
www.allitebooks.com

http://www.allitebooks.org

Beginning Apache Struts
From Novice to Professional

■ ■ ■

Arnold Doray

www.allitebooks.com

http://www.allitebooks.org

Beginning Apache Struts: From Novice to Professional

Copyright © 2006 by Arnold Doray

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-604-3

ISBN-10 (pbk): 1-59059-604-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence

of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin

Technical Reviewer: Kunal Mittal

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Jason Gilmore,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft,

Jim Sumser, Matt Wade

Project Manager: Julie M. Smith

Copy Edit Manager: Nicole LeClerc

Copy Editor: Liz Welch

Assistant Production Director: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor: Susan Glinert

Proofreader: Lori Bring

Indexer: Valerie Perry

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,

New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or

visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA

94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution

has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly

by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

www.allitebooks.com

http://www.allitebooks.org

To my darling wife Lillian, for her love, encouragement, and constant support,

To my mother for always believing in me,

To my father for showing me by example that you can accomplish almost anything

you put your mind to,

And to the One who gave up His life for us two thousand years ago.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author . xix

About the Technical Reviewer . xx

Acknowledgments . xxi

PART 1 ■ ■ ■ Basic Struts
■CHAPTER 1 Introduction . 3

■CHAPTER 2 Servlet and JSP Review . 7

■CHAPTER 3 Understanding Scopes . 17

■CHAPTER 4 Custom Tags . 23

■CHAPTER 5 The MVC Design Pattern . 37

■CHAPTER 6 Simple Validation . 53

■CHAPTER 7 Processing Business Logic . 67

■CHAPTER 8 Basic Struts Tags . 79

■CHAPTER 9 Configuring Struts . 93

■CHAPTER 10 More Tags . 107

■CHAPTER 11 Uploading Files . 129

■CHAPTER 12 Internationalization . 143

■CHAPTER 13 Review Lab: Editing Contacts in LILLDEP . 157

PART 2 ■ ■ ■ Advanced Struts
■CHAPTER 14 Tiles . 161

■CHAPTER 15 The Validator Framework . 195

■CHAPTER 16 Dynamic Forms . 221

■CHAPTER 17 Potpourri . 239

■CHAPTER 18 Review Lab: The Collection Facility . 267

■CHAPTER 19 Developing Plug-ins . 277

■CHAPTER 20 JavaServer Faces and Struts Shale . 307

www.allitebooks.com

http://www.allitebooks.org

vi

■APPENDIX A Frameworks for the Model . 359

■APPENDIX B Commonly Used Classes . 375

■APPENDIX C Struts Tag Reference . 381

■APPENDIX D Answers . 469

■INDEX . 479

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author . xix

About the Technical Reviewer . xx

Acknowledgments . xxi

PART 1 ■ ■ ■ Basic Struts

■CHAPTER 1 Introduction . 3

What Is a Web Application? . 3

What Struts Can Do for You . 4

About You . 5

How to Read This Book . 5

Useful Links . 6

■CHAPTER 2 Servlet and JSP Review . 7

Lab 2: Installing Tomcat . 7

Servlet Container Basics . 10

Important Servlet Classes . 12

JavaServer Pages (JSP) . 13

Deconstructing Hello.jsp . 14

Final Thoughts. 15

Useful Links . 16

Summary . 16

■CHAPTER 3 Understanding Scopes . 17

Lab 3: Scopes Quiz . 18

Session and Request Scope Internals . 20

Summary . 21

Contents

www.allitebooks.com

http://www.allitebooks.org

viii ■C O N T E N T S

■CHAPTER 4 Custom Tags . 23

Custom Tag Basics . 23

How Custom Tags Are Processed . 24

The Java Handler Classes . 26

Helper Classes . 28

The TLD File . 29

Lab 4: A Temperature Conversion Tag . 31

Step 1: Prepare the Development Environment and Scripts 32

Step 2: Write the Java Tag Handler . 33

Step 3: Writing the Tag Library Descriptor file 33

Step 4: Amend web.xml . 33

Step 5: Write Your JSP . 34

Step 6: Deploy and Test . 34

Professional Java Tools . 35

Useful Links . 35

Summary . 35

■CHAPTER 5 The MVC Design Pattern . 37

The Registration Webapp . 39

Requirement 1 . 39

Requirement 2. 40

Requirement 3. 41

Requirement 4. 41

Requirement 5. 44

Lab 5: MVC Quiz . 45

Which Comes First? . 46

Struts and MVC . 47

Lifecycle of a Struts Request . 48

Frameworks for the Model . 49

Useful Links . 50

Summary . 51

■CHAPTER 6 Simple Validation . 53

Processing Simple Validations . 53

Anatomy of ActionForm . 54

Using ActionErrors . 57

www.allitebooks.com

http://www.allitebooks.org

■C O N T E N T S ix

Lab 6: ContactForm for LILLDEP . 61

Step 1: Prepare the Development Environment and Scripts 62

Step 2: Implement Getters and Setters for ContactForm 63

Step 3: Implement validate() . 63

Step 4: Implement reset() . 64

What Has Struts Done for You Today? . 64

Summary . 65

■CHAPTER 7 Processing Business Logic . 67

1,2,3 Action! . 67

The Statelessness of Action . 68

Subclassing Action . 69

Business Logic in the Registration Webapp . 70

Complex Validation . 73

Data Transformation . 74

Navigation . 75

Lab 7: Implementing ContactAction for LILLDEP . 76

Summary . 77

■CHAPTER 8 Basic Struts Tags . 79

Page Processing Lifecycle . 80

Evaluation, Replacement, and Sending . 81

The View Component of the Registration Webapp 82

Declaring and Installing the HTML and Bean Libraries. 83

Displaying Static Text . 84

Forms and Form Handlers . 85

Data Input Tags . 86

Displaying Errors . 87

Synopsis of HTML and Bean Tag Libraries . 88

Lab 8: Contact Entry Page for LILLDEP . 90

Useful Links . 91

Summary . 91

■CHAPTER 9 Configuring Struts . 93

The Structure of struts-config.xml . 93

Configuring the Registration Webapp . 94

Declaring Form Beans . 95

Declaring Global Exceptions . 96

Declaring Global Forwards . 97

www.allitebooks.com

http://www.allitebooks.org

x ■C O N T E N T S

Declaring Form Handlers . 98

Forwards . 100

Controller Declaration . 100

Message Resources . 101

Declaring Plug-ins . 101

Lab 9a: Configuring LILLDEP . 102

Code Reuse . 103

Lab 9b: The MNC Page . 104

Summary . 105

■CHAPTER 10 More Tags . 107

Best Practices . 108

The 2 + 1 Remaining Struts Libraries . 108

The Logic Tag Library . 109

Iteration . 109

Simple, Nested, Indexed, and Mapped Properties 111

Conditional Processing . 113

Flow Control . 114

The Nested Tag Library . 115

JSTL and Struts . 118

Expression Language (EL) . 119

Using EL . 120

The <c:out> Tag . 121

The <c:forEach> Tag . 122

The <c:if> and <c:choose>...<c:when> Tags 123

Struts EL Extensions . 124

Lab 10a: The LILLDEP Full Listing Page . 125

Step 1: Complete ListingAction . 125

Step 2: Complete listing.jsp . 125

Step 3: Amend web.xml . 125

Step 4: Amend struts-config.xml . 126

Lab 10b: Simplifying ContactForm . 126

Step 1: Amend ContactForm . 126

Step 2: Amend full.jsp and mnc.jsp . 126

Lab 10c: Using JSTL . 127

Step 1: Install the JSTL and Struts EL Tag Libraries 127

Step 2: Amend web.xml . 127

Step 3: Amend listing.jsp . 127

Useful Links . 127

Summary . 128

■C O N T E N T S xi

■CHAPTER 11 Uploading Files . 129

Uploading a Fixed Number of Files at Once . 131

Uploading Any Number of Files . 133

Lab 11: Importing Data into LILLDEP . 140

Step 1: Complete ImportForm . 141

Step 2: Complete import.jsp . 141

Step 3: Complete ImportAction . 141

Step 4: Amend struts-config.xml . 142

Step 5: Compile, Redeploy, and Test Your Application. 142

Useful Links . 142

Summary . 142

■CHAPTER 12 Internationalization . 143

Character Encodings, Unicode, and UTF-8 . 143

Locales . 146

Processing Input . 146

Localizing Validations . 147

Localizing Output . 150

Processing Translated Application.properties Files 151

Selecting a Locale from the Browser . 151

Switching Locales with a Link . 153

Switching Locales with LocaleAction . 154

Lab 12: LILLDEP for the Malaysian Market . 154

Useful Links . 155

Summary . 155

■CHAPTER 13 Review Lab: Editing Contacts in LILLDEP 157

Implementing the Edit Facility . 158

PART 2 ■ ■ ■ Advanced Struts

■CHAPTER 14 Tiles . 161

Installing Tiles . 162

Tiles for Layout . 163

Using Stylesheets with Layouts. 168

Tiles Components . 169

Creating a Tiles Component . 169

xii ■C O N T E N T S

Example: The “Login” Tiles . 173

Getting External Form Data . 187

Lab 14: The Find Facility . 187

Step 1: Set Up Tiles . 189

Step 2: Write the Controller . 189

Step 3: Put In the Tiles Action Mapping . 190

Step 4: Make Changes to ContactAction . 190

Step 5: Write the Tiles JSP . 191

Step 6: Write the Tiles Definition . 191

Step 7: Put In the Find Tile . 192

Step 8: Deploy and Test . 192

Summary . 193

■CHAPTER 15 The Validator Framework . 195

Declaring the Validator Plug-in . 196

Validator DTD Basics . 197

Using the Validator Framework . 198

Example: Validating RegistrationForm . 199

Validating Nested and Indexed Properties . 203

Using Constants . 204

Client-Side Validations . 205

The Standard Validators . 205

Using validwhen . 206

Using validwhen with Indexed Fields . 207

Adding Custom Validations . 209

Implementing validate() . 209

Extending the Validator Framework . 210

Implementing the Java Handler . 211

Migrating Legacy Code . 216

Localizing Validations . 217

Lab 15: Using the Validator Framework in LILLDEP 218

Useful Links . 218

Summary . 219

■CHAPTER 16 Dynamic Forms . 221

Declaring Dynamic Forms . 221

Declaring Simple Properties . 223

Declaring Indexed Properties . 223

Declaring Mapped Properties . 224

Declaring Nested Properties . 225

■C O N T E N T S xiii

Accessing Dynamic Properties . 225

Transferring Properties to a JavaBean . 225

Dynamic Form Disadvantages . 226

When to Use Dynamic Forms . 227

Validating Dynamic Forms . 227

The Registration Webapp with Dynamic Forms 228

See Ma, No Hands!: LazyValidatorForm (Struts 1.2.6+) 232

Disadvantages of Using LazyValidatorForm 234

The Hidden Power of BeanValidatorForm (Struts 1.2.6+) 235

Lab 16: Deleting Selected Contacts in LILLDEP 236

Step 1: Declare the SelectionForm Form Bean 236

Step 2: Amend listing.jsp . 237

Step 3: Create the Action to Delete Contacts 237

Useful Links . 237

Summary . 238

■CHAPTER 17 Potpourri . 239

PropertyUtils . 240

Using PropertyUtils . 241

In a Nutshell... 242

DownloadAction (Struts 1.2.6+) . 243

LocaleAction . 245

IncludeAction and ForwardAction . 247

In a Nutshell... 248

LookupDispatchAction . 249

DispatchAction . 254

MappingDispatchAction . 255

In a Nutshell... 257

Using Global Forwards . 258

Logging . 258

In a Nutshell... 261

Using Wildcards . 261

In a Nutshell... 262

Splitting up struts-config.xml . 263

In a Nutshell... 266

Useful Links . 266

Summary . 266

xiv ■C O N T E N T S

■CHAPTER 18 Review Lab: The Collection Facility . 267

Lab 18a: The Main Collect Page . 268

Lab 18b: The New Collection Page . 269

Lab 18c: The Collection Listing Page . 271

Lab 18d: Removing Selected Contacts . 272

Lab 18e: Adding Selected Contacts . 273

Lab 18f: Up and Down a Search . 275

Summary . 276

■CHAPTER 19 Developing Plug-ins . 277

The Task at Hand . 277

Implementation Road Map . 280

How Struts Processes Form Beans . 281

Anatomy of a Plug-in . 284

Implementing DynaFormsPlugIn . 285

Reading XML with Apache’s Digester . 288

Implementing DynaFormsLoaderFactory . 291

DefaultDynaFormsLoader . 294

Lab 19: Test Driving the DynaForms Plug-in . 302

Extra Credit Lab: Handling <set-property> . 303

Solution Outline . 304

Useful Links . 305

Summary . 306

■CHAPTER 20 JavaServer Faces and Struts Shale . 307

JSF Overview . 307

Shale Overview . 308

Learning Struts a Waste of Time? . 310

JavaServer Faces (JSF) . 310

Server-Side UI Components . 311

Request Processing Lifecycle . 314

Events and Event Listeners . 316

JSF Tag Libraries . 320

Value and Method Binding . 320

Navigation . 321

■C O N T E N T S xv

Example: The Registration Webapp . 322

Configuring JSF. 323

Message Resources . 324

The User Backing Bean . 325

The View . 332

Where to Next? . 336

Lab 20: The Struts-Faces Integration Library . 337

Step 1: Preparing the Development Environment 337

Step 2: Install JSF, JSTL, and the Struts-Faces

Integration Library . 337

Step 3: Edit web.xml and struts-config.xml. 338

Step 4: Migrate Your Struts JSP Pages . 339

Step 5: Migrate the <forward>s and Inputs 341

Step 6: Make Entry Points Forward to *.faces 341

Step 7: Amend Actions if Necessary. 342

Step 8: Put in the Necessary <managed-bean> Declarations . . . 342

In a Nutshell . 343

Struts Shale Preview . 343

ViewController . 344

Dialog Manager . 348

Integration with the Validator Framework . 350

JNDI Integration . 353

Reusable Views with Clay . 354

Server-Side Ajax Support. 354

Test Framework . 354

JSF vs. Shale vs. Struts . 355

Useful Links . 357

Summary . 358

■APPENDIX A Frameworks for the Model . 359

Getting the Software . 360

Lisptorq . 360

Lab A: Test Driving Lisptorq . 363

Step 1: Preparing the Development Environment 363

Step 2: Writing the Database Schema . 363

Step 3: Specifying the Database Settings . 364

Step 4: Generate the Java Files . 364

Step 5: Writing the Test Program . 365

Step 6: Initializing the Database . 365

Step 7: Running the Test Program . 365

xvi ■C O N T E N T S

Using Torque for the Registration Webapp . 366

Using Hibernate for the Registration Webapp . 367

In a Nutshell... 370

Autogenerating LILLDEP Model Classes . 370

Useful Links . 373

■APPENDIX B Commonly Used Classes . 375

javax.servlet.http.HttpServletRequest . 375

javax.servlet.http.HttpSession . 376

org.apache.struts.action.ActionMessage . 376

org.apache.struts.action.ActionMessages . 377

org.apache.struts.action.ActionErrors . 377

org.apache.struts.action.ActionMapping . 377

org.apache.struts.action.Action . 377

org.apache.struts.action.ActionForm . 378

org.apache.struts.upload.FormFile . 379

org.apache.struts.tiles.ComponentContext . 380

org.apache.struts.action.ExceptionHandler . 380

■APPENDIX C Struts Tag Reference . 381

The HTML Tag Library . 381

Common Attribute Sets . 383

The Error Style Attribute Set (Struts 1.2.5+) 386

Struts-EL Tags for the HTML Tag Library . 386

base . 386

button . 388

cancel. 389

checkbox . 390

errors . 392

file. 394

form . 394

frame . 396

hidden . 397

html . 398

image . 399

img . 400

javascript . 402

link . 404

■C O N T E N T S xvii

messages . 405s

multibox . 407

radio . 408

reset . 409

rewrite . 410

select, with option, options, and optionsCollection. 411

submit . 418

text/password . 418

textarea . 420

xhtml . 420

The Bean Tag Library . 421

Struts-EL Tags for the Bean Tag Library . 422

cookie/header/parameter . 422

define . 423

include . 425

message . 426

page . 429

resource . 430

size . 431

struts . 432

write . 434

The Logic Tag Library . 436

Common Attribute Sets . 436

Selector Attributes . 437

Struts-EL Tags for the Logic Tag Library . 437

empty/notEmpty . 437

equal/notEqual . 439

forward. 440

greaterEqual/lessEqual/greaterThan/lessThan 441

iterate . 442

match/notMatch . 444

messagesPresent/messagesNotPresent . 446

present/notPresent . 447

redirect. 449

The Nested Tag Library . 451

Struts-EL Tags for the Nested Tag Library. 452

nest. 453

writeNesting . 454

root . 456

xviii ■C O N T E N T S

The Tiles Tag Library . 457

Common Attributes . 458

A Note on Equivalent Tags . 458

Struts-EL Tags for the Tiles Tag Library . 458

insert . 459

definition . 460

put . 461

putList and add . 462

get . 463

getAsString . 464

useAttribute . 465

importAttribute . 466

initComponentDefinitions . 467

■APPENDIX D Answers . 469

Chapter 1: Introduction . 469

Chapter 3: Understanding Scopes . 470

Chapter 5: The MVC Design Pattern . 471

Chapter 6: Simple Validation . 471

Lab 8: Contact Entry Page for LILLDEP . 472

Lab 9a: Configuring LILLDEP . 473

Lab 9b: The MNC Page . 473

Chapter 10: More Tags . 474

Lab 10a: The LILLDEP Full Listing Page . 475

Lab 10b: Simplifying ContactForm . 475

Lab 11: Importing Data into LILLDEP . 475

Chapter 13: Review Lab . 476

Chapter 14: Tiles . 476

Chapter 15: The Validator Framework . 477

Chapter 17: Potpourri . 477

Chapter 20: JavaServer Faces and Struts Shale 477

■INDEX . 479

xix

About the Author

■ARNOLD DORAY is the lead software architect of Thinksquared, an IT

consultancy based in Singapore. He has been developing software

professionally for nearly a decade, and has conducted developer

training courses in the UK and Singapore. This book has its roots in

a Struts course he teaches. Besides coding, Arnold loves physics,

long-distance cycling, and trekking in the jungles of Malaysia.

www.allitebooks.com

http://www.allitebooks.org

xx

About the Technical Reviewer

■KUNAL MITTAL is a consultant specializing in Java technology, the J2EE

platform, web services, and SOA technologies. He has coauthored

and contributed to several books on these topics. Kunal is a director

in the information technology group within the Domestic TV division

of Sony Pictures Entertainment. In his spare time he does consulting

gigs for startups in the SOA space and for large companies looking to

implement an SOA initiative. You can contact Kunal through his

website at www.soaconsultant.com or at kunal@kunalmittal.com.

xxi

Acknowledgments

Any book is the product of a team effort, and this book is certainly no exception. I’m

especially grateful to Kunal Mittal, who besides technically reviewing this book, made

many suggestions that significantly improved its readability and utility. I’d like to thank

Julie Smith for being the perfect project manager—giving support when needed and

making sure that everything ran on schedule with a minimum amount of fuss—and all this

through email!

Liz Welch did a great job of adding professional polish to the text and I’d like to thank

her for being a huge help during the copyediting stage. Of course, any remaining errors

are entirely the fault of my spellchecker! I’d like to thank Katie Stence for her patience in

accommodating my many final changes.

My sincere thanks to Steve Anglin, who also saw the need for this book and agreed to let

me write it.

Finally, this book would not be possible without the support of my wife Lillian, who

endured many months with an absent husband. My humble thanks to you, my dearest.

■ ■ ■

P A R T 1

Basic Struts

Struts grew out of a personal need (open source developers often call this scratching
your own itch) to support the development of an application that I was responsible for...
I began the process of open sourcing this idea of a web application framework at the
Apache Software Foundation. What happened next was nothing short of extraordinary—
Struts quickly became the de facto standard web application architecture in the J2EE
space (the number of significant Internet applications built with it is substantial, but is
dwarfed by the number of intranet applications that use it), integrated into nearly all
the major app servers and tools, supported by a rich ecosystem of knowledgeable
professionals and skilled developers, backed by significant documentation in the form
of books and articles, and the basis for a large user community centered around the
Struts User mailing list...

—Craig McClanahan

3

■ ■ ■

C H A P T E R 1

Introduction

This book describes a web application framework called Apache Struts, with which you

can easily build robust, maintainable web applications. Now, the three italicized adjectives

aren’t just hype:

• Simplicity: Struts is relatively easy to pick up and use effectively. You get a lot out of

Struts for the effort you put in to learn it.

• Robustness: Struts provides much of the infrastructure you need to create webapps.

You can rely on this tested body of code built on solid design principles, instead of

having to come up with solutions of your own.

• Maintainability: Struts is built around the Model-View-Controller (MVC) design

pattern, which promotes separation between various portions of your webapp. This

goes a long way to making your code maintainable.

Besides this, Struts has a huge user base and is a vital component in many Java-based

enterprise web application solutions. It’s here to stay for some time to come.

Just to make sure we’re all on the same page, it might be helpful to understand what a

web application is.

What Is a Web Application?

In this book, the term web application, or webapp, refers to any application whose user

interface is hosted on a web browser. It is useful to think of webapps as falling somewhere

on a continuum (see Figure 1-1). At one end of this continuum are webapps that deliver

static content. Most websites are an example of this. On the other extreme are webapps

that behave just like ordinary desktop applications. Struts is useful in building webapps

on this right half of the continuum.

4 C H A P T E R 1 ■ I N T R O D U C T I O N

Figure 1-1. The continuum of web application frameworks

So, if you’re planning to build a webapp requiring little or no user input or input vali-

dation, no data access, no complex business rules, or no need for internationalization,

you probably don’t have to use Struts. If some or all of these are necessary, then your

application would definitely benefit from using Struts.

■Note I hope Figure 1-1 isn’t cause for confusion. There are many dimensions on which to place a particular

framework (ease of use, support for a specific feature, cost, platform independence, etc.), and Figure 1-1 places

the technologies on just one dimension.

I should warn you that the extreme right half of the continuum is not something

Struts fully addresses either. Emerging technologies like JavaServer Faces (JSF) and Ajax

(Asynchronous JavaScript and XML) attempt to address this deficiency.

Similarly, some web applications might require a mix of technologies to work, with

Struts as a basic ingredient. The use of Enterprise JavaBeans (EJBs) for processing of busi-

ness logic, or a template engine like Velocity to process text, are examples. In most cases,

though, plain ol’ Struts will do the job.

In the course of this book, I’ll give you an overview of a number of technologies that

work with Struts, among them Torque, Hibernate (in Appendix A), and JSF (which I’ll

cover in detail in Chapter 18, along with Shale).

What Struts Can Do for You

Craig McClanahan created Struts because he was asked to port a U.S.-centric application

to Europe. He had to give the application a web interface as well as allow it to be easily

translated to four European languages (for this and other interesting bits, see Craig’s blog

in “Useful Links” at the end of this chapter). So, needless to say, internationalization is

something that Struts makes particularly easy to do. But Struts has much to offer beyond this.

Struts provides an extensive infrastructure for things like user input validation, error

handling and reporting, and flow control, all of which are the bread and butter of building

webapps. In my experience, about 30–50 percent of the time (and 100 percent of the tedium)

C H A P T E R 1 ■ I N T R O D U C T I O N 5

used to build webapps revolves around these activities, so trimming it down substantially

is a Very Good Thing Indeed.

Struts allows people with different skill sets—web designers, system analysts, system

engineers, database engineers—to work in parallel. Struts does this by enforcing a “separation

of concerns”: pieces of code that do different things are bundled separately and given

standardized ways of communicating between themselves. This way, people can maintain

or work on some parts of the webapp without having to worry too much about other parts.

Can you see why?

Even if you’re a lone developer, Struts’ enforcement of a separation of concerns translates

into modularized and therefore more maintainable code. Although this might sound like

something you’ve always been doing in Java, Struts helps you do it across a smorgasbord

of languages—Java, JSP, JavaScript, and SQL.

Struts does all this and is easy to learn, which certainly contributes to its popularity.

There are, in fact, other web application frameworks, both open source and proprietary,

but Struts has seen explosive growth over competing frameworks and now has a very large

user base. So, if you’re ever stuck with a sticky Struts problem, you have ready access to a

very large body of knowledge on the Internet.

About You

In writing this book, I’ve been presumptuous enough to make a few assumptions about

your programming background. In particular, I’ve assumed that you have

• No experience with servlets: If you have worked with servlets, then you have an

advantage, but not much, since Struts does an admirable job of hiding most of the

underlying servlet infrastructure.

• Some experience with JSP: If you’ve only used ASP or PHP, not to worry; you should

be able to pick up JSP essentials as the book progresses.

• A working knowledge of Java: You don’t have to be a Java expert, but a sound

knowledge of Java (1.4) basics is absolutely essential. If you can’t tell when to use a

Reader and when to use an InputStream, you might find this book difficult to follow.

How to Read This Book

A friend of mine once compared programming to carpentry. I couldn’t agree more. Perhaps

the only way to acquire new skills in either discipline is by application to nontrivial

projects. Would you buy furniture built by someone who “learned” carpentry through

correspondence?

6 C H A P T E R 1 ■ I N T R O D U C T I O N

In the same spirit, this book takes a very hands-on approach in teaching you Struts.

The lab sessions and exercises are an integral part of the book.

■Note I can’t overemphasize this: You won’t learn a thing from this book if you don’t attempt the labs!

Having said that, I’ve tried to make the lab sessions challenging and interesting, but not

overly complicated. Past the first few preliminary chapters, subsequent lab sessions involve

building a nontrivial, real-life data entry and display application. I hope you enjoy seeing

the final product emerge as you progress.

Every lab session has solutions, which have been carefully checked and independently

reviewed, and which can be found in the Source Code section of the Apress website

(http://www.apress.com). Questions raised in either the lab sessions or in the main text

are in Appendix D.

There are two parts to this book, and each part ends with “review” labs, to help you

solidify what you’ve learned.

The first part of the book covers Struts basics, as well as JSP and Servlet prerequisites.

The second part of the book covers the more “advanced” portions of Struts like Tiles, the

Validator framework, and how to build your own plug-ins, among other things. We’ll also

study JSF and Struts Shale in the latter half of the book.

Useful Links

• You’ll find the Apache Struts website at http://struts.apache.org.

• Ted Husted’s website, http://husted.com/struts, contains many nuggets on Struts

best practices.

• The ServerSide, www.theserverside.com: has useful articles and discussions

on Struts.

• You’ll find Craig McClanahan’s blog at http://blogs.sun.com/roller/page/

craigmcc.

• Spring is another web application framework; learn about it at www.

springframework.org.

• Pro Jakarta Struts, from Apress, is now in its second edition: http://www.apress.

com/book/bookDisplay.html?bID=228.

• Also check out Foundations of Ajax (http://www.apress.com/book/bookDisplay.

html?bID=10042) and Pro Jakarta Velocity:From Professional to Expert (http://

www.apress.com/book/bookDisplay.html?bID=347), both from Apress.

7

■ ■ ■

C H A P T E R 2

Servlet and JSP Review

Struts is built on top of servlet technology, which is a basic infrastructure for building

webapps with the Java platform.

This technology is really a specification laid out by Sun, detailing the behavior of a

program called a servlet container. A servlet container takes care of parsing HTTP requests,

managing sessions, and compiling JavaServer Pages (JSPs), among other things.

Servlets are Java classes you write in order to handle HTTP requests and responses.

These classes are usually subclasses of HttpServlet, which has many convenience functions

to help your servlet subclasses do their job.

Anyone can implement Sun’s Servlet specification, and in fact, there are many servlet

containers available. Popular ones include WebLogic from IBM and the freely available,

open source Tomcat from the Apache Software Foundation (ASF).

One of the beauties of Struts is that although it is dependent on servlet technology, you

can develop Struts applications with having to know much about servlets! This chapter

will equip you with everything you need to know about servlets for the journey ahead.

The first thing you need to do is install a servlet container on your machine.

Lab 2: Installing Tomcat

In this lab session, you’ll install the Tomcat servlet container on your PC. Be sure to finish

this lab because you will be using Tomcat in subsequent chapters. Complete the following:

1. Choose a convenient location on your hard drive on which to perform the installation.

Let’s call this the INSTALL directory. For example, you might want to use C:\Tomcat\

as an INSTALL directory.

2. From the Source Code section of the Apress website, found at http://www.

apress.com, copy the file jakarta-tomcat-5.0.28.zip to the INSTALL directory.

www.allitebooks.com

http://www.allitebooks.org

8 C H A P T E R 2 ■ S E R V L E T A N D J S P R E V I E W

■Note If you’re already using Tomcat, be sure you’re using 4.x or (better) 5.0.x, because higher versions

(5.5.x and above) require JSDK 1.5 and versions lower than 4.x require some fiddling to work with Struts.

3. Unzip the contents of the zip file, ensuring that the Create Folders option is selected.

The directory jakarta-tomcat-5.0.28 should appear.

4. Locate the directory of your Java SDK installation. This directory is known as the

JAVA_HOME directory.

■Note I’m assuming you have installed the 1.4 JSDK.

5. Open .\jakarta-tomcat-5.0.28\bin\startup.bat with a text editor such as Notepad

and put in an extra line at the start to set up the JAVA_HOME path. For example, if the

JDK is in C:\jdk1.4.2\, you’d use

JAVA_HOME=C:\jdk1.4.2\

6. Repeat Step 5 for the shutdown.bat batch file.

■Note If you’re using Linux or some *nix OS, the files to amend are startup.sh and shutdown.sh.

Now test your Tomcat installation:

7. Double-click on the startup.bat batch file. You should see a DOS screen appear

(see Figure 2-1).

8. Open the URL http://localhost:8080 with your favorite web browser. You should

see the default Tomcat welcome web page (Figure 2-2).

9. When you’re done, double-click the shutdown.bat batch file to stop Tomcat.

C H A P T E R 2 ■ S E R V L E T A N D J SP R E V I E W 9

Figure 2-1. Tomcat starting up

Figure 2-2. The Apache Tomcat welcome page

10 C H A P T E R 2 ■ S E R V L E T A N D J S P R E V I E W

SHOULD YOU ENCOUNTER PROBLEMS...

If you encounter problems, check the following:

• That you’ve got the JAVA_HOME path right. If startup.bat terminates abruptly, this is likely

the problem.

• That you don’t have another web server (like IIS or PWS) or application latched on to port 8080.

• If you have a firewall running on your PC, ensure that it isn’t blocking traffic to and from 8080. Also

ensure that it doesn’t block shutdown.bat.

If none of this works, try putting a pause DOS command at the end of the batch file to read the error

message. Try using Google with the error message. Nine times out of ten, someone else has had the

same problem and posted a solution on the Internet.

Servlet Container Basics

Now that you have installed Tomcat, you have to know how to install your web applica-

tions on it. The information in this section applies to any conformant servlet container,

not just Tomcat.

Apart from the bin directory in which startup.bat and shutdown.bat live, the most

other important directory is the webapps directory, which will contain your web applications.

A web application is bundled as a WAR file (for Web Application aRchive), which is just

an ordinary JAR file with the .war extension. To deploy a web application, you simply drop

its WAR file in the webapps directory and presto! Tomcat automatically installs it for you.

You know this because Tomcat will create a subdirectory of webapps with the same name

as your web application.

■Note If you want to re-deploy a web application, you have to delete the existing web application’s

subdirectory. Most servlet containers will not overwrite an existing subdirectory.

The WAR archive file must contain the following:

• A WEB-INF directory, into which you put a file called web.xml, used to configure your

webapp. Struts comes with a web.xml file that you must use.

• A WEB-INF\lib directory, into which you put all Struts JAR files, including any third-

party JAR files your application uses.

C H A P T E R 2 ■ S E R V L E T A N D J SP R E V I E W 11

• A WEB-INF\classes directory, into which go the .class files for your webapp.

• Your JSP, HTML, image, CSS, and other files. JSP and HTML files are usually on the

“root” of the WAR archive, CSS usually in a styles subdirectory, and images in a

(surprise!) images subdirectory.

 Figure 2-3 illustrates this information.

Figure 2-3. Structure of a simple WAR file

Don’t worry too much about having to memorize these details for the time being.

Future labs should make them second nature to you.

12 C H A P T E R 2 ■ S E R V L E T A N D J S P R E V I E W

Important Servlet Classes

In the introduction to this chapter, I told you that you didn’t have to know much about

servlets in order to use Struts.

This is true, except for two servlet helper classes that are very important to Struts. You

need to pay special attention to these. They will certainly be used in your Struts applications:

• HttpServletRequest: Used to read parameter values on an incoming HTTP request

and read or set “attributes” that you can access from your JSPs.

• HttpSession: Represents the current user session. Like HttpServletRequest,

HttpSession also has get and set functions for attributes but they are associated

with the user session instead of the request.

These objects represent “scopes,” or lifetimes, of variables on your webapp. I’ll explain

scopes in more detail in the next chapter.

Figure 2-4 illustrates the most used functions on these two classes.

Figure 2-4. HttpServletRequest and HttpSession

Note that you can obtain an instance of HttpSession from HttpRequestServlet using

the latter’s getSession() function. The important functions on both classes are also listed

in Appendix B.

C H A P T E R 2 ■ S E R V L E T A N D J SP R E V I E W 13

JavaServer Pages (JSP)

Earlier, I mentioned that servlets are Java classes that generate an appropriate response

to an HTTP request. This response is usually an HTML page displaying the results of a

computation.

Unfortunately, a pure Java class is often not the easiest way to generate HTML. Your

typical web page contains lots of text, and your servlet subclass would have to contain or

access this text somewhere. In the worst-case scenario, you’d have Java classes containing

lots of text and HTML tags. And don’t forget, you’d have to escape every double quote.

Trust me, it’s not a pretty sight.

The problem is that Java classes (and therefore servlet subclasses) are code-centric, and

are not geared to allow the programmer to easily display large quantities of text, like a

web page.

JavaServer Pages (JSP) is a solution to this problem. A JSP page is text-centric, but allows

developers full access to the Java programming language via scriptlets. These consist of

Java code embedded in the JSP file between special marker tags, <% ... %>, as shown in

Listing 2-1.

■Note The servlet container (like Tomcat) actually converts a JSP page to a regular servlet, then compiles

it behind the scenes. This happens every time the JSP page is changed.

In the non-Java world, the closest analog to JSP would be PHP or Active Server Pages (ASP).

Listing 2-1 illustrates a simple JSP page, which I’ll briefly analyze in the following

subsections:

Listing 2-1. Hello.jsp

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<%@ taglib uri="/tags/time" prefix="time" %>

<html>

 <h1>Hello <%= "world".toUpperCase() %></h1>, and the time is now

 <time:now format="hh:mm"/>.

</html>

Figure 2-5 shows how Hello.jsp might appear in the web browser.

14 C H A P T E R 2 ■ S E R V L E T A N D J S P R E V I E W

Figure 2-5. Hello.jsp viewed in a web browser

Deconstructing Hello.jsp

The first line in Hello.jsp is a header, indicating the type of output (text/html, using UTF-8

encoding), and the scripting language used (Java).

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

Immediately following this header is a tag library declaration:

<%@ taglib uri="/tags/time" prefix="time" %>

This declaration tells the servlet container that this JSP page uses a tag library. A tag

library defines custom tags that you can create and use to put some prepackaged functionality

into a JSP page.

■Note In this book, I’ll use the term custom tag, but the correct term is custom action. I’ve avoided being

politically correct because “action” is an often-used word in Struts. Also, I find the term custom tag more intuitive.

In this instance, the prepackaged functionality is a time display:

<time:now format="hh:mm"/>

I should warn you that this “time” tag library is purely fictitious. I made it up just to

show you how custom tags might be used. Struts uses custom tags extensively, and I’ll

cover this in detail in Chapter 4.

C H A P T E R 2 ■ S E R V L E T A N D J SP R E V I E W 15

Finally, as Listing 2-1 shows, I’ve made gratuitous use of a scriptlet:

<%= "world".toUpperCase() %>

This is simply an embedding of Java code in the JSP page. Notice the all-important equal

sign (=) right after the start of the scriptlet tag <%. This means the evaluated value of the

Java code is to be displayed. It is also possible to have scriptlets that do not display anything

but instead produce some side effect, as shown in Listing 2-2.

Listing 2-2. Scriptlets in Action

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<%

 double g = (Math.sqrt(5) + 1)/2;

%>

The golden ratio is: <%= g %>

In Listing 2-2 there are two scriptlets. The first silently calculates a number (no = sign),

and the second displays the calculated value (with an = sign).

The other instructive thing about Listing 2-2 is that it demonstrates how to define a

variable in one scriptlet and access it in other scriptlets within the same page.

■Note Every JSP page has a predefined variable called request that is the HttpServletRequest

instance associated with the current page.

The current trend in JSP has been to try to replace the use of scriptlets with custom tags.

This is largely because using scriptlets results in less readable JSPs than using custom tags. I’ll

revisit this idea again in Chapter 10, where I’ll introduce the JSP Standard Tag Library (JSTL).

Final Thoughts

This section should be old hat to readers who have even a little experience using JSP. If

you’re from the ASP/PHP camps, you should have little difficulty mapping your knowledge in

those technologies to JSP.

The next two chapters give you an in-depth look at two aspects of JSP technology that

even many experienced JSP developers might not grasp fully, but that are crucial to your

understanding of Struts.

16 C H A P T E R 2 ■ S E R V L E T A N D J S P R E V I E W

Useful Links

• The Tomcat website http://jakarta.apache.org/tomcat/

• Further information on servlets: http://java.sun.com/products/servlet/docs.html

• The Servlet specification: http://java.sun.com/products/servlet/download.html

• Pro Jakarta Struts (Apress 2005): http://www.apress.com/book/bookDisplay.

html?bID=228

Summary

• Tomcat’s .\webapps directory is where you deploy your web application.

• Webapps are deployed as WAR files, which are just JAR files with a .war extension.

• WAR files contain a .\WEB-INF directory, with a web.xml file to configure Tomcat.

• Your Java classes and third-party JAR files go into WEB-INF\classes and WEB-INF\lib,

respectively.

• Two very important servlet classes are HttpServletRequest and HttpSession.

17

■ ■ ■

C H A P T E R 3

Understanding Scopes

In servlet-speak, a variable’s “scope” refers to its lifetime in a web application—how long

the variable exists in the course of a user’s interaction with the system. A variable’s scope

also determines its visibility—who can read and change the variable. Web applications

routinely utilize this concept, so you must become thoroughly familiar with it. You’ll do

just that in this chapter.

Servlet technology uses four types of scope. Listed in decreasing lifetimes, they are

as follows:

• Application scope: Application-scoped variables are visible to every page of the web

application, all the time. The variable is visible to all users of the system and exists

across multiple user sessions. In other words, different users can potentially view

and change the same variable at any time and from any page.

• Session scope: Session-scoped variables exist only for a single-user session, but

they are visible to every page in that session. Users would not be able to view or

change each other’s instance of the variable.

• Request scope: Request-scoped variables exist only for a single request. This

includes page redirects. So, if request-scoped variable x = 7 on the first page is redi-

rected to a second page, then x = 7 on the second page too.

• Page scope: A page-scoped variable exists only on the current page. This does not

include redirects. So, if a page-scoped variable x = 8 on the first page is redirected

to a second page, then x is undefined on the second page.

■Note A redirect occurs when you ask for one page but are given another. The page you asked for redirects you

to the page you actually get. You can do this in JSP with the <jsp:forward> tag, which you will see in action

in Lab 3 later in this chapter.

www.allitebooks.com

http://www.allitebooks.org

18 C H A P T E R 3 ■ U N D E R S T A N D I N G S C O P E S

Session and request scopes are the two most important scopes in Struts. To see if you

really understand these ideas, try the following lab.

Lab 3: Scopes Quiz

Consider the following two JSP pages (Listings 3-1 and 3-2) and assume they’ve been

loaded onto a servlet container. Your job is to predict the output on the screen as two

users, Audrey and Brenda, interact with the system.

Listing 3-1. First.jsp

<jsp:useBean id="myVariable"

 scope="application" class="java.lang.StringBuffer" />

<%

 myVariable.append("1");

%>

<jsp:forward page="Second.jsp" />

Listing 3-2. Second.jsp

<jsp:useBean id="myVariable"

 scope="application" class="java.lang.StringBuffer" />

<%

 myVariable.append("2");

%>

<%= myVariable.toString() %>

The <jsp:useBean> tag simply defines a new JSP variable, with the given scope.

<jsp:forward> redirects the user to a given page. Try to answer the following questions:

• Audrey is the first person to view First.jsp. What will she see?

• Brenda next views First.jsp from a different machine. What does she see?

• If Audrey again views First.jsp after Brenda, what will she see?

• What if Brenda now loads Second.jsp directly?

Compare your answers to the ones in Appendix D.

When you’re sure you understand how application scope works, consider what happens if

we change the scope attribute in both First.jsp and Second.jsp to session, then request,

then page. In each instance, check your answers before proceeding with the next scope.

C H AP T E R 3 ■ U N D E R S T A N D I N G S C O P E S 19

I hope this little Gedankenexperiment gives you a clear understanding of how the various

scopes work. To sweep away any lingering doubts you might have, try doing it in real life:

1. Copy the lab3.war file found in the Source Code section of the Apress website,

located at http://www.apress.com, into the Tomcat \webapps\ directory.

2. Start Tomcat, if it isn’t already running.

3. With your favorite web browser, navigate to http://localhost:8080/lab3/.

You should see a main page with links to four versions of First.jsp, one for each scope

(see Figure 3-1). Play around with the application until you’re absolutely sure you under-

stand the difference between the various scopes.

Figure 3-1. The Scopes web application start page

One last question: If we created a variable with a scriptlet on our JSP page like so:

<% int x = 7; %>

what scope would it implicitly have?

20 C H A P T E R 3 ■ U N D E R S T A N D I N G S C O P E S

IN CASE YOU WERE WONDERING...

You might have noticed that we used a StringBuffer for myVariable, and you might be wondering

if we could have used a String instead. We can’t.

The reason is that you cannot reassign a variable declared with <jsp:useBean>. A String is

immutable, and so each time you try to change a String with a statement like myVariable += "1",

you’re attempting to reassign the variable.

However, calling a function on a variable is OK since we’re not reassigning anything. So, myVariable.

append("1") is acceptable, since we’re just calling a function on the object referred to by the variable.

The variable refers to the same object instance as it did before—no reassignment done.

Session and Request Scope Internals

In the previous chapter, we came across two servlet classes, HttpServletRequest and

HttpSession, which as I explained represent the lifetimes of objects on your webapp.

If this comment seemed a little cryptic at that time, I’d like to clear the air now.

Both classes have setAttribute() and getAttribute() functions (see Appendix B for

details) to store and retrieve objects on them, very much like a HashMap’s put() and get()

functions. Objects stored on HttpServletRequest have request scope while objects stored

on HttpSession have session scope.

When you create a variable on your JSP page, as in Listing 3-1, you’re implicitly calling

setAttribute() on the appropriate object (an instance of either HttpServletRequest or

HttpSession) depending on the scope you used.

 Similarly, when you used myVariable in the scriptlets embedded in First.jsp and

Second.jsp, the servlet container retrieves the variable by calling

getAttribute("myVariable") on the appropriate object.

So, if you somehow manage to get an instance of either HttpServletRequest or

HttpSession, you could stuff them with objects that could in principle be retrieved from

your JSP pages. In fact, all you need is an instance of HttpServletRequest, since you could

get the associated HttpSession instance by calling getSession() on HttpServletRequest.
The “somehow” will become obvious in later chapters. For now, note that this is one

way you could pass data between the Java classes and JSPs that make up your webapp.

C H AP T E R 3 ■ U N D E R S T A N D I N G S C O P E S 21

Summary

• Scopes describe the lifetime and visibility of a variable.

• Session and request scopes are the most often used scopes.

• Session-scoped variables exist for the duration of a user’s session with the system.

• Request-scoped variables exist only for a single-page request, including redirects.

• Session-scoped variables are stored in an instance of HttpSession.

• Request-scoped variables are stored in an instance of HttpServletRequest.

• HttpServletRequest and HttpSession can be used to pass data between Java classes

and JSPs.

23

■ ■ ■

C H A P T E R 4

Custom Tags

Custom tags are JSP tags you create that allow you to define new functionality for your

JSPs. For example, suppose we have a custom tag called <temp:F> that converts degrees

Celsius to degrees Fahrenheit. We could use it in our JSPs:

Water boils at 100 Celsius, which is <temp:F>100</temp:F> Fahrenheit.

which displays as

Water boils at 100 Celsius, which is 212 Fahrenheit.

While this is a simple example meant to illustrate what custom tags are, in reality,

custom tags are useful for a number of reasons:

• They promote code reuse because they cut down duplication of code on your JSPs.

• They make your JSPs more maintainable, because you can avoid using scriptlets.

• Their usage simplifies the work of web designers, because they obviate the need for

scriptlets, which are more difficult to write and use.

• They are a key tool used to promote a separation of concerns (see Chapter 1). Most,

if not all, web application frameworks, including Struts and JavaServer Faces, utilize

custom tags for this reason.

Because Struts uses custom tags extensively, it is to your advantage to understand how

to create and use custom tags.

Custom Tag Basics

Tags have a prefix defined on the JSP page (in the preceding example, the prefix is temp) and a

tag name (in the example, F), which is fixed in the tag’s TLD (Tag Library Descriptor) file.

Before they can be used on a JSP, a tag has to be declared at the start of the page. For

example, a declaration for the <temp:F> tag might be as follows:

24 C H A P T E R 4 ■ C U S T O M T A G S

<%@ taglib uri="/tags/temperature" prefix="temp" %>

We’ll deconstruct this declaration in the following section. For now, simply note that

the prefix is defined in the JSP.

■Note A tag’s prefix is used to prevent tag name clashes. For example, if you had to use two different tags

(from different tag libraries) with the same name, you could give them different prefixes, to distinguish

between them. So, prefixes are flexible and you define them on an individual JSP. Tag names, on the other

hand, can’t be changed and are defined in the tag’s TLD file.

Tags may also have attributes, for example:

<msg:echo message="Hi" />

Lastly, several tags may be collected together, into a TLD file. That’s why it’s called a

Tag Library Descriptor file. We next take a look at the lifecycle of a typical tag.

How Custom Tags Are Processed

Suppose we have a JSP with a custom tag on it. How does it get converted to text we can

see on screen? Well, when the servlet container parses the JSP for the first time, it encoun-

ters the custom tag, for example:

<bean:write property="companyName"/>

The servlet container expects, and looks for, a corresponding taglib declaration on the

JSP page. For example:

<%@ taglib uri="/tags/struts-bean" prefix="bean" %>

There may be several such taglib declarations on the JSP page. The servlet container

knows which to use by matching the prefix on the tag with the prefix attribute in the

taglib declaration, as shown in Listing 4-1.

Listing 4-1. A Sample JSP with a Taglib Declaration and a Custom Tag

<%@ taglib uri="/tags/struts-bean" prefix="bean" %>

 <bean:write property="companyName"/>

The taglib declaration simply associates a prefix with a URI (Uniform Resource Identifier),

which is a logical path to the tag’s TLD file. The uri attribute is a logical and not a real path

because it points to a specific entry in web.xml, the standard servlet configuration file, and

not some location on your hard drive.

C H A P T E R 4 ■ C U S T O M T A G S 25

The web.xml file must contain the actual location of the tag library indicated by the uri

attribute. In this case, the relevant information in web.xml is given in a <taglib> tag (see

Listing 4-2).

Listing 4-2. A Taglib Section in web.xml

<taglib>

 <taglib-uri>/tags/struts-bean</taglib-uri>

 <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>

</taglib>

The main points to notice from Listing 4-2 are

• The taglib-uri body must match the uri attribute of the taglib declaration given in

the JSP file.

• The taglib-location body must contain the relative path to the TLD file. In the

previous example, the TLD file is struts-bean.tld.

The physical location of the TLD file is always relative to the root folder of the webapp’s

WAR file (or relative to your web application’s subdirectory in the servlet container’s

webapps directory). So, in Listing 4-2, we see that the TLD file resides in the WEB-INF folder

and is called struts-bean.tld.

Finally, the TLD file is just an XML document containing metadata describing the tags

in the library. This metadata is

• A tag’s name (which in Listing 4-1 would be write).

• A tag’s optional and required attributes and (property from Listing 4-1).

• The Java handler class that processes the tag’s attributes and body to produce the

output. These Java classes are usually bundled in a JAR file that you place in your

webapp’s WEB-INF\lib directory.

We’ll go through the nitty-gritty details of the TLD file in the lab session. Figure 4-1

summarizes the processing flow of a custom tag.

In the final step, the servlet container calls certain functions on the Java tag handler,

which is responsible for producing the custom tag’s output.

As you can see, the processing flow of even the simplest custom tag is a little involved.

I suggest rereading this section a couple of times until you are reasonably confident of the

details before proceeding.

26 C H A P T E R 4 ■ C U S T O M T A G S

Figure 4-1. Summarized processing flow of a custom tag

The Java Handler Classes

The actual work of transforming the custom tag’s body and attributes into HTML code is

done by Java handler classes that you must implement.

Your handler classes would subclass one of two base classes, depending on the require-

ments of your tag.

If your custom tag has no body, then you’d subclass javax.servlet.jsp.tagext.

TagSupport. This base handler class represents custom tags having no body, but possibly

having attributes.

If your custom class has a body, then you’d have to subclass javax.servlet.jsp.

tagext.BodyTagSupport instead. Of course, using BodyTagSupport doesn’t mean your tags

must have a body when they are used on JSPs. What it does mean is that you have to

implement an extra handler function to process the tag’s body.

To keep things simple, in what follows we will focus on BodyTagSupport.

C H A P T E R 4 ■ C U S T O M T A G S 27

■Note I’ve bent the truth a little here. You can subclass either BodyTagSupport or TagSupport, regard-

less of whether or not your custom tag has a body. It’s just that BodyTagSupport has extra facilities to allow

you to conveniently read your tag’s body. TagSupport does not have this ability. But this convenience comes

at a price, since the servlet container has to do extra work and use more memory. This explains why you

should subclass TagSupport if your custom tag doesn’t have a body, and use BodyTagSupport only if

necessary.

That extra function is doAfterBody(), which is called after the servlet container reads in

the tag’s body. This function is where you read the tag’s body, do all necessary processing,

and display the output. The tag must return an integer flag called EVAL_PAGE, defined for

you on BodyTagSupport. This flag tells the servlet container to go ahead and process the

rest of the page.

The other requirement your handler classes must satisfy is that they must have addi-

tional getXXX and setXXX functions corresponding to attributes supported by your

custom tag.

■Note In other words, in addition to being a subclass of either BodyTagSupport or TagSupport, your

handler class needs to be a JavaBean, with properties corresponding to attributes supported by your custom tag.

For example, in Listing 4-1, by looking at the <bean:write> you can infer that the corre-

sponding Java handler class has the functions getProperty() and setProperty(). Listing 4-3

illustrates this.

Listing 4-3. Part of the Java Handler Class for the <bean:write> Tag

import javax.servlet.jsp.tagext.*;

public class BeanWriteTagHandler extends TagSupport{

 protected String _property = null;

 public String getProperty(){

 return _property;

 }

 public void setProperty(String property){

 _property = property;

 }

www.allitebooks.com

http://www.allitebooks.org

28 C H A P T E R 4 ■ C U S T O M T A G S

 //other code omitted.

 ...

}

When the JSP that contains your tag loads, the servlet container calls all the necessary

setXXX() functions so that attributes of your tag are accessible to your tag’s Java code. Using

the <bean:write> tag as an example again, at runtime, you could call the getProperty()

function or just look at _property to read the value of the property attribute of the

<bean:write> tag.

Helper Classes

In order for your Java handler classes to do anything useful, such as reading the contents

of a tag’s body or writing your tag’s output, there are a couple of helper classes you need

to know about.

The first is javax.servlet.jsp.tagext.BodyContent, which you use to read your tag’s

body, among other things. The function getString() returns your custom tag’s body

(assuming it has one) as a String. You can get an instance of BodyContent, if you’ve subclassed

BodyTagSupport, by calling the function that has been implemented for you on the base

class BodyTagSupport.

BodyContent also gives a Writer instance with which you can write the output of your

tag’s transformed body. Calling getEnclosingWriter() on the BodyContent instance will

give you a Writer subclass—specifically, a subclass of javax.servlet.jsp.JSPWriter.

To see how all this works, consider a simple <message:write> tag, used like this:

<message:write font-color="red">Hello World!</message:write>

We need the message “Hello World!” to be displayed in the given font color—red, in

this instance. A Java handler to accomplish this is shown in Listing 4-4.

Listing 4-4. Implementation of <message:write>’s Handler Class

package net.thinksquared.tags;

import javax.servlet.jsp.tagext.*;

import javax.servlet.jsp.*;

public class MessageWriteTagHandler extends BodyTagSupport{

 protected String _fontColor = "black"; //default font color

 public String getFontColor(){

 return _fontColor;

 }

C H A P T E R 4 ■ C U S T O M T A G S 29

 public void setFontColor(String fontColor){

 _fontColor = fontColor;

 }

 public int doAfterBody(){

 try{

 BodyContent bc = getBodyContent();

 JSPWriter out = bc.getEnclosingWriter();

 out.write("<font color=\"");

 out.write(_fontColor);

 out.write("/">");

 out.write(bc.getString());

 out.write("");

 }catch(Exception ignore){}

 //tell the servlet container to continue

 //processing the rest of the page:

 return EVAL_PAGE;

 }

}!

The TLD File

The last piece of the custom tag puzzle is the TLD (Tag Library Descriptor) file. Each tag

you create has to be declared in a TLD file, and this file has to be deployed along with the

tag’s Java handler classes. As we’ve seen in the previous section, the servlet container

knows where you’ve placed the TLD file because you’ve declared the path in web.xml, the

standard servlet configuration file.

■Note I’ve included this section mainly for your reference. If you’re itching to write your own custom tag,

you may safely skip this section and proceed to Lab 4.

Consider the TLD file declaring the <message:write> tag we developed earlier, as

shown in Listing 4-5.

30 C H A P T E R 4 ■ C U S T O M T A G S

Listing 4-5. TLD File Declaring <message:write>

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE taglib

 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"

 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>

 <tlibversion>0.0</tlibversion>

 <jspversion>1.1</jspversion>

 <shortname>message</shortname>

 <tag>

 <name>write</name>

 <tagclass>

 net.thinksquared.tags.MessageWriteTagHandler

 </tagclass>

 <bodycontent>JSP</bodycontent>

 <attribute>

 <name>font-color</name>

 <required>false</required>

 </attribute>

 </tag>

</taglib>

As you can see, the TLD file is just an XML file. The root tag is <taglib>, and this contains

one or more <tag> tags, which declare your custom tag. Tables 4-1, 4-2, and 4-3 explain each

tag on the TLD file. Note that each <taglib> must contain one or more <tag> declarations.

Table 4-1. Tags on the TLD File

Tag Meaning

taglib Root tag for the TLD file.

tlibversion Your version number for this tag library.

jspversion The JSP version this tag library depends on. Use 1.1.

shortname The preferred or suggested prefix for tags on this tag library, when you use
the tag on your JSP pages. You are of course free to ignore this suggestion.

tag Contains metadata for a single tag in this tag library.

C H A P T E R 4 ■ C U S T O M T A G S 31

Lab 4: A Temperature Conversion Tag

In this lab session, you will create, deploy, and test a temperature conversion tag. Here are

some specs:

• The tag library will contain just one tag called convert, which has one optional

attribute.

• The optional attribute to indicates the temperature scale to convert to.

• By default, to is Fahrenheit.

• Conversions are from Celsius to either Fahrenheit or Kelvin.

■Note In a production implementation, you’d include some error reporting.

For example, these all convert to 100 Celsius to 212 Fahrenheit:

<temp:convert to="Fahrenheit">100</temp:convert>

<temp:convert to="F">100</temp:convert>

<temp:convert>100</temp:convert>

while these convert 100 Celsius to 373 Kelvin:

Table 4-2. The Subtags of <tag>

Tag Meaning

name Name of this tag.

tagclass Name of the Java handler class. Note that this is the fully qualified name of the
handler class, e.g., net.thinksquared.tags.MessageWriteTagHandler.

bodycontent The type of content for this tag’s body. Use JSP.

attribute Contains metadata for a single attribute on this tag.

Table 4-3. The Subtags of <attribute>

Tag Meaning

name Name of this attribute. This obviously has to be unique on the tag.

required Indicates if this tag is required (true) or optional (false).

32 C H A P T E R 4 ■ C U S T O M T A G S

<temp:convert to="Kelvin">100</temp:convert>

<temp:convert to="K">100</temp:convert>

To create and use this tag, you will have to

1. Prepare the development directory and scripts.

2. Write the Java tag handler.

3. Write the TLD file describing the tag.

4. Write the JSP to test the custom tag.

5. Amend web.xml to register your TLD file.

6. Install the application onto Tomcat.

Step 1: Prepare the Development Environment and Scripts

1. Create a Struts directory in a convenient location on your hard drive.

2. Copy the lab4.zip file on the CD-ROM into this Struts directory.

3. Unzip the contents, making sure you’ve preserved the directory structure.

4. You should see a subdirectory called .\Struts\lab4\.

5. Open .\Struts\lab4\compile.bat in a text editor and amend the PATH environment

variable so that it points to your JDK installation.

■Note On Windows XP, ME, or 2000, which have built-in unzipping capabilities, the zip file may add an extra

lab4 directory in the unzipped path. So, the compile.bat file’s path would be .\Struts\lab4\lab4\

compile.bat. You could move the lab4 folder up or just continue. The compile scripts should work

regardless.

Test out your changes by clicking compile.bat. You should get no errors, and you

should see a file called lab4.war in .\Struts\lab4\.

In what follows, I’ll refer to all paths relative to .\Struts\lab4\.

C H A P T E R 4 ■ C U S T O M T A G S 33

Step 2: Write the Java Tag Handler

1. Open the file .\src\Converter.java in your favorite text editor.

2. Put in a private String variable called _to. This will correspond to the to attribute

of your custom tag.

3. Create getTo() and setTo() methods to get and set the value of _to. The servlet

container will use these to get/set the variable _to with the value of the to attribute.

4. Complete the doAfterBody() method, using the specs to guide you. You will need

to use helper classes to do this (see Listing 4-4).

5. Note that doAfterBody() must return the integer flag EVAL_PAGE to indicate that the

rest of the JSP page is to be evaluated.

6. Compile your work by clicking on compile.bat.

Step 3: Writing the Tag Library Descriptor file

1. Open .\web\WEB-INF\lab4-converter.tld in your favorite text editor.

2. This is an empty tag library descriptor file, containing just the mandatory boiler-

plate. Create the root <taglib> ... </taglib> tag after the boilerplate.

3. Within the enclosing <taglib> tag, insert the appropriate tags, using Listing 4-5 as

a reference.

Step 4: Amend web.xml

web.xml is the standard servlet configuration file. Every webapp must have its own web.xml

file, even if it’s a blank one.

■Note If you place your TLD files in the WEB-INF directory, you really don’t need to declare them in

web.xml. We will, however, for completeness.

1. Open .\web\WEB-INF\web.xml in your favorite text editor. Note that the web directory

exists only in development. The compile.bat script later moves the whole WEB-INF

directory up, and removes the web folder.

34 C H A P T E R 4 ■ C U S T O M T A G S

2. The web.xml file contains boilerplate text, followed by a <webapp> tag. Insert the tags

shown in Listing 4-6 within the enclosing <webapp> tag.

Listing 4-6. Your Addition to web.xml

<taglib>

 <taglib-uri>/tags/lab4-converter</taglib-uri>

 <taglib-location>/WEB-INF/lab4-converter.tld</taglib-location>

</taglib>

■Note Notice in Listing 4-6 that the path separators are Unix-style slashes (/), not Windows backslashes.

Step 5: Write Your JSP

1. Open the file .\web\test.jsp in your favorite text editor.

2. Put in the taglib declaration for your custom tag library. Remember to use the URI

you defined in web.xml.

3. Put in JSP code to test the convert tag. You should at least test all the examples

given at the start of this lab.

Step 6: Deploy and Test

1. Shut down Tomcat if it is running.

2. Click compile.bat. This compiles your source code and produces the WAR file,

lab4.war.

3. Drop the WAR file into Tomcat’s webapps directory. Remember, if you want to re-

deploy the lab4 app, you will have to delete its folder under the webapps directory.

4. Use http://localhost:8080/lab4/ to test your work.

If you’re stuck at any point, you might want to consult the answers to this lab. You’ll

find them in lab4-answers.zip on the CD-ROM.

C H A P T E R 4 ■ C U S T O M T A G S 35

Professional Java Tools

In this book, I’ve used Windows batch files to compile and prepare WAR files. I’ve done

this to keep things as simple as possible. However, in the real world, batch files are not the

best way to compile your web applications. A much, much better option is to use Apache

Ant (see “Useful Links” for the website).

Ant gives you a platform-independent way of compiling your Java source code. But Ant

does much more. You can create different compile configurations easily with Ant. Also,

many valuable Java tools integrate with Ant. While using Ant is beyond the scope of this

book, I encourage you to download it and try to use it in your projects.

The other area I encourage you to explore is using a real Java integrated development

environment (IDE), rather than plain ol’ Notepad. Most IDEs provide tools to simplify

creating and editing Java, HTML, and XML, thus making you more productive.

One IDE I highly recommend is the open source Eclipse (see “Useful Links” for the

website). A copy of this IDE is on the accompanying CD-ROM.

Useful Links

• Apache Ant website: http://ant.apache.org

• Eclipse website: www.eclipse.org

Summary

• Custom tags are a central piece in Java-based web application frameworks.

• Custom tag functionality is implemented by your subclass of either TagSupport or

BodyTagSupport.

• Use TagSupport if your custom tag doesn’t have a body and BodyTagSupport if it does.

• You need to declare your custom tag in a Tag Library Descriptor (TLD) file.

• You might have to register the TLD file’s location in web.xml.

37

■ ■ ■

C H A P T E R 5

The MVC Design Pattern

Servlet technology is the primary base on which you can create web applications with

Java. JavaServer Pages (JSP) technology is based on servlet technology but extends it by

allowing HTML content to be created easily.

Note that JSP technology doesn’t replace servlet technology, but rather builds on it, to

address some of its deficiencies. Struts follows this pattern, and builds on servlet and JSP

technologies to address their shortcomings. These shortcomings are in two broad areas:

• Creating a “separation of concerns”: Pieces of code that do different things are

bundled separately and given standardized ways of communicating between

themselves.

• An infrastructure for webapps: This includes things like validating user input,

handling and reporting errors, and managing flow control.

If these shortcomings are addressed, the very practical problems of building webapps

(robustness, maintainability, localization, etc.) become easier to tackle.

One tool that can be used to make some headway in resolving these issues is an organizing

principle called the Model-View-Controller (MVC) design pattern.

WHAT ARE DESIGN PATTERNS?

Design patterns are essentially recipes for solving generic coding problems. They are not algorithms but

rather organizational principles for software.

The idea of using “design patterns” to solve common software engineering problems first came to

prominence with the book Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley

Professional, 1995), by, by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. The authors

credit an earlier work, A Pattern Language for Building and Construction (Oxford University Press, 1977)

by the architect Christopher Alexander as the inspiration for the idea of design patterns for software.

The MVC design pattern, which is the subject of this chapter, was first used in an AI language called

Smalltalk in the 1980s to solve a problem similar to the one we’re discussing here for webapps. A variation on

the pure MVC pattern is also used in Swing, Java’s platform-independent GUI toolkit.

www.allitebooks.com

http://www.allitebooks.org

38 C H A P T E R 5 ■ T H E M V C D E S I G N P A T T E R N

The MVC design pattern calls for a separation of code by their function:

• Model: Code to control data access and persistence

• View: Code to handle how data is presented to the user

• Controller: Code to handle data flow and transformation between Model and View

Figure 5-1 illustrates MVC.

Figure 5-1. The MVC design pattern

C H A P T E R 5 ■ T H E M V C D E S I G N P A T T E R N 39

In addition to this separation, there are a couple of implicit constraints that the Model,

View, and Controller code follow:

• The View gets data from the Model only through the Controller.

• The Controller communicates with the View and Model through well-defined,

preferably standardized ways. For example, embedding SQL code directly in your

Controller code violates this principle of standardized communication. Using

Model classes that expose functions for data access would be an example of standard-

ized communication between the Controller and the Model.

It may not be immediately obvious to you how this solves anything, but I hope you’ll

come to appreciate the power of the MVC approach as you progress. For now, it is sufficient

for you to accept that applying the MVC design pattern helps us achieve the larger goal of

separation of concerns, which greatly simplifies the building of web applications.

Our discussion so far has been quite general for a purpose. Any web application frame-

work will use the MVC principle, so it is to your advantage to understand it apart from

Struts’ implementation of it.

Later, we’ll discuss how Struts implements the MVC design pattern. But before we do,

I’ll give you an example of how to apply the MVC design pattern.

The Registration Webapp

Many web applications have a “user registration” facility. I’m sure you’ve seen this before.

Some online news sites, for example, have the annoying requirement that you “subscribe”

before you can view their content.

I’ll call this facility the “Registration Webapp.” What I’ll do is specify the requirements

of this webapp, and for each requirement, I’ll identify the types of code (Model, View, or

Controller) that might be needed.

Requirement 1

The user is asked to specify a user ID (userid) and a password, as well as a password

confirmation, as shown in Figure 5-2.

40 C H A P T E R 5 ■ T H E M V C D E S I G N P A T T E R N

Figure 5-2. The Registration webapp main page

Discussion

Clearly, you need View code to create the form containing the user ID and password

fields. The output of the View code would be HTML. The View code itself might be this

displayed HTML, or a JSP that is transformed into HTML by the servlet container.

Requirement 2

The form data is validated to check for a malformed user ID or password. The form is also

checked to ensure that the same password was entered both times and that it has the

right length.

Discussion

You will need Controller code to do the validation. One important point to note is that

these checks can be done without referring to a database. This means that you could vali-

date either on the client (the web browser), perhaps using JavaScript, or use Java classes

residing on the server.

C H A P T E R 5 ■ T H E M V C D E S I G N P A T T E R N 41

The first option would bend the MVC rule of strict separation between View and

Controller because the JavaScript would have to be placed in the HTML or JSP code in

Requirement 1. Even if you factored out the JavaScript validators into a separate .js file,

you’d still need Controller code on the HTML/JSP View code to transfer the form values to

the JavaScript validators. Don’t get me wrong; I’m not saying that client-side JavaScript is

an evil that crawls out from the bowels of Hell. I’m simply saying that hand-coded client-

side JavaScript to perform validation violates MVC.

Violations of MVC, no matter how well justified, come at the cost of reduced main-

tainability.

Fortunately, it is possible to have your cake and eat it too. Instead of using hand-coded

client-side JavaScript, Struts gives you the option of autogenerating client-side JavaScript.

This would greatly reduce Controller/View overlap. You’ll see this in action when we

cover the Validator framework in Chapter 15.

Or, we could simply cut the Gordian knot and do all validations on the server. Unfortu-

nately, this isn’t always an option, especially if the client-server connection is slow.

Requirement 3

The data is further checked to ensure that there are no other users with that user ID.

Discussion

As in Requirement 2, we obviously need Controller code to run the validation. Unlike

Requirement 2, a client-side validation is less feasible, because we might need to check

with a database in order to find out if the given user ID exists.

This also implies we need Model code to read user IDs off the database. The Model

code has a function like this:

public boolean exists(String userid)

to run the user ID check. Our Controller code would use this function to run the validation.

Requirement 4

If at any stage there is an error, the user is presented with the same start page, with an

appropriate error message (see Figure 5-3). Otherwise, the user’s user ID and password

are stored.

42 C H A P T E R 5 ■ T H E M V C D E S I G N P A T T E R N

Figure 5-3. Signaling errors to the user

Discussion

You’ll need a Controller to decide what to do if there’s an error: display the error page or

save the data?

You’ll also need a View to display the error message. Here’s where enforcing strict MVC

separation makes things complicated. For example, do you need to duplicate View code from

Requirement 1 to redisplay the form data? How about re-populating the previously keyed-in

form data? In Figure 5-3, the user ID field isn’t blank—it contains the previously keyed-in

user ID.

In fact, we could handle errors from Requirement 2 if we threw out MVC and mixed

Controller and View code, as I described in the discussion to Requirement 2. Although this

still wouldn’t solve the same display issues arising from Requirement 3, we might be able

to hack a solution by merging Model and Controller code with our View code by embedding

scriptlets in our JSP View code.

These complications illustrate the need for a web application framework like Struts.

You need Struts to help you enforce MVC. Without Struts (or a web application framework),

it is probably impossible to cleanly enforce MVC separation on your webapp code.

Note that I’m only saying that Struts (or a webapp framework) makes MVC possible.

Don’t take this to mean that Struts makes bad code impossible! You can cheerfully violate

MVC even if you’re using Struts.

C H A P T E R 5 ■ T H E M V C D E S I G N P A T T E R N 43

Lastly, you’d also need Model code to save the user ID and password pair. Listing 5-1

outlines how the Java class for your Model code would look.

Listing 5-1. Skeleton for the Registration Webapp Model

public class User{

 protected String _userId = null;

 protected String _password = null;

 /* Bean-like getters and setters */

 public String getUserId(){

 return _userId;

 }

 public String setUserId(String userId){

 _userId = userId;

 }

 public String getPassword(){

 return _password;

 }

 public String setPassword(String password){

 _password = password;

 }

 /**

 * Checks if the userid exists.

 */

 public static boolean exists(String userid){

 //implementation omitted

 }

 /**

 * Saves the _userid and _password pair

 */

 public void save() throws Exception{

 //implementation omitted

 }

}

Of course, in real applications, you’d have more than one class for your Model code.

44 C H A P T E R 5 ■ T H E M V C D E S I G N P A T T E R N

Requirement 5

If the registration is successful, the new user gets a “You are registered” web page (see

Figure 5-4).

Figure 5-4. Successful registration

Discussion

You’ll need View code to display the page. Plain ol’ HTML would do, unless you’re embed-

ding this message within a larger page, as is often the case in real life. Like Requirement 4,

this latter possibility also complicates strict MVC enforcement.

But again, Struts comes to your rescue. As you’ll see in Part 2 of this book, Struts has an

extension (“plug-in” in Struts-speak) to give you just this functionality.

I hope this simple example gives you a good idea how to classify your code with the

MVC worldview. I also hope it gives you an idea of why you’d need a framework to help

you actually enforce MVC. To give you a little more practice, try the following quiz.

C H A P T E R 5 ■ T H E M V C D E S I G N P A T T E R N 45

Lab 5: MVC Quiz

LILLDEP (Little Data Entry Program) is a simple data entry program for storing and

managing a database of contacts. It’s a common type of web application used in many

SMEs (Small Medium Enterprises). Figure 5-5 shows the basic LILLDEP main page.

Figure 5-5. The LILLDEP main page

Have a look at the three requirements that follow and try to identify the Model-View-

Controller parts that might be relevant. Imagine a possible implementation for each, as

I did in the previous section, and identify where you might need help to enforce strict

MVC code separation.

• Requirement 1: A page to collect information about a contact

• Requirement 2: Code to check contact details (postal code, email, or required

fields) after submission and display errors

• Requirement 3: Code to store and retrieve data into a database

46 C H A P T E R 5 ■ T H E M V C D E S I G N P A T T E R N

Which Comes First?

When you develop your webapp with the MVC design pattern, which portion (Model/

View/Controller) would you specify and design first? Why?

Close the book and give yourself a few minutes to answer this before reading the

following discussion.

There’s no “right” answer to this one, but most people start with either View code or

Model code. Rarely would you start with a design for the Controller since it depends on

View and Model components.

My personal preference is to specify and design Model code first. This means defining

at an early stage what data to store and how to expose data with data access methods (like the

exists() method in Listing 5-1) to other code. Here are my reasons for holding this position:

• Without a clear specification of what data to store, you can’t design the rest of

the application.

• Without a specification of how to access data, a clear separation between Model

and Controller is difficult to achieve. For example, if you’re using a relational database,

you might end up with SQL code in the Controller. This violates the MVC principle

of well-defined interfaces.

Many people (especially new developers) prefer to design View code first, possibly

because this helps them understand the application’s inputs and control flow. In this

approach, View comes first, then Controller, and Model last. Though it’s perfectly valid,

I believe this approach is prone to certain pitfalls:

• Redundant information being stored in the database. Like the proverbial three

blind men describing the elephant, using View code to drive Model design is bad

because you lack a global view of the application’s data requirements. This is especially

so in complex applications, where you could store the same information twice, in

two different tables.

• Poorly organized database tables, because the Model code and data organization is

designed to conform to View requirements, which may not reflect the natural rela-

tionships between Model elements.

• Less future-proof code, because a change in the View code may necessitate a

revamp of Model code and the database design. Essentially, Model code is too

strongly coupled to View code.

All these stem from the fact that those who take the “View first” approach use View

code or mockups to indirectly educate them about Model requirements.

C H A P T E R 5 ■ T H E M V C D E S I G N P A T T E R N 47

Having said that, there are many situations where a “Model first” approach may seem

impractical. For example, in many corporate IT departments, developers don’t have a full

understanding of the problem domain. Instead, they have to rely on and frequently

communicate with non-IT personnel like managers or admin staff (“domain experts”) in

order to understand the system’s requirements.

In this scenario, the application is naturally View driven because mockups are used as

a communication tool between developers and domain experts. My advice to those in

such a situation is to incrementally build a picture of the Model code and data immediately

after each discussion with domain experts. Don’t leave Model design to the last.

Whichever way you choose, Model-first or View-first, I believe it’s important to under-

stand why you do things the way you do, simply because this helps you become a better

programmer.

In the following section, I’ll describe how Struts fits into the MVC design pattern.

Struts and MVC

In Struts, Model code consists of plain old Java objects (POJOs).

In other words, Struts places no restrictions on how you code the Model portion of your

webapp. You should encapsulate data access/persistence into Model classes, but Struts

does not force you to do this. Remember, Struts is here to help you achieve MVC nirvana

as easily as possible. Apparently, you don’t really need help to separate Model from View

and Controller.

View code consists of JSPs and a set of custom tags supplied by Struts. These custom

tags enable you to separate View from Controller, because they address all the issues I raised

earlier when I tried to apply MVC to the Registration webapp.

With Struts, Controller code falls into three broad categories:

• Simple validations are performed by your subclasses of the Struts base class called

ActionForm. Checks for password length or email address format are examples of

this. Later in this book, you’ll see how Struts greatly simplifies validation with the

Validator framework.

• Complex validations and business logic are done in your subclasses of the Struts

base class called Action. The check for the duplicate user ID for the Registration

webapp is an example of complex validation. An example of business logic is calcu-

lating the total amount due after a purchase in a shopping cart webapp.

• Flow control is also decided by your Action subclasses, restricted to paths declared

in the Struts configuration file called struts-config.xml.

www.allitebooks.com

http://www.allitebooks.org

48 C H A P T E R 5 ■ T H E M V C D E S I G N P A T T E R N

You’ll learn more about ActionForm, Action, and struts-config.xml as this book

progresses. At this stage, you should simply understand how MVC maps into Struts.

Figure 5-6 depicts this mapping.

Figure 5-6. How MVC maps into Struts

Lifecycle of a Struts Request

The three categories of processing (simple/complex validation, business logic, and flow

control) come into play when an incoming HTTP request is generated by a user submit-

ting form data.

With servlet technology all such processing is done by servlets. As I mentioned in

Chapter 2, Servlets are just Java objects, usually your subclasses of HttpServlet.

Even JSP pages are converted at runtime into servlet classes—actual .java source files.

These autogenerated Java source files are later compiled.

Since Struts is built on servlet technology, it is no exception to this rule. All submissions

of form data to a Struts application are intercepted by a single “master” servlet, an instance

of ActionServlet, which is a part of Struts.

This master servlet is responsible for delegating the actual work of your application to

your subclasses of ActionForm and Action (see Figure 5-6).

C H A P T E R 5 ■ T H E M V C D E S I G N P A T T E R N 49

USUALLY?

Servlet technology is quite generic, meaning it is not at all tied to processing HTTP requests, although

this is by far the most common use.

This is because servlets solve a number of generic problems that stem from client-server commu-

nication, such as object pooling and session management. Your servlet classes could implement the

basic Servlet interface from scratch, or subclass the GenericServlet base class. You’d do this if

you wanted to take advantage of servlet technology’s solutions to these generic problems.

If you’re primarily concerned with processing and displaying web pages, HttpServlet is the base

class you’d subclass.

■Note In addition to this, ActionServlet and its helper classed are responsible for many other behind-

the-scenes things like pooling Action subclasses for efficiency, reading configuration data, or initializing

Struts extensions called plug-ins. These activities are invisible to Struts developers, and are one good reason

why Struts is so easy to use. You don’t have to know how the clock works to tell the time!

The incoming form data is processed in stages:

• Data transfer: Form data is transferred to your ActionForm subclass.

• Simple validation: The form data in this subclass is passed through simple valida-

tion. If simple validation fails, then the user is automatically presented with the

form with the error messages detailing the errors. This is a typical scenario, but the

details would depend on how you configured Struts. We’ll go through the mechanics

of simple validation in Chapter 6 and tackle configuration in Chapter 9.

• Further processing: Form data is next sent to your Action subclass for complex vali-

dation and the processing of business logic. We’ll discuss this in Chapter 7.

Your Action subclass also specifies the “next” page to be displayed, and this ends the

processing of a single request.

Frameworks for the Model

In a previous section, I sang the joys of designing the Model portions of your webapp first,

so Struts’ lack in this area might come as a bit of a letdown.

50 C H A P T E R 5 ■ T H E M V C D E S I G N P A T T E R N

One reason for this glaring deficiency in Struts is because there are already several

frameworks to help you with data access and persistence. These go under the monikers

“persistence framework/layer” or “object/relational (O/R) persistence service.” The

reason these frameworks exist is to persist data, and do it well. You may use any one of

these in conjunction with Struts. So you see, it isn’t a deficiency at all but just good design.

There are two different approaches to data persistence:

• Persist the classes: This approach lets you store and retrieve any Java object to/from a

relational database. You are provided with a set of classes, which you must use to

persist and retrieve your own Java classes. An example of this approach is Hibernate,

from Apache.

• Classes that persist: In this approach, you specify a description for your database

tables and their interrelationships. The persistence framework autogenerates Java

classes (source code), which have mappings to your database tables. These autogener-

ated classes have save(), select(), and delete() functions to allow persistence and

retrieval of data objects. A prime example of this approach is Torque, also from Apache.

The “persist the classes” approach is by far the more flexible of the two, since you could

potentially persist any Java class, including legacy ones, or third-party classes. The “classes

that persist” approach, on the other hand, lacks this capability but produces a cleaner

separation between Model and Controller.

I should warn you that while this comparison between approaches is valid, you can’t

use it to choose between products like Hibernate and Torque. Hibernate, for example,

provides many features beyond what I’ve described here. These extra features are what

you’d want to consider when choosing a persistence framework.

In Appendix A, I give you simple examples of how to use Hibernate and Torque, and

also (shameless plug) a simple, open source, “classes that persist” framework called Lisptorq,

developed by the company I work for.

Useful Links

• Hibernate: www.hibernate.org/

• Torque: http://db.apache.org/torque/

• Lisptorq: www.thinksquared.net/dev/lisptorq/

C H A P T E R 5 ■ T H E M V C D E S I G N P A T T E R N 51

Summary

• The Model-View-Controller (MVC) design pattern brings many benefits to the

webapp that implements it.

• Implementing MVC is difficult, which is why you need a web application framework

like Struts.

• Struts only places restrictions on the View and Controller. You are free to implement

the Model portion in any way you wish.

• Two very popular persistence frameworks are Hibernate and Torque.

53

■ ■ ■

C H A P T E R 6

Simple Validation

One common element of web applications is form validation. This involves running

checks to ensure that user input conforms to the system’s expectations. In the previous

chapter we saw how these checks naturally fall into two categories:

• Simple validation: Validations that do not require complex processing or business

logic. This includes, for example, checks that mandatory fields are filled, that user

input conforms to the right format (email addresses, postal codes, or credit card

numbers), and a variety of other checks.

• Complex validation: Validations that are dependent on processing of business

logic. For example, a check for a duplicate user ID would qualify as a complex

validation because it involves reading data from a Model component.

Also in the previous chapter, I briefly described how Struts fits into MVC. You also

saw how for the Controller, Struts makes a distinction between “simple” and “complex”

validations of user input by using different classes to perform them.

Struts makes this distinction for two reasons. First, they involve significantly different

operations and are usually maintained separately. The second reason is to give you a

powerful tool (the Validator framework), which greatly relieves the tedium of doing

simple validation.

In this chapter, we’ll focus on the basics of simple validation.

Processing Simple Validations

In addition to using different classes for simple and complex validations, Struts processes

these validations differently too.

When a user submits a form, Struts first runs simple validations on it. If the validations

fail, Struts sends the user the same form, with the same data the user keyed in but with

error messages corresponding to each field with an error.

54 C H A P T E R 6 ■ S I M P L E V A L I D A T I O N

Only after the simple validations pass will Struts send the form data for further processing.

This might include performing complex validations or data transformations or storing

data into the database.

Anatomy of ActionForm

The central class for performing simple validations is

org.apache.struts.action.ActionForm

Struts requires you to associate each form displayed to the user with your subclass

of ActionForm.

Your subclass of ActionForm does two things:

• It holds all form data: Your subclass of ActionForm must have getters and setters

corresponding to each property of the form.

• It performs simple validation: Your subclass must override the validate() function,

if you want to perform any simple checks.

Figure 6-1 illustrates this relationship between ActionForm, your ActionForm subclass,

and the input HTML form for which your subclass stores data.

Figure 6-1. Subclassing ActionForm

When a user submits a form, Struts populates the associated ActionForm subclass with

the data, then calls validate() to perform any simple validations required. This function

looks like this:

C H A P T E R 6 ■ S I M P L E V A L I D A T I O N 55

public ActionErrors validate(ActionMapping mapping, HttpServletRequest request)

■Note For the time being, (and for your sanity!) you may safely ignore the ActionMapping and

HttpServletRequest classes, which are validate()’s arguments. At this stage, the only important class

apart from ActionForm is ActionErrors. We’ll come back to the other two classes in future chapters.

ActionErrors, which is validate()’s return value, is essentially like a HashMap to store

error messages by key. If validate() returns a null value (or an empty ActionErrors

instance), the validation passes.

If validate() returns a non-empty ActionErrors instance, the validation fails, and

Struts redisplays the form to the user along with any error messages.

Listing 6-1 illustrates how you might implement the ActionForm subclass corresponding

to the Registration webapp form of Chapter 5.

Listing 6-1. RegistrationForm.java

package net.thinksquared.registration.struts;

import javax.servlet.http.*;

import org.apache.struts.action.*;

public final class RegistrationForm extends ActionForm{

 private String _userid = null;

 private String _pwd = null;

 private String _pwd2 = null;

 /**

 * getXXX and setXXX functions

 * corresponding to form properties

 */

 public String getUserid(){ return _userid; }

 public void setUserid(String userid){ _userid = userid; }

 public String getPassword(){ return _pwd; }

 public void setPassword(String pwd){ _pwd = pwd; }

 public String getPassword2(){ return _pwd2; }

 public void setPassword2(String pwd2){ _pwd2 = pwd2; }

56 C H A P T E R 6 ■ S I M P L E V A L I D A T I O N

 /**

 * Validate the user input. Called automatically

 * by Struts framework.

 */

 public ActionErrors validate(ActionMapping mapping,

 HttpServletRequest request){

 //create a blank ActionErrors

 ActionErrors errors = new ActionErrors();

 //check for a blank user id

 if(null == _userid){

 errors.add("userid",

 new ActionMessage("reg.error.userid.missing"));

 }

 //check password 1 == password 2

 if(!_pwd.equals(_pwd2)){

 errors.add("password",

 new ActionMessage("reg.error.password.mismatch"));

 }

 return errors;

 }

}

Recall that the Registration webapp’s user input consisted of three fields: a user ID, a

password, and the password confirmation. The first thing to note from Listing 6-1 is that

this ActionForm subclass contains getters and setters for each of these three fields.

The body of validate() follows a simple pattern:

1. Create a blank ActionErrors instance.

2. Run a check for each field, and populate the ActionErrors instance with error

messages.

3. Return the ActionErrors instance.

In Listing 6-1, I’ve only put in a check for a blank user ID and a test to see if the password

and its confirmation were the same. In a real application, you might want to incorporate

further checks to ensure that the password isn’t too short or too long and that the user ID

doesn’t contain nonalphanumeric characters. As you can see, even for a trivial application

like this, you’d need quite a few checks!

C H A P T E R 6 ■ S I M P L E V A L I D A T I O N 57

One thing you should not put in here is the check to see if the user ID is taken. You could

actually do this, for example, by adding the code shown in Listing 6-2.

Listing 6-2. Code to Check for a Duplicate User ID

//test for duplicate userid

if(User.exists(_userid)){

 errors.add("userid",

 new ActionMessage("reg.error.userid.exists"));

}

But you should not do this because it isn’t a simple validation, since it involves calling

Model code (the User class from Listing 5-1):

if(User.exists(_userid)){...

and therefore, should be excluded from your subclass of ActionForm. This rule (you could

call it a “best practice”) has practical benefits. You’ll see this later when I describe the Validator

framework in Part 2 of this book.

To summarize, each form displayed to the user is associated with an ActionForm subclass.

This subclass stores the form data, and exposes a validate() function that Struts calls

automatically in order to run validations.

There’s still one loose string, which is ActionErrors, and I’ll describe this next.

Using ActionErrors

Struts uses the ActionErrors instance returned by validate() to display the error messages on

the redisplayed form.

ActionErrors (note the plural) is very much like a HashMap, and it is used to store error

messages, indexed by error keys. The error message is not a String, but an instance of

ActionMessage.

■Note In earlier versions of Struts, the error message was an instance of ActionError (note the singular),

but that’s been deprecated in favor of ActionMessage.

ActionMessages are added to an ActionErrors instance using the add() function:

public void add(String key, ActionMessage message)

You can think of this as analogous to the put() function on a HashMap.

The constructor for ActionMessage (see Listing 6-1) might seem a little cryptic:

58 C H A P T E R 6 ■ S I M P L E V A L I D A T I O N

new ActionMessage("reg.error.password.mismatch")

For one thing, it’s obvious that we’re not passing in the actual error message! Instead,

we’re passing in a key to an error message, stored in a properties file accessible to Struts.

■Note Exactly how Struts locates this properties file is the subject of Chapter 9, where you’ll learn how to

configure Struts.

Properties files are just text files, which contain key/value pairs. In this case, the key is

reg.error.password.mismatch, and the value might be The passwords you keyed in don't

match!.

Listing 6-3 shows a possible properties file for the Registration webapp.

Listing 6-3. registration.properties, a Properties File for the Registration Webapp

Properties file for Registration webapp

Error messages:

reg.error.userid.missing=The user id is missing.

reg.error.userid.exists = The user id exists. Choose another.

reg.error.userid.bad = Use only alphanumerics for the userid.

reg.error.password.mismatch = The passwords you keyed in don't match!

reg.error.password.long = The password is too long!

reg.error.password.short = The password is too short!

Prompts:

reg.prompt.userid=User ID

reg.prompt.password=Password

reg.prompt.password.confirmation=Password Confirmation

In Listing 6-3, you can see how error message keys are associated with the actual error

messages. You can also see how prompts that go into the user interface can be stored in

the properties file. Essentially, using properties files is a simple, general-purpose way to

store static key/value pairs for any Java application.

C H A P T E R 6 ■ S I M P L E V A L I D A T I O N 59

■Note The dotted notation for the property keys (e.g., reg.error.userid.bad) is just a convention. This

convention is useful because it forms a namespace for your properties files. If you had two or more properties

files, following this convention would prevent you (or your development team) from using the same key twice.

The convention is also useful because it gives you an idea of what the key might refer to.

The string argument of the ActionMessage constructor must be a key on a properties

file. This might seem restrictive, but there’s a very good reason for this. This is how Struts

makes it easy to localize an application.

For example, if you wanted a German version of the Registration webapp, all you’d

have to do would be hand over this properties file (registration.properties) for translation.

You’d save the translated version as registration_de.properties, and bundle it with your

webapp. German users would see the German version of the Registration webapp and

everyone else would see the default English version. Localizing a webapp was never so

easy! We’ll see this in action further down the road in Chapter 12.

■Note The use of properties files also makes your webapp more consistent, since it lessens your chances

of displaying “Your user ID is bad” in one error message and “Your user ID isn’t valid” for the same error in a

different form.

But ActionMessages are only one half of the puzzle of how error messages are displayed.

The other crucial bit is the key under which the ActionMessage is stored on the

ActionErrors instance. With reference to Listing 6-1:

errors.add("password", new ActionMessage(...));

As you might guess, the key corresponds to the name of the form property associated

with the error. This is only a helpful convention, not a necessity. Struts uses a special

Struts tag called <errors> with an attribute called property that you match with the error

key, like so:

<html:errors property="password"/>

You’d place this tag on the JSP containing the form, near the password field. I’ll go into

this in more detail in Chapter 8, when I describe the View components of Struts.

Figure 6-2 summarizes the relationship between ActionErrors, ActionMessage, proper-

ties files, error keys, and the error tag.

60 C H A P T E R 6 ■ S I M P L E V A L I D A T I O N

Figure 6-2. How ActionErrors ties error messages to the View component

To summarize, when the user submits a form, Struts calls validate() on the associated

ActionForm subclass, which returns an ActionErrors instance. This is just a collection

of ActionMessages, each of which references error messages stored in properties files.

When Struts redisplays the page, it uses special <errors> tags you’ve embedded on the

page to locate exactly where to display the error messages. The <errors> tags on the page

are distinguished by their property attribute, which forms the link between the tag and a

particular ActionMessage instance stored on the ActionErrors collection.

That’s quite a lot to take in one go! You might want to try the quiz that follows to see if

you’ve really understood the preceding material.

Simple Validation Quiz

Q1: Suppose validating a certain field requires a numerical calculation. Would this qualify as a simple

validation? You should give clear reasons for your answer.

Q2: When is validate() called? Before Struts populates the ActionForm or after?

Q3: If validate() returns an empty ActionErrors instance, will the form be redisplayed?

Q4: Rewrite Listing 6-1 so that Struts only displays the error message for the first validation error encountered.

Q5: If you changed the name of one of a form’s properties (say zipcode to postcode), would you have

to change the corresponding error key for ActionErrors, that is, errors.add("zipcode",...) to

errors.add("postcode",...)?

Q6: If your answer to Q5 was yes, what other changes would you have to make?

Q7: If there were more than one validation error for a single property, which error message (if any) do you

think would be displayed?

C H A P T E R 6 ■ S I M P L E V A L I D A T I O N 61

Check your answers with those in Appendix D. Once you’re confident of the material,

try out Lab 6.

Lab 6: ContactForm for LILLDEP

LILLDEP (Little Data Entry Program) is a webapp that maintains a database of contacts.

Each contact has the following 14 properties:

• name of contact

• designation of contact (e.g., “Senior Engineer”)

• department

• email address

• tel number

• fax number

• company to which contact belongs to

• address of contact’s company

• postcode of company address (“zip code” in the United States)

• country of company site

• website of contact’s company

• activity engaged in by contact’s company

• classification of contact’s company

• memo, which contains miscellaneous notes for this contact

Figure 6-3 shows the form data as it is seen by a user.

62 C H A P T E R 6 ■ S I M P L E V A L I D A T I O N

Figure 6-3. The LILLDEP start page

The associated ActionForm subclass that handles validation for this contact data is

called ContactForm. In this lab, you’ll complete the implementation for ContactForm.

There are three things you will need to do:

• Put in the getXXX and setXXX functions corresponding to each of the 14 properties.

• Complete the validate() function.

• Complete the implementation of a reset() function, which resets the values of the

ContactForm.

Complete this lab by following these steps.

Step 1: Prepare the Development Environment and Scripts

1. Copy the lilldep.zip file from the Source Code section of the Apress website,

found at http://www.apress.com, into the Struts directory you created in Lab 4.

2. Unzip the contents, making sure you’ve preserved the directory structure.

3. You should see a subdirectory called .\Struts\lilldep\.

4. Open .\Struts\lilldep\compile.bat in a text editor and amend the PATH envi-

ronment variable so that it points to your JDK installation.

C H A P T E R 6 ■ S I M P L E V A L I D A T I O N 63

■Note On Windows XP, ME, or 2000, which have built-in unzipping capabilities, the zip file may add an

extra lilldep directory in the unzipped path. So, the compile.bat file’s path would be .\Struts\lill

dep\lilldep\compile.bat. You could move the lilldep folder up or just continue. The compile scripts

should work regardless.

Test your changes by clicking on compile.bat. You should get no errors, and you should

see a file called lilldep.war in .\Struts\lilldep\.

In what follows, I’ll refer to all paths relative to .\Struts\lilldep\.

Step 2: Implement Getters and Setters for ContactForm

A skeleton for ContactForm has been created for you, in the directory net\thinksquared\

lilldep\struts.

Now, unlike the example with the Registration webapp (Listing 6-1) where the form

data was stored in private variables such as _userid and _pwd, the getters and setters of

ContactForm must store data in a bean called Contact.

■Note The Contact bean was autogenerated using Lisptorq. If you’d like details on how it and other Model

classes were created, refer to Appendix A.

The Contact bean also contains getters and setters for each of the 14 properties listed

earlier. Your getters/setters for ContactForm should call the corresponding getters/setters

for the Contact bean contained in ContactForm. This may seem a little strange, but this

simplifies the code in later lab sessions.

Complete the following steps:

1. Put in the getters and setters for ContactForm.

2. Put in an extra pair of functions, getContact() and setContact(), to get and set the

Contact bean instance.

3. Run compile.bat to ensure you have no errors.

Step 3: Implement validate()

You need to implement a few validations:

64 C H A P T E R 6 ■ S I M P L E V A L I D A T I O N

1. Ensure that the company name isn’t blank. The error key is lilldep.error.company.

2. Ensure that the contact’s name isn’t blank. The error key is lilldep.error.name.

3. Ensure that the email address, if not blank, is a valid email address. The error key is

lilldep.error.email.

Check that your work compiles without errors.

These are only a few possible validations you might in reality run on ContactForm. In

Chapter 15, you’ll see how to write simple validations without having to use Java.

Step 4: Implement reset()

In addition to validate(), ActionForm exposes another function, called reset(), which

resets the ActionForm’s values to defaults you define. reset() can be called by View code

using a Reset button.

The skeleton for this function is in ContactForm. Complete the implementation to reset

the properties of the Contact bean. (Hint: You should peruse the source code for Contact

to find a suitable function that does this.)

As usual, compile your code to ensure that it’s free of errors.

What Has Struts Done for You Today?

Just as in life, “counting your blessings” often puts your problems in perspective, so it may

be helpful to consider what Struts has done thus far to make writing web applications easier:

• Automatically transfers form data into your app: When the user submits a form,

the data is automatically read from the form and put into your ActionForm subclass.

Struts even performs type castings for you.

• Centralizes simple validations: All your simple validations go into the validate()

function. It can’t get any simpler. Well, it can, as you’ll see in Chapter 15.

• Automatically redisplays badly filled forms with errors messages: Without Struts,

you had to do this yourself. Consider for a few moments how you might do this

yourself without Struts. I hope you can see this is a very big plus!

• Enables easy localization of error messages: This occurs through the use of

properties files.

C H A P T E R 6 ■ S I M P L E V A L I D A T I O N 65

Summary

• ActionForm is the central class that for simple validation.

• Your ActionForm subclass must have getters and setters for each form property, and

must override validate() to run simple validations.

• ActionErrors is the return value of validate() and holds error messages.

• Individual error messages are represented by instances of ActionMessage.

• The actual error message is stored in properties files.

67

■ ■ ■

C H A P T E R 7

Processing Business Logic

In the previous chapter, you learned how to run simple validations on user input. Within

the Struts framework (or any sensible framework, really), only after all simple validations

pass is the data ready to be processed by the system. This processing, usually referred to

as “business logic,” consists of three broad tasks:

• Complex validations: These are further validations that need to be run but, unlike

simple validations, are not generic. They require domain-specific processing, or

communication with the Model components of your webapp.

• Data transformations: This includes making calculations, saving data, and preparing

data for output. This is the meat of a particular task.

• Navigation: This involves deciding what page to display next to the user at the

completion of the task.

Struts centralizes these three tasks in a single Controller class called Action.

1,2,3 Action!

Just as simple validation was performed by your subclass of ActionForm, the processing of

business logic is done by your subclass of

org.apache.struts.action.Action.

Within the MVC paradigm, your Action subclass is a Controller (see Chapter 5, Figure 5-5),

because it communicates with both the Model and View components of your webapp

through well-defined interfaces.

The input data upon which your Action subclass acts is the form data submitted by the

user. As you’ll recall from the previous chapter, form data submitted by the user is auto-

matically transferred by Struts to your ActionForm subclass. This ActionForm subclass

instance contains the input data for your subclass of Action. The ActionForm subclass is a

JavaBean, meaning it has getXXX() and setXXX() functions corresponding to each property

68 C H A P T E R 7 ■ P R O C E S S I N G B U S I N E S S L O G I C

on the HTML form. Your Action subclass can use these getXXX() functions to read the

form data. Figure 7-1 illustrates this data flow.

Figure 7-1. Data flow from form to Action

In fact, for each Action subclass you define, you may associate any number of

ActionForm subclasses, all of which are potential inputs into that Action subclass. You’ll

see how this association is made in Chapter 9.

The Statelessness of Action

One very important thing to know about Action is that it must be stateless. You must

never store data in your Action subclass. In other words, your Action subclass must never

have instance variables (variables within a function are OK). Listing 7-1 illustrates what

you should never do.

Listing 7-1. Never Use Instance Variables in an Action Subclass!

public class MyBadAction extends Action{

 private String myBadVariable; // NEVER EVER do this!

 protected void myFunction(){

 String s = null; //variables in a function are OK.

 ...

C H A P T E R 7 ■ P R O C E S S I N G B U S I N E S S L O G I C 69

 }

 ...//rest of Action

}

Struts manages the creation of your Action subclasses, and these are pooled (reused) to

efficiently service user requests. For this reason, you can’t use instance variables. There is

no way to guarantee that the data you store in an instance variable applies to a given

request.

Subclassing Action

There is just one method you need to override in your Action subclass, and that’s execute()

(see Listing 7-2).

Listing 7-2. The execute() Function

public ActionForward execute(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

■Note In older versions of Struts (version 1.0 and earlier), execute() was called perform().

After the validate() method on the ActionForm passes, Struts calls execute() on the

Action associated with the form. As you can see, five classes play a role in this function:

• ActionForward: Represents the “next” page to be displayed. This is the return value

of execute().

• ActionMapping: Represents associations between this Action and its possible “next”

pages.

• ActionForm: Contains input form data.

• HttpServletRequest: Contains request-scoped and session-scoped data. You can

also place data on the session using this class. Note that not all data goes on the

submitted form. Other data could be placed on the form’s “action” URL. You can

read these with HttpServletRequest.

70 C H A P T E R 7 ■ P R O C E S S I N G B U S I N E S S L O G I C

• HttpServletResponse: Allows you to write data to the user’s web browser. You are

less likely to use this class, unless you want to send, say, a generated PDF report

back to the user. ()

The important functions of each of these classes are listed in Appendix B.

Business Logic in the Registration Webapp

We’ll now take up our earlier example of the Registration webapp (see Chapters 5 and 6),

and see how we can process business logic. For the Registration webapp, this involves

the following:

• Complex validation: Checking if the given user ID exists. I gave you a solution in

Chapter 6, Listing 6-2, which we’ll use here.

• Data transformation: Saving the user ID and password into the database, using the

User data object (see Listing 5-1 in Chapter 5).

• Navigation: Displaying the “You’re Registered!” page (Figure 7-2) if registration

succeeds, or redisplaying the form with an error message (Figure 7-3) if the user ID

exists.

Figure 7-2. The “You’re Registered!” page

C H A P T E R 7 ■ P R O C E S S I N G B U S I N E S S L O G I C 71

Figure 7-3. Redisplay of form to user with error message

We only need one Action subclass, called RegistrationAction, which is shown in

Listing 7-3.

Listing 7-3. RegistrationAction.java

package net.thinksquared.registration.struts;

import javax.servlet.http.*;

import org.apache.struts.action.*;

import net.thinksquared.registration.data.User;

public class RegistrationAction extends Action{

 public ActionForward execute(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response){

 //get userid and password

 RegistrationForm rForm = (RegistrationForm) form;

 String userid = rForm.getUserId();

 String password = rForm.getPassword();

72 C H A P T E R 7 ■ P R O C E S S I N G B U S I N E S S L O G I C

 //complex validation: check if userid exists

 if(User.exists(userid)){

 ActionMessages errors = new ActionMessages();

 errors.add("userid",

 new ActionMessage("reg.error.userid.exists"));

 saveErrors(request,errors);

 //navigation: redisplay the user form.

 return mapping.getInputForward();

 }else{

 //data transformation: save the userid and password

 //to database:

 User user = new User();

 user.setUserId(userid);

 user.setPassword(password);

 user.save();

 //navigation: display "you're registered" page

 return mapping.findForward("success");

 }

 }

}

Take your time studying Listing 7-3, because it is a pattern for every Action you’ll

ever write.

The first thing to note is the cast from ActionForm to RegistrationForm:

RegistrationForm rForm = (RegistrationForm) form;

Recall that the ActionForm passed into execute() is really a RegistrationForm instance

(see Listing 6-1), and that it contains form data that has passed simple validation. The cast

is done so that the userid and password properties of the form can be read.

■Note This isn’t the best way to read data from an ActionForm. In Chapter 17, I’ll describe a better

alternative.

C H A P T E R 7 ■ P R O C E S S I N G B U S I N E S S L O G I C 73

I haven’t yet shown you how Struts knows that the form data goes into and is validated

by RegistrationForm. And I also haven’t shown you how Struts knows that the populated

RegistrationForm needs to be sent to RegistrationAction for further processing. You’ll

see how both these mappings are made in Chapter 9.

I’ll analyze the rest of Listing 7-3 using the three broad tasks every Action subclass

performs: complex validation, data transformation, and navigation.

Complex Validation

The relevant section performing complex validation in Listing 7-3 is shown in Listing 7-4.

Listing 7-4. Complex Validation in RegistrationAction

if(User.exists(userid)){

 ActionMessages errors = new ActionMessages();

 errors.add("userid",

 new ActionMessage("reg.error.userid.exists"));

 saveErrors(request,errors);

 //navigation: redisplay the user form.

 return mapping.getInputForward();

 }else{ ...

The User.exists() function checks if the user ID given exists. This is typical of what

I mean by “well-defined” interfaces between the Controller (RegistrationAction) and

Model (User class).

 Struts does not prevent you from using raw SQL to check if a user ID exists, but this

would be a poorer implementation of the MVC design pattern. Having a Model class

handle data access like this makes your code cleaner, much more maintainable, and more

future-proof. If you switched to a database that used a different variant of SQL, you would

need to change at most the implementation of the exists() function and not every single

SQL statement checking for a duplicate user ID.

The next statement creates a blank list to hold error messages:

ActionMessages errors = new ActionMessages();

The use of ActionMessages to hold error messages instead of ActionErrors is rather unfor-

tunate. In earlier versions of Struts, it would have indeed been ActionErrors, but later

versions have deprecated the use of ActionErrors everywhere except as the return value

of validate() in ActionForm.

74 C H A P T E R 7 ■ P R O C E S S I N G B U S I N E S S L O G I C

After creating the holder for error messages, I next add an error message to it:

errors.add("userid", new ActionMessage("reg.error.userid.exists"));

This should be old hat to you by now. If you have difficulty understanding this statement,

you should reread the “Using ActionErrors” section in Chapter 6.

The last statement I’ll consider is

saveErrors(request,errors);

You signal a complex validation failure by using saveErrors() to save a list of errors.

However, unlike simple validation where the form is automatically redisplayed, here the

list of errors is used to populate the <html:errors> tags on the “next” page.

■Note saveErrors() actually saves the errors onto the request object, which is an instance of

HttpServletRequest that was passed as a parameter into execute().

After execute() completes, Struts examines the request object for errors, then tries to

display them in the “next” page indicated by the ActionForward instance returned by

execute().

Struts knows which error messages to display and where to display them because the

“next” page is assumed to contain our old friend, the <html:errors> tags. We’ll revisit this

in detail the next chapter. If there are no <html:errors> tags, then no error messages are

displayed.

The astute reader may be wondering why it’s saveErrors(request, errors) instead of

simply saveErrors(errors). The answer is that Action subclasses must be stateless. The

errors object must therefore be stored on request.

Data Transformation

In the RegistrationAction class, the only data transformation involved is saving the user

ID and password to the database, as Listing 7-5 illustrates.

Listing 7-5. Data Transformation in RegistrationAction

User user = new User();

 user.setUserId(userid);

 user.setPassword(password);

 user.save();

C H A P T E R 7 ■ P R O C E S S I N G B U S I N E S S L O G I C 75

As you can see, using Model classes to write data results in clean code. Model classes

are not part of Struts, because this is a task best left to dedicated persistence frameworks

like Hibernate or Torque. You should refer to Appendix A for details.

Navigation

Navigation refers to programming logic deciding what page to display next to the user. In

RegistrationAction, there are just two possible “next” pages: the page containing the

submitted form (redisplayed with error messages) and the “You’re Registered!” page indi-

cating successful registration.

The code used to reach each is slightly different. Listing 7-6 shows the navigation logic

involved.

Listing 7-6. Navigation in RegistrationAction

if(User.exists(userid)){

 ...

 //navigation: redisplay the user form.

 return mapping.getInputForward();

}else{

 ...

 //navigation: display "You're registered" page

 return mapping.findForward("success");

}

ActionForward, the return value of execute(), is a reference to the “next” page. Illustrated

in Listing 7-6 are the two most important ways of instantiating it.

■Note If you look up the JavaDocs for ActionForward, you’ll find that there are in fact a number of

different constructors for ActionForward. Each constructor allows you to change defaults such as whether

or not the page is a redirect. There are even subclasses of ActionForward that create ActionForwards

with the more common choices.

The first involves creating an ActionForward reference to the page containing the

submitted form. Possibly the only reason you’d want to do this is to redisplay a form if it

fails complex validation:

76 C H A P T E R 7 ■ P R O C E S S I N G B U S I N E S S L O G I C

mapping.getInputForward()

To get a reference to the input page you use the getInputForward() function on the

ActionMapping instance, mapping. Recall that mapping is supplied for you by Struts, because

it’s a parameter in execute().

Notice that unlike simple validation where redisplay was automatically handled by

Struts, here you’re on “manual,” meaning you have to specify the error page yourself. This

is because of the very different natures of simple and complex validation. For example,

you might check a user’s account balance before performing a task. If there are insufficient

funds, it makes no sense to automatically redisplay the input page. A more appropriate

response would be to display an “insufficient funds” page.

The second way you’d want to instantiate ActionForward is for it to point to a named

“next” page:

mapping.findForward("success")

Here, the name success refers to a named page, which is one possible “next” page I’ve

bound to RegistrationAction. I’ll describe how this is done in Chapter 9.

This indirect way of referring to a page might seem overly complicated. Why not just

use a direct reference like

new ActionForward("/mywebapp/registered.jsp")

There are two good reasons why you should avoid using a direct reference. The first is

because the indirect method makes your webapp more maintainable, and the second is

that it promotes code reuse.

To understand the first reason, you’d have to know that the named pages are specified

in one file called struts-config.xml. So, if you moved a page, you’d only have to amend

this one file. If the paths were hardwired, you’d have to change several Actions and recompile

your app! Not good.

The second reason is more subtle, but more compelling. It is often the case that you

want to reuse an Action in different contexts. Depending on the context, you would want

a different “success” page to be displayed. Hardwiring a “next” page into an Action obviates

the possibility of doing this.

To recap, there are two important ways to display the “next” page:

• The input page: mapping.getInputForward()

• A named page: mapping.findForward(...)

Lab 7: Implementing ContactAction for LILLDEP

This lab continues where we left off in Lab 6. ContactAction is the Action subclass associ-

ated with ContactForm of Lab 6.

C H A P T E R 7 ■ P R O C E S S I N G B U S I N E S S L O G I C 77

In this lab, you will complete the implementation of ContactAction. Before you begin,

ensure that you can compile the LILLDEP webapp without errors. Then complete the

following:

1. Get the Contact data object from the ContactForm and save it. You might want to

peruse the source code for BaseContact to see how to save a Contact.

2. If an Exception is thrown while saving a Contact, redisplay the input page with the

error message key lilldep.error.save, for the property

ActionMessages.GLOBAL_MESSAGE.

3. If all goes well, forward to a page named “success.”

4. Run compile.bat to ensure your work compiles with no errors.

Summary

In this chapter, you’ve learned how business logic is processed by your Action subclass.

The highlights of this chapter are as follows:

• org.apache.struts.action.Action subclasses must be stateless.

• You need to override just the execute() method of Action.

• Complex validation errors are flagged using the saveErrors() function.

• Redisplay of a page with errors is “manual.”

• Use mapping.getInputForward() to redisplay the input page.

• Use mapping.findForward(...) to display a named page.

79

■ ■ ■

C H A P T E R 8

Basic Struts Tags

Struts implements the View component of the MVC design pattern entirely through the

use of custom tags (actually, the correct term is custom action, but I think the term custom tag

conveys more meaning, and leaves less room for confusion with Struts Actions). These tags

are applied to the JSPs that constitute the View component of your webapp. The Struts

tags are bundled into five tag libraries:

• HTML: The custom tags in the HTML library are essentially in one-to-one relation-

ship to the ordinary HTML <form> tag and its associated input tags, like the various

<input> tags. The purpose of this tag library is to enable you to connect your View

component to the Controller components described in Chapters 6 and 7. The actual

connecting details are described in Chapter 9.

• Bean: This library has custom tags primarily for writing text. There are two reasons

why you’d use the Bean tags instead of hard-coding text into your JSPs. The first is

to enable internationalization, that is, the display of the View component in multiple

languages. We’ll show how Struts helps you internationalize your webapps in

Chapter 12. The second reason is to avoid using scriptlets to display the contents of

objects stored on the request or session objects.

• Logic: This library provides tags for conditional processing and looping. You use

tags in the Logic library in lieu of using scriptlets. The logic library tags are much

easier to use and result in significantly more readable code.

• Nested: This library has tags for displaying “nested” properties of a form or object.

We’ll describe this in detail in Chapter 10.

• Tiles: This library contains tags that allow you to create layouts. You’ll see how to

use the Tiles tag library in Chapter 14.

80 C H A P T E R 8 ■ B A S I C ST R U T S T A G S

■Note Appendix C is a comprehensive reference for all Struts tags.

In this chapter, we’ll only discuss the most frequently used tags from just the HTML

and Bean libraries.

Before we go into the details of each of these tags, you first have to understand how a

JSP page is processed by Struts.

Page Processing Lifecycle

When Struts is asked for a page, it first replaces all Struts tags on that page with the necessary

textual data. The underlying mechanism of this replacement process was described in

Chapter 4. Not all Struts tags will show up on the displayed page. Some have preconditions,

and will only display if they are satisfied. For example, the <html:errors> tag displays only

if there are error messages to be displayed.

For a page that doesn’t contain a form, this tag replacement stage ends that page’s

processing lifecycle.

If a page does contain a form, then Struts handles processing of the form data. This

happens in essentially two stages, which have been the subject of the previous two chapters:

simple validation and the processing of business logic.

The form data is first run through simple validation (on your ActionForm subclass).

If this fails, the page is typically redisplayed automatically.

■Note Whether simple validations are indeed performed and which, if any, input page is redisplayed are all

controlled by the Struts configuration file, to be described in Chapter 9.

Because the page now contains validation errors, any relevant <html:errors> tags on

the page will display their error messages.

Once the user corrects and resubmits the form, the data is again validated. As before,

if the form still contains errors the page is redisplayed yet again. This cycle of redisplaying

the form and validating it continues until the form data is free of simple validation errors.

When this happens, Struts sends the form data for business logic processing (by your

Action subclass), and the “next” page is displayed. Note that the “next” page could be an

error page or could have error messages in the event of complex validation errors.

Figure 8-1 summarizes these steps.

C H A P T E R 8 ■ B A S I C S T R U T S T A G S 81

To make these ideas more concrete, we’ll continue with the Registration webapp example

of the previous chapters. Along the way, we’ll show you how to use the most basic Struts

tags from the HTML and Bean libraries. Again, Appendix C is a comprehensive reference

for all Struts tags.

Figure 8-1. Typical Struts page processing lifecycle

Evaluation, Replacement, and Sending

When a Struts JSP page is requested, its processing does not involve the main Struts servlet

(ActionServlet). Only submissions of form data involve the main servlet. It is this servlet

that populates your ActionForm subclass and invokes execute() on your Action subclass.

Of course, Struts classes are involved in a page’s rendering, but these are just the

BodyTagSupport and TagSupport classes representing each tag (see Chapter 4). The only

state that these classes know about is stored on the server-side HttpServletRequest and

HttpSession objects, representing the current request and session, respectively.

As you’ve seen in Chapter 4, BodyTagSupport or TagSupport are responsible for the final

rendering of a tag’s visual appearance. Not all Struts tags have a visual appearance, though.

Those from the Logic library (discussed in Chapter 10), for example, perform conditional

processing to selectively display other tags that do have a visual appearance.

82 C H A P T E R 8 ■ B A S I C ST R U T S T A G S

The processing of a Struts JSP page may be summarized in three steps:

• Evaluation: Some Struts tags (from the Logic library) or the <html:errors> tag evaluate

themselves to determine if they should indeed be displayed.

• Replacement: Data is read from the request or session objects (or global forwards—

more on this in Chapter 9) and is pasted into the rendered page. <html:errors>, for

example, pastes in the appropriate error message.

• Sending: The final page is sent to the user.

These three steps are always involved when a Struts JSP page is requested.

The View Component of the Registration Webapp

The View component of the Registration webapp (see Chapter 5) consists of a single page,

registration.jsp, which contains a form with three inputs: a textual input for a user ID

and two password fields.

The JSP code for this is given in Listing 8-1, and the visual output, as seen by the user,

is depicted in Figure 8-2. Take some time to study both before reading further.

Listing 8-1. Registration.jsp

<%@ page contentType="text/html;charset=UTF-8" %>

<%@ taglib uri="/tags/struts-bean" prefix="bean" %>

<%@ taglib uri="/tags/struts-html" prefix="html" %>

<html:html>

<head>

 <title><bean:message key="registration.jsp.title"/></title>

</head>

<body>

 <h1><bean:message key="registration.jsp.heading"/></h1>

 <html:form action="Registration.do" focus="userid">

 <p>

 <bean:message key="registration.jsp.prompt.userid"/>

 <html:text property="userid" size="20" />

 <html:errors property="userid" />

 </p><p>

 <bean:message key="registration.jsp.prompt.password"/>

 <html:password property="password" size="20" />

 <html:errors property="password" />

C H A P T E R 8 ■ B A S I C S T R U T S T A G S 83

 </p><p>

 <bean:message key="registration.jsp.prompt.password2"/>

 <html:password property="password2" size="20" />

 </p>

 <html:submit>

 <bean:message key="registration.jsp.prompt.submit"/>

 </html:submit>

 <html:reset>

 <bean:message key="registration.jsp.prompt.reset"/>

 </html:reset>

 </html:form>

</body>

</html:html>

Figure 8-2. registration.jsp as it appears to the user

Declaring and Installing the HTML and Bean Libraries

Listing 8-1 starts with defining the prefixes for the Bean and HTML tag libraries:

<%@ taglib uri="/tags/struts-bean" prefix="bean" %>

<%@ taglib uri="/tags/struts-html" prefix="html" %>

84 C H A P T E R 8 ■ B A S I C ST R U T S T A G S

Having written your own custom tags in Lab 4, this should hold no surprises for you.

The TLD files and the Java handlers are all bundled in your Struts distribution:

• The TLD files should be placed in \WEB-INF\.

• Struts comes with a web.xml file that you should use. At the time of this writing, this

web.xml file contains the appropriate <taglib> sections declared for your convenience.

But you should always check this for yourself, and insert <taglib> sections for the

five tag libraries if necessary.

• The Java handler classes for these tags are in the various JAR files that comprise the

Struts binaries, which you should place in your webapp’s \lib\ directory (see

Chapter 2).

■Caution Do not place the Struts JAR files in your servlet container’s “shared” or “common” directories.

They must not be shared. You must deploy a fresh set in the \lib\ directory of each webapp. Sharing might

in some cases cause ClassNotFoundExceptions to be thrown by the servlet container.

Displaying Static Text

The first thing you might notice in Listing 8-1 is that the prompts in Figure 8-2 (like Register

New User, etc.) do not appear in the listing. Instead, registration.jsp uses <bean:message>

tags to display these. For example, the tag

<bean:message key="registration.jsp.prompt.userid"/>

displays as

Please enter a userid (between 5 to 15 characters)

The <bean:message> tag can be used anywhere to display static text. The key attribute

on this tag points to a key-value pair on a resource file Application.properties, just as it

did in the case of error messages of Chapters 6 and 7.

Of course, there’s nothing to stop you from hard-coding text in your JSPs, but this

would make your app much more difficult to internationalize and maintain.

■Note Struts’ simple approach to displaying static text will only you take you so far. If you have lots of static

text to display, then using a template engine like FreeMarker or Velocity (both of which I will not cover in this

book) will be necessary. Refer to the “Useful Links” section for some web resources.

C H A P T E R 8 ■ B A S I C S T R U T S T A G S 85

The Bean tag library contains other tags besides <bean:message>. Probably the only

other tag you’d use is <bean:write>, which allows you to display properties of JavaBean

objects. Refer to Appendix C for a description of this tag.

Forms and Form Handlers

Webapps are all about getting user input and processing them. The primary way of doing

this with Struts (as with HTML) is through a form.

In Struts, forms are declared within an <html:form> container tag. This is similar to the

way you’d declare a form in HTML. The <html:form> element has the action attribute that

describes the handler that processes the form data:

<html:form action="Registration.do" ...

In this snippet, the handler is named Registration. A handler is a particular combination

of your ActionForm subclass that performs simple validation and your subclass of Action

that does business logic. You will see how to declare a handler in the next chapter. For now,

you only need to understand that the action attribute points to a handler that you’ve defined.

Handlers traditionally end with the .do prefix, which tells the servlet container that the

action is to be handled by Struts. This mapping is done in web.xml, and is shown in

Listing 8-2 (which also shows the Struts ActionServlet declaration). These declarations

are done for you in the web.xml file that comes with Struts. However, a high-level under-

standing of the details is useful, so I’ll digress a little to do this.

■Note In case it isn’t clear, Listing 8-2 is an excerpt from the web.xml file generously made available by

the Apache Software Foundation. The Apache License is available at http://www.apache.org/licenses/

LICENSE-2.0.

Listing 8-2. Struts’ Standard servlet and servlet mapping declarations

<!-- Standard Action Servlet Configuration -->

<servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>

 org.apache.struts.action.ActionServlet

 </servlet-class>

 <init-param>

 <param-name>config</param-name>

 <param-value>/WEB-INF/struts-config.xml</param-value>

 </init-param>

 <load-on-startup>2</load-on-startup>

</servlet>

86 C H A P T E R 8 ■ B A S I C ST R U T S T A G S

<!-- Standard Action Servlet Mapping -->

<servlet-mapping>

 <servlet-name>action</servlet-name>

 <url-pattern>*.do</url-pattern>

</servlet-mapping>

Listing 8-2’s <servlet> declaration starts the main Struts servlet class (org.apache.

struts.action.ActionServlet) and gives it a reference to the Struts configuration file

(struts-config.xml) described later in Chapter 9. This <servlet> declaration is given the

name action. The following <servlet-mapping> tag refers to this name, and specifies that

any incoming URL with the page extension ending with .do is to be referred to the servlet

called action for processing.

Remember that it’s the servlet container (Tomcat, in our case) that reads the web.xml

file and performs these instructions. The servlet container is also the one that orchestrates

the control flow between the user and Struts, as depicted in Figure 8-1. It knows how to do

this from the <servlet> and <servlet-mapping> declarations in Listing 8-2.

The last thing to note concerning the <html:form> tag is the attribute focus="userid".

This is a directive telling Struts to autogenerate JavaScript to cause the userid field on the

form to grab focus (that is, the cursor appears in this field) when the page loads in the

user’s web browser. The details of the generated JavaScript aren’t important, but the fact

that Struts does this at all is. As you will see in this book, much of the power of Struts is in

little conveniences like this.

Data Input Tags

Struts tags that accept data input must be placed within the <html:form> tag. Listing 8-1

contains four input tags:

• <html:text> represents a text field.

• <html:password> represents a password field. The text in this field is displayed

as asterisks.

• <html:submit> represents the submit button.

• <html:reset> represents a reset button to clear the form.

There are a number of other input tags (e.g., for radio buttons, lists, and drop-down

lists), which are described in detail in Appendix C and in the lab sessions of subsequent

chapters. In this chapter, we’ll concentrate on these four input tags only.

The textual field tags <html:text> and <html:password> all have a property attribute

that ties them to the field on the form. Each field must correspond to a getXXX() and

setXXX() pair on the ActionForm subclass associated with the form handler. Exactly how

C H A P T E R 8 ■ B A S I C S T R U T S T A G S 87

the form handler links the JSP page with an ActionForm subclass is the subject of Chapter 9.

For now, simply assume that each <html:form> has input fields corresponding to proper-

ties of an ActionForm subclass.

For example, from Listing 8-1, we can deduce that the ActionForm subclass that handles

the Registration data must have the functions getUserid() and setUserid(). And it does

(refer to Listing 6-1).

The text fields also accept a size attribute to allow you to specify the physical extent of

the displayed field. This is just as you would expect for a text input field in HTML. In fact,

all the input tags have attributes closely matching their HTML counterparts.

The <html:submit> and <html:reset> tags represent the submit and reset buttons on

the form, respectively. The <bean:message> tags enclosed by these tags tells Struts what

labels to place on the buttons. Again, this approach allows easy internationalization, and

also lends a more uniform look to your webapp.

The reset button calls the reset() function on your ActionForm subclass (see step 4 of

Lab 6). If one isn’t defined, the super.reset() function is called, which simply redisplays

a blank form.

Displaying Errors

In the previous two chapters, you saw how validation error messages are generated. We’ll

now describe how they are displayed.

When a form fails validation (either simple or complex), an ActionErrors or

ActionMessages object is created containing the error messages. Both ActionErrors and

ActionMessages behave like Java HashMaps. The key of the HashMap corresponds to the

property attribute of the <html:errors> tag. The associated value is the error message itself.

However, unlike a HashMap, it’s possible to store more than one error message under the

same key. This is obviously useful if there’s more than one error associated with a single field.

When Struts loads a page, it checks if there are ActionErrors or ActionMessages for the

page. If there are, it dutifully pastes the error messages in the right <html:errors> tags of

the page. Figure 8-3 shows this process in action.

As you can see, only errors whose keys are on both the ActionErrors (and ActionMessages)

and the JSP page will be displayed. Every other error message or error tag is ignored.

So, in Figure 8-3, only the error message for the property userid gets displayed. The error

message for the property desc is ignored because there’s no corresponding <html:errors> tag.

The <html:errors> tag for the property named pwd doesn’t display at all since there are no

corresponding error messages for that property on the ActionErrors object.

■Tip A useful trick is to leave out the property attribute like so: <html:errors/>. This causes all error

messages to be displayed. This is especially useful for debugging.

88 C H A P T E R 8 ■ B A S I C ST R U T S T A G S

Figure 8-3. Displaying errors

To display a generic error message, not connected to any real form property, you can use

a special global property. In your ActionForm or Action, you’d use the key ActionMessages.

GLOBAL_MESSAGE:

errors.add(ActionMessages.GLOBAL_MESSAGE, new ActionMessage(...));

and the property value org.apache.struts.action.GLOBAL_MESSAGE on the <html:errors> tag:

<html:errors property="org.apache.struts.action.GLOBAL_MESSAGE"/>

Synopsis of HTML and Bean Tag Libraries

The previous section describes all the tags you’ll use 70 percent of the time in your Struts

webapps. The remaining 30 percent we’ll describe in Chapters 10, 11, and 14. Appendix C

is a comprehensive reference for all tags.

At this point, a synopsis of the HTML and Bean tags would be useful to you. Table 8-1

lists tags on the HTML library and their purpose. Table 8-2 does the same for the Bean tag

library. You can find the details on each tag in Appendix C. Tables 8-1 and 8-2 are based

on documentation made available by the Apache Software Foundation. The Apache

License is available at http://www.apache.org/licenses/LICENSE-2.0.

C H A P T E R 8 ■ B A S I C S T R U T S T A G S 89

Table 8-1. Synopsis of the HTML Tag Library

Tag Usage/Comments

base Generates an HTML <base> tag. This creates a reference from
which all relative paths in your JSP will be calculated.

html Generates an <html> tag. Also includes language attributes from
the user’s session.

xhtml Tells other tags on the page to render themselves as XHTML 1.0–
conformant tags.

frame Generates an HTML <frame>.

javascript Indicates the placement of autogenerated JavaScript. Used in
conjunction with the Validator framework, described in Chapter 15.

form Defines a form. The action and focus attributes are the most
useful, followed by the enctype property described in Chapter 11.

checkbox Generates a check box input field.

file Generates a file select input field.

hidden Generates a hidden field.

multibox Generates a number of check box input fields. Used in conjunction
with indexed properties.

option Generates a select option.

options, optionsCollection Generates a list of select options.

password Generates a password input field.

radio Generates a radio button input field.

select Generates a select element.

text Generates a textual input field.

textarea Generates an HTML textarea element.

image Generates an image input field.

button Generates a button input field.

cancel Generates a cancel button.

submit Generates a submit button.

reset Generates a reset button.

errors Displays error messages.

messages An iterator for error messages and ordinary messages.

img Generates an HTML img tag.

link Generates a hyperlink.

rewrite Expands a given URI. Useful in creating URLs for input into your
JavaScript functions.

90 C H A P T E R 8 ■ B A S I C ST R U T S T A G S

Lab 8: Contact Entry Page for LILLDEP

In this lab, you will complete the implementation for the main page for LILLDEP. This

page is called full.jsp.

1. Open \lilldep\web\full.jsp in the editor. Put in the missing taglib declarations.

Which libraries would you use? (The TLD files are in \web\WEB-INF\.)

2. Modify web.xml to include the tag library locations.

3. Implement the tags for the missing properties. The properties for this form are

listed in Lab 6. Use the keys found in \web\resources\Application.properties to

display any messages you might need.

4. Put in error tags corresponding to each validated field in Lab 6. Also put in an error

tag for the error encountered when saving a contact in Lab 7.

5. Implement the submit button. What is the name of the handler for this form?

■Note The source code answers are in the answers folder in the LILLDEP distribution. The answers to

questions raised in this lab are found in Appendix D.

Table 8-2. Synopsis of the Bean Tag Library

Tag Usage/Comments

message Writes static text based on the given key.

write Writes the value of the specified JavaBean property.

cookie/header/parameter Each defines a scripting variable based on the specified
cookie/header/parameter.

define Defines a scripting variable based on the specified JavaBean.

page Exposes a page-scoped variable as a JavaBean.

include Allows you to call an external JSP or global forward or URL and
make the resulting response data available as a variable. The
response of the called page is not written to the response stream.

resource Allows you to read any file from the current webapp and expose
it either as a String variable or an InputStream.

size Defines a new JavaBean containing the number of elements in
a specified Collection or Map.

struts Exposes the specified Struts internal configuration object as
a JavaBean.

C H A P T E R 8 ■ B A S I C S T R U T S T A G S 91

Useful Links

• FreeMarker, a powerful open source template engine: http://freemarker.

sourceforge.net

• Velocity, a simpler, lightweight open source template engine from Apache:

http://jakarta.apache.org/velocity/

• Pro Jakarta Velocity: From Professional to Expert, by Rob Harrop (Apress, 2004):

www.apress.com/book/bookDisplay.html?bID=347

Summary

In this chapter, you have seen how the basic Struts tags work to display form data and

error messages.

• The Struts tags to display form data and error messages are in the HTML and

Bean libraries.

• Forms have an associated form handler, which is a particular combination of

ActionForm and Action subclasses.

• Form data is first passed through simple validation (ActionForm) before business

logic is processed (Action).

• Struts handles the redisplay of badly filled forms and error messages for the

necessary fields.

93

■ ■ ■

C H A P T E R 9

Configuring Struts

Up until now, I’ve presented portions of Struts along the lines of the MVC design pattern.

In Labs 6, 7, and 8, you’ve implemented these portions yourself for the LILLDEP webapp.

What’s missing is the way Struts ties together the various Model-View-Controller portions.

Struts uses a single configuration file called struts-config.xml to store this information.

The Struts distribution comes bundled with samples of this file, which you can copy and

amend for your own use.

The Structure of struts-config.xml

Unsurprisingly, struts-config.xml holds data in XML format. There are several sections,

each of which handles configuration for specific portions of Struts:

• Form bean declarations: This is where you map your ActionForm subclass to a

name. You use this name as an alias for your ActionForm throughout the rest of the

struts-config.xml file, and even on your JSP pages.

• Global exceptions: This section defines handlers for exceptions thrown during

processing.

• Global forwards: This section maps a page on your webapp to a name. You can use

this name to refer to the actual page. This avoids hardcoding URLs on your web pages.

• Form handlers: Remember the form handlers I mentioned in the previous chapter?

This is where you declare them. Form handlers are also known as “action mappings.”

• Controller declarations: This section configures Struts internals. Rarely used in

practical situations.

• Message resources: This section tells Struts where to find your properties files,

which contain prompts and error messages.

94 C H A P T E R 9 ■ C O N F I G U R I N G S T R U T S

• Plug-in declarations: This is where you declare extensions to Struts. You will use

two important plug-ins: Tiles and Validator.

These sections must be placed in this order. Not all sections need be present. For example,

you might not want to take advantage of the global exception handling facility. In this

case, your struts-config.xml file would not contain the global exceptions section.

■Note Earlier versions of Struts had a “data sources” section before the form bean declarations. This data

sources section allowed you to preconfigure JDBC data sources for your webapp. This section has since been

deprecated.

Among the seven sections, the form bean, form handler (or action mapping), and

message resources sections are the most important, and you must master them before

you can use Struts.

Before I introduce the various sections, let’s take a look a simple struts-config.xml

file, the one for the Registration webapp.

Configuring the Registration Webapp

The struts-config.xml file (shown in Listing 9-1) for the Registration webapp requires

just the form bean, global exceptions, global forwards, form handler (or action mapping),

and message resources sections.

Listing 9-1. struts-config.xml for the Registration Webapp

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC

 "-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"

 "http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd">

<struts-config>

 <form-beans>

 <form-bean

 name="RegistrationForm"

 type="net.thinksquared.registration.struts.RegistrationForm"/>

 </form-beans>

C H A P T E R 9 ■ C O N F I G U R I N G S T R U T S 95

 <global-exceptions>

 <exception key="reg.error.io-unknown"

 type="java.io.IOException"

 handler="net.thinksquared.registration.ErrorHandler"/>

 <exception key="reg.error.unknown"

 type="java.lang.Exception"

 path="/errors.jsp" />

 </global-exceptions>

 <global-forwards>

 <forward name="ioError" path="/errors.jsp"/>

 </global-forwards>

 <action-mappings>

 <action

 path="/Registration"

 type="net.thinksquared.registration.struts.RegistrationAction"

 name="RegistrationForm"

 scope="request"

 validate="true"

 input="/Registration.jsp">

 <forward name="success" path="/Success.jsp"/>

 </action>

 </action-mappings>

 <message-resources parameter="Application"/>

</struts-config>

The three main sections should be immediately obvious in Listing 9-1: the form

beans section is enclosed by the <form-beans> tag, the form handlers section by the

<action-mappings> tag, and the single message resource section by the <message-resources>

tag. I’ll describe these sections in detail next.

Declaring Form Beans

The form bean section is where you give your ActionForm subclasses names, which can be

used both in struts-config.xml and on your JSP pages.

96 C H A P T E R 9 ■ C O N F I G U R I N G S T R U T S

The declaration consists of a single enclosing <form-beans> tag (note the plural), and

one or more <form-bean> (note the singular) tags, as shown in Listing 9-2.

Listing 9-2. The Form Beans Section

<form-beans>

 <form-bean

 name="RegistrationForm"

 type="net.thinksquared.registration.struts.RegistrationForm"/>

</form-beans>

A <form-bean> tag has two attributes:

• name: The name attribute is a unique label for an ActionForm subclass. In Listing 9-2,

the name is RegistrationForm, but it could be anything you like, as long as it is unique

among other form bean declarations and qualifies as an XML attribute value.

• type: The type attribute is the fully qualified class name for that ActionForm subclass.

With this declaration, you can use the name RegistrationForm to refer to the ActionForm

subclass, net.thinksquared.registration.struts.RegistrationForm.

Declaring Global Exceptions

Global exceptions allow you to catch uncaught runtime exceptions that occur in your

Action subclasses, displaying them with a custom error message. This certainly lends a

little more polish to your application, compared to the default Tomcat error page. Listing 9-3

shows two ways you can define an exception handler.

Listing 9-3. Declaring Global Exception Handlers

<global-exceptions>

 <exception key="reg.error.io-unknown"

 type="java.io.IOException"

 handler="net.thinksquared.registration.IOErrorHandler"/>

 <exception key="reg.error.unknown"

 type="java.lang.Exception"

 path="/errors.jsp"/>

</global-exceptions>

C H A P T E R 9 ■ C O N F I G U R I N G S T R U T S 97

The <global-exceptions> tag contains global exception handlers, each represented by

an <exception> tag. Each <exception> tag has two required attributes:

• key: An error key. When an exception handler is fired, an ActionMessage with this

key is created and put on the request. This error message gets pasted on the JSP

containing an <html:errors> tag that is finally displayed. Note that key is a required

attribute, which you have to specify even if you don’t use it.

• type: Describes the type of error that is caught. Struts will first try to find the error

class that matches the declared types. If none matches exactly, then Struts goes up

that error’s superclass tree, until it finds a match with a declared exception.

There are two ways you can handle the caught exceptions: using a path attribute to

point to a JSP page that displays the error message, or using a handler attribute, which is

a fully qualified class name of your ExceptionHandler subclass—that is, your handler

subclasses:

org.apache.struts.action.ExceptionHandler

You only have to override the execute() function:

public ActionForward execute(Exception ex,

 ExceptionConfig ae,

 ActionMapping mapping,

 ActionForm form,

 HTTPRequestServlet request,

 HTTPResponseServlet response)

As you can see, this is nearly identical to Action.execute(), apart from the extra first two

arguments. You should declare the “next” page ins a <global-forwards> section (see the

next section), so that mapping can resolve it.

In most instances, using a custom ExceptionHandler subclass is overkill unless you

have a special requirement to do so.

Declaring Global Forwards

You use global forwards to define forwarding paths accessible to all Actions or

ExceptionHandlers. In fact, all such paths will be accessible as long as you have an

ActionMapping instance initialized by Struts. This is certainly the case for the execute()

functions in Action or ExceptionHandler.

Global forwards are defined within an enclosing <global-forwards> tag, within which

you may place as many <forward> tags as you wish, as shown in Listing 9-4.

98 C H A P T E R 9 ■ C O N F I G U R I N G S T R U T S

Listing 9-4. Declaring a Global Forward

<global-forwards>

 <forward name="ioError" path="/errors.jsp"/>

</global-forwards>

Each <forward> tag has two attributes:

• name: A globally unique name for this forward.

• path: The path to the JSP or form handler to which this forward refers. In both cases,

the paths must begin with a slash (/).

In Listing 9-4, a forward named ioError is declared, which refers to the path errors.jsp.

You can access this path from the mapping object available in execute():

mapping.findForward("ioError")

Declaring Form Handlers

Form handlers are defined within a single <action-mappings> enclosing tag, as shown in

Listing 9-5.

Listing 9-5. The Form Handler Declaration

<action-mappings>

 <action

 path="/Registration"

 type="net.thinksquared.registration.struts.RegistrationAction"

 name="RegistrationForm"

 scope="request"

 validate="true"

 input="/Registration.jsp">

 <forward name="success" path="/Success.jsp"/>

 </action>

</action-mappings>

The <action-mappings> tag acts as a container for each form handler, described by an

<action> tag. The <action> tag contains a few attributes that configure the handler:

C H A P T E R 9 ■ C O N F I G U R I N G S T R U T S 99

• path: Describes the name of the form handler.

• type: The fully qualified class name of the Action subclass that handles business logic.

• name: The name of the form bean associated with this handler.

• validate: Tells Struts whether it should perform simple validation on the form data.

• scope: Sets the scope of the form data. Only request or session scopes are allowed.

• input: The relative path of the page that forms the input of this page.

The path attribute must start with a slash. This has a meaning I will cover in a later

chapter. You might want to recall how form handlers are used on your JSPs, as the action

attribute of the <html:form> tag:

<html:form action="Registration.do" ...>

In this snippet, the form handler is Registration, and this corresponds to the path attribute

in the form handler declaration of Listing 9-5. The .do extension tells the servlet container

that this is a Struts form handler. This extension is the default, and is defined in the

web.xml file distributed with Struts.

Just as in the form bean declaration, the type attribute is the fully qualified name of your

Action subclass that will process business logic. In this case, it is RegistrationAction.

The name attribute is the name of the form bean associated with the handler. In this

case, it is RegistrationForm, which is an obvious alias to the RegistrationForm subclass.

The validate : attribute, which can either be true or false, tells Struts whether the

validate() method on the form bean’s ActionForm subclass should be called. In other

words, Struts performs simple validation only when validate="true".

The scope : attribute, which can either be request or session, tells Struts in which scope

to put the form bean that contains the form data.

Lastly, the input attribute is just the path to the input page. This is how mapping.

getInputForward() (see Chapter 7) knows what the input page was. In Listing 9-5, the

input page is Registration.jsp.

Note that the path to the input page must begin with a slash, which denotes the “root”

directory of the webapp. This corresponds to the root directory on the WAR file you create

to deploy the webapp. Or, as another way of looking at it, when the webapp is installed,

the root directory is just the \webapps\<app name>\ directory hosted under the servlet

container.

For example, if the Registration webapp were deployed in a WAR file called

registration.war, then the root directory on the servlet container would be \webapps\

registration\.

100 C H A P T E R 9 ■ C O N F I G U R I N G S T R U T S

One last thing about the input attribute. If I had put in a global forwards section, I could

have declared a global forward for Registration.jsp, and used the name of the global

forward as the value of input.

Forwards

Each <action> tag can contain zero or more <forward> tags. These forwards differ from the

<forward>s declared in the global forwards section in that they are visible only to the enclosing

form handler. Forwards declared the global forwards section are visible everywhere.

<forward>s represent the possible “next” pages for that form handler. Like the <forward>s

in the global forwards section, each <forward> tag has two attributes:

• name: A name for the “next” page

• path: The actual page’s path, relative to the webapp’s root directory

The name attribute identifies this “next” page in the Action subclass associated with the

form handler. This is how mapping.findForward() works (see Listing 7-2):

return mapping.findForward("success");

The label success is just the value of the name attribute.

The path must start with a slash if it’s a true path. If you had declared the page as a

global forward, then you could use the name of the global forward instead. In this case,

you’d have no initial slash, because the path value is just a label, not a true path.

Controller Declaration

The controller section is probably the least used among the seven sections. It is used to

manually override some default Struts settings. I will only mention a few useful ones here:

• maxFileSize: Specifies the upper size limit on uploaded files. You can use a number

followed by K, M, or G to indicate a size in kilobytes, megabytes, or gigabytes, respec-

tively. For example, maxFileSize="2M" limits the file size to 2MB. We will deal with

file uploading in Chapter 11.

• nocache: Tells Struts whether it should cache content. Setting nocache="true"

disables content caching.

• contentType: Specifies the default content type of pages. For example, if you’re

delivering XML pages by default, set contentType="text/xml".

C H A P T E R 9 ■ C O N F I G U R I N G S T R U T S 101

• The following snippet shows how you’d declare a controller section:

<controller maxFileSize="1.618M" contentType="text/svg" />

This sets the maximum uploadable file size to a golden 1.618MB, and the default content

type to SVG.

Message Resources

The message resources section declares the location of your properties file that stores the

key/value pairs of your application. Recall that the contents of this properties file was

implicitly used to create error messages:

errors.add("userid",new ActionMessage("reg.error.userid.exists"));

and prompts on the JSP page:

<bean:message key="registration.jsp.prompt.userid"/>

Unlike the previous two sections, this one does not have an enclosing tag.

<message-resources parameter="Application"/>

The main attribute of the <message-resources> tag is the parameter attribute, which gives

the location of the properties file for your application relative to the \WEB-INF\classes\

directory of your webapp. So, in the previous declaration, the message resource file is

\WEB-INF\classes\Application.properties

Note that in the declaration, the .properties extension is implied. If you had placed

the properties file further up the package, say, in

\WEB-INF\classes\net\thinksquared\registration\struts\resources\

the parameter attribute value would be

net.thinksquared.registration.struts.resources.Application

Declaring Plug-ins

Plug-ins are custom extensions to Struts. An example is the Tiles framework, which was

developed independently of Struts. In earlier (pre-1.2) versions of Struts, Tiles had to be

downloaded separately. Although it is now part of the 1.2 distribution, its earlier independent

existence is still apparent because you have to declare a plug-in section for Tiles in order

for you to use it in Struts.

102 C H A P T E R 9 ■ C O N F I G U R I N G S T R U T S

The plug-in section tells Struts what plug-ins to initialize and what data they require

(usually paths to various configuration files required by the plug-in). Listing 9-6 shows a

typical plug-in declaration.

Listing 9-6. A Possible Plug-in Declaration for Tiles

<plug-in className="org.apache.struts.tiles.TilesPlugin" >

 <set-property property="definitions-config"

 value="/WEB-INF/tiles-defs.xml"/>

</plug-in>

Each <plug-in> tag declares a single plug-in. There is no limit to how many of these you

might have in your struts-config.xml file. The className attribute is required, and it

points to the plug-in class that Struts calls. This class is unique to each plug-in.

Each <plug-in> tag may contain zero or more <set-property> tags to set the various

properties needed by the plug-in. There are only two attributes here:

• property: Defines the property being set

• value: Specifies the corresponding value

Needless to say, each plug-in will have to be configured differently, and you’ll have to

get the details from the plug-in’s manual.

Lab 9a: Configuring LILLDEP

In this lab, you will configure LILLDEP and deploy it on Tomcat. Make the following

changes to \web\WEB-INF\struts-config.xml for LILLDEP:

1. Declare a form bean called ContactFormBean for the ActionForm subclass you

implemented in Lab 6.

2. Declare a form handler for the form in full.jsp. What should the name of the form

handler be?

3. The Action subclass for the form handler should be the one you implemented in

Lab 7. The form bean used should be the one in step 1.

4. Set the scope attribute to request.

5. Give a value for the form handler’s input attribute. Where is this used? What happens

if you omit this attribute from the form handler’s declaration?

C H A P T E R 9 ■ C O N F I G U R I N G S T R U T S 103

6. Create a forward for this form handler to the page full.jsp. What should be the

name attribute of this forward? (Hint: Check the code for the Action subclass.) What

happens if you omit this forward declaration?

7. Run compile.bat to produce the WAR file, then deploy and test your application.

Figure 9-1 shows what the LILLDEP start page should look like. You should be able

to key data into LILLDEP. Test out the simple validations you wrote in Lab 6.

Figure 9-1. The LILLDEP start page

Code Reuse

One reason why form handlers are declared in the struts-config.xml file instead of being

hardcoded is because this promotes code reuse.

In Lab 9a, you implemented a form handler specific to the full.jsp page. But what if

you wanted a different page to submit data to this form handler? You obviously can’t now,

because this form handler’s only “next” page is full.jsp.

One way to do it would be to declare a new <forward>, and amend ContactAction to

dispatch to the forward corresponding to the input page. This “solution” is hardly a good

one because you’d have to amend and recompile ContactAction each time you wanted to

add or remove a page.

104 C H A P T E R 9 ■ C O N F I G U R I N G S T R U T S

The solution Struts offers is much better. The idea is to declare a new form handler in

struts-config.xml to handle input from a different page. You can then reuse form beans

and Action subclasses in this new form handler, but use a different <forward>.

The next lab session shows you how to do this.

Lab 9b: The MNC Page

In LILLDEP, users frequently have to fill in contacts from multinational corporations

(MNCs). For these companies, users want a separate form, containing just the following

seven fields:

• Name

• Designation

• Department

• Email

• Company

• Address

• Postcode

The Classification field should automatically be set to the string value mnc. You can use

the <html:hidden> tag

<html:hidden property="myFormProperty" value="myFixedValue"/>

to automatically set the Classification field. The other fields should be left blank. Figure 9-2

shows how the MNC page appears to the user.

1. Complete the implementation of mnc.jsp. The form handler should be called

ContactFormHandlerMNC.

2. Add a new form handler to struts-config.xml to accept data from mnc.jsp. The

(single) forward should point back to mnc.jsp. What should the name of the forward

be? (Hint: ContactAction knows only one forward label.)

3. Run compile.bat to produce the WAR file.

4. Stop Tomcat, then delete the \webapps\lilldep\ folder. Only then re-deploy the

LILLDEP webapp.

Test out your application as you did in Lab 9a.

C H A P T E R 9 ■ C O N F I G U R I N G S T R U T S 105

Figure 9-2. The MNC data entry page

Summary

In this chapter, you’ve learned the basics of configuring Struts:

• The struts-config.xml file ties together the View and Controller sections of your

webapp.

• struts-config.xml is deployed in the \WEB-INF\ directory of your webapp.

• ActionForm subclasses are exposed to your webapp in the form bean declarations.

• A form handler declaration ties together form beans, an Action subclass, and one or

more “next” pages.

• The properties files for your application are declared in the message resources

section of struts-config.xml.

107

■ ■ ■

C H A P T E R 1 0

More Tags

In Chapter 8 we covered the basic Struts tags: those used to display static text, to facilitate

data entry on forms, and to display error messages.

The story as we take it up in this chapter becomes a little more complex. Since Struts

was first developed, a couple of paradigm shifts have occurred in the Java/JSP world: the

JSP Standard Template Library (JSTL) and JavaServer Faces (JSF).

JSTL is an attempt to create a set of standardized JSP tags to perform certain generic

tasks, such as iteration, conditional processing, formatting, internationalization, XML

processing, and data access. Prior to the advent of JSTL, each JSP-related technology like

Struts had to create custom tags, from scratch, to do these things.

This do-it-yourself approach has two big drawbacks:

• A steeper learning curve: Developers new to such a JSP-related technology would

have to learn how to perform generic things using that technology’s custom tags.

• Incomplete or inflexible tag libraries: Because the thrust of the new technologies

was not to do generic things well, it meant that these custom tag libraries were often

lacking in flexibility and power. Developers would often have to resort to ugly tricks

with scriptlets to get the functionality they needed.

JSTL solves these problems by providing tags to perform many of these generic functions

well. It also makes heavy use of a “mini-language” called the expression language (EL)

(from the new JSP 2.0 specification), which makes these tags very flexible. For these reasons,

JSTL is the preferred technology to use when it overlaps with custom Struts tags.

Unfortunately, JSTL requires servlet containers that conform to the JSP 2.0 specifica-

tion in order to work. This is a problem for those who have to work with “legacy” servlet

installations that are not JSP 2.0 conformant.

The other parallel development is JavaServer Faces (JSF), a specification by Sun, which

(among other things) provides a set of custom tags to display a variety of client-side inter-

faces that far exceeds the paltry collection in the Struts HTML and Bean tag libraries. The

Apache Shale project (more on this in Chapter 20) is a ground-up rework of Struts around

the JSF specification. It is certainly possible that some of the tags from Shale will make

their way into Struts in the future.

108 C H A P T E R 1 0 ■ M O R E T A G S

This chapter covers two more Struts tag libraries, and some of the relevant overlaps

between Struts and JSTL. We’ll also look at an effort to get Struts tags to accept EL expressions.

We’ll describe JSF and Shale in Chapter 20.

But first, here are a couple of guiding lights to lead the way.

Best Practices

It’s easy to get lost in the morass of tags and tag libraries, so I’d like you to consider two

rules of thumb I believe are useful in deciding which tag library to go with when you have

a choice:

• Beware the scriptlet: Scriptlets are not inherently “evil,” but if you find yourself

using them to overcome deficiencies in a tag, it’s time to consider scouting for an

alternative.

• Use “custom-built generic solutions” (pardon the oxymoron): Use generic solutions

like JSTL whenever possible.

I hope the rationale behind these two heuristics is obvious. Custom tags are there to

obviate the need to use scriptlets. So, if you find yourself having to use scriptlets, the

custom tags you’re using aren’t doing their job well enough.

The 2 + 1 Remaining Struts Libraries

In Chapter 8, you saw how to use the HTML and Bean tag libraries. There are three other

Struts tag libraries: the Logic, Nested, and Tiles tag libraries.

■Note In older versions of Struts, prior to 1.2, you might come across a “template” tag library. The Tiles

library supersedes this older “template” tag library.

In this chapter, we’ll only cover the Logic and Nested tag libraries. The Tiles tags

warrant an entire chapter of their own (Chapter 14).

C H A P T E R 1 0 ■ M O R E T A G S 109

The Logic Tag Library

The Logic library has tags for

• Iteration: The iterate tag

• Conditional processing: The equal, present, match, empty, notEqual, notPresent,

notMatch, notEmpty, messagesNotPresent, messagesPresent, lessThan, lessEqual,

greaterThan, and greaterEqual tags

• Flow control: The redirect and forward tags

■Note All of these tags, apart from the ones for flow control, have counterparts in JSTL, which we will cover

later in this chapter. You should use the JSTL versions whenever possible.

Let’s tackle these three classes of tags next.

Iteration

The <logic:iterate> tag can be used to iterate over collections, enumerations, arrays, or

iterators. We’ll refer to any of these as an “iteratable” object. To use the <logic:iterate>

tag, you have to

1. Create the iteratable object: This is done in your Action subclass, since this is Con-

troller code. Never forget the MVC.

2. Place the iteratable object on the request: Recall that in your Action’s execute()

function, you have a reference to the request object. You can place objects on this

request object, or on its associated session object, giving the object a name.

3. Forward to the JSP page that contains the <logic:iterate> tag: The JSP page

called by the Action would be able to access these objects by the name you gave

them.

These three steps are the same or similar even if you’re using JSTL for iteration, so be

sure to study carefully the following code listings that illustrate these steps.

We’ll take up the LILLDEP webapp you’ve been working on throughout this book. The

requirement is to create a simple search page for Contacts by postcode. The user keys in

the postcode and the page returns a list of Contacts. This is obviously a contrived example,

but it keeps things simple!

110 C H A P T E R 1 0 ■ M O R E T A G S

Also, for the sake of clarity, we’ll present only the relevant, nonobvious portions of

code. First, Listing 10-1 shows the Action subclass, aptly named PostcodeSearchAction,

which receives the postcode the user wants to search by.

Listing 10-1. A Section of PostcodeSearchAction

public ActionForward execute(...){

 PostcodeSearchForm psForm = (PostcodeSearchForm) form;

 String postcode = form.getPostcode();

 // Step 1: create iteratable object

 // Retrieve a list of Contacts matching the given postcode.

 // If you find the following code confusing, read Appendix A.

 Criteria crit = new Criteria();

 crit.add(Contact.POSTCODE,postcode);

 Iterator results = ContactPeer.doSelect(crit);

 // Step 2: put iteratable on request

 // Save the list on the results. You might want to refer to

 // Appendix B for some the functions on HttpServletRequest.

 request.setAttribute("search_results", results);

 // Step 3: forward to the JSP

 // In this case, struts-config.xml maps "success" to

 // Display.jsp

 return new ActionForward(mapping.findForward("success"));

}

So, an Iterator of Contacts is located on the request object. This Iterator is called

search_results. Listing 10-2 shows the section of Display.jsp that lists the Contacts.

Listing 10-2. A Section of Display.jsp

<logic:iterate name="search_results" id="contact" indexId="cnt">

 <p>

 Contact number <bean:write name="cnt"/>

 <bean:write name="contact" property="name"/>

 <bean:write name="contact" property="company"/>

 <bean:write name="contact" property="tel"/>

 </p>

</logic:iterate>

C H A P T E R 1 0 ■ M O R E T A G S 111

In Listing 10-2, the name, company, and telephone number of each Contact is listed.

The <logic:iterate> tag has three main attributes:

• name: Refers to the iteratable object you’ve placed on the request. In this instance,

it’s search_results.

• id: Specifies a name that represents a single element on the iteratable object. In this

case, the id is contact. This attribute is required, even if you don’t use it.

• indexId (optional): Specifies a number representing the current iteration. The only

reason I used it here is to write out the iteration number using <bean:write>. The

indexId is important when you want to use indexed properties, a topic I will come to

in the next section.

The <bean:write>s write out the name, company, and telephone of a given Contact.

Note that the name attribute of <bean:write> refers to the single element exposed by the id

attribute of <logic:iterate>. Refer to Appendix C for a thorough explanation of <bean:write>.

ITERATING OVER HASHMAPS

If the iteratable object is a HashMap or a class implementing a Map, the elements are instances of

Map.Entry. This interface contains getKey() and getValue() functions, so you can use

<bean:write name="xxx" property="key"/>

to display the key, and

<bean:write name="xxx" property="value"/>

to display the corresponding value.

I’d like to reiterate (pardon the pun) that the functionality provided by <logic:iterate>

overlaps with JSTL’s <forEach> tag. We’ll come to this in a later section.

Simple, Nested, Indexed, and Mapped Properties

Many Struts tags accept a property attribute, which refers to a property on the object

they’re operating on. We’ve seen this in action, for example, in the <bean:write> tag in the

previous section:

<bean:write name="contact" property="company"/>

As it’s used here, <bean:write> attempts to display the return value of getCompany(),

which is called on the object referred to as contact. This is an example of a simple property.

112 C H A P T E R 1 0 ■ M O R E T A G S

Simple properties are those that implicitly call a getXXX() function on the object currently

under consideration.

Struts supports three other types of properties: nested, indexed, and mapped properties.

Nested properties allow you to refer to a property of a property. For example, if in our

previous example the return value of getCompany() were a JavaBean object, then nested

properties would allow you to refer to a property on this object:

<bean:write name="contact" property="company.name"/>

As it’s used here, <bean:write> attempts to display the return value of

getCompany().getName().

Indexed properties are similar to simple properties, but they assume that the function

that should be called is getXXX(int index) instead of just getXXX(). So, if the contact

object supported a getCompany(index) function, this is how you would call it:

<bean:write name="contact" property="company[41]"/>

As it’s used here, <bean:write> attempts to display the return value of getCompany(41).

This example begs the question of how to use indexed properties with <logic:iterator>,

for example, to display a list of values. This is how you’d do it:

<logic:iterate name="companies" id="company" indexId="cnt">

 <bean:write name="companies" property="company[<%=cnt%>]"/>

</logic:iterate>

This example assumes that the companies object has a getCompany(index) function.

This example should also set off alarm bells in your head: it uses a scriptlet! There’s got

to be a better way—and there is. In this particular example, you have two choices: use

<forEach> and <out> JSTL tags (which we’ll cover later) or use the Struts-EL tags (we’ll also

cover these later), which are souped-up versions of the ordinary Struts tags:

<logic-el:iterate name="companies" id="company" indexId="cnt">

 <bean-el:write name="companies" property="company[${cnt}]"/>

</logic-el:iterate>

In this example, the change is hardly perceptible, but in more realistic cases the resulting

code would be much simpler to read.

Mapped properties are similar to indexed properties, except that the function called is

assumed to be getXXX(String s). For example, if the contact object in the previous examples

had a getMobile(String mobileType) function, you could use

<bean:write name="contact" property="mobile(home)"/>

<bean:write name="contact" property="mobile(office)"/>

These examples would call getMobile("home") and getMobile("office"), respectively.

You can also mix the various types of properties:

C H A P T E R 1 0 ■ M O R E T A G S 113

<bean:write name="contacts" property="contact[5772].company"/>

which is an implicit call to getContact(5772).getCompany().

Table 10-1 summarizes the various property types.

Conditional Processing

The Logic tag library has a number of tags for performing conditional processing. These

may be grouped into three categories:

• Tests: present, empty, messagesPresent

• Comparisons: equal, lessThan, lessEqual, greaterThan, and greaterEqual

• String matching: match

Some of these tags (for tests and string matching) have negative counterparts: notPresent,

notEmpty, messagesNotPresent, and notMatch. All these tags follow a common structure in

their usage. In pseudocode:

<tag>

 // conditionally processed code here.

</tag>

In addition, all these tags have two attributes in common:

• name: Specifies the name of the object that the tag operates on. It is assumed that a

previous Action had placed the object on the request. The earlier section on iteration

shows how this might be done.

• property: Corresponds to a simple, nested, indexed, or mapped property on the

object referred to by the name attribute. This attribute is optional.

Tags that require a comparison or a match will also accept an additional value

attribute. Let’s look at a couple of examples of how these tags are used:

Table 10-1. Simple, Nested, Indexed, and Mapped Properties

Type Usage Function Called

simple property="myProperty" getMyProperty()

nested property="myProperty.mySubProperty" getMyProperty().getMySubProperty()

indexed property="myProperty[5772] " getMyProperty(5772)

mapped property="myProperty(myString) " getMyProperty("myString")

114 C H A P T E R 1 0 ■ M O R E T A G S

<logic:empty name="search_results">

 <i>Sorry, there are no contacts with this postcode</i>

</logic:empty>

<logic:notEmpty name="search_results">

 <!-- code to display contacts goes here -->

</logic:notEmpty>

The empty and notEmpty tags simply check if the given iteratable object contains

elements, and therefore don’t require a value attribute. Here’s another example:

<logic:lessThan name="myConstants" property="pi" value="3.14">

 <i>Some of your pi is missing!</i>

</logic:lessThan>

This code displays the message “Some of your pi is missing” if myConstants.getPi() is less

than 3.14.

Table 10-2 summarizes these tags.

The negative counterparts of the tags in Table 10-2 are notPresent, notEmpty,

messagesNotPresent, and notMatch). Appendix C describes all these tags in more detail.

Lastly, note that JSTL has an <if> tag that you can use in place of many of these tags.

We’ll come to this later on in this chapter.

Flow Control

The two tags that perform flow control (actually, redirection) are <logic:redirect> and

the simplified version of it, called <logic:forward>. Their use on a JSP page causes control

to be passed to a different page. For example:

<logic:forward name="someOtherPage"/>

would redirect control to a global forward (refer to Chapter 9) called someOtherPage.

Table 10-2. Summary of the Conditional Processing Tags

Tag Meaning

present Tests if a variable is present on the request.

empty Tests if an array or Collection is empty.

messagesPresent Tests if a message (an ActionMessage instance) is on the request.
The name of the message is given in the value attribute.

Comparison tags
(equal, lessEqual, etc.)

Tests if the given property passes the given comparison. The value
to be compared with is provided in the value attribute.

match Checks if the given property has the value attribute as a substring.

C H A P T E R 1 0 ■ M O R E T A G S 115

<logic:redirect> also redirects control to a different page, but gives you more options

for performing the redirect. For more details on each of these tags, refer to Appendix C.

Note that there are no equivalent JSTL tags that can utilize global forwards declared in

struts-config.xml.

The Nested Tag Library

The Nested tag library allows you to apply tags relative to an object. In some instances,

this can greatly simplify your server-side ActionForm code, as you’ll see in the lab sessions

of this chapter.

■Note If you’ve programmed in Visual Basic, you might have used the With keyword. The Nested tag

library is an inelegant implementation of this.

To illustrate how the Nested tag library works, let’s first consider the class diagram

shown in Figure 10-1.

Figure 10-1. The MyActionForm, Monkey, and Banana classes

116 C H A P T E R 1 0 ■ M O R E T A G S

Figure 10-1 describes an ActionForm subclass and its functions. The data on MyActionForm

is held by two objects: Monkey, which in turn has a Banana object. Our webapp has to allow

the user to key in a name for the Monkey, and a species for the Monkey’s Banana (Figure 10-2).

Figure 10-2. Form to enter the Monkey’s name and the Banana species

As Listing 10-3 shows, the Nested tag library allows you to do this without having to

include additional getters and setters for the name and species in MyActionForm.

Listing 10-3. MonkeyPreferences.jsp

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<%@ taglib uri="/tags/struts-html" prefix="html" %>

<%@ taglib uri="/tags/struts-nested" prefix="nested" %>

<html:html>

<body>

 <html:form action="MonkeyPreferencesForm.do">

 <nested:nest property="monkey">

 Monkey's name:

 <nested:text property="name" size="60" />

 <nested:nest property="banana">

 Species of Banana:

 <nested:text property="species" size="60" />

 </nested:nest>

 </nested:nest>

 <html:submit/>

 </html:form>

</body>

</html:html>

C H A P T E R 1 0 ■ M O R E T A G S 117

The <html:form> tag implicitly sets the root object as MyActionForm. This means that all

properties are calculated relative to the MyActionForm instance. The <nested:nest> tag

<nested:nest property="monkey">

 Monkey's name:

 <nested:text property="name" size="60" />

makes the property references relative to the monkey property instead. So the <nested:text>’s

property tag is really monkey.name.

Your eyes should widen at the <nested:text>. Yes, that’s right. The Nested tag library

contains “nested” counterparts for all of the HTML tag library, most of the bean tag

library, and all of the Logic tag library apart from the flow control tags. Appendix C lists the

tags in the HTML, bean, and logic tag libraries supported by the Nested tag library.

Obviously, there’s nothing you can’t achieve with the Nested tag library that you can’t

already do with nested properties (see the earlier section). For example, Listing 10-4 shows

how Listing 10-3 could be rewritten without using nested tags. In complicated scenarios,

though, the use of the Nested tag library makes your code a little neater.

Listing 10-4. MonkeyPreferences.jsp, Take 2

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<%@ taglib uri="/tags/struts-html" prefix="html" %>

<html:html>

<body>

 <html:form action="MonkeyPreferencesForm.do">

 Monkey's name:

 <html:text property="monkey.name" size="60" />

 Species of Banana:

 <html:text property="monkey.banana.species" size="60" />

 <html:submit/>

 </html:form>

</body>

</html:html>

Lastly, there are times when you want to specify a different root object than the default

one. You use the <nested:root> tag to do this:

<nested:root name="myNewRoot">

 <!-- new root object is myNewRoot -->

</nested:root>

Of course, this example assumes that the object named myNewRoot has been placed on

the request. This is usually done in your Action subclass. Refer to Listing 10-1 and the

accompanying discussion to see how this is done.

118 C H A P T E R 1 0 ■ M O R E T A G S

JSTL and Struts

As we mentioned earlier, JSTL was created to give JSP developers a comprehensive set of

tags to perform a variety of generic tasks. The ultimate goal is to allow JSP developers to

avoid using scriptlets altogether.

You might ask what makes JSTL a more compelling alternative to scriptlets. Consider

Listing 10-5 and then look at Listing 10-6, the JSTL version.

Listing 10-5. Counting to 99

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<html>

<body>

 <%

 for(int i = 1; i <= 99; i++){

 %>

 This is iteration number <%= i %>

 <%

 }

 %>

</body>

</html>

Listing 10-6. Counting to 99 with JSTL

<%@ page contentType="text/html;charset=UTF-8" language="java" %>

<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<html>

<body>

 <c:forEach var="i" begin="1" end="99" step="1">

 This is iteration number <c:out value="${i}"/>

 </c:forEach>

</body>

</html>

Even in this simple example it’s obvious that the JSTL example (Listing 10-6) is much

more readable than Listing 10-5, which uses scriptlets.

Now, like I said, JSTL is a huge body of useful tags and covering them effectively would

require an entire book.

■Note You could check out Pro JSP 2, 4th Edition (Apress, 2005). This book covers JSP 2.0, JSTL, and

much more.

C H A P T E R 1 0 ■ M O R E T A G S 119

What I will discuss here is the intersection between JSTL and Struts tags. Fortunately,

this intersection is manageable. JSTL consists of four tag libraries: the Core, Formatting,

XML Processing, and Database Access tag libraries. Of these, only the Core and Format-

ting tag libraries fall into the intersection. From these, only a few tags concern us. They fall

into three categories:

• Output: Performed by the <c:out> tag. In Struts, you’d use <bean:write>. There are

also a number of tags from the Formatting tag library to format text and display

resource messages.

• Iteration: Performed by the <c:forEach> tag. The analogous Struts tag is

<c:iterate>.

• Conditional processing: Performed by the <c:if> and <c:choose>...<c:when> tags.

These have a lot of tags from the Struts Logic library as counterparts.

Before I describe these three JSTL tags, let’s take a look at the expression language (EL).

Much of the power of JSTL is attributable to the use of EL within its tags.

■Note Although I’m introducing EL here with JSTL tags, this is for purely pedagogical reasons. EL is inde-

pendent of JSTL and is part of the JSP 2.0 specification.

Expression Language (EL)

EL allows the attributes of “EL-enabled” tags to assume dynamic values. Before EL, if you

wanted dynamic attributes, you had to embed scriptlets or custom tags within the attribute

(see Listing 10-7), resulting in difficult-to-read code.

Listing 10-7 illustrates a typical situation where dynamic attributes are important and

how you might use scriptlets to achieve this functionality. The snippet alternately colors

the rows of a table gray, using a (fictitious) custom tag, <h:tr>, to write out HTML table

rows with some fancy formatting.

Listing 10-7. Alternately Coloring the Rows of a Table Gray

<% for(int i = 0; i < 10; i++){ %>

 <h:tr bgcolor="#<%= (i%2 == 0)? 'FFFFFF' : 'DDDDDD' %>" >

 <td> This is row number <%= i %> </td>

 </h:tr>

<% } %>

Unless you’re a Perl programmer, I’m sure you’ll agree that Listing 10-7 is difficult to

read. EL solves this problem by allowing EL-enabled tags to have dynamic attributes.

120 C H A P T E R 1 0 ■ M O R E T A G S

For example, if <h:tr> were an EL-enabled tag, then Listing 10-7 could be rewritten as

shown in Listing 10-8, which is more readable.

Listing 10-8. Alternately Coloring the Rows of a Table Gray, with EL and JSTL

<c:forEach var="i" begin="0" end="9" step="1">

 <h:tr bgcolor="#${(i%2 == 0)? 'FFFFFF' : 'DDDDDD'}">

 <td> This is row number <c:out value="${i}"/> </td>

 </h:tr>

</c:forEach>

Now, EL isn’t just scriptlets with ${...} delimiters instead of <%...%> delimiters. EL

includes several keywords and operators that aid in its role of endowing tags with dynamic

attributes. We’ll take a look at this next.

Using EL

EL expressions are evaluated within the ${...} delimiters. Within an EL expression, you

can use a number of common operators:

• Arithmetic operators: +, –, % or mod, *, / or div

• Logical operators: and or &&, or or ||, not or !

• Comparisons: < or lt, <= or le, == or eq, != or ne, > or gt, >= or ge

• Conditional evaluation: (condition) ? A : B returns A if condition is true and B

otherwise. A or B may be fixed strings (e.g., astring) or a variable or numeric value.

However, to make your code readable, keep it simple.

• empty operator: Prefix empty to the name of an object to determine if it is empty (an

array, Collection, Enumeration, HashMap, or Iterator) or null (any other object).

These operators should require no further explanation, since they are similar to those

in Java.

You may also use nested and indexed properties with EL. Nested properties are the

same as for Struts: the . separator in a name indicates a nested property. For example:

${myObject.myProperty}

returns the value of myObject.getMyProperty(). No surprises here.

Indexed properties with EL do double duty. You can index with a numeric value, a string,

or a variable. Indexing with a string is the same as using a mapped property. Table 10-3

offers some examples.

C H A P T E R 1 0 ■ M O R E T A G S 121

Lastly, EL exposes several implicit objects, which are built-in objects that your EL

expressions will always have access to. There are a quite few of these, and I won’t go

through every one. To learn more, refer to Sun’s J2EE tutorial (see “Useful Links”).

■Note A common pitfall is to use a variable name coinciding with the name of an implicit object. For

example, calling a variable of your own “requestScope” is a no-no. There are also a number of reserved

keywords that you must avoid. These are given in Sun’s tutorial (see “Useful Links”).

 Among the most important implicit objects are those representing the various scopes.

These allow you to explicitly access your variables by scope. These scope objects are

pageScope, requestScope, sessionScope, and applicationScope. Suppose you want to

access a session-scoped variable named myObject. Here’s how:

${sessionScope.myObject}

Variables on other scopes are accessed in a similar manner.

In this section, we’ll examine the use of EL in the JSTL tags <forEach>, <if>,

<choose>...<when>, and <out>, which are relevant to Struts. I hope that after you

read this section you will have sufficient exposure to EL to be able to use it well.

The <c:out> Tag

The <c:out> tag outputs text, and is in many instances a replacement for <bean:write>.

The usage of this tag is simple, since it has just one value attribute:

<c:out value="${myObject.myProperty}">

A quick look at Appendix C will show you that <bean:write> isn’t a one-trick pony—it has

attributes you can use to format the displayed value. You can’t do this with just <c:out>;

you’d have to use the JSTL Formatting tag library. Using this tag library requires a more

thorough treatment of JSTL than can be done here. Again, check out Pro JSP 2, 4th Edition,

if you’re interested in learning more.

Table 10-3. Indexed Properties and EL

EL Expression Value

${myArray[2718].name} myArray[2718].getName()

${myMap['exp'].value} myMap.get("exp").getValue()

${myArray[myOffset]} Returns the element on myArray with an index equal to the
variable myOffset.

122 C H A P T E R 1 0 ■ M O R E T A G S

The <c:forEach> Tag

The <c:forEach> tag is used for iteration. You can use it instead of the Struts <logic:iterate>

tag. You’ve seen how to use <c:forEach> to perform iteration over a fixed set of limits (see

Listings 10-6 and 10-8). You can also use it to perform iteration over a Java array, Collection,

Enumeration, or Iterator. Listing 10-9 shows you how to do this.

Listing 10-9. Using <c:forEach> to Iterate Over an Iteratable Object

<c:forEach var="item" items="${sessionScope.myIteratable}">

 <c:out value="${(empty item)? 'nil' : item.myProperty}"/>

</c:forEach>

The two important attributes here are var, which exposes a single element of the iterat-

able object, and items, which is the name of the iteratable object. Note how Listing 10-9

uses the myIteratable object, specifically with session scope, using the sessionScope

implicit object.

Flashback Quiz

Can you remember what the counterparts of var and items were on <logic:iterate>?

There is an additional useful attribute called varStatus, which gives you information

on the current iteration. varStatus has four properties:

• first and last, which return true or false depending on whether the current iteration

is the first or last one in the loop.

• count, which gives you the number of the current iteration. This starts at 1.

• index, which gives you the absolute index of the current iteration. This starts at 0,

and is incremented according to the value of the step attribute.

Listing 10-10 shows varStatus in action.

Listing 10-10. The first, last, count, and index Properties of varStatus

<c:forEach begin="10" end="15" step="2" varStatus="status">

 <c:out value="${status.first}"/>

 <c:out value="${status.last}"/>

 <c:out value="${status.count}"/>

 <c:out value="${status.index}"/>

</c:forEach>

C H A P T E R 1 0 ■ M O R E T A G S 123

The output of Listing 10-10 would be

true false 1 0

false false 2 2

false true 3 4

The last two JSTL tags we’ll look at are <c:if> and <c:choose>...<c:when> for condi-

tional processing.

The <c:if> and <c:choose>...<c:when> Tags

<c:if> allows you to process a single block of code if a test passes. The test itself is an EL

expression referred to by the test attribute, as shown in Listing 10-11.

Listing 10-11. <c:if> in Action

<c:if test="${(empty user.userid || empty user.password)}">

 Please key in your User ID and password.

</c:if>

In Listing 10-11, the message is displayed if the user ID or password are null. The <if>

tag doesn’t support an else or if else block. If you want these, then you have to use the

clumsier <choose> ... <when> tags (see Listing 10-12). If you’ve used Extensible Stylesheet

Language (XSL), this should be very familiar.

Listing 10-12. <c:choose>...<c:when> in Action

<c:choose>

 <c:when test="${empty user.userid}">

 Please key in your userid.

 </c:when>

 <c:when test="${empty user.password}">

 Please key in your password.

 </c:when>

 <c:when test="${not user.loggedIn}">

 Sorry, couldn't log you in.

 </c:when>

 <c:otherwise>

 You're logged in!

 </c:otherwise>

</c:choose>

In Listing 10-12 there are two when clauses that test if the user ID and password are null,

and another that tests whether the user is logged in. The last otherwise tag is a catchall

block. Note that the otherwise block is optional.

124 C H A P T E R 1 0 ■ M O R E T A G S

Now You Do It

Earlier in this chapter, I mentioned that some of the conditional processing tags have JSTL equivalents. Con-

struct JSTL equivalents for

• equal, present, empty, lessThan, lessEqual, greaterThan, and greaterEqual

• The negatives for all of the above (notEqual, notPresent, etc.)

Refer to Appendix C if you need definitions for these tags. Appendix D contains the answers.

This section ends my treatment of JSTL. In the next section, we’ll describe an extension

to the original tag libraries that allows them to process EL.

Struts EL Extensions

In order for EL to work in a custom tag, that tag has to be EL enabled. The current set of

Struts tags aren’t EL enabled, so this won’t work:

//won't work!!

<bean:write name=${(empty obj)? obj2.prop : obj.prop />

A set of EL-enabled Struts tags is available with the latest Struts distribution. You’ll find

these new tags in the ./contrib/struts-el/lib/ folder of the distribution. Also available

in this folder is an implementation of JSTL. If you use these Struts EL tag libraries, you can

use EL expressions in your Struts tags.

Of course, you’d have to use the corresponding Struts-EL tag, not the original Struts

tag. The following snippet illustrates this:

//OK

<bean-el:write name=${(empty obj)? obj2.prop : obj.prop />

Of course, just changing the prefix won’t work—you’d have to change the taglib declaration

in the JSP and put in a new <taglib> section in web.xml to point to the Struts-EL bean tag

library.

The Struts-EL tag libraries only implement a selection of tags from the original Struts

tag libraries. The tags not implemented are assumed to have counterparts in JSTL.

■Note In order to use the JSTL and Struts-EL tags, you have to have a servlet container that implements

the JSP 2.0 specs, which necessitates EL support. Tomcat 5.x is JSP 2.0 conformant.

C H A P T E R 1 0 ■ M O R E T A G S 125

Lab 10a: The LILLDEP Full Listing Page

In this lab, you will create a page that lists all the entries in the LILLDEP database.

Step 1: Complete ListingAction

Complete the implementation of the Action subclass ListingAction so that it prepares

an Iterator over the LILLDEP database. The following line of code shows how to get an

Iterator containing all Contacts in the database:

Iterator everything = ContactPeer.doSelect(new Criteria());

(Refer to the sections on Lisptorq in Appendix A for details.) Ensure that your

ListingAction implementation does the following:

• Forwards to the page named success.

• Puts the Iterator of Contacts on the request object (refer to the earlier section on

<logic:iterator> to see how this is done). Instead of using an ad hoc name for the

object, use a suitable name on the interface JSPConstants. This is helpful because all

names shared between JSP and Action classes are stored in one file, JSPConstants.

Step 2: Complete listing.jsp

Complete the implementation of listing.jsp, using <logic:iterate> to list the following

fields in a table:

• name

• email

• company

• address

• postcode

• website

When users click on website, it should take them to the company’s website.

Step 3: Amend web.xml

Put in a declaration in web.xml for the Struts Logic tag library.

126 C H A P T E R 1 0 ■ M O R E T A G S

Step 4: Amend struts-config.xml

Put in a new action mapping in struts-config.xml:

• The path should be /Listing.

• This action mapping should tie together ListingAction and listing.jsp.

Question: Will you need a form bean for this action mapping? (See Appendix D for

the answer.)

Compile, redeploy, and test your work. The main full.jsp page has a link on the

toolbar called Full Listing that invokes the handler Listing.do.

■Note Remember that you will have to reenter contacts because redeployment destroys the old database.

Lab 10b: Simplifying ContactForm

In the earlier section on the nested tag library, I mentioned that you can use the Nested

tag library or nested properties to simplify ActionForm subclasses.

This is certainly the case for ContactForm, which has many getters and setters. Most of

these can be removed if you use the nested library or nested properties.

Complete the following steps.

Step 1: Amend ContactForm

Remove all getters and setters on ContactForm except getModel() and setModel(). Question:

If you compiled and deployed LILLDEP now, would it work? Why or why not? (See

Appendix D for the answer.)

Step 2: Amend full.jsp and mnc.jsp

Use either the Nested tag library or nested properties to ensure that all fields and error

messages display correctly on both these forms.

Question: In either approach, what is the new base object? (See Appendix D for

the answer.)

■Note If you choose to use the Nested tag library, remember to add a section in web.xml to declare it.

Compile, redeploy, and test your work.

C H A P T E R 1 0 ■ M O R E T A G S 127

Lab 10c: Using JSTL

In this lab, I’d like you to use JSTL’s <c:forEach> tag rather than the <logic:iterate> tag

in listing.jsp.

Step 1: Install the JSTL and Struts EL Tag Libraries

Open the Struts distribution found in the Source Code section of the Apress website at

http://www.apress.com; it’s contained in a zip file named jakarta-struts-1.2.6.zip.

1. Copy all the JAR files in the .\contrib\struts-el\lib\ folder to LILLDEP’s \lib

folder, taking care to overwrite the existing files.

2. Copy all TLD files to LILLDEP’s \web\WEB-INF\ folder. Again, overwrite the older files.

Step 2: Amend web.xml

Add a <taglib> entry declaring the JSTL core tag library, c.tld. The recommended URI is

http://java.sun.com/jstl/core, but of course, you’re free to use anything you like.

Step 3: Amend listing.jsp

In listing.jsp, use JSTL’s <c:forEach> tag rather than the <logic:iterate> tag. Remember to

add to add a taglib declaration for the JSTL core tag library at the start of the page.

As usual, compile, redeploy, and test your work.

Useful Links

• Struts Apache online reference for the Logic tag library: http://struts.apache.org/

struts-doc-1.2.x/userGuide/dev_logic.html

• Struts Apache online reference for the Nested tag library: http://struts.apache.

org/struts-doc-1.2.x/userGuide/dev_nested.html

• Pro JSP 2, 4th Edition, by Simon Brown, Sam Dalton, Daniel Jepp, Dave Johnson,

Sing Li, and Matt Raible (Apress, 2005)

• JSTL specs: www.jcp.org/en/jsr/detail?id=052

128 C H A P T E R 1 0 ■ M O R E T A G S

• An EL tutorial from Sun: http://java.sun.com/j2ee/1.4/docs/tutorial/doc/

JSPIntro7.html

• A list of Struts tags that have not been EL-enabled because they have equivalents in

JSTL: http://struts.apache.org/struts-doc-1.2.x/faqs/struts-el.html

Summary

• The Logic library has tags for iteration, conditional processing, and flow control.

Most of these tags have JSTL equivalents.

• The Nested tag library is used to shift the implicit base object that the property

attribute refers to. You can use nested properties to achieve a similar effect.

• JSTL consists of four tag libraries (Core, Formatting, XML Processing, and Database

Access), which you can use in place of some Struts tags.

• <c:forEach>, <c:if>, <c:choose>...<c:when>, and <c:out> tags from the JSTL core

tag library can be used to replace the Struts <logic:iterate> and conditional

processing tags in the Logic tag library.

• <c:out> can be used to replace <bean:write>, but supporting tags from the JSTL

Formatting tag library are needed to fully replace <bean:write>.

• EL is a way to give EL-enabled tags dynamic attributes. EL has several special

keywords to help it do this.

• There are EL-enabled Struts tags you can use alongside the original Struts tags.

129

■ ■ ■

C H A P T E R 1 1

Uploading Files

In this chapter, I’ll discuss a few techniques you can use to upload files to a server. If

you’ve ever tried to create this functionality using JSP and servlets, you’ll know that it isn’t

easy.

Struts gives you a really painless way to upload files. But before I show you how, it is

instructive to understand a little bit of what goes on behind the scenes when a user attempts

to upload a file.

The starting point for any webapp that allows file uploads is the HTML element for

uploading a file:

<input type="file">

In most graphical browsers, this gets rendered as a text input field followed by a Browse

button, as depicted in Figure 11-1.

Figure 11-1. The input field for file uploading as displayed in Mozilla

Users can either type the filename directly in the given field, or click the Browse button,

which launches a dialog box allowing the user to visually navigate to the desired file.

When the user clicks the submit button of the enclosing form, the web browser reads

the file and encodes each byte with a suitable encoding, like uuencode (see “Useful Links”),

and sends this to the server, along with any posted form data. Depending on its length, the

file might also be broken into pieces.

So, seen from the server end the uploaded data is encoded and broken into several

parts. To reconstruct the original file, you’d have to correctly parse the input data, rejoining

broken parts, and finally decode everything. Ouch!

Struts makes things much, much easier. First, on the JSP page, you put in an

<html:file> tag:

<html:file property="myFile"/>

130 C H A P T E R 1 1 ■ U P L O AD I N G F I L E S

As usual, the property attribute corresponds to a property on your ActionForm subclass

that accepts the uploaded file. In the previous snippet, that property name is myFile.

The second change you make is to add a special property on the enclosing <html:form>:

<html:form enctype="multipart/form-data" action=...

This new property tells Struts that the data submitted by the form will be encoded and

in parts.

Next, on your ActionForm subclass, you’ll have to declare a property to accept the file

data, as shown in Listing 11-1.

Listing 11-1. Snippet of MyActionForm

import org.apache.struts.upload.FormFile;

public class MyActionForm extends ActionForm{

 protected FormFile _file;

 public FormFile getMyFile(){

 return _file;

 }

 public void setMyFile(FormFile f){

 _file = f;

 }

 ... //rest of MyActionForm

In Listing 11-1, FormFile is the Struts class that handles access to the downloaded file.

The fully qualified class name is

org.apache.struts.upload.FormFile

FormFile has two important functions:

• getInputStream(): Returns an InputStream to the downloaded file. You use this to

read the file itself.

• destroy(): Deletes the downloaded file. The downloaded file is saved in a temporary

directory, so be sure to call destroy() to free up disk space.

FormFile has a few other functions; these are listed in Appendix B.

C H A P T E R 1 1 ■ U P L O A D I N G F I L E S 131

Uploading a Fixed Number of Files at Once

From our discussion so far, it should be clear that since the uploaded file is just a property

of the ActionForm, you can upload more than one file on a single form. If the files are to be

treated equally, the best way to do this is to use indexed properties, as shown in Listing 11-2.

Listing 11-2. A Simple Form to Upload a Fixed Number of Files

<%@ taglib uri="/tags/struts-html" prefix="html" %>

<html>

<body>

<html:form enctype="multipart/form-data" action="/FileUpload.do">

 <h1>Upload Four Files</h1>

 File 1:<html:file property="file[0]" size="20"/>

 File 2:<html:file property="file[1]" size="20"/>

 File 3:<html:file property="file[2]" size="20"/>

 File 4:<html:file property="file[3]" size="20"/>

 <html:submit/>

</html:form>

</body>

</html>

The ActionForm associated with Listing 11-2 is described in Listing 11-3.

Listing 11-3. ActionForm Associated with Listing 11-2

import org.apache.struts.upload.FormFile;

public class FileUploadForm extends ActionForm{

 protected FormFile[] _files;

 public FileUploadForm(){

 _files = new FormFile[4];

 }

 public FormFile getFile(int i){

 return _files[i];

 }

132 C H A P T E R 1 1 ■ U P L O AD I N G F I L E S

 public void setFile(int i, FormFile f){

 _files[i] = f;

 }

 ... //rest of FileUploadForm

One important thing to note from Listing 11-3 is the order of the arguments in setFile().

A common mistake is to reverse the order:

setFile(FormFile f , int i) //WRONG!! Arguments reversed.

Apart from this, Listings 11-2 and 11-3 should hold no surprises.

It is possible to improve this technique somewhat if the order in which the files are

specified for uploading is unimportant. Listing 11-4 is a variation of Listing 11-3’s

FileUploadForm.

Listing 11-4. A Variation on Listing 11-3

import java.util.*;

import org.apache.struts.action.*;

import org.apache.struts.upload.*;

public class FileUploadForm extends ActionForm {

 protected List _files;

 public FileUploadForm(){

 _files = new ArrayList();

 }

 public FormFile getFile(int i){

 return(_files.size() > i)? (FormFile)_files.get(i) : null;

 }

 public void setFile(int i, FormFile f){

 if(f.getFileSize() <= 0){

 f.destroy();

 }else{

 _files.add(f);

 }

 }

}

C H A P T E R 1 1 ■ U P L O A D I N G F I L E S 133

The advantage of Listing 11-4 is that you don’t have to hard-code the number of files to

be uploaded into the ActionForm subclass. Notice also that setFile() only accepts a file of

nonzero length.

The downside of this approach is that there’s no guarantee Struts will call the setFile()

function in either ascending or descending order of the index variable. This means that

subsequent retrievals of the uploaded files might not be in the order specified by the user.

The main drawback with both these simple techniques is that you have to know before-

hand the number of files to be uploaded. Even with the second technique, the number of

<html:file> tags had to be hard-coded in the JSP. There’s no way for a user to upload an

arbitrary number of files. In some applications (e.g., a webmail app), this might be too

restrictive. I’ll show you how to overcome this shortcoming next.

RESTRICTING THE SIZE OF UPLOADED FILES

In Chapter 9, I described how you can limit the maximum allowable file size to accept in a single upload.

You use the <controller> tag of struts-config.xml to do this. For example:

<controller maxFileSize="2M" />

sets a limit of 2MB. You use a numeric value followed by K, M, or G to indicate a size in kilobytes, megabytes,

or gigabytes.

Uploading Any Number of Files

Struts does not provide a one-stop solution for uploading an arbitrary number of files.

However, it does provide adequate tools for you to “roll your own” solution. In this section, I’ll

describe one solution to this interesting problem. (For expositional clarity, the solution

I’ll describe will not preserve the order of the uploaded files, but it isn’t too difficult to fix this.)

The heart of the solution is to have two submit buttons for the file upload form:

• The first submit button is an Upload More Files button (or something equivalent,

like a link). This button simply forces Struts to save the uploaded files, and then

redisplays the input page with the list of files uploaded thus far. The values keyed in

on other fields are also displayed. Because this round-trip may take time, it is usually

advisable to give the user more than one input field to upload files.

• The second button is the true submit button, which sends all the form data (including

all uploaded files) for processing.

134 C H A P T E R 1 1 ■ U P L O AD I N G F I L E S

In what follows, I’ll illustrate the solution in the context of a trivial webmail app. This

webapp has just two pages: the first allows the user to compose an email message, and the

second page displays the contents of the email. Figure 11-2 shows what the compose page

looks like, while Figure 11-3 depicts the output page.

Figure 11-2. The compose page

Figure 11-3. The output page (showing six attached files)

C H A P T E R 1 1 ■ U P L O A D I N G F I L E S 135

Struts has a robust way for you to put two submit buttons on a single form. I’ve described

this technique in detail in Chapter 17’s LookupDispatchAction. Please read that section before

proceeding. In what follows, I’ll assume that you know how LookupDispatchAction works.

The starting point of the solution is Listing 11-4’s FileUploadForm. This ActionForm

subclass contains all the functionality we need to upload an arbitrary number of forms.

In order to accommodate the other fields of the email, we subclass FileUploadForm, as in

Listing 11-5. This is good design since we can reuse the file uploading functionality in

other forms.

Listing 11-5. WebmailForm.java

package net.thinksquared.webmail;

import javax.servlet.http.*;

import org.apache.struts.action.*;

public class WebmailForm extends FileUploadForm{

 private String _recipients;

 private String _subject;

 private String _message;

 public String getRecipients(){

 return _recipients;

 }

 public String getSubject(){

 return _subject;

 }

 public String getMessage(){

 return _message;

 }

 public void setRecipients(String recipients){

 _recipients = recipients;

 }

 public void setSubject(String subject){

 _subject = subject;

 }

136 C H A P T E R 1 1 ■ U P L O AD I N G F I L E S

 public void setMessage(String message){

 _message = message;

 }

 public ActionErrors validate(ActionMapping mapping,

 HttpServletRequest request){

 ActionErrors errors = new ActionErrors();

 //NO BLANK MESSAGES/RECIPIENTS/SUBJECTS

 if(_recipients.trim().length() == 0){

 errors.add("recipients",

 new ActionMessage("webmail.error.recipients"));

 }

 if(_subject.trim().length() == 0){

 errors.add("subject",

 new ActionMessage("webmail.error.subject"));

 }

 if(_message.trim().length() == 0){

 errors.add("message",

 new ActionMessage("webmail.error.message"));

 }

 return errors;

 }

}

Listing 11-6 contains the JSP page that displays the compose page shown in Figure 11-2.

For clarity, and to highlight the use of message keys in conjunction with

LookupDispatchAction, I’ve not used message resources consistently in Listing 11-6.

Listing 11-6. JSP for the Compose Page

<%@ taglib uri="/tags/struts-html" prefix="html" %>

<%@ taglib uri="/tags/struts-bean" prefix="bean" %>

<html>

<body>

<html:form enctype="multipart/form-data" action="/SendMessage.do">

 Recipients: <html:text property="recipients"/>

 <html:errors property="recipients"/>

C H A P T E R 1 1 ■ U P L O A D I N G F I L E S 137

 Subject: <html:text property="subject"/>

 <html:errors property="subject"/>

 Message: <html:text property="message"/>

 <html:errors property="message"/>

 <h1>Attach Files</h1>

 File 1:<html:file property="file[0]" size="20"/>

 File 2:<html:file property="file[1]" size="20"/>

 File 3:<html:file property="file[2]" size="20"/>

 File 4:<html:file property="file[3]" size="20"/>

 <html:submit property="action">

 <bean:message key="webmail.prompt.more-files"/>

 </html:submit>

 <html:submit property="action">

 <bean:message key="webmail.prompt.send"/>

 </html:submit>

</html:form>

</body>

</html>

In Listing 11-6, note the two submit buttons, as well as the required setup for using

LookupDispatchAction (see Chapter 17). The Action subclass to handle both submits

appears in Listing 11-7. Notice that we do not override execute() in SendMessageAction

because of how LookupDispatchAction works.

Listing 11-7. SendMessageAction

package net.thinksquared.webmail;

import java.util.*;

import javax.servlet.http.*;

import org.apache.struts.action.*;

import org.apache.struts.actions.*;

public class SendMessageAction extends LookupDispatchAction{

138 C H A P T E R 1 1 ■ U P L O AD I N G F I L E S

 protected Map getKeyMethodMap(){

 Map m = new HashMap();

 m.put("webmail.prompt.more-files","attach");

 m.put("webmail.prompt.send","send");

 return m;

 }

 public ActionForward attach(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response){

 return mapping.getInputForward();

 }

 public ActionForward send(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response){

 return mapping.findForward("success");

 }

} buttons

The struts-config.xml file appears in Listing 11-8, and the JSP for the output page

shown in Figure 11-3 is provided in Listing 11-9. Notice that the form bean is in session

scope. This means that you have to perform some cleanup (for clarity, not shown in the

listings here) in order to reset the form fields.

Listing 11-8. struts-config.xml

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC

 //...omitted for clarity

<struts-config>

C H A P T E R 1 1 ■ U P L O A D I N G F I L E S 139

 <form-beans>

 <form-bean name="msgForm"

 type="net.thinksquared.webmail.WebmailForm"/>

 </form-beans>

 <action-mappings>

 <action path="/SendMessage"

 type="net.thinksquared.webmail.SendMessageAction"

 name="msgForm"

 validate="true"

 scope="session"

 parameter="action"

 input="/index.jsp">

 <forward name="success" path="/out.jsp"/>

 </action>

 </action-mappings>

 <message-resources parameter="Application"/>

</struts-config>

Listing 11-9. The JSP for the Output Page

<%@ taglib uri="/tags/struts-nested" prefix="nested" %>

<%@ taglib uri="/tags/struts-logic" prefix="logic" %>

<%@ taglib uri="/tags/struts-bean" prefix="bean" %>

<html>

<body>

<h1>A Short Message</h1>

<nested:root name="msgForm">

 Recipients:

 <nested:write property="recipients"/>

 Subject:

 <nested:write property="subject"/>

140 C H A P T E R 1 1 ■ U P L O AD I N G F I L E S

 Message:

 <nested:write property="message"/>

</nested:root>

 Attached Files:

 <logic:iterate name="msgForm" property="files" id="file"

 indexId="i">

 File <bean:write name="i"/> :

 <bean:write name="file" property="fileName"/>

 has <bean:write name="file" property="fileSize"/> bytes

 </logic:iterate>

</body>

</html>

You’ll find the source code for Listings 11-4 to 11-9 in the Source Code section of the

Apress website, found at http://www.apress.com, in the file named multiple-file-

uploading.zip. I encourage you to copy this file to your development directory, unzip it,

and run compile.bat. Deploy the WAR file and play with the webapp until you are confi-

dent that you understand the material presented in this section.

When you are done, implement a solution that gives the uploaded files in the order the

user uploaded them. When you have finished implementing, deploying, and testing your

solution, proceed to Lab 11.

Lab 11: Importing Data into LILLDEP

In this lab session, you’ll create a handler that allows users to upload Contacts into

LILLDEP. The uploaded data has to be in comma-separated values (CSV) format, which

should be familiar if you’ve ever used Microsoft Excel:

Name | Email | Department | ...

Joe | joe@joey.com | ITC Department | ...

...

In the example, the separator is a pipe symbol (|), not the usual comma. The first row

gives the column names, and subsequent rows are data.

Complete the following steps to provide this new “importing” facility for LILLDEP.

C H A P T E R 1 1 ■ U P L O A D I N G F I L E S 141

Step 1: Complete ImportForm

Complete the code for ImportForm. Specifically, put in getFile() and setFile() functions.

Do you need to implement the validate() or reset() method?

Step 2: Complete import.jsp

1. Put in a form to upload a CSV file. The form handler should be ImportForm.do.

2. Add an <html:file> tag and appropriate labels. What should the property

attribute of <html:file> be? Remember to use only messages from the

Application.properties file.

3. Be sure to put in an <html:errors> tag to display error messages in uploading or

processing the file.

Step 3: Complete ImportAction

There is a LILLDEP utility class called CSVIterator that can read and parse a CSV file. The

constructor accepts a Reader for data input and a String for the separator (for this lab,

you’d use the pipe symbol for a separator):

public CSVIterator(Reader input, String separator)

 This class is an Iterator and returns a Map when next() is called. This Map contains

entries corresponding to each column in the CSV file. The idea is to create a Contact from

this Map, and then save the Contact. You can easily do this with one of the Contact

constructors:

public Contact(Map data)

With this information, complete the ImportAction so that it uses the uploaded file to

populate the LILLDEP database. (Hint: You can “convert” an InputStream to a Reader

using InputStreamReader.)

In your implementation, be sure to

• Display any uploading/processing errors to the user by redisplaying the import

page with errors.

• Forward to success if everything is OK.

142 C H A P T E R 1 1 ■ U P L O AD I N G F I L E S

Step 4: Amend struts-config.xml

Complete the following:

1. Declare a new form bean for ImportForm.

2. Define a new form handler to handle the importing. What is the path attribute of

the form handler?

3. Put in a forward called success to point to /Listing.do.

Step 5: Compile, Redeploy, and Test Your Application

The full.jsp page has a link on the toolbar area called Import. Use the file called .\csv-data\

test.csv to test your import facility. The file should upload and process without errors,

and you should see the uploaded entries in the “Full Listing” page you created in Lab 10.

Useful Links

• Uuencode entry in Wikipedia: http://en.wikipedia.org/wiki/Uuencode

Summary

• The <html:file> tag is used to upload files to the server.

• The FormFile class handles access to the downloaded file.

143

■ ■ ■

C H A P T E R 1 2

Internationalization

Simply put, internationalization (i18n for short, since there are 18 letters between the

i and n of internationalization), or localization, is the job of getting an application to work

for languages other than the one it currently targets.

Localizing a web application is by no means a simple task. There are subtleties beyond

merely translating web pages to a new language. To understand these issues, consider the

four areas that need to be addressed when you localize an application:

• Processing input: Since the input data comes from a web browser, your webapp has

to be able to correctly handle different character encodings (more about this in the

next section).

• Validations: Users in the new language group may use different conventions for

dates or numbers. Your validations will have to correctly handle these.

• Output: Dialog boxes, prompts, button labels, and other text have to be translated

to the new language. Ideally, users should be able to choose the language with

which they can interact with the webapp. Struts solves these problems particularly

well.

• Data storage and related issues: You might have to ensure that your database can

handle multibyte character encodings. A similar issue crops up when your web

application passes data to other applications—you have to ensure that these appli-

cations accept text in the new language and character encoding.

In this chapter, you’ll see how Struts greatly simplifies the task of localizing a webapp

by addressing the first three areas. But first, I’ll have to define a few terms.

Character Encodings, Unicode, and UTF-8

A character is an abstract entity, corresponding to a single written unit in a language or

script. For example, the letters “A” or “A” or “A” all embody the same, single character.

144 C H A P T E R 1 2 ■ I N T E R N A T I O N A L I Z A T I O N

“A” and “a” represent different characters, though, because they carry different meanings.

Characters also include punctuation marks and other symbols in a script.

A character set is a collection of characters along with a unique numeric identifier for

each character. In other words, a character set is just a collection of (character, identifier)

pairs. The characters in a character set may come from one or more languages or scripts.

Unicode is a character set that aspires to encompass characters from all human languages

and scripts.

■Note Strange as it may sound, a single language may have more than one script. For example, the Uyghur

language (from central Asia) has three scripts: the old Arabic script, the Cyrillic-like script used in ex-Soviet

countries, and a Latin script invented by the Chinese government and now used by Uyghurs to communicate

over the Internet.

Unicode (currently in version 4.0) is defined by the Unicode Consortium, an organiza-

tion backed by many (mainly U.S.) companies. This consortium has identified every

single character in every (well, almost every) language on the planet and assigned to each

character a unique number. The numbering is done so that each language gets one or

more contiguous block of numbers.

A character encoding transforms each numeric identifier in a character set into another

number called a character code. This is done because the character code is more conve-

nient or efficient for storage on computers. So, a character encoding is simply a collection

of (character, character code) pairs.

Now, if no transformation needs to be done—the numeric identifiers of the character

set are used unchanged—then of course the character encoding and the character set are

the same. An example of this is ASCII, which defines both a character encoding and a

character set. Other examples are Latin 1 and ISO encodings for various languages.

Back to Unicode: the downside is that it is practically useless as a character encoding for

everyday programming since the existing character encodings, notably ASCII, are firmly

entrenched. Many existing programs or software libraries accept only ASCII input and will

not work with the Unicode numeric identifiers.

UTF-8 is a character encoding for Unicode that solves this problem. UTF-8 takes each

Unicode-defined numeric identifier and transforms it into a character code that may

occupy one or more bytes of storage. The brilliant thing about UTF-8 is that characters

belonging to both Unicode and ASCII are given the same character code.

This means that your “UTF-8 enabled” program can take advantage of Unicode and

still work with legacy programs or libraries that accept only ASCII. Of course, this doesn’t

solve the problem of getting legacy programs to accept Unicode. The point is that you

don’t completely lose the ability to work with legacy software.

C H A P T E R 1 2 ■ I N T E R N A T I O N A L I Z A T I O N 145

This brings us to two questions. If the numeric identifiers defined by Unicode aren’t

actually used by programs, what good is Unicode? And why the need to separate Unicode

from UTF-8?

To understand the advantages of Unicode, you have to see that it’s a widely accepted

standard for labeling all characters with unique numeric identifiers. So, if a web browser

and a server agree that textual data between them represents Unicode characters, you

could develop webapps that handle any language. If there were no widely accepted standard

for all characters, then this would not be possible. Before Unicode, character sets were

either not widely accepted or did not include all characters.

To see why Unicode has to be separate from UTF-8, you must understand the different

goals of each. The Unicode numeric identifiers represent a character and hence have

meaning. The UTF-8 character encoding is about getting existing programs to work.

These are different goals and best solved in different ways.

For example, not all legacy software uses ASCII (think ex-Soviet Union), so hard-coding

the UTF-8 character encodings into Unicode (that is, making the Unicode numeric iden-

tifier equal the UTF-8 character encoding) would not be beneficial to everyone. Also,

other encodings of Unicode are more efficient in terms of storage space for non-Latin

languages. Hard-coding UTF-8 into Unicode would force users of these languages (think

China) to use more storage space than necessary. Both these factors would hinder the

widespread adoption of Unicode.

So, the separation between Unicode and any encoding of it (like UTF-8) gives users the

benefit of being able to agree on the meaning of data and the flexibility of choosing a character

encoding that best meets their needs.

WHAT ABOUT PLAIN TEXT?

If by “plain text” you mean textual data without any encoding, I hope from the preceding discussion you

realize that there’s no such thing as “plain text”!

Any textual data has an implicit character encoding. In the Western world, this might be ASCII.

The important thing to understand is that you can either assume an encoding—most programs and

software assume an encoding, like ASCII—or you can make an encoding explicit, as is the case in the

headers of XML or HTML documents. However, ensuring that the declared encoding matches the actual

encoding (done by the text editor) is a separate issue.

Lastly, just as it’s possible for the binary value of a Java integer to be displayed as a

string, it’s possible for the numeric identifier of a Unicode character to be displayed as a

string. These are usually displayed in the ASCII encoding as a hexadecimal number, like

\u7528. This partially circumvents the problem of “using” Unicode in legacy software.

You’ll learn more about this in a later section (“Localizing Output”). Do not confuse this

ASCII representation of the Unicode numeric identifier with UTF-8.

146 C H A P T E R 1 2 ■ I N T E R N A T I O N A L I Z A T I O N

Locales

In the previous section, I described how using Unicode and the UTF-8 encoding would

allow client-server programs to communicate data in any language.

However, this isn’t quite enough. What’s needed is a mechanism for users to select the

language they want. For example, if you are a Chinese speaker, you might want to ask my

web application to be presented to you in Chinese.

Locales are a widely used mechanism to achieve this. A locale is an identifier for a

language or a variant of a language. For example, the identifier for U.S. English is en_US

and the identifier for Swahili is sw.

The local strings themselves are a combination of language code and possibly country

code. The language code is a two-letter string from the ISO 639 standard. The country

code (e.g., the US in en_US) is taken from the ISO 3166 standard. Notice that the two-letter

language code is in lowercase and the two-letter country code is in uppercase, joined by

an underscore.

Essentially, the web browser specifies the desired locale as an extra parameter in the

HTTP header. The server responds by sending that user all pages in that locale, if possible.

Locales are the primary basis for localization in Struts. All of the internationalization

features of Struts are geared toward easy customization of your application by locale.

You’ll see this in action in this as well as future chapters.

Now that you understand the basics of character encodings, Unicode, UTF-8, and

locales, it’s time to move on to address the three primary areas of concern you’ll encounter

when you attempt to localize your Struts web application.

Processing Input

Web browsers might use a variety of character encodings, depending on the user’s default

locale or preferences. Since the input data you’re going to work with comes from a web

browser, your webapp potentially has to handle arbitrary character encodings.

Now, the last thing you want to do is accept and process different character encodings.

And why not? Suppose you store text from different encodings in your database. How will

you ever know later which encoding they come from? You’d have to store the encoding

information along with the each textual data you save. Not pretty.

The obvious solution is to use a single encoding that handles all languages—like UTF-8.

However, here you run into a problem: there’s no way to fix the character encoding you

receive from the user’s web browser. Browsers will submit form data in any old character

encoding and there’s just no way around this.

■Note With the HTML 4.0 specification, web servers can set the accept-charset parameter in the HTTP

response, but most browsers will ignore this.

C H A P T E R 1 2 ■ I N T E R N A T I O N A L I Z A T I O N 147

One reasonable assumption you can make is that browsers will respond with the same

encoding they receive from the server. So, if your HTML form is in UTF-8, it’s a safe bet

that the responses will be in UTF-8 too. This isn’t always true, since web browsers offer

users the option to change the default encoding.

So, here’s a good rule to stick to. Use a single, universal character encoding (like UTF-8)

consistently throughout your application, in every JSP, HTML, XML page, and so forth.

For your JSPs you could use the <%@ page declaration:

<%@ page contentType="text/html; charset=UTF-8" %>

or you could use the <controller> tag in your struts-config.xml (see Chapter 9):

<controller contentType="text/html; charset=UTF-8" />

This second method means you need not embed the <%@ page declaration in all your JSPs.

Of course, this trick wouldn’t work if you call the JSP bypassing Struts. If you’re calling the

JSP by its name (e.g., myPage.jsp), you’re bypassing Struts. If the page is delivered from a

<forward> or a .do extension, then you are not bypassing Struts, and the trick will work.

For your static HTML pages, you could use the <meta> tag to specify the encoding:

<head>

 <meta http-equiv="content-type" content="text/html; charset=UTF-8">

</head>

You have to exercise caution here, because you must ensure that the actual encoding of

the HTML file (determined by your text editor that writes the HTML) is the same as the

declared encoding (declared in the <meta> tag). There’s no way to tell what encoding a

browser will respond with if given a form that says it’s in UTF-8 but that is really in

another encoding.

Localizing Validations

By “localizing validations,” I mean performing validations specific to a locale. For example, if

a German user (locale de) keyed in a date, you might want to validate the input according

to the format dd.mm.yyyy. For a U.S.-based user, you might use a different format, prob-

ably mm/dd/yyyy.

There is currently very poor support for doing this with Struts. In Chapter 15, when

I cover the Validator framework, you’ll see the only support Struts has for localizing

validations.

To be fair, there aren’t many situations where localizing validations would be useful. In

fact, in many situations, it would be wrong! For example, there are users who use an en_US

locale but don’t actually live in the United States. So you can’t reliably validate things that

depend on geography like postal codes (zip codes in the United States) by locale.

148 C H A P T E R 1 2 ■ I N T E R N A T I O N A L I Z A T I O N

However, for things like dates, currency values, or numbers, localizing validations may

be necessary. This section contains my personal collection of hacks that I hope you will

find useful.

The first hack is to test for each special locale in your ActionForm subclass (see

Listing 12-1).

Listing 12-1. Localizing Validations by Brute Force

String locale = getLocale();

String date = getDate();

boolean dateOK = false;

if ("de".equals(locale)) {

 dateOK = validateDate(date,"dd.mm.yyyy");

}else if("en-us".equals(locale)){

 dateOK = validateDate(date,"mm/dd/yyyy");

}else{ //catch all date validation

 dateOK = validateDate(date,"dd/mm/yyyy");

}

In Listing 12-1, getLocale() is a function on the ActionForm base class. validateDate()

is a fictitious function that validates a date string given a second format string. This brute-

force method is OK for doing a few validations by locale, but it has many disadvantages, a

maintenance nightmare being one of them!

A slightly more sophisticated way of doing the same thing is to use a HashMap to store

the (locale,format) pairs. This removes the multiple if else statements, as shown in

Listing 12-2.

Listing 12-2. Localizing Validations by Brute Force, Take 2

public MyActionForm(){

 myDateFormats = new HashMap();

 myDateFormats.put("en-US"," mm/dd/yyyy");

 myDateFormats.put("de","dd.mm.yyyy");

 myDateFormats.put("default","dd/mm/yyyy");

}

public ActionErrors validate(...){

 ...

C H A P T E R 1 2 ■ I N T E R N A T I O N A L I Z A T I O N 149

 boolean dateOK = false;

 Object o = myDateFormats.get(getLocale());

 if(null == o) o = myDateFormats.get("default");

 dateOK = validateDate(getDate(), (String) o);

 ...

}

The second hack is a clever trick that appeared in an article by Mike Gavaghan in JavaWorld

(see “Useful Links” at the end of this chapter). The idea is to embed the format string

within the JSP, using the <html:hidden> tag, as shown in Listing 12-3.

Listing 12-3. Using Hidden Format Fields (JSP)

<bean:message key="myapp.jsp.prompt.date"/>

<html:text property="date"/>

<html:hidden property="dateFormat"/>

Before this page is called, you need to populate the hidden field using an Action, with

the locale's date format. Now, since the date format is stored in the form itself, you can

retrieve it and run the validation with the format, as shown in Listing 12-4.

Listing 12-4. Using Hidden Format Fields (ActionForm)

public ActionErrors validate(...){

 ...

 boolean dateOK = false;

 dateOK = validateDate(getDate(), getDateFormat());

 ...

}

Listing 12-4 implies the addition of getDateFormat() and setDateFormat() functions on

MyActionForm. This technique allows you to store your locale-specific formats along with

the properties file for that locale. This solution is better than hard-coding formats into

your ActionForm subclass.

150 C H A P T E R 1 2 ■ I N T E R N A T I O N A L I Z A T I O N

Localizing Output

Localizing output is something Struts does very well. If you’ve been careful to use

<bean:message> tags throughout your application’s JSPs (instead of using static text), then

localizing your application’s output with Struts is easy.

Since all your application’s text is in the Application.properties file, here’s all you

need to do to support a new language:

• Translate the Application.properties file to the language for the new locale. The

translation would leave the keys the same, and only affect the messages. If the

translator used a character encoding other than ASCII, you will have to postprocess

the translated file before you can use it. More on this shortly.

• Append the locale identifier to the translated filename. For example, a Japanese

translation must be called Application_jp.properties. The additional _jp identifies

this translation as belonging to the Japanese locale.

• Install the new properties file in the same folder as the default

Application.properties file (see Figure 12-1).

That’s it! When the user’s browser is set for the desired locale (say jp), Struts will use the

right properties file (in this case, Application_jp.properties) for that user. All prompts,

buttons, dialog boxes, and text will appear in Japanese.

Figure 12-1. Various installed Application.properties files

■Note If you were writing an application for U.S. English (with the associated locale en_US), then the

properties file would be Application_en_US.properties.

C H A P T E R 1 2 ■ I N T E R N A T I O N A L I Z A T I O N 151

Before I show you how this selection is made, let’s tie up one loose end—the character

encoding for the translated Application.properties.

Processing Translated Application.properties Files

The Java programming language only accepts source code and properties files in the ISO

8859-1 character encoding. I’m talking the actual source code here—not the internal

representation of Java Strings, which are not restricted to this encoding.

The ISO 8859-1 (aka Latin 1) can encode most western European languages, and is for

most intents and purposes like ASCII. More precisely, characters that are in both ASCII

and ISO 8859-1 are given the same character codes.

Your Application.properties file must also be in this encoding. How do we represent

other languages with this restrictive encoding? The answer is to use a tool called native2ascii.

This program resides in the bin directory of your JDK.

When you receive the translated Application.properties file, it might likely not be in

the ASCII or ISO 8859-1 encoding. The only sure way of getting this information is from

the translator. Once you know the source encoding, you can use native2ascii:

native2ascii -encoding UTF-8 jp.properties Application_jp.properties

In this example, the translated file is jp.properties, which is given in the UTF-8 encoding.

The final output is Application_jp.properties, which you can actually use.

The “magic” behind native2ascii is that it “escapes” non–ISO 8859-1 characters with

the string Unicode version of it. This appears in your properties file as sequences of

\uxxxx.

When Struts creates the HTML page to be delivered to the user, the encoding specified

on the page with the <%@ page ... directive is used:

<%@ page contentType="text/html; charset=UTF-8" %>

or, you could use the <controller> tag in your struts-config.xml (see Chapter 9):

<controller contentType="text/html; charset=UTF-8" />

In both these cases, the UTF-8 character encoding is used to encode the HTML pages

delivered to the user.

Selecting a Locale from the Browser

Most modern browsers allow the user to select a default locale. Figures 12-2 and 12-3

show this for Mozilla and Internet Explorer.

152 C H A P T E R 1 2 ■ I N T E R N A T I O N A L I Z A T I O N

Figure 12-2. Adding a new locale with Mozilla

Figure 12-3. Adding a new locale with Internet Explorer

C H A P T E R 1 2 ■ I N T E R N A T I O N A L I Z A T I O N 153

You may notice that these web browsers don’t always give the correct locale string.

For example, U.S. English is incorrectly displayed as en-us, when it is in fact en_US.

Switching Locales with a Link

Getting users to change the locale on their web browser may not always be desirable or

even possible. In such situations, you might want them to click a link instead that tells the

server to switch to the desired locale. The way to do this is to encode the locale as a param-

eter on the link. For example:

In Tamil

In this link, ChangeLocale is a form handler, which has no associated form bean. The

declaration in struts-config.xml would be

<action path="/ChangeLocale"

 type="com.mycompany.myapp.ChangeLocaleAction">

 <forward name="success" path="/index.jsp"/>

</action>

ChangeLocaleAction is an Action subclass with the following execute():

public ActionForward execute(...){

 String language = request.getParameter("language");

 String country = request.getParameter("country");

 if(null == country){

 setLocale(request, new Locale(language));

 }else{

 setLocale(request, new Locale(language,country));

 }

 return new ActionForward(mapping.findForward("success"));

}

When the user clicks the link (which contains the new language, and optionally, the new

country code), control passes to ChangeLocaleAction, which sets the default locale for that

user’s session to the desired combination. Note that java.util.Locale is a built-in Java class.

154 C H A P T E R 1 2 ■ I N T E R N A T I O N A L I Z A T I O N

Switching Locales with LocaleAction

Yet another way to allow users to switch locales is to use the Struts class LocaleAction. To

use this class effectively, you’ll have to first understand dynamic forms (see Chapter 16), so

I’ve postponed the discussion of LocaleAction to Chapter 17.

Lab 12: LILLDEP for the Malaysian Market

In this lab, you’ll see how easy it is to port LILLDEP for the Malaysian (or Indonesian) market.

1. In the Source Code section of the Apress website, found at http://www.apress.com,

copy lab12.zip to your main LILLDEP development folder. This zip file should

contain a single file called Application_ms.properties; ms is the locale string for

Malay, the language spoken in Malaysia (and a slight variant of it is spoken in Indo-

nesia). Unzip the contents of this zip file to .\web\resources\.

2. Compile and redeploy LILLDEP.

3. Open Internet Explorer, then choose Tools ➤ Internet Options ➤ Languages (see

Figure 12-2). If you’re using Mozilla or another browser, you’ll have to locate this

setting yourself. Add Malay (ms) and remove all other languages.

4. Close all instances of Internet Explorer, then open one and navigate to the

LILLDEP page. You should see all prompts and buttons in Malay (see Figure 12-4).

Figure 12-4. LILLDEP in Malay

C H A P T E R 1 2 ■ I N T E R N A T I O N A L I Z A T I O N 155

Useful Links

• “End-to-end internationalization of Web applications: Going beyond the JDK,”

by Mike Gavaghan: http://www.javaworld.com/javaworld/jw-05-2004/

jw-0524-i18n.html

• ISO 639 language codes: http://en.wikipedia.org/wiki/ISO_639

• ISO 3166 country codes: http://en.wikipedia.org/wiki/ISO_3166

• Unicode: www.unicode.org

• UTF-8 and related encodings: http://en.wikipedia.org/wiki/UTF-8

Summary

• Localizing occurs in four areas: input, validations, output, and communication with

other programs, like databases.

• Struts provides support for localizing output but poor or nonexistent support for

the other areas.

• Localizing output is as simple as getting the Application.properties file translated.

• The properties file needs to be encoded in ISO 8859-1 (Latin 1). You might have to

use the native2ascii tool to “escape” other encodings into this one.

157

■ ■ ■

C H A P T E R 1 3

Review Lab: Editing Contacts
in LILLDEP

Congratulations! You’ve made it halfway through this book. Before moving on to more

advanced topics, I’d like to give you the opportunity to review some of the material in the

preceding chapters.

In this review lab, you’ll make it possible to edit Contacts in LILLDEP’s database.

Specifically, you’ll build on the “full listing” page (listing.jsp), so that when a user clicks

on a company name, they are taken to a page displaying the Contact’s full details. These

details may be changed and resubmitted, causing the database entry to be updated.

Try your best to answer questions 1–4:

1. If you turn the company name into a link, how will you determine which company

was clicked? (Hint: Look at the source code for BaseContact.)

2. You obviously want to reuse full.jsp to display the data that’s going to be edited.

Do you need to make any changes to it to support updating contact information?

Why?

3. Can you similarly reuse ContactForm and ContactAction? Do you need to make

changes to them to support updating?

4. What other classes would you need to complete the editing facility? (Hint: What

creates the populated form for editing?)

Compare your answers to the ones in Appendix D before proceeding.

158 C H A P T E R 1 3 ■ R E V I E W L A B : E D I T I N G C O N T A C T S I N L I L L D E P

Implementing the Edit Facility

All you need to do is populate and display the full.jsp form once the user clicks on the

company name. You have already implemented the code for updating the Contact in the

previous lab sessions. Complete the following:

1. Amend listing.jsp to put in the link for the company name. Let the handler be

EditContact.do.

2. Complete the implementation of EditContactAction to load the form data. This

Action should forward to full.jsp.

3. Put in an action mapping to tie the path EditContact with EditContactAction and

the form ContactForm.

Test out your application to see if the form populates correctly. Also ensure that you can

make changes to the contact’s details.

■ ■ ■

P A R T 2

Advanced Struts

As Struts became a common starting point for developers new to the Java platform, an
interesting phenomenon was occurring—for many developers, the key perceived value
of using Struts was assumed to be the JSP custom tags for HTML forms. While these tags
are quite useful, they do not constitute a robust user interface component model, which
has led to the need to create or integrate third-party tag libraries for more complex
presentation requirements. To me, the core value has always been in the controller
tier—the request processing lifecycle, and the features which this lifecycle has enabled,
such as the additions of the Tiles framework for reusable look and feel, and the Vali-
dator Framework for client-side and server-side enforcement of form validation
business rules.

—Craig McClanahan

161

■ ■ ■

C H A P T E R 1 4

Tiles

Tiles is a Struts plug-in—a piece of software developed independently of Struts, to extend

the basic capabilities of Struts.

Tiles was developed initially by Cedric Dumoulin but is now (since version 1.2) integrated

into Struts. In fact, it supercedes an older “Template” library, which had provided limited

layout capability. The only thing that betrays its previous independent existence is that

it’s a plug-in and therefore requires some setup.

Tiles gives Struts applications two new capabilities:

• Layouts: The ability to easily provide a uniform “look and feel” to your Struts appli-

cations. In most web applications, pages follow a similar layout—for example, they

might have a common header or footer or sidebars. Tiles has a elegant inheritance

mechanism that allows such layouts, even complicated ones, to be created and

maintained easily.

• Components: The ability to build reusable GUI components that you can easily

embed into your JSP pages. Components give you the flexibility to display dynamic

content—content that can change depending on user interaction or on external

data sources. An example is displaying a list of weather forecasts for various cities,

or a news items that interest the user, or targeted marketing.

In short, layouts provide a common look and feel, and components allow provision of

dynamic content in a reusable package.

The powerful thing about Tiles is that you can mix these two capabilities: your layouts

may include components. For example, you can specify a layout that displays a compo-

nent as a sidebar containing a user’s search list. Used wisely, this can lead to easy-to-use

applications. You’ll create such a component yourself in the lab section of this chapter.

Of course, both layouts and component behavior can be emulated in other ways. For

example, you could enforce a common look and feel by simply pasting the appropriate

HTML in your JSP pages. You could implement “components” by cutting and pasting

scriptlets in your JSPs!

162 C H A P T E R 1 4 ■ T I L E S

If you’ve followed the discussion on MVC in Chapter 5 closely, the shortcomings of

these approaches should be obvious. MVC is all about separating code according to their

functionality, and violating this principle leads to maintenance woes down the road. So it

is with these ad hoc approaches. With them, making site-wide changes to layouts or

components are difficult because you’d have to amend each page.

As you will see, Tiles does it better—and easier.

Installing Tiles

To use Tiles, you have to declare it in struts-config.xml. Listing 14-1 shows a typical

declaration.

■Note Remember, plug-in declarations come last in your struts-config.xml file. Placing it anywhere

else will result in an exception being thrown when Struts starts up.

Listing 14-1. Tiles Declaration in struts-config.xml

<plug-in className="org.apache.struts.tiles.TilesPlugin" >

 <set-property property="definitions-config"

 value="/WEB-INF/tiles-defs.xml"/>

</plug-in>

The declaration in Listing 14-1 does two things. First, it tells Struts what plug-in class to

instantiate. In this case, it’s org.apache.struts.tiles.TilesPlugin. This plug-in class is

responsible for the initialization of Struts.

Second, the <plug-in> tag contains one or more <set-property> tags, each of which

passes a parameter-value pair to the plug-in class. In Listing 14-1, the only parameter

passed to org.apache.struts.tiles.TilesPlugin is the definitions-config parameter,

which points to the relative location of the Tiles definitions file. In this case, it’s /WEB-INF/

tiles-defs.xml.

This tiles-def.xml file (you may call it something else, if you wish—just change the

value property if you do) is where you declare layouts and components for Tiles. You can

think of it as the Tiles counterpart of struts-config.xml.

■Note The Struts distribution contains a tiles-documentation.war file. It contains an example

tiles-def.xml file you can use, in the /WEB-INF/ folder of that WAR file.

Listing 14-2 shows the format of the tiles-def.xml file.

C H A P T E R 1 4 ■ T I L E S 163

Listing 14-2. A Blank Tiles Definitions File

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE tiles-definitions PUBLIC

 "-//Apache Software Foundation//DTD Tiles Configuration 1.1//EN"

 "http://struts.apache.org/dtds/tiles-config_1_1.dtd">

 <tiles-definitions>

<!-- one or more "definition" tags to

define layouts or components. -->

</tiles-definitions>

The root tag is <tiles-definitions>, and it contains one or more <definition> tags,

with which you declare layouts or components. The next two sections show you how to

do this.

■Note The Tiles DTD (Document Tag Definition) is stored in the struts.jar file that comes with

the Struts distribution. In this JAR file, the path to the DTD is /org/apache/struts/resources/

tiles-config_1_1.dtd. This file also contains the DOCTYPE element used in Listing 14-2. It is also

present in the /lib folder of the Struts distribution zip file.

You may split your Tiles definitions into more than one file. This is useful for large

projects requiring several sets of look-and-feels or components that have to be maintained

separately. Each such Tiles definitions file must follow the format of Listing 14-2, and

you’ll have to declare each file in your plug-in declaration. Simply separate the filenames

with commas in the <set-property> tag. For example, if you had three Tiles definitions

files, A.xml, B.xml, and C.xml, the <set-property> tag would read

<set-property property="definitions-config"

 value="/WEB-INF/A.xml,/WEB-INF/B.xml,/WEB-INF/C.xml"/>

Lastly, Tiles also uses a custom tag library, struts-tiles.tld. You will have to declare

this in your web.xml file (refer to Chapter 3) in order to use this library on your JSPs.

Tiles for Layout

Layouts are a way to create a common look-and-feel for your web application. For example,

you might want all JSP pages to have a footer containing copyright information, a side

navigation bar, and a header with the company logo.

In Tiles, layouts are just JSP pages. The JSP page for a layout defines the relative place-

ment of sections (body, header, footer, sidebars, etc.) on the displayed page. The content

164 C H A P T E R 1 4 ■ T I L E S

of each section is defined by <tiles:insert> tags, which point to other HTML or JSP pages

holding content. Listing 14-3 is a simple layout containing a title, header, body, and footer

sections.

Listing 14-3. simple-layout.jsp, a Simple Layout with Title, Header, Body, and Footer

<%@ taglib uri="/tags/struts-tiles" prefix="tiles" %>

<html>

 <head>

 <title> <tiles:getAsString name="title"/> </title>

 </head>

 <body>

 <table>

 <tr><td> <tiles:insert attribute="header"/> </td></tr>

 <tr><td> <tiles:insert attribute="body"/> </td></tr>

 <tr><td> <tiles:insert attribute="footer"/> </td></tr>

 </table>

 </body>

</html>

As Listing 14-3 clearly demonstrates, a layout defines just the relative placement of

content, not the actual content itself. Figure 14-1 shows the relative placement of the

various components of the layout.

Figure 14-1. The relative placement of header, body, and footer in simple-layout.jsp

C H A P T E R 1 4 ■ T I L E S 165

The <tiles:getAsString> tag displays content for the title, and the <tiles:insert> tags

display the content corresponding to the attribute or name property. The actual content

pointed to by these properties can be defined in either the called JSP or the Tiles definitions

file.

For example, suppose myPage.jsp wanted to use the layout of Listing 14-3

(simple-layout.jsp). Listing 14-4 shows what the contents of myPage.jsp might be.

Listing 14-4. myPage.jsp, Which Uses simple-layout.jsp

<%@ taglib uri="/tags/struts-tiles" prefix="tiles" %>

<tiles:insert page="/layouts/simple-layout.jsp">

 <tiles:put name="title" value="A simple page" />

 <tiles:put name="header" value="/common/header.jsp" />

 <tiles:put name="footer" value="/common/footer.jsp" />

 <tiles:put name="body" value="/mypage-content.jsp" />

</tiles:insert>

All myPage.jsp does is specify (using the <tiles:put> nested tags) which files are to be

associated with the header, footer, and body attributes. The title is specified as a string,

in this case, "A simple page".

Notice the differences in how <tiles:insert> is used in Listings 14-3 and 14-4:

• In the layout JSP (Listing 14-3), the attribute property is used to tell Struts what

content it should use to replace the enclosing <tiles:insert> tag. For example,

when Struts processes <tiles:insert attribute="header"/> in Listing 14-3, it

essentially looks for the value of header on the request object. It then uses this value

(a JSP page, or as we will see in the next section, a component) and pastes the

content from that page or component in place of the <tiles:insert> tag.

• In the called JSP (Listing 14-4), the page property is used to specify a layout, and the

output from this layout is used to replace the <tiles:insert> tag. The nested

<tiles:put> tags define Tiles attributes on the request object. The layout reads

these attributes in order to create its output. For example, when Struts processes

the <tiles:insert> in Listing 14-4, it knows it must use the layout file /layouts/

simple-layout.jsp. In this layout file, there are a few <tiles:insert> tags that

require the header, footer, and body attributes to be created. The values for each is

defined in the calling JSP using <tiles:put> tags.

It is important to note that the attributes defined using a <tiles:put> tag will only

apply to the layout defined in the enclosing <tiles:insert page="..."> tag. In the

unlikely event that you had two <tiles:insert page="..."> tags on your called JSP page,

you would have to specify the attributes for each separately. The attributes between these

two tags are not shared.

166 C H A P T E R 1 4 ■ T I L E S

■Note The page, template, and component properties of the <tiles:insert> tag are synonymous.

You might want to use a different synonym to indicate if a layout or Tiles component (see the next section) is

used. This simply improves readability.

The other way to specify the values of the attribute or name property is to create a defini-

tion within the Tiles definitions file. For example, you could move part of Listing 14-4 into

the Tiles definitions file, as shown in Listing 14-5.

Listing 14-5. tiles-def.xml, with a Single Definition

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE tiles-definitions PUBLIC

 "-//Apache Software Foundation//DTD Tiles Configuration 1.1//EN"

 "http://struts.apache.org/dtds/tiles-config_1_1.dtd">

<tiles-definitions>

<definition name=".simple" path="/layouts/simple-layout.jsp">

<tiles:put name="header" value="/common/header.jsp" />

<tiles:put name="footer" value="/common/footer.jsp" />

</definition>

</tiles-definitions>

Listing 14-5 shows a Tiles definitions file called .simple (the meaning of the leading dot

will be obvious shortly). This definition defines just two attributes, header and footer.

To use the .simple definition in a JSP, see Listing 14-6.

Listing 14-6. myPage2.jsp, Which Uses a Tiles Definition

<%@ taglib uri="/tags/struts-tiles" prefix="tiles" %>

<tiles:insert definition=".simple">

 <tiles:put name="title" value="A simple page" />

 <tiles:put name="body" value="/mypage-content.jsp" />

</tiles:insert>

Listings 14-5 and 14-6 together show how to use a Tiles definition instead of a layout

path. Shared attributes are the ones defined in the Tiles definitions file, while attributes

specific to a called JSP page are defined on that page. This makes sense, because you

might want to fix the header and footer but change the title and body of the displayed page.

C H A P T E R 1 4 ■ T I L E S 167

Quick Quiz

What advantage does this approach (Listings 14-5 and 14-6) have over the earlier one (Listing 14-4)?

Tiles layout definitions can even be “subclassed.” For example, suppose we wanted a

new definition similar to the old one (in Listing 14-5), but where the title was fixed and the

footer was changed. Listing 14-7 shows the amended definitions file.

Listing 14-7. tiles-def.xml, with a New Definition

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE tiles-definitions PUBLIC

 "-//Apache Software Foundation//DTD Tiles Configuration 1.1//EN"

 "http://struts.apache.org/dtds/tiles-config_1_1.dtd">

 <tiles-definitions>

<definition name=".simple" path="/layouts/simple-layout.jsp">

<tiles:put name="header" value="/common/header.jsp" />

<tiles:put name="footer" value="/common/footer.jsp" />

</definition>

<definition name=".simple.admin" extends=".simple" >

<tiles:put name="title" value="Admin Zone" />

<tiles:put name="footer" value="/common/admin-footer.jsp" />

</definition>

</tiles-definitions>

The extends property indicates that the new definition named .simple.admin borrows

all properties and attributes from the base .simple definition.

■Note That’s the rationale behind the . separator—you can tell at once that .simple has no ancestor

definitions, and that .simple.admin descends directly from .simple.

The nested <tiles:put> tags either override certain attributes (footer) or add new ones

(title). The new definition is used in exactly the same way as the old one.

The last way to define and use layouts is to define them completely in the Tiles definitions

file. Continuing from Listing 14-7:

168 C H A P T E R 1 4 ■ T I L E S

<definition name=".simple.admin.main" extends=".simple.admin" >

 <tiles:put name="body" value="/admin/body.jsp" />

</definition>

In this case, you have no need for a JSP page in which to embed the definition, since

this new definition defines all attributes needed to display the layout. You may use this

definition by calling it from either a <forward> in struts-config.xml:

<forward name="success" path=".simple.admin.main" />

 or as an input page like so:

<action path="/MyFormHandler" input=".simple.admin.main" ...

Using Stylesheets with Layouts

Most professional web apps use Cascading Style Sheets (CSS) to achieve common fonts

and colors. When you attempt to use stylesheets with Tiles layouts, you might run into

problems. For example, suppose your stylesheet is \styles\styles.css, and your layout

references this stylesheet, as shown in Listing 14-8.

Listing 14-8. Snippet of simple-layout.jsp with Static Stylesheet Reference

<%@ taglib uri="/tags/struts-tiles" prefix="tiles" %>

<html>

 <head>

 <style type="text/css" media="screen">

 @import "./styles/styles.css";

 </style>

 <title> <tiles:getAsString name="title"/> </title>

 </head>

...

This stylesheet declaration is fine if all your JSPs that use this layout are in the root

folder of the web application. This may not be feasible for larger applications. For example,

you might want to place “admin” pages in a separate \admin\ subfolder. Doing so would

mean that the reference to the stylesheet is now ../styles/styles.css (note the leading

..). The static stylesheet reference in Listing 14-8 won’t do.

A useful hack is to use the getContextPath() function on the request object to get around

this limitation. The stylesheet declaration of Listing 14-8 now becomes:

<style type="text/css" media="screen">

 @import "<%= request.getContextPath() %>/styles/styles.css";

</style>

C H A P T E R 1 4 ■ T I L E S 169

Each time the layout is used, the right path to the stylesheet is computed. A poorer way

of doing the same is to hard-code the full URL:

<style type="text/css" media="screen">

 @import "http://www.mycompany.com/myapp/styles/styles.css";

</style>

This method is less effective because the port used on the server or the application

name might be changed upon deployment. In either case, the hard-coded solution won’t

work.

Tiles Components

In the previous sections, you’ve seen how to develop layouts using Tiles. Next, we’ll explore

a quite different use of Tiles: building components.

In Tiles, a component is a rectangular area displayed within the user’s web browser

(this is why “Tiles” is so named), capable of rendering dynamic content. Examples are

components that display selected stock prices, or ads, or a user search list, or a list of

pages the user has visited... The possibilities are endless!

There are two main points to note concerning Tiles components:

• Easy embedding: A Tiles component can be embedded into any JSP page using the

handy <tiles:insert> tag. Want a weather report Tiles component on your JSP

page? Slap in a single <tiles:insert> tag with the right attributes.

• Independence: To be useful, a Tiles component should function independently of

its environment—the JSP page in which it is embedded. There are times when this

rule can be broken (as you will see in the lab section of this chapter), but this is

always at the expense of reusability.

Creating a Tiles Component

Creating a Tiles component is more involved compared to creating and declaring a Tiles

layout. Five steps are involved:

1. Create the Tiles controller. This is a Java class that creates dynamic content or

processes user input.

2. Declare the Tiles controller in struts-config.xml.

3. Create the Tiles “view.” This is the JSP page that displays the results of the Tiles

controller’s output.

170 C H A P T E R 1 4 ■ T I L E S

4. Declare a Tiles <definition> that associates the JSP page with the controller.

A controller may be used in more than one definition. This is exactly analogous

to the way an Action subclass may be used in more than one form handler.

5. Use the component on your JSP pages by embedding the <tiles:insert> tag

in them.

To create the Tiles controller, you subclass the TilesAction base class:

org.apache.struts.tiles.actions.TilesAction

Notice that it’s tiles.actions (plural). I’ll describe these five steps in more detail next and

then wrap up with a concrete example application.

Step 1: Creating the Tiles Controller

The function you need to override is called (surprise!) execute(), but with a slightly

different signature compared to Action.execute(), as shown in Listing 14-9.

Listing 14-9. execute() on TilesAction

public ActionForward execute(ComponentContext context,

 ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

throws IOException, ServletException{ ...

All you have to do is to override this one function to process user input or prepare data

for output.

The org.apache.struts.tiles.ComponentContext instance passed in execute() functions

as a storage area for data intended for your Tiles component. You can store and retrieve

data with putAttribute() and getAttribute() on this class. Only the JSP page represented

by the ActionForward return value has direct access to data placed on this ComponentContext

instance. This helps preserve the independent existence of the Tiles component from its

environment.

To summarize, the primary purpose of the ComponentContext is as a channel of communi-

cation from the Tiles controller to the JSP page it forwards to.

This is analogous to the way the HttpServletRequest is a means of communication

between an Action subclass and the forwarded JSP. A Tile controller could also place data

on the HttpServletRequest object, but this would break the independence of that Tiles

component, since other Tiles components on the page might overwrite the data placed on

the request object.

The last point to note is that this execute() is marked to throw IOException and javax.

servlet.ServletException.

C H A P T E R 1 4 ■ T I L E S 171

Step 2: Declaring the Controller

The declaration for a Tiles controller is exactly the same as for any form handler. For

example, Listing 14-10 shows a simple controller that doesn’t accept any input data, and

that has two possible views.

Listing 14-10. One Controller, Two Views

<action path="/MyTilesController"

 type="com.mycompany.myapp.tiles.MyTilesController">

 <forward name="success" path="/tiles/my-tiles-view.jsp"/>

 <forward name="failure" path="/tiles/error.jsp"/>

</action>

Perhaps the only difference is that when you declare a Tiles controller, it is possible

to omit declaring any <forward>s, if there is only one JSP view associated with the Tiles

component. Listing 14-11 shows an example.

Listing 14-11. One Controller, One View

<action path="/MyTilesController"

 type="com.mycompany.myapp.tiles.MyTilesController" />

In this case, the controller’s execute() function (Listing 14-9) returns null, and the Tiles

<definition> associated with this component is slightly different compared to the case

where there are multiple JSP views associated with the Tiles component, as in Listing 14-10.

I’ll describe this difference shortly.

Step 3: Creating the Tiles View

The Tiles view is just the JSP that displays the output of the Tiles controller. This is analo-

gous to the “next” JSP page associated with an Action subclass.

The primary difference, of course, is that the JSP page typically will evaluate to an

HTML fragment, not a complete HTML page. This is because the JSP page’s output will be

embedded within a full HTML page.

Step 4: Declaring the Tiles <definition>

The Tiles <definition> enables the controller to be used conveniently in a <tiles:insert>

tag. It is possible to use a Tiles controller already declared in struts-config.xml directly in

a <tiles:insert>, just as a layout was used directly in Listing 14-4. For example:

<tiles:insert path="/MyTilesController.do"/>

The advantage of using a Tiles definition is that you can avoid hard-coding the handler’s

path in all your JSPs.

172 C H A P T E R 1 4 ■ T I L E S

The declared definition will depend on whether the component uses just a single view

page (as in Listing 14-11) or multiple views (Listing 14-10).

In the single view case, which is typical, the definition is declared as shown in Listing 14-12.

Listing 14-12. A Tiles Component with a Single View

<definition name=".myTile"

 path="/tiles/my-tiles-view.jsp"

 controllerUrl="/MyTilesController.do">

 <put name="title" value="This is My Tile"/>

</definition>

Declared this way, the return value of the controller’s execute() should be null, and

the JSP page in the path attribute is used as a view. The controllerUrl attribute is used to

specify the Tiles handler declared in struts-config.xml. You may define attributes (in

Listing 14-12, the title attribute is defined) to be used by the view.

If the component has multiple views, they must all be declared in struts-config.xml

as <forward>s, as in Listing 14-10. In this case, the Tiles <definition> is simpler, as

Listing 14-13 shows.

Listing 14-13. A Tiles Component with Multiple Views

<definition name=".myTile"

 path="/MyTilesController.do">

 <put name="title" value="This is My Tile"/>

</definition>

Notice that path now points to the Tiles controller declared in struts-config.xml.

Again, you may define attributes to be used by any one of the views, using nested <put>s.

Step 5: Using the Component

As I said in the introduction to this section, using a tile is easy. All you have to do is to

declare the use of the Tiles tag library in your JSP:

<%@ taglib uri="/tags/struts-tiles" prefix="tiles" %>

C H A P T E R 1 4 ■ T I L E S 173

and then use a <tiles:insert definition="..."> anywhere on your JSP page. For example,

to use the Tiles component declared in either Listing 14-12 or Listing 14-13, use the following:

<tiles:insert definition=".myTile"/>

You can also specify further attributes for the view page by using nested <tiles:put> tags,

as in Listing 14-6.

Example: The “Login” Tiles

Tiles components are very useful. Used wisely, they can greatly simplify your code and

code maintenance.

Now, the discussion so far has been a little abstract, and rightly so, because there are a

few ways to create and use Tiles components, and I wanted you to have a bird’s-eye view

of the whole thing.

In this section, I’ll describe how our old friend the Registration webapp can be made

into a Tiles component. Why do this? Because it gives you the freedom to place a user

login anywhere on your webapp. If a user must log in several places in your webapp, then

a Tiles component for user login would be a natural choice.

What I’ll actually implement is a nontrivial variation on the Registration webapp.

Figure 14-2 describes the control flow of this new souped-up version, perhaps better

named a “Login” Tiles component.

Figure 14-2. Control flow of the Login component

174 C H A P T E R 1 4 ■ T I L E S

As you can see in Figure 14-2, there are three possible views:

• A “regular login” form with fields for user ID and password (see Figure 14-3)

• A “new user” form for users who don’t have a user ID (Figure 14-4)

• A “logoff” view, displayed if a user has already logged on (Figure 14-5)

Also, unlike the Tiles components we’ve discussed thus far, this component accepts user

input—for example, a user ID and password.

Figure 14-3. The regular login form

C H A P T E R 1 4 ■ T I L E S 175

Figure 14-4. The new user form

Figure 14-5. The logoff view

Because this is a more complex component, for pedagogical reasons I’ll describe each

part of the component out of order, starting with the simplest.

First, Listing 14-14 shows how you’d embed the Login Tiles component in any JSP page.

176 C H A P T E R 1 4 ■ T I L E S

Listing 14-14. index.jsp, a JSP Page with the Login Component Embedded in It

<%@ taglib uri="/tags/struts-tiles-el" prefix="tiles-el" %>

<html>

 <body>

 In this section, I'll describe how our old friend the ...

 <tiles-el:insert definition=".login"/>

 As you can see from Figure 14-2, there are ...

 </body>

</html>

As you can see from the taglib declaration, I’ll be using the Struts EL-enabled tags (see

Chapter 10).

Figures 14-3 and 14-4 both show that the Login component accepts user input. This

data is stored in an ActionForm subclass called LogonForm (see Listing 14-15).

Listing 14-15. LogonForm.java

package net.thinksquared.login.struts;

import javax.servlet.http.*;

import org.apache.struts.action.*;

public class LogonForm extends ActionForm {

 public static final int UNDEFINED = 0;

 public static final int LOGGED_ON = 1;

 public static final int LOG_OFF = 2;

 public static final int REGULAR = 3;

 public static final int NEW_USER = 4;

 protected int _status;

 protected String _userid;

 protected String _password;

 protected String _password2;

 protected boolean _hasErrors;

C H A P T E R 1 4 ■ T I L E S 177

 public LogonForm(){

 _status = UNDEFINED;

 _hasErrors = false;

 }

 public void setStatus(int i){ _status = i; }

 public int getStatus(){ return _status; }

 public void setUserid(String s){ _userid = s; }

 public String getUserid(){ return _userid; }

 public void setPassword(String s){ _password = s; }

 public String getPassword(){ return _password; }

 public void setPassword2(String s){ _password2 = s; }

 public String getPassword2(){ return _password2; }

 public ActionErrors validate(ActionMapping mapping,

 HttpServletRequest request){

 if(_status >= REGULAR){

 ActionErrors errors = new ActionErrors();

 if(_userid == null || _userid.length() < 1){

 errors.add("userid",

 new ActionMessage("userlogin.error.userid.blank"));

 }else if(_password == null ||

 _password.length() < 6 || _password.length() > 12){

 errors.add("password",

 new ActionMessage("userlogin.error.password.length"));

 }else if(_status >= NEW_USER &&

 (_password2 == null || !_password2.equals(_password))){

 errors.add("password2",

 new ActionMessage("userlogin.error.password.retype"));

 }

 if(!errors.isEmpty()){

 _hasErrors = true;

 return errors;

 }

 }

178 C H A P T E R 1 4 ■ T I L E S

 _hasErrors = false;

 return null;

}

 /*********** Status codes ************/

 public int getStatusRegular(){ return REGULAR; }

 public int getStatusNewUser(){ return NEW_USER; }

 public int getStatusLogOff() { return LOG_OFF; }

 /********** Error status ************/

 public boolean hasErrors(){ return _hasErrors; }

 /********** clear form data ********/

 public void clear(){

 _status = UNDEFINED;

 _hasErrors = false;

 _userid = _password = _password2 = null;

 }

}

Listing 14-15 should hold no surprises, apart from the hasErrors() function and

the three functions for status codes: getStatusRegular(), getStatusNewUser(), and

getStatusLogOff().The need for these functions will be apparent shortly.

Next, there are three views for the Login component. Listing 14-16 shows the “regular”

view (Figure 14-3).

Listing 14-16. regular.jsp

<%@ taglib uri="/tags/struts-bean-el" prefix="bean-el" %>

<%@ taglib uri="/tags/struts-html-el" prefix="html-el" %>

<html-el:form action="/Login.do">

 <table>

 <tr>

 <td><bean-el:message key="userlogin.prompt.userid"/></td>

 <td>

 <html-el:text property="userid"/>

 <html-el:errors property="userid"/>

 </td>

 </tr>

 <tr>

C H A P T E R 1 4 ■ T I L E S 179

 <td><bean-el:message key="userlogin.prompt.password"/></td>

 <td>

 <html-el:password property="password"/>

 <html-el:errors property="password"/>

 </td>

 </tr>

 <tr colspan="2">

 <td>

 <html-el:hidden property="status"

 value="${LogonForm.statusRegular}"/>

 <html-el:submit>

 <bean-el:message key="userlogin.prompt.submit"/>

 </html-el:submit>

 </td>

 </tr>

 </table>

</html-el:form>

<html-el:link action="/Login.do?command=${LogonForm.statusNewUser}">

 <bean-el:message key="userlogin.prompt.new"/>

</html-el:link>

Listing 14-16 has a form and a link. The form accepts two fields: the user ID and pass-

word fields. The link allows new users to register with the system. This JSP page also

explains how the “status codes” functions of LogonForm.java (Listing 14-15) are used.

For example:

 <html-el:hidden property="status"

 value="${LogonForm.statusRegular}"/>

uses EL to determine the value of the regular status code by calling the

getStatusRegular() function on the LogonForm. The naive alternative would be to hard-

code the value:

 <html-el:hidden property="status" value="3"/> //don't do this!

Ugh! The “new user” view (Figure 14-4) is similar to the regular view, with the addition of

the second “confirm password” field. Listing 14-17 shows the JSP code for this page.

180 C H A P T E R 1 4 ■ T I L E S

Listing 14-17. newuser.jsp

<%@ taglib uri="/tags/struts-bean-el" prefix="bean-el" %>

<%@ taglib uri="/tags/struts-html-el" prefix="html-el" %>

<html-el:form action="/Login.do">

 <table>

 <tr>

 <td><bean-el:message key="userlogin.prompt.userid"/></td>

 <td>

 <html-el:text property="userid"/>

 <html-el:errors property="userid"/>

 </td>

 </tr>

 <tr>

 <td><bean-el:message key="userlogin.prompt.password"/></td>

 <td>

 <html-el:password property="password"/>

 <html-el:errors property="password"/>

 </td>

 </tr>

 <tr>

 <td><bean-el:message key="userlogin.prompt.password2"/></td>

 <td>

 <html-el:password property="password2"/>

 <html-el:errors property="password2"/>

 </td>

 </tr>

 <tr colspan="2">

 <td>

 <html-el:hidden property="status"

 value="${LogonForm.statusNewUser}"/>

 <html-el:submit>

 <bean-el:message key="userlogin.prompt.submit"/>

 </html-el:submit>

 </td>

 </tr>

 </table>

</html-el:form>

Lastly, the “logoff” view (see Listing 14-18) has just a single logoff button, as Figure 14-5

shows.

C H A P T E R 1 4 ■ T I L E S 181

Listing 14-18. success.jsp

<%@ taglib uri="/tags/struts-bean-el" prefix="bean-el" %>

<%@ taglib uri="/tags/struts-html-el" prefix="html-el" %>

<html-el:form action="/Logoff.do">

 <bean-el:message key="userlogin.prompt.loggedonas"

 arg0="${LogonForm.userid}"/>

 <html-el:submit>

 <bean-el:message key="userlogin.prompt.logoff"/>

 </html-el:submit>

 <html-el:hidden property="status"

 value="${LogonForm.statusLogOff}"/>

</html-el:form>

Notice that the logoff view (success.jsp) submits data to the form handler called

Logoff.do, unlike the previous two views, which submitted data to Login.do. This is

because we don’t need to perform validation for a logoff, so the declaration for Logoff.do

in struts-config.xml has validate="false" and no input page.

Next, we examine the struts-config.xml file (see Listing 14-19). For clarity, I’ll only

show the form-beans and action-mappings sections.

Listing 14-19. form-beans and action-mappings Sections of struts-config.xml

<form-beans>

 <form-bean name="LogonForm"

 type="net.thinksquared.login.struts.LogonForm"/>

</form-beans>

<action-mappings>

 <action path="/Login"

 type="org.apache.struts.actions.ForwardAction"

 name="LogonForm"

 scope="session"

 validate="true"

 input="/index.jsp"

 parameter="/index.jsp"/>

182 C H A P T E R 1 4 ■ T I L E S

 <action path="/Logoff"

 type="org.apache.struts.actions.ForwardAction"

 name="LogonForm"

 scope="session"

 validate="false"

 parameter="/index.jsp"/>

 <action path="/LoginController"

 type="net.thinksquared.login.struts.UserLoginAction"

 name="LogonForm"

 scope="session"

 validate="false">

 <forward name="success" path="/userlogin/success.jsp"/>

 <forward name="new-user" path="/userlogin/newuser.jsp"/>

 <forward name="regular" path="/userlogin/regular.jsp"/>

 </action>

</action-mappings>

The declarations here are a little tricky, so be sure to pay careful attention. First, the

LogonForm is declared. This should be familiar to you and doesn’t require further explanation.

Next come the three form handlers. The first two, Login.do and Logoff.do, are called

directly by the forms on the three views. The regular and new user views submit to Login.do,

and the logoff view submits to Logoff.do.

The only difference between the two form handlers is that Logoff.do does not validate

the form data (since we’re logging off).

Both Login.do and Logoff.do are associated with ForwardAction, which forwards to the

page specified in the parameter attribute of the form handler. This parameter attribute is

required for ForwardAction. No processing is done by ForwardAction apart from this.

So, from the declarations in Listing 14-19, it is apparent that both Login.do and Logoff.do

do nothing but immediately redisplay the input page!

This might seem a little strange. Why immediately redisplay a submitted page with

apparently no processing? The answer, of course, is that the input page (Listing 14-14)

contains an embedded Login <tiles:insert>. When the input page is redisplayed, the

embedded Tiles component is updated too. In this updating, the associated Tiles controller

is called, and the form data is actually processed.

We see from Listing 14-14 that the called definition is .login. The declaration for this

definition is

 <definition name=".login" path="/LoginController.do" />

So, the Tiles controller is the form handler called LoginController.do:

C H A P T E R 1 4 ■ T I L E S 183

<action path="/LoginController"

 type="net.thinksquared.login.struts.UserLoginAction"

 name="LogonForm"

 scope="session"

 validate="false">

 <forward name="success" path="/userlogin/success.jsp"/>

 <forward name="new-user" path="/userlogin/newuser.jsp"/>

 <forward name="regular" path="/userlogin/regular.jsp"/>

</action>

UserLoginAction is a TilesAction subclass, which I’ll describe shortly. LoginController

itself performs no simple validation (validate="false"), which should not raise any

eyebrows, since simple validation has been done by the main Login.do form handler for

the page.

All the form handlers—Login.do, Logoff.do, and LoginController.do—are all set for

session scope. This makes sense because we want the login information to persist for as

long as the user interacts with the system. The added bonus to this is that if another JSP

page embeds the Login component, the correct view will be displayed. The user need only

log on once, and all other pages with the Login component will correctly reflect this too.

Lastly, we come to the UserLoginAction class (see Listing 14-20), where the processing

of user data and flow control is done.

Listing 14-20. UserLoginAction.java

package net.thinksquared.login.struts;

import java.io.IOException;

import javax.servlet.*;

import javax.servlet.http.*;

import org.apache.struts.tiles.*;

import org.apache.struts.tiles.actions.*;

import org.apache.struts.action.*;

public final class UserLoginAction extends TilesAction{

 public ActionForward execute(ComponentContext ctx,

 ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

 throws IOException,ServletException{

184 C H A P T E R 1 4 ■ T I L E S

 LogonForm lForm = (LogonForm) form;

 String cmd = request.getParameter("command");

 if(cmd != null){

 return mapping.findForward("new-user");

 }

 if(lForm.getStatus() == LogonForm.UNDEFINED){

 return mapping.findForward("regular");

 }

 if(lForm.getStatus() == LogonForm.LOGGED_ON){

 return mapping.findForward("success");

 }

 if(lForm.getStatus() == LogonForm.LOG_OFF){

 System.out.println("Logging off " + lForm.getUserid());

 lForm.clear();

 return mapping.findForward("regular");

 }

 if(lForm.getStatus() == LogonForm.NEW_USER){

 if(lForm.hasErrors()){

 return mapping.findForward("new-user");

 }else{

 System.out.println("Creating New User " + lForm.getUserid());

 return mapping.findForward("success");

 }

 }

 if(lForm.getStatus() == LogonForm.REGULAR){

 if(lForm.hasErrors()){

 return mapping.findForward("regular");

 }else{

 System.out.println("Logging on regular user " +

 lForm.getUserid());

 return mapping.findForward("success");

 }

 }

C H A P T E R 1 4 ■ T I L E S 185

 //catch-all

 return mapping.findForward("regular");

 }

}

The first thing we do is check if there are any parameters on the URL:

String cmd = request.getParameter("command");

if(cmd != null){

 return mapping.findForward("new-user");

}

The only reason why there might be a parameter on the URL is if the user clicked the “I’m

a new user” link on regular.jsp (see Listing 14-21).

Listing 14-21. Link Snippet from regular.jsp

<html-el:link action="/Login.do?command=${LogonForm.statusNewUser}">

 <bean-el:message key="userlogin.prompt.new"/>

</html-el:link>

In this case, we obviously want to display the new user view.

■Note Since we’re merely checking for the presence of a command parameter, we could have just used

<html-el:link action="/Login.do?command="dummy"..>. However, if we add more linked views in

the future, we’ll have to change the link to something along the lines of Listing 14-21.

The next two blocks of code simply redisplay the necessary views:

if(lForm.getStatus() == LogonForm.UNDEFINED){

 return mapping.findForward("regular");

}

if(lForm.getStatus() == LogonForm.LOGGED_ON){

 return mapping.findForward("success");

}

This is needed when the page first loads (the first block) or if the user refreshes the page

after having logged on (second block).

The following block logs off the user, taking care to clear the form before the default

regular view is displayed:

186 C H A P T E R 1 4 ■ T I L E S

if(lForm.getStatus() == LogonForm.LOG_OFF){

 System.out.println("Logging off " + lForm.getUserid());

 lForm.clear();

 return mapping.findForward("regular");

}

For clarity, I haven’t implemented the model code but used System.out.println() calls to

indicate what should be done.

The last two blocks are perhaps the most interesting:

if(lForm.getStatus() == LogonForm.NEW_USER){

 if(lForm.hasErrors()){

 return mapping.findForward("new-user");

 }else{

 System.out.println("Creating New User " + lForm.getUserid());

 return mapping.findForward("success");

 }

}

if(lForm.getStatus() == LogonForm.REGULAR){

 if(lForm.hasErrors()){

 return mapping.findForward("regular");

 }else{

 System.out.println("Logging on regular user " + lForm.getUserid());

 return mapping.findForward("success");

 }

}

All these blocks of code do is display the logoff view, after the user correctly fills in either

the regular login form or the new user login form. But notice that the form is checked for

errors with hasErrors() (see Listing 14-15) before the logoff view is displayed.

This is the reason we created the hasErrors() function on the LogonForm—it enables

the Login component to tell whether the form data passed simple validation.

We can’t rely on Struts automatically redisplaying a page upon simple validation

failure, because the JSP for the Login Tiles component doesn’t exist when the page is

redisplayed. It’s the Tiles controller (UserLoginAction) that decides which JSP to paste

into the input page. So it has to know if there are validation errors in order to paste the

right JSP. Creating a hasErrors() function on the LogonForm is a simple way of doing this.

That pretty much wraps up the Login Tiles component example. Please visit the Source

Code section of the Apress website at http://www.apress.com to download the source

code for the Login Tiles component. The WAR file, ready for deployment, is called

login.war, and it’s also in the Source Code section of the Apress website. I encourage you

to experiment with this simple Tiles component to gain a better understanding of how

Tiles components work.

C H A P T E R 1 4 ■ T I L E S 187

Getting External Form Data

What if there was more than one Tiles component on the page? Would the cast

 LogonForm lForm = (LogonForm) form;

in Listing 14-20 throw an exception? The answer is no, because the type of ActionForm

(more precisely, the form bean) passed to the Tiles controller must match the one declared in

struts-config.xml. If no such form bean was submitted, then a blank one is created, and

passed to the Tiles controller. This means the cast will always work as long as the declara-

tion is correct.

This has an interesting implication: suppose form data is sent to a form handler asso-

ciated with form bean X. Then, all Tiles components on that same page that also are

associated with that form bean X will receive carbon copies of that form data.

For example, consider the following set of form-handler declarations:

<action path="MyAction" name="MyFormBean" type="...">

<action path="MyTileControllerA" name="MyFormBean" type="...">

<action path="MyTileControllerB" name="MyFormBean" type="...">

<action path="MyTileControllerC" name="DifferentFormBean" type="...">

and the following JSP page snippet:

<html:form action="/MyAction.do">

 ...

</html:form>

<tiles:insert definition=".myTilesComponentA"/>

<tiles:insert definition=".myTilesComponentB"/>

<tiles:insert definition=".myTilesComponentC"/>

When the form data is submitted, it is first stored in an instance of MyFormBean and then

processed by the Action subclass associated with MyAction.

What is less obvious is that the execute() functions on MyTileControllerA and

MyTileControllerB are passed separate copies of MyFormBean. The execute() function

of MyTilesControllerC is passed a new instance of DifferentFormBean.

You will use this trick in the following lab session, to get a Tiles component to receive

data from the external form.

Lab 14: The Find Facility

We want to add a Find function to both full.jsp and mnc.jsp, making minimal alterations to

existing code. Specifically:

188 C H A P T E R 1 4 ■ T I L E S

• We want the existing form in both JSPs to be used to deliver keyword search into our

Find utility.

• If the user clicks Find, the form data is used as keywords. A list of contacts that

matches the query appears. Each contact is an HTML link.

• If the user clicks on a contact link, the form populates with the contact’s data. If the

user clicks Submit, the form data is interpreted as an update to the contact information.

• If the user just fills in the form and clicks Submit instead of Find, the form data is

interpreted as a new entry.

Figure 14-6 shows the placement of the Find facility within the full.jsp and mnc.jsp pages.

Figure 14-6. Placement of the Find facility within the existing JSP pages

Notice that the form now has two submit buttons: one to submit form data (the “true”

submit button) and another to submit the keyed-in data as a search query (the Find button).

The best way to tackle this is to use the LookupDispatchAction technique (see Chapter 17).

Please read that the section on LookupDispatchAction before proceeding.

This lab also makes use of Lisptorq-generated Model classes, so be sure to read the

relevant sections in Appendix A first.

C H A P T E R 1 4 ■ T I L E S 189

Step 1: Set Up Tiles

1. Put in the plug-in section for Tiles on struts-config.xml. Remember to put in the

plug-in section at the end of the file. Call the Tiles definitions file tiles-def.xml.

2. Tiles uses a tag library called struts-tiles.tld. Declare this in web.xml.

Step 2: Write the Controller

The class ContactPeer has a find() function:

public static Scroller find(Contact query)

You will need this function to perform searches based on a given Contact.

Now, the relevant Controller class for the Find tile is FindAction, which is a subclass of

net.thinksquarded.lilldep.struts.TilesLookupDispatchAction. This base class is used

much in the same way as LookupDispatchAction (see Chapter 17), but is specifically for Tiles.

1. Complete the implementation of find() on FindAction, so that it extracts the

Contact instance from the given ActionForm. Save a cloned version of this Contact

in the current session, under the key JSPConstants.FIND_QUERY. Use Contact.klone(),

which clones the Contact.

2. Use ContactPeer.find() to create a Scroller object using this Contact. You should

place this Scroller object in the current request, under the key JspConstants.

FIND_RESULTS.

3. find() should return null, because navigation is determined by the main handler

for the form.

4. Complete the implementation of unknown() on FindAction, so that it checks the

session for a Contact, under the key JspConstants.FIND_QUERY. If the Contact exists,

then use it to get a Scroller using ContactPeer.find(). Save the Scroller on the

current request. unknown() should return null.

5. Implement the function getKeyMethodMap(), which has the same requirements as

LookupDispatchAction.getKeyMethodMap().

6. Use compile.bat to see if your work compiles.

190 C H A P T E R 1 4 ■ T I L E S

I hope you see what we’re doing here. We want to save the query in session scope so

that we can view the Find results from page to page. We can’t simply save the Scroller

(and use absolute() to reset it each time we need it) because we might change the

Contact’s details so that it no longer matches the query.

There are a few subtleties in this step:

• Notice that we have to save a clone of the query, and not the query itself. This is

because Struts resets the fields on the query object itself. This behavior is part of

how Struts works. So, to avoid holding a blanked-out form, we have to clone it.

• The unknown() function is called (you can see the behavior from

TilesLookupDispatchAction) when the command parameter in the URL points to a

function that does not exist on the Tiles Controller (i.e., FindAction). In our case,

unknown() will be called when the user clicks Submit instead of Find.

• When the full.jsp page is called directly or by other form handlers (e.g.,

EditContact.do), then the command parameter isn’t present in the URL. This means

that the unspecified() function on TilesLookupDispatchAction is called. So, in

order for the Find utility to correctly update itself, unspecified() has to call unknown().

Step 3: Put In the Tiles Action Mapping

1. Create a new form handler in struts-config.xml to declare the Tiles controller you

just created.

2. Set the parameter attribute to command. This is necessary for

TilesLookupDispatchAction to correctly dispatch according to the submit button

that was clicked.

3. Set the scope of the form handler to session, in order to match that of the main form.

4. Be sure that your Tiles controller will get a copy of the form submitted from the

main page. (See the section “Getting External Form Data” to see how this is done.)

Step 4: Make Changes to ContactAction

Since there are now two submit buttons (Submit and Find), we require ContactAction to

process Submit but ignore Find.

C H A P T E R 1 4 ■ T I L E S 191

1. We’ll use LookupDispatchAction to do this, so you’ll have to change the base class of

ContactAction to LookupDispatchAction.

2. Change the name of execute() to save().

3. Because there are now two submit buttons, we can’t rely on Struts to automatically

validate the form for us. This means that we have to call the validate function from

save() instead. Make the necessary changes to do this, taking care to set

validate=false on the associated form handlers declared in struts-config.xml.

4. Implement the function find(), which has the same signature and return type as

execute(). This function should replace the form’s Contact with a clean instance

and then return the forward called success.

5. Implement getKeyMethodMap().

You also need to add an extra attribute called parameter, whose value is set to command, to

the form handlers associated with ContactAction (there are two of them). This required

for LookupDispatchAction to correctly dispatch according to the submit button clicked.

Step 5: Write the Tiles JSP

1. Edit find-tile.jsp so that it displays the company name using the Scroller saved

on the request by the name JspConstants.FIND. Hint: Use <logic:iterate> and

simply iterate through, as you did for listing.jsp. Remember to check for a null

Scroller.

2. Make a link to EditAction for each company name, as you did in listing.jsp in

Chapter 13.

3. You get extra credit if you can get the background of the company name link to

change color when it’s clicked (no JavaScript solutions—use Struts).

Step 6: Write the Tiles Definition

Add a new definition in the Tiles definitions file, tiles-def.xml. The definition should do

the following:

• Provide a unique name to the definition.

• Link the Tiles form handler in step 2 to the Tiles JSP in step 4.

192 C H A P T E R 1 4 ■ T I L E S

Step 7: Put In the Find Tile

Now, you need to put the Find tile in your JSPs. We’ll start with full.jsp:

1. Look at the layout specs (Figure 14-6), and put in a table with two cells. One cell will

hold the existing data entry panel, and the other (on the right) will hold the Find

button and the results window.

2. Put in a Find button (look up the key in Application.properties!), which is an

<html:submit>.

3. You need to add property="command" to the new Find button as well as the existing

Submit button.

4. Put in the taglib declaration for the Tiles tag library.

5. Repeat steps 1–3 for mnc.jsp.

Step 8: Deploy and Test

Compile and deploy your webapp. Verify the following:

• Does the Find utility work? In other words, do you see a list of companies when you

use Find?

• Does the form populate when you click the company name links?

• Does the company name’s background color change when you click on it?

• Does the contact update correctly when you make a change?

• Does the Find result change when you make an update? For example, if you

perform a Find operation for a company name, and then change the company

name, does the Find listing change?

• Does Find work correctly on both full.jsp and mnc.jsp?

• If you use the full/MNC entry forms to enter a new contact, does the database

correctly create new contacts?

C H A P T E R 1 4 ■ T I L E S 193

Summary

• Tiles is a mechanism for creating layouts and components.

• Layouts help streamline a web application’s look and feel.

• Tiles components are a way to create reusable GUI components.

195

■ ■ ■

C H A P T E R 1 5

The Validator Framework

The Validator framework is a Struts plug-in, originally created by David Winterfeldt, that

provides a set of generic validations that you can use to run a variety of simple validations.

Instead of implementing validate() functions in your ActionForm subclasses, you declare

your validations in an XML file.

So, the Validator framework eliminates the need for implementing validate() in your

ActionForm subclasses. (You still need your ActionForm subclasses to store form data.)

You reap a number of benefits when you use the Validator framework, as opposed to

writing individual validate() functions on your ActionForm subclasses:

• Better maintainability: Since the new XML format validations are all placed in one

file, you should be able to maintain your validations more easily.

• Standardization: Many simple validations require the same checks. For example,

both userid and password fields might require checks to ensure they are composed

of alphanumerics. If these checks were spread throughout a few validate() functions,

standardizing them would be a challenge. As you’ll see, the Validator framework

makes it easier for you to standardize your validations.

• Correct implementation: Some “simple” validations are quite difficult to imple-

ment correctly! A prime example is validating an email address so that it conforms

to the RFC-2822 specification (this specification deals with email address formats,

among other things). Rather than reinventing the wheel, you can take advantage of

validations provided by the Validator framework.

• Less code duplication: Similarly, because the Validator framework provides a fairly

comprehensive set of validations, you can cut down code duplication. You don’t need

to implement your own code to validate things like credit card numbers in each of your

web applications. You could argue that it’s possible to write these validations once, put

them in a single class, and reuse them for all your apps. True, but this means that new

members of your team would have more to learn before they could become productive.

In the worst-case scenario, some developers might forget about the shared library of

validations and duplicate validations in their validate() functions.

196 C H A P T E R 1 5 ■ T H E V A L I D AT O R F R A M E W O R K

• Automatic client-side validations: You can automatically generate JavaScript vali-

dations on your client by placing a single <html:javascript/> tag in your JSPs. The

validator framework will automatically generate the validations for you. This feature of

the Validation framework is still underdeveloped; there’s no way for you to specify

client-side validation only.

The set of generic validations provided by the Validator framework is quite comprehensive,

and you should be able to replace all your validate() functions with XML declarations.

However, in case you can’t, it’s possible to run your own custom validations alongside the

ones you’ve declared using the Validator framework. It’s also possible to extend the set of

standard validations provided by the Validator framework.

Declaring the Validator Plug-in

Like Tiles (see Chapter 14), the Validator framework is independent of Struts. It belongs to

the Apache Commons project (see “Useful Links” at the end of this chapter), which aims

to create a set of reusable frameworks, the Validator framework being one of them.

Indeed, the Validator framework internals are stored in the commons-validator.jar file

that comes with the Struts distribution. This JAR file contains all the Java classes for the

framework and the JavaScript to run client-side validations.

To use the Validator framework in your Struts applications, you need to declare it. This

means a <plug-in> declaration in the struts-config.xml file (see Listing 15-1).

Listing 15-1. Plug-in Declaration for the Validator Framework in struts-config.xml

<plug-in className="org.apache.struts.validator.ValidatorPlugIn" >

 <set-property property="pathnames"

 value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>

</plug-in>

Notice that it’s ValidatorPlugIn (capital I). A common source of frustration is to use the

lowercase “i” as it is in TilesPlugin.

The <set-property> tag sets a single property called pathnames accessible to the plug-in.

The value of pathnames is a set of comma-separated files:

• validator-rules.xml is a set of declared generic validations for the Validator frame-

work. This file is provided for you in the Struts distribution.

• validation.xml links each field in your ActionForm subclass (more precisely, the

declared form bean) to one or more validations drawn from those declared in

validator-rules.xml. So, validation.xml is where you replace the validate()

functions of your ActionForm subclasses.

C H A P T E R 1 5 ■ T H E V A L I D A T O R F R A M E W O R K 197

As the declaration suggests, you need to place both these files in the /WEB-INF/ folder of

your web application.

Both validator-rules.xml and validation.xml have the same structure—that is, they

are described by the same XML document tag definition (DTD).

■Note The DTD is contained in the commons-validator.jar file, which comes with the Struts distribution,

under the path /org/apache/commons/resources/validator_1_1_3.dtd.

Since they have the same structure, there’s no reason why you can’t create a single file

containing information from both. Of course, this leads to maintenance issues.

Alternatively, you could split your validation.xml file into several files. To use them,

just change the plug-in declaration. For example, if you had three validation files, called

A.xml, B.xml, and C.xml, then the code Listing 15-1 would be changed to that shown in

Listing 15-2. Struts pieces together all four files declared in Listing 15-2 before processing

them.

Listing 15-2. Splitting Your validation.xml file into Three Parts

<plug-in className="org.apache.struts.validator.ValidatorPlugIn" >

 <set-property property="pathnames"

 value="/WEB-INF/validator-rules.xml,

 /WEB-INF/A.xml,

 /WEB-INF/B.xml,

 /WEB-INF/C.xml"/>

</plug-in>

Splitting your validation.xml file is useful if your project contains subprojects. It is

easier to manage and maintain a few smaller files, each containing forms from a single

subproject, than one huge file containing validations for all projects.

Validator DTD Basics

Since the validator-rules.xml and validation.xml files play a central role in the Validator

framework, you have to understand their structure. Listing 15-3 is a fragment of the vali-

dator DTD, and it describes the major divisions of the validator XML structure.

Listing 15-3. Top Nodes of the Validator XML Structure

<!ELEMENT form-validation (global*, formset*)>

<!ELEMENT global (validator*, constant*)>

<!ELEMENT formset (constant*, form+)>

198 C H A P T E R 1 5 ■ T H E V A L I D AT O R F R A M E W O R K

The <form-validation> tag is the root tag, and all other tags are contained within it. The

important subtags of <form-validation> are

• <global>, which in turn contains declarations of “global” constants (we’ll come to

this shortly) or declarations for validators.

• <formset>, which represents validations for a locale. We’ll discuss this at the end of

this chapter.

• <form>, which is a subtag of <formset>, which contains your validations of fields on

any form beans declared in struts-config.xml. You will declare these in your

validation.xml file.

In the validator-rules.xml file, you will only see <validator> declarations, one for each

generic validator available on the Validator framework.

Your validation.xml file should contain only <form> or <constant> declarations. This

division of tags between validator-rules.xml and validation.xml is purely for maintain-

ability: you put all declared validations in validator-rules.xml, and your use of the

validations in validation.xml.

I’ll describe these tags in more detail as I show you how to use and extend the Validator

framework.

Using the Validator Framework

Using the Validator framework is easy:

• For each form bean needing validation, you add a new <form> tag to your

validation.xml file. The name attribute of the <form> should be the same as the

name of the form bean.

• For each field requiring validation in the form bean, you add a <field> subtag to the

<form>. The property attribute of the <field> tag should be the same as the name of

the field you want to validate. The property attribute supports nested fields (see

Chapter 10 for details on nested fields/properties).

• The <field> tag also has a depends attribute, with which you specify the validations

you want to run for this field. The names of the validations are specified as a

comma-delimited list.

• The <field> tag may contain optional subtags for custom error messages or variables

used by a validator (e.g., minimum length of a field).

• Ensure that your form bean is a subclass of org.apache.struts.validator.

ValidatorForm.

C H A P T E R 1 5 ■ T H E V A L I D A T O R F R A M E W O R K 199

That’s it! To see how this works, let’s explore how you’d use the Validator framework to

validate RegistrationForm, the only form bean for the Registration webapp (see Listing 6-1 in

Chapter 6).

Example: Validating RegistrationForm

RegistrationForm (refer to Listing 6-1) has three fields that need to be validated. In this

section, I’ll create a version of RegistrationForm that uses the Validator framework. The

new RegistrationForm.java class is shown in Listing 15-4.

Listing 15-4. RegistrationForm.java for the Validator Framework

package net.thinksquared.registration.struts;

import org.apache.struts.validator.*;

public final class RegistrationForm extends ValidatorForm{

 private String _userid = null;

 private String _pwd = null;

 private String _pwd2 = null;

 /**

 * getXXX and setXXX functions

 * corresponding to form properties

 */

 public String getUserid(){ return _userid; }

 public void setUserid(String userid){ _userid = userid; }

 public String getPassword(){ return _pwd; }

 public void setPassword(String pwd){ _pwd = pwd; }

 public String getPassword2(){ return _pwd2; }

 public void setPassword2(String pwd2){ _pwd2 = pwd2; }

}

If you compare Listing 15-4 with Listing 6-1, you’ll notice a couple of changes:

• RegistrationForm now extends org.apache.struts.validator.ValidatorForm

instead of org.apache.struts.action.ActionForm.

• The validate() function has disappeared.

200 C H A P T E R 1 5 ■ T H E V A L I D AT O R F R A M E W O R K

You need to subclass ValidatorForm because this base class will run validations declared

in your validation.xml file. This also explains the disappearance of the validate() function—

Struts will call validate() on ValidatorForm instead.

■Note The form bean declaration for RegistrationForm would be unchanged.

To understand how to declare validations, consider that RegistrationForm has three

fields: userid, password, and password2. The checks run in Listing 6-1 are to ensure that the

userid is filled in and that password and password2 match.

These validations are hardly complete. We’ll add a max/min check for the userid and

password, and a check that userid and password are restricted to alphanumerics. The

validation.xml file incorporating all these checks appears in Listing 15-5.

Listing 15-5. Declaring Validations for RegistrationForm

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE form-validation PUBLIC ... // truncated for clarity

<form-validation>

 <formset>

 <form name="RegistrationForm">

 <field property="userid"

 depends="required,mask,maxLength,minLength">

 <msg name="required" key="reg.error.userid.missing" />

 <msg name="mask" key="reg.error.userid.alphanum"/>

 <msg name="minLength" key="reg.error.userid.length" />

 <msg name="maxLength" key="reg.error.userid.length" />

 <arg name="minLength" key="${var:minlength}" position="0"

 resource="false"/>

 <arg name="minLength" key="${var:maxlength}" position="1"

 resource="false"/>

 <arg name="maxLength" key="${var:minlength}" position="0"

 resource="false"/>

 <arg name="maxLength" key="${var:maxlength}" position="1"

 resource="false"/>

C H A P T E R 1 5 ■ T H E V A L I D A T O R F R A M E W O R K 201

 <var>

 <var-name>mask</var-name>

 <var-value>^[a-zA-Z0-9]*$</var-value>

 </var>

 <var>

 <var-name>minlength</var-name>

 <var-value>5</var-value>

 </var>

 <var>

 <var-name>maxlength</var-name>

 <var-value>10</var-value>

 </var>

 </field>

 <field property="password"

 depends="required,mask,maxLength,minLength">

 // similar to validations for userid,

 // omitted for clarity.

 </field>

 <field property="password2" depends="validwhen">

 <msg name="validwhen" key="reg.error.password.mismatch"/>

 <var>

 <var-name>test</var-name>

 <var-value>(password == *this*)</var-value>

 </var>

 </field>

 </form>

 </formset>

</form-validation>

As you can see, there’s just one <formset> tag and this means that we haven’t localized

any validations. Don’t get me wrong—the error messages are localized, since Listing 15-5

obviously uses keys from the properties file. But the validations themselves are not localized.

To understand the difference, refer to the discussion on “Localizing Validations” in

Chapter 12.

Most of the time, you won’t be localizing validations, so your validation.xml file will

contain just one <formset> tag. I’ll describe how to use multiple <formset> tags to help you

localize validations toward the end of this chapter.

202 C H A P T E R 1 5 ■ T H E V A L I D AT O R F R A M E W O R K

The nested <form> tag is where the action happens. In Listing 15-5, there’s just one

<form> tag, corresponding to the RegistrationForm form bean that needs validating. If you

had other form beans that needed validating, then the <formset> would contain more

<form> tags, one for each of these form beans.

The validations for each field are done separately. The validations for the password field

are very similar to the ones for userid, so I’ve left this field out. From the <field> declaration

for the userid field, you can tell I’ve run four validations:

<field property="userid"

 depends="required,mask,maxLength,minLength">

The required validator checks that the field is filled in by the user. It requires no extra

information to run. If the required validator fails, the following <msg> tag

<msg name="required" key="reg.error.userid.missing"/>

ensures that the error message specified by the key reg.error.userid.missing is displayed.

It’s possible (but not advisable) to force the display of a static string using the resource=false

attribute:

<msg name="required" key="Userid is missing!" resource="false"/>

The mask validator checks that the field’s value matches a given regular expression.

■Note A regular expression is a way to compactly express any string. For example, the DOS regular expression

. matches all filenames with an extension. Regular expression languages vary by provider, so *.* will not

match every filename with an extension if used in the Validator framework. The Validator framework uses a

much more powerful regular expression language, similar to the one used in the Perl programming language.

Refer to the “Useful Links” section at the end of this chapter for a reference.

This regular expression is given in a var tag:

<var>

 <var-name>mask</var-name>

 <var-value>^[a-zA-Z0-9]*$</var-value>

</var>

This declares a variable named mask, with the value ^[a-zA-Z0-9]*$. The mask validator

requires this variable to be defined in order to work. In this case, the regular expression

matches alphanumeric strings (strings containing roman alphabets and Arabic numerals,

0 through 9).

Similarly, the maxLength and minLength validators require variables maxlength and

minlength, respectively.

C H A P T E R 1 5 ■ T H E V A L I D A T O R F R A M E W O R K 203

The error messages for these checks require some explanation. For example, the

custom error message for minLength is declared by

<msg name="minLength" key="reg.error.userid.length"/>

The entry in Application.properties for this key is

Passwords should be between {0} and {1} characters long

The {0} and {1} replacement arguments have to be defined using <arg> tags:

<arg name="minLength" key="${var:minlength}" position="0"

 resource="false"/>

<arg name="minLength" key="${var:maxlength}" position="1"

 resource="false"/>

The name attribute corresponds to the name of the validator (this is also present in the

<msg> tag), and the key in this case refers to the minlength and maxlength variable values.

Since the key attribute is to be interpreted as a static value and not as a key in Application.

properties, I’ve set resource="false". The position attribute indicates which replacement

argument this refers to.

LOCALIZING THE REPLACEMENT ARGUMENTS

In Listing 15-5, the replacement arguments are not localized. So, a user in the Arabic locale would see

the error message in Arabic except for the numerals (the modern Arabic numerals are not the same as

the so-called “Arabic” numerals 0 to 9—invented by the Hindus of India before being brought to the West).

If you were required to localize a replacement argument you have two options:

• Hard-code the variable into an error message. This is best if you do not anticipate reuse of the

replacement argument in other error messages.

• If reuse of the replacement argument is necessary, declare it as a key/value pair in your

Application.properties file. Then use <arg> with the key attribute corresponding to this

key and leave out the resource attribute, or set resource="true".

The validation of the userid field only succeeds if all the declared validators for it pass.

The validation for the password2 field used the validwhen validator, which I will describe

in more detail in a later section (“Using validwhen”).

Validating Nested and Indexed Properties

userid, password, and password2 are all simple properties (see Chapter 10 for a definition).

You can also validate nested and indexed properties.

204 C H A P T E R 1 5 ■ T H E V A L I D AT O R F R A M E W O R K

For nested properties, simply set the field’s property attribute using the usual . notation

to access a nested property. For example, setting property="contact.email" validates the

email property on the contact property of the given form.

Validating indexed properties is a little different. Suppose you have a function that

returns an array or Collection of values, and you want to validate each item on the array.

The way to do this is to use the indexedListProperty attribute of <field>. For example:

<field indexedListProperty="items" ...

interprets items as an array or Collection, and will validate each element in the

array/Collection.

You can also combine indexed with simple or nested properties. For example:

<field indexedListProperty="items" property="id" ...

will validate the id property of each element on the items array/Collection. And

<field indexedListProperty="contacts" property="address.postcode" ...

will validate the nested property address.postcode on each element in the contacts array/

Collection.

Using Constants

Both userid and password validations check that the values keyed in by the user are

composed of alphanumerics. In Listing 15-5, the regular expression for each would be

duplicated. Is there a way to “share” these? The answer is “yes,” and the way to do this is

to declare the regular expression as a constant. You have two options open to you:

• Define a global constant—a constant accessible to every field in every <formset>.

• Define a constant accessible to every field within a single <formset>.

To declare a global constant, you’d place the following XML before the first <formset> tag:

<global>

 <constant>

 <constant-name>alphanumericMask</constant-name>

 <constant-value>^[a-zA-Z0-9]*$</constant-value>

 </constant>

</global>

This declares a constant named alphanumericMask with the value ^[a-zA-Z0-9]*$. Declaring

the constant in a <formset> is similar:

C H A P T E R 1 5 ■ T H E V A L I D A T O R F R A M E W O R K 205

<formset>

 <constant>

 <constant-name>alphanumericMask</constant-name>

 <constant-value>^[a-zA-Z0-9]*$</constant-value>

 </constant>

 <form name="RegistrationForm" ...

Note that according to the DTD, <constant>s have to be declared at the start of the

<formset> tag.

To use the declared alphanumericMask constant in either case, you’d employ the

${constant-name} reference:

<var>

 <var-name>mask</var-name>

 <var-value>${alphanumericMask}</var-value>

</var>

Client-Side Validations

To create client-side validations, simply place a <html:javascript form="MyFormBean"/>

tag anywhere on your JSP page so that Struts can paste JavaScript on the final web page in

order to run client-side validations. Bear in mind, however, that there’s no easy way (apart

from amending the validator itself, or perhaps writing a plug-in) to prevent a form from

being passed through server-side validations.

This might make you wonder whether the client-side validations are of any use! To be

fair, the Validator framework is undergoing active development, and I’m sure we’ll see

improvements in the area of client-side validations soon.

We next look at the standard validators available on the Validator framework.

The Standard Validators

Table 15-1 lists all standard validators at the time of this writing (Struts 1.2.4 to 1.2.7).

However, as I mentioned the Validator framework is undergoing active development, so

be sure to check the Struts Validator website (see the “Useful Links” section) for the latest.

The first column of Table 15-1 shows the name of the validator. This is the name you’d

use in the depends attribute of the <field> tag. The second column gives the list of variables

the validator accepts. All variables listed in the second column are required. The last column

gives “triggers” for the validator—conditions that if met will trigger the validator to fail.

Almost every validator is easy to use, with the possible exception of the validwhen validator.

We’ll tackle this next.

206 C H A P T E R 1 5 ■ T H E V A L I D AT O R F R A M E W O R K

Using validwhen

The validwhen validator is useful when validation of one field depends on another. With

this validator, you can formulate complex dependencies.

I’ve always believed an example beats a thousand descriptions, so Listing 15-6 shows

an example of validwhen in action.

Table 15-1. Standard Validators, Their Arguments, and Their Triggers

Validator Variables Trigger

required - Field only has whitespace.

mask mask Field doesn’t match mask. The mask variable
is a regular expression.

intRange,floatRange min,max Field > max or field < min.

maxLength maxLength Field has more than maxLength characters.

minLength minLength Field has fewer than minLength characters.

double,float,long,integer,short,byte Field can’t be cast to associated primitive.

date datePattern or
datePatternStrict

Field doesn’t match given date pattern.
Note: datePatternStrict requires any
leading zeroes present in the pattern to
be present in the field.

creditCard Field is not a credit card number.

email Field is not a conformant email address.
(Note: This is actually much more com-
plicated that testing for a single @ in the
field!)

url schemes,
allowallschemes,
allow2slashes,
nofragments
(all optional)

Field is not a URL. Several protocols are
supported. schemes is a comma-delimited
list of protocols, for example, http,https,
ftp,file,telnet,gopher. allowallschemes
(which equals false by default) makes
any scheme acceptable if true.
allow2slashes (= false) accepts double
backslashes (//) in a scheme. nofragments
(= false) disallows a fragment of a URL.

validwhen test The test condition fails. See the following
subsection for more details.

requiredif Deprecated Deprecated—use validwhen instead.

range Deprecated Deprecated—use intRange or floatRange
instead.

C H A P T E R 1 5 ■ T H E V A L I D A T O R F R A M E W O R K 207

Listing 15-6. Using validwhen

<field property="mySecondField" depends="validwhen">

 <var>

 <var-name>test</var-name>

 <var-value>

 ((myFirstField == null) or (*this* != null))

 </var-value>

 </var>

</field>

mySecondField is valid when myFirstField is blank or mySecondField is not blank. The

symbol *this* refers to the field being validated. Notice also that the logical operators are

or and and, not the usual Java || and &&.

■Note This is an example of how to conditionally validate fields. mySecondField only gets validated

(checked for a blank value) if myFirstField is blank. This is how you can use validwhen to replace the

older (pre-1.2) validator requiredif.

Clearly validwhen is a powerful solution to a variety of problems. Consider the common

problem of validating a twice-entered password (see Listing 15-7).

Listing 15-7. Checking for Identical Fields

<field property="password2" depends="validwhen">

 <var>

 <var-name>test</var-name>

 <var-value>

 (password == *this*)

 </var-value>

 </var>

</field>

Using validwhen with Indexed Fields

validwhen also makes validating dependent indexed fields and their properties unbelievably

easy.

For example, suppose your form had a table of values, such as a list of items in a shopping

cart. You could do this by using one of the following:

208 C H A P T E R 1 5 ■ T H E V A L I D AT O R F R A M E W O R K

• Separate arrays for each column

• A single array of containing objects that holds values for a single row

We’ll tackle these two situations separately.

In the first scenario, our shopping cart has two columns, each represented by arrays

itemID and itemCount. We want to check that each non-null itemID element has a corre-

sponding non-null itemCount element. The validator declaration to do this appears in

Listing 15-8.

Listing 15-8. Validating Indexed Fields

<field property="itemCount" depends="validwhen">

 <var>

 <var-name>test</var-name>

 <var-value>

 ((itemID[] == null) or (*this* != null))

 </var-value>

 </var>

</field>

The validator automatically runs the check for each row of itemCount and itemID.

In the second scenario, we use an object called item to hold a single row of data. This

object has the properties id and count.

■Note Recall that for this to work, item needs to be a JavaBean. That is, it needs to have getXXX and

setXXX functions for each property, like id and count.

Listing 15-9 shows how we run the same validation.

Listing 15-9. Validating Properties on Indexed Fields

<field property="count"

 indexedListProperty="item" depends="validwhen">

 <var>

 <var-name>test</var-name>

 <var-value>

 ((item.id[] == null) or (*this* != null))

 </var-value>

 </var>

</field>

C H A P T E R 1 5 ■ T H E V A L I D A T O R F R A M E W O R K 209

Lastly, note that you can explicitly refer to a specific row on an indexed field. Listing 15-10

shows an example.

Listing 15-10. Referring to an Explicit Row on an Indexed Field

<field property="myField1" depends="validwhen">

 <var>

 <var-name>test</var-name>

 <var-value>

 ((item.id[1] == null) or (*this* != null))

 </var-value>

 </var>

</field>

In the next section, we’ll look at how to run your own validations alongside the standard

ones you’ve used in validation.xml.

Adding Custom Validations

Although the set of validations on the Validator framework are quite comprehensive, you

might want to run your own validations alongside those available in the Validator frame-

work. There are two ways of doing this:

• Put in a validate() function on your ValidatorForm subclass. You’d take this

approach if the custom validation isn’t likely to be reused in other parts of your

application.

• Extend the Validator framework itself by creating a new validator. You’d take this

route if there’s a strong case for reuse.

In most cases, putting in a validate() function should suffice. Use the second alternative

only after much thought, since validators should be generic, if only to the problem domain

of your web application. Otherwise, you’d run into potential maintenance issues. Can you

see why?

We’ll take a look at both approaches in this section.

Implementing validate()

As I mentioned earlier, one way of implementing your own validations in addition to the

standard ones is to implement the validate() function.

We’ll take up the RegistrationForm class again (see Listing 15-4), and add custom vali-

dations to detect that the given password isn’t in a list of common words like “password”

210 C H A P T E R 1 5 ■ T H E V A L I D AT O R F R A M E W O R K

or “secret.” Listing 15-11 shows the validate() function that you’d add to RegistrationForm

in order to achieve this functionality.

Listing 15-11. Checking for Common Words as Passwords

public ActionErrors validate(ActionMapping mapping,

 HttpServletRequest request){

 //run the validations declared in validation.xml first

 ActionErrors errors = super.validate(mapping,request);

 if(errors != null && !errors.isEmpty()) return errors;

 errors = (errors == null)? new ActionErrors() : errors;

 //run your custom validations next

 for(int i = commonWords.length - 1; i >= 0; i--){

 if (_password.toUpper().equals(commonWords[i])){

 errors.add("password",

 new ActionMessage("reg.error.password.toocommon",

 commonWords[i]));

 return errors;

 }

 }

 return (errors.isEmpty())? null : errors;

}

In Listing 15-11, validate() is called on the base class (ValidatorForm), which runs the

validations defined in validation.xml. The end result is an ActionErrors object, to which

we can add new error messages of our own. Notice the use of the second constructor of

ActionMessage (see Appendix B), in order to customize the error message with the common

word that was rejected in the validation.

Extending the Validator Framework

Instead of implementing validate() as in Listing 15-11, we could extend the Validator

framework. Do this sparingly. For the Registration webapp example, it would be overkill—

implementing validate() would suffice. However, in this subsection, I will extend the

Validator framework for the same functionality, simply so you can compare the two

approaches.

C H A P T E R 1 5 ■ T H E V A L I D A T O R F R A M E W O R K 211

So, in what situations would extending the Validator framework be appropriate? Actu-

ally, only when you can justify reuse of the custom validator. This usually means that the

custom validator checks a variable prevalent in your webapp’s problem domain.

Good examples are identifiers, like product codes, ISBN numbers, IP addresses, or zip

codes (or “postal codes” as they are known outside the United States). While these can be

validated using the standard mask validator, it may not always be easy to do so, especially

if you need to take care of exceptions to the rule (e.g., postal codes), or if the variable can

change format over time (e.g., IP addresses).

You’d be much better off extending the Validator framework than implementing the

validate() function because you obviously want to reuse the validations. A zip code field,

for example, could appear in more than one form, or be present in many different

webapps you might create.

Creating a new validator is easy:

1. Implement the Java handler class that actually performs the validation.

2. Optionally create JavaScript for form validation. I won’t cover this topic in this

book.

3. Declare the new handler in validator-rules.xml with the <validator> tag.

Implementing the Java Handler

This is the trickiest part of the whole process of creating a custom validator. Most of the

complexity arises because you must handle the possibility of nested and indexed proper-

ties and because you have to use helper classes (Resources, GenericValidator, etc.) to read

the information you need to validate an input datum or to reuse validations available in

the Validator framework.

Your Java handler can be any Java object, as long as the following conditions are met:

• It implements java.io.Serializable.

• The function performing the custom validation has public access. It must also be a

static function that returns a boolean, which is false if validation fails and true

otherwise.

You can call this function anything you like. The standard method signature is shown in

Listing 15-12.

212 C H A P T E R 1 5 ■ T H E V A L I D AT O R F R A M E W O R K

Listing 15-12. Standard Signature for the Custom Validation Function

public static boolean

myValidationFunction(Object bean, ValidatorAction va,

 Field field, ActionMessages errors,

 Validator validator, HttpServletRequest request){

The function’s six arguments are the following parameters:

• java.lang.Object: This can be a String or a JavaBean-conformant object. It holds

the value(s) to be validated. If it’s a JavaBean, the value to be validated resides on

one of the bean’s properties. Your validation function will have to handle each of

these possibilities.

• org.apache.commons.validator.ValidatorAction: This class contains information

declared within the <validator>. You’ll probably never call functions on this class,

but an initialized instance of it is needed when you want to load pooled error messages

saved in Struts’ Resource class. Without such an instance, you’d have to resort to calling

a new ActionMessage(...) each time you wanted to create an error message, which

isn’t efficient.

• org.apache.commons.validator.Field: This contains data pertaining to the field

being validated. With this instance, you can find out the name of the property being

validated and any other information contained in the <field> tag.

• ActionMessages: This is simply a container for you to place your error messages.

Struts manages the creation of ActionMessages objects, enabling these objects to be

pooled for efficiency.

• org.apache.commons.validator.Validator: This is an instance of the Validator

framework itself, which you can use to read other fields in the <form>. You might

need to use this to perform field-dependent validations (as is the case with validwhen).

Like ValidatorAction, an instance is needed to load pooled ActionMessage instances

for efficiency.

• HttpServletRequest: This is the request object associated with the current request.

■Note You can actually use any subset of these six parameters, in any order! The Validator framework will

resolve the correct function at runtime, based on your declaration in the <validator> tag for this validation.

However, keeping the function signature consistent makes maintenance that much easier.

A typical validation function will run through these steps:

C H A P T E R 1 5 ■ T H E V A L I D A T O R F R A M E W O R K 213

1. Determine the value to be validated. You will use the helper class org.apache.

commons.validator.ValidatorUtils to do this.

2. Collect information about the environment (such as the values of other fields on

the form), if necessary. You might do this with the Field, ValidatorAction, and

Validator instances sent in the function’s argument list.

3. Run the custom validation. Knowledge of the functions on

org.apache.commons.validator.GenericValidator is helpful, since it contains

many useful validations you can reuse.

4. Locate a suitable ActionMessage instance (instead of calling new), and place this

instance on the given ActionMessages object. Use the helper class, org.apache.

struts.validator.Resources, to do this.

Listing 15-13 shows a simple validation—ensuring the given data is alphanumeric.

Listing 15-13. Java Handler to Validate Alphanumeric Strings

package com.mycompany.myapp.struts.validator;

import java.io.Serializable;

import org.apache.commons.validator.ValidatorAction;

import org.apache.commons.validator.Field;

import org.apache.commons.validator.Validator;

import org.apache.struts.action.ActionMessages;

import javax.servlet.http.HttpServletRequest;

import org.apache.commons.validator.util.ValidatorUtils;

import org.apache.commons.validator.GenericValidator;

import org.apache.struts.validator.Resources;

public class MyValidations implements Serializable{

 public static boolean isAlphanumeric(Object bean,

 ValidatorAction va,

 Field field,

 ActionMessages errors,

 Validator validator,

 HttpServletRequest request){

214 C H A P T E R 1 5 ■ T H E V A L I D AT O R F R A M E W O R K

 //step 1: Determine value

 String value = null;

 if(String.class.isInstance(bean)){

 value = (String) bean;

 }else{

 value = ValidatorUtils.getValueAsString(bean,

 field.getProperty());

 }

 //step 2: Collect info about the environment

 /* -------- not needed --------- */

 //step 3: Run the custom validation

 try{

 if(!(GenericValidator.isBlankOrNull(value) ||

 GenericValidator.matchRegexp(value, "^[a-zA-Z0-9]$"))){

 errors.add(field.getKey(),

 /**

 * step 4: Locate a suitable ActionMessage

 * instance.

 */

 Resources.getActionMessage(validator,

 request,

 va,

 field));

 return false;

 }

 }catch(Exception ignore){}

 return true;

 }

}

A systematic and detailed exposition of the Apache Commons Validator classes is

beyond the scope of this book. In most cases, however, the following information will

prove useful:

C H A P T E R 1 5 ■ T H E V A L I D A T O R F R A M E W O R K 215

• field.getProperty() gives the property of the field being validated.

• field.getKey() gives the error message associated with this validator.

• ValidatorUtils.getValueAsString(bean, property) reads the simple/nested/

indexed property of the given bean.

• GenericValidator.isBlankOrNull(value) returns true if the value is blank or null.

• GenericValidator has many other functions you might find useful, like

matchRegexp(value,regexp), which returns true if the value matches the given

regular expression.

• The Struts class org.apache.struts.validator.FieldChecks is the Java handler

class corresponding to every one of the Validator framework standard validators.

Armed with the information from this section, you should be well equipped to pursue the

topic further by reading the Commons Validator source code, as well as FieldChecks from

Struts.

■Note To compile your code, you will need commons-validator.jar, commons-beanutils.jar,

servlet-apis.jar, and struts.jar on your classpath. These files are in the Struts distribution.

The last step is to declare your validator in validator-rules.xml. Listing 15-14 shows

how this would look in the case of alphanumeric validation.

Listing 15-14. Declaring the Alphanumeric Validator

<form-validation>

 <global>

 <validator name="alphanumeric"

 classname="com.mycompany.myapp.struts.validator.MyValidations"

 method="isAlphanumeric"

 methodParams="java.lang.Object,

 org.apache.commons.validator.ValidatorAction,

 org.apache.commons.validator.Field,

 org.apache.struts.action.ActionMessages,

 javax.servlet.http.HttpServletRequest"

 msg="errors.alphanumeric"/>

 // ... other <validator> declarations

216 C H A P T E R 1 5 ■ T H E V A L I D AT O R F R A M E W O R K

The name of the validator is what it will be called in your validation.xml file. The

classname attribute corresponds to the class containing the validation function. The

method attribute is the actual method used for this validator. The methodParams attribute

declares the method signature of the validation function.

The msg parameter defines a default error message key that the user has to implement

in the Application.properties file. It is preferable, however, to override this default

message key and specify your own, as I’ve done in Listing 15-4.

You may add a depends attribute to your <validator> declaration. This functions just

like depends on your <field> tags: the comma-delimited list of validators are fired before

your custom validation is called. For example, in Listing 15-15 I’ve amended Listing 15-14

slightly.

Listing 15-15. Using depends in the Alphanumeric Validator

<validator name="alphanumeric"

 classname="com.mycompany.myapp.struts.validator.MyValidations"

 method="isAlphanumeric"

 methodParams="java.lang.Object,

 org.apache.commons.validator.ValidatorAction,

 org.apache.commons.validator.Field,

 org.apache.struts.action.ActionMessages,

 javax.servlet.http.HttpServletRequest"

 msg="errors.alphanumeric"

 depends="required"/>

 // ... other <validator> declarations

The amended validator of Listing 15-15 would fail if the user entered a blank value,

since it depends on the required validator.

Migrating Legacy Code

As your webapp grows, creating and maintaining individual validate() functions

containing mainly generic validations can be a challenge. As I’ve discussed in the intro-

duction to this chapter, using the Validator framework brings many benefits, so migrating

your legacy code to the Validator framework might be something you’d want to do. Fortu-

nately, this is a simple three-step process:

1. Change the base class from ActionForm to ValidatorForm.

2. Comment out the old validate() function on the legacy code. This makes it easy

for you to “roll back” to the old validations if you detect a bug in the new

validations.

C H A P T E R 1 5 ■ T H E V A L I D A T O R F R A M E W O R K 217

3. As usual, declare the required validations in validation.xml. If not all validations

can be moved to the Validator framework, use the two techniques described earlier

to accommodate these special cases.

It’s wisest to do migrate incrementally, and use a unit-testing framework (see “Useful

Links”) to test the changes.

Localizing Validations

In some situations, you might need to localize your validations. It’s rare to want to do this,

and in most scenarios where you might want to do so (such as checking for zip codes), the

validation can be misleading. I’ve discussed the pitfalls of localizing validations in

Chapter 12, and given you a couple of useful hacks to help you do this if you need to.

The Validator framework does provide support for localizing validations, but the solu-

tion is a poor one. I should hasten to add that this isn’t a great failing since you should

think twice (or three times!) before deciding to localize any validation.

■Caution Do not confuse localizing validations with localizing output (e.g., error messages). The Validator

framework provides good support for localizing error messages through the use of keys/value pairs on

Application.properties.

Recall that the <formset> tag is a containing tag for all your declared validations. In

order to create validations specific to a locale, you’d have to put in a new <formset> in the

root containing the <form-validation> tag.

This new <formset> tag would contain all necessary validations for the new locale

(refer to Chapter 12 for a discussion on locales). Notice the emphasis on “all”—there’s no

way for you to selectively override the validations for just a few fields; you’d have to

specify the validations for every field again in the new <formset>.

The <formset> tag accepts three optional properties that you can use to specify a locale:

• language: This is a ISO-639 identifier for a language. Examples are en for English or

zh for Chinese.

• country: This is an ISO-3166 identifier for a country. For example, the code US refers

to the United States.

• variant: This is a variant on a given language/country combination. The user

usually can’t set this within the web browser.

If all these attributes are left unspecified, the <formset> element is taken to be the default one.

218 C H A P T E R 1 5 ■ T H E V A L I D AT O R F R A M E W O R K

The big disadvantage of using <formset> for localizing validations is that you can’t

“override” the validations of just a few fields. So, if you really, really need to localize your

validations, I’d recommend either one of the two hacks I presented in Chapter 12.

Lab 15: Using the Validator Framework in

LILLDEP

In Lab 6, you hand-coded various validations for ContactForm. In this lab session, you’ll

migrate ContactForm to using the Validator framework.

1. Put in the plug-in section for the Validator in struts-config.xml. Use the name

default name validation.xml for your validation set.

2. Change the base class of ContactForm to

org.apache.struts.validator.ValidatorForm.

3. Comment out the existing validate() function.

4. Complete validation.xml in ./web/WEB-INF. Declare all the validations you imple-

mented in Lab 6. If you completed Lab 10b, you would also need to amend the

relevant JSPs.

5. Compile, deploy, and test your changes.

Useful Links

• RFC-2822 for email: http://rfc.net/rfc2822.html

• Struts’ Validator page: http://struts.apache.org/struts-doc-1.2.x/userGuide/

dev_validator.html

• The Commons Validator framework project: http://jakarta.apache.org/commons/

validator/

• A Regular Expressions tutorial: http://www.regular-expressions.info/

tutorial.html

• Some information on unit testing (also the homepage of JUnit, the Java unit testing

framework): www.junit.org

C H A P T E R 1 5 ■ T H E V A L I D A T O R F R A M E W O R K 219

• ISO-639 language codes: http://en.wikipedia.org/wiki/ISO_639

• ISO 3166 country codes: http://en.wikipedia.org/wiki/ISO_3166

Summary

• The Validator framework brings many benefits by simplifying the creation and

maintenance of your webapp’s validations.

• You may extend the Validator framework either by implementing your own

validate() function or by creating a new validator.

221

■ ■ ■

C H A P T E R 1 6

Dynamic Forms

Every time you need a new form for user input, you usually have to write a new ActionForm

subclass. This can get tedious quickly, especially if your form has many getter and setter

functions. (I hope you had a taste of how bad it can get in Lab 6, where you had to implement

ContactActionForm, with 14 getters and setters.)

In previous chapters, I’ve shown you how to alleviate these problems a little by reusing

forms (Lab 9a) or by using nested properties (Lab 10a) to avoid writing superfluous getter

and setter functions in your ActionForm subclasses.

But these get you only so far. Dynamic forms, the subject of this chapter, are a way to elim-

inate writing Java code entirely. Instead, you declare additional XML in struts-config.xml for

each form you want to create. The XML involved is an extension to the usual <form-bean>

declaration you’re familiar with: you add <form-property> tags for each property in the form.

Like everything else in life, there are advantages as well as disadvantages to using

dynamic forms. The primary advantage is, of course, that you don’t have to declare getters

and setters for your form. This can be quite a big plus if your application requires a lot of

forms. However, as you’ll see later, dynamic forms also have a number of important

shortcomings.

Toward the end of this chapter, we’ll also look at a couple of recent additions to

Struts (since Struts 1.2.6) that take the dynamic forms idea to the extreme. Using

LazyValidatorForm, you don’t even have to declare the properties in your forms!

We won’t be done with dynamic forms in this chapter. In Chapter 19, I’ll show you

how to implement a plug-in that makes interesting extensions to dynamic forms.

Declaring Dynamic Forms

To create a dynamic form, you need only to declare it in your struts-config.xml file.

Declaring a dynamic form is easy: in your <form-bean> declaration of the form, put in extra

<form-property> tags for each property on the form.

You can declare simple, indexed, mapped, or nested properties this way (see Chapter 10).

Listing 16-1 shows how you might declare a form bean with a simple (String), indexed

(array), and mapped property (using a HashMap).

222 C H A P T E R 1 6 ■ D Y N A M I C F O R M S

Listing 16-1. Declaring a Dynamic Form

<form-bean name="MyFormBean"

 type="org.apache.struts.action.DynaActionForm">

 <!-- declaring a simple property -->

 <form-property name="MySimpleProp"

 type="java.lang.String"

 initial="Hello" />

 <!-- declaring another simple property -->

 <form-property name="MySimpleIntProp"

 type="int" />

 <!-- declaring an indexed property -->

 <form-property name="MyIndexedProp"

 type="java.lang.String[]"

 size="314" />

 <!-- declaring a mapped property -->

 <form-property name="MyMappedProp"

 type="java.util.HashMap" />

 <!-- declaring a nested property -->

 <form-property name="MyNestedProp"

 type="com.myco.myapp.MyBean" />

</form-bean>

The first thing to note is that the type attribute must be either org.apache.struts.

action.DynaActionForm (itself a subclass of ActionForm) or your subclass of DynaActionForm.

To put it another way, Struts disregards a <form-bean>’s <form-property> tags unless

the ActionForm subclass indicated by the type attribute is also a subclass of

DynaActionForm. For Struts versions later than 1.2.6, this is not strictly true. See the note

for details.

■Note In versions of Struts later than 1.2.6, if the class indicated by the type attribute is of type

BeanValidatorForm or a subclass of it (like LazyValidatorForm), then the <form-property> tags

are read as well. I’ll describe both of these interesting new additions toward the end of this chapter.

C H A P T E R 1 6 ■ D Y N A M I C F O R M S 223

Declaring Simple Properties

From Listing 16-1, you can easily see that simple properties can either be supported Java

classes or primitive types. Java classes and primitive types supported by DynaActionForm are

• java.lang.BigDecimal

• java.lang.BigInteger

• boolean and java.lang.Boolean

• byte and java.lang.Byte

• char and java.lang.Character

• java.lang.Class

• double and java.lang.Double

• float and java.lang.Float

• int and java.lang.Integer

• long and java.lang.Long

• short and java.lang.Short

• java.lang.String

• java.sql.Date

• java.sql.Time

• java.sql.Timestamp

 (This list is available on the Struts documentation site. Refer to “Useful Links” at the end

of this chapter.) You may optionally specify a default value for the simple property using

the initial attribute. For example, in Listing 16-1, the default value for the simple property

MySimpleProp is Hello.

Declaring Indexed Properties

To create an indexed property, simply put [] after the classname (or primitive type).

You also need to specify a size for the array. If you need flexible length arrays, there are

two ways to do it.

224 C H A P T E R 1 6 ■ D Y N A M I C F O R M S

In the first method, you omit the size attribute. Since the size isn’t specified, a newly

created form bean will have a null value for this indexed property. So, you have to “prime”

the form bean (a DynaActionForm instance) in an Action subclass before it can be used to

store data. You’ve seen a variation of this technique in Chapter 10.

When a page is requested, it’s really a request to a form handler. This form handler (an

Action subclass) creates an array of the right type and length and inserts it into the form

bean. Only then is control passed to a JSP page, which populates the form. DynaActionForm

has a function called set(String propertyName,Object value), which you can use to prime

the form bean. Listing 16-2 illustrates this technique in action.

Listing 16-2. Setting Array Lengths at Runtime

public ActionForward execute(...){

 DynaActionForm dForm = (DynaActionForm) form;

 /* somehow get the needed array length */

 int length = ...;

 /* create the new array */

 String[] myProp = new String[length];

 /* insert array into form */

 dForm.set("MyIndexedProp", myProp);

 /* forward to JSP */

 return mapping.findForward("success");

}

The JSP page pointed to by success will be able to use the form’s MyIndexedProp property.

Needless to say, you need to use session scope for this to work.

The second method for flexible arrays is to use a class that implements the java.util.List

interface (e.g., ArrayList) as the <form-property>’s type:

<form-property name="MyIndexedProperty" type="java.util.ArrayList" />

Unfortunately, with this approach you lose Struts’s automatic type conversion, since all

data stored in the List are stored as String instances.

Declaring Mapped Properties

Mapped properties are defined by using a type that implements the java.util.Map interface

(e.g., HashMap):

<form-property name="MyMappedProperty" type="java.util.HashMap" />

C H A P T E R 1 6 ■ D Y N A M I C F O R M S 225

Declaring Nested Properties

Lastly, nested properties are defined using a type attribute, which is a JavaBean, assumed

to contain nested properties used in your JSPs:

<form-property name="MyNestedProperty" type="com.myco.myapp.MyBean" />

The only thing to note about nested properties is that you must ensure that the nested

property finally resolves to one of the supported primitive types or Java classes listed

earlier for simple properties. This should hardly come as a surprise, since this is what

you’d expect even with ordinary ActionForms.

Accessing Dynamic Properties

At some point, you will need to read (or write) data from your dynamic form. The

DynaActionForm base class exposes three getters corresponding to simple, indexed,

and mapped properties:

• get(String property) returns an Object value of the given property. This accessor

is for simple properties.

• get(String property,int index) returns an Object value of the given property with

the given index. This accessor is for indexed properties.

• get(String property,String key) returns an Object value for the given key on the

given property. This accessor is for mapped properties.

Similarly, there are set(String property, Object value), set(String property, int

index, Object value), and set(String property, String key, Object value).

If you’ve used a primitive type for a property, then the Object type in the return of get()

and the argument of set() would be the corresponding Java class for that primitive type.

For example, if you’ve declared a property of type int, then you should expect an Integer

to be returned from get() and you should pass an instance of Integer in set().

Transferring Properties to a JavaBean

In many instances, all you want to do with a dynamic form bean is to transfer the property

values into a JavaBean instance. This is often the case if:

• You’re using Struts as a web-based front-end to an existing application. The existing

application usually would already have JavaBean classes to hold data. You want to

transfer properties from your dynamic form to this JavaBean.

226 C H A P T E R 1 6 ■ D Y N A M I C F O R M S

• You want to transfer data into a data object. This is the case if you’re using a Model

framework like Torque or Lisptorq, which exposes data through data objects. See

Chapter 5 and Appendix A for details.

The Apache Commons’ Bean project (see “Useful Links”) provides a utility class to help

you to do this transfer easily. The following

org.apache.commons.bean.BeanUtils.copyProperties(myJavaBean , form)

will copy the properties of the DynaActionForm instance (form) into your JavaBean class

(myJavaBean).

Of course, only properties existing on myJavaBean will be copied over. The JAR file for

Apache Bean classes are bundled with Struts in commons-beanutils.jar.

Dynamic Form Disadvantages

Dynamic forms have a few significant limitations compared to ordinary ActionForms:

• You must use different syntax properties when using EL: If you’re using EL,

you have to prefix map to a form’s property. For example, instead of using ${myform.

myproperty}, you’d have to use ${myform.map.myproperty}. This applies to simple,

indexed, mapped, and nested properties. This is only necessary when referring to a

property using EL. No change would be necessary when referring to a property

within either the original or EL-enabled Struts tags. For example, <bean:write

name="myform" property="myproperty"/> would work fine.

• You can’t use conventional getters and setters: If you subclass DynaActionForm (in

order to run custom validations, for example), you can’t use conventional getters

and setters on your subclass and expect them to work with Struts tags. Struts handles

DynaActionForm and its subclass differently from normal ActionForms. This can be a

serious problem if you need to work directly with form data. The design philosophy

of dynamic forms assumes that you won’t have to work with their data directly.

Rather, you are expected to transfer the form’s properties to a suitable JavaBean,

using the BeanUtils technique described in the previous subsection.

• Compile-time checking is not possible: By using dynamic forms, you lose compile-

time checking. For example, because the return value of DynaActionForm’s get() are

all Objects, there’s no way to tell at compile time if you’ve assigned a return value to

the wrong type. This would not be a problem with conventional getters because

their return types are usually quite narrow (String or Double, etc.). A mismatch in

assignment would be caught by the Java compiler. A similar situation occurs for

setters as well.

C H A P T E R 1 6 ■ D Y N A M I C F O R M S 227

When to Use Dynamic Forms

So, when do you use dynamic forms? The Apache Struts User’s Guide (see “Useful Links”)

spells this out in detail:

DynaActionForms are meant as an easy solution to a common problem: Your ActionForms
use simple properties and standard validations, and you just pass these properties over to
another JavaBean...DynaActionForms are not a drop-in replacement for ActionForms...

The first sentence refers to the use of BeanUtils to transfer properties over to a JavaBean.

You’ve seen this in action in the previous subsection.

Using “standard validations” means using the Validator framework. This is recommended

because frequent accessing of form properties requires you to use DynaActionForm’s get()

functions, which is an error prone approach since you’ve lost compile-time checking of your

code. The get() function isn’t error prone, but your code might have bugs and there’s no

way to find this out at compile time. This problem just doesn’t exist when you use conven-

tional ActionForms, since the compiler does the check for you.

The second sentence refers to the fact that a dynamic form’s properties have a different

EL reference than the conventional ActionForm’s properties. This can be a brick wall if

you’re trying to replace regular ActionForms in an application that makes heavy use of EL.

Validating Dynamic Forms

Like ordinary ActionForms, there are two ways to validate data in a dynamic form:

• Implement a subclass of DynaActionForm with a validate() function.

• Use a subclass of DynaActionForm called org.apache.struts.validator.

DynaValidatorForm, which uses the Validator framework. (See Chapter 15

for details.)

As with ActionForms using the Validator framework, you can run your own custom valida-

tions on top of the DynaValidatorForm by simply subclassing it and calling super.validate()

in your subclass’s validate() function. I’ve described this technique in Chapter 15.

Used together with the Validator framework and BeanUtils, dynamic forms can

completely eliminate the need to write any Java code for a form bean. But before we go

into this, I’ll show you how the Registration webapp (see Chapter 5) might be implemented

using dynamic forms.

228 C H A P T E R 1 6 ■ D Y N A M I C F O R M S

The Registration Webapp with Dynamic Forms

In Chapter 5, I introduced the simple Registration webapp, which I expanded on in

Chapter 14. In this section, I’ll use a simple variation on the Registration webapp to show

you how you might use dynamic forms.

The Registration webapp consists of a single page. This page has one form containing

three fields: the user ID, the password, and the password retyped, as shown in Figure 16-1.

Figure 16-1. The Registration webapp main page

In Listing 16-3, I’ve reproduced the JSP code from Chapter 8 for your convenience.

Listing 16-3. registration.jsp

<%@ page contentType="text/html;charset=UTF-8" %>

<%@ taglib uri="/tags/struts-bean" prefix="bean" %>

<%@ taglib uri="/tags/struts-html" prefix="html" %>

<html:html>

<head>

 <title><bean:message key="registration.jsp.title"/></title>

</head>

<body>

 <h1><bean:message key="registration.jsp.heading"/></h1>

 <html:form action="Registration.do" focus="userid">

 <p>

 <bean:message key="registration.jsp.prompt.userid"/>

C H A P T E R 1 6 ■ D Y N A M I C F O R M S 229

 <html:text property="userid" size="20" />

 <html:errors property="userid" />

 </p><p>

 <bean:message key="registration.jsp.prompt.password"/>

 <html:password property="password" size="20" />

 <html:errors property="password" />

 </p><p>

 <bean:message key="registration.jsp.prompt.password2"/>

 <html:password property="password2" size="20" />

 </p>

 <html:submit>

 <bean:message key="registration.jsp.prompt.submit"/>

 </html:submit>

 <html:reset>

 <bean:message key="registration.jsp.prompt.reset"/>

 </html:reset>

 </html:form>

</body>

</html:html>

Notice that this is a straight copy of Listing 8-1. I didn’t have to make any changes to the

JSP in order to use dynamic forms. As I’ve discussed previously, this is because I haven’t

used EL in the tags.

Previously, in Chapter 6, I had to use an ActionForm subclass called RegistrationForm

(see Listing 6-1) in order to store and validate the form data. No longer! Since I’ll use

DynaValidatorForm and the Validator framework, I no longer need this class.

Listing 16-4 shows how to declare the dynamic form (the changes from Listing 6-1 are

in bold font).

Listing 16-4. struts-config.xml for the New Registration Webapp

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC

 "-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"

 "http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd">

<struts-config>

 <form-beans>

 <form-bean

 name="RegistrationForm"

 type="org.apache.struts.validator.DynaValidatorForm">

230 C H A P T E R 1 6 ■ D Y N A M I C F O R M S

 <form-property name="userId" type="java.lang.String" />

 <form-property name="password" type="java.lang.String" />

 <form-property name="password2" type="java.lang.String" />

 </form-bean>

 </form-beans>

 <global-exceptions>

 <exception key="reg.error.io-unknown"

 type="java.io.IOException"

 handler="net.thinksquared.registration.ErrorHandler"/>

 <exception key="reg.error.unknown"

 type="java.lang.Exception"

 path="/errors.jsp" />

 </global-exceptions>

 <global-forwards>

 <forward name="ioError" path="/errors.jsp"/>

 </global-forwards>

 <action-mappings>

 <action

 path="/Registration"

 type="net.thinksquared.registration.struts.RegistrationAction"

 name="RegistrationForm"

 scope="request"

 validate="true"

 input="/Registration.jsp">

 <forward name="success" path="/Success.jsp"/>

 </action>

 </action-mappings>

 <message-resources parameter="Application"/>

 <plug-in className="org.apache.struts.validator.ValidatorPlugIn" >

 <set-property property="pathnames"

 value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>

 </plug-in>

</struts-config>

C H A P T E R 1 6 ■ D Y N A M I C F O R M S 231

The declarations in validations.xml to perform simple validations are exactly as

you’ve just seen in Chapter 15 (see Listing 15-5).

I’ll also have to make changes to the RegistrationAction (see Chapter 7, Listing 7-3) in

order to correctly read data from the ActionForm passed into execute(). I’ve bolded the

changes in Listing 16-5.

Listing 16-5. The New RegistrationAction.java

package net.thinksquared.registration.struts;

import javax.servlet.http.*;

import org.apache.struts.action.*;

import net.thinksquared.registration.data.User;

public class RegistrationAction extends Action{

 public ActionForward execute(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response){

 //get userid and password (changed!)

 DynaActionForm dForm = (DynaActionForm) form;

 String userid = dForm.get("userid");

 String password = dForm.get("password");

 //complex validation: check if userid exists

 if(User.exists(userid)){

 ActionMessages errors = new ActionMessages();

 errors.add("userid",

 new ActionMessage("reg.error.userid.exists"));

 saveErrors(request,errors);

 //navigation: redisplay the user form.

 return new ActionForward(mapping.getInput());

 }else{

 //data transformation: save the userid and password

 //to database:

232 C H A P T E R 1 6 ■ D Y N A M I C F O R M S

 User user = new User();

 user.setUserId(userid);

 user.setPassword(password);

 user.save();

 //navigation: display "you're registered" page

 return new ActionForward(mapping.findForward("success"));

 }

 }

}

Only the section in bold font was changed. The other portions of RegistrationAction

are the same as in Listing 7-3.

See Ma, No Hands!: LazyValidatorForm

(Struts 1.2.6+)

Version 1.2.6 of Struts saw the introduction of a new type of dynamic form, called

LazyValidatorForm. As its name suggests, LazyValidatorForm uses the Validator framework

to run validations. You can subclass LazyValidatorForm and write your own validate() func-

tion if you want to.

The special thing about LazyValidatorForm is that you don’t have to declare any form

properties—not for simple, mapped, or indexed properties. For these properties,

LazyValidatorForm will automatically create the necessary simple, mapped, or indexed

property if none exists.

Of course, if you’re using a nested property, you’d have to declare it since there’s absolutely

no way for LazyValidatorForm to know which bean class to use for that property. The

declaration is the same as for conventional dynamic forms.

However, if you wish to declare a property (of any type), you may do so with the usual

<form-property> tag. There are three reasons why you might want to do this:

• You want to use a different implementation of Map or List that LazyValidatorForm

uses internally. You might do this for reasons of efficiency (your code is faster than

the implementations LazyValidatorForm uses) or for additional functionality that the

default implementations do not have (e.g., logging or debugging).

• You want to take advantage of automatic type casting. Data is always stored as String

instances unless you explicitly demand otherwise. In order for LazyValidatorForm

to know what type to cast a given property, you have to specify its type using

<form-property>. By the way, if you specify an array type, LazyValidatorForm will

automatically grow that array for you when the form is populated. Neat!

C H A P T E R 1 6 ■ D Y N A M I C F O R M S 233

• You don’t want to pass a null List to the Validator framework. If no values are passed

by the user for an indexed property, that property will have a value of null. This will

cause the Validator framework to throw an exception. The way around this is to declare

the indexed property using <form-property>. This tells LazyValidatorForm to create a

zero-length array or empty List of the type you’ve declared. This keeps the Validator

framework happy.

Listing 16-6 shows how Listing 16-1 would look like if you were using LazyValidatorForm.

Listing 16-6. Declaring a Dynamic Form with LazyValidatorForm

<form-bean name="MyFormBean"

 type="org.apache.struts.validator.LazyValidatorForm">

 <!-- declaring a simple property: The same as

 before since the initial value can't be deduced -->

 <form-property name="MySimpleProp"

 type="java.lang.String"

 initial="Hello" />

 <!-- declaring another simple property: Required

 since we want automatic type casting -->

 <form-property name="MySimpleIntProp"

 type="int" />

 <!-- declaring an indexed property: as above, but

 the size attibute is gone. -->

 <form-property name="MyIndexedProp"

 type="java.lang.String[]" />

 <!-- declaring a mapped property: Gone, because

 MyMappedProperty will be automatically created by

 LazyValidatorForm when the form data is submitted. -->

 <!-- declaring a nested property: The same as before. -->

 <form-property name="MyNestedProp"

 type="com.myco.myapp.MyBean" />

</form-bean>

Now, Listing 16-6 hasn’t changed much from Listing 16-1, but that’s usually not the

case. In many cases, automatic type casting isn’t necessary (as it is with LILLDEP’s

234 C H A P T E R 1 6 ■ D Y N A M I C F O R M S

ContactForm), and neither are initial values. In this case, Listing 16-7 shows how we can

pare down Listing 16-6.

Listing 16-7. Declaring a Dynamic Form with LazyValidatorForm, Take 2

<form-bean name="MyFormBean"

 type="org.apache.struts.validator.LazyValidatorForm">

 <!-- declaring a simple property: Gone! initial

 value not needed -->

 <!-- declaring another simple property: Gone! automatic

 type casting not needed -->

 <!-- declaring an indexed property: Gone! We're sure the

 array will be populated -->

 <!-- declaring a mapped property: Gone! because

 MyMappedProperty will be automatically created by

 LazyValidatorForm when the form data is submitted. -->

 <!-- declaring a nested property: The same as before. -->

 <form-property name="MyNestedProp"

 type="com.myco.myapp.MyBean" />

</form-bean>

As you can see, Listing 16-7 is much better. The declaration for the nested property

remains because that’s the only way to let LazyValidatorForm know which bean class to use.

Disadvantages of Using LazyValidatorForm

LazyValidatorForm has all the shortcomings of conventional dynamic forms, plus one more:

you’ve lost the “firewalling” property of conventional dynamic forms, as I’ll explain shortly.

If form data is submitted to Struts with more properties compared to the declared ones

(a larger array data or new properties), then Struts throws an exception. This doesn’t

happen with LazyValidatorForm. This means that a malicious user can craft an HTML

page filled with huge amounts of fake “data” and submit this to your webapp, and it will

be accepted. The problem may be serious if your code unthinkingly dumps this form data

directly into a database. If the data takes time to be processed, your webapp could slow

down. In an extreme scenario, your webapp could crash.

C H A P T E R 1 6 ■ D Y N A M I C F O R M S 235

This problem doesn’t happen with conventional dynamic forms because Struts knows

exactly what properties to expect, as well as the length of those properties—except perhaps

for List- or Map-backed properties, but you can avoid using them in the first place. With

LazyValidatorForm, you don’t have the option not to use these.

One way to mitigate this problem is to transfer data to JavaBean classes from a

LazyValidatorForm instance, using the BeanUtils technique described earlier. This way,

only legitimate data gets processed. Of course, this means that you can’t accept mapped

or List-backed indexed properties, since doing so would allow a malicious user to give

you huge lists of fake data.

The Hidden Power of BeanValidatorForm

(Struts 1.2.6+)

The base class of LazyValidatorForm is BeanValidatorForm, which also has interesting uses

of its own. This class is a base class of ValidatorForm, and therefore uses the Validator

framework for simple validation.

The interesting thing about BeanValidatorForm is that it accepts a JavaBean in its

constructor, automatically populating this JavaBean with the user’s form data. Since 1.2.6,

if the type attribute of the <form-bean> isn’t a subclass of ActionForm, the instantiated object is

automatically “wrapped” in an instance of BeanValidatorForm by Struts behind the scenes.

To see what this means practically, suppose you were to redo Lab 6 using

BeanValidatorForm implicitly. Instead of creating a ContactForm class, you’d first declare

the form bean as shown here:

<form-bean name="ContactFormBean"

 type="net.thinksquared.lilldep.database.Contact"/>

Note that the class referred to by type is not an ActionForm subclass. Struts (since 1.2.6)

will automatically instantiate the Contact and insert it into the constructor of

BeanValidatorForm. This is an ActionForm subclass, and will automatically populate the

fields of Contact.

To retrieve the Contact instance in your Action, you simply call

BeanValidatorForm bForm = (BeanValidatorForm) form;

Contact contact = (Contact) bForm.getInstance();

Easy! Of course, remember that this is only available in 1.2.6 and above.

236 C H A P T E R 1 6 ■ D Y N A M I C F O R M S

Lab 16: Deleting Selected Contacts in LILLDEP

In listing.jsp, we want to put in check boxes at the left of each contact listing, to allow

the user to select contacts for deletion. You will implement this functionality with dynamic

forms and <html:multibox>.

<html:multibox> is usually used with <logic:iterate> to render a check box at each

iteration, hence the name multibox. These check boxes are tied to an indexed property on

the form bean. For example:

<form-bean name="myForm"

 type="org.apache.struts.action.DynaActionForm">

 <form-property name="myArray" type="java.lang.String[]" />

</form-bean>

(This snippet uses a dynamic form, but you could also use a regular ActionForm.) The

corresponding <html:multibox> usage might be

<logic:iterate id="aBean" name="myBeans">

 <html:multibox property="myArray"

 value="<%=((MyBean)aBean).myValue() %>"/>

</logic:iterate>

The value attribute on the multibox is the actual value submitted by a check box of the

multibox. A value is stored only if the associated check box is selected.

Also notice that with <html:multibox>, there’s no need to use an explicit indexed property

(e.g., property="myArray[..]") in order to populate the form bean.

Armed with this background, complete the following steps in order to implement the

deleting functionality on the full listing page.

Step 1: Declare the SelectionForm Form Bean

SelectionFormBean is the form bean that will hold the IDs of the Contacts selected for deletion.

Declare this as a dynamic form. It should have a single array property called selected, of type

java.lang.String[].

C H A P T E R 1 6 ■ D Y N A M I C F O R M S 237

Step 2: Amend listing.jsp

listing.jsp needs to display the check boxes to choose Contacts for deletion:

1. Put an <html:form> tag into listing.jsp so that it submits to DeleteContacts.do.

2. Put in an <html:multibox> tag for input into SelectionFormBean. Use a scriptlet if

necessary. Extra credit if you use EL-enabled Struts tags to avoid using scriptlets.

Hint: The values submitted by the <html:multibox> should be the IDs of the

Contacts to be deleted.

Step 3: Create the Action to Delete Contacts

Complete the implementation of DeleteContactsAction, so that it deletes the selected

contacts. A couple of hints:

• Use get(String property, int index) to read values from the dynamic form.

• This function throws an IndexOutOfBoundsException if the index is larger than the

available list of items.

When you’re done, put in a new action mapping for DeleteContacts. success should lead

back to Listing.do (not listing.jsp!). As usual, compile, deploy, and test your work.

Useful Links

• List of supported types for DynaActionForm: http://struts.apache.org/

struts-doc-1.2.x/userGuide/building_controller.html

• LazyValidatorForm JavaDoc: http://struts.apache.org/struts-doc-1.2.7/api/

org/apache/struts/validator/LazyValidatorForm.html

• BeanValidatorForm JavaDoc: http://struts.apache.org/struts-doc-1.2.7/api/

org/apache/struts/validator/BeanValidatorForm.html

• Apache Commons’ BeanUtils project: http://jakarta.apache.org/commons/

beanutils/

238 C H A P T E R 1 6 ■ D Y N A M I C F O R M S

Summary

• Dynamic forms are a way for you to create form beans without any Java code.

• Dynamic forms work best when you have simple properties, validated with the

Validator framework. You are expected to transfer data to a JavaBean for processing.

• Dynamic forms may not be used in place of ActionForms in certain situations,

particularly when using EL.

• LazyValidatorForm is a new (1.2.6) addition to Struts that removes the need to even

declare properties in a form bean.

• Since 1.2.6, you can use a JavaBean as the type of a <form-bean>, and Struts will wrap

the bean in a BeanValidatorForm. This will automatically populate the bean’s data

for you.

239

■ ■ ■

C H A P T E R 1 7

Potpourri

A potpourri (pronounced poh-poo-ri) is a mix of spices and flower petals in a cloth bag,

valued for its pleasing aroma. This chapter is similarly a mix of useful Struts techniques,

which I hope will help your Struts apps “smell” that much better! In order of appearance

(and likelihood that you might find them useful), they are

• PropertyUtils: A way to read properties on JavaBeans in general, and ActionForms

in particular, without resorting to type conversions.

• DownloadAction: An Action subclass that simplifies downloading data to a web client.

This data might be dynamically generated by your webapp or a static file on the server.

• LocaleAction: Yet another way to allow users to switch locales.

• IncludeAction and ForwardAction: Help you to put a Struts front-end to legacy

servlets or JSPs.

• LookupDispatchAction: Allows you to have multiple actions on your HTML form

without using JavaScript.

• DispatchAction: A neat way to perform conditional processing in your Action,

based on the request URL.

• MappingDispatchAction: Helps you group related functionality in one Action.

• Global forwards: A second take on how to use global forwards effectively.

• Logging: Struts comes bundled with the Apache Commons Logging, which you can

use to perform logging.

• Wildcards: A useful trick to help cut down the declarations in a struts-config.xml file.

• Splitting up struts-config.xml: As a webapp grows, the need to split up

struts-config.xml increases. I’ll describe a couple of ways to do this.

240 C H A P T E R 1 7 ■ P O T P O U R R I

PropertyUtils

The Apache Commons Beans subproject has some very useful classes (you’ve met

BeanUtils in the previous chapter), among them the PropertyUtils class. This class

exposes static methods that help you read/write data from/to a JavaBean. The JAR file

(commons-beanutils.jar) comes bundled with the Struts binaries, so you can use

PropertyUtils right away in your Struts applications.

No type conversions are used, so you don’t have to know the class of the JavaBean at

design time. Instead, PropertyUtils uses Java’s introspection feature to accomplish its job.

■Note PropertyUtils actually delegates all its work to PropertyUtilsBean. This latter class does the

actual work of parsing the property and introspecting the JavaBean. PropertyUtils simply provides convenient

static access to PropertyUtilsBean’s functions (which are not static).

The most useful functions on PropertyUtils are

• boolean isReadable(Object bean, String property): Returns true if the given

property can be read on the bean, false otherwise. This implies the existence of an

appropriate getXXX function.

• boolean isWritable(Object bean, String property): Returns true if the given

property can be written to the bean, false otherwise. This implies the existence of

an appropriate setXXX function.

• Class getPropertyType(Object bean, String property): Returns the Class object

associated with the given property.

• Object getProperty(Object bean, String property): Returns the value of the given

property.

• setProperty(Object bean, String name, Object value): Writes the given value to

the bean.

These functions accept simple, indexed, mapped, nested, or even mixed properties

(a combination of the other types of properties). Each of these functions may throw

• IllegalAccessException: If the calling code cannot call the associated setXXX or

getXXX function, although it exists

• NoSuchMethodException: If the required property does not exist on the bean

C H A P T E R 1 7 ■ P O T P O U R R I 241

• InvocationTargetException: If the get/set function on the bean throws an Exception

• IllegalArgumentException: If either bean or property is null

Using PropertyUtils

This is all very good, but how can PropertyUtils be useful in Struts programming? Recall

that your ActionForm subclasses (including your DynaActionForm subclasses) are also

JavaBeans. In previous lab sessions, to read (or write) an ActionForm’s properties, we had

to perform type conversion, as shown in Listing 17-1.

Listing 17-1. Type Conversion Idiom to Read ActionForm Properties

public ActionForward execute(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response){

 //get userid and password

 RegistrationForm rForm = (RegistrationForm) form;

 String userid = rForm.getUserId();

 String password = rForm.getPassword();

 ...

Listing 17-1 shows an idiom I’ve used throughout this book. To read the properties in

an ActionForm subclass, you must do the following:

• Perform a type conversion.

• Read the form’s properties.

I’ve used this idiom primarily for the sake of clarity, since it simplifies the examples and

lab session code. You should think twice before using it in production code, if maintain-

ability is important to you. This is because there are two big downsides to using type

conversion as in Listing 17-1:

• No dynamic forms: You can’t easily replace the ActionForm with a dynamic form

equivalent. You’d have to amend the Action code. You’ve seen this in Chapter 16,

when I discussed dynamic forms, and I ported the Registration webapp to using

dynamic forms. Refer to Listing 16-5 to see how you’d have to amend Listing 17-1

in order to work with dynamic forms.

242 C H A P T E R 1 7 ■ P O T P O U R R I

• Tight coupling: It ties your Action class too rigidly to your ActionForm class, preventing

reuse of the Action with other ActionForms. For example, if you wanted to reuse the

Action of Listing 17-1, you’d have to ensure that all the ActionForms passed into its

execute() were of type RegistrationForm. In some scenarios, this constraint might

be too restrictive.

Instead of this approach, you can use PropertyUtils to circumvent both these draw-

backs. PropertyUtils lets you completely decouple your Action from a particular ActionForm

subclass (this includes dynamic forms).

Using PropertyUtils, Listing 17-1 would now look like Listing 17-2.

Listing 17-2. Using PropertyUtils to Read ActionForm Properties

import org.apache.commons.beanutils.PropertyUtils;

...

public ActionForward execute(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

throws Exception{

 //get userid and password

 String userid = PropertyUtils.getProperty(form,"userid");

 String password = PropertyUtils.getProperty(form,"password");

 ...

Using PropertyUtils as shown in Listing 17-2, replacing RegistrationActionForm with

an equivalent dynamic form would be much easier—you wouldn’t have to alter your

Action subclass code.

In a Nutshell...

One downside of using PropertyUtils is that like with dynamic beans, you lose compile-

time checking. You’ve essentially traded compile-time checking for looser coupling

between classes.

However, in most instances the advantages gained (looser coupling and the ability to

switch to dynamic forms later) well outweigh this loss.

So, unless you have a really good reason, use PropertyUtils to access form or bean

properties. Using it consistently makes your code much more maintainable in the long run.

C H A P T E R 1 7 ■ P O T P O U R R I 243

DownloadAction (Struts 1.2.6+)

You might occasionally be required to let users download data from your webapp. If it’s

just a static file, this is a nonissue—just put in a link to the file on a web page. However, it

is often the case that the data in question is produced on demand. In this case, you’ll have

to handle the downloading process yourself.

This isn’t difficult (you need to write a valid HTTP header and then place the data into

the HttpServletResponse object that comes with execute()), but it’s a little tedious. The

newly introduced (since 1.2.6) DownloadAction class simplifies this work. All you need to

supply are

• An InputStream containing the data to be downloaded.

• A “content type” string (e.g., text/html or image/png) that describes the data’s

format. For a list of content type strings, take a look at the “Useful Links” section.

DownloadAction has an inner static interface called StreamInfo:

public static interface StreamInfo {

 public abstract String getContentType();

 public abstract InputStream getInputStream() throws IOException;

}

that exposes the content type via getContentType(), and the InputStream through

getInputStream(). To use DownloadAction, you need to

• Implement StreamInfo.

• Expose it by subclassing DownloadAction and overriding its getStreamInfo() function.

• Put in a form handler (<action> tag) in the struts-config.xml file, associating your

DownloadAction subclass with a path. No <forward> element is necessary. (Can you

tell why?)

As a double bonus, DownloadAction comes with two inner classes, FileStreamInfo and

ResourceStreamInfo, both of which implement the StreamInfo interface.

You can use FileStreamInfo to allow downloading of a static file. The constructor for

FileStreamInfo is

public FileStreamInfo(String contentType, File file)

which is self-explanatory.

ResourceStreamInfo allows users to download a file within a webapp’s root directory:

public ResourceStreamInfo(String contentType,

 ServletContext context, String path)

244 C H A P T E R 1 7 ■ P O T P O U R R I

The ServletContext contains information about a webapp’s paths, among other things.

You can obtain an instance for your webapp from the HttpSession object:

ServletContext context = response.getSession().getServletContext();

So, all you need to specify are the content type and the relative path to the file to be

downloaded.

Of course, in most cases you might prefer to use HTML links instead of FileStreamInfo

or ResourceStreamInfo. You’ll find these classes useful if for some reason you can’t expose

a link to the file to be downloaded. Listing 17-3 shows an example of how you might

subclass DownloadAction, implementing StreamInfo using an anonymous class.

Listing 17-3. Extending DownloadAction

package com.myco.myapp.struts;

import java.io.*;

import javax.servlet.http.*;

import org.apache.struts.action.*;

import org.apache.struts.actions.DownloadAction;

public class MyDownloadAction extends DownloadAction{

 protected StreamInfo getStreamInfo(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

 throws Exception{

 /* Get InputStream somehow, as a result of processing request */

 InputStream input = ...;

 /* Similarly get content type */

 String contentType = ...;

 return new StreamInfo{

 public InputStream getInputStream(){ return input; }

 public String getContentType(){ return contentType; }

 }

 }

}

C H A P T E R 1 7 ■ P O T P O U R R I 245

You’ll have to create a form handler as well:

<action path="/MyFileDownloadHandler"

 form="MyDataForm"

 type="com.myco.myapp.struts.MyDownloadAction" />

The form bean (MyDataForm) is only necessary if you need to collect user input in order to

create the downloadable content. You don’t need a <forward> because the downloaded

content is the implicit “next” page.

Exactly what the user sees onscreen would depend on the browser. For example,

suppose your download handler delivers a PDF file. If the user clicks the link invoking the

handler, the browser might display the PDF file within the browser if there’s an Adobe

browser plug-in installed. If there isn’t a plug-in installed, he might navigate to a blank

page and get a download dialog box. The exact behavior would depend on the browser

involved.

If the user clicks Save As instead of opening the file, then no navigation to a “next” page

is performed. The user only gets a download dialog box. For this reason, you should mark

such links with the type of data that’s being downloaded so that the user can make the

appropriate choice (whether to click the link or Save As).

LocaleAction

Toward the end of Chapter 12, I mentioned that there’s another way to switch locales. The

way to do it is to use the Struts class, LocaleAction. Unlike the server-side solution I outlined

in Chapter 12, you don’t have to write any Java code in order to use LocaleAction.

Here’s what you need to do:

• Implement dynamic forms, one for each locale you want to allow users to switch to.

These forms must contain a language property representing the locale’s language

code (see Chapter 12). You must set the initial value of this property to the locale’s

language code (e.g., jp for Japanese, en for English). You may optionally specify a

country attribute for the locale’s country code (see Chapter 12). Again, the initial

value of the country property must be set to the country code (e.g., US).

• Put in a form handler (<action> tag) for each of these dynamic forms. The single

<forward> tag should be named success and must point to the page you want

displayed in the new language.

As an example, suppose we want to allow users to switch between English or Japanese.

The struts-config.xml file declarations are shown in Listing 17-4.

246 C H A P T E R 1 7 ■ P O T P O U R R I

Listing 17-4. Using LocaleAction

<form-beans>

 <form-bean name="English"

 type="org.apache.struts.action.DynaActionForm">

 <form-property name="language" type="String" initial="en" />

 <form-property name="country" type="String" initial="US" />

 </form-bean>

 <form-bean name="Japanese"

 type="org.apache.struts.action.DynaActionForm">

 <form-property name="language" type="String" initial="jp" />

 </form-bean>

 ... //other form beans

</form-beans>

<action-mappings>

 <action path="/ToEnglish"

 name="English"

 type="org.apache.struts.actions.LocaleAction">

 <forward name="success" path="/mystartpage.jsp" />

 </action>

 <action path="/ToJapanese"

 name="Japanese"

 type="org.apache.struts.actions.LocaleAction">

 <forward name="success" path="/mystartpage.jsp" />

 </action>

 ... //other form handlers

</action-mappings>

It goes without saying that mystartpage.jsp should be localized using Struts. The alter-

native is to use ordinary (but localized) HTML or JSP pages for the <forward>s.

C H A P T E R 1 7 ■ P O T P O U R R I 247

To allow users to switch locales, you’d have to put in <html:link>s (see Appendix C) to

the relevant form handler:

<html:link action="/ToJapanese">

 <bean:message key="prompt.to.japanese" />

</html:link>

<html:link action="/ToEnglish" >

 <bean:message key="prompt.to.english" />

</html:link>

LocaleAction makes the switch in locales for the user’s session, using the same technique

described in Chapter 12 (in the subsection “Switching Locales with a Link”).

IncludeAction and ForwardAction

One compelling reason to use Struts is that it provides a framework for validating user

input. This is good news if you have legacy code (business logic) in the form of servlets or

JSPs: it’s possible to include a Struts front-end to thoroughly validate user input before it

reaches the legacy code.

You can easily roll your own front-end solution, but Struts has one you can use imme-

diately. IncludeAction and ForwardAction make it easy to integrate Struts with legacy

servlets or JSPs.

You’d use them like any other Action, with the addition of a parameter attribute in the

<action> tag. This parameter attribute is a path pointing to the location of the servlet or JSP

that contains the business logic you want to invoke, once Struts has finished validating

user input.

For example, suppose your legacy code (a servlet) performs user login, and you want to

put a Struts front-end to run simple validations, as in Chapter 6, Listing 6-1 (the Registra-

tion webapp). The <action> declaration using IncludeAction and linking LoginForm (to hold

and validate user data) with a legacy servlet com.myco.myapp.MyLoginServlet would be

<action path="/Login"

 type="org.apache.struts.actions.IncludeAction"

 name="LoginForm"

 validate="true"

 input="/login.jsp"

 parameter="/WEB-INF/classes/com/myco/myapp/MyLoginServlet" />

Notice that just as with DownloadAction, you can’t specify a <forward> because the legacy

servlet is responsible for producing a “next” page. You can, however, specify exception

handlers.

248 C H A P T E R 1 7 ■ P O T P O U R R I

INTERNATIONALIZATION

Unfortunately, there’s no easy way for you to internationalize legacy applications with this technique

since you have little control over output of legacy code.

If your legacy code is well written, with business logic in servlets and view code in JSPs, then it’s

possible to migrate the legacy JSPs to using Struts tags and use IncludeAction or ForwardAction

to mediate between Struts and the legacy servlets. This assumes, of course, that the legacy code correctly

processes non-ASCII characters. This is often not the case, but if your target languages only use Latin-1,

then you might be lucky enough that they do.

The <action> declaration using ForwardAction is similar—you just replace org.apache.

struts.actions.IncludeAction with org.apache.struts.actions.ForwardAction.

This begs the question: what is the difference between the two?

IncludeAction performs a programmatic “include.” This means two things:

• The called legacy code cannot alter cookies or header information sent to the client.

The headers and cookies sent to the client are dictated by Struts. Preserving header

or cookie information is crucial in some scenarios—for example, when you’ve specified

the scope of a request with Struts.

• You may subclass IncludeAction to write content to the response object. Of course,

you need to call super.execute() at some point to ensure that the legacy code is

called. You can do this at any time, either before or after or in between writing

content to the response object.

ForwardAction performs a programmatic “forward,” meaning that total control over

the data sent to the client is passed to the legacy code. Struts cannot dictate the header or

cookie information, and you may not subclass ForwardAction in order to write data to the

client, like you could with IncludeAction. ForwardAction simply passes all control of the

response object to the legacy code.

In a Nutshell...

In most cases where you need to put a front-end to legacy code, you’d probably use

IncludeAction, since this gives you greater flexibility. It’s also useful since you can still

write data to the client after the legacy code has sent its output.

ForwardAction is the only way out when the legacy code needs to write header or cookie

information in order to work correctly (for example, if it needs to set the content type to

something other than text/html).

C H A P T E R 1 7 ■ P O T P O U R R I 249

LookupDispatchAction

You might sometimes want to put more than one submit button on a single form, each

instructing the server-side code to perform a different action with the submitted data.

One common technique to accomplish this is to use JavaScript to set the value of a

hidden field on the form, allowing the server-side processing code to tell which submit

button was clicked by the user.

As an example, consider the page that follows, which features two submit buttons

(Save and Update), a hidden field, and JavaScript to change the hidden field’s value

depending on which button was clicked:

<%@ page contentType="text/html;charset=UTF-8" %>

<%@ taglib uri="/tags/struts-html" prefix="html" %>

<html:html>

<head>

 <script language="JavaScript">

 function changeMode(formName, src){

 document.forms[formName].elements["mode"].value = src;

 }

 </script>

</head>

<body>

 <html:form action="MyFormHandler.do">

 //... other fields on the form, omitted

 <html:hidden property="mode" value="unknown"/>

 <html:submit value="Save"

 onclick="changeMode('MyFormBean','save')" />

 <html:submit value="Update"

 onclick="changeMode('MyFormBean','update')" />

 </html:form>

</body>

</html:html>

This homebrew approach has three drawbacks:

250 C H A P T E R 1 7 ■ P O T P O U R R I

• It won’t work if the user has switched off JavaScript.

• Each time you had two or more submit buttons, you’d have to duplicate server-side

code to dispatch processing according to the value of the <html:hidden> field.

You could create your own Action subclass to do this, but as you’ll see shortly, you’d

be reinventing the wheel, and a poorer one at that.

• Another irritation is that you’d have to paste or “include” or “import” the JavaScript

on each JSP that has this functionality. And you’d have to remember to put in the

hidden field and the onsubmit properties for each submit button.

Struts gives you a way to avoid all this unpleasantness. LookupDispatchAction allows

you to have multiple actions on your HTML form without having to code any JavaScript.

LookupDispatchAction does its magic by using the fact that when you use <html:submit>

with a property attribute, the text displayed on the submit button is passed as a parameter

in the URL when the form is submitted. The name of the parameter submitted is the value

of the property attribute. This is how LookupDispatchAction knows which submit button

was clicked on a form.

Using LookupDispatchAction is easy. We’ll consider the concrete example of having a

form with two submit buttons: Print to print the form data and Save to save the data.

The first thing you’ll do is implement the form (see Listing 17-5).

Listing 17-5. Constructing the Form

<html:form action="MyFormHandler.do">

 ... // form properties here

 <html:submit property="action">

 <bean:message key="myapp.submit.button.print" />

 </html:submit>

 <html:submit property="action">

 <bean:message key="myapp.submit.button.save" />

 </html:submit>

</html:form>

Perhaps the only surprising thing about Listing 17-5 is the use of the property attribute

in the <html:submit> buttons. These signal that Struts should pass the text of the submit

button (in this case, the value of either myapp.submit.button.print or myapp.submit.

button.save) as a parameter in the request URL, with the parameter name of action.

C H A P T E R 1 7 ■ P O T P O U R R I 251

For example, if the Print button was clicked, the request URL would be

http://..../MyFormHandler.do?action=Print

assuming, of course that the value of myapp.submit.button.print in the user’s currently

selected locale is Print.

■Note I’ve used property="action" in Listing 17-5, but you can use a different value.

LookupDispatchAction uses this information contained in the URL to tell which button

was clicked. In real life, there may be other parameters passed in the URL, so you need to

tell LookupDispatchAction which parameter name to use. This is done when you declare

the form handler, as shown in Listing 17-6.

Listing 17-6. Declaring the Form Handler

<action path="/MyFormHandler"

 type="myco.myapp.struts.MyLookupDispatchAction"

 parameter="action"

 ...

Listing 17-6 shows how to declare the form handler. The only additional information is

the parameter="action", which tells your LookupDispatchAction subclass that it should

use the parameter named action in the request URL to tell which submit button was clicked.

Lastly, you need to implement the LookupDispatchAction subclass, which processes the

“Print” and “Save” requests. You also have to implement the function getKeyMethodMap(),

which tells LookupDispatchAction which function to call when a particular submit button

is clicked, as Listing 17-7 shows.

Listing 17-7. Subclassing LookupDispatchAction

import org.apache.struts.actions.LookupDispatchAction;

...

public class MyLookupDispatchAction extends LookupDispatchAction{

 /**

 * Tells LookupDispatchAction which function to

 * use when a given "submit" button is clicked.

 *

 * NOTE: This function is called only once by the

 * base class's execute(), so there's no need to

 * save a copy of the returned map.

 **/

252 C H A P T E R 1 7 ■ P O T P O U R R I

 protected Map getKeyMethodMap(){

 Map m = new HashMap();

 m.put("myapp.submit.button.print","print");

 m.put("myapp.submit.button.save","save");

 return m;

 }

 public ActionForward print(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

 throws IOException, ServletException {

 //code to print here.

 //remember to return the "next" page.

 }

 public ActionForward save(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

 throws IOException, ServletException {

 //code to save here.

 //remember to return the "next" page.

 }

}

As you can see in Listing 17-7:

• getKeyMethodMap() returns a Map instance, which contains the message keys used

for each submit button’s text. This message key is associated with the name of the

function in your LookupDispatchAction subclass, which needs to be called. Note

that getKeyMethodMap() is called only once, so there’s no need to save a copy of the

returned Map instance. In fact, the base class automatically saves the returned instance

for you.

• There are functions, print() and save(), with the same signature as execute().

These do the work of printing and saving the submitted form data. Which function

is called depends on the submit button clicked by the user.

• There is no implementation of execute(), since we want to implicitly use the base

class’s execute() in order to call either print() or save().

C H A P T E R 1 7 ■ P O T P O U R R I 253

That’s all there is to using LookupDispatchAction, apart from a couple of loose strings:

• If the request URL contains no action parameter, then an Exception is thrown. Rather

than leave this to chance, you might find it expedient to trap such errors by imple-

menting a function called unspecified(), with the same signature as execute().

You should not declare this function in getKeyMethodMap().

• Some forms use a cancel button. You can implement this using <html:cancel> on

your form. You can handle a canceled form by implementing a function called

cancelled(), with the same signature as execute(). You should not declare this

function in getKeyMethodMap().

Using unspecified() and cancelled(), Listing 17-7 could be rewritten as shown in

Listing 17-8.

Listing 17-8. MyLookupDispatchAction with unspecified() and cancelled()

import org.apache.struts.actions.LookupDispatchAction;

...

public class MyLookupDispatchAction extends LookupDispatchAction{

 //no changes here

 protected Map getKeyMethodMap(){

 Map m = new HashMap();

 m.put("myapp.submit.button.print","print");

 m.put("myapp.submit.button.save","save");

 return m;

 }

 public ActionForward print(...)

 throws IOException, ServletException {

 //code to print here.

 }

 public ActionForward save(...)

 throws IOException, ServletException {

 //code to save here.

 }

254 C H A P T E R 1 7 ■ P O T P O U R R I

 public ActionForward unspecified(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

 throws IOException, ServletException {

 mapping.findForward("page-not-found");

 }

 public ActionForward cancelled(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

 throws IOException, ServletException {

 mapping.findForward("main-page");

 }

}

LookupDispatchAction is an elegant alternative to using hidden fields for handling

forms with multiple actions. It’s also a more robust alternative since it does not depend on

JavaScript being enabled on the client’s machine.

DispatchAction

As the name implies, DispatchAction is the base class of LookupDispatchAction, and it

performs method dispatching on a URL parameter.

The most common usage of DispatchAction is to call it from an HTML link, with the

parameters embedded in the link. As with LookupDispatchAction, dispatching is done

using the parameter name declared in the <action> tag using the parameter attribute:

<action path="/MyHandler"

 type="myco.myapp.struts.MyDispatchAction"

 parameter="command"

 ...

And again, for each possible value of the command parameter, there has to be a corre-

sponding function. The difference here with LookupDispatchAction is that there is no

getKeyMethodMap(). This is because the values of command in the URL must correspond

exactly with functions defined in the DispatchAction subclass.

As a concrete example, suppose command can take the value detailed or summary

(detailed or summarized versions of data for the user to view). The links might be

C H A P T E R 1 7 ■ P O T P O U R R I 255

View Details

View Summary

Your subclass of DispatchAction must implement the functions detailed() and summary(),

with the same signature as execute(). You should not override execute(), and you may

implement unspecified() and cancelled() if you wish, as Listing 17-9 shows.

Listing 17-9. MyDispatchAction

import org.apache.struts.actions.DispatchAction;

...

public class MyDispatchAction extends DispatchAction{

 public ActionForward detailed(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

 throws IOException, ServletException {

 //code for detailed view here.

 }

 public ActionForward summary(...)

 throws IOException, ServletException {

 //code for summarized view here.

 }

 public ActionForward unspecified(...)

 throws IOException, ServletException {

 mapping.findForward("page-not-found");

 }

}

MappingDispatchAction

This Action subclass helps you group related functionality in one Action. Like

LookupDispatchAction, MappingDispatchAction is also a DispatchAction subclass. Like the

former two classes, you also have to subclass the base class (MappingDispatchAction) in

order to use it.

256 C H A P T E R 1 7 ■ P O T P O U R R I

Unlike LookupDispatchAction or DispatchAction, MappingDispatchAction does not

dispatch on a request parameter. Instead, you declare form handlers with the same

MappingDispatchAction subclass to perform different actions.

As an example, suppose you wanted to group slightly different printing functionality in

your webapp: Print to PDF, Print to HTML, and Print to Text. The Action subclass handling

printing would be responsible for obtaining the necessary data and sending it off to

appropriate helper classes in order to print to the right format. In this scenario, it would

be unnatural to have the data be handled by three different Actions, since the code is

likely to be very similar. You’d want to have one PrintingAction with three functions, one

for each print format.

To do this, you declare three <action>s, one for each print format, as shown in

Listing 17-10.

Listing 17-10. Multiple Declarations for PrintingAction

<action path="/PrintToPDF"

 type="myco.myapp.struts.PrintingAction"

 parameter="pdf"

 ...

<action path="/PrintToHTML"

 type="myco.myapp.struts.PrintingAction"

 parameter="html"

 ...

<action path="/PrintToText"

 type="myco.myapp.struts.PrintingAction"

 parameter="text"

 ...

The parameter attributes in Listing 17-10 point to actual function names on

PrintingAction (see Listing 17-11).

Listing 17-11. PrintingAction

import org.apache.struts.actions.MappingDispatchAction;

...

public class PrintingAction extends MappingDispatchAction{

 public ActionForward pdf(ActionMapping mapping,

 ActionForm form,

 HttpServletRequest request,

 HttpServletResponse response)

 throws IOException, ServletException {

C H A P T E R 1 7 ■ P O T P O U R R I 257

 //code for printing to PDF here.

 }

 public ActionForward html(...)

 throws IOException, ServletException {

 //code for printing to HTML here.

 }

 public ActionForward text(...)

 throws IOException, ServletException {

 //code for printing to text here.

 }

 public ActionForward unspecified(...)

 throws IOException, ServletException {

 mapping.findForward("page-not-found");

 }

}

The signatures of pdf(), html(), text(), and unspecified() are the same for Action’s

execute().

■Note As with other DispatchActions, you do not override execute().

As you should know by now, unspecified() handles the case where the requested function

does not exist on PrintingAction. (Question: how can this happen?)

In a Nutshell...

As you might have noticed, MappingDispatchAction and DispatchAction are very similar.

Certainly, both dispatch according to the parameter on the URL. The difference is how

you use them:

• MappingDispatchAction: Use this when you want to define multiple form handlers

for the same Action.

• DispatchAction: Use this if for any reason you don’t want to define multiple form

handlers (e.g., to make struts-config.xml more manageable).

258 C H A P T E R 1 7 ■ P O T P O U R R I

In most cases, choosing between them is largely a matter of taste. My preference is to use

MappingDispatchAction throughout my apps because you can immediately tell what function-

ality is available on the associated Action, based on the declarations in struts-config.xml.

Using Global Forwards

In Chapter 9, I showed you how to declare global forwards. These forwards are accessible

anywhere within the struts-config.xml file, and from <html:link>s. The latter is where

global forwards come into their own.

Instead of hard-coding paths in your <html:link>s, you can use global forwards instead.

As an example, many webapps have common static navigational links. The LILLDEP

main page is a good example. There are a few navigational links: Full, MNC, Listing, Import,

and Collect. Instead of hard-coding these like

...

...

...

you should use

<html:link forward="listing">...

<html:link forward="import">...

...

and declare the global forwards as

<global-forwards>

 <forward name="listing" path="/Listing.do"/>

 <forward name="import" path="/import.jsp"/>

 ...

</global-forwards>

 The advantage with this approach is that should you move a JSP or HTML page from

one location to another, you don’t have to amend every link to that page. You only need to

change the global forward’s path. This greatly improves the maintainability of your webapp.

Logging

Struts uses the Apache Commons Logging interface for logging. This is a unified interface

to a number of logging systems.

C H A P T E R 1 7 ■ P O T P O U R R I 259

When it’s started, Commons Logging locates the best logging system for your installa-

tion (Log4j or the logging facilities of Java 1.4), and if neither is present, it uses the default

SimpleLog class.

■Note Log4j belongs to the Apache Logging subgroup. It is a very widely used open source logging system.

See “Useful Links” for a URL.

You create logger instances per class—that’s per class, not per instance of a class.

For example, in order to log messages in a particular Action subclass, use the code in

Listing 17-12.

Listing 17-12. Logging with Apache Commons Logging

import org.apache.commons.logging.Log;

import org.apache.commons.logging.LogFactory;

...

public class MyAction extends Action{

 private static Log log = LogFactory.getLog(MyAction.class);

 public ActionForward execute(...){

 try{

 //some processing code

 }catch(IOException ioe){

 //log the exception

 if(log.isErrorEnabled()){

 log.error("IO Exception occurred!",ioe);

 }

 }

 }

}

LogFactory is a helper class used to create a Log instance, given the Class object associated

with MyAction:

LogFactory.getLog(MyAction.class)

The returned value is a Log instance, which is a wrapper around the actual underlying

logging class (Log4j or the JDK 1.4 logger or SimpleLog). It has a number of functions you

can use to log different messages:

260 C H A P T E R 1 7 ■ P O T P O U R R I

• trace(): Used to log very detailed information

• debug(): Used to log a debugging message

• info(): Used to signal “interesting” events at runtime, like startup or shutdown

• warn(): Used to show that something just short of an error has occurred

• error(): Used to flag an exception thrown during processing

• fatal(): Used to signal a fatal error, causing premature system shutdown

Each of these functions has two forms. The first (using trace() as an example)

trace(Object message)

prints out the given message, while the second form

trace(Object message, Throwable ex)

allows you to print an exception in addition to a message. The actual message finally logged

depends on the underlying logging system used. Remember that Commons Logging is just

a wrapper around the logging systems that do the real work.

Each of the functions listed here also represents a priority level: “trace” has lowest

priority and “fatal” the highest. This priority system makes it possible to be selective about

what messages to log from which class or package.

For example, Log4j allows you to define (using a properties file) exactly what priority

messages are allowed to be logged by a given class or package, as shown in Listing 17-13.

Listing 17-13. Some Settings for Log4j

log4j.logger.com.myco.myapp=INFO

log4j.logger.com.myco.myapp.struts.database.Database=ERROR

The setting in Listing 17-13 means that the classes in the package com.myco.myapp are

allowed to log fatal, error, warn, and info messages, but not debug or trace ones. The

second line means that the Database class is only allowed to log fatal or error messages.

I’d like to stress that Listing 17-13 is merely illustrative, and does not apply to every

logging system but just to Log4j. Each underlying logging system will have to be configured

differently, and this cannot be controlled by Commons Logging. Commons Logging is

only a wrapper around some properly configured logging system.

You should look up the documentation for the logging system you’re using in order to

determine how to configure it. Commons Logging only buys you portability. It doesn’t

make setting up the logging system simpler.

Now, because some classes may be configured with logging priorities below a given

level, it makes sense to detect this first, before attempting a logging. This is mainly

C H A P T E R 1 7 ■ P O T P O U R R I 261

because a call to a logging function (trace(), debug(), etc.) usually involves creating extra

system resources. To avoid this unnecessary overhead, it’s best to test first if logging at the

desired level is allowed. The code:

if(log.isErrorEnabled()){

 log.error("IO Exception occurred!",ioe);

}

checks first that MyAction has logging clearance including and above error.

In a Nutshell...

Commons Logging is an easy-to-use, portable way for you to perform logging in your

Struts (or other) applications. Use it rather than a given logging solution directly.

Using Wildcards

Wildcards are a way to cut down repetition in your struts-config.xml, as long as your

webapp has some regular structure. For example, consider Listing 17-14, a variant of the

declared <action>s corresponding to the Full and MNC pages for LILLDEP.

Listing 17-14. A Variation on the LILLDEP Declarations for Full and MCN Page Handlers

<action path="/ContactFormHandler_full"

 type="net.thinksquared.lilldep.struts.ContactAction"

 name="ContactFormBean"

 scope="request"

 validate="true"

 input="/full.jsp">

 <forward name="success" path="/full.jsp"/>

</action>

<action path="/ContactFormHandler_mnc"

 type="net.thinksquared.lilldep.struts.ContactAction"

 name="ContactFormBean"

 scope="request"

 validate="true"

 input="/mnc.jsp">

 <forward name="success" path="/mnc.jsp"/>

</action>

262 C H A P T E R 1 7 ■ P O T P O U R R I

There’s an obvious repeated structure in Listing 17-14. Using wildcards you can cut

down the two declarations to just one, as shown in Listing 17-15.

Listing 17-15. LILLDEP Declarations Take 2

<action path="/ContactFormHandler_*"

 type="net.thinksquared.lilldep.struts.ContactAction"

 name="ContactFormBean"

 scope="request"

 validate="true"

 input="/{1}.jsp">

 <forward name="success" path="/{1}.jsp"/>

</action>

The * in the path is a wildcard that matches zero or more characters excluding the slash

(/) character. You’d use ** to include the slash. You must make this distinction because

the slash has a special meaning when used in paths (as you’ll see in the next subsection).

In Listing 17-15, I’ve used just one wildcard. It’s possible to use more than one;

for example:

<action path="/*FormHandler_*" ...

would match paths like ContactFormHandler_full or SearchFormHandler_mnc. You’d access

the matched strings using {1} and {2}. With ContactFormHandler_full, {1} would equal

Contact and {2} would equal full. In all, you are allowed nine wildcards.

■Note The {0} wildcard returns the full request URI.

If more than one <action> matches a request, then the last one declared in

struts-config.xml is used. There’s an exception to this rule: if an <action> contains no

wildcards and it matches a request, it is always used.

In a Nutshell...

When you name your <action>s, take the effort to name them with an eye to future wildcard

use. Don’t go overboard with wildcards, though, because they make your system less

manageable.

A good rule to follow is to use at most one wildcard per <action>.

C H A P T E R 1 7 ■ P O T P O U R R I 263

Splitting up struts-config.xml

As your project grows, and especially if you work in a team, you might find yourself

wishing that it were possible to break up struts- config.xml into several pieces. There

are a few reasons why you might want to do this:

• Manageability: As the config.xml file becomes too big, the control flow of your

webapp becomes less transparent. You’d want to break up struts-config.xml into

separate sections, each of which perhaps represents control flow of a limited portion of

the overall webapp.

• Separate namespaces: You have two or more teams working on different aspects of

the webapp, and you’d like these teams to work independently of each other. The

primary concern here is to give each team different namespaces. Distinct namespaces

would help avoid the problem of two teams creating two different form beans with

the same name.

• Source control: Some poorly designed source control systems allow only single

checkouts. If you’re working in a large team, this is potentially very restrictive, since

it’s likely that more than one person might want to edit struts-config.xml at the

same time.

The first way to split up struts-config.xml is to simply do just that. You can create

multiple struts-config.xml files (with different names, of course!) and instruct Struts that

they are to be regarded as one file. To do this, you have to edit web.xml, the servlet config-

uration file.

For example, suppose you had multiple configuration files: struts-config.xml,

struts-config-admin.xml, and struts-config-logon.xml. Listing 17-16 shows how you’d

declare them both in web.xml. All you need to do is to put a comma between each Struts

configuration file. Easy!

Listing 17-16. Declaring Multiple Struts Configuration Files in web.xml

<servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>

 org.apache.struts.action.ActionServlet

 </servlet-class>

 <init-param>

 <param-name>config</param-name>

264 C H A P T E R 1 7 ■ P O T P O U R R I

 <param-value>

 /WEB-INF/struts-config.xml,

 /WEB-INF/struts-config-admin.xml,

 /WEB-INF/struts-config-logon.xml

 </param-value>

 </init-param>

</servlet>

Now, this approach solves manageability and source control issues, but it does not

solve namespace problems because Struts will internally merge together all the declared

configuration files. So, although they appear as two or more files to you, they appear as

one to Struts.

There is a Struts feature called modules that allows you to split a Struts configuration

files into different modules. A module represents a logical split in your webapp. Each module

gets its own namespace, so this solves namespace issues. Using the previous example,

suppose we want to give each Struts config file separate namespaces: the default namespace

for items declared in struts-config.xml, the admin namespace for struts-config-admin.xml,

and the logon namespace for struts-config-logon.xml. The resulting declaration in

web.xml appears in Listing 17-17.

Listing 17-17. Declaring Multiple Submodules in web.xml

<servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>

 org.apache.struts.action.ActionServlet

 </servlet-class>

 <init-param>

 <!-- THE DEFAULT SUB-MODULE -->

 <param-name>config</param-name>

 <param-value>/WEB-INF/struts-config.xml</param-value>

 </init-param>

 <init-param>

 <!-- THE "ADMIN" SUB-MODULE -->

 <param-name>config/admin</param-name>

 <param-value>/WEB-INF/struts-config-admin.xml</param-value>

 </init-param>

 <init-param>

 <!-- THE "LOGIN" SUB-MODULE -->

 <param-name>config/logon</param-name>

 <param-value>/WEB-INF/struts-config-logon.xml</param-value>

 </init-param>

</servlet>

C H A P T E R 1 7 ■ P O T P O U R R I 265

With the declaration in Listing 17-17, we may declare two different form beans with the

same name in two different submodules. The same applies to <action>s, <forward>s, and

other configuration elements.

Access to <action>s and <forward>s would differ between submodules. For example,

suppose we had an <action> declared in the admin submodule:

<action path="Listing.do" ...

Then, you’d refer to it as /admin/Listing.do in your <html:link>s or <html:form>s.

■Note If you had the same <action> defined in the default submodule, then you’d use /Listing.do.

This brings up an important issue: in any well-designed application, you’re likely to

have shared declarations like shared global <forward>s or form beans. When you split

your app using multiple submodules, these are not shared between modules. To overcome

this problem, you should group together shared declarations in one Struts configuration

file.

For example, continuing our earlier example, let’s call this new file

struts-config-shared.xml. Listing 17-18 shows what you would do in order to share the

declarations in this file across submodules.

Listing 17-18. Using a Shared Struts Configuration File Across Submodules

<servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>

 org.apache.struts.action.ActionServlet

 </servlet-class>

 <init-param>

 <!-- THE DEFAULT SUB-MODULE -->

 <param-name>config</param-name>

 <param-value>

 /WEB-INF/struts-config-shared.xml,

 /WEB-INF/struts-config.xml

 </param-value>

 </init-param>

 <init-param>

 <!-- THE "ADMIN" SUB-MODULE -->

 <param-name>config/admin</param-name>

266 C H A P T E R 1 7 ■ P O T P O U R R I

 <param-value>

 /WEB-INF/struts-config-shared.xml,

 /WEB-INF/struts-config-admin.xml

 </param-value>

 </init-param>

 <init-param>

 <!-- THE "LOGIN" SUB-MODULE -->

 <param-name>config/logon</param-name>

 <param-value>/WEB-INF/struts-config-logon.xml</param-value>

 </init-param>

</servlet>

In Listing 17-18, I’ve shared struts-config-shared.xml across the default and admin

subapplications. This uses the same trick as the multiple configurations file technique

described earlier. You just have to separate the filenames with a comma.

In a Nutshell...

There are two ways to split up your Struts configuration file. Use the multiple files approach

if your concerns are only about manageability or source control. Use the multiple

submodules approach if you need separate namespaces as well.

In the latter, you can declare common form beans, actions, forwards, and so forth in a

single file and share them between submodules. This prevents duplication of declarations

while giving you separate namespaces.

Useful Links

• A compendium of commonly used content type (MIME types) strings: http://

www.utoronto.ca/webdocs/HTMLdocs/Book/Book-3ed/appb/mimetype.html

• Apache Commons Logging: http://jakarta.apache.org/commons/logging/

• Log4j: http://logging.apache.org/log4j/docs/

Summary

Struts provides a number of useful classes, features, and tricks to make writing webapps

easier. This chapter covers some of the ways you can take advantage of what’s available

rather than reinventing the wheel in your webapps.

267

■ ■ ■

C H A P T E R 1 8

Review Lab:
The Collection Facility

In this lab session, you’ll implement a facility to group together contacts into logical

collections. This is essentially a tool to classify and manage contacts within LILLDEP.

There are four parts in this Collection facility:

• The main Collect page displays a list of defined collections as links. When a link is

clicked, the user is given a listing of Contacts within that collection. The Collect page

also allows new collections to be defined. Users access this page through the Collect

navigation button (see Figure 18-1).

• The New Collection page prompts the user for a collection name, query, and memo.

This page results in a listing of the newly defined collection’s Contacts.

• The Collection Listing page lists the Contacts within a collection. It also allows the

user to add an arbitrary Contact from a full listing or click the company name to get

into the Collection Full Display page.

• The Collection Full Display page displays the Contact’s details, with Previous and

Next buttons to navigate up and down the collection.

There are two database tables used to store data for a single collection. The collection

table stores the collection’s name, memo, and autogenerated collection ID. The

collection_map table holds the Contact ID and collection ID as pairs.

268 C H A P T E R 1 8 ■ R E V I E W L A B : T H E C O L L E C T I O N F A C I L I T Y

■Note We’ll be using Lisptorq-generated Model classes to store and retrieve data from these tables, so be

sure to read Appendix A’s section on Lisptorq.

There’s quite a bit to implement, so we’ve broken down this lab into six subparts. The

source code answers for this lab (found in the Source Code section of the Apress website,

located at http://www.apress.com) are similarly divided into six parts.

Figure 18-1. The navigation button for the Collection facility

Lab 18a: The Main Collect Page

The main Collect page allows users to create, view, and edit collections. Figure 18-2 shows

this page with a couple of collections defined. This lab sets up the basic page, and subse-

quent labs implement the viewing and editing facilities.

1. Complete the implementation of CollectAction to prepare the list of collections to

be displayed. (Hint: You need to use the Criteria class to retrieve all Collection

data objects stored in the database.) Use an appropriate constant from JSPConstants

for an attribute name under which to store the list of Collection data objects.

2. Put in an action mapping so that a link to Collect.do displays the list of collections.

The success forward should point to collect.jsp.

3. Complete collect.jsp so that it displays the names of all defined collections.

(Hint: The Scroller interface extends Iterator, so you should be able to use

<logic:iterate> with it.)

4. Each collection listed by collect.jsp should have a delete link on its left linked to

DeleteCollection.do. This link should pass the collection’s ID as a parameter

called id.

C H A P T E R 1 8 ■ R E V I E W L A B : T H E C O L L E C T I O N F A C I L I T Y 269

5. Complete the implementation of DeleteCollectionAction so that it deletes the

selected collection. (Hint: Refer to Appendix B to see how to retrieve the value of

the id parameter from HttpServletRequest.)

6. Put in an action mapping so that DeleteCollection.do maps to

DeleteCollectionAction. success should forward to Collect.do (and not

collect.jsp).

Ensure that your work compiles before proceeding.

Figure 18-2. The main Collect page, showing some collections

Lab 18b: The New Collection Page

Each collection has a name by which it is known and a memo for holding the user’s notes.

In addition, a collection contains any number of Contacts. In order to bootstrap a collection,

the user needs to specify a SQL query:

• The queries are SQL-like—for example, postcode<>'' and email like'%mit%'

would fetch all contacts with nonblank postcodes and whose email addresses

contained the string mit.

• Each query results in a list of contacts matching the query string. The user may

subsequently add, remove, or edit contacts within the collection.

Figure 18-3 shows the New Collection page.

270 C H A P T E R 1 8 ■ R E V I E W L A B : T H E C O L L E C T I O N F A C I L I T Y

Figure 18-3. The New Collection page

Complete the following:

1. Put in a new dynamic form bean called NewCollectionFormBean, with the properties

name, query, and memo as Strings.

2. Put in validators (using the Validator framework) to check that the name and query

attributes are not blank. Check the message resource file for suitable error messages.

3. Complete the implementation of new-collection.jsp so that it asks the user for

the name, query, and memo property values. Remember to put in <html:error> tags so

that the user is warned if a validation fails.

4. Complete the implementation of NewCollectionAction to create a new collection.

(Hint: Use DynaActionForm’s generic get() to read property values. You also need to

know how to run an arbitrary SQL SELECT using a peer object.)

5. Put in an action mapping to create a new collection. success forwards to

list-collection.jsp.

C H A P T E R 1 8 ■ R E V I E W L A B : T H E C O L L E C T I O N F A C I L I T Y 271

6. Declare a local exception handler on the action mapping to pass to

new-collection.jsp if there’s an error. This is exactly the same as declaring a global

exception handler (see Chapter 9), except that the <exception> tag appears as a child

tag of <action>. Note that the <exception> tag has to come before any <forward> tags.

Lab 18c: The Collection Listing Page

You will now implement functionality to view the contacts in a collection. Figure 18-4

shows the Collection Listing page, after you’ve completed Lab 18d. First, you need to

enable listing the collection from the main Collect page:

1. On collect.jsp, make the collection’s name link to ListCollection.do, with the

collection’s ID as a parameter.

2. Put in an action mapping for ListCollection.do, linking it with ListCollectionAction.

success forwards to list-collection.jsp.

3. list-collection.jsp lists the contacts in a collection, but it needs a Scroller

to iterate through all the contacts. Complete the implementation of

ListCollectionAction so that the selected Collection is put on the session (see

JSPConstants for a suitable key), thus making it accessible to list-collection.jsp.

The reason for putting it on the session rather than the request will become obvious in

Labs 18d and 18f. Compile your work before proceeding.

4. NewCollectionAction also forwards to list-collection.jsp, so it also needs to put

the newly created Collection on the session. Use the same key as in step 3.

5. Complete list-collection.jsp so that it displays the list of Contacts on a Collection.

You should list exactly the same items as the Full Listing page (see Chapter 13).

Display the name of the collection prominently at the top of the page. (Hint: You

need to use Collection.getContacts().)

Compile, deploy, and test before proceeding. In particular, test that you can

• Create a new collection

• List a newly created collection

• Access the collection listing from the main Collect page

• Delete a collection from the main Collect page

272 C H A P T E R 1 8 ■ R E V I E W L A B : T H E C O L L E C T I O N F A C I L I T Y

Figure 18-4. The Collection Listing page

Lab 18d: Removing Selected Contacts

We want to add check boxes to the left of each contact’s name (see Figure 18-4) in the

collection listing (that is, list-collection.jsp), to allow the user to selectively remove

contacts from a collection. In Lab 16 we used a dynamic form with <html:multibox>. We’ll

use the same technique now.

One approach is to create a new form (perhaps a dynamic form, following Lab 16),

which holds the contacts to be removed from the collection, as well as the ID of the collection

on which to perform this action:

<form-bean name="RemoveSelectionFormBean"

 type="org.apache.struts.action.DynaActionForm">

 <form-property name="selected" type="java.lang.String[]" />

 <form-property name="collectionId" type="java.lang.String" />

</form-bean>

The latter might be stored as a hidden input field on the listing displayed to the user, while

the selected property is populated using the <html:multibox>, as before.

This simple technique has an obvious drawback if you’re worried about security, since

a malicious user could manually craft an HTML form that had a collection ID to which he

had no access privileges.

C H A P T E R 1 8 ■ R E V I E W L A B : T H E C O L L E C T I O N F A C I L I T Y 273

One simple way to prevent this is to store the collection ID on the session object

instead of exposing it on the form. This way, a malicious user would have to fake an active

session ID in order to gain access to a given collection. This is much more difficult than

reading the collection ID embedded in the page’s HTML.

■Note One bonus is that we can reuse SelectionFormBean from Lab 16.

We’ll use this approach here. In fact, we’ve had this technique in mind already—

remember that in Lab 18c, we asked you to store the Collection instance in the session

scope? Well, this is where that comes in handy. We can just use this object to determine

the currently selected Collection.

The drawback is that we have to ensure that all entry points to list-collection.jsp

must place the Collection onto the current session; otherwise, list-collection.jsp

will not display correctly. There are two such entry points—NewCollectionAction and

ListCollectionAction—and both have done this already in Lab 18c.

So, all we have to do is the actual work of removing contacts from a collection:

1. Complete RemoveCollectionContactsAction to remove selected contacts from

the given collection. You’ll need to interrogate the current session object for the

Collection you saved in the previous lab.

2. Put in an action mapping for a path RemoveCollectionContacts.do to link

RemoveCollectionContactsAction and SelectionForm (see Lab 16). Forward to

list-collection.jsp, so that the collection’s listing is redisplayed.

Lastly, you need to amend list-collection.jsp so that it allows the user to select and

submit contacts for removal:

1. Put in an <html:multibox> whose values are the IDs of the associated Contact.

2. Create an <html:form> that submits to RemoveCollectionContacts.do.

As usual, compile, deploy, and test your changes.

Lab 18e: Adding Selected Contacts

We need to allow the user to add selected contacts to a collection, while she is viewing the

collection’s listing (that is, list-collection.jsp). She does this by clicking Add Contacts

on the navbar at the top of the page (see Figure 18-4).

274 C H A P T E R 1 8 ■ R E V I E W L A B : T H E C O L L E C T I O N F A C I L I T Y

We want the Add Contacts link to display a list of all contacts (displayed by

select-contacts.jsp), with check boxes on the left of the company names. The user

selects the contacts she wants to add to the current collection and this information gets

sent to AddCollectionContacts.do. Figure 18-5 shows the Add Contacts page.

1. Create a new form handler called AddContacts that invokes ListingAction and

forwards to select-contacts.jsp.

2. Complete select-contacts.jsp so that it displays a list of Contacts (as in the Full

Listing page). The user is allowed to select any number of Contacts from this list to

add to the currently selected Collection. Use the <html:multibox> technique you

used in Lab 18d. Ensure that your form submits to AddCollectionContacts.do.

3. Complete the implementation for AddCollectionContactsAction so that it adds the

selected Contacts to the current Collection.

4. Put in an appropriate form handler to hook up AddCollectionContactsAction with

AddCollectionContacts.do. The form bean associated with AddCollectionContacts

is, of course, SelectionFormBean (see Lab 16). AddCollectionContacts should

forward to list-collection.jsp.

As usual, compile, deploy, and test your work before proceeding.

Figure 18-5. The Add Contacts page

C H A P T E R 1 8 ■ R E V I E W L A B : T H E C O L L E C T I O N F A C I L I T Y 275

Lab 18f: Up and Down a Search

From a collection’s listing page (list-search.jsp), we’d like to edit the contacts in a

collection, and navigate with Previous and Next buttons.

That is, we want the collection’s listings to be a list of links (as it was for the Full Listing

page in Chapter 13—see also Figure 18-4). If a link was clicked, the contact’s details would

be displayed. The user can move up and down the collection, viewing the details of each

contact using Next or Previous buttons at the top of the page. Figure 18-6 shows the Contact

Editing page. The user can at any point make changes to a contact’s details. Doing so

would cause the changes to be saved to the database, and the same contact’s details to be

redisplayed.

The main design challenge is accessing a given contact on the collection (when the

user clicks the link), then navigating forward/backward along the collection to display

other contacts for editing (when the user clicks Next or Previous).

Before reading further, give yourself a few minutes to think of solutions to these problems.

(Hint: You will have to look at the source for the Scroller interface.)

The first problem is easily solved, since the Scroller interface has an absolute() function

that allows us to go to the required contact on a collection, given the contact’s “offset” on

the collection.

■Note Scroller’s absolute() function is so named because concrete Scroller implementations

contain a java.sql.ResultSet instance, which also has an absolute() function. Scroller’s

absolute() function calls the underlying ResultSet’s absolute() function.

Also, <logic:iterate> exposes an index variable (using the attribute indexId; see

Chapter 10), which we can use to label the links on the listing. The absolute() function,

along with an offset may be used to navigate up and down the collection’s listing. As we

will see, this is simpler than it sounds!

We’ll use DispatchAction (see Chapter 17) here, so be sure you understand how it

works before proceeding. Complete the following:

1. Amend list-collection.jsp so that the company name is now a link, pointing to

CollectionNav.do&action=go, with a parameter called offset equal to the iterator’s

index, and a parameter called id for the contact’s ID.

2. Complete the implementation of CollectionNavAction so that if action=go, it

initializes the form (a ContactFormBean) with the Contact determined from the

given id parameter. Save the offset parameter on the session under a suitable key.

276 C H A P T E R 1 8 ■ R E V I E W L A B : T H E C O L L E C T I O N F A C I L I T Y

3. Put in an action mapping for the path CollectionNav.do, linking CollectionNavAction

and the form bean ContactFormBean. The forward should be to full-collection.jsp.

Remember to set the parameter attribute of the action mapping.

4. Complete the implementation of ContactUpdateAction to save the updated contact.

5. Put in an action mapping to handle submission of the form in full-collection.jsp.

Reuse ContactForm to hold the contact details. Remember to use session scope so

that the Contact will be redisplayed if Submit is clicked.

6. Amend CollectionNavAction to handle action=previous and action=next. These

obviously are commands to go up and down the Collection contact list. (Hint: Use

the offset saved in CollectionNavAction’s go() function. You can use this offset

and the absolute() function to navigate to the right contact.)

Compile, deploy, and test your amendments.

Figure 18-6. The Contact Editing page

Summary

I hope this review lab reinforces some of the concepts you’ve learned in the second part of

this book. I also hope you see how easy it is to incrementally build on an existing webapp

using Struts.

277

■ ■ ■

C H A P T E R 1 9

Developing Plug-ins

Plug-ins are a great way to extend the basic functionality of Struts. In previous chapters,

you’ve seen plug-ins at work—in Tiles and the Validator framework. In this chapter, I’ll walk

you through developing a nontrivial and useful plug-in called DynaForms. Essentially, the

DynaForms plug-in brings Tiles-like inheritance to dynamic form beans. I’ll explain in

more detail what this means shortly.

The inspiration for this idea comes from an excellent pair of articles: “Adding Spice to

Struts,” parts 1 and 2, by Samudra Gupta (see “Useful Links” at the end of this chapter).

Samudra’s solution to the problem of implementing an inheritance mechanism for dynamic

form beans involves subclassing fundamental Struts classes, primarily ActionServlet.

Unfortunately, as Samudra discusses in his article, his solution has a couple of downsides:

the inheritance declaration is a little kludgy and limited. If you’re interested in learning

more, look up these articles for details.

In this chapter, we’ll take a different route and, I hope, a more scenic one—meaning

you get to see more of how Struts works under the hood. We’ll create a plug-in that allows

developers to create form beans with inheritance in XML files outside of struts-config.xml.

In order for you to better follow the discussion, it would be helpful to have a copy of the

latest Struts sources handy (see “Useful Links” for the download site; I’ll be using release

1.2.7 in this chapter), and have them in a project within Eclipse (or a similar IDE). An IDE

like Eclipse (again, see “Useful Links”) is absolutely essential to easily trace function calls,

declarations, and class hierarchies. You can do it with Notepad, but it won’t be much fun.

The Task at Hand

Consider the hierarchy of entities shown in Figure 19-1 (a variation on the main example

in Samudra’s first article).

278 C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S

Figure 19-1. A simple hierarchy of entities

Both the Ship and Car entities contain properties from Vehicle. Now, suppose you

wanted to create dynamic form beans corresponding to each of these entities. How would

you do it? Listing 19-1 shows how.

Listing 19-1. Dynamic Form Bean Declaration for Entity Hierarchy

<form-bean name="Vehicle"

 type="org.apache.struts.action.DynaActionForm">

 <form-property name="class" type="java.lang.String"

 initial="Unknown Class"/>

 <form-property name="height" type="java.lang.Integer"

 initial="0"/>

 <form-property name="width" type="java.lang.Integer"

 initial="0"/>

</form-bean>

<form-bean name="Ship"

 type="org.apache.struts.action.DynaActionForm">

 <form-property name="class" type="java.lang.String"

 initial="Ship"/>

 <form-property name="height" type="java.lang.Integer"

 initial="1000"/>

 <form-property name="width" type="java.lang.Integer"

 initial="0"/>

 <form-property name="name" type="java.lang.String"/>

</form-bean>

C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S 279

<form-bean name="Car"

 type="org.apache.struts.action.DynaActionForm">

 <form-property name="class" type="java.lang.String"

 initial="Car"/>

 <form-property name="height" type="java.lang.Integer"

 initial="1000"/>

 <form-property name="width" type="java.lang.Integer"

 initial="0"/>

 <form-property name="make" type="java.lang.String"/>

 <form-property name="year" type="java.lang.Integer"/>

</form-bean>

There’s a lot of duplication in the declarations. This becomes much worse if there are

more “subentities” of Vehicle. Our goal is to allow Listing 19-1 to be simplified as shown

in Listing 19-2.

Listing 19-2. Using the extends Attribute

<form-bean name=".vehicle"

 type="org.apache.struts.action.DynaActionForm">

 <form-property name="class" type="java.lang.String"

 initial="Unknown Class"/>

 <form-property name="height" type="java.lang.Integer" initial="0"/>

 <form-property name="width" type="java.lang.Integer" initial="0"/>

</form-bean>

<form-bean name=".vehicle.ship" extends=".vehicle">

 <form-property name="class" initial="Ship"/>

 <form-property name="height" initial="1000"/>

 <form-property name="name" type="java.lang.String"/>

</form-bean>

<form-bean name=".vehicle.car" extends=".vehicle">

 <form-property name="class" initial="Car"/>

 <form-property name="make" type="java.lang.String"/>

 <form-property name="year" type="java.lang.Integer"/>

</form-bean>

Much better! As you can see, this really cuts down the code duplication. The extends

attribute functions like its counterpart in Tiles, where you could “extend” one Tiles definition

from another. Notice that I’ve used a dot naming system for the form names, similar to the

one used for Tiles.

280 C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S

We’ll want to have a few other things in the DynaForms plug-in:

• A “sub form bean” can override both the initial value or the type of a

<form-property>.

• DynaForms must place no restrictions on the class type of the form bean. You should

be able to declare any form bean with DynaForms.

• There should be a mechanism to prevent “ancestor” form beans, which are never

used in your struts-config.xml file, from being instantiated. This saves system

resources. To accomplish this, I’ll add another attribute called create into <form-bean>.

Setting create=false would suppress creation of that form bean. For example,

if we wanted to suppress creation of .vehicle in Listing 19-2, we’d use

<form-bean name=".vehicle" create="false"

In summary, apart from the extends and create attributes, the new form bean declara-

tions look just like the original Struts ones.

In addition, I’ll make one big simplification: the new form bean declarations won’t

support the <set-property> tag. Adding support for <set-property> is not too difficult.

You are encouraged to attempt this on your own at the end of the chapter.

Lastly, we can’t place our new form beans in struts-config.xml itself, since this will

require subclassing ActionServlet. Instead, we’ll have to place them in another XML file

(or in multiple XML files).

Now that the goals of the DynaForms plug-in are clear, the next step is deciding how to

achieve them.

Implementation Road Map

Essentially, the implementation of the DynaForms plug-in would have to

• Parse the input XML files (there might be more than one). So the plug-in declaration

will require at least a pathnames property, like the Validator framework, which is a

comma-separated list of filenames.

• Resolve the inherited properties of a form bean.

• Somehow get Struts to recognize these as if they had been declared in

struts-config.xml.

For the first, I’ll show you how to use the Apache Digester, which is an easy way to read

XML files. Digester is also used internally by Struts. The second step is relatively straight-

forward, but the last requires some knowledge of how Struts reads and declares form

beans. We’ll tackle this last step first.

C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S 281

How Struts Processes Form Beans
When Struts first loads, a single instance of ActionServlet is created, which handles all subse-

quent initialization of Struts, including reading of struts-config.xml. This class is internal to

Struts, but the servlet container knows about it since it is declared in web.xml. Listing 19-3

shows the declaration in web.xml. You can also see that the name of the Struts configuration

file, struts-config.xml, is passed as an initialization parameter into ActionServlet.

■Note In case it isn't clear by now, Listings 19-3, 19-4 and 19-5 are all excerpts from code generously

made available by the Apache Software Foundation. The Apache License is available at http://www.

apache.org/licenses/LICENSE-2.0.

Listing 19-3. Declaring the ActionServlet and struts-config.xml file in web.xml

<servlet>

 <servlet-name>action</servlet-name>

 <servlet-class>

 org.apache.struts.action.ActionServlet

 </servlet-class>

 <init-param>

 <param-name>config</param-name>

 <param-value>/WEB-INF/struts-config.xml</param-value>

 </init-param>

</servlet>

Once the ActionServlet instance is created, its init() function is called to initialize

Struts with the information contained in struts-config.xml. The relevant code that actually

reads struts-config.xml appears in Listing 19-4.

Listing 19-4. Initializing Struts in init()

public void init() throws ServletException {

 ...

 // Initialize modules as needed

 ModuleConfig moduleConfig = initModuleConfig("", config);

 initModuleMessageResources(moduleConfig);

 initModuleDataSources(moduleConfig);

 initModulePlugIns(moduleConfig);

 moduleConfig.freeze();

 ...

}

282 C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S

In Listing 19-4, you should note a few things:

• config refers to the filename of the Struts configuration file (/WEB-INF/

struts-config.xml by default).

• ModuleConfig is a class that holds all configuration information contained in

struts-config.xml. It has several variables, each of which holds information from

a different part of struts-config.xml. For example, form bean declarations are

held in a variable of ModuleConfig of type FormBeanConfig. Figure 19-2 shows how

form bean data is stored in ModuleConfig through the use of FormBeanConfig and

FormPropertyConfig.

• Form beans are read in at the function initModuleConfig().

• Plug-ins are processed in sequence by initModulePlugIns(). As you will see shortly,

all plug-ins will get a chance to interrogate and manipulate the ModuleConfig instance.

• The ModuleConfig instance is “frozen” after the struts-config.xml file is read.

No changes may be made to a ModuleConfig instance after it has been frozen.

Figure 19-2. ModuleConfig, FormBeanConfig, and FormPropertyConfig

C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S 283

A ModuleConfig instance is passed to our plug-in as soon as it is created. Our DynaForms

plug-in will have to create new FormBeanConfig instances based on the new XML form

bean declaration files and add them to ModuleConfig. Once this is accomplished, we’re done.

Well, almost! A quick check on initModuleConfig(), which creates a ModuleConfig

instance and initializes it with form bean information, shows that form beans whose type

are subclasses of DynaActionForm require special handling (see Listing 19-5).

Listing 19-5. Special Treatment for DynaActionForm Subclasses

protected ModuleConfig initModuleConfig(String prefix, String paths)

throws ServletException {

 /* create ModuleConfig instance, "config" */

 /* read form-bean data using Apache Digester */

 // Force creation and registration of DynaActionFormClass instances

 // for all dynamic form beans we will be using

 FormBeanConfig fbs[] = config.findFormBeanConfigs();

 for (int i = 0; i < fbs.length; i++) {

 if (fbs[i].getDynamic()) {

 fbs[i].getDynaActionFormClass();

 }

 }

 return config;

}

In Listing 19-5, config refers to the newly created ModuleConfig instance. As the listing

shows, once this instance has been filled with form bean information (held by FormBeanConfig

instances), each FormBeanConfig instance is interrogated (using getDynamic()) to see if it is

a subclass of DynaActionForm. If so, the function getDynaActionFormClass() is called on

that FormBeanConfig. All getDynaActionFormClass() does is initialize that DynaActionForm

subclass with the <form-property>s stored in FormBeanConfig.

We will have to duplicate this behavior in our DynaForms plug-in.

284 C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S

EXERCISE

Open ActionServlet in Eclipse (or some other IDE) and follow the function calls I’ve described in this

section. Also look at ModuleConfig and FormBeanConfig.

Your goal should be to satisfy yourself of the veracity of the statements I’ve made in this section.

Now that you have a global view of how form beans are read and stored, I’ll show you

how to create a plug-in.

Anatomy of a Plug-in

A plug-in must implement Struts’ PlugIn interface, which is shown in Listing 19-6.

Listing 19-6. The PlugIn Interface

/**

Licensed under the Apache License, Version 2.0 (the "License"); you may not use

this file except in compliance with the License. You may obtain a copy of the

License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed

under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR

CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations

under the License.

**/

package org.apache.struts.action;

import javax.servlet.ServletException;

import org.apache.struts.config.ModuleConfig;

public interface PlugIn {

 //called after the PlugIn has been initialized using

 //setters for each property

C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S 285

 void init(ActionServlet servlet, ModuleConfig config)

 throws ServletException;

 //called just before system shutdown

 void destroy();

}

This interface has just two functions:

• init() is called when the PlugIn instance is created. Note that this function receives

an instance of ModuleConfig.

• destroy() is called when Struts shuts down, to allow the plug-in to clean up any

system resources (release file handles, close database connections, etc.).

In addition to these two, your implementation of the PlugIn interface will have addi-

tional setters for each parameter that you want to pass into your plug-in class. These

parameters are set in struts-config.xml in the plug-in’s declaration. For example, the

declaration

<plug-in className="com.mycompany.myapp.MyPlugIn" >

 <set-property property="message" value="hello world"/>

</plug-in>

implies that MyPlugIn has a setMessage() function.

In the following section, I’ll introduce you to DynaFormsPlugIn.

Implementing DynaFormsPlugIn

Listing 19-7 is an implementation of the PlugIn interface for the DynaForms plug-in.

Listing 19-7. DynaFormsPlugIn.java

package net.thinksquared.struts.dynaforms;

import java.io.IOException;

import java.util.StringTokenizer;

import javax.servlet.ServletContext;

import javax.servlet.ServletException;

286 C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S

import org.apache.struts.action.PlugIn;

import org.apache.struts.action.ActionServlet;

import org.apache.struts.config.ModuleConfig;

public class DynaFormsPlugIn implements PlugIn{

 protected String _pathnames = "";

 public void setPathnames(String pathnames){

 _pathnames = pathnames;

 }

 public void init(ActionServlet servlet, ModuleConfig config)

 throws ServletException{

 ServletContext context = servlet.getServletContext();

 StringTokenizer tokenizer =

 new StringTokenizer(_pathnames,",");

 while(tokenizer.hasMoreTokens()){

 String fname =

 context.getRealPath(tokenizer.nextToken().trim());

 try{

 DynaFormsLoader loader =

 DynaFormsLoaderFactory.getLoader(fname);

 loader.load(fname,config);

 }catch(NoSuitableLoaderException le){

 throw new ServletException(le);

 }catch(IOException ioe){

 throw new ServletException(ioe);

 }catch(DefinitionsException de){

 throw new ServletException(de);

 }

 }

C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S 287

 }

 public void destroy(){/* do nothing */}

}

As you can see, DynaFormsPlugIn contains three functions: a setter for the pathnames

property, which is a comma-delimited list of filenames (see the section “Implementation

Road Map” earlier). These filenames refer to files that contain the form bean declarations.

The destroy() function has a “no-op” implementation (meaning it does nothing).

Most of the action is in the init() function. This function does the following:

• Gets a reference to ServletContext. This class is needed to resolve file paths. In our

case we have XML files containing form bean declarations, which we have to read.

The plug-in-declaration will only specify them relative to the webapp’s root directory,

for example, /WEB-INF/form-beans-def.xml. Obviously, this path isn’t enough.

To read the file, we need the full path to the file. This is where ServletContext comes in.

It has a getRealPath() function that resolves the full path of a given relative file path.

• Gets a DynaFormsLoader instance from the DynaFormsLoaderFactory. DynaFormsLoader

is actually an interface that we need to implement. This is good design: if you needed to

load form beans with your own DynaFormsLoader, you can. The DynaFormsLoaderFactory

determines which loader to use from the <form-beans>’s type attribute. You’ll see

how this is done shortly.

• The load() function on DynaFormsLoader does the actual work of reading the form

bean declarations and adding the necessary FormBeanConfig instances to ModuleConfig.

To summarize, the init() function parses the pathnames variable, using a comma

delimiter. Each file’s full path is determined using the ServletContext’s getRealPath()

function. This filename is passed to DynaFormsLoaderFactory, which gives us an instance

of DynaActionForm. We call load() on this instance to parse and load the form bean decla-

rations into ModuleConfig. The load() function will also resolve the extends properties of

each form bean, and run the special processing of DynaActionForms, described in the earlier

section “How Struts Processes Form Beans.”

Before we can proceed, you have to know how to read XML files with Apache’s Digester

framework. This easy-to-use framework is utilized extensively within Struts. The JAR files for

the Digester framework are in the Struts distribution (commons-digester.jar). This is another

good reason to use Digester rather than another XML parsing tool (like the excellent JDOM).

288 C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S

Reading XML with Apache’s Digester

Apache’s Digester framework gives you a simple way to read portions of an XML document.

The data that is read in is stored in JavaBeans that you supply to Digester.

Usually, you have to define one JavaBean class for each type of tag being read, but this

isn’t a requirement. You can have one JavaBean for more than one tag. But in this chapter,

we’ll use one JavaBean per tag.

You also have to instruct Digester which portions of the XML file you want to read.

These portions are stored in your JavaBeans objects. For example, suppose your XML file,

which is called myfile.xml, contains just the tag shown here:

<user id="albert" password="relativity" desc="Albert Einstein" />

Now you want to read this data into the User JavaBean shown in Listing 19-8.

Listing 19-8. The User Bean

public class User{

 protected String _id = null;

 protected String _password = null;

 public void setId(String id){ _id = id; }

 public String getId(){ return _id; }

 public void setPassword(String pwd){ _password = pwd; }

 public String getPassword(){ return _password; }

}

Notice that the desc attribute isn’t stored. Listing 19-9 shows how to do it with Digester.

Listing 19-9. Using Digester to Create a Single User

//Step 1: Create new Digester instance:

 Digester digester = new Digester();

//Step 2: Associate tag <user> with User bean:

 digester.addObjectCreate("user", "User");

//Step 3: Tell Digester to read in all

// required properties into User bean:

 digester.addSetProperties("user");

C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S 289

//Step 4: Actually parse the file

 User u = (User) digester.parse(new File("myfile.xml"));

//Step 5: Our User bean contains the data from the XML file!

 System.out.println("ID=" + u.getId() + " pwd=" + u.getPassword());

The parse() function on the Digester class (org.apache.commons.digester.Digester)

parses the input XML file and returns a populated User instance. There are two functions

you should take special note of:

• addObjectCreate(path, bean): Takes a path in the XML file and a JavaBean that will

get populated based on that path. In our earlier example, the path is just user, which we

want to read from and return a populated User object.

• addSetProperties(path): This tells Digester that you want to read the attributes of the

tag indicated by the given path into the JavaBean you associated with that path using

addObjectCreate(). So, in our previous example, if you omitted addSetProperties(),

the returned User bean would contain no information.

Handling more than one user declaration is also easy. For example, suppose now we

amended our myfile.xml as shown in Listing 19-10.

Listing 19-10. The Amended XML File, with Multiple Users

<users>

 <user id="albert" password="relativity" desc="Albert Einstein" />

 <user id="marie" password="radioactivity" desc="Marie Curie" />

 <user id="paul" password="qed" desc="Paul Dirac" />

</users>

To read in all the Users on this file, we could store them into a Users class, as

Listing 19-11 shows.

Listing 19-11. The Users Bean

public class Users extends java.util.ArrayList{

 public void addUser(User u){

 add(u);

 }

 public User getUser(int i){

 return (User) get(i);

 }

}

290 C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S

As you can see in Listing 19-11, the Users bean is just a collection of User beans. We

want Digester to create User beans based on the new XML (see Listing 19-8) and place

them into the containing Users bean. To do this, we’ll have to amend Listing 19-9 as

shown in Listing 19-12.

Listing 19-12. Using Digester to Create Multiple Users

//Step 1: Create new Digester instance:

 Digester digester = new Digester();

//Step 2: Associate <users> tag with Users class.

 digester.addObjectCreate("users", "Users");

//Step 3: Associate <user> tag with User bean.

// Note that the path to the <user> tag is

// indicated.

 digester.addObjectCreate("users/user", "User");

//Step 4: Tell Digester to read in all

// required properties into User bean:

 digester.addSetProperties("users/user");

//Step 5: Tell Digester to put all newly created

// User beans into the Users class by calling

// Users.addUser(aNewUserbean)

 digester.addSetNext("users/user", "addUser");

//Step 6: Actually parse the file

 Users users = (Users) digester.parse(new File("myfile.xml"));

//Step 7: Print out each User in the Users bean:

 for(int i = users.size() - 1; i >= 0; i--){

 User u = users.getUser(i);

 System.out.println("ID=" + u.getId() +

 " pwd=" + u.getPassword());

 }

Apart from the obvious changes to the paths and the bean returned by parse(), the

most significant change is calling Digester’s addSetNext(path, myFunction) function.

When Digester finishes parsing a single <user> tag, it asks “What’s next?” This answer

is given by the information you supplied in addSetNext(). Digester will call myFunction()

on the object associated with the parent of the path defined by addSetNext(). The argument

C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S 291

of myFunction() is the latest object created. This is the key to understanding how addSetNext()

works, and it can be a little confusing, so let’s take it one step at a time.

Looking again at Listing 19-12, the instruction

digester.addObjectCreate("users", "Users");

maps the path /users (I’ve put in the leading / to indicate it’s a path) to the class Users.

So, each time Digester meets a /users tag, it creates a new Users object. Let’s jump forward:

digester.addSetNext("users/user", "addUser");

This tells Digester that after it has parsed the tag with the path /users/user (and therefore

created a User bean), it has to call the addUser() function on the object associated with the

parent path of /users/user. The parent path of /users/user is obviously /users, and we

know the object associated with the /users path is the Users object. So, the function

addUser() is called on this Users bean, with the latest User as the argument of addUser().

Note that there’s no need to implement a loop in order to read each User. Each time

the Digester meets a path matching one you declared using addObjectCreate(),

addSetProperties(), or addSetNext(), it takes the appropriate action indicated by

the function.

This section only skims the surface of the Digester framework. If you’re interested in

learning more, consult the many articles on the Internet describing this useful framework

in more detail.

We next take a look at the implementation of DynaFormsLoaderFactory, the class that

creates a concrete implementation of DynaFormsLoader.

Implementing DynaFormsLoaderFactory

Listing 19-13 shows how DynaFormsLoaderFactory is implemented.

Listing 19-13. DynaFormsLoaderFactory.java

package net.thinksquared.struts.dynaforms;

import java.io.IOException;

import java.io.File;

import org.apache.commons.digester.Digester;

import net.thinksquared.struts.dynaforms.definitions.Beans;

public class DynaFormsLoaderFactory{

 private DynaFormsLoaderFactory(){}

292 C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S

 public static DynaFormsLoader getLoader(String filename)

 throws IOException,DefinitionsException,NoSuitableLoaderException{

 Beans config = readConfig(filename);

 String clazzname = config.getType();

 if(null == clazzname){

 return new DefaultDynaFormsLoader();

 }else{

 try{

 return (DynaFormsLoader) instantiate(clazzname);

 }catch(Exception e){

 throw new NoSuitableLoaderException("Can't initialize loader "

 + clazzname);

 }

 }

 }

 protected static Beans readConfig(String filename)

 throws IOException,DefinitionsException{

 try{

 Digester digester = new Digester();

 digester.addObjectCreate("form-beans",

 "net.thinksquared.struts.dynaforms.definitions.Beans");

 digester.addSetProperties("form-beans");

 return (Beans)digester.parse(new File(filename));

 }catch(IOException ioe){

 throw ioe;

 }catch(Exception e){

 throw new DefinitionsException("Definitions file " +

 filename +

 " has incorrect format");

 }

 }

C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S 293

 protected static Object instantiate(String clazzname)

 throws Exception{

 return Class.forName(clazzname).newInstance();

 }

}

First, notice that the constructor has only private access. This is a design pattern called

Singleton and it prevents DynaFormsLoaderFactory from being instantiated. Instantiating

DynaFormsLoaderFactory is a waste of resources, since all the action goes on in static functions

on this class.

THE SINGLETON DESIGN PATTERN

In its original formulation, the Singleton design pattern was a solution to the problem of ensuring that

only one instance of a class was made. But the essence of the Singleton design pattern is that it allows

you to control the number of instances of a given class, hence my use of this term in the text.

To do this, all constructors of the class are marked as private, so the class cannot be directly instan-

tiated using the new keyword. Instead, the class provides a static function (usually called getInstance())

that controls instantiation of the class. The following code gives a skeleton of a typical singleton:

public class MySingleton{

 private static MySingleton _self = new MySingleton();

 private MySingleton(){

 /* initialization code here */

 }

 public static MySingleton getInstance(){

 return _self;

 }

}

Notice that I’ve had to create the _self instance at the start. One other option is to test for a _self

== null in getInstance() and only then create the MySingleton instance. This approach might

fail in a multithreaded application, unless getInstance() is marked as synchronized.

The only public function is getLoader(), which returns a concrete implementation of

DynaFormsLoader. This function takes as a parameter the filename of the form beans decla-

ration file. With

Beans config = readConfig(filename);

294 C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S

the input file is parsed using the Digester framework. The Beans class is a JavaBean class,

which we will come to later.

A look at the readConfig() function shows that only the root <form-beans> is read, in

order to determine the type attribute. If the type attribute is not present, the factory

returns an instance of DefaultDynaFormsLoader to load the form beans. You can specify

your own implementation of DynaFormsLoader by putting in a value for type:

<form-beans type="com.mycompany.myapp.MyDynaFormsLoader"> ...

This flexibility can come in handy when you want to add new functionality to the DynaForms

plug-in, like handling <set-property> tags.

In the next section, we’ll delve into the details of the default implementation of

DynaFormsLoader.

DefaultDynaFormsLoader

DefaultDynaFormsLoader (see Listing 19-14) reads the XML file using the Digester frame-

work, parsing the data into a Beans class (see Listing 19-15), which holds all the form bean

declarations from a single file.

Listing 19-16 describes the Bean class that holds information from a single <form-bean>

declaration. It also has a function called merge() that creates properties on a “sub form

bean,” which have been declared in the parent form bean. Listing 19-17 describes the

Property class, which holds the information from a single <form-property> declaration.

Listing 19-14. DefaultDynaFormsLoader.java

package net.thinksquared.struts.dynaforms;

import java.io.IOException;

import java.io.File;

import java.util.Iterator;

import org.apache.struts.config.ModuleConfig;

import org.apache.struts.config.FormBeanConfig;

import org.apache.struts.config.FormPropertyConfig;

import org.apache.commons.digester.Digester;

import net.thinksquared.struts.dynaforms.*;

import net.thinksquared.struts.dynaforms.definitions.*;

public class DefaultDynaFormsLoader implements DynaFormsLoader{

C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S 295

 public void load(String filename,ModuleConfig config)

 throws IOException, DefinitionsException{

 Beans beans = readBeans(filename);

 for(Iterator beanz = beans.values().iterator(); beanz.hasNext();){

 Bean b = resolve(beans, (Bean)beanz.next());

 if(b.getCreate()){

 config.addFormBeanConfig(createFormBeanConfig(b));

 }

 }

 }

 protected Beans readBeans(String filename)

 throws IOException, DefinitionsException{

 try{

 Digester digester = new Digester();

 digester.addObjectCreate("form-beans",

 "net.thinksquared.struts.dynaforms.definitions.Beans");

 digester.addSetProperties("form-beans");

 digester.addObjectCreate("form-beans/form-bean",

 "net.thinksquared.struts.dynaforms.definitions.Bean");

 digester.addSetProperties("form-beans/form-bean");

 digester.addObjectCreate("form-beans/form-bean/form-property",

 "net.thinksquared.struts.dynaforms.definitions.Property");

 digester.addSetProperties("form-beans/form-bean/form-property");

 digester.addSetNext("form-beans/form-bean/form-property",

 "addProperty");

 digester.addSetNext("form-beans/form-bean","addBean");

 return (Beans)digester.parse(new File(filename));

296 C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S

 }catch(IOException ioe){

 throw ioe;

 }catch(Exception e){

 throw new DefinitionsException("Definitions file " +

 filename +

 " has incorrect format.");

 }

 }

 protected Bean resolve(Beans beans, Bean b)

 throws DefinitionsException{

 if(b.getExtends() == null){

 //check that all properties have types

 Object[] properties = b.values().toArray();

 for(int i = 0; i < properties.length; i++){

 Property p = (Property) properties[i];

 if(p.getType() == null){

 throw new DefinitionsException("Type of property '" +

 p.getName() +

 "' has not been set on form bean '" +

 b.getName() +

 "'");

 }

 }

 return b;

 }

 Bean parent = beans.getBean(b.getExtends());

 if(parent == null){

 throw new DefinitionsException(

 "Can't resolve parent bean named " +

 b.getExtends());

 }

 b.merge(parent);

 //resolve this bean further up the hierarchy

 return resolve(beans,b);

 }

C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S 297

 protected FormBeanConfig createFormBeanConfig(Bean bean){

 FormBeanConfig config = bean.getFormBeanConfig();

 //add in all the form-properties for this form-bean

 for(Iterator ps = bean.values().iterator(); ps.hasNext();){

 Property p = (Property) ps.next();

 config.addFormPropertyConfig(p.getFormPropertyConfig());

 }

 //Force creation and registration of DynaActionFormClass

 //instances for all dynamic form beans

 if(config.getDynamic()){

 config.getDynaActionFormClass();

 }

 return config;

 }

}

Listing 19-15. Beans.java

package net.thinksquared.struts.dynaforms.definitions;

import java.util.*;

public class Beans extends HashMap{

 protected String _type = null; //Loader classname

 public void addBean(Bean b){

 put(b.getName(),b);

 }

 public Bean getBean(String name){

 Object obj = get(name);

 return (obj == null)? null : (Bean)obj;

 }

 public void setType(String t){

 _type = t;

 }

298 C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S

 public String getType(){

 return _type;

 }

}

Listing 19-16. Bean.java

package net.thinksquared.struts.dynaforms.definitions;

import java.util.*;

import org.apache.struts.config.FormBeanConfig;

public class Bean extends HashMap{

 protected String _name = null;

 protected String _type = null;

 protected String _extends = null;

 protected boolean _create = true;

 public void addProperty(Property p){

 put(p.getName(),p);

 }

 public Property getProperty(String name){

 Object obj = get(name);

 return (obj == null)? null : (Property)obj;

 }

 public void setName(String n){

 _name = n;

 }

 public String getName(){

 return _name;

 }

 public void setType(String t){

 _type = t;

 }

C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S 299

 public String getType(){

 return _type;

 }

 public void setExtends(String e){

 _extends = e;

 }

 public String getExtends(){

 return _extends;

 }

 public void setCreate(boolean b){

 _create = b;

 }

 public boolean getCreate(){

 return _create;

 }

 /**

 * Merges a bean with its parent.

 * if the bean b is not a parent, then

 * the merging is NOT done.

 */

 public void merge(Bean b){

 //don't merge if there is no common properties

 //between the beans.

 if(_extends == null || !_extends.equals(b.getName())) return;

 _extends = b.getExtends();

 if(_type == null){

 _type = b.getType();

 }

 Object[] properties = b.values().toArray();

300 C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S

 for(int i = 0; i < properties.length; i++){

 Property p = (Property) properties[i];

 Object obj = getProperty(p.getName());

 if(obj == null){

 addProperty(p);

 }else{

 Property cp = (Property) obj;

 if(cp.getType() == null){

 cp.setType(p.getType());

 }

 }

 }

 }

 /**

 * Gets the FormBeanConfig instance

 * that this Bean represents

 */

 public FormBeanConfig getFormBeanConfig(){

 FormBeanConfig config = new FormBeanConfig();

 config.setName(getName());

 config.setType(getType());

 return config;

 }

}

Listing 19-17. Property.java

package net.thinksquared.struts.dynaforms.definitions;

import org.apache.struts.config.FormPropertyConfig;

public class Property{

 protected String _name = null;

 protected String _type = null;

 protected String _initial = null;

 protected int _size = 0;

C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S 301

 public void setName(String n){

 _name = n;

 }

 public String getName(){

 return _name;

 }

 public void setType(String t){

 _type = t;

 }

 public String getType(){

 return _type;

 }

 public void setInitial(String i){

 _initial = i;

 }

 public String getInitial(){

 return _initial;

 }

 public void setSize(int s){

 _size = s;

 }

 public int getSize(){

 return _size;

 }

 /**

 * Gets the FormPropertyConfig instance

 * that this Property represents

 */

 public FormPropertyConfig getFormPropertyConfig(){

 return new FormPropertyConfig(getName(),

 getType(),

 getInitial(),

 getSize());

 }

}

302 C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S

Essentially, DefaultDynaFormsLoader’s getLoader() first reads all the form beans from

the given file:

Beans beans = readBeans(filename);

The beans object is a collection of Bean objects (see Listing 19-16), which in turn may have

Property objects (see Listing 19-17). The beans object corresponds to the <form-beans>

root tag. The Bean class corresponds to a <form-bean> declaration, and the Property class

corresponds to a <form-property> tag within <form-bean>.

At this point, each bean object in the bean’s container is unresolved, meaning that the

bean’s inherited properties have yet to be determined. The next bit of code does just this:

for(Iterator beanz = beans.values().iterator(); beanz.hasNext();){

 Bean b = resolve(beans, (Bean)beanz.next());

 if(b.getCreate()){

 config.addFormBeanConfig(createFormBeanConfig(b));

 }

}

This section of code iterates through all bean objects in the bean’s container, resolving

each one, then creating a FormBeanConfig instance from this resolved bean. Lastly, this

FormBeanConfig object is added to the ModuleConfig instance using addFormBeanConfig().

Note that

• The resolve() function recursively merges the properties of a bean with that of an

ancestor bean. The actual merging of properties is performed in bean.merge() (see

Listing 19-16).

• createFormBeanConfig() creates a FormBeanConfig object from a given resolved bean.

• Form beans that are marked create=false (bean.getCreate() returns false) are not

added to ModuleConfig.

The source code for the DynaForms plug-in is in the Source Code section of the Apress

website at http://www.apress.com, in the file DynaFormsPlugIn.zip, and released under

the General Public License (GPL).

Lab 19: Test Driving the DynaForms Plug-in

In this lab session, you’ll take the DynaForms plug-in for a test drive.

1. Copy the file dynaformstest.zip from the Source code section of the Apress

website into your development directory and unzip it.

2. Besides the usual Struts JAR files in the lib folder, you’ll see the dynaforms.jar file,

containing the DynaForms plug-in classes.

C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S 303

3. Take a look at the struts-config.xml file. Can you tell what file contains the new

form bean declarations?

4. The dynaformstest webapp models the hierarchy of Listing 19-2. Compile and

deploy the dynaformstest webapp. Play with the webapp and ensure that you

understand how it works. Consult the source code for the DynaForms plug-in in

DynaFormsPlugIn.zip if necessary.

Extra Credit Lab: Handling <set-property>

In this lab, you’ll extend the DynaForms plug-in so that it handles <set-property> tags

in form bean declarations. This tag is used to pass initialization parameters into custom

FormBeanConfigs or FormPropertyConfigs.

According to the Struts configuration file 1.2 DTD (available in your Struts distribution),

there are two places <set-property> occurs within a form bean declaration:

• As a child node of <form-bean>

• As a child node of <form-property>

In both cases, Struts assumes that there’s a setXXX function corresponding to each

<set-property>, on the custom FormBeanConfig or FormPropertyConfig. This is similar

to how Struts expects a setXXX function on the PlugIn implementation class for each

<set-property> tag used in a plug-in declaration.

Of course, such setXXX functions won’t exist on either FormBeanConfig or

FormPropertyConfig; they are assumed to exist on custom subclasses of these two.

By default, Struts will use the base config objects (FormBeanConfig or

FormPropertyConfig) to hold form bean and form property configuration information.

However, if you specify the className attribute in either tag, then the class referred to by

className is used instead. For example, the information from

<form-bean name="ordinaryFormBean" ...

which doesn’t specify a className attribute, will be placed in the default FormBeanConfig.

But the information from

<form-bean name="specialFormBean"

 className="com.myco.myapp.MyFormBeanConfig" ...

will be placed in the class MyFormBeanConfig, which must be a subclass of FormBeanConfig.

So, this declaration

304 C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S

<form-bean name="specialFormBean"

 className="com.myco.myapp.MyFormBeanConfig">

 <set-property property="message" value="Hello World"/>

 ...

will cause Struts to instantiate MyFormBeanConfig, then call setMessage("Hello World")

on this object.

Struts uses the Digester framework to call the appropriate setXXX functions on the

MyFormBeanConfig object. Unfortunately, since we use our own custom Bean object to

store the form bean data, we cannot take this approach.Instead, I’ll outline a possible

solution, which I encourage you to implement.

Solution Outline

1. Add get/setClassName() functions to both the Bean and Property classes. This allows

Digester to store the className information.

2. Add a HashMap called _properties to both the Bean and Property classes. This will

store the property/value pairs from a <set-property>.

3. Create a new class called Parameter in the DynaForms definitions directory.

This class corresponds to a <set-property> tag, and should have getters and

setters for property and value.

4. Add identical addParameter(Parameter) functions to both the Bean and Property

classes. This function should take the property/value data in a Parameter and put

the data on the _properties HashMap.

5. Obviously, we want the <set-property>s to be inherited, too, just like

<form-property>s. To do this, amend the merge() function on the Bean class so that

it copies a property/value pair from the parent bean into the child bean, only if the

property doesn’t exist on the child bean.

6. We need to get Digester to call the addParameter() functions of step 4 when it

encounters a <set-property> tag. Amend DefaultDynaFormsLoader’s readBeans()

function so that it calls Digester’s addObjectCreate() to create a Parameter object.

We need to call this twice, for a <set-property> in each <form-bean> and in each

<form-property>. We also need to call addSetProperties() twice, to populate the

Parameter object with the property/value pair. Finally, we must call addSetNext()

twice so that addParameter is called on Bean and Property.

C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S 305

7. Change the protected access of DynaFormsLoaderFactory.instantiate() to public

access. We’ll use this function to instantiate custom subclasses of FormBeanConfig

and FormPropertyConfig.

8. Modify getFormBeanConfig() on the Bean class and getFormPropertyConfig() on the

Property class so that they return the correct FormBeanConfig/FormPropertyConfig

subclass, based on the value of the className variable of step 1. Use the

DynaFormsLoaderFactory.instantiate() function to do this.

9. At this point, the returned config objects of step 8 are unconfigured, since we

haven’t passed them the information from <set-property>s. You can use the

Apache Commons Bean framework to do this. Like Digester, the JAR file

(commons-beanutils.jar) comes bundled with Struts. The class you want to use is

org.apache.commons.beanutils.BeanUtils. To populate the custom config subclass

with the information from the _properties HashMap of step 2, you call

BeanUtils.populate(config, _properties), where config is the custom config

subclass of step 8. Make this change to both getFormBeanConfig() on the Bean

class and getFormPropertyConfig() on the Property class so that the returned

config object is properly configured.

As usual, compile and test your work with your own custom FormBeanConfig or

FormPropertyConfig classes, each with (for example) a message property. (Remember to

make appropriate <set-property> additions to your form bean declaration file.) You can

get the message to be displayed when the getMessage() function is called.

Useful Links

• “Adding Spice to Struts,” parts 1 and 2 by Samudra Gupta: http://javaboutique.

internet.com/tutorials/Dynaform/ and http://javaboutique.internet.com/

tutorials/Dynaform/index-6.html

• A good article explaining how to use the Apache Digester framework, by

Keld H. Hansen: http://javaboutique.internet.com/tutorials/digester/

• Eclipse website: www.eclipse.org

• The Struts website: http://struts.apache.org/acquiring.html#Source_Code

306 C H A P T E R 1 9 ■ D E V E L O P I N G P L U G - I N S

Summary

• Plug-ins, first introduced in Struts 1.1, are a good way to extend or amend the

functionality of Struts.

• A plug-in has to implement the org.apache.struts.action.PlugIn interface.

• This interface has two functions: init(), which is called when the PlugIn implementa-

tion is instantiated, and destroy(), which is called when Struts shuts down.

• Additional parameters may be passed to the plug-in before initialization using

<set-property> tags in the plug-in declaration. Each <set-property> must have a

corresponding setXXX defined on the plug-in implementation.

307

■ ■ ■

C H A P T E R 2 0

JavaServer Faces and
Struts Shale

In this chapter, we’ll take a look at a web application technology called JavaServer Faces

(JSF) that will play a huge role in the Java webapp framework scene for many years to come.

We’ll also preview a newer technology called Struts Shale, which apart from the common

moniker, shares little with Struts as you know it. Struts Shale, or Shale, for short, is the first

among many new webapp frameworks that have a Struts heritage but embrace the

advantages of JSF.

Besides these two, we’ll also give you a peek at the Struts-Faces integration library,

which allows you to use JSF alongside “classic” Struts (that is, Struts as described in this book).

Before we delve into the exciting details, I’d like to give you a bird’s-eye view of the two

main players in this chapter, JSF and Shale.

JSF Overview

JSF is a webapp framework whose focus is the View tier of the MVC design pattern.

In fact, JSF’s primary goal is to provide a standard architecture for web-based user

interface (UI) components.

That’s quite a mouthful, and it might help to tackle the key words one at a time:

• Primary goal: Because it is a fully functional webapp framework, JSF does a bunch

of other things apart from the View tier, like control flow and validation. But don’t

be fooled—it’s primarily about the View tier. I believe having this zeitgeist at the

outset helps you understand JSF better. JSF and Struts are quite different things,

and you would do well to avoid making premature comparisons between them.

• Standard: JSF is not software. It is a specification (like the Servlet specification or

the specification for JSP) that anyone can use to create an actual implementation.

Two are available now: the JSF reference implementation from Sun, and Apache’s

MyFaces, which we’ll use in this chapter.

308 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

• Architecture: The emphasis of JSF is on architecture—how the various components

talk among themselves, how requests are processed, and so forth. The emphasis is

not on specific components (like a drop-down list, a tab view, or a validator for

email addresses). In fact, JSF is specifically designed to be extended.

• Web-based UI components: An example might help. I use OpenOffice as my word

processor. I’ve customized the toolbar so that it displays certain buttons every time

I load OpenOffice. Some buttons are highlighted, like the Align button to indicate

the currently active alignment. Also, when I click Save As, OpenOffice remembers

the directory I last saved a file in and gives me a Save dialog box with that folder

selected. Now imagine implementing all these features in your own webapp. Where

would you start? The reality is that making a web-based application behave like an

ordinary desktop app is very challenging. Web-based UI components and the request

processing machinery behind them help you achieve this goal.

Unlike Struts, which usually gives you just one or two ways to accomplish a given task,

the JSF specification is very flexible, and there are many combinations you can pick from

to accomplish a task. This flexibility might create the false impression that JSF is too complex

to work with.

In one sense this is true. JSF is complex, but most of the complexity is hidden from page

developers and application developers who use it to build webapps. The complexity only

becomes apparent when you’re extending JSF—for example, by creating new UI compo-

nents, or providing integration points to other frameworks (e.g., the Commons Validator

framework or Spring).

In short, it’s quite easy to use JSF to build webapps, but it’s more difficult to make

significant extensions to it. And among the possible ways to extend JSF, it’s probably

easiest to make extensions to the UI components and validators.

Shale Overview

Unlike JSF, which is a specification, Shale is actual software that you can use immediately.

Shale is touted to be a complete reworking of Struts (which we’ll sometimes refer to as

“classic” Struts for clarity). The reworking has been quite thorough, and it’s unlikely that

a Struts developer will recognize it as Struts!

Shale is based on JSF. By this, I mean JSF is to Shale what JSP is to Struts. There would

be no Shale without JSF. You need an implementation of JSF (like MyFaces) in order for

Shale to work. I don’t mean to belabor the point, but it is crucial that you understand this.

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 309

STRUTS TI AND STRUTS OVERDRIVE

Struts Shale isn’t the only “nouveau Struts” around—“Struts Ti” and “Struts OverDrive” are both under

development.

Struts Ti (short for Titanium) is a merging of classic Struts and WebWork. WebWork is an open

source web application framework, generally viewed as being technically sounder than Struts, yet

similar enough to it for a merging to be possible. At the time of this writing, information on Struts Over-

Drive is scarce, but I’m guessing that it’s Struts using the Nexus framework for View/Controller communica-

tion. The Nexus framework handles text formatting, localization, and type conversions. This framework

actually applies to many different webapp frameworks (Spring, Struts, etc.) and presentation layers (JSP,

ASP.NET, etc.). OverDrive is the brand name given to applications that utilize the Nexus framework. Refer

to “Useful Links” for details on both Ti and OverDrive.

As with Shale, these projects are quite different compared to Struts as you know it from this book.

In my (admittedly cynical) view, they have a “Struts” prefix to tap into the large existing Struts user base.

But I fear this is a mistake. Splitting a brand name only makes sense if there are distinct, clearly identi-

fiable niches that each split addresses. Microsoft’s desktop/server offerings are a good example. Each

addresses a clearly different niche under the “Windows” umbrella. But in the case of webapp frameworks,

no clear multiplicity of niches is apparent, so having four frameworks called “Struts” simply creates

confusion, actually diluting the Struts brand. I believe most CIOs would stick with the tried-and-tested

classic Struts, or if they were intending to migrate, consider more mature frameworks like Spring or

standards-based JSF. Very few would explore Struts X. In fact, it is more likely that they would have

chosen the original WebWork instead of its morph with Struts (that is, Struts Ti). Now, they are likely to

look at neither one.

In my opinion, it’s the project that remains backward compatible with Struts 1.x, while introducing

major improvements over time, that will win the day—or rather, the users. At the time of this writing,

that winning horse looks like Struts 1.x. This likelihood is increased if the Struts-Faces integration library

(described later in this chapter) sees more development. Shale might come in a close second because

of the superior features it offers.

Shale has three major design objectives:

• Expanding JSF past the View tier: Shale provides support for areas poorly addressed by

the JSF specification (like the practicalities of validating user input). Recall that JSF

is mainly about the View tier, so Shale has to do a fair bit to make JSF palatable to

longtime Struts developers used to the comforts of the Validator framework, dynamic

forms, and Tiles.

310 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

• Adding features previously unavailable in Struts: For example, Struts does not

address user interactions spanning multiple page requests. Shale has a feature

called “dialogs” (borrowed from Spring’s “webflow”) to do this.

• Integration with other webapp frameworks: Primarily the Spring framework.

There is also some support for Ajax technologies.

So beware! Shale is not a natural evolution of “classic” Struts—you can’t just “upgrade”

your Struts webapp to Shale.

So why the “Struts” prefix? The reason is probably because the most useful parts of

Struts have been successfully refactored into Apache Commons projects (the Validator

framework and dynamic forms), or are largely independent of Struts (like Tiles is). Shale

reuses these to provide important conveniences not present in the JSF specification. In this

sense, classic Struts is part of Shale. Note also a more cynical alternative we’ve discussed

in the sidebar, “Struts Ti and Struts OverDrive.”

Learning Struts a Waste of Time?

The preceding introduction might give you pause for thought: is learning Struts a waste

of time?

By no means!

“Classic” Struts is by far the most popular webapp framework to date, and will very

likely coexist with both JSF and Shale for some time yet. As you’ll see later in this chapter,

there are a number of areas (like validation and dynamic forms) that JSF does not address

as well as Struts. This was intentional, since JSF focuses on the View tier, and leaves it to

other technologies to addresses its deficiencies in other areas. This in fact is the raison

d’être for Shale. Unfortunately, at the time of this writing, Shale is just at version 1.0,

nowhere near the maturity of classic Struts.

Also, classic Struts is still under active development, so new features and improvements

are likely, further spurring its adoption by those who do not need the advanced features of

JSF or Shale.

Lastly, a good working knowledge of Struts gives you an edge in picking up the newer

technologies, and gives you a better vantage point from which to evaluate their effective-

ness for your needs.

JavaServer Faces (JSF)

As you might gather by now, JSF focuses on the View tier. Viewed from a Struts developer’s

eyes, this focus implies two important differences between JSF and Struts.

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 311

• A more complex request processing lifecycle: Because JSF uses server-side UI

components, it processes incoming HTTP requests differently from Struts. JSF’s

request processing lifecycle is divided into several phases. This is unlike Struts, which

has just two phases: one for when the ActionForm gets validated and the other when

the Action’s execute() function is called. Also, JSF allows your own classes to listen

for events at the end of each phase (more on this in the following subsections). This

is a huge improvement over Struts, and is what makes JSF so extensible.

• Some configuration information moved away from configuration files into JSPs:

JSF has no notion of the Validation framework, dynamic forms, or Tiles, so config

files for these do not exist. Instead, validations, for example (and as you will see,

many other things), are specified in JSPs that make up the webapp. Like Struts, JSF

does have a config file, called faces-config.xml, so not all the configuration infor-

mation goes out to JSPs.

It is important to take note of these two points to help lessen the cognitive dissonance

you (as a Struts developer) might experience when learning JSF.

Server-Side UI Components

When a page is submitted to a Struts webapp, the form data on the page is stored in an

ActionForm subclass. Normally, we’d think of the ActionForm as a temporary storage area

for data destined for the Model tier.

While perfectly true, another way of looking at the ActionForm is to say that it stores the

state of the View tier on the server. This state information can be used to redisplay the

page if necessary (e.g., when you have simple validation errors) in its original condition.

For example, in the Registration webapp (see Chapter 5), when the user keys in an

incorrect password, the page is redisplayed with the user ID that was originally keyed in.

With our new way of seeing things, we’d say that the data saved on the ActionForm was

used to put the state of the View (the original user ID redisplayed) back into its original state.

JSF takes this way of seeing things to the extreme. JSF has tags for various UI compo-

nents just like Struts has, with its <html:xxx> and <bean:xxx> tags. The big difference is

that each JSF tag causes an object to be created on the server. This object is used to hold the

UI component’s state. We’ll elaborate on this shortly.

One other thing that JSF takes to the extreme is the organization of the JSF tags. In Struts,

we’re accustomed to a simple two-level nested hierarchy: an <html:form> can contain

elements like an <html:input> or <html:submit>, as in this snippet:

312 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

<html:form action="MyHandler.do">

 <bean:message key="myapp.prompt.name"/></td>

 <html:text property="name" size="60" />

 <html:errors property="name"/>

 <html:submit>

 <bean:message key="myapp.prompt.submit"/>

 </html:submit>

</html:form>

This is a reflection of the fact that Struts display tags closely mirror ordinary HTML tags.

The hierarchy for JSF, on the other hand, is much richer and you typically have more

levels, as shown in Listing 20-1.

Listing 20-1. A Snippet of JSF Tags Showing a Hierarchical Organization

<f:view>

 <h:panelGroup>

 <h:messages style="color:red" globalOnly="true"/>

 <h:outputText value="#{reg_messages['title_reg']}" />

 <h:form binding="#{user.container}">

 <h:outputText value="#{reg_messages['user_id']}"/>

 <h:inputText id="userId"

 value="#{user.userId}" required="true">

 <x:validateRegExpr pattern='^[A-Za-z0-9]{5,10}$' />

 </h:inputText>

 <h:message for="userId" />

...

This hierarchical organization (the hierarchy is defined through nesting) allows you

to finely control how the page is rendered for display to the user. You’ll see why later in

this chapter.

For now, the important thing to note is that the corresponding server-side objects

created by the page in Listing 20-1 are also nested in a tree-like fashion, as shown in

Figure 20-1.

The first time a JSF page is requested, the tree of objects—let’s call it the “UI tree”—is

created on the server. JSF uses the UI tree to create the HTML for the requested page.

The next time the same page is requested (by the same user, in the same session), this

UI tree is re-created on the server, and is populated with data from the page. This data

does not have to be only user input destined for the Model tier but can also include the

states of each UI component.

For example, suppose a JSF page contains a tag for a treeview UI component, as you

might have used in Microsoft Explorer or Outlook. A user requesting the page sees the

treeview and clicks a node on it. The treeview expands, and the user clicks further, exposing

more of the tree, as in Figure 20-2.

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 313

Figure 20-1. Corresponding UI tree on the server

Figure 20-2. A treeview in MyFaces

When the page is submitted, the state of the treeview—in other words, which nodes

were expanded by the user—would be sent unobtrusively along with other data on the

form. This data is stored on the server-side object representing the treeview component.

To summarize, unlike Struts, where a page’s data goes into a single ActionForm, in JSF a

server-side UI tree is created to hold data—both the data destined for the Model tier and

the data representing the state of the View. JSF makes no distinction between the two.

314 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

So, it is the UI tree that needs to be processed, just as Struts processes ActionForms. The

user-submitted data contained in the UI tree needs to be validated and processed for

delivery into the Model tier. We’ll see how this is done next.

Request Processing Lifecycle

JSF’s request processing lifecycle describes how HTTP requests from a client are processed to

generate a response by the server. JSF’s request processing lifecycle is divided into several

phases. Figure 20-3 illustrates this.

■Tip You need to know the material in this section very well, because the available documentation on JSF

and documentation for technologies based on JSF, like Shale, frequently refer to the various phases of JSF's

request processing lifecycle.

Figure 20-3. JSF’s request processing lifecycle

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 315

There are six phases in all (the solid boxes in Figure 20-3), and each phase and the

events associated with it are completely processed before the subsequent phase is started.

■Note Events and event listeners are the mechanism by which JSF exposes its internals to third-party

classes. They are an important extension point of JSF. We’ll describe both of these in the following section.

In Figure 20-3, we’ve marked two ways (validation errors and conversion errors) by

which processing gets fast-tracked to the Render Response phase. In truth, event listeners

that process events immediately after any phase may cause JSF to move into the Render

Response phase.

FACES REQUESTS

Not all HTTP requests sent to the server are processed according to Figure 20-3, but only those requesting a

JSF page. Such requests are termed faces requests. This is analogous to the way not every HTTP request

is processed by Struts, but only those with the .do extension (by default). The corresponding extension

for JSF is .jsf. (Again, this depends on how you’ve configured web.xml. Another common choice for

a JSF extension is .faces.)

Your pages need not have the extension .jsf, but the call to them must. For example, suppose you

have a JSP page containing JSF markup named mypage.jsp. To correctly call this page, you’d have to

make a request for

http://www.mycompany.com/mypage.jsf

If you were to make a request for http://www.mycompany.com/mypage.jsp directly, you’d

get an error message.

You can name your pages with a .jsf extension, but this would not work with a JSP 1.2–compliant

servlet container. JSP 1.2 requires JSP pages to have the .jsp extension. So, the most portable method

is to name your JSF pages .jsp and request them as .jsf.

Let’s look at each phase in detail. Don’t worry if some of my comments seem cryptic at

the moment. I’ll explain the cryptic bits in the following subsections.

• Restore View: If this is the first time the user requests this page, then the UI tree (see

the discussion in the previous subsection) is created. If this is the second time the

page is created, then the UI tree is re-created with the previously saved state. Value

bindings for each UI component are also processed at this phase.

316 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

• Apply Request Values: Each UI component on the UI tree is given a chance to update

its state based on the information contained in the incoming HTTP request.

• Process Validations: In this phase, validations are processed. If there are errors,

then processing is taken directly to the Render Response phase.

• Update Model Values: As its name implies, in this phase the Model tier is updated

with the data from the UI tree. JSF knows which UI components hold data destined

for the Model tier because you’ve specified this in the JSF markup. Data conversion

errors will cause processing to proceed directly to the Render Response phase.

• Invoke Application: Navigation is performed based on action events posted during

previous phases. It is also possible for your customizations of JSF to add other

processing code to this phase.

• Render Response: The HTML output is created, based on either the navigation

results or the existing UI tree (if the page is to be redisplayed). The state of the UI

tree is also saved for processing on subsequent requests.

After every phase (except for Restore View and Render Response), events that might

have been generated during that phase are processed.

Events are Java objects that contain information indicating a certain processing state.

Events are generated by UI components on the UI tree, or by your own processing code

attached to any phase. Processing of events is done either by JSF itself or by event listeners.

We’ll see how this is done next.

Events and Event Listeners

In this book, you’ve come across two design patterns: the MVC design pattern and the

Singleton design pattern (in Chapter 19). Events and event listeners fall under a simple

but powerful design pattern called Observer.

In the Observer design pattern, there are two roles. The first is that of a Publisher, a data

source that gets updated from time to time. The second role is that of Subscriber, denoting

entities interested in being updated with the latest data available on the Publisher.

A bad way to get Subscribers updated with the latest data is for them to interrogate the

Publisher at regular intervals. This technique, called polling, is obviously inefficient: poll

too fast and you waste CPU time; poll too slowly and you risk getting the data too late or

losing it altogether.

Instead of polling, the Observer design pattern employs the “don’t call us, we’ll call

you” maxim. Subscribers interested in getting data from the Publisher first register with

the Publisher. When the new data arrives, the Publisher informs all its registered

Subscribers.

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 317

Let’s take a concrete example. GUI frameworks like Swing or Abstract Windowing

Toolkit (AWT) have classes representing visually displayed UI components, like buttons,

check boxes, and so forth. Each of these GUI components needs to signal certain user

interactions, like a mouse click over a button, or a key pressed in a text input box. Each

such activity is called an event.

An event is usually represented by a Java class, which has fields containing data describing

the event. For example, in the case of mouse clicks, a MouseClickEvent might contain the

X and Y coordinates of the mouse click, as shown in Listing 20-2.

Listing 20-2. A Class to Represent Mouse Clicks

public class MouseClickEvent{

 private int _x, _y;

 public MouseClickEvent(int x, int y){

 _x = x; _y = y;

 }

 public int getX(){ return _x; }

 public int getY(){ return _y; }

}

Notice that classes representing events are usually immutable, meaning that you can

only read data from them once they are created. The reason for this is because an event

could be shared among many Subscribers. You don’t want any Subscriber to amend the

event.

So we now have a class to represent mouse clicks. Great! But how to guarantee that

Subscribers can actually understand the data contained in this event? Simple—have them

implement a standard interface, shown in Listing 20-3.

Listing 20-3. The MouseClickListener Interface

public interface MouseClickListener{

 public mouseClicked(MouseClickEvent mce);

}

So, a Subscriber implementing MouseClickListener explicitly declares that it understands

how to process mouse clicks. Listing 20-4 shows an example of a Subscriber implementing

MouseClickListener.

318 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

Listing 20-4. Example of Subscriber Implementing MouseClickListener

public class MySubscriber implements MouseClickListener{

 public mouseClicked(MouseClickEvent mce){

 System.out.println(“x coordinate = “ + mce.getX());

 System.out.println(“y coordinate = “ + mce.getY());

 }

}

What about Publishers? Do they have to implement any interface? Usually not, but

Publishers should have a function to add or remove event listeners. Subscribers would

have to know these functions and call them; an example is shown in Listing 20-5.

Listing 20-5. Fragment of a GUI Widget That Generates Mouse Click Events

public class MyGuiWidget{

 private Set _mouseClickListeners = new HashSet();

 public addMouseClickListener(MouseClickListener mcl){

 _mouseClickListeners.add(mcl);

 }

 public removeMouseClickListener(MouseClickListener mcl){

 _mouseClickListeners.remove(mcl);

 }

 protected void broadcastMouseClick(int x, int y){

 if(_mouseClickListeners.isEmpty()) return;

 MouseClickEvent mce = new MouseClickEvent(x,y);

 for(Iterator listeners = _mouseClickListeners.iterator();

 listeners.hasNext();){

 ((MouseClickListener) listeners.next()).mouseClicked(mce);

 }

 }

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 319

 // other functions that receive mouse clicks from the screen

 // and then call broadcastMouseClick()

 ...

}

IS MOUSECLICKEVENT REALLY NECESSARY?

You might realize by now that the MouseClickEvent class is not strictly necessary. In fact, it’s possible

to eliminate this class completely, and instead put in the X and Y coordinates as arguments of

mouseClicked():

public interface MouseClickListener{

 public mouseClicked(int x, int y);

}

Both approaches are valid, and JSF uses both, but most often the first.

Your Java application would hook up MyGuiWidget and MySubscriber(s) as shown in

Listing 20-6.

Listing 20-6. Fragment of a GUI Widget That Generates Mouse Click Events

MyGuiWidget widget = new MyGuiWidget();

MySubscriber sub1 = new MySubscriber();

MySubscriber sub2 = new MySubscriber();

widget.addMouseClickListener(sub1);

widget.addMouseClickListener(sub2);

Now that you understand all this, you might be wondering how it relates to JSF. Well,

at each phase (except Restore View and Render Response), events would be generated.

These events might relate to the change in phase (PhaseEvent) or indicate that the user

requires a certain action to be performed, such as navigating to a next page or calling a

function on one of your classes (ActionEvent) or signaling that a UI component’s value

has changed (ValueChangedEvent).

Also, as the sidebar points out, it’s possible to flag events without having an explicit

“event” object. Validations and Model tier updates are done this way. Essentially, you

320 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

create listeners for each of these and somehow (you’ll see how shortly) register them with

JSF. JSF will call these listeners at the appropriate phases.

So, the million-dollar question is how do we register listeners for the various events?

In Listing 20-6, you can see how this might be done programmatically using the Java

language. This is not the norm for JSF. Instead, you hook up the event producer with the

event listener in the JSP page that specifies the UI tree.

We’ll postpone giving you an example of how this might be done until after we’ve

addressed a few more loose ends.

JSF Tag Libraries

There are just two standard JSF tag libraries:

• The Core tag library deals with JSF functionality that is independent of the way the

View is rendered. Remember, JSF is very flexible, and it need not work with just

HTML as its view medium. It’s possible to use JSF to render to Wireless Markup

Language (WML), for example. The Core taglib contains, for example, tags to run

validations or tags to load message resources.

• The HTML tag library defines tags specifically describing the View tier, specifically

for HTML output.

I'd like to remind you that the set of “standard” UI components and validators is fairly

limited. To create complex webapps, you will likely want to extend JSF. There are two

ways to do this:

• Use third-party UI components and validators. MyFaces comes with a few of these.

• Use a framework that specifically addresses deficiencies in JSF. Shale is one such

framework.

Value and Method Binding

JSF introduces two very powerful techniques called value and method binding.

You’ve had some experience with value binding in Struts. Remember how you could

read and write properties from your form bean in your Struts tags? For example, if you

wanted an <html:text> to save a property called userId to a form bean called user, you’d

do this:

<html:text property="userId"/>

where the user form bean is implicit. That’s what value binding is about. However, the JSF

syntax is different:

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 321

<h:inputText value="#{user.userId}"/>

JSF uses an expression language syntax (see Chapter 10). Note that this is not the same as

the JSTL “EL” syntax, since it begins with a hash symbol (#).

Method binding is an extension of this idea. It allows your JSF tags to call functions on

your form bean (the JSF term is backing bean). For example:

<h:commandButton action="#{user.Logon}" />

describes a button that, if clicked, calls the Logon() function on the user backing bean.

This technique is powerful because you can define multiple buttons on a single form,

and bind them to different functions, each to process the form data differently.

Quick Quiz

How would you do the same thing in Struts?

Because of this, backing beans are sometimes like ActionForm and Action rolled into one.

When you read the JSF literature, you will certainly come across the term managed

bean. A managed bean is a backing bean whose instantiation is controlled by JSF.

This is analogous to form beans in Struts. The common characteristic of form beans (in

Struts) and managed beans (JSF) is that the instantiation of both is performed by their

respective frameworks.

The declaration of a managed bean in faces-config.xml (the JSF config file) is also

different. Instead of

<form-bean name="user" type="net.thinksquared.reg.User" />

you’d say

<managed-bean>

 <managed-bean-name>user</managed-bean-name>

 <managed-bean-class>net.thinksquared.reg.User</managed-bean-class>

</managed-bean>

The JSF style is more verbose because rather than using attributes, it uses separate tags.

Navigation

In Struts, navigation information (<forward>s) is mixed with processing declarations

(<action>s). JSF does a much better job at representing navigation information.

In fact, the whole JSF navigation model is much easier to understand and use compared

to Struts. Instead of a specialized class like ActionForward, JSF uses plain Java Strings.

322 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

So, instead of returning the equivalent of ActionForward, the functions on your backing

beans that perform navigation would return a String. These are called logical outcomes.

As an example, consider Listing 20-7.

Listing 20-7. A Simple Navigation Rule

<navigation-rule>

 <from-view-id>/index.jsp</from-view-id>

 <navigation-case>

 <from-outcome>register </from-outcome>

 <to-view-id>/register.jsp</to-view-id>

 </navigation-case>

 <navigation-case>

 <from-outcome>success</from-outcome>

 <to-view-id>/success.jsp</to-view-id>

 </navigation-case>

</navigation-rule>

This example defines a single navigation rule, with two logical outcomes: register and

success. You can define as many navigation rules as you wish, and even add conditions like

<from-view-id>/index.jsp</from-view-id>

which tells JSF what the “previous” page must be in order for this <navigation-rule>

to apply.

Example: The Registration Webapp

In this section, we’ll port our old friend the Registration webapp (see Chapter 5) to JSF.

First, here are the specs:

• There are three pages: one to perform user logon, one for user registration, and the

last to indicate successful logon or registration.

• The logon page includes the usual form containing user ID and password fields. The

page also contains a link to the registration page. If the system detects that the user

ID entered doesn’t exist, it forwards to the registration page.

• The registration page is similar to the logon page, except that it contains an extra

“confirm password” field.

• As usual, the fields are validated before the input is accepted for delivery to the

Model tier.

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 323

■Caution This example does not show you the full power of JSF, nor does it show you how to use it efficiently.

We’re using the Registration webapp simply because we’ve implemented it with Struts and Tiles.

I hope this gives you some mental scaffolding with which to pick up the new concepts

in JSF. We’ll start with configuring JSF.

Configuring JSF

As with Struts, there are two files to use when configuring JSF: web.xml, the servlet config-

uration file, and faces-config.xml. Both of these should be in the WEB-INF directory.

The web.xml file contains information telling the servlet container what request exten-

sions (like .jsf) should be shuttled to JSF, and where to store state (client or server). A

web.xml file with a default setting is available in the MyFaces distribution. You should be

able to use this file without any amendment.

The faces-config.xml file contains information declaring the <managed-bean>,

<navigation-rule>, and other tags to plug in third-party UI components and validators,

among other things. Listing 20-8 shows the faces-config.xml file for the Registration webapp.

Listing 20-8. faces-config.xml for the Registration Webapp

<?xml version="1.0"?>

<!DOCTYPE faces-config PUBLIC

 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0//EN"

 "http://java.sun.com/dtd/web-facesconfig_1_0.dtd">

<faces-config>

 <managed-bean>

 <managed-bean-name>user</managed-bean-name>

 <managed-bean-class>net.thinksquared.reg.User</managed-bean-class>

 <managed-bean-scope>request</managed-bean-scope>

 </managed-bean>

 <navigation-rule>

 <navigation-case>

 <from-outcome>register</from-outcome>

 <to-view-id>/register.jsp</to-view-id>

 </navigation-case>

 <navigation-case>

324 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

 <from-outcome>success</from-outcome>

 <to-view-id>/success.jsp</to-view-id>

 </navigation-case>

 </navigation-rule>

</faces-config>

We’ve declared a single managed bean called user. This bean both holds the user ID

and password data and performs complex validation. Note that the user bean is declared

to have request scope.

We’ve also declared a single navigation rule, mapping the registration page (register.jsp)

to the logical outcome register and, similarly, the page displaying successful registration

(success.jsp) to the logical outcome success.

Message Resources

Like Struts, JSF also supports internationalization by using message resource bundles.

JSF’s support is much better than Struts. Instead of specifying the application.properties

file in the configuration file, we can declare it in a JSP that uses the message resource.

This means that we can use multiple message resources. You’ll see this in action shortly.

Listing 20-9 shows the message resource for the Registration webapp. The file is stored

as net\thinksquared\reg\messages.properties, and will therefore be referred to as

net.thinksquared.reg.messages.

Listing 20-9. Message Resource File for the Registration Webapp

#-------- error prompts --------

user_exists = The userid {0} is taken. Please try another.

user_not_registered = You have not registered! Please do so now.

wrong_password = Incorrect password. Please try again.

password_mismatch = The passwords you keyed in don't match.

#-------- button text ----------

register = Register

logon = Logon

#-------- other text ----------

title = Please log on

title_reg = Please register

new_user = Register as new user...

registered_ok = You''ve registered as {0} with the password {1}!

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 325

logon_ok = You''re logged on as {0}

user_id = User ID:

password = Password:

password2 = Re-type password:

Notice that the message for logon_ok begins with You''re. The repeated single quotes

are not a mistake—it’s the way to “escape” the single quote.

The User Backing Bean

The user backing bean (which is also a managed bean) is used to store data (the user ID

and password) and also has functions to log on an existing user or register a new user,

as shown in Listing 20-10.

Listing 20-10. The user Backing Bean

package net.thinksquared.reg;

import java.util.Map;

import java.util.HashMap;

import java.util.ResourceBundle;

import java.text.MessageFormat;

import javax.faces.context.FacesContext;

import javax.faces.application.FacesMessage;

import javax.faces.component.UIComponent;

public class User {

 private static Map _dbase = new HashMap(); //our dummy database.

 private String _uid,_pwd;

 private UIComponent _container;

 public User(){

 _uid = null;

 _pwd = null;

 _container = null;

 }

326 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

 //------------------------------------- data get/set

 public void setUserId(String uid){

 _uid = uid;

 }

 public String getUserId(){

 return _uid;

 }

 public void setPassword(String pwd){

 _pwd = pwd;

 }

 public String getPassword(){

 return _pwd;

 }

 //------------------------------------- UI get/set

 public void setContainer(UIComponent container){

 _container = container;

 }

 public UIComponent getContainer(){

 //we must return null,otherwise the

 //saved _container will be grafted

 //into the new UI tree.

 return null;

 }

 //------------------------------------- Actions

 public String Register(){

 //get a handle to the current "context"

 FacesContext context = FacesContext.getCurrentInstance();

 //get a handle to the desired properties file

 ResourceBundle bundle =

 ResourceBundle.getBundle("net.thinksquared.reg.messages",

 context.getViewRoot().getLocale());

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 327

 //complex validation: user exists?

 if(_dbase.get(_uid) != null){

 Object[] params = {_uid};

 String msg = MessageFormat.format(

 bundle.getString("user_exists"),params);

 String clientId =

 _container.findComponent("userId").getClientId(context);

 context.addMessage(clientId, new FacesMessage(msg));

 //returning null causes input page to be re-displayed

 return null;

 }

 //everything OK - go ahead and register the user

 _dbase.put(_uid,_pwd);

 Object[] params = {_uid,_pwd};

 String msg = MessageFormat.format(

 bundle.getString("registered_ok"),params);

 context.addMessage (null, new FacesMessage(msg));

 return "success";

 }

 public String Logon(){

 //get a handle to the current "context"

 FacesContext context = FacesContext.getCurrentInstance();

 //get a handle to the desired properties file

 ResourceBundle bundle =

 ResourceBundle.getBundle("net.thinksquared.reg.messages",

 context.getViewRoot().getLocale());

 //complex validations:

 // does the user exist?

 // does the given pwd match the one in database?

 Object pwd = _dbase.get(_uid);

 if(null == pwd){

328 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

 String msg = bundle.getString("user_not_registered");

 context.addMessage (null, new FacesMessage(msg));

 return "register";

 }else if(!pwd.equals(_pwd)){

 String msg = bundle.getString("wrong_password");

 String clientId =

 _container.findComponent("password").getClientId(context);

 context.addMessage(clientId, new FacesMessage(msg));

 return null;

 }

 //everything OK - go ahead and log in the user

 //code to log on user here...

 Object[] params = {_uid};

 String msg = MessageFormat.format(

 bundle.getString("logon_ok"),params);

 context.addMessage (null, new FacesMessage(msg));

 return "success";

 }

}

There are three sections in Listing 20-10. The first is a set of getters and setters for data.

JSF will call these functions during the Update Model Values phase. JSF knows it needs to

call these functions because we’ve used value binding to link the input fields to these

functions. (See Listings 20-11 and 20-12. The value bindings appear as value=#{...} on

the input fields.) This is similar to how you’d link Struts tag inputs to ActionForms.

The second section consists of a single getter and setter for a UI component. This should be

entirely new to you since Struts does not have UI components. We’ve bound the <h:form>

UI component to the user bean. (See Listings 20-11 and 20-12. This value binding appears

as binding=#{...} on the <h:form> tag.) The reason for wanting to have a copy of the UI

component corresponding to <h:form> will become obvious shortly.

The last section has two functions: one to register new users and another to log on

existing users. We’ll describe the Register() function only, since there are no new techni-

calities in Logon().

First, notice that the return value for Register() is a String. This string represents the

logical outcome (representing the “next” page) associated with a <navigation-case> (refer

to Listing 20-8).

The first thing we do in Register() is get a reference to a FacesContext object:

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 329

FacesContext context = FacesContext.getCurrentInstance();

This FacesContext object holds the root node of the UI tree and exposes a variety of useful

functions.

The next step is to get a message resource bundle so we can output messages to the View:

//get a handle to the desired properties file

ResourceBundle bundle =

 ResourceBundle.getBundle("net.thinksquared.reg.messages",

 context.getViewRoot().getLocale());

This is more unwieldy compared to Struts because JSF allows us to have multiple message

resource files. You have to locate these files by name and from the right locale. The statement

context.getViewRoot().getLocale()

obviously gets the current request’s locale. Note that getViewRoot() is a function on

FacesContext that returns the root node of the UI tree.

Once we have handles to a FacesContext and the right ResourceBundle, we can begin

complex validation:

//complex validation: user exists?

if(_dbase.get(_uid) != null){

 Object[] params = {_uid};

 String msg = MessageFormat.format(

 bundle.getString("user_exists"),params);

 String clientId =

 _container.findComponent("userId").getClientId(context);

 context.addMessage(clientId, new FacesMessage(msg));

 //returning null causes input page to be re-displayed

 return null;

}

The only bit of code to perform complex validation (checking that the user ID doesn’t

already exist) is in the clause of the if(...) statement. The body of the if() statement

deals getting the error message to display in the right place! This might seem a little daunting

at first, so let’s take it one step at a time. The error message in question is user_exists,

which the message resource file (see Listing 20-9) tells us is

user_exists = The userid {0} is taken. Please try another.

330 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

As you can see, it contains a single replacement variable, {0}, which we want to replace

with the user ID that the user keyed in. For example, if the user had keyed in the user ID

“Kermit”, we want the final error message to read

The userid Kermit is taken. Please try another.

Java has a function called MessageFormat to perform this substitution for you. That’s what

we’re doing in the first two lines:

Object[] params = {_uid};

String msg = MessageFormat.format(

 bundle.getString("user_exists"),params);

The function getString() on the ResourceBundle gets the error message corresponding to

the given key (user_exists). We then use MessageFormat to replace the {0} with the _uid,

the user ID. So, the msg variable holds the final error message. How can we get this to

display on the page? That’s what the subsequent lines do.

First, we need to know where to display the error message. With Struts, this is easy. But

in JSF, because there is the possibility that we’re using third-party components, it’s a little

trickier. Understanding why will help you get a better feel for JSF, so we’ll make a little

digression at this point.

Recall that in JSF, all the information from a page is stored in a UI tree. Each node

(instances of javax.faces.component.UIComponent) on the tree may be labeled using an id

attribute. Obviously, labels only make sense if they are unique—that’s the only way to

locate the node you want. The challenge is ensuring uniqueness while at the same time

allowing custom components.

Why? Well, a custom component might be composed of many subcomponents, each of

which has to be labeled uniquely. With Struts, ensuring uniqueness is easy, because all

you have to do is read the JSP for the page, and change the ids if needed. With custom

components in JSF, this will not always work, because there isn’t a one-to-one correspon-

dence between tags on the JSP and nodes in the UI tree.

An example of this is the treeview component we discussed earlier. The treeview UI

component creates new nodes in the UI tree at runtime. It might assign these nodes

unique labels, and this is where the difficulty comes in—what if the names of these nodes

clash with those from another custom component?

JSF solves these issues by using naming containers. A naming container is an ordinary

node on the UI tree that appends an additional prefix to all the ids of its child nodes. This

prefix is determined by JSF, so the final label of a node is indeed unique.

Most of the time, we’ll only know a node’s unprefixed id. In order to search for a particular

node using its unprefixed id, we have to either

• Have a reference to the naming container that contains the node

• Have a reference to another child node within the same naming container

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 331

We’ve taken the second route. That’s what the setContainer() function is for. It allows

JSF to save a copy of a UI component—the <h:form> UI component—which belongs to the

same naming container as the <h:message> tags we wish to locate. In Listing 20-10, we’ve

called this saved copy _container because <h:form> contains all the other UI components

we’re interested in (see Listing 20-11).

How does JSF know it needs to call this function? If you look at Listing 20-11, the decla-

ration for <h:form> is

<h:form binding="#{user.container}">

This causes the UI component corresponding to <h:form> to be saved on the User class

using setContainer().

Unfortunately, this isn’t the end of the story! When one of our pages is reloaded, or if

you navigate from one page to another, JSF also grafts the UI component retrieved from

the user backing bean using getContainer(). It grafts the previously stored <h:form> UI

component and all its child nodes into the place it sees the binding being made.

JSF does this to allow backing beans to alter the appearance of a page. Used correctly,

this is a very powerful technique for creating dynamic Views. You can use this technique

to add or remove or reposition elements (like toolbars, buttons, or mini-windows) in your

webapp.

In our case, though, we don’t want this behavior, so we must set the return value of

getContainer() to null. This tells JSF not to graft anything but to call setContainer() and

save a copy of the <h:form> instead.

With all this background, the next two lines should be easy to interpret:

String clientId =

 _container.findComponent("userId").getClientId(context);

context.addMessage(clientId, new FacesMessage(msg));

The first line uses _container to locate the UI component named userId using

findComponent(). getClientId() is then called on this UI component in order to get the

absolute id (with the naming container’s prefix added). The next line uses this absolute id

(clientId) to attach an error message for that UI component.

The last thing we do is to return null. This indicates to JSF that there is no “next” page—the

current page needs to be redisplayed. This is an advantage over Struts, which requires you

to declare the “input” page in struts-config.xml.

This brings us to an interesting topic: how exactly does JSF know that it should inter-

pret the return value of Register() as a “next” page? The answer is the JSF tag that calls

Register():

<h:commandButton action="#{user.Register}" ...

You can see that the button calls user.Register(), and interprets it as an “action.” Essentially,

the UI component corresponding to this <h:commandButton> calls Register(), then creates

an ActionEvent (similar to Struts’ ActionForward). ActionEvents are processed during the

332 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

Invoke Application phase. An ActionEvent with a null logical outcome causes the page to

be redisplayed.

This section contains a lot of information to take in one go, so don’t be discouraged if

you’re not confident about the details. I recommend you tackle the next section (after a

short break!) and then try out the Registration webapp exercise at the end of this section.

The View

The main Views in the Registration webapp are logon.jsp (Listing 20-11), to perform user

logon, and register.jsp (Listing 20-12), to register new users.

Listing 20-11. logon.jsp

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

<%@ taglib uri="http://myfaces.apache.org/extensions" prefix="x"%>

<f:loadBundle basename="net.thinksquared.reg.messages"

 var="reg_messages"/>

<html>

<body>

 <f:view>

 <h:panelGroup>

 <h:messages style="color:red" globalOnly="true"/>

 <h:outputText value="#{reg_messages['title']}"

 style="font-weight:bold" />

 <h:form binding="#{user.container}">

 <f:verbatim><table><tr><td></f:verbatim>

 <h:outputText value="#{reg_messages['user_id']}"/>

 <f:verbatim></td><td></f:verbatim>

 <h:inputText id="userId" value="#{user.userId}"

 required="true">

 <x:validateRegExpr pattern="^[A-Za-z0-9]{5,10}$" />

 </h:inputText>

 <h:message for="userId" />

 <f:verbatim></td></tr><tr><td></f:verbatim>

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 333

 <h:outputText value="#{reg_messages['password']}"/>

 <f:verbatim></td><td></f:verbatim>

 <h:inputText id="password" value="#{user.password}"

 required="true">

 <x:validateRegExpr pattern="^[A-Za-z0-9\-_]{5,10}$" />

 </h:inputText>

 <h:message for="password" />

 <f:verbatim></td></tr><tr><td></td><td></f:verbatim>

 <h:commandButton action="#{user.Logon}"

 value="#{reg_messages['logon']}"/>

 <f:verbatim></td></tr></table>
</f:verbatim>

 </h:form>

 </h:panelGroup>

 <h:commandLink action="register">

 <h:outputText value="#{reg_messages['new_user']}" />

 </h:commandLink>

 </f:view>

</body>

</html>

A few notes for you about Listing 20-11:

• <f:loadBundle> loads the given message resource bundle and exposes it with the

name defined by the var attribute.

• <f:view> is a mandatory root tag for JSF. There has to be one of these, and it must

contain all your other UI-related JSF tags.

• <h:panelGroup> acts like a container for one or more JSF tags.

• <h:messages> (note the plural) displays error or other messages saved to the associated

FacesContext using addMessage(). In Listing 20-11, the globalOnly attribute indicates

that only messages saved using the call context.addMessage(null, mymessage) are to

be displayed.

334 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

• <h:outputText> displays text. It’s like <bean:write> or <bean:message>, depending

on how you assign the value attribute. In Listing 20-11, we’ve only used it to display

prompts or labels from the message resource bundle.

• <h:form> allows you to submit form data.

• <f:verbatim> simply outputs the text in its body. From one point of view, this is a

failing of JSF, because the <f:verbatim>s can make your JSP very difficult to read

(we’ve stripped them out in Listing 20-12, so you can more easily see the important

bits). On the other hand, it might force you to use layout technologies like CSS to

handle layout for your webapp. Take a look at the Zen Garden website (see “Useful

Links”) for a taste of how powerful CSS can be if used to its full potential.

• <h:inputText> renders an input text field. The required=true indicates that this

field is mandatory. An error message will be posted for this UI component if you

submit a blank value.

• <x:validateRegExpr> is a MyFaces extension to JSF, allowing you to validate the

user input based on a regular expression. This is how you define validators for a

component—you nest the validator’s tag in the tag for the UI component.

• <h:commandButton> displays a button. The action attribute must either be a String

representing a logical outcome, or be bound to a function on a class, whose String

return value is interpreted as a logical outcome.

• <h:message> displays the first message associated with the UI component referred

to by the for attribute. <h:message> should be in the same naming container as the

component indicated by its for attribute.

• <h:commandLink> displays a hyperlink with the given outcome as the target.

We’ve explained the more difficult attributes in the previous section. It shouldn’t be

too difficult for you as a Struts developer to understand how these tags work.

Next, let’s take a look at the register.jsp page. The numerous <f:verbatim> tags to

control layout can make the code difficult to read, so in Listing 20-12, we’ve stripped them out.

Listing 20-12. register.jsp with the <f:verbatim> Tags Stripped Out

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

<%@ taglib uri="http://myfaces.apache.org/extensions" prefix="x"%>

<f:loadBundle basename="net.thinksquared.reg.messages"

 var="reg_messages"/>

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 335

<html>

<body>

 <f:view>

 <h:panelGroup>

 <h:messages style="color:red" globalOnly="true"/>

 <h:outputText value="#{reg_messages['title_reg']}"

 style="font-weight:bold" />

 <h:form binding="#{user.container}">

 <h:outputText value="#{reg_messages['user_id']}"/>

 <h:inputText id="userId"

 value="#{user.userId}" required="true">

 <x:validateRegExpr pattern="^[A-Za-z0-9]{5,10}$" />

 </h:inputText>

 <h:message for="userId" />

 <h:outputText value="#{reg_messages['password']}"/>

 <h:inputText id="password" value="#{user.password}"

 required="true">

 <x:validateRegExpr pattern="^[A-Za-z0-9\-_]{5,10}$" />

 </h:inputText>

 <h:message for="password" />

 <h:outputText value="#{reg_messages['password2']}"/>

 <h:inputText id="password2" value="" required="true">

 <x:validateEqual for="password" />

 </h:inputText>

 <h:message for="password2"/>

 <h:commandButton action="#{user.Register}"

 value="#{reg_messages['register']}"/>

 </h:form>

 </h:panelGroup>

 </f:view>

</body>

</html>

336 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

Listing 20-12 should hold no surprises for you, except for <x:validateEqual>, which is

a validator tag that tests whether two fields are equal. <x:validateEqual> is yet another

example of a MyFaces extension to JSF.

The other interesting thing about Listing 20-12 is that the retyped password is never

saved to the user backing bean. Instead, the value is discarded after the validation for

equality is run.

Try It Out!

The Registration webapp is available in the Source Code section of the Apress website at http://

www.apress.com, in the file jsf-registration-webapp.zip. Copy and unzip this to your develop-

ment folder and test out the webapp. Play with the code by adding new fields, validations, and new functions.

Where to Next?

I hope this short introduction has succeeded in whetting your interest in JSF. Here are a

few pointers on where to go next:

• Download the spec: The JSF spec is available for download. The spec is quite read-

able, and I’ve found it helpful as a reference. However, you should be aware that it’s

aimed at those wanting to implement JSF, so it’s not really an introduction to JSF.

• Download the source for MyFaces: I’ve found this immensely valuable as a guide to

the inner workings of JSF. You might hit a slight bump downloading the source,

though: at the time of this writing you need a Subversion client (see “Useful Links”)

to download the source. You also need Ant (again, see “Useful Links”) to automati-

cally download the dependencies (library JAR files) for MyFaces. This can be a pain,

so we’ve done this for you. We’ve put a copy of the MyFaces 1.1.1 source code in the

Source Code section of the Apress website. Also on the Apress website in the Source

Code section is a copy of Ant, which you must install in order to compile MyFaces.

The Ant distribution contains documentation on how to use Ant. Note that the

MyFaces Ant build file needs an Internet connection in order to work.

• Try out the MyFaces examples: MyFaces provides many useful components and

validators. The interested reader is encouraged to download the myfaces-examples.war

file available at the Apache site (see “Useful Links”) and give it a go. We haven’t

included this in the Source Code section of the Apress website because the MyFaces

team is adding interesting new components all the time, and we don’t want you to

miss out on the latest goodies.

• The JSF central site has many good JSF tutorials. I’ve also found the JSF FAQ website

very helpful. See “Useful Links” for both.

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 337

The next section provides a preview of the new Struts-Faces integration library. This

library allows you to use JSF with Struts, and lets you gracefully “upgrade” your existing

Struts applications.

Lab 20: The Struts-Faces Integration Library

The Struts-Faces integration library (“Useful Links” tells you where to download the latest

distribution) has been around for some time, but it’s only recently seen active development.

It’s essentially a separate JAR file that you can use to “JSF enable” your Struts apps with

minimum fuss—at least in theory! The release we’ll review in this lab (version 1.0) has a

few significant limitations, which we’ll discuss these as the lab progresses.

The approach we’ll take is to let you apply the integration library yourself to a very

simple “registration” Struts webapp.

■Note The code answers for this lab session are found in the Source Code section of the Apress website,

in the file lab-20-answers.zip.

Step 1: Preparing the Development Environment

The registration webapp is a pure Struts webapp, which you’ll transform so that it uses JSF

tags for the View tier instead of the rather limited Struts tags.

1. Unzip the contents of the registration.zip file in the Source Code section of the

Apress website, to a suitable development folder. This contains the source files for

a simple registration webapp.

2. Compile and deploy the registration webapp, then play with it so you know how it

works.

Step 2: Install JSF, JSTL, and the Struts-Faces Integration

Library

The Struts-Faces integration library requires a JSF 1.0+ implementation and JSTL installed.

Unfortunately, the library does not work with MyFaces. Instead, you’d have to use Sun’s

reference implementation, which is not included in the Source Code section of the Apress

website due to licensing restrictions. Complete the following:

338 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

1. Go to the Sun JSF download site (http://java.sun.com/j2ee/javaserverfaces/

download.html) and download the latest JSF reference implementation. Extract the

relevant JSF binaries, jsf-api.jar and jsf-impl.jar, and place them in the

.\registration\lib folder.

2. Extract jstl.jar and standard.jar, which are the JSTL binaries, from the

Struts distribution zip file in the Source Code section of the Apress website to the

.\registration\lib\ folder.

3. From the struts-faces.zip file in the Source Code section of the Apress website,

extract the JAR file called struts-faces.jar, and place it in .\registration\lib.

As you should know by now, the scripts for the Registration webapp copy the files in

.\registration\lib and place them in the webapp’s /WEB-INF/lib folder upon deployment.

Step 3: Edit web.xml and struts-config.xml

To initialize JSF and get the Struts-Faces library and struts-config.xml files to work, you’ll

need to follow these steps:

1. Declare the Standard Faces servlet. In web.xml, put in the following declaration:

<servlet>

 <servlet-name>faces</servlet-name>

 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

</servlet>

You need to pay special attention to the <load-on-startup> value; it has to be the

lowest one declared. If you have other servlets declared, then ensure that their

<load-on-startup> values are greater than the one associated for FacesServlet.

This ensures that FacesServlet gets initialized first.

2. Put in the standard JSF servlet mapping. In web.xml, put in the following servlet

mapping:

<servlet-mapping>

 <servlet-name>faces</servlet-name>

 <url-pattern>*.faces</url-pattern>

</servlet-mapping>

This tells Tomcat that the page URLs ending with .faces should be shuttled to the

servlet called faces, which as you can see from the earlier <serlvet> declaration is

FacesServlet.

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 339

3. Put in a special Struts Controller. In your struts-config.xml file, put in the following

<controller> element (just before the <message-resource> tag):

<controller>

 <set-property property="processorClass"

 value="org.apache.struts.faces.application.FacesRequestProcessor"/>

</controller>

■Note The registration webapp doesn’t use Tiles, so we’ve used the controller shown in the last step.

However, if your application does use Tiles, use FacesTilesRequestProcessor instead.

Step 4: Migrate Your Struts JSP Pages

The Struts-Faces TLD file contains tags that you can use in place of the Struts HTML and

Bean tag libraries. You are expected to use JSTL instead of the Struts Logic tag library and

nested properties syntax instead of the Nested tag library. The preceding comments apply

to the Struts-EL tags as well. You should continue to use the Tiles tag library as it is, though.

If you have an existing Struts application, you can migrate to JSF incrementally—you

don’t have to do it all in one go. If you have to migrate an existing app or you’re creating a

new one, there are a few things you need to do for each page.

First, declare the JSTL, JSF, and Struts-Faces taglibs in your JSPs. These must be in the

following order:

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<%@ taglib prefix="f" uri="http://java.sun.com/jsf/core" %>

<%@ taglib prefix="h" uri="http://java.sun.com/jsf/html" %>

<%@ taglib prefix="s" uri="http://struts.apache.org/tags-faces" %>

Obviously, you should remove declarations to HTML, Bean, Nested, or Logic tag

libraries on the page.

Next, put in the replacement tags. Table 20-1 shows the tags in the Struts-Faces taglib,

which are equivalents of certain tags in the HTML or Bean taglib.

You could use <s:loadMessages> instead of <f:loadMessages>. The difference between

the two is that <s:loadMessages> will make your Struts-declared Application.properties

file available to JSF tags.

These replacement tags have attributes similar to their Struts counterparts, but in some

cases, they are quite rudimentary. A prime example is <s:message>, which does not allow

replacement arguments, as <bean:message> does. In this instance, you should use the

much more powerful <h:outputFormat> tag, which does allow replacement arguments.

340 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

But, in order for JSF tags to read your Application.properties file, you’d have to expose it

with <s:loadMessages> like so:

<s:loadMessages var="messages"/>

...

<h:outputFormat value="#{messages['app.logon.prompt.success']} ">

 <f:param value="#{LogonForm.userid}"/>

</h:outputFormat>

When there is no equivalent tag, you’d use an appropriate JSF or JSTL tag instead.

Table 20-2 contains a few common JSF replacements you can use.

In your migration efforts, you’ll have to follow standard JSF rules, like putting in the

enclosing <f:view> tag. If you’re migrating Struts-EL tags, be sure to replace ${...} with

the JSF EL’s #{...}. The same applies, of course, to the Struts-Faces tags, since they are

just JSF extensions.

Now, change the form handler names. In your <s:form>s, you need to change the form

handler name from *.do to the path declared in struts-config.xml. For example, if you had

Table 20-1. Struts-Faces Tags and Their Nearest Pure Struts Equivalents

Tag Name Struts Counterpart

s:errors html:errors

s:form html:form

s:commandLink html:link

s:html html:html

s:write bean:write

s:message bean:message

s:javascript html:javascript

Table 20-2. Struts Tags and Their JSF Equivalents

Struts Tag Name JSF Replacement

<html:text property="myProp"> <h:inputText id="myprop" value="#{myFormBean.myProp}" >

<html:password ...> <h:inputSecret ...>

<html:hidden ...> <h:inputHidden ...>

<html:submit > <h:commandButton id="submit" type="SUBMIT"...>

<html:reset > <h:commandButton id="reset" type="RESET"...>

<html:cancel > <h:commandButton id="cancel" type="SUBMIT"...>

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 341

<html:form action="MyFormHandler.do" ...

this would now be

<s:form action="/MyFormHandler" ...

Note the leading slash.

Finally, make the necessary changes to .\registration\web\index.jsp. You’ll probably

have to refer to the JSF examples and notes from the previous section.

Step 5: Migrate the <forward>s and Inputs

Lastly, you need to migrate the <forward>s that point to the JSPs you’ve migrated.

■Caution Please pay careful attention here—only change a <forward> if you’ve migrated the JSP it

points to!

For each such forward, change the .jsp suffix of the target page to .faces. For example,

change

<forward name="login" path="/login.jsp" />

to

<forward name="login" path="/login.faces" />

Do not amend the actual extensions of the corresponding JSP pages! Similarly, you need

to change declarations of all affected input attributes on your <action-mapping>s to use

the .faces extension. For example, you’d change

<action input="/login.jsp” ...

to

<action input="/login.faces" ...

You should only change the inputs that point to migrated pages.

Step 6: Make Entry Points Forward to *.faces

All entry points to your webapp must forward to *.faces if that page was migrated to JSF.

For example, suppose the start page for your app was registration.jsp, which contained

Struts tags. You then migrate this page to JSF. You can’t call the page directly (refer to the

sidebar “Faces Requests” in the JSF introduction section earlier for details) from the browser.

342 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

You need to call it indirectly from another page, say index.jsp. This page would contain a

forward to registration.faces:

<jsp:forward page="registration.faces" />

Note that there is no leading slash. Make the appropriate change for the Registration

webapp.

Step 7: Amend Actions if Necessary

Throughout this book, we’ve asked you to use ActionMessages if you want to report complex

validation errors in your Action subclasses—and rightly so, since the old ActionErrors

class has been deprecated.

Unfortunately, the Struts-Faces integration library (version 1.0) only works with this depre-

cated ActionErrors class! If you use the kosher ActionMessages class, a ClassCastException is

thrown when you redisplay a page after a complex validation failure.

I’m sure that this will be remedied in the next version of the library, but in this lab, you’re

stuck with changing the ActionMessages instance in RegistrationAction to ActionErrors.

Do this now, then compile and deploy your app. You should be able to register a user.

Test that all simple and complex validations work. If you can’t get everything to work,

ensure that you haven’t made the following mistakes:

• Used #{} instead of ${} in your JSTL tags: JSF tags use the former while JSTL uses

the latter.

• Failed to manually give unique IDs to every JSF tag nested within any JSTL tags:

The symptom of this is a “Duplicate ID error” or something similar. In this case,

simply give unique IDs to each JSF tag (or JSF extension tag) nested within any JSTL

tags. Usually, you can get away with giving the <s:form> or <h:form> an ID.

If all else fails, don’t be ashamed to take a peek at the answers in the lab-20-answers.zip

file in the Source Code section of the Apress website.

■Note Due to licensing restrictions, the answers zip file does not have the Sun JSF reference implementation.

You have to download this yourself.

Step 8: Put in the Necessary <managed-bean> Declarations

This step addresses another shortcoming of the Struts-Faces integration library that you

might have noticed if you’ve got step 7 working: it’s that the RegistrationForm form bean

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 343

does not get instantiated when you click the browser’s refresh button after successfully

registering.

This can be easily fixed by fooling JSF to create the necessary form bean for you. You do

this by creating a blank faces-config.xml file, then putting in a <managed-bean> section

with the bean name exactly the same as the one in struts-config.xml (in our case, it’s

RegistrationForm).

This is a kludge, and I’m sure the problem will be addressed in future iterations of the

Struts-Faces library.

In a Nutshell

We’ve only scratched the surface of the Struts-Faces integration library in this lab session.

If you’re interested, you should try out the sample apps that come with the distribution.

You may also have noticed that except for using ActionErrors you don’t have to amend

the Action or ActionForm subclasses of your app. This of course is a huge plus, and is in

most cases much more desirable than migrating to a whole new framework like Shale.

However, you should be aware that the Struts-Faces library won’t always work. In an

initial draft for this section, I attempted to migrate the login webapp of Chapter 14, only to

discover that you can’t port Tiles that forward their views to other JSPs, which is what the

login webapp does. This is probably a JSF restriction, so it’s difficult to see how such issues

might be resolved in future versions of the Struts-Faces library. It might be possible to

amend the Tiles tags so that they work better with the Struts-Faces integration library.

The lesson here is that you need a new framework that addresses such issues—a reworking

of Struts from the ground up. That’s what Shale is all about.

Struts Shale Preview

As we’ve mentioned before, Shale is based on JSF. This means it inherits all of JSF’s advan-

tages, like a highly customizable View tier. But Shale adds many benefits on top of JSF.

In this section, we’ll walk you through the primary value-added areas of Shale. These fall

into two broad categories:

• A set of services and service options. (Don’t confuse these with web services. The

services here are akin to Struts plug-ins, and service options are simply ways to

configure Shale and its services.) Services include integration with the Validator

framework and a reworking of Tiles, now called “Clay.” A significant new addition

on top of these is Shale’s Dialog Manager, which makes control flow more trans-

parent. The services were designed with customization in mind, so Shale is easier to

customize and extend compared with Struts.

• Integration with other frameworks and technologies (Spring, Ajax, JNDI, etc.).

344 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

In my opinion, these and the advantages of JSF make Shale a worthy successor of

Struts. Unfortunately, technical superiority alone does not guarantee survival, and for the

reasons we’ve outlined in the sidebar at the start of this chapter (“Struts Ti and Struts

OverDrive”), Shale’s “successorship” from Struts classic is by no means a done deal.

ViewController

In JSF, backing beans are Plain Old Java Objects (POJOs). This gives you a lot of flexibility

in creating your backing beans, but it also means that your beans have to do a lot of things

“by hand.”

A good example is a realistic implementation of the user backing bean (see Listing 20-10).

In my implementation, I used a HashMap to simulate a database. In an actual implementa-

tion, you might have to create and release database connections, and these might be best

centralized instead of being repeated in functions like Logon() and Register().

Shale provides an interface called ViewController (see Listing 20-13), which contains a

few event-handling functions and a variable called postback.

Listing 20-13. Shale’s ViewController Interface

/**

Licensed under the Apache License, Version 2.0 (the "License"); you may not use

this file except in compliance with the License. You may obtain a copy of the

License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed

under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR

CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations

under the License.

**/

package org.apache.shale.view;

public interface ViewController{

 /**

 * Returns true if the page is called the second time around.

 */

 public boolean isPostBack();

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 345

 /**

 * Sets the "post back" flag.

 */

 public void setPostBack(boolean postBack);

 /**

 * Called after the JSF request processing lifecycle has been

 * completed for the current request.

 */

 public void destroy();

 /**

 * Called after this ViewController backing bean has been

 * instantiated, and after all of the property setters specified

 * above have been called, but before the JSF request processing

 * lifecycle processing has started.

 */

 public void init();

 /**

 * Called after the UI tree has been restored. So, it will NOT be

 * called if the page is displayed for the first time.

 */

 public void preprocess();

 /**

 * Called before the "Render Response" phase. This method

 * will be called only for the view that will actually be

 * rendered. For example, it will not be called if you have

 * performed navigation to a different view.

 */

 public void prerender();

}

If your managed bean implements the ViewController interface, Shale will call the

event-handling functions on your ViewController implementation at the appropriate

times (refer to the comments in Listing 20-13).

346 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

The idea is for you to centralize resource creation or destruction activities in these

functions.

■Note The class AbstractViewController implements ViewController, with a functioning imple-

mentation for isPostBack() and setPostBack(), and no-op implementations for the event handlers. If

you wish, you can extend this class for convenience.

One important gotcha is that you have to have the right name for your <managed-bean>.

Not any old name will do! Your managed bean’s name (we’re referring to the name declared

in faces-config.xml, not the classname of the backing bean) will have to match the name

of the associated the JSP page (referred to as a view identifier). Here are some examples:

• If the view identifier is /logon.jsp, then the managed bean must be named logon.

• If the view identifier is /admin/logon.jsp, then the managed bean must be named

admin$logon.

• If the view identifier is named /header.jsp, then the managed bean must be named

_header, because header alone is reserved in JSF.

From this, you can see that there’s a one-to-one relationship between managed beans

and your JSP pages. This is in contrast to the one-to-many relationship we’ve used for the

registration webapp.

All this might seem a little abstract, so we’ll apply the ViewController idea to a “realistic”

example—the Registration webapp, where database connections need to be created and

released. Listing 20-14 shows this class, with the logic stripped out for clarity.

Listing 20-14. User Backing Bean, Take 2

package net.thinksquared.reg;

//...other import statements omitted

org.apache.shale.view.AbstractViewController;

public class User extends AbstractViewController{

 Connection _connection; //connection to database

 //...other private variables

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 347

 //...constructor

 //...data get/set

 //...UI get/set

 //------------------------------------- Actions

 public String Register(){

 //use _connection to read and write to database

 }

 public String Logon(){

 //use _connection to read and write to database

 }

 //------------------------------------- for ViewController

 public void init(){

 //create _connection to database.

 }

 public void destroy(){

 //release _connection to database.

 }

}

You can see in Listing 20-14 how we’ve taken advantage of the facilities on ViewController

to centralize creation and release of the database connection.

Of course, because Shale assumes a one-to-one mapping between managed beans and

Views, the <managed-bean> declaration (see Listing 20-8) has to be changed as shown in

Listing 20-15.

348 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

Listing 20-15. New <managed-bean> Declarations for the Registration Webapp

 <managed-bean>

 <managed-bean-name>logon</managed-bean-name>

 <managed-bean-class>net.thinksquared.reg.User</managed-bean-class>

 <managed-bean-scope>request</managed-bean-scope>

 </managed-bean>

 <managed-bean>

 <managed-bean-name>register</managed-bean-name>

 <managed-bean-class>net.thinksquared.reg.User</managed-bean-class>

 <managed-bean-scope>request</managed-bean-scope>

 </managed-bean>

As you can see, we’ve used the naming rule we discussed earlier. Also, the binding and

value attributes in register.jsp and logon.jsp will have to change. Instead of using

#{used.XXX}, you have to use either #{logon.XXX} or #{register.XXX}, as appropriate.

Dialog Manager

According to the Shale website, Shale’s Dialog Manager is a “mechanism to define a

‘conversation’ with a user that requires multiple HTTP requests to implement, modeled

as a state diagram.”

So, a dialog is an interaction with the user spanning multiple HTTP requests. Shale lets

you model a dialog (you can define more than one dialog) in an XML file, usually called

dialog-config.xml. You must declare this in your web.xml file like so:

<context-param>

 <param-name>org.apache.shale.dialog.CONFIGURATION</param-name>

 <param-value>/WEB-INF/dialog-config.xml</param-value>

</context-param>

If you have more than one dialog configuration file, simply add them to the declaration

using a comma as a separator.

Each “dialog” is modeled as a state diagram. Listing 20-16 shows how we might define

a couple of dialogs for the Registration webapp.

Listing 20-16. Dialogs for the Registration Webapp (dialog-config.xml)

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE dialogs PUBLIC

 "-//Apache Software Foundation//DTD Shale Dialog Configuration 1.0//EN"

 "http://struts.apache.org/dtds/shale-dialog-config_1_0.dtd">

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 349

<dialogs>

 <dialog name="Logon" start="Perform Logon">

 <action name="Perform Logon" method="#{logon.Logon}">

 <transition outcome="success" target="Exit"/>

 <transition outcome="register" target="Register User"/>

 </action>

 <subdialog name="Register User" dialogName="Register User">

 <transition outcome="success" target="Exit"/>

 </subdialog>

 <end name="Exit" viewId="/success.jsp"/>

 </dialog>

 <dialog name="Register User" start="Registration Form">

 <view name="Registration Form" viewId="/register.jsp">

 <transition outcome="register" target="Perform Registration"/>

 </view>

 <action name="Perform Registration" method="#{register.Register}">

 <transition outcome="success" target="Exit"/>

 </action>

 <end name="Exit" viewId="/success.jsp"/>

 </dialog>

</dialogs>

The logic of Listing 20-16 should be obvious. Notice that we’ve used the new

<managed-bean> declarations of Listing 20-15 here.

■Note The Registration webapp doesn’t fully reveal the usefulness of Shale’s dialogs, because the user

interaction spans only a couple of pages.

350 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

Notice that in Listing 20-16 all the transition information is contained in the

dialog-config.xml file. But in our earlier JSF implementation, the JSP pages invoked

the functions on the user backing bean directly like so:

<h:commandButton action="#{user.Logon}" ... //see Listing 20-11

<h:commandLink action="register"> ... //see Listing 20-11

<h:commandButton action="#{user.Register}" ... //see Listing 20-12

We’ll have to change these to

<h:commandButton action="dialog:Logon" ...

<h:commandLink action="dialog:Register User"> ...

<h:commandButton action="register" ...

because the navigation is now performed using Shale’s Dialog Manager, not by JSF’s

default navigation handler. Notice that the action attributes now begin with dialog:XXX,

with XXX the “name” of the dialog. The command button that submits the registration

information (on register.jsp):

<h:commandButton action="register" ...

is different because it needs to return a logical outcome and not enter into a dialog directly:

<view name="Registration Form" viewId="/register.jsp">

 <transition outcome="register" target="Perform Registration"/>

</view>

Lastly, note that you can mix both JSF-type navigation and Shale’s dialog-based navigation.

All you need to do in order to enter a Shale dialog is to use a logical outcome named

dialog:XXX. In our case, we’ve moved all the navigation elements from Listing 20-8 into the

dialog config file, so the faces-config.xml file should now only contain the <managed-bean>

declarations.

Exercise

Download the latest copy of the Shale distribution (see “Useful Links”) and implement the Registration

webapp as we’ve discussed up to this point.

Integration with the Validator Framework

At the time of this writing, the integration with the Validator framework does not include

the use of a validations.xml file in which you can declare your validations.

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 351

Instead, Shale’s approach to integration with the Validator framework is very similar to

the MyFaces approach of creating extensions to JSF. The one big advantage Shale has is

that you can create client-side validations, as you can with Struts.

For server-side validations, however, the MyFaces approach appears cleaner, at least

for the moment. Shale is a moving target!

Here’s how to use Shale’s validator tags:

1. Add validator-rules.xml from the Commons Validator distribution to your

WEB-INF directory. You can use the one that comes with classic Struts.

2. Put in this taglib declaration: <%@ taglib uri="http://struts.apache.org/shale/

core" prefix="s" %>.

3. Add Shale’s validators to JSF input components with <s:commonsValidator>.

If you want client-side validation, you need to add the extra attribute

onsubmit='validateForm(this)' and the child tag <s:validatorScript functionName=

"validateForm"/> to the <h:form>. The former invokes the JavaScript functions to validate

the form, while the latter instructs Shale to paste in the JavaScript validation code.

Listing 20-17 shows how we might rewrite logon.jsp (see Listing 20-11) using Shale’s

Validator framework. As usual, we’ve stripped out the <f:verbatim> tags.

Listing 20-17. logon.jsp Using Shale

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

<%@ taglib uri="http://struts.apache.org/shale/core" prefix="s"%>

<f:loadBundle basename="net.thinksquared.reg.messages"

 var="reg_messages"/>

<html>

<body>

 <f:view>

 <h:panelGroup>

 <h:messages style="color:red" globalOnly="true"/>

 <h:outputText value="#{reg_messages['title_reg']}"

 style="font-weight:bold" />

 <h:form binding="#{user.container}"

 onsubmit=”validateForm(this)”>

 <h:outputText value="#{reg_messages['user_id']}"/>

352 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

 <h:inputText id="userId"

 value="#{logon.userId}" required="true">

 <s:commonsValidator type="mask"

 mask="^[A-Za-z0-9]{5,10}$"

 arg="#{reg_messages['bad_user_id']}"

 server="true"

 client="true"/>

 </h:inputText>

 <h:message for="userId" />

 <h:outputText value="#{reg_messages['password']}"/>

 <h:inputText id="password" value="#{logon.password}"

 required="true">

 <s:commonsValidator type="mask"

 mask="^[A-Za-z0-9\-_]{5,10}$"

 arg="#{reg_messages['bad_user_id']}"

 server="true"

 client="true"/>

 </h:inputText>

 <h:message for="password" />

 <h:commandButton action="dialog:Logon"

 value="#{reg_messages['logon']}"/>

 <s:validatorScript functionName="validateForm"/>

 </h:form>

 <h:commandLink action="dialog:Register User">

 <h:outputText value="#{reg_messages['new_user']}" />

 </h:commandLink>

 </h:panelGroup>

 </f:view>

</body>

</html>

Notice that we’ve put in the changes we made in the previous two subsections.

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 353

JNDI Integration

JNDI (Java Naming and Directory Interface) is a Java Enterprise Edition feature that

obtains handles to resources that are declared in either web.xml or configuration settings

of an application server.

A thorough discussion of JNDI is outside the scope of this book. However, the Shale

website gives a couple of simple examples, variations of which we’ll describe here.

JNDI addresses the concept of environment entries, which are simply variable declara-

tions in web.xml. For example, suppose your webapp had to display your company’s logo

on each page. You could use a message resource to store the URL, but another way is to

use an environment entry (I’m not recommending this method, but just using it as an

illustration).

First, you declare the environment entry in web.xml:

<env-entry>

 <description>URL to company logo GIF</description>

 <env-entry-name>logo</env-entry-name>

 <env-entry-value>http://www.myco.myapp/logo.gif</env-entry-value>

 <env-entry-type>java.lang.String<env-entry-type>

</env-entry>

Your JSF tags can use Shale’s JNDI integration feature to access this environment entry:

<h:graphicImage value=#{jndi:logo} />

That’s it. The jndi: prefix tells Shale that the binding refers to a JNDI resource, in this

case, the one environment entry named logo.

A more realistic scenario involves getting a database connection. JNDI allows you to

declare data source references in web.xml. For example, you might define a data source

reference to your company’s personnel database like so:

<resource-ref>

 <description>MyCo Personnel Database</description>

 <res-ref-name>jdbc/MyCoPersonnelDB</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

</resource-ref>

Typically, you’d want to create and release the database connection in your backing beans.

Listing 20-18 shows how we can use Shale’s JNDI integration to provide an implementa-

tion of init() of Listing 20-14.

354 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

Listing 20-18. An Implementation of User.init()

public void init(){

 //get faces context

 FacesContext context = FacesContext.getCurrentInstance();

 //create _connection to database.

 ValueBinding vb =

 context.getApplication()

 .createValueBinding("#{jndi['jdbc/MyCoPersonnelDB'].connection}");

 _connection = (Connection) vb.getValue(context);

}

Reusable Views with Clay

Clay is a subframework of Shale. It is essentially a custom JSF custom UI component,

which acts as a stand-in for a sub-UI tree defined elsewhere. This idea should not be new

to you. Tiles does something similar—you define the UI in a tiles-def.xml file, then use

a Tiles tag to indicate where you want the UI placed.

Clay does the same, but provides more options for you to build the UI tree. Any mean-

ingful exploration of Clay would require a whole chapter by itself, so I will leave it to you

to explore this interesting technology on your own.

Server-Side Ajax Support

Ajax is not a single technology but refers to a broad spectrum of technologies character-

ized by their use of client-side JavaScripts and XML to pass data between client and server.

Server-side Ajax support (aka remoting) involves extracting data from the Model tier

and serializing it as XML for delivery to the client.

Shale’s remoting support is mainly focused on the delivery of XML data to the client

(e.g., the org.apache.shale.remote.ResponseWrapper class to write XML), and management of

the remote sessions.

Test Framework

Unit testing is the process of incrementally building and testing your code. In the unit-

testing paradigm, you code a little, then test a little, and continue until your app is done.

The tests you create are Java classes that you need to run in sequence, each testing portions of

your code. JUnit (see “Useful Links”) is the universally used unit-testing framework of the

Java world.

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 355

Believe me, unit testing can save you a lot of trouble, even on moderately complex

applications. Once you’ve tried it, you’ll wonder how you ever managed to produce Java

code in the past.

Unfortunately, unit testing has made little inroads into the testing of webapps. Shale

supports unit testing by providing you with a set of mock objects and JUnit test case base

classes. Check out the JUnit website for more details.

Exercise

Download the latest Shale distribution (see “Useful Links”) and try out the example use-cases webapp.

JSF vs. Shale vs. Struts

Ultimately, which technology you choose (JSF, Shale, or Struts) depends on your require-

ments. Having said that, if you’re comfortable with the Apache offerings, then you’re likely to

commit to Shale over pure JSF. Shale brings so much to the table that using it over pure

JSF is a no-brainer.

The Achilles’ heel of Shale is that it’s in a state of flux, like any new piece of software.

At the time of this writing many of the services are marked as “Developing,” meaning they

could change at any time. I certainly expect Shale to change substantially by the time you

read this book. So, if you’re planning to use Shale, you should carefully research the features

you need to ensure that they are fairly stable. The Struts mailing list (Shale shares this with

classic Struts, so you should mark your emails with [Shale]) and the Shale documentation

are good resources.

The choice between Struts and Shale is more difficult to make. If you have an existing

Struts webapp, it’s advisable to continue using Struts, because the cost of porting your

existing JSP pages to using JSF tags is usually prohibitive.

For new projects, it’s difficult to give a clear answer. The Struts developers themselves

and those involved in JSF and Shale appear to unconditionally advocate moving to Shale

or JSF. I would be more circumspect, because as you’ve seen, JSF (and therefore Shale) is

more complex than Struts. It isn’t rocket science, but there’s definitely a sharp learning

curve involved.

However, if you find you’ve been using strange tricks to force Struts into getting your

webapp to behave like a desktop application, then Shale is definitely something you’d

want to explore along with other web application frameworks like Spring.

I’ve avoided giving you a feature-by-feature comparison of Struts, JSF, and Shale.

Although they are all, broadly speaking, web application frameworks, their “sweetspots”

(the scenarios in which they shine) are different.

356 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

Instead, Table 20-3 compares classic Struts, JSF, and Shale to help you answer a simple

question: “I’m starting a new project. Should I use Struts or Shale or JSF?” Take the ratings

as being relative to each other. Please don’t take them to be absolute in any sense—“easy”

for example, means “easy compared to” the other options.

Table 20-3 doesn’t take into account the Struts-Faces integration library. Even if it did,

probably not much would change. Struts suffers from design issues that won’t go away

easily. These deficiencies (poor extensibility, code modularity and code reuse) come to

the fore when you’re developing more complex applications. The Struts-Faces library,

though useful, doesn’t address architectural issues.

Table 20-3. Comparison Matrix for Struts, JSF and Shale

Factor Struts JSF

(MyFaces)

Shale Comments

Learning curve Gentle Average Steep Shale’s learning curve is steepest because it
introduces additional services on top of JSF.

Developing
simple webapps

Easy Difficult Average By a “simple” webapp I mean something like
LILLDEP in complexity. Many webapps cur-
rently fall into this category. Shale, with its
Dialog Manager, improves page transition
maintenance. This is a definite plus over
pure JSF.

Developing
complex
webapps

Very
difficult

Average Average/Easy By “complex” webapps I mean a webapp
that (for example) replicates the full func-
tionality of OpenOffice Writer (or Word).
Shale, with its extensibility, and extras (like
support for Ajax, dialogs, etc.) makes life
much better.

Extensibility Poor Very good Good Struts only offers plug-ins for extensibility
(and more limited extensibility in the form of
custom loaders for the configuration file).
You can do a lot with the extensibility points
that Struts offers, but you’d have to reinvent
the wheel sometimes, as I did in Chapter 19.
Both JSF and Shale offer much more struc-
tured ways in which you can extend them.

Longevity High Very high Moderate/Low By longevity, I mean “What’s the probability
of this framework being around in five years’
time?” These are my forecasts: JSF’s survival
is assured, given Sun’s endorsement of it as a
spec, and as the only credible components-
based web framework for the Java platform.
Struts classic will probably survive because
of its huge user base. Shale might be over-
shadowed by competing technologies in the
same niche, ones that don’t pretend to be a
“Struts successor.” So it’s very unfortunate
that it’s named Struts Shale. People then
tend to think in terms of Struts classic versus
Struts Shale, when in fact, they best apply to
different niches.

C H A P T E R 2 0 ■ J A V A S E R V E R F A CE S A N D S T R U T S S H A L E 357

Useful Links

• The official JSF specification: http://java.sun.com/j2ee/javaserverfaces/

download.html

• MyFaces website: http://myfaces.apache.org/

• Struts-Faces integration library download site: http://jakarta.apache.org/site/

binindex.cgi

• The Sun JSF download site: http://java.sun.com/j2ee/javaserverfaces/

download.html

• The official Shale website: http://struts.apache.org/struts-shale/index.html

• Struts Ti website: http://struts.apache.org/struts-sandbox/struts-ti/index.html

• WebWork website: www.opensymphony.com/webwork/

• Struts OverDrive website: http://opensource2.atlassian.com/confluence/oss/

display/OVR/Home

Ease of
upgrading

Easy Easy Difficult If classic Struts remains backward compati-
ble, then obviously it’s easy to upgrade. JSF
is a mature spec, so you shouldn’t expect
surprises there either. Shale, on the other
hand, is changing (at the time of this writing),
so you might experience difficulty upgrad-
ing to a newer version.

Code reuse Low High Average Code reuse becomes important in more com-
plex projects, so the ratings given here apply
mainly to them. JSF was built with reuse and
extensibility foremost.

Modular Code Low Average Average It’s difficult to make modular code with
Struts for complex webapps. You might have
gotten a glimpse of this in Lab 14. It’s easy to
create modular code with JSF if you know
how, but it’s also easy to make a mess of it.
Code modularity impacts maintenance and
development. The more modular the code,
the easier it is to maintain and develop. See
the answer for the question raised in Chapter 1,
given in Appendix D, for a short discussion
of this.

Table 20-3. Comparison Matrix for Struts, JSF and Shale

Factor Struts JSF

(MyFaces)

Shale Comments

358 C H A P T E R 2 0 ■ JA V A S E R V E R F A C E S A N D S T R U T S S H A L E

• Spring website: www.springframework.org

• Foundations of Ajax (Apress, 2005): www.apress.com/book/bookDisplay.html?bID=10042

• CSS Zen Garden: www.csszengarden.com

• Subversion website: http://subversion.tigris.org (and see http://svnbook.

red-bean.com for Version Control with Subversion, a free book about Subversion)

• Ant website: http://ant.apache.org

• JUnit page: www.junit.org

• The JSF Central website: www.jsfcentral.com

• The JSF FAQ website: www.jsf-faq.com

Summary

• JSF is the new Java standard for the View tier of modern Java webapps.

• JSF is a specification. One open source implementation is MyFaces from Apache.

• The primary purpose of JSF is the management of UI components as displayed in a

web browser.

• JSF goes a long way in allowing the creation of webapps that behave like desktop

applications.

• Shale extends JSF past the View tier to include integration with Apache Commons

projects (like Validator), improves complex navigation (using dialogs), and much more.

• Despite its name, Struts Shale is not a “drop-in” replacement for classic Struts.

• Struts and JSF/Shale serve different niches. Struts works well for simple webapps,

but not for more complex ones. Shale addresses the needs of more complicated

web applications.

• If you’re interested in using JSF incrementally with Struts without having to completely

redesign your webapp, consider using the Struts-Faces integration library.

359

■ ■ ■

A P P E N D I X A

Frameworks for the Model

In this appendix, I’ll provide simple examples of how to use Hibernate and Torque, and

also (shameless plug) a simple, open source, “classes that persist” framework called Lisptorq,

developed by the company I work for.

I’ll illustrate the use of these persistence frameworks with the Registration webapp

I first introduced in Chapter 5. I’ll show you how to persist different versions of the User

class outlined in Listing A-1.

Listing A-1. Skeleton for the Registration Webapp Model

public class User{

 protected String _userId = null;

 protected String _password = null;

 /* Bean-like getters and setters */

 public String getUserId(){

 return _userId;

 }

 public String setUserId(String userId){

 _userId = userId;

 }

 public String getPassword(){

 return _password;

 }

 public String setPassword(String password){

 _password = password;

 }

360 A P P E N D I X A ■ F R A M E W O R K S F O R T H E M O D E L

 /**

 * Checks if the userid exists.

 */

 public static boolean exists(String userid){

 //implementation omitted

 }

 /**

 * Saves the _userid and _password pair

 */

 public void save() throws Exception{

 //implementation omitted

 }

}

Getting the Software

All three persistence frameworks discussed here are open source, and may be obtained

freely from their websites:

• Hibernate: www.hibernate.org

• Torque: http://db.apache.org/torque/

• Lisptorq: www.thinksquared.net/dev/lisptorq/

Both Hibernate and Torque require some setup in order for you to use them in your

projects. Consult their respective websites for installation instructions.

Lisptorq, on the other hand, was specially designed to be easy to use and experiment

with. You have to copy only two JAR files: a Java Lisp interpreter called jlisp and the Lisptorq

JAR file, lisptorq.jar, which contains the LISP programs that constitute Lisptorq. Both of

these are in the Source Code section of the Apress website, found at http://www.

apress.com, but you should download the latest files from the URL listed earlier.

Because Lisptorq is simple to understand and use, I’ll introduce it first, and give you

some practice using it in Lab A. I’ll then redo the Registration webapp using Hibernate

and Torque.

Lisptorq

Lisptorq is a code generator, and it produces Java source code given a database schema.

These generated classes constitute the Model tier of your webapp.

AP P E N D I X A ■ F R A M E W O R K S F O R T H E M O D E L 361

As an example, Listing A-2 shows how you might define the database schema for the

Registration webapp using Lisptorq. There’s just one table called user with two fields,

user_id and password.

Listing A-2. Defining the user Table in Lisptorq

define database

(

 (user

 (user_id (REQUIRED PRIMARY (VARCHAR 32)))

 (password (REQUIRED (VARCHAR 32)))

)

)

Listing A-2 should be self-explanatory. Both the user_id and password fields are

mandatory, and the user_id field is used as a primary key.

When Lisptorq is run on the schema described by Listing A-2 (I’ll show you how in the

following lab), the output is four Model classes, plus four other helper classes. In general,

for each table on the database schema, four Model classes are generated.

The first two are called data object classes, which are really JavaBeans with properties

for each column on the table. Persistence is handled by peer classes, which have methods

for saving, deleting, and searching for data objects on the database. So, the generated

Model classes for Listing A-2 using Lisptorq would be

• BaseUser: Contains getters and setters for user_id and password. It also contains

a save() method to persist the data in the class.

• BaseUserPeer: Contains functions to persist a BaseUser class. It contains functions

like doSave(), doDelete(), and doSelect(), which save, delete, and search for Users.

• User: An empty class representing the user. You can write your own additional

functions in this class. User extends BaseUser.

• UserPeer: An empty subclass of BaseUserPeer. This class lets you extend the func-

tionality of BaseUserPeer.

Having four classes for one database entity might seem a little complicated, but there’s

a method to the madness. The User class (a data object) holds data while the UserPeer

classes (peer classes) are used to save, delete, or retrieve data objects from the database.

The Base classes contain autogenerated functions that do the real work. The non-Base

classes (User and UserPeer) are given to you to add additional functionality on top of the

Base classes.

Listing A-3 shows how you might save the user ID and password data using the

User class.

362 A P P E N D I X A ■ F R A M E W O R K S F O R T H E M O D E L

Listing A-3. Saving a Lisptorq-Generated User Bean

 User u = new User();

 u.setUserId("kolmogorov");

 u.setPassword("turbulence23");

 u.save();

These few lines do a lot behind the scenes: SQL is generated to save the user ID and

password. Using Model classes saves you from writing a single line of SQL yourself!

In addition to the four model classes (remember, four are created per table), Lisptorq

always generates four helper classes: Criteria, Database, DatabaseSetup, and Scroller:

• Criteria allows you to create queries without using SQL.

• Database manages connections to the database.

• DatabaseSetup gives you a main() function you can call to set up your database.

You’d obviously need to use this class just once.

• Scroller is an interface that extends java.util.Iterator. It represents an iterator

that can iterate either forward (using the usual hasNext() and next()) or backward

(using hasPrevious() and previous()). You may also position the “cursor” using

absolute().

Listing A-4 is an implementation of the exists() function of Listing A-1 using the

Criteria class as well as the User and UserPeer Model classes.

Listing A-4. An Implementation of exists() using the Criteria and Model Classes

public static boolean exists(String userId){

 Criteria crit = new Criteria();

 crit.add(User.USER_ID,userId);

 return UserPeer.doSelect(crit).iterator().hasNext();

}

Lisptorq currently produces generated code optimized for Derby SQL. Derby is a Java

embedded database, currently being “incubated” at Apache. It was donated by IBM, and

was previously the proprietary Java embedded database called Cloudscape. It is one of the

few open source databases available that support Atomicity, Consistency, Isolation, and

Durability, or ACID (See “Useful Links”). The JAR file for Derby (derby.jar) is in the

Source Code section of the Apress website at http://www.apress.com.

AP P E N D I X A ■ F R A M E W O R K S F O R T H E M O D E L 363

Lab A: Test Driving Lisptorq

I hope the previous section has piqued your interest in using Model classes. To get your

toes wet, in this lab session you’ll develop a simple application to store and retrieve data

using Lisptorq-generated Model classes.

In order for you to complete this lab, you must refer to the Lisptorq manual at

www.thinksquared.net/dev/lisptorq/.

Step 1: Preparing the Development Environment

1. Create a folder in your development environment called lisptorq.

2. Create a .\lib subfolder within this folder.

3. Extract jlisp.jar, the LISP interpreter found in jlisp_0.2.zip in the Source Code

section of the Apress website at http://www.apress.com, into .\lib.

4. Save lisptorq.jar in the Source Code section of the Apress website into .\lib.

5. Save derby.jar, the Derby database driver in the Source Code section of the Apress

website, into the development .\lib folder.

Step 2: Writing the Database Schema

In what follows, we will create a simple bookstore app, in which we’ll store books along

with publisher and author information. (This app originally appeared in Apache Torque’s

tutorial.) The database has three tables:

• author: Has four columns: author_id, first_name, last_name, and full_name. Make

author_id an autogenerated field. It should also be a primary key for this table.

• publisher: Has just two columns: publisher_id and name. Make publisher_id an

autogenerated field. It should also be a primary key for this table.

• book: Has four columns: title and ISBN to hold data; author_id, which is a foreign

key to the author_id column in the author table; and publisher_id, which is a

foreign key to the publisher table.

It should be fairly transparent what the three tables represent. Apart from the three ID

columns, which should be INTEGERs, the other columns should be (VARCHAR 255).

You need to complete the following:

364 A P P E N D I X A ■ F R A M E W O R K S F O R T H E M O D E L

1. Create a new text file called main.lisp in the Lisptorq development folder.

2. Open this up with Notepad (or your favorite IDE), and write the Lisptorq database

schema for this database. You will certainly need help—please refer to the Lisptorq

manual at www.thinksquared.net/dev/lisptorq/.

Step 3: Specifying the Database Settings

Derby is an embedded database, so you have to give it a folder to store the database files,

and you have to specify a system property called derby-home. These tasks are done for you

by Lisptorq’s generated helper classes, but you have to supply the information.

Here are the configuration parameters you must specify:

• database-type should be set to derby.

• database-name should be set to bookstore.

• derby-home should be set to ./bookstore.

• package should be set to net.bookstore.

Again, refer to the online manual for help on how to set these configuration parameters.

database-type is set to derby because we’re using the Derby database for this lab.

database-name specifies how the generated classes will internally refer to the database.

The derby-home setting is required by Derby, and is a path that points to the folder that

contains the database files. You do not have to create this folder yourself; it will be done

for you by the DatabaseSetup program. Finally, the package setting is the package in which

you would like to place the generated classes.

Step 4: Generate the Java Files

First, enter (lisptorq:generate database) at the end of main.lisp. This command is a

request to generate the Model classes. Next, run main.lisp in order to generate all the

Model tier source code files:

java -classpath .\lib\jlisp.jar;.\lib\lisptorq.jar

 net.thinksquared.jlisp.Loader main.lisp

If all goes well, you should see 16 files (four for each table plus four helper classes)

in the development folder.

The next step is to write a test program to write and retrieve records.

AP P E N D I X A ■ F R A M E W O R K S F O R T H E M O D E L 365

Step 5: Writing the Test Program

Write a simple test program in the file Test.java to store the following information:

• Authors: Lewis Carroll, Harold Edwards, Arthur Conan Doyle

• Publishers: Dover Books, Macmillan Publishers

• Books:

• Alice in Wonderland, by Lewis Carroll, Dover Books

• Riemann’s Zeta Function, by Harold Edwards, Dover Books

• The Sherlock Holmes Casebook, by A. C. Doyle, Macmillan Publishers

• Through the Looking Glass, by Lewis Carroll, Macmillan Publishers

Enter this information into the relevant data objects, and then save them. Remember

that Books require foreign keys. How will you specify these?

Once the data is saved, run the following queries:

• List all books and their authors from Dover Books.

• List all the publishers that carry books by Lewis Carroll.

Again, you should refer to the online manual for help.

Step 6: Initializing the Database

Compile your work (javac *.java) and then run DatabaseSetup to create the database:

java -classpath ./lib/derby.jar org.bookstore.DatabaseSetup

You should see the database files created in the .\bookstore folder.

Step 7: Running the Test Program

Finally, run your Test program with the command

java -classpath ./lib/derby.jar org.bookstore.Test

Play with this simple application, until you are thoroughly familiar with the Model

classes. Try to extend the functionality beyond that described here. Examine the database

schema for LILLDEP (described in a later section in this appendix).

Next, let’s see how to use Torque for the Registration webapp.

366 A P P E N D I X A ■ F R A M E W O R K S F O R T H E M O D E L

Using Torque for the Registration Webapp

Like Lisptorq, Torque also autogenerates Java source code for you. In fact, the data object

and peer classes and the functions on them are very similar to those generated by Lisptorq

(that is, in fact, where the torq in Lisptorq comes from).

I won’t discuss the installation and setup of Torque here—you should refer to the

Torque website (see “Useful Links”) for details. However, I will illustrate its use with the

Registration webapp. Unlike Lisptorq, Torque uses XML to specify the database schema.

The user table is described in Torque’s XML schema in Listing A-5.

Listing A-5. Torque’s XML Description of the user Table

<?xml version="1.0" encoding="ISO-8859-1" standalone="no"?>

<!DOCTYPE database SYSTEM

 "http://db.apache.org/torque/dtd/database_3_1.dtd">

<database name="registration">

 <table name="user" description="Table of registered users">

 <column

 name="user_id"

 required="true"

 primaryKey="true"

 type="VARCHAR"

 size="32"/>

 <column

 name="password"

 required="true"

 type="VARCHAR"

 size="32"/>

 </table>

</database>

The XML is quite self-explanatory. Torque’s output from this XML consists of the usual

four classes (data object and peer classes), as it did for Lisptorq. So if you know how to use

Lisptorq, you know how to use Torque.

For example, the exists() function (see Listing A-4) using Torque is provided in

Listing A-6. As you can see, compared with Listing A-4 there is very little difference.

AP P E N D I X A ■ F R A M E W O R K S F O R T H E M O D E L 367

Listing A-6. An Implementation of exists() Using Torque

public static boolean exists(String userId){

 Criteria crit = new Criteria();

 crit.add(UserPeer.USER_ID,userId);

 return UserPeer.doSelect(crit).iterator().hasNext();

}

The central idea behind both these frameworks is that you have special Model classes,

custom built by the framework for your webapp. Hibernate takes a different tack, allowing

you to persist any JavaBean. Unfortunately, with flexibility comes more complexity, but

Hibernate does an admirable job of keeping this to a minimum. We’ll see how Hibernate

works for the Registration webapp next.

Using Hibernate for the Registration Webapp

Hibernate can persist any Java object or collection of objects, as long as they follow the

JavaBeans convention: each property of the Java class must have associated getXXX and

setXXX methods.

As with Torque, some setup is required in order for you to use Hibernate. Consult the

Hibernate website (see “Useful Links”) for details. In this section, I’ll focus on showing

how you might use Hibernate as the Model tier for the Registration webapp.

The User class (reproduced in Listing A-7) does follow this convention, since both the

_userId and _password variables have associated getters and setters.

Listing A-7. The User Bean

package net.thinksquared.registration.data;

public class User{

 protected String _userId = null;

 protected String _password = null;

 public String getUserId(){

 return _userId;

 }

 public String setUserId(String userId){

 _userId = userId;

 }

368 A P P E N D I X A ■ F R A M E W O R K S F O R T H E M O D E L

 public String getPassword(){

 return _password;

 }

 public String setPassword(String password){

 _password = password;

 }

}

For each bean you want to persist using Hibernate, you have to create an XML description

of it, which essentially maps the bean’s properties to tables and columns in your database.

The XML mapping for User appears in Listing A-8.

Listing A-8. Hibernate XML Description of the User Bean

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE hibernate-mapping

 PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"

 "http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>

 <class name="net.thinksquared.registration.data.User"

 table="user">

 <id name="userId" type="string"

 unsaved-value="null">

 <column name="user-id" sql-type="char(32)"

 not-null="true"/>

 <generator class="assigned"/>

 </id>

 <property name="password">

 <column name="password" sql-type="char(32)"

 not-null="true"/>

 </property>

 </class>

</hibernate-mapping>

AP P E N D I X A ■ F R A M E W O R K S F O R T H E M O D E L 369

The XML is fairly self-explanatory, and I won’t describe it further in any detail. The

essential idea is that you have an XML file that maps your bean to an existing table in

the database.

Saving a bean from scratch is a simple three-step process, very similar to saving data

with JDBC:

1. Initialize Hibernate.

2. Obtain a Session object.

3. Save the bean using the Session and close the Session.

Step 1 is usually performed once, when the application starts up. Listing A-9 illustrates

steps 1 to 3.

Listing A-9. Saving a User Bean with Hibernate

 User u = new User();

 u.setUserId("kolmogorov");

 u.setPassword("turbulence23");

 //Step 0: Start Hibernate

 Configuration config = new Configuration().addClass(User.class);

 SessionFactory factory = config.buildSessionFactory();

 //Step 1: Get a Session

 Session s = factory.openSession();

 //Step 2: Save and close

 Transaction t = s.beginTransaction();

 s.save(u);

 t.commit();

 s.close();

Remember that the User class is not autogenerated by Hibernate—it’s assumed to be

an existing class in your app. Hibernate’s job is to allow you to save instances of User to a

database without you having to worry about SQL and databases.

Doing a search for an object is easy, too. Listing A-10 shows how to implement the

exists() function to check whether a given user ID exists.

370 A P P E N D I X A ■ F R A M E W O R K S F O R T H E M O D E L

Listing A-10. An Implementation of exists() with Hibernate

public static boolean exists(String userId){

 final String QUERY = "select u from u " +

 "in class net.thinksquared.registration.data" +

 " where u.userId = :userId";

 Session s = ... //Get a session somehow.

 Query q = s.createQuery(QUERY);

 try{

 q.setString("userId",userId);

 List l = q.list();

 return (l.size() > 0);

 }finally{

 s.close();

 }

}

The QUERY string is an example of the Hibernate Query Language (HQL), which is

similar to SQL except that it works for persisted objects.

These examples do not even begin to scratch the surface of Hibernate’s capabilities.

But I hope I’ve given you at least some idea of how Hibernate is used.

In a Nutshell...

In this section I’ve provided a very brief overview of the major persistence frameworks,

Hibernate and Torque. These frameworks are complex and whole books are devoted to

them, so the treatment in this section is very much incomplete. Even so, I hope I’ve given

you a good starting point for your own explorations into this area.

Autogenerating LILLDEP Model Classes

I’ve used Lisptorq to generate LILLDEP Model classes. The code for this is in the .\lisp\

subdirectory of the main LILLDEP development folder.

There are three database tables:

AP P E N D I X A ■ F R A M E W O R K S F O R T H E M O D E L 371

• CONTACT, which stores contact information (see Lab 6)

• COLLECTION, which stores a collection’s name and notes

• COLLECTION_MAP, which stores the actual contacts that go into a collection

To use Lisptorq to generate these classes, you first create a LISP file describing the three

tables, as in Listing A-11.

Listing A-11. models.lisp, the Lisptorq LISP File to Autogenerate LILLDEP Model Classes

(import lisptorq.lisp)

define database

(

 (contact

 (contact_id (PRIMARY REQUIRED INTEGER AUTO))

 (name ((VARCHAR 1024)))

 (designation ((VARCHAR 1024)))

 (department ((VARCHAR 1024)))

 (email ((VARCHAR 255)))

 (tel ((VARCHAR 255)))

 (fax ((VARCHAR 255)))

 (company ((VARCHAR 1024)))

 (address ((VARCHAR 1024)))

 (postcode ((VARCHAR 16)))

 (website ((VARCHAR 255)))

 (activity ((VARCHAR 2048)))

 (classification ((VARCHAR 16)))

 (memo ((VARCHAR 2048)))

)

 (collection

 (collection_id (PRIMARY REQUIRED INTEGER AUTO))

 (name ((VARCHAR 1024)))

 (memo ((VARCHAR 2048)))

)

 (collection_map

 (collection_id (REQUIRED INTEGER (FOREIGN collection)))

 (contact_id (REQUIRED INTEGER (FOREIGN contact)))

)

)

372 A P P E N D I X A ■ F R A M E W O R K S F O R T H E M O D E L

(lisptorq:set database-name lilldep)

(lisptorq:set database-type derby)

(lisptorq:set derby-home ./dbase)

(lisptorq:set package net.thinksquared.lilldep.database)

(lisptorq:generate database)

To autogenerate the Model classes from this definition, simply put the JAR files jlisp.jar

and lisptorq.jar in your classpath, and call the Loader class, like so:

java -classpath jlisp.jar;lisptorq.jar

 net.thinksquared.jlisp.Loader models.lisp

This will generate all your Model and helper classes, including a DatabaseSetup class,

which you can call to create the tables on the database. For a tutorial on using Lisptorq,

see www.thinksquared.net/dev/lisptorq/.

Unfortunately, as for LILLDEP, we’ll have to use two different derby-homes: one when

the database is initialized for the first time, and the other when it is deployed on Tomcat.

This means that you’ve got to create the class twice, or manually change the static section

that sets up derby-home in Database.java to that listed in Listing A-12.

Listing A-12. A Tweak to Database.java

//set path to database

String catalinaHome = System.getProperty("catalina.home");

if(catalinaHome == null){

 //we are called from an pre-install program

 System.setProperty("derby.system.home","./dbase");

}else{

 //we are on a Tomcat servlet

 System.setProperty("derby.system.home",

 catalinaHome + "/webapps/lilldep/dbase");

}

AP P E N D I X A ■ F R A M E W O R K S F O R T H E M O D E L 373

Useful Links

• The Derby project: http://incubator.apache.org/derby/

• For more on ACID: http://en.wikipedia.org/wiki/ACID

• Hibernate: www.hibernate.org/

• Torque: http://db.apache.org/torque/

• Lisptorq: www.thinksquared.net/dev/lisptorq/

375

■ ■ ■

A P P E N D I X B

Commonly Used Classes

This appendix describes selected servlet and Struts classes. Please note that not all functions

on a class are shown—only the ones I believe you might find useful.

The documentation for the Struts classes (Action, ActionForm, ActionMessage,

ActionMessages, ActionError, ActionErrors, ActionMapping, FormFile, ComponentContext,

and ExceptionHandler) has been adapted from Apache’s JavaDocs for those classes, and is

reproduced here for your convenience under the Apache License. A copy of the Apache

License is available at www.apache.org/licenses/LICENSE-2.0.

javax.servlet.http.HttpServletRequest

This class encapsulates an incoming HTTP request. It is used to store or retrieve objects

that have request scope (using get/set/removeAttribute()). You may also store session

scope objects on it by first using getSession() to acquire an HttpSession object (see the

next section).

Return Type Function Comments

Object getAttribute(String name) Returns the value of the named
attribute as an Object, or null if no
attribute of the given name exists

void removeAttribute(String name) Removes an attribute from this
request

void setAttribute(String name,Object o) Stores an attribute in this request

HttpSession getSession() Returns the current session asso-
ciated with this request, or if the
request does not have a session,
creates one

String getParameter(String name) Returns the value of a request
parameter as a String, or null
if the parameter does not exist

376 A P P E N D I X B ■ C O M M O N L Y U S E D C L AS S E S

javax.servlet.http.HttpSession

As its name implies, HttpSession is used to store session-scoped variables. It has get/set/

removeAttribute() functions, identical to HttpServletRequest.

org.apache.struts.action.ActionMessage

ActionMessage encapsulates a single locale-independent message. Only the constructors

of ActionMessage are important to webapp developers.

Return Type Function Comments

Object getAttribute(String name) Returns the object bound
with the specified name
in this session, or null if
no object is bound under
the name

void removeAttribute(String name) Removes the object
bound with the specified
name from this session

void setAttribute(String name, Object value) Binds an object to this
session, using the name
specified

String getId() Returns a string
containing the unique
identifier assigned to this
session

Constructor Comments

ActionMessage(String key) Constructs an action message with no
replacement values

ActionMessage(String key, Object value0) Constructs an action message with the
specified replacement values

ActionMessage(String key, Object[] values) Constructs an action message with the
specified replacement values

ActionMessage(String key, Object value0,
Object value1)

Constructs an action message with the
specified replacement values

ActionMessage(String key, Object value0,
Object value1, Object value2)

Constructs an action message with the
specified replacement values

ActionMessage(String key, Object value0,
Object value1, Object value2, Object value3)

Constructs an action message with the
specified replacement values

A P P E N D I X B ■ C O M M O N L Y U S E D C L AS S E S 377

org.apache.struts.action.ActionMessages

This class is used to store multiple ActionMessages.

ActionMessages also has a static String variable called GLOBAL_MESSAGE, which is a property

name marker to use for global messages (as opposed to those related to a specific property).

org.apache.struts.action.ActionErrors

ActionErrors is a subclass of ActionMessages, and its sole use is as the return value of

ActionForm’s validate(). All of the functions and properties on this class have been

deprecated. You should refer to functions or properties on ActionMessages instead.

org.apache.struts.action.ActionMapping

ActionMapping holds information about the valid “next” pages for a particular form handler.

org.apache.struts.action.Action

An Action is an adapter between the contents of an incoming HTTP request and the corre-

sponding business logic that should be executed to process this request. Struts will select

an appropriate Action for each request, create an instance (if necessary), and call the

Return Type Function Comments

void add(String property,ActionMessage message) Adds a message to the set
of messages for the specified
property

boolean isEmpty() Returns true if there are no
messages recorded in this
collection, or false otherwise

Return Type Function Comments

ActionForward findForward(String name) Finds and returns the ActionForward
instance defining how forwarding to
the specified logical name should be
handled

ActionForward getInputForward() Gets the context-relative path of the input
form to which control should be returned
if a validation error is encountered

378 A P P E N D I X B ■ C O M M O N L Y U S E D C L AS S E S

execute() function. Actions must be programmed in a thread-safe manner, because

Struts will share the same instance for multiple simultaneous requests. This means you

should design with the following points in mind:

• Instance and static variables must not be used to store information related to the

state of a particular request.

• They may be used to share global resources across requests for the same Action.

• Access to other resources (JavaBeans, session variables, etc.) must be synchronized

if those resources require protection. (Generally, however, resource classes should

be designed to provide their own protection where necessary.)

org.apache.struts.action.ActionForm

An ActionForm is a JavaBean optionally associated with one or more ActionMappings. Such

a bean will have had its properties initialized from the corresponding request parameters

before the corresponding Action.execute() function is called.

Return Type Function Comments

ActionForward execute(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

Processes the specified
HTTP request, and creates
the corresponding HTTP
response (or forward to
another web component
that will create it), with
provision for handling
exceptions thrown by the
business logic

void addErrors(HttpServletRequest request,
ActionMessages errors)

Adds the specified errors
keys into the appropriate
request attribute for use by
the <html:errors> tag, if any
messages are required

void saveErrors(HttpServletRequest request,
ActionMessages errors)

Saves the specified error
messages keys into the
appropriate request
attribute for use by the
<html:errors> tag, if any
messages are required

A P P E N D I X B ■ C O M M O N L Y U S E D C L AS S E S 379

When the properties of this bean have been populated, but before the execute() function

of the Action is called, this bean’s validate() function will be called, which gives the bean

a chance to verify that the properties submitted by the user are correct and valid. If this

function finds problems, it returns an error messages object that encapsulates those

problems, and Struts will return control to the corresponding input form. Otherwise, the

validate() function returns null, indicating that everything is acceptable and the corre-

sponding Action.execute() function should be called.

The ActionForm class must be subclassed in order to be instantiated.

Subclasses should provide property getter and setter methods for all of the bean properties

they wish to expose. In addition, they should override any of the public or protected

methods for which they wish to provide modified functionality.

Because ActionForms are JavaBeans, subclasses should also implement Serializable,

as required by the JavaBean specification. Some containers require that an object meet all

JavaBean requirements in order to use the introspection API upon which ActionForms rely.

org.apache.struts.upload.FormFile

This interface is used to represent a file uploaded by a client.

Return Type Function Comments

void reset(ActionMapping mapping,
HttpServletRequest request)

Resets bean properties to their
default state, as needed

ActionErrors validate(ActionMapping mapping,
HttpServletRequest request)

Validates the properties that have
been set for this HTTP request, and
returns an ActionErrors object that
encapsulates any validation errors
that have been found

Return Type Function Comments

void destroy() Destroys all content for this form file

String getContentType() Gets the content type string for this file

byte[] getFileData() Gets the data in byte array for this file

String getFileName() Gets the filename of this file

int getFileSize() Gets the size of this file

InputStream getInputStream() Gets an InputStream that represents this file

380 A P P E N D I X B ■ C O M M O N L Y U S E D C L AS S E S

org.apache.struts.tiles.ComponentContext

This class is the equivalent of HttpServletRequest for a Tile.

org.apache.struts.action.ExceptionHandler

An ExceptionHandler is a special class to handle exceptions generated in your ActionForm

or Action subclasses. Refer to Chapter 9 on how to declare and use ExceptionHandlers.

Return Type Function Comments

void addAll(Map newAttributes) Adds all attributes to this context

void addMissing(Map defaultAttrs) Adds all missing attributes to
this context

Object getAttribute(String name) Gets an attribute from
this context

Iterator getAttributeNames() Gets the names of all attributes

void putAttribute(String name,Object value) Puts a new attribute into
the context

Return Type Function Comments

ActionForward execute(Exception ex, ExceptionConfig ae,
ActionMapping mapping, ActionForm form,
HttpServletRequest request,
HttpServletResponse response)

Handles the Exception. Your
subclasses must override
this function.

381

■ ■ ■

A P P E N D I X C

Struts Tag Reference

This appendix is a reference on all Struts 1.2 tags, from the five tag libraries: HTML, Bean,

Logic, Nested, and Tiles. We’ve included usage examples and information on Struts-EL

and JSTL (see Chapter 10 for both), as well as JSF and Struts-Faces Integration Library (see

Chapter 20 for both) equivalent tags where appropriate. This reference does not include

the obsolete Template tag library, which has been superseded by the Tiles tag library.

To make this reference more compact, we’ve collected attributes that occur in more

than one tag under one or more common attribute sets. These are introduced at the start

of each section describing a tag library.

The HTML Tag Library

The custom tags in the HTML library are essentially in one-to-one relationship to the

ordinary HTML <form> tag and its associated input tags, like the various <input> tags.

The purpose of this tag library is to enable you to connect the View tier to the Controller tier

of your Struts webapp. The linkage between the two is done statically in struts-config.xml.

The tags in the HTML library can be divided into four groups based on function:

• Form tags: These tags transfer data from View to Controller. The tags are mostly in

one-to-one correspondence with their HTML equivalents (<form> and the various

HTML data input tags), but there are extra Struts-specific tags (e.g., multibox) that

do much more to facilitate the easy transfer of data between View and Controller.

• Message tags: These tags display (in the View tier) messages that originate from the

Controller.

• URL tags: These tags are counterparts to ordinary HTML tags that require a URL to

function. The Struts versions exist primarily to allow you to use the names of global

forwards instead of actual URLs.

• Miscellaneous tags: These tags have no clear functional grouping and have to be

treated individually.

382 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Tables C-1 to C-4 give a synopsis of these tags by their functional grouping. Tables C-1

to C-4 are based on the Apache documentation for those tags. A copy of the Apache License is

available at www.apache.org/licenses/LICENSE-2.0.

Table C-1. Form Tags of the HTML Tag Library

Tag Usage

form Defines a form.

checkbox Generates a checkbox input field.

file Generates a file selection input field.

hidden Generates a hidden field.

multibox Generates multiple checkbox input fields.

radio Generates a radio button input field.

select and option, options,
or optionsCollection

select generates a drop-down list. The option elements are
nested within select, and generate the options for the enclosing
select element.

text/password Generates a text/password input field.

textarea Generates an HTML textarea input field.

image Generates an image input field.

button Generates a button input field.

cancel Generates a cancel button.

submit Generates a submit button.

reset Generates a reset button.

Table C-2. Message Tags of the HTML Tag Library

Tag Usage

errors Displays error messages

messages Iterates through error messages and messages (refer to the entry for <logic:iterate>
for a description of these terms)

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 383

Common Attribute Sets

There are attributes that are common to more than one tag of the HTML library. These

may be naturally grouped into few common attribute sets, which we’ll describe next. We’ll

give each set an abbreviation, which we’ll use in subsequent descriptions of each tag.

The Event Handler Attribute Set

The biggest such attribute set consists of attributes corresponding to HTML event handler

attributes. The Struts versions are exactly the same as the HTML versions. Let’s refer to

these as the Event Handler attribute set, or evt-attrs for short. The attributes in this set are

described in Table C-5. The value of each attribute in this set is a JavaScript function that

is called when a particular action occurs (e.g., mouse clicks, loss of focus, etc.). If you’re

familiar with HTML, Table C-5 should hold no surprises for you.

Table C-3. URL Tags of the HTML Tag Library

Tag Usage

base Generates an HTML <base> tag. This creates a reference from which all relative
paths in your JSP will be calculated.

img Generates an HTML tag.

link Generates an HTML hyperlink.

rewrite Expands a given URI. Useful in creating URLs for input into your JavaScript functions.

Table C-4. Miscellaneous Tags of the HTML Tag Library

Tag Usage

html Generates an <html> tag. Also includes language attributes from the user’s session.

xhtml Tells other tags on the page to render themselves as XHTML 1.0–conformant tags.

frame Generates an HTML frame.

javascript Indicates the placement of autogenerated JavaScript. Used in conjunction with
the Validator framework, described in Chapter 15.

384 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

The Accessibility Attribute Set

The next set is also HTML related, and these attributes aid in accessibility.

Table C-6 lists these tags, which we’ll refer to as the Accessibility attribute set, or

acc-attrs for short.

Most attributes in Table C-6 are simply mirror images of their HTML counterparts. The

exceptions are altKey and titleKey, which use Struts’ message resource file to produce a

localized version of the actual attribute (alt and title, respectively).

Table C-5. The evt-attrs Attribute Set

Attribute Name Trigger

onblur Element loses focus.

onchange Element’s value changed and element has lost focus.

onclick Element is clicked.

ondblclick Element is double-clicked.

onfocus Element gains focus.

onkeydown Key pressed when element has focus.

onkeypress Key pressed then released when element has focus.

onkeyup Key released when element has focus.

onmousedown Mouse button is pressed while pointer is over element.

onmousemove Mouse pointer is moved over element.

onmouseout Mouse pointer leaves element.

onmouseover Mouse pointer enters element.

onmouseup Mouse button is released while pointer is over element.

Table C-6. The acc-attrs Attribute Set

Attribute Name Usage

accesskey Specifies the key that if pressed, causes this element to gain focus.

alt Specifies the alternate text for this element.

altKey Specifies the message resource key for the alternate text.

tabindex A positive integer that specifies the tab order for this element.

title Specifies the advisory title for this element. In most graphical browsers,
the advisory title appears as a tooltip when the mouse pointer goes over
the element.

titleKey Specifies the message resource key for the advisory title.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 385

The Rendering Attribute Set

The Rendering attribute set (ren-attrs) consists of attributes that specify the final rendering of

the underlying HTML elements that correspond to a tag. These are listed in Table C-7.

The Struts Attribute Set

The Struts attribute set (struts-attrs) consists of commonly used attributes specific to

Struts. These are listed in Table C-8.

The Initial Bean Attribute Set

The Initial Bean attribute set (init-attr) consists of just one attribute, name, which refers to

a JavaBean whose corresponding property (specified by the property attribute of the

element) is used as an initial value for the rendered element. The form bean associated

with the enclosing form is the default bean for this task, and it is used if name is not specified.

Table C-7. The ren-attrs Attribute Set

Attribute Name Usage

disabled This boolean attribute disables (disabled = "true") an input element. In
most graphical browsers, this causes the HTML element to be grayed out.

style Specifies the CSS styles for this element.

styleClass Specifies the CSS stylesheet class for this element. styleClass corresponds
to the class HTML attribute.

styleId Specifies the HTML ID to be assigned to this element. That is, styleId
corresponds to the id HTML attribute.

Table C-8. The struts-attrs Attribute Set

Attribute Name Usage

bundle Specifies the message resources bundle to use. If this isn’t specified, the
default Application.properties file is used. Bundles are a way for you to
use multiple message resource files in your webapp. Note that the current
support for this feature is uneven. Also, using it complicates maintenance.
The bundle attribute is explained in more detail in the entry for
<bean:message>. This attribute was newly introduced with Struts 1.2.5.

indexed This boolean attribute is valid only when the enclosing tag is nested in-
side the <logic:iterate> tag. If true, the name of the rendered HTML tag
will be indexed, for example, myProperty[12]. The number in brackets will
be incremented for every iteration of the enclosing <logic:iterate> tag.

property The name of the request parameter or HTML POST element that will be
used when a form is submitted, set to the specified value (see the next entry).

value Value of the input element. This value is submitted to the Controller tier,
either in the request parameter or in the HTML POST itself.

386 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

The Error Style Attribute Set (Struts 1.2.5+)

The Error Style attribute set (err-attrs) was newly introduced with Struts 1.2.5. These

attributes enable you to specify an error style if a given input element hits a validation

error. Table C-9 describes these attributes.

Struts-EL Tags for the HTML Tag Library

All tags in the HTML library have EL-enabled versions.

■Note EL-enabled tags are those that allow you to use EL expressions. Refer to Chapter 10 for examples.

base

This tag is used to allow you to conveniently create an HTML <base> tag.

The HTML <base> tag allows you to specify the base URL from which to calculate rela-

tive paths (e.g., ../../myscripts.js or mypage.html) in your JSPs. You might think that

such URLs are resolved using the absolute path of the enclosing JSP page, but this isn’t

necessarily the case. The only way to guarantee this is to use the <base> tag, or much more

conveniently, <html:base>.

Usage Restrictions

Both <base> and <html:base> must be a child tag of HTML’s <head> tag.

Table C-9. The err-attrs Attribute Set

Attribute Name Usage

errorKey The key under which the error messages are stored. You only need to
specify this attribute if you also specified the associated <html:errors>’s
name attribute. The two must be the same.

errorStyle The CSS style for the element if there is an error message for it.

errorStyleClass The name of the CSS style class for the element if there is an error
message for it.

errorStyleId Assigns this new ID to the element, if there is an error message for it.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 387

Attributes

• server: Specifies the base URL. If you omit the server attribute, then Struts pastes

the path to the enclosing JSP page. The server attribute gets rendered as the href

attribute of <base>.

• target: If your app uses frames, then you can specify the name of the frame to

which this base URL applies, in the page that defines the frame.

Examples

The simplest, and most useful, example is using the <html:base /> tags by itself:

<head>

 <html:base />

</head>

The implied base is that of the JSP page itself. This gets rendered as

<head>

 <base href="http://www.mycompany.com/mywebapp/">

</head>

Similarly, if you wanted to fix the base of a frame within the current webapp, use this:

<head>

 <html:base target="myframe" />

</head>

If you need to set the base to point to another server, then use the server attribute:

<head>

 <html:base server="http://www.myothercompany.com" />

</head>

Equivalents

The Struts-Faces taglib (see Chapter 20) contains an <s:base> tag, which accepts a target

attribute. There is no equivalent of the server attribute, though.

A hack for the <html:base/> tag is

<base href="<%= request.getScheme() %>://<%= request.getServerName() %>:

 <%= request.getServerPort() %>/

 <%= request.getContextPath() %>/">

388 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

button

<html:button> represents an HTML button. By itself, an <html:button> does nothing—

it does not submit the form, for example. You have to use one (or more) of the event-

handling atttibutes (see evt-attrs) to activate some JavaScript in order to do anything

interesting.

■Note Despite what the current Apache Struts online documents say, the value of the button is not sent as

a URL parameter.

If you want to display a button defined by a graphic, then use <html:image> instead.

Usage Restrictions

This tag must be inside an <html:form> tag. You must specify the property attribute.

Attributes

The first four attribute sets (evt-attrs, acc-attrs, ren-attrs, and struts-attrs) are accepted.

The only required attribute is property. If value isn’t specified and if there is no text

rendered in the body of the <html:button>, then the button text defaults to “Click”.

Examples

This snippet will render an HTML button with the text label “Click”, which calls the

JavaScript function changeMode() when clicked:

<html:button onclick="changeMode(src)" property="button1" />

In this snippet, the imaginary JavaScript function might determine which button was

clicked by using the test src.name == "button1".

The next example shows three buttons, all of which have the text “Click Me”. The last

button uses an <html:bean> to localize its text:

<html:button property="button1" value="Click Me" />

<html:button property="button2">Click Me</html:button>

<html:button property="button3">

 <html:bean message="msg.click-me"/>

</html:button>

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 389

Equivalents

The JSF <h:commandButton> is much more powerful, and allows you to easily link a button

to a server-side function, using the action attribute:

<h:commandButton action="#{myManagedBean.myFunction}" ...

Of course, for you to use this with Struts, you need to embed it within the Strut-Faces

<s:form> tag. Refer to Chapter 20 for details on <h:commandButton> and <s:form>.

cancel

This tag displays a Cancel button on a form. Clicking this button causes the enclosing

form to be submitted but simple validation is bypassed. However, the execute() function

of the form’s Action is called in order for the “next” page to be displayed. This means, of

course, that the Action subclass must have special logic to determine if the Cancel button

was clicked (see “Examples” in this section for details).

When the form data is submitted, the text appearing on the Cancel button is sent as a

parameter on the request URL.

Usage Restrictions

This tag must be inside an <html:form> tag. You must not specify the property attribute.

Doing so would cause the Cancel button not to be recognized as such by Struts.

Attributes

The first four attribute sets (evt-attrs, acc-attrs, ren-attrs, and struts-attrs) are accepted.

However, do not specify the property attribute. If value isn’t specified and if there is no

text rendered in the body of the <html:cancel>, then the button text defaults to “Cancel”.

Examples

The following example shows three buttons, all of which have the text “Cancel Me”.

The last Cancel button uses an <html:bean> to localize its text:

<html:cancel value="Cancel Me" />

<html:cancel>Cancel Me</html:cancel>

<html:cancel>

 <html:bean message="msg.cancel-me"/>

</html:cancel>

In order for you to detect a Cancel button being clicked, you’d use this code in your

Action’s execute():

390 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

public ActionForward execute(... HttpServletRequest request, ...){

 if (isCancelled(request)){

 //A Cancel button was pressed. Ignore form data

 return mapping.findForward("cancelled");

 }

 //normal form processing code here.

 ...

}

Equivalents

The JSF <h:commandButton id="cancel" type="SUBMIT"> allows you to emulate the func-

tionality of the <html:cancel> button. Of course, to use this with Struts, you need to embed

it within the Strut-Faces <s:form> tag. Refer to Chapter 20 for details on <h:commandButton>

and <s:form>.

checkbox

This tag renders a single check box input field within a form. See also <html:multibox>.

Usage Restrictions

This tag must be inside an <html:form> tag. The property attribute is required. The corre-

sponding property on the ActionForm must be a boolean.

Attributes

All common attribute sets (evt-attrs, acc-attrs, ren-attrs, struts-attrs , init-attr, and the

new err-attrs) are accepted, and have their usual meanings.

There are four important things to note:

• The corresponding property on the ActionForm subclass must be a boolean.

• The value attribute specifies the argument to put in setXXX() if the check box is

checked. So, if you specify value="true" (or on or yes), then setXXX(true) is called if

the check box is checked. If you use any other setting for value, then setXXX(false)

is called if the check box is checked.

• The check box is rendered as checked only if value equals the return value of

getXXX(). So, if value="true" (or on or yes) and getXXX() also returns true, then the

check box is rendered as checked. Similarly, if value is not true (or on or yes) and

getXXX() returns false, then the check box is also rendered as checked.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 391

• The corresponding setXXX() function on the ActionForm subclass is only called if

the check box is checked. This means that in order for your app to detect an unchecked

check box, you need to call setXXX() in your ActionForm’s reset() function. reset()

is automatically called by Struts before a form is (re)displayed, and before any

setXXX() functions are called.

Examples

The code

<html:checkbox property="pregnant" />

<html:checkbox property="nonsmoker" value="false" />

renders two check box fields. The corresponding ActionForm might be

public SurveyForm extends ActionForm{

 protected boolean _isPregnant, _isSmoker;

 public boolean getPregnant(){ return _isPregnant; }

 public void setPregnant(boolean isPregnant){

 _isPregnant = isPregnant;

 }

 public boolean getNonsmoker(){ return _isSmoker; }

 public void setNonsmoker(boolean isSmoker){

 _isSmoker = isSmoker;

 }

 public boolean isSmoker(){return _isSmoker;}

 public void reset(ActionMapping mapping,

 HttpServletRequest request){

 //clear the checkboxes

 setPregnant(false);

 setNonsmoker(true);

 }

 ... //rest of SurveyForm

The pregnant property is straightforward: If the user checks the associated check box,

then that translates directly to the pregnant property.

The nonsmoker property is less obvious: The underlying property that is stored is actually

the opposite of nonsmoker. This just is a convenience, but as you can see, it comes at the

price of added confusion.

392 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

An alternate, less confusing way of coding both the JSP form and ActionForm subclass

would be

<html:checkbox property="pregnant" />

<html:checkbox property="nonsmoker"/>

Note the removed value="false". The ActionForm subclass is now

public SurveyForm2 extends ActionForm{

 protected boolean _isPregnant, _isNonSmoker;

 public boolean getPregnant(){ return _isPregnant; }

 public void setPregnant(boolean isPregnant){

 _isPregnant = isPregnant;

 }

 public boolean getNonsmoker(){ return _isNonSmoker; }

 public void setNonsmoker(boolean isNonSmoker){

 _isNonSmoker = isNonSmoker;

 }

 public boolean isSmoker(){return !_isNonSmoker;}

 public void reset(ActionMapping mapping,

 HttpServletRequest request){

 //clear the checkboxes

 setPregnant(false);

 setNonsmoker(false);

 }

 ... //rest of SurveyForm2

Equivalents

JSF’s <h:selectBooleanCheckbox> is an equivalent. Enclose it in the Struts-Faces <s:form>

element so that Struts processes the submitted value.

errors

This tag displays one or more error messages. If no matching error message is found, nothing

is displayed. See also <html:messages>, which loops through error and ordinary messages.

Usage Restrictions

None.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 393

Attributes

• property: The key with which to retrieve the error messages. Note that there might

be more than one error message saved under the same property. If property isn’t

specified, then all error messages are displayed. This trick is very useful for

debugging.

• locale/bundle: These attributes are used to specify a different locale object or

message resource file. The locale specifies a key that can be used to look up the

Locale object stored on the current session. The bundle attribute is explained in

more detail in the entry for <bean:message>. You’d use these attributes to specify a

locale different from the current user’s locale or a message resource file different

from the default one.

• name: The name of the object that holds error messages. Do not specify this attribute

if you wish to use Struts’ default error-reporting mechanism.

• prefix/suffix: Both are keys to text that will be rendered before and after each indi-

vidual error message. For example, you might set

myapp.errors.prefix=

myapp.errors.suffix=

and you would use these attributes like this:

<html:errors property="email"

 prefix="myapp.errors.prefix"

 suffix="myapp.errors.suffix" />

and the error message would be displayed as

Wrong email format

• header/footer: These attributes are similar to prefix/suffix, but they apply to the

start and end of a list of error messages. This happens when more than one error

message is to be displayed.

Examples

Usually, you’d place an <html:errors> near an input element like so:

<html:text name="contact" property="postcode" />

<html:errors property="postcode"/>

394 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Equivalents

The <s:errors> tag from the Struts-Faces integration library is an equivalent.

file

This tag allows easy file uploading.

■Note Chapter 11 contains a much fuller exposition on this useful tag.

Usage Restrictions

The property attribute is required. It must be a child tag of <html:form>.

Attributes

All common attribute sets (evt-attrs, acc-attrs, ren-attrs, struts-attrs , init-attr, and the

new err-attrs) are accepted, and have their usual meanings.

Besides these, there are a few attributes specific to file:

• accept: A comma-delimited list of “acceptable” file extensions. These are displayed

by the browser. Unfortunately, most browsers ignore this information.

• size: The length of the displayed field. If omitted, the decision is left to the browser.

• maxlength: The maximum number of characters to accept. The default is to allow an

unlimited number of characters. Most web browsers ignore this attribute.

Examples

Please refer to Chapter 11 for examples.

Equivalents

There is no pure-JSF equivalent, but MyFaces sports an extension called <x:inputFileUpload>

that does the trick. The mechanism used to access the uploaded file is very similar to

Struts’ FormFile (it’s called UploadedFile instead). However, this leaves you in a bit of a

bind because the current Struts-Faces integration library (1.0) doesn’t work with MyFaces.

form

Represents an HTML form. It is also the mandatory parent element for many input tags.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 395

Usage Restrictions

The action attribute is required.

Attributes

Besides the ren-attrs attributes, form accepts the following attributes:

• action: The name of the form handler that handles processing for this form’s data.

This attribute is required.

• method: The HTTP submission for this form—either POST or GET, with POST being

the default.

• focus/focusIndex: focus specifies the name of the field on the form that should take

focus when the form first loads. Struts autogenerates the JavaScript for this to

happen. If the focus attribute isn’t specified, then no such JavaScript is autogenerated.

focusIndex applies to input elements that are indexed. You can specify the index of

the element that takes focus.

• enctype: Specifies the encoding used when submitting this form’s data. You only

need to set this when you have an <html:file> input element in the form (see the

corresponding entry for more details, or refer to Chapter 11).

• onsubmit/onreset: These are the names of JavaScript event handlers to invoke when

the form is submitted or reset.

• acceptCharset: Character encodings that are valid for this form (since Struts 1.2.7).

This is a standard HTML attribute.

• readonly: If true, means the form data may not be edited.

• scriptLanguage: If set to false, omits the language attribute in the generated

<script> tag. This attribute is ignored if you’ve specified XHTML rendering.

• target: The name of the window to which this form’s data is submitted. This is a

standard HTML attribute.

Examples

Most commonly, you’d specify the action and focus attributes:

<html:form action="MyFormHandler.do" focus="email">

 Key in your email address: <html:text property="email"/>

 ...

</html:form>

396 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Equivalents

The Struts-Faces <s:form> is the best replacement for <html:form>. Refer to Chapter 20

for details.

frame

Renders an HTML <frame>. The advantage of using <html:frame> is that you can use

global forwards or form handlers to easily put content into your frames.

Usage Restrictions

You must specify either action/module, href, page, or forward.

Attributes

• action/module, href, page, or forward: Used to specify a URL for the frame. The

action/module pair specifies a form handler. The action, of course, must begin with

a slash, and if you want to specify a module, use the module attribute. href is either a

relative or absolute URL. page is a module-relative URL (and therefore, must begin

with a slash). forward is the name of a global forward.

• anchor: An optional HTML anchor for the link.

• paramName,paramProperty,paramScope and paramId: You use these to create a single

request parameter. The request parameter is appended to the final URL. The first

set of three attributes is used to locate a single object on the current request or

session. This object’s toString() is the single parameter value. The name of the

parameter is given by paramId. Refer to <html:link> for an example.

• name/property/scope: You use these to create multiple request parameters. The

request parameters are appended to the final URL. These attributes are used to

locate an object of type java.util.Map. The Map’s keys are the parameter names, and

the corresponding values are the parameter values. If you specify property, you

must also specify name. Refer to <html:link> for an example.

• transaction: If true, appends the current transaction token to the URL as a request

parameter. Refer to the entry for <logic:present> for details on transaction tokens.

• title/titleKey: Refer to acc-attrs for details on these.

• style/styleClass/styleId: Refer to ren-attrs for details on these.

• scrolling: Specifies if scrollbars are to be created when necessary (scrolling="auto"),

or always (yes) or never (no).

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 397

• marginheight/marginwidth: Specifies the height of the top and bottom margins

(marginheight) or the left and right margins (marginwidth). The units used are pixels.

• frameborder: Specifies if a border needs to be rendered (frameborder="1") or not

(frameborder="0").

• frameName: The name of the rendered <frame>.

• noresize: A boolean attribute indicating if this frame can be resized (false) or if its

size is fixed (true).

• longdesc: The URL to a longer description for this frame. This attribute is a standard

HTML one, and you should consult an HTML reference for details.

• bundle: Allows you to select a message resource file different from the default one.

The bundle attribute is explained in more detail in the entry for <bean:message>.

Examples

Here’s a page with two frames:

<%@ page contentType="text/html;charset=UTF-8" %>

<%@ taglib uri="/tags/struts-html" prefix="html" %>

<frameset rows="10%,*">

 <html:frame action="/NavBar.do" scrolling="no" frameName="navbar" />

 <html:frame page="/index.jsp" scrolling="yes" frameName="main" />

</frameset>

Equivalents

None.

hidden

This tag represents a hidden form field.

Usage Restrictions

The property attribute is required. It must be a child tag of <html:form>.

Attributes

The first five common attribute sets (evt-attrs, acc-attrs, ren-attrs, struts-attrs, and init-

attr) are accepted, and have their usual meanings.

Besides these, there is the write attribute, which if set to true causes the value of the

hidden field to be displayed. This is useful for debugging.

398 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Examples

The code

<html:hidden property="clientId" />

specifies a hidden field that holds the value for the property called clientId on the current

form bean.

You can also specify a value attribute like so:

<html:hidden property="command" value="update" />

Your Action subclass that reads the form data can then dispatch on the hidden value.

Look at the entry for <bean:define> for another useful example.

Equivalents

JSF’s <h:inputHidden> is an equivalent for <html:hidden>, but you need to enclose it

within the Struts-Faces <s:form> tag so that the associated form bean is populated with

the submitted value:

<s:form ...

 <!-- equivalent to html:hidden -->

 <h:inputHidden id="clientId" binding="#{MyFormBean.clientId}" />

 ...

</s:form>

html

This tag inserts <html> and </html> tags, with language attributes from the current

user’s locale.

Usage Restrictions

None—if you use it, other Struts tags should be nested within it.

Attributes

• xhtml: If set to true, causes nested Struts tags to render themselves as XHTML 1.0.

(See also <html:xhtml>.)

• lang: (since Struts 1.2.0) . If set to true, puts in a lang attribute in the final <html> tag.

The value is searched for in the following order: (1) The current session’s Locale,

(2) the accept-language HTTP request header, and (3) the server’s default locale.

Consult an HTML reference to understand how to use HTML’s lang attribute.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 399

Examples

Here’s how to render an XHTML 1.0–conformant page:

<html:html xhtml="true">

 <!-- your Struts tags here -->

 ...

</html:html>

Equivalents

The <s:html> tag from the Struts-Faces integration library is an equivalent.

image

This tag renders an HTML image input field. Clicking on the displayed image causes the

containing form to be submitted.

Usage Restrictions

This tag must be inside an <html:form> tag. You need to specify src, srcKey, page, or pageKey.

Attributes

The first four common attribute sets (evt-attrs, acc-attrs, ren-attrs, and struts-attrs) are

accepted, and have their usual meanings, except for the property attribute (explained in a bit).

There are a few attributes specific to image:

• property: This specifies the function on the base object that returns a JavaBean,

which has setX(int x) and setY(int y) functions, to save the (x,y) coordinate of the

mouse click for the image input field. If you want to use setX() and setY() on the

base object, simply use property="".

• src/srcKey/page/pageKey: You use one of these to specify the image to be used. src

is the URL for the image. page is the module-relative URL for the image (and there-

fore, must begin with a slash). The key versions are message resource keys that point to

the actual URL.

• border: The width of the border around the displayed image. The units are pixels.

• locale: Specifies a key that can be used to look up the Locale object stored on the

current session. This object is used to determine the value of any keys used. If omitted,

the default Struts message resource file is used.

400 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Examples

The code that follows shows an image input field in your JSP:

<html:form ...>

 <html:image page="/myMapImage.jpg" property="" />

</html:form>

The ActionForm subclass might be

public MapActionForm extends ActionForm{

 public final int UNKNOWN = Integer.MAX_VALUE;

 protected int _x , _y;

 public int getX(){ return _x; }

 public void setX(int x){ _x = x; }

 public int getY(){ return _y; }

 public void setY(int y){ _y = y; }

 public void reset(ActionMapping mapping,

 HttpServletRequest request){

 _x = _y = UNKNOWN;

 }

}

Equivalents

None.

img

This tag renders an HTML .

Usage Restrictions

You must specify one of these attributes: action, module or src/srcKey, or page/pageKey.

Attributes

The first three common attribute sets are accepted: evt-attrs, acc-attrs, and ren-attrs.

Besides these, there are a few attributes specific to img:

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 401

• action, module or src/srcKey, or page/pageKey: Used to locate the image to display.

The first action/module pair specifies a form handler. The action, of course, must

begin with a slash, and if you want to specify a module use the module attribute. src

is the URL for the image. page is the module-relative URL for the image (and therefore,

must begin with a slash). The key versions are message resource keys that point to

the actual URL. They are very useful to display localized images.

• border: Specifies the width of the border around the displayed image. The units

are pixels.

• locale/bundle: These are used to specify a different Locale object or message

resource file. locale specifies a key that can be used to look up the Locale object

stored on the current session. The bundle attribute is explained in more detail in the

entry for <bean:message>.

• align: Specifies the alignment of the image relative to surrounding text. This is a

standard HTML attribute for the element. Valid values are left, right, top,

texttop, bottom, absbottom, middle, and absmiddle. Consult an HTML reference to

understand what these settings do.

• height/width: Specifies the height and width of the finally displayed image in pixels.

The resizing of the image is done by the browser.

• hspace/vspace: The amount of horizontal space (hspace) and vertical space (vspace)

between the image and surrounding elements. The units are pixels.

• imageName: Renders a name attribute in the tag: name=<imageName>. Used

for scripting.

• ismap: This boolean attribute is the counterpart of the ismap attribute of HTML’s

 tag. It’s used to indicate a server-side image map—which is used only for

ancient web browsers that don’t understand the HTML <map> element. For this

reason, you are extremely unlikely to use ismap.

• usemap: The name of the HTML <map> element to use. This turns the image into a

clickable image map. Refer to an HTML reference on how to create a <map>. The

browser’s behavior when the user clicks the image is entirely processed on the

client. No server-side processing is involved. If you want to pass mouse click posi-

tions to server-side code, use <html:image> instead.

402 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

• paramName,paramProperty,paramScope and paramId: You use these to create a single

request parameter. The request parameter is appended to the final URL for the

image. The first set of three attributes is used to locate a single object on the current

request or session. This object’s toString() is the single parameter value. The name

of the parameter is given by paramId.

• name/property/scope: You use these to create multiple request parameters. The

request parameters are appended to the final URL for the image. These attributes

are used to locate an object of type java.util.Map. The Map’s keys are the parameter

names, and the corresponding values are the parameter values. If you specify property,

you must also specify name.

• useLocalEncoding: If set to true, tells Struts to use whatever the character encoding

is for the current HttpServletResponse.

Examples

Here’s how to render a localized image:

<html:img srcKey="app.images.companylogo" />

To understand how to create single or multiple request parameters on the image’s URL,

refer to the entry for <html:link>.

Equivalents

JSF’s <h:graphicImage> is an equivalent.

javascript

This tag causes the generation of JavaScript for client-side validation. This tag is very

closely tied to the Validator framework.

Usage Restrictions

Using this tag only makes sense when it’s accompanying an <html:form>, since the generated

JavaScript is used for client-side form validations. The JavaScript code is autogenerated by

the Validator framework. Therefore, your ActionForm subclasses must be subclasses of

ValidatorForm as well in order for this tag to work.

Attributes

The most common use of this tag is without any attributes defined. However, you can

customize the generated JavaScript a little by using the following attributes:

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 403

• bundle: Specifies a message resource bundle (see Table C-8) to use in generating

error messages. This attribute was added in Struts 1.2.7. See also the entry for

<bean:message>.

• htmlComment: If set to true, enclose the JavaScript with HTML comment delimiters

(<!-- and -->). This is needed to prevent very old browsers from rendering JavaScript

on to the page. This setting is ignored if you’ve used <html:xhtml> or <html:html

xhtml="true">. The default is true.

• cdata: If cdata="true", and if you’ve used <html:xhtml> or <html:html xhtml="true">,

the generated JavaScript is enclosed by XML’s CDATA[...] delimiter.

• method: Specifies a different prefix for the names of the autogenerated JavaScript.

Use this attribute to prevent name clashes between your own JavaScript and the

Struts-generated JavaScript code.

• scriptLanguage: If set to false, omits the language attribute in the generated

<script> tag.

• staticJavascript/dynamicJavascript: Both of these take boolean values.

staticJavascript (default is true) specifies whether the static JavaScript code

from the Validator framework needs to be pasted into the page. Similarly,

dynamicJavascript (the default is true) specifies if the dynamic JavaScript code

generated for the form should be pasted into the page. Ordinarily, you’d leave out

both these attributes.

• src: This puts an HTML src attribute into the rendered <script> tag. You’d use this

to specify your own JavaScript files you want loaded when the page is displayed by

the browser.

• page/formName: The Validator framework allows you to create multipage validations

(this topic is not covered in this book). This feature is useful in creating multipage

wizards that simplify filling in complex data. Typically, the user is presented with

one subform at a time, each with “next” and “back” buttons. The page attribute is

the number of the current page, and the formName attribute is the name of the form

bean.

Examples

The most common usage is to require that all validations be made. You do this by specifying

no attributes:

<html:javascript />

This would work if pasted anywhere on the page.

404 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Equivalents

The <s:javascript> tag from the Struts-Faces integration library is an equivalent.

link

This tag renders an HTML link.

Usage Restrictions

You must specify either action/module, href, page, forward, or linkName.

Attributes

The first three common attribute sets are accepted: evt-attrs, acc-attrs, and ren-attrs.

Besides these, there are a few attributes specific to link:

• action/module, href, page, forward, linkName: Used to specify a URL for the link. The

action/module pair specifies a form handler. The action, of course, must begin with

a slash, and if you want to specify a module, use the module attribute. href is the URL

for the link. page is the module-relative URL for the link (and therefore must begin

with a slash). forward is the name of a global forward. linkName is the name of

another link on the same page. The URL for that link is used for this one.

• anchor: An optional HTML anchor for the link.

• bundle: Used to specify a different message resource file. The bundle attribute is

explained in more detail in the entry for <bean:message>.

• transaction: If true, appends the current transaction token to the link’s URL as a

request parameter. Refer to the entry for <logic:present> for details on transaction

tokens.

• paramName,paramProperty,paramScope and paramId: You use these to create a single

request parameter. The request parameter is appended to the final URL for the link.

The first set of three attributes is used to locate a single object on the current

request or session. This object’s toString() is the single parameter value. The name

of the parameter is given by paramId.

• name/property/scope: You use these to create multiple request parameters. The

request parameters are appended to the final URL for the link. These attributes are

used to locate an object of type java.util.Map. The Map’s keys are the parameter

names, and the corresponding values are the parameter values. If you specify

property, you must also specify name.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 405

• useLocalEncoding: If set to true tells Struts to use whatever the character encoding

is for the current HttpServletResponse.

Examples

Here’s a simple example using a global forward:

<html:link forward="success" />

The rendered link will have the true location for the success global forward. You can also

include request parameters for the link:

<html:link page="/mypage.jsp" paramName="myRequestValue"

 paramId="action" />

This snippet will render a link with a request parameter named action, whose value is

given by the value of toString() called on the bean myRequestValue.

Here’s how you’d create multiple request parameters:

<html:link href="http://www.kenyir.org/index.jsp" name="myMap"/>

Equivalents

The <s:commandLink> tag from the Struts-Faces integration library is an equivalent. You

may also use JSF’s <h:commandLink>, but you lose the ability to use global forwards and

form handlers.

messages

messages is an iterator for error messages and messages—please refer to the entry for

<logic:messagesPresent> for an explanation of these two terms. By default, <html:messages>

is an iterator over error messages, but you can iterate over messages by setting the messages

attribute to true.

By itself, <html:messages> does not print out either error messages or messages. You

have to nest a suitable tag within it (e.g., <bean:write>) to do this.

Usage Restrictions

The id attribute is required.

Attributes

• id: This behaves just like the id attribute of <logic:iterate>—it exposes a variable

that refers to a single message.

• message: A boolean attribute that indicates whether to iterate over error messages

(false, or omitted) or messages (true).

406 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

• property: The key with which to retrieve messages. Note that there might be more

than one message saved under the same property. If property isn’t specified, then

all messages are displayed. This trick is very useful for debugging.

• name: The name of the object that holds messages. Do not specify this attribute if

you wish to use Action’s saveErrors() or saveMessages().

• header/footer: Both are message resource keys to text that will be rendered at the

start and end of the iteration. This happens only when there is more than one error

message to be displayed. Refer to the entry for <html:errors> for details.

• locale/bundle: These are used to specify a different Locale object or message

resource file. locale specifies a key that can be used to look up the Locale object

stored on the current session. The bundle attribute is explained in more detail in the

entry for <bean:message>.You’d use these attributes to specify a locale different from

the current user’s locale or a message resource file different from the default one.

Examples

Here’s a simple example that displays all error messages:

<html:messages id="anError">

 <bean:write name="anError" />

</html:messages>

Remember, error messages are present either from simple validation failure (see

Chapter 6) or registered using Action’s saveErrors() (see Chapter 7).

Here’s how to display messages:

<html:messages id="aMessage" message="true">

 <bean:write name="aMessage" />

</html:messages>

Messages are created in exactly the same way as error messages, but are registered

using Action’s saveMessages(), which has the same signature as saveErrors().

Here’s how to display a header and footer (if there are any error messages to display):

<html:messages id="anError" header="err.header" footer="err.footer">

 <bean:write name="anError" />

</html:messages>

This assumes that the message resource keys err.footer and err.header have been

defined in your Application.properties file:

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 407

err.header=

err.footer=

So the HTML bold tag () is printed at the start and end of the iteration.

Equivalents

There are none, but it’s easy to create an ugly hack: Error messages are stored under the

key Globals.ERROR_KEY and messages are stored under Globals.MESSAGE_KEY. Both are

stored on the request. Globals is a Struts class (org.apache.struts.Globals) that contains

various constants. The stored object is either an ActionMessages or ActionErrors instance.

You can easily create a reference to this object using JSTL’s <c:set>, and use the defined

messages object in the page.

multibox

This tag renders one or more check box input fields, based on an underlying array.

See also <html:checkbox>. Note, however, that unlike <html:checkbox>, the corre-

sponding property on the ActionForm need not be a boolean. Any type of array will do.

Usage Restrictions

This tag must be inside an <html:form> tag. The property attribute is required.

Attributes

All common attribute sets (evt-attrs, acc-attrs, ren-attrs, struts-attrs, init-attr, and the new

err-attrs) are accepted, and have their usual meanings.

A few important points to note:

• The return value can be specified either by the value attribute or the content nested

in the body of the tag.

• To use this tag, you’d usually nest it within a <logic:iterate> (or any other compat-

ible looping construct like JSTL’s <c:forEach>), and use scriptlets or the EL-enabled

version of this tag to dynamically set the value attribute (if you need to nest the

content instead, then you must use scriptlets).

• The values are submitted only if a check box is checked. This means that in order to

detect a cleared check box, you’d need to set the underlying array to a zero-length

array. See the following examples for more on this.

408 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Examples

Consider the <html:multibox> on a form:

<html-el:form ...>

 <logic:iterate name="contacts" id="contact">

 <html-el:multibox property="ids" value="${contact.getId()}" />

 </logic:iterate>

</html-el:form>

and the associated ActionForm subclass:

public SelectedContactIds extends ActionForm{

 protected String[] _ids;

 public void setIds(String[] ids){ _ids = ids; }

 public String[] getIds(){return _ids;}

 public void reset(ActionMapping mapping,

 HttpServletRequest request){

 // We use a new String array instead

 // of just null to allow easy migration to

 // the Validator framework, which requires

 // a non-null value for arrays.

 _ids = new String[0];

 }

}

The length of the _ids variable isn’t fixed—it depends on how many of the rendered

check boxes were checked.

Equivalents

None.

radio

This tag renders a radio button input field.

Usage Restrictions

This tag must be inside an <html:form> tag. The property and value attributes are

required.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 409

Attributes

All common attribute sets (evt-attrs, acc-attrs, ren-attrs, struts-attrs , init-attr, and the

new err-attrs) are accepted, and have their usual meanings.

In addition to these, there is the idName attribute, which points to a JavaBean. When

idName is specified, the value attribute is used as a property name for this JavaBean. The

combination is used to specify a return value for the radio button.

Examples

Here’s an example of a few radio buttons on a form. Notice how all radio buttons refer to

the same property (color), thereby allowing the user to select one color from a list:

<html:radio property = "color" value="Red"/>Red

<html:radio property = "color" value="Yellow"/>Yellow

<html:radio property = "color" value="Blue"/>Blue

Here’s the same example but using the idName attribute:

<logic:iterate name="colors" id="c">

 <html:radio idName="c" value="color"/>

 <bean:write name="c" property="color"/>

</logic:iterate>

In this second example, colors is an iteratable object (see the entry for <logic:iterate>)

and holds JavaBeans (exposed in the snippet by the variable c), which have a getColor()

function.

Equivalents

JSF’s <h:selectOneRadio> is an equivalent.

reset

This tag displays a button that if clicked, causes the enclosing form’s fields to be cleared.

Usage Restrictions

This tag should be inside an <html:form> tag.

Attributes

The first four attribute sets (evt-attrs, acc-attrs, ren-attrs, and struts-attrs) are accepted.

If value isn’t specified and if there is no text rendered in the body of the <html:reset> tag,

then the button text defaults to “Reset”.

410 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Examples

This example shows three submit buttons, all of which have the text “Reset Me”. The last

reset button uses an <html:bean> tag to localize its text:

<html:reset value="Reset Me" />

<html:reset >Reset Me</html:reset >

<html:reset >

 <html:bean message="msg.reset-me"/>

</html:reset >

In all cases, if the user clicks the button, the form gets submitted, the associated

ActionForm’s reset() function is invoked, and the page is then redisplayed. Your ActionForm

subclasses might override this function to provide custom resetting of the form’s fields.

Equivalents

The JSF’s <h:commandButton id="reset" type="RESET"> allows you to emulate the function-

ality of the <html:reset> button. Of course, for you to use this with Struts, you need to embed

it within the Strut-Faces <s:form> tag. Refer to Chapter 20 for details on <h:commandButton>

and <s:form>.

rewrite

This tag resolves and renders a URL. The rules used are similar to those for <html:link>.

Unlike <html:link>, though, the URL isn’t embedded within an HTML <a> tag; the URL is

rendered by itself. You might find this useful for debugging or for use in scripts.

Usage Restrictions

You must specify either action/module, href, page, or forward.

Attributes

• action/module, href, page, or forward: Used to specify a URL. The action, module

pair specifies a form handler. The action, of course, must begin with a slash, and if

you want to specify a module, use the module attribute. href is either a relative or

absolute URL. page is a module-relative URL (and therefore, must begin with a

slash). forward is the name of a global forward.

• anchor: An optional HTML anchor for the link.

• transaction: If true, appends the current transaction token to the URL as a request

parameter. Refer to the entry for <logic:present> for details on transaction tokens.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 411

• paramName,paramProperty,paramScope and paramId: You use these to create a single

request parameter. The request parameter is appended to the final URL. The first

set of three attributes is used to locate a single object on the current request or

session. This object’s toString() is the single parameter value. The name of the

parameter is given by paramId.

• name/property/scope: You use these to create multiple request parameters. The

request parameters are appended to the final URL. These attributes are used to

locate an object of type java.util.Map. The Map’s keys are the parameter names, and

the corresponding values are the parameter values. If you specify property, you

must also specify name.

• useLocalEncoding: If set to true, tells Struts to use whatever the character encoding

is for the current HttpServletResponse.

Examples

Here’s a simple example using a global forward:

<html:rewrite forward="success" />

The rendered string will be the true URL for the success global forward. For more examples,

refer to the entry for <html:link>.

Equivalents

None.

select, with option, options, and optionsCollection

select displays an HTML selection.

The other option tags are nested within it in order to render options for the enclosing

select element:

• option: Renders a single option. There are attributes you can use to help with local-

izing the displayed text.

• options: Displays a list of options, populated from a JavaBean.

• optionsCollection: A more streamlined version of options. Also displays a list of

options populated from a JavaBean.

Each rendered <option> has a value and a label. The value is the value submitted if that

option is selected. The label is the text presented to users in order for them to make the

selection.

412 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Usage Restrictions

The select tag must be inside an <html:form> tag, and the various option tags must be

nested within an <html:select> tag. There are a couple other restrictions:

• The property attribute is required for select.

• The value attribute is required for option.

Attributes for select

All common attribute sets (evt-attrs, acc-attrs, ren-attrs, struts-attrs , init-attr, and the

new err-attrs) are accepted, and have their usual meanings. Besides these, there are a

couple of attributes specific to select:

• multiple: Enables multiple selections if specified (the actual value is unimportant).

The underlying property must be an array if the multiple attribute is specified. As

with <html:multibox>, you must set the underlying property to a zero-length array

in your ActionForm’s reset() if you want to detect an unselected item. See the entry

for <html:multibox> for details.

• size: The number of options to display at once.

Attributes for option

The option tag accepts the ren-attrs attribute set. Besides this, the following attributes are

specific to option:

• value: The submitted value. This attribute is required.

• key: The message resource key that specifies the label for the option. If omitted, the

label is the text nested within the option tag’s body.

• locale/bundle: These attributes are used to specify a different Locale object or

message resource file. locale specifies a key that can be used to look up the Locale

object stored on the current session. The bundle attribute is explained in more

detail in the entry for <bean:message>. You’d use these attributes to specify a locale

different from the current user’s locale or a message resource file different from the

default one.

Attributes for options

The option tag accepts the ren-attrs attribute set, except for the styleId attribute. (This

attribute is left out because the options tag might render more than one HTML <option>

element, and the HTML standard forbids you from having two elements with the same id.)

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 413

There are two ways to specify the values and labels to use for each rendered <option>

element:

• Specify the collection/property/labelProperty attributes: The collection attribute

gives the name of a collection of JavaBeans, each holding the value and label for a

single <option>. The property attribute is the name of the getXXX() function that is

called on each bean to obtain the value for an <option>. Similarly, the labelProperty

attribute is the name of the getXXX() function that is called on each bean to obtain

the label for an <option>. If labelProperty is omitted, the <option>‘s value is used as

a label.

• Specify name/property and labelName/labelProperty attributes: The name and

property pair specifies a collection in any scope from which to get the values for each

rendered <option>. If you specify the property attribute only, then the ActionForm

subclass is the implicit base object. Similarly, the labelName and labelProperty pair

specifies a collection from which to get the labels for each rendered <option>. If only

labelProperty is specified, then the ActionForm subclass is the implicit base object.

If neither labelName nor labelProperty is specified, the labels are the same as

the values.

The remaining attribute of <html:options> is filter, which if true filters the labels for

HTML reserved characters (like <, >, or &). The default is true.

Attributes for optionsCollection

optionsCollection is a simplified, streamlined version of <html:options>. Like

<html:options>, the optionsCollection tag accepts the ren-attrs attribute set, except for

the styleId attribute. It also has the filter attribute, like <html:options>.

optionsCollection assumes that the values and labels for each rendered <option> are

stored in a collection of JavaBeans. This collection is specified using the name and property

attributes. If you specify the property attribute only, then the ActionForm subclass associ-

ated with the enclosing form is the implicit base object. Each JavaBean is assumed to have

two getXXX() functions from which to obtain the value and label for a single <option> tag.

By default, the name of the function for obtaining values is getValue(). The function

for labels is getLabel(). If you wish to specify different names for each, then use the value

and label attributes. For example, setting value="color" would mean that the getColor()

function is called to determine the value for each <option>.

The LabelValueBean Class

For options and optionsCollection, you need to have a JavaBean class with getXXX()

functions for values and labels. Struts has a utility class called org.apache.struts.

utility.LabelValueBean that does exactly this. It has the functions getValue() and

414 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

getLabel() that are ready to use with optionsCollection. Listing C-1 shows how you

might use this class (perhaps in an Action subclass).

Listing C-1. Using the LabelValueBean Class

//create collection to hold value-label pairs

List labelValuePairs = new ArrayList();

//populate collection

labelValuePairs.add(new LabelValueBean("labelOne", "valueOne"));

labelValuePairs.add(new LabelValueBean("labelTwo", "valueTwo"));

//save to request under suitable label

request.setAttribute("myOptions", labelValuePairs);

Simple Performance Optimizations

For performance reasons, you should save and reuse a single collection instance, and not

re-create it in each populating Action.

Sometimes, though, your selection may require a mix of dynamic and static options.

One simple solution in this situation is to use more than one <html:optionsCollection>—

one for the static options that come from a cache, and another that refers to dynamically

created value-label pairs.

Even in the case of dynamically created pairs, some optimization is possible. The most

time-consuming task is creating the new LabelValueBean objects. If the possible value-

label combinations are finite, you might want to cache them in a WeakHashMap, which acts

as a temporary cache. Of course, the benefits of caching the JavaBeans this way might be

outweighed by the performance hit in calculating the keys to retrieve the bean from the

WeakHashMap. So, this technique works best when you already have a usable key at hand.

Internationalization

The use of JavaBeans instead of Struts’ message resource mechanism means that the

option labels can’t be readily localized. One simple solution is to use a custom class (see

Listing C-2) for the collection (we’ll use an Iterator), and to use LabelValueBeans to store

message resource keys pointing to the localized label instead of the actual label.

The translation from message key to actual label while at the same time not creating

unnecessary objects requires some trickery, as you can see from Listing C-2.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 415

Listing C-2. The LocalizableIterator Class

/***

* Copyright 2005 Arnold Doray

* This code is released under the Lesser GNU

* General Public License. Please refer to:

* http://www.gnu.org/copyleft/lesser.html

* for details on this license.

***/

import java.util.Iterator;

import java.util.Locale;

import org.apache.struts.util.MessageResources;

import org.apache.struts.util.LabelValueBean;

public class LocalizableIterator implements Iterator{

 protected LocalizedLabelValueBean _bean = null;

 protected Iterator _labelValuePairs = null;

 public LocalizableIterator(){

 _bean = new LocalizedLabelValueBean();

 }

 public void set(Iterator labelValuePairs, Locale locale,

 MessageResources resources){

 _labelValuePairs = labelValuePairs;

 _bean.setLocale(locale);

 _bean.setResources(resources);

 }

 public boolean hasNext(){

 return _labelValuePairs.hasNext();

 }

 public Object next(){

 return _bean.setLabelValueBean(

 (LabelValueBean)_labelValuePairs.next());

 }

416 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

 public void remove() throws UnsupportedOperationException{

 throw new UnsupportedOperationException();

 }

 public class LocalizedLabelValueBean{

 private MessageResources _resources;

 private Locale _locale;

 private LabelValueBean _delegate;

 private String _label = null;

 private void setLocale(Locale locale){

 _locale = locale;

 }

 private void setResources(MessageResources resources){

 _resources = resources;

 }

 private LocalizedLabelValueBean

 setLabelValueBean(LabelValueBean delegate){

 _delegate = delegate;

 _label = null;

 return this;

 }

 public String getValue(){

 return _delegate.getValue();

 }

 public String getLabel(){

 if(null == _label){

 _label = _resources.getMessage(_locale,

 _delegate.getLabel());

 }

 return _label;

 }

 }

}

As Listing C-2 shows, the LocalizableIterator produces the same object when next()

is called, each time configured with a different LabelValueBean. Here’s how you might use

this class in your Action subclasses. Remember that, unlike Listing C-1, the underlying

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 417

collection of LabelValueBean (given by the variable labelValuePairs in Listing C-2) now

stores message resource keys instead of actual labels:

//somehow get collection of LabelValueBeans

//the labels on these are really message resource keys

List labelValuePairs = ...

//create a new LocalizableIterator

LocalizableIterator li = new LocalizableIterator();

//initialize it

li.set(labelValuePairs.iterator(),

 getLocale(request), getResources(request));

//save to request under suitable label

request.setAttribute("myOptions", li);

Examples

You may mix one or more option/options/optionsCollection tags in your JSP code.

Here’s an example:

<html:select property="selectedColor">

 <html:option value="new-color" key="app.prompt.newcolor" />

 <html:optionsCollection name="myOptions" />

</html:select>

Or, to enable multiple selections, use this:

<html:select property="selectedColor" multiple="true">

 <html:optionsCollection name="myOptions" />

 <html:options collection = "myOtherOptions"

 property = "value" labelProperty="label" />

</html:select>

Remember, the value of the multiple attribute is unimportant—as long as the multiple

attribute is specified, Struts assumes the underlying property is an array.

Equivalents

JSF’s <h:selectOneListbox> is an equivalent for a single-selection list. <h:selectManyListbox>

is an equivalent for a multiple-selection list.

418 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

submit

This tag displays a button that if clicked causes the enclosing form to be submitted

for processing.

Usage Restrictions

This tag must be inside an <html:form> tag.

Attributes

The first four attribute sets (evt-attrs, acc-attrs, ren-attrs, and struts-attrs) are accepted.

If value isn’t specified and if there is no text rendered in the body of the <html:submit>,

then the button text defaults to “Submit”.

Examples

This example shows three submit buttons, all of which have the text “Submit Me”. The last

submit button uses an <html:bean> to localize its text:

<html:submit value="Submit Me" />

<html:submit >Submit Me</html:submit>

<html:submit >

 <html:bean message="msg.submit-me"/>

</html:submit >

The last technique is especially useful if your form uses more than one submit button

for different actions. Refer to Chapter 17’s section on LookupDispatchAction for details.

Equivalents

The JSF <h:commandButton id="submit" type="SUBMIT"> allows you to emulate the func-

tionality of the <html:submit> button. Of course, for you to use this with Struts, you need

to embed it within the Strut-Faces <s:form> tag. Refer to Chapter 20 for details on

<h:commandButton> and <s:form>.

text/password

text represents a one-line text input field. password represents a password field. The only

difference between the two is that with <html:password>, the character keyed in by the

user is not displayed; only asterisks or some other placeholder are displayed.

Usage Restrictions

The property attribute is required. It must be a child tag of <html:form>.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 419

Attributes

All common attribute sets (evt-attrs, acc-attrs, ren-attrs, struts-attrs, init-attr, and the new

err-attrs) are accepted, and have their usual meanings.

Besides these, there are a few attributes specific to both text and password:

• size: The length of the displayed field. If omitted, the decision is left to the browser.

• readonly: If true, the text field may not be edited.

• maxlength: Maximum number of characters to accept. The default is to allow an

unlimited number of characters.

The password tag has an additional boolean attribute called redisplay, which defaults

to true. This causes the previously keyed password (when a form is redisplayed because

of validation errors) to appear as asterisks. Unfortunately, the actual password is also

embedded in the HTML for that page. You should set redisplay=false to prevent pass-

words being harvested from cached pages.

Examples

The code

<html:text property="email" />

specifies a text input field for the property called email on the current form bean.

<html:password property="pwd" />

specifies a password field.

Equivalents

JSF’s <h:inputText> is an equivalent for <html:text>, but you need to enclose it within

the Struts-Faces <s:form> tag so that the associated form bean is populated with the

submitted value:

<s:form ...

 <!-- equivalent to html:text -->

 <h:inputText id="email" binding="#{MyFormBean.email}" />

 <!-- equivalent to html:password -->

 <h:inputSecret id="pwd" binding="#{MyFormBean.pwd}" />

 ...

</s:form>

420 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

textarea

This tag represents a multiple-line text input field.

Usage Restrictions

The property attribute is required. It must be a child tag of <html:form>.

Attributes

All common attribute sets (evt-attrs, acc-attrs, ren-attrs, struts-attrs , init-attr, and the

new err-attrs) are accepted, and have their usual meanings.

Besides these, there are a few attributes specific to textarea:

• cols/rows: The number of columns (cols) or rows to display. The browser makes

the decision if either is omitted.

• readonly: If true, the text field may not be edited.

Examples

The code

<html:textarea property="memo" cols="8" rows="3"/>

specifies a textarea input field for the property called memo on the current form bean.

Equivalents

JSF’s <h:inputTextarea> is an equivalent for <html:textarea>, but you need to enclose it

within the Struts-Faces <s:form> tag so that the associated form bean is populated with

the submitted value:

<s:form ...

 <!-- equivalent to html:textarea -->

 <h:inputTextarea id="memo" binding="#{MyFormBean.memo}"

 cols="8" rows="3" />

 ...

</s:form>

xhtml

This tag causes the Struts tags on the current page to render themselves as XHTML 1.0.

This is essentially an XML-conformant version of HTML. You should be aware that some

older browsers may balk at XHTML elements like <input /> instead of HTML’s <input>.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 421

Usage Restrictions

This tag isn’t “inherited” if you use a JSP include. You must put this tag on each and every

JSP and JSP fragment that you want rendered as XHTML.

Attributes

None.

Examples

<html:xhtml/> at the start of the page is all you need.

Equivalents

None.

The Bean Tag Library

The Bean tag library has tags for reading the properties of JavaBeans and for writing text.

There are two reasons why you’d use the Bean tags instead of hard-coding text into your

JSPs. The first is to enable internationalization, and the second is to avoid using scriptlets.

Table C-10 gives a synopsis of tags in the Bean library, based on Apache's documenta-

tion. Refer to www.apache.org/licenses/LICENSE-2.0 for a copy of the Apache License.

Table C-10. Synopsis of the Bean Tag Library

Tag Usage/Comments

message Writes static text based on the given key.

write Writes the value of the specified JavaBean property.

cookie/header/parameter Each exposes a scripting variable based on the value of the
specified cookie/header/parameter/ variable.

define Each exposes a scripting variable based on the value of the
specified JavaBean.

page Each exposes a scripting variable based on the value of the
specified page-scoped variable.

include Allows you to call an external JSP or global forward or URL and
make the resulting response data available as a variable. The
response of the called page is not written to the response stream.

resource Allows you to read any file from the current webapp and expose it
either as a String variable or an InputStream.

size Defines a new JavaBean containing the number of elements in a
specified Collection/Map/array.

struts Exposes the specified Struts internal configuration object as
a JavaBean.

422 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Struts-EL Tags for the Bean Tag Library

Only the following tags in the Bean library have EL-enabled versions: include, message,

page, resource, size, and struts. (Note: EL-enabled tags are those that allow you to use EL

expressions. Refer to Chapter 10 for examples.)

cookie/header/parameter

Each exposes a scripting variable based on the value of the specified cookie/header/

parameter.

Usage Restrictions

The id and name attributes are required.

Attributes

• name:The name of the cookie/header/parameter to retrieve.

• id: The name of the exposed variable. Scriptlets and other custom tags will be able

to access properties of the cookie/header/parameter using this name.

• value: The default value to return in case the cookie/header/parameter of the given

name can’t be found.

• multiple: Specifies how multiple cookies/headers/parameters with the same name

are to be handled. The exact value of this attribute is unimportant. If the multiple

attribute is present, then the variable exposed by id is an array of the corresponding

type (Cookie[]/String[]/String[]). If multiple is not present, then the first occur-

ring cookie/header/parameter is bound to the exposed variable.

Examples

Consider the following URL:

http://www.kenyir.org/mypage.jsp?command=test&action=save&id=12345

Here’s how to expose the parameter named command on the requested URL:

<bean:parameter name="command" id="cmd" value="" />

Command is: <%=cmd%>

If there were more than one parameter named command, for example:

http://www.kenyir.org/mypage.jsp?command=print&command=save

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 423

you’d access them all in this way:

<bean:parameter name="command" id="cmd" value="" multiple="true"/>

<logic:iterate name="cmd" id="aCommand">

 <bean:write name="aCommand"/>

</logic:iterate>

The other tags (header and cookie) have similar examples.

Equivalents

The JSTL <c:set> is a replacement for these tags.

Here’s how to use <c:set> as an equivalent tag for the case where the multiple

attribute is not specified. The exposed variable is called myVar* and the corresponding

name of the cookie/header/parameter is always myAttr.

<c:set var="myVar1" value="${cookie.myAttr}" />

<c:set var="myVar2" value="${header.myAttr}" />

<c:set var="myVar3" value="${param.myAttr}" />

If the multiple attribute is specified, then you’d use one of the following instead:

<c:set var="myVar4" value="${pageContext.request.cookies.myAttr}" />

<c:set var="myVar5" value="${headerValues.myAttr}" />

<c:set var="myVar6" value="${paramValues.myAttr}" />

Note that there is also a <c:remove> to delete a declared variable.

define

This tag exposes a variable based on data from (1) a given String, or (2) another JavaBean.

Scriptlets and other tags can access this exposed variable like any other. This might not

seem useful, but it is. Refer to the examples for details.

Refer also to the entries for cookie/header/parameter and page, which are related tags.

Usage Restrictions

The id attribute is required as the exposed variable’s name. You also need to either specify

name/property/scope, or value, or nest the exposed variable’s value in the body of the

<bean:define> tag.

Also, note that you can define a variable only once. Attempting to define a new variable

with the same name on the same page will result in an Exception being thrown.

424 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Attributes

• id: The name of the exposed variable. Scriptlets and other custom tags will be able

to access the new variable using this name.

• name/property/scope: These attributes are used to locate an object to expose, with

the given name and optional property and scope. If scope isn’t specified, all scopes

are searched for the named object.

• value: The String value to expose. This binds the variable exposed using the id

attribute to the String specified by the value attribute.

• toScope: The scope on which to place the new variable. Can be page, request,

session, or application.

• type: The fully qualified classname for the variable exposed using the id attribute.

If not specified, java.lang.String is used when you also specify the value attribute.

It is also implied when you use the nested technique (see the examples). If you use

the name/property/scope method, then the implicit classname is java.lang.Object.

Examples

Here are a few examples of how you’d expose a String or variable using <bean:define>:

<bean:define id="myVar1" name="myAttr"

 property="myProp" scope="session"/>

<bean:define id="myVar2" name="myAttr" scope="session"/>

<bean:define id="myVar3" value="Hello World" toScope="request" />

<bean:define id="myVar4">Here's looking at you kid!</bean:define>

<bean:define id="myVar5">

 <!-- myAttr.getMyProp() must never return null -->

 <bean:write name="myAttr" property="myProp"/>

</bean:define>

In the last example, if myAttr.getMyProp() returned null, then an exception would be

thrown. Otherwise, myVar5 is equal to the value of myAttr.getMyProp() at the time it was

called.

You can use <bean:define> to help you localize validations (see Chapter 12) if you use

it with Struts-EL tags. Recall that in Chapter 12’s treatment of the subject of localizing vali-

dations, we explained that you could use the trick of embedding the localized format

String along with the form data (refer to Listing 12-3). An Action was used to populate the

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 425

hidden field. A more elegant way populating the hidden field is to use <bean:define> and

<html-el:hidden> like so:

<bean:define id="dateFormat">

 <bean:message key="myapp.formats.dateFormat"/>

</bean:define>

<html-el:hidden property="${dateFormat}" />

The message pointed to by myapp.formats.dateFormat is the date format, and of course,

this is automatically localized by Struts. No Action subclass needed!

Equivalents

The JSTL <c:set> can be used to replace <bean:define>. The previous examples ported to

<c:set> would be

<c:set var="myVar1" value="${sessionScope.myAttr.myProp}"/>

<c:set var="myVar2" value="${sessionScope.myAttr}"/>

<c:set var="myVar3" value="Hello World" scope="request" />

<c:set var="myVar4">Here's looking at you kid!</c:set>

<c:set var="myVar5">

 <!-- myAttr.getMyProp() must never return null -->

 <bean:write name="myAttr" property="myProp"/>

</c:set>

The last example is similar:

<c:set var="dateFormat">

 <bean:message key="myapp.formats.dateFormat"/>

</c:set>

<html-el:hidden property="${dateFormat}" />

include

This interesting tag allows you to call an external JSP or global forward or URL and make

the resulting response data available as a variable. The response of the called page is not

written to the response stream.

The received output is HTML encoded (< is replaced with <, etc.) if the exposed variable

is displayed with <bean:write>.

Usage Restrictions

You must specify the id attribute and either forward, page, or href.

426 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Attributes

• id: The name of the exposed variable. Scriptlets and other custom tags will be able

to access the new variable using this name. The resulting variable is page scoped.

• forward: The name of the global forward to call.

• page: The name of the JSP page on the current webapp to call. This name is module

relative, and needs a slash prefix.

• href: The absolute URL of the external page—for example: http://www.kenyir.org/

code/index.html.

• anchor: The name of the HTML anchor on the called page.

• transaction: If set to true, includes the transaction token (see the entry for

<logic:redirect> for an explanation) in the response.

Examples

This example reads the given external page and then displays the actual contents. Remember,

any received HTML is encoded:

<bean:include id="myPage" href="http://localhost:8080/lilldep/"/>

<bean:write name="myPage" />

Equivalents

The closest equivalent is JSTL’s <c:import>, which calls a URL and exposes the received

data as either a String or a Reader.

The previous example can easily be translated using JSTL:

<c:import var="myPage" url="http://localhost:8080/lilldep/" />

<c:out value="${myPage}"/>

Note that you can also perform parameter replacement on the received data using nested

<c:param> tags.

message

This tag displays an internationalized message. You may specify up to five replacement

parameters.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 427

Usage Restrictions

You must specify either the key attribute or the name/property/scope combination.

Attributes

• key: The key of the message resource to display. If the locale/bundle combination

isn’t specified, then the default message resource file and user’s current locale are

used to determine which message resource to display.

• name/property/scope: These attributes are used to derive a key, based on an object

with the given name and optional property and scope. If scope isn’t specified, all

scopes are searched for the named object.

• locale/bundle: These attributes are used to specify a different Locale object or

message resource file. locale specifies a key that can be used to look up the Locale

object stored on the current session. The bundle attribute is explained in more

detail in the following subsection.

• arg0/arg1/arg2/arg3/arg4: These are the values of the first, second, third, fourth,

and fifth replacement parameters.

Using Multiple Message Resource Files

Struts allows you to declare more than one message resource file (that is, more than one

Application.properties file, for the same locale). Each such message resource file is given

a unique name, referred to in the Struts tags using the bundle attribute. The default message

resource file has no name, and it is the one that is used if the bundle attribute isn’t specified.

You should be aware that there are problems with using multiple message resource files:

• There are reported problems getting it to work with the Validator framework.

• It makes maintenance more difficult. This is because in addition to specifying the

key, you’d have to indicate the bundle name (if it’s not the default one). If you later

decide to move a message from one file to another (common if you’re consolidating

an app to ensure uniformity of displayed messages or prompts), then you’d have to

change the bundle value of every tag that used that particular message.

So you should try to avoid using this feature if possible.

An alternative is to use a naming convention for keys, like the dot naming convention

(e.g., app.error.prompt.login) I’ve used for message keys throughout this book. This lets

you to create separate namespaces, and so obviates the need for multiple message

resource files.

428 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Now that you’re aware of the dangers, here’s how you’d declare multiple message

resource files in your struts-config.xml file:

<!-- the default message resource file: -->

<message-resources parameter="Application" />

<!-- another message resource file -->

<message-resources parameter="Application2"

 key="myOtherResourceFile"/>

In this example, the second message resource file is Application2.properties, and is

stored in the same place as the default Application.properties file (that is, in /WEB-INF/

classes/).

To display a prompt from the default file, you’d use

<bean:message key="app.error.prompt.login" />

To display a prompt from the second file, you’d use

<bean:message bundle="myOtherResourceFile"

 key="app.prompt.checkdata" />

The extra bundle attribute tells Struts which message resource file to use.

Examples

Here’s how to display a message:

<bean:message key="app.prompt.login" />

Here’s how to use a JavaBean whose toString() results in a key:

<bean:message name="myLoginMessageKey" />

Here’s how to use a JavaBean whose property gives a key:

<bean:message name="MyBean" property="formatKey" />

This example calls MyBean.getFormatKey() and uses it as the message key. toString() is

called on the return value if necessary.

If the message has replacement parameters, for example:

app.prompt.logoff=Logoff {0}

you can use the following to perform the replacement (using EL):

<bean:message-el key="app.prompt.logoff" arg0="${user.name}" />

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 429

Equivalents

There are equivalents in both JSTL and JSF. With JSTL, you’d use the Formatting library:

<fmt:bundle basename="Application">

 <fmt:message key="app.prompt.logoff">

 <fmt:param value="${user.name}"/>

 </fmt:message>

</fmt: bundle>

This snippet is an equivalent for the last example, with a single replacement parameter.

If you’re using JSF, you might find it convenient to use the Struts-Faces library (see

Chapter 20) to expose the default message resource file:

<s:loadMessages var="messages"/>

<h:outputFormat value="#{messages['app.prompt.logoff']}">

 <f:param value="#{user.name}"/>

</h:outputFormat>

This is the equivalent of the previous JSTL example.

Lastly, there is <s:message> from the Struts-Faces integration library.

page

This handy tag exposes objects from the page context as variables that may be accessed

with scriptlets or custom tags.

The PageContext object is the central repository of all state for the current page. This

includes the session (HttpSession) and request (HttpServletRequest) that were described

in Chapter 2. There is more:

• application: The javax.servlet.ServletContext object, obtained by calling

pageContext.getServletContext().

• config: The javax.servlet.ServletConfig object, obtained by calling

pageContext.getServletConfig(). Don’t confuse this with Struts’ internal configu-

ration objects.

• response: The HttpServletResponse object associated with the page.

You should consult a recent reference on servlets (or Google the classname to get the

JavaDoc) to find out more about these objects.

Usage Restrictions

Both id and property attributes are required.

430 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Attributes

• id: The name of the exposed variable. Scriptlets and other custom tags will be able

to access the new variable using this name. This attribute is required.

• property: The value is application, session, request, config, or response; used to

get the associated objects from the page context. This attribute is required.

Examples

The snippet

<bean:page id="myVar" property="session" />

exposes the session object (HttpSession) associated with the enclosing page as a bean

named myVar. The other page context objects are similarly exposed.

Equivalents

JSTL’s <c:set> can be used to replace <bean:page>. Let’s look at some examples.

To expose the application, use this:

<c:set var="myVar" value="${pageContext.servletContext}"/>

To expose the session, use this:

<c:set var="myVar" value="${pageContext.session}"/>

To expose the request, use this:

<c:set var="myVar" value="${pageContext.request}"/>

To expose the config object, use this:

<c:set var="myVar" value="${pageContext.servletConfig}"/>

To expose the response, use this:

<c:set var="myVar" value="${pageContext.response}"/>

You should note that the JSTL implicit object sessionScope is not the same as

pageContext.session. The former is a Map containing key/value pairs, and the latter is

the actual HttpSession object, whose properties you can read.

resource

resource allows you to read any file from the current webapp and expose it either as a

String variable or an InputStream. See also <bean:include>.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 431

Usage Restrictions

The id and name attributes are required.

Attributes

• id: The name of the exposed variable. Scriptlets and other custom tags will be able

to access the new variable using this name. This attribute is required.

• name: The module-relative name of the resource to load.

• input: If this attribute is present (the actual value is irrelevant), then the exposed

variable is of type InputStream; otherwise it’s a String.

Examples

Frankly, it’s difficult to see how this tag can be useful, unless you’re using some other

custom tags that can read and parse the InputStream. Here’s an example using a hypo-

thetical RSS source (/myRss.xml, which contains RSS markup) and a hypothetical <rss>

custom tag to parse and display the output:

<!-- expose the RSS XML data: -->

<bean:resource id="rssSrc" name="/myRss.xml" input="yes" />

<!-- display the RSS data as HTML: -->

<rss:write name="rssSrc" />

Equivalents

The closest equivalent is JSTL’s <c:import>, which calls a URL and exposes the received

data as either a String or a Reader. The previous example can easily be translated using JSTL:

<c:import varReader="rssSrc" url="myRss.xml" />

<rss:write value="${rssSrc}"/>

size

This tag exposes the size of a given Collection or Map or array as a variable (of type Integer)

that may be accessed with scriptlets or custom tags.

Usage Restrictions

The id attribute is required, and you must specify the array/Collection/Map whose size

you want measured, using either the collection attribute or a name/property/scope

combination.

432 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Attributes

• id: The name of the exposed variable. Scriptlets and other custom tags will be able

to access the new variable using this name. This attribute is required.

• name/property/scope: These attributes are used to locate the Collection/Map/array,

with the given name and optional property and scope. If scope isn’t specified, all

scopes are searched for the named object.

• collection: This is a very handy alternative to the name/property/scope combina-

tion. You use a scriptlet to calculate the value of this attribute, for example:

<bean:size id="mySize"

 collection="<%=MyObject.calculateCollection() %>" />

• The rationale behind this attribute is discussed in the entry for <logic:iterate>.

Examples

Here’s a simple example that exposes the size of a given collection:

<bean:size id="mySize" name="MyCollection"/>

<bean:write name="mySize"/>

Equivalents

You can use JSTL’s <c:set> in conjunction with the JSTL length function:

<c:set var="myVar" value="${fn:length(MyCollection)}" />

Remember to declare the JSTL function tag library.

struts

This tag exposes a Struts global forward, or form bean or form handler (the ActionMapping

for the form handler) as a variable, accessible to scriptlets and other tags. This can be

useful if you want JSTL to access Struts’ internal variables.

Usage Restrictions

The id attribute is required. You must also specify the forward, formBean, or mapping

attribute.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 433

Attributes

• id: The name of the exposed variable. Scriptlets and other custom tags will be able

to access the new variable using this name. This attribute is required.

• forward: The name of the global forward to expose.

• formBean: The name of the declared form bean to expose.

• mapping: The name of the form handler to expose.

Examples

Consider this struts-config.xml snippet:

<form-beans>

 <form-bean name="RegistrationFormBean"

 type="net.thinksquared.reg.RegistrationFormBean" />

</form-beans>

<global-forwards>

 <forward name="myForward" path="/index.jsp" />

</global-forwards>

<action-mappings>

 <action path="/Login"

 type="net.thinksquared.reg.RegistrationAction"

 validate="true"

 name="RegistrationFormBean"

 input="myInput.jsp">

 <forward name="success" path="registered.jsp" />

 <forward name="new-user" path="new-user.jsp" />

 </action>

</action-mappings>

Here’s how you would expose the global forward:

<bean:struts id="fwd" forward="myForward"/>

<bean:write name="fwd"/>

<bean:write name="fwd" property="path" />

434 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

and the form bean:

<bean:struts id="fbean" formBean="RegistrationFormBean"/>

<bean:write name="fbean"/>

<bean:write name="fbean" property="type" />

and the form handler:

<bean:struts id="fhandler" mapping="/Login"/>

<bean:write name="fhandler"/>

<bean:write name="fhandler" property="input" />

Equivalents

None.

write

This tag writes the specified bean property to the response stream. It allows for some

formatting of the given bean property.

Usage Restrictions

The name attribute is required.

Attributes

• name/property/scope: These attributes are used to locate the JavaBean with the

given name and optional property and scope. If scope isn’t specified, all scopes are

searched for the named object.

• ignore: If true, silently fails if the named JavaBean is not found. The default value

(false) causes an exception to be thrown.

The remaining attributes are used to format the bean’s property:

• filter: If set to true causes the property’s String value to be HTML encoded. For

example, the ampersand (&) would be encoded as & and > would be encoded as

>. The default is true.

• format/formatKey: Both specify a format string that is used to format the bean’s

property. format uses its value literally as a format string. formatKey uses its value as

a key to look up the actual format string stored in the message resources file. Unless

the locale/bundle combination is specified, the current user’s locale and the default

message resource bundle is used.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 435

• locale/bundle: These attributes are used to specify a different Locale object or

message resource file. locale specifies a key that can be used to look up the Locale

object stored on the current session. The bundle attribute is explained in more detail

in the entry for <bean:message>.You’d use these in conjunction with formatKey to

specify a locale different from the current user’s locale or a message resource file

different from the default one.

Examples

The code

<bean:write name="myString" />

will display the String referred to by myString.

<bean:write name="MyBean" property="message />

will display the value of MyBean.getMessage().

<bean:write name="myFloat" format="#.##" />

will display myFloat = 3.1416 as 3.14.

<bean:write name="myCalendar" format="dd/mm/yyyy" />

will format the date represented by myCalendar as dd/mm/yyyy. For example, 20 Feb 2006

will be displayed as 20/02/2006.

<bean:write name="myCalendar" formatKey="app.format.dateFormat" />

will use the value of the message key app.format.dateFormat as a format string.

Equivalents

You can use JSTL’s <c:out> to display a bean’s properties:

<c:out value="${MyBean.message}"/>

displays the value of MyBean.getMessage(). To format the output, you’d use JSTL’s

Formatting tag library:

<fmt:formatNumber value="${myFloat}" pattern="#.##" />

as an equivalent to the number formatting given earlier, or

<fmt:formatDate value="${myCalendar}" pattern="dd/mm/yyyy" />

JSTL’s Formatting tag library has numerous variations on formatting strings, dates, curren-

cies, and numbers. You should consult the latest specification if you’re interested in

learning more.

Lastly, the <s:write> tag from the Struts-Faces integration library is yet another

equivalent.

436 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

The Logic Tag Library

The Logic tag library provides tags for conditional processing, looping, and flow control.

• Conditional processing: equal/notEqual, empty/notEmpty, greaterEqual/lessEqual/

greaterThan/lessThan, match/notMatch, messagesPresent/messagesNotPresent and

present/notPresent.

• Looping: The iterate tag.

• Flow control: The forward and redirect tags.

All of these tags, except the ones that involve flow control, have JSTL equivalents, so you

should use the JSTL versions if you can.

Common Attribute Sets

There are two common attribute sets for the Logic tag library. The first, which we’ll call the

Base Object attribute set (or base-attrs for short) is illustrated in Table C-11, and pertains

to the JavaBean object that the corresponding tags apply to.

Some tags allow you to use values from other sources (that is, other than the property

on the base object) in order to do their job. These Extended Property attributes (exprop-

attrs) are listed in Table C-12.

Table C-11. The base-attrs Attribute Set

Attribute Name Usage

name The name of the base object. If this is omitted, then the implicit base object
(if any) is used. If the tag is enclosed in an <html:form>, the implicit base
object is the form bean associated with the form.

property The property on the base object, whose value is used in the functioning of
the tag. For example, if the tag were a comparison tag, then the value of
property on the base object is used in the comparison. This assumes a corre-
sponding getXXX() function on the base object.

scope The scope on which to search for the object given by the name property.
If scope is undeclared, then all scopes are searched for the object specified
by the name property. The valid scopes are page, request, session, and
application.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 437

Selector Attributes

Many tags in the Logic library use selector attributes. These attributes are used to select

the object or property with which to perform that tag’s function. The selector attributes

are cookie, header, name/property, and parameter.

Struts interrogates these attributes in this sequence. For example, if you specify both

cookie and parameter, only the cookie attribute is used to perform the tag’s task.

Note that the name/property attributes are considered a pair in this respect. That is, if

you specify the name, you may optionally specify the property as well. You cannot specify

just the property alone—you must specify the name as well, if they function as a selector

attribute. The reference for each tag will tell you if this is the case or not.

Struts-EL Tags for the Logic Tag Library

Only the following tags in the Logic library have EL-enabled versions: forward, iterate,

match/notMatch, messagesPresent/messagesNotPresent, present/notPresent, and redirect.

Other tags have simpler JSTL equivalents.

■Note EL-enabled tags are those that allow you to use EL expressions. Refer to Chapter 10 for examples.

empty/notEmpty

empty conditionally executes its body if the specified property (or base object) is null, a

zero-length String, or an empty Collection or Map. If the property attribute isn’t specified,

then the test is run against the base object given by the name attribute.

notEmpty is the converse of empty.

Usage Restrictions

The name attribute must be specified, even if nested within an <html:form>.

Table C-12. The exprop-attrs Atribute Set

Attribute Name Usage

cookie The name of the cookie to use.

header The name of the HTTP request header variable to use. The name match is
case insensitive.

parameter The name of the URL request parameter to use. If there are more than one, the
first one that occurs is used.

438 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Attributes

Only the base-attrs attribute set is applicable.

Examples

The following example shows the use of the <logic:empty> tag to conditionally process

the nested <bean:write> tag if MyCollection is empty:

<logic:empty name="MyCollection">

 <bean:write name="MyCollection" property = "myproperty[13]" />

</logic:empty>

The next example illustrates the use of the property tag:

<logic:empty name="contact" property="email">

 <bean:write name="contact" property="email"/>

</logic:empty>

The <bean:write> is executed only if the getEmail() function returns null, or a zero-

length String. You can also use the scope variable to specify a scope under which to look

for a bean:

<logic:notEmpty name="MyBean" scope="request">

 <bean:write name="MyBean" property = "myproperty" />

</logic:empty>

In the previous example, the <bean:write> is called on the base object if MyBean can be

found on the request scope.

Equivalents

You can easily create equivalents for empty and notEmpty using JSTL’s <c:if> or

<c:choose>...<c:when>. For example using <c:if>, the previous examples would be

<c:if test="${empty MyCollection}">

 <bean:write name="MyCollection" property = "myproperty[13]" />

</c:if>

and

<c:if test="${empty contact.email}">

 <bean:write name="contact" property="email"/>

</c:if>

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 439

You’d have to use JSTL’s implicit objects (requestScope, sessionScope, etc.) to specify

a scope:

<c:if test="${ not empty requestScope.MyBean}">

 <bean:write name="MyBean" property = "myproperty" />

</c:if>

equal/notEqual

equal checks that the given property (or extended property) is equal to a given value. If so,

the body of the equal tag is executed. notEqual is the converse of equal.

Usage Restrictions

The value attribute is required. You must specify one selector attribute (see the start of

this section for a definition) as well.

Attributes

Both base-attrs and exprop-attrs are accepted. There is also an additional value attribute,

which is a constant value that the property or extended property will be compared to.

Examples

The following example shows the use of the <logic:equal> tag to conditionally process

the nested <bean:write> tag if the variable client is equal to the String “Joe”:

<logic:equal name="client" value="Joe">

 <bean:write name="client" />

</logic:equal>

The next example illustrates the use of the parameter attribute:

<logic:equal parameter="username" value="Susan">

 Hello Susan!

</logic:equal>

The body is executed only if there is a parameter named username on the request URL with

the value Susan. If there were more than one such parameter, the first one that occurs

on the URL is used.

You can also use the scope variable to specify a scope under which to look for a bean:

<logic:notEqual name="MyBean" property="email"

 scope="session" value="joey@joey.com">

 <bean:write name="MyBean" property = "email" />

</logic:notEqual>

440 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

In this example, the <bean:write> is called on the base object if there is a bean on

the session scope called MyBean, and its getEmail() function returns a value equal to

joey@joey.com. Note that if MyBean is null, or does not have a getEmail() function, an

exception is thrown.

Equivalents

You can easily create equivalents for equal and notEqual using JSTL’s <c:if> or

<c:choose>...<c:when>. For example using <c:if>, the previous examples would be

<c:if test="${client == 'Joe'}">

 <bean:write name="client" />

</c:if>

The next example illustrates the use of the parameter attribute:

<c:if test="${param.username == 'Susan'}">

 Hello Susan!

</c:if>

You can also use the scope variable to specify a scope under which to look for a bean:

<c:if test="${sessionScope.MyBean.email != 'joey@joey.com'}">

 <bean:write name="MyBean" property = "email" />

</c:if>

Also note that unlike the Struts tags that only admit a constant value, the JSTL equivalents

have no such restriction. Here’s an example of comparing a variable against another (this

is impossible to implement with the Struts tags because value must be constant—unless

of course, you’re willing to use scriptlets):

<c:if test="${cookie.userlogin != MyBean.userlogin}">

 <bean:message key = "error.myapp.login" />

</c:if>

forward

This tag causes the page to be forwarded to the specified global forward (see Chapters 9

and 17). This tag has no body. See also <logic:redirect>.

Usage Restrictions

The name attribute is required.

Attributes

The name attribute is the name of the global forward to use.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 441

■Note If you wish to forward to a Tiles definition, a hack is to do this from an Action subclass, which is in

turn exposed as a global forward.

Examples

Consider the global forwards declared in struts-config.xml:

<global-forwards>

 <forward name="login" path="/login.jsp"/>

 <forward name="logoff" path="/Logoff.do"/>

</global-forwards>

Then, the forward

<logic:forward name="login"/>

would cause the page login.jsp to be displayed. Similarly, the forward

<logic:forward name="logoff"/>

would cause the Logoff.do form handler to be called. You can use this to load a Tiles

definition.

Equivalents

None.

greaterEqual/lessEqual/greaterThan/lessThan

greaterEqual is a conditional tag that executes its body if the given property (or extended

property) is greater than or equal to the constant value given by the value attribute. The

other tags in this group are similarly defined.

Note that if value is not a numeric value, it is interpreted as a String, and a comparison

between Strings (using Java’s standard comparisons between Strings) will be performed.

Usage Restrictions

The value attribute is required. You must specify one selector attribute (see the start of

this section for a definition) as well.

Attributes

Both base-attrs and exprop-attrs are accepted. There is also an additional value attribute,

which is a constant value that the property or extended property will be compared to.

442 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Examples

The example that follows shows the use of the <logic:greaterThan> tag to conditionally

process the nested tags (not shown) if the variable hits is greater or equal to 10:

<logic:greaterEqual name="hits" value="10">

 //other tags here.

</logic:greaterEqual>

The next example illustrates the use of the cookie attribute:

<logic:greaterThan cookie="logintries" value="3">

 <bean:message key= "error.myapp.login.tries-exceeded" />

</logic:greaterThan>

The <bean:message> is executed only if the cookie called logintries is greater than 3.

Equivalents

You can easily create equivalents for these tags using JSTL’s <c:if> or

<c:choose>...<c:when>. For example using <c:if>, the previous examples would be

<c:if test="${hits >= 10}">

 //other tags here.

</c:if>

The next example illustrates the use of the cookie attribute:

<c:if test="${cookie.logintries > 3}">

 //other tags here.

</c:if>

Also note that unlike the Struts tags that only admit a constant value, the JSTL equivalents

have no such restriction.

iterate

The <logic:iterate> tag can be used to iterate over Collections, Maps, Enumerations,

arrays, or Iterators (referred to as the “iteratable object”). The tags (or static text) nested

within an <logic:iterate> are executed into the JSP’s response stream (i.e., written to the

final HTML page).

Usage Restrictions

The id attribute is required. You must also specify the iteratable object (using either the

name/property attributes or the collection attribute).

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 443

Attributes

The iterate tag uses base-attrs to specify the base object that represents the Collection/

Map/Enumeration/array/Iterator to iterate over. Besides these, several other attributes

can be used:

• collection: The name/property combination only allows you to loop over iteratable

objects that may be read as JavaBean properties. This can be quite restrictive.

For example:

<logic:iterate name="MyBean" property="myCollection" ...

implicitly calls the function

MyBean.getMyCollection()

• in order to determine the iteratable object. Many Java classes however, do not use

the JavaBeans getXXX() convention, so a different approach is needed for them.

The solution is to use the collection attribute in combination with a scriptlet:

<logic:iterate collection="<%=MyObject.iterator()%>" ...

• id: This is the name given to a single element read from the iteratable object.

• indexId: The current index; starts from zero.

• length: The maximum number of elements to read from the iteratable object. If not

present, all elements are read.

• offset: The index of the first element to return from the iteratable object. For

example, if the iteratable object is an array [a, b, c], using offset="1" makes the

loop read b and c only. Note that the offset is zero based, as it is in Java.

• type: The fully qualified classname of the elements read from the iteratable object.

If an element doesn’t match this classname, a ClassCastException is thrown.

Examples

Here’s the basic usage:

<logic:iterate name="MyBean" property="myCollection" id="anElement">

 <!-- anElement.toString() called -->

 <bean:write name="anElement" />

</logic:iterate>

444 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

and with the collection attribute:

<logic:iterate collection="<%=MyObject.iterator()%>" id="anElement">

 <!-- anElement.toString() called -->

 <bean:write name="anElement" />

</logic:iterate>

And using the indexId attribute to display the current iteration number:

<logic:iterate name="MyContacts" id="aContact" indexId="count">

 <bean:write name="count" />

 <bean:write name="aContact" property="email"/>

</logic:iterate>

Equivalents

JSTL’s <c:forEach> is a better replacement for <logic:iterate>. Here are the previous

examples using JSTL:

<c:forEach var="anElement" items="${MyBean.myCollection}">

 <c:out value="${anElement}"/>

</c:forEach>

There is no “collection” attribute needed for the next example:

<c:forEach var="anElement" items="<%=MyObject.iterator()%>">

 <c:out value="${anElement}"/>

</c:forEach>

Lastly, you expose the iteration number this way:

<c:forEach var="aContact" items="${MyContacts}" varStatus="count">

 <c:out value="${count}"/>

 <c:out value="${aContact.email}"/>

</c:forEach>

match/notMatch

match is a conditional tag that executes its body if the given property (or extended property)

contains the value attribute as a substring. notMatch is the converse of match.

Usage Restrictions

The value attribute is required. You must specify one selector attribute (see the start of

this section for a definition) as well.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 445

Attributes

Both base-attrs and exprop-attrs are accepted, and have their usual meaning. Besides

these, there are two additional attributes:

• value: A constant substring that the property or extended property will be matched

for. For example, if the property or extended property results in the string “Visit

Zimbabwe”, then value="im" would cause a match, while value="Zic" would not.

• location: The value is either start or end, and specifies where the matching should

take place within the source string. If omitted, a match anywhere will succeed.

Examples

Here’s a simple example that looks for an email address with an .sg suffix:

<logic:match name="MyBean" property="email"

 value=".sg" location="end">

 I see you're from Singapore!

</logic:match>

Or you could interrogate the HTTP request header:

<logic:notMatch header="user-agent" value="Windows">

 Try knoppix now: http://www.knoppix.net

</logic:notMatch>

Equivalents

You can easily create equivalents for these tags using JSTL’s <c:if> (or

<c:choose>...<c:when>) in conjunction with JSTL functions. (This is a standard JSTL

library of functions. You must declare the JSTL function taglib in order to use it.)

For example, using <c:if> the previous examples would be

<c:if test="${fn:endsWith(MyBean.email,'.sg')}">

 I see you're from Singapore!

</c:if>

and

<c:if test="${fn:contains(header.user-agent,'Windows')}">

 Try knoppix now: http://www.knoppix.net

</c:if>

446 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

messagesPresent/messagesNotPresent

messagesPresent is a conditional tag that executes its body if the given message or

error message exists on the current request. messagesNotPresent is the converse of

messagesPresent.

Note the following terminology:

• “Error messages” are ActionMessage instances stored in an ActionMessages/

ActionErrors instance, which in turn is stored under the key Globals.ERROR_KEY

in the request.

• “Messages” are ActionMessage instances stored in an ActionMessages/ActionErrors

instance, which in turn is stored under the key Globals.MESSAGE_KEY in the request.

For example, your ActionForm’s validate() might return an ActionErrors instance that

contains one or more ActionMessage instances. These ActionMessage instances are stored

by key, as you’ve seen in Chapters 6 and 7. The key is called the “name” of the corresponding

error message/message.

Both error messages and messages may be displayed with <html:errors>, or iterated

with <html:messages>.

Usage Restrictions

None.

Attributes

There are three attributes: name, property, and message.

Note that the name and property attributes don’t have their usual meaning. Instead, the

following checks are made depending on the settings of these attributes:

• If no attributes are specified, messagesPresent simply checks if there any error

messages in the current request. It executes its body if there are error messages.

Setting message="true" causes messagesPresent to check for any messages instead.

• If the property attribute is specified, messagesPresent checks if there are any error

messages with that name. Again, setting message="true" causes a check for the

appropriate message instead.

• The name attribute allows you to look for error messages/messages on the request,

under a key other than Globals.ERROR_KEY or Globals.MESSAGE_KEY. Note that if you

specify the message attribute, the name attribute is ignored.

• If the name attribute is specified, then even a String or String array in the request

will result in a match.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 447

The various combinations are probably best illustrated with examples.

Examples

The simplest example tests for the presence of error messages:

<logic:messagesPresent >

 There are errors on this page!

</logic:messagesPresent>

Or you could test for a specific error message:

<logic:messagesPresent property="email">

 The email address field has an error!

</logic:messagesPresent>

If your Action posts messages, you can test for these as well:

<logic:messagesNotPresent property="alerts" messages=true ">

 The are no alerts for you.

</logic:messagesNotPresent>

And you can look for error messages or messages or Strings or String arrays under a

specific key on the request:

<logic:messagesPresent name="mywebapp_debug_messages">

 The debug message is: <bean:write name="mywebapp_debug_messages"/>

</logic:messagesPresent>

Equivalents

None. There are, of course, hacks using scriptlets in combination with JSTL’s <c:if>.

present/notPresent

present checks the request for the presence of an object under the specified property or

extended property. If the object is present, the body of the tag is executed. notPresent is

the converse of present.

Usage Restrictions

You must specify a selector attribute (see the start of this section for a definition) or user

or role.

Attributes

Both base-attrs and exprop-attrs are accepted, and have their usual interpretation. If the

property attribute is specified, present checks that the return value is not null.

448 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

In addition to these, there are other user and role attributes. These depend on the

underlying servlet technology’s facility to authenticate a user, and specify one or more

roles for that user. How this is done is outside the scope of this book, so if you’re interested

in learning more, you should consult a recent reference on servlets. The user attribute

specifies the name of the remote user for the current request. The role attribute is a

comma-delimited string of roles. present evaluates its body if any one of these roles is a

valid role of the current user.

Examples

The simplest usage checks for the presence of an object on the request:

<logic:present name="myobject">

 My object is present!

</logic:present>

Similarly, the use of the property attribute ensures that the given property is not null:

<logic:present name="contact" property="designation">

 The contact's designation is:

 <bean:write name="contact" property="designation"/>

</logic:present>

You can also check the current authenticated username:

<logic:present user="donquixote">

 Hi Don!

</logic:present>

or that the current authenticated user has any of the specified roles:

<logic:notPresent role="admin,staff">

 Sorry, you are not allowed to view this page!

</logic:notPresent>

Equivalents

You can easily create equivalents for these tags using JSTL’s <c:if> or

<c:choose>...<c:when>. For example using <c:if>, the previous examples would be

<c:if test="${myobject != null}">

 My object is present!

</c:if>

<c:if test="${contact != null && contact.designation != null}">

 The contact's designation is:

 <c:out value="${contact.designation}"/>

</c:if >

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 449

<c:if test="${pageContext.request.remoteUser == 'donquixote'}">

 Hi Don!

</c:if >

The last example—checking roles—unfortunately has no JSTL equivalent.

However, there is a JSF extension for security that handles this case neatly. Check out

http://jsf-security.sourceforge.net if you’re interested.

redirect

This tag performs a page redirect. The tag has no body. See also <logic:forward>.

Usage Restrictions

You must specify either forward, href, action, or page to specify the base URL to redirect to.

Attributes

There are two main sets of attributes. The first set specifies the base URL of the page to

redirect to. You have four ways to do this:

• forward: The name of the global forward to redirect to (e.g., forward="login").

• href: The raw URL to redirect to (e.g., href="http://www.kenyir.org").

• action: The name of the form handler (that is, action mapping) to redirect to.

This must begin with a slash because it’s relative to the default module (e.g.,

action="/Logoff"). (See Chapter 17 for more on modules.)

• page: The path to the web page on the current webapp to redirect to. This path

is relative to the webapp’s base folder. The path must begin with a slash (e.g.,

page="/index.jsp").

redirect also allows you to specify parameters on the redirected URL:

• anchor: Lets you specify the name of an anchor. Anchors are standard HTML.

They are used to label sections of a long web page for easy navigation.

• name/property/scope: These attributes are used to locate a Map instance on the

request or session. The key of the map is the parameter’s name, and the value is the

corresponding parameter’s value. In the case that the value is an array, multiple

parameters are written to the URL, each with the same name but different values.

You use a combination of these three variables if you want to create more than one

URL parameter.

450 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

• paramName,paramProperty,paramScope and paramId: The first set of three attributes

is used to locate a single object on the current request or session. If this object is not

an array, its toString() is called and this is the single parameter value. If the object

is an array, then you’re creating multiple parameters with the same name but different

values. The name of the parameter is given by paramId.

The remaining attributes are useLocalEncoding and transaction. useLocalEncoding,

if set to true, tells Struts to use whatever the character encoding is for the current

HttpServletResponse. The transaction attribute requires some elaboration.

Transaction Tokens

Struts has a mechanism to prevent a form from being submitted more than once. This

might happen if the user clicks the form’s submit button twice in quick succession. Ordinarily,

Struts would treat this as two separate submissions. This, of course, is an error. A standard

solution to this problem is to use a transaction token.

You have to use two Action subclasses. The first Action subclass is activated when the

form is requested. It places a unique string on both the request and the session. This unique

string is the transaction token. Action has the function

saveToken(HttpServletRequest request)

to do this for you. This function automatically generates the transaction token and places

it on the request and session under appropriate keys. A simple example of the execute()

function of this Action subclass is as follows:

public ActionForward execute(...){

 //create the transaction token

 saveToken(request);

 //give the user the form to fill

 return mapping.findForward("success");

}

The second Action subclass is the one that processes the form data once it is submitted

by the user. This is what its execute() would look like:

public ActionForward execute(...){

 if(isTokenValid(request,true)){

 return mapping.findForward("duplicate-submission");

 }

 //process form data as usual.

 ...

}

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 451

The function isTokenValid(request,true) checks to ensure that the transaction token

on the request matches that on the session. Once the check is done, it destroys the copy

on the session. This means that if the user clicked the submit button a second time, there

would be no copy on the session, causing isTokenValid() to return false.

However, you should be aware that the simple solution outlined in the preceding

section has one big failing: the error page (duplicate-submission) sent back to the user

might make him think that the form data wasn’t been processed at all! Careful wording

of the error message might help, but you still can’t get the true success page to the user.

More sophisticated solutions would solve such user interaction issues as well.

Coming back to the transaction attribute, if it’s set to true then the value of the trans-

action token on the request is sent as a URL parameter.

Examples

Here is a simple redirect using the name of a global forward:

<logic:redirect forward="login" />

Next is an example of adding a single URL parameter. The name of the parameter

(paramId) is email-address. The value of the parameter is determined by calling

contact.getEmail():

<logic:redirect action="/MyFormHandler" paramId="email-address"

 paramName="contact" paramProperty="email" />

Here’s how you would add multiple URL parameters, based on a Map. The Map is located

by calling contact.getAttributes(), which is located on the session scope:

<logic:redirect action="/mypage.jsp" name="contact"

 property="attributes" scope="session" />

Equivalents

None. No single tag in JSTL or JSF perform all the functions of <logic:redirect>.

The Nested Tag Library

The nested tag library allows you to apply tags relative to an object. You can emulate

exactly the same functionality using nested properties (see Chapter 10 for a detailed

exposition).

Unfortunately, to a programmer, the Nested taglib might feel like a kludge. For instance,

suppose you wanted to write the contents of

MyBean.getMyPropertyA().getMyPropertyB()

452 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

You might expect to be able to do this:

<nested:root name="MyBean">

 <nested:nest property="myPropertyA">

 <bean:write property=”myPropertyB”/> //WRONG!!

 </nested:nest>

</nested:root>

Instead, the Nested tag library provides replacement tags for <bean:write> and many

other tags. So, the correct code to perform the task is

<nested:root name="MyBean">

 <nested:nest property="myPropertyA">

 <nested:write property=”myPropertyB”/>

 </nested:nest>

</nested:root>

The replacement for <bean:write> is <nested:write>. Most of the Nested tag library consists

of replacement tags. These are exact duplicates of their counterparts in other tag libraries:

• Replacements for HTML: checkbox, errors, file, form, hidden, image, img, link,

messages, multibox, options, optionsCollection, password, radio, select, submit,

text, and textarea

• Replacements for Bean: define, message, size, and write

• Replacements for Logic: empty, equal, greaterEqual, greaterThan, iterate,

lessEqual, lessThan, match, messagesNotPresent, messagesPresent, notEmpty,

notEqual, notMatch, notPresent, and present

Since these tags are exact duplicates of the originals, I won’t repeat their functions

here. You should consult the original tag’s reference in this appendix. Excluding these

replacement tags, the Nested tag library has just three tags of its own that require some

explanation. The section that follows tackles this task.

Struts-EL Tags for the Nested Tag Library

There are no Struts-EL tags for the Nested tag library.

■Note EL-enabled tags are those that allow you to use EL expressions. Refer to Chapter 10 for examples.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 453

nest

This tag allows the nesting to be moved up by one level. All replacement tags within the

current <nested:nest> tag will take as their base object the value indicated by the property

attribute of this tag.

Usage Restrictions

None, but you obviously need to specify the property attribute in order to accomplish

anything.

Attributes

There is just one attribute: property, which indicates the property on the current implicit

base object from which all child Nested tags will use their base object.

Examples

Suppose you wanted to access a nested property using, say, <bean:write>, in an <html:form>.

<html:form action=...

 <bean:write property="contact.name"/>

 <bean:write property="contact.email"/>

 <bean:write property="contact.company"/>

</html:form>

You can use <nested:nest> and <nested:write> tags instead:

<html:form action=...

 <nested:nest property="contact">

 <nested:write property="name"/>

 <nested:write property="email"/>

 <nested:write property="company"/>

 </nested:nest>

</html:form>

In both snippets, the implicit base object is determined by the enclosing <html:form>.

The base object is just the form bean instance associated with the form. If you wanted to

change the base object, you’d have to use <nested:root>.

Equivalents

None.

454 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

writeNesting

This tag is used to write the current nesting level either to the response stream (i.e., the

rendered HTML page), or to make it available as a page scoped variable.

Usage Restrictions

None.

Attributes

This tag has three attributes:

• property: The value of this attribute is blindly appended to the end of the nesting

level, prefixed with a dot.

• id: When id is specified, the nesting level is not written to the final HTML page, but

rather is exposed as a page-scoped String variable with the value of id serving as

the name.

• filter: This attribute takes the value true or false. If true, then the nesting level is

encoded. For example, the ampersand (&) appears as &. Despite what the

Apache online documents say, URL encoding is not performed—for instance,

spaces are not encoded as %20%, etc.

These attributes are best illustrated with JSP examples.

Examples

Using writeNesting only makes sense when it’s used in conjunction with the <nested:nest>

tag as in the following snippet:

<html:form ...>

 <nested:nest property="contact">

 <nested:nest property="company">

 Nesting level is: <nested:writeNesting />

 </nested:nest>

 </nested:nest>

</html:form>

In this example, the displayed HTML will contain the text

Nesting level is: contact.company

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 455

If we had used <nested:writeNesting id="dummy" />, then the output would have been

blank. This is because instead of being displayed on the page, a page-scoped variable

named dummy has been created. To display it, you need to use a scriptlet embedded within

the same nested level as the <nested:writeNesting> that defined the variable. For example:

<html:form ...>

 <nested:nest property="contact">

 <nested:nest property="company">

 <nested:writeNesting id="dummy"/>

 Nesting level is: <%= dummy %>

 </nested:nest>

 </nested:nest>

</html:form>

Note that if you placed the scriptlet in a different nesting level, you’d get an error:

<html:form ...>

 <nested:nest property="contact">

 <nested:nest property="company">

 <nested:writeNesting id="dummy"/>

 </nested:nest>

 Nesting level is: <%= dummy %> //ERROR!!

 </nested:nest>

</html:form>

Lastly, the property attribute simply appends the given value to the end of the nesting

level. So the code snippet

<html:form ...>

 <nested:nest property="contact">

 <nested:nest property="company">

 Nesting level is: <nested:writeNesting property="hello" />

 </nested:nest>

 </nested:nest>

</html:form>

displays on the HTML page as

Nesting level is: contact.company.hello

Equivalents

 None.

456 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

root

This tag is used to specify a base object.

You use root either to specify a different base object from the current one (as is the case

within an <html:form> tag) or to define a base object if none exists (as is the case anywhere

outside an <html:form>).

Usage Restrictions

None, but you obviously need to specify the name attribute in order to accomplish anything.

Attributes

There is just one attribute, name, which is the name of the JavaBean on the current request.

This bean is used as the new base object for all Nested tags enclosed by <nested:root>.

Examples

Suppose you wanted to access a nested property using, say, <bean:write>, in an <html:form>,

but with the base object called MyBean instead of the base object implied by <html:form>.

Here’s how you would do it:

<html:form action=...

 <bean:write name="MyBean" property="contact.name"/>

 <bean:write name="MyBean" property="contact.email"/>

 <bean:write name="MyBean" property="contact.company"/>

</html:form>

To accomplish the same thing with the Nested tags, you’d have to use <nested:root>:

<html:form action=...

 <nested:root name="MyBean">

 <nested:nest property="contact">

 <nested:write property="name"/>

 <nested:write property="email"/>

 <nested:write property="company"/>

 </nested:nest>

 </nested:root>

</html:form>

As you know (see the corresponding reference), <html:form> defines an implicit base

object, which is the form bean associated with that form. <nested:root> allows you to

temporarily redefine the base object. This would also work outside an <html:form>. For

example, the snippet

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 457

<bean:write name="MyBean" property="contact.name"/>

<bean:write name="MyBean" property="contact.email"/>

<bean:write name="MyBean" property="contact.company"/>

may be replaced with

<nested:root name="MyBean">

 <nested:nest property="contact">

 <nested:write property="name"/>

 <nested:write property="email"/>

 <nested:write property="company"/>

 </nested:nest>

</nested:root>

Equivalents

None.

The Tiles Tag Library

The Tiles tag library supports the Tiles plug-in, which is used to create layouts and reus-

able GUI components. Chapter 14 explains Tiles in detail, and you should consult it to

understand how to use Tiles.

Table C-13 gives a synopsis of all tags in the Tiles tag library. Table C-13 is based on the

Apache documentation. Please refer to www.apache.org/licenses/LICENSE-2.0 for a copy

of the Apache License.

Table C-13. Synopsis of the Tiles Tag Library

Tag Usage/Comments

insert Inserts a layout or Tile.

definition Declares a layout or customized layout for later use.

put Adds a Tiles attribute to the current context.

putList and add putList defines a list attribute in the current context. add is used
to add items to the list.

get Writes a specified JSP or Tiles definition to the response stream.

getAsString Writes a specified Tiles attribute as a literal string to the
response stream.

useAttribute Exposes a Tiles attribute to scriptlets or other custom tags.

importAttribute Allows scriptlets or other custom tags to read Tiles attributes.

initComponentDefinitions Legacy tag that allows the use of Tiles outside of Struts.

458 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Common Attributes

Unlike the other Struts tag libraries, Tiles has no real common attribute sets. However,

there are a number of common attributes. These are described in Table C-14.

A Note on Equivalent Tags

You should note that there are no pure JSF (or JSTL) equivalents for Tiles. So, I’ve omitted

the “Equivalents” section on all entries.

Struts-EL Tags for the Tiles Tag Library

All Tiles tags have EL-enabled versions.

■Note EL-enabled tags are those that allow you to use EL expressions. Refer to Chapter 10 for examples.

Table C-14. Commonly Used Attributes in the Tiles Tag Library

Attribute Description

template/component/page These are synonymous, and they all refer to a JSP page
containing layout information.

beanName/beanProperty/beanScope These attributes are used to locate a JavaBean instance
(using beanName and optionally beanProperty) on a spec-
ified JSP scope (application, session, request, page) or
on the Tile’s ComponentContext (in which case you use
beanScope=tile/component/template—these are all
synonymous). If beanScope isn’t specified, then all scopes
(first the ComponentContext and then all JSP scopes) are
searched for the named JavaBean instance.

role An authentication role (see the discussion on authenti-
cation roles in the entry for <logic:present>) that the
remote user must have in order for the enclosing tag
to be processed. If the remote user does not have the
specified role, the enclosing tag is skipped.

ignore If true (the default is false), then if data for the enclosing
tag (which is determined using the name attribute for the
tag; this name attribute will have interpretations that vary
by tag) is not found, simply skip further processing for
the enclosing tag. The default value of ignore is false,
which means that an exception is thrown if the tag’s data
can’t be found.

flush If true, causes the OutputStream to be flushed before the
tag is processed. This attribute is needed to fix problems
with some servlet containers. The default is false.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 459

insert

This tag inserts a page or Tiles layout or controller into the enclosing page. You can

customize a layout using nested <tiles:put> tags.

Usage Restrictions

You must specify what to insert. You do this using either the template/component/page

synonyms or definition or attribute or name attributes.

Attributes

Besides the commonly used role, flush, and ignore attributes (see Table C-14), the

following attributes specify what to insert:

• template/component/page: The name of the JSP page to insert.

• definition: The name of the Tiles definition to insert.

• attribute: The defined property referring to a JSP page or Tiles definition to insert.

The use of this property assumes that you’ve defined the attribute elsewhere using

<tiles:put>. Refer to Listings 14-3 and 14-4 to see how to use this attribute.

• name: The name of the JSP page, Tiles definition, or <tiles:put> defined property

to insert.

• beanName/beanProperty/beanScope: These attributes are used to locate an object

(see C-14 on how this is done). The located object is used in one of two ways:

(1) If the object is an instance of org.apache.struts.tiles.AttributeDefinition or

org.apache.struts.tiles.ComponentDefinition, then these represent a JSP page or

Tiles definition to insert. Frankly, it is difficult to see when this option might be

useful. (2) Otherwise, the object’s toString() is called, and this is used as the name

of the JSP page, Tiles definition, or <tiles:put> defined property to insert.

You can also call controller code to prepare data or display messages before the insert is

performed. To do this, you can specify one of these attributes:

• controllerUrl: This can be a form handler’s name or a URL.

• controllerClass: Any class that implements the org.apache.struts.tiles.

Controller interface. This interface has a single execute() method, as described

in Listing 14-9.

Examples

This code inserts a layout using template/component/page. Note the leading slash:

460 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

<tiles:insert page="/mypage.jsp" />

You can also similarly insert a Tiles definition:

<tiles:insert definition=".basic" />

For more examples using <tiles:insert>, refer to Chapter 14.

definition

This tag declares a layout, or a customization of it, enabling it to be reused. You call the

definition from a <tiles:insert> to actually use it.

Usually, you first declare the definition in a shared JSP page, then use <%@ include

file="..." %> to include that JSP in your pages that utilize that definition.

<tiles:definition> also allows you to customize an existing layout or existing defini-

tion, then reuse that customized version in one or more JSP pages of your own. You

perform customization using <tiles:put> and related tags.

Notice that I haven’t discussed the use of the <tiles:defiinition> tag in Chapter 14

because a much better alternative is to declare your definitions in the tiles-defs.xml file

instead. This makes maintenance of your definitions easier to track, and obviates the

need to use shared JSP pages.

Usage Restrictions

The id attribute is required.

Attributes

• id: Specifies a unique name for this definition.

• scope: Specifies the JSP scope of the definition, once it is created. The default scope

is page. Setting the value to a scope with a longer lifetime (say session) would allow

you to access that definition with <tiles:insert> throughout the user session.

Of course, used unwisely, this freedom leads to “high maintenance” webapps.

• template/page: The name of the JSP page that holds the actual layout. Remember

that definitions only declare a layout. The actual layout itself is contained in a JSP

page. This page usually contains <tiles:insert attribute="..."/> tags to dictate

placement of named items. Refer to Listing 14-3 for an example of this.

• role: A role that must match any one of the remote user’s roles in order for this

definition to be processed. For a brief discussion on roles, refer to the entry for

<logic:present>.

• extends: The name of a “parent” definition that you want to further customize.

See Listing 14-7 to see how this works.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 461

Examples

Consider the layout page (mylayout.jsp) fragment here:

<table>

 <tr><td><tiles:insert attribute="header"/></td></tr>

 <tr><td><tiles:insert attribute="body"/></td></tr>

 <tr><td><tiles:insert attribute="footer"/></td></tr>

</table>

This layout specifies the relative placement of three elements: header, body, and footer.

To use this layout, you can declare a <tiles:definition> like so, in a shared JSP page

(shared-layouts.jsp):

<tiles:definition id=".basic" page="/mylayout.jsp" />

This declares the page as it is, with no customizations made. Usually, however, it makes

sense to customize a layout when you declare it. In the previous example, we might want

to specify the content for the elements header and footer:

<tiles:definition id=".basic" page="/mylayout.jsp">

 <tiles:put name="header" value="/navbar.jsp" />

 <tiles:put name="footer" value="/terms-of-use.jsp" />

</tiles:definition>

In this snippet, the header now points to navbar.jsp and the footer to terms-of-use.jsp.

So, the remaining element, body, is undefined. To use the declared definition, you’d

include the shared JSP and then use <tiles:insert>:

<%@ include file="shared-layouts.jsp" %>

<tiles:insert definition=".basic">

 <tiles:put name="body" value="hello-world.jsp" />

</tiles:insert>

Note that the body is now defined to point to hello-world.jsp.

put

put defines a named attribute in a layout. This allows you to customize a layout for display.

Usage Restrictions

The put tag must be nested within a <tiles:insert> or <tiles:definition>. You must also

specify name, which refers to the attribute in the layout, and content for that attribute.

462 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Attributes

• name: The name of the attribute that the put defines.

• value/content: A URL or String representing the content for an attribute. value and

content are synonymous.

• beanName/beanProperty/beanScope: Used to locate the object that is interrogated

in order to determine the value for this put. Refer to Table C-14 for details. These

attributes can be used instead of value or content.

• type: Indicates the meaning of the value for this put—is it a URL to a JSP page

(type="page" or type="template") or a Tiles definition (type="definition" or

type="instance") or a String (type="string")? If unspecified, implies type="page",

unless direct="true", in which case, type="string".

• direct: If set to true, causes value to be interpreted as a literal String instead of a

reference (URL to a JSP page or Tiles definition) to be evaluated. The default is false.

• role: A role that must match any one of the remote user’s roles in order for this put

to be processed. For a brief discussion on roles, refer to the entry for <logic:present>.

Examples

Refer to the examples in the entry for <tiles:definition> to see how put is typically used.

You may also specify the value of a put in its body like so:

<tiles:put name="myPageTitle">Here's looking at you!</tiles:put>

This form is useful when you need to specify text that doesn’t conform to XML’s attribute

format.

putList and add

putList creates a list of items, and specifies a name for that list. One or more add tags are

nested within a putList, and are used to add elements to the list.

Usage Restrictions

You must specify the name attribute for the putList.

Attributes

putList has just one attribute, name, which is the name of the list. The add tag has exactly

the same attributes as <tiles:put>, except that for the name attribute.

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 463

Examples

You should understand that putList and add can’t be used to easily customize layout, as

you could with <tiles:put>. For example, you’d expect to be able to define a customiza-

tion of a layout like so:

<tiles:insert page="mylayout.jsp">

 <tiles:putList name="sideBarItems">

 <tiles:add value="/sidebar1.jsp"/>

 <tiles:add value="/sidebar2.jsp"/>

 <tiles:add value="/sidebar3.jsp"/>

 </tiles:putList>

</tiles:insert>

Then, in the layout page (mylayout.jsp), you’d expect to do this:

<tiles:importAttribute />

<logic:iterate name="sideBarItems" id="item">

 <tiles:insert name="item"/> //ERROR!!

</logic:iterate>

This won’t work: you can’t nest <tiles:insert> inside a <logic:iterate> (a ServletException

is thrown). You’d have to resort to using scriptlets that loop through the items:

<tiles:importAttribute />

<%

 for(Iterator items = sideBarItems.iterator(); items.hasNext();){

 String item = items.next().toString();

%>

 <tiles:insert name="<%=item %>"/>

<% } %>

which is much less readable.

get

get reads the name attribute from the ComponentContext for the Tile (placed there using

<tiles:put> or <tiles:putList>), interprets the value as a JSP page or a Tiles definition,

and writes the output of either to the response stream.

Usage Restrictions

You need to specify what to display, so the name attribute is required.

464 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

Attributes

• name: The name of the Tiles attribute to include.

• ignore: If the attribute specified by name can’t be found, ignore="true" causes a

silent failure. Otherwise, an exception is thrown, which is the default behavior.

• flush: This has its usual meaning (see Table C-14).

• role: This has its usual meaning (see Table C-14).

Examples

Consider the snippet

<tiles:insert page="one.jsp">

 <tiles:put name="myTilesAttr" value="two.jsp"/>

</tiles:insert>

<tiles:get name="myTilesAttr" />

This will cause the contents of two.jsp to be displayed after the contents of one.jsp.

getAsString

This tag is similar to <tiles:get>, but the Tiles attribute is interpreted as a literal string.

This is useful to display static text (used for example, in <title> sections of web pages).

Usage Restrictions

You need to specify what to display, so the name attribute is required.

Attributes

• name: The name of the Tiles attribute to display. If this isn’t found, an exception is

thrown.

• flush: This has its usual meaning (see Table C-14).

• role: This has its usual meaning (see Table C-14).

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 465

Examples

Consider the snippet:

<tiles:insert page="one.jsp">

 <tiles:put name="myTilesAttr" value="two.jsp"/>

</tiles:insert>

<tiles:getAsString name="myTilesAttr" />

This will cause the string “two.jsp” to be displayed after the contents of one.jsp.

useAttribute

This tag exposes a Tiles attribute as a Java variable with a given scope. Contrast this with

<tiles:importAttribute>.

Usage Restrictions

You need to specify the name of the Tiles attribute to expose.

Attributes

• name: The name of the Tiles attribute to expose. Required.

• id: The name by which the Tiles attribute will be known to scriptlets or other tags.

If omitted, id defaults to the name of the Tiles attribute.

• scope: The JSP scope of the exposed variable (page, request, session, or application).

The default is page scope.

• classname: The classname of the exposed variable.

• ignore: If true, fails silently if the Tiles attribute can’t be found. The default is to

throw an exception.

Examples

Consider this snippet:

<tiles:insert page="mylayout.jsp">

 <tiles:put name="myTilesAttr" value="one"/>

</tiles:insert>

<tiles:useAttribute name="myTilesAttr" id="x"/>

<%= x %>

Here, we’ve exposed the Tiles attribute myTilesAttr as a scripting variable named x.

466 A P P E N D I X C ■ S T R U T S T AG R E F E R E N C E

importAttribute

importAttribute copies specified Tiles attributes (declared with <tiles:put> or

<tiles:putList>) into the specified scope. Recall that each Tile stores its attributes into a

ComponentContext instance, and not directly on the request, session, page, or application

scope. Because of this, you need to copy attributes from the ComponentContext into the

request, session, page, or application scope in order for non-Tiles tags to read the attributes.

importAttribute does just this.

Usage Restrictions

importAttribute needs a ComponentContext to read from, and if an instance isn’t found,

an exception is thrown. This means that you must place <tiles:importAttribute> after

a <tiles:insert> or within a page called by a <tiles:insert>, to ensure that the

ComponentContext has been created.

Attributes

• name: Specifies the name of the attribute to copy over. If omitted, all attributes of the

ComponentContext are copied to the prescribed scope.

• scope: Specifies a scope (request, session, page, or application) to copy attributes to.

If omitted, the page scope is used.

• ignore: If the named attribute can’t be found, an exception is thrown by default.

Setting ignore="true" causes importAttribute to fail silently.

Examples

Consider this snippet:

<tiles:insert page="mylayout.jsp">

 <tiles:put name="object1" value="one"/>

 <tiles:put name="object2" value="two"/>

 <tiles:put name="object3" value="three"/>

 <tiles:put name="object4" value="four"/>

</tiles:insert>

<bean:write name="object1"/> //ERROR!!

The error occurs because <bean:write> will not be able to find object1 in any scope.

For this to work, you need to use <tiles:importAttribute>:

<tiles:importAttribute />

<bean:write name="object1"/> //OK

A P P E N D I X C ■ S T R U T S T A G R E F E R E N C E 467

initComponentDefinitions

This tag is used to initialize the Tiles subsystem. Recall that Tiles was originally not part

of Struts, and can actually be used by itself. So, this tag is only useful if you’re using Tiles

outside of Struts. For example, if you write your own servlets, this tag is useful because it

allows you to initialize the Tiles subsystem without having to rely on Struts to do it for you.

Frankly, Tiles is now so much integrated with Struts that this tag is no longer very practical.

469

■ ■ ■

A P P E N D I X D

Answers

Listed in this appendix are answers to questions raised in the main text.

Chapter 1: Introduction

Question: If pieces of code that do different things are bundled separately and given stan-

dardized ways of communicating between themselves, people can maintain or work on

some parts of the webapp without having to worry too much about other parts. Can you

see why?

Answer: An analogy might help: think of the last time you filled in your income tax

form. Not a pleasant task, but imagine how much worse it would be if you had to declare

your income without such a form for guidance. Very likely, you’d miss something and

there would be questions and answers bouncing back between you and your favorite IRS

agent. Not a very efficient way to collect or pay taxes! The obvious magic behind tax forms

is that they standardize communication between you and the IRS.

Another big advantage of using a form is that you don’t have to know how the IRS oper-

ates. For example, you don’t have to know how your income tax is processed. You only

have to know how to fill the tax form. So, with tax forms, you can efficiently communicate

with the IRS for the purpose of paying income tax, without having to know too much

about them, or guess what information they want from you.

The same idea works for code, and applies to people who build different parts of an

application. Partitioning code along lines of functionality and giving the resulting code

units standardized ways of communicating between themselves (in Java terms, interfaces),

simplifies the code required (just as you don’t need to know how the IRS works) and facilitates

communication between the application builders, making it easier for them to build or

maintain the application in parallel.

In summary, the separation of the code by functionality and the use of standardized

methods of communication imply easier development and maintenance because

470 A P P E N D I X D ■ A N SW E R S

• A code module needs to know less about the internals of a module it communicates

with.

• The need to know less translates to simpler code.

Chapter 3: Understanding Scopes

The answers that follow address these questions for application, session, request, and

page scopes:

• Audrey is the first person to view First.jsp. What will she see?

• Brenda next views First.jsp from a different machine. What does she see?

• If Audrey again views First.jsp after Brenda, what will she see?

• What if Brenda now loads Second.jsp directly?

Answers for application scope:

• Audrey sees 12. Each page appends its number to myVariable.

• Brenda sees 1212. Brenda appends a 12 to Audrey’s 12.

• Audrey sees 121212.

• Brenda sees 1212122. The last 2 does not have an accompanying 1 because Brenda

does not load First.jsp.

Answers for session scope:

• Audrey sees 12. Each page appends its number to myVariable.

• Brenda sees 12. Brenda gets a clean copy of myVariable.

• Audrey sees 1212, since myVariable exists for the whole session.

• Brenda sees 12122. The last 2 does not have an accompanying 1 because Brenda

does not load First.jsp.

A P P E N D I X D ■ A N SW E R S 471

Answers for request scope:

• Audrey sees 12. Each page appends its number to myVariable. Request-scoped

variables survive a page forward.

• Brenda sees 12. Brenda gets a clean copy of myVariable.

• Audrey sees 12, since she’s seeing a new copy of myVariable.

• Brenda sees 2. The 2 does not have a 1 preceding it because Brenda does not load

First.jsp.

Answers for page scope: Audrey and Brenda both just see 2 in each scenario, since

page-scoped variables exist only on the last page called.

The variable x in <% int x = 7; %> has an implicit page scope.

Chapter 5: The MVC Design Pattern

Requirement 1: A page to collect the information about a contact

View = code that displays a form for data entry

Requirement 2: Code to check contact details (postcode, email, or required fields)

after submission and display errors

Controller = code that checks the data, and display errors if any

Requirement 3: Code to store and retrieve data into a database

Controller = code that calls the Model to store data

Model = code that actually stores the data

Chapter 6: Simple Validation

Simple validation quiz answers:

Q1: Suppose validating a certain field requires a numerical calculation. Would this

qualify as a simple validation? You should give clear reasons for your answer.

Answer: Generally, this would not qualify as a simple validation. One good rule for

identifying a simple validation is if the validation in question could be made generic

(like a check for email format). In this case, arbitrary numerical calculations are

considered “data transformations” and should therefore qualify as a complex validation.

472 A P P E N D I X D ■ A N SW E R S

Q2: When is validate() called? Before Struts populates the ActionForm or after?

Answer: validate() is called after Struts populates your ActionForm subclass.

Q3: If validate() returns an empty ActionErrors instance, will the form be

redisplayed?

Answer: No, the form will not be redisplayed. There were no errors!

Q4: Rewrite Listing 6-1 so that Struts only displays the error message for the first

validation error encountered.

Answer: You could insert a return errors; after each validation.

Q5: If you changed the name of one of a form’s properties (say zipcode to postcode),

would you have to change the corresponding error key for ActionErrors, that is,

errors.add("zipcode",...) to errors.add("postcode",...)?

Answer: You are not required to make the change, because the error keys are inde-

pendent of the form property names. However, it would be wise to do so, to avoid

confusion.

Q6: If your answer to Q5 was “yes,” what other changes would you have to make?

Answer: If you did make the change, you’d also have to change the property attribute

on the <errors> tag. In other words, you’d have to change <html:errors property=

"zipcode"/> to <html:errors property="postcode"/>.

Q7: If there were more than one validation error for a single property, which error

message (if any) do you think would be displayed?

Answer: If a property had more than one error message, all error messages for that

property would be displayed. This is often confusing, so the trick in Q4 is useful.

Lab 8: Contact Entry Page for LILLDEP

Step 1: Which libraries would you use?

Answer: The HTML and Bean tag libraries

Step 5: What is the name of the handler for this form?

Answer: ContactFormHandler

A P P E N D I X D ■ A N SW E R S 473

Lab 9a: Configuring LILLDEP

Step 2: What should the name of the form handler be?

Answer: There are two ways to answer this question:

•The name by which this form will be known to Struts tags is ContactFormHandler, so

the path attribute is declared as path="/ContactFormHandler". (Throughout this

book, this is what I mean when I refer to the “name” of a form handler.)

•The name attribute of the form handler is ContactFormBean. This is simply a reference

to the form bean for this handler. It is not the name by which this handler is called

in the Struts tags.

Step 5: Give a value for the form handler’s input attribute. Where is this used? What

happens if you omit this attribute from the form handler’s declaration?

Answer: The form handler’s input attribute should be /full.jsp. This value is used

explicitly whenever mapping.getInputForward() is called, for example, in

ContactAction.java. It is also used implicitly by Struts in order to redisplay the input

page if there’s a simple validation error. If this value is omitted, then the input page

does not display. A generic servlet error page is displayed instead.

Step 6: Create a forward for this form handler to the page full.jsp. What should be

the name attribute of this forward? (Hint: Check the code for the Action subclass.)

What happens if you omit this forward declaration?

Answer: The name attribute of the forward is success. If this value is omitted, then the

“next” page does not display. A generic servlet error page is displayed instead.

Lab 9b: The MNC Page

Step 2: Add a new form handler to struts-config.xml to accept data from MNC.jsp.

The (single) forward should point back to MNC.jsp. What should the name of the

forward be?

Answer: The name of the forward is success.

474 A P P E N D I X D ■ A N SW E R S

Chapter 10: More Tags

Flashback Quiz: Can you remember what the counterparts of var and items were on

<logic:iterate>?

Answer: var exposes a single element of the iteratable object, so its counterpart

on <logic:iterate> is id. And, since items refers to the name of the iteratable object,

its <logic:iterate> counterpart is name.

Now You Do It: Construct JSTL equivalents for equal, present, empty, lessThan,

lessEqual, greaterThan, and greaterEqual, and the negatives for all of the above

(notEqual, notPresent, etc.).

Answer: All the above should be trivial to construct. For example, the JSTL test for

<logic:lessThan name="myConstants" property="pi" value="3.14">

would be

test="${myConstants.pi < 3.14}"

The other tags are similarly constructed. The exception is <logic:present>. This tag tests

for the presence of an item in the current request. There are two nonequivalent ways to

test for this. You could use

test="${myVariable != null}"

to test if the variable myVariable reference exists. Or you could use

test="${not empty myVariable}"

This latter check will return true not only if the myVariable does not exist but also if the

myVariable exists but is empty, meaning it is a zero length String, or an empty array or

Collection.

Another Struts tag with a not-so-obvious JSTL replacement is

<logic:messagesPresent>. This tag tests for the presence of a Struts message. For example:

<logic:messagesPresent property="emailMsg">...

checks for the presence of a message named emailMsg. In order to emulate this tag using

JSTL, we have to know where Struts messages are stored on the request object. A quick

comparison of the Struts source code files involved (org.apache.struts.taglib.logic.

PresentTag, org.apache.struts.taglib.logic.MessagesPresentTag, and org.apache.

struts.taglib.TagUtils) shows that the tests are essentially the same. So, the previous

two solutions would also apply to <logic:messagesPresent>.

A P P E N D I X D ■ A N SW E R S 475

Lab 10a: The LILLDEP Full Listing Page

Step 4: Will you need a form bean for this action mapping?

Answer: No, because we’re not processing user input. Instead, we’re using this

handler to generate the listing.

Lab 10b: Simplifying ContactForm

Step 1: If you compiled and deployed LILLDEP now, would it work? Why or why not?

Answer: No, it would not work. You also have to amend the JSPs to use the relevant

<nested> tags, or change the property attributes to use nested properties.

Step 2: In either approach, what is the new base object?

Answer: In either approach, the new base object is contact. For example, using

nested properties, the new property declaration for the email address is

property="contact.email"

Lab 11: Importing Data into LILLDEP

Step 1: Do you need to implement the validate() or reset() method?

Answer: Yes, you could use validate() to ensure that the uploaded file has a nonzero

size, and has the right extension (.csv or .CSV). You could use reset() to call destroy() on

the FormFile instance.

Step 2: What should the property attribute of <html:file> be?

Answer: <html:file property="file" />

Step 4: Define a new form handler to handle the importing. What is the path attribute

of the form handler?

Answer: path="/ImportForm"

476 A P P E N D I X D ■ A N SW E R S

Chapter 13: Review Lab

Question: If you turn the company name into a link, how will you determine which

company was clicked? (Hint: Look at the source code for BaseContact.)

Answer: You’d embed the ID of the contact (determined using Contact.getId()) as a

parameter in the link. This link could point to a form handler that

•Creates the appropriate Contact (you must know how to use the Criteria class to do

this—see Appendix A) based on the ID embedded in the link (refer to the functions

on HttpServletRequest to learn how to do this—see Appendix B)

•Puts this Contact instance into the ContactForm

•Forwards to full.jsp for display

Question: You obviously want to reuse full.jsp to display the data that’s going to

be edited. Do you need to make any changes to it to support updating contact infor-

mation? Why?

Answer: No changes are needed to full.jsp, since the Contact instance’s save()

function (actually, on BaseContact), correctly handles updating.

Question: Can you similarly reuse ContactForm and ContactAction? Do you need to

make changes to them to support updating?

Answer: Yes, we can reuse both. No changes needed, since the Contact.save() correctly

handles updating. This is the power of using Model classes instead of embedding SQL

in your Action subclasses.

Question: What other classes would you need to complete the editing facility? (Hint:

What creates the populated form for editing?)

Answer: We need a new Action to create and populate the form. See the answer to the

first question for details.

Chapter 14: Tiles

Quick Quiz: What advantage does this approach (Listings 14-5 and 14-6) have over

the earlier one (Listing 14-4)?

Answer: Listing 14-4 applies a layout to a single page. It can’t be reused. More precisely,

you can reuse the page in your webapp of course, but you can’t reuse the layout in

your other JSP pages. To reuse the layout, you’d have to define the layout in your Tiles

definitions file. This is what Listing 14-5 does; it defines a layout that may be applied

to any number of pages, as it is in Listing 14-6.

A P P E N D I X D ■ A N SW E R S 477

Chapter 15: The Validator Framework

Question: In most cases, putting in a validate() function should suffice. Use the

second alternative only after much thought, since validators should be generic, if only

to the problem domain of your web application. Otherwise, you’d run into potential

maintenance issues. Can you see why?

Answer: If a particular validation is going to be used only once, it makes no sense to

write an extension to the Validator framework. This is because the maintenance overhead

for such an extension (you need to declare the new validator in validation-rules.xml,

create the necessary Java code, and use the validator in validations.xml) is much higher

compared to using a validate() function.

Of course, if the same validation is used many times over (i.e., the validator is generic),

then the cost of repeating the code in validate(), or even refactoring necessary validator

code in a separate class, is higher. The latter option might seem to be lower in cost,

but you’d still have to implement validate() on each form you use.

Chapter 17: Potpourri

Question: As you should know by now, unspecified() handles the case where the requested

function does not exist on PrintingAction. (Question: how can this happen?)

Answer: It can happen if there’s a bug in the JSP code (that is, the JSP code omits the

dispatch parameter in the URL), or if the user manually keys in an incorrect URL

(again, omitting the dispatch parameter in the URL).

unspecified() does not handle a dispatch parameter value for which the corresponding

function does not exist. In this case, an Exception is thrown and unless you’ve

caught it using a global (or local—see Chapter 18) exception handler, you’ll see the

standard JSP error page. An alternative to using exception handlers is to extend

LookupDispatchAction (as I did in Lab 14’s TilesLookupDispatchAction) to include

an unknown() function that handles this possibility.

Chapter 20: JavaServer Faces and Struts Shale

Quick Quiz: How would you do the same thing in Struts?

Answer: Use LookupDispatchAction. The JSF approach is much easier to use. Instead

of going through the trouble of subclassing LookupDispatchAction and declaring

special parameters in struts-config.xml, all you need to do with JSF is to tell JSF

which function to call in the commandButton’s action attribute.

479

Index

■Symbols
#{} versus ${}, 342

${...} delimiters, evaluating EL expressions

with, 120

${...} versus #{...}, 340

‘ (single quotes), escaping in JSF, 325

* (asterisk) wildcard, using, 262

. separator, relationship to Tiles layouts, 167

. tiles-def.xml, with new definition, 167

[] (square brackets), declaring indexed

properties with, 223

{0} wildcard, using, 262

| (pipe symbol), using as separator, 140

<%@ page, using with JSPs for character

encoding, 147

■Numerics
100 Celsius

converting to 212 Fahrenheit, 31

converting to 373 Kelvin, 31

212 Fahrenheit, converting 100 Celsius to, 31

373 Kelvin, converting 100 Celsius to, 31

■A
a tiles-documentation.war filecontents of, 162

absolute() function of Scroller, explanation

of, 275

AbstractViewController class, implementing

ViewController with, 346

Accessibility attribute set, attributes and

usage of, 384

Action class, description of, 377

Action Controller class

role in business logic, 67, 70

statelessness of, 68

subclassing, 69–70

Action subclasses, overriding execute()

method in, 69

<action> tags

attributes of, 98

declaring for MappingDispatchAction

subclass, 256

using <forward> tags with, 100

ActionErrors

relationship to validate(), 55

using, 57, 60

using with Struts-Faces integration

library, 342

ActionForms

anatomy of, 54, 57

casting to RegistrationForm, 72

description of, 378

subclass of, 54

ActionForm properties, type conversion

idiom for reading of, 241

ActionForm subclasses

coding for checkbox EL tag, 392

decoupling Action from, 242

implementing for Registration webapp, 55

mapping to names in struts-config.xml, 93

naming with form beans, 95

reading properties in, 241

relationship to business logic, 67

role in uploading files, 130

simplifying, 126

ActionForms

versus backing beans, 321

conceptualizing in JSF, 311

versus DynaActionForms, 226

versus UI trees, 314

480 ■I N D E X

ActionForward

instantiating in business logic, 75

versus Java String, 322

ActionMapping class, overview of, 377

<action-mappings> enclosing tag, defining

form handlers in, 98

ActionMessages

adding to ActionErrors instances, 57

holding error messages in, 73

overview of, 376

storing, 377

string argument of, 59

ActionServlet, relationship to Struts, 48

add EL tags, using, 462–463

add() function for ActionMessages, 57

addObjectCreate(path, bean) function, using

with Digester, 289

addParameter() functions, calling with

Digester, 304

addSetProperties(path) function, using with

Digester, 289

Ajax, relationship to Shale, 354

alphanumeric strings, Java handler for

validation of, 213–214

alphanumeric validator, declaring, 215

Ant website, 358

Apache Ant website, 35

Apache Commons logging, significance of,

260. See also logging

Apache Commons Validator classes,

functions associated with, 214

Apache Commons’ BeanUtils project,

website for, 237

Apache Struts website, 6

Apache’s Digester. See Digester

Application scope, explanation of, 17

Application.properties, role in localizing

output, 150–151

Application.properties files

processing, 151

specifying in JSF, 324

applications, factors involved in

internationalization of, 143

Apply Request Values phase in JSF,

explanation of, 316

arithmetic operators, using with EL

expressions, 120

array lengths, setting at runtime, 224

array size, specifying for indexed

properties, 223

ASCII versus Unicode, 144

asterisk (*) wildcard, using, 262

attribute sets

Accessibility attribute set, 384

Error Style attribute set, 386

Event Handler, 383

Initial Bean attribute set, 385

for Logic tag library, overview of, 436

Rendering attribute set, 385

Struts attribute set, 385

attributes, 24

for add tags, 462

for definition tag, 460

for empty tag, 438

for equal tag, 439

for forward tag, 440

for get tag, 464

for getAsString tag, 464

for greaterEqual tag, 442

for greaterThan tag, 442

for importAttribute tag, 466

for insert tag, 459

for iterate tag, 443

for lessEqual tag, 442

for lessThan tag, 442

for match tag, 445

for messagesNotPresent tag, 446

for messagesPresent tag, 446

for nest tags, 453

for notEmpty tag, 438

for notEqual tag, 439

481■I N D E X

Fin
d

 it faster at http://su
p

erindex.apress.com

for notMatch tag, 445

for notPresent tag, 447

for option and options tag, 412

for option, options, and optionsCollection

tags, 412–413

for present tag, 447

for put tag, 462

for putList tag, 462

for redirect tag, 449, 450

for root tags, 456

for select tag, 412

for Tiles tag library, 458

for useAttribute tag, 465

for writeNesting tag, 454

for base tag, 387

for button tag, 388

for cancel tag for HTML tag library, 389

for checkbox tag, 390

for cookie tag, 422

for define tag, 424

for errors tag, 393

for form tag, 395

for header tag, 422

for hidden tag, 397

for html tag, 398

for image tag, 399

for img tag, 400, 402

for include tag, 426

for javascript tag, 402, 404

for link tag, 404

for message tag, 427

for messages tag, 405–406

for multibox tag, 407

for page tag, 430

for parameter tag, 422

for password tag, 419

for radio tag, 409

for reset tag, 409

for resource tag, 431

for rewrite tag, 410

for size tag, 432

for struts tag, 433

for submit tag, 418

for tags used in conditional processing, 113

for text tag, 419

for textarea tag, 420

for write tag, 434, 435

■B
backing beans. See also user backing bean

versus ActionForms and Actions, 321

altering appearance of pages with, 331

as POJOs (Plain Old Java Objects), 344

base classes, subclassing with Java handler

classes, 26

Base Object attribute set, relationship to

Logic tag library, 436

base objects, specifying, 456–457

base tag in HTML library, usage of, 89

<base> tags, creating, 386–387

Bean class, using with

DefaultDynaFormsLoader, 302

Bean tag library

defining prefix for, 83

description of, 79

overview of, 90, 421

Bean.java code for

DefaultDynaFormsLoader, 298, 300

<bean:> tags, replacing with <c:> tags, 121

<bean:message> tags, displaying static text

with, 84

<bean:write> tags

Java handler class used with, 27

using with iterators, 111

using property attribute with, 111

beans, saving in Hibernate, 369

beans object, using with

DefaultDynaFormsLoader, 302

Beans.java code for

DefaultDynaFormsLoader, 297–298

482 ■I N D E X

BeanVaildatorForms, hidden power of, 235

BeanValidatorForm JavaDoc, Web resource

for, 237

BodyContent, getting instance of, 28

BodyTagSupport example, 26, 28

browsers, selecting locales from, 151

business logic

processing, 67

in Registration webapp, 70, 73

tasks involved in, 67

using Action Controller class with, 67, 70

button tag in HTML library, using, 89,

388–389

buttons, displaying if clicked, 409

■C
<c:> tags, using, 121

Cancel button, displaying, 389

cancel tag in HTML library, using, 89, 390

cancelled() function, using with

LookupDispatchAction class,

253–254

Cascading Style Sheets (CSS), 168

<c:forEach> tags, using, 122–123

ChangeLocale form handler, declaring in

struts-config.xml, 153

character, definition of, 143

character encodings

definition of, 144

processing input for, 146–147

using consistently, 147

character set, definition of, 144

check box input fields, rendering, 407–408

check boxes, adding to listing.jsp, 236

checkbox tag in HTML library, using, 89, 390

<choose>...<when> tags, using, 123

<c:if> tag, using, 123

classes. See also Model classes

javax.servlet.http.HttpServletRequest

class, 375

javax.servlet.http.HttpSession class, 376

org.apache.struts.action.Action, 377, 378

org.apache.struts.action.ActionForm, 378

org.apache.struts.action.

ActionMapping, 377

org.apache.struts.action.

ActionMessage, 376

org.apache.struts.action.

ActionMessages, 377

org.apache.struts.action.

ExceptionHandler, 380

org.apache.struts.tiles.

ComponentContext, 380

org.apache.struts.upload.FormFile, 379

representing events in, 317

className information, storing with

Digester, 304

Clay, reusable views with, 354

clicked buttons, displaying, 409–410

client-side validations, creating, 205, 351

code reuse, promoting with form-handler

declarations in struts-config.xml,

103, 104

Collection facility, parts of, 267

collection ID, storing on session object, 273

Collection instances

saving and reusing for performance

optimizations, 414

storing in session scope, 273

Collection Listing page, creating, 271

Collection page, creating, 269, 271

collection size, exposing, 432

collection’s listing page, editing and

navigating, 275–276

collections

adding contacts to, 273–274

removing selected contacts from, 272–273

command parameter

checking for presence of, 185

using with DispatchAction class, 254

Commons Logging, significance of, 260

483■I N D E X

Fin
d

 it faster at http://su
p

erindex.apress.com

Commons Validator framework project

website, 218

commons-validator.jar file, contents of, 196

comparisions, using with EL expressions, 120

Comparison tags, effects of, 114

compile.bat, testing temperature conversion

tag with, 32

complex validation

in business logic for Registration

webapp, 70

explanation of, 53

performing in business logic, 73–74

performing in JSF, 329

role in business logic, 67

complex validation failure, signaling with

saveErrors(), 74

ComponentContext instance, using with

Tiles controllers, 170

components. See Tiles components

conditional evaluation, performing with EL

expressions, 120

conditional processing, performing with

Logic tag library, 113–114

config objects, configuring for use with

DynaForms plug-in, 305

constants, using in Validation framework,

204–205

contact entry page, creating for LILLDEP, 90

ContactActions

changing for Find facility, 190–191

implementing for LILLDEP, 76

ContactForms

versus BeanValidatorForm, 235

creating for LILLDEP, 61, 64

migrating to use Validator framework, 218

simplifying, 126

ContactPeer class, find() function for, 189

contacts

adding to collections, 273–274

deleting from listing.jsp, 237

editing in LILLDEP’s database, 157

loading into LILLDEP, 140, 142

removing from collections, 272–273

selecting for deletion in LILLDEP, 236

Contacts iterator, using, 110

contentType default setting, description

of, 100

controller section, declaring, 100

<controller> element, including for

Struts-Faces integration library, 339

<controller> tag of struts-config.xml,

restricting size of uploaded files

with, 133

cookie tags

in Bean tag library, usage of, 90

in EL, 422–423

Core tag library in JSF, description of, 320

country property, using with <formset>

tag, 217

Craig McClanahan’s blog, 6

createFormBeanConfig() function, using

with DefaultDynaFormsLoader, 302

creditCard validator, variables and trigger

for, 206

CSS Zen Garden website, 358

CSVIterator class, using, 141

custom tags

definition of, 14, 23

processing, 24–25

subclassing without bodies, 26

■D
data input tags, using with Registration

webapp, 86–87

data object classes, creating with Lisptorq, 361

data persistence, approaches to, 50

data source references, declaring in

web.xml, 353

data transformation

in business logic for Registration

webapp, 70

performing in business logic, 67, 74

database, initializing for Lisptorq, 365

484 ■I N D E X

database schema, writing for Lisptorq, 363

database settings, specifying for Lisptorq, 364

date validator, variables and trigger for, 206

declarations, advisory about sharing of, 265

DefaultDynaFormsLoader, implementing,

294, 302

DefaultDynaFormsLoader.java, 294, 297

define tags

in Bean tag library, 90

in EL, 423, 425, 460–461

definitions-config parameter, passing to

org.apache.struts.tiles.TilesPlugin, 162

DeleteContactsAction, implementing, 237

depends attribute, adding to <validator>

declaration, 216

Derby SQL

as embedded database, 364

relationship to Lisptorq, 362

derby-home, using with LILLDEP, 372

design patterns

definition of, 37

resources for, 37

destroy() function

role in uploading files, 130

using with PlugIn interface, 285

detailed() function, implementing in

DispatchAction class, 255

Dialog Manager in Shale, overview of, 348, 350

dialog-config.xml file, transition information

in, 350

Digester

calling addParameter() functions with, 304

calling setXXX functions for DynaForms

plug-in with, 304

creating single user with, 288

handling multiple user declarations with,

289, 291

reading XML with, 288, 291

storing className information with, 304

Web resource for, 305

DispatchActions

using, 254–255

using with collections, 275–276

DispatchAction subclass, using, 255, 258

Display.jsp code sample of iterator, 110

.do prefix, using with handlers, 85

doAfterBody() function, relationship to

BodyTagSupport, 27

dotted notation, using with property keys, 59

double,float,long,integer,short,byte validator,

variables and trigger for, 206

DownloadAction class

subclassing, 244–245

using, 243, 245

DTD (Document Tag Definition)

for Tiles, 163

for Validator framework, 197–198

Duplicate ID error, throwing in JSF

migration, 342

DynaActionForms

accessing list of supported types for, 237

versus ActionForms, 226

Java classes and primitive types supported

by, 223

DynaActionForm Subclasses code sample, 283

DynaForms plug-in

description of, 277

features of, 280

implementing, 280, 285, 287

passing ModuleConfig instance to, 283

test driving, 302

using <set-property> tags with, 303, 305

DynaFormsLoaderFactory, implementing,

291, 294

DynaFormsPlugIn, functions contained

in, 287

dynamic form beans, creating for entities,

278–279. See also form beans

dynamic forms

creating, 221

declaring, 221, 225

485■I N D E X

Fin
d

 it faster at http://su
p

erindex.apress.com

declaring with LazyValidatorForm, 233

declaring with LazyValidatorForms, 234

definition of, 221

disadvantages of, 226

guidelines for use of, 227

reading and writing data from, 225

using with Registration webapp, 228, 232

validating, 227

dynamic properties, accessing, 225–226

dynamic Views, creating in JSF, 331

■E
Eclipse website, 35, 305

edit facility, implementing for LILLDEP, 158

EJBs (Enterprise JavaBeans), relationship to

web applications, 4

EL (expression language)

overview of, 119–120

relationship to JSTL, 107

using dynamic forms with, 226

EL expressions, evaluating, 120

EL extensions, overview of, 124

EL syntax versus JSF expression language

syntax, 321

EL tags

migrating, 340

using, 432, 434

EL tags for HTML tag library, html tag,

398–399

EL-enabled tags, explanation of, 452

email validator, variables and trigger for, 206

empty conditional processing tag, meaning

of, 114

empty EL tags, using, 437, 439

empty operator, using with EL

expressions, 120

empty tag, effect of, 114

entities, hierarchy of, 278

environment entries, relationship to

JNDI, 353

equal comparision tag, effect of, 114

equal EL tags, using, 439–440

error messages

displaying, 406

displaying in JSF, 330

displaying with ActionErrors, 57, 60

displaying with errors EL tags, 392, 394

holding in ActionMessages, 73

iterator for, 405, 407

in user_exists message resource file, 329

Error Style attribute set, overview of, 386

errors

checking in Login Tiles component, 186

displaying in Registration webapp, 87–88

errors tag in HTML library, usage of, 89

Event Handler attribute set, attributes and

triggers for, 383

event listeners, registering for events, 320

events

flagging, 319

representing by Java classes, 317

events and event listeners in JSF

explanation of, 315

overview of, 316

exception handler

creating for Collection page, 271

defining in struts-config.xml, 93

defining, 96

ExceptionHandler, description of, 380

exceptions

printing with trace() function of Log

instance, 260

throwing with functions of PropertyUtils

class, 240

execute() functions

using to create Tiles controllers, 170–170

using with Tiles components, 187

execute() method, overriding in Action

subclass, 69, 70

486 ■I N D E X

exists() function

implementing in Lisptorq, 362

using with Torque, 366

Extended Property attributes, relationship to

Logic tag library, 436–437

extends attribute, using with entities, 279–280

extensions to Struts, declaring in

struts-config.xml, 94

external pages, using include EL tags with, 426

■F
<f:loadMessages> versus <s:loadMessages>,

339

<f:view> tag, including in JSF migration, 340

*.faces, making entry points forward to, 341

faces requests, relationship to JSF pages, 315

faces-config.xml

configuring for JSF, 323–324

declaring managed beans in, 321

FacesContext object, using in JSF, 329

fields, validating conditionally, 207

Figures

ActionErrors tie error messages to View

component, 60

Add Contacts page, 274

adding new locale with Mozilla, 152

Apache Tomcat welcome page, 9

Application.properties files, 150

Collect page showing collections, 269

Collection facility navigation button, 268

Collection Listing page, 272

compose page for uploading files, 134

Contact Editing page, 276

custom tag processing flow, 26

data flow from form to Action, 68

errors displayed, 88

Find facility in JSP pages, 188

form for Monkey’s name and Banana

species, 116

form to user redisplayed with error

message, 71

Hello.jsp viewed in web browser, 14

hierarchy of entities, 278

HttpServletRequest and HttpSession, 12

input field for file uploading, 129

“You’re Registered” page, 70

JSF’s request processing lifecycle, 314

LILLDEP main page, 45

LILLDEP start page, 62, 103

LILLEP in Malay, 154

Login component control flow, 173

login form for Login Tiles component, 174

logoff view for Login Tiles component, 175

MNC data entry page, 105

ModuleConfig, FormBeanConfig, and

FormPropertyConfig, 282

MVC design pattern, 38

MVC maps into Struts, 48

MyActionForm, Monkey, and Banana

class diagram, 115

new Collection page, 270

output page for uploading files, 134

page processing lifecycle, 81

Registration webapp main page, 228

registration.jsp, 83

relative placement of header, body, and

footer in simple-layout.jsp, 164

Scopes web application start page, 19

subclassing ActionForm, 54

Tomcat starting up, 9

treeview in MyFaces, 313

user form for Login Tiles component, 175

WAR-file structure, 11

web application frameworks, 4

file tag in HTML library, usage of, 89

file uploads

HTML element for, 129

of many files at once, 131, 133

restricting size of, 133

uploading any number of files, 133, 140

487■I N D E X

Fin
d

 it faster at http://su
p

erindex.apress.com

FileStreamInfo class, using with

DownloadAction class, 243

FileUploadForm

code for, 131–132

uploading files with, 135

Find facility, deploying and testing, 192

Find function, adding to full.jsp and mnc.jsp,

187, 192

Find tile, placing in JSPs for Find facility, 192

First.jsp listing, 18

flow control tags, overview of, 114

focus= “userid” attribute, using with

<html:form> tag, 86

<form-bean> tag, attributes of, 96

form beans. See also dynamic form beans

declaring, 95–96, 221–222

defining for submodules, 265

processing, 281, 284

versus managed beans, 321

form fields, representing hidden form fields,

397–398

form handler names, changing for JSF

migration, 340

form handlers

adding <html link>s to, 247

creating for DownloadAction class, 245

creating for Login Tiles component,

182–183

declaring, 98, 100

declaring in struts-config.xml, 93

for LookupDispatchAction class, 251

holding information about valid, 377

<form-property> tags

disregarding for dynamic forms, 222

using with LazyValidatorForms, 232

<form> tag, using with validations, 202

<formset> tag, specifying locales with, 217

form tags in HTML tag library, using, 89,

381–382

form validation, explanation of, 53

<form-validation> tag, subtags of, 198

FormBeanConfig instance, using with

DefaultDynaFormsLoader, 302

form-beans and action-mappings Sections

of struts-config.xml, 181

FormFile class, role in uploading files, 130

forms. See also HTML forms

displaying Cancel buttons on, 389–390

preventing from being resubmitted, 450

forms and form handlers, using with

Registration webapp, 85–86

forward EL tags, using, 440–441

<forward> in struts-config.xml, calling Tiles

definitions from, 168

<forward> tags

attributes of, 98, 100

migrating to JSF, 341

using with <action> tags, 100

ForwardAction class, using, 247–248

forwarding paths, defining with global

forwards, 97

Foundations of Ajax website, 6, 358

frames, rendering HTML frames, 396–397

FreeMarker website, 91

full.jsp

adding Find function to, 187, 192

populating and displaying, 158

■G
get EL tags, using, 463–464

get() functions, using with

DynaActionForms, 227

getAsString EL tags, using, 464, 465

getAttribute() function, relationship to

servlet classes, 20

getContainer(), preventing grafting of UI

components by, 331

getContextPath() function, using with

stylesheets and Tiles layouts, 168

getDateFormat() function, using with

MyActionForm, 149

getInputStream() function of FormFile class,

role in uploading files, 130

488 ■I N D E X

getInstance() static function, using in

Singleton design pattern, 293

getKeyMethodMap() function,

implementing for LookupDispatchAction

class, 251

using with LookupDispatchAction class, 252

getLoader() function

using with DefaultDynaFormsLoader, 302

using in DynaFormsLoaderFactory, 293

getStatusRegular() function, calling on

LogonForm, 179

getString() function, using with

javax.servlet.jsp.tagext.

BodyContent, 28

getters, using with dynamic forms, 225

getters and setters

implementing for ContactForm, 63

using with JSF, 328

getXXX() and setXXX()functions

examples of, 27

using with ActionForm subclass in

business logic, 67

global constant, declaring in Validation

framework, 204

global exceptions, declaring, 96–97

<global-exceptions> tag, attributes required

by, 97

global forwards

calling with include EL tags, 425–426

declaring, 97

using, 258, 405

using redirect EL tags with, 451

greaterEqual EL tags, using, 441–442

greaterThan EL tags, using, 441–442

GUI components. See Tiles components

■H
handler attribute, using with caught

exceptions, 97

handler classes. See Java handlers

handlers, using with forms, 85

hasErrors() function, using with Login Tiles

component, 186

hash symbol (#), using in JSF syntax, 321

HashMaps, storing (locale,format) pairs in, 148

hashmaps, iterating over, 111

header tag

in Bean tag library, usage of, 90

in EL, 423

Hello World! message, displaying, 28, 29

Hello.jsp, 13–15

helper classes

overview of, 28–29

using in Lisptorq, 362

Hibernate application

downloading, 50, 360

saving beans in, 369

searching objects in, 369–370

using for Registration webapp, 367, 370

using XML description with, 368–369

hidden form fields, representing, 397–398

hidden tag in HTML library, usage of, 89

HQL (Hibernate Query Language), example

of, 370

HTML , rendering, 400, 402

HTML buttons, representing, 388–389

html tags

in EL, 398–399

in HTML library, usage of, 89

HTML element, uploading files with, 129

HTML forms, representing, 394, 396. See also

forms

HTML frames, rendering, 396–397

HTML image input field, representing,

399, 400

HTML links, entering, 404–405

HTML selections, displaying, 411, 417

HTML tag library. See also EL tags for HTML

tag library

defining prefix for, 83

groups of tags in, 381

489■I N D E X

Fin
d

 it faster at http://su
p

erindex.apress.com

in JSF, 320

overview of, 89

purpose of, 381

<html:file> tag, uploading files with, 129

<html:form> tags

setting root object with, 117

using focus=, 86

<html:hidden> tag, localizing validations

with, 149

<html:link>s, adding to form handlers, 247

<html:multibox>, creating check boxes

with, 236

HTTP requests

encapsulating, 375

generating, 13, 15

HttpServletRequest class

description of, 12

functions associated with, 20

HttpSession class

description of, 12

functions associated with, 20

HttpSession object, obtaining instance of

ServletContext from, 244

■I
i18n. See internationalization

ids of child nodes in JSF, appending prefixes

to, 330

if() statement, performing complex

validation in JSF with, 329

image EL tags, using, 399, 400

image input fields, showing in JSP, 400

image tag in HTML library, usage of, 89

img tag

in EL, 400, 402

in HTML library, 89

implicit objects, exposing with EL, 121

importAttribute EL tags, using, 466

include EL tags, using, 425–426

include tag in Bean tag library, usage of, 90

IncludeAction class, using, 247–248

indexed fields, using validator with, 207, 209

indexed properties

declaring for dynamic forms, 223–224

description of, 112

using to uploading many files at once, 131

using with EL, 120

validating, 203–204

IndexOutOfBoundsException, throwing, 237

init() function

initializing Struts in, 281

using with DynaFormsPlugIn, 287

using with PlugIn interface, 285

initComponentDefinitions EL tags, using, 467

Initial Bean attribute set, overview of, 385

input attributes

migrating to JSF, 341

using with <action> tag, 99

input pages, calling Tiles definition files

from, 168

insert EL tags, using, 459–460

“next” page, displaying for Action

subclass, 76

INSTALL directory, creating for Tomcat, 7

instances of classes, controlling with

Singleton design pattern, 293

internationalization. See also localization

definition of, 143

of legacy applications, 248

relationship to message resource

mechanism, 417

relationship to resource mechanism, 414

support in JSF, 324

of webapps, Web resource for, 155

internationalized messages, displaying with

message EL tags, 426, 429

Internet Explorer, adding new locale with, 152

intRange,floatRange validator, variables and

trigger for, 206

Invoke Application phase in JSF, explanation

of, 316

ISO 3166 country codes Web site, 155, 219

490 ■I N D E X

ISO 8859-1 character encoding, significance

of, 151

ISO 639 language codes website, 155, 219

iterate EL tags, using, 442, 444

iterating over hashmaps, 111

iteration tags, using, 109, 111

iterations

getting information on, 122

performing with <c:> tag, 122

■J
Java classes

code-centric nature of, 13

representing events by, 317

Java files, generating for Lisptorq, 364

Java handlers

implementing for custom validators,

211, 216

overview of, 26, 28

Java Tag Handler, writing for temperature

conversion tag, 33

JavaBeans

transferring dynamic properties to, 225–226

using with BeanValidatorForms, 235

JavaScript

avoiding use of, 250

generating for client-side validation,

402, 404

javascript tag in HTML library, usage of, 89

JavaServer Pages (JSP), overview of, 13, 15

javax.servlet.http.HttpServletRequest class,

overview of, 375

javax.servlet.http.HttpSession class,

overview of, 376

javax.servlet.jsp.tagext.BodyContent helper

class, description of, 28

javax.servlet.jsp.tagext.BodyTagSupport,

subclassing, 26

javax.servlet.jsp.tagext.TagSupport base

handler, description of, 26

JNDI (Java Naming and Directory Interface),

integrating with Shale, 353–354

JSF (JavaServer Faces)

backing beans in, 344

configuring for Registration webapp,

323–324

creating dynamic Views in, 331

description of, 107

displaying error messages in, 330

events and event listeners in, 315–316, 320

extending, 320

focus on View tier, 310

initializing, 338–339

internationalization support in, 324

locating nodes in, 330

managed beans in, 321

and method binding, 320–321

migrating Struts JSP pages to, 339, 341

overview of, 307–308

performing complex validation in, 329

porting Registration webapp to, 322, 336

relationship to Shale, 308

request processing lifecycle of, 314, 316

saving copies of UI components in, 331

use of server-side UI components by,

311, 314

using getters and setters with, 328

using naming containers with, 330

using treeview UI component with, 330

versus Shale and Struts, 355

versus Struts, 308, 310, 313

and value binding, 320–321

JSF (JavaServer Pages)

navigating, 321–322

using Java Strings XE, 321

JSF Central website, 358

JSF download site, 338

JSF equivalents for Struts tags, 340

JSF expression language syntax, relationship

to JSTL EL syntax, 321

JSF FAQ website, 358

JSF page and faces requests, 315

491■I N D E X

Fin
d

 it faster at http://su
p

erindex.apress.com

JSF pages

creating UI tree for, 312

creating UI trees for, 312

JSF specification website, 336, 357

JSF tag libraries, overview of, 320

JSF taglibs, declaring for Struts-Faces

integration library, 339

JSF tags

behavior of, 311

organization of, 311

JSF-type navigation, mixing with Shale’s

dialog-based navigation, 350

.jsf extension, significance of, 315

JSP global forwards, calling with include EL

tags, 425–426

JSP pages and managed beans, one-to-one

relationship between, 346

JSPs (Java Server Pages)

declaring Tiles tag library in, 172

writing for temperature conversion tag, 34

effect of variables created on, 20

embedding Tiles components in, 169

request variable in, 15

text-centric nature of, 13

using for layouts in Tiles, 163, 169

using Login tiles component in, 175

using in scopes example, 18

<jsp:forward> tag, example of, 18

<jsp:useBean> tags

example of, 18

variables used with, 20

JSTL (JSP Standard Template Library)

explanation of, 107

resource for, 118

and Struts, 118, 124

tag libraries in, 119

using, 127

JSTL binaries, extracting from Struts

distribution zip file, 338

JSTL specs website, 127

JSTL taglibs, declaring for Struts-Faces

integration library, 339

JSTL tags, use of #{} in, 342

JUnit page, 358

■K
key attribute

using with <bean:message> tag, 84

using with <exception> tag, 97

■L
lab sessions

Adding Selected Contacts, 273–274

Collection Listing page, 271

Collection page, 269, 271

Configuring LILLDEP, 102

Contact Entry Page for LILLDEP, 90

ContactForm for LILLDEP, 61, 64

Deleting Selected Contacts in LILLDEP,

236–237

description of, 6

Find facility, 187, 192

implementing ContactAction for

LILLDEP, 76

Importing Data into LILLDEP, 140, 142

installing Tomcat, 7, 10

LILLDEP for Malaysian Market, 154

LILLLDEP Full Listing Page, 125, 126

MNC Page, 104

MVC Quiz, 45

Removing Selected Contacts, 272–273

Scopes Quiz, 18–19

Simplifying ContactForm, 126

Struts-Faces Integration Library, 337, 343

Temperature Conversion Tag, 31, 34

Test Driving Lisptorq, 363, 365

Test Driving the DynaForms Plug-in, 302

Up and Down a Search, 275–276

Using JSTL, 127

Using Validator Framework in LILLDEP, 218

492 ■I N D E X

LabelValueBean class, using with options EL

tags, 413–414

language property, using with <formset>

tag, 217

languages, scripts in, 144

Latin 1 character encoding, significance

of, 151

layout paths versus Tiles definitions, 166

layouts, 161. See also Tiles layout definitions

creating with Tiles, 163, 169

declaring for Tiles, 162

defining in Tiles definition files, 167

defining named attributes in, 461–462

using stylesheets with, 168–169

LazyValidatorForm JavaDoc, Web resource

for, 237

LazyValidatorForms

and BeanValidatorForms, 235

disadvantages of, 234

using, 232, 235

leading slash (/), using with form handlers in

JSF migration, 341

lessEqual comparison tags, effect of, 114

lessEqual EL tag, using, 441–442

lessThan EL tags, using, 441–442

LILLDEP (Little Data Entry Program)

configuring, 102

contact entry page for, 90

ContactForm for, 61

deleting selected contacts in, 236–237

implementing ContactAction for, 76

implementing edit facility for, 158

importing data into, 140, 142

for Malaysian market, 154

relationship to MVC design pattern, 45

using Validator framework in, 218

LILLDEP Declarations for Full and MCN Page

Handlers, 261–262

LILLDEP Full Listing Page, 125, 126

LILLDEP main page, using global forwards

with, 258

LILLDEP Model classes, autogenerating,

370, 372

LILLDEP webapp, using iterate tags with, 109

link tag in HTML library, usage of, 89

links

rendering HTML links, 404–405

switching locales with, 153

Lisptorq

generating Java files for, 364

generating LILLDEP Model classes with,

370, 372

helper classes in, 362

initializing database for, 365

running Test program for, 365

specifying database settings for, 364

versus Torque, 366

writing database schema for, 363

writing test program for, 365

Lisptorq code generator, features of, 360, 362

Lisptorq manual, accessing, 363

Lisptorq software, downloading, 360

Lisptorq tutorial website, 372

Lisptorq user table definition, 361

Lisptorq website, 50

Lisptorq-generated User bean, saving, 362

list-collection.jsp, modifying to select and

submit contacts for removal, 273

listeners. See events and event listeners in JSF

listing.jsp

adding check boxes to, 236

building, 157–158

Listings

ActionServlet declaration and

struts-config.xml file in web.xml, 281

array lengths set at runtime, 224

Bean.java code for

DefaultDynaFormsLoader, 298, 300

Beans.java, 297–298

<c:>...<c:when>, 123

<c:if> tag, 123

493■I N D E X

Fin
d

 it faster at http://su
p

erindex.apress.com

checking for common words as

passwords, 210

checking for duplicate user ID, 57

checking for identical fields, 207

class representing mouse clicks, 317

coloring table rows gray with EL and

JSTL, 120

coloring table rows to gray, 119

complex validation in

RegistrationAction, 73

compose page for uploading files, 136

Counting to 99 scriptlet, 118

Counting to 99 with JSTL, 118

data transformation in

RegistrationAction, 74

Database.java modified for Lisptorq and

LILLDEP, 372

declaring alphanumeric validator, 215

declaring global exception handlers, 96

declaring global forward, 98

declaring validations for

RegistrationForm, 200

DefaultDynaFormsLoader.java, 294, 297

dialogs for Registration webapp

(dialog-config.xml), 348–349

Digester used to create multiple users, 290

Digester used to create single user, 288

Display.jsp section, 110

DownloadAction subclassed, 244

DynaActionForm classes, 283

DynaFormsLoaderFactory.java, 291, 293

DynaFormsPlugIn.java, 285, 287

dynamic form bean declaration for entity

hierarchy, 278

dynamic form declaration, 222

execute() function, 69

execute() on TilesAction, 170

exists() implementation in Lisptorq, 362

exists() implementation with

Hibernate, 370

exists() using Torque, 367

explicit row on indexed field, 208

extends attribute, 279

faces-config.xml for Registration webapp,

323

<fc:forEach> iterating over iterable

object, 122

First.jsp, 18

form beans section, 96

form handler declaration, 98

form handler for LookupDispatchAction

class, 251

form for using LookupDispatchAction

class, 250

form-beans and action-mappings

sections of struts-config.xml, 181

GUI widget generating mouse click events,

318–319

Hello.jsp, 13

Hibernate XML description of User bean,

368

hidden format fields (ActionForm), 149

hidden format fields (JSP), 149

index.jsp with Login Tiles embedded

component, 176

instance variables prohibited in Action

subclass, 68

Java handler class for tag, 27

Java handler to validate alphanumeric

strings, 213–214

JSF tags snippet, 312

JSP with taglib declaration and custom

tag, 24

LazyVaidatorForm declaring dynamic

form, 233

LazyValidatorForm declaring dynamic

form, 234

LILLDEP declarations for full and MCN

page handlers, 261–262

LILLDEP Model class autogeneration,

371–372

Lisptorq-generated User bean, 362

LocalAction class, 246

494 ■I N D E X

localizable iterator class, 415–416

localizing validations by brute force, 148

Log4j settings, 260

logging with Apache Commons

Logging, 259

logon.jsp, 332, 333

logon.jsp using Shale, 351, 352

LogonForm.java, 176, 178

LookupDispatchAction subclassed,

251–252

<managed-bean> declarations for

Registration webapp in Shale, 348

message resource file for Registration

webapp in JSF, 324

<message:write>’s handler class, 28

MonkeyPreferences.jsp, 116–117

MonkeyPreferences.jsp Take 2, 117

MouseClickListener interface, 317

MyActionForm snippet, 130

MyDispatchAction, 255

MyLookupDispatchAction with

unspecified() and cancelled(), 254

MyLookupDispatchAction with

unspecified() and cancelled(), 253

myPage.jsp using simple-layout.jsp, 165

myPage2.jsp with Tiles definition, 166

navigation in RegistrationAction, 75

navigation rule in JSF, 322

new RegistrationAction.java, 231, 232

newuser.jsp view of Login Tiles

component, 180

output page for file uploads, 139, 140

plug-in declaration for tiles, 102

plug-in declaration for Validator

framework in struts-config.xml, 196

PlugIn interface, 284

PostcodeSearchAction section, 110

PrintingAction, 256

PrintingAction declarations, 256

properties file for Registration webapp, 58

Property.java code for

DefaultDynaFormsLoader, 300–301

PropertyUtils used to read ActionForm

properties, 242

register.jsp with tags stripped out, 334, 336

Registration webapp skeleton, 359–360

registration.jsp, 82–83, 228

RegistrationAction.java, 71–72

RegistrationForm.java for Validator

framework, 199

RegistrationForm.java, 55

regular.jsp link snippet for Login Tiles

component, 185

regular.jsp view for Login Tiles

component, 178

scriptlets in actions, 15

Second.jsp, 18

SendMessageAction, 137

servlet and servlet mapping declarations,

85–86

Shale’s ViewController interface, 344–345

shared Struts configuration file across

submodules, 265–266

simple-layout.jsp, 164

simple-layout.jsp with static stylesheet

reference, 168

standard signature for custom validation

function, 212

Struts configuration files in web.sml, 263

struts configuration files in web.sml, 264

Struts initialized in init(), 281

struts-config.xml file for file uploads, 138

struts-config.xml for new Registration

webapp, 229–230

struts-config.xml for Registration webapp,

94–95

submodules declared in web.xml, 264

Subscriber implementing

MouseClickListener, 318

success.jsp logoff view for Login Tiles

component, 181

taglib section in web.xml, 25

495■I N D E X

Fin
d

 it faster at http://su
p

erindex.apress.com

Tiles component with multiple views, 172

Tiles component with single view, 172

Tiles controller with one view, 171

Tiles controller with two views, 171

Tiles declaration in struts-config.xml, 162

Tiles definition file, 163

tiles-def.xml with new definition, 167

TLD file declaring <message:write>, 30

top nodes of Validator XML structure, 197

Torque’s XML description of user table, 366

type conversion idiom to read ActionForm

properties, 241

uploading fixed number of files, 131

user backing bean in JSF, 325, 328

user backing bean, Take 2, 346–347

User Bean for Digester, 288

User bean for Hibernate, 367–368

User bean saved with Hibernate, 369

user.init() implementation, 354

UserLoginAction.java, 183, 185

Users bean for Digester, 289, 290

validating indexed fields, 208

validation.xml file split into three parts, 197

validwhen validator, 207

varStatus properties, 122–123

web.xml amended for temperature

conversion tag, 34

XML file with multiple users, 289

lists of items, creating, 462, 463

load() function, using with

DynaFormsLoader, 287

<load-on-startup> value, specifying for

Struts-Faces integration library, 338

LocaleActions

switching locales with, 154

using, 245, 247

(locale,format), storing in HashMaps, 148

locale-independent messages,

encapsulating, 376

locales

overview of, 146

selecting from browsers, 151

switching with links, 153

localizable iterator class code sample,

415–416

localization. See also internationalization

of replacement arguments in Validator

framework, 203

of validations, 217, 218

localized images, rendering, 402

localizing

output, 150, 154

validations, 147, 149

Log instances, creating, 259

Log4j

defining priority messages with, 260

significance of, 259

website for, 266

logger instances, creating per class, 259

logging, overview of, 258, 261. See also

Apache Commons logging

logging functions, managing calls to, 261

<logic::iterate> tag, using, 109, 111

<logic:forward> tag, effect of, 114

<logic:iterate> tag, replacing with

<c:forEach> tag, 122

<logic:redirect> tag, effect of, 114

Logic tag library. See also EL tags for Logic tag

library

attribute sets in, 436, 437

description of, 79

overview of, 109, 115

performing conditional processing with,

113–114

selector attributes in, 437

website for, 127

logical operators, using with EL

expressions, 120

logical outcomes in JSF, significance of, 322

496 ■I N D E X

Login Tile example, 173, 186

Login Tiles component

displaying views for, 185

logoff view for, 180

views for, 178, 181

Login.do and Logoff.do form handlers, using

with Login Tiles component, 182

.login definition, declaration for, 182

logoff view, displaying in Login Tiles

component, 186

logon.jsp file, rewriting with Shale’s Validator

framework, 351–352

logon.jsp View, significance of, 332, 334

LogonForms

calling getStatusRegular() function on, 179

declaring for Login Tiles component, 182

LogonForm.java code, 176

LookupDispatchActions

versus DispatchAction class, 254

role in uploading files, 135–136

using, 249, 254

LookupDispatchAction subclass,

implementing, 251–252

■M
Malaysian market, LILLDEP for, 154

managed beans

in JSF, 321

and JSP pages, 346

<managed-bean>, relationship to Shale

ViewController, 346

<managed-bean> declarations

including in JSF migration, 343

using with Dialog Manager in Shale, 349

mapped properties

declaring for dynamic forms, 224

using, 112

mapping, relationship to business logic, 76

MappingDispatchAction class, versus

DispatchAction subclass, 257–258

mask validator

purpose of, 202

variables and trigger for, 206

match conditional processing tag, meaning

of, 114

match EL tags, using, 444–445

maxFileSize default setting, description of, 100

maxLength validator, variables and trigger

for, 206

message EL tags, using, 426, 429

message resource bundles in JSF

obtaining, 329

supporting internationalization with,

324–325

message resource files

declaring multiple message resource files,

427–428

user_exists error message in, 329

message resource keys, using with localized

labels, 414, 416

message resources section, overview of, 101

message tags

in Bean tag library, 90

in HTML library, 381–382

MessageFormat function in Java, performing

substitutions with, 330

<message:write> tag

declaring with TLD file, 29

example of, 28

messages

iterator for, 405, 407

logging, 259–260

messages tag in HTML library, usage of, 89

messagesNotPresent tags, using, 447

messagesPresent tags

meaning of, 114

using, 447

<meta> tags, using with HTML pages for

character encoding, 147

497■I N D E X

Fin
d

 it faster at http://su
p

erindex.apress.com

minLength validator

error message for, 203

variables and trigger for, 206

mnc.jsp, adding Find function to, 187, 193

Model classes. See also classes

autogenerating for LILLDEP, 372

creating with Lisptorq, 361–362

Model code, designing first in MVC

pattern, 46

ModuleConfig instance, passing to

DynaForms plug-in, 283

modules, splitting Struts configuration files

into, 264

MonkeyPreferences.jsp, 116–117

mouse click events, generating with GUI

widget, 318–319

mouse clicks, representing in class, 317

MouseClickEvent class, alternative to, 319

Mozilla, adding new locale with, 152

multibox tags

in EL, 407–408

in HTML library, usage of, 89

multiple-file-uploading.zip, location and

contents of, 140

MVC design pattern

constraints followed by, 39

relationship to Struts, 47–48

separating code by function with, 38

specifying portions of, 46, 47

MyDataForm form bean, using with

DownloadAction class, 245

MyDispatchAction subclass code, 255

MyFaces

downloading source for, 336

treeview in, 313

website for, 357

myFunction(), calling with Digester, 290

myPage.jsp, using layout with, 165

myPage2.jsp with Tiles definition, code for,

166

mystartpage.jsp, localizing, 246

myVariable

use of, 20

using StringBuffer for, 20

■N
name attribute

using with <action> tag, 99

using with <form-bean> tag, 96

using with <forward> tag, 98, 100

named attributes, defining in layouts,

461–462

namespaces, separating with

struts-config.xml, 263

naming containers, using with JSF, 330

native2ascii, role in localizing output, 151

navigation

in business logic for Registration

webapp, 70

performing in business logic, 75–76

relationship to business logic, 75

role in business logic, 67

navigation rules, defining in JSF, 322

nest tags, using, 453

nested properties

declaring for dynamic forms, 225

declaring for LazyValidatorForms, 232

description of, 112

using with EL, 120

validating, 203, 204

Nested tag library. See also tag libraries

description of, 79

overview of, 115, 117, 451–452

website for, 127

<nested:root> tag, specifiying different root

object than default with, 117

nesting levels, writing, 454, 455

new keyword, using in Singleton design

pattern, 293

newuser.jsp view of Login Tiles

component, 180

498 ■I N D E X

Nexus framework, relationship to Struts

OverDrive, 309

nocache default setting, description of, 100

nodes, locating in JSF, 330

notEmpty tags, using, 114, 437, 439

notEqual EL tags, using, 439, 440

notMatch EL tags, using, 444–445

notPresent EL tags, using, 448

null, returning in JSF, 331

■O
objects . See also root object

exposing implicit objects with EL, 121

searching in Hibernate, 369

Observer design pattern, relationship to

events and event listeners in JSF, 316

operators, using with EL expressions, 120

option EL tags, using, 412, 413

option labels, localization of, 414, 417

options tags in HTML library, using

org.apache.struts.action.Action class,

overview of, 378

org.apache.struts.action.ActionErrors,

overview of, 377

org.apache.struts.action.ActionForm class,

overview of, 378

org.apache.struts.action.ActionMapping

class, overview of, 377

org.apache.struts.action.ActionMessage

class, overview of, 376

org.apache.struts.action.ActionMessages

class, overview of, 377

org.apache.struts.action.ExceptionHandler

class, overview of, 380

org.apache.struts.tiles.ComponentContext

class, overview of, 380

org.apache.struts.tiles.TilesPlugin class,

instantiating, 162

org.apache.struts.upload.FormFile interface,

overview of, 379

■P
page processing, lifecycle of, 80, 82

page redirects, performing, 449, 451

page references in business logic, direct

versus indirect types of, 76

Page scope, explanation of, 17

page tags

in Bean tag library, 90

in EL, 429–430

parameter attributes

using with <action> tag for IncludeAction

and ForwardAction, 247

using with <action> tag and

DispatchAction class, 254

using with PrintingAction, 256

parameter tag

in Bean tag library, 90

in EL, 423

parse() function, using on

org.apache.commons.digester.

Digester class, 289

password tag

in EL, 418–419

in HTML library, 89

password2 field, validation for, 203

path attribute

using with <action> tag, 99

using with <forward> tag, 98, 100

peer classes, handling in Lisptorq, 361

persistence, handling in Lisptorq, 361

pipe symbol (|), using as separator, 140

plain text, significance of, 145

plug-in declarations

including in struts-config.xml file, 162

using with Validator framework, 196

PlugIn interface

implementing, 284, 285

implementing for DynaForms plug-in,

285, 287

<plug-in> tag, <set-property> tags in, 162

499■I N D E X

Fin
d

 it faster at http://su
p

erindex.apress.com

plug-ins

anatomy of, 284–285

declaring, 101

DynaForms plug-in, 280

polling Subscribers, inefficiency of, 316

PostcodeSearchAction code sample, 110

present tags

meaning of, 114

using, 448

primitive types, using with dynamic

properties, 225

print() function, using with

LookupDispatchAction class, 252

PrintingAction code example, 256

priority messages, logging with Log4j, 260

private access, relationship to Singleton

design pattern, 293

Pro Jakarta Struts website, 6

Pro Jakarta Velocity: From Professional to

Expert website, 6, 91

Process Validations phase in JSF, explanation

of, 316

processing, categories of, 48

properties

accessing dynamic properties, 225

declaring for LazyValidatorForms, 232

declaring indexed properties for dynamic

forms, 223–224

declaring mapped properties for dynamic

forms, 224

declaring nested properties for dynamic

forms, 225

declaring simple properties for dynamic

forms, 223

reading in ActionForm subclasses, 241

simple properties, 112

types of, 112

properties files

benefits of, 59

configuring with struts-config.xml, 93

using with ActionErrors, 58

property attribute

role in uploading files, 130

using with <html:submit> buttons for

LookupDispatchAction class, 250

using with <plug-in> tag, 102

using with Struts tags, 111

Property class, using with

DefaultDynaFormsLoader, 302

property keys, using dotted notation with, 59

Property.java code for

DefaultDynaFormsLoader, 300–301

PropertyUtils class

downside of, 242

explanation of, 240

functions of, 240

reading ActionForm properties with, 242

using, 241–242

Publisher role in Observer design pattern,

relationship to JSF, 316

Publishers

relating event listeners to, 318

relating events to, 319

put EL tags, using, 461–462

putList EL tags, using, 462–463

■Q
queries, cloning for Tiles controller, 190

■R
radio button input fields, rendering, 408–409

radio tag in HTML library, usage of, 89

range validator, variables and trigger for, 206

readConfig() function, using with

DynaFormsLoaderFactory, 294

redirect, relationship to scopes, 17

redirect EL tags, using, 449, 451

Register() in JSF

interpreting return value of, 331

using, 328

register.jsp View, significance of, 334–335

500 ■I N D E X

Registration webapp

business logic in, 70, 73

configuring with struts-config.xml, 94–95

declaring and installing HTML and Bean

libraries for, 83

dialogs for, 348–349

displaying errors in, 87–88

displaying static text in, 84

faces-config.xml file for, 323

main Views in, 332, 336

making into Tiles component, 173, 186

porting to JSF, 322, 336

properties file for, 58

requirements for, 39, 44

user input for, 56

using data input tags with, 86, 87

using dynamic forms with, 228, 232

using forms and form handlers with, 85–86

using Hibernate for, 367

using Torque for, 366

View component of, 82, 88

registration.jsp code sample, 82–83

RegistrationActions, 71–72

complex validation in, 73

data transformation in, 74

modifying for dynamic form, 231

navigation in, 75

RegistrationForms

instantiating in JSF migration, 342

using validate() function with, 209

validating, 199, 203

RegistrationForm.java code, 55

regular expression, relationship to mask

validator, 202

Regular Expressions tutorial website, 218

Render Response phase in JSF

explanation of, 316

significance of, 315

Rendering attribute set, attributes and usage

of, 385

replacement arguments, localizing in

Validator framework, 203

Request scope, explanation of, 17

request variable in JSP pages, explanation

of, 15

required validators

purpose of, 202

variables and trigger for, 206

reset tags

in EL, 409–410

in HTML tag library, 89

reset(), implementing for ContactForm, 64

resolve() function, using with

DefaultDynaFormsLoader, 302

resource tags, using, 90, 430–431

ResourceStreamInfo class, using with

DownloadAction class, 243

Restore View phase in JSF, explanation of, 315

Review Labs, Editing Contacts in LILLDEP, 157

rewrite EL tag, using, 410–411

rewrite tag in HTML library, usage of, 89

RFC-2822 for email website, 218

root object. See also objects

setting with <html:form> tag, 117

specifying, 117

root tags, using, 456–457

runtime exceptions, catching with global

exceptions, 96

■S
<s:form>s, changing form handler names in,

340–341

<s:loadMessages> versus

<f:loadMessages>, 339

save() function, using with

LookupDispatchAction class, 252

saveErrors(), signaling complex validation

failures with, 74

scope attribute, using with <action> tag, 99

501■I N D E X

Fin
d

 it faster at http://su
p

erindex.apress.com

scopes

definition of, 17

relationship to implicit objects, 121

types of, 17

Scopes Quiz lab session, 18–19

scriptlets

advisory about, 108, 112

versus JSTL, 118

Scriptlets in Action listing, 15

Scroller interface, relationship to searching

collections, 275

search_results iterator, using, 110

Second.jsp listing, 18

select tags

in EL, 411–412

in HTML tag library, 89

SelectionFormBean, declaring for

listing.jsp, 236

selector attributes in Logic tag library,

overview of, 437

_self instance, using in Singleton design

pattern, 293

server-side UI components, using with JSF, 311

server-side validations, performing in

Shale, 351

servlet classes

overview of, 12

starting, 86

servlet containers

basics of, 10–11

behavior of, 13

interaction with custom tags, 24

Servlet specification website, 16

servlet technology

generic nature of, 49

overcoming shortcomings of, 37

significance of, 7

ServletContext

using with DownloadAction class, 244

using with DynaFormsPlugIn, 287

servlets

definition of, 7

website for, 16

session object, storing collection ID on, 273

Session scope

explanation of, 17

storing Collection instance in, 273

sessionScope object, example of, 121

session-scoped variables, storing, 376

set(String propertyName,Object value

function

priming form beans with, 224

priming with set(String

propertyName,Object value)

function, 224

setAttribute() function, relationship to

servlet classes, 20

setDateFormat() function, using with

MyActionForm, 149

setFile() arguments, role in multiple file

uploads at once, 132–133

<set-property> tags

supporting in DynaForms plug-in, 280

using with <plug-in> tags, 162

using with DynaForms plug-in, 303, 305

using with Validator framework, 196

setters and getters, using with JSF, 328

Shale

and Ajax, 354

design objectives of, 309

Dialog Manager in, 348, 350

disadvantage of, 355

features of, 343

integration with Validator framework,

350, 352

JNDI integration with, 353, 354

overview of, 308, 310

relationship to JSF, 308

support for unit testing, 355

versus JSF and Struts, 355, 356

502 ■I N D E X

ViewController interface in, 344, 348

website for, 357

Shale’s dialog-based navigation, mixing with

JSF-type navigation, 350

shared declarations, advisory about, 265

simple definition, using with Tiles, 166

simple properties

declaring for dynamic forms, 223

example of, 111

simple Tiles definitions file, header and

footer attributes of, 166

simple validations

central class for, 54

explanation of, 53

processing, 53

simple-layout.jsp, 164

relative placement of header, body, and

footer in, 164

using with myPage.jsp, 165

with static stylesheet reference, 168

single quotes (‘), escaping in JSF, 325

Singleton design pattern, using with

DynaFormsLoaderFactory, 293

size tags

in Bean tag library, 90

in EL, 431–432

source control, enhancing by splitting up

struts-config.xml, 263

Spring framework website, 6

Spring website, 358

SQL queries, using with collections, 269

square brackets ([]), declaring indexed

properties with, 223

state information, storing for View tier, 311

static text, displaying in Registration

webapp, 84

StreamInfo class

implementing with anonymous class, 244

using with DownloadAction class, 243

StringBuffer versus String, explanation of, 20

Struts

benefit of, 7

benefits of, 64

deficiency related to Model portion of

MVC pattern, 49

development of, 4

importance of, 310

initializing in init(), 281

relationship to MVC design pattern, 47–48

two-level nested hierarchy of, 311

users of, 5

value binding in, 320

versus JSF, 313

versus JSF (JavaServer Faces), 308, 310

versus JSF and Shale, 355

versus Shale, 308, 310

website for, 305

Struts attribute set, attributes and usage of, 385

struts- config.xml, splitting up, 263, 266

Struts configuration files, sharing across

submodules, 265

Struts EL tags. See EL tags

Struts internals, configuring in

struts-config.xml, 93

Struts JAR files, advisory about sharing of, 84

Struts JSP pages

migrating to JSF, 339, 341

processing of, 82

Struts OverDrive

explanation of, 309

website for, 357

Struts Request, lifecycle of, 48–49

Struts Shale. See Shale

struts tag in Bean tag library, usage of, 90

Struts tags

enabling for EL, 124

JSF equivalents for, 340

libraries associated with, 79

using property attribute with, 111

Struts tags not EL-enabled, 128

503■I N D E X

Fin
d

 it faster at http://su
p

erindex.apress.com

Struts Ti (Titanium)

description of, 309

website for, 357

Struts’ Validator page website, 218

struts-config.xml file

declarations for using LocalAction class,

245–246

declaring ChangeLocal form handler in, 153

declaring Tiles in, 162

editing for Struts-Faces integration

library, 338

examining for Login Tiles component,

181–182

including plug-in declarations in, 162

plug-in declaration for Validator

framework in, 196

for Registration webapp., 94–95

structure of, 93–95

using with file uploads, 138–139

Struts-Faces library

description of, 337

downloading, 357

editing web.xml and struts-config.xml

files for, 338–339

installing, 337, 338

preparing development environment

for, 337

using ActionErrors class with, 342

Struts-Faces tags, Struts equivalents for,

339–340

struts-faces.jar file, extracting, 338

stylesheets, using with layouts, 168

submit button, using LookupDispatchAction

class with, 254

submit buttons

role in uploading files, 137–138

role in uploading multiple files, 133

using LookupDispatchAction class with, 249

submit tags

in EL, 418

in HTML tag library, 89

Subscriber role in Observer design pattern,

relationship to JSF, 316

subscribers, relating events to, 317–318

Subversion website, 358

success.jsp Login Tiles component code, 181

summary() function, implementing with

DispatchAction class, 255

Sun JSF download site, 357

■T
tag libraries. See also Nested tag library

best practices for, 108

in JSTL, 119

Logic tag library, 109, 114

Nested tag library, 115, 117

taglib declaration, example of, 24

tags

applying relative to objects, 115

attributes of, 24

declaring, 23

features of, 23–24

using with layouts, 164

tags prefix, purpose of, 24

Ted Husted’s website, 6

temperature conversion tag, deploying and

testing, 34

Temperature Conversion Tag lab session,

31, 34

Test program, running for Lisptorq, 365

text, outputting with <c:out> tag, 121

text tags

in EL, 418–419

in HTML tag library, usage of, 89

textarea tags

in EL, 420

in HTML tag library, 89

Tiles

installing, 162–163

for layouts, 163, 169

overview of, 161–162

preparing for Find facility, 189

504 ■I N D E X

Tiles <definition>, declaring, 171–172

Tiles action mapping, including for Find

facility, 190

Tiles components

creating, 169

declaring, 162

declaring multiple views of, 172

description of, 161, 169

examples of, 173, 178, 181, 183, 185–186

getting external form data related to, 187

using, 172

Tiles controllers

creating for components, 170

declaring, 171

explanation of, 169

for Login Tiles component, 182

writing for Find facility, 189, 190

Tiles definitions

advantages of, 171

calling from <forward> in

struts-config.xml, 168

defining layouts in, 167

example of, 163

versus layout paths, 166

splitting into more than one file, 163

writing for Find facility, 191

Tiles DTD (Document Tag Definition),

location of, 163

Tiles JSP, writing for Find facility, 191

Tiles layout definitions, subclassing, 167. See

also layouts

Tiles tag library

attributes for, 458

declaring in JSP, 172

description of, 79

overview of, 457

Tiles view, creating, 171

tiles-def.xml file

declaring layouts and components in, 162

with single definition, 166

<tiles:getAsString> tag, using with layouts, 165

<tiles:insert> tags

embedding Tiles components into JSP

pages with, 169

page, template, and component

properties of, 166

using with layouts, 164–165

using Tiles controllers in, 171–172

time display in Hello.jsp, explanation of, 14

TLD (Tag Library Descriptor) file,

significance of, 23

TLD files

establishing logical path to, 24

overview of, 29, 31

physical location of, 25

writing for temperature conversion tag, 33

Tomcat

installing, 7– 8

website for, 16

Torque

downloading, 360

using for Registration webapp, 366–367

versus Lisptorq, 366

website for, 50

Torque’s description of user table, 366

trace() function, using with Log instances, 260

transition tokens, relationship to redirect EL

tags, 450–451

translated Application.properties files,

processing, 151

treeview in JSF pages, state of, 313

treeview UI component, using with JSF, 330

troubleshooting, Tomcat installation, 10

type attribute

declaring nested properties for dynamic

forms with, 225

using with <action> tag, 99

using with <exception> tag, 97

using with <form-bean> tag, 96

using with dynamic forms, 222

505■I N D E X

Fin
d

 it faster at http://su
p

erindex.apress.com

type conversion

disadvantages of using with

ActionForms, 241

disadvantages of using with PropertyUtils

class, 241

■U
UI components in JSF, saving copies of, 331

UI trees

versus ActionForms, 314

creating for JSF pages, 312–313

Unicode

and UTF-8, 144

versus ASCII, 144

definition of, 144

Web site for, 155

unit testing

support in Shale for, 354

website for, 218

unknown() function, calling for Tiles

controller, 190

unspecified() function, using with

LookupDispatchAction class,

253–254

Update Model Values phase in JSF,

explanation of, 316

uploading files. See file uploads

URI (Uniform Resource Identifier),

relationship to taglib declarations, 24

URL tags in HTML tag library, descriptions

of, 383, 381

url validator, variables and trigger for, 206

URLs

calling with include EL tags, 425–426

resolving and rendering, 410–411

useAttribute EL tags, using, 465

Useful Links. See also websites

ACID, 373

“Adding Spice to Struts,” 305

Ant website, 358

Apache Ant website, 35

Apache Commons Logging, 266

Apache Commons’ BeanUtils project, 237

Apache Struts website, 6

BeanValidatorForm JavaDoc, 237

Commons Validator framework project, 218

Craig McClanahan’s blog, 6

CSS Zen Garden, 358

Derby project, 373

Digester framework, 305

DynaActionForm supported types, 237

Eclipse website, 35, 305

EL tutorial from Sun, 128

Foundations of Ajax website, 6

Foundations of Ajax, 358

FreeMarker, 91

Hibernate, 50, 373

internationalization of webapps, 155

ISO 3166 country codes, 219

ISO-639 language codes, 219

JSF Central website, 358

JSF FAQ website, 358

JSF specification, 357

JSTL specs, 127

JUnit page, 358

LazyValidatorForm JavaDoc, 237

Lisptorq, 50, 373

Log4j, 266

Logic tag library, 127

MIME type strings, 266

MyFaces website, 357

Nested tag library, 127

Pro Jakarta Struts website, 6

Pro Jakarta Velocity: From Professional to

Expert, 91

Pro JSP 2, 4th Edition, 127

ProJakarta Velocity website, 6

Regular Expressions tutorial, 218

RFC-2822 for email, 218

The ServerSide website, 6

506 ■I N D E X

servlet information, 16

Servlets specification, 16

Shale website, 357

Spring, 358

Spring’s web application framework

website, 6

Struts OverDrive website, 357

Struts tags, 128

Struts Ti website, 357

Struts website, 305

Struts’ Validator page, 218

Struts-Faces integration library, 357

Subversion website, 358

Sun JSF download site, 357

Ted Husted’s website, 6

Tomcat website, 16

Torque, 50, 373

unit testing information, 218

Uuencode entry in Wikipedia, 142

Velocity, 91

WebWork website, 357

user backing bean. See also backing beans

code sample, 325, 328

using in JSF version of Registration

webapp, 325, 332

User bean for Hibernate code sample, 367–368

User class, persisting versions of, 359–360

user declarations, handling with Digester,

289, 291

user ID, checking for ActionForms, 57

user managed bean, creating for JSF version

of Registration webapp, 324

user.init() implementation sample code,

353–354

userid field, validating, 203

UserLoginAction Tiles controller, using with

Login Tiles component, 186

UserLoginAction.java code for Login Tiles

component, 183, 185

users, logging off in Login Tiles

component, 185

Users bean, creating for Digester, 289

users of book, assumptions about, 5

UTF-8 character encoding

relationship to Unicode, 144–145

website for, 155

Uuencode entry in Wikipedia Web address, 142

■V
validate attribute, using with <action> tag, 99

validate() functions

body of, 56

creating and maintaining, 216

versus extending Validator framework,

195, 211

implementing, 209

implementing for ContactForm, 63–64

using with ActionForm subclass, 54

validation

of nested and indexed properties, 203–204

performing in JSF, 329

validation function, steps for, 212

validation quiz, 60

validation.xml file, splitting into several

files, 197

validations

creating client-side validations, 205

customizing, 209, 216

declaring, 200–201

localizing, 147, 149, 217–218

validations.xml, using with dynamic form for

Registration webapp, 231

Validator framework

extending, 210–211

integrating Shale with, 350, 352

migrating legacy code to, 216

overview of, 195–196

using, 198, 205

using constants in, 204–205

using with dynamic forms, 227

using with LazyValidatorForms, 232, 235

507■I N D E X

Fin
d

 it faster at http://su
p

erindex.apress.com

Validator plug-in, declaring, 196, 197

ValidatorForm, subclassing for

RegistrationForm, 200

validator-rules.xml, declaring validator in, 215

validators

creating, 211

declaring in validator-rules.xml, 215

examples of, 205, 209

validwhen validator

using, 206–207

using with indexed fields, 207, 209

variables and trigger for, 206

value attribute

using in conditional processing, 113

using with <plug-in> tag, 102

using with multibox for check box, 236

value bindings in JSF, examples of,

320–321, 328

var tag, regular expression in, 202

variables

accessing on scopes, 121

creating on JSP pages, 20

exposing with define EL tag, 423, 425

variant property, using with <formset>

tag, 217

varStatus attribute, getting information on

current iteration with, 122

varStatus properties code sample, 122–123

Velocity website, 91

View code, designing first in MVC pattern, 46

View component, of Registration webapp,

82, 88

View tier,

relationship to JSF, 310

storing state information for, 311

ViewController interface in Shale, overview

of, 344, 348

Views in Registration webapp, 332, 336

■W
WAR files (Web Application aRchives)

contents of, 10

web applications bundled as, 10

web applications

definition of, 3

re-deploying, 10

web.xml

ActionServlet declaration and

struts-config.xml file in, 281

amending for temperature conversion

tag, 33

configuring for JSF, 323, 324

declaring multiple Struts configuration

files in, 263

submodules declared in, 264

web.xml file

contents of, 25

declaring data source references in, 353

declaring environment entries in, 353

declaring Shale dialogs in, 348

editing for Struts-Faces integration

library, 339

webapp pages, mapping to names in

struts-config.xml, 93

webapps, using global forwards with, 258

webapps directory, contents of, 10

WEB-INF directories, using with WAR

archive files, 10

websites. See also Useful Links

ACID, 373

Hibernate software, 360

Hibernate, 373

internationalization of webapps, 155

ISO 3166 country codes, 155

ISO 639 language codes, 155

JSF (JavaServer Faces), 338

Lisptorq manual, 363

Lisptorq software, 360

Lisptorq tutorial, 372

508 ■I N D E X

Lisptorq, 373

Torque software, 360, 373

Unicode, 155

UTF-8 and related encodings, 155

Uuencode entry in Wikipedia, 142

WebWork website, 357

wildcards, using, 261, 262

write tags

in Bean tag library, 90

in EL, 434, 435

writeNesting tags, using, 454–455

Writer instance, using with BodyContent, 28

■X
XHTML 1.0–conformant page, rendering, 399

xhtml tags

in EL, 420–421

in HTML tag library, 89

XML

reading with Digester, 288, 291

using with Torque, 366

XML descriptions, using with Hibernate, 368

XML file with multiple users code sample, 289

You Need the Companion eBook
Your purchase of this book entitles you to its

companion eBook for only $10.

W
e believe this Apress title will prove so indispensable that you’ll want to carry

it with you everywhere, which is why we are offering the companion eBook

for $10 to customers who purchase this book now. Convenient and fully searchable,

the eBook version of any content-rich, page-heavy Apress book makes a valuable

addition to your programming library. You can easily find, copy, and apply code—and

then perform examples by quickly toggling between instructions and the application.

Even simultaneously tackling a donut, diet soda, and complex code becomes

simplified with hands-free eBooks!

Once you purchase this book, getting the $10 companion eBook is simple:

1 Visit www.apress.com/promo/tendollars/.

2 Complete a basic registration form to receive a randomly

generated question about this title.

3 Answer the question correctly in 60 seconds and you will

receive a promotional code to redeem for the $10 eBook.

All Apress eBooks subject to copyright protection. No part may be reproduced or transmitted in any form or by any

means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher. The purchaser may print

the work in full or in part for their own non-commercial use. The purchaser may place the eBook title on any of their

personal computers for their own personal reading and reference.

Offer valid through 8/20/06.

2560 Ninth Street • Suite 219 • Berkeley, CA 94710

FIND IT FAST
with the Apress SuperIndex ™

Quickly Find Out What the Experts Know

L
eading by innovation, Apress now offers you its SuperIndex™, a turbocharged

companion to the fine index in this book. The Apress SuperIndex™ is a keyword

and phrase-enabled search tool that lets you search through the entire Apress library.

Powered by dtSearch™, it delivers results instantly.

Instead of paging through a book or a PDF, you can electronically access the topic

of your choice from a vast array of Apress titles. The Apress SuperIndex™ is the

perfect tool to find critical snippets of code or an obscure reference. The Apress

SuperIndex™ enables all users to harness essential information and data from the

best minds in technology.

No registration is required, and the Apress SuperIndex™ is free to use.

1 Thorough and comprehensive searches of over 300 titles

2 No registration required

3 Instantaneous results

4 A single destination to find what you need

5 Engineered for speed and accuracy

6 Will spare your time, application, and anxiety level

Search now: http://superindex.apress.com

	Beginning Apache Struts: From Novice to Professional
	Table of Content
	PART 1 Basic Struts
	Chapter 1 Introduction
	Chapter 2 Servlet and JSP Review
	Chapter 3 Understanding Scopes
	Chapter 4 Custom Tags
	Chapter 5 The MVC Design Pattern
	Chapter 6 Simple Validation
	Chapter 7 Processing Business Logic
	Chapter 8 Basic Struts Tags
	Chapter 9 Configuring Struts
	Chapter 10 More Tags
	Chapter 11 Uploading Files
	Chapter 12 Internationalization
	Chapter 13 Review Lab: Editing Contacts in LILLDEP

	PART 2 Advanced Struts
	Chapter 14 Tiles
	Chapter 15 The Validator Framework
	Chapter 16 Dynamic Forms
	Chapter 17 Potpourri
	Chapter 18 Review Lab: The Collection Facility
	Chapter 19 Developing Plug-ins
	Chapter 20 JavaServer Faces and Struts Shale
	Appendix A Frameworks for the Model
	Appendix B Commonly Used Classes
	Appendix C Struts Tag Reference
	Appendix D Answers

	Index

