed

or formatted on a mobile device, is just too much for the average user to handle on a

small screen. Maybe your page uses a bunch of Flash applets, which don’t work on an

iOS device such as an iPhone or iPad, and you’d like to redirect those users somewhere

else. Maybe there are features and functionality available on your site that are not

available across all applications and would need to be disabled for less advanced

browsers. Finally, maybe you just want to give out one web address,

http://mysite.com, and have it automatically direct mobile phones and tablets to a

special optimized version, while showing everyone else the full page. The way most sites

accomplish these goals is by reading the user agent string, supplied by the visitor’s web

browser. Let’s first take a look at an example user agent, and then see how we use it in

our application.

The Nexus One User Agent

The format of a user agent string is codified by RFC 1945, the HTTP specification, which

includes the definition of this string. The string is made up of the product name and

version, and an optional comment. While those are the parts of the string required by

http://htmldoodads.appspot.com/zoom-level.html
http://mysite.com

CHAPTER 6: Handling Different Browser Platforms 90

RFC 1945, many vendors add additional information such as the operating system,

loaded extensions, and platform details. The built-in browser on a Google Nexus One,

running Android 2.2 (Froyo) sends the following user agent:

Mozilla/5.0 (Linux; U; Android 2.2; en-us; Nexus One Build/FRF91) AppleWebKit/533.1
(KHTML, like Gecko) Version/4.0 Mobile Safari/533.1

This string, broken down, translates to:

 Mozilla 5.0 browser

 Running on a Linux operating system, specifically Android 2.2

 Using the language English—US (en-us)

 On a Nexus One phone, running build FRF91 of the operating system.

 Which (the comment instructs) is like an AppleWebKit browser (version 533.1).

A lot of information is available to our web page or application (and if you look at the

RFC, more information might even be available in terms of the engine or the level of

security the current browser offers). Using this, we can direct users of specific phones,

browsers, operating system, and languages to specially formatted pages we’ve created

for them or display features specific to that browser which we are targeting.

However, there is one caveat to consider with user agent detection: User Agent

Spoofing. Many third-party browsers, such as the popular Dolphin HD browser on

Android, allow users to set their own user agent. There are multiple reasons for this,

including:

 The user wants to see the desktop version of a page, no matter how

horribly formatted it might look.

 The user wants to access pages that are specifically built for another

operating system or browser (i.e., perhaps the web developer hasn’t

built an optimized Android version yet, but has an optimized iOS

version.)

 The user just wants to appear to the website’s logs as a desktop

system, for some reason or another! One that comes to mind is a

restriction placed by the developer (i.e., only show a special offer to a

desktop user) that the mobile user wishes to view.

There isn’t much one can do about user agent spoofing. After all, the setup of the entire

system revolves around the user agent being reported accurately. If this is a concern of

yours, you may want to use alternatives in addition to user agent detection to deliver the

correct page to your user, despite what they want. This typically would take the form of

scripts that could test for capabilities of a browser—however, one would need to know

which minute capabilities mobile browsers have and which only desktops would have—

which is well beyond our scope here.

Now that you have a basic understanding of what the user agent string is used for, let’s

take a look at a few examples where we detect a user agent string of our end user.

CHAPTER 6: Handling Different Browser Platforms 91

PHP User Agent Detection

Listing 6–1 shows a PHP example in which we are going to detect the user agent string

and display it to the user. If the user is using an Android web browser, then they will be

presented with the always pleasant smiley face (see Figure 6–3), but if they try viewing

the script on a non-Android powered device, then they will be accosted with the ever

unpopular frowny face (see Figure 6–4).

Listing 6–1. PHP User Detection Code

<?php
$userAgent = strtolower($_SERVER['HTTP_USER_AGENT']);
if(stripos($userAgent,'android') !== false) {
 echo 'You are using an Android web browser! :)';
}
else {
 echo 'You are not using an Android web browser! :(';
}
?>

To understand how this code is working, we are going to pick it apart, line by line. First,

we define the variable $userAgent, which grabs the user agent string of the browser

requesting the page. Then we use the PHP striposfunction—which searches a string for

the occurrence of a string—to parse the user agent for our supplied value. If the value, in

this case android,is not found within the string, then the user is presented one

message. If it is found, another message is presented.

This is just a small example of how you can use PHP to detect a user agent string, but

there are many more situations where this technique might save you from ripping your

own hair out. For example, using detection in PHP may allow you to block content

before it is even sent (something JavaScript detection won’t do, generally). Also, if the

bulk of your application is written in PHP, you may be more comfortable recording user

agents in this manner, rather than through JavaScript.

Figure 6–3. Using PHP, we are taking the user agent string and using that to decide which content is showed to
the end user

CHAPTER 6: Handling Different Browser Platforms 92

Figure 6–4: Drat! Looks like this person isn't using an Android browser!

JavaScript User Agent Detection

While PHP is great for detecting the user agent string on the server's side, there might

be times when a developer would need to detect the User String on the client side. As

an example, let’s say you are working on a site or application that gives you the ability to

export information into either a text file or binary format file on the user’s computer for

viewing later. On an Android device, the text is no problem but if your user chooses the

binary format, they might be confused when it can’t be opened. Thus, we may just want

to hide that option, leaving the other available. Luckily, using JavaScript for this task is

just as easy as it was using PHP.

Introducing the JavaScript Agent Detection Code

The JavaScript code shown in Listing 6–2 gives us a quick taste of how simple

detection in JavaScript can be; it is similar to PHP. The only major difference in this

code, when compared to the last, is that instead of writing our message to the page

like we did with PHP, we are instead opting to show our users a popup alert dialog

(see Figures 6–5 and 6–6).

CHAPTER 6: Handling Different Browser Platforms 93

Listing 6–2. Javascript User Detection Code

<script type="text/javascript">
var ua = navigator.userAgent.toLowerCase();
window.onload = function() {
 if(navigator.userAgent.match(/android/i)) {
 alert('Android Rocks!');
 }
 else {
 alert('Yawn, I guess your boring Desktop browser is okay');
 }
}
</script>

Figure 6–5. Alert dialog box on the Android 2.3 Gingerbread device

Figure 6–6. Boring alert dialog box on Google's Chrome web browser

CHAPTER 6: Handling Different Browser Platforms 94

Using JavaScript Agent Detection to Show Different Content to
Different Platforms

One natural progression of a single-platform developer (i.e., someone who writes

applications for Android, or iOS, or just one operating system) is to jump to different

platforms. Web apps are great for this, in that they largely can be coded once and

‘ported’ over to other similar architectures with ease. However, to avoid derivative

versions that can become a nightmare (i.e., an Android and an iOS version, requiring you

to make additions separately to both versions), it might be easier just to have one piece

of code that can change based on where it’s being run. In this example, we’ll show you

how to implement the JavaScript code from Listing 6–2 in the preceding section into a

Web App that will show different content depending on where it is running.

We’ll also give you a taste of something you’ll see quite a lot of in the next chapter,

jQuery Mobile, by using it as the ‘framework’ for this application. If you like the look of

the next few screens, then you’ll enjoy reading Chapter 7!

Let’s first start by discussing our overall goal: To display the appropriate link to

download an application. In Android, we want the link to go to the Android Market (or

perhaps to one of the new Android app stores that have opened, such as Amazon’s). In

iOS, we want the link to go to the Apple App Store. We’d also like to show the

appropriate graphic. Let’s start by building a simple page that shows the Android link.

We first need to grab the graphic (Available on the Android Branding page,

(www.android.com/branding.html), as well as the Apple App Store graphic

(www.apple.com/itunes/affiliates/resources/documentation/identity-
guidelines.html), and place both of them in the same directory as Listing 6–3.

Listing 6–3. Download our App HTML Page

<!DOCTYPE HTML>
<html>

<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Download our App</title>
<link rel="stylesheet" href="//code.jquery.com/mobile/1.0.1/jquery.mobile-1.0.1.min.css"
/>
<script src="http://code.jquery.com/jquery-1.6.4.min.js"></script>
<script src="//code.jquery.com/mobile/1.0.1/jquery.mobile-1.0.1.min.js"></script>

<script type="text/javascript">

$('#aboutPage').live('pageinit',function(event){

 if (navigator.userAgent.match(/android/i)) {
 document.getElementById("androiddiv").style.display = "block";
 }

 if (navigator.userAgent.match(/iPhone/i)) {
 document.getElementById("applediv").style.display = "block";
 }
});

http://www.android.com/branding.html
http://www.apple.com/itunes/affiliates/resources/documentation/identity-guidelines.html
http://www.apple.com/itunes/affiliates/resources/documentation/identity-guidelines.html
http://www.apple.com/itunes/affiliates/resources/documentation/identity-guidelines.html

CHAPTER 6: Handling Different Browser Platforms 95

</script>

</head>

<body>

<div data-role="page" id="aboutPage">

<div data-role="header">
<h1>Our App!</h1>
</div><!-- /header -->

<div data-role="content">
<div id="androiddiv" style="display: none">
<p>We have an application you can download in the Android Marketplace!</p>
<p align="center"></p>
</div>
<div id="applediv" style="display: none">
<p>We have an application you can download in the Apple App Store!</p>
<p align="center"></p>
</div>
</div><!-- /content -->

<div data-role="footer">
<h4>bugjr.com</h4>
</div><!-- /footer -->

</div><!-- /page -->

</body>
</html>

You’ll notice that this page is fairly simple. If you look at the content of the page, you’ll

see we have two blocks of content: The first, named androiddiv, shows the Android

Marketplace text and image. The second, applediv, shows the Apple App Store text and

image. Both blocks are set to "display: none" in their div tag, which means that, by

default, neither is shown. At the top of the page is a very simple JavaScript function,

which tests to see which user agent is detected, and toggles on the appropriate block of

text (by setting the display to "block"). If we load this page in the Android web browser,

we will see Figure 6–7:

CHAPTER 6: Handling Different Browser Platforms 96

Figure 6–7. Loading the Download App HTML page in the Android Browser

If, however, we load this page in Safari on the iPhone, we will see Figure 6–8:

CHAPTER 6: Handling Different Browser Platforms 97

Figure 6–8. The Download App HTML Page in Safari

Now we have a simple way to route our user to the correct download, without requiring

them to tap on one icon or the other! As you can imagine, we could use this same

detection for other purposes—showing different text to different users, displaying

different advertisements, etc… The best part is that it’s all in HTML and JavaScript,

meaning that if you elect to use a product to turn your Web App into a native app

(something we’ll discuss in Chapter 13, using tools such as PhoneGap or Titanium

Mobile), you can use this trick to provide a greater level of customization for the user!

Now that we’ve talked about detecting the User Agent in both PHP and JavaScript, we’ll

finish by discussing how we can use the Apache Web Server to do the detection for us.

.htaccess User Agent Detection

These types of files are configuration files commonly associated with Apache web

servers. Also referred to as a distributed configuration file, the .htaccess file can set a

series of rules and configurations to a web application on a per-directory basis. The

.htaccess file can be used to control rewriting the URLs to something much cleaner and

easier to read by humans by using the mod_rewrite module if the server supports it.

Another fun use for the .htaccess file is to use it to detect the user agent string and

direct the user to a different site or sub-domain, if needed. See Listing 6–4.

CHAPTER 6: Handling Different Browser Platforms 98

Listing 6–4. an example .htaccess file

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /
RewriteCond %{HTTP_USER_AGENT} ^.*Android.*$
RewriteRule ^(.*)$ http://android.yoursitesurl.com [R=301]
</IfModule>

The preceding code first checks to see if your Apache server supports the rewrite code,

then it turns on the rewrite engine and sets up a condition and a rule. The condition

checks for Android in the user agent, and if found, the rule tells the web browser to

redirect the request to http://android.yoursiteurl.com instead of your usual

http://yoursiteurl.com (or whatever else the user typed in).

This type of detection is very powerful, and one that can annoy some users. While users

can disable JavaScript detection by turning off JavaScript, .htaccess and PHP user

agent detection can only be ‘tricked’ by changing the user agent, something that not all

browsers support. (It’s worth noting that the Dolphin HD Browser, which is free, allows

one to switch their user agent easily between Android, iOS, and Desktop, making it

useful for testing and tricking!) Furthermore, it’s possible that users may want to view

the full web page in their Android browser, and while the PHP method allows you to

provide some sort of toggle code-wise (i.e., a link the user could click that would set a

PHP Session variable telling your code not to show the mobile site), the .htaccess user

agent detection does not allow this. However, in simple situations, the .htaccess

solution is the easiest to configure. Choose your detection method wisely!

Summary
Congratulations! You have made it through yet another chapter, and with your newfound

knowledge Viewports and user agent strings, you will be better equipped to handle

certain pesky user interface problems that might crop up from time to time. Even though

this book is mostly focusing on building web applications for Android devices, it would

just be foolish to think that you will never run into a situation where you will need to

develop something that works across all platforms. Using what we’ve talked about

there, you can custom tailor a solution for your app that is efficient and elegant!

http://android.yoursitesurl.com
http://android.yoursiteurl.com
http://yoursiteurl.com

99

 Chapter

Building an Impressive
User Experience with
jQuery Mobile

Believe it or not, I do not possess too much artistic talent for someone whose mother

had a scholarship to art school and whose father was in advertising for a number of

years. Most of my programming endeavors focus on function over style… with mixed

results. On one hand, many people praise this minimalist design—for example, one app

of mine named Fast Food Calorie Lookup is little more than two drop down boxes and a

few buttons. With over 1000 reviews, it has a 4.3 out of 5 rating on the Android

Market.However, for every person that raves “SOOO much easily-navigated, handy

information!” (actual review), I get people who don’t understand why it doesn’t look

prettier.

Thankfully, in the web application space, there are options that make design ‘slobs’ like

me look like we paid some very high-priced designer to make things look gorgeous. In

reality, tools are available to accomplish this goal for free, and in this chapter we’re

going to take a deep look at one of them: jQuery Mobile (http://jquerymobile.com). It is

by no means the only option you have.Others that come to mind are: The Wink Toolkit

(www.winktoolkit.org/), Sencha Touch (www.sencha.com/products/touch/), Zepto.js

(http://zeptojs.com), Jo (http://joapp.com/), xui.js (http://xuijs.com/), and JQTouch

(www.jqtouch.com/). However, for our purposes, jQuery Mobile offers the biggest bang

for the proverbial buck in terms of features and ease of configuration. So—let’s jump in

and explore!

The Basics
If you are familiar with the jQuery UI toolkit for desktop browsers, then you should pick

up jQuery Mobilepretty quickly! jQuery Mobile is one of those frameworks that try to take

a lot of the tedious tasks that come with developing a mobile application out of the

7

http://jquerymobile.com
http://www.winktoolkit.org/
http://www.sencha.com/products/touch/
http://zeptojs.com
http://joapp.com/
http://xuijs.com/
http://www.jqtouch.com/

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 100

hands of developers and place all that grunt work into the hands of the framework, so

you can spend more time focusing on other items and features that might be more

important to your application. Creating a series of touch-optimized widgets and user

interface elements, jQuery Mobile is quickly shaping up to be one of the top contenders

in the mobile javascript framework space.

One of the best features of jQuery Mobile, however, is its very simple and easy to modify

templating structure. With a little bit of CSS knowhow, a developer can easily modify the

styles of their jQuery Mobile theme to look however they want. This is great for people

like me who like to get their hands dirty and muck around through the innards of any

piece of code they touch. On the other hand, as we’ll see shortly, creating a custom

theme is by no means difficult—in fact, we don’t have to touch the CSS at all if we don’t

want to!

On top of all of this, jQuery Mobile is an incredibly easy framework to get up and

running. All one needs to do to get started is to include the jQuery Mobile source files in

the header of their documents and then use special data attributes in their HTML

markup. Data attributes are a fun addition to HTML5. In XML, and previous versions of

HTML, formally defined attributes were used within tags to describe data or the

formatting of data. While it was always possible in previous versions of HTML to add

custom attributes to your HTML code, it was always frowned upon.And, more often than

not, if your code was run through a validation program,it would end up spitting up errors

left and right.Listing 7–1 shows an invalid custom “mood” attribute, and Listing 7–2

shows how a valid “data-mood” attribute can be used in HTML5.

Listing 7–1. An example of an invalid custom attribute in HTML

<div class="post" mood="awesome">
<h1>Today was an awesome day!</h1>
<p>Suspendisse consectetur consequat risus non viverra. Phasellus ligula urna, egestas
porttitor facilisis vel, euismod sit...</p>
</div>

Listing 7–2. An example of an valid custom attribute in HTML5

<div class="post" data-mood="awesome">
<h1>Today was an awesome day!</h1>
<p>Suspendisse consectetur consequat risus non viverra. Phasellus ligula urna, egestas
porttitor facilisis vel, euismod sit...</p>
</div>

Let’s take a look at the preceding code example. In the first attempt at writing the code,

we are creating a div container with an invalid custom attribute attached to it, to indicate

the mood of the individual creating this blog entry. While there is nothing stopping us

from using this whimsically created mood attribute, the code would not validate with

popular validation engines such as the W3c Markup Validation Service

(http://validator.w3.org/). The reason for this is because mood is not an approved

attribute of the HTML spec. After years of complaining from developers left and right,

the Powers That Be decided to take a little bit of pity on us developers and gave us the

ability to finally create custom attributes to attach to our code. These new data

attributes could be used by a developer to add any sort of data to their markup code

http://validator.w3.org/

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 101

that could be used for whatever purposes we can imagine. In our second example

(Listing 7–2), we are using the data-mood attribute to record our mood in a way that will

please validators, while still allowing us to use those data in our scripts as needed! As

long as we put the prefix “data-”in front of the string of data we’d like to store, it is valid

HTML5 code. We can use these as small data containers, as in the following example.”

Now that you have an understanding of how data attributes work, and how they can be

used to enrich our mobile applications, let us take a look at some jQuery Mobile code

and dissect how it is all working.

In Listing 7–3, we’re going to display a very simple page using the jQuery Mobile

framework. You’ll notice that it uses a number of data-role attributes.

Listing 7–3. The HTML markup from the default jQuery Mobile boilerplate example

<!DOCTYPE HTML>
<html>
<head>
<title>Our Super Rad Demo Page</title>
<link rel="stylesheet" href="http://code.jquery.com/mobile/1.0a1/jquery.mobile-
1.0a1.min.css" />
<script src="http://code.jquery.com/jquery-1.4.3.min.js"></script>
<script src="http://code.jquery.com/mobile/1.0a1/jquery.mobile-1.0a1.min.js"></script>
</head>
<body>
<!-- page -->
<div data-role="page">
<!--header -->
<div data-role="header">
<h1>Well Then, Soldier...</h1>
</div>
<!-- /header -->
<!-- content -->
<div data-role="content">
<p>How goes the day?</p>
</div>
<!-- /content -->
<!-- footer -->
<div data-role="footer">
<h4>© 2011 Dodo Men Ply, Inc.</h4>
</div>
<!-- /footer -->
</div>
<!-- /page -->
</body>
</html>

With just the few lines of the preceding code, one can create a very native mobile

application look and feel using just a regular old web browser. This page happens to be

pretty simple. For starters, we have our main container with the data-attribute value of

"page," which is a wrapper for our content. As would be expected, after that we have

our "header," which would usually house the Title of the page and any navigation

elements one would decide to put there. After we pass the header, we start to journey

towards the meat of the page, also known as the "content" data-attribute, which is

shortly followed by our "footer."

http://code.jquery.com/mobile/1.0a1/jquery.mobile-1.0a1.min.css
http://code.jquery.com/mobile/1.0a1/jquery.mobile-1.0a1.min.css

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 102

As I said before, there is not a whole lot of stuff going on with this markup. Most of the

magic happens behind the scenes, within the inner workings of the jQuery Mobile

application. Over the next few examples, we’ll explore what one can do with jQuery

Mobile, starting from the simple to the more complex, and then into custom

theming!Let’s fire up our trusty web browser and see how this page looks on our mobile

devices (see Figure 7–1)!

Figure 7–1. Avery native looking user interface created by jQuery Mobile and displayed on an Android 2.3.4
handset

You see how easy that was? The best part is that we were just barely scratching the

surface of what jQuery Mobile is capable of. With a little time, one could easily put

together a full-featured mobile web application complete with fancy user interface

elements, modal windows, dialog boxes, page transitions, navigational toolbars, and a

whole lot of other stuff too! Let’s dig a bit deeper.

Adding Multiple Pages
Typically, applications consist of more than one page! In Listing 7–4, we’ll create a more

advanced jQuery Mobile document that contains three pages: a Home page, an About

page, and a Contact page. Along the way, we’ll comment a little heavier than usual, so

that you see which part of the code creates which element (displayed in Figures 7–2, 7–3,

and 7–4). This way, you’ll see exactly what you’ll need to modify if you would like to

customize certain elements.

Listing 7–4. All UI elements on the page are created by the jQuery Mobile application

<!DOCTYPEHTML>
<html>
<head>
<title>Our Super Rad Demo Page</title>
<link rel="stylesheet" href="http://code.jquery.com/mobile/1.0a1/jquery.mobile-
1.0a1.min.css" />
<script src="http://code.jquery.com/jquery-1.4.3.min.js"></script>
<script src="http://code.jquery.com/mobile/1.0a1/jquery.mobile-1.0a1.min.js"></script>
</head>
<body>
<!-- home -->
<div data-role="page" id="home">
<div data-role="header"><h1>Hello World</h1>

http://code.jquery.com/mobile/1.0a1/jquery.mobile-1.0a1.min.css
http://code.jquery.com/mobile/1.0a1/jquery.mobile-1.0a1.min.css

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 103

In the header, we’ll specify the test we want to see in the black bar at the top of the

page. I could include more than just one line of text if I like, and the black bar will

continue to increase. However, this may be a bit distracting for the user.

Listing 7–4 Cont. The content of the main page

</div>
<div data-role="content">
<ul data-role="list-view" class="ui-listview">
<li data-theme="b" class="ui-btn ui-btn-icon-right ui-li ui-btn-up-c">
<div class="ui-btn-inner ui-li">
<div class="ui-btn-text">Pellentesque habitant morbi tristique senectud </div>
</div>

<li data-theme="b" class="ui-btn ui-btn-icon-right ui-li ui-btn-up-c">
<div class="ui-btn-inner ui-li">
<div class="ui-btn-text">Morbi ultrices dignissim erat id blandit </div>
</div>

<li data-theme="b" class="ui-btn ui-btn-icon-right ui-li ui-btn-up-c">
<div class="ui-btn-inner ui-li">
<div class="ui-btn-text">Etiam massa quam, tempus quis </div>
</div>

<li data-theme="b" class="ui-btn ui-btn-icon-right ui-li ui-btn-up-c">
<div class="ui-btn-inner ui-li">
<div class="ui-btn-text">Nam laoreet congue aliquet </div>
</div>

<li data-theme="b" class="ui-btn ui-btn-icon-right ui-li ui-btn-up-c">
<div class="ui-btn-inner ui-li">
<div class="ui-btn-text">Morbi et ligula vel ligula lobortis pharetra ut eu massa
</div>
</div>

<li data-theme="b" class="ui-btn ui-btn-icon-right ui-li ui-btn-up-c">
<div class="ui-btn-inner ui-li">
<div class="ui-btn-text">Nam commodo erat orci. </div>
</div>

</div>

If you’re coding along at home, you’ll notice that each of those items appears in a

button-like list. You might be wondering if we could make these lists a little more

interesting. Indeed we could—jQuery Mobile supports several types of lists

(http://jquerymobile.com/demos/1.0.1/docs/lists/index.html) has a complete list

and examples). We’re using a read-only list here, as we aren’t linking the list items to any

particular page or action. However, other link options are available, such as:

 A nested list (see Figure 7–2), where one list item, when tapped, slides

away to reveal several more list items.

http://jquerymobile.com/demos/1.0.1/docs/lists/index.html

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 104

Figure 7–2. A nested list

 Count bubble lists (see Figure 7–3), where the ends of each list item

can have a number displayed, inset into the item. This is useful for

displaying counts for numbers of new items, notifications, news

stories, etc…

Figure 7–3. A count bubble list

 Thumbnail (Figure 7–4)and icon (Figure 7–5) lists, which display either

a thumbnail graphic or an icon to the left of the list text. This is useful

for displaying small photos and descriptive icons of the action the item

is used for, or just for decoration.

Figure 7–4: A thumbnail list

Figure 7–5. An icon list.

 Several options to create inset search fields (Figure 7–6), normally a

list item at the top that lets one filter later list items.

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 105

Figure 7–6. A search filter box at the top of a list

 Finally, one can create a list with forms (Figure 7–7), allowing you to

create a nicely ordered form page inside a list view. Useful for

checkout pages, settings pages, and similar situations.

Figure 7–7. Form elements within a list

The sky is the limit in terms of what you can do with lists! Now, back to the code…

Listing 7–4 Cont.: The footer of the main page.

<div data-role="footer" class="ui-bar">
About
Contact
</div>
</div>
<!-- /home -->

You’ll notice that, at the bottom of the main page, we’ve created a footer section (which

looks like another black bar), and we’ve added two buttons. Creating buttons in jQuery

Mobile is very simple—fundamentally, it’s just adding data-role="button" to any regular

HTML link.

The second two attributes—transition and theme—refer to how the page transition

should occur, and the color and styling of the button. We’ll cover both of these in detail

in the next few chapters. We can also manually add a bit more styling to buttons by

specifying an icon. Where it makes sense, jQuery Mobile automatically adds icons to

buttons (i.e., by adding an X icon to a dialog close button). However, we can do this

manually if we like. For example, changing the preceding “Contact” link to read

<a href="#contact" data-transition="pop" data-role="button" data-theme="b"
data-icon="plus">Contact

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 106

would add a nice + icon to the button. The full list of icons can be found on jQuery

Mobile’s website (http://jquerymobile.com/demos/1.0.1/docs/buttons/buttons-
icons.html). By default, icons appear on the left side of a button; however, we can use

data-iconpos="right" or "top" or "bottom" to move it. We can also use data-
iconpos="notext" to show the icon and nothing else!

What if you want to use your own icon? Well, that’s possible as well. You’ll need to add

some custom CSS to do this, as well as create a properly formatted icon file (both of

which are explained at the link provided previously).

Finally, one can format buttons to appear as part of the same group by surrounding a

series of buttons with the <div data-role="controlgroup"> and </div> tags. This will let

you visually cluster buttons with similar meaning (i.e., a “Yes,” “No,” or “Cancel” group).

This usually means that only the corners of the top and bottom buttons are rounded (if

using the default theme) and there is little to no space between the buttons. This is very

useful to give the user a subtle prompt about the related nature of the groupedbuttons.

Now that the first page is all done, header to footer, we’ll define another two pages in

the same HTML document!

Listing 7–4 Cont.: The about and contact pages.

<!-- about -->
<div data-role="page" id="about">
<div data-role="header">
<h1>About Us</h1>
</div>
<div data-role="content">
<p>Vivamus sit amet nulla vitae odio ultricies fringilla quis at felis. Integer sagittis
eleifend leo, et tempor elit adipiscing in. Pellentesque commodo condimentum pulvinar.
Integer vitae tellus ac sapien molestie euismod. Sed a enim ut leo fermentum lobortis ac
eget velit. Mauris commodo porta felis id fermentum. Aenean eleifend justo eu sem
consectetur auctor. Quisque convallis ullamcorper elementum. Integer hendrerit vehicula
nisi eu congue. Integer aliquet quam a arcu cursus ac consequat est pretium. Nam nec
pharetra lorem. Maecenas lacinia facilisis eros quis tempor.</p>
</div>
<div data-role="footer" class="ui-bar">
Home
Contact
</div>
</div>
<!-- /about -->

<!-- contact -->
<div data-role="page" id="contact">
<div data-role="header">
<h1>Send Us Mail!</h1>
</div>
<div data-role="content">
<form action="#" method="get">
<div data-role="fieldcontain">
<label for="name">Name:</label>
<input type="text" name="name" id="name" value="" />
<label for="email">Email:</label>
<input type="email" name="email" id="email" value="" />
</div>

http://jquerymobile.com/demos/1.0.1/docs/buttons/buttons-icons.html
http://jquerymobile.com/demos/1.0.1/docs/buttons/buttons-icons.html
http://jquerymobile.com/demos/1.0.1/docs/buttons/buttons-icons.html

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 107

<div data-role="fieldcontain">
<label for="message">Message:</label>
<textarea id="message"></textarea>
</div>
<div class="ui-body ui-body-b">
<fieldset class="ui-grid-a">
<div class="ui-block-a">
<button type="submit" data-theme="d">Cancel</button>
</div>
<div class="ui-block-b">
<button type="submit" data-theme="a">Send</button>
</div>
</fieldset>
</div>
</form>
</div>
</div>
<!-- /contact -->

</body>
</html>

Now that we’ve discussed how the code works, let’s see how the main page looks in

Figure 7–8.

Figure 7–8. Our jQuery Mobile Home Page being viewed on a Android 2.3.4 mobile device

We’ll jump quickly over our About page as there is not a lot of action going on here.

There is one little tidbit of tasty goodness that we are going to cover, though. I'm sure

that you, looking at this page, are probably asking yourself, “Hey, why didn't he create

some sort of visual cue that could be used to navigate back to the previous page we

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 108

were on?!” (Even if you didn’t think of this already, you are now) Well, don't you worry

about that! If you load this page we just created in your web browser and view the About

page you will notice that jQuery Mobile was nice enough to include a back button in

your page for you (see Figure 7–9), even including the correct icon as I mentioned it

would!

Figure 7–9. Our jQuery Mobile About Page being viewed on a Android 2.3.4 mobile device. Notice the back button
that jQuery Mobile automatically included in the user interface?

Finally, here on our Contact page is where we really start to have fun with some of the

features that jQuery Mobile provides (see Figure 7–10). Looking at our code, you will see

there are two div containers with the data-roles of “fieldcontain” on this page. As I am

sure you already guessed by now, these containers are used to house and separate

form input fields that do not necessarily have to be bunched up together. Basically, it is

used for aesthetics for those of us that are graphic design impaired. After separating our

form fields, we have yet another div container that is holding our Cancel and Submit

buttons. These buttons are positioned in a grid-like format on the page by assigning the

fieldset element the CSS class of ui-grid-a (“a” in this case stands for the theme that will

be used to style the grid container). Finally, it’s worth noting that our code here sends

the email form to nothing (#) as it’s written now. Later in this chapter, we’ll see how we

can use JavaScript to process forms, or one could write a simple PHP script to accept

the form data and process it.

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 109

As you can see, jQuery Mobile allows you to create a very nice looking user interface in

a very short amount of time!

Figure 7–10. Our jQuery Mobile Contact Page neatly formatted and viewed on a Android 2.3.4 mobile device

So – About Those Transitions
If you’ve been coding along, you’ll notice that the buttons in the previous example

transition differently depending on what we want to do. Animation is a key element in

mobile design as it lets the small screen give the user a sense of three dimensions,

which can help them understand what they’re doing. By default, the jQuery mobile

framework will implement a right to left slide transition, which gives the user the feeling

of turning a page. The framework is also nice enough that when the ‘back’ button is

pressed, it will reverse the transition it initially used, so in this case, turning to a previous

page. In Listing 7–5, I’ve created a simple page that shows off all of the transition types,

moving from Page One to Page Two.

Listing 7–5. transition demo HTML

<!DOCTYPE HTML>
<html>
<head>
<title>This is jQuery's Base Template, Showing off The Transitions</title>
<meta name="viewport" content="width=device-width, initial-scale=1">

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 110

<link rel="stylesheet" href="http://code.jquery.com/mobile/1.0/jquery.mobile-
1.0.min.css" />
<script type="text/javascript" src="http://code.jquery.com/jquery-
1.6.4.min.js"></script>
<script type="text/javascript" src="http://code.jquery.com/mobile/1.0/jquery.mobile-
1.0.min.js"></script>
</head>
<body>

<div data-role="page" id="one" data-title="First Page">

<div data-role="header">
<h1>The Title</h1>
</div><!-- /header -->

<div data-role="content">
<p>This is where we put what we want to talk about on this page, it's going to be
great</p>
Pop Page 2

Slide Page 2

Slideup Page 2

Slidedown Page 2

Fade Page 2

Flip Page 2

</div><!-- /content -->

</div><!-- /page -->

<div data-role="page" id="two" data-title="Second Page">

<div data-role="header">
<h1>The Title of Page 2</h1>
</div><!-- /header -->

<div data-role="content">
<p>This is where we put what we want to talk about on this page, it's going to be
great</p>
Back to page 1
</div><!-- /content -->

</div><!-- /page -->

</body>
</html>

When rendered, the page looks like Figure 7–11, with several text links that will show the

appropriate transition as needed.

http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.css
http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.css

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 111

Figure 7–11. The transition demo page

Press on each link to see the appropriate transition, and then use the back button on

Page 2 to see the inverse. We specify the transition we want in the HTML HREF link in

Listing 7–4, and you’re able to play with them as much as you want. Remember,

however, when working with transitions, one should probably decide what each

transition means in advance, to keep the user from getting confused. If entering

something into a database causes a fade transition, while a slide up indicates a

message or error, switching those around freely might make the user second-guess the

action they took. Also note that the Flip and Pop transitions might not render properly on

some versions of the Android stock browser, so one might want to avoid them.

Speaking of showing messages to the user…

Let’s Have a Dialog
Dialog boxes have been around for a long time in terms of computers. We’ve already

shown some very simple ones earlier in this book; however, jQuery Mobile has a very nice

built-in way to show these dialogs, which we’ll show off using the following Listing 7–6.

Listing 7–6. Dialog example

<!DOCTYPE HTML>
<html>
<head>
<title>This is jQuery's Base Template, Showing off The Dialogs</title>
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="http://code.jquery.com/mobile/1.0/jquery.mobile-
1.0.min.css" />
<script type="text/javascript" src="http://code.jquery.com/jquery-
1.6.4.min.js"></script>
<script type="text/javascript" src="http://code.jquery.com/mobile/1.0/jquery.mobile-
1.0.min.js"></script>

http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.css
http://code.jquery.com/mobile/1.0/jquery.mobile-1.0.min.css

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 112

</head>
<body>

<div data-role="page" id="one" data-title="First Page">

<div data-role="header">
<h1>The Title</h1>
</div><!-- /header -->

<div data-role="content">
<p>This is where we put what we want to talk about on this page, it's going to be
great</p>
Open Dialog

Slide
Down Dialog

Flip
Dialog

Pop
Dialog

</div><!-- /content -->

</div><!-- /page -->

<div data-role="page" id="two" data-title="Second Page">

<div data-role="header">
<h1>The Title of Page 2</h1>
</div><!-- /header -->

<div data-role="content">
<p>This is a dialog box</p>
Back to page 1
</div><!-- /content -->

</div><!-- /page -->

</body>
</html>

When we load Listing 7–6, we get a page with a series of 3 buttons (Figure 7–12) which

we can press to see Page Two (the same page from our transitions demo) pop up (or

slide, or flip). In the dialog, once open, we also get a little black X button in the upper

right to dismiss the message, without any extra coding required.

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 113

Figure 7–12. The Dialog Demo page, dialogs.html

Dialogs are useful when you need to get the user’s attention and don’t want to give the

impression that they are moving to a new page. Properly used, they’ll give your user a

nice, polished experience.

Now that you’ve added some personal touches with transitions and dialogs, let’s revisit

a topic I mentioned earlier: A custom theme.

Rolling Your Own Theme with ThemeRoller
Let’s face it: creating a theme is not an easy proposition. There are a lot of things to

consider, and while Apple has done a lot to make a somewhat standard look to mobile

pages, you don’t want our Android applications looking exactly like iPhone clones, do

you? (Actually, maybe you do, but hey—it’s always nice to have options!) Thankfully, the

jQuery Mobile team has created an awesome web application of their own called

ThemeRoller (Figure 7–13), which lets you create a theme quickly and painlessly.

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 114

Figure 7–13. The main start up screen for ThemeRoller

ThemeRoller lets you tweak each and every element of the stock jQuery Mobile themes.

In the right hand side of the screen, one will see three themes (A, B, & C)—each can be

customized and one can even add more themes if desired. Once created, we can

specify which theme we want on a given page by using the data-theme attribute

(examples of which can be seen in earlier listings, such as Listing 7–4).

Once you dismiss the “Get Rolling” screen, you can begin expanding the options on the

left side of the screen, as I’ve done in Figure 7–14.

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 115

Figure 7–14. Customizing options on the left side of the ThemeRoller screen

I can make changes globally, to all of my themes, or I can change things specifically on

theme A, B, or C. In this case, all of the defaults provide a very iPhone-y look to things.

I’m going to change them around to create the configuration shown in Figure 7–15.

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 116

Figure 7–15. Changing the options updates the preview on the right

You can see that I’ve changed quite a lot of the settings, which has made the interface

very different. I haven’t changed colors yet, although I can do that very easily. In fact,

ThemeRoller will even give me a collection of Adobe kuler swatches (Figure 7–16;

collections of colors that go well with each other– (www.adobe.com/products/kuler/) to

help me pick a set of colors that will be pleasing to my users.

Figure 7–16. Adobe kuler swatches help me find exactly the sort of color scheme I’m looking for

After a few minutes (or hours) of customizing, I can download my theme by entering a

few options, as shown in Figure 7–17. This provides me with a ZIP file containing a

themes directory, a sample index.html that correctly embeds my theme, the images

needed, and two CSS files for my theme, which I could then edit by hand if I wanted.

http://www.adobe.com/products/kuler/

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 117

Figure 7–17. The download theme window with instructions

If I ever need to make changes to my theme, I can use the “Import” option in

ThemeRoller to bring it back into the web app and play around once more. I can then

export my new theme the same way as I did the first one. Imagine: you can create

custom themes (like the one I created previously, shown in the example index file in

Figure 7–18), and then modify them for ‘sister’ applications—without ever touching the

CSS directly!

Figure 7–18. My custom theme applied to the example index file provided by ThemeRoller

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 118

Now I’ve got my application looking the way I want, and I know how to build additional

pages, transitions, and dialogs. I’m well on my way to creating not only a killer

application in terms of functionality, but one that looks nice too!

Rolling it All Together: Simple Calc
Now that we’ve built a few example pages in jQuery Mobile, let’s build something useful:

A simple calculator. We’ll build a very simple calculator that will take two numbers and

perform some operation on them, returning the result. I’m also going to create a custom

theme to use. The end result looks like Figure 7–19:

Figure 7–19. The Simple Calc jQuery Mobile App

Simple Calc is an extremely simple calculator. You put a number into the first box, a

number into the second box below the buttons, and then hit the + or –. A small

JavaScript alert pops up, telling you what the answer is. It’s simple, for sure, but useful

for showing how to add a bit of interactivity into a jQuery Mobile page using JavaScript.

Let’s look at the code in Listing 7–7.

Listing 7–7. The code for Simple Calc

<!DOCTYPE HTML>
<html>
<head>
<title>Simple Calc</title>
<link rel="stylesheet" href="http://code.jquery.com/mobile/1.0a1/jquery.mobile-
1.0a1.min.css" />
<script src="http://code.jquery.com/jquery-1.4.3.min.js"></script>
<link rel="stylesheet" href="themes/simplecalc.css" />
<script src="http://code.jquery.com/mobile/1.0a1/jquery.mobile-1.0a1.min.js"></script>

http://code.jquery.com/mobile/1.0a1/jquery.mobile-1.0a1.min.css
http://code.jquery.com/mobile/1.0a1/jquery.mobile-1.0a1.min.css

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 119

<script type="text/javascript">
function addnums() {
var num1 = document.calc.number1.value;
var num2 = document.calc.number2.value;
var num3 = num1 + num2;
alert(num3);
}

function subnums() {
var num1 = document.calc.number1.value;
var num2 = document.calc.number2.value;
var num3 = num1 - num2;
alert(num3);
}
</script>
</head>
<body>
<!-- page -->
<div data-role="page" id="aboutPage">

<!--header -->
<div data-role="header">
<h1>Simple Calc</h1>
</div>
<!-- /header -->

<!-- content -->
<div data-role="content">
<form action="#" name="calc" method="post">
<p>Enter a number in the first box, one in the second, and then press a button in
between to get the answer!</p>
<p><input type="number" name="number1" id="number1" placeholder="Number 1">
<p><div data-role="controlgroup"><a href="#" data-role="button"
onclick="addnums()">+-</div>
<p><input type="number" name="number2" id="number2" placeholder="Number 2">
</form>
</div>
<!-- /content -->

<!-- footer -->
<div data-role="footer">
<h4>Neat!</h4>
</div>
<!-- /footer -->
</div>
<!-- /page -->

</body>
</html>

Let’s walk through this code. First, we begin by adding in our usual HTML headers and

links to jQuery Mobile. You’ll notice that my custom theme is also included on line 7

(simplecalc.css). I built this using the ThemeRoller we discussed in the last section!

Next comes a custom set of JavaScript functions, addnums() and subnums(). These

functions access the two number boxes (declaring them num1 and num2 respectively)

and do the desired operation. They then pop up a standard JavaScript alert box with the

CHAPTER 7: Building an Impressive User Experience with jQuery Mobile 120

result. If you’re looking to flex your JavaScript muscle, you could combine these two

functions into one!

A bit further down, we see the actual content laid out. We’ve put in two inputs, number1

and number2, and between them, our two buttons. We’ve made use of a controlgroup,

so that the buttons group together, rather than separately. You’ll notice that each button

has an onclick= reference to the JavaScript function it corresponds to. This is where the

magic happens—and why we didn’t actually have to build a form action page—

JavaScript takes care of all of the calculating.

There you have it—a simple calculator!

Summary
Using jQuery Mobile, one can quickly take a bare-bones application and make it look

like it was professionally designed. You can also make quick and pretty “informational”

applications (i.e., an application that serves as the program for a conference or a tour

guide for a building or event). We’ve covered the basics of jQuery Mobile, but there are

still some advanced topics and nuances left for you to explore on your own if you need

them—your imagination is the only limit!

121

 Chapter

Building Visually Rich
Internet Applications

Now that we have a better grasp of what JavaScript and the various mobile oriented

JavaScript frameworks can do to enhance our user experience, it is time to dive in and

get our hands messy with a bit of digital finger painting. Building awesome web

applications isn't just about programming and logic. A fair amount of web development

takes a lot of cues from the design realm. Take CSS, for instance. One of the main

reasons why it drives developers crazy is because CSS is a design tool and not really a

development tool. Sure, we have to write code to make everything look pretty, but really

what we are doing is meticulously setting margins, padding, colors, typefaces, etc.

Keeping that in mind, in this chapter we will explore all of those fun aspects of

development that deal more with design. We will take a look at resources for Creative

Commons icons and graphics, resources for web fonts, CSS frameworks, and even a

nice bitmap and vector graphic editor targeted toward web developers and web

designers called Adobe Fireworks (www.adobe.com/products/fireworks.html).

Finding and Using Icons and Stock Photography
One of the easiest ways to make a website look more attractive is to add some icons or

inviting stock photography to your project. There are plenty of resources out there where

artists gladly offer up their sets of icons they created or the majestic looking photos they

shot, free to use with no questions asked.

In this section, we will take a look at some of the more popular sites that cater to

designers, developers, and all other lovers of things that are attractive and fun to look at.

Iconfinder

Iconfinder (www.iconfinder.com/, see Figure 8–1) is a personal favorite of mine, found in

the Creative Commons space for open source icons. This search engine allows you to

8

http://www.adobe.com/products/fireworks.html
http://www.iconfinder.com/

CHAPTER 8: Building Visually Rich Internet Applications 122

sort through over 150,000 different icons that are just waiting to be used on your next

project.

With icons and graphics ranging from 12 pixels to a whopping 512 pixels, this search

engine is almost guaranteed to have something that you can use to visually lift up any

project you are working on.

While the icons in this search engine are free to use, not all of the icons that are

available on commercial web sites (i.e., a site built for a for-profit group, versus a non-

profit) are free to use, so please make sure to read the licensing on any icon you find

that you might want to use. We’ve mentioned the Creative Commons license a few

times so far, so it makes sense to take a moment and consider it and other licenses.

First and foremost, you must remember that whoever originally designed a piece of

artwork (whether an icon, photo, etc…) retains copyright to that artwork. It’s tempting to

think “Hey, it’s on the Internet; it must be free.” However, that sort of thinking can

quickly land you in trouble if the owner finds out. Many artists and designers who do not

wish to create a unique license for their content decide to go with one of the Creative

Commons licenses (http://creativecommons.org). These licenses allow artists to allow

their work to be used freely, with or without certain restrictions. You can’t merely

assume that something licensed under Creative Commons is free to use—it may have a

restriction against commercial use (NC is the shorthand used by the Creative Commons

team), or it may require attribution in your app (crediting the icon or image to the owner,

BY is the shorthand used here). In addition, the owner may specify other options which

one should be aware of.

All in all, if you are unsure of whether you can use an icon, don't be afraid to reach out to

the author and ask. The worst that will happen is that they will just say no!

Figure 8–1. Iconfinder search engine home page. Over 158,184 icons strong, and growing!

http://creativecommons.org

CHAPTER 8: Building Visually Rich Internet Applications 123

Find Icons

Find Icons (Figure 8–2) is another search engine that caters to developers and designers

who need a little pick-me-up for their website. The features and layout are similar to Icon

Finder, so if you are familiar with one search engine you can easily adapt to using the

other search engine.

I have found that it is always good to use both sites when searching for an icon since

each site has collections of icons that are not available on the other. You can browse the

Find Icons search engine at http://findicons.com/

Figure 8–2. Searching for a "pause" icon on the Find Icons website

Using an Icon

Assuming that you’ve found an icon that you like, or you’ve created one using a service

such as favicon.ico Generator (www.favicon.cc/), you can easily specify this icon for

your web app by putting the following HTML code in the HTML Header section:

<link rel="shortcut icon" href="http://yourdomain.com/app.ico" />

http://findicons.com/
http://www.favicon.cc/
http://yourdomain.com/app.ico

CHAPTER 8: Building Visually Rich Internet Applications 124

This line tells all modern browsers that your application’s icon lives at

http://yourdomain.com/app.ico (you could put the icon anywhere you choose). This

causes the browser to show your icon (instead of the stock ‘bookmark’ icon) whenever a

user bookmarks your page or (in some browsers) browses to it. Figures 8–3 and 8–4

show the URL bar of the Mozilla Firefox browser when viewing a site with a favicon

versus one without, respectively.

Figure 8–3. Firefox displays a website URL with a favicon specified

Figure 8–4. Firefox displays a website URL without a favicon

You might also want to include one additional line:

<link rel="apple-touch-icon" href="/image.png" />

This line specifically tells mobile browsers (such as Apple’s Safari and Android’s

Browser) that the reference image file (typically either a 57x57 pixel image or a 114x114

image file (for newer system) should be used in functions that pin a shortcut to a home

screen. For a web app, this can give a polished appearance to users, bringing them

closer to a native application experience.

Now that we’ve got an icon picked out and in use, let’s talk about making our

application a bit more image friendly, by finding and using stock photography. We’ll

begin with one of the oldest image search tools, deviantART.

deviantART

It seems as though deviantART (www.deviantart.com/, see Figure 8–5) has been around

forever, and in technology terms, it has. This ancient relic of the year 2000 has stood the

test of Internet time and is a shining pillar of the creativity of amateur and professional

artists and graphic designers alike.

Add to this some social media features that allow users to comment on or share works

or arts with other users and you have an addicting user experience that offers up a ton

of great resources... and sometimes not so great resources.

Make sure to check out their photography sections for a slew of free stock photography

that can be manipulated and used in one of your upcoming projects. Also be sure to

check out the licensing agreements of the stock photography being offered. Some of

the artists might have special requirements that will have to be met before you can take

advantage of their work. These requirements may be fairly mundane (i.e., no commercial

use) to very specific (i.e., must be used in a public service announcement or for a

charity).

http://yourdomain.com/app.ico
http://www.deviantart.com/

CHAPTER 8: Building Visually Rich Internet Applications 125

Figure 8–5. Viewing the stock photography section of deviantART

iStockphoto

Another more professional—and expensive—solution to getting great stock

photography for your web application is iStockphoto (www.istockphoto.com/). This is a

service that I have used for years to purchase royalty-free images for client projects.

While, unlike deviantART, this resource is not free to use, the images you will be

purchasing have come from professionals and will tend to be better quality then the

amateur stuff you would find elsewhere.

Add to that a large archive of images that can be easily searched to find what you are

looking for and you have a resource that should always be kept on hand! You never

know when, one day, one of your clients might call you up and say "Hey, I've decided

we really want to add a big giant pink telephone to our website" and even though that

sounds crazy and ridiculous, chances are you will be able to find an image of a giant

pink telephone on iStockphoto.

In addition to iStockphoto and deviantART, one can also find images at Shutterstock

(www.shutterstock.com) and Flickr (www.flickr.com). Flickr, in particular, has a very

nice advanced search function (www.flickr.com/search/advanced/?), which allows you

to specify that you only want Creative Commons licensed content (and further, that you

only want CC licensed content that is free to use commercially and can be adapted).

This is a simple way to get a very nice user-submitted photograph for your application.

Before we finish discussing photographs, it is probably useful to discuss when you

should and shouldn’t elect to use one. It can be tempting to use images in many

http://www.istockphoto.com/
http://www.shutterstock.com
http://www.flickr.com
http://www.flickr.com/search/advanced/?

CHAPTER 8: Building Visually Rich Internet Applications 126

different spaces to promote your application and/or make it shine; however, there is a

fine line that must be walked.

Guidance on Using Photos in Web Apps

Upon finding the services we’ve discussed in the preceding sections, it may be very

tempting to jump in and find a photo for each and every part of your application. For

example, you might have large navigation buttons on your app’s main screen, and

wouldn’t those large squares look great with photos in them, versus words or simple

icons? Perhaps… However, we’d suggest you first consider the following:

 How much load time am I adding with each photo? Recall that when

we are testing, our application normally lives on our computer. This leaves

the argument of load times largely moot—we simply don’t know how our

app might load given certain circumstances. With that in mind, pretty

photos can sometimes cause an app to load sluggishly. We’d suggest

using photos of appropriate size (e.g., resize them if necessary; do not

simply specify a height and width that will make them render smaller but

not actually be smaller in file size—less than 10 kilobytes if possible), and

testing both photo and non-photo versions of pages under a variety of

conditions (e.g., served from a production web server, to a device on both

WiFi and a cellular data connection).

 Do my images distract my user? Yes, while a picture is worth 1000

words, some pictures are worth much more in the debate they cause

among users. A photograph of a STOP sign may be easy to interpret to

the user in some circumstances, but be confusing in others (e.g., in a

game—does the STOP sign mean end of round? Exit the game? Stop my

little man from walking?). Images should only help the user find things

more quickly, not confuse the user by being distracting, confusing, or of

poor quality.

 Will using an image invoke a user stereotype? Images can be powerful,

but in some cases they can be associated with both traditional

stereotypes we’re well aware of, and some you might not consider. For

example, using the tried-and-true “man with a business suit” and “woman

using a laptop” might seem appropriate for your app; however, users

generally will have seen these stock images before and may assume your

web app will be just as uninspired as others who have used the same

images. This is why many sites now tend toward a minimalist design

trend—it’s less predictable than “hard working executive” or “soccer

mom.”

Assuming you’ve thought through the issues discussed in the preceding list, using

photos can be a wonderful way to reinforce your application’s appeal. Just be mindful of

your use! Now we’ll look at a more subtle image manipulation: using custom fonts in our

web app.

CHAPTER 8: Building Visually Rich Internet Applications 127

Web Fonts
You might have remembered that we briefly touched base on working with web fonts in

Chapter 2 when building our "Who's That Tweet?" application. Over the past year and a

half, all of the most popular Desktop browsers have rolled out updates and can now use

web fonts in their markup. Almost all of Android's mobile browsers can use them as

well.

Adding web fonts to your web site or application is easy as pie, as seen in Listing 8–1.

Listing 8–1. Loading the Droid Sans font into our web browser with a little CSS magic.

<style type="text/css">
@font-face {
 font-family: 'Droid Sans';
 font-style: normal;
 font-weight: normal;
 src: local('Droid Sans'), local('DroidSans'), url('droidsans.woff') format('woff');
}

body {
 font-family:'Droid Sans', Arial, Helvetica, sans-serif;
}
</style>

Let's take a quick look at the code in Listing 8–1 so you can understand what we are

doing here. The first property we are going to define in our @font-face code is the font-
family property. Here we can name the font anything we want. We are using the font's

real name here, Droid Sans, but I could have called it "Turtle Wax" if I really wanted to.

Using a custom name may be helpful if you want to use an internal naming structure,

although it might be confusing if you want to use the same font for two different

products.

Next, we are going to define the font-style of our new font. This is important because

we can have different variants of our Droid Sans font load depending on what the font-
style is. This is the area where you, as a developer, will want to be careful to make sure

you don't go overboard and load 10 different variants of a font when they’re not needed.

Not only does this clutter up your code, it also loads resources unnecessarily, which

bogs down the user experience. In this case, we simply want to use the default or

‘normal’ look for this font; i.e., we do not want italics.

After our font-style we have our font-weight. This, just like the property before it, can

be used to load different versions of a font, such as Droid Sans Bold.

Last, but not least, we have our src, which is used to tell your computer where to find

our font on the server as well as what the font might be called on the user's computer. If

the font is on the user's machine, this could end up saving us some bandwidth by not

having to download a file we already own. While local loading is preferable much of the

time, you might run into situations where you want the font loaded from another

location, such as when you are testing a variety of font styles to determine the best fit.

CHAPTER 8: Building Visually Rich Internet Applications 128

Google Web Fonts

You might remember when we grabbed the Droid Sans font from Google Web Fonts in

one of our earlier chapters. At the time, we did not go into much detail about Google

Web Fonts and just how incredible a resource it is for designers and developers alike.

One of the most intriguing aspects of using Google Web Fonts (shown in Figure 8–6)

with your next project is that all of the fonts are open source and can be used by anyone

without the fear violating a license and owing someone money.

Figure 8–6. The landing page for the newly designed Google Web Fonts site

One of the biggest complaints I hear about developers who are against using web fonts

is that fonts can tend to be a little bulky in weight, which does increase loading times.

While this can be annoying on a mobile device due to limited bandwidth, Google has

taken this into account and created an easy method to shrink the size of the font file that

is loaded into your user’s browser.

Take a quick look at Listing 8–2. Here we have the basic HTML markup needed to add

the Chivo Google Web Font to our web application.

Listing 8–2. Loading a non-optimized version of the Chivo font into our user’s browser.

<link href='http://fonts.googleapis.com/css?family=Chivo' rel='stylesheet'
type='text/css'>

http://fonts.googleapis.com/css?family=Chivo

CHAPTER 8: Building Visually Rich Internet Applications 129

Now, if you take a look at Listing 8–3, you can see how we are optimizing the size of the

font by only loading the letters we need to make up the words "Hello World." This is

perfect if you need to load a font into your site that is only going to be used once, such

as for the logo, and that will only use a few letters.

Listing 8–3. Loading an optimized version of the Chivo font that only loads the letters we need from the font

<link href='http://fonts.googleapis.com/css?family=Chivo&text=Hello%20World'
rel='stylesheet' type='text/css'>

On top of allowing you to optimize your fonts, Google continues to add new fonts to the

Google Web Font directory on a regular basis. It is hands down one of my favorite

places to browse when I'm bored because you never know when you are going to find

that one magical font that inspires you to sit down and start coding something new.

Font Issues to Consider

Just as in using photographs, there are a few caveats to using different fonts and text

styling that one will want to consider and plan for:

 What do different styles mean? We noted previously that we could

specify stylistic changes to a font, such as making text italic or bold, or

even using different variants of a font, such as one that uses block

lettering. While these variants provide a great amount of flexibility, they

can also confuse the user if not applied consistently. You should consider

if you want block text to refer to actions (e.g., the PLAY button of a video

or audio clip) or if you’d rather have that be in italics (although italics can

be hard to read on a mobile screen if the text isn’t large enough).

However, if the actions are in italics, how should captions below photos

be displayed? Bold might seem too strong there, or might imply that the

text is a link. See how this can become a bit complex? Creating an

informal ‘style guide’ for your app can work wonders toward producing a

consistent and beautiful output and effective use of fonts.

 Is the style worth the fluency trade off? Researchers in cognitive

psychology—or the psychology of how the brain interprets information—

use the term ‘fluency’ to refer to the ease of processing information. A

font with just enough weight to keep its lines separate, as well as one

devoid of serifs, is highly fluent, meaning that readers can easily parse it

quickly and understand what you’re saying. On the other hand, a wavy

script font of ‘elegant’ handwriting or a very boxy block font (Where letters

begin to run into one another) is very disfluent. This means that users will

take longer to read those sections. In some cases, this is a good thing—

we might want to draw attention to a certain part of the app and make

sure users spend an adequate amount of time considering it (e.g., the

notification that all data is about to be erased might be a good candidate

for block lettering, assuming it’s not so disfluent as to cause people to

bypass it out of frustration!). However, in other cases, we might want to

focus on speed over style.

http://fonts.googleapis.com/css?family=Chivo&text=Hello%20World

CHAPTER 8: Building Visually Rich Internet Applications 130

 Colors Can Mean More Than Fonts. While it is tempting to use different

fonts to create different looks inside your application, one should consider

if simply changing the color of text may be sufficient. Use of colors that fit

nicely together in a scheme (perhaps using a reference such as Color

Combos (www.colorcombos.com/)) can do more in terms of creating a rich

appearance than can changing fonts. The same rules discussed

previously apply to color (i.e., color should consistently convey to the

reader the same message—is this a warning, an action, a description?);

however, the cost is less than the cost of using fonts in terms of loading

and configuration.

Now that we’ve discussed using fonts, images, and icons to create a look you would like

to have, we’ll move into a broader context—that of CSS frameworks, where we can get

an entire ‘skin’ of CSS to wrap around our app, with far-reaching effects and

consequences!

CSS Frameworks
Love them or hate them, over the past few years, CSS grid frameworks have become

increasingly popular with newbie web designers and developers alike. I blame it all on

Blueprint, a CSS framework that became really popular around 2008. Blueprint was

created to reduce development time and to stop developers from ripping out chunks of

their hair1 in frustration when they forget what the difference between margin and

padding is. That last part might be a little jest on my part, but it isn't too far from the

truth.

As we discussed at the beginning on the chapter, a tool like Cascading Style Sheets is

widely used by developers, but is really intended as a tool to be used by designers.

Developers might not be comfortable with CSS—somewhat akin to asking a carpenter

to run the electrical lines in a home. He may know enough to do it, but then again, he

might make a bigger mess of it than if he hadn’t ever started.

While that might sound a little ridiculous, there has been many a time that I have taken

on a project for a client that dealt with styling already coded by a developer or engineer

and it was painfully apparent that they had approached the whole method of writing

their CSS in the same way they would write logic in their code. Think of CSS as design

standards, not rules laid down in code.

If you sound like one of those people that just don't seem to "get" CSS, then you might

want to take a look at some of the frameworks out there that have been created to make

your life easier. In the long run, they will save you time and money by quickly helping you

solve a lot of those common problems that developers have when trying to style their

1 For Rocco, this isn’t much of a problem. For Jon, he needs all of the chunks of hair he

can get!

http://www.colorcombos.com/

CHAPTER 8: Building Visually Rich Internet Applications 131

content into grids. They are also wonderful tools to pick apart to voraciously learn how

they work.

Who knows, after playing around with CSS frameworks for a bit and learning how they

operate, you might end up developing a real passion for the style sheet language and

end up writing your own CSS faster by hand than you would implement an already made

solution!

In the following, we’ve highlighted three frameworks, starting with the simplest, which

takes care of many of the desktop/mobile CSS headaches for you—the 1140px Grid.

Second is Less Framework 4, which provides some support but has more room for

modification. Finally, we discuss 320 and Up, a version of Less Framework 4 that allows

you to quickly get up and running without a massive amount of tweaking!

1140px Grid

The 1140px Grid is another CSS framework currently running around on the Internet with

a pretty big following. The framework itself is released under the Creative Commons

license and is free to use, copy, distribute, and manipulate to your heart's content.

This framework was created to accommodate recent changes in screen resolution,

specifically the current prominence of 1280 x 800 computer screens, while also scaling

fluidly for smaller displays. Up until very recently, most sites were designed around the

idea that the common user's browser would have a resolution of around 1024 pixels in

width and 800 pixels in height. However, over the course of the past few years, a lot of

developers have noticed that ever so slowly the average user screen resolution has been

shifting higher.

Keeping this in mind, 1140px Grid was designed to take advantage of that now more

common screen resolution and to scale down from there in a fluid manner using

responsive web design, as discussed in Chapter 5 of this book. What that means for you

as a developer is that if you were designing and building a web application for a desktop

user experience, you would only have to design the application once for a larger

monitor. The framework then intelligently scales the application down for you for any

browsers with a lower resolution.

However, this isn't always a set-it-and-forget-it process and sometimes it does require

you to get in there and muck around with the CSS a bit, to get it looking exactly how you

want it to look. For example, the grid will allow you to use a number of columns;

however, if you intend for your application to be both appealing on the desktop and on a

small browser (similar to what we discussed earlier in the book, when discussing

dedicated mobile versions as opposed to one page to serve both), you may wish to limit

yourself to one grid. All in all, though, if you have to build big before you build small, you

can make your life a little easier by checking out 1140px Grid framework at
http://cssgrid.net/

http://cssgrid.net/

CHAPTER 8: Building Visually Rich Internet Applications 132

Less Framework 4

The Less Framework (http://lessframework.com/, Figure 8–7) is another one of those

CSS grid systems making the rounds. Containing three different typography presets and

four different types of layouts, Less Framework is a little more robust then some of the

competition out there. Unlike the 1140px Grid framework, this framework is built with the

idea of tablets and smartphones in mind. If you are building an application or page that

only has to display on phones or tablets, Less Framework 4 is a better choice than

1140px Grid. While this framework is developed with iPad and iPhone users in mind, it

still works really well on Android Webkit based browsers.

The Less Framework, however, is not a do-everything-for-you framework like some of

the other options out there. To get the best use out of this framework, it is

recommended that you have a comfortable relationship with both HTML and CSS. The

three of you don't have to be best friends and invite each other over for Christmas

dinner, but it wouldn't hurt to make small talk at the water cooler and see how the kids

are doing every once in a while.

For an example of what we mean: Consider that Less Framework 4 has two mobile

layouts: a normal and a wide. The wide layout is intended for mobile phones in

landscape orientation. Given that your user might switch their phone’s orientation at

various times for various reasons, you might want to take steps in your JavaScript or

HTML to re-render or re-organize material based on orientation. An app that looks good

in wide may look horrible in normal—something you should determine, test, and debug.

http://lessframework.com/

CHAPTER 8: Building Visually Rich Internet Applications 133

Figure 8–7. Less Framework 4 homepage as seen in a Google Chrome Desktop browser

320 and Up

Another Creative Commons licensed framework, 320 and Up

(http://stuffandnonsense.co.uk/projects/320andup/) was created from the get-go

with smaller viewing portals in mind. As the 320 and Up website says, this framework is

"tiny screen first." Created by Andy Clarke and Keith Clark and based off Less

Framework 4, this collection of CSS styles comes with preset typography styles and a

few extra JavaScript goodies to resize images and improve the all around performance

of the site in older browsers. As you can see in Figures 8–8, 8–9, and 8–10, it scales

nicely to the different common orientations and screens in use today on Android

devices.

320 and Up is a good choice when you want to avoid any overlap between your desktop

and mobile versions of an app, and when responsiveness is your primary goal. 320 and

Up also includes with more customizations than Less Framework 4, such as built-in

JavaScript libraries for resizing photos, and applying appropriately optimized CSS. If the

customization of Less Framework 4 appears daunting to you, you may want to start with

320 and Up and see if you really need to dig any deeper!

http://stuffandnonsense.co.uk/projects/320andup/

CHAPTER 8: Building Visually Rich Internet Applications 134

Figure 8–8. 360 and Up website viewed on an Android 2.3.4 Gingerbread handset in portrait mode

Figure 8–9. 360 and Up website viewed on an Android 2.3.4 Gingerbread handset in landscape mode

CHAPTER 8: Building Visually Rich Internet Applications 135

Figure 8–10. 360 and Up website viewed in Google Chrome in a Desktop browser. Notice how this and the figures
before it all showed the same markup code but the page looks different depending on the user's browser resolution.

Comparing Frameworks: About Jon!!

Choosing the right framework can be hard, so in this example, we’re going to take the

same content and render it in all three frameworks. The material is my (Jon’s) biosketch

from my personal website. Presumably, this would be a page in my mobile Jon

application. First, let’s look at the original page, rendered in a desktop web browser (see

Figure 8–11)—this is what we’re trying to emulate to some extent in the mobile version.

Figure 8–11. Jon’s Biosketch rendered on the desktop.

CHAPTER 8: Building Visually Rich Internet Applications 136

First, we’ll render this in the 1140px Grid. Recall that the strength of this framework was

that we could get something similar from Desktop to Mobile. First, the view in Mobile

(Figure 8–12):

Figure 8–12. Jon’s Biosketch rendered on mobile using 1140px Grid

Now, let’s look at the view in the desktop browser (Figure 8–13):

Figure 8–13. Jon’s Biosketch rendered on the desktop using 1140px Grid

This is not exactly ideal—the two one-column layouts are stacked in Mobile. However,

in Desktop view, they’re shown side by side, and extremely ‘squished’. By tweaking

the HTML code, we can alleviate this and make the Desktop version look nicer (see

Figure 8–14) while also maintaining the mobile version. In this case, the problem was

simply that we were using two ‘onecol’ boxes instead of a onecol on the left, and an

elevencol on the right (filling up the rest of the screen). The 1140px Grid requires that

CHAPTER 8: Building Visually Rich Internet Applications 137

you know how many columns you would like to fill from the start, and use the

appropriate div statements. There are 12 columns, so whatever combination you use, it

should add up to 12 (i.e., in this case, 1 onecol and 1 elevencol). You’ll also note that the

last column has the word ‘last’ on its div statement (see Listing 8–2), it lets 1140px Grid

know that it is the last column in the row and thus should fill the rest of the page.

Figure 8–14. A snippet of the desktop view of Jon’s Biosketch, fixed

The code for the 1140px example can be seen in Listing 8–2:

Listing 8–2. Jon’s biosketch using the 1140px grid.

<!DOCTYPE HTML>
<html lang="en">

<head>
 <meta charset="utf-8" />
 <title>The 1140px Grid · Fluid down to mobile</title>
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <link rel="stylesheet" href="css/1140.css" type="text/css" media="screen" />
 <script type="text/javascript" src="js/css3-mediaqueries.js"></script>
 <style type="text/css">

 body {
 font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
 }

 .container p {
 color: #000;
 line-height: 16px;
 background: #FFF;
 text-align: left;
 margin: 20px 0 0 0;
 }

 </style>

</head>

<body>

<div class="container">
 <div class="row">
 <div class="onecol">
 <p><img src=http://jonwestfall.com/wp-content/uploads/2010/03/jon-
website.jpg></p>
 </div>
 <div class="elevencol last">
 <p>Jonathan E. Westfall, PhD, born 1982, is a researcher and technologist
working in New York City at Columbia Business School. His current research focuses on

CHAPTER 8: Building Visually Rich Internet Applications 138

the variables individuals use when making economic and consumer finance decisions,
specifically strength of handedness, a variable correlated with a number of decision-
making and cognitive psychology tasks and measures. Dr. Westfall also conducts research
on consumer financial decision making, and applications to both marketing and public
policy. His current appointment is as the Associate Director for Research and Technology
at the Center for Decision Sciences, a center within Columbia Business School at
Columbia University in New York City. Additionally, he holds an appointment as a
Lecturer in the Columbia University Psychology department, periodically teaching a
course in Judgment and Decision Making</p>
 </div>

 </div>
</div>

</body>

</html>

Now, let’s look at this in Less Framework 4. First, you’ll notice that Less Framework took

the liberty of applying some basic font formats, something that 1140px lets us do

manually, or not at all if we’d like. This might help you get up and running quicker if you

want that ‘mobile’ feel, as seen in Figure 8–15.

Figure 8–15. Jon’s biosketch using the Less Framework 4 Framework

The code is quite a bit simpler to implement as well, mostly because we’re not worrying

about a desktop version. Listing 8–3 gives us the entirety of the code, referencing the

CSS provided in the Less Framework 4 package.

Listing 8–3. Jon’s biosketch using the Less Framework 4 Framework

<!DOCTYPE HTML>
<html>

 <head>
 <meta charset="utf-8"/>

CHAPTER 8: Building Visually Rich Internet Applications 139

 <title></title>

 <link rel="stylesheet" href="main-16px.css"/>
 <meta name="viewport" content="width=device-width, initial-scale=1"/>
 <p><img src=http://jonwestfall.com/wp-content/uploads/2010/03/jon-website.jpg
height=220px width=240px></p>
 <p>Jonathan E. Westfall, PhD, born 1982, is a researcher and technologist
working in New York City at Columbia Business School. His current research focuses on
the variables individuals use when making economic and consumer finance decisions,
specifically strength of handedness, a variable correlated with a number of decision-
making and cognitive psychology tasks and measures. Dr. Westfall also conducts research
on consumer financial decision making, and applications to both marketing and public
policy. His current appointment is as the Associate Director for Research and Technology
at the Center for Decision Sciences, a center within Columbia Business School at
Columbia University in New York City. Additionally, he holds an appointment as a
Lecturer in the Columbia University Psychology department, periodically teaching a
course in Judgment and Decision Making</p>
 </head>

 <body>

 </body>

</html>

Finally, we’ll take a look at my biosketch with 320 and Up. It applies further formatting,

with a background image and custom font, as you can see in Figure 8–16.

Figure 8–16. Jon’s biosketch using the 320 and Up Framework

The code, again, is on the simpler side compared to 1140px Grid, since we do not care

about desktop rendering. See Listing 8–4.

http://jonwestfall.com/wp-content/uploads/2010/03/jon-website.jpg

CHAPTER 8: Building Visually Rich Internet Applications 140

Listing 8–4. Jon’s biosketch using the 320 and Up Framework

<!DOCTYPE HTML>
<head>
<meta charset="utf-8">

<title>320 and Up Version</title>
<!-- http://t.co/dKP3o1e -->
<meta name="HandheldFriendly" content="True">
<meta name="MobileOptimized" content="320">
<meta name="viewport" content="width=device-width, target-densitydpi=160dpi, initial-
scale=1.0">

<!-- For all browsers -->
<link rel="stylesheet" href="css/style.css">

</head>

<body class="clearfix">
<div role="main">
 <p><img src=http://jonwestfall.com/wp-content/uploads/2010/03/jon-website.jpg
height=220px width=240px></p>
 <p>Jonathan E. Westfall, PhD, born 1982, is a researcher and technologist
working in New York City at Columbia Business School. His current research focuses on
the variables individuals use when making economic and consumer finance decisions,
specifically strength of handedness, a variable correlated with a number of decision-
making and cognitive psychology tasks and measures. Dr. Westfall also conducts research
on consumer financial decision making, and applications to both marketing and public
policy. His current appointment is as the Associate Director for Research and Technology
at the Center for Decision Sciences, a center within Columbia Business School at
Columbia University in New York City. Additionally, he holds an appointment as a
Lecturer in the Columbia University Psychology department, periodically teaching a
course in Judgment and Decision Making</p>

<!-- Scripts -->
<script src="js/libs/jquery-1.6.2.min.js"></script>
<script src="js/plugins.js"></script>
<script src="js/script.js"></script>
<script src="js/mylibs/helper.js"></script>
</div>
</body>
</html>

As you can see, each framework formats in slightly different ways, allowing you to pick

which one you would like to use. While Less Framework 4 and 320 and Up look very

‘mobile’ in their appearance, they lack any cross-functionality with the desktop version.

1140px Grid, on the other hand, isn’t very ‘mobile’ in its style, which means you would

need to add that in manually. However, as a plus, you get a desktop and mobile version

in one file.

Choosing the right CSS Framework for you can be difficult; however, given the

frameworks we’ve covered here, it should give you a starting point to choosing the right

one for your app!

http://t.co/dKP3o1e
http://jonwestfall.com/wp-content/uploads/2010/03/jon-website.jpg

CHAPTER 8: Building Visually Rich Internet Applications 141

Adobe Fireworks
Adobe Fireworks, shown in Figure 8–17, is probably the second most used tool in my

Web Development utility belt, and for good reason. This very easy to use vector and

bitmap editing program is perfect for touching up or compressing graphics, as well as

for mocking up designs and prototyping new projects.

Originally created and owned by Macromedia and later acquired by Adobe in 2009, this

wonder application for Web Designers everywhere hasn't received as much attention as

Adobe's flagship photo editing program, Photoshop, but that is all right because it has

plenty of fantastic features that easily make it a no-brainer for a program that should be

included in your arsenal. In fact, for many of the tasks web developers and designers

tackle, Fireworks is the better product for the job.

Just like Adobe Photoshop, Fireworks is also littered with keyboard shortcuts

accommodating the needs of power users, while at the same time keeping a sparse UI

with easy to find tools, options, and properties to make it easy for any new user of

Adobe Fireworks to easily find their way around the application.

Figure 8–17. Adobe Fireworks CS5 running on a Windows 7 PC

One of the coolest features of Adobe Fireworks is its ability to create Pages within its

specially formatted PNG file type, which would allow designers to very neatly create

beautiful layouts to be passed on down to their local developer. The pages work by

essentially giving you a new canvas to work on whenever you need a new page. You

can easily access your pages by pressing the F5 key from within Fireworks.

CHAPTER 8: Building Visually Rich Internet Applications 142

When viewing your Pages, as seen in Figure 8–18, you can select which page you are

viewing and working on with a simple click of your mouse. Once you are on your newly

selected page, you can hop on over to the Layers tab and see all the layers related to

just the current selected page instead of dealing with the layers of five or more pages

within a single canvas.

Figure 8–18. A close up of the Adobe Fireworks Pages panel

Keeping your designs cleaner will help you when it finally becomes time to start writing your

code. The less time you have to spend scrolling through endless amounts of layers, trying to

find the right resource to extract from your mockups to use in your site, the better!

On top of that, when it comes time to present your prototypes to your clients, it is

always a good idea to give them the impression that you're neat and organized (as in

Figure 8–19 and Figure 8–20) and that you will put that same care and consideration you

spent in your mockups and prototypes into building their site or application.

CHAPTER 8: Building Visually Rich Internet Applications 143

Figure 8–19. Adobe Fireworks CS5 viewing Page 1 of a design comp on a Windows 7 machine

CHAPTER 8: Building Visually Rich Internet Applications 144

Figure 8–20. Adobe Fireworks CS5 viewing Page 1 of a design comp on a Windows 7 machine

Summary
Hey, look at that! It looks like we are another chapter down and you have even more

knowledge and other tasty tidbits floating around your cranium. Now you have a better

idea of where to go and what to use to make your mobile web applications sprout jazz

hands and dance around the room.

In a world where our fashion designers can make even homeless attire look fashionable,

and where everywhere you look someone is raving about how "pretty" their new gadget

is, it is becoming less and less acceptable for applications and websites to have that

"newly engineered" look and smell to them. Even Google has cleaned up its act of

designing ugly but highly functional products with the release of Google+ and the rollout

of the new Google+ theme across the myriad of products they offer! However, as with all

of the concepts we’ve discussed so far, with great power comes great… accountability.

By using these tools in a consistent manner, you can produce a visually stunning and

useful application!

145

 Chapter

HTML5 Location-Based
Applications

One of the biggest opportunities presented to mobile developers is the wealth of options

opened up by the very nature of Android devices like phones and tablets: They are

mobile! While the location of a user of a traditional desktop application can be

interesting, it's rare for someone to pick up a desktop machine and move about with it

all day. But mobile devices move, and their location (and, by implication, the location of

the device user) can influence everything from games, to searching for products and

information, to nuances and options for things as diverse as language settings and

device behavior.

In this chapter, we'll explore geolocation in HTML5, CSS, and JavaScript for Android

devices. We'll explore a simple location-enabled app, and see how the features and

functions of HTML5 can be leveraged. So, let's get moving!

The Mechanics of Geolocation
In order to make your geolocation ideas a reality, it's important to understand the

capabilities of all the moving parts (sorry, we couldn't resist that joke). In any Android-

targeted geolocation web application, two sets of capabilities are important. First, what

capabilities does a given Android device present to any web-based location-focused

application? Second, what features of HTML5 (and to a lesser extent, CSS3 and

JavaScript) provide location capabilities? Ultimately, the combination of what a device

can say about its location, and what a web application can do with that information, will

set the boundaries for what you can achieve. Let's look at the background for both.

Understanding Device Capabilities

No matter what kind of device you have, it can rely on a surprising range of technologies

to provide location-based data. Even for devices that lack dedicated hardware, options

9

CHAPTER 9: HTML5 Location-Based Applications 146

exist. The devices you work with (and the examples we'll use) typically have access to

one or more of the following capabilities:

 Global Positioning System (GPS)—hardware in the device that

receives and decodes GPS satellite signals (or similar competing

services like Galileo or Glonass). Accuracy can be as fine-grained as 1

meter, although this can degrade with caching and other effects.

 WiFi triangulation—your device uses WiFi for network connectivity,

but it can also use a combination of known SSID names for WiFi

networks, together with signal strength in dBm, to triangulate location.

This tends to be cruder than GPS, and suffers in less built-up areas or

areas with many transient hot-spots. Note that your users may disable

WiFi for power consumption or conservation reasons.

 Cell Tower triangulation—similar to the WiFi technique, your device

knows with which cell it has registered at any given time, and also

knows what other cells are detectable (along with signal strengths and

related timing information). Even with only one cell tower nearby, your

device's location can still be known to the coarse level of that tower's

service area.

 IP Address allocation—While your device most likely receives a

dynamic IP address when connecting to WiFi or mobile networks, your

provider usually has a known set of IP address blocks, and known

patterns of distribution in various geographic areas. While this won't

locate your device to the nearest meter, it can do a pretty good job of

determining whether you're in Kansas or Kathmandu.

As you can see, multiple methods are available that support the actual mechanics of

determining your device's location. Regardless of the methods supported by the device,

you don't have to concern yourself with selecting a given mechanism when writing your

web applications. What you do have to consider are the other two governing constraints

on your geolocation application.

The first such constraint is the user's choice of settings for device-wide location

features. Quite literally, has the user enabled or disabled use of GPS, and for that

matter, have they allowed or prohibited other location-determining mechanisms from

pinpointing the device? Figure 9–1 shows the normal settings over which the user has

control

CHAPTER 9: HTML5 Location-Based Applications 147

Figure 9–1. Android Device location services settings in Android 4.0

These settings are pretty obvious in their function. Turn off GPS satellites, and it won't

be available to any service, including the location-related features of browsers. This is

where our second constraint comes in. Just because the HTML5 specification outlines

the API for geolocation, it doesn't mean the user's browser has implemented all (or any!)

of the features.

Understanding HTML5 Capabilities

It's all fine and dandy for a given device to have a range of location capabilities, but how

do these tie in to your actual web application? The answer comes from the changes

made to the Document Object Model (DOM) with HTML5, which now incorporates an

API to support a range of DOM events specifically for location-related activities. This is a

fairly important subtlety. HTML5 does not implement the location-aware features, per se.

Rather, it incorporates an API specification for how a web browser and a web server or

application can work with location data. This affects you as a developer, as you need to

consider not only what the HTML5 specification says should happen for geolocation

activities, but how each browser has been implemented to actually support these

features. Without getting too far ahead of ourselves, an example would be to understand

what third-party geolocation services a given browser might use if a web application

asks for location.

Detecting Browser Geolocation Support

The basis for pretty much all geolocation activity within a browser is the

navigator.geolocation object. We can use this foundation as a neat shorthand to

determine if the browser has implemented at least the basics of the HTML5 geolocation

specification. Listing 9–1 shows our first code example: a bare-bones HTML and

JavaScript example that determines if a given browser understands a

navigator.geolocation object.

CHAPTER 9: HTML5 Location-Based Applications 148

Listing 9–1. Simple geolocation support check

<html>
 <head>
 <title>Android Web Application Development–Geolocation example 1</title>
 </head>
 <body>
 <script type="text/javascript">
 if (navigator.geolocation) {
 alert("Congratulations, your browser supports geolocation");
 } else {
 alert('Sorry, your browser does not support geolocation');
 }
 </script>
 </body>
</html>

You can find this code in the file ch09–example01.html. Simply place this under the

control of the web server of your choice, and then point your browser (desktop or

mobile) to it to see the results.

NOTE: This example, and the others in this chapter, typically should be run from a web server,

rather than opened as a file straight from a desktop or mobile browser. This is because most

contemporary browsers prevent any file:// based URL from accessing the geolocation API.

Put simply, any attempt to access a navigator.geolocation object, its methods, or data

members will silently fail. This is due principally to security concerns, which could fill a chapter

on their own. Choose a web server with which you are comfortable, such as Apache or Nginx,

and you won't see any issues.

Figures 9–2 and 9–3 show the results you should see when running our first example in

a desktop browser and mobile browser, respectively.

CHAPTER 9: HTML5 Location-Based Applications 149

Figure 9–2. Results of our simple desktop browser test for geolocation support

Figure 9–3. Results of our simple mobile browser test for geolocation support

CHAPTER 9: HTML5 Location-Based Applications 150

There are two things to note about our first piece of code that tests for geolocation

support. First, it really is that simple to determine a given browser's support (although

see the section "What Could Possibly Go Wrong?" later in this chapter for some more

nuanced analysis of when a device with support for geolocation does not actually

cooperate). The second is that using the JavaScript alert function is annoying most of

the time in desktop applications, and it gets even more annoying on a small-screen

mobile device. The experienced general web developers among you will know this, while

for the novices, this is a good time to consider pushing your working code into a

function that you can easily reuse without annoying your good users. Listing 9–2

refactors our detection example to create a separate geoSupport() function that we can

re-use as we see fit.

Listing 9–2. Simple geolocation support check revised

<html>
 <head>
 <title>Android Web Application Development–Geolocation example 2</title>
 <script type="text/javascript">
 function supportsGeo () {
 var geosupport = "Sorry, your browser does not support geolocation";
 if (navigator.geolocation) {
 geosupport = "Congratulations, your browser supports geolocation";
 }
 return geosupport;
 }
 </script>
 </head>
 <body>
 <script type="text/javascript">
 document.write(supportsGeo());
 </script>
 </body>
</html>

You could, of course, take this further and push this function into a separately loaded

JavaScript source file. You're free to do that and adapt the later code in this chapter, if

you wish.

Exploring Our Sample Application
It's time to introduce our sample application. Unless you've been living under a rock,

you're likely aware of the range of popular "check in" style applications that have

flourished along with the explosion of mobile devices. Whether it's Foursquare, Latitude,

TripIt, or other similar apps, these all allow you to announce your position to the wide

world—presumably so your fans and the paparazzi can track your famous movements.

Many of these applications are implemented as native applications for a given device,

but there's nothing that stops us from developing the same style of application as a web

application available within the browser of any device.

Our application is fully self-contained in ch09–example03.html, which you can run from

your chosen web browser. Let's take a look from the users' perspective first, to see

CHAPTER 9: HTML5 Location-Based Applications 151

what it (apparently) does. Pointing our browser to the page brings up the very simple,

but functional, home page of our new location-based check-in style application, which

you can see in Figure 9–4.

Figure 9–4. Our example application prior to invoking geolocation

At the moment, it's not exactly a graphic design tour-de-force, but we'll get to that.

For now, let's see what happens when we click the "Geolocation Check-In!" button.

Figure 9–5 shows our page dynamically updated with what looks like a set of latitude

and longitude coordinates. It looks like that because that is exactly what it is—and they

are from the very location this test was run.

Figure 9–5. Our location revealed thanks to our sample application.

Building Our Basic Geolocation Application

At this point, you might be wondering exactly how much logic and code was required to

get this apparently simple application working. Let's take a look at Listing 9–3, where

we'll see the entire set of code for the ch09–example03.html file.

CHAPTER 9: HTML5 Location-Based Applications 152

Listing 9–3. Geolocation checkin example

<html>
 <head>
 <title>Android Web Application Development–Geolocation example 3</title>
 <script type="text/javascript">
 function supportsGeo () {
 if (navigator.geolocation) {
 return true;
 } else {
 return false;
 }
 }

 function changeDiv (name, data) {
 var div = document.getElementById(name);
 if(div)
 {
 div.innerHTML = data;
 }
 }

 function checkIn () {
 var geoData = "";
 if (supportsGeo()) {
 navigator.geolocation.getCurrentPosition(function(position) {
 geoData = position.coords.latitude + ", " +
 position.coords.longitude;
 });
 <!-- alert("Confirm geolocation access before clicking OK"); -->
 } else {
 geoData = "Your browser does not support HTML5 geolocation";
 }
 changeDiv ("myCheckIn",geoData);
 }
 </script>
 </head>
 <body>
 <h1>
 <div id="myCheckIn">
 <!-- This is where your check-in will display -->
 <p>Ready to check in...</p>
 </div>

 <form name="checkInFrm">
 <input type="button" name="checkInBtn" value="Geolocation Check-In!"
 onClick="checkIn()">
 </h1>
 </body>
</html>

Let's break this down into four parts, so you can digest what's happening, and also

tinker and change the code yourself so you can explore possibilities as we go.

CHAPTER 9: HTML5 Location-Based Applications 153

Testing for Geolocation Support, Redux

The supportsGeo() function we introduced earlier in the chapter has been tweaked to

return a Boolean value, so we can use its result in-line in other expressions:

function supportsGeo () {
 if (navigator.geolocation) {
 return true;
 } else {
 return false;
 }
}

This provides a little more utility than the previous version that returned a string value.

Creating a Utility Function for Dynamic Page Changes

Next, we've introduced a simple utility function to control dynamic HTML behavior for

<div> elements anywhere in our code. The changeDiv() function takes the name of a

<div> element, and the desired textual change, and performs the necessary changes:

function changeDiv (name, data) {
 var div = document.getElementById(name);
 if(div)
 {
 div.innerHTML = data;
 }
}

This isn't strictly related to geolocation, but we think you'll agree this will make the rest

of our code examples clearer, by removing the mechanics of these changes from the

main logic.

Reviewing the Basic HTML

Our HTML code is almost the innocent bystander in our example. It provides a named

<div> element, myCheckIn, on which our functions will work their geolocation magic.

<h1>
 <div id="myCheckIn">
 <!-- This is where your check-in will display -->
 <p>Ready to check in...</p>
 </div>

 <form name="checkInFrm">
 <input type="button" name="checkInBtn" value="Geolocation Check-In!"
 onClick="checkIn()">
</h1>

The form and input button invokes our central function, checkIn(), that will perform the

actual geolocation work.

CHAPTER 9: HTML5 Location-Based Applications 154

Delving into the Coordinates

OK, enough dancing around the edges! The checkIn() function performs the key tasks

in our little example.

function checkIn () {
 var geoData = "";
 if (supportsGeo()) {
 navigator.geolocation.getCurrentPosition(function(position) {
 geoData = position.coords.latitude + ", " + position.coords.longitude;
 });
 <!-- alert("Confirm geolocation access before clicking OK"); -->
 } else {
 geoData = "Your browser does not support HTML5 geolocation";
 }
 changeDiv ("myCheckIn",geoData);
}

The geoData variable eventually holds our resulting latitude and longitude. We invoke our

supportsGeo() function to ensure our browser can support our intentions. Then we get

down to business by calling the navigator.geolocation.getCurrentPosition()

function. This is one of the core HTML geolocation functions, and has pages and pages

of overloaded definitions at http:// http://dev.w3.org/geo/api/spec-source.html.

For now, what you need to know is that navigator.geolocation.getCurrentPosition()

is an asynchronous function, which in the form used here passes a call-back function to

be invoked once the browser and underlying hardware have responded to the request

for the caller's current location. Our position call-back assigns our geoData variable with

two data members: the position.coords.latitude and position.coords.longitude

values, which equate to the caller's latitude and longitude.

All that remains is for us to call the utility changeDiv() function to update our HTML

page, and voila! Of course, we also ensure that browsers that don't support geolocation

are targeted with the appropriate message indicating no support for our geolocation

work.

NOTE: You might observe that we have a commented-out call to an alert(), asking the user to

confirm geolocation access before continuing. If you haven't allowed web pages to freely ask for

your location (and there's no reason you should), then you'll need to confirm access when asked

by your browser. But even the fastest human will not be able to do this before the call to

navigator.geolocation.getCurrentPosition() returns, even though it's asynchronous.

At this point, the call-back will return an error that our code currently doesn't catch (but see the

section "What Could Possibly Go Wrong" later in this chapter), and our example will silently fail.

Uncomment this alert in your testing to give yourself better control over the asynchronous

behavior of navigator.geolocation.getCurrentPosition().

http://dev.w3.org/geo/api/spec-source.html

CHAPTER 9: HTML5 Location-Based Applications 155

Dealing with the Four Corners of Android's Geolocation
World

Our initial sample application introduces some of the key building blocks of almost all

web applications that utilize geolocation. To round out the world of geolocation, we

need to address the four questions of Where am I?, What am I?, What could possibly go

wrong?, and Where am I going?

Where Am I?

We've already touched on the fundamentals of determining where a device happens to

be, with our use of the position.coords.latitude and position.coords.longitude data

members in our earlier example. You might be thinking that there's not much more to

determining location than that, but there are a few additional data points you should

consider.

While latitude and longitude can tell you if you're in Hawaii or The Himalayas, you'll

probably agree that there's another dimension you care about in both of those locations:

altitude! The HTML5 specification includes a position.coords.altitude data member to

provide an elevation above notional sea level. Note that support for this is quite patchy,

such that even the Android emulator and its browser fail to support it in many releases

of the Android Development Tools (ADT).

Along with latitude, longitude, and altitude, you might be concerned with how accurate a

reading you've been given. We introduced four possible location mechanisms at the

start of the chapter, and each of these has varying levels of accuracy. Two additional

data members are available, position.coords.accuracy and

position.coords.altitudeAccuracy, to provide the margin of error for any geolocation

data provided.

Interestingly, there's no direct method by which you can determine which location

mechanism was used to provide your coordinates. You can infer that it was GPS if you

interrogate another data value, position.coords.satellites, which, if supported by

your browser and device, will return the number of satellites used to provide a GPS fix.

The only problem with this is that if your device lacks GPS support, or fails to get a GPS

fix, both situations will return NULL. So you'll be left in an ambiguous state as to what

determined the lack of satellite count.

What Am I?

We've already largely dealt with the best way of answering the What am I? question. The

HTML5 geolocation specification doesn't provide exhaustive ways of determining what

particular hardware exists on a device. The best way to approach the question is using

the supportsGeo() function, or one like it, that we introduced in the preceding section.

This turns our question into one of: What am I? A device and browser combination that

supports geolocation or not?

CHAPTER 9: HTML5 Location-Based Applications 156

What Could Possibly Go Wrong?

Imagine you write your great check-in application, to take on the likes of Foursquare and

company. Your users are happy, and all is good with the world. Nothing could possibly

go wrong, right? Well, perhaps we spoke to soon.

On any device, at any time, you can find yourself having to deal with a range of issues

that prevent your geolocation code from returning an accurate value, or even any value

at all. It could be the weather, the alignment of the sun and the planets (actually, that's

less of a joke than you might think), or even user intervention. Whatever the cause, there

are well-defined error states that you should handle in your code.

The four main error conditions that can exhibit under the HTML5 specification are:

 TIMEOUT: No location mechanism responded within the allowed time

with location data.

 POSITION_UNAVAILABLE: Your device has one or more valid

location mechanisms (such as GPSor WiFi), but none of them could

provide valid location data.

 PERMISSION_DENIED: The browser was prevented from accessing

the HTML5 geolocation API by reason of permissions. Either the user

blocked access when prompted, or the browser is configured explicitly

to block access.

 UNKNOWN_ERROR: For reasons unknown, location data was not

available.

It's all well and good to know what the error conditions are, but how does one make use

of them? You'll remember we said the getCurrentPosition() function had a myriad of

overloaded versions. A significant subset of these include a common pattern of

accepting a callback function for reporting position as the first parameter, and a callback

function for error handling as the second parameter. Take a look at the next iteration of

our sample application, in the file ch09–example03.html. The key change is to our

checkIn() JavaScript function, which now looks like this.

function checkIn () {
 var geoData = "";
 if (supportsGeo()) {
 navigator.geolocation.getCurrentPosition(
 function(position) {
 geoData = position.coords.latitude + ", " + position.coords.longitude;
 },
 function(error) {
 switch(error.code) {
 case error.TIMEOUT:
 alert ('Geolocation returned a timeout error');
 break;
 case error.POSITION_UNAVAILABLE:
 alert ('Geolocation returned a position unavailable error');
 break;

CHAPTER 9: HTML5 Location-Based Applications 157

 case error.PERMISSION_DENIED:
 alert ('Geolocation returned permission denied (did you deny
access?)');
 break;
 case error.UNKNOWN_ERROR:
 alert ('Geolocation encountered an unknown error');
 break;
 }
 }
);
 <! -- alert("Confirm geolocation access before clicking OK"); -->
 } else {
 geoData = "Your browser does not support HTML5 geolocation";
 }
 changeDiv ("myCheckIn",geoData);
}

In the bolded text, you'll see we've changed the method signature (overloaded version)

of the getCurrentPosition() function to register our error callback, and alert the user

should any error condition be returned. We're in the fortunate position (OK, we're being

sarcastic here) that the Android emulator is notoriously slow and temperamental when it

comes to responding to geolocation requests. For this reason, it's always good practice

to test your code on real devices, as well as the emulator. The authors managed to

trigger a POSITION_UNAVAILABLE error without really trying, on our first attempt. You can

see the results in Figure 9–6.

Figure 9–6. A geolocation attempt returns a POSITION_UNAVAILABLE error

As we did with our supportsGeo() function, you should turn this style of error checking

into a utility function for use throughout your code, rather than bombard the user with

alert-style errors—although, in this case, it might be warranted.

CHAPTER 9: HTML5 Location-Based Applications 158

Where Am I Going?

To round out the capabilities we're exploring, we can ask ourselves—or more accurately

the device—Where am I going? There are two approaches that are worth covering. First,

our trusty geolocation data members include two more useful values,

position.coords.speed and position.coords.heading. These indicate the last known

speed of the device, and the last known directional heading. These values sound great

for tasks like plotting movement on a map, and, in theory, that's exactly what they're

designed to provide. In practice, however, a disturbingly large number of devices either

don't report data for these values, or use such simplistic GPS chipsets as to not support

collecting it in the first place.

This brings us to an alternative approach. To date, we've been showing off the

getCurrentPosition() method of navigator.geolocation. This method has a peer

method that is a little more sophisticated and useful when it comes to determining

location over time, and the movement that goes with it. This is the watchPosition()

method.

The watchPosition() method, in its various overloaded forms, has fairly similar behavior

to our getCurrentPosition() method. It registers a callback function to use for normal

positioning, and another callback function for error handling, but it also accepts a range

of options, including a timer option for how frequently it should sleep and wake itself and

keep calling your callbacks. The watchPosition() will continue to operate until halted by

a call to clearWatch(), or its parent process terminates. Listing 9–4 shows the next

iteration of our ongoing example application, from ch09–example05.html.

Listing 9–4. Geolocation tracking over time(and movement!)

<html>
 <head>
 <title>Android Web Application Development–Geolocation example 5</title>
 <script type="text/javascript">
 function supportsGeo () {
 if (navigator.geolocation) {
 return true;
 } else {
 return false;
 }
 }

 function changeDiv (name, data) {
 var div = document.getElementById(name);
 if(div)
 {
 div.innerHTML = data;
 }
 }

 function startWatch () {
 var geoData = "";
 var watchOptions = { frequency: 5000 };
 if (supportsGeo()) {

CHAPTER 9: HTML5 Location-Based Applications 159

 geoData = navigator.geolocation.watchPosition(onWatchSuccess,
 onWatchError, watchOptions);
 } else {
 geoData = "Your browser does not support HTML5
geolocation";
 changeDiv ("myCheckIn",geoData);
 }
 }

 function onWatchSuccess(position) {
 var currentLocation = "";
 currentLocation = 'Latitude: ' + position.coords.latitude + ',
Longitude: ' +
 position.coords.longitude;
 changeDiv("myLocationWatch",currentLocation);
 }

 function onWatchError(error) {
 var currentError = "";
 currentError = 'Error code: ' + error.code + ', Error message: ' +
error.message;
 changeDiv("myLocationWatch",currentError);
 }
 </script>
 </head>
 <body>
 <h1>
 <div id="myLocationWatch">
 <!-- This is where your check-in will display -->
 <p>Ready to check in...</p>
 </div>

 <form name="watchFrm">
 <input type="button" name="watchBtn" value="Start Watching"
 onClick="startWatch()">
 </h1>
 </body>
</html>

Our utility functions supportsGeo() and changeDiv() are the same, and the HTML layout

is only cosmetically changed. The key is that the button now calls our startWatch()
function, which itself ultimately calls watchPosition(). We pass it to our regular and

error callbacks- onWatchSuccess() and onWatchError()—and an options construct. In

this case, our options look like this

var watchOptions = { frequency: 5000 };

This effectively is used to pass a 5 second refresh frequency to the watchPosition()
function. If you run the code yourself, and choose the Start Watching button you see,

your browser should update approximately every five seconds with your location. This is

a little hard to show in static screen shots, so you'll have to try it for yourself. Don't

worry if you aren't actually moving around: you should still see updates to the

coordinates, because the accuracy of each reading will be slightly different depending

CHAPTER 9: HTML5 Location-Based Applications 160

on number of GPS satellites used for the fix, varying local interference, etc. You should

see small changes to the least significant digits even if you are relaxing on your sofa!

Expanding Your Horizons with Maps
By now you will almost certainly agree that our example application is not exactly a work

of art. So let's add a bit of pizzazz, and introduce the near-ubiquitous accompaniment to

geolocation: maps!

Adding a Map to Our Application

Our latest example is from file ch09–example06.html, which uses Google Maps to take

our earlier check-in example to the next level. Instead of just reporting numeric co-

ordinates, it uses them with the Google Maps API hosted at

http://maps.googleapis.com/ to load a map, and place a marker on it highlighting your

location. Listing 9–5 is our modified JavaScript, CSS and HTML5.

Listing 9–5. Geolocation and Maps working together

<html>
 <head>
 <title>Android Web Application Development–Geolocation example 6</title>
 <meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
 <style type="text/css">
 html { height: 100% }
 body { height: 100%; margin: 0; padding: 0 }
 #mapContainer { height: 100% }
 </style>
 <script type="text/javascript"
src="http://maps.googleapis.com/maps/api/js?key=AIzaSyBpoxnQbCGPTIcpIJ8YPO3pTNcJX3zbc4c&
sensor=false">
 </script>
 <script type="text/javascript">
 function supportsGeo () {
 if (navigator.geolocation) {
 return true;
 } else {
 return false;
 }
 }

 function changeDiv (name, data) {
 var div = document.getElementById(name);
 if(div)
 {
 div.innerHTML = data;
 }
 }

 function mapMe(thisLat, thisLong) {
 var myLatlong = new google.maps.LatLng(thisLat, thisLong);
 var myOptions = {
 center: new google.maps.LatLng(thisLat, thisLong),

http://maps.googleapis.com/
http://maps.googleapis.com/maps/api/js?key=AIzaSyBpoxnQbCGPTIcpIJ8YPO3pTNcJX3zbc4c&sensor=false
http://maps.googleapis.com/maps/api/js?key=AIzaSyBpoxnQbCGPTIcpIJ8YPO3pTNcJX3zbc4c&sensor=false

CHAPTER 9: HTML5 Location-Based Applications 161

 zoom: 12,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById("mapContainer"),
 myOptions);
 var marker = new google.maps.Marker({
 position: myLatlong,
 map: map,
 title:"Hello World!"
 });
 }

 function initialize() {
 if (supportsGeo()) {
 myLatitude = "";
 myLongitude = "";
 navigator.geolocation.getCurrentPosition(
 function(position) {
 myLatitude = position.coords.latitude;
 myLongitude = position.coords.longitude;
 },
 function(error) {
 switch(error.code) {
 case error.TIMEOUT:
 alert ('Geolocation returned a timeout error');
 break;
 case error.POSITION_UNAVAILABLE:
 alert ('Geolocation returned a position unavailable
 error');
 break;
 case error.PERMISSION_DENIED:
 alert ('Geolocation returned permission denied (did
 you deny access?)');
 break;
 case error.UNKNOWN_ERROR:
 alert ('Geolocation encountered an unknown error');
 break;
 }
 }
);
 alert("Confirm geolocation access before clicking OK");
 }
 mapMe(myLatitude, myLongitude);
 }
 </script>
 </head>
 <body>
 <h1>
 <body onload="initialize()">
 <div id="mapContainer" style="width:100%; height:100%">
 <!-- Your map goes here! -->
 </div>
 </body>
</html>

You'll note that our code starts with some CSS, and ends with very simple HTML that

invokes our new initialize() method as soon as the page loads. The CSS is

CHAPTER 9: HTML5 Location-Based Applications 162

boilerplate stuff from Google to allow a div to act as a container for map objects.

Following this, you'll see the JavaScript reference to the Google Maps API (the following

line has the formatting massaged to better fit this page):

<script type="text/javascript"
 src="http://maps.googleapis.com/maps/api/js?
 key=AIzaSyBpoxnQbCGPTIcpIJ8YPO3pTNcJX3zbc4c&sensor=false">
</script>

This invokes the Maps API with a particular API key. This is Google's technique for

uniquely identifying users of its API, and also rate-limiting how many calls to various

APIs can be made. You should definitely sign up for your own API key so that you can

control your own API access, monitor usage, etc.

TIP: At the time of printing, the free Google Maps API is throttled to 25000 invocations per day.

To get your own Maps API key, visit http://developer.google.com/ and follow the instructions.

Our initialize() function is very similar to our old checkIn() function, so we won't

rehash that here. The key differences are it populates two local variables for latitude and

longitude, and then calls our new function, mapMe(), to do all the hard mapping work.

function mapMe(thisLat, thisLong) {
 var myLatlong = new google.maps.LatLng(thisLat, thisLong);
 var myOptions = {
 center: new google.maps.LatLng(thisLat, thisLong),
 zoom: 12,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };
 var map = new google.maps.Map(document.getElementById("mapContainer"), myOptions);
 var marker = new google.maps.Marker({
 position: myLatlong,
 map: map,
 title:"Hello World!"
 });
}

Within mapMe(), we complete four main actions to present our map and location marker.

First, we create a google.maps.LatLng object using the latitude and longitude we

received from our HTML5 geolocation calls. Next, we construct an options object

named myOptions, which consists of a center object which will be used to choose the

center of the map presented in the browser. The zoom value dictates the starting zoom

setting in the map—this is very important on mobile devices, as the default zoom is at

far too high a scale, leaving the user to zoom in several times with imprecise pinch and

zoom techniques.

We then get to the meat of our mapping. We create a new google.maps.Map object, and

pass the element that will hold the map ("mapContainer" is the ID of our <div> in our

HTML), and the options object we constructed. This actually creates and displays the

map in the user's browser. Following its creation, we create a google.maps.Marker

object at the same coordinates on our map, and give it a meaningful label. The results in

Figure 9–7 speak for themselves.

http://maps.googleapis.com/maps/api/js?key=AIzaSyBpoxnQbCGPTIcpIJ8YPO3pTNcJX3zbc4c&sensor=false
http://maps.googleapis.com/maps/api/js?key=AIzaSyBpoxnQbCGPTIcpIJ8YPO3pTNcJX3zbc4c&sensor=false
http://developer.google.com/

CHAPTER 9: HTML5 Location-Based Applications 163

Figure 9–7. Our HTML geolocation application adapted to use Google Maps

Other Location-based Services

We've looked at one of the popular mapping services, but it's worth considering

broadening your horizons to other providers of both basic geolocation services, as well

as providers of things like map tiles (the graphic "tiles" that actually display).

There are a handful of reasons you might consider hedging your bets, and at least

ensuring you can perform equivalent actions with other services:

 Free services, scaling and cost: Many services, like Google, Yahoo,

Bing, MapQuest, Nokia/Ovi etc. offer some level of free service. The

usual terms dictate that you and your users can consume a set

number of map impressions per day before being throttled, and/or

asked to pay.

 Different strengths and weaknesses: Some services, like Google,

offer useful things like directions in some locations, details of public

transport, etc. But in other places, services like Open Street Map

provide significantly more detail, more recent data, and for some

services like OpenCycleMap, the entire map rendering and data is

focused on specialist uses: in this case, cyclists.

5

CHAPTER 9: HTML5 Location-Based Applications 164

 Separation of duties: While it's convenient to use a single service to

do everything, you may find that you want to separate the aspects of

retrieving raw map data around a given location, and the rendering of

a relevant image (map tile) for that location. Abstracting your mapping

means you can mix and match to suit your needs.

Possibly the most important reason to abstract your map data and image provider(s) is

that the field is rapidly evolving and changing, and good software engineering should

lead you to isolate all of your other code from such volatile dependencies where you are

able. This volatility can also be the result of version upgrades and changes by the

providers themselves.

Here are some useful data providers, map tile providers, all-in-one services, and even

ready-made mapping abstraction JavaScript libraries, that you might also like to

consider along with the usual suspects:

 Open Street Map (openstreetmap.org)—one of the original open data

providers, now also providing other services on top of the crowd-

sourced base geolocation data

 CloudMade (cloudmade.com)—a map tile provider for use with Open

Street Map data. Also the providers of Leaflet, an open source tile set

service.

 Mapnik (mapnik.org)—a map renderer that is often found in other tools

(including some of the others listed here).

 CartoDB (cartodb.com)—a cloud based geospatial database

 Mapstraction (mapstraction.com)—a ready-to-use JavaScript library

that provides abstraction of mapping services and data providers.

 Wax (mapbox.com/wax)—another ready-to-use abstraction layer. And

from the same company, TileMill for tile generation.

This list could fill pages, but you get the idea. Even more exciting is the realization that

dozens of such companies and service providers are cropping up every week.

Gaming Your Location
Even though you're developing a mobile app, don't forget the tools available to you to

help test and refine your geolocation code. For instance, DDMS in the Android

Developer Tools plug-in for Eclipse provides you with the ability to set arbitrary

coordinates/location data for your emulator device. With a running project in your

emulator, you can switch to DDMS mode, and open the Emulator Console tab. You'll

see the ability to set raw coordinates, or provide GMX or KML data directly, as shown in

Figure 9–8, which your emulator browser can then use.

CHAPTER 9: HTML5 Location-Based Applications 165

Figure 9–8. Using ADT and Eclipse to set coordinates in the Android emulator

If running Eclipse is not your preferred way of development, you can also use Android's

adb tool to issue the geo fix command to provide latitude, longitude, and altitude.

Finally, if you’re debugging an application on a device that’s not attached to your

computer, you can use the free application Fake GPS location

(https://market.android.com/details?id=com.lexa.fakegps) to set your location.

Gaming Your Location–for Fun!
One of the great ways to explore web application geolocation capabilities is to make a

game out of it—literally! Using the simple building blocks from the preceding section,

you can build games and activities including treasure hunts, orienteering events, and

even driving, racing, and sailing games. You should find it very straightforward to

combine our startWatch() example with our Google Maps example, to create a "Map

Tracks" style application that plots your movements in real-time on a map, and

https://market.android.com/details?id=com.lexa.fakegps

CHAPTER 9: HTML5 Location-Based Applications 166

depending on the game or competition, could also show the movements and locations

of other players, and even where entire other games are taking place.

An interesting use of geolocation features, such as the ones we've shown here, can be

found in the popular "geocaching" movement. Do a search through your preferred

search engine for more details, or carry on to chapter 10 and use your own search

interface to do the searching!

The sky really is the limit (and, in fact, your geolocation data should happily work from

your favorite hot-air balloon too!).

Summary
In this chapter, we've explored the location based features available to you as a mobile

web developer. Our sample application has demonstrated how to use many of the core

geolocation features at your disposal, including where you are, what capabilities your

users' devices might have, and how to deal with constant location changes. We'll

explore more on geolocation application development, and also cover other online

services and APIs, in Chapter 10.

167

 Chapter

Using Cloud Services:
A Transport Application

Mastering the basics of geolocation is all well and good, and as we learned in Chapter 9,

we can have fun working with our coordinates. A huge range of possibilities opens up

once we know where we are, and what other services are available to mix our location

information with other data. In this chapter, we're going to take our geolocation know-

how, and mix in some local searching capabilities, to build a personalized transit

application.

Our example transit application will find where you are, and then search for your nearest

transit options, be it a bus stop, a subway or train station, or even an airport. With the

basics in place, you'll be able to extend our transit application to pretty much any

search-plus-location problem.

As a developer, you have many options for how much or how little work you want to do

when blending web- or cloud-based services with your own applications. You have a

choice of building your own services using publicly available data feeds, using a full

service, or building a hybrid. Using a full service would give us nothing to talk about in

this chapter, so we have opted for a hybrid approach, where we'll then use our

geolocation know-how to use a standard search service to provide useful transit

information.

Before we dive into code, examples, and explanations, consider for a minute the various

building blocks you probably already use, but may not actively think about. When

building any kind of transport or transit application, we want to combine knowledge and

data then to present some useful options to the user. These would include:

 Who am I ? In a way, it can be useful to think of "who" is using your

application as a combination of the actual user, and the device they are

using along with its capabilities. We'll be reusing the detection code we

covered in Chapter 9 to determine if a device supports geolocation.

10

CHAPTER 10: Using Cloud Services: A Transport Application 168

 Where am I? From Chapter 9, we learned how to determine your

user's location from the geolocation capabilities of their Android

device and their browser. We'll take that fundamental starting point to

drive other options.

 Where do I want to go? This is always a nuanced question. Does the

application user have a location in mind, or a type of transport in mind,

or in fact any preference for how to travel between points. The two key

points to remember here are not to prematurely limit the options you

make available in your application, and that when you do limit options,

you do so deliberately and take the user with you. For instance, let

them know that other routes or transit methods are available.

 What do online services know about me and my location? This is a

big area, and covers many generic services. Given a location, and some

kind of desired journey or destination, think about what help is available

to you as a developer, so that you don't need to do all the work yourself.

For example, APIs for general web searching from companies like

Google, Yahoo, and Microsoft can cope with many types of transit

search, including finding transit stops, measuring distances, and

calculating transit times. Use these so you don't have to do this yourself

(unless, of course, you're aiming to compete in that space).

 What specialized services know about my location? The biggest

area to consider, but don't be daunted. Specialized APIs and services

exist for a bewildering array of transit and transport types. A very large

number of public transport agencies around the world make available

scheduling and routing data, which we'll discuss later in this chapter.

However, many also provide a direct API to answer queries for the

next service, nearest service, and so on. Aggregators exist to provide

pan-provider services. An example is Kayak for airline transit searches.

You can take specialized APIs even further, by thinking about (and

asking) why your user wants to make a specific trip. If it's to visit the

cinema, eat at a restaurant, or partake in some other event, services

like Yelp, TripAdvisor, and others provide APIs to search for specific

venues and events. As an application developer, you can create useful

applications that combine all of these to target your users.

 What can I usefully conclude with this knowledge? Take the data

your application gathers about where the user is, where they want to

go, and what they want to do when they get there, and you start to

picture the flow and the features of your application. Focus on using

the building blocks described in the preceding paragraphs, rather than

reinventing them, and you'll build compelling applications that stand

out from the crowd. As an example, imagine if you know that users

want to travel by boat from Manhattan to Brooklyn to visit a particular

restaurant. You could take the experience to the next level, and use

the OpenTable online service to check availability, and note that the

CHAPTER 1: Using Cloud Services: A Transport Application 169

user's restaurant is booked out, and instead suggest a dinner cruise

on the Hudson. You save them a disappointing trip, and give them a

great experience instead.

So now we have the big picture about what we want to build, and why a user would

want to use such an application. Let's get started!

Introducing the "Move Me" Example Application
Our sample application is called "Move Me." We'll use it to explore how we can find

nearby transport options from any location. Of course, we'll detect our location using the

techniques we covered in chapter 9. Namely, we'll use the geolocation capabilities of

our Android device to determine our latitude and longitude, and then use those data to

drive a search service to find our preferred mode of transport.

Examining the Code

Listing 10–1 shows the code for the first version of Move Me. Don't be daunted by its

length: we'll break this down and cover the various components to give you an

understanding of its workings, and inspiration to take this example further and expand it

to your own ideas.

Listing 10–1. The Move Me application source code, version 1

<!--
 Licensed under the Apache License, Version 2.0: http://www.apache.org/licenses/LICENSE-
2.0
 -->
<html>
 <head>
 <title>Move Me! - Transit Search Example
 </title>
 <link href="./ch10–example01.css" rel="stylesheet" type="text/css"/>
 <script
 src="http://www.google.com/jsapi?key=AIzaSyBU-TWQkYc-
 ynkeYIrd_aP0UFdyRieCyR0"
 type="text/javascript">
 </script>
 <script type="text/javascript">
 google.load('maps' , '3', {"other_params":"sensor=false"});
 google.load('search', '1');

 var myLatLong;
 var myTransitMap;
 var myLocalSearch;
 var searchResults = [];

 var resultMarker = new google.maps.MarkerImage(
 "Red_Train_Marker.png",
 new google.maps.Size(20, 34),
 new google.maps.Point(0, 0),
 new google.maps.Point(10, 34));

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.google.com/jsapi?key=AIzaSyBU-TWQkYc-ynkeYIrd_aP0UFdyRieCyR0
http://www.google.com/jsapi?key=AIzaSyBU-TWQkYc-ynkeYIrd_aP0UFdyRieCyR0
http://www.google.com/jsapi?key=AIzaSyBU-TWQkYc-ynkeYIrd_aP0UFdyRieCyR0

CHAPTER 10: Using Cloud Services: A Transport Application 170

 var youMarker = new google.maps.MarkerImage(
 "You_Marker.png",
 new google.maps.Size(20, 34),
 new google.maps.Point(0, 0),
 new google.maps.Point(10, 34));

 function supportsGeo () {
 if (navigator.geolocation) {
 return true;
 } else {
 return false;
 }
 }

 function changeDiv (name, data) {
 var div = document.getElementById(name);
 if(div)
 {
 div.innerHTML = data;
 }
 }

 function getLocation() {
 if (supportsGeo()) {
 myLatitude = "";
 myLongitude = "";
 navigator.geolocation.getCurrentPosition(
 function(position) {
 myLatitude = position.coords.latitude;
 myLongitude = position.coords.longitude;
 },
 function(error) {
 switch(error.code) {
 case error.TIMEOUT:
 alert ('Geolocation returned a timeout error');
 break;
 case error.POSITION_UNAVAILABLE:
 alert ('Geolocation returned a position unavailable
 error');
 break;
 case error.PERMISSION_DENIED:
 alert ('Geolocation returned permission denied (did you
 deny access?)');
 break;
 case error.UNKNOWN_ERROR:
 alert ('Geolocation encountered an unknown error');
 break;
 }
 }
);
 alert("Confirm geolocation access before clicking OK");
 }
 myLatLong = new google.maps.LatLng(myLatitude, myLongitude);
 }

 function prepareMap() {

CHAPTER 1: Using Cloud Services: A Transport Application 171

 // Union Square test
 myLatLong = new google.maps.LatLng(37.788056, -122.4075);
 //getLocation();

 myTransitMap = new google.maps.Map(document.getElementById("map"), {
 center: myLatLong,
 zoom: 14,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 });

 var yourMarker = new google.maps.Marker({
 position: myLatLong,
 map: myTransitMap,
 icon: youMarker,
 title:"You!"
 });

 myLocalSearch = new GlocalSearch();
 myLocalSearch.setSearchCompleteCallback(null,
 processLocalSearchResults);
 }

 function execSearch() {
 var searchText = document.getElementById("searchtext").value;
 myLocalSearch.execute(searchText);
 }

 function processLocalSearchResults() {
 for (var i = 0; i < myLocalSearch.results.length; i++) {
 searchResults.push(new LocalResult(myLocalSearch.results[i]));
 }
 }

 // Google's common example LocalResult object
 function LocalResult(result) {
 var me = this;
 me.result_ = result;
 me.resultNode_ = me.node();
 me.marker_ = me.marker();
 document.getElementById("resultlist").appendChild(me.resultNode_);
 }

 LocalResult.prototype.node = function() {
 if (this.resultNode_) return this.resultNode_;
 return this.html();
 };

 LocalResult.prototype.marker = function() {
 var me = this;
 if (me.marker_) return me.marker_;
 var marker = me.marker_ = new google.maps.Marker({
 position: new google.maps.LatLng(parseFloat(me.result_.lat),
 parseFloat(me.result_.lng)),
 icon: resultMarker,
 map: myTransitMap});
 return marker;
 };

CHAPTER 10: Using Cloud Services: A Transport Application 172

 LocalResult.prototype.html = function() {
 var me = this;
 var container = document.createElement("div");
 container.className = "unselected";
 container.appendChild(me.result_.html.cloneNode(true));
 return container;
 }

 GSearch.setOnLoadCallback(prepareMap);
 </script>
 </head>
 <body>
 <p>Move Me! Transit Search Example</p>
 <div style="width: 330px;">
 <input type="text" id="searchtext" style="width: 240px;"/>
 <input type="button" value="Find" onclick="execSearch()"/>
 <div style="position: absolute; left: 440px;">
 <div id="resultlist">
 </div>
 </div>
 <div id="map" style="height: 450px;"></div>
 </div>
 </body>
</html>

First, let's get the easy stuff out of the way. You should already recognize several

JavaScript functions from our geolocation introduction in chapter 9. Our old friends

supportsGeo() and changeDiv() are present, performing the same geolocation support

detection functions, and <div> content changing functions respectively.

Our example code slightly changes the way we're invoking some of the publicly

available services we're consuming. In this case, because we've elected to use Google's

Maps API and its Search API, we've refactored loading Google's JavaScript libraries to

first load the base framework as follows

<script
 src="http://www.google.com/jsapi?key=AIzaSyBU-TWQkYc-ynkeYIrd_aP0UFdyRieCyR0"
 type="text/javascript">
</script>

Then, in our own JavaScript, we use Google's google.load() function to additionally

load the Maps API and Search API. If you choose another service or set of services such

as Bing, Yahoo, Baidu, or something else, loading APIs would change to match the

appropriate invocation for those services. For our example, the code is very simple:

google.load('maps' , '3', {"other_params":"sensor=false"});
google.load('search', '1');

NOTE: You can revert to using the Google Maps version 2 API should you be more familiar with it,

but you'll see repeated warnings that it is deprecated when you use websites relying on that

version of the API.

http://www.google.com/jsapi?key=AIzaSyBU-TWQkYc-ynkeYIrd_aP0UFdyRieCyR0

CHAPTER 1: Using Cloud Services: A Transport Application 173

Dealing with Global State

Next, we set up some global state variables that give you a good idea of what we're

going to do to make our transit application work.

var myLatLong;
var myTransitMap;
var myLocalSearch;
var searchResults = [];

The variable names are hopefully descriptive of their purpose, but in case there's any

doubt, we'll use myLatLong to hold the user’s coordinates; myTransitMap represents the

map of the user's location and eventually will also include the nearby transport options;

myLocalSearch is the search object, which will house our criteria for finding relevant

transport options; and finally the searchResults array will hold the results returned from

our myLocalSearch search.

Customizing Location Markers

If you've ever used an online map service (of any kind) you're probably familiar with the

virtual "Map Pins" that are used to pinpoint locations. In our example, as we're using

Google maps, we use the google.maps.Marker object to denote specific locations on

our maps. Rather than use the vanilla red map marker icon that comes by default with

Google Maps, we've crafted some custom markers for our Move Me application. The

code for our custom google.map.MarkerImage graphics is as follows.

var resultMarker = new google.maps.MarkerImage(
 "Red_Train_Marker.png",
 new google.maps.Size(20, 34),
 new google.maps.Point(0, 0),
 new google.maps.Point(10, 34));
var youMarker = new google.maps.MarkerImage(
 "You_Marker.png",
 new google.maps.Size(20, 34),
 new google.maps.Point(0, 0),
 new google.maps.Point(10, 34));

The two .png image files referenced are included in the source code with this book. The

first, Red_Train_Marker.png, is styled on the normal red pin used by Google Maps, with

the addition of the letter T, for transit or transport. The You_Marker.png map pin is a blue

marker with the word "You" superimposed. We've specified the normal size for our map

pins, to aid the user when they want to tap the marker to see the "info bubble" for more

details on a given point. This makes the pins look somewhat larger on small phone

screens, but keeping the normal size is important in order to make it less likely that the

user will miss touching the pin when they press the screen.

You will note that both MarkerImage objects have two calls to google.map.Point(). The

first sets the origin point for the image to be used as an overlay. In our preceding

examples, we're not changing what would be the default. The second call to

google.map.Point() sets the anchor for the image. By default, when a

CHAPTER 10: Using Cloud Services: A Transport Application 174

google.map.Marker is overlaid on a map, any associated MarkerImage rendered with the

top left of the image at the anchor point. We actually want the pointy end of our pin

image to appear to point visually to our location of interest, so we want the middle,

bottom edge of our MarkerImage to line up with our location result. To achieve this, you'll

see we've offset the anchor by half the width of the pin image—10 pixels—and the

complete height of the pin image - 34 pixels.

Preparing Our Map

With those preparations made, we plunge into the main function used to drive our transit

application, the prepareMap() function.

function prepareMap() {
 getLocation();

 myTransitMap = new google.maps.Map(document.getElementById("map"), {
 center: myLatLong,
 zoom: 14,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 });

 var yourMarker = new google.maps.Marker({
 position: myLatLong,
 map: myTransitMap,
 icon: youMarker,
 title:"You!"
 });

 myLocalSearch = new GlocalSearch();
 myLocalSearch.setSearchCompleteCallback(null, processLocalSearchResults);
}

The prepareMap() function is easily understood, broken down into its four main actions.

First, we invoke our getLocation() function, which is mostly a rebadged version of the

code we showed in the initialize() function in chapter 9 in listing 9-5. Here it is again

for the sake of completeness:

function getLocation() {
 if (supportsGeo()) {
 myLatitude = "";
 myLongitude = "";
 navigator.geolocation.getCurrentPosition(
 function(position) {
 myLatitude = position.coords.latitude;
 myLongitude = position.coords.longitude;
 },
 function(error) {
 switch(error.code) {
 case error.TIMEOUT:
 alert ('Geolocation returned a timeout error');
 break;
 case error.POSITION_UNAVAILABLE:
 alert ('Geolocation returned a position unavailable error');
 break;

CHAPTER 1: Using Cloud Services: A Transport Application 175

 case error.PERMISSION_DENIED:
 alert ('Geolocation returned permission denied (did you deny
 access?)');
 break;
 case error.UNKNOWN_ERROR:
 alert ('Geolocation encountered an unknown error');
 break;
 }
 }
);
 }
 myLatLong = new google.maps.LatLng(myLatitude, myLongitude);
}

As in the earlier chapter, this uses the navigator.geolocation object of the browser to

determine your latitude and longitude. We'll omit repeating the near-identical code here

to save some space.

We then create a new google.maps.Map object called myTransitMap, placing the center of

the map on our detected location. We set the zoom level to 14 as this is a good scale for

a human on foot, though you can change this to any desired zoom setting. We also

choose the standard road map style of map, rather than satellite view.

TIP: Here are some handy values for zoom level settings to keep in mind when rendering maps

for your users.

Zoom level 12: Suitable for highway-level driving, and showing major routes over tens of miles

or kilometers.

Zoom level 14: Good for inner city driving, and walking directions in general when the distance

is more than a few dozen yards or meters

Zoom level 15: Best for detailed walking, showing building outlines, and driving directions

showing one-way streets and other impediments.

On to our myTransitMap object, we place a marker at the same latitude and longitude

detected for the handset or device. We use our custom blue "You" marker, described

previously, and even provide some hover text to reinforce that this pin places you on the

map.

Lastly, we construct a new local search object, myLocalSearch, and then register the

callback function, processLocalSearchResults(). This will be called when this search

object completes execution of a search. The mechanics of the callback are shown a little

later in this chapter. With the prepareMap() function complete, we can actually see what

our application looks like when the user initially runs it on their device, as shown in

Figure 10–1.

CHAPTER 10: Using Cloud Services: A Transport Application 176

Figure 10–1. The initial screen of the Move Me example application

We have taken a few liberties with the starting example, having set our coordinates in

the Android emulator to a reasonably famous location: Union Square in San Francisco.

This isn't quite as contrived as it might sound. Picture yourself as a tourist in San

Francisco. You've seen the sights and sounds of the city, and find yourself in Union

Square, and want to find a train, bus, or ferry to your hotel or other destination. That's

where the rest of the functionality in our example application comes in to play.

Performing Local Transport Searches

The next two functions in our example perform the tasks of executing our chosen local

search, and processing the results.

function execSearch() {
 var searchText = document.getElementById("searchtext").value;
 myLocalSearch.execute(searchText);
}

The execSearch() function simply reads the content of the searchtext field on our HTML

form, seen at the top of Figure 10–1, and calls the execute method on our

myLocalSearch() object with that text. We registered the processLocalSearchResults()

method as the callback function for when myLocalSearch() reports a completed

execution.

CHAPTER 1: Using Cloud Services: A Transport Application 177

function processLocalSearchResults() {
 for (var i = 0; i < myLocalSearch.results.length; i++) {
 searchResults.push(new LocalResult(myLocalSearch.results[i]));
 }
}

The processLocalSearchResults() function iterates over our results, instantiates a

LocalResult object, and adds them to the searchResults array. The LocalResult object

is a common example object Google uses in many of its API examples, which we've

copied here. We're using it mainly for the ease with which we can then access the

coordinates of a local search result. It does similar work to our previous code, as it

places a marker on our map, and it also creates a textual result list. In our current

example, we've created CSS to hide the text list, but we'll cover options for this shortly.

Lastly, as far as our JavaScript is concerned, we register our prepareMap() function as

the callback to invoke once the Google Search API has finished loading.

GSearch.setOnLoadCallback(prepareMap);

All that remains is the actual HTML code that controls the size of our map, the search

field and Find button, and relevant <div> names and nesting. We've deliberately chosen

explicit pixel sizing for the overall display, and the map object housed within it, to suit

vertical display on a phone handset, and horizontal display on a tablet while also

showing the text results which we'll cover later in the chapter.

<body>
 <p>Move Me! Transit Search Example</p>
 <div style="width: 330px;">
 <input type="text" id="searchtext" style="width: 240px;"/>
 <input type="button" value="Find" onclick="execSearch()"/>
 <div style="position: absolute; left: 440px;">
 <div id="resultlist">
 </div>
 </div>
 <div id="map" style="height: 450px;">
 </div>
 </div>
</body>

Our HTML displays the simple form you saw in Figure 10–1.

Running Our Code

So what happens when we actually search for a transport option? In our example so far,

our candidate user is a tourist who has found themselves in Union Square, and is

looking for the nearest transport option. If you were to find yourself in San Francisco,

you might think of using the Bay Area Transit System, or BART. So let's use that as our

criterion to display what actually happens when we invoke execSearch(). Figure 10–2

shows the results returned via our local search invocation, plotted on our map using the

LocalResult objects.

CHAPTER 10: Using Cloud Services: A Transport Application 178

Figure 10–2. Our Move Me application displaying nearby transit options

Lo and behold, we have found the four nearest BART stations, from the Civic Center to

Embarcadero. You can also see the final rendering of the custom transit MarkerImage

and Marker object we described way back at the start of the chapter.

Perhaps, as a tourist, you're really after a great view of the San Francisco Bay, and what

better way is there to do this than to find the nearest ferry terminal to seek out a cruise

of one of the world's great waterways? Figure 10–3 shows our application finding the

nearest ferry terminal.

CHAPTER 1: Using Cloud Services: A Transport Application 179

Figure 10–3. Finding ferry transport with Move Me

Once again, we've found the transit options we sought. In this instance, you'll notice

several markers overlapping one location. This is Google's search returning the several

different ferry companies and ferry options that operate from that location, not a mistake

in the HTML or JavaScript we're using.

Improving the "Move Me" Example Application
By now, you will have noticed that the simplicity of our form actually becomes a little

cumbersome. Sure, your users could enter anything they like in their local search, but

maybe you'd like to save them the effort of typing on tiny soft-keyboards. The second

version of our example code, in the file ch10–example02.html, revamps the form code to

provide simple buttons for popular transit types, and invokes our modified execSearch()
function. Our new form is coded as follows.

<div style="width: 330px;">
 <input type="button" value="Subway" onclick="execSearch('BART station')"/>
 <input type="button" value="Train" onclick="execSearch('train station')"/>
 <input type="button" value="Bus" onclick="execSearch('bus stop')"/>
 <input type="button" value="Ferry" onclick="execSearch('ferry terminal')"/>
<div style="position: absolute; left: 440px;">

CHAPTER 10: Using Cloud Services: A Transport Application 180

Our modified execSearch() function no longer needs to read from a text field, largely

because we've removed it! Instead, it takes as a parameter the text we pass in when we

call the function, such as "train station" or "ferry terminal,” and invokes execution of the

relevant search.

function execSearch(searchText) {
 myLocalSearch.execute(searchText);
}

Our application now looks a little more instantly usable, with relevant buttons for

Subway, Train, Bus, and so forth, as shown in Figure 10–4.

Figure 10–4. Move Me application with dedicated transit buttons

From here, pressing a button produces results as before, obviously tailored to match the

criteria coded for each of those buttons.

Dealing with Other Transport Possibilities

There are countless ways you could take this example further. One obvious example is

to expand the number of buttons for transit options. You could include taxis, airports,

trams, and more. There are other nuances to consider as well. The subway in San

Francisco can mean the BART system, but much of the Muni system is also considered

a subway. In other cities, the subway has other names, such as "Underground" in

CHAPTER 1: Using Cloud Services: A Transport Application 181

London, or "Metro" in Paris. The code could be expanded to re-use your coordinates to

determine in which city the user is currently located, and the search text could be

localized accordingly.

Limitations to our Approach

Our examples so far are good for finding ourselves or local transport stops or stations.

This definitely helps with working out possible transit options from any given location,

but like an unfinished journey, it leaves us just short of where we truly want to be. We

might know there's a bus stop just around the corner, or a train station just down the

street, but do we know what services operate from those points, and to where they're

headed? Do we know when the next service is scheduled to arrive? Do we even know if

there are any scheduled services at that stop at all?

If only there were some way to find matching transit schedule data for the transit stops

we've discovered!

Introducing Transit Data Resources
So far, we've explored how to find ourselves and possible transport options around us,

and plot the results on a map. But as any traveler can tell you, knowing when transport

options operate is just as important as knowing from where they operate. Wouldn't it be

great if there were ways of using bus timetables, train timetables, and other transport

schedules to expand the possibilities of our transit application? Well, there is a way!

Making Use of Transport Schedules and Timetables

The history of trying to work with a transport agency's data is long and tortuous. To

spare you the pain that developers before you had to endure, we'll cut our story short:

we'll focus on "then" and "now.” Before 1995, dealing with various government or

bureaucratic agencies to access their transit data was an exercise in costly masochism.

Undocumented proprietary formats, obstructionist public officials, and perverted notions

of ownership clouded any attempt to use "public" transit data.

In 1995, an employee of the TriMet transit agency in Portland - the major city of Oregon

state in the USA - was frustrated at the proprietary mapping and transit data systems

and sources available to her. She wrote to many of the leading mapping and geolocation

services at the time, to ask what plans they had to incorporate public transport data into

their services. Only one company responded: Google.

From a developer's perspective at the time, dealing with the erratic—and even at times

capricious—attitudes of agencies that held custody of the data was immensely

frustrating and complex. But TriMet's probing question opened up the idea that

frustrated developers who wanted access to the data were matched by frustrated data

custodians and public officials who wanted to see the data better used to serve their

communities.

CHAPTER 10: Using Cloud Services: A Transport Application 182

This sparked the rise of the General Transit Feed Specification (GTFS), which sought to

provide a consistent protocol for the format of transit data. Any historian of this time will

observe that the GTFS format is almost exactly the format used by TriMet in Portland for

its transit data. As is often the case, the first mover in a given sphere of technology is de

facto the standard setter. Soon, many more government and transport agencies had the

foresight to release the data they held in this format, and it has become the standard for

sharing transit schedules, routes and related data.

Almost everyone has, at one time or another, caught a bus, train, plane, or ferry, and so

we can jump past the basics of what a GTFS feed is. Instead, let's look at the

specification from the point of view of an Android developer.

Reviewing GTFS Components

A GTFS feed is simply a bunch of textual data in comma-separated format, split into

several text files, and then packaged as a single zip file for easy handling. As a

developer of either web applications or native Android applications, you can source a

GTFS feed's zip file and then work with it to incorporate transit locations, schedule

information, and so forth into your code. A typical GTFS zip file is composed of (and

requires) the following text files:

 Agency.txt The agencies and organizations that provided the data in

this GTFS package.

 Calendar.txt The dates for various services based on a weekly roster.

This includes details of start and end dates for services, and days

when they are, and are not, available.

 Routes.txt The set of stops a given service makes, and the path taken

between them. This matches what most people think of as a single

bus route, train journey, etc.

 Stops.txt The distinct locations where services stop to allow

passengers to board and alight, including terminals or end-points.

 Stop_times.txt The times at which a given vehicle arrives at, and

leaves a stop. This also allows for the calculation of "dwell time,”

which is the period a service remains at a stop.

 Trips.txt Trips for a given route, where a given vehicle makes

sequential stops.

In addition to the preceding list of mandatory files , a given GTFS feed can also include

some or all of the following optional additional data in the respective text files

 Calendar_dates.txt Lists the exceptions to the service details of

standard scheduling in the calendar.txt file.

 Fare_attributes.txt The details on what it actually costs to use a given

service, as charged by the agency running the service.

CHAPTER 1: Using Cloud Services: A Transport Application 183

 Fare_rules.txt Rules for applying the fares specified in

fare_attributes.txt. This can include things like peak and off-peak rules,

concessions for students, seniors, and so forth.

 Feed_info.txt Additional information about this GTFS feed, such as

version number and dates of applicability.

 Frequencies.txt Timing information for services that don't run to a

regular frequency.

 Shapes.txt Details to help render graphics of routes, such as how to

represent differences in outbound and return paths, points of return,

etc.

 Transfers.txt Details of any rules regarding transferring from one

service to another.

Details of the individual file fields, formatting requirements, and other rules can be found

on any of the many GTFS-related sites, such as

https://developers.google.com/transit/.

Many transport agencies around the world make use of a central clearing house for

GTFS data, at www.gtfs-data-exchange.com/. This site not only acts as a central

repository of GTFS feeds, but also includes basic data on the specification, and details

on how to contribute new GTFS data sets.

If this all sounds fantastic—nigh on utopian—there is one small wrinkle that always

affects the ideal of transport schedules and routes, and the reality for the commuter or

tourist. What happens when a service doesn't run on time, or at all? Enter the GTFS-

Realtime standard.

Dealing with Timetable Realities

GTFS-Realtime time is a relatively new addition to the core of GTFS, released by a

group of interested parties in August 2011. It aims to solve the eternal problem of "when

theory meets practice,” in the form of providing real-time updates to transport service

schedules. It provides the following kinds of updates in real time to anyone subscribing

to the data.

 Trip Updates: Any changed routing, timing or cancellations for a

scheduled service

 Service Alerts: Changes at the service level, such as stops that have

moved, are closed, or even problems with the entire network like

power failures or switching problems.

 Vehicle Positions: The location of vehicles in the transport system,

and where available, the information on local congestion provided by

the vehicles themselves or related traffic infrastructure.

https://developers.google.com/transit/
http://www.gtfs-data-exchange.com/

CHAPTER 10: Using Cloud Services: A Transport Application 184

Google was a key participant in the evolution of GTFS-Realtime, which is evident in the

choice of data format selected. Instead of keeping with the comma-separated formats of

the base GTFS standard, GTFS-Realtime adopted Google's protocol buffer format. This

is just another data format created with the ideals of efficient platform-neutral

serialization and deserialization in mind—basically a terse parallel to XML. In practice,

this just means one needs to refer to a protocol buffer definition to determine field

lengths and attributes within the text/data.

Exploring GTFS Examples

Our chapter is already getting long in the tooth, and introducing and exploring even a

small GTFS example will run to many hundreds of lines of JavaScript, HTML, and CSS.

This isn't because the examples are difficult or complex, but rather, because they need

to deal with all of the geolocation and map rendering style code we've already worked

with in this chapter, as well as a fair chunk of text processing code and I/O code to deal

with sourcing and processing the GTFS data.

There'd be enough material for a separate book in its own right, so rather than swamp

our book with such a large detour, we'll instead call out some excellent publicly available

examples online, that you can download and explore to your heart's content to discover

more about GTFS and its possibilities.

Some of the notable, and very useful, open source examples of GTFS available online

include:

 Google's Transit Developers Page As an active member of the GTFS

community, Google has a wealth of examples available online. Point your

browser at https://developers.google.com/transit/gtfs/examples/display-
to-users for a wealth of examples and background information.

 The One Busway Project Originally founded by developers in Puget

Sound, http://developer.onebusaway.org is the home of the One

Busway Project that has expanded to a global initiative for GTFS

developers.

 Community Projects like UlmApi.de's Live Map, the result of a

hackathon that built a fully functional GTFS-based transit app in just a

few hours. Full project details are available at
https://github.com/UlmApi/livemap

In Figure 10–5, you can see the complete transport system in early morning Ulm, as

rendered by the UlmApi.de web application for Android.

https://developers.google.com/transit/gtfs/examples/display-to-users
https://developers.google.com/transit/gtfs/examples/display-to-users
https://developers.google.com/transit/gtfs/examples/display-to-users
http://developer.onebusaway.org
https://github.com/UlmApi/livemap

CHAPTER 1: Using Cloud Services: A Transport Application 185

Figure 10–5. The UlmApi.de hackathon GTFS application in Android's browser

In the true spirit of transit and transport based applications, we invite you to go exploring

these and other GTFS sites, and see where the ride takes you!

Summary
In this chapter, we've explored further development of location-based web applications

for Android. Our example has covered using popular local search web services from

Google to demonstrate finding trains, subways, ferries, and other transit options for the

fleet-footed tourist. We've only scratched the surface of what can be done with transit

data feeds systems like GTFS, but you now know enough to explore the many online

options available to you We hope that our sample application has shown how easy it is

to merge phone-based location features with cloud-based services to create useful

mashups and very easy-to-develop features.

w

187

 Chapter

Pushing the Limits with
Audio and Video

Audio and video are two of the most difficult topics to cover in the mobile web. While

each one individually can do a lot to enhance the visual and audible appeal of a site or

application, more often than not both technologies end up being abused by mobile

content creators. For example, one form of abuse I have noticed becoming more

common in the mobile world is audio based advertisements targeted toward mobile

browsers. While both audio and video technologies can be used incorrectly or just in a

regular plain old annoying manner, they do serve wonderful purposes when used

correctly.

Let’s say, for instance, that we’re working on a mobile gaming application and we want

to add some relaxing loop of background music to enhance our user's experience. We

can use the built-in HTML5 capabilities of the Android operating system’s browser to do

this fairly easily, with only a few lines of code, when using the audio tag. On top of that,

we can even use a little bit of JavaScript to manipulate that audio element as well. We

can do things such as play, stop, or pause the audio on the press of a button.

We also have the ability, though Android's Browser program, to make use of the HTML5

video tag as well to enhance our web applications with video formatted in h.264, MPEG-4,

and WebM format. Both of these tags—the audio and video tag—when used properly,

can create some top-notch user experiences to enhance the applications they are

featured in and make them ooze with excellence.

Throughout this chapter we will take a look at each of these elements, their APIs, and

the pros and cons of using each of these new HTML5 tags in our budding applications.

Audio for Mobile Web Apps
Until a few years ago, if you, as a developer, wanted to include audio in your web

application, your choices were pretty slim to none. Almost every solution out there

involved using an Adobe Flash and would use Flash as a middleman to pipe the audio to

11

CHAPTER 11: Pushing the Limits with Audio and Video 188

the users’ audio input device. While it was possible to add audio to your user experience

via the embed and object tags, more often than not you were left with a pretty limiting

and unacceptable user experience that left your end users—and developers—wishing

for more.

The rise in HTML5 adoption rates, has made working with audio (while still a pain on

some rare instances) generally smooth in Android implementation of the HTML5 audio

tag. There are plenty of examples out there of mobile web applications and games

making use of the audio element to bring background music and sound effects to their

projects, which can help create more engaging scenarios for users to explore.

Unfortunately, like most things in the Web Development world, not all audio codec's are

created equal. This is especially true when focusing on the mobile world. Google's

Android operating system has been making use of the HTML5 audio tag since Android 2.0

first came out in the middle of 2010, yet it only makes use of two of the more popular

audio codec choices—MP3 and the AAC audio format.

Utilizing the HTML5 audio Tag

Using the HTML5 audio tag is really simple. Take a look at this example in Listing 11–1

where we add a repeating audio loop to a user’s page.

Listing 11–1. Basic use of the HTML5 audio element

<audio autoplay="autoplay" controls="controls">
 <source src="audio/stairwell.ogg" type="audio/ogg" />
 <source src="audio/stairwell.mp3" type="audio/mpeg" />
 "Sorry, your browser does not support the audio element."
</audio>

The basic usage of the audio tag is very similar to other tags in the HTML space. When

declaring the HTML audio element, we could invoke several attributes in our document.

Let us take a look at some of those attributes below:

 autoplay—If called this attribute will play your audio element the

moment it is ready and available

 controls—Determines whether or not the controls for this audio

element are displayed to the user.

 loop—If set, this attribute tells the audio to loop itself indefinitely. Just

like the song that never ends!

 preload—This determines whether or not the audio element will be

preloaded into the page on document load.

 src—The URL to the audio file.

Looking at Listing 11–1, we can also notice that the audio tag contains two other source

tags as well. These source tags each have src attributes that point to the URL of the file

on the server.

CHAPTER 11: Pushing the Limits with Audio and Video 189

The reason for the multiple tags is actually an ingenious method of writing one HTML

document that works across many browsers. Your browser, if it supports the HTML5

audio tag, will look through each of those source codec's until it finds one that works for

your browser. If it succeeds in finding an appropriate file (i.e., you provide a version of

the file that can be played on the users’ system), it will play it. If it doesn’t, it will do

nothing at all. If for some reason you are viewing this page from an older Android device

that does not display the audio tag, then the browser will ignore the element all together

and display the preset error message of "Sorry. Your browser does not support the

audio image" as shown in Figure 11–1.

Figure 11–1. The HTML5 audio element on an Android Gingerbread 2.3 device with the 'controls' the attributes set

Integrating Audio into Who’s That Tweet?

In the first application we used in this book, we asked people to guess which Twitter

account produced a given tweet. Now imagine we want to put in a bit of audio to soothe

the savage mind of those playing our game. We could easily do so with the Audio tag,

using the code in the following Listing 11–2.

CHAPTER 11: Pushing the Limits with Audio and Video 190

Listing 11–2. HTML Code for Who’s That Tweet? with Audio

<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8">
<title>Who's That Tweet?</title>
<link href='http://fonts.googleapis.com/css?family=Droid+Sans&v1' rel='stylesheet'
type='text/css'>
<link rel="stylesheet" type="text/css" href="css/style.css">
<script type="text/javascript" src="js/jquery-1.6.1.min.js"></script>
<script type="text/javascript" src="js/main.js"></script>
</head>
<body>
<audio autoplay="autoplay" loop="loop">
 <source src="audio/themesong.ogg" type="audio/ogg" />
</audio>

 <header>
 <div class="score">Score: 0</div>
 <h2>Player 1</h2>
 </header>
 <section>
 <div id="tweet">
 <div class="avatar"></div>
 <div class="content"></div>
 </div>

 </section>
</body>
</html>

In this case, we’ve started playing our theme song, and we’ve set the loop attribute so

that it will simply loop repetitiously until the end of time. We don’t specify controls, and

we aren’t showing any message if the audio can’t be loaded. Now we just need to find a

good theme song that won’t annoy our users too much!

Working with Audio Codecs

If you are building your application for an Android device, you are going to want to stick

to one of the three following codecs that are available throughout the platform: MPEG-2

Audio Layer III (MP3), Advanced Audio Coding (AAC), and the open source fan favorite

Ogg. While each one has its own benefits, most developers out there usually just stick to

MP3 and Ogg as there are plenty of free open source tools available to convert your

audio to those formats.

MP3

The MP3 audio format is what is referred to as a lossy compression audio format. Lossy

compression formats are very popular in multimedia and if you have ever worked with a

graphic design program before such as Adobe Fireworks, Gimp, or Adobe Photoshop,

then chances are you are loosely (no pun intended) familiar with lossy compression

http://fonts.googleapis.com/css?family=Droid+Sans&v1

CHAPTER 11: Pushing the Limits with Audio and Video 191

when trying to squeeze a few extra bytes out of an image. The same method of

removing parts of a digital image to decrease the size, while not compromising the

integrity of the image, can also be applied to audio.

In the example of MP3, a compression algorithm is run through the digital audio and

removes parts of the track that normally the average human ear is not able to pick up. A

lower bitrate for the MP3 file indicates that more data have been removed from the

recording.

While some individuals claim to hear a tinny sound from MP3s due to the missing audio

information, most people cannot seem to tell the difference when compared to a

lossless digital copy. This makes MP3 a fantastic audio codec to use for your HTML5

audio as you can get incredibly small files that download and stream quickly to your

user’s browser. This being said, you should be careful to use a decent bitrate for an

MP3 file—say 128 kbps. Anything lower may have a tinny sound on quality audio

devices (for example, the HTC Rezound). Moving up to 192, 256, or 320 kbps may be

useful if it doesn’t make the file too big; however, you may find it unnecessary given the

relatively small benefits. Over 320 kbps is probably a waste unless your app is built for

audiophiles!

For the most part, MP3 is the de facto audio format of the Internet, which is why almost

every major browser supports MP3 audio with HTML5 out of the box with no additional

plug-ins.

AAC

Advanced Audio Coding, also known as AAC, is another audio format out there on the

horizon. If you have ever purchased music off of Apple iTunes, then you have most likely

purchased music in this audio format. AAC was developed by several companies—

including Sony, Nokia, Dolby, and AT&T. This format, which does achieve better audio

quality than its MP3 predecessor, was declared an International audio standard in the

spring of 1997.

One of the reasons this audio format is popular with developers, besides the obvious

fact of having better sounding audio compared to its competitors, is that no licenses or

patent payments are needed to distribute or stream AAC encoded content. Note that

this licensing only applies to the actual encoding—you can’t take copyrighted material

that doesn’t belong to you, encode it in AAC, and laugh at the lawyers after you

distribute it to the world. Well, I guess you can laugh, but that’s not going to help your

case!

Ogg

Another up and comer in our quest to conquer HTML5 audio on Android devices is one

of my personal favorite codecs: Ogg. The creators of Ogg have stated in the past that

they created Ogg to be a format that was not bogged down by restrictions and software

patents. This has promoted Ogg’s adoption as a default HTML5 audio codec in a

majority of browsers out there. There is a good chance that if you encode your audio in

CHAPTER 11: Pushing the Limits with Audio and Video 192

the Ogg format that it will not only work on Android devices but it will also work on a

slew of other devices and browsers out there on the market today.

While Ogg is a lossy compression format like MP3 and AAC, the framework behind Ogg

can be found in several lossless audio formats out on the market, like OggPCM and

FLAC. With Ogg, you can have it your way: tiny files or huge lossless files. The sky’s the

limit.

Using the Audacity Audio Editor

One of my favorite pieces of open source audio software is Audacity

(http://audacity.sourceforge.net/). This free cross platform application lets you easily

import a wide variety of audio from many different formats. Using Audacity, you can

easy splice audio together, cut audio files, record live audio, change pitch and speed of

audio files, add noise to audio tracks, reduce the levels of audio tracks that are too high,

and a lot of other really cool and useful features (see Figure 11–2).

Figure 11–2. Audacity 1.3 Beta editing a creative commons audio file

Whenever I am working with audio from a client and I am presented with a large

512MB–1024MB WAV audio file, Audacity is always my first choice for trimming out

sections of that audio file that I do not need or converting that audio file to a much

smaller and more manageable format.

Since this book is only intended to cover the beginner's aspects of designing for

Android mobile devices, I will not go into too much depth about all the features that you

can tap into with Audacity. Instead, I’ll cover some of the basics such as exporting one

audio format to another.

http://audacity.sourceforge.net/

CHAPTER 11: Pushing the Limits with Audio and Video 193

If you are going to want to convert your files to the MP3 format, then you are going to

need to download the LAME MP3 Library. You can do this fairly painlessly by going to

the preferences in Audacity.

1. Go to the Edit menu and choose Properties.

2. Choose the Libraries option in the left hand section of the Properties window as

shown in Figure 11–3.

Figure 11–3. Viewing the Audacity 1.3 Beta Preferences dialog box.

3. Once there, you can choose to point Audacity to your LAME library if you already

have it installed on your computer. If you do not already have the LAME library

installed, continue to step 4.

4. Click the Download button, which will take you a site where can download the

latest and greatest copy of the LAME MP3 Library, as shown in Figure 11–4.

CHAPTER 11: Pushing the Limits with Audio and Video 194

Figure 11–4. The LAME MP3 Library download page.

5. Once you download the library and unzip it to your hard drive, you will be all set to

record and export audio to the MP3 format.

If you take a look at Figure 11–2 from earlier in this section, you will see that we are

already working with a creative commons audio file called stairwell.ogg. What we are

going to do is take this Ogg file and convert it to a MP3 file in no time at all. To do this:

1. Click File in the menu bar, and then select the Export item as seen in Figure 11–5.

CHAPTER 11: Pushing the Limits with Audio and Video 195

Figure 11–5. Choosing Export from the Audacity File menu in Audacity 1.3 Beta.

2. In the drop down box, make sure to change the file format to MP3 instead of the

current format of the audio file.

3. Choose where you want to save the file, click the Save button, and you are all

done!

See, did I not promise you that would be painless or what? Now that you know how to

quickly convert your audio from one format to another, it’s time to move on to the fun

part of manipulating that audio through the very handy HTML5 Audio Data API.

CHAPTER 11: Pushing the Limits with Audio and Video 196

Audio Data API

Using the Audio Data API, a developer can interact with their audio data in ways that

were not possible just a few years ago. Using JavaScript and some HTML, you could

easily create your own controls to interact with your audio data, as we can see in

Listing 11–3.

Taking a look at the following example, you can see that we are expanding on Listing 11–1

and adding in some new custom built controls to play and stop the audio.

Listing 11–3. A more advanced look at the HTML5 Audio Data API

<audio id="audioDemo">
 <source src="audio/stairwell.ogg" type="audio/ogg" />
 <source src="audio/stairwell.mp3" type="audio/mpeg" />
 "Sorry, your browser does not support the audio element."
</audio>

<button id="play">Play</button>
<button id="pause">Pause</button>

<script type="text/javascript">
 var audio = document.getElementById('audioDemo');
 var playButton = document.getElementById('play');
 var pauseButton = document.getElementById('pause');

 playButton.addEventListener('click', function() {
 audio.play();
 }, false);

 stopButton.addEventListener('click', function() {
 audio.pause();
 }, false);
</script>

When you run this code in your browser, the first thing you would probably notice is the

lack of any audio controls on the page at all, except the two buttons we added to the

page with the IDs of play and pause. These buttons, while not as pretty as those seen in

Figure 11–6, will be our only means of manipulating the audio on the page.

Figure 11–6. Loading our demo HTML5 audio document on an Android 2.3.4 Gingerbread device

CHAPTER 11: Pushing the Limits with Audio and Video 197

Now, if you look at the bottom of the Listing 11–3, in the JavaScript, we can examine

where the real magic is happening. Here, we declare the variables for audio, playButton,

and pauseButton. Next, we add an event listener to each of those buttons so that when

the user clicks those buttons, we fire off some code to either play or stop the audio

stream. If we’d like, we could include additional buttons for volume, which would take a

similar form to the code above, but call audio.volume=X where X would be a number

between 0 and 1, indicating volume level percentage (so if you would like to increase the

volume by 10%, your code would read audio.volume = audio.volume + .1).

You are not just limited to pausing your audio files at will, either. Using the HTML5 Audio

Data API, you can easily control many aspects of playing or enjoying audio in a page,

such as manipulating the volume of the audio file, analyzing how many beats per minute

are in a track, creating your own audible tones combining the awesome powers of

canvas with the Audio Data API, and a lot more.

Adding Video to Mobile Applications
Now that we’ve covered the wonderful world of audio, it’s time to take a walk on the

visually appealing side of Internet multimedia with HTML5 video. The video tag is

another one of those new HTML5 elements to emerge over the next few years. It was

created to make the job of a developer easier and to move us away from our

dependency on Adobe Flash. Unfortunately for us, no one can really agree on a video

standard and with so many obstacles, codecs, licensing agreements, and patents

standing in our way, we are not likely to get any closer to coming up with a universal

video format for browser-based consumption anytime soon.

The good news is that since we are only focusing our efforts on Android based devices

we do not have to deal with a lot of the frustrations that come with working with HTML5

video in the desktop computing world. Here, it is very simple. A few video codecs out

there will work with Android browsers, and as long as you stick with one, or all, of them,

you will be able to present your mobile users with a richer multimedia experience.

Using the HTML5 video Tag

Invoking the HTML5 video tag is just as easy as calling the audio tag we discussed

earlier in the chapter. Take a look at Listing 11–3 to see how we can use a few lines of

code to easily display video to our users.

Listing 11–3. Basic use of the HTML5 video element

<video width="320" height="240" controls="controls" poster="video/big_buck_bunny.jpg">
 <source src="video/big_buck_bunny.mov" type="video/mp4" />
 <source src="video/big_buck_bunny.ogg" type="video/ogg" />
 <source src="video/big_buck_bunny.webm" type="video/webm" />
 Sorry! Unfortunately your browser does not support the video tag
</video>

In this example, we are just calling a video file and setting the width of the video

container to 320 pixels and the height to 240 pixels. We are also telling the video to

CHAPTER 11: Pushing the Limits with Audio and Video 198

display its controls so the user can play, pause, stop, and manipulate the volume of the

video. You can see what this looks like on a mobile device in Figure 11–7.

Figure 11–7. Viewing an HTML5 video on an Android 2.3.4 Gingerbread device

You'll also notice that the video tag differs from the audio tag by having different

attributes. The main one that sticks out is the poster attribute, which lets us add a

screenshot (or any other image we have) to represent the video that is about to be

played. This is great for mobile devices because when you go to play a video on an

Android device, instead of playing the video in the browser as one would expect after

years of using a desktop computer, the Android device will pass the video stream along

to its built-in video player, which will play the video for you.

While this feature is fun and handy, it completely takes away a lot of the reasons

someone would use the Video Data API, since it plays the video outside of our page—in

a dedicated video application. This breaks the user experience and prevents us from

controlling exactly what the user will see when they watch our video.

In a moment, we’ll give a video example similar to the one we used with the audio API

up above. However, we should note that while there are some cool things you can do

with the Video Data API, a lot of them tend to be well beyond what most people need.

The following are the basics; however, the full API is available to reference at

www.w3.org/2010/05/video/mediaevents.html. Now let’s take a look at the most useful

attributes you can use when developing your next mobile web application that uses

video!

 height—controls the height of the video being played

 width—controls the width of the video being played

 preload—If set, will preload the video when the page loads

 autoplay—If set, will automatically play the video when it is ready

 loop—If set, will loop the video indefinitely

 controls—If set, will display controls to the user to control the video

 src—The URL which points to the source of the video file

http://www.w3.org/2010/05/video/mediaevents.html

CHAPTER 11: Pushing the Limits with Audio and Video 199

Codecs

Just like we did with audio, video must be encoded into one of a few formats that the

native Android web browser supports (mentioned subsequently). Encoding video can be

a bit trickier than audio in that you’re encoding two things—namely the audio and the

video! We’ll walk through the formats you can use, and discuss how to move audio and

video between them with ease.

h.264/MPEG-4

Over the years, MPEG-4 has become one of the premiere standards in video encoding

on the Internet and in our daily consumer lives, especially when it comes to high

definition video. Recently, MPEG-4 has come into the public consciousness through

the rise of social video sharing sites like YouTube and Vimeo, which allow users to

upload videos in this format. The current version of MPEG-4 is properly known as

h.264/MPEG-4 AVC, and is the standard for high quality video compression, such as

that found on a Blu-ray disc.

Ogg Theora

Theora is a free and open source lossy video compression format created by the same

foundation responsible for maintaining the Ogg audio codec, Xiph. Org Foundation.

While Theora itself is based on a proprietary video codec called VP3, it was later

released into the public domain, making it free for anyone to use as of March 2002.

Ogg Theora is similar in design to MPEG-4 and has quickly been progressing as a

technology over the last several years. While it is still not as comparable in quality to

MPEG-4 video, it is so close that a lot of developers who previously preferred the wide

acceptance of MPEG-4 now opting to go the HTML5 video route have started jumping

onto the Theora bandwagon.

WebM

A new contender in the video world is Google's very own WebM video codec.

Announced at the Google I/O conference in 2010, WebM is a royalty free video codec

that Google put out there in the wild to try and circumvent a lot of the problems that

were popping up in the HTML5 audio and video. While everyone is excited to use these

new technologies in their web applications and web sites, it is hard to do so without all

of the browser makers agreeing on a standard.

WebM is completely royalty free, which means that anyone can pick up the technology

and include it with their web browser without worrying about Google knocking on their

door in the future demanding a payout. Recall, though, that this refers to the

technology—not the actual content. Distributing copyrighted movies will get others to

knock on your door demanding a payout!

CHAPTER 11: Pushing the Limits with Audio and Video 200

Even with this royalty-free safety net, WebM has had a pretty slow adoption rate when

compared to other video codecs out there, like Ogg Theora.

Using Handbrake to Transcode Videos

Now that you have a better understanding of some of the video codecs out there, I bet

you're asking yourself how you go about creating video content to use in your

application with them. One of the easiest and hassle-free means of doing so is a nifty

little application called Handbrake (http://handbrake.fr/). Handbrake is another one of

those fabulous open source applications created to make the everyday lives of video

enthusiasts, and your average video transcoding consumers, easier.

Take a look at Figure 11–8. This is the default view we are presented when we open the

Handbrake application. As you can see, everything here is incredibly user friendly and

easy to use. On the top of the application, if you click the movie clapboard icon, you can

set the source of the video you would like to transcode, or convert from one format to

another. Below that icon, you have an area where you can set the destination of the

newly created video as well as change the container you would like to house your video

in. The two containers that Handbrake offers are the MKV and M4V video containers. A

container is simply the file format that is used to hold the two separate parts of the video

(the pictures and the audio).

Figure 11–8. A view of Handbrake after opening it up on a Windows 7 operating system

The bottom half of the application is a tabbed view that you can use to customize your

video even more to your liking. The most important tab here for our purposes is going to

be the Video tab. Here, you can set which codec you would like to convert your video to.

Handbrake offers you three choices for video conversion depending on which video

container you choose—MPEG-4 or Ogg Theora.

http://handbrake.fr/

CHAPTER 11: Pushing the Limits with Audio and Video 201

The right hand side of the application is where a lot of the magic will be happening for

you. Here, you can choose from a variety of preconfigured video settings so all you have

to do is input a video source, decide where you want to save your video, choose one of

the settings that strike your fancy, and start encoding.

If you take a look at Figure 11–9, you will also notice two little checkboxes next to the

video container options. These checkboxes, Web Optimized and iPod 5G Support, are

two options you may want to experiment with when encoding your videos. In some

cases, I have found that these settings have helped me create better quality video files

for use in the browser. At other times, however, they caused me nothing but heartache.

It all comes down to the video file you are using as your source material. Video can be

tricky, especially when transcoding it from one format to another. In the end, one must

generally “play” a bit with settings to get the best possible result. If your video file is

large (therefore needing more time to transcode), you might consider splitting off a small

section of it to experiment with. Once you’ve found the right combination of settings and

options, you can then convert the long version of the video, saving yourself some time.

Figure 11–9. Setting the video source, destination and video container settings within Handbrake for Windows 7

CHAPTER 11: Pushing the Limits with Audio and Video 202

Figure 11–10. Selecting the iPhone & iPod Touch preset configuration settings for our video

Finally, the number of options that you have access to in Handbrake may be a bit

overwhelming. If you’re looking for something easier, you might want to check out more

consumer-friendly (i.e., made for non-developers or power users) solutions such as

DoubleTwist (www.doubletwist.com) and Videora (www.videora.com). Both can convert

videos to a format that is viewable on a mobile device with very little effort or need to

customize.

Now that we’ve got some basic information covered on creating, displaying, and

working with your own audio and video, we’ll introduce some areas you might extend

your applications by interfacing with different APIs available to programmers.

Exploring on Your Own: Music Service APIs
Many web services offer access to programmers to their platform via an API (application

programming interface). In this section, we’re going to talk about two popular

applications, and the APIs they offer. You might find that by tying your application into

http://www.doubletwist.com
http://www.videora.com

CHAPTER 11: Pushing the Limits with Audio and Video 203

one of these services, you not only will have access to some cool tools—you’ll also add

appeal to your application for users of that service.

“Scrobbling” Tracks to Last.fm

Last.fm is a service that is designed not only to stream music to your computer or

phone, but also to learn about your preferences intelligently. One way it does this is by

allowing multiple devices (i.e., iOS devices and android phones where the Last.fm client

is installed) to send listened track information to Last.fm, a process Last.fm refers to as

‘scrobbling’. For instance, I use Google Music to listen to my music collection through

my browser. By using an extension for Chrome that scrobbles my tracks to Last.fm, I

can view my listening behavior later, and Last.fm knows what sorts of music I like to

listen to (Figure 11–11).

Figure 11–11. My Last.fm recently listened to tracks

Once a track is recorded, it informs Last.fm about my listening habits. This is useful in

telling Last.fm what to recommend to me, and it allows me to find new music I might

like.

CHAPTER 11: Pushing the Limits with Audio and Video 204

Imagine that we’d like to present snippets of music to a user in our new app,

MusicDiscovery. MusicDiscovery, hypothetically, takes 45-second song clips and plays

them for the user. Users rate how much they like the song, and if they rate it high

enough, we scrobble it to Last.fm so that it can record their preferences. How would we

go about doing this?

First, we need to learn about the Last.fm API. Most web services that offer API access

will clearly show how to use it in a section of their website labeled “for developers” or

“API access.” Last.fm includes an “API” link on the bottom of their home page, which

takes one to the API homepage (Figure 11–12).

Figure 11–12. The Last.fm Web Services page

Looking over the Last.fm API information, it seems to be a two-step process. First, one

must apply to be a developer (which involves telling Last.fm what you plan to use their

data for, i.e., commercial or non-commercial use), and filling out a bit of basic

information about your app. Once that’s taken care of, you can explore the use of their

API.

The API Intro page lists some essential information, including the API root URL. This is

the web address that we’ll be sending information to. Most of these requests will make

use of AJAX, a technology that we’ll discuss in detail in the next chapter. Browsing the

documentation, we find examples of how to send data to Last.fm.

As we can see in Figure 11–13, our requests to the Last.fm API take the form of specially

formed URLs or HTTP POST requests. The Last.fm API then returns responses using

XML.

CHAPTER 11: Pushing the Limits with Audio and Video 205

Figure 11–13. The Last.fm API request documentation

Now that we know roughly how information will be passed back and forth between our

application and Last.fm, we can begin exploring the scrobbling feature. Last.fm’s

scrobbling documentation (www.last.fm/api/scrobbling, Figure 11–14) lays out the

entire process in detail, including which API calls (or functions) to use, and what criteria

to use when sending a scrobble request.

http://www.last.fm/api/scrobbling

CHAPTER 11: Pushing the Limits with Audio and Video 206

Figure 11–14. The scrobbling process

Now that we’ve got all the pieces, all we’d need to do is write the appropriate JavaScript

code to take the current piece of music the user has rated, look it up in Last.fm’s

catalog, and send the scrobble request. Here’s where you can flex your programming

muscle and work it out. Along the way, be sure to check out the rest of Last.fm’s

extensive lookup and recording features. Not only can you enhance your user

experience for Last.fm users, you can also use Last.fm data to enhance the experience

for your own users who don’t use Last.fm!

CHAPTER 11: Pushing the Limits with Audio and Video 207

Tapping into the Power of Amazon’s Product Advertising
API

Amazon.com started off around 15 years ago as a bookstore. Now they have evolved

into a massive retail giant that offers everything from books to cloud computing servers

and more. Recently, they’ve expanded their music offerings quite a bit, and developers

who feature music or videos in their apps may want to provide links to purchase these

resources through Amazon.

The Amazon Product Advertising API (https://affiliate-program.amazon.com/
gp/advertising/api/detail/main.html, Figure 11–15) is a massive web site so we can

only highlight its main features here. You could literally spend days exploring everything

you can do with Amazon’s data, all with the goal of driving revenue through offering

Amazon products for sale through your app.

Figure 11–15. The Amazon Product Advertising API

Amazon offers not only documentation on their API, but also developer forums where

you can ask other developers for help and even code samples, which can get you up

and running quickly.

A few quick searches of the code database uncovers a very interesting piece of code for

anyone looking to build an application that showcases a particular artist. Say you’re in a

band and want to build an app for your band. You’ve decided to build a web app, since

that will easily run on everyone’s smartphone, and you’re storing your concert

recordings, demos, and albums in Amazon’s S3 cloud storage. How might we go about

selling those to fans? There’s a demo for it, known as iObjects (http://j.mp/iobjects,

Figure 11–16).

https://affiliate-program.amazon.com/gp/advertising/api/detail/main.html
https://affiliate-program.amazon.com/gp/advertising/api/detail/main.html
http://j.mp/iobjects

CHAPTER 11: Pushing the Limits with Audio and Video 208

Figure 11–16. The iObjects Code Sample

While this is quite a bit more complicated than the Last.fm API we discussed in the

previous section, it can really showcase the power of using an API in your application.

Now you don’t need to worry about payments for your material (since Amazon Flexible

Payment System (FPS) can take care of that), and you can easily offer products through

your app, through Amazon, which—chances are—your fans are familiar with and use

regularly!

As we have seen, using APIs from services such as Amazon or Last.fm can add not only

interactivity to your application, but also new revenue streams and ways to innovate.

Your band (or your client’s band) will certainly distinguish themselves when their users

can download the song while still at the concert, and you’ll be the developer hero that

made it all happen!

CHAPTER 11: Pushing the Limits with Audio and Video 209

Summary
Audio and video can be pretty painless to work with on the mobile HTML5 front because

of the limited number of handsets and operating systems that you have to support.

However, as mentioned at the beginning of the chapter, they are both technologies that

can be easily abused, or quickly turn against you, if not used properly. In this chapter, I

hope I have presented you with the tools needed to use these technologies to your

benefit.

When it comes to audio and video conversion and manipulation, we have not even

begun to scratch the surface in regards to what tools are available for you to use to get

the job done. There are just way too many quality audio and video tools out there—we

could probably fill an entire book talking just about them. You do not have to use the

tools I’ve suggested in this chapter and I encourage you to do some research and find

the best solution that works for you.

211

 Chapter

Supercharging the User
Experience with AJAX

We’re most of the way through the book, and we haven’t yet hit explicitly on one chronic

annoyance to web users in general, and mobile users especially: the dreaded refresh!

Why dreaded? Well, in the mobile world, as we’ve learned, speed is everything. The last

thing a mobile user wants to do is reload an entire webpage. Even if the “heavier”

aspects of the page are cached on the user’s phone (such as graphics, fonts, etc.) the

phone’s browser must still reload them into the browser. This takes an amount of time,

processing power, battery power, and the user’s patience. Thankfully a series of

technologies exist that can help us, known as AJAX.

What Is AJAX?
AJAX stands for Asynchronous JavaScript And XML. Let’s break down that name. The

first word, Asynchronous, may sound a bit daunting at first, but it’s the whole key to

what makes AJAX special.

Asynchronous?

Most web pages are programmed to require communication in a send/receive/display

series. The user presses a button on a web app, the page sends the required

information to the server, the server sends back some response, and the app displays a

new page with that response on it. Back and forth it goes, until the user is finished with

the app. Each time the user interacts with the app, the page is refreshed completely.

This is, for some, the very definition of annoying.

Asynchronous transfer refers to the idea that we can break this chain down into simply

send/receive/display/send/receive/send/receive, and so on, instead of including the

display portion in each successive round. In other words, we can send and receive data

without ever loading a new page. An asynchronous call is simply a request that we make

12

CHAPTER 12: Supercharging the User Experience with AJAX 212

to the web server through this alternate method. For an example of this, we only need to

visit Google’s search engine on our phone. We start with a blank search page, as in

Figure 12–1.

Figure 12–1. The Google search home page

Now say it’s early in the morning and I want to start my day listening to a great song set

to a bunch of pictures of the events the song is discussing. I might begin to type in the

name of the song, as in Figure 12–2, and while I do that, Google is using asynchronous

calls to try to figure out what I’m looking for. As I type, it’s checking each letter against a

central database, without requiring me to refresh the page. It’s then showing these

suggestions below the search bar.

CHAPTER 12: Supercharging the User Experience with AJAX 213

Figure 12–2. Beginning my search

At some point, around Figure 12–3, the suggestion matches the whole phrase I’m

looking for, and I can simply click on it.

CHAPTER 12: Supercharging the User Experience with AJAX 214

Figure 12–3. As I type more, the web page tries to fill in likely queries. Interestingly, the Android operating
system is also trying to figure out what I’m writing—it’s like they’re both trying to read my mind!

Basically, Google has been able to predict what I’m looking for and is giving me a

shortcut to access those search listings directly. When I tap on the suggestion that fits

what I want, it brings me to the search results I see in Figure 12–4.

CHAPTER 12: Supercharging the User Experience with AJAX 215

Figure 12–4. Ah, my results—now I can listen to the flash video I’ve been searching for

Prior to Google rolling out these asynchronous calls on the search page, one entered an

entire query into the search box, pressed “Search,” and waited for the screen to reload.

If there was an error in the query, the user didn’t know until the new page loaded and

Google pointed it out. This took up the user’s time (by loading pages needlessly) and

Google’s bandwidth. Recently, Google has taken this “helping hand” a step further by

running the entire search asynchronously—you can type your query and, letter by letter,

the search results update within the same browser window.

So What About the JavaScript and XML?

AJAX, technically, can work with any client–side programming language (client–side

languages, like JavaScript, process within the user’s browser. Server–side languages,

like PHP, process on the web server). However, JavaScript is predominantly used as it’s

become the lingua franca of client–side languages. XML gets in on the game because

it’s become a simple and easy–to–understand way to move data around. While you

could mix other technologies into the AJAX banquet, we’ll stick with JavaScript and XML

in our examples here.

Now that we’ve established what AJAX is, let’s talk about some neat ways we can

incorporate it into some very simple applications. We’ll start with a word–of–the–day

CHAPTER 12: Supercharging the User Experience with AJAX 216

example, and then move into something a bit more complex, referencing both a web

service and our own local database.

AJAX–of–the–Day
It was recently reported that the “word of the year” for 2011 was “pragmatic.” This was

because one dictionary–serving website found it to be the most looked up word in that

year, and thus crowned it the winner. Perhaps you’re looking at this going, “I’ve always

wondered what ‘pragmatic’ means” (or maybe, “What kinda moron doesn’t know what

‘pragmatic’ means?!?”), and wondering why we don’t have more web applications

bringing us content like this. Well, today is your lucky day, because you’re about to write

one.

For the word–of–the–day application, we’re going to create a rather bare–bones

mechanism to provide said word. Later in this chapter we’ll discuss how to use AJAX to

pull in information from a database or web service, but for now we’re going to use a

good, old–fashionedflat text file. Named, aptly, word.txt:

Listing 12–1. word.txt

Pragmatic: relating to matters of fact or practical affairs. <i>-Merriam-Webster.com</i>

The file word.txt has some bits of HTML in it (in this case, we’re using simple style

tags, however we could use CSS–themed div statements), and if we load it up in our

web browser (Figure 12–5), we’ll see it displayed as simple text:

Figure 12–5. The word–of–the–day word.txt file

Next up, I’m going to build an HTML page that will load up the word–of–the–day when

the user presses a button. It’s going to look something like Listing 12–2, in code terms.

We’ll walk through this stepbystep.

Listing 12–2. word.html, Part 1: The Initial JavaScript Function to Load the Word

<html>
<head>
<meta content="text/html; charset=ISO-8859-1"
http-equiv="content-type">
<title>Word of the Day</title>
<script type="text/javascript">
function loadword(){

http://www.merriam-webster.com/dictionary/pragmatic

CHAPTER 12: Supercharging the User Experience with AJAX 217

if (window.XMLHttpRequest){
// Modern browsers use this type of request
 request =new XMLHttpRequest();
}else{
// Old Microsoft browsers use this type!
 request =new ActiveXObject("Microsoft.XMLHTTP");
}

OK, we’re up and running. The first thing we did was create the top of a standard HTML

page, and then started a new JavaScript function named loadword, which will do most

of the heavy lifting of the page. Inside this function, we first need to figure out if we’re

using a modern browser (i.e., something released in the last five years, like Firefox,

Safari, Opera, Chrome, or newer versions of Internet Explorer) or an older Microsoft

browser (Internet Explorer 5 or 6). The reason for this is simple: Older Microsoft

browsers don’t know what an XMLHttpRequest() object is! For them, we’ll ask that an

ActiveX object be created, which will give us the same functionality. It’s just a funny

compromise to the way Microsoft used to code browsers. Let’s continue working with

the JavaScript for this page in Listing 12–3.

Listing 12–3. word.html, Part 2: The JavaScript onreadystatechange Function, and the End of the JavaScript
Block

 request.onreadystatechange=function() {
if (request.readyState == 4 &&request.status == 200){
document.getElementById("theword").innerHTML = request.responseText;
}
}

 request.open("GET","word.txt",true);
 request.send();
}
</script>

Now that we have our request object, named aptly “request,” we can ask it to do some

things. This next part of the code is written slightly “backward,” in that the code written

at the top will be executed after the code written at the bottom. This is because the

XMLHttpRequest object, the heart of AJAX, has a special function named

onreadystatechange. Anytime the request we’re making, processing in the background,

does something either expected or unexpected, it fires this function. In essence, this

function is where we put the “what do I do with what I get back” code. You can think of

the code here as the programming equivalent of “substitute teacher’s instructions.” You

may remember, as an astute student, that when your teacher was absent, he or she

would leave instructions for the replacement, perhaps in a special folder. Your

onreadystatechange function acts as those instructions, telling the computer (in this

case, the JavaScript engine) what to do when you’re not around but something

happens. Most of the time, these instructions are similar to what we have preceding (in

this case, “if the request is processed correctly, display it on the screen”). We can also

include instructions for “worst case scenarios,” such as when the request cannot be

fulfilled, or it throws an error.

CHAPTER 12: Supercharging the User Experience with AJAX 218

In this function, we first test to see what the readyState and status are of our request.

The former can return five different numbers, which correspond to where the request is

in terms of processing. Returning a code of

 0 means that the request hasn’t been started yet. This is the state in

which a new request would be before being sent.

 1 means that the connection to the server has been initialized. In

essence, the pipe is open, and data is moving.

 2 or 3 means that the request has been sent and is processing,

respectively. At this point, all your code can do is sit and wait (or show

a “loading” graphic, if you so choose).

 4 means that the request is complete and ready for the code. You can

now do whatever you want to do with the information.We only want to

change the text on the page once we reach a readyState of 4.

We also care about the status, which can report 200 (for “OK”) or 404 (for “not found”).

So the second line of Listing 12–3 translates to: “Only do this if the request is ready and

it was done successfully!” From there, it’s simply one line that changes the ellipsis, or

text placeholder (see Listing 12–4), to the text that was returned by the request.

Finishing up Listing 12–3, we’re creating and sending our request. The line starting

request.open calls the function that specifies what we’re trying to retrieve and how we

want to do it. In this case, it’s a really simple request—we’re just getting data, not

sending any data we want the server to parse. We’ll use the “GET” method instead of

“POST” because it’s faster, we’ll ask for “word.txt,” and we’ll set asynchronous to

“true,” since we want the response in the background, allowing the script to continue

running. For a discussion of why we might set this to false, as well as more detail on

GET versus POST methods, see the end of this chapter in the “AJAX Considerations”

section.

Finally, we simply call request.send(), which fires off our request. Once we get the

request back, the XMLHttpRequest object will fire our onreadystatechange and change

the line in the webpage.

Finally we finish the page off in Listing 12–4 by creating the basic HTML structure.

We’ve got a special div id called “theword” which holds an ellipsis (…) to begin with.

This is what will be replaced by the JavaScript code we wrote at the top. We have a

button as well, which fires off our function, loadword().

Listing 12–4. word.html, Part 3: The Rest of the Page, Consisting of a Simple Body Portion and Text, Along with
‘theword’ div

</head>
<body>
Get Today's Word
Of The Day

<div id="theword">
<h2>...</h2>
</div>
<button type="button" onclick="loadword()">Get The Word!</button>

CHAPTER 12: Supercharging the User Experience with AJAX 219

</body>
</html>

When viewed on the Android web browser, the page loads and shows the default state

(see Figure 12–6).

Figure 12–6. The initial page of the Word–of–the–Day example

Now when the user clicks the “Get the Word!” button, the ellipsis is replaced with the

actual word of the day, drawn from word.txt (see Figure 12–7). You’ll also notice that

the text seems to shrink up a bit—this is because the AJAX request is taking up the

entirety of the ‘theword’ <div> section, including the <h2> tag which normally would

provide more spacing. I’ve done this intentionally to point out that the nesting of tags is

important when considering AJAX requests. Placing the <h2> outside the <div> would

preserve the space.

Figure 12–7. The word is now put into the page, without the page reloading!

Success! We’ve changed the content of the page, by making a call to the server, without

actually reloading the page. Better yet, if the user hits “reload” on the browser, we’ll

avoid an ugly error similar to that in Figure 12–8, since we didn’t actually send any

“POST” data to the server (in the traditional sense).See the “AJAX Considerations”

section at the end of this chapter for more information on POST data.

CHAPTER 12: Supercharging the User Experience with AJAX 220

Figure 12–8. The Android Confirm Reload dialog

Now that the basics of word–of–the–day are done, we could continue by making it a bit

prettier (i.e., using a nice CSS scheme as mentioned previously).For our purposes,

though, you should now have a good idea of how flat text files can not only be included

through PHP (as shown in previous chapters), but also now through AJAX.Our next

stop? The wonderful world of web services, XML, and JSON.

My News!
Our next example calls a few web services to bring us content which won’t be stored on

our own device. We’ll also have to take a slightly ego–centric view of the world, but hey,

that comes with the territory of being a programmer!

Let’s imagine that we have a number of websites we like to visit, and we want our

application to display the most recent news from them. To do this, we need to bring the

RSS feeds of these websites together, merge them, and then display them. We’d like

the list to update in real time, on our page, without user intervention. Sound

complicated? Not really—if you know some tricks!

CHAPTER 12: Supercharging the User Experience with AJAX 221

First: Create a Pipe

Yahoo! Pipes is one of my favorite web services (Figure 12–9, http://pipes.yahoo.com)

and it doesn’t get too much coverage by most blogs or websites. But the service it

provides is pretty awesome—it can stitch together RSS feeds and other data, and

provide them in an easy–to–use format of your choosing.

Figure 12–9. The Yahoo! Pipes homepage

While other sites allow you to connect things together (Dapper, another Yahoo! property

at http://open.dapper.net/, and ifttt (If This Then That) at http://ifttt.com come to

mind), Pipes provides the more customizable “output,” so we will use it for this example.

To get started, click on “Create a pipe” to load the Pipes editor, shown in Figure 12–10.

The Pipes editor allows you to organize a series of modules (on the left side) into a

logical structure of rules. Each pipe starts with one or more inputs, then uses modules to

operate on them (i.e., to change data, or consolidate it), and then outputs the results in a

variety of forms.

http://pipes.yahoo.com
http://open.dapper.net/
http://ifttt.com

CHAPTER 12: Supercharging the User Experience with AJAX 222

Figure 12–10. The Yahoo! Pipes editor

On the left side you’ll find the series of modules that you can drag into the Pipes UI.

These modules can be connected to perform the operations you want. I’m going to

use three modules—Fetch Site Feed, Union, and Truncate—to bring together the

feeds of three websites, merge them together, and then cut off the output after five

items (Figure 12–11).

1. Fetch Site Feed takes the URL of the RSS feed for a web site. In this

example, I’m going to take three RSS feeds, for three different websites,

and link them together. You’ll notice in Figure 12–11, I have three “Fetch

Site Feed” modules.

2. Union simply combines up to five inputs into one feed. Here the union is

combining the three feeds that I’ve entered. If desired, I could have

multiple unions and feed more than five pipes by “union–ing” to a union,

and so forth.

3. Truncate tells Pipes that I only want five items output. This is useful to

speed up response time, as Pipes only needs to export a few items, and

not the tens or hundreds that multiple feeds may provide. Here it’s the

last thing I’ve connected up before the Pipe’s output module.

CHAPTER 12: Supercharging the User Experience with AJAX 223

Figure 12–11. The completed Pipe

In the debugger window (Figure 12–12), I can see what the output will look like for either

the whole Pipe or individual parts along the way. The following output (in Figure 12–12)

is shown when I click on “Pipe Output.” If I had clicked on the Union instead, I would

see all of the feed items, not just the five shown after the Truncate command. This

intermediate level of debugging is useful when debugging pipes to see which

component may be causing a problem.

Figure 12–12. The entire output of my pipe, given that we’ve truncated after five items

Once you’re done, click “Save” and give your Pipe a name. Then click on “Run Pipe” to

see the output (Figure 12–13).

CHAPTER 12: Supercharging the User Experience with AJAX 224

Figure 12–13. The book Pipe I created

You’ll notice that Yahoo! Pipes gives me options for how I want to access my Pipe. I can

access it as an RSS feed itself, or I can get it as a JSON result output. Under “More

Options” I can also configure to get my results by e-mail or through PHP. For this

example, I’m going to want to get my results as JSON. You’ll recall that we’ve used

JSON earlier in the book, in our apps in Chapters 2 and 3. Here, we’re using it again to

get the output of our Pipe. Clicking on the JSON button gives me a fairly ugly screen full

of content, but it’s really the URL that I want to remember. It looks something like
http://pipes.yahoo.com/pipes/pipe.run?_id=0a1f972788e5ee484b335cb892fc85be&_ren
der=json and it can be called through my AJAX web page.

Second: Get the Output and Display It!

We’re going to modify our word–of–the–day example to pull the JSON output and

display it. While there are easier ways to do this (most notably using JSON’s getJSON

function, and looping the list items), the code in Listing 12–5 is a bit more drawn out,

which makes iteasier to see exactly what we’re doing to parse each item. Later, as a flex

of your JavaScript skills, you can rewrite this code using getJSON if you’d like.

Listing 12–5. mynews.html

<html>
<head>
<meta content="text/html; charset=ISO-8859-1"
http-equiv="content-type">
<title>My News</title>
<script type="text/javascript" src="jquery-1.7.1.min.js"></script>
<script type="text/javascript">

http://pipes.yahoo.com/pipes/pipe.run?_id=0a1f972788e5ee484b335cb892fc85be&_ren

CHAPTER 12: Supercharging the User Experience with AJAX 225

function loadnews() {
 if (window.XMLHttpRequest) {
 // Modern browsers use this type of request
 request = new XMLHttpRequest();
 } else {
 // Old Microsoft Browsers use this type!
 request = new ActiveXObject("Microsoft.XMLHTTP");
 }

 request.onreadystatechange=function() {
 if (request.readyState == 4 && request.status == 200) {
var resp = jQuery.parseJSON(request.responseText);
var lister = "";
 lister += "" +
resp.value.items[0].title + "";
lister += "" + resp.value.items[1].title +
"";
 lister += "" +
resp.value.items[2].title + "";
 lister += "" +
resp.value.items[3].title + "";
 lister += "" +
resp.value.items[4].title + "";
 lister += "";
 document.getElementById("thenews").innerHTML = lister;
 }
 }

request.open("GET","http://pipes.yahoo.com/pipes/pipe.run?_id=4659b1f4f4bfdb96c3775b61be
8ca3b8&_render=json",true);
 request.send();
 }
</script>
</head>
<body>
Get the News!

<div id="thenews">
<h2>...</h2>
</div>
<button type="button" onclick="loadnews()">Get The News!</button>

</body>
</html>

You’ll notice that much of this code is the same as the code we used in word–of–the–

day. Notably, we’ve changed a few things, which are bold in our code.

 We’ve changed the request from word.txt to the URL of the Yahoo!

Pipes JSON output.

 We’re now using jQuery, a library we’ve used before which contains

some helpful functions to read and decode JSON output. Using jQuery

means we have to add in the reference to the jquery-1.7.1.min.js file

at the top.

http://pipes.yahoo.com/pipes/pipe.run?_id=4659b1f4f4bfdb96c3775b61be8ca3b8&_render=json
http://pipes.yahoo.com/pipes/pipe.run?_id=4659b1f4f4bfdb96c3775b61be8ca3b8&_render=json

CHAPTER 12: Supercharging the User Experience with AJAX 226

 We’re now using jQuery.parseJSON to parse the text we get back from

our XMLHttpRequest.

 And we’ve got an HTML formatted list that will be displayed once

we’ve retrieved the JSON.

The finished product looks like this in our browser (Figure 12–14):

Figure 12–14. The My News application

And when we click on “Get the news!” the following is displayed (Figure 12–15):

Figure 12–15. The news is now loaded!

Now that we’ve loaded data from our server, and loaded data from a web service, we

can turn to the final installment: a back–and–forth interaction between a web page and a

database.

Username Availability
One of the nicer things that websites have done in the last few years is the “instant

username availability” field. This is done using AJAX, by checking what the user is

entering into the “username” field and simultaneously checking on its availability in the

database. We’ll create this experience using AJAX, communicating with a MySQL

database using PHP on the back–end. This is similar to what Google does with its

CHAPTER 12: Supercharging the User Experience with AJAX 227

instant search results, the feature we discussed earlier. We’ll start by creating the

database, using the schema in Listing 12–6. This listing begins by creating a table, and

then populating it with several test usernames (“hardcore,”“dinosaur,” etc.).

Listing 12–6. the SQL Schema for the Users Table

CREATE TABLE IF NOT EXISTS `users` (
 `name` varchar(25) NOT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

--
-- Dumping data for table `users`
--

INSERT INTO `users` (`name`) VALUES
('hardcore'),
('dinosaur'),
('yelius'),
('tep');

Use the preceding schema to create the users table in your MySQL database. (MySQL

is available at http://www.mysql.com/products/community/.) Note that you can name the

database whatever you wish, but in this example it’s called “datab.” Now we need a

simple PHP script which takes a value and checks it in the database. Listing 12–7 shall

do nicely.

Listing 12–7. The check_name.php Script

<?php
$name = $_GET['u'];
$user = "root";
$pass = "";
$server = "localhost";
$db = "datab";
mysql_connect($server,$user,$pass) or die("Can not connect");
mysql_select_db($db) or die("No such database");
$query = "SELECT * FROM `users` where `name` = '$name'";
$result = mysql_query($query);
if (mysql_num_rows($result) == 0)
{ echo "Available!"; } else { echo "Not
Available :("; }
?>

The preceding script is fairly simple. It connects to the database and does a simple

query to see in how many rows the name is entered. If the name is not found on any

rows, then it’s available; the script sends back “Available” (and there is presumably

much rejoicing). However, if it’s not available, because the database already has a row

with the name in it, the script returns the considerably sadder “Not Available.” You can

test this by visiting the check_name.php script in your web browser, including

&u=test with some sort of test username. For example, in my testing environment,

http://localhost/~jon/uname/check_name.php?u=dino returns “Available,” while

http://localhost/~jon/uname/check_name.php?u=dinosaur returns “Not Available.” If

this is working for you, then you’re ready to proceed.

http://www.mysql.com/products/community/

CHAPTER 12: Supercharging the User Experience with AJAX 228

With the back–end complete, we’ll now build a very simple form that will check the

username as the person types, and tell him or her if the desired name is available.

We’ll accomplish this with the code in Listing 12–8.

Listing 12–8. The checkname.html Page

<html>
<head>
<title>Registration Page</title>
<script type="text/javascript">

function checkusername($name) {
 if (window.XMLHttpRequest) {
 // Modern browsers use this type of request
 request = new XMLHttpRequest();
 } else {
 // Old Microsoft Browsers use this type!
 request = new ActiveXObject("Microsoft.XMLHTTP");
 }

request.onreadystatechange=function() {
 if (request.readyState == 4 && request.status == 200) {
 document.getElementById("theres").innerHTML = request.response;
 }
 }

 request.open("GET","check_name.php?u=" + $name,true);
 request.send();
 }
</script>
</head>
<body>
<form name="theform">
Register!

<div id="theres">
<h2>...</h2>
</div>
<input type="text" name="un" onkeyup="checkusername(this.form.un.value)">
</form>
</body>
</html>

You’ll notice that, like last time, we’re building off of the same format we used with

word–of–the–day. This time we’ve changed the function to accept an argument (the

name we need to check), and we’ve changed the button to a text field. This text field

checks the name every time a key is released (the onkeyup event), and the result updates.

When loaded, the page looks similar to Figure 12–16.

Figure 12–16. The check username page

CHAPTER 12: Supercharging the User Experience with AJAX 229

If you enter a name that’s open, like “skip,” you’ll see a message of success, as shown

in Figure 12–17.

Figure 12–17. Sweet victory

If, however, the username you want has already been taken by some awesome person,

then you’ll see a sad message such as the one in Figure 12–18.

Figure 12–18. The “not available” screen

Incorporating this technique across an entire web form will allow you to not only check

usernames on the fly, but also validate information so that the user never has to hit a

“submit” button only to find that he or she has put in an invalid number, e-mail address,

or username.

Before we finish, there are two quick tips regarding forms that you might find helpful.

The first is to consider to what event you would like to bind the AJAX checking code. In

this example, we’ve bound to the onkeyup event on the form field that we’re checking

(the username). However, this causes a lookup action on each keypress, something that

might bog down your script. An alternative would be to place the function code in the

next element (e.g., perhaps a password field) in the onfocus event instead of onkeyup.

This will cause the AJAX request to fire after the user has moved to the next field on the

form, reducing load. A second consideration involves validation and auto–submission of

forms. It can be tempting to make a form auto–submit once the last field is completed.

After all, you might be validating information as users enter it, so why make them wait

after they finish the last field. This could be a problem though, as some people may wish

to check their answers before they continue. It might be best to keep a “submit” button

on the page, and let users continue when they are ready.

AJAX Considerations
The examples we’ve used in this relatively short chapter span the three major types of

data with which you’d be interacting while using AJAX. We’ve taken data from our server

and put it into a page without refreshing, we’ve queried a web service to get RSS

headlines, and we’ve checked usernames to make sure they’re available. At this point,

you’ve got the basic tools that you need in order to write applications that leverage the

power of AJAX. There are a few things one should consider when building out from here,

which we’ll highlight next.

CHAPTER 12: Supercharging the User Experience with AJAX 230

POST vs. GET

You’ll notice that in our examples, we’re consistently using the GET method versus the

POST method, as first seen in Listings 12–3 and 12–4. The reason for this, primarily, is

speed. GET is much faster than POST because of the simpler format it uses. If you’re

wondering why, it’s most likely due to the original intent of GET—it was designed to be

for “idempotent” data only. This simply means that the information isn’tmeant for lasting

use (i.e., itshould simply be a lookup value, not data to be entered into a database or

processed in any way).

However, there are times when POST will be appropriate. First, POST doesn’t have the

size limitations that GET does, so if you’re passing a lot of information to the server,

you’ll need to use POST. Second, POST should be used whenever you’re changing

something on the server (such as a database update), versus referencing static or

cached content. Simply put, use GET if you’re passing data that won’t be needed again.

Use POST if you’re passing data that should be processed or entered into a database,

e-mail, or file.

Using POST is slightly more complex than GET. You’ll need to set a request header, and

send information through the send function. This is because POST data are encoded in a

message body, whereas GET data are simply tacked onto the URL. This is why the

Android browser in Figure 12–8 mentions resending POSTDATA—it’s referring to this

specially encoded message. If we wanted to changeour username example to use

POST, we could change the following lines:

request.open("GET","check_name.php?u=" + $name,true);
request.send();

The change would result in the lines shown in Listing 12–9.

Listing 12–9. Using POST in the Username Availability Example

request.open("POST","check_name.php",true);
request.setRequestHeader(“Content-type”,”application/x-www-form-urlencoded”);
request.send(“u=”+$name);

We would also have to alter the PHP script (see Listing 12–7), changing the first line from

$name = $_GET['u']; to $name = $_POST['u'];

Setting Asynchronous to False?

As you’ve seen from the preceding examples, the third argument of the open function for

our XMLHttpRequest is normally set to “true.” It makes sense this way—after all, why

would we want to set it to false anyway? Well, the answer is that there are very few

times we would! Still, in some circumstances you might. For example, if you’re writing a

script and you absolutely do not want something to happen until the request is returned

and ready for processing, it would be permissible to set this to false. An example that

comes to mind involves a username check form, similar to the one in Figure 12–16, that

should only allow the user to continue with the form if the username is available (perhaps

CHAPTER 12: Supercharging the User Experience with AJAX 231

so that other options can be customized based on it). In this case one might disable or

hide all subsequent form fields, then wait until the request is returned; if it is successful,

the fields could then be re-enable or shown. But be mindful that your entire script will be

held up, so doing this with larger amounts of data will not be a good idea. One could

imagine the entire browser “stuck,” something frustrating on any platform, but especially

vexing on a mobile device where the demand for speed is already greater than its

availability.

Also be aware that if you decide to set asynchronous to false, you don’t need (and

shouldn’t use) the onreadystatechange function. This is because there is no ready state

to look for—the code will continue processing after the request is ready. Simply put the

rest of your JavaScript code after the send function, and it will process sequentially.

Finally, before setting asynchronous to false, you may wish to ask yourself if AJAX is

really the best solution for what you’re trying to accomplish. Sure, it will probably look

cool, but if you need to force the user to wait for something, perhaps it would be easier

to implement your code in a different way. For example:

If there is the possibility that your users may disable JavaScript,

requiring JavaScript to complete a form will render the page useless

for them. Using AJAX with asynchronous set to true will generally

avoid this problem.

A long form that requires complex validation (e.g., database lookups)

after several options might work better as a multi–page form, allowing

users to create an account on page one, and then return to

subsequent pages at their leisure. Each page could save the progress

of the form, allowing users to jump back in where needed, while also

providing adequate validation.

Given these thoughts and your own experience in testing, you’ll be able to get an idea

about not only the best form submission method, GET or POST, but also about whether

using the uncommon method of setting asynchronous to false is a good idea for your

script.

Summary
In this chapter we’ve taken a big step forward in making our users’ lives easier. We’ve

started doing some of the processing on our forms or our pages in the background, so

that users do not need to refresh pages, submit forms, or reload content needlessly. By

implementing the ideas and concepts outlined here across your projects and even in our

previous examples, you’ll be able to create awesome “supercharged” designs in no

time!

233

 Chapter

PackagingYour
Applications

So it has at last come to this: the final chapter. Throughout this book we have

reminisced about the days of old (also known as the 1990s), and we have learned about

the magical wonders of CSS3, HTML5, and JavaScript. We have played around with

audio and video. We have learned the joys of using JavaScript frameworks to increase

our productivity and provide our users with stunninglyeasy–to–create page layouts. We

have even created a slew of beginner applications, one of which ended up turning you

into an International Man of Mystery, to get you started on your future path of stardom.

Hopefully, after going through this book, we have even managed to hammer home the

importance of optimizing your code and approaching development mindful of the limited

bandwidth a lot of mobile users are stuck with.

Like all good things, however, our time is quickly coming to an end. Before we call it

quits, though, there is still a bit more information that I will present to you. While we have

gone through and built an arsenal of fun applications, we have still not covered what to

do with those applications when they are built! For the rest of this chapter we will cover

everything from packing and compressing your applications to get them ready for the

Internet; to picking a proper hosting service to store your applications; to transferring

your files to whichever hosting service you use; and even to skipping the whole hosting

service solution altogether in lieu of wrapping your trusty HTML5 code in a framework

like PhoneGap or Appcelerator's Titanium Mobile, so that your code will work just like a

native application your users can install on their devices from the Android Market!

Compressing Your Application
Now that you have finished writing your code and testing it in a local development

environment, you are probably excited to upload your application to the Internet and

start telling every person you know to go check it out. Getting to this stage in any project

is an accomplishment, but just because you are code complete does not mean you

don't have any work left to do. Throughout this book I have tried to hammer home the

13

CHAPTER 13: PackagingYour Applications 234

importance of coding smarter; anddoing things such as using CSS3 to create fabulous

gradient effects, and custom web fonts (courtesy of Google’s amazing web font

directory) instead of images or other “heavy” resources such as Flash movies. These

things end up helping your code load fast on a user’s device.

Sure, we are on the cusp of having nationwide fourth generation mobile Internet

available to anyone who wants it, but in reality it does not matter how fast your carrier’s

broadband service is since mobile networks suffer greatly from poor latency (the amount

of time it takes for your phone to communicate with the site or service you are trying to

load before data are transferred.) To help our code get to our user faster, and in turn

help relieve stress on our poor web servers, we will do something often referred to as

minifying our code. Minifying, or compressing, our code consists of running our CSS

and JavaScript files through an application or service that will take that code and

remove all of the line breaks and unneeded white spaces to make the end product a fair

bit smaller than it was before.

What Is Compression?

Let us once again take a look at the ever–popular jQuery framework that many web

developers use. As you can see in the Figure 13–1following, we have two versions of

the main jQuery library. One version of the script is uncompressed and comes in

weighing a massive 231KB, and another version has been compressed and went

through a round of obscurification, bringing the total weight down to a still high, but

more manageable 90KB. Opening up our JavaScript documents in a code editor

wecan see the difference betweenthe two files immediately. The development version

of jQuery, as seen in Figure 13–2, is formatted really nicely and has a bunch of really

helpful comments sprinkled throughout, while the smaller production–ready version of

jQuery almost looks like a weird alien language and is nearly impossible to understand.

Take a look at Figure 13–3 to get a better idea of to what I am referring. This is what

obscurifying code does. Not only are we taking away all of the line breaks and pretty

formatting, but here the code itself was shrunken and manipulated to obscure the code

and make it harder to understand.

CHAPTER 13: PackagingYour Applications 235

Figure 13–1. Here we are examining the file sizes of two different versions of jQuery 1.6.2

Figure 13–2. Viewing the uncompressed jQuery script in Adobe Dreamweaver 5.5

CHAPTER 13: PackagingYour Applications 236

Figure 13–3.Viewing the compressed, obscured, and alien–like jQuery code in Adobe Dreamweaver 5.5

One might ask why we want to obscure code—after all, don’t we want others to see our

neat tricks? Well, in a book like this we sure do, but in real life it can become very

important to keep a few things “close to the vest.” While obscuring code isn’t going to

stop intrepid code–readers from figuring out all of your secrets (hence, don’t ever rely on

obscured code to guard things like passwords, credit card numbers, nuclear launch

codes, etc.), it will stop those with a small amount of knowledge from stealing code

you’ve worked long and hard on just to re-use your neat transition or cool layout.

Compression Tools and Utilities

There are plenty of programs out there and available on the trusty ol’ Internet to help you

make your production–ready code smaller and less hefty on your servers’ and users’

resources. One of the most popular is Yahoo!’s YUI Compressor (Figure 13–4). Unlike some

other compression solutions, YUI Compressor is an application written in Java that will have

to be run on your development workstation. After running the application and giving it the

options you desire from your command line, the application will take your code, compress it

as we have discussed, and even combine your many different JavaScript or CSS files into

one super–compressed document, ready to be uploaded to your server. You can find the

YUI Compressor at http://developer.yahoo.com/yui/compressor/.

http://developer.yahoo.com/yui/compressor/

CHAPTER 13: PackagingYour Applications 237

Figure 13–4. A quick look at the YUI Compressor help screen as would be seen in a command line interface

Using YUI Compressor can seem intimidating (when looking at all the options, as seen in

Figure 13–4),but it’s fairly straightforward. For example, assume I’d like to compress the

main.js file from our “Who’s That Tweet?” app from Chapter 2. First I’d download the

YUI Compressor from its website. Then I’d extract the files, open a command line

window, and change to the directory containing the Java JAR file (yuicompressor-
2.4.7.jar in this case; this name will change depending on version). Next I’d copy over

the files that I’d like to compress (into my current directory) and run the compression

command. The command I’d use to do this is:

java -jar yuicompressor-2.4.7.jar main.js -o main.small.js

CHAPTER 13: PackagingYour Applications 238

This tells YUI Compressor to compress main.js into a smaller file named main.small.js.

In this case, the compressor cut the file size from 3,763 bytes to 1,946— a little more

than half!

There are a few other compressing applications out there that are definitely worth

mentioning. The first one I would like to take a look at is a handy little application

created by Dean Edwards called Packer (http://dean.edwards.name/packer/) shown in

Figure 13–5. This web service will allow you to copy your development JavaScript into a

textarea field on the site and with a quick click of a button spit out shrunken JavaScript

code that you can just copy and paste into a blank text file and be on your way. If you

believe that YUI might be a bit of overkill for your particular needs, Packer might be a

great and extremely simple–to–use alternative.

One should note, however, that while Packer is a great tool for shrinking code, it is also

quite easy to unobscurethis code by simply disabling the JavaScript that prevents you

from pasting code into the “Copy” box and hitting “decode”! Therefore one should use it

as simply a compressor, not a security mechanism.

Figure 13–5. Using Packer we can painlessly minify our "Who's That Tweet?" JavaScript code from Chapter 2,
which is in the top textarea field, into something that is just a tiny fraction of the original document size as seen in
the bottom textarea

http://dean.edwards.name/packer/

CHAPTER 13: PackagingYour Applications 239

The last fantastic piece of software I would like to discuss is a little collection of code

and apps called the HTML5 Boilerplate created by Paul Irish and found at

http://html5boilerplate.com/. Although it is not a compression tool specifically, it is a

very useful framework you might consider using for app development and which

includes its own compression utility. HTML5 Boilerplate is afairly young project (it was

launched on August 10, 2010) and is a great starting point for developers that don’t

want to be bothered with writing the same old basic code over and over again because

it is included in almost every project they create. There are those that like to confuse the

HTML5 Boilerplate with a framework, but in reality it is far from that. I like to think of this

project as more of an organization structure and toolbox (Figure 13–6); it helps you keep

your project files in order, and lets you avoid duplication of effort by providing an easy

way to implement a lot of things developers have to do repeatedly (such as specifying

certain files, JavaScript libraries, etc.).

Figure 13–6. A look inside the HTML5 Boilerplate folder structure. All of the magical compression goodness takes
place inside the “build” folder.

Inside the Boilerplate package, which is currently version 2.0 as of this writing, one can

find a ton of useful items and features, such as an already coded barebones skeleton

1

http://html5boilerplate.com/

CHAPTER 13: PackagingYour Applications 240

layout of your index.html and 404.html files; the latest copy of jQuery; some predefined

CSS styles used to reset styles across the vast array of web browsers out there in the

mighty Sea of the Internet; special optimizations to be used in an mobile environment;

and even a nifty little code compressor which will compress your HTML, CSS, and

JavaScript files for you when you are ready to launch a production version of your

application.

To compress your files with the built–in tools, which includes such compressors that we

discussed earlier like YUI Compressor, all one has to do is edit the build.xml file located

within the build directory (see Figure 13–7). Here you will find an agglomeration of

options that you can specify to compress your web application to your heart’s content.

It might take you a little while to get comfortable with messing with this file, but once you

have everything set up the way you want it, all you have to do is run the

runbuildscript.bat file and your code will swiftly be compressed and optimized.

Figure 13–7. Configuring the HTML5 Boilerplate build settings in Adobe Dreamweaver 5.5

CHAPTER 13: PackagingYour Applications 241

Finding a Hosting Solution
Now that we have managed to squeeze every last bit of unneeded bytes from our code,

making it as small as possible, it is time to upload that thing of beauty to the Internet for

the whole entire world to see. Finding a hosting solution that works for you and your

project can at times be a frustrating thing, especially if you are not sure what it is you are

looking for exactly. Here we’ll talk about three of the largest hosting companies out there

and our impressions of them as well as the features they offer. First though,

let’sconsider the process of choosing a host.

Evaluating Hosting Providers

Not every provider is the same, and a service that works well for one developer may not

serve the needs of another. You need to know about the provider and be clear about

your own needs and goals. The following questions are a good starting point when

evaluating any host:

1. How many domain names or sub-domains do I get? Back when many web

developers got started, the biggest question was,“How much space do I

have?” or “How much transfer (the amount of data you can send each month

without getting an overage charge—basically how many visitors you can

have)?”. However, most web hosts now provide ample space and transfer for

beginning programmers and even some advanced ones. The bigger question

might be, how many domain names (whatever.com) or sub-domains

(something.whatever.com) are offered? The reason is simple: developers rarely

have just one client at a time. You’ll probably be setting up multiple projects,

multiple clients, and even running multiple public sites for apps or other

products you build. You’ll want to brand each one differently, so getting

newname.com is much nicer than yourname.com/newname— and easier to

remember.

2. How responsive is their tech support? Are FAQs or Knowledge Bases

available? In the six years I’ve used my current web host, and the ten years I

used the previous one, I’ve had to e-mail tech support perhaps five to ten

times for various issues ranging from the minor (“does the server support…?”)

to the major (“all of my sites are down.”). Each time I’ve wanted an answer

immediately, especially in the case of the latter, as any time spent waiting is

too long. Better yet though, my current web host offers a very good FAQ and

Knowledge Base that covers far more than just how to reset a password or

create a new e-mail account. It discusses things like PHP versions, server

software, shell access, and more. Point being: You want to make sure

information is either already available to help you when you run into trouble, or

that help is a quick e-mail response away.

CHAPTER 13: PackagingYour Applications 242

3. What management tools are available? You’ll want to choose a web host

that has sufficient manageability in terms of what you can do with the account.

Some hosts might prefer that you contact them each time you need to set up a

new domain, database, or anything else for that matter. Others might fully

automate the process through a control panel. I tend to prefer the latter, since

the former is usually always available. My current host even allows me to

cancel domains or my entire account online, saving me an awkward phone call

if I should ever decide to leave.

4. What happens if I outgrow my plan? It’s possible that after a few years you’ll

need access to greater features or more resources. Following, in our

discussion of Dreamhost, we note that it offers certain features to “scale” or

“upgrade” your package. If you’re concerned about the future, you might

investigate or ask prospective hosts how hard it would be for you to switch

plans or upgrade. If they say you’d have to set everything over again, you

might want to find a host that would migrate everything for you or simply

upgrade you without any changes necessary.

5. Do I have shell and/or CRON access? This last one is a bit technical, but can

be important if you’re doing some kinds of development work. Shell access, or

a shell account, refers to the ability for you as the client to log into your host’s

server interactively. Normally through a service called SSH, a shell account lets

you run commands directly on the server, like a command prompt or terminal

window on your computer allows now. CRON is a special software package on

the server that lets you schedule commands to be run later or periodically. This

might be really useful to you if you create an application that needs to

periodically check on itself—say an application that sends out e-mails to your

users. Every 20 or 30 minutes you might need to run a script automatically to

check whether there is any e-mail to send. CRON access lets you do this.

However, CRON can also be abused, which is why some web hosts do not

allow you to use it, or allow you to log into the server interactively at all.

In addition to the preceding guidelines, one can also consult review websites when

deciding what host to choose. Beware though: Some of the reviews on those sites that

are overly glowing or overly negative might not be indicative of the actual service.And at

the end of the day, we will always trust the recommendations of people we know have

truly used a service over that of a sketchy review, which is why we will quickly take a

second to go over some of the hosting providers that we have used or worked within the

past to give you a good jumping–off point in your quest to find one that is perfect for

you.

Please note that the following sections discuss features that many hosts offer, and the

specific hosts we mention are simply ones we’ve used personally. While we’re obviously

happy with the services, we’d never assume they’re right for everyone. Take what you

read in the following paragraphs, consider your options and price range, and find the

host that is right for you!

CHAPTER 13: PackagingYour Applications 243

Dreamhost

For the past six years, I (Rocco) have personally been a huge fan of the hosting
company Dreamhost (http://dreamhost.com/) which is a great little company created by
four very ambitious Computer Science undergraduates back in 1997 (see Figure 13–8).
Dreamhost has been around for a while, and while they have had some growing pains in
the past, the service that they provided for me has been rock solid, with very little
hiccups. Their prices are extremely competitive, usually coming in at a base of $9USD a
month, and they even offer their customers unlimited bandwidth and unlimited storage.

Figure 13–8.Dreamhost has been hosting millions of sites on the Internet since 1997. Currently they host over
500,000 sites running on the WordPress open source content management solution

Dreamhost offers a variety of hosting with the basic form of hosting being in a shared
environment. While shared hosting is fine for basic projects, there are some major
limitations to going that route. For starters, you're sharing an environment with everyone
else on that server and if someone uploads a script to the server that somehow
manages to hog up a bunch of the server’s resources or even crash the server, then
everyone on that server suffers. On top of that, there is very little customization you can
perform on a shared server. You cannot install custom applications or services to run in
the background, and you cannot make any changes to the web server configuration
files.

http://dreamhost.com/

CHAPTER 13: PackagingYour Applications 244

If you're a control freak like me, you would probably want to look at getting yourself a

Virtual Private Server or a Dedicated Server. A Virtual Private Server is basically a

computer running inside of a computer. Using special virtualization software one can

emulate the hardware of a computer within a safe and sandboxed software solution that

allows you to install and run an entire operating system inside of another operating

system as if it was its own separate computer. When you are renting a Virtual Private

Server (VPS) from Dreamhost you are still using it in a shared environment with other

people, but you have the huge benefit of being sandboxed, or protected, against the

harmful actions of anyone else with whomyou are sharing that physical server.

Not only do you not have to worry about having your site go down because of someone

else’s negligence, but your resources are protected as well. Using a dead simple slider

in the Dreamhost administration panel, you can assign as much RAM and CPU

processing power to your server as you want, on the fly, in real time (see Figure 13–9).

Adding more RAM and CPU power to your service, however, does increase your

monthly fee; but if you have an application that you know needs a dedicated 1GB of

RAM and CPU power to quickly serve all of your users in a timely manner, it is wonderful

to know those resources are automatically safeguarded for you and only you. If you are

interested in setting up a VPS on Dreamhost, it offers you the first week free so you can

scale your server as high or as low as you want to find the optimal amount of resources

your site needs.

Figure 13–9. A sliding scale is used to determine how much a Virtual Private Server would cost with the selected
amount of RAM

Dreamhost also gives you the option to have your own dedicated environments as well.

Usually these machines are relatively beefy servers that have between two and four CPU

cores and even up to 12GB of RAM. Chances are you are not going to need that much

processing power if you are a new developer, but when you do need it one day, you

now know where to look.

On top of having plenty of options at your disposal for hosting your site with Dreamhost,

you also get access to a very responsive tech support team. If you have a problem or

CHAPTER 13: PackagingYour Applications 245

something is going bonkers on your server in the middle of the night, in most cases you
can hop on a text chat with a technician in a matter of minutes and get your problem
taken care of swiftly. Out of all the hosting companies I have used in the past,Dreamhost
has been one of my favorites when it comes to getting help when you need it.

1and1

Switching authors (Jon here), it’s now time to hear about my web host for the past six
years, 1and1. 1and1 is actually a fairly large host which has lukewarm reviews by most
in the industry. It’s not the best (although it is debatable who is), and it’s not the worst.
Many of the features Dreamhost offers, which Rocco discussed, are also available from
1and1 (and many other hosts, for that matter), so I feel it’s probably best to simply
outline what I find truly useful about 1and1. That falls into two categories:
documentation and reliability. Documentation refers to the 1and1 FAQ section, which
surprised me by having in the general questions that detailed information I wrote about
earlier. I was having an issue with a script, and was amazed when the 1and1 FAQ site
had very specific information about the server setup, PHP version, and available
software. I was able to debug my problem without having to write a long, complicated e-
mail. The second feature I really have liked about 1and1 is the reliability of my service.
While no one can boast 100% uptime (the industry standard term for a server or service
being available), from what I’ve seen 1and1 gets pretty close. As a bottom–of–the–list
client (i.e., I pay around $9 a month on a basic shared hosting package), it wouldn’t
surprise me if I had spotty service here and there. In fact, the opposite has happened—
my sites have remained up without much fail the entire time I’ve been there.

If you’re considering another host and want to know how it does in reliability, you might
find a friend or person on a forum who uses it and ask what their domain name is. From
there, I’d suggest setting up a free account with a service such as Pingdom
(http://www.pingdom.com), an uptime monitoring service. Pingdom will let you monitor one
web site for free, so go ahead and point it at your friend’s web site. After a few weeks or
months, you’ll have reports you can consult to see if the host is reliably up or not.

So there you have it, 1and1 has been reliable and thorough for me. Now back to Rocco
to discuss one last host!

Media Temple

Another hosting company that I (Rocco) have used in the past, and the third one I will
discuss with you in this chapter, is an industry favorite called Media Temple
(http://mediatemple.net/). In a lot of ways the services Media Temple offers can be
considered better than Dreamhost for a more technical user. Media Temple offers an
expanse of solutions, beginning withthe basic Grid Server package (see Figure 13–10),
which hosts your site on a cluster with hundreds of other servers powering that cluster.
It also offers dedicated virtual servers, as Dreamhost does, and a wide range of very
powerful dedicated servers.

http://www.pingdom.com
http://mediatemple.net/

CHAPTER 13: PackagingYour Applications 246

My only real problem with Media Temple is that it tends to be a fair bit more expensive

than other providers such as Dreamhost, but it does have the option of providing you

with much nicer hardware and the same thumbs–up tech support that you would get

from a company like Dreamhost; so if power is what you are looking for, make sure to

check out what Media Temple has to offer.

Figure 13–10. Media Temple's Grid Service landing page

File Transfer Protocol
Now that we have pointed you in the right direction in finding a hosting provider that

meets your needs, we have to get those files that we created on our local development

server up onto our shiny new production server. This step is usually completed with a

File Transfer Protocol (FTP) application. FTP is a standard protocol in networking that is

used to transfer files and documents from one computer to another. On your hosting

machine there is an FTP server running that will allow you to connect to that machine

using an FTP client on your desktop or workstation. There are tons of free FTP programs

out there, but my personal favorite is a free open source piece of software called FileZilla

(http://filezilla-project.org/), shown in Figure 13–11.

http://filezilla-project.org/

CHAPTER 13: PackagingYour Applications 247

Figure 13–11. Using FileZilla to transfer code for the book to one of my staging servers for testing

One of the main reasons I love FileZilla is because the software is constantly being

updated and the developers associated with this project work their buns off to make

sure that it is one of the fastest and most stable FTP programs in the wild.

Using an FTP client is actually pretty easy and really straightforward. Once you sign up

for a hosting solution you will be given credentials to plug into your application, and

once connected, if your FTP client supports the feature, you can just drag and drop the

files you want into any folder on the server that you have permission to access. Here is

an example of what some FTP credentials might look like:

url: ftp.myawesomesite.com
user: testuser112
password: pssw0rdz
port: 21
path: /var/www/myawesomesite.com/

If you’ve never done this before, it might seem a bit confusing. In the next section, we’ll

walk through deploying an app from start to finish.

CHAPTER 13: PackagingYour Applications 248

Deploying an Application Using Secure FTP

In this example, we’re going to walk you through uploading an entire application to a

web hosting service using SFTP. We’re going to be using FileZilla on a Windows

machine, but if you’re using a Mac, you could use a free donation–supported program

named Cyberduck. The steps are roughly the same, although the screens will appear

different on a Mac.

First, you’ll need to gather the following information:

 The connection method your web host requires. Some web hosts no longer

support FTP, preferring the encrypted version, SFTP. You’ll need to know

your FTP address (this is usually ftp.yourdomainname.com, where

yourdomainname is your personal domain, like jonwestfall.com), your FTP

username, and FTP password.

 You’ll need to know if the files for your domain are under any particular

directory on your web host. Many web hosts will have your FTP information

place you into your root directory by default (i.e., once you log into the server,

the files you see under “/” are the same as under your domain name. So

/test.txt corresponds to http://jonwestfall.com/test.txt). Other hosts may

place your files in a directory named after the domain (i.e., /jonwestfall.com) or

a directory named /public_html or /web.

 You’ll also need to consider where you want your files to live. In this case, I

want “Who’s That Tweet?” to live at http://jonwestfall.com/whosthattweet,

so I’ll need to create that directory and upload my files to it.

Once you have the information you need, download and install FileZilla client (from

http://filezilla-project.org/download.php). After it is installed, you should find it

under the FileZilla FTP Client group in your Start menu. Open FileZilla, and you should

see a screen similar to Figure 13–12.

http://jonwestfall.com/test.txt
http://jonwestfall.com/whosthattweet
http://filezilla-project.org/download.php

CHAPTER 13: PackagingYour Applications 249

Figure 13–12. The main FileZilla window without any configuration

You’ll notice it’s pretty empty and separated into six panes. The top pane shows the

FTP commands that FileZilla is sending to the server. The left–hand panes show files on

your computer (both in tree format and listing the files in the directory you’re looking in),

and the right–hand panes will show files on your server (in the same arrangement, after

we’ve connected). The bottom shows files that we’re currently transferring from one side

to the other (either from our computer to the server, or vice versa).

Start by entering your FTP host name in the Host box at the top, your FTP username,

and your FTP password. If your host supports SFTP, the more secure way to go, you’ll

want to enter the port number for SFTP, which is typically “22” inside the Port box. If,

however, you can only use regular FTP, you’ll use the FTP Port number, typically “21.”

(Note: If your host changes these values, which is very rare for a host to do, you should

be able to find them in its FAQ section or Knowledge Base.) After you have all of your

information entered, press “Quickconnect” to connect to the server (Figure 13–13).

Figure 13–13. FileZilla host connection information for SFTP

CHAPTER 13: PackagingYour Applications 250

If this is the first time you’ve connected to this server, and you’re using SFTP, you may

see the following box (Figure 13–14) asking you to verify the server identity. Typically

you won’t know what value to verify, but you might want to note it the first time to make

sure it’s always the same. This is a security feature to ensure that you’re always

connecting to the right machine.

Figure 13–14. FileZilla Unknown Host Key prompt

Once you are logged in, the panes on the right hand side of the screen change to show

the files on the server. Click on the folders until you find where you would like to upload

your files. In my case, I’m going to go to the /new-jonwestfall.com directory (where the

web files for jonwestfall.com live) and create a whosthattweet directory. I can do this by

double–clicking on new-jonwestfall.com in the right–hand pane, and right–clicking on

the white space next to the files. In the menu that appears (Figure 13–15), I choose

“Create Directory,” and in the next window (Figure 13–16), I give it a name.

Figure 13–15.Right–clicking shows the Context Menu, allowing you to create a directory

Figure 13–16. The FileZilla “Create directory” dialog

CHAPTER 13: PackagingYour Applications 251

Now I make sure that I have the directories properly set up: the files I want to move on

the left side, and the targetlocation on the right side,as in Figure 13–17.

Figure 13–17. Showing the source (on the left) and the target (on the right)

Now it’s a simple matter of selecting the files on the left, right–clicking on them, and

choosing “Upload” (see Figure 13–18).

Figure 13–18. I can now click the “Upload” option to upload the files to the server

After I do that, I should see the same files in both panes, as in Figure 13–19.

Figure 13–19. The files from my computer (on the left) are now on the server (on the right)

Now comes the big test. Now that the files are accessible, I should be able to view them

in my mobile browser (or on the desktop) by going to the appropriate address. In this

case, the address is http://jonwestfall.com/whosthattweet/index.html. By visiting

this in a desktop web browser, I can see that the files are online,as in Figure 13–20. This

might look pretty ugly since the files are meant to be viewed on a mobile web browser;

http://jonwestfall.com/whosthattweet/index.html

CHAPTER 13: PackagingYour Applications 252

however, we’ve verified that the files are online and accessible! Congratulations—

you’ve uploaded your project to the Web!

Figure 13–20. The game doesn’t render properly on the desktop browser, but this test verifies that the files have
been properly uploaded

Versioning Your Software
FTP normally works well for small development projects with one developer, especially

when the project is not very complex. However, for instance, let's say you are working

on a project with a team of developers and every single one of them has access to the

FTP server and uploads and changes things whenever he or she wants. Eventually you

will run into a situation where one user ends up making changes to a file and then a

minute later someone uploads changes they made to the exact same file, completely

overwriting the first person’s work that was just uploaded.

This is a very frustrating situation, and in reality stuff like this is actually fairly common

and happens all the time when programmers are not organized. One easy way to

prevent this is by using some form of software versioning, like Subversion, to essentially

back up and version your files for you. This way, let’s say Jon makes a few changes to a

file that we are sharing and I accidentally check in a new version on that file that does

not have the code Jon added. Instead of freaking out and panicking, which would have

been our only two options before, we can easily revert the file to an earlier version of

itself and save that code we thought we lost. Heck, using versioning you can even

merge two previous versions of a file together and make one super–file.

There are tons of versioning solutions out there just waiting to be used, but the two most

popular solutions are Apache Subversion (http://subversion.apache.org/) and Git

(http://git-scm.com/). Subversion, also known as SVN, has been around for a long time

and is a very mature product with a wide range of support in almost every single hosting

solution I have used in the past. The best part is there is a really nifty Windows

http://subversion.apache.org/
http://git-scm.com/

CHAPTER 13: PackagingYour Applications 253

application that adds all of the SVN options into your right–click menu, which would do

wonders at helping newer developers that are intimidated by using the command line.

As much as I love SVN, over the past few years I have been moving more toward using

Git for all my versioning needs. Git is another free and open source software solution for

versioning that is insanely fast when you compare it to SVN, and really easy to use as

you can see in Figure 13–21.

Figure 13–21. A quick start guide to getting up and running with Git in a few easy keystrokes

Git also tends to be more user friendly due to the ever popular web siteGitHub

(https://github.com/), which markets itself as a social coding hub, playing off of

the Web 2.0 modus operandi of having everything be as “social” as possible (see

Figure 13–22). With GitHub you are able to store all your projects in the GitHub cloud

free of charge; you thenare able to have other developers fork, or copy, your repository

so they can make whatever changes they want to it while keeping those changes

completely separated from your work. It is a bit gimmicky, but Git itself is such an

awesome technology that you learn to ignore the whole social thing if that isn’t your cup

of tea.

https://github.com/

CHAPTER 13: PackagingYour Applications 254

Figure 13–22. Using the social coding hub, GitHub

It is best to think of versioning as a way of backing up your code and application. In fact,

even if you are the only developer working on your project, it is always best to version

your application the moment you create that first folder or file for it. This way if anything

happens along the way, like your laptop explodes, or your toddler decides your

computer looks thirsty and drowns it in apple juice, you will be able to recover that code

and pull it down to a new machine to continue working on it. Even if your computer

doesn’t explode, once you are ready to deploy your project onto your server, all you

have to do is log in and run a simple command in your prompt to copy the contents of

your versioned program to your production server (i.e., your webhost) without the need

to ever touch an FTP program.

If your computer teachers were like my teachers growing up, they probably hammered

home the importance of constantly saving your work. Just like in college when you never

want to be caught by the power going out in the middle of writing a giant essay so that

you lose everything, make sure to save your work often and then push those new

revisions out to your choice in versioning solutions.

Going Native
So now we have built an application, optimized the application’s size by compressing

the everlasting life out of it, found ourselves an acceptable hosting solution, and learned

how to transfer files to that server by using FTP, SVN, or Git—but what if you don’t want

to package your application up to be used on the Internet from a data connection? What

CHAPTER 13: PackagingYour Applications 255

if you are building an application that you know will be used in areas where there is no

data coverage whatsoever? What if you know your application is really resource heavy

and contains a lot of audio files or images that you do not want to sit around and wait to

load onto a device? What if your project is so awesome that you don’t want to give it away

for free and want to sell it to your users instead? Well, do not fret because we have

solutions for you to turn that incredible HTML5 and JavaScript application into a full–

fledge native application that can be run on your users’ phones without the need to ever

open their Internet browsers.

On top of that, going the native route opens up many avenues to you that were not

available beforehand by giving you access to many of your handset’s features (such as

accessing the handset’s contacts, or creating a game that makes use of the phone’s or

tablet’s accelerometer, or creating files on the handset’s file system). These are features

you normally are not allowed to access when going through a standard web browser,

and for good reason too! If anyone was able to modify your computer’s, tablet’s, or

phone’s file system from the Internet, it would be mass hysteria all around the planet. If

you think the computer world has problems with viruses and trojans now, imagine how it

would be if you visited Amazon.com and an angry rogue developer decided to use his file

system access rights to delete all the files on your computer? Yeah, I told you, mass

hysteria. This is why your browser is locked down as we discussed when creating our

Twitter applications "Who'sThat Tweet?" and "I Love Ham.”

There are times, though, when this access is needed, and that is where frameworks like

PhoneGap (http://www.phonegap.com/) and Titanium Mobile

(http://www.appcelerator.com/products/titanium-mobile-application-development/)

come into play. Both of these application frameworks let developers take their existing

HTML5 and JavaScript code and turn it into a full–fledged application that can be

uploaded to any mobile application store of your choosing. While both of these products

allow you take your application down the native path, they each do it in pretty different

ways that I feel are worth mentioning.

PhoneGap

PhoneGap is a free and open source solution, like many popular web development

solutions, which has come a long way in a very short timeframe. Created by Nitobi

Software during a 48 hour coding spree at iPhone Dev Camp in 2009, PhoneGap came

into existence and has been a fan favorite of web developers looking to hop into the

mobile development scene without spending a lot of time learning a new programming

language.

With the recent release of Adobe Dreamweaver CS5.5, Adobe has integrated the

PhoneGap framework into Dreamweaver so a developer can create a native application,

and test it in an Android emulator, with just a simple click of the mouse (see Figure 13–23).

This partnership with such a massive development powerhouse gives PhoneGap a huge

advantage over its competitors in the “write once run anywhere” mobile space.

http://www.phonegap.com/
http://www.appcelerator.com/products/titanium-mobile-application-development/

CHAPTER 13: PackagingYour Applications 256

Figure 13–23. Configuring Adobe Dreamweaver CS5.5 to build out our HTML5 application as a native application
with PhoneGap

Let’s take a quick look at some code, in Listing 13–1, from a PhoneGap sample so you

can get a feel for how to structure your HTML5 PhoneGap application.

Listing 13–1. PhoneGapExample

<!DOCTYPE HTML>
<html>
<head>
<meta name="viewport" content="initial-scale=1.0, user-scalable=no, width=device-width"
/>
<title>Training App</title>
<linkrel="stylesheet" href="assets/css/master.css" type="text/css" media="screen" />
<scriptsrc="phonegap.js" type="text/JavaScript" charset="utf-8"></script>
<scriptsrc="assets/js/xui.js" type="text/JavaScript" charset="utf-8"></script>
<scriptsrc="assets/js/lawnchair/adaptors/LawnchairAdaptorHelpers.js"
type="text/JavaScript" charset="utf-8"></script>
<scriptsrc="assets/js/lawnchair/adaptors/DOMStorageAdaptor.js" type="text/JavaScript"
charset="utf-8"></script>
<scriptsrc="assets/js/lawnchair/adaptors/WebkitSQLiteAdaptor.js" type="text/JavaScript"
charset="utf-8"></script>
<scriptsrc="assets/js/lawnchair/Lawnchair.js" type="text/JavaScript" charset="utf-
8"></script>
<scriptsrc="assets/js/dsl.js" type="text/JavaScript" charset="utf-8"></script>
<scriptsrc="assets/js/app.js" type="text/JavaScript" charset="utf-8"></script>
</head>
<body>
<div id="title_bar">PhoneGap Training App</div>
<div id="welcome" class="view">
<div class="app_button" id="map_button">Show My Location</div>
<div class="app_button" id="settings_button">Settings</div>
</div>
<div id="map" class="view">
<div class="map_image"></div>

CHAPTER 13: PackagingYour Applications 257

<p>This is where you are</p>
<div class="app_button" id="welcome_button">Go Back</div>
</div>
<div id="settings" class="view">
<form id="settings_form">
<fieldset>
<legend>Map Type</legend>
<input type="radio" name="map" value="roadmap" checked>
 Road Map

<input type="radio" name="map" value="satellite">
 Satellite

<input type="radio" name="map" value="terrain">
 Terrain

<input type="radio" name="map" value="hybrid">
 Hybrid

</fieldset>
<fieldset>
<legend>Zoom Level</legend>
<input type="radio" name="zoom" value="10">
 Super Far

<input type="radio" name="zoom" value="12">
 Far

<input type="radio" name="zoom" value="15" checked>
 Normal

<input type="radio" name="zoom" value="18">
 Close

<input type="radio" name="zoom" value="20">
 Super Close

</fieldset>
<button id="save_button">Save</button>
</form>
</div>
</body>
</html>

As you can see from the preceding kitchen sink example, there is not a whole lot going

on here that is different from how you would normally structure a page. For all intents

and purposes this is an HTML document, and this is where PhoneGap starts to fall short

when compared to its competitors. See, when using a PhoneGap application on your

handset, even though the application is now native and can hook into the operating

system with permissions to which a normal Internet–hosted web application will never

have access, you are still just loading a web page on the device. This is fine in most

cases, but on Android devices we do have to acknowledge that the browser is not

hardware accelerated like the iPhone browser; so, if you have a lot of fancy effects and

animations in your app, it will still be as slow and sluggish as it is when viewing it in a

web browser. Just because you are wrapping your application in such a way that we

can call it “native,” it really isn’t native in the true sense of the word. This is where my

favorite mobile platform comes into play: Titanium Mobile!

CHAPTER 13: PackagingYour Applications 258

Titanium Mobile

For years I have been a huge supporter of the work that Appcelerator is doing with
Titanium Mobile. They started off taking the same approach as PhoneGap, allowing
users to create content in pure HTML and JavaScript, but quickly realized that
sometimes it is best to go fully native for increased performance and speed. Somewhere
around the time the Titanium Mobile software matured into the production–ready 1.0
release, Appcelerator released a new set of APIs that would still allow developers to use
HTML5 to create applications in a web view, but with the addition that now they could
skip HTML5 altogether and create their applications in pure JavaScript.

Doing this they are able to take those JavaScript files at build time and completely
transform them into a real native application using the operating system’s own code to
generate layouts of the pages. That means that instead of creating your own set of
buttons or styles to use in your app, you can make your application look more like a real
native app by using native user interface elements for whatever platform you are using.

Not to be outdone by PhoneGapwith its integration into Adobe Dreamweaver, the good
folks over at Appcelerator purchased the integrated development environment (IDE)
company Aptana and created their own full–fledged IDE for use with their framework.
Since Titanium Studio was released early in 2011, working with the Titanium Mobile
environment has been a breeze.

While Titanium Mobile is an open source project and free to use, there are special
modules that that are only offered to paying customers. Being a paying customer of
Titanium Mobile has its perks, like getting early access to the newer versions of Titanium
Mobile and using modules that would give you access to APIs from companies like
AdMob for in-app advertisements and Paypal for in-app purchasing. Becoming a
subscription member to Titanium Mobile is pretty easy on the pocket book as well, with
free basic membership and paid memberships starting at $49.99/month.

If you can afford it and want access to certain modules like the GameKit and OpenGL
gaming modules, then hopping on the basic indie plan is a no brainer. If you want to just
fiddle around with the software and create applications without fancy modules, then you
can do that as well, free of charge! With Titanium Mobile you will be able to use either
pure JavaScript or a combination of HTML5 and JavaScript to create truly incredible
mobile applications in no time at all.

CHAPTER 13: PackagingYour Applications 259

Figure 13–24. The Titanium Studio IDE, the official integrated development environment for Titanium Mobile

Closing Time
Now that we have gone through the entire gauntlet of everything one would need to

know to get up and running in the mobile development world, it is time to say goodbye,

turn off the lights, and slowly walk away while the theme song to the late 1970’s TV

show The Incredible Hulk is played on a piano somewhere in the distance. We have

really enjoyed sharing all of this knowledge and information with you and hope that you

can use it in the near future to turn yourself into a Level 10 Web Shaman and defeat any

tricky development situation that crosses your path. We are sure you are currently

grinning from ear to ear, ready to go hop on your computer and start coding out your

next project, and we’re grinning from ear to ear because we’re excited for you; but

before leaving you today weare going to once again remind you of a little bit of friendly

advice that was given to Rocco almost two decades ago—keep it simple, stupid!

Thanks for taking the time to read this book, and if you happen to know of any budding

developers out there that can benefit from the contents of this tome about mobile web

development, then feel free to lend them your copy and pass this knowledge and

information on to someone else. Take care, and happy coding!

— Jon, Rocco, and Grant

 261

Index

■ A, B
Adobe Dreamweaver CS5.5

compression

compressed, obscured, and

alien–like jQuery code, 236

uncompressed jQuery script, 235

HTML5 Boilerplate, 240

PhoneGap, 256

Adobe Fireworks

design comp, 143, 144

on Windows 7 platform, 141

Pages panel, 142

Advanced Audio Coding (AAC), 191

Android 2.3 web browser, 32

Android’s geolocation world, 155

checkIn() function, 156

geolocation tracking, 158

PERMISSION_DENIED error, 156

position.coords.accuracy, 155

position.coords.altitude, 155

position.coords.heading, 158

position.coords.latitude, 155

position.coords.longitude, 155

position.coords.satellites, 155

position.coords.speed, 158

POSITION_UNAVAILABLE error,

156, 157

supportsGeo() function, 155

TIMEOUT error, 156

UNKNOWN_ERROR, 156

watchPosition() method, 158

API. See Application programming

interface (API)

Application packaging

compression

compressed, obscured, and

alien–like jQuery code, 236

description, 233–234

jQuery 1.6.2. file size

examination, 235

tools and utilities, 236–240

uncompressed jQuery script, 235

features, 254–255

FTP application

deploying an application,

248–252

description, 246

FileZilla, 247

Git, 253–254

hosting solution

1and1, 245

Dreamhost, 243–245

evaluation, 241–242

Media Temple, 245–246

PhoneGap, 255–257

software versioning, 252–254

Titanium Mobile, 258–259

Application programming interface (API)

Audio Data, 196

Android 2.3.4 Gingerbread

device, 196

description, 196

HTML5, 196

definition, 21

music service

Amazon’s Product Advertising

API, 207–208

Index 262

description, 202

Last.fm, 203–206

Asynchronous JavaScript And XML

(AJAX)

asynchronous transfer

Android operating system, 214

beginning my search, 213

description, 211

false setting, 230–231

flash video, 215

Google search home page, 212

description, 211

JavaScript and XML, 215–216

POST vs. GET, 230

RSS feeds, 220

JSON output and display it,

224–226

Pipes creation, 221–224

username availability

check username page, 228

check_name.php Script, 227–228

checking code, 229

checkname.html Page, 228

description, 226

not available screen, 229

Users Table, 227

validation and forms

auto–submission, 229

word–of–the–day application

Android web browser, 219–220

onreadystatechange Function,

217

readyState and status, 218

request.send() function, 218

word.txt file, 216–217

Audacity audio editor

editing, 192

export option, 195

LAME MP3 Library download page,

194

preferences dialog box, 193

Audio, mobile web applications

audacity audio editor

editing, 192

export option, 195

LAME MP3 Library download

page, 194

preferences dialog box, 193

audio codecs

AAC, 191

MP3, 190–191

Ogg, 191

Audio Data API

Android 2.3.4 Gingerbread

device, 196

description, 196

HTML5, 196

description, 187

HTML5 audio tag

Android Gingerbread 2.3 device,

189

attributes, 188

elements, 188

integration, 189–190

music service APIs

Amazon’s Product Advertising

API, 207–208

description, 202

Last.fm, 203–206

■ C
CartoDB, 164

Cascading Style Sheets (CSS)

Family Chore list, 3

frameworks, 130–131

320 and Up, 133–135

biosketch, framework

comparison, 135–140

Less Framework 4, 132–133

1140px Grid, 131

HTML tag, 5

Patriotic Chore list, 4

Cell tower triangulation, 146

ChangeDiv() function, 154

CheckIn() function, 154, 156

CloudMade, 164

Codecs

audio

AAC, 191

Index 263

description, 190

MP3, 190–191

Ogg, 191

video

h.264/MPEG-4, 199

Ogg Theora, 199

WebM, 199–200

Compression

compressed, obscured, and

alien–like jQuery code, 236

description, 233–234

jQuery 1.6.2. file size examination,

235

tools and utilities

applications, 238

HTML5 Boilerplate, 239–240

Packer, 238

YUI compressor, 236–237

uncompressed jQuery script, 235

Cross-domain scripting, 22

Cross-site scripting (XSS), 22

Crude mockup, 58

CSS. See Cascading Style Sheets

(CSS)

■ D
deviantART, 124–125

Document Object Model (DOM), 36, 147

Dreamhost

description, 243

VPS, 244–245

Droid Sans font, 29, 127

■ E
Extensible Markup Language (XML)

interactions, 10

my personal blog, 9–10

RSS feed, 8–9

RSS icon, 8

■F
FAILboard Pro, 54–55

File Transfer Protocol (FTP) application

Cyberduck, 248

deploying an application, 248–252

description, 246

FileZilla

description, 247

directory creation, 250–252

host connection information, 249

Unknown Host Key prompt, 250

without configuration, 249

SFTP, 248–252

FileZilla

description, 247

directory creation, 250–252

host connection information, 249

Unknown Host Key prompt, 250

without configuration, 249

Find Icons search engine, 123

Font issues, 129–130

■ G
Geolocation

application, 151–152

changeDiv() function, 154

checkIn() function, 154

HTML review, 153

navigator.geolocation.getCurrent

Position(), 154

supportsGeo() function, Redux,

153

utility function, 153

cell tower triangulation, 146

desktop browser test for geolocation

support, 149

Document Object Model (DOM), 147

Global Positioning System (GPS),

146

IP address allocation, 146

mobile browser test for geolocation

support, 149

settings, 147

simple geolocation support, 148,

150

tracking, 158

WiFi triangulation, 146

Global Positioning System (GPS), 146

Index 264

Google Maps, 160–163

location-based services, 163

CartoDB, 164

CloudMade, 164

Mapnik, 164

Mapstraction, 164

Open Street Map, 164

pros and cons, 163–164

Wax, 164

Google Nexus One, 89–90

Google web fonts, 128–129

GPS. See � Global Positioning System

(GPS)

■ H
.htaccess user agent detection, 97–98

h.264, 199

Hosting solution

1and1, 245

evaluation, 241–242

Media Temple, 245–246

HotGloo, 58–59

HTML. See HyperText Markup

Language (HTML)

HTML5

audio tag

Android Gingerbread 2.3 device,

189

attributes, 188

elements, 188

video tag

Android 2.3.4 Gingerbread

device, 198

attributes, 198

elements, 197

features, 198

HTML5 Boilerplate

configuration, 240

description, 239

structure, 239

HTML5 location-based applications

Android's geolocation world

checkIn() function, 156

geolocation tracking, 158

PERMISSION_DENIED error, 156

position.coords.accuracy, 155

position.coords.altitude, 155

position.coords.heading, 158

position.coords.latitude, 155

position.coords.longitude, 155

position.coords.satellites, 155

position.coords.speed, 158

POSITION_UNAVAILABLE error,

156, 157

supportsGeo() function, 155

TIMEOUT error, 156

UNKNOWN_ERROR, 156

watchPosition() method, 158

geolocation, 145

cell tower triangulation, 146

desktop browser test for

geolocation support, 149

Document Object Model (DOM),

147

Global Positioning System (GPS),

146

IP address allocation, 146

mobile browser test for

geolocation support, 149

settings, 147

simple geolocation support, 148,

150

WiFi triangulation, 146

geolocation application, 151–152

changeDiv() function, 154

checkIn() function, 154

HTML review, 153

navigator.geolocation.getCurrent

Position(), 154

supportsGeo() function, Redux,

153

utility function, 153

Google Maps, 160–163

location-based services, 163–164

location gaming, 164–166

Human-Readable Data Interchange,

10–11

HyperText Markup Language (HTML)

bodytag, 2

code, 2

description, 1

Index 265

page header, 2

review, 153

■ I
I Love Ham

CSS, 41–43

HTML markup, 39–41

JavaScript, 43–48

web application, 21

Iconfinder, 121–122

Icons

Find Icons search engine, 123

Iconfinder, 121–122

Init() function, 36

Internet applications

Adobe Fireworks, 141

design comp, 143, 144

on Windows 7 platform, 141

Pages panel, 142

CSS frameworks, 130–131

1140px Grid, 131

320 and Up, 133–135

biosketch, framework

comparison, 135–140

Less Framework 4, 132–133

icons

Find Icons search engine, 123

icon usage, favicon, 123–124

Iconfinder, 121–122

stock photography

deviantART, 124–125

iStockphoto, 125–126

photo usage rules, 126

web fonts

Droid Sans font, 127

Google, 128–129

issues, 129–130

IP address allocation, 146

iStockphoto, 125–126

■ J, K
JavaScript, web design, 6–8

JavaScript Object Notation (JSON),

10–11

with padding, 22

JavaScript user agent detection

detection code, 92–93

single-platform developer, 94

Android Browser, 96

App HTML Page, 94–95

Safari, 97

jQuery JavaScript framework, 33

jQuery Mobile

animation, 109

Avery native looking user interface,

102

content data-attribute, 101

dialog boxes, 111–113

features, 100

HTML markup, 101

invalid custom mood attribute, 100

multiple pages, 102

about and contact pages,

106–107

about Page, 108

contact page, 109

contents, 103

count bubble list, 104

footer, 105

form elements, 105

home page, 107

inset search fields, 104

nested list, 104

search filter box, 105

thumbnail and icon list, 104

transition and theme attributes,

105

UI elements, 102

Simple Calc, 118–120

ThemeRoller, 113

Adobe kuler swatches, 116

configuration, 116

customizing options, 115

download theme window, 117

My custom theme, 117

start up screen, 114

transition page, 109–111

valid data-mood attribute, 100

JSON. See JavaScript Object Notation

(JSON)

Index 266

■ L
Less Framework 4, 132–133

Location gaming, 164–166

Location-based services

CartoDB, 164

CloudMade, 164

Mapnik, 164

Mapstraction, 164

Open Street Map, 164

pros and cons, 163–164

Wax, 164

■ M, N
MapMe() function, 162

Mapnik, 164

Mapstraction, 164

META tags

description, 85

history, 86

viewport element, 86

Android Webkit browser, 89

code adds, 88

description, 86

device pixel density, 89

scale values, 88

user-scalable turned off, 88–89

Who’s That Tweet game, 87

Mobile interfaces

mobile strategy, 56

native applications, 54–55

web applications, 56

web sites, 55–56

Mobile web applications

3G technologies, 11–12

audio

audacity audio editor, 192–195

audio codecs, 190–192

Audio Data API, 196–197

HTML5 audio tag, 188–189

integration, 189–190

music service APIs, 202–208

concepts, 15

Keep it Simple Stupid, 17–19

monetization, 16

test-retest reliability, 17

Think Like A User, 16

External Keyword tool, 50, 51

Google Keyword Search, 51

KISS principle, 18

languages and protocols, 12

desktop-view, my blog, 14

mobile view, my blog, 15

PDAs, 12–14

WAP, 14

Partial Keyword Ideas list, 51

planning

description, 53

FAILboard Pro, 54–55

mobile strategy, 56

mobile web sites, 55–56

native applications, 54–55

web applications, 56

structuring

code structure, 60–62

crude mockup, 58

description, 57

folder structure, 62–63

HotGloo, 58–59

Wireframing / Mockup, 57–58

Twitter, 19

user movement, 59–60

users, 51

age distribution, 53

description, 52

fictional transit application, 52

video

description, 197

Handbrake, 200–202

HTML5 video tag, 197–198

video codecs, 199–200

web design

CSS, 3–5

HTML, 1–3

JavaScript, 6–8

JSON, 10–11

XML, 8–10

Move Me application

global state variables, 173

limitations, 181

local transport searches, 176–177

Index 267

location markers customization,

173–174

map preparation, 174–176

running the code, 177–179

source code, 169–172

transport possibilities, 180

with dedicated transit buttons, 180

MP3, 190–191

MPEG-4, 199

Music service APIs

Amazon’s Product Advertising API

description, 207

iObjects Code Sample, 208

Last.fm

API request documentation, 205

description, 203

scrobbling process, 206

Web Services page, 204

■ O
Ogg

audio codecs, 191

video codecs, 199

Open Street Map, 164

■ P, Q
Packer, 238

Personal digital assistants (PDAs),

12–14

PhoneGap, 255–257

Photo usage rules, web apps, 126

PHP user agent detection, 91–92

1140px Grid, 131

■ R
RSS feeds, 220

JSON output and display it, 224–226

Pipes creation, 221

completed Pipe, 223–224

editor, 222

Fetch Site, 222

homepage, 221

modules, 222

Truncate, 222

Union, 222

■ S
Screen resolution, CSS 3, 65

Daily Droid newspaper

CSS code, 74–79

HTML code, 72–74

480 x 859 resolution, 71

859 x 480 resolution, 72

1024 x 600 resolution, 69

1280 x 800 resolution, 70

2048 x 1536 resolution, 70

fixed-width webpage at 1024 x 600

resolution, 66

fixed-width webpage at 2048 x 1536

resolution, 66, 67

flexible-width webpage at 1024 x

600 resolution, 67

flexible-width webpage at 2048 x

1536 resolution, 68

media queries, 79–83

Video Graphics Array (VGA), 65

Simple Calc, 118–120

Software versioning, 252–254

Stock photography

deviantART, 124–125

iStockphoto, 125–126

photo usage rules, 126

Structuring, mobile web applications

code structure, 60

footer.php file, 61

HTML document, 62

PHP Include Statement, 61

crude mockup, 58

description, 57

folder structure, 62–63

HotGloo, 58–59

Wireframing / Mockup, 57–58

SupportsGeo() function, Redux, 153

■ T
ThemeRoller, 113

Adobe kuler swatches, 116

Index 268

configuration, 116

customizing options, 115

download theme window, 117

My custom theme, 117

start up screen, 114

320 and Up framework, 133–135

Titanium Mobile, 258–259

Transit data resources

Community Projects, 184

Google’s Transit Developers Page,

184

GTFS components, 182–183

One Busway Project, 184

schedules and timetables, 181

timetable realities, 183

UlmApi.de hackathon GTFS

application, 184–185

Transport application

description, 167–169

execSearch() function, 176, 180

google.load() function, 172

Move Me application

global state variables, 173

limitations, 181

local transport searches,

176–177

location markers customization,

173–174

map preparation, 174–176

running the code, 177–179

source code, 169–172

transport possibilities, 180

with dedicated transit buttons,

180

prepareMap() function, 175

processLocalSearchResults()

function, 177

transit data resources, 181

Community Projects, 184

Google’s Transit Developers

Page, 184

GTFS components, 182–183

One Busway Project, 184

schedules and timetables, 181

timetable realities, 183

UlmApi.de hackathon GTFS

application, 184–185

Twitter applications

I Love Ham

CSS, 41–43

HTML markup, 39–41

JavaScript, 43–48

Who’s That Tweet?, 26

CSS file, 27–33

HTML markup, 26–27

JavaScript, 33–37

JSON with padding, 22

Uniform Server development

environment, 22–25

■ U
Uniform Server development

environment, 22

default WWW folder view, 25

menu, 24

Pre-Check application, 23

quick help documentation, 25

User agents, browser platforms

description, 89

JavaScript, 92

detection code, 92–93

single-platform developer, 94–97

PHP, 91–92

Spoofing, 90

Utility function, dynamic page changes,

153

■ V
Video Graphics Array (VGA), 65

Video, mobile web applications

codecs

h.264/MPEG-4, 199

Ogg Theora, 199

WebM, 199–200

description, 187, 197

Handbrake

description, 200

in Windows 7 operating system,

200

Index 269

iPhone and iPod Touch preset

configuration settings, 202

settings, 201

HTML5 video tag

Android 2.3.4 Gingerbread

device, 198

attributes, 198

elements, 197

features, 198

Viewport element

Android Webkit browser, 89

code adds, 88

description, 86

device pixel density, 89

scale values, 88

user-scalable turned off, 88–89

Who’s That Tweet game, 87

Virtual Private Server (VPS), 244–245

■ W
WatchPosition() method, 158

Wax, 164

Web browser platforms

META tags

description, 85

history, 86

viewport element, 86–89

user agent

.htaccess, 97–98

description, 89

Google Nexus One, 89–90

JavaScript, 92–97

PHP, 91–92

Spoofing, 90

Web design

CSS

Family Chore list, 3

HTML tag, 5

Patriotic Chore list, 4

HTML

bodytag, 2

code, 2

description, 1

page header, 2

JavaScript, 6–8

JSON, 10–11

XML

interactions, 10

my personal blog, 9–10

RSS feed, 8–9

RSS icon, 8

Web fonts

Droid Sans font, 127

Google, 128–129

issues, 129–130

Webkit, 28

WebM, 199–200

Who’s That Tweet?

CSS file, 27–33

HTML markup, 26–27

JavaScript, 33–37

JSON with padding, 22

Uniform Server development

environment, 22

default WWW folder view, 25

menu, 24

Pre-Check application, 23

quick help documentation, 25

WiFi triangulation, 146

Wireframing / Mockup, 57–58

■ X, Y Z
XML. See Extensible Markup Language

(XML)

XSS. See Cross-site scripting (XSS)

 i

Beginning Android Web
Apps Development

Develop for Android using HTML5, CSS3,
and JavaScript

■ ■ ■

Jon Westfall
Rocco Augusto
Grant Allen

Beginning Android Web Apps Development: Develop for Android using HTML5, CSS#,
and Javascript

Copyright © 2012 by Jon Westfall, Rocco Augusto, Grant Allen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed. Exempted from this
legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for
exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is
permitted only under the provisions of the Copyright Law of the Publisher's location, in its
current version, and permission for use must always be obtained from Springer. Permissions for
use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable
to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-3957-4

ISBN-13 (electronic): 978-1-4302-3958-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Mark Beckner
Technical Reviewer: Stephen Hughes
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan,

Morgan Ertel, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson,
Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Tom Welsh

Coordinating Editor: Adam Heath
Copy Editor: Chandra Clarke
Compositor: MacPS, LLC
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is
available to readers at www.apress.com. For detailed information about how to locate your book’s
source code, go to www.apress.com/source-code.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code

Dedicated to my wife, Karey, and to my parents, Alan & Dianne

—Jon Westfall

I dedicate this book to my daughter Rose... and Perry White, who is too good of a reporter
to not know Clark Kent is Superman. You Perry are a true gem.

—Rocco Augusto

v

Contents

Contents at a Glance .. iv

About the Authors .. ix

About the Technical Reviewer .. x

Acknowledgments ... xi

Introduction .. xii

■Chapter 1: Harnessing the Power of the Mobile Web 1
Basics of Web Design ... 1

Getting Started: HyperText Markup Language (HTML) .. 1

Getting Stylish: Cascading Style Sheets (CSS) 3

Getting Interactive: JavaScript 6

Getting Informative: Extensible Markup Language (XML) ... 8

JSON: Human-Readable Data Interchange . .. 10

The Mobile Web, Yesterday and Today 11

Knowing the Speeds (Or “What is 3G anyway?”) . .. 11

Languages and Protocols, Yesterday and Today .. 12

Concepts We Like—And What’s Ahead! 15

Concept 1: Think Like A User 16

Concept 2: Don’t Annoy the User 16

Concept 3: Test-Retest Reliability . .. 17

Concept 4: Keep it Simple Stupid! 17

Coming Up .. 19

■Chapter 2: Twitter Applications: Who's That Tweet? 21
JSONP ... 22

Setting Up Your Development Environment . .. 22

Your First Mobile Web Application . .. 26

Summary .. 38

■Chapter 3: Twitter Applications: I Love Ham ... 39
The HTML .. 39

The CSS .. 41

The JavaScript .. 43

Summary .. 48

■ CONTENTS

vi

■Chapter 4: Basic Planning and Structuring of Your Application 49
Know Thy Audience .. 49

Giving People What They Want .. 50

Who Is My User? .. 51

Having a Plan .. 53

All Mobile Is Not the Same ... 54

Structuring Your Application .. 57

User Movement: Navigation or Storyboard .. 59

Structuring Your Development .. 60

Code Structure ... 60

Folder Structure ... 62

Summary .. 63

■Chapter 5: Handling Multiple Screen Resolutions with CSS 3 65
A History of Tired Eyes and Resolution Evolution ... 65

The Daily Droid .. 69

The Daily Droid’s Base HTML Code .. 72

The Daily Droid’s Semi-magical CSS Code .. 74

Media Queries ... 79

Summary .. 83

■Chapter 6: Handling Different Browser Platforms ... 85
META Tags and the Viewport .. 85

A Little META History ... 86

The Viewport Element .. 86

The User Agent ... 89

The Nexus One User Agent .. 89

PHP User Agent Detection .. 91

JavaScript User Agent Detection ... 92

Introducing the JavaScript Agent Detection Code ... 92

.htaccess User Agent Detection ... 97

Summary .. 98

■Chapter 7: Building an Impressive User Experience with jQuery Mobile 99
The Basics .. 99

Adding Multiple Pages .. 102

So – About Those Transitions ... 109

Let’s Have a Dialog ... 111

Rolling Your Own Theme with ThemeRoller .. 113

Rolling it All Together: Simple Calc ... 118

Summary .. 120

■Chapter 8: Building Visually Rich Internet Applications 121
Finding and Using Icons and Stock Photography .. 121

Iconfinder ... 121

Find Icons .. 123

Using an Icon ... 123

deviantART ... 124

iStockphoto .. 125

Guidance on Using Photos in Web Apps .. 126

■ CONTENTS

vii

Web Fonts ... 127

Google Web Fonts .. 128

Font Issues to Consider ... 129

CSS Frameworks .. 130

1140px Grid .. 131

Less Framework 4 ... 132

320 and Up ... 133

Comparing Frameworks: About Jon!! .. 135

Adobe Fireworks ... 141

Summary .. 144

■Chapter 9: HTML5 Location-Based Applications ... 145
The Mechanics of Geolocation .. 145

Understanding Device Capabilities .. 145

Understanding HTML5 Capabilities .. 147

Detecting Browser Geolocation Support .. 147

Exploring Our Sample Application .. 150

Building Our Basic Geolocation Application ... 151

Dealing with the Four Corners of Android's Geolocation World ... 155

Expanding Your Horizons with Maps .. 160

Adding a Map to Our Application ... 160

Gaming Your Location ... 164

Gaming Your Location–for Fun! .. 165

Summary .. 166

■Chapter 10: Using Cloud Services: A Transport Application 167
Introducing the "Move Me" Example Application ... 169

Examining the Code ... 169

Dealing with Global State ... 173

Customizing Location Markers .. 173

Preparing Our Map ... 174

Performing Local Transport Searches ... 176

Running Our Code .. 177

Improving the "Move Me" Example Application ... 179

Dealing with Other Transport Possibilities ... 180

Limitations to our Approach ... 181

Introducing Transit Data Resources .. 181

Making Use of Transport Schedules and Timetables ... 181

Exploring GTFS Examples .. 184

Summary .. 185

■Chapter 11: Pushing the Limits with Audio and Video 187
Audio for Mobile Web Apps ... 187

Utilizing the HTML5 audio Tag ... 188

Integrating Audio into Who’s That Tweet? ... 189

Working with Audio Codecs ... 190

Using the Audacity Audio Editor ... 192

Audio Data API ... 196

Adding Video to Mobile Applications ... 197

Using the HTML5 video Tag ... 197

■ CONTENTS

viii

Codecs ... 199

Using Handbrake to Transcode Videos .. 200

Exploring on Your Own: Music Service APIs ... 202

“Scrobbling” Tracks to Last.fm ... 203

Tapping into the Power of Amazon’s Product Advertising API ... 207

Summary .. 209

■Chapter 12: Supercharging the User Experience with AJAX 211
What Is AJAX? ... 211

Asynchronous? .. 211

So What About the JavaScript and XML? ... 215

AJAX–of–the–Day ... 216

My News! .. 220

First: Create a Pipe .. 221

Second: Get the Output and Display It! .. 224

Username Availability ... 226

AJAX Considerations ... 229

POST vs. GET .. 230

Setting Asynchronous to False? .. 230

Summary .. 231

■Chapter 13: PackagingYour Applications .. 233
Compressing Your Application .. 233

What Is Compression? ... 234

Compression Tools and Utilities ... 236

Finding a Hosting Solution .. 241

Evaluating Hosting Providers ... 241

1and1 ... 245

File Transfer Protocol .. 246

Deploying an Application Using Secure FTP .. 248

Versioning Your Software ... 252

Going Native .. 254

PhoneGap ... 255

Titanium Mobile ... 258

Closing Time ... 259

Index ... 261

ix

About the Authors

Jon Westfall is a researcher and technologist working in New York City at
Columbia Business School. His current appointment is as the Associate
Director for Research and Technology at the Center for Decision Sciences, a
center within Columbia Business School at Columbia University in New York
City. Additionally, he holds an appointment as a Lecturer in the Columbia
University Psychology department, periodically teaching a course in Judgment
and Decision Making. In addition to his research, he also has career ties in
information technology, where he has worked as a consultant since 1997,
founding his own firm, Bug Jr. Systems. As a consultant, he has developed
custom software solutions (including native Windows 32 applications,

Windows .NET applications, Windows Phone 7 and Android mobile applications, as well as ASP,
ASP.NET, and PHP web applications). He has also served as a senior network and systems
architect and administrator (on both Windows and Unix networks, and hybrids) and has also
been recognized as a Microsoft Most Valuable Professional (MVP) 2008 – 2012. In his spare time,
he enjoys writing both technical books as well as fiction. His novel, Mandate, as well as other
writings are available via his website at http://jonwestfall.com. He can be contacted through his
website, and followed on Twitter (@jonwestfall).

Rocco Augusto is a Web Developer based out of the City of Roses – Portland,
Oregon. Rocco first started dabbling in the art of Web Design and Development
in middle school when the code bug bit him and refused to let go. When not
tinkering away at some new markup or design idea you can usually find Rocco
enjoying some time with his beautiful wife, daughters, and their unruly
puppies.

Grant Allen has worked in the IT field for over 20 years, as a CTO, enterprise
architect, and database administrator. Grant's roles have covered private
enterprise, academia, and the government sector around the world,
specialising in global-scale systems design, development, and performance.
He is a frequent speaker at industry and academic conferences, on topics
ranging from data mining to compliance, and technologies such as databases
(DB2, Oracle, SQL Server, MySQL), content management, collaboration,
disruptive innovation, and mobile ecosystems like Android. His first Android
application was a task list to remind him to finish all his other unfinished

Android projects. Grant works for Google, and in his spare time is completing a Ph.D on
building innovative high-technology environments. Grant is the author of Beginning DB2, and
lead author of Beginning Android 4, Oracle SQL Recipes, and The Definitive Guide to SQLite.

http://jonwestfall.com

x

About the Technical Reviewer

Steven Hughes has been a Microsoft Windows Phone MVP for the past decade
for his passion and dedication in the mobile community. Steven became
involved with handheld computers since the early ‘90s including the beta
testing and the prototype design of several hardware and software designs. His
passion and knowledge of mobile technology and the mobile industry has
advised and consulted many on its use and has earned the nickname ‘fyiguy’
as result. Steven loves to share information and help people; you may see his
contributions and articles on several websites, publications, podcasts, and
other productions pertaining to mobile technology. Steven is also the Chief
News and Review Editor for BostonPocketPC.com and has written several

detailed reviews and articles on various facets of mobile technology as well. Steven is a Moderator
in the Microsoft Answers forums and also co-manages the New England Windows Phone User
Group. Steven is employed as a Biomedical Engineer for the VA New England Healthcare System.
When he has some free time he generally spends it with his family or outdoors playing soccer,
hitting the slopes, strumming his guitar, catching a movie in his self-constructed custom home
theater, or riding the trails on his mountain bike.

xi

Acknowledgments

I’d like to acknowledge my editors here at Apress (Mark Beckner, Adam Heath, Chris Nelson, &
Jonathan Gennick), as well as my co-authors Rocco & Grant and technical editor, Steven, for their
hard work in this project. On a personal note, the support given to me by my wife, Karey, my
parents, Alan & Dianne, and my extended family (especially Dan, Sue, Greg, Scott, & Mark)
cannot be overstated. I’m also greatful for the support of my mentors, Eric Johnson and Elke
Weber, my colleagues, Cindy Kim, Margaret Lee, Ye Li, ChristophUngemach, SooBaik, Galen
Treuer, and Min Bang, and my current and former interns, Katherine Chang, Meaghan Gartner,
Mary Reiser, Yechao Liu, Soo Jung Lee, & Nina Rouhani. Finally, I’d like to thank my friends who
encouraged me to become as geeky as I am, directly and indirectly. This includes Steve Jocke,
Tony Rylow, Ashley Newman, Maria Gaglio, Marie Batteiger, JD Jasper, Jason Dunn, Don
Sorcinelli, Eric Hicks, Darius Wey, Jack Cook, Johan van Mierlo, Annie Ma, Holly Feiler, Dot
Bertram, & Cathy Bischoff.

—Jon Westfall

	Cover
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who This Book Is For
	How This Book Is Structured
	Downloading the code
	Contacting the Author

	Harnessing the Power of the Mobile Web
	Basics of Web Design
	Getting Started: HyperText Markup Language (HTML)
	Getting Stylish: Cascading Style Sheets (CSS)
	Getting Interactive: JavaScript
	Getting Informative: Extensible Markup Language (XML)
	JSON: Human-Readable Data Interchange

	The Mobile Web, Yesterday and Today
	Knowing the Speeds (Or “What is 3G anyway?”)
	Languages and Protocols, Yesterday and Today

	Concepts We Like—And What’s Ahead!
	Concept 1: Think Like A User
	Concept 2: Don’t Annoy the User
	Concept 3: Test-Retest Reliability
	Concept 4: Keep it Simple Stupid!

	Coming Up

	Twitter Applications: Who's That Tweet?
	JSONP
	Setting Up Your Development Environment
	Your First Mobile Web Application
	Summary

	Twitter Applications: I Love Ham
	The HTML
	The CSS
	The JavaScript
	Summary

	Basic Planning and Structuring of Your Application
	Know Thy Audience
	Giving People What They Want
	Who Is My User?

	Having a Plan
	All Mobile Is Not the Same
	Structuring Your Application
	User Movement: Navigation or Storyboard

	Structuring Your Development
	Code Structure
	Folder Structure

	Summary

	Handling Multiple Screen Resolutions with CSS 3
	A History of Tired Eyes and Resolution Evolution
	The Daily Droid
	The Daily Droid’s Base HTML Code
	The Daily Droid’s Semi-magical CSS Code

	Media Queries
	Summary

	Handling Different Browser Platforms
	META Tags and the Viewport
	A Little META History
	The Viewport Element

	The User Agent
	The Nexus One User Agent
	PHP User Agent Detection
	JavaScript User Agent Detection
	Introducing the JavaScript Agent Detection Code
	.htaccess User Agent Detection

	Summary

	Building an Impressive User Experience with jQuery Mobile
	The Basics
	Adding Multiple Pages
	So – About Those Transitions
	Let’s Have a Dialog
	Rolling Your Own Theme with ThemeRoller
	Rolling it All Together: Simple Calc
	Summary

	Building Visually Rich Internet Applications
	Finding and Using Icons and Stock Photography
	Iconfinder
	Find Icons
	Using an Icon
	deviantART
	iStockphoto
	Guidance on Using Photos in Web Apps

	Web Fonts
	Google Web Fonts
	Font Issues to Consider

	CSS Frameworks
	1140px Grid
	Less Framework 4
	320 and Up
	Comparing Frameworks: About Jon!!

	Adobe Fireworks
	Summary

	HTML5 Location-Based Applications
	The Mechanics of Geolocation
	Understanding Device Capabilities
	Understanding HTML5 Capabilities
	Detecting Browser Geolocation Support

	Exploring Our Sample Application
	Building Our Basic Geolocation Application
	Dealing with the Four Corners of Android's Geolocation World

	Expanding Your Horizons with Maps
	Adding a Map to Our Application

	Gaming Your Location
	Gaming Your Location–for Fun!
	Summary

	Using Cloud Services: A Transport Application
	Introducing the "Move Me" Example Application
	Examining the Code
	Dealing with Global State
	Customizing Location Markers
	Preparing Our Map
	Performing Local Transport Searches
	Running Our Code

	Improving the "Move Me" Example Application
	Dealing with Other Transport Possibilities
	Limitations to our Approach

	Introducing Transit Data Resources
	Making Use of Transport Schedules and Timetables
	Exploring GTFS Examples

	Summary

	Pushing the Limits with Audio and Video
	Audio for Mobile Web Apps
	Utilizing the HTML5 audio Tag
	Integrating Audio into Who’s That Tweet?
	Working with Audio Codecs
	Using the Audacity Audio Editor

	Adding Video to Mobile Applications
	Using the HTML5 video Tag
	Codecs
	Using Handbrake to Transcode Videos

	Exploring on Your Own: Music Service APIs
	“Scrobbling” Tracks to Last.fm
	Tapping into the Power of Amazon’s Product Advertising API

	Summary

	Supercharging the User Experience with AJAX
	What Is AJAX?
	Asynchronous?
	So What About the JavaScript and XML?

	AJAX–of–the–Day
	My News!
	First: Create a Pipe
	Second: Get the Output and Display It!

	Username Availability
	AJAX Considerations
	POST vs. GET
	Setting Asynchronous to False?

	Summary

	PackagingYour Applications
	Compressing Your Application
	What Is Compression?
	Compression Tools and Utilities

	Finding a Hosting Solution
	Evaluating Hosting Providers
	1and1

	File Transfer Protocol
	Deploying an Application Using Secure FTP

	Versioning Your Software
	Going Native
	PhoneGap
	Titanium Mobile

	Closing Time

	Index
	A, B
	C
	D
	E
	F
	G
	H
	I
	J, K
	L
	M, N
	O
	P, Q
	R
	S
	T
	U
	V
	W
	X, Y Z

