
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Beginning
iOS 4 ApplicAtiOn DevelOpment

intrODuctiOn .xvii

pArt ⊲ i getting StArteD

 chApter 1 Getting Started with iOS 4 Programming . 3

 chApter 2 Write Your First Hello World! Application . 23

 chApter 3 Views, Outlets, and Actions . 41

 chApter 4 View Controllers . 73

 chApter 5 Multi-Platform Support for the iPhone and iPad 133

 chApter 6 Keyboard Inputs . 155

 chApter 7 Screen Rotations . 181

pArt i ⊲ i DiSplAying AnD perSiSting DAtA

 chApter 8 Using the Table View . 197

 chApter 9 Application Preferences . 241

 chApter 10 File Handling . 261

 chApter 11 Database Storage Using SQLite3 . 279

pArt ii ⊲ i ADvAnceD iOS 4 prOgrAmming techniqueS

 chApter 12 Simple Animations and Video Playback . 297

 chApter 13 Accessing Built-In Applications . 319

 chApter 14 Recognizing Gestures . 343

 chApter 15 Accessing the Accelerometer . 385

pArt i ⊲ v netwOrk prOgrAmming techniqueS

 chApter 16 Web Services . 403

 chApter 17 Bluetooth Programming . 421

 chApter 18 Bonjour Programming . 441

 chApter 19 Apple Push Notification Service . 455

Continues

www.allitebooks.com

http://www.allitebooks.org

 chApter 20 Displaying Maps . 477

 chApter 21 Background Applications . 519

pArt ⊲ v AppenDiceS

 AppenDix A Testing on an Actual Device . 541

 AppenDix B Getting Around in Xcode . 565

 AppenDix c Getting Around in Interface Builder . 577

 AppenDix D Crash Course in Objective-C . 591

 AppenDix e Answers to Exercises . Wrox .com

inDex . 619

www.allitebooks.com

http://www.allitebooks.org

Beginning

iOS 4 Application Development

Wei-Meng Lee

www.allitebooks.com

http://www.allitebooks.org

Beginning iOS 4 Application Development

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-91802-9

ISBN: 978-0-470-94983-2 (ebk)
ISBN: 978-1-118-00480-7 (ebk)
ISBN: 978-1-118-00481-4 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online
at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2010932418

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc. is not associated with any product or vendor mentioned in this book.

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.allitebooks.org

To my family:

Thanks for the understanding and support while I

worked on getting this book ready! I love you all!

www.allitebooks.com

http://www.allitebooks.org

AcquiSitiOnS eDitOr
Scott Meyers

SeniOr prOject eDitOr
Ami Frank Sullivan

technicAl eDitOr
Trenton Shumay

prODuctiOn eDitOr
Rebecca Anderson

cOpy eDitOr
Luann Rouff

eDitOriAl DirectOr
Robyn B . Siesky

eDitOriAl mAnAger
Mary Beth Wakefield

ASSOciAte DirectOr Of mArketing
David Mayhew

prODuctiOn mAnAger
Tim Tate

vice preSiDent AnD
executive grOup puBliSher
Richard Swadley

vice preSiDent AnD executive puBliSher
Barry Pruett

ASSOciAte puBliSher
Jim Minatel

prOject cOOrDinAtOr, cOver
Lynsey Stanford

cOmpOSitOr
James D . Kramer,
Happenstance Type-O-Rama

prOOfreADer
Nancy Carrasco

inDexer
Johnna VanHoose Dinse

cOver DeSigner
Michael E . Trent

cOver imAge
© istockphoto .com/-M-I-S-H-A-

creDitS

www.allitebooks.com

http://www.allitebooks.org

ABOut the AuthOr

wei-meng lee is a technologist and founder of Developer Learning Solutions (www.learn2develop.net),
a technology company specializing in hands-on training for the latest Microsoft and Mac OS X tech-
nologies. He is also an established author with Wrox and O’Reilly.

Wei-Meng first started the iPhone programming course in Singapore, and it has since received much
positive feedback. His hands-on approach to iPhone/iPad programming makes understanding the
subject much easier than reading books, tutorials, and documentation from Apple.

Contact Wei-Meng at weimenglee@learn2develop.net.

ABOut the technicAl eDitOr

trent ShumAy is the founder and Chief Architect at Finger Food Studios Inc. in the Vancouver,
BC area. After graduating from the UBC Computer Science program, Trent spent thirteen years in
the gaming and interactive entertainment space, where handheld gaming devices ignited his passion
for mobile development. Today, Finger Food Studios focuses on developing media-rich, interactive
mobile and Web applications. You can reach Trent directly at trent@fingerfoodstudios.com.

www.allitebooks.com

http://www.learn2develop.net
mailto:weimenglee@learn2develop.net
mailto:trent@fingerfoodstudios.com
http://www.allitebooks.org

AcknOwleDgmentS

After much SpeculAtiOn and rumor, Apple has finally released the iPhone 4 amid fanfare and
excitement. With the new iPhone 4 comes a new OS — iOS 4, which incorporates many enhance-
ments, most notably the ability to support background applications. I was very fortunate to be able
to work with the new OS while it was in its beta phase and even more excited to learn that I would
be working on an iPhone 4 book! Writing a book is always exciting, but along with it come long
hours of hard work, straining to get things done accurately and correctly. For this, I would like to
take this opportunity to thank a number of people who made this book possible.

First, I want to thank my acquisitions editor Scott Meyers, who had faith in me when he signed me
up for this book. Thanks for standing by me and always being there to help. I hope I have not disap-
pointed you. Thank you, Scott!

Next, a huge thanks to Ami Sullivan, my editor, who is always a pleasure to work with. After work-
ing together on three books, we have built up a rapport and totally understand how each other works.
With every new book that I work on with Ami, I learn new things. Thanks for the guidance, Ami!

I should not forget the heroes behind the scene: copy editor Luann Rouff and technical editor
Trenton Shumay. They have been eagle-eye editing the book, making sure that every sentence makes
sense — both grammatically as well as technically. Thanks, Luann and Trent!

Last, but not least, I want to thank my parents, and my wife, Sze Wa, for all the support they have
given me. They have selflessly adjusted their schedules to accommodate my busy schedule when I
was working on this book. My wife, as always, has stayed up with me on numerous nights as I was
furiously working to meet the deadlines, and for this I would like to say to her and my parents: “I
love you all!” Finally, to our lovely dog, Ookii, thanks for staying by our side. Now that the book is
done, we can look forward to an earlier night.

www.allitebooks.com

http://www.allitebooks.org

cOntentS

IntroductIon xvii

getting StArtepArt i: D

getting StArteD with iOS 4 prOgrAmming chApter 1: 3

Obtaining the iPhone SDK 4
Components of the iPhone SDK 6

Xcode 6
iPhone Simulator 8

Features of the iPhone Simulator 10
Uninstalling Applications from the iPhone Simulator 11

Interface Builder 13
Instruments 14

Architecture of the iPhone OS 14
Some Useful information before You get Started 17

Versions of the iPhone OS 17
Testing on Real Devices 18
Screen Resolutions 18

Summary 20

write yOur firSt hellO wOrlD! ApplicAtiOn 2chApter 2: 3

getting Started with Xcode 23
Using Interface Builder 26
Writing Some Code 31

Customizing Your Application icon 34
Displaying a Splash Screen 36
Summary 39

viewS, OutletS, AnD ActiOnS chApter 3: 41

Outlets and Actions 41
Using Views 47

Using the Alert View 48
Using the Action Sheet 52
Page Control and Image View 54
Using the Web View 62

Adding Views Dynamically Using Code 64

x

COnTenTS

Understanding View Hierarchy 68
Summary 70

view cOntrOllerS 7chApter 4: 3

The View-Based Application Template 74
Editing XIB Files 77

Application Delegate 79
Controlling Your UI Using View Controllers 81

The Window-Based Application Template 85
Adding a View Controller and Views Programmatically 91
Creating and Connecting Actions 95
Switching to Another View 99
Animating the Switching of Views 101

The Split View-Based Application Template 103
Displaying Some Items in the Split View-Based Application 114

The Tab Bar Application Template 122
Summary 131

multi-plAtfOrm SuppOrt fOr the iphOne AnD ipAD chApter 5: 133

Technique 1 — Modifying the Device Target Setting 134
Detecting the Platform Programmatically 139

Technique 2 — Creating Universal Applications 141
Technique 3 — Maintaining Two Code Bases 149
Making Your Choice 151
Summary 152

keyBOArD inputS chApter 6: 155

Using the Keyboard 155
Customizing the Type of inputs 157

Making the Keyboard Go Away 159
Automatically Displaying the Keyboard When the View Is Loaded 165

Detecting the Presence of the Keyboard 165
Using the Scroll View 166
Scrolling Views When the Keyboard Appears 171

Summary 178

Screen rOtAtiOnS chApter 7: 181

Responding to Device Rotations 181
Different Types of Screen Orientations 184
Handling Rotations 185

willAnimateFirstHalfOfRotationToInterfaceOrientation: 185

xi

COnTenTS

willAnimateSecondHalfOfRotationFromInterfaceOrientation: 185
willRotateToInterfaceOrientation: 186
willAnimateRotationToInterfaceOrientation: 186

Programmatically Rotating the Screen 190
Rotating During Runtime 191
Displaying the View Window in a Specific Orientation When Loading 191

Summary 192

DiSplAying AnD perSiSting DAtpArt ii: A

uSing the tABle view chApter 8: 197

A Simple Table View 198
Adding a Header and Footer 204
Adding an Image 204
Displaying the Item Selected 206
Indenting 209
Modifying the Height of Each Row 210

Using the Table View in a navigation-Based Application 210
Displaying Sections 211

Adding Indexing 219
Adding Search Capability 219
Disclosures and Check Marks 231
Navigating to Another View 233

Summary 239

ApplicAtiOn preferenceS 2chApter 9: 41

Creating Application Preferences 242
Programmatically Accessing the Settings Values 248

Loading the Settings Values 252
Resetting the Preferences Settings Values 255
Saving the Settings Values 256

Summary 257

file hAnDling 2chApter 10: 61

Understanding the Application Folders 262
Using the Documents and Library Folders 263
Storing Files in the Temporary Folder 266

Using Property Lists 267
Copying Bundled Resources 274
Summary 275

xii

COnTenTS

DAtABASe StOrAge uSing Sqlite3 27chApter 11: 9

Using SQLite3 280
Creating and Opening a Database 282

Examining the Database Created 283
Creating a Table 283
Inserting Records 284
Bind Variables 286
Retrieving Records 288

Bundling SQLite Databases with Your Application 291
Summary 292

ADvAnceD iOS 4 prOgrAmming techniquepArt iii: S

Simple AnimAtiOnS AnD viDeO plAyBAck 29chApter 12: 7

Using the nSTimer Class 297
Animating the Visual Change 304

Transforming Views 305
Translation 305
Rotation 308
Scaling 310

Animating a Series of images 310
Playing Video on the iPhone 313
Summary 317

AcceSSing Built-in ApplicAtiOnS chApter 13: 319

Sending e-Mails 319
Invoking Safari 325
Invoking the Phone 325
Invoking SMS 326

Accessing the Camera and the Photo Library 328
Accessing the Photo Library 328
Accessing the Camera 337

Summary 341

recOgnizing geStureS 34chApter 14: 3

Recognizing gestures 343
Tapping 344
Pinching 349
Rotation 352
Panning (or Dragging) 354

xiii

COnTenTS

Swiping 357
Long Press 363

Detecting Touches 367
Detecting Single Touch 367
Detecting Multi-Touches 372
Implementing the Pinch Gesture 375
Implementing the Drag Gesture 381

Summary 383

AcceSSing the AccelerOmeter 38chApter 15: 5

Using the Accelerometer 385
Visualizing the Accelerometer Data 388
Using the Shake APi to Detect Shakes 392

Performing an Action When the Device Is Shaken 398
Summary 399

netwOrk prOgrAmming techniquepArt iv: S

weB ServiceS 40chApter 16: 3

Basics of Consuming XML Web Services 403
Using SOAP 1 .1 405
Using SOAP 1 .2 406

Consuming a Web Service in Your iPhone Application 407
Parsing the XML Response 413
Summary 418

BluetOOth prOgrAmming 4chApter 17: 21

Using the game Kit Framework 421
Searching for Peer Devices 422
Sending and Receiving Data 429

implementing Voice Chatting 431
Summary 438

BOnjOur prOgrAmming 4chApter 18: 41

Creating the Application 441
Publishing a Service 443
Browsing for Services 446
Summary 452

Apple puSh nOtificAtiOn Service 45chApter 19: 5

generating a Certificate Request 456

xiv

COnTenTS

generating a Development Certificate 457
Creating an Application iD 461

Configuring an App ID for Push Notifications 462
Creating a Provisioning Profile 465
Provisioning a Device 467

Creating the iPhone Application 467
Creating the Push notification Provider 471
Summary 475

DiSplAying mApS 47chApter 20: 7

Displaying Maps and Monitoring Changes Using the Map Kit 477
getting Location Data 483

Displaying Location Using a Map 489
Getting Directional Information 493
Rotating the Map 498
Displaying Annotations 504
Reverse Geocoding 509
Displaying a Disclosure Button 513

Summary 515

BAckgrOunD ApplicAtiOnS chApter 21: 519

Understanding Background execution on the iPhone 519
Examining the Different Application States 520
Opting Out of Background Mode 523
Detecting Multi-Tasking Support 524
Tracking Locations in the Background 524
Making Your Location Apps More Energy Efficient 528

Local notification 530
Summary 537

AppenDicepArt v: S

teSting On An ActuAl Device 5AppenDix A: 41

Signing Up for the iPhone Developer Program 541
Obtaining the UDiD of Your Device 541
Logging in to the iPhone Provisioning Portal 542
generating a Certificate 544
Registering Your Devices 547
Creating an Application iD 548
Creating a Provisioning Profile 550

xv

COnTenTS

Understanding Application iD and the Wildcard 554
Preparing for App Store Submission 557
Summary 563

getting ArOunD in xcODe 56AppenDix B: 5

Launching Xcode 565
Project Types Supported 565
Customizing the Toolbar 568
Code Sense 569
Running the Application 570

Debugging Your Applications 571
Errors 571
Warnings 572
Setting Breakpoints 573
Using NSLog 574
Documentation 575

getting ArOunD in interfAce BuilDer 57AppenDix c: 7

.xib Window 577
Designing the View 578
inspector Window 579

Attributes Inspector Window 580
Connections Inspector Window 580
Size Inspector Window 581
Identity Inspector Window 581

Library 581
Outlets and Actions 582

Creating Outlets and Actions 582
Connecting Outlets and Actions 585

Method 1 585
Method 2 587

crASh cOurSe in OBjective-c 5AppenDix D: 91

Directives 591
Classes 592

@interface 592
@implementation 593
@class 593
Class Instantiation 595
Fields 595

xvi

COnTenTS

Access Privileges 596
Methods 597
Message Sending (Calling Methods) 598
Properties 600
Initializers 603

Memory Management 605
Reference Counting 605

alloc 606
new 606
retain 606
release 607
Convenience Method and Autorelease 608
Autorelease Pools 610
dealloc 611
Memory Management Tips 612

Protocols 612
Delegate 614

Selectors 615
Categories 616

AnSwerS tO exerciSeAppenDix e: S wrOx .cOm

Index 619

intrODuctiOn

within A ShOrt time SpAn Of Six mOnthS, Apple revised the iPhone OS twice. The first time was in
January 2010, when Apple announced a magical and revolutionary product: the iPad. Because the
iPad is a tablet computer that is based on the iPhone OS, this meant that there were instantly more
than 250,000 applications that could run on the iPad. Then, in April Apple announced (and subse-
quently shipped in June) the next major release of the iPhone OS — 4.0. Apple also took this opportu-
nity to rename this new release of the OS, calling it iOS. This signifies Apple’s grand plan to run the
iPhone OS on a wide variety of devices, not just on phones. Included with the new release of the OS is
a new SDK, the iPhone SDK 4, which enables developers to take advantage of the various features pro-
vided by the operating system — key of which is the capability to run background applications.

When I first started learning about iPhone and iPad development, I went through the same journey
that most developers go through: Write a Hello World application, play around with Interface Builder,
try to understand what the code is doing, and repeat that process. I was also overwhelmed by the
concept of a View Controller, and wondered why it was needed if I simply wanted to display a view.
My background in developing for Windows Mobile and Android did not help much, and I had to start
working with this concept from scratch.

This book was written to help jumpstart beginning iPhone and iPad developers. It covers the various
topics in such a manner that you will progressively learn without being overwhelmed by the details.
I adopt the philosophy that the best way to learn is by doing, hence the numerous hands-on “Try It
Out” sections in each chapter, which first show you how to build something and then explain “How
It Works.”

Although iPhone and iPad programming is a huge topic, my aim for this book is to get you started
with the fundamentals, help you understand the underlying architecture of the SDK, and appreci-
ate why things are done certain ways. It is beyond the scope of this book to cover everything under
the sun related to iPhone and iPad programming, but I am confident that after reading this book
(and doing the exercises), you will be well equipped to tackle your next iPhone or iPad programming
challenge.

whO thiS BOOk iS fOr

This book is for the beginning iPhone and iPad developer who wants to start developing applications
using the Apple iPhone SDK. To truly benefit from this book, you should have some background in
programming and at least be familiar with object-oriented programming concepts. If you are totally
new to the Objective-C language, you might want to jump straight to Appendix D, which provides
an overview of the language. Alternatively, you can use Appendix D as a quick reference while you
tackle the various chapters, checking out the syntax as you try the exercises. Depending on your
learning style, one of those approaches should work best for you.

xviii

intrODuctiOn

While most of the chapters are geared toward developing for the iPhone, the concepts apply to iPad
development as well. In cases where specifi c features are available only on the iPad, they will be
pointed out.

NOTE All the examples discussed in this book were written and tested using the
iPhone SDK 4.0. Even though Apple continues to call it the iPhone SDK, it can be
used to develop iPhone, iPod touch, and iPad applications. At the time of writ-
ing (July 2010), Apple continues to use the term “iPhone Simulator” to refer to
the simulator that enables you to simulate both an iPhone and iPad. While every
eff ort has been made to ensure that the screen shots are as current as possible,
the actual screen that you see may diff er when the iPhone SDK is revised.

whAt thiS BOOk cOverS

This book covers the fundamentals of iPhone and iPad programming using the iPhone SDK. It is
divided into 21 chapters and fi ve appendices.

Chapter 1: Getting Started with iOS 4 Programming covers the various tools found in the iPhone
SDK and explains their uses in iPhone and iPad development.

Chapter 2: Write Your First Hello World! Application gets you started with Xcode and Interface
Builder to build a Hello World application. The focus is on giving you some hands-on practice get-
ting a project up and running quickly. More details on the various project components are covered
in subsequent chapters.

Chapter 3: Views, Outlets, and Actions covers the fundamental concepts of iPhone and iPad pro-
gramming: outlets and actions. You learn how outlets and actions allow your code to interact with
the visual elements in Interface Builder and why they are an integral part of every iPhone and iPad
application. You will also learn about the various UI widgets known as views that make up the user
interface of your application.

Chapter 4: View Controllers discusses the various View Controllers available in the iPhone SDK.
You will learn how to develop different types of applications — View-based, Window-based, Split
View–based, as well as Tab Bar applications.

Chapter 5: Multi-Platform Support for the iPhone and iPad shows how you can port your iPhone
applications to the iPad platform. You will also learn how to create universal applications that will
run on both the iPhone and the iPad.

Chapter 6: Keyboard Inputs shows you how to deal with the virtual keyboard in your iPhone or iPad.
You learn how to hide the keyboard on demand and how to ensure that your views are not blocked
by the keyboard when it is displayed.

www.allitebooks.com

http://www.allitebooks.org

xix

intrODuctiOn

Chapter 7: Screen Rotations demonstrates how you can reorient your application’s UI when the device
is rotated. You learn about the various events that are fired when the device is rotated, and how to force
your application to be displayed in a certain orientation.

Chapter 8: Using the Table View explores one of the most powerful views in the iPhone SDK — the
Table view. The Table view is commonly used to display rows of data. In this chapter, you also learn
how to implement search capabilities in your Table view.

Chapter 9: Application Preferences discusses the use of application settings to persist application
preferences. Using application settings, you can access preferences related to your application through
the Settings application available on the iPhone and iPad.

Chapter 10: File Handling shows how you can persist your application data by saving the data to
files in your application’s sandbox directory. You also learn how to access the various folders avail-
able in your application sandbox.

Chapter 11: Database Storage Using SQLite3 covers the use of the embedded SQLite3 database library
to store your data.

Chapter 12: Simple Animations and Video Playback provides an overview of the various techniques
you can use to implement basic animations on the iPhone and iPad. You also learn about the various
affine transformations supported by the iPhone SDK. In addition, you learn how to playback video
on the iPhone and iPad.

Chapter 13: Accessing Built-In Applications describes the various ways you can access the iPhone
and iPad’s built-in applications, such as the Photo Library, Contacts, and others. You also learn how
you can invoke built-in applications such as Mail and Safari from within your applications.

Chapter 14: Recognizing Gestures provides an overview of the various gesture recognizers available
in the iPhone SDK to help your device interpret user’s input gestures.

Chapter 15: Accessing the Accelerometer shows how you can access the accelerometer that is included
with every iPhone and iPad. You will also learn how to detect shakes to your device.

Chapter 16: Web Services teaches you how to consume Web services from within your iPhone and iPad
application. You will learn the various ways to communicate with Web services — SOAP, HTTP GET,
and HTTP POST. You will also learn how to parse the XML result returned by the Web service.

Chapter 17: Bluetooth Programming explores the use of the Game Kit framework for Bluetooth pro-
gramming. You will learn how to enable two devices to communicate using a Bluetooth connection,
and how to implement voice chatting over a Bluetooth connection.

Chapter 18: Bonjour Programming shows how you can publish services on the network using the
Bonjour protocol.

Chapter 19: Apple Push Notification Services explains how you can implement applications that use
push notifications. The APNs allows your applications to continuously receive status updates from a
service provider even though the application may not be running.

xx

intrODuctiOn

Chapter 20: Displaying Maps demonstrates how to build a location-based services application using
the Map Kit framework. You will also learn how to obtain geographical location data and use it to
display a map.

Chapter 21: Background Applications shows how to build applications that can continue to run in
the background when the user switches to another application. You will also learn how to use the
new local notifications feature to schedule notifications that will fire at specific time intervals.

Appendix A: Testing on an Actual Device outlines the steps you need to take to test your application
on a real device.

Appendix B: Getting Around in Xcode provides a quick run-through of the many features in Xcode.

Appendix C: Getting Around in Interface Builder provides an overview of the many features of
Interface Builder.

Appendix D: Crash Course in Objective-C offers a brief tutorial in Objective-C. Readers who are
new to this language should read this chapter before getting started.

Appendix E: Answers to Exercises contains the solutions to the end-of-chapter exercises found in
every chapter except Chapter 1. Please note, Appendix E is located online at Wrox.com.

hOw thiS BOOk iS StructureD

This book breaks down the task of learning iPhone and iPad programming into several smaller
chunks, enabling you to digest each foundational topic before delving into a more advanced topic. In
addition, some chapters cover topics already discussed in a previous chapter. That’s because there is
usually more than one way of doing things in Xcode and Interface Builder, so this approach enables
you to learn the different techniques available for developing iPhone and iPad applications.

If you are a total beginner to iPhone programming, start with Chapters 1 and 2. After you are
comfortable with the basics, head to the appendices to read more about the tools and language
you are using. Once you are ready, you can continue with Chapter 3 and gradually move into more
advanced topics.

A useful feature of this book is that all the code samples in each chapter are independent of those
discussed in previous chapters. That gives you the flexibility to dive right into the topics that interest
you and start working on the Try It Out projects.

whAt yOu neeD tO uSe thiS BOOk

Most of the examples in this book run on the iPhone Simulator (which is included with the iPhone
SDK). For exercises that access the hardware (such as the accelerometer), you need a real iPhone or
iPad. In general, to get the most out of this book, having a real iPhone or iPad device is not necessary
(although it is definitely required for testing if you plan to deploy your application on the App Store).

xxi

intrODuctiOn

cOnventiOnS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

These Are exercises or examples for You to Followtry it Out

The Try It Out sections, which appear once or more per chapter, provide hands-on exercises to work
through as you follow the text in the book.

1 . They usually consist of a set of numbered steps.

2 . Follow the steps with your copy of the project fi les.

How It Works

After each Try It Out section, these sections explain the code you’ve typed in detail.

As for other conventions in the text:

New terms and important words are ➤➤ highlighted in italics when fi rst introduced.

Keyboard combinations are treated like this: Control-R.➤➤

Filenames, URLs, and code within the text are treated like so: ➤➤ persistence.properties.

Code is presented in two different ways:➤➤

Weuseamonofonttypewithnohighlightingformostcodeexamples.

We use bold to emphasize code that is of particular importance in the present
context.

WARNING Boxes like this one hold important, not-to-be forgotten information
that is directly relevant to the surrounding text.

NOTE Notes, tips, hints, tricks, and asides to the current discussion look like this.

COMMON MISTAKES This feature, Common Mistakes, helps you avoid the
obstacles that many new practitioners fi nd themselves negotiating.

xxii

intrODuctiOn

SOurce cODe AnD AnSwerS AppenDix

As you work through the examples in this book, you may choose either to type in all the code
manually or to use the source code fi les that accompany the book. All the source code used in this
book is available for download at www.wrox.com. When at the site, simply locate the book’s title (use
the Search box or one of the title lists) and click the Download Code link on the book’s detail page
to obtain all the source code for the book. Code that is included on the website is highlighted by the
following icon and/or CodeNote, as shown following the icon:

Listings include the fi lename in the title. If it is just a code snippet, you’ll fi nd the fi lename in a
CodeNote such as this:

Code zip fi lename available for download at wrox.com

After you download the code, just decompress it with your favorite compression tool. Alternatively,
go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

Please note, Appendix E, Answers to Exercises, is available as a PDF for download.

NOTE Because many books have similar titles, you may fi nd it easiest to search
by ISBN; this book’s ISBN is 978-0-470-91802-9.

errAtA

We make every effort to ensure that there are no errors in the text or the code. However, no one is
perfect and mistakes do occur. If you fi nd an error in one of our books, such as a spelling mistake
or a faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration and at the same time help us provide even higher-quality
information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page,
you can view all errata that has been submitted for this book and posted by Wrox editors. A com-
plete book list, including links to each book’s errata, is also available at www.wrox.com/misc-pages/
booklist.shtml.

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml
http://www.wrox.com/misc-pages/booklist.shtml

xxiii

intrODuctiOn

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the informa-
tion and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent
editions of the book.

p2p .wrOx .cOm

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1 . Go to p2p.wrox.com and click the Register link.

 2 . Read the terms of use and click Agree.

 3 . Complete the required information to join as well as any optional information you want to
provide and click Submit.

 4 . You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

After you join, you can post new messages and respond to messages that other users post. You can
read messages at any time on the Web. If you want to have new messages from a particular forum
e-mailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as for many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://www.wrox.com/contact/techsupport.shtml

PART I
getting Started

chApter ⊲ 1: Getting Started with iOS 4 Programming

chApter 2: ⊲ Write Your First Hello World! Application

chApter 3: ⊲ Views, Outlets, and Actions

chApter 4: ⊲ View Controllers

chApter 5: ⊲ Multi-Platform Support for the iPhone and iPad

chApter 6: ⊲ Keyboard Inputs

chApter 7: ⊲ Screen Rotations

getting Started with iOS 4
Programming

whAt yOu will leArn in thiS chApter

How to obtain the iPhone SDK➤➤

Components included in the iPhone SDK➤➤

Features of the development tools — Xcode, Interface Builder, ➤➤

iPhone Simulator

Capabilities of the iPhone Simulator➤➤

Architecture of the iPhone OS➤➤

Characteristics of the iPhone➤➤

Welcome to the world of iPhone programming! That you are now holding this book shows
that you are fascinated with the idea of developing your own iPhone (and iPad) applications
and want to join the ranks of the tens of thousands of developers whose applications are
already deployed in the App Store.

As the Chinese adage says, “To accomplish your mission, fi rst sharpen your tools.” Successful
programming requires that you fi rst know your tools well. Indeed, this couldn’t be more true
for iPhone programming — you need to know quite a few tools before you can even get started.
Hence, this chapter describes the various relevant tools and information you need to jump on
the iPhone development bandwagon.

Without further ado, it’s time to get down to work.

1

4 ❘ chApter 1 GettinG Started with iOS 4 PrOGramminG

OBtAining the iphOne SDk

To develop for the iPhone, you fi rst need to sign up as a registered iPhone developer at http://developer
.apple.com/iphone/program/start/register/. Registration is free and provides you with access to the
iPhone SDK (software development kit) and other resources that are useful for getting started.

NOTE At the time of writing, iOS (the iPhone OS) 4 is supported only on the iPhone
and the iPod touch. The iPad still runs on the older iPhone OS 3.2 version. However,
the iPhone SDK 4.0 supports both iPhone and iPad development.

Because the iPad also uses the iPhone OS, throughout this book you will often
see the term “iPhone” used.

After signing up, you can download the iPhone SDK (version 4; see Figure 1-1).

figure 1 -1

Before you install the iPhone SDK, make sure you satisfy the following system requirements:

Only Intel Macs are supported, so if you have another processor type (such as the older G4 ➤➤

or G5 Macs), you’re out of luck.

Your system is updated with the latest Mac OS X release.➤➤

www.allitebooks.com

http://developer.apple.com/iphone/program/start/register/
http://developer.apple.com/iphone/program/start/register/
http://www.allitebooks.org

Obtaining the iPhone SDK ❘ 5

An actual iPhone/iPad is highly recommended, although not strictly necessary. To test your appli-
cation, you can use the included iPhone Simulator (which enables you to simulate an iPhone or an
iPad). However, to test certain hardware features like GPS, the accelerometer, and such, you need to
use a real device.

When the SDK is downloaded, proceed with installing it (see Figure 1-2). Accept a few licensing
agreements and then select the destination folder in which to install the SDK.

figure 1 -2

If you select the default settings during the installation phase, the various tools will be installed in
the /Developer/Applications folder (see Figure 1-3).

figure 1 -3

6 ❘ chApter 1 GettinG Started with iOS 4 PrOGramminG

cOmpOnentS Of the iphOne SDk

The iPhone SDK includes a suite of development tools to help you create applications for your iPhone,
iPod touch, and iPad. It includes the following:

Xcode➤➤ — Integrated development environment (IDE) that enables you to manage, edit, and
debug your projects

Dashcode➤➤ — Integrated development environment (IDE) that enables you to develop web-
based iPhone and iPad applications and Dashboard Widgets. Dashcode is beyond the scope
of this book.

iPhone Simulator➤➤ — Provides a software simulator to simulate an iPhone or an iPad on your Mac.

Interface Builder➤➤ — Visual editor for designing user interfaces for your iPhone and iPad
applications

Instruments➤➤ — Analysis tool to help you both optimize your application and monitor for
memory leaks in real time

The following sections discuss each tool (except Dashcode) in more detail.

xcode
To launch Xcode, double-click the Xcode icon located in the /Developer/Applications folder (refer to
Figure 1-3). Alternatively, go the quicker route and use Spotlight: Simply type Xcode into the search box
and Xcode should be in the Top Hit position.

Figure 1-4 shows the Xcode Welcome screen.

figure 1 -4

Components of the iPhone SDK ❘ 7

Using Xcode, you can develop different types of iPhone, iPad, and Mac OS X applications using the
various project templates shown in Figure 1-5.

figure 1 -5

Each template gives you the option to select the platform you are targeting — iPhone or iPad.

NOTE Note that not every application template is available for iPhone and iPad.
For example, Navigation-based application templates do not support the iPad,
and Split-View application templates do not support the iPhone.

The IDE in Xcode provides many tools and features that make your development life much easier.
One such feature is Code Sense (see Figure 1-6), which displays a popup list showing the available
classes and members, such as methods, properties, and so on.

NOTE For a more comprehensive description of some of the most commonly
used features in Xcode, refer to Appendix B.

8 ❘ chApter 1 GettinG Started with iOS 4 PrOGramminG

figure 1 -6

iphone Simulator
The iPhone Simulator, shown in Figure 1-7, is a very useful tool that you can use to test your appli-
cation without using your actual iPhone/iPod touch/iPad. The iPhone Simulator is located in the
/Developer/Platforms/iPhoneSimulator.platform/Developer/Applications folder. Most of the
time, you don’t need to launch the iPhone Simulator directly — running (or debugging) your appli-
cation in Xcode automatically brings up the iPhone Simulator. Xcode installs the application on the
iPhone Simulator automatically.

the iphOne SimulAtOr iS nOt An emulAtOr

To understand the difference between a simulator and an emulator, keep in mind
that a simulator tries to mimic the behavior of a real device. In the case of the iPhone
Simulator, it simulates the real behavior of an actual iPhone/iPad device. However, the
Simulator itself uses the various libraries installed on the Mac (such as QuickTime) to
perform its rendering so that the effect looks the same as an actual iPhone. In addi-
tion, applications tested on the Simulator are compiled into x86 code, which is the
byte-code understood by the Simulator. A real iPhone device, on the other hand, uses
ARM-based code.

In contrast, an emulator emulates the working of a real device. Applications tested
on an emulator are compiled into the actual byte-code used by the real device. The
emulator executes the application by translating the byte-code into a form that can
be executed by the host computer running the emulator.

A good way to understand the subtle difference between simulation and emulation
is this: Imagine you are trying to convince a child that playing with knives is danger-
ous. To simulate this, you pretend to cut yourself with a knife and groan in pain. To
emulate this, you actually cut yourself.

Components of the iPhone SDK ❘ 9

figure 1 -7

The iPhone Simulator can simulate different versions of the iPhone OS (see Figure 1-8). To support
older versions of the SDK, you need to install the previous versions of the SDKs). This capability is
useful if you need to support older versions of the platform, as well as test and debug errors reported
in the application on specific versions of the OS.

figure 1 -8

In addition, the iPhone Simulator can simulate different devices — iPad, iPhone (3G and 3GS), and
iPhone 4 (see Figure 1-9).

10 ❘ chApter 1 GettinG Started with iOS 4 PrOGramminG

figure 1 -9

Figure 1-10 shows the iPhone Simulator simulating the older iPhone 3G/3GS, while Figure 1-11
shows it simulating the iPad.

figure 1 -10 figure 1 -11

Features of the iPhone Simulator
The iPhone Simulator simulates various features of a real iPhone, iPod touch, or iPad device. Features
you can test on the iPhone Simulator include the following:

Screen rotation — left, top, and right➤➤

Components of the iPhone SDK ❘ 11

Support for gestures:➤➤

Tap➤➤

Touch and Hold➤➤

Double-tap➤➤

Swipe➤➤

Flick➤➤

Drag➤➤

Pinch➤➤

Low-memory warning simulations➤➤

However, the iPhone Simulator, being a software simulator for the real device, does have its limita-
tions. The following features are not available on the iPhone Simulator:

Making phone calls➤➤

Accessing the accelerometer➤➤

Sending and receiving SMS messages➤➤

Installing applications from the App Store➤➤

Camera➤➤

Microphone➤➤

Several features of OpenGL ES➤➤

NOTE In the previous version of the SDK (3.1.3), the iPhone Simulator supports
location data by always returning a fi xed coordinate, such as Latitude 37.3317
North and Longitude 122.0307 West. In the newer release of the SDK (3.2 and
later), the iPhone Simulator uses the location data of the Mac it is currently run-
ning on to return the current location.

Note also that the speed of the iPhone Simulator is more tightly coupled to the performance of
your Mac than the actual device. Therefore, it is important that you test your application on a real
device, rather than rely exclusively on the iPhone Simulator for testing.

Despite the iPhone Simulator’s limitations, it is defi nitely a useful tool for testing your applications.
That said, testing your application on a real device is imperative before you deploy it on the App Store.

Uninstalling Applications from the iPhone Simulator
The user domain of the iPhone OS fi le system for the iPhone Simulator is stored in the ~/Library/
ApplicationSupport/iPhoneSimulator/ folder.

12 ❘ chApter 1 GettinG Started with iOS 4 PrOGramminG

NOTE The ~/Library/ApplicationSupport/iPhoneSimulator/ folder is also
known as the <iPhoneUserDomain>.

All third-party applications are stored in the <iPhoneUserDomain>/<version_no>/Applications/
folder. When an application is deployed onto the iPhone Simulator, an icon is created on the Home
screen (shown on the left in Figure 1-9) and a fi le and a folder are created within the Applications
folder (shown on the right in Figure 1-12).

figure 1 -12

To uninstall (delete) an application, execute the following steps:

 1 . Click and hold the icon of the application on the
Home screen until all the icons start wriggling.
Observe that all the icons now have an X button dis-
played on their top-left corner.

 2 . Click the X button (see Figure 1-13) next to the icon
of the application you want to uninstall.

 3 . An alert window appears asking if you are sure you
want to delete the icon. Click Delete to confi rm the
deletion.

WARNING When an application is uninstalled, the corresponding fi le and folder
in the Applications folder are deleted automatically.

figure 1 -13

Components of the iPhone SDK ❘ 13

The easiest way to reset the iPhone Simulator to its original state is to select iPhone Simulator ➪ Reset
Content and Settings.

interface Builder
Interface Builder is a visual tool that enables you to design the user interfaces for your iPhone/iPad
applications. Using Interface Builder, you drag and drop views onto windows and then connect the
various views with outlets and actions so that they can programmatically interact with your code.

NOTE Outlets and actions are discussed in more detail in Chapter 3, and
Appendix C discusses Interface Builder in more detail.

Figure 1-14 shows the various windows in Interface Builder.

figure 1 -14

14 ❘ chApter 1 GettinG Started with iOS 4 PrOGramminG

instruments
The Instruments application (see Figure 1-15) enables you to dynamically trace and profi le the per-
formance of your Mac OS X, iPhone, and iPad applications.

figure 1 -15

Using Instruments, you can do all of the following:

Stress test your applications➤➤

Monitor your applications for memory leaks➤➤

Gain a deep understanding of the executing behavior of your applications➤➤

Track diffi cult-to-reproduce problems in your applications➤➤

NOTE Covering the Instruments application is beyond the scope of this book.
For more information, refer to Apple’s documentation at: http://developer
.apple.com/mac/library/documentation/DeveloperTools/Conceptual/

InstrumentsUserGuide/Introduction/Introduction.html

Architecture Of the iphOne OS

Although this book doesn’t explore the innards of the iPhone OS, understanding some of its important
characteristics is useful. Figure 1-16 shows the different abstraction layers that make up the Mac OS X
and the iPhone OS (which is used by the iPhone, iPod touch, and iPad).

www.allitebooks.com

http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html
http://developer.apple.com/mac/library/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html
http://www.allitebooks.org

Architecture of the iPhone OS ❘ 15

NOTE The iPhone OS is architecturally very similar to the Mac OS X except that
the topmost layer is Cocoa Touch for iPhone instead of the Cocoa Framework.

The bottom layer is the Core OS, which is the
foundation of the operating system. It is in charge
of memory management, the fi le system, network-
ing, and other OS tasks, and it interacts directly
with the hardware. The Core OS layer consists of
components such as the following:

OS X Kernel➤➤

Mach 3.0➤➤

BSD➤➤

Sockets➤➤

Security➤➤

Power Management➤➤

Keychain➤➤

Certifi cates➤➤

File System➤➤

Bonjour➤➤

The Core Services layer provides an abstraction over the services provided in the Core OS layer. It
provides fundamental access to iPhone OS services and consists of the following components:

Collections➤➤

Address Book➤➤

Networking➤➤

File Access➤➤

SQLite➤➤

Core Location➤➤

Net Services➤➤

Threading➤➤

Preferences➤➤

URL Utilities➤➤

figure 1 -16

16 ❘ chApter 1 GettinG Started with iOS 4 PrOGramminG

The Media layer provides multimedia services that you can use in your iPhone and iPad applica-
tions. It consists of the following components:

Core Audio➤➤

OpenGL➤➤

Audio Mixing➤➤

Audio Recording➤➤

Video Playback➤➤

JPG, PNG, TIFF➤➤

PDF➤➤

Quartz➤➤

Core Animation➤➤

OpenGL ES➤➤

The Cocoa Touch layer provides an abstraction layer to expose the various libraries for program-
ming the iPhone and iPad, such as the following:

Multi-Touch events➤➤

Multi-Touch controls➤➤

Accelerometer➤➤

View Hierarchy➤➤

Localization➤➤

Alerts➤➤

Web Views➤➤

People Picker➤➤

Image Picker➤➤

Controllers➤➤

In iPhone programming, all the functionalities in each layer are exposed through various frame-
works which you will use in your project. Subsequent chapters in this book will show you how to
use these frameworks in your projects.

NOTE A framework is a software library that provides specifi c functionalities. Refer
to Apple’s documentation at http://developer.apple.com/iphone/library/
documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/

iPhoneOSFrameworks/iPhoneOSFrameworks.html for a list of frameworks
included in the SDK.

http://developer.apple.com/iphone/library/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSFrameworks/iPhoneOSFrameworks.html
http://developer.apple.com/iphone/library/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSFrameworks/iPhoneOSFrameworks.html
http://developer.apple.com/iphone/library/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/iPhoneOSFrameworks/iPhoneOSFrameworks.html

Some Useful information before You get Started ❘ 17

SOme uSeful infOrmAtiOn BefOre yOu get StArteD

You now have a good idea of the tools involved in iPhone and iPad application development. Before
you go ahead and take the plunge, the following sections discuss some useful information that can
make your journey more pleasant.

versions of the iphone OS
At the time of writing, the iOS (iPhone OS) is in its fourth revision — that is, version 4.0. Its major
versions are as follows:

1.0➤➤ — Initial release of iPhone

1.1➤➤ — Additional features and bug fi xes for 1.0

2.0➤➤ — Released with iPhone 3G; comes with App Store.

2.1➤➤ — Additional features and bug fi xes for 2.0

2.2➤➤ — Additional features and bug fi xes for 2.1

3.0➤➤ — Third major release of the iPhone OS

3.1➤➤ — Additional features and bug fi xes for 3.0

3.2➤➤ — This version release is for the iPad only; see the sidebar for what is new in iPhone OS 3.2.

4.0➤➤ — Fourth major release of the iPhone OS. Renamed as iOS. This version is designed for
the new iPhone 4 and it also supports older devices, such as the iPod touch and iPhones.

For a detailed description of the features in each release, check out http://en.wikipedia.org/wiki/
IPhone_OS_version_history.

whAt’S new in iphOne OS 3 .2 AnD iOS 4

In January 2010, Apple announced a new device based on the existing iPhone OS — the
iPad. The iPad is a tablet computer that resembles an iPod touch, except that it has
a much bigger screen. The iPad comes in six different editions, three with Wi-Fi and
another three with Wi-Fi and 3G networks. The iPad was released in three storage con-
fi gurations: 16GB, 32GB, and 64GB.

Some of the important new features of the iPhone OS 3.2 SDK include the following:

Support for existing iPhone applications by running them either in their original ➤➤

screen size or in pixel-doubled mode

New UI features such as popovers, split views, and custom input views➤➤

Support for external displays ➤➤

Support for gestures detection using gesture recognizers for iPad applications➤➤

continues

http://en.wikipedia.org/wiki/IPhone_OS_version_history
http://en.wikipedia.org/wiki/IPhone_OS_version_history

18 ❘ chApter 1 GettinG Started with iOS 4 PrOGramminG

Improved text support to provide applications with more sophisticated text-➤➤

handling capabilities

New fi le and document support to facilitate building document-centric applications➤➤

In June 2010, Apple offi cially released the latest version of the iPhone OS — version
4.0 (with an updated 4.0.1 in July). It also renamed it iOS, signifying Apple’s intention
to use the OS not just for phones, but for other devices such as the iPad. iOS 4 comes
with more than 100 new features, but here are some notable features supported by the
iPhone SDK 4.0:

Support for multitasking; third-party applications can now run in the background➤➤

Improved support for sending SMS and e-mail from within your applications➤➤

Support of the new gesture recognizers for iPhone applications➤➤

testing on real Devices
One of the most common complaints about developing applications for the iPhone and iPad is how
diffi cult Apple makes it to test a new application on an actual device. Nonetheless, for security rea-
sons, Apple requires all applications to be signed with a valid certifi cate; and for testing purposes, a
developer certifi cate is required.

To test your applications on a device, you must sign up for the iPhone Developer Program and request
that a developer certifi cate be installed onto your device. Appendix E outlines the steps in detail.

Screen resolutions
The iPhone 4 is a beautiful device with a high-resolution screen. At 3.5 inches (diagonally), the
iPhone screen supports multi-touch operation and allows a pixel resolution of 960 × 640 at 326 ppi
(see Figure 1-17). When designing your application, note that because of the status bar, the actual
resolution is generally limited to 920 × 640 pixels. Of course, you can turn off the status bar pro-
grammatically to gain access to the full 960 × 640 resolution.

Also, be mindful that users may rotate the device to display your application in landscape mode.
You need to make provisions to your user interface so that the applications can still work properly in
landscape mode.

NOTE Chapter 7 discusses how to handle screen rotations.

whAt’S new in iphOne OS 3 .2 AnD iOS 4 (continued)

Some Useful information before You get Started ❘ 19

figure 1 -17

The older iPhones (iPhone 3G/3GS) and the iPod touch have lower resolutions compared to the
iPhone 4. They have a resolution of 480 × 320 pixels, which is exactly a quarter of the resolution of
the iPhone 4.

When programming for the iPhones, it is important to note the difference between points and pixels.
For example, the following statement specifies a frame that starts from the point (20,10) with a width
of 280 points and a height of 50 points:

 CGRect frame = CGRectMake(20, 10, 280, 50);

On the older iPhones, a point corresponds to a pixel. Thus, the preceding statement translates directly
to the pixel (20,10), with a width of 280 pixels and a height of 50 pixels. However, if the statement is
executed within the iPhone 4, a point translates to two pixels. Thus, the preceding statement translates
into the pixel (40,20), with a width of 560 pixels and a height of 100 pixels. The translation is per-
formed automatically by the OS, which is very useful because it allows older applications to run and
scale correctly without modifications on the iPhone 4.

The iPad has a pixel resolution of 1024 × 768 at 132 ppi.

Table 1-1 summarizes the screen resolutions for the various platforms.

20 ❘ chApter 1 GettinG Started with iOS 4 PrOGramminG

tABle 1-1: Platform Resolutions

plAtfOrm reSOlutiOn (pixelS)

viSiBle reAl eStAte

withOut the StAtuS

BAr (pixelS) —

lAnDScApe mODe

viSiBle reAl eStAte

withOut the StAtuS

BAr (pixelS) —

pOrtrAit mODe

iPhone 4 960 × 640 960 × 600 920 × 640

iPhone 3G/3GS,
iPod touch

480 × 320 480 × 300 460 × 320

iPad 1024 × 768 1024 × 748 1004 × 768

SummAry

This chapter offered a quick tour of the available tools used for iPhone and iPad application develop-
ment. You had a look at the iPhone Simulator, which you will use to test your applications without
using a real device. The Simulator is a very powerful tool that you will be using very often in your
iPhone development journey.

You also learned some of the characteristics of the iPhone and iPad, such as screen resolutions and
the difference between iPhone OS 3.2 and 4.0. In the next chapter, you will develop your first iPhone
application, and soon be on your way to iPhone nirvana!

Summary ❘ 21

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

Obtaining the
iphone SDk

Register as an iPhone developer at http://developer.apple.com first and
download the free SDK .

iphone Simulator Most of the testing can be done on the iPhone Simulator . However, it is strongly
recommended that you have a real device for actual testing .

limitations of the
iphone Simulator

Access to hardware is generally not supported by the Simulator . For example,
the camera, accelerometer, voice recording, and so on are not supported .

frameworks in
the iphone SDk

The iPhone SDK provides several frameworks that perform specific functionalities
on the iPhone . You program your iPhone applications using all these frameworks .

http://developer.apple.com

Write Your First Hello World!
Application

whAt yOu will leArn in thiS chApter

How to create a new iPhone project➤➤

Building your fi rst iPhone application using Xcode➤➤

Designing the user interface (UI) of your iPhone application with ➤➤

Interface Builder

How to add an icon to your iPhone application➤➤

Now that you have installed the SDK, you are ready to start developing for the iPhone!
Programming books customarily start by demonstrating how to develop a “Hello World!”
application. This approach enables you to use the various tools quickly without getting bogged
down with the details. It also provides you with instant gratifi cation: You see for yourself that
things really work, which can be a morale booster that inspires you to learn more.

getting StArteD with xcODe

Power up Xcode and you should see the Welcome screen, shown in Figure 2-1.

NOTE The easiest way to start Xcode is to type xcode in Spotlight and then
press the Enter key to launch it.

2

24 ❘ chApter 2 write YOur FirSt hellO wOrld! aPPlicatiOn

figure 2-1

To create a new iPhone project, choose File ➪ New Project. Figure 2-2 shows the different types of
projects you can create using Xcode. The left panel shows the two primary categories — iPhone OS
and Mac OS X. The iPhone uses the iPhone OS (which has since been renamed as iOS), so click the
Application item listed under iPhone OS to view the different templates available for developing your
iPhone application.

Although there are quite a few types of iPhone applications you can create, for this chapter select the
View-based Application template; and for the product, select iPhone (to target the iPad, select the
iPad as the product). Click the Choose… button.

NOTE Subsequent chapters show you how to develop some of the other types
of iPhone applications, such as Tab Bar applications and Split View-based
applications.

Name the project HelloWorld and click Save. Xcode proceeds to create the project for the template you
have selected. Figure 2-3 shows the various fi les and folders automatically created for your project.

The left panel of Xcode shows the groups in the project. You can expand each group or folder to
reveal the fi les contained in it. The right panel of Xcode shows the fi les contained within the group
or folder you have selected from the left panel. To edit a particular fi le, select it from the list, and the
editor at the bottom of the right panel opens the fi le for editing. If you want a separate window for
editing, simply double-click the fi le to edit it in a new window.

www.allitebooks.com

http://www.allitebooks.org

getting Started with Xcode ❘ 25

figure 2-2

figure 2-3

26 ❘ chApter 2 write YOur FirSt hellO wOrld! aPPlicatiOn

using interface Builder
At this point, the project has no UI. To prove this, simply press Command-R (or select Run ➪ Run),
and your application is deployed to the included iPhone 4 Simulator. Figure 2-4 shows the blank
screen displayed on the iPhone Simulator. It’s good to see this now, because as you go through the
chapter you will see changes occur based on your actions.

figure 2-4

NOTE If you are not seeing the Simulator as shown in Figure 2-4, that’s because
it is still simulating the older iPhone. To change to the iPhone 4 Simulator, select
Hardware ➪ Device ➪ iPhone 4.

Obviously, a blank screen is not very useful. Therefore, it’s time to try adding some views to your
application’s UI. In the list of fi les in your project, you’ll notice two fi les with the .xib extension —
MainWindow.xib and HelloWorldViewController.xib. Files with .xib extensions are basically XML
fi les containing the UI defi nitions of an application. You can edit .xib fi les by either modifying their
XML content or, more easily (and more sanely), editing them using Interface Builder.

Interface Builder, included as part of the iPhone SDK, enables you to build the UI of iPhone (and Mac)
applications by using drag and drop.

getting Started with Xcode ❘ 27

Double-click the HelloWorldViewController.xib fi le to launch Interface Builder. Figure 2-5 shows
Interface Builder displaying the content of HelloWorldViewController.xib, which contains three
items: File’s Owner, First Responder, and View. As you can see, the Library window shows the vari-
ous views that you can add to the UI of your iPhone application. The View window shows the graphi-
cal layout of your UI. You will see the use of the other windows shortly.

NOTE Refer to Appendix C for a crash course on Interface Builder if you are not
familiar with it.

figure 2-5

Scroll down to the Label view in the Library window and drag and drop a Label view onto the View
window (see Figure 2-6).

28 ❘ chApter 2 write YOur FirSt hellO wOrld! aPPlicatiOn

figure 2-6

After the Label view is added, select it and choose Tools ➪ Attributes Inspector. Enter Hello World!
in the Text field (see Figure 2-7). Then, next to Layout, click the center Alignment type.

figure 2-7

With the Label view still selected, press Command-T to invoke the Fonts window (see Figure 2-8).
Set the font size to 36.

getting Started with Xcode ❘ 29

figure 2-8

Next, from the Library window, drag and drop a Text Field view to the View window, followed by
a Round Rect Button view. Modify the attribute of the Round Rect Button view by entering Click
Me! in the Title field (see Figure 2-9).

figure 2-9

30 ❘ chApter 2 write YOur FirSt hellO wOrld! aPPlicatiOn

NOTE Rather than specify the Text or Title property of a view to make the text
display in the view (for example, the Label and the Round Rect Button views),
you can simply double-click the view itself and type the text directly. After you’ve
done this, you can rearrange the views and resize them to suit your needs.
Interface Builder provides you with alignment guidelines to help you arrange
your controls in a visually pleasing layout.

Save the HelloWorldViewController.xib fi le by pressing Command-S. Then, return to Xcode and
run the application again by pressing Command-R. The iPhone 4 Simulator now displays the modi-
fi ed UI (see Figure 2-10).

figure 2-10

NOTE Always remember to save all your changes in Interface Builder before
you run the application in Xcode.

getting Started with Xcode ❘ 31

Click the Text Field view and watch the keyboard automatically appear (see Figure 2-11).

Click the Home button on the iPhone 4 Simulator, and you will see that your application has been
installed on the Simulator. To go back to the application, simply click the HelloWorld icon (see
Figure 2-12).

figure 2-11 figure 2-12

NOTE By default, starting with iOS 4, all applications built using the iPhone 4.0
SDK support multi-tasking. Hence, when you press the Home button on your
iPhone, your application is not terminated; it is sent to the background and sus-
pended. Tapping an application icon resumes the application. Chapter 21 con-
tains more details about background execution of your iPhone applications.

writing Some code
By now you should be comfortable enough with Xcode and Interface Builder to write some code.
This section will give you a taste of programming the iPhone.

32 ❘ chApter 2 write YOur FirSt hellO wOrld! aPPlicatiOn

In the HelloWorldViewController.h file, add a declaration for the btnClicked: action:

#import<UIKit/UIKit.h>

@interfaceHelloWorldViewController:UIViewController{

}

-(IBAction) btnClicked:(id) sender;

@end

The bold statement creates an action (commonly known as an event handler) named btnClicked:.
With the action declared, save the file and return to Interface Builder.

Earlier in this chapter, you saw a window labeled HelloWorldViewController.xib. Within this
window are three components: File’s Owner, First Responder, and View. Control-click the Round
Rect Button view in the View window and drag it to the File’s Owner item in the
HelloWorldViewController.xib window (see Figure 2-13). A small popup containing the
btnClicked: action appears. Select the btnClicked: action. Basically, what you are doing here is
linking the RoundRectButton view with the action (btnClicked:) so that when the user clicks
the button, the action is invoked.

figure 2-13

getting Started with Xcode ❘ 33

In the HelloWorldViewController.m file, add the code that provides the implementation for the
btnClicked: action:

#import“HelloWorldViewController.h”

@implementationHelloWorldViewController

-(IBAction) btnClicked:(id) sender {
 //--display an alert view--
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Hello World!”
 message:@”iPhone, here I come!”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

The preceding code displays an alert containing the sentence “iPhone, here I come!”

That’s it! Go back to Xcode and run the application again. This time, when you click the Button
view, an Alert view displays (see Figure 2-14).

figure 2-14

34 ❘ chApter 2 write YOur FirSt hellO wOrld! aPPlicatiOn

cuStOmizing yOur ApplicAtiOn icOn

As you saw earlier, the application installed on your iPhone Simulator uses a default white image as
an icon. It is possible, however, to customize this icon. When designing icons for your iPhone and
iPad applications, bear the following in mind:

Design your icon to be 57 ➤➤ × 57 pixels (for iPhone), 114 × 114 pixels (for iPhone high-resolution),
or 72 × 72 pixels (for iPad). Larger size is acceptable because the iOS automatically sizes it for
you. For distribution through the App Store, you also need to prepare a 512 × 512 pixel image.

Use square corners for your icon image because iPhone automatically rounds them. It also ➤➤

adds a glossy surface (you can turn off this feature, though).

NOTE Apple has published a technical Q&A on the various icon fi les that
you can use in your iPhone application. This document is located at http://
developer.apple.com/iphone/library/qa/qa2010/qa1686.html.

hOw tO turn Off the glOSSy SurfAce On yOur icOn

To turn off the glossy effect applied on your icon, you need to add the
UIPrerenderedIcon key to the HelloWorld-Info.plist fi le in your Xcode proj-
ect and then set it to YES. For more details on the various keys that you can set
in your HelloWorld-Info.plist fi le, refer to Apple’s documentation at: http://
developer.apple.com/iphone/library/documentation/General/Reference/

InfoPlistKeyReference/Articles/iPhoneOSKeys.html

The following Try It Out demonstrates how to add an icon to your application so that the iPhone
will use it instead of the default white image.

Adding an icon to the Applicationtry it Out

1 . To add an icon to your application, drag and drop an image onto the Resources folder of your proj-
ect (see Figure 2-15). You will be asked if you want to make a copy of the image you are dropping.
Check this option so that a copy of the image will be stored in your project folder.

2 . Select the HelloWorld-Info.plist item (also located under the Resources folder; the
HelloWorld-Info.plist fi le is commonly referred to as the info.plist fi le). Select the Icon fi le
item and set its value to the name of the icon, app-icon.png (see Figure 2-16). This specifi es the
name of the image to be used as the application icon.

www.allitebooks.com

http://developer.apple.com/iphone/library/qa/qa2010/qa1686.html
http://developer.apple.com/iphone/library/qa/qa2010/qa1686.html
http://developer.apple.com/iphone/library/documentation/General/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html
http://developer.apple.com/iphone/library/documentation/General/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html
http://www.allitebooks.org

Customizing Your Application icon ❘ 35

figure 2-15

figure 2-16

36 ❘ chApter 2 write YOur FirSt hellO wOrld! aPPlicatiOn

 3 . Press Command-R to run the application and test it on the iPhone 4 Simulator. Click the Home but-
ton to return to the main screen of the iPhone. You should see the newly added icon (see Figure 2-17).

figure 2-17

How It Works

Setting an icon for your application is very straight-forward — simply specify the icon filename in the
Icon file item and it will appear in your iPhone when you run the application again. For more informa-
tion about all the icons used in a typical iPhone application, check out Apple’s documentation at: http://
developer.apple.com/iphone/library/documentation/userexperience/conceptual/mobilehig/

IconsImages/IconsImages.html.

DiSplAying A SplASh Screen

Most iPhone applications display a splash screen whenever they are loaded. The splash screen serves
as both a good way to display the logo of the company/application and a distraction to keep the user
entertained while the application is busily loading itself into memory.

Displaying a splash screen is very easy using Xcode. You just need to include an image named
Default.png in your application bundle (e.g., the Resources folder). This image needs to have a

http://developer.apple.com/iphone/library/documentation/userexperience/conceptual/mobilehig/IconsImages/IconsImages.html
http://developer.apple.com/iphone/library/documentation/userexperience/conceptual/mobilehig/IconsImages/IconsImages.html
http://developer.apple.com/iphone/library/documentation/userexperience/conceptual/mobilehig/IconsImages/IconsImages.html

Displaying a Splash Screen ❘ 37

resolution of 480 × 320 pixels (or 960 × 640 for iPhone high resolution). When your application is
loaded, the system will automatically display this image and hide it when the first View window of
your application is ready to be shown.

You can create the Default.png image from scratch using a photo-editing application, or easily cap-
ture one using the Organizer tool that is part of Xcode. All you need to do is view and capture the
image you want to use as the splash screen on your iPhone. The following Try It Out describes how
to add a splash screen using the Organizer.

Adding a Splash Screen to the Applicationtry it Out

 1 . With the iPhone connected to your Mac, launch Xcode and select Window ➪ Organizer.

 2 . You should now be able to see the name of the device attached to your Mac. Click the Use for
Development button and then click the Screenshots tab.

 3 . View the desired image on your iPhone (e.g. the photos in the Photo Library) and then click the
Capture button located under the image shown on the right in Organizer (see Figure 2-18).

figure 2-18

 4 . All the captured images are shown on the left of the Organizer window. Select the image that you
want to use and click the Save As Default Image… button.

 5 . You will be prompted to select the project that you want to use for the default image (see Figure 2-19).
Select the project name (HelloWorld) and click OK.

38 ❘ chApter 2 write YOur FirSt hellO wOrld! aPPlicatiOn

figure 2-19

 6 . The name will be copied to the Resources folder of the HelloWorld Xcode project (see Figure 2-20).

figure 2-20

 7 . Press Command-R to test the application on the iPhone 4 Simulator. The splash screen will appear
momentarily, followed by the HelloWorldViewController View window in your project.

Summary ❘ 39

 8 . If you want the splash screen to appear for a few seconds before it goes away, insert the following
bold code into the HelloWorldAppDelegate.m file:

-(BOOL)application:(UIApplication*)application
didFinishLaunchingWithOptions:(NSDictionary*)launchOptions{

 //--insert a delay of 5 seconds before the splash screen disappears--
 [NSThread sleepForTimeInterval:5.0];

//Overridepointforcustomizationafterapplicationlaunch.

//Addtheviewcontroller’sviewtothewindowanddisplay.
[windowaddSubview:viewController.view];
[windowmakeKeyAndVisible];

returnYES;
}

 9 . Press Command-R to test the application on the iPhone 4 Simulator again. This time, you will see
the splash screen for about five seconds before it goes away.

How It Works

When you include an image named Default.png in your project, it will be displayed when your applica-
tion is being loaded. This is a good chance to display your company’s logo, or some information to keep
the user occupied when your application is being loaded. Keep in mind the dimension of the image; it
will not be displayed during loading if you have an image of the wrong size.

SummAry

This chapter provided a brief introduction to developing your first iPhone application. Although you
likely still have many questions, the aim of this chapter was to get you started. The next few chapters
dive deeper into the details of iPhone programming, and the secret of how all those components that
seem so mysterious now work together is gradually revealed.

exerciSeS

 1 . You want to add an icon to an iPhone project in Xcode . What is the size of the image that you
should provide?

 2 . What is the easiest way to add a splash screen to an iPhone application?

 3 . When adding an image to the Resources folder in your Xcode project, why do you need to check
the “Copy items into destination group’s folder (If needed)” option?

Answers to the Exercises can be found in Appendix E, on Wrox.com.

40 ❘ chApter 2 write YOur FirSt hellO wOrld! aPPlicatiOn

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

xcode Create your iPhone Application project and write code that manipulates
your application .

interface Builder Build your iPhone UI using the various views located in the Library .

Adding an application
icon

Add an image to the project and then specify the image name in the Icon
file property of the info.plist file .

Adding a splash screen Add an image named Default.png to the Resources folder of your project .

creating icons for your
iphone applications

Icon size is 57 × 57 pixels and 114 × 114 pixels (high resolution) . For App
Store hosting, size is 512 × 512 pixels .

Views, Outlets, and Actions

whAt yOu will leArn in thiS chApter

How to declare and defi ne outlets➤➤

How to declare and defi ne actions➤➤

How to connect outlets and actions to the views in your View window➤➤

How to use the UIAlertView to display an alert view to the user➤➤

How to use the UIActionSheet to display some options to the user➤➤

How to use the UIPageControl to control paging➤➤

How to use the UIImageView to display images➤➤

How to use the UIWebView to display Web content in your application➤➤

How to add views dynamically to your application during runtime➤➤

In the previous chapter, you built a simple Hello World! iPhone application without understanding
much of the underlying details of how things work together. In fact, one of the greatest hurdles in
learning iPhone programming is the large number of details you need to learn before you can get
an application up and running. This book aims to make the iPhone programming experience both
fun and bearable. Hence, this chapter starts with the basics of creating the user interface (UI) of an
iPhone application and how your code connects with the various graphical widgets.

OutletS AnD ActiOnS

One of the fi rst things you need to understand in iPhone programming is outlets and actions. If
you are familiar with traditional programming languages such as Java or C#, this is a concept
that requires some time to get used to — the concepts are similar, just that it is a different way of
doing things. At the end of this section, you will have a solid understanding of what outlets and
actions are and how to create them, and be on your way to creating great iPhone applications.

3

42 ❘ chApter 3 ViewS, OutletS, and actiOnS

Creating Outlets and Actionstry it Out

 1 . Using Xcode, create a View-based Application (iPhone) project and name it OutletsAndActions.

 2 . Edit the OutletsAndActionsViewController.xib file by double-clicking it to open it
in Interface Builder. When Interface Builder is loaded, double-click the View item in the
OutletsAndActionsViewController.xib window to visually display the View window (see
Figure 3-1). Populate the three views onto the View window — Label, Text Field, and Round
Rect Button. Set the Label view with the text “Enter your name” by double-clicking on it. Also,
set the Round Rect Button with the “OK” string.

figure 3-1

 3 . In Xcode, modify the OutletsAndActionsViewController.h file with the following statements
shown in bold:

#import<UIKit/UIKit.h>

@interfaceOutletsAndActionsViewController:UIViewController{
//---declaring the outlet---
 IBOutlet UITextField *txtName;

Outlets and Actions ❘ 43

}

//---expose the outlet as a property---
@property (nonatomic, retain) UITextField *txtName;

//---declaring the action---
-(IBAction) btnClicked:(id) sender;

@end

 4 . In the OutletsAndActionsViewController.m file, define the following statements in bold:

#import“OutletsAndActionsViewController.h”

@implementationOutletsAndActionsViewController

//---synthesize the property---
@synthesize txtName;

//---displays an alert view when the button is clicked---
-(IBAction) btnClicked:(id) sender {
 NSString *str = [[NSString alloc]
 initWithFormat:@”Hello, %@”, txtName.text];
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Hello!”
 message:str
 delegate:self
 cancelButtonTitle:@”Done”
 otherButtonTitles:nil];
 [alert show];
 [str release];
 [alert release];
}

-(void)dealloc{
 //---release the outlet---
 [txtName release];
[superdealloc];
}

 5 . In the OutletsAndActionsViewController.xib window, control-click and drag the File’s Owner
item to the Text Field view (see Figure 3-2). A popup will appear; select the outlet named txtName.

 6 . Control-click and drag the OK Button view to the File’s Owner item (see Figure 3-3). Select the
action named btnClicked:.

 7 . Right-click the OK Button view to display its events (see Figure 3-4). Notice that the Button view
has several events, but one particular event — TouchUpInside — is now connected to the action
you specified (btnClicked:). Because the TouchUpInside event is so commonly used, it is auto-
matically connected to the action when you control-click and drag it to the File’s Owner item. To
connect other events to the action, simply click the circle displayed next to each event and then
drag it to the File’s Owner item.

44 ❘ chApter 3 ViewS, OutletS, and actiOnS

figure 3-2

figure 3-3

www.allitebooks.com

http://www.allitebooks.org

Outlets and Actions ❘ 45

 8 . That’s it! Press Command-R to test the application on the iPhone 4 Simulator. Enter a name in the
Text Field and click the OK button. An alert view displays a welcome message (see Figure 3-5).

figure 3-4 figure 3-5

How It Works

In iPhone, you use actions and outlets to connect your code to the various views in your UI. Think of
actions as methods in the traditional object-oriented programming world and outlets as object refer-
ences. Actions are represented using the IBAction keyword while outlets use the IBOutlet keyword:

#import<UIKit/UIKit.h>

@interfaceOutletsAndActionsViewController:UIViewController{
 //---declaring the outlet---
 IBOutlet UITextField *txtName;
}

//---expose the outlet as a property---
@property (nonatomic, retain) UITextField *txtName;

//---declaring the action---
-(IBAction) btnClicked:(id) sender;

@end

46 ❘ chApter 3 ViewS, OutletS, and actiOnS

The IBOutlet identifi er is used to prefi x variables so that Interface Builder can synchronize the display
and connection of outlets with Xcode. The @property keyword indicates to the compiler that you want
the txtName outlet to be exposed as a property. The nonatomic keyword indicates that there is no need
to ensure that the property is used in a thread-safe manner because it is not used in multiple threads.
The default behavior is atomic, and specifying nonatomic actually improves the performance of your
application.

NOTE The IBOutlet tag can also be added to the @property identifi er. This syn-
tax is common in the Apple documentation:

@property(nonatomic,retain)IBOutletUITextField*txtName;

NOTE For the use of the nonatomic and retain identifi ers, refer to Appendix D,
where you can fi nd an introduction to Objective-C, the language used for iPhone
programming. Also, the @synthesize keyword, discussed shortly, is explained in
more detail there as well.

The IBAction identifi er is used to synchronize action methods. An action is a method that can handle
events raised by views (for example, when a button is clicked) in the View window. An outlet, on the
other hand, allows your code to programmatically reference a view on the View window.

Once your actions and outlets are added to the header (.h) fi le of the View Controller, you then need to
connect them to your views in Interface Builder.

When you control-click and drag the File’s Owner item to the Text Field view and select txtName, you
essentially connect the outlet you have created (txtName) with the Text Field view on the View window.
In general, to connect outlets you control-click and drag the File’s Owner item to the view on the View
window.

cOnnecting OutletS AnD ActiOnS tO viewS

A quick tip: To connect outlets to the views, you drag the File’s Owner item onto
the required view in the View window.

To connect an action, you control-click and drag a view to the File’s Owner item.
Hence, for the OK Button view, you control-click and drag the OK Button view to
the File’s Owner item and then select the action named btnClicked:.Another quick
tip: To connect actions, you drag from the view in the View window onto the File’s
Owner item.

Using Views ❘ 47

In the implementation fi le (.m), you use the @synthesize keyword to indicate to the compiler to create
the getter and setter for the specifi ed property:

COMMON MISTAKES Forgetting to add the @synthesize keyword is one of the
most common mistakes that developers make. Remember to add this statement
or else you will encounter a runtime error when the application is executed.
Appendix D covers getter/setter in more details.

#import“OutletsAndActionsViewController.h”

@implementationOutletsAndActionsViewController

//---synthesize the property---
@synthesize txtName;

//---displays an alert view when the button is clicked---
-(IBAction) btnClicked:(id) sender {
 NSString *str = [[NSString alloc]
 initWithFormat:@”Hello, %@”, txtName.text];
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Hello!”
 message:str
 delegate:self
 cancelButtonTitle:@”Done”
 otherButtonTitles:nil];
 [alert show];
 [str release];
 [alert release];
}

-(void)dealloc{
 //---release the outlet---
 [txtName release];
[superdealloc];
}

The btnClicked: action simply displays an alert view with a message containing the user’s name. Note
that it has a parameter sender of type id. The sender parameter allows you to programmatically fi nd
out who actually invokes this action. This is useful when you have multiple views connecting to one
single action. For such cases, you often need to know which is the view that invokes this method and
the sender parameter will contain a reference to the calling view.

uSing viewS

So far, you have seen quite a number of views in action — Round Rect Button, Text Field, and
Label. All these views are quite straightforward, but they give you a good opportunity to under-
stand how to apply the concepts behind outlets and actions.

48 ❘ chApter 3 ViewS, OutletS, and actiOnS

To use more views, you can locate them from the Library window in Interface Builder (see Figure 3-6).

figure 3-6

The Library is divided into sections:

Controllers — Contains views that control other views, such as the View Controller, Tab Bar ➤➤

Controller, Navigation Controller, and so on.

Data Views — Contains views that display data, such as the Image View, Table View, Data ➤➤

Picker, Picker View, and so on.

Inputs and Values — Contains views that accept input from users as well as display values, ➤➤

such as the Label, Round Rect Button, Text Field, and so on.

Windows, Views & Bars — Contains views that display other, miscellaneous views, such as ➤➤

View, Search Bar, Toolbar, and so on.

In the following sections, you learn how to use some of the views available in the Library. Although
it is beyond the scope of this book to show the use of every view, you have the opportunity to see a
number of views in action throughout the book. In this chapter, you learn some of the fundamental
concepts of dealing with views so that you can use other views without problems.

using the Alert view
One of the views not listed in the Library is the UIAlertView. The UIAlertView displays an alert
view to the user and is usually created during runtime. Hence, you have to create it using code.

Using Views ❘ 49

NOTE You actually saw the UIAlertView in the previous section. In this section,
you will understand how it actually works.

The UIAlertView is useful for cases in which you have to display a message to the user. In addition, it
can serve as a quick debugging tool when you want to observe the value of a variable during runtime.

The following Try It Out explores the UIAlertView in more detail. Download the code as indicated.

Using the Alert Viewtry it Out

codefi le UsingViews.zip available for download at Wrox.com

1 . Using Xcode, create a new View-based Application (iPhone) project and name it UsingViews.

2 . In the UsingViewsViewController.m fi le, add the following bold code to the viewDidLoad method:

-(void)viewDidLoad{
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Hello”
 message:@”This is an alert view”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
[superviewDidLoad];
}

3 . Press Command-R to test the application on the iPhone 4 Simulator. When the application is
loaded, you see the alert view shown in Figure 3-7.

4 . In Xcode, modify the otherButtonTitles parameter by setting it with the value shown in bold:

-(void)viewDidLoad{
UIAlertView*alert=[[UIAlertViewalloc]
initWithTitle:@”Hello”
message:@”Thisisanalertview”
delegate:self
cancelButtonTitle:@”OK”
 otherButtonTitles:@”Option 1”, @”Option 2”, nil];
[alertshow];
[alertrelease];
[superviewDidLoad];
}

5 . In the UsingViewsViewController.h fi le, add the following line that appears in bold:

#import<UIKit/UIKit.h>

@interfaceUsingViewsViewController:UIViewController
<UIAlertViewDelegate> {
}

@end

50 ❘ chApter 3 ViewS, OutletS, and actiOnS

figure 3-7

 6 . In the UsingViewsViewController.m file, add the following method:

- (void)alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex {
 NSLog(@”%d”, buttonIndex);
}

 7 . Press Command-R to test the application in the iPhone 4
Simulator. Notice that there are now two buttons in addition to
the OK button (see Figure 3-8).

 8 . Click any one of the buttons — Option 1, Option 2, or OK.

 9 . In Xcode, press Command-Shift-R to view the Debugger Console
window. Observe the values printed. You can rerun the applica-
tion a number of times, clicking the different buttons to observe
the values printed. The values printed for each button clicked are
as follows:

OK button — 0➤➤

Option 1 — 1➤➤

Option 2 — 2➤➤

figure 3-8

Using Views ❘ 51

How It Works

To use UIAlertView, you fi rst instantiate it and initialize it with the various arguments:

UIAlertView*alert=[[UIAlertViewalloc]
initWithTitle:@”Hello”
message:@”Thisisanalertview”
delegate:self
cancelButtonTitle:@”OK”
otherButtonTitles:nil];

The fi rst parameter is the title of the alert view, which you set to “Hello”. The second is the message,
which you set to “Thisisanalertview”. The third is the delegate, which you need to set to an object
that will handle the events fi red by the UIAlertView object. In this case, you set it to self, which means
that the event handler will be implemented in the current class, that is, the View Controller. The
cancelButtonTitle parameter displays a button to dismiss your alert view. Last, the otherButtonTitles
parameter allows you to display additional buttons if needed. If no additional buttons are needed, sim-
ply set this to nil.

To show the alert view modally, use the show method:

[alertshow];

COMMON MISTAKES It is important to note that showing the alert view mod-
ally using the show method does not cause the program to stall execution at this
statement. The subsequent statements after this line continue to execute even
though the user may not have dismissed the alert.

For simple use of the alert view, you don’t really need to handle the events fi red by it. Tapping the OK
button (as set in the cancelButtonTitle parameter) simply dismisses the alert view.

If you want more than one button, you need to set the otherButtonTitles parameter, like this:

UIAlertView*alert=[[UIAlertViewalloc]
initWithTitle:@”Hello”
message:@”Thisisanalertview”
delegate:self
cancelButtonTitle:@”OK”
 otherButtonTitles:@”Option 1”, @”Option 2”, nil];

Note that you need to end the otherButtonTitles parameter with a nil or a runtime error will occur.

Now that you have three buttons, you need to be able to know which button the user pressed — in par-
ticular, whether Option 1 or Option 2 was pressed. To do so, you need to handle the event raised by the
UIAlertView class. You do so by ensuring that your View Controller implements the UIAlertViewDelegate
protocol:

@interfaceUsingViewsViewController:UIViewController
<UIAlertViewDelegate> {
}

52 ❘ chApter 3 ViewS, OutletS, and actiOnS

The UIAlertViewDelegate protocol contains several methods associated with the alert view. To know
which button the user tapped, you need to implement the alertView:clickedButtonAtIndex: method:

- (void)alertView:(UIAlertView *)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex {
 NSLog(@”%d”, buttonIndex);
}

The index of the button clicked will be passed in via the clickedButtonAtIndex: parameter.

NOTE Refer to Appendix D for a discussion of the concept of protocols in
Objective-C.

using the Action Sheet
Although the Alert view can display multiple buttons, its primary use is still as a tool to alert users
when something happens. If you need to display a message with multiple choices for the user to select,
you should use an Action Sheet rather than the Alert view. An action sheet displays a collection of but-
tons among which the user can select one.

To use an action sheet, use the code snippet below:

 UIActionSheet *action = [[UIActionSheet alloc]
 initWithTitle:@”Title of Action Sheet”
 delegate:self
 cancelButtonTitle:@”OK”
 destructiveButtonTitle:@”Delete Message”
 otherButtonTitles:@”Option 1”, @”Option 2”,
 nil];
 [action showInView:self.view];
 [action release];

To handle the event fi red by the action sheet when one of the buttons is tapped, implement the
UIActionSheetDelegate protocol in your View Controller, like this:

#import<UIKit/UIKit.h>

@interfaceUsingViewsViewController:UIViewController
<UIActionSheetDelegate>{
}

When a button is tapped, the actionSheet:clickedButtonAtIndex: event will be fi red:

- (void)actionSheet:(UIActionSheet *)actionSheet
clickedButtonAtIndex:(NSInteger)buttonIndex{
 NSLog(@”%d”, buttonIndex);
}

Using Views ❘ 53

Figure 3-9 shows the action sheet when it is displayed on the iPhone 4 Simulator. Observe that the
action sheet pops up from the bottom of the View window.

One important aspect of the action sheet is that when it is used on the iPad, you should not display
an action sheet in the viewDidLoad method — doing so causes an exception to be raised during run-
time. Instead, you can display it in say, an IBAction method.

Figure 3-10 shows the action sheet when displayed on the iPad. Interestingly, on the iPad the OK
button (set by the cancelButtonTitle: parameter) is not displayed.

figure 3-9 figure 3-10

The value (buttonIndex) of each button is as follows:

Delete Message — 0➤➤

Option 1 — 1➤➤

Option 2 — 2➤➤

OK — 3 ➤➤

On the iPad, when the user taps on an area outside of the action sheet, the action sheet is dismissed and
the value of buttonIndex becomes 3. Interestingly, if you specified nil for the cancelButtonTitle:
part, the value of buttonIndex would be –1 when the action sheet is dismissed.

54 ❘ chApter 3 ViewS, OutletS, and actiOnS

page control and image view
Near the bottom of iPhone’s Home screen is a series of dots (see Figure 3-11). A lighted dot repre-
sents the currently selected page. As you swipe the page to the next page, the next dot lights, and
the first one dims. In the figure, the dots indicate that the first page is the active page. In the iPhone
SDK, the series of dots is represented by the UIPageControl class.

figure 3-11

In the following Try it Out, you learn to use the page control view within your own application to
switch between images displayed in the ImageView.

Using the Page Control and the image Viewtry it Out

 1 . Using the UsingViews project created in the previous section, add five images to the Resources
folder by dragging and dropping them from the Finder. Figure 3-12 shows the five images added to
the project.

 2 . Double-click the UsingViewsViewController.xibfile to edit it using Interface Builder.

 3 . Drag and drop two ImageViews onto the View window (see Figure 3-13). At this point, overlap
them (but not entirely) as shown in the figure.

 4 . With the first ImageView selected, open the Attributes Inspector window and set the Tag property
to 0. Select the second ImageView and set the Tag property to 1 (see Figure 3-14).

 5 . Drag and drop the Page Control view onto the View window and set its number of pages to 5
(see Figure 3-15).

Using Views ❘ 55

figure 3-12

Ensure that you increase the width of the Page Control view so that all the dots are now visible.

 6 . Set the Background color of the View window to black so that the dots inside the Page Control are
clearly visible (see Figure 3-16).

 7 . In Xcode, declare three outlets and two UIImageView objects in the UsingViewsViewController.h file:

#import<UIKit/UIKit.h>

@interfaceUsingViewsViewController:UIViewController{
 IBOutlet UIPageControl *pageControl;
 IBOutlet UIImageView *imageView1;
 IBOutlet UIImageView *imageView2;
 UIImageView *tempImageView, *bgImageView;
}

@property (nonatomic, retain) UIPageControl *pageControl;
@property (nonatomic, retain) UIImageView *imageView1;
@property (nonatomic, retain) UIImageView *imageView2;

@end

56 ❘ chApter 3 ViewS, OutletS, and actiOnS

figure 3-13

figure 3-14

Using Views ❘ 57

figure 3-15

figure 3-16

58 ❘ chApter 3 ViewS, OutletS, and actiOnS

 8 . In Interface Builder, connect the three outlets to the views on the View window. Figure 3-17 shows
the connections made for the imageView1, imageView2, and pageControl outlets.

figure 3-17

 9 . You can now rearrange the ImageViews on the View window so that they overlap each other.

 10 . In Xcode, add the following statements that appear in bold to the UsingViewsViewController.m file:

#import“UsingViewsViewController.h”

@implementationUsingViewsViewController

@synthesize pageControl;
@synthesize imageView1, imageView2;

-(void)viewDidLoad{
 //---initialize the first imageview to display an image---
 [imageView1 setImage:[UIImage imageNamed:@”iMac_old.jpeg”]];
 tempImageView = imageView2;

 //---make the first imageview visible and hide the second---
 [imageView1 setHidden:NO];
 [imageView2 setHidden:YES];

 //---add the event handler for the page control---
 [pageControl addTarget:self
 action:@selector(pageTurning:)
 forControlEvents:UIControlEventValueChanged];

[superviewDidLoad];

Using Views ❘ 59

}

//---when the page control’s value is changed---
- (void) pageTurning: (UIPageControl *) pageController {
 //---get the page number you can turning to---
 NSInteger nextPage = [pageController currentPage];
 switch (nextPage) {
 case 0:
 [tempImageView setImage:
 [UIImage imageNamed:@”iMac_old.jpeg”]];
 break;
 case 1:
 [tempImageView setImage:
 [UIImage imageNamed:@”iMac.jpeg”]];
 break;
 case 2:
 [tempImageView setImage:
 [UIImage imageNamed:@”Mac8100.jpeg”]];
 break;
 case 3:
 [tempImageView setImage:
 [UIImage imageNamed:@”MacPlus.jpeg”]];
 break;
 case 4:
 [tempImageView setImage:
 [UIImage imageNamed:@”MacSE.jpeg”]];
 break;
 default:
 break;
 }

 //---switch the two imageview views---
 if (tempImageView.tag == 0) { //---imageView1---
 tempImageView = imageView2;
 bgImageView = imageView1;
 }
 else { //---imageView2---
 tempImageView = imageView1;
 bgImageView = imageView2;
 }

 //---animate the two views flipping---
 [UIView beginAnimations:@”flipping view” context:nil];
 [UIView setAnimationDuration:0.5];
 [UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];
 [UIView setAnimationTransition:UIViewAnimationTransitionFlipFromLeft
 forView:tempImageView
 cache:YES];

 [tempImageView setHidden:YES];

 [UIView commitAnimations];

 [UIView beginAnimations:@”flipping view” context:nil];

60 ❘ chApter 3 ViewS, OutletS, and actiOnS

 [UIView setAnimationDuration:0.5];
 [UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];
 [UIView setAnimationTransition:UIViewAnimationTransitionFlipFromRight
 forView:bgImageView
 cache:YES];

 [bgImageView setHidden:NO];

 [UIView commitAnimations];
}

-(void)dealloc{
 [pageControl release];
 [imageView1 release];
 [imageView2 release];
[superdealloc];
}

 11 . Press Command-R to test the application on the iPhone 4 Simulator. When you tap the Page
Control located at the bottom of the screen, the image view flips to display the next one.

How It Works

When the View is first loaded, you get one of the ImageViews to display an image and then hide the other:

//---initialize the first imageview to display an image---
[imageView1setImage:[UIImageimageNamed:@”iMac_old.jpeg”]];
tempImageView=imageView2;

//---make the first imageview visible and hide the second---
[imageView1setHidden:NO];
[imageView2setHidden:YES];

You then wire the Page Control so that when the user taps it, an event is fired and triggers a method.
In this case, the pageTurning: method is called:

 //---add the event handler for the page control---
[pageControladdTarget:self
action:@selector(pageTurning:)
forControlEvents:UIControlEventValueChanged];

In the pageTurning: method, you determine which image you should load based on the value of the
Page Control:

//---when the page control’s value is changed---
- (void) pageTurning: (UIPageControl *) pageController {

 //---get the page number you can turning to---
 NSInteger nextPage = [pageController currentPage];
 switch (nextPage) {
 case 0:
 [tempImageView setImage:
 [UIImage imageNamed:@”iMac_old.jpeg”]];
 break;
 case 1:

Using Views ❘ 61

 [tempImageView setImage:
 [UIImage imageNamed:@”iMac.jpeg”]];
 break;
 case 2:
 [tempImageView setImage:
 [UIImage imageNamed:@”Mac8100.jpeg”]];
 break;
 case 3:
 [tempImageView setImage:
 [UIImage imageNamed:@”MacPlus.jpeg”]];
 break;
 case 4:
 [tempImageView setImage:
 [UIImage imageNamed:@”MacSE.jpeg”]];
 break;
 default:
 break;
 }
 //...
}

You then switch the two ImageViews and animate them by using the various methods in the UIView class:

 //---switch the two imageview views---
 if (tempImageView.tag == 0) { //---imageView1---
 tempImageView = imageView2;
 bgImageView = imageView1;
 }
 else { //---imageView2---
 tempImageView = imageView1;
 bgImageView = imageView2;
 }

 //---animate the two views flipping---
 [UIView beginAnimations:@”flipping view” context:nil];
 [UIView setAnimationDuration:0.5];
 [UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];
 [UIView setAnimationTransition:UIViewAnimationTransitionFlipFromLeft
 forView:tempImageView
 cache:YES];

 [tempImageView setHidden:YES];

 [UIView commitAnimations];

 [UIView beginAnimations:@”flipping view” context:nil];
 [UIView setAnimationDuration:0.5];
 [UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];
 [UIView setAnimationTransition:UIViewAnimationTransitionFlipFromRight
 forView:bgImageView
 cache:YES];

 [bgImageView setHidden:NO];

 [UIView commitAnimations];

62 ❘ chApter 3 ViewS, OutletS, and actiOnS

Specifi cally, you apply the fl ipping transitions to the ImageViews:

 [UIView setAnimationTransition:UIViewAnimationTransitionFlipFromLeft
 forView:tempImageView
 cache:YES];

using the web view
To load Web pages from within your application, you can embed a Web browser in your application
through the use of the UIWebView. Using the Web view, you can send a request to load Web content,
which is very useful if you want to convert an existing Web application into a native application
(such as those written using Dashcode). All you need to do is to embed all the HTML pages into your
Resources folder in your Xcode project and load the HTML pages into the Web view during runtime.

NOTE Depending on how complex your Web applications are, you may have to
do some additional work to port your Web application to a native application if it
involves server-side technologies such as CGI, PHP, or others.

The following Try It Out shows how to use the Web view to load a Web page.

Loading a Web Page Using the Web Viewtry it Out

codefi le UsingViews2.zip available for download at Wrox.com

1 . Using Xcode, create a new View-based Application project and name it UsingViews2.

2 . Double-click the UsingViews2ViewController.xib fi le to edit it using Interface Builder.

 3 . In the View window, add a Web View from the Library (see Figure 3-18). In the Attributes Inspector
window for the Web view, check the ScalesPagetoFit property.

 4 . In the UsingViews2ViewController.h fi le, declare an outlet for the Web view:

#import<UIKit/UIKit.h>

@interfaceUsingViews2ViewController:UIViewController{
 IBOutlet UIWebView *webView;
}

@property (nonatomic, retain) UIWebView *webView;

@end

 5 . In Interface Builder, connect the webView outlet to the Web view.

Using Views ❘ 63

figure 3-18

 6 . In the UsingViews2ViewController.m file, add the following statements that appear in bold:

#import“UsingViews2ViewController.h”

@implementationUsingViews2ViewController

@synthesize webView;

-(void)viewDidLoad{
 NSURL *url = [NSURL URLWithString:@”http://www.apple.com”];
 NSURLRequest *req = [NSURLRequest requestWithURL:url];
 [webView loadRequest:req];
[superviewDidLoad];
}

-(void)dealloc{
 [webView release];
 [superdealloc];
}

 7 . Press Command-R to test the application on the iPhone 4 Simulator. You should see the applica-
tion loading the page from Apple.com (see Figure 3-19).

http://www.apple.com%E2%80%9D

64 ❘ chApter 3 ViewS, OutletS, and actiOnS

figure 3-19

How It Works

To load the Web view with a URL, you first instantiate an NSURL object with a URL via the URLWithString
method:

 NSURL *url = [NSURL URLWithString:@”http://www.apple.com”];

You then create an NSURLRequest object by passing the NSURL object to its requestWithURL: method:

 NSURLRequest *req = [NSURLRequest requestWithURL:url];

Finally, you load the Web view with the NSURLRequest object via the loadRequest: method:

 [webView loadRequest:req];

ADDing viewS DynAmicAlly uSing cODe

Up to this point, all the UIs of your application have been created visually using Interface Builder.
Although Interface Builder makes it relatively easy to build a UI using drag-and-drop, sometimes you are
better off using code to create it. One such instance is when you need a dynamic UI, such as for games.

Adding Views Dynamically Using Code ❘ 65

NOTE Interface Builder may be easy to use, but it can be confusing to some
people. Because you often have more than one way of doing things in Interface
Builder, it may create unnecessary complications. I know of developers who
swear by creating their UIs using code.

In the following Try It Out, you learn how to create views dynamically from code, which will help
you understand how views are constructed and manipulated.

Creating Views from Codetry it Out

codefi le DynamicViews.zip available for download at Wrox.com

1 . Using Xcode, create a View-based Application project and name it DynamicViews.

2 . In the DynamicViewsViewController.m fi le, add the following statements that appear in bold:

#import“DynamicViewsViewController.h”

@implementationDynamicViewsViewController

-(void)loadView{
 //---create a UIView object---
 UIView *view =
 [[UIView alloc] initWithFrame:[UIScreen mainScreen].applicationFrame];

 //---set the background color to light gray---
 view.backgroundColor = [UIColor lightGrayColor];

 //---create a Label view---
 CGRect frame = CGRectMake(10, 15, 300, 20);
 UILabel *label = [[UILabel alloc] initWithFrame:frame];
 label.textAlignment = UITextAlignmentCenter;
 label.backgroundColor = [UIColor clearColor];
 label.font = [UIFont fontWithName:@”Verdana” size:20];
 label.text = @”This is a label”;
 label.tag = 1000;

 //---create a Button view---
 frame = CGRectMake(10, 70, 300, 50);
 UIButton *button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 button.frame = frame;

 [button setTitle:@”Click Me, Please!” forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];
 button.tag = 2000;
 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside];

 [view addSubview:label];

66 ❘ chApter 3 ViewS, OutletS, and actiOnS

 [view addSubview:button];

 self.view = view;
 [label release];
}

-(IBAction) buttonClicked: (id) sender{
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Action invoked!”
 message:@”Button clicked!”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

3 . Press Command-R to test the application in the iPhone 4 Simulator. Figure 3-20 shows that the
Label and Round Rect Button views are displayed on the View window. Click the button to see an
alert view displaying a message.

How It Works

You implement the loadView method defi ned in your View Controller to programmatically create your
views. You implement this method only if you are generating your UI during runtime. This method is
automatically called when the view property of your View Controller is called but its current value is nil.

NOTE Chapter 4 discusses some of the commonly used methods in a View
Controller.

The fi rst view you create is the UIView object, which allows you to use it as a container for more views:

//---create a UIView object---
UIView*view=
[[UIViewalloc]initWithFrame:[UIScreenmainScreen].applicationFrame];
//---set the background color to light gray---

view.backgroundColor=[UIColorlightGrayColor];

Next, you create a Label view and set it to display a string:

 //---create a Label view---
 CGRect frame = CGRectMake(10, 15, 300, 20);
 UILabel *label = [[UILabel alloc] initWithFrame:frame];
 label.textAlignment = UITextAlignmentCenter;
 label.backgroundColor = [UIColor clearColor];
 label.font = [UIFont fontWithName:@”Verdana” size:20];
 label.text = @”This is a label”;
 label.tag = 1000;

Adding Views Dynamically Using Code ❘ 67

figure 3-20

Notice that you have also set the tag property, which is very useful for allowing you to search for par-
ticular views during runtime.

You also create a Button view by calling the buttonWithType: method with the UIButtonTypeRoundedRect
constant. This method returns a UIRoundedRectButton object (which is a subclass of UIButton).

//---create a Button view---
frame = CGRectMake(10, 70, 300, 50);
UIButton *button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
button.frame = frame;

[button setTitle:@”Click Me, Please!” forState:UIControlStateNormal];
button.backgroundColor = [UIColor clearColor];
button.tag = 2000;

You then wire an event handler for its TouchUpInside event so that when the button is tapped, the
buttonClicked: method is called:

 [button addTarget:self
 action:@selector(buttonClicked:)
forControlEvents:UIControlEventTouchUpInside];

Finally, you add the label and button views to the view you created earlier:

 [view addSubview:label];
 [view addSubview:button];

68 ❘ chApter 3 ViewS, OutletS, and actiOnS

Finally, you assign the view object to the view property of the current View Controller:

 self.view = view;

NOTE One important point to note here is that within the loadView method, you
should not get the value of the view property (setting it is all right), like this:

[self.viewaddSubview:label];//---thisisnotOK---
self.view=view;//---thisisOK---

Trying to get the value of the view property in this method will result in a circu-
lar reference and cause memory overfl ow.

unDerStAnDing view hierArchy

As views are created and added, they are added to a tree data structure. Views are displayed in the
order that they are added. To verify this, modify the location of the UIButton object you created ear-
lier by changing its location to CGRectMake(10,30,300,50), as in the following:

 frame = CGRectMake(10, 30, 300, 50);

UIButton*button=[UIButtonbuttonWithType:UIButtonTypeRoundedRect];
button.frame=frame;

[buttonsetTitle:@”ClickMe,Please!”forState:UIControlStateNormal];
button.backgroundColor=[UIColorclearColor];
button.tag=2000;
[buttonaddTarget:self
action:@selector(buttonClicked:)
forControlEvents:UIControlEventTouchUpInside];

When you now run the application again, you will notice that the button overlaps the label control
(see Figure 3-21) because the button was added last:

[viewaddSubview:label];
[viewaddSubview:button];

figure 3-21

Understanding View Hierarchy ❘ 69

To switch the order in which the views are displayed after they have been added, use the
exchangeSubviewAtIndex:withSubviewAtIndex: method, like this:

[viewaddSubview:label];
[viewaddSubview:button];
[view exchangeSubviewAtIndex:1 withSubviewAtIndex:0];
self.view=view;
[labelrelease];

The preceding statement in bold swaps the order of the Label and Button views. When the applica-
tion is run again, the Label view will now appear on top of the Button view (See Figure 3-22).

figure 3-22

To learn the order of the various views already added, you can use the following code segment to
print the value of the tag property for each view:

[viewaddSubview:label];
[viewaddSubview:button];
[viewexchangeSubviewAtIndex:1withSubviewAtIndex:0];
 for (int i=0; i<[view.subviews count]; ++i) {
 UIView *v = [view.subviews objectAtIndex:i];
 NSLog(@”%d”, v.tag);
 }

The following method recursively prints out all the views contained in a UIView object:

-(void) printViews:(UIView *) view {
 if ([view.subviews count] > 0){
 for (int i=0; i<[view.subviews count]; ++i) {
 UIView *v = [view.subviews objectAtIndex:i];
 NSLog(@”View index: %d Tag: %d”,i, v.tag);
 [self printViews:v];
 }
 } else
 return;
}

To remove a view from the current view hierarchy, use the removeFromSuperview method of the view
you want to remove. For example, the following statement removes the label view:

 [label removeFromSuperview];

70 ❘ chApter 3 ViewS, OutletS, and actiOnS

SummAry

This chapter explored the roles played by outlets and actions in an iPhone application. Outlets and
actions are the cornerstone of iPhone development, so understanding their use is extremely impor-
tant. Throughout this book, you will come across them frequently. You have also seen the use of
some of the commonly used views in the Library.

In the next chapter, you learn about the various types of View Controllers supported by the iPhone
SDK, and how you can use them to build different types of iPhone and iPad applications.

exerciSeS

 1 . Declare and define an outlet for a UITextField view using code .

 2 . Declare and define an action using code .

 3 . When do you use an Alert view and when do you use an action sheet?

 4 . Create a UIButton from code and wire its TouchUpInside event to an event handler .

Answers to the Exercises can be found in Appendix E, on Wrox.com.

Summary ❘ 71

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

Action An action is a method that can handle events raised by views (for exam-
ple, when a button is clicked, etc .) in the View window .

Outlet An outlet allows your code to programmatically reference a view on the
View window .

Adding outlet using code Use the IBOutlet keyword:
 IBOutlet UITextField *txtName;

Adding action using code Use the IBAction keyword:
-(IBAction) btnClicked:(id) sender;

connecting actions To link actions, you commonly drag from the view in the View window
onto the File’s Owner item .

connection outlets To link outlets, you commonly drag from the File’s Owner item onto the
required view in the View window .

using the UIAlertView UIAlertView *alert =
 [[UIAlertView alloc]
 initWithTitle:@”Hello!”
 message:@”Hello, world!”
 delegate:self
 cancelButtonTitle:@”Done”
 otherButtonTitles:nil];

[alert show];
[alert release];

handling events fired by
UIAlertView

Ensure that your View Controller conforms to the
UIAlertViewDelegate protocol .

using the UIActionSheet UIActionSheet *action =
 [[UIActionSheet alloc]
 initWithTitle:@”Title of Action Sheet”
 delegate:self
 cancelButtonTitle:@”OK”
destructiveButtonTitle:@”Delete Message”
 otherButtonTitles:@”Option 1”, @”Option 2”,
 nil];

[action showInView:self.view];
[action release];

handling events fired by
UIActionSheet

Ensure that your View Controller conforms to the
UIActionSheetDelegate protocol .

72 ❘ chApter 3 ViewS, OutletS, and actiOnS

tOpic key cOnceptS

wiring up the events for
the UIPageControl

[pageControl addTarget:self
 action:@selector(pageTurning:)
 forControlEvents:UIControlEventValueChanged];

using the UIImageView [imageView1 setImage:
 [UIImage imageNamed:@”iMac_old.jpeg”]];

using the UIWebView NSURL *url =
 [NSURL
 URLWithString:@”http://www.apple.com”];
NSURLRequest *req =
 [NSURLRequest requestWithURL:url];
[webView loadRequest:req];

View Controllers

whAt yOu will leArn in thiS chApter

Understanding the structure of a View-based Application project➤➤

How to create a Window-based Application project and manually add ➤➤

a View Controller and a View window to it

Creating views dynamically during runtime➤➤

Wiring up events of views with event handlers via code➤➤

How to switch to another view during runtime➤➤

How to animate the switching of views➤➤

How to create a Split View-based application➤➤

How to create a Tab Bar application➤➤

So far you’ve dealt only with single-view applications — that is, applications with a single
View Controller. The previous chapters all use the View-based Application template available
in the iPhone SDK because it is the simplest way to get started with iPhone programming.
When you create a View-based Application project, there is one View Controller (named
<project_name>ViewController by the iPhone SDK) by default.

In real-life applications, you often need more than one View Controller, with each control-
ling a different view displaying different information. This chapter explains the various types
of projects you can create for your iPhone and iPad and how each utilizes a different type of
View Controller. You will also learn how to create multiple views in your application and then
programmatically switch among them during runtime. In addition, you learn how to animate
the switching of views using the built-in animation methods available in the iPhone SDK.

4

74 ❘ chApter 4 View cOntrOllerS

the view-BASeD ApplicAtiOn templAte

When you create a View-based Application project using Xcode, you automatically have a single
view in your application. Until now, you have been using it without understanding much about how
it works under the hood. In the following Try It Out, you dive into the details and unravel all the
magic that makes your application work.

Creating a View-based Application Projecttry it Out

codefile viewBasedApp.zip available for download at Wrox.com

 1 . Using Xcode, create a View-based Application (iPhone) project and name it viewBasedApp.

 2 . Press Command-R to test the application on the iPhone 4 Simulator. The application displays an
empty screen, as shown in Figure 4-1.

figure 4-1

How It Works

What you have just created is a View-based Application project. By default, the View-based Application
template includes a single view, controlled by a View Controller class.

First, take a look at the files and folders created for your project in Xcode. In particular, note the
Classes and Resources folders listed under the project name (see Figure 4-2).

The View-Based Application Template ❘ 75

figure 4-2

As you can see, many fi les are created for you by default when you create a new project. The iPhone SDK
tries to make your life simpler by creating some of the items that you will use most often when you develop
an iPhone application. Table 4-1 describes the various fi les created in the project by default.

NOTE The types and number of fi les created vary according to the type of proj-
ect you have selected. The View-based Application template is a good starting
point for understanding the various fi les involved.

tABle 4-1: Project Files Created by Default

file DeScriptiOn

viewBasedApp.app The application bundle (executable), which contains the
executable as well as the data that is bundled with the
application

continues

76 ❘ chApter 4 View cOntrOllerS

file DeScriptiOn

viewBasedApp_Prefix.pch Contains the prefix header for all files in the project . The
prefix header is included by default in the other files in the
project .

viewBasedAppAppDelegate.h Header file for the application delegate

viewBasedAppAppDelegate.m Implementation file for the application delegate

viewBasedAppViewController.h Header file for a View Controller

viewBasedAppViewController.m Implementation file for a View Controller

viewBasedAppViewController.xib XIB file containing the UI of a view

CoreGraphics.framework C-based APIs for low-level 2D rendering

Foundation.framework APIs for foundational system services such as data types,
XML, URL, and so on

UIKit.framework Provides fundamental objects for constructing and managing
your application’s UI .

viewBasedApp-Info.plist A dictionary file that contains information about your project,
such as icon, application name, and more; information is
stored in key/value pairs .

main.m The main file that bootstraps your iPhone/iPad application

MainWindow.xib XIB file for the main window of the application

The main.m file contains code that bootstraps your application, and you rarely need to modify it:

#import<UIKit/UIKit.h>

intmain(intargc,char*argv[]){

NSAutoreleasePool*pool=[[NSAutoreleasePoolalloc]init];
intretVal=UIApplicationMain(argc,argv,nil,nil);
[poolrelease];
returnretVal;
}

Most of the hard work is done by the UIApplicationMain() function, which examines the
viewBasedApp-Info.plist file to obtain more information about the project. In particular, it looks at the
main NIB file you will use for your project. Figure 4-3 shows the content of the viewBasedApp-Info.plist
file. Notice that the Mainnibfilebasename key is pointing to MainWindow, which is the name of the
NIB file to load when the application is started.

tABle 4-1 (continued)

The View-Based Application Template ❘ 77

figure 4-3

the xiB AnD niB extenSiOnS

iPhone application development always includes fi les with the .xib extension
(sometimes also known as NIB fi les), so it is useful to know what these exten-
sions stand for. The current Mac OS X was built upon an operating system called
NeXTSTEP, from a company known as NeXT (founded by Apple’s cofounder,
Steve Jobs, in 1985). The N in NIB stands for NeXTSTEP. As for .xib, the X
presumably stands for XML because its content is saved as an XML fi le. The IB
stands for Interface Builder, the design tool that enables you to visually construct
the UI for your application.

editing xiB files
Double-click the MainWindow.xib fi le to edit it using Interface Builder. As mentioned, the XIB fi le
represents the UI of your application, and it is used almost exclusively by Interface Builder.

78 ❘ chApter 4 View cOntrOllerS

NOTE An XIB fi le is actually an XML fi le. You can view and edit an XIB fi le using
applications such as TextEdit, but it is usually preferable, to maintain your sanity,
to use Interface Builder to visually modify your application’s UI.

When the MinWindow.xib fi le is opened by Interface
Builder, you see a window with the same title as the
fi lename (see Figure 4-4).

This window contains fi ve items:

File’s Owner➤➤ — Represents the object that is
set to the owner of the user interface (that is,
the class responsible for managing the content
of the XIB fi le).

First Responder➤➤ — Represents the object with
which the user is currently interacting.

viewBasedApp App Delegate➤➤ — Points to the viewBasedAppAppDelegate class. You can see
this when you select the viewBasedAppAppDelegate item and view its Identity Inspector
window (see Figure 4-5).

View Based App View Controller➤➤ — Points to a View Controller that you will be using to
display your UI. In this case, it points to the viewBasedAppViewController class. You can
see this when you select the ViewBasedAppViewController item and view its Identity
Inspector window (see Figure 4-6).

Window➤➤ — The screen that you see when the application is launched.

figure 4-5

figure 4-4

figure 4-6

The View-Based Application Template ❘ 79

Application Delegate
The viewBasedAppAppDelegate.m fi le contains code that is typically executed after the application
has fi nished loading, or just before it is terminated. For this example, its content is as follows:

NOTE When creating your project using Xcode, the fi lename of your application
delegate will always be appended with the string AppDelegate. For example, if
the project name is viewBasedApp, then the application delegate will be called
viewBasedAppAppDelegate.

#import“viewBasedAppAppDelegate.h”
#import“viewBasedAppViewController.h”

@implementationviewBasedAppAppDelegate

@synthesizewindow;
@synthesizeviewController;

#pragmamark-
#pragmamarkApplicationlifecycle

-(BOOL)application:(UIApplication*)application
didFinishLaunchingWithOptions:(NSDictionary*)launchOptions{

//Overridepointforcustomizationafterapplicationlaunch.

//Addtheviewcontroller’sviewtothewindowanddisplay.
[windowaddSubview:viewController.view];
[windowmakeKeyAndVisible];

returnYES;
}

-(void)applicationWillResignActive:(UIApplication*)application{
/*
Sentwhentheapplicationisabouttomovefromactivetoinactivestate.This
canoccurforcertaintypesoftemporaryinterruptions(suchasanincoming
phonecallorSMSmessage)orwhentheuserquitstheapplicationandit
beginsthetransitiontothebackgroundstate.
Usethismethodtopauseongoingtasks,disabletimers,andthrottledown
OpenGLESframerates.Gamesshouldusethismethodtopausethegame.
*/
}

-(void)applicationDidEnterBackground:(UIApplication*)application{
/*
Usethismethodtoreleasesharedresources,saveuserdata,invalidate
timers,andstoreenoughapplicationstateinformationtorestoreyour
applicationtoitscurrentstateincaseitisterminatedlater.
Ifyourapplicationsupportsbackgroundexecution,calledinsteadof
applicationWillTerminate:whentheuserquits.

80 ❘ chApter 4 View cOntrOllerS

*/
}

-(void)applicationWillEnterForeground:(UIApplication*)application{
/*
Calledaspartoftransitionfromthebackgroundtotheinactivestate:
hereyoucanundomanyofthechangesmadeonenteringthebackground.
*/
}

-(void)applicationDidBecomeActive:(UIApplication*)application{
/*
Restartanytasksthatwerepaused(ornotyetstarted)whiletheapplication
wasinactive.Iftheapplicationwaspreviouslyinthebackground,optionally
refreshtheuserinterface.
*/
}

-(void)applicationWillTerminate:(UIApplication*)application{
/*
Calledwhentheapplicationisabouttoterminate.
SeealsoapplicationDidEnterBackground:.
*/
}

#pragmamark-
#pragmamarkMemorymanagement

-(void)applicationDidReceiveMemoryWarning:(UIApplication*)application{
/*
Freeupasmuchmemoryaspossiblebypurgingcacheddataobjectsthatcanbe
recreated(orreloadedfromdisk)later.
*/
}

-(void)dealloc{
[viewControllerrelease];
[windowrelease];
[superdealloc];
}

@end

When the application has finished launching, it sends its delegate the
application:DidFinishLaunchingWithOptions: message. In the preceding case, it uses a View
Controller to obtain its view and then adds it to the current window so that it can be displayed.

The viewBasedAppDelegate.h file contains the declaration of the members of the
viewBasedAppAppDelegate class:

#import<UIKit/UIKit.h>

@classviewBasedAppViewController;

@interfaceviewBasedAppAppDelegate:NSObject<UIApplicationDelegate>{

The View-Based Application Template ❘ 81

UIWindow*window;
viewBasedAppViewController*viewController;
}

@property(nonatomic,retain)IBOutletUIWindow*window;
@property(nonatomic,retain)IBOutletviewBasedAppViewController
*viewController;

@end

Of particular interest is this line:

@interfaceviewBasedAppAppDelegate:NSObject<UIApplicationDelegate>{

The <UIApplicationDelegate> statement specifi es that the delegate class should implement
the UIApplicationDelegate protocol. Put simply, it means that the delegate class will handle
events (or messages) defi ned in the UIApplicationDelegate protocol. Examples of events in the
UIApplicationDelegate protocol include the following:

Application:DidFinishLaunchingWithOptions:➤➤ (You saw this implemented in the
viewBasedAppAppDelegate.m fi le.)

applicationWillTerminate:➤➤

applicationDidDidReceiveMemoryWarning:➤➤

Other methods that inform you if the application is receding into the background or coming ➤➤

back into the foreground. You will learn more about these methods in Chapter 21.

The application delegate class is also a good place to put your global objects and functions, as they
are accessible from all the other classes in your project.

NOTE Protocols are discussed in more detail in Appendix D.

Controlling Your Ui Using View Controllers
In iPhone programming, you typically use a View Controller to manage a view, as well as to perform
navigation and memory management. In the project template for a View-based Application, Xcode
automatically uses a View Controller to help you manage your view. Think of a view as a screen (or
window) you see on your iPhone.

Earlier in this chapter, you saw that the MainWindow.xib window contains the
ViewBasedAppViewController item. When you double-click that, it shows a window of the same
name (see Figure 4-7).

As you can see, the view says that it is loaded from viewBasedAppViewController, which refers to
the name of the viewBasedAppViewController.xib fi le that’s also in your project.

Double-click the viewBasedAppViewController.xib fi le to edit it in Interface Builder. As with the
MainWindow.xib fi le, a few objects are contained inside the viewBasedAppViewController.xib win-
dow. In this case, it contains File’s Owner, First Responder, and View.

82 ❘ chApter 4 View cOntrOllerS

figure 4-7

NOTE When creating your project using Xcode, the fi lename of your View
Controller will always be appended with the string ViewController. For exam-
ple, if the project name is viewBasedApp, then the application delegate will be
called viewBasedAppViewController. When the View Controller is displayed
in Interface Builder, Interface Builder examines the name and displays the
View Controller with spaces inserted wherever capitalization changes, e.g.,
viewBasedAppViewController becomes ViewBasedAppViewController.

You can right-click (or Control-click) the File’s Owner
item to view its properties (see Figure 4-8). Note that
the view outlet is connected to the View item.

The View item represents the screen that appears on
your application. Double-click View to display it (see
Figure 4-9).

When you select the File’s Owner item and view its
Identity Inspector window, you should see that the
class is pointing to the viewBasedAppViewController

figure 4-8

The View-Based Application Template ❘ 83

class (see Figure 4-10). This means that the View window is being controlled by the
viewBasedAppViewController class.

figure 4-9 figure 4-10

The viewBasedAppViewController class is represented by two files — viewBasedAppViewController.h
and viewBasedAppViewController.m. The viewBasedAppViewController class is where you write the
code to interact with the views of your application.

The content of the viewBasedAppViewController.h file looks like this:

#import<UIKit/UIKit.h>

@interfaceviewBasedAppViewController:UIViewController{

}

@end

Note that the viewBasedAppViewController class inherits from the UIViewController base class,
which provides most of the functionality available on a View window.

The content of the viewBasedAppViewController.m file looks like this:

#import“viewBasedAppViewController.h”

@implementationviewBasedAppViewController

/*
//Thedesignatedinitializer.Overridetoperformsetupthatisrequired

84 ❘ chApter 4 View cOntrOllerS

beforetheviewisloaded.
-(id)initWithNibName:(NSString*)nibNameOrNilbundle:(NSBundle*)nibBundleOrNil{
if((self=[superinitWithNibName:nibNameOrNilbundle:nibBundleOrNil])){
//Custominitialization
}
returnself;
}
*/

/*
//ImplementloadViewtocreateaviewhierarchyprogrammatically,without
usinganib.
-(void)loadView{
}
*/

/*
//ImplementviewDidLoadtodoadditionalsetupafterloadingtheview,
typicallyfromanib.
-(void)viewDidLoad{
[superviewDidLoad];
}
*/

/*
//Overridetoalloworientationsotherthanthedefaultportraitorientation.
-(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
interfaceOrientation{
//ReturnYESforsupportedorientations
return(interfaceOrientation==UIInterfaceOrientationPortrait);
}
*/

-(void)didReceiveMemoryWarning{
//Releasestheviewifitdoesn’thaveasuperview.
[superdidReceiveMemoryWarning];

//Releaseanycacheddata,images,etcthataren’tinuse.
}

-(void)viewDidUnload{
//Releaseanyretainedsubviewsofthemainview.
//e.g.self.myOutlet=nil;
}

-(void)dealloc{
[superdealloc];
}

@end

The Window-Based Application Template ❘ 85

the winDOw-BASeD ApplicAtiOn templAte

In this section, you discover another type of application template you can create using the iPhone
SDK: the Window-based Application template. Unlike the View-based Application template, the
Window-based Application template does not include a View Controller by default. Instead, it pro-
vides only the skeleton of an iPhone application, leaving the rest to the developer — you need to add
your own views and their respective View Controllers. Therefore, a Window-based Application proj-
ect presents a good opportunity for you to understand how View Controllers work and appreciate
all the work needed to connect the View Controllers and XIB files. When you understand how View
Controllers work, you will be on your way to creating more sophisticated applications.

To put first things first, execute the following Try it Out to create a Window-based Application proj-
ect and then progressively add a View Controller to it.

Creating a Window-based Application Projecttry it Out

codefile windowBasedApp.zip available for download on Wrox.com

 1 . Using Xcode, create a Window-based Application
(iPhone) project and name it windowBasedApp. Observe
the files created for this project type (see Figure 4-11).
Apart from the usual supporting files, note that there
is only one XIB file (MainWindow.xib) and two del-
egate files (windowBasedAppAppDelegate.h and
windowBasedAppAppDelegate.m).

 2 . Press Command-R to test the application. An empty screen is
displayed on the iPhone Simulator. This is because the Window-
based application template provides only the skeleton structure
for a simple iPhone application — just a window and the appli-
cation delegate.

 3 . In Xcode, double-click MainWindow.xib to edit it in
Interface Builder. Note that there are four items in
the MainWindow.xib window (see Figure 4-12):

File’s Owner➤➤

First Responder➤➤

Window➤➤

Window Based App App Delegate➤➤

 4 . From the Library window, drag and drop a
ViewController item onto the MainWindow.xib
window (see Figure 4-13). You will connect this
ViewController item to a view that you will add
to the project in the next step.

figure 4-11

figure 4-12

86 ❘ chApter 4 View cOntrOllerS

figure 4-13

 5 . In Xcode, right-click the Classes group and add a new file (see Figure 4-14). In the New File win-
dow, click the Cocoa Touch Class item and select the UIViewController subclass template (see
Figure 4-15). Ensure that the “With XIB for user interface” check box is checked. Click Next and
name the item HelloWorldViewController.m. Xcode should now look like Figure 4-16. The two
files (.h and .m) will serve as the ViewController class for the ViewController item you added
previously in Interface Builder. The .xib file serves as the UI for the View Controller.

figure 4-14

The Window-Based Application Template ❘ 87

figure 4-15

figure 4-16

NOTE To keep your project neat, it is recommended that you drag the .xib fi le
into the Resources folder.

6 . Double-click the HelloWorldViewController.xib fi le to edit it in Interface Builder.

7 . Add a Round Rect Button to the View window and label the button as shown in Figure 4-17.

88 ❘ chApter 4 View cOntrOllerS

figure 4-17

 8 . In Interface Builder, select the ViewController item in the MainWindow.xib window and view its
Identity Inspector window. In the Class drop-down list, select HelloWorldViewController (see
Figure 4-18). The name of the View Controller will now change to HelloWorldViewController.

figure 4-18

The Window-Based Application Template ❘ 89

 9 . View the Attributes Inspector window for the HelloWorldViewController; and for the NIB
Name drop-down list, select HelloWorldViewController (see Figure 4-19).

figure 4-19

 10 . Back in Xcode, insert the bold lines in the following code into the windowBasedAppAppDelegate.h file:

#import<UIKit/UIKit.h>

//---add a forward reference to the
// HelloWorldViewController class---
@class HelloWorldViewController;

@interfacewindowBasedAppAppDelegate:NSObject
<UIApplicationDelegate>{
UIWindow*window;

 //---create an instance of the view controller---
 HelloWorldViewController *viewController;
}

@property(nonatomic,retain)IBOutletUIWindow*window;

//---expose the view controller as a property---
@property (nonatomic, retain) IBOutlet
 HelloWorldViewController *viewController;

@end

90 ❘ chApter 4 View cOntrOllerS

 11 . In the windowBasedAppAppDelegate.m file, insert the following code that appears in bold:

#import“windowBasedAppAppDelegate.h”
#import “HelloWorldViewController.h”

@implementationwindowBasedAppAppDelegate

@synthesizewindow;

//---synthesize the property---
@synthesize viewController;

-(BOOL)application:(UIApplication*)application
didFinishLaunchingWithOptions:(NSDictionary*)launchOptions{

//Overridepointforcustomizationafterapplicationlaunch.

 //---add the new view to the current window---
 [window addSubview:viewController.view];

[windowmakeKeyAndVisible];

returnYES;
}

-(void)dealloc{
 [viewController release];
[windowrelease];
[superdealloc];
}

 12 . In the MainWindow.xib window, Control-click and drag the WindowBasedAppAppDelegate item
to the HelloWorldViewController item (see Figure 4-20). Select viewController. This will
associate the window with the View Controller.

figure 4-20

The Window-Based Application Template ❘ 91

 13 . That’s it! Press Command-R to test the application
on the iPhone Simulator. The button should appear
on the main screen of the application as shown in
Figure 4-21.

How It Works

When you create an iPhone project using the Window-
based Application template, Xcode provides you with only
the bare minimum number of items in your project — a
MainWindow.xib file and the application delegate. You need
to add your own View Controller(s) and view(s).

In the preceding exercise, you first added a View
Controller item to the MainWindow.xib window. You then
added an instance of the UIViewController class (which
you named HelloWorldViewController) so that it could be
connected to the View Controller you just added. This con-
troller class contains the code that you will write to handle
the interactions between the view and the user.

When the application has finished launching, you add the
view represented by the HelloWorldViewController object
to the window so that it is visible, using the addSubview:
method of the UIWindow instance:

 //---add the new view to the current window---
[windowaddSubview:viewController.view];

Adding a view controller and views programmatically
Another commonly used technique is to programmatically create the views during runtime without
using Interface Builder. This provides a lot of flexibility, especially when you are writing games for
which the application’s UI is constantly changing.

In the following Try It Out, you learn how to create a View window using an instance of the
UIViewController class and then programmatically add views to it.

Adding a View Controller and Views Programmaticallytry it Out

 1 . Using the windowBasedApp project, right-click the Classes group in Xcode and add a new file. Select
the UIViewController subclass item and name it MySecondViewController. Ensure that the “With
XIB for user interface” checkbox is unchecked. Xcode should now look like Figure 4-22.

figure 4-21

92 ❘ chApter 4 View cOntrOllerS

figure 4-22

 2 . In the windowBasedAppAppDelegate.m file, add the following bold code:

#import“windowBasedAppAppDelegate.h”
#import“HelloWorldViewController.h”

#import “MySecondViewController.h”

@implementationwindowBasedAppAppDelegate

@synthesizewindow;

//---synthesizetheproperty---
@synthesizeviewController;

//---a second view controller object---
MySecondViewController *mySecondViewController;

-(BOOL)application:(UIApplication*)application
didFinishLaunchingWithOptions:(NSDictionary*)launchOptions{

//Overridepointforcustomizationafterapplicationlaunch.

 //---instantiate the second view controller---
 mySecondViewController = [[MySecondViewController alloc]
 initWithNibName:nil
 bundle:nil];

 //---add the view from the second view controller---
 [window addSubview:mySecondViewController.view];

 //---comment this out so that it doesn’t load the viewController---
 //---add the new view to the current window---
 //[window addSubview:viewController.view];

[windowmakeKeyAndVisible];

returnYES;

The Window-Based Application Template ❘ 93

}

-(void)dealloc{
 [mySecondViewController release];
[viewControllerrelease];
[windowrelease];
[superdealloc];
}

 3 . In the MySecondViewController.h file, insert the following bold lines of code:

#import<UIKit/UIKit.h>

@interfaceMySecondViewController:UIViewController{
 //---create two outlets - label and button---
 UILabel *label;
 UIButton *button;
}

//---expose the outlets as properties---
@property (nonatomic, retain) UILabel *label;
@property (nonatomic, retain) UIButton *button;

@end

 4 . In the MySecondViewController.m file, add the viewDidLoad() method and modify the dealloc
method:

#import“MySecondViewController.h”

@implementationMySecondViewController

@synthesize label, button;

- (void)viewDidLoad {
 //---create a CGRect for the positioning---
 CGRect frame = CGRectMake(20, 10, 280, 50);

 //---create a Label view---
 label = [[UILabel alloc] initWithFrame:frame];
 label.textAlignment = UITextAlignmentCenter;
 label.font = [UIFont fontWithName:@”Verdana” size:20];
 label.text = @”This is a label”;

 //---create a Button view---
 frame = CGRectMake(20, 60, 280, 50);
 button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 button.frame = frame;
 [button setTitle:@”OK” forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];

 //---add the views to the View window---
 [self.view addSubview:label];

94 ❘ chApter 4 View cOntrOllerS

 [self.view addSubview:button];
 [super viewDidLoad];
}

-(void)dealloc{
 [label release];
 [button release];
[superdealloc];
}

 5 . Press Command-R to test the application on the iPhone 4 Simulator. The Label and Button views
appear on the main screen of the application (see Figure 4-23).

figure 4-23

How It Works

In contrast to the previous example, in which you added a ViewController item, an instance of the
UIViewController class, and a XIB file to your project, this example simply creates an instance of
the UIViewController class and adds the views programmatically to the main View window.

In the application delegate, after the application has finished launching, you create an instance of the
UIViewController class that you have created:

 //---instantiate the second view controller---
mySecondViewController=[[MySecondViewControlleralloc]

The Window-Based Application Template ❘ 95

initWithNibName:nil
bundle:nil];

You do not need a XIB file because the various views that you will be using are added programmati-
cally. Hence, the initWithNibName: parameter can be set to nil.

To load the View window represented by the instance of the UIViewController class, you use the
addSubview: method of the UIWindow instance:

 //---add the view from the second view controller---
[windowaddSubview:mySecondViewController.view];

To programmatically create your views during runtime, you need to override the viewDidLoad() method
of the UIViewController class. Here, you create instances of the Label and Button views programmati-
cally, specifying their positions as well as their text captions. Finally, you add them to the main View
window:

- (void)viewDidLoad {
//---create a CGRect for the positioning---
CGRectframe=CGRectMake(20,10,280,50);

//---create a Label view---
label=[[UILabelalloc]initWithFrame:frame];
label.textAlignment=UITextAlignmentCenter;
label.font=[UIFontfontWithName:@”Verdana”size:20];
label.text=@”This is a label”;

//---create a Button view---
frame=CGRectMake(20,60,280,50);
button=[UIButtonbuttonWithType:UIButtonTypeRoundedRect];
button.frame=frame;
[buttonsetTitle:@”OK”forState:UIControlStateNormal];
button.backgroundColor=[UIColorclearColor];

//---add the views to the View window---
[self.viewaddSubview:label];
[self.viewaddSubview:button];
[superviewDidLoad];
}

creating and connecting Actions
In the previous example, you saw how you can add a Label and Button view to the main View win-
dow. However, you need to handle the events raised by the Button view so that when the user presses
it, the application can respond appropriately. Chapter 3 covered outlets and actions and how you con-
nect your code to them using Interface Builder; but in the following Try it Out, the views are created
using code, so you cannot use Interface Builder to connect the actions and outlets — you have to do it
with code too.

96 ❘ chApter 4 View cOntrOllerS

Linking Actions to Viewstry it Out

 1 . Continuing with the windowBasedApp project, declare the following buttonClicked: action (shown
in bold) in the MySecondViewController.h file:

#import<UIKit/UIKit.h>

@interfaceMySecondViewController:UIViewController{
//---createtwooutlets-labelandbutton---
UILabel*label;
UIButton*button;
}

//---exposetheoutletsasproperties---
@property(nonatomic,retain)UILabel*label;
@property(nonatomic,retain)UIButton*button;

//---declaring the IBAction---
-(IBAction) buttonClicked: (id) sender;

@end

 2 . In the MySecondViewController.m file, provide the implementation for the buttonClicked: action:

#import“MySecondViewController.h”

@implementationMySecondViewController

@synthesizelabel,button;

-(IBAction) buttonClicked: (id) sender{
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Action invoked!”
 message:@”Button clicked!”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

 3 . To connect the relevant event (TouchUpInside) of the Button view with the buttonClicked:
action, add the following bold code to the viewDidLoad() method:

-(void)viewDidLoad{
//---createaCGRectforthepositioning---
CGRectframe=CGRectMake(20,10,280,50);

//---createaLabelview---
label=[[UILabelalloc]initWithFrame:frame];
label.textAlignment=UITextAlignmentCenter;
label.font=[UIFontfontWithName:@”Verdana”size:20];
label.text=@”Thisisalabel”;

//---createaButtonview---
frame=CGRectMake(20,60,280,50);

The Window-Based Application Template ❘ 97

button=[UIButtonbuttonWithType:UIButtonTypeRoundedRect];
button.frame=frame;
[buttonsetTitle:@”OK”forState:UIControlStateNormal];
button.backgroundColor=[UIColorclearColor];

 //---add the action handler and set current class as target---
 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside];

//---addtheviewstotheViewwindow---
[self.viewaddSubview:label];
[self.viewaddSubview:button];
[superviewDidLoad];
}

 4 . That’s it! Press Command-R to test the application on the iPhone 4 Simulator. Clicking the OK
button displays an Alert view (see Figure 4-24).

figure 4-24

How It Works

To connect an action to a view, you use the addTarget:action:forControlEvents: method of a view. In
this case, the view is the Round Rect Button:

 //---add the action handler and set current class as target---
[buttonaddTarget:self
action:@selector(buttonClicked:)
forControlEvents:UIControlEventTouchUpInside];

98 ❘ chApter 4 View cOntrOllerS

The action: parameter specifi es the name of the method (buttonClicked:) that will handle the event,
while the forControlEvents: method specifi es the type of event that you want to handle. In this exam-
ple, the event is TouchUpInside.

cOntrOl eventS

You can use the following list of events for control objects:

UIControlEventTouchDown

UIControlEventTouchDownRepeat

UIControlEventTouchDragInside

UIControlEventTouchDragOutside

UIControlEventTouchDragEnter

UIControlEventTouchDragExit

UIControlEventTouchUpInside

UIControlEventTouchUpOutside

UIControlEventTouchCancel

UIControlEventValueChanged

UIControlEventEditingDidBegin

UIControlEventEditingChanged

UIControlEventEditingDidEnd

UIControlEventEditingDidEndOnExit

UIControlEventAllTouchEvents

UIControlEventAllEditingEvents

UIControlEventApplicationReserved

UIControlEventSystemReserved

UIControlEventAllEvents

The use of each event is detailed at http://developer.apple.com/iphone/library/
documentation/UIKit/Reference/UIControl_Class/Reference/Reference.html#//

apple_ref/doc/constant_group/Control_Events.

http://developer.apple.com/iphone/library/documentation/UIKit/Reference/UIControl_Class/Reference/Reference.html#//apple_ref/doc/constant_group/Control_Events
http://developer.apple.com/iphone/library/documentation/UIKit/Reference/UIControl_Class/Reference/Reference.html#//apple_ref/doc/constant_group/Control_Events
http://developer.apple.com/iphone/library/documentation/UIKit/Reference/UIControl_Class/Reference/Reference.html#//apple_ref/doc/constant_group/Control_Events

The Window-Based Application Template ❘ 99

Switching to Another view
In real life, your application often has a number of views, each representing different pieces of infor-
mation. Depending on the selections made by the user, the application switches to different views to
perform different tasks.

This section describes how your application can switch to another view based on the user’s selection.

Switching Viewstry it Out

 1 . Using the same project created in the previous section, add the following bold code to the
MySecondViewController.m file:

#import“MySecondViewController.h”
#import “HelloWorldViewController.h”

@implementationMySecondViewController

@synthesizelabel,button;

//---create an instance of the view controller---
HelloWorldViewController *viewController;

-(IBAction)buttonClicked:(id)sender{
 //---add the view of the view controller to the current View---
 viewController =
 [[HelloWorldViewController alloc]
 initWithNibName:@”HelloWorldViewController”
 bundle:nil];

 [self.view addSubview:viewController.view];

 /*
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Action invoked!”
 message:@”Button clicked!”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];

 [alert show];
 [alert release];
 */
}

-(void)dealloc{
 [viewController release];
[labelrelease];
[buttonrelease];
[superdealloc];
}

100 ❘ chApter 4 View cOntrOllerS

 2 . Declare a btnClicked: action in the HelloWorldViewController.h file (and remember to save the
file after editing it):

#import<UIKit/UIKit.h>

@interfaceHelloWorldViewController:UIViewController{

}

-(IBAction) btnClicked:(id) sender;

@end

 3 . In the HelloWorldViewController.m file, define the btnClicked: action as follows:

#import“HelloWorldViewController.h”

@implementationHelloWorldViewController

-(IBAction) btnClicked:(id) sender{
 //---remove the current view; essentially hiding the view---
 [self.view removeFromSuperview];
}

 4 . Double-click the HelloWorldViewController.xib file to edit it in Interface Builder. Control-
click and drag the Round Rect Button in the View window to the File’s Owner item in the
HelloWorldViewController.xib window and select btnClicked:.

 5 . In Xcode, press Command-R to test the application. Now when you click the OK button in the
main View, you are brought to the Hello World View. To close the View, click the button.

How It Works

For this example, you simply add the view of the View Controller (that you are switching to) to the cur-
rent View window using the addSubview: method:

 //---add the view of the view controller to the current View---
viewController=
[[HelloWorldViewControlleralloc]
initWithNibName:@”HelloWorldViewController”
bundle:nil];

[self.viewaddSubview:viewController.view];

To dismiss a view, you use the removeFromSuperview: method:

 //---remove the current view; essentially hiding the view---
[self.viewremoveFromSuperview];

The Window-Based Application Template ❘ 101

Animating the Switching of views
The switching of Views that you have just seen in the previous section happens instantaneously — the
two Views change immediately without any visual cues. One of the key selling points of the iPhone
is its animation capabilities. Therefore, for the switching of views, you can make the display a little
more interesting by performing some simple animations, such as flipping one View window to reveal
another. The following Try It Out shows you how.

Animating View Transitionstry it Out

 1 . Using the same project, add the following bold code to the MySecondViewController.m file:

-(IBAction)buttonClicked:(id)sender{
//---addtheviewoftheviewcontrollertothecurrentView---
viewController=
[[HelloWorldViewControlleralloc]
initWithNibName:@”HelloWorldViewController”
bundle:nil];

 [UIView beginAnimations:@”flipping view” context:nil];
 [UIView setAnimationDuration:1];
 [UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];
 [UIView setAnimationTransition:UIViewAnimationTransitionFlipFromLeft
 forView:self.view
 cache:YES];
[self.viewaddSubview:viewController.view];
 [UIView commitAnimations];

/*
UIAlertView*alert=
[[UIAlertViewalloc]initWithTitle:@”Actioninvoked!”
message:@”Buttonclicked!”
delegate:self
cancelButtonTitle:@”OK”
otherButtonTitles:nil];

[alertshow];
[alertrelease];
*/
}

 2 . In the HelloWorldViewController.mfile, add the following code that appears in bold:

#import“HelloWorldViewController.h”

@implementationHelloWorldViewController

-(IBAction)btnClicked:(id)sender{
 [UIView beginAnimations:@”flipping view” context:nil];
 [UIView setAnimationDuration:1];
 [UIView setAnimationCurve:UIViewAnimationCurveEaseIn];
 [UIView setAnimationTransition:UIViewAnimationTransitionFlipFromRight

102 ❘ chApter 4 View cOntrOllerS

 forView:self.view.superview
 cache:YES];
//---removethecurrentview;essentiallyhidingtheview---
[self.viewremoveFromSuperview];
 [UIView commitAnimations];
}

 3 . Press Command-R to test the application on the iPhone 4 Simulator. Click the OK buttons on both
Views and notice the direction in which the two Views flip to one another.

How It Works

First, examine the animation that is applied to the MySecondViewController. You perform the anima-
tion by first calling the beginAnimations: method of the UIView class to start the animation block:

 [UIView beginAnimations:@”flipping view” context:nil];

The setAnimationDuration: method specifies the duration of the animation, in seconds. Here, you set
it to one second:

 [UIView setAnimationDuration:1];

The setAnimationCurve: method sets the curve of the animating property changes within an animation:

 [UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];

You can use the following constants for the curve of the animation:

UIViewAnimationCurveEaseInOut➤➤ — Causes the animation to begin slowly, accelerate through the
middle of its duration, and then slow again before completing.

UIViewAnimationCurveEaseIn➤➤ — Causes the animation to begin slowly and then speed up as it
progresses.

UIViewAnimationCurveEaseOut➤➤ — Causes the animation to begin quickly and then slow as it
completes.

UIViewAnimationCurveLinear➤➤ — Causes an animation to occur evenly over its duration.

The setAnimationTransition: method specifies a transition type to be applied to a view during the ani-
mation’s duration:

 [UIView setAnimationTransition:UIViewAnimationTransitionFlipFromLeft
 forView:self.view
 cache:YES];

The cache: parameter specifies whether the iPhone should cache the image of the view and use it dur-
ing the transition. Caching the image speeds up the animation process. The following constants can be
used for the animation transition:

UIViewAnimationTransitionNone➤➤ — No transition.

UIViewAnimationTransitionFlipFromLeft➤➤ — Flips a view around a vertical axis from left to right.

UIViewAnimationTransitionFlipFromRight➤➤ — Flips a view around a vertical axis from right to left.

The Split View-Based Application Template ❘ 103

UIViewAnimationTransitionCurlUp➤➤ — Curls a view up from the bottom.

UIViewAnimationTransitionCurlDown➤➤ — Curls a view down from the top.

To end the animation, call the commitAnimations: method:

[UIViewcommitAnimations];

The animation performed on the HelloWorldViewController is similar to that of the
MySecondViewController, except that the view to animate must be set to self.view.superview:

 [UIView setAnimationTransition:UIViewAnimationTransitionFlipFromRight
forView:self.view.superview
cache:YES];

the Split view-BASeD ApplicAtiOn templAte

Beginning with the iPhone SDK 3.2, there is a new application template that is exclusive to the iPad:
Split View–based application. It enables you to create a split-view interface for your iPad application,
which is essentially a master-detail interface. The left side of the screen displays a list of selectable
items, while the right-side displays details about the item selected.

To see how the Split View–based application works, take a look at the following Try It Out.

Creating a Split View–based Application try it Out

codefile splitViewBasedApp.zip available for download at Wrox.com

 1 . Using Xcode, create a new Split View–based Application project
and name it splitViewBasedApp.

 2 . Observe the files created in the Classes and Resources folders
(see Figure 4-25). Notice that there are two View Controller
classes (RootViewController and DetailViewController), as
well as two XIB files.

 3 . Press Command-R in Xcode to test the application on the
iPhone 3.2 Simulator (for iPad). Figure 4-26 shows the applica-
tion when it is displayed in landscape mode. When you rotate
the Simulator to portrait mode, the application looks like
Figure 4-27.

How It Works

The magic of a Split View–based application lies in its transforma-
tion when the device is rotated. In landscape mode, the application
displays a list of rows on the left. When it is turned to portrait mode,
the list of rows is hidden in a Popover view. Here’s how this is done.

figure 4-25

104 ❘ chApter 4 View cOntrOllerS

figure 4-26

figure 4-27

First, observe the content of the splitViewBasedAppAppDelegate.h file:

#import<UIKit/UIKit.h>

@classRootViewController;

The Split View-Based Application Template ❘ 105

@classDetailViewController;

@interfacesplitViewBasedAppDelegate:NSObject<UIApplicationDelegate>{

UIWindow*window;

UISplitViewController*splitViewController;

RootViewController*rootViewController;
DetailViewController*detailViewController;
}

@property(nonatomic,retain)IBOutletUIWindow*window;

@property(nonatomic,retain)IBOutletUISplitViewController
*splitViewController;
@property(nonatomic,retain)IBOutletRootViewController
*rootViewController;
@property(nonatomic,retain)IBOutletDetailViewController
*detailViewController;

@end

Notice that it contains a View Controller object of type UISplitViewController
(splitViewController), as well two View Controllers (rootViewController and
detailViewController). The UISplitViewController is a container View Controller that contains
two View Controllers, allowing you to implement a master-detail interface.

Next, look at the content of the splitViewBasedAppAppDelegate.m file:

#import“splitViewBasedAppDelegate.h”

#import“RootViewController.h”
#import“DetailViewController.h”

@implementationsplitViewBasedAppDelegate

@synthesizewindow,splitViewController,rootViewController,detailViewController;

#pragmamark-
#pragmamarkApplicationlifecycle

-(BOOL)application:(UIApplication*)application
didFinishLaunchingWithOptions:(NSDictionary*)launchOptions{

//Overridepointforcustomizationafterapplaunch.

//Addthesplitviewcontroller’sviewtothewindowanddisplay.
[windowaddSubview:splitViewController.view];
[windowmakeKeyAndVisible];

returnYES;
}

-(void)applicationWillResignActive:(UIApplication*)application{
/*
Sentwhentheapplicationisabouttomovefromactivetoinactivestate.This

106 ❘ chApter 4 View cOntrOllerS

canoccurforcertaintypesoftemporaryinterruptions(suchasanincomingphone
callorSMSmessage)orwhentheuserquitstheapplicationanditbeginsthe
transitiontothebackgroundstate.
Usethismethodtopauseongoingtasks,disabletimers,andthrottledownOpenGL
ESframerates.Gamesshouldusethismethodtopausethegame.
*/
}

-(void)applicationDidBecomeActive:(UIApplication*)application{
/*
Restartanytasksthatwerepaused(ornotyetstarted)whilethe
applicationwasinactive.
*/
}

-(void)applicationWillTerminate:(UIApplication*)application{
/*
Calledwhentheapplicationisabouttoterminate.
*/
}

#pragmamark-
#pragmamarkMemorymanagement

-(void)applicationDidReceiveMemoryWarning:(UIApplication*)application{
/*
Freeupasmuchmemoryaspossiblebypurgingcacheddataobjectsthat
canberecreated(orreloadedfromdisk)later.
*/
}

-(void)dealloc{
[splitViewControllerrelease];
[windowrelease];
[superdealloc];
}

@end

When the application is loaded, the view contained in the splitViewController object is added to the
window.

Now, double-click the MainWindow.xib file to edit it in Interface Builder. You’ll see that the MainWindow
.xib contains an item named Split View Controller (recall that for a View-based Application project,
you had a View Controller item instead).

Switch the MainWindow.xib file to display in list view mode and observe the items located within the
Split View Controller item (see Figure 4-28):

Navigation Controller➤➤

Detail View Controller➤➤

The Navigation Controller controls the left side of a Split-view application. Figure 4-29 shows that it
consists of a Navigation Bar as well as a Root View Controller.

The Split View-Based Application Template ❘ 107

figure 4-28

figure 4-29

108 ❘ chApter 4 View cOntrOllerS

The Root View Controller is mapped to the RootViewController class (see Figure 4-30).

The Detail View Controller controls the right side of a Split-view application (see Figure 4-31).

figure 4-30

figure 4-31

The Split View-Based Application Template ❘ 109

The Detail View Controller is mapped to the DetailViewController class (see Figure 4-32).

figure 4-32

The application delegate is connected to the various View Controllers, as you can see when you right-
click the Split View Based App Delegate item (see Figure 4-33).

figure 4-33

Let’s examine the two View Controllers contained within the Split View Controller: RootViewController
and DetailViewController.

110 ❘ chApter 4 View cOntrOllerS

Observe the content of the RootViewController.h file:

#import<UIKit/UIKit.h>

@classDetailViewController;

@interfaceRootViewController:UITableViewController{
DetailViewController*detailViewController;
}

@property(nonatomic,retain)IBOutletDetailViewController
*detailViewController;

@end

Note that the RootViewController class inherits from the UITableViewController class, not
the UIViewController class shown earlier. The UITableViewController class is a subclass of the
UIViewController class, providing the capability to display a table containing rows of data.
(Chapter 8 discusses the Table view in more detail.)

The content of the RootViewController.m file looks like this:

#import“RootViewController.h”
#import“DetailViewController.h”

@implementationRootViewController

@synthesizedetailViewController;

#pragmamark-
#pragmamarkViewlifecycle

-(void)viewDidLoad{
[superviewDidLoad];
self.clearsSelectionOnViewWillAppear=NO;
self.contentSizeForViewInPopover=CGSizeMake(320.0,600.0);
}

/*
 Other commented out code is omitted from this code listing
*/

//Ensurethattheviewcontrollersupportsrotationandthatthesplit
viewcanthereforeshowinbothportraitandlandscape.
-(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
interfaceOrientation{
returnYES;
}

-(NSInteger)numberOfSectionsInTableView:(UITableView*)aTableView{
//Returnthenumberofsections.
return1;
}

-(NSInteger)tableView:(UITableView*)aTableView

The Split View-Based Application Template ❘ 111

numberOfRowsInSection:(NSInteger)section{
//Returnthenumberofrowsinthesection.
return10;
}

-(UITableViewCell*)tableView:(UITableView*)tableView
cellForRowAtIndexPath:(NSIndexPath*)indexPath{

staticNSString*CellIdentifier=@”CellIdentifier”;

//Dequeueorcreateacelloftheappropriatetype.
UITableViewCell*cell=[tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
if(cell==nil){
cell=[[[UITableViewCellalloc]
initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier]autorelease];
cell.accessoryType=UITableViewCellAccessoryNone;
}

//Configurethecell.
cell.textLabel.text=
[NSStringstringWithFormat:@”Row%d”,indexPath.row];
returncell;
}

-(void)tableView:(UITableView*)aTableView
didSelectRowAtIndexPath:(NSIndexPath*)indexPath{

/*
Whenarowisselected,setthedetailviewcontroller’sdetailitem
totheitemassociatedwiththeselectedrow.
*/
detailViewController.detailItem=
[NSStringstringWithFormat:@”Row%d”,indexPath.row];
}

-(void)didReceiveMemoryWarning{
//Releasestheviewifitdoesn’thaveasuperview.
[superdidReceiveMemoryWarning];

//Relinquishownershipanycacheddata,images,etc.thataren’tinuse.
}

-(void)viewDidUnload{
//Relinquishownershipofanythingthatcanberecreatedin
viewDidLoadorondemand.
//Forexample:self.myOutlet=nil;
}

-(void)dealloc{
[detailViewControllerrelease];
[superdealloc];
}

@end

112 ❘ chApter 4 View cOntrOllerS

While the RootViewController.m file contains many methods related to the Table view, here is a quick
summary of some of the most important methods:

contentSizeForViewInPopoverView➤➤ — The size of the PopoverView to display

numberOfSectionsInTableView:➤➤ — The number of sections to be displayed in the Table view

tableView:numberOfRowsInSection:➤➤ — The number of rows to be displayed in the Table view

tableView:cellForRowAtIndexPath:➤➤ — The data to populate for each row

tableView:didSelectRowAtIndexPath:➤➤ — The row selected by the user

Now take a look at the DetailsViewController.h file:

#import<UIKit/UIKit.h>

@interfaceDetailViewController:UIViewController
<UIPopoverControllerDelegate,UISplitViewControllerDelegate>{

UIPopoverController*popoverController;
UIToolbar*toolbar;

iddetailItem;
UILabel*detailDescriptionLabel;
}

@property(nonatomic,retain)IBOutletUIToolbar*toolbar;

@property(nonatomic,retain)iddetailItem;
@property(nonatomic,retain)IBOutletUILabel*detailDescriptionLabel;

@end

Notice that the DetailsViewController class implements the following protocols:

UIPopoverControllerDelegate➤➤ — It needs to implement this protocol because when the iPad
is held in portrait orientation, the Popover view will display the content of the Table view
UISplitViewControllerDelegate — It needs to implement this protocol because when the iPad
changes orientation, it needs to hide/display the Popover view.

Examine the content of the DetailsViewController.m file:

#import“DetailViewController.h”
#import“RootViewController.h”

@interfaceDetailViewController()
@property(nonatomic,retain)UIPopoverController*popoverController;
-(void)configureView;
@end

@implementationDetailViewController

@synthesizetoolbar,popoverController,detailItem,detailDescriptionLabel;

/*

The Split View-Based Application Template ❘ 113

Whensettingthedetailitem,updatetheviewanddismissthepopover
controllerifit’sshowing.
*/
-(void)setDetailItem:(id)newDetailItem{
if(detailItem!=newDetailItem){
[detailItemrelease];
detailItem=[newDetailItemretain];

//Updatetheview.
[selfconfigureView];
}

if(popoverController!=nil){
[popoverControllerdismissPopoverAnimated:YES];
}
}

-(void)configureView{
//Updatetheuserinterfaceforthedetailitem.
detailDescriptionLabel.text=[detailItemdescription];
}

-(void)splitViewController:(UISplitViewController*)svc
willHideViewController:(UIViewController*)aViewController
withBarButtonItem:(UIBarButtonItem*)barButtonItem
forPopoverController:(UIPopoverController*)pc{

barButtonItem.title=@”RootList”;
NSMutableArray*items=[[toolbaritems]mutableCopy];
[itemsinsertObject:barButtonItematIndex:0];
[toolbarsetItems:itemsanimated:YES];
[itemsrelease];
self.popoverController=pc;
}

//Calledwhentheviewisshownagaininthesplitview,invalidatingthe
buttonandpopovercontroller.
-(void)splitViewController:(UISplitViewController*)svc
willShowViewController:(UIViewController*)aViewController
invalidatingBarButtonItem:(UIBarButtonItem*)barButtonItem{

NSMutableArray*items=[[toolbaritems]mutableCopy];
[itemsremoveObjectAtIndex:0];
[toolbarsetItems:itemsanimated:YES];
[itemsrelease];
self.popoverController=nil;
}

//Ensurethattheviewcontrollersupportsrotationandthatthesplit
viewcanthereforeshowinbothportraitandlandscape.
-(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)
interfaceOrientation{
returnYES;

114 ❘ chApter 4 View cOntrOllerS

}

/*
 Other commented out code is omitted from this code listing
*/

-(void)viewDidUnload{
//Releaseanyretainedsubviewsofthemainview.
//e.g.self.myOutlet=nil;
self.popoverController=nil;
}

-(void)dealloc{
[popoverControllerrelease];
[toolbarrelease];

[detailItemrelease];
[detailDescriptionLabelrelease];
[superdealloc];
}

@end

You need to handle two important events in this View Controller (both events are defined in the
UISplitViewControllerDelegate protocol):

splitViewController:willHideViewController:withBarButtonItem:forPopover-➤➤

Controller: — Fired when the iPad switches to portrait mode (where the PopoverView will
be shown and the Table View will be hidden).

splitViewController:willShowViewController:invalidatingBarButtonItem:➤➤ — Fired when the
iPad switches to landscape mode (where the PopoverView will be hidden and the Table View will
be shown).

Displaying Some items in the Split view-Based Application
Now that you have seen a Split View-based application in action, it is time to make some changes to
it and see how it is useful for the iPad. The following Try It Out displays a list of movies, and when
a movie is selected a picture is displayed on the detail view.

Displaying Some itemstry it Out

 1 . Using the splitViewBasedApp project, double-click the DetailView.xib file to edit it in Interface
Builder.

 2 . Add an ImageView to the View window and set its Mode to Aspect Fit in the Attributes Inspector
window (see Figure 4-34).

The Split View-Based Application Template ❘ 115

figure 4-34

 3 . In the Size Inspector window, set the Autosizing attribute as follows (see Figure 4-35):

X:➤➤ 152

Y:➤➤ 163

W:➤➤ 463

H:➤➤ 644

 4 . In Xcode, add the images listed in Figure 4-36 to the Resources folder (you can download the
images along with this project from Wrox.com; see the section in the book’s Introduction titled
“Source Code” for details).

 5 . In the DetailViewController.h file, insert the following bold statements:

#import<UIKit/UIKit.h>

@interfaceDetailViewController:UIViewController

116 ❘ chApter 4 View cOntrOllerS

figure 4-35

<UIPopoverControllerDelegate,UISplitViewControllerDelegate>{

UIPopoverController*popoverController;
UIToolbar*toolbar;

iddetailItem;
UILabel*detailDescriptionLabel;

 IBOutlet UIImageView *imageView;
}

@property(nonatomic,retain)IBOutletUIToolbar*toolbar;

@property(nonatomic,retain)iddetailItem;
@property(nonatomic,retain)IBOutletUILabel*detailDescriptionLabel;

@property (nonatomic, retain) UIImageView *imageView;

@end

 6 . Control-click and drag the File’s Owner item and drop it on the ImageView. Select imageView.

figure 4-36

The Split View-Based Application Template ❘ 117

 7 . Add the following bold statements to the RootViewController.m file:

#import“RootViewController.h”
#import“DetailViewController.h”

@implementationRootViewController

@synthesizedetailViewController;

NSMutableArray *listOfMovies;

-(void)viewDidLoad{
 //---initialize the array---
 listOfMovies = [[NSMutableArray alloc] init];
 [listOfMovies addObject:@”Training Day”];
 [listOfMovies addObject:@”Remember the Titans”];
 [listOfMovies addObject:@”John Q.”];
 [listOfMovies addObject:@”The Bone Collector”];
 [listOfMovies addObject:@”Ricochet”];
 [listOfMovies addObject:@”The Siege”];
 [listOfMovies addObject:@”Malcolm X”];
 [listOfMovies addObject:@”Antwone Fisher”];
 [listOfMovies addObject:@”Courage Under Fire”];
 [listOfMovies addObject:@”He Got Game”];
 [listOfMovies addObject:@”The Pelican Brief”];
 [listOfMovies addObject:@”Glory”];
 [listOfMovies addObject:@”The Preacher’s Wife”];

 //---set the title---
 self.navigationItem.title = @”Movies”;

[superviewDidLoad];
self.clearsSelectionOnViewWillAppear=NO;
self.contentSizeForViewInPopover=CGSizeMake(320.0,600.0);
}

-(NSInteger)tableView:(UITableView*)aTableView
numberOfRowsInSection:(NSInteger)section{
//Returnthenumberofrowsinthesection.
 //return 10;
 return [listOfMovies count];
}

-(UITableViewCell*)tableView:(UITableView*)tableView
cellForRowAtIndexPath:(NSIndexPath*)indexPath{

staticNSString*CellIdentifier=@”CellIdentifier”;

//Dequeueorcreateacelloftheappropriatetype.
UITableViewCell*cell=[tableView
dequeueReusableCellWithIdentifier:CellIdentifier];

if(cell==nil){

118 ❘ chApter 4 View cOntrOllerS

cell=
[[[UITableViewCellalloc]
initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier]autorelease];
cell.accessoryType=UITableViewCellAccessoryNone;
}

//Configurethecell.
 //cell.textLabel.text = [NSString stringWithFormat:@”Row %d”, indexPath.row];
 cell.textLabel.text = [listOfMovies objectAtIndex:indexPath.row];

returncell;
}

-(void)tableView:(UITableView*)aTableView
didSelectRowAtIndexPath:(NSIndexPath*)indexPath{

/*
Whenarowisselected,setthedetailviewcontroller’sdetailitem
totheitemassociatedwiththeselectedrow.
*/
 //detailViewController.detailItem =
 // [NSString stringWithFormat:@”Row %d”, indexPath.row];
 detailViewController.detailItem =
 [NSString stringWithFormat:@”%@”,
 [listOfMovies objectAtIndex:indexPath.row]];
}

-(void)dealloc{
 [listOfMovies release];
[detailViewControllerrelease];
[superdealloc];
}

 8 . Add the following bold statements to the DetailViewController.m file:

#import“DetailViewController.h”
#import“RootViewController.h”

@interfaceDetailViewController()
@property(nonatomic,retain)UIPopoverController*popoverController;
-(void)configureView;
@end

@implementationDetailViewController

@synthesizetoolbar,popoverController,detailItem,detailDescriptionLabel;

@synthesize imageView;

/*

The Split View-Based Application Template ❘ 119

Whensettingthedetailitem,updatetheviewanddismissthepopover
controllerifit’sshowing.
*/
-(void)setDetailItem:(id)newDetailItem{
if(detailItem!=newDetailItem){
[detailItemrelease];
detailItem=[newDetailItemretain];

//Updatetheview.
 NSString *imageName = [NSString stringWithFormat:@”%@.jpg”,
 [detailItem description]];
 imageView.image = [UIImage imageNamed:imageName];

[selfconfigureView];
}

if(popoverController!=nil){
[popoverControllerdismissPopoverAnimated:YES];
}
}

 9 . Press Command-R to test the application on the iPhone Simulator. As shown in Figure 4-37, when
the Simulator is in landscape mode, the application shows a list of movies on the left. Selecting a
movie displays the movie image. You can also switch to portrait mode and select the movies from
the PopoverView (see Figure 4-38).

figure 4-37

120 ❘ chApter 4 View cOntrOllerS

figure 4-38

How It Works

First, you initialize a mutable array with a list of movie names:

-(void)viewDidLoad{
 //---initialize the array---
 listOfMovies = [[NSMutableArray alloc] init];
 [listOfMovies addObject:@”Training Day”];
 [listOfMovies addObject:@”Remember the Titans”];
 [listOfMovies addObject:@”John Q.”];
 [listOfMovies addObject:@”The Bone Collector”];
 [listOfMovies addObject:@”Ricochet”];
 [listOfMovies addObject:@”The Siege”];
 [listOfMovies addObject:@”Malcolm X”];
 [listOfMovies addObject:@”Antwone Fisher”];
 [listOfMovies addObject:@”Courage Under Fire”];
 [listOfMovies addObject:@”He Got Game”];
 [listOfMovies addObject:@”The Pelican Brief”];
 [listOfMovies addObject:@”Glory”];
 [listOfMovies addObject:@”The Preacher’s Wife”];

 //---set the title---
 self.navigationItem.title = @”Movies”;

[superviewDidLoad];

The Split View-Based Application Template ❘ 121

self.clearsSelectionOnViewWillAppear=NO;
self.contentSizeForViewInPopover=CGSizeMake(320.0,600.0);
}

The value returned by the tableView:numberOfRowsInSection: method sets the number of rows to be
displayed, which in this case is the size of the mutable array:

-(NSInteger)tableView:(UITableView*)aTableView
numberOfRowsInSection:(NSInteger)section{
//Returnthenumberofrowsinthesection.
 //return 10;
 return [listOfMovies count];
}

The tableView:cellForRowAtIndexPath: method is fired for each item in the mutable array, thereby
populating the Table view:

-(UITableViewCell*)tableView:(UITableView*)tableView
cellForRowAtIndexPath:(NSIndexPath*)indexPath{

staticNSString*CellIdentifier=@”CellIdentifier”;

//Dequeueorcreateacelloftheappropriatetype.
UITableViewCell*cell=[tableView
dequeueReusableCellWithIdentifier:CellIdentifier];

if(cell==nil){
cell=
[[[UITableViewCellalloc]
initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier]autorelease];
cell.accessoryType=UITableViewCellAccessoryNone;
}

//Configurethecell.
 //cell.textLabel.text =
 // [NSString stringWithFormat:@”Row %d”, indexPath.row];
 cell.textLabel.text = [listOfMovies objectAtIndex:indexPath.row];

returncell;
}

When an item is selected in the Table view, you pass the movie selected to the DetailViewController
object via its detailItem property:

-(void)tableView:(UITableView*)aTableView
didSelectRowAtIndexPath:(NSIndexPath*)indexPath{

/*
Whenarowisselected,setthedetailviewcontroller’sdetailitem
totheitemassociatedwiththeselectedrow.
*/

 //detailViewController.detailItem =

122 ❘ chApter 4 View cOntrOllerS

 // [NSString stringWithFormat:@”Row %d”, indexPath.row];
 detailViewController.detailItem =
 [NSString stringWithFormat:@”%@”,
 [listOfMovies objectAtIndex:indexPath.row]];
}

In the DetailViewController.m file, you modified the setDetailItem: method (which is really a setter for
the detailItem property) so that an image can be displayed. For the image name, you simply appended a
.jpg to the movie name:

-(void)setDetailItem:(id)newDetailItem{
if(detailItem!=newDetailItem){
[detailItemrelease];
detailItem=[newDetailItemretain];

//Updatetheview.
 NSString *imageName = [NSString stringWithFormat:@”%@.jpg”,
 [detailItem description]];
 imageView.image = [UIImage imageNamed:imageName];

[selfconfigureView];
}

if(popoverController!=nil){
[popoverControllerdismissPopoverAnimated:YES];
}
}

the tAB BAr ApplicAtiOn templAte

You have seen the use of three types of application template provided by the iPhone SDK: View-based
application, Window-based application, and Split View–based application. A fourth type of applica-
tion template exists for the iPhone: The Tab Bar application template. The following Try it Out uses
the Tab Bar Application template to create a project and shows what a Tab Bar application looks like.
Download the necessary project files as indicated.

Creating a Tab Bar Applicationtry it Out

codefile TabBarApplication.zip available for download at Wrox.com

 1 . Using Xcode, create a new Tab Bar Application project and name it tabBarApp.

 2 . Examine the content of the project (see Figure 4-39). In addition to the usual application delegate
files, it also contains one View Controller (FirstViewController) and three XIB files: MainWindow
.xib, FirstView.xib, and SecondView.xib.

The Tab Bar Application Template ❘ 123

figure 4-39

 3 . Examine the content of the tabBarAppAppDelegate.h file, which is as follows:

#import<UIKit/UIKit.h>

@interfacetabBarAppAppDelegate:NSObject
<UIApplicationDelegate,UITabBarControllerDelegate>{

UIWindow*window;
UITabBarController*tabBarController;
}

@property(nonatomic,retain)IBOutletUIWindow*window;
@property(nonatomic,retain)IBOutletUITabBarController
*tabBarController;

@end

Instead of the usual UIViewController class, you are now using the UITabBarController
class, which inherits from the UIViewController class. A TabBarController is a specialized
UIViewController class that contains a collection of View Controllers.

 4 . When the application has finished loading, the current view of the UITabBarController instance is
loaded, an occurrence that is evident in the tabBarAppAppDelegate.m file:

#import“tabBarAppAppDelegate.h”

@implementationtabBarAppAppDelegate

@synthesizewindow;
@synthesizetabBarController;

-(BOOL)application:(UIApplication*)application

124 ❘ chApter 4 View cOntrOllerS

didFinishLaunchingWithOptions:(NSDictionary*)launchOptions{

//Overridepointforcustomizationafterapplicationlaunch.

 // Add the tab bar controller’s view to the window and display.
 [window addSubview:tabBarController.view];
[windowmakeKeyAndVisible];

returnYES;
}

 5 . Double-click the MainWindow.xib file to edit it in Interface Builder. Observe the two Tab Bar Item
views contained within the Tab Bar view shown at the bottom of the View window.

 6 . Click the first Tab Bar Item labeled First (see Figure 4-40). In the Identity Inspector window, observe
that this is a View Controller and that the implementing class is FirstViewController. If you view its
Attributes Inspector window, you will see that it is linked to the FirstView.xib file (see Figure 4-41).

figure 4-40

 7 . Click the second Tab Bar Item and view its Attributes Inspector window. Like the first Tab Bar
Item, it is pointing to an XIB file, in this case it is pointing to the SecondView.xib file. However, if
you examine the Identity Inspector window of the second Tab Bar Item, you will realize that it is
not pointing to any specific View Controller class.

The Tab Bar Application Template ❘ 125

figure 4-41 figure 4-42

 8 . In Xcode, press Command-R to run the application on the iPhone 4 Simulator (see Figure 4-42).
You can now touch the Tab Bar Items at the bottom of the screen to switch between the two views.

How It Works

Basically, the magic of a Tab Bar application is in the use of the UITabBarController class. Double-click
the MainWindow.xib file; you’ll see that it has a Tab Bar Controller item (see Figure 4-43).

The Tab Bar Controller contains a collection of View Controllers. In this case, it has two View Controllers.
The first View Controller inside the UITabBarController instance is always displayed when it is added to
the current view:

-(BOOL)application:(UIApplication*)application
didFinishLaunchingWithOptions:(NSDictionary*)launchOptions{

//Overridepointforcustomizationafterapplicationlaunch.

 // Add the tab bar controller’s view to the window and display.
 [window addSubview:tabBarController.view];
[windowmakeKeyAndVisible];

returnYES;
}

126 ❘ chApter 4 View cOntrOllerS

figure 4-43

When the user touches the Tab Bar Items, each corresponding View Controller is loaded to display its view.

NOTE A Tab Bar Item actually is comprised of a View Controller and a Tab Bar
Item object.

By default, the Tab Bar Application template includes only two Tab Bar Items, so in this section
you’ll learn how to add more Tab Bar Items to the existing Tab Bar.

Adding Tab Bar itemstry it Out

1 . Using the TabBarApplication project, in Interface Builder, drag and drop a Tab Bar Item from the
Library onto the Tab Bar view (see Figure 4-44).

The Tab Bar Application Template ❘ 127

figure 4-44

2 . Select the newly added Tab Bar Item and view its Attributes Inspector window. Set the Badge prop-
erty to 5 and the Identifi er property to Search (see Figure 4-45). Observe the change in appearance
of the Tab Bar Item. Be sure to click the center of the Tab Bar Item so that it can be selected; if you
click the outside, the View Controller is selected.

NOTE The Badge property is a nifty way you can set some numbers or other
text on the Tab Bar Item so that it can serve as a quick visual reminder to users
about something.

3 . In Xcode, right-click the Classes folder in Xcode and choose Add ➪ New File. Click the
Cocoa Touch Classes category and select the UIViewController subclass. Name the fi le
SearchViewController.m and check the “With XIB for user interface” option.

4 . Double-click the newly created SearchViewController.xib fi le to open it in Interface Builder.
Add a Label view to it (see Figure 4-46).

NOTE You won’t be doing much in this SearchViewController.xib fi le. You’re
just adding a Label view so that you can confi rm that this view loads successfully
when the user taps the Tab Bar Item.

128 ❘ chApter 4 View cOntrOllerS

figure 4-45

figure 4-46

The Tab Bar Application Template ❘ 129

 5 . Back in MainWindow.xib, select the Tab Bar Item and view its Attributes Inspector window (see
Figure 4-47). Set its NIB name to SearchViewController.

figure 4-47

 6 . In the Identity Inspector window for the Search Tab Bar Item, set the Class name to
SearchViewController (see Figure 4-48). This step is important; without it, you will get a runtime
error later when you create outlets and actions on the View Controller class.

 7 . Save the project in Interface Builder.

 8 . That’s it! Press Command-R to test the application on the iPhone Simulator. You can now touch
the third Tab Bar Item (Search) to view the label (see Figure 4-49).

How It Works

In this example, you added a Tab Bar Item view to the Tab Bar view and connected it to a XIB file and
its corresponding View Controller class.

Adding new Tab Bar Item views is straightforward: Simply drag the Tab Bar Item from the Library and
drop it into the Tab Bar view. Alternatively, you can add it through the Attributes Inspector window for
the Tab Bar Controller item in the MainWindow.xib window (see Figure 4-50). Click the + (plus) button to
add new View Controllers, and the Tab Bar view automatically inserts a new Tab Bar Item view for you.

130 ❘ chApter 4 View cOntrOllerS

figure 4-48

figure 4-49 figure 4-50

Summary ❘ 131

SummAry

This chapter provided a detailed look at the various application templates provided by the iPhone
SDK: View-based Application, Window-based Application, Split View–based Application, and Tab
Bar Application. Each one uses a different type of View Controller. It is important to have a good
understanding of how the various pieces of an iPhone project are put together — knowing that will
enable you to build applications with sophisticated user interfaces.

exerciSeS

 1 . Write the code snippet that enables you to create a View Controller programmatically .

 2 . Write the code snippet that creates a view dynamically during runtime .

 3 . Write the code snippet that wires an event of a view to an event handler .

 4 . In the windowBasedApp project created earlier in this chapter, create an action to display an Alert
view when the button in the HelloWorldViewController class is pressed .

Answers to the Exercises can be found in Appendix E, on Wrox.com.

132 ❘ chApter 4 View cOntrOllerS

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

types of
iphone/ipad
Applications

View-based application, Window-based application, Split View-based application, and
Tab Bar Application

creating a
label view
by code

 label = [[UILabel alloc] initWithFrame:frame];
 label.textAlignment = UITextAlignmentCenter;
 label.font = [UIFont fontWithName:@”Verdana” size:20];
 label.text = @”This is a label”;

creating a
Button view
by code

 frame = CGRectMake(20, 60, 280, 50);
 button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 button.frame = frame;
 [button setTitle:@”OK” forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];

wiring up
an event
to an event
handler

 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside];

Switching
to another
view

 //---instantiate the second view controller---
 mySecondViewController = [[MySecondViewController alloc]
 initWithNibName:nil
 bundle:nil];
 //---add the view from the second view controller---
 [window addSubview:mySecondViewController.view];

Animating
the view
transition

 [UIView beginAnimations:@”flipping view” context:nil];
 [UIView setAnimationDuration:1];
 [UIView setAnimationCurve:UIViewAnimationCurveEaseInOut];
 [UIView setAnimationTransition: UIViewAnimationTransitionFlipFromLeft
 forView:self.view cache:YES];

 [self.view addSubview:viewController.view];

 [UIView commitAnimations];

Multi-Platform Support for
the iPhone and iPad

whAt yOu will leArn in thiS chApter

Modifying a project’s Targeted Device Family setting to support both ➤➤

the iPhone and the iPad

How to programmatically detect the device being run➤➤

How to create a Universal application➤➤

Creating separate targets for diff erent devices➤➤

Besides the iPhone and iPod touch, another device using the iOS is the iPad. Out-of-the-box,
the iPad will run your existing iPhone applications using the same screen size that is available
on the iPhone and iPod touch — 320 × 480 pixels. Therefore, your applications will utilize
only a portion of the screen. However, applications running in this default mode do not do
justice to the much bigger screen real estate afforded by the iPad. Clearly, this is merely an
interim size that can be used until developers port their application’s UI to the much bigger
iPad screen. In order to support the different devices, you need to modify your applications
so that they can take advantage of the capabilities of each device type.

Though the iPad is also running the iPhone OS, you should be aware of some subtle differences
when porting your applications over to the new device. This chapter examines three techniques
you can use to port your existing iPhone apps to support both the iPhone and iPad.

NOTE At the time of writing, the iPad runs an older version of the iPhone OS, 3.2;
whereas the iPhone 4 and iPod touch run the newer 4.0. Apple has announced
that the iPad will be running iOS 4.0 later in the fall of 2010. iPhone 3 and iPhone
3GS users can also upgrade their devices to run iOS 4.

5

134 ❘ chApter 5 multi-PlatFOrm SuPPOrt FOr the iPhOne and iPad

technique 1 — mODifying the Device tArget Setting

The easiest way to ensure that your iPhone application runs as an iPad application (that is, full screen)
is to modify the Targeted Device Family setting in your Xcode project. The following Try It Out shows
you how to achieve this.

Modifying the Device Target Settingtry it Out

codefile MyiPhoneApp.zip available for download at Wrox.com

 1 . Using Xcode, create a new View-based Application (iPhone) project (see Figure 5-1) and name it
MyiPhoneApp.

figure 5-1

 2 . Double-click the MyiPhoneAppViewController.xib file to edit it in Interface Builder.

 3 . Populate the View window with the following views (see Figure 5-2):

Label (set it to display “Please enter your name”)➤➤

Technique 1 — Modifying the Device Target Setting ❘ 135

Text fi eld➤➤

Round Rect button (set it to display “OK”)➤➤

4 . Back in Xcode, press Command-R to test the application on the iPhone 4.0 Simulator. You should
see the screen shown in Figure 5-3.

figure 5-3figure 5-2

5 . Expand the Targets item in the project and double-click the MyiPhoneApp item (see Figure 5-4).

 6 . Click the Build tab and scroll down the list. Under the Architectures section, select Base SDK ➪
iPhone Device 3.2 (see Figure 5-5).

7 . In Xcode, change the simulator to Simulator 3.2 and press Command-R again. This time, the
application will be shown running in the iPhone Simulator (simulating the iPad), running as an
iPhone application (see Figure 5-6). This is the default behavior of iPhone applications running
on the iPad.

NOTE If the iPhone Simulator continues to simulate the iPhone, restart it. After
this, it will simulate the iPad.

136 ❘ chApter 5 multi-PlatFOrm SuPPOrt FOr the iPhOne and iPad

figure 5-4

figure 5-5

Technique 1 — Modifying the Device Target Setting ❘ 137

figure 5-6

 8 . In Xcode, double-click the MyiPhoneApp item listed under Targets again. Click the Build tab and
scroll down the list. Under the Deployment section, select Targeted Device Family ➪ iPhone/iPad
(see Figure 5-7).

 9 . Press Command-R to test the application on the iPhone 3.2 Simulator again. This time, your appli-
cation will run natively as an iPad application (see Figure 5-8).

How It Works

In this example, you first created an iPhone application that you then tested on the iPhone 4 and iPhone 3.2
(iPad) Simulator. By default, all iPhone applications will run in their original screen size — 320 x 480. If you
want your iPhone application to run full screen on the iPad, you have to modify the Targeted Device Family
setting in your project.

138 ❘ chApter 5 multi-PlatFOrm SuPPOrt FOr the iPhOne and iPad

figure 5-7

The Targeted Device Family setting provides three different values: iPhone, iPad, or iPhone/iPad. Setting
it to iPhone/iPad ensures that your application can automatically detect the device on which it is running,
and runs your application full screen.

Notice that the UI of the application is exactly the same as that on the iPhone. It is your responsibility
to re-layout your UI when the application is running on the iPad. One way would be to programmati-
cally reposition your views when your application detects that it is running on an iPad. The next sec-
tion describes how to detect the device on which an application is currently running.

Technique 1 — Modifying the Device Target Setting ❘ 139

figure 5-8

Detecting the platform programmatically
In order to re-layout your UI according to the device on which it is running, it is important to be
able to programmatically detect if your application is running on an iPhone/iPod touch or an iPad.
The following Try It Out shows you how.

Detecting the Devicetry it Out

 1 . Using the project created in the previous section, add the following statements shown in bold to the
MyiPhoneAppViewController.m file:

-(void)viewDidLoad{

 #if (__IPHONE_OS_VERSION_MAX_ALLOWED >= 30200)

 NSString *str;
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {
 str = [NSString stringWithString:@”Running as an iPad application”];

140 ❘ chApter 5 multi-PlatFOrm SuPPOrt FOr the iPhOne and iPad

 } else {
 str = [NSString stringWithString:
 @”Running as an iPhone/iPod touch application”];
 }

 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@”Platform”
 message:str
 delegate:nil
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];

 #endif

[superviewDidLoad];
}

 2 . Press Command-R to test the application on the iPhone 3.2 Simulator. You will see the message
displayed in Figure 5-9.

 3 . In Xcode, select iPhone for the Targeted Device Family setting (see the previous section for the
steps to modify this setting) and choose the Simulator 3.2 item. Press Command-R; you will notice
that the application now runs on the iPhone 3.2 Simulator as an iPhone application. Figure 5-10
shows the alert that it will display.

figure 5-9 figure 5-10

Technique 2 — Creating Universal Applications ❘ 141

How It Works

The preceding code includes a conditional compilation directive to indicate that if the application is com-
piled against the minimum iPhone OS version of 3.2, it will then include a block of code to programmati-
cally detect the type of application it is currently running as:

 #if (__IPHONE_OS_VERSION_MAX_ALLOWED >= 30200)

 //---code within this block will be compiled if application is compiled
 // for iPhone OS 3.2 and above---

 #endif

To detect if the application is running on an iPad, you check the result of the UI_USER_INTERFACE_IDIOM()
function. This function returns the interface idiom supported by the current device. If it is an iPad, the
result of this function will be UIUserInterfaceIdiomPad:

 NSString *str;
 if (UI_USER_INTERFACE_IDIOM() == UIUserInterfaceIdiomPad) {
 str = [NSString stringWithString:@”Running as an iPad application”];
 } else {
 str = [NSString stringWithString:
 @”Running as an iPhone/iPod touch application”];
 }

If the application is running as an iPhone application on the iPad, the UI_USER_INTERFACE_IDIOM()func-
tion will return UIUserInterfaceIdiomPhone.

technique 2 — creAting univerSAl ApplicAtiOnS

The previous technique shows how you can modify the Targeted Device Family setting to create a
single application that runs on both the iPhone and iPad, called a Universal application. The chal-
lenge is adapting the UI of the application for each platform — you have to programmatically detect
the type of device the application is running on and then modify the layout of the UI dynamically.

Apple recommends that you create a Universal application, one that targets both the iPhone and the
iPad, with separate XIB files representing the UI for each platform. The following Try It Out shows
you how you can create a Universal application.

Creating a Universal Applicationtry it Out

codefile Universal.zip available for download at Wrox.com

 1 . Using Xcode, create a View-based Application (iPhone) project and name it Universal.

 2 . Double-click on the UniversalViewController.xib file to edit it in Interface Builder.

 3 . Add a Label view to the View window and label it as shown in Figure 5-11.

142 ❘ chApter 5 multi-PlatFOrm SuPPOrt FOr the iPhOne and iPad

 4 . Press Command-R to test the application on the iPhone 4 Simulator. You will see the application
running on the iPhone 4 Simulator (see Figure 5-12).

figure 5-11 figure 5-12

 5 . Back in Xcode, select Targets ➪ Universal. Then select Project ➪ Upgrade Current Target for iPad
(see Figure 5-13).

 6 . In the dialog box that appears, check the One Universal application option and click OK (see
Figure 5-14).

You will now see a folder named Resources-iPad containing a XIB file named MainWindow-iPad.xib
(see Figure 5-15).

 7 . Examine the Universal-Info.plist file located within the Resources folder. You will see a key
named “Main nib file base name (iPad),” with its value set to MainWindow-iPad (see Figure 5-16).

 8 . Right-click on the Resources-iPad folder and select Add ➪ New File (see Figure 5-17).

 9 . Select Cocoa Touch Class and then select the UIViewController subclass template (see
Figure 5-18). Make sure that the Targeted for iPad and With XIB for user interface options
are checked. Click Next.

Technique 2 — Creating Universal Applications ❘ 143

figure 5-13

figure 5-14

144 ❘ chApter 5 multi-PlatFOrm SuPPOrt FOr the iPhOne and iPad

figure 5-15

figure 5-16

Technique 2 — Creating Universal Applications ❘ 145

figure 5-17

figure 5-18

146 ❘ chApter 5 multi-PlatFOrm SuPPOrt FOr the iPhOne and iPad

 10 . Name the class iPadUniversalViewController.m. The
Resources-iPad folder should now look like Figure 5-19.

 11 . Double-click on the iPadUniversalViewController.xib file
to edit it in Interface Builder.

 12 . Populate the View window with the Label view and set it to
display the string as shown in Figure 5-20.

 13 . Double-click the MainWindow-iPad.xib file to edit it in
Interface Builder.

 14 . Select the Universal View Controller item and
view its Identity Inspector window. Set its Class to
iPadUniversalViewController (see Figure 5-21).

 15 . With the same View Controller selected, view its Attributes
Inspector window and set its NIB Name attribute to
iPadUniversalViewController (see Figure 5-22).

figure 5-20

figure 5-19

Technique 2 — Creating Universal Applications ❘ 147

figure 5-21 figure 5-22

 16 . In Xcode, select Universal – iPad Simulator 3.2 (see
Figure 5-23) and press Command-R to test the application
on the iPhone 3.2 Simulator. You will see the application
as shown in Figure 5-24.

 17 . If you now select the Universal – iPhone Simulator 4
option and press Command-R to test the application on
the iPhone 4 Simulator, you should see the application as
shown in Figure 5-25.

How It Works

This has been a pretty long Try It Out, but the concepts covered in
it are actually very straightforward.

First, you asked Xcode to upgrade the device target for this proj-
ect to the iPad. Essentially, Xcode modified the Targeted Device
Family setting (located under the Deployment section of your
target in Xcode) to iPhone/iPad.

Xcode will automatically create a copy of the MainWindow.xib file and name it MainWindow-iPad.xib.
When the application is loaded in an iPhone or iPod touch, the MainWindow.xib file will be
loaded. When the application is loaded in an iPad, the MainWindow-iPad.xib file will be loaded.

figure 5-23

148 ❘ chApter 5 multi-PlatFOrm SuPPOrt FOr the iPhOne and iPad

figure 5-24 figure 5-25

By default, both MainWindow.xib and MainWindow-iPad.xib will automatically load
UniversalViewController.xib when the application is started. In this example, you have added another
View window, which is comprised of the following three files:

iPadUniversalViewController.xib➤➤

iPadUniversalViewController.h➤➤

iPadUniversalViewController.m➤➤

This new View window will be loaded by the MainWindow-iPad.xibfile. Essentially, you
design your iPhone UI in the UniversalViewController.xib file, and the iPad UI in the
iPadUniversalViewController.xibfile.

Note that strictly speaking, the additional View Controller class (the iPadUniversalViewController.h and
the iPadUniversalViewController.m) is not needed. The new XIB file (iPadUniversalViewController
.xib) can be connected to the existing View Controllers class (UniversalViewController), which is cur-
rently connected to UniverslViewController.xib. Essentially, the two XIB files can be connected to the
same View Controller class.

The important thing to keep in mind about a Universal application is that you need to create separate XIB
files for the different platforms — one for iPhone and one for the iPad. Once you do that, the application
itself will automatically detect whether it is running on the iPhone or the iPad and then load the appropriate
XIB file. It is your responsibility to create separate XIB files for the user interface in the iPhone and iPad.

The result of using this approach is that you have only one executable for your application.

Technique 3 — Maintaining Two Code Bases ❘ 149

So far, this chapter has covered two of the three techniques available for porting your existing apps
to the iPad (modifying the Targeted Device Family setting and creating universal apps). Next, you
will learn about maintaining separate targets with different code bases.

technique 3 — mAintAining twO cODe BASeS
The third technique for developing your application for multiple devices is to maintain separate tar-
gets for your application. Using this approach, you will have two executables eventually — one for
the iPhone/iPod touch, and one for the iPad. The following steps explain how to accomplish this.

Maintaining Separate Targets with Different Code Basestry it Out

codefile MyAppiPhone.zip available for download at Wrox.com

 1 . Using Xcode, create a View-based Application (iPhone) project and name it MyAppiPhone.

 2 . Select Targets ➪ MyAppiPhone, and then select Project ➪ Upgrade Current Target for iPad.

 3 . In the dialog box that appears, select the Two device-specific applications option and click OK (see
Figure 5-26).

figure 5-26

 4 . Observe the items created by Xcode (see Figure 5-27). Two sets of resources and targets are created
for you — one for the iPhone and one for the iPad. You need to maintain two separate sets of files
for each platform.

150 ❘ chApter 5 multi-PlatFOrm SuPPOrt FOr the iPhOne and iPad

 5 . To test the application on the iPhone 4 Simulator, select MyAppiPhone (under the Active Target;
see Figure 5-28) and press Command-R. Your application will run as an iPhone application (see
Figure 5-29).

figure 5-27 figure 5-28

 6 . To test the application on the iPhone 3.2 Simulator,
select MyAppiPhone-iPad (under the Active Target;
see Figure 5-30) and press Command-R. Your applica-
tion will run as an iPad application (see Figure 5-31).

How It Works

Like the Universal application approach, you need to
maintain two sets of resources. In this example, both
XIB files are connected to the same View Controller
(MyAppiPhoneViewController). You can connect each
XIB file to its own View Controller if you like.

The main difference between this technique and the univer-
sal approach is that this technique results in two separate
targets — one for the iPhone and one for the iPad. Because
of this, there will be two separate executables for your
application (listed under the Products folder in your Xcode
project). When you are ready to deploy your application
to the AppStore, you need to submit these two executables
separately.

figure 5-29

Making Your Choice ❘ 151

figure 5-30 figure 5-31

mAking yOur chOice

Now that you have seen the three techniques for porting your iPhone application to support the
iPad, which technique should you adopt?

If your application does not have many UI changes when running on either the iPhone or iPad, using
the first technique (modifying the device target setting) is the easiest way to support two platforms
with a single code base and a single UI. All you need to do is to ensure that when the application
runs on the iPad, the UI is rearranged correctly — this can be done programmatically in your View
Controller.

Most developers should benefit from creating Universal applications. When you have an application
that supports two different platforms, creating a Universal application allows you to have one code
base and several XIB files designed specifically for the iPhone and iPad. This technique and the first
save you the trouble of uploading two different editions of your application to AppStore. You need
to upload just one version of your application and it will automatically support both platforms.

The last technique, maintaining two different code bases, is useful if your application behaves dif-
ferently when it is running on different platforms. When your application does not support certain

152 ❘ chApter 5 multi-PlatFOrm SuPPOrt FOr the iPhOne and iPad

features while running on the iPhone, you might have quite a different code base for each platform.
In this case, maintaining different code bases might be a better idea and save you the trouble of bun-
dling all the unnecessary files into a single application.

SummAry

In this chapter, you have seen how to port an existing iPhone application to support both the iPhone
and the iPad. In general, the Universal application approach is the recommended one, as it allows
you to maintain just one code base that can target multiple platforms.

exerciSeS

 1 . What is the difference between creating a Universal application versus creating separate targets?

 2 . What function enables you to determine the device platform on which your application is currently
running?

 3 . What are the different values available for the Targeted Device Family setting in your Xcode
project?

Answers to exercises can be found in Appendix E, on Wrox.com.

Summary ❘ 153

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

Supporting an application
natively on the iphone and ipad

Modify the Target Device Setting of the project in Xcode and set it
to iPhone/iPad .

Detecting the device
programmatically

Use the UI_USER_INTERFACE_IDIOM() function .

creating a universal application Select the target in the Xcode project and then select Project ➪
Upgrade Current Target for iPad . Choose the One Universal
application option .

creating separate targets Select the target in the Xcode project and then select Project ➪
Upgrade Current Target for iPad . Choose the Two device-specific
applications option .

Keyboard inputs

whAt yOu will leArn in thiS chApter

How to customize the keyboard for diff erent types of inputs➤➤

How to hide the keyboard when you are done typing➤➤

How to detect when a keyboard is visible or not➤➤

How to use ScrollView to contain other views➤➤

How to shift views to make way for the keyboard➤➤

One of the controversial aspects of the iPhone is the multi-touch keyboard that enables users
to input data into their iPhone. Critics of the iPhone have criticized its lack of a physical key-
board for data entry, whereas ardent supporters of virtual keyboards swear by its ease of use.

What makes the iPhone keyboard so powerful is its intelligence in tracking what you type,
followed by suggestions for the word you are typing, and automatically correcting the spelling
and inserting punctuation for you. What’s more, the keyboard knows when to appear at the
right time — it appears when you tap a Text Field view, and it goes away automatically when
you tap a non-input view. You can also input data in different languages.

For iPhone application programmers, the key concern is how to integrate the keyboard into the
application. How do you make the keyboard go away naturally when it is no longer needed?
And how do you ensure that the view the user is currently interacting with is not blocked by the
keyboard? In this chapter, you learn various ways to deal with the keyboard programmatically.

uSing the keyBOArD

In iPhone programming, the views most commonly associated with the keyboard are the Text
Field view and the TextView view. When a Text Field view is tapped (or clicked, if you are using

6

156 ❘ chApter 6 KeYbOard inPutS

the Simulator), the keyboard is automatically displayed. The data that the user taps on the keyboard
is then inserted into the Text Field view. The following Try It Out demonstrates this.

Using a TextField for inputstry it Out

codefile KeyboardInputs.zip available for download at Wrox.com

 1 . Using Xcode, create a new View-based Application (iPhone) project and name it KeyboardInputs.

 2 . Double-click the KeyboardInputsViewController.xib file to edit it using Interface Builder.

 3 . Populate the View window with the Label and Text Field views (see Figure 6-1). Set the Label view
to display the text “Alphanumeric Input.”

figure 6-1

 4 . Save the KeyboardInputsViewController.xib file and press Command-R in Xcode to run the
application on the iPhone 4 Simulator. When the application is loaded, the keyboard is initially
hidden, and when the user clicks the Text Field view, the keyboard automatically appears (see
Figure 6-2).

How It Works

The beauty of the iPhone user interface is that when the system detects that the current active view is
a Text Field view, the keyboard automatically appears; you don’t need to do anything to bring up the
keyboard. Using the keyboard, you can enter alphanumeric data as well as numbers and special char-
acters (such as symbols). The keyboard in the iPhone also supports characters of languages other than
English, such as Chinese and Hebrew.

Customizing the Type of inputs ❘ 157

figure 6-2

cuStOmizing the type
Of inputS

To learn more about the input behaviors, go to
Interface Builder, select the Text Field view, and
view its Attributes Inspector window (choose
Tools ➪ Attributes Inspector). Figure 6-3 shows
that window. In particular, pay attention to the
section at the bottom labeled Text Input Traits.

The Text Input Traits section contains several
items you can configure to determine how the key-
board handles the text entered:

Capitalize➤➤ — Enables you to capitalize the
words, sentences, or all characters of the
data entered via the keyboard.

Correction➤➤ — Enables you to indicate
whether you want the keyboard to provide
suggestions for words that are not spelled

figure 6-3

158 ❘ chApter 6 KeYbOard inPutS

correctly. You can also choose the Default option, which defaults to the user’s global text
correction settings.

Keyboard➤➤ — Enables you to choose the different types of keyboard for entering different
types of data. Figure 6-4 shows (from left to right) the keyboard configured with the follow-
ing Keyboard types: Email Address, Phone Pad, and Number Pad.

figure 6-4

Appearance➤➤ — Enables you to choose how the keyboard should appear.

Return➤➤ Key — Enables you to show different types of Return key in your keyboard (see
Figure 6-5). Figure 6-6 shows the keyboard set with the Google key serving as the Return key
(the Return key appears as “Search”).

figure 6-5 figure 6-6

Auto-Enable Return Key check box➤➤ — Indicates that if no input is entered for a field, the
Return key will be disabled (grayed out). It is enabled again if at least one character is
entered.

Secure check box➤➤ — Indicates whether the input will be masked (see Figure 6-7). This is usu-
ally used for password input.

Customizing the Type of inputs ❘ 159

figure 6-7

making the keyboard go Away
You know that the keyboard in the iPhone automatically appears when a Text Field view is selected.
What about making it go away when you are done typing? You have two ways to dismiss the
keyboard.

NOTE On the iPad, there is a third way of making the keyboard go away without
any programming eff ort on your part — simply tapping the bottom right key on
the keyboard dismisses the keyboard.

First, you can dismiss the keyboard by tapping the Return key on the keyboard. This method requires
you to handle the DidEndonExit event of the Text Field view that caused the keyboard to appear.
This method is demonstrated in the following Try It Out.

Second, you can dismiss the keyboard when the user taps outside a Text Field view. This method,
which requires some additional coding, makes your application much more user-friendly. The subse-
quent Try It Out illustrates this method.

160 ❘ chApter 6 KeYbOard inPutS

Dismissing the Keyboard (Technique 1)try it Out

 1 . Using the KeyboardInputs project, edit the KeyboardInputsViewController.h file by adding the
following bold statements:

#import<UIKit/UIKit.h>

@interfaceKeyboardInputsViewController:UIViewController{

}

-(IBAction) doneEditing:(id) sender;

@end

 2 . Double-click the KeyboardInputsViewController.xib file to edit it in Interface Builder. Right-click
the Text Field view in the View window and then click the circle next to the DidEndonExit
event and drag it to the File’s Owner item (see Figure 6-8). The doneEditing: action you have just
created should appear. Select it.

 3 . Save the KeyboardInputsViewController.xib file.

 4 . In the KeyboardInputsViewController.m file, provide the implementation for the doneEditing:
action:

#import“KeyboardInputsViewController.h”

@implementationKeyboardInputsViewController

-(IBAction) doneEditing:(id) sender {
 [sender resignFirstResponder];
}

figure 6-8

Customizing the Type of inputs ❘ 161

5 . Save the project and press Command-R to run the application on the iPhone 4 Simulator.

6 . When the application appears on the iPhone 4 Simulator, tap the Text Field view. The keyboard
should appear. Using the keyboard, type some text into the view and click the Return key when
you are done. The keyboard now goes away.

How It Works

What you have just done is connect the DidEndonExit event of the Text Field view with the
doneEditing: action you have created. When you are editing the content of a Text Field view using the
keyboard, clicking the Return key on the keyboard fi res the DidEndonEdit event of the Text Field
view. In this case, it invokes the doneEditing: action, which contains the following statement:

 [sender resignFirstResponder];

The sender in this case refers to the Text Field view, and resignFirstResponder asks the Text Field view
to resign its First-Responder status. Essentially, it means that you do not want to interact with the Text
Field view anymore and that the keyboard is no longer needed. Hence, the keyboard should hide itself.

NOTE The First Responder in a view always refers to the current view with
which the user is interacting. In this example, when you click the Text Field view,
it becomes the First Responder and activates the keyboard automatically.

An alternative way to hide the keyboard is when the user taps an area outside of the Text Field
view. This method is more natural and does not require the user to manually tap the Return key
on the keyboard to hide the keyboard. The following Try It Out shows how this method can be
implemented.

Dismissing the Keyboard (Technique 2)try it Out

 1 . Using the KeyboardInputs project, double-click the KeyboardInputsViewController.xib fi le to edit
it using Interface Builder.

 2 . Add a Round Rect Button view to the View window (see Figure 6-9).

 3 . With the Round Rect Button view selected, choose Layout ➪ Send to Back. This makes the button
appear behind the other controls.

 4 . Resize the Round Rect Button view so that it now covers the entire screen (see Figure 6-10).

 5 . In the Attributes Inspector window, set the Type of the Round Rect Button view to Custom (see
Figure 6-11).

162 ❘ chApter 6 KeYbOard inPutS

figure 6-9 figure 6-10

figure 6-11

Customizing the Type of inputs ❘ 163

6 . In Xcode, edit the KeyboardInputsViewController.h fi le by adding the following bold statements:

#import<UIKit/UIKit.h>

@interfaceKeyboardInputsViewController:UIViewController{
 IBOutlet UITextField *textField;
}

@property (nonatomic, retain) UITextField *textField;

-(IBAction)doneEditing:(id)sender;
-(IBAction) bgTouched:(id) sender;

@end

7 . In Interface Builder, Control-click and drag the File’s Owner item onto the Text Field view. The
textField outlet should appear. Select it.

8 . Control-click and drag the Round Rect Button view onto the File’s Owner item in the
KeyboardInputsViewController.xib window (see Figure 6-12). Select the bgTouched: action.

NOTE The TouchUpInside event of the Round Rect Button view is wired to the
bgTouched: action.

9 . Save the XIB fi le in Interface Builder.

figure 6-12

164 ❘ chApter 6 KeYbOard inPutS

 10 . In the KeyboardInputsViewController.m file, add the following statements highlighted in bold:

#import“KeyboardInputsViewController.h”

@implementationKeyboardInputsViewController

@synthesize textField;

-(IBAction) bgTouched:(id) sender {
 [textField resignFirstResponder];
}

-(IBAction)doneEditing:(id)sender{
[senderresignFirstResponder];
}

 11 . That’s it. Press Command-R in Xcode to deploy the application onto the iPhone 4 Simulator.
Then, try the following:

Click the Text Field view to bring up the keyboard.➤➤

When you are done, click the Return key on the keyboard to dismiss it. Alternatively, click ➤➤

any of the empty spaces outside the Text Field view to dismiss the keyboard.

How It Works

In this example, you added a Round Rect Button view to cover up all the empty spaces in the View win-
dow of your application. Essentially, the button acts as a net to trap all touches outside of the Text Field
view on the View window, so when the user clicks (or taps, on a real device) the screen outside the key-
board and the Text Field view, the Round Rect Button fires the TouchUpInside event, which is handled
by the bgTouched: action. In the bgTouched: action, you explicitly asked textField to resign its
First-Responder status, which causes the keyboard to disappear.

The technique used in this example applies even if you have multiple TextField views on your view.
Suppose you have three Text Field views, with outlets named textField, textField2, and textField3.
In that case, the bgTouched: action looks like this:

-(IBAction) bgTouched:(id) sender {
 [textField resignFirstResponder];
 [textField2 resignFirstResponder];
 [textField3 resignFirstResponder];
}

When the bgTouched: action is invoked, all three TextField views are asked to relinquish their
First-Responder status. Calling the resignFirstResponder method on a view that is currently not
the First Responder is harmless; hence, the preceding statements are safe and will not cause a runtime
exception.

Detecting the Presence of the Keyboard ❘ 165

unDerStAnDing the reSpOnDer chAin

The prior Try It Out is a good example of the responder chain in action. In the
iPhone, events are passed through a series of event handlers known as the responder
chain. As you touch the screen of your iPhone, the iPhone generates events that are
passed up the responder chain. Each object in the responder chain checks whether
it can handle the event. In the preceding example, when the user taps on the Label
view, the Label view checks whether it can handle the event. Because the Label event
does not handle the Touch event, it is passed up the responder chain. The large back-
ground button that you have added is now next in line to examine the event. Because it
handles the TouchUpInside event, the event is consumed by the button.

In summary, objects higher up in the responder chain examine the event fi rst and
handle it if it is applicable. Any object can then stop the propagation of the event
up the responder chain, or pass the event up the responder chain if it only partially
handles the event.

Automatically Displaying the keyboard when the view is loaded
Sometimes you might want to straightaway set a Text Field view as the active view and display the
keyboard without waiting for the user to do so. In such cases, you can use the becomeFirstResponder
method of the view. The following code shows that the Text Field view will be the First Responder as
soon as the View window is loaded:

-(void)viewDidLoad{
 [textField becomeFirstResponder];
[superviewDidLoad];
}

Detecting the preSence Of the keyBOArD

Up to this point, you have seen the various ways to hide the keyboard after you are done using it.
However, there is one problem to note: When the keyboard appears, it takes up a signifi cant portion
of the screen. If your Text Field view is located at the bottom of the screen, it would be covered by the
keyboard. As a programmer, it is your duty to ensure that the view is relocated to a visible portion of
the screen. Surprisingly, this is not taken care of by the SDK; you have to do the hard work yourself.

NOTE The keyboard in the iPhone (3G and 3GS) takes up 216 pixels (432 pix-
els for iPhone 4) in height when in portrait mode, and 162 pixels (324 pixels for
iPhone 4) when in landscape mode. For the iPad, the keyboard takes up 264
pixels in height when in portrait mode, and 352 pixels when in landscape mode.

166 ❘ chApter 6 KeYbOard inPutS

First, though, it is important that you understand a few key concepts related to the keyboard:

You need to be able to programmatically know when a keyboard is visible or hidden. ➤➤

To do so, your application needs to register UIKeyboardDidShowNotification and
UIKeyboardDidHideNotification.

You also need to know when and which Text Field view is currently being edited so that you ➤➤

can relocate it to a visible portion of the screen. You can determine this information through
the — textFieldDidBeginEditing: event available in the UITextFieldDelegate protocol.

Confused? Worry not; the following sections make it all clear.

using the Scroll view
The key to relocating the view that is currently being hidden by the keyboard is to use a Scroll View
to contain all the views on the View window. When a view (such as the Text Field) is hidden by the
keyboard when the user taps on it, you can scroll all the views contained in the Scroll View upwards
so that the view currently responding to the tap is visible. Before you learn how to do that, however,
you need to first understand how the Scroll View works. The following Try It Out shows you that.

Understanding the Scroll Viewtry it Out

codefile Scroller.zip available for download at Wrox.com

 1 . Using Xcode, create a new View-based Application (iPhone) project and name it Scroller.

 2 . Double-click on the ScrollerViewController.xib file located in the Resources folder to edit it in
Interface Builder.

 3 . Populate the View window with a Scroll View (see Figure 6-13).

 4 . Add two Round Rect Button views to the Scroll View (see Figure 6-14).

 5 . To add more views to the Scroll View so that the user can view more than what the View window
typically displays at a time, perform the following steps:

Click the Scroll View to select it. If you cannot select it, click on the title bar of the View win-➤➤

dow first and then click the Scroll View again.

Shift the Scroll View upwards (see the left of Figure 6-15).➤➤

Expand the height of the Scroll View by clicking and dragging the center-dot of the Scroll ➤➤

View downwards. The Scroll View should now look like Figure 6-15 (on the right).

 6 . Add a Text Field view onto the bottom of the Scroll View (see Figure 6-16).

Detecting the Presence of the Keyboard ❘ 167

figure 6-13

figure 6-14

168 ❘ chApter 6 KeYbOard inPutS

figure 6-15

figure 6-16

 7 . Select the Scroll View and view its Size Inspector window (see Figure 6-17). Observe that its size is
320 × 713 points. You will need to use this value in your code, which you will do next.

Detecting the Presence of the Keyboard ❘ 169

figure 6-17

NOTE The unit of dimension used in Interface Builder is points. For the iPhone
3G/3GS, a point corresponds to a pixel. For the iPhone 4, a point is equal to two
pixels. Specifying the size in points allows your application to work correctly on
both the older and newer iPhones. The conversion between points and pixels is
done automatically by the iOS.

8 . Back in Xcode, add the following code in bold to the ScrollViewController.h fi le:

#import<UIKit/UIKit.h>

@interfaceScrollerViewController:UIViewController{
 IBOutlet UIScrollView *scrollView;
}

@property (nonatomic, retain) UIScrollView *scrollView;

@end

9 . In Interface Builder, Control-click and drag the File’s Owner item over the Scroll View. Select
scrollView.

170 ❘ chApter 6 KeYbOard inPutS

 10 . Insert the following bold code in the ScrollerViewController.m file:

#import“ScrollerViewController.h”

@implementationScrollerViewController

@synthesize scrollView;

-(void)viewDidLoad{
 scrollView.frame = CGRectMake(0, 0, 320, 460);
 [scrollView setContentSize:CGSizeMake(320, 713)];
[superviewDidLoad];
}

-(void)dealloc{
 [scrollView release];
[superdealloc];
}

 11 . To test the application on the iPhone 4 Simulator, press Command-R. You can now flick the Scroll
View up and down to reveal all the views contained in it (see Figure 6-18)!

figure 6-18

Detecting the Presence of the Keyboard ❘ 171

 12 . Tap on the Text Field view located at the bottom. The keyboard will automatically appear. However,
observe that the Text Field view is now covered by the keyboard (see Figure 6-19). It is your duty to
ensure that the current view is not hidden by the keyboard; the next section shows you how.

figure 6-19

How It Works

This example is pretty straightforward. You use the Scroll View as a container for other views. If you
have more views than what you can display on screen, you can expand the Scroll View and put all your
views in it. The important point to remember is that you need to set the content size and the frame size
of the Scroll View. The frame size determines the visible area of the Scroll View. The content size sets
the overall size of the Scroll View. As long as the content size is larger than the frame size, the Scroll
View will be scrollable.

Scrolling views when the keyboard Appears
Now that you understand how the Scroll View works, it is time to see how you can scroll all the
views contained within it when the keyboard appears.

172 ❘ chApter 6 KeYbOard inPutS

Shifting Viewstry it Out

1 . Using the same project created in the previous section, add a few more Label and Text Field views
to the bottom of the Scroll View (see Figure 6-20) in Interface Builder.

figure 6-20

2 . In the ScrollerViewController.h fi le, add the following code in bold:

#import<UIKit/UIKit.h>

@interfaceScrollerViewController:UIViewController{
IBOutletUIScrollView*scrollView;

 UITextField *currentTextField;
 BOOL keyboardIsShown;
}

@property(nonatomic,retain)UIScrollView*scrollView;

@end

3 . In Interface Builder, right-click each Text Field view and connect the delegate outlet to the File’s
Owner item.

NOTE Step 3 is important because it enables the various events (textFieldDid-
BeginEditing:, textFieldDidEndEditing: and textFieldShouldReturn:) to be
handled by your View Controller.

Detecting the Presence of the Keyboard ❘ 173

4 . Change the content size of the Scroll View to match its new size:

-(void)viewDidLoad{
scrollView.frame=CGRectMake(0,0,320,460);
 [scrollView setContentSize:CGSizeMake(320, 1040)];
[superviewDidLoad];
}

NOTE You can confi rm the new content size of the Scroll View by looking at its
Size Inspector window.

5 . Add the following methods to the ScrollerViewController.m fi le:

//---before the View window appears---
-(void) viewWillAppear:(BOOL)animated {
 //---registers the notifications for keyboard---
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(keyboardDidShow:)
 name:UIKeyboardDidShowNotification
 object:self.view.window];

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(keyboardDidHide:)
 name:UIKeyboardDidHideNotification
 object:nil];
}

//---when a TextField view begins editing---
-(void) textFieldDidBeginEditing:(UITextField *)textFieldView {
 currentTextField = textFieldView;
}

//---when the user taps on the return key on the keyboard---
-(BOOL) textFieldShouldReturn:(UITextField *) textFieldView {
 [textFieldView resignFirstResponder];
 return NO;
}

//---when a TextField view is done editing---
-(void) textFieldDidEndEditing:(UITextField *) textFieldView {
 currentTextField = nil;
}

//---when the keyboard appears---
-(void) keyboardDidShow:(NSNotification *) notification {
 if (keyboardIsShown) return;

 NSDictionary* info = [notification userInfo];

 //---obtain the size of the keyboard---

174 ❘ chApter 6 KeYbOard inPutS

 NSValue *aValue =
 [info objectForKey:UIKeyboardFrameEndUserInfoKey];
 CGRect keyboardRect =
 [self.view convertRect:[aValue CGRectValue] fromView:nil];

 NSLog(@”%f”, keyboardRect.size.height);

 //---resize the scroll view (with keyboard)---
 CGRect viewFrame = [scrollView frame];
 viewFrame.size.height -= keyboardRect.size.height;
 scrollView.frame = viewFrame;

 //---scroll to the current text field---
 CGRect textFieldRect = [currentTextField frame];
 [scrollView scrollRectToVisible:textFieldRect animated:YES];

 keyboardIsShown = YES;
}

//---when the keyboard disappears---
-(void) keyboardDidHide:(NSNotification *) notification {
 NSDictionary* info = [notification userInfo];

 //---obtain the size of the keyboard---
 NSValue* aValue =
 [info objectForKey:UIKeyboardFrameEndUserInfoKey];
 CGRect keyboardRect =
 [self.view convertRect:[aValue CGRectValue] fromView:nil];

 //---resize the scroll view back to the original size
 // (without keyboard)---
 CGRect viewFrame = [scrollView frame];
 viewFrame.size.height += keyboardRect.size.height;
 scrollView.frame = viewFrame;

 keyboardIsShown = NO;
}

 //---before the View window disappear---
-(void) viewWillDisappear:(BOOL)animated {
 //---removes the notifications for keyboard---
 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:UIKeyboardWillShowNotification
 object:nil];

 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:UIKeyboardWillHideNotification
 object:nil];
}

Detecting the Presence of the Keyboard ❘ 175

 6 . Press Command-R to test the application on the iPhone 4 Simulator. Tap on the various Text Field
views and observe the different views scrolling into position (see Figure 6-21).

figure 6-21

How It Works

The first thing you did was connect the delegate outlet of each Text Field to the File’s Owner item. This
step is important, as it ensures that when any of the Text Field views are tapped, the following three events
will be handled:

textFieldDidBeginEditing:➤➤

textFieldDidEndEditing:➤➤

textFieldShouldReturn:➤➤

Because there are more views in the Scroll View than what it can display, you need to change its content size:

-(void)viewDidLoad{
scrollView.frame=CGRectMake(0,0,320,460);
 [scrollView setContentSize:CGSizeMake(320, 1040)];
[superviewDidLoad];
}

176 ❘ chApter 6 KeYbOard inPutS

Next, before the View window appears, you register two notifications: UIKeyboardDidShowNotification
and UIKeyboardDidHideNotification. These two notifications enable you to know when the keyboard
has either appeared or disappeared. You register the notifications via the viewWillAppear: event:

//---before the View window appears---
-(void) viewWillAppear:(BOOL)animated {
 //---registers the notifications for keyboard---
 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(keyboardDidShow:)
 name:UIKeyboardDidShowNotification
 object:self.view.window];

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(keyboardDidHide:)
 name:UIKeyboardDidHideNotification
 object:nil];
}

When any of the Text Field views is tapped, the textFieldDidBeginEditing: event will fire:

//---when a TextField view begins editing---
-(void) textFieldDidBeginEditing:(UITextField *)textFieldView {
 currentTextField = textFieldView;
}

Here, you save a copy of the Text Field currently being tapped. When the user taps the Return key on
the keyboard, the textFieldShouldReturn: event will be fired:

//---when the user taps on the return key on the keyboard---
-(BOOL) textFieldShouldReturn:(UITextField *) textFieldView {
 [textFieldView resignFirstResponder];
 return NO;
}

Next, you hide the keyboard by calling the resignFirstResponder method of the Text Field view, which
then triggers another event, textFieldDidEndEditing:. Here, you set the currentTextField to nil:

//---when a TextField view is done editing---
-(void) textFieldDidEndEditing:(UITextField *) textFieldView {
 currentTextField = nil;
}

When the keyboard appears, it will call the keyboardDidShow: method (which is set via the notification):

//---when the keyboard appears---
-(void) keyboardDidShow:(NSNotification *) notification {
 if (keyboardIsShown) return;

 NSDictionary* info = [notification userInfo];

 //---obtain the size of the keyboard---
 NSValue *aValue =
 [info objectForKey:UIKeyboardFrameEndUserInfoKey];

Detecting the Presence of the Keyboard ❘ 177

 CGRect keyboardRect =
 [self.view convertRect:[aValue CGRectValue] fromView:nil];

 NSLog(@”%f”, keyboardRect.size.height);

 //---resize the scroll view (with keyboard)---
 CGRect viewFrame = [scrollView frame];
 viewFrame.size.height -= keyboardRect.size.height;
 scrollView.frame = viewFrame;

 //---scroll to the current text field---
 CGRect textFieldRect = [currentTextField frame];
 [scrollView scrollRectToVisible:textFieldRect animated:YES];

 keyboardIsShown = YES;
}

This obtains the size of the keyboard, in particular its height. This is important, as the keyboard has
different heights depending on whether it is in landscape mode or portrait mode. You then resize the
view frame of the Scroll View and scroll the Text Field until it is visible.

What happens when the keyboard is visible and the user taps on another Text Field? In this case, the
keyboardDidShow: method will be called again, but since the keyboardIsShown is set to YES, the method
will immediately exit. If the Text Field view that is tapped is partially hidden, it will automatically be
scrolled to a visible region on the View window.

When the keyboard disappears, the keyboardDidHide: method will be called:

//---when the keyboard disappears---
-(void) keyboardDidHide:(NSNotification *) notification {
 NSDictionary* info = [notification userInfo];

 //---obtain the size of the keyboard---
 NSValue* aValue =
 [info objectForKey:UIKeyboardFrameEndUserInfoKey];
 CGRect keyboardRect =
 [self.view convertRect:[aValue CGRectValue] fromView:nil];

 //---resize the scroll view back to the original size
 // (without keyboard)---
 CGRect viewFrame = [scrollView frame];
 viewFrame.size.height += keyboardRect.size.height;
 scrollView.frame = viewFrame;

 keyboardIsShown = NO;
}

This restores the size of the view frame of the Scroll View to the one without the keyboard.

Finally, before the View window disappears, you remove the notifications that you set earlier:

//---before the View window disappear---
-(void)viewWillDisappear:(BOOL)animated{
//---removes the notifications for keyboard---
[[NSNotificationCenterdefaultCenter]

178 ❘ chApter 6 KeYbOard inPutS

 removeObserver:self
 name:UIKeyboardWillShowNotification
 object:nil];

 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:UIKeyboardWillHideNotification
 object:nil];
}

SummAry

In this chapter, you learned the various techniques to deal with the keyboard in your iPhone applica-
tion. In particular, this chapter showed you how to hide the keyboard when you are done entering
data, how to detect the presence or absence of the keyboard, and how to ensure that views are not
blocked by the keyboard.

exerciSeS

 1 . How do you hide the keyboard for a UITextField object?

 2 . How do you detect whether the keyboard is visible or not?

 3 . How do you get the size of the keyboard?

 4 . How do you display more views than what the View window can display at any one time?

Answers to the Exercises can be found in Appendix E, on Wrox.com.

Summary ❘ 179

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

making the keyboard go
away

Use the resignFirstResponder method on a UITextField object
to resign its First-Responder status .

Displaying the different types
of keyboard displayed

Modify the keyboard type by changing the Text Input Traits of a
UITextField object in the Attributes Inspector window .

handling the return key of
the keyboard

Either handle the DidEndonExit event of a UITextField object
or implement the textFieldShouldReturn: method in your View
Controller (remember to ensure that your View Controller class is
the delegate for the UITextField object) .

making a Scroll view
scrollable

Set its frame size and content size . As long as the content size is
larger than the frame size, the Scroll View is scrollable .

Detecting when the key-
board appears or hides

Register for the two notifications —
UIKeyboardDidShowNotification and
UIKeyboardDidHideNotification .

Detecting which
UITextField object has
started editing

Implement the textFieldDidBeginEditing: method in your View
Controller .

Detecting which
UITextField object has
ended editing

Implement the textFieldDidEndEditing: method in your View
Controller .

Screen Rotations

whAt yOu will leArn in thiS chApter

How to support the four diff erent types of screen orientations➤➤

The various events that are fi red when a device rotates➤➤

How to reposition the views on a View when the orientation of a ➤➤

device changes

How to change the screen rotation dynamically during runtime➤➤

How to set the orientation of your application before it is loaded➤➤

The Hello World! application in Chapter 2 showed you how your iPhone application supports
viewing in either the portrait or landscape mode. This chapter dives deeper into the topic of
screen orientation. In particular, it demonstrates how to manage the orientation of your applica-
tion when the device is rotated. You will also learn how to reposition your views when the device
is rotated so that your application can take advantage of the change in screen dimensions.

reSpOnDing tO Device rOtAtiOnS

One of the features that modern mobile devices support is the capability to detect the current
orientation — portrait or landscape — of the device. An application can take advantage of
this to readjust the device’s screen to maximize use of the new orientation. A good example is
Safari on the iPhone. When you rotate the device to landscape orientation, Safari automatically
rotates its view so that you have a wider screen to view the content of the page (see Figure 7-1).

7

182 ❘ chApter 7 Screen rOtatiOnS

In the iPhone SDK, there are several events that you can handle to ensure that your application is
aware of changes in orientation. Check them out in the following Try it Out.

figure 7-1

Supporting Different Screen Orientationstry it Out

codefile ScreenRotations.zip available for download at Wrox.com

 1 . Using Xcode, create a new View-based Application
(iPhone) project and name it ScreenRotations.

 2 . Press Command-R to test the application on the
iPhone 4 Simulator.

 3 . Change the iPhone 4 Simulator orientation by press-
ing either the Command-→ (rotate it to the right) or
Command-← (rotate it to the left) key combination.
Notice that the screen orientation of your application
changes with the change in device orientation (see
Figure 7-2 and Figure 7-3).

How It Works

By default, the iPhone Application project you created using
Xcode supports a single orientation — portrait mode. If
you want to support screen orientations other than the
default portrait mode, you can do so by overriding the

figure 7-2

Responding to Device Rotations ❘ 183

shouldAutorotateToInterfaceOrientation: method in a View Controller. This event is commented
out by default in the ScreenRotationsViewController.m fi le:

//Overridetoalloworientationsotherthanthedefaultportraitorientation.
-(BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation{
//ReturnYESforsupportedorientations
return(interfaceOrientation==UIInterfaceOrientationPortrait);
}

figure 7-3

NOTE On the iPad, the default behavior of an application supports all orienta-
tions — portrait as well as landscape. While you can specify the orientation sup-
ported by your application, based on the UI guidelines provided by Apple, iPad
applications should support all screen orientations.

NOTE On the iPhone and iPad, screen rotation is automatically handled
by the OS. When the OS detects a change in screen orientation, it fi res the
shouldAutorotateToInterfaceOrientation: event; it is up to the developer to
decide how the application should display in the target orientation.

The shouldAutorotateToInterfaceOrientation: method is called when the View is loaded and when-
ever orientation of the device changes. This method passes in a single parameter — the orientation to
which the device has been changed. The returning value of this method determines whether the current

184 ❘ chApter 7 Screen rOtatiOnS

orientation is supported. By default, your iPhone application supports only the portrait orientation;
hence, it simply returns a YES only when the interfaceOrientation argument is equal to portrait mode
(UIInterfaceOrientationPortrait):

return(interfaceOrientation==UIInterfaceOrientationPortrait);

This means that your application will display upright only in portrait mode. To support all orientations,
simply return a YES to allow your application to display upright for all orientations:

//Overridetoalloworientationsotherthanthedefaultportrait
//orientation.
-(BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation{
//ReturnYESforsupportedorientations
 //return (interfaceOrientation ==
 // UIInterfaceOrientationPortrait);
 return YES;
}

NOTE To easily diff erentiate between UIInterfaceOrientationLandscapeLeft
and UIInterfaceOrientationLandscapeRight, just remember that UIInterface
OrientationLandscapeLeft refers to the Home button positioned on the left, and
UIInterfaceOrientationLandscapeRight refers to the Home button positioned
on the right.

Diff erent types of Screen Orientations
You have a total of four constants to use for specifying screen orientations:

UIInterfaceOrientationPortrait➤➤ — Displays the screen in portrait mode.

UIInterfaceOrientationPortraitUpsideDown➤➤ — Displays the screen in portrait mode but
with the Home button at the top of the screen.

UIInterfaceOrientationLandscapeLeft➤➤ — Displays the screen in landscape mode with the
Home button on the left.

UIInterfaceOrientationLandscapeRight➤➤ — Displays the screen in landscape mode with the
Home button on the right.

If your application supports multiple screen orientations, override the
shouldAutorotateTo-InterfaceOrientation: method and then use the || (logical OR)
operator to specify all the orientations it supports, like this:

-(BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation{
//ReturnYESforsupportedorientations

Responding to Device Rotations ❘ 185

 return (interfaceOrientation == UIInterfaceOrientationPortrait ||
 interfaceOrientation == UIInterfaceOrientationLandscapeLeft);
}

The preceding code snippet enables your application to support both the portrait and landscape left
modes.

handling rotations
The View Controller exposes several events that you can handle during the rotation of the screen.
The capability to handle events fired during rotation is important because it enables you to reposi-
tion the views on the View, or you can stop media playback while the screen is rotating. You can
handle the following events:

willAnimateFirstHalfOfRotationToInterfaceOrientation:➤➤

willAnimateSecondHalfOfRotationFromInterfaceOrientation:➤➤

willRotateToInterfaceOrientation:➤➤

willAnimateRotationToInterfaceOrientation:➤➤

The next several sections take a more detailed look at each of these events.

willAnimateFirstHalfOfRotationTointerfaceOrientation:
The willAnimateFirstHalfOfRotationToInterfaceOrientation: event is fired just before the rota-
tion of the View window starts. The method looks like this:

-(void)willAnimateFirstHalfOfRotationToInterfaceOrientation:
(UIInterfaceOrientation)toInterfaceOrientation
duration:(NSTimeInterval)duration{

}

The toInterfaceOrientation parameter indicates the orientation to which the View window is
changing, and the duration parameter indicates the duration of the first half of the rotation, in
seconds.

In this event, you can insert your code to carry out tasks that you want to perform before the rota-
tion starts, such as pausing media playback, pausing animations, and so on.

willAnimateSecondHalfOfRotationFrominterfaceOrientation:
The willAnimateSecondHalfOfRotationFromInterfaceOrientation: event is fired when the rotation
is halfway through. The method looks like this:

-(void)willAnimateSecondHalfOfRotationFromInterfaceOrientation:
(UIInterfaceOrientation)fromInterfaceOrientation
duration:(NSTimeInterval)duration{

}

186 ❘ chApter 7 Screen rOtatiOnS

The fromInterfaceOrientation parameter indicates the orientation from which it is changing, whereas
the duration parameter indicates the duration of the second half of the rotation, in seconds.

In this event, you typically perform tasks such as repositioning the views on the View window, resuming
media playback, and so on.

willRotateTointerfaceOrientation:
The previous two events are fi red consecutively —
fi rst willAnimateFirstHalfOfRotationTo-InterfaceOrientation:, followed by
willAnimateSecondHalfOfRotationFromInterface-Orientation. If you don’t need two separate
events for handling rotation, you can use the simpler willRotateToInterfaceOrientation: event.

The willRotateToInterfaceOrientation: event is fi red before the orientation starts. In contrast
to the previous two events, this is a one-step process. Note that if you handle this event, the
willAnimateFirstHalfOfRotationToInterfaceOrientation: and
willAnimateSecondHalfOfRotationFromInterfaceOrientation: events will still be fi red.

The method looks like this:

-(void)willRotateToInterfaceOrientation:
(UIInterfaceOrientation)toInterfaceOrientation
duration:(NSTimeInterval)duration{

}

The toInterfaceOrientation parameter indicates the orientation to which it is changing, and the
duration parameter indicates the duration of the rotation, in seconds.

willAnimateRotationTointerfaceOrientation:
The willAnimateRotationToInterfaceOrientation: event is fi red before the animation of the rota-
tion starts.

NOTE If you handle both the willRotateToInterfaceOrientation: and
willAnimateRotationToInterfaceOrientation: events, the former will fi re
fi rst, followed by the latter.

The method looks like this:

-(void)willAnimateSecondHalfOfRotationFromInterfaceOrientation:
(UIInterfaceOrientation)fromInterfaceOrientation
duration:(NSTimeInterval)duration{

}

The interfaceOrientation parameter specifi es the target orientation to which it is rotating.

Responding to Device Rotations ❘ 187

NOTE If you handle this event, the willAnimateFirstHalfOfRotationTo-
InterfaceOrientation:and
willAnimateSecondHalfOfRotationFrom-InterfaceOrientation:

 events will not fi re anymore.

In the following Try It Out, you will reposition the views on your user interface (UI) when the
device changes orientation.

Repositioning Views during Orientation Changetry it Out

1 . Using the project created earlier, double-click the ScreenRotationsViewController.xib fi le and
add a Round Rect Button view to the View (see Figure 7-4).

figure 7-4

2 . Observe its size and positioning by viewing the Size Inspector window. Here, its position is (20,20)
and its size is 233 by 37 points.

3 . Rotate the orientation of the View window by clicking the arrow icon on the upper-right corner of
the window.

188 ❘ chApter 7 Screen rOtatiOnS

 4 . Reposition the Round Rect Button view by relocating it to the bottom-right corner of the View
window (see Figure 7-5). Also observe and take note of its position.

figure 7-5

 5 . In the ScreenRotationsViewController.h file, add the following code shown in bold:

#import<UIKit/UIKit.h>

@interfaceScreenRotationsViewController:UIViewController{
 IBOutlet UIButton *btn;
}

@property (nonatomic, retain) UIButton *btn;

@end

 6 . In Interface Builder, connect the outlet you have created by control-clicking the File’s Owner item
and dragging over to the Round Rect Button view. Select btn.

 7 . Save the project in Interface Builder.

 8 . In the ScreenRotationsViewController.m file, add the following bold code:

#import“ScreenRotationsViewController.h”

@implementationScreenRotationsViewController

@synthesize btn;

-(void) positionViews {
 UIInterfaceOrientation destOrientation = self.interfaceOrientation;
 if (destOrientation == UIInterfaceOrientationPortrait ||
 destOrientation == UIInterfaceOrientationPortraitUpsideDown) {
 //---if rotating to portrait mode---
 btn.frame = CGRectMake(20, 20, 233, 37);
 } else {

Responding to Device Rotations ❘ 189

 //---if rotating to landscape mode---
 btn.frame = CGRectMake(227, 243, 233, 37);
 }
}

- (void)willAnimateSecondHalfOfRotationFromInterfaceOrientation:
(UIInterfaceOrientation) fromInterfaceOrientation
 duration:(NSTimeInterval) duration {
 [self positionViews];
}

-(void)viewDidLoad{
 [self positionViews];
 [superviewDidLoad];
}

-(void)dealloc{
 [btn release];
[superdealloc];
}

 9 . Save the project and press Command-R in Xcode to deploy the application onto the iPhone 4
Simulator.

 10 . Observe that when the iPhone 4 Simulator is in portrait mode, the Round Rect Button view is dis-
played in the top-left corner; but when you change the orientation to landscape mode, it is reposi-
tioned to the bottom-right corner (see Figure 7-6).

figure 7-6

How It Works

This project illustrates how you can reposition the views on your application when the device changes
orientation. You first create an outlet and connect it to the Round Rect Button view on the View
window.

190 ❘ chApter 7 Screen rOtatiOnS

When the device is being rotated, you handle the willAnimateSecondHalfOfRotationFrom-
InterfaceOrientation: event so that you can reposition the Round Rect Button. When this event is
fi red, you can obtain the destination orientation using the interfaceOrientation property of the cur-
rent View window (self), like this:

 UIInterfaceOrientation destOrientation = self.interfaceOrientation;

Using this information, you position the Button view according to the destination orientation by alter-
ing its frame property via the positionViews method, which you have defi ned:

-(void) positionViews {
 UIInterfaceOrientation destOrientation = self.interfaceOrientation;
 if (destOrientation == UIInterfaceOrientationPortrait ||
 destOrientation == UIInterfaceOrientationPortraitUpsideDown) {
 //---if rotating to portrait mode---
 btn.frame = CGRectMake(20, 20, 233, 37);
 } else {
 //---if rotating to landscape mode---
 btn.frame = CGRectMake(227, 243, 233, 37);
 }
}

You should also call the positionViews method in the viewDidLoad method so that the Round Rect
Button can be displayed correctly when the View window is loaded:

-(void)viewDidLoad{
[self positionViews];
 [superviewDidLoad];
}

prOpertieS fOr DeAling with pOSitiOning Of viewS

In the previous example, you used the frame property to change the position of
a view during runtime. The frame property defi nes the rectangle occupied by the
view, with respect to its superview (the view that contains it). Using the frame prop-
erty enables you to set the positioning and size of a view. Besides using the frame
property, you can also use the center property, which sets the center of the view,
also with respect to its superview. You usually use the center property when you
are performing some animation and just want to change the position of a view.

prOgrAmmAticAlly rOtAting the Screen

You’ve seen how your application can handle the changes in device orientation when the user rotates
the device. Sometimes (such as when you are developing a game), however, you want to force the
application to display in certain rotations independently of the device’s orientation.

Programmatically Rotating the Screen ❘ 191

There are two scenarios to consider:

Rotating the screen orientation during runtime when your application is running➤➤

Displaying the screen in a particular orientation when the View window is loaded➤➤

rotating During runtime
During runtime, you can programmatically rotate the screen by using the setOrientation: method
on an instance of the UIDevice class. Suppose you want users to change the screen orientation: They
press the Round Rect Button view. Using the project created earlier, you can code it as follows:

-(IBAction)btnClicked:(id)sender{
 [[UIDevice currentDevice]
 setOrientation:UIInterfaceOrientationLandscapeLeft];
}

The setOrientation: method takes a single parameter specifying the orientation to which you want
to change.

NOTE After you have programmatically switched the orientation of your appli-
cation, your application’s rotation can still be changed when the device is physi-
cally rotated. The orientation that it can be changed to is dependent on what
you set in the shouldAutorotateToInterfaceOrientation: method.

Displaying the view window in a Specifi c Orientation when loading
When a View window is loaded, by default it is always displayed in portrait mode. If your applica-
tion requires that you display the View window in a particular orientation when it is loaded, you
can do so by adding a new key (Initialinterfaceorientation) to the info.plist fi le located in
the Resources folder of your Xcode project. Setting it to one of the four values shown in Figure 7-7
will force your application to start in the specifi ed orientation.

figure 7-7

192 ❘ chApter 7 Screen rOtatiOnS

NOTE The orientation to which you are changing must fi rst be specifi ed in the
shouldAutorotateToInterfaceOrientation: event.

SummAry

This chapter explained how changes in screen orientations are handled by the various events in the
View Controller class. Proper handling of screen orientations will make your application more use-
able and improve the user experience.

exerciSeS

1 . Suppose you want your application to support only the landscape right and landscape left orienta-
tion . How should you modify your code?

2 . What is the diff erence between the frame and center property of a view?

Answers to the Exercises can be found in Appendix E, on Wrox.com.

Summary ❘ 193

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

how to handle device
rotations

Implement the shouldAutorotateToInterfaceOrientation: method

willAnimateSecondHalfOfRotationFromInterfaceOrientation:

willRotateToInterfaceOrientation:

willAnimateRotationToInterfaceOrientation:

four orientations
supported

UIInterfaceOrientationPortrait

UIInterfaceOrientationLandscapeLeft

UIInterfaceOrientationLandscapeRight

UIInterfaceOrientationPortraitUpsideDown

events fired when device
is rotated

willAnimateFirstHalfOfRotationToInterfaceOrientation:

properties for changing
the position of a view

Use the frame property for changing the positioning and size of a view

Use the center property for changing the positioning of a view

Displaying the view win-
dow in a specific orienta-
tion when loading

Add a new key (Initialinterfaceorientation) to the
info.plist file in your Xcode project and set it to the desired
orientation

PART II
Displaying and persisting Data

chApter 8: ⊲ Using the Table View

chApter 9: ⊲ Application Preferences

chApter ⊲ 10: File Handling

chApter ⊲ 11: Database Storage Using SQLite3

Using the Table View

whAt yOu will leArn in thiS chApter

Manually adding a Table view to a view, and wire the data source ➤➤

and delegate to your View Controller

Handling the various events in the Table view to populate it with items➤➤

Handling the various events in the Table view so that users can ➤➤

select the items it contains

Displaying text and images in the rows of the Table view➤➤

Displaying the items from a property list in a Table view➤➤

Grouping the items in a Table view into sections➤➤

Adding indexing to the Table view➤➤

Adding search capabilities to the Table view➤➤

Adding disclosures and checkmarks to rows in the Table view➤➤

Navigating to another View window➤➤

One of the most commonly used views in iPhone applications is the Table view. The Table
view is used to display lists of items from which users can select, or they can tap it to display
more information about a particular item. Figure 8-1 shows a Table view in action in the
Settings application.

The Table view is such an important topic that it deserves a chapter of its own. Hence, in this
chapter, you examine the Table view in details, and learn about the various building blocks
that make it such a versatile view.

8

198 ❘ chApter 8 uSinG the table View

figure 8-1

A Simple tABle view

The best way to understand how to use a Table view in your application is to create a new View-
based Application project and then manually add a Table view to the View window and wire it to a
View Controller. That way, you understand the various building blocks of the Table view.

Without further ado, use the following Try It Out to create a new project and see how to put a Table
view together!

Using a Table Viewtry it Out

Codefile [TableViewExample.zip] available for download at Wrox.com

 1 . Create a new View-based Application (iPhone) project and name it TableViewExample.

 2 . Double-click the TableViewExampleViewController.xib file to edit it in Interface Builder.

 3 . Drag the TableView Object from the Library and drop it onto the View window (see Figure 8-2).

 4 . Right-click the Table view and connect the dataSource outlet to the File’s Owner item (see
Figure 8-3). Do the same for the delegate outlet.

A Simple Table View ❘ 199

figure 8-2

figure 8-3

200 ❘ chApter 8 uSinG the table View

 5 . In the TableViewExampleViewController.h file, add the following statement that appears in bold:

#import<UIKit/UIKit.h>

@interfaceTableViewExampleViewController:UIViewController
 <UITableViewDataSource> {

}

@end

 6 . In the TableViewExampleViewController.m file, add the following statements that appear in bold:

#import“TableViewExampleViewController.h”

@implementationTableViewExampleViewController

NSMutableArray *listOfMovies;

//---insert individual row into the table view---
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @”Cell”;

 //---try to get a reusable cell---
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

 //---create new cell if no reusable cell is available---
 if (cell == nil) {
 cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier]
 autorelease];
 }

 //---set the text to display for the cell---
 NSString *cellValue = [listOfMovies objectAtIndex:indexPath.row];
 cell.textLabel.text = cellValue;

 return cell;
}

//---set the number of rows in the table view---
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [listOfMovies count];
}

-(void)viewDidLoad{
 //---initialize the array---
 listOfMovies = [[NSMutableArray alloc] init];

 //---add items---

A Simple Table View ❘ 201

 [listOfMovies addObject:@”Training Day”];
 [listOfMovies addObject:@”Remember the Titans”];
 [listOfMovies addObject:@”John Q.”];
 [listOfMovies addObject:@”The Bone Collector”];
 [listOfMovies addObject:@”Ricochet”];
 [listOfMovies addObject:@”The Siege”];
 [listOfMovies addObject:@”Malcolm X”];
 [listOfMovies addObject:@”Antwone Fisher”];
 [listOfMovies addObject:@”Courage Under Fire”];
 [listOfMovies addObject:@”He Got Game”];
 [listOfMovies addObject:@”The Pelican Brief”];
 [listOfMovies addObject:@”Glory”];
 [listOfMovies addObject:@”The Preacher’s Wife”];

[superviewDidLoad];
}

-(void)dealloc{
 [listOfMovies release];
[superdealloc];
}

 7 . Press Command-R to test the application on the iPhone 4 Simulator. Figure 8-4 shows the Table
view displaying a list of movies.

figure 8-4

202 ❘ chApter 8 uSinG the table View

How It Works

You start the application by creating an NSMutableArray object called listOfMovies containing a list of
movie names. The items stored in this array will be displayed by the Table view.

NOTE The use of an array to contain the items to be displayed by the Table
view is purely for demonstration. Of course, in a real-world scenario, your data
might be stored in a database or accessed from a Web service.

-(void)viewDidLoad{
 //---initialize the array---
 listOfMovies = [[NSMutableArray alloc] init];

 //---add items---
 [listOfMovies addObject:@”Training Day”];
 [listOfMovies addObject:@”Remember the Titans”];
 [listOfMovies addObject:@”John Q.”];
 [listOfMovies addObject:@”The Bone Collector”];
 [listOfMovies addObject:@”Ricochet”];
 [listOfMovies addObject:@”The Siege”];
 [listOfMovies addObject:@”Malcolm X”];
 [listOfMovies addObject:@”Antwone Fisher”];
 [listOfMovies addObject:@”Courage Under Fire”];
 [listOfMovies addObject:@”He Got Game”];
 [listOfMovies addObject:@”The Pelican Brief”];
 [listOfMovies addObject:@”Glory”];
 [listOfMovies addObject:@”The Preacher’s Wife”];

[superviewDidLoad];
}

To populate the Table view with items, you need to handle several events contained in the
UITableViewDataSource protocol. Hence, you need to ensure that your View Controller conforms to
this protocol:

@interfaceTableViewExampleViewController:UIViewController
 <UITableViewDataSource> {

}

@end

NOTE Strictly speaking, if you have connected the dataSource outlet to the
File’s Owner item, you don’t need to add the preceding statement. However,
doing both doesn’t hurt anything. There is one advantage to adding the
<UITableViewDataSource> protocol, though — the compiler will warn you if you for-
get to implement any mandatory methods in your code, helping to prevent errors.

A Simple Table View ❘ 203

The UITableViewDataSource protocol contains several events that you can implement to supply data to
the Table view. Two events that you have handled in this example are as follows:

tableView:numberOfRowsInSection:➤➤

tableView:cellForRowAtIndexPath:➤➤

The tableView:numberOfRowsInSection: event indicates how many rows you want the Table view to
display. In this case, you set it to the number of items in the listOfMovies array.

//---set the number of rows in the table view---
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [listOfMovies count];
}

The tableView:cellForRowAtIndexPath: event inserts a cell in a particular location of the Table view.
This event is fired once for each row of the Table view that is visible.

One of the parameters contained in the tableView:didSelectRowAtIndexPath: event is of the type
NSIndexPath. The NSIndexPath class represents the path of a specific item in a nested array collection.
To know which row is currently being populated, you simply call the row property of the NSIndexPath
object (indexPath) and then use the row number to reference against the listOfMovies array. The value
is then used to set the text value of the row in the Table view:

//---insert individual row into the table view---
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {
 static NSString *CellIdentifier = @”Cell”;

 //---try to get a reusable cell---
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:
 CellIdentifier];

 //---create new cell if no reusable cell is available---
 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier]
 autorelease];
 }

 //---set the text to display for the cell---
 NSString *cellValue =
 [listOfMovies objectAtIndex:indexPath.row];
 cell.textLabel.text = cellValue;

 return cell;
}

Specifically, you use the dequeueReusableCellWithIdentifier: method of the UITableView class to
obtain an instance of the UITableViewCell class. The dequeueReusableCellWithIdentifier: method
returns a reusable Table view cell object. This is important because if you have a large table (say, with

204 ❘ chApter 8 uSinG the table View

10,000 rows) and you create a single UITableViewCell object for each row, you would generate a great
performance and memory hit. Also, because a Table view displays only a fi xed number of rows at any
one time, reusing the cells that have been scrolled out of view makes sense. This is exactly what the
dequeueReusableCellWithIdentifier: method does. Therefore, for example, if 10 rows are visible in
the Table view, only 10 UITableViewCell objects are ever created — they are always reused when the
user scrolls through the Table view.

As the user fl icks the Table view to review more rows (that are hidden), the
tableView:cellForRowAtIndexPath: event is continually fi red, enabling you to populate the newly
visible rows with data.

NOTE The tableView:cellForRowAtIndexPath: event is not fi red continuously
from start to fi nish. For example, if the Table view has 100 rows to be displayed,
the event is fi red continuously for the fi rst, say, 10 rows that are visible. When the
user scrolls down the Table view, the tableView:cellForRowAtIndexPath: event
is fi red for the next couple of visible rows.

Adding a header and footer
You can display a header and footer for the Table view by simply implementing the following two
methods in your View Controller:

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section{
 //---display “Movie List” as the header---
 return @”Movie List”;
}

- (NSString *)tableView:(UITableView *)tableView
titleForFooterInSection:(NSInteger)section {
 //---display “by Denzel Washington” as the footer---
 return @”by Denzel Washington”;
}

If you insert the preceding statements in the TableViewExampleViewController.m fi le and rerun the
application, you see the header and footer of the Table view, as shown in Figure 8-5.

Adding an image
In addition to text, you can display an image next to the text of a cell in a Table view. Suppose you
have an image named apple.jpeg in the Resources folder of your project (see Figure 8-6).

A Simple Table View ❘ 205

figure 8-5 figure 8-6

To display an image next to the text of a cell, insert the following statements that appear in bold
into the tableView:cellForRowAtIndexPath: method:

//---insertindividualrowintothetableview---
-(UITableViewCell*)tableView:(UITableView*)tableView
cellForRowAtIndexPath:(NSIndexPath*)indexPath{
staticNSString*CellIdentifier=@”Cell”;

//---trytogetareusablecell---
UITableViewCell*cell=
[tableViewdequeueReusableCellWithIdentifier:CellIdentifier];

//---createnewcellifnoreusablecellisavailable---
if(cell==nil){
cell=[[[UITableViewCellalloc]initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier]
autorelease];

NOTE You can simply drag and drop an image to the Resources folder of Xcode.
When prompted, ensure that you save a copy of the image in your project.

206 ❘ chApter 8 uSinG the table View

}

//---setthetexttodisplayforthecell---
NSString*cellValue=[listOfMoviesobjectAtIndex:indexPath.row];
cell.textLabel.text=cellValue;

 //---display an image---
 UIImage *image = [UIImage imageNamed:@”apple.jpeg”];
 cell.imageView.image = image;

returncell;
}

Press Command-R to test the application. You’ll see that
the image is displayed next to each row (see Figure 8-7).

Notice that the UITableViewCell object already has
the imageView property. All you need to do is create an
instance of the UIImage class and then load the image
from the Resources folder of your project.

Displaying the item Selected
So far, you have seen how to populate the Table view
with items by ensuring that your View Controller con-
forms to the UITableViewDataSource protocol. This
protocol takes care of populating the Table view, but if
you want to select the items in a Table view, you need to
conform to another protocol — UITableViewDelegate.

The UITableViewDelegate protocol contains events that
enable you to manage selections, edit and delete rows,
and display a header and footer for each section of a
Table view.

To use the UITableViewDelegate protocol, modify the
TableViewExampleViewController.h file by adding
the statement in bold as follows:

#import<UIKit/UIKit.h>

@interfaceTableViewExampleViewController:UIViewController
<UITableViewDataSource,
UITableViewDelegate>{

}

@end

figure 8-7

A Simple Table View ❘ 207

Again, if you have connected the delegate outlet to the File’s Owner item previously (see Figure 8-8),
you don’t need to add the preceding statement (UITableViewDelegate). However, doing both
doesn’t hurt.

figure 8-8

The following Try It Out shows how you can enable users to make selections in a Table view.

Making a Selection in a Table Viewtry it Out

 1 . Using the same project created earlier, add the following method to the
TableViewExampleViewController.m file:

- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 NSString *movieSelected = [listOfMovies objectAtIndex:indexPath.row];
 NSString *msg = [NSString stringWithFormat:@”You have selected %@”,
 movieSelected];
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@”Movie selected”
 message:msg
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

208 ❘ chApter 8 uSinG the table View

 2 . Press Command-R to test the application on the iPhone 4 Simulator.

 3 . Select a row by tapping it. When a row is selected, an Alert view displays the row you have selected
(see Figure 8-9).

figure 8-9

How It Works

One of the events declared in the UITableViewDelegate protocol is
tableView:didSelectRowAtIndexPath:, which is fired when the user selects a row in the Table view.

As usual, to determine which row has been selected, you simply call the row property of the NSIndexPath
object (indexPath) and then use the row number to reference against the listOfMovies array:

 NSString *movieSelected = [listOfMovies objectAtIndex:indexPath.row];

After the selected movie is retrieved, you simply display it using the UIAlertView class:

 NSString *msg = [NSString stringWithFormat:@”You have selected %@”,
 movieSelected];
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@”Movie selected”
 message:msg
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];

A Simple Table View ❘ 209

NOTE The row property of the NSIndexPath class is one of the additions made
by the UIKit framework to enable the identifi cation of rows and sections in a
Table view, so be aware that the original class defi nition of the NSIndexPath
class does not contain the row property.

indenting
Another event in the UITableViewDelegate protocol is
tableView:indentationLevelForRowAtIndexPath:. When you handle this event, it is fi red for every
row that is visible on the screen. To set an indentation for a particular row, simply return an integer
indicating the level of indentation:

- (NSInteger)tableView:(UITableView *)tableView
indentationLevelForRowAtIndexPath:(NSIndexPath *)indexPath {
 return [indexPath row] % 2;
}

In the preceding example, the indentation alternates between 0 and 1, depending on the current row
number. Figure 8-10 shows how the Table view looks if you insert the preceding code in the
TableViewExampleViewController.m fi le.

figure 8-10

210 ❘ chApter 8 uSinG the table View

modifying the height of each row
Another method defined in the UITableViewDelegate protocol is
tableView:heightForRowAtIndexPath:. This method enables you to modify the height of each
row. The following method shows that each row now takes up 70 points (see Figure 8-11):

-(CGFloat)tableView:(UITableView*)tableView
heightForRowAtIndexPath:(NSIndexPath*)indexPath{
return70;
}

uSing the tABle view in A
nAvigAtiOn-BASeD ApplicAtiOn

In the previous sections, you created a View-based
Application project and then manually added a Table
view to the View window and connected the data source
and delegate to the File’s Owner item. You then handled
all the relevant events defined in the two protocols,
UITableViewDelegate and UITableViewDataSource, so
that you can populate the Table view with items as well
as make them selectable.

In real life, the Table view is often used with a Navigation-
based Application project because it is very common
for users to select an item from a Table view and then
navigate to another screen showing the details of the
item selected. For this reason, the Navigation-based
Application template in the iPhone SDK by default uses
the TableView class instead of the View class. This sec-
tion demonstrates how to use a Table view from within a
Navigation-based Application project.

DiSplAying SectiOnS

In addition to displaying a series of rows in a Table view, you can group items in a Table view into
sections so that you can group related items with a header for each section. In the following Try It
Out, you learn how to use the Table view from within a Navigation-based Application project and
group the items into sections. At the same time, you learn how to display items stored in a property
list, as opposed to an array.

figure 8-11

Displaying Sections ❘ 211

Displaying Sections in a Table Viewtry it Out

Codefile [TableView.zip] available for download at Wrox.com

 1 . Create a new Navigation-based Application project and name it TableView.

 2 . Double-click the RootViewController.xib file to edit it in Interface Builder.

 3 . Notice that in the RootViewController.xib window you now have a TableView item instead of the
usual View item (see Figure 8-12).

 4 . Double-click the TableView item and
observe that you have a Table view
within it (see Figure 8-13).

 5 . Examine the RootViewController.h file and notice that the RootViewController class now extends
the UITableViewController base class:

#import<UIKit/UIKit.h>

@interfaceRootViewController:UITableViewController{
}

@end

 6 . Also examine the RootViewController.m file and observe that it includes a number of event stubs
that you can implement.

 7 . Right-click the Resources folder and choose Add ➪ New File.

figure 8-12 figure 8-13

212 ❘ chApter 8 uSinG the table View

 8 . Select the Resource category (under Mac OS X) on the left of the New File dialog and select the
Property List template on the right (see Figure 8-14).

figure 8-14

 9 . Name the property list Movies.plist. The property list is now saved in the Resources folder of
your project. Select it and create the list of items as shown in Figure 8-15.

 10 . In the RootViewController.h file, add the following statements that appear in bold:

#import<UIKit/UIKit.h>

@interfaceRootViewController:UITableViewController{
 NSDictionary *movieTitles;
 NSArray *years;
}

@property (nonatomic, retain) NSDictionary *movieTitles;
@property (nonatomic, retain) NSArray *years;

@end

Displaying Sections ❘ 213

figure 8-15

 11 . In the RootViewController.m file, add the following statements that appear in bold:

#import“RootViewController.h”

@implementationRootViewController

@synthesize movieTitles;
@synthesize years;

-(void)viewDidLoad{
 //---path to the property list file---
 NSString *path = [[NSBundle mainBundle] pathForResource:@”Movies”
 ofType:@”plist”];
 //---load the list into the dictionary---
 NSDictionary *dic = [[NSDictionary alloc] initWithContentsOfFile:path];

 //---save the dictionary object to the property---
 self.movieTitles = dic;

214 ❘ chApter 8 uSinG the table View

 [dic release];

 //---get all the keys in the dictionary object and sort them---
 NSArray *array = [[self.movieTitles allKeys]
 sortedArrayUsingSelector:@selector(compare:)];

 //---save the keys in the years property---
 self.years = array;

[superviewDidLoad];

//UncommentthefollowinglinetodisplayanEditbuttoninthenavigation
barforthisviewcontroller.
//self.navigationItem.rightBarButtonItem=self.editButtonItem;
}

-(NSInteger)numberOfSectionsInTableView:(UITableView*)tableView{
 //return 1;
 return [self.years count];
}

-(NSInteger)tableView:(UITableView*)tableView
numberOfRowsInSection:(NSInteger)section{
 //return 0;

 //---check the current year based on the section index---
 NSString *year = [self.years objectAtIndex:section];

 //---returns the movies in that year as an array---
 NSArray *movieSection = [self.movieTitles objectForKey:year];

 //---return the number of movies for that year as the number of rows in that
 // section ---
 return [movieSection count];
}

-(UITableViewCell*)tableView:(UITableView*)tableView
cellForRowAtIndexPath:(NSIndexPath*)indexPath{
staticNSString*CellIdentifier=@”Cell”;

UITableViewCell*cell=
[tableViewdequeueReusableCellWithIdentifier:CellIdentifier];

if(cell==nil){
cell=[[[UITableViewCellalloc]initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier]
autorelease];
}

//Configurethecell.
 //---get the year---
 NSString *year = [self.years objectAtIndex:[indexPath section]];

 //---get the list of movies for that year---

Displaying Sections ❘ 215

 NSArray *movieSection = [self.movieTitles objectForKey:year];

 //---get the particular movie based on that row---
 cell.textLabel.text = [movieSection objectAtIndex:[indexPath row]];

returncell;
}

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section {
 //---get the year as the section header---
 NSString *year = [self.years objectAtIndex:section];
 return year;
}

-(void)dealloc{
 [movieTitles release];
 [years release];
[superdealloc];
}

 12 . Press Command-R to test the application on the iPhone 4 Simulator. You can now see the movies
grouped into sections organized by year (see Figure 8-16).

figure 8-16

216 ❘ chApter 8 uSinG the table View

 13 . You can also change the style of the Table view by clicking the TableView item in Interface
Builder and then changing the Style property in the Attributes Inspector window to Grouped (see
Figure 8-17).

figure 8-17

 14 . If you rerun the application, the appearance of the Table view is now different (see Figure 8-18).

figure 8-18

Displaying Sections ❘ 217

How It Works

This exercise covered quite a number of concepts, and you may need some time to absorb them all. First,
you created a property list in your project. You populated the property list with several key/value pairs.
Essentially, you can visualize the key/value pairs stored in the property list as shown in Figure 8-19.

figure 8-19

Each key represents a year, and the value for each key represents the movies released in that particular
year. You use the values stored in the property list and display them in the Table view.

Within the RootViewController class, you create two properties: movieTitles (an NSDictionary object)
and years (an NSArray object).

When the view is loaded, you first locate the property list and load the list into the NSDictionary
object, followed by retrieving all the years into the NSArray object:

-(void)viewDidLoad{
 //---path to the property list file---
 NSString *path = [[NSBundle mainBundle] pathForResource:@”Movies”
 ofType:@”plist”];
 //---load the list into the dictionary---
 NSDictionary *dic = [[NSDictionary alloc] initWithContentsOfFile:path];

 //---save the dictionary object to the property---
 self.movieTitles = dic;
 [dic release];

 //---get all the keys in the dictionary object and sort them---
 NSArray *array = [[self.movieTitles allKeys]
 sortedArrayUsingSelector:@selector(compare:)];

 //---save the keys in the years property---
 self.years = array;

[superviewDidLoad];

//UncommentthefollowinglinetodisplayanEditbuttoninthenavigation

218 ❘ chApter 8 uSinG the table View

barforthisviewcontroller.
//self.navigationItem.rightBarButtonItem=self.editButtonItem;
}

Because the Table view now displays the list of movies in sections, with each section representing a
year, you need to tell the Table view how many sections there are. You do so by implementing the
numberOfSectionsInTableView: method:

-(NSInteger)numberOfSectionsInTableView:(UITableView*)tableView{
 //return 1;
 return [self.years count];
}

After the Table view knows how many sections to display, it must also know how many rows to display
in each section. You provide that information by implementing the tableView:numberOfRowsInSection:
method:

-(NSInteger)tableView:(UITableView*)tableView
numberOfRowsInSection:(NSInteger)section{
 //return 0;
 //---check the current year based on the section index---
 NSString *year = [self.years objectAtIndex:section];

 //---returns the movies in that year as an array---
 NSArray *movieSection = [self.movieTitles objectForKey:year];

 //---return the number of movies for that year as the number of rows in that
 // section ---
 return [movieSection count];
}

To display the movies for each section, you implement the tableView:cellForRowAtIndexPath: method
and extract the relevant movie titles from the NSDictionary object:

-(UITableViewCell*)tableView:(UITableView*)tableView
cellForRowAtIndexPath:(NSIndexPath*)indexPath{
staticNSString*CellIdentifier=@”Cell”;

UITableViewCell*cell=
[tableViewdequeueReusableCellWithIdentifier:CellIdentifier];

if(cell==nil){
cell=[[[UITableViewCellalloc]initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier]
autorelease];
}

//Configurethecell.
 //---get the year---
 NSString *year = [self.years objectAtIndex:[indexPath section]];

 //---get the list of movies for that year---

Displaying Sections ❘ 219

 NSArray *movieSection = [self.movieTitles objectForKey:year];

 //---get the particular movie based on that row---
 cell.textLabel.text = [movieSection objectAtIndex:[indexPath row]];

returncell;
}

Finally, you implement the tableView:titleForHeaderInSection: method to retrieve the year as the
header for each section:

- (NSString *)tableView:(UITableView *)tableView
titleForHeaderInSection:(NSInteger)section {
 //---get the year as the section header---
 NSString *year = [self.years objectAtIndex:section];
 return year;
}

Adding indexing
The list of movies is pretty short, so scrolling through the list is not too much of a hassle.
However, imagine a list containing 10,000 titles spanning 100 years. In this case, scrolling from
the top of the list to the bottom can take a long time. A useful feature of the Table view is the
capability to display an index on the right side of the view. An example is the A–Z index list
available in your Contacts list. To add an index list to your Table view, you just need to imple-
ment the sectionIndexTitlesForTableView: method and return the array containing the section
headers, which is the years array in this case:

- (NSArray *)sectionIndexTitlesForTableView:(UITableView *)tableView {
 return years;
}

NOTE If the Table view’s style is set to Grouped, the index will overlap with the
layout of the Table view.

Figure 8-20 shows the index displayed on the right side of the Table view.

Adding Search capability
A common function associated with the Table view is the capability to search the items contained
within it. For example, the Contacts application has the search bar at the top for easy searching
of contacts.

220 ❘ chApter 8 uSinG the table View

figure 8-20

In the following Try It Out, you will learn how to add search functionality to the Table view.

Adding a Search Bar to the Table Viewtry it Out

 1 . Using the same project created in the previous section, in Interface Builder drag a Search Bar from
the Library and drop it onto the Table view (see Figure 8-21).

 2 . Right-click the Search Bar and connect the delegate to the File’s Owner item (see Figure 8-22).

 3 . In the RootViewController.h file, add the following statements that appear in bold:

#import<UIKit/UIKit.h>

@interfaceRootViewController:UITableViewController
<UISearchBarDelegate>{
NSDictionary*movieTitles;
NSArray*years;

 IBOutlet UISearchBar *searchBar;
}

@property(nonatomic,retain)NSDictionary*movieTitles;
@property(nonatomic,retain)NSArray*years;

@property (nonatomic, retain) UISearchBar *searchBar;

@end

Displaying Sections ❘ 221

figure 8-21

figure 8-22

 4 . In Interface Builder, Control-click and drag the File’s Owner item to the Search Bar and select
searchBar.

222 ❘ chApter 8 uSinG the table View

 5 . In the RootViewController.m file, add the following statements that appear in bold:

#import“RootViewController.h”

@implementationRootViewController

@synthesizemovieTitles;
@synthesizeyears;

@synthesize searchBar;

-(void)viewDidLoad{
//---pathtothepropertylistfile---
NSString*path=[[NSBundlemainBundle]pathForResource:@”Movies”
ofType:@”plist”];
//---loadthelistintothedictionary---
NSDictionary*dic=[[NSDictionaryalloc]initWithContentsOfFile:path];

//---savethedictionaryobjecttotheproperty---
self.movieTitles=dic;
[dicrelease];

//---getallthekeysinthedictionaryobjectandsortthem---
NSArray*array=
[[self.movieTitlesallKeys]
sortedArrayUsingSelector:@selector(compare:)];

//---savethekeysintheyearsproperty---
self.years=array;

 //---Search---
 self.tableView.tableHeaderView = searchBar;
 self.searchBar.autocorrectionType = UITextAutocorrectionTypeYes;

[superviewDidLoad];

//UncommentthefollowinglinetodisplayanEditbuttoninthenavigation
barforthisviewcontroller.
//self.navigationItem.rightBarButtonItem=self.editButtonItem;
}

-(void)dealloc{
 [searchBar release];
[movieTitlesrelease];
[yearsrelease];
[superdealloc];
}

 6 . Press Command-R to test the application on the iPhone 4 Simulator. Figure 8-23 shows the Search
Bar displayed at the top of the Table view.

Displaying Sections ❘ 223

figure 8-23

 7 . Back in Xcode again, edit the RootViewController.h file by adding the following statements that
appear in bold:

#import<UIKit/UIKit.h>

@interfaceRootViewController:UITableViewController{
NSDictionary*movieTitles;
NSArray*years;

IBOutletUISearchBar*searchBar;

BOOL isSearchOn;
 BOOL canSelectRow;
 NSMutableArray *listOfMovies;
 NSMutableArray *searchResult;
}

@property(nonatomic,retain)NSDictionary*movieTitles;
@property(nonatomic,retain)NSArray*years;

@property(nonatomic,retain)UISearchBar*searchBar;

- (void) doneSearching:(id)sender;
- (void) searchMoviesTableView;

@end

224 ❘ chApter 8 uSinG the table View

 8 . In the RootViewController.m file, add the following methods:

//---fired when the user taps on the searchbar---
- (void)searchBarTextDidBeginEditing:(UISearchBar *)searchBar {
 isSearchOn = YES;
 canSelectRow = NO;
 self.tableView.scrollEnabled = NO;

 //---add the Done button at the top---
 self.navigationItem.rightBarButtonItem =
 [[[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemDone
 target:self
 action:@selector(doneSearching:)]
 autorelease];
}

//---done with the searching---
- (void) doneSearching:(id)sender {
isSearchOn=NO;
canSelectRow=YES;
self.tableView.scrollEnabled=YES;
self.navigationItem.rightBarButtonItem=nil;

//---hides the keyboard---
[searchBarresignFirstResponder];

//---refresh the TableView---
[self.tableViewreloadData];
}

//---fired when the user types something into the searchbar---
- (void)searchBar:(UISearchBar *)searchBar
 textDidChange:(NSString *)searchText {

 //---if there is something to search for---
 if ([searchText length] > 0) {
 isSearchOn = YES;
 canSelectRow = YES;
 self.tableView.scrollEnabled = YES;
 [self searchMoviesTableView];
 }
 else {
 //---nothing to search---
 isSearchOn = NO;
 canSelectRow = NO;
 self.tableView.scrollEnabled = NO;
 }
 [self.tableView reloadData];
}

//---performs the searching using the array of movies---
- (void) searchMoviesTableView {
 //---clears the search result---
 [searchResult removeAllObjects];

 for (NSString *str in listOfMovies) {

Displaying Sections ❘ 225

 NSRange titleResultsRange = [str rangeOfString:searchBar.text
 options:NSCaseInsensitiveSearch];
 if (titleResultsRange.length > 0)
 [searchResult addObject:str];
 }
}

//---fired when the user taps the Search button on the keyboard---
- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar {
 [self searchMoviesTableView];
}

- (NSIndexPath *)tableView:(UITableView *)tableView
 willSelectRowAtIndexPath:(NSIndexPath *)indexPath {
 if (canSelectRow)
 return indexPath;
 else
 return nil;
}

 9 . Modify the following methods in bold in the RootViewController.m file:

-(void)viewDidLoad{
//---pathtothepropertylistfile---
NSString*path=[[NSBundlemainBundle]pathForResource:@”Movies”
ofType:@”plist”];
//---loadthelistintothedictionary---
NSDictionary*dic=[[NSDictionaryalloc]initWithContentsOfFile:path];

//---savethedictionaryobjecttotheproperty---
self.movieTitles=dic;
[dicrelease];

//---getallthekeysinthedictionaryobjectandsortthem---
NSArray*array=
[[self.movieTitlesallKeys]
sortedArrayUsingSelector:@selector(compare:)];

//---savethekeysintheyearsproperty---
self.years=array;

//---Search---
self.tableView.tableHeaderView=searchBar;
self.searchBar.autocorrectionType=UITextAutocorrectionTypeYes;

 //---copy all the movie titles in the dictionary into
 // the listOfMovies array---
 listOfMovies = [[NSMutableArray alloc] init];
 for (NSString *year in array) { //---get all the years---
 //---get all the movies for a particular year---
 NSArray *movies = [movieTitles objectForKey:year];
 for (NSString *title in movies) {
 [listOfMovies addObject:title];
 }
 }

 //---used for storing the search result---

226 ❘ chApter 8 uSinG the table View

 searchResult = [[NSMutableArray alloc] init];

 isSearchOn = NO;
 canSelectRow = YES;

[superviewDidLoad];

//UncommentthefollowinglinetodisplayanEditbuttoninthenavigation
barforthisviewcontroller.
//self.navigationItem.rightBarButtonItem=self.editButtonItem;
}

//Customizethenumberofsectionsinthetableview.
-(NSInteger)numberOfSectionsInTableView:(UITableView*)tableView{
//return1;
 if (isSearchOn)
 return 1;
 else
return[self.yearscount];
}

//Customizethenumberofrowsinthetableview.
-(NSInteger)tableView:(UITableView*)tableView
numberOfRowsInSection:(NSInteger)section{
//return0;
 if (isSearchOn) {
 return [searchResult count];
 } else {
 //---checkthecurrentyearbasedonthesectionindex---
NSString*year=[self.yearsobjectAtIndex:section];

//---returnsthemoviesinthatyearasanarray---
NSArray*movieSection=[self.movieTitlesobjectForKey:year];

//---returnthenumberofmoviesforthatyearasthenumber
//ofrowsinthatsection---
return[movieSectioncount];
 }
}

//Customizetheappearanceoftableviewcells.
-(UITableViewCell*)tableView:(UITableView*)tableView
cellForRowAtIndexPath:(NSIndexPath*)indexPath{
staticNSString*CellIdentifier=@”Cell”;

UITableViewCell*cell=
[tableViewdequeueReusableCellWithIdentifier:CellIdentifier];
if(cell==nil){
cell=[[[UITableViewCellalloc]
initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier]
autorelease];
}

//Configurethecell.

Displaying Sections ❘ 227

 if (isSearchOn) {
 NSString *cellValue = [searchResult objectAtIndex:indexPath.row];
 cell.textLabel.text = cellValue;
 } else {
//---gettheyear---
NSString*year=[self.yearsobjectAtIndex:[indexPathsection]];

//---getthelistofmoviesforthatyear---
NSArray*movieSection=[self.movieTitlesobjectForKey:year];

//---gettheparticularmoviebasedonthatrow---
cell.textLabel.text=[movieSectionobjectAtIndex:[indexPathrow]];
 }
returncell;
}

-(NSString*)tableView:(UITableView*)tableView
titleForHeaderInSection:(NSInteger)section{
//---gettheyearasthesectionheader---
NSString*year=[self.yearsobjectAtIndex:section];
 if (isSearchOn)
 return nil;
 else
returnyear;
}

-(NSArray*)sectionIndexTitlesForTableView:(UITableView*)tableView{
 if (isSearchOn)
 return nil;
 else
returnself.years;
}

-(void)dealloc{
 [listOfMovies release];
 [searchResult release];
[searchBarrelease];
[movieTitlesrelease];
[yearsrelease];
[superdealloc];
}

 10 . Press Command-R to test the application on the iPhone 4 Simulator.

 11 . Tap the Search Bar and the keyboard will appear. Observe the following:

When the keyboard appears and the Search Bar has no text in it, the Table view contains the ➤➤

original list and the items are not selectable.

As you type, the Table view displays the movies whose title contains the characters you ➤➤

are typing, as demonstrated in Figure 8-24, wherein “on” was typed into the search bar of
the right-most image and movie titles containing “on” are now displayed. You can select a
search result by tapping it.

When you tap the Done button, the keyboard disappears and the original list appears.➤➤

228 ❘ chApter 8 uSinG the table View

figure 8-24

How It Works

That was quite a bit of work, but it is actually quite easy to follow the details.

First, you add an outlet to connect to the Search Bar:

 IBOutlet UISearchBar *searchBar;

You then define two Boolean variables so that you can track whether the search process is ongoing and
whether the user can select the rows in the Table view:

 BOOL isSearchOn;
BOOLcanSelectRow;

You then define two NSMutableArray objects so that you can use one to store the list of movies and
another to temporarily store the result of the search:

 NSMutableArray *listOfMovies;
NSMutableArray*searchResult;

When the View window is first loaded, you first associate the Search Bar with the Table view and then
copy the entire list of movie titles from the NSDictionary object into the NSMutableArray:

//---Search---
self.tableView.tableHeaderView=searchBar;
self.searchBar.autocorrectionType=UITextAutocorrectionTypeYes;

 //---copy all the movie titles in the dictionary into

Displaying Sections ❘ 229

 // the listOfMovies array---
 listOfMovies = [[NSMutableArray alloc] init];
 for (NSString *year in array) { //---get all the years---
 //---get all the movies for a particular year---
 NSArray *movies = [movieTitles objectForKey:year];
 for (NSString *title in movies) {
 [listOfMovies addObject:title];
 }
 }

 //---used for storing the search result---
 searchResult = [[NSMutableArray alloc] init];

 isSearchOn = NO;
 canSelectRow = YES;

When the user taps the Search Bar, the searchBarTextDidBeginEditing: event (one of the meth-
ods defined in the UISearchBarDelegate protocol) fires. In this method, you add a Done button to
the top-right corner of the screen. When the Done button is tapped, the doneSearching: method is
called (which you define next):

//---fired when the user taps on the searchbar---
- (void)searchBarTextDidBeginEditing:(UISearchBar *)searchBar {
 isSearchOn = YES;
 canSelectRow = NO;
 self.tableView.scrollEnabled = NO;

 //---add the Done button at the top---
 self.navigationItem.rightBarButtonItem =
 [[[UIBarButtonItem alloc]
 initWithBarButtonSystemItem:UIBarButtonSystemItemDone
 target:self
 action:@selector(doneSearching:)]
 autorelease];
}

The doneSearching: method makes the Search Bar resign its First Responder status (thereby hiding the
keyboard). At the same time, you reload the Table view by calling the reloadData method of the Table
view. This causes the various events associated with the Table view to be fired again:

//---done with the searching---
- (void) doneSearching:(id)sender {
 isSearchOn = NO;
 canSelectRow = YES;
 self.tableView.scrollEnabled = YES;
 self.navigationItem.rightBarButtonItem = nil;

 //---hides the keyboard---
 [searchBar resignFirstResponder];

 //---refresh the TableView---
 [self.tableView reloadData];
}

230 ❘ chApter 8 uSinG the table View

As the user types into the Search Bar, the searchBar:textDidChange: event is fired for each character
entered. In this case, if the Search Bar has at least one character, the searchMoviesTableView method
(which you define next) is called:

//---fired when the user types something into the searchbar---
- (void)searchBar:(UISearchBar *)searchBar
 textDidChange:(NSString *)searchText {

 //---if there is something to search for---
 if ([searchText length] > 0) {
 isSearchOn = YES;
 canSelectRow = YES;
 self.tableView.scrollEnabled = YES;
 [self searchMoviesTableView];
 }
 else {
 //---nothing to search---
 isSearchOn = NO;
 canSelectRow = NO;
 self.tableView.scrollEnabled = NO;
 }
 [self.tableView reloadData];
}

The searchMoviesTableView method performs the searching on the listOfMovies array. You use the
rangeOfString:options: method of the NSString class to perform a case-insensitive search of each
movie title using the specified string. The returned result is an NSRange object, which contains the loca-
tion and length of the search string being searched. If the length is more than zero, then a match has
been found, and hence you add it to the searchResult array:

//---performs the searching using the array of movies---
- (void) searchMoviesTableView {
 //---clears the search result---
 [searchResult removeAllObjects];

 for (NSString *str in listOfMovies) {
 NSRange titleResultsRange = [str rangeOfString:searchBar.text
 options:NSCaseInsensitiveSearch];
 if (titleResultsRange.length > 0)
 [searchResult addObject:str];
 }
}

When the user taps the Search button (on the keyboard), you make a call to the searchMoviesTableView
method:

//---fired when the user taps the Search button on the keyboard---
- (void)searchBarSearchButtonClicked:(UISearchBar *)searchBar {
 [self searchMoviesTableView];
}

The rest of the methods are straightforward. If the search is currently active (as determined by the
isSearchOn variable), then you display the list of titles contained in the searchResult array. If not, then
you display the entire list of movies.

Displaying Sections ❘ 231

Disclosures and check marks
Because users often select rows in a Table view to view more detailed information, rows in a Table view
often sport images such as an arrow or a checkmark. Figure 8-25 shows an example of such arrows.

figure 8-25

There are three types of images that you can display:

Checkmark➤➤

Disclosure indicator➤➤

Detail Disclosure button➤➤

To display a disclosure or a checkmark, insert the following statement that appears in bold in the
tableView:cellForRowAtIndexPath: event:

//Customizetheappearanceoftableviewcells.
-(UITableViewCell*)tableView:(UITableView*)tableView
cellForRowAtIndexPath:(NSIndexPath*)indexPath{
staticNSString*CellIdentifier=@”Cell”;

UITableViewCell*cell=
[tableViewdequeueReusableCellWithIdentifier:CellIdentifier];
if(cell==nil){
cell=[[[UITableViewCellalloc]initWithStyle:UITableViewCellStyleDefault
reuseIdentifier:CellIdentifier]
autorelease];

232 ❘ chApter 8 uSinG the table View

}

//Configurethecell.
if(isSearchOn){
NSString*cellValue=[searchResultobjectAtIndex:indexPath.row];
cell.textLabel.text=cellValue;
}else{
//---gettheyear---
NSString*year=[self.yearsobjectAtIndex:[indexPathsection]];

//---getthelistofmoviesforthatyear---
NSArray*movieSection=[self.movieTitlesobjectForKey:year];

//---gettheparticularmoviebasedonthatrow---
cell.textLabel.text=[movieSectionobjectAtIndex:[indexPathrow]];

 //---set the accessory type---
 cell.accessoryType = UITableViewCellAccessoryDetailDisclosureButton;
}
returncell;
}

You can use the following constants for the accessoryType property:

UITableViewCellAccessoryCheckmark➤➤

UITableViewCellAccessoryDisclosureIndicator➤➤

UITableViewCellAccessoryDetailDisclosureButton➤➤

Figure 8-26 shows the three different types of images corresponding to the preceding constants.

figure 8-26

Displaying Sections ❘ 233

Of the three accessory types, only the UITableViewCellAccessoryDetailDisclosureButton can handle
one additional user’s tap event. To handle the additional event when the user taps the Disclosure but-
ton, you need to implement the tableView:accessoryButtonTappedForRowWithIndexPath: method:

- (void)tableView:(UITableView *)tableView
accessoryButtonTappedForRowWithIndexPath:(NSIndexPath *)indexPath {
 //---insert code here---
 // e.g. navigate to another view to display detailed information, etc
}

Figure 8-27 shows the two different events fired
when a user taps the content of the cell, as well
as the Disclosure button.

Commonly, you use the Disclosure button to dis-
play detailed information about the selected row.

navigating to Another view
One of the features of a Navigation-based appli-
cation is its ability to navigate from one View
window to another. For example, the user may
select an item from the Table view and the application will navigate to another View window show-
ing the details of the item selected.

In the following Try It Out, you will modify the application that you have been building so that when the
user selects a movie, the application displays the name of the movie selected in another View window.

Displaying the Movie Selectedtry it Out

 1 . Using the project created in the previous section, right-click the Classes folder in Xcode and select
Add ➪ New File.... Select Cocoa Touch Class (on the left) and then UIViewController subclass
(check the “With XIB for user interface” option) and click Next (see Figure 8-28).

 2 . Name the file as MovieDetailsViewController.m and click Finish. There should now
be three additional files in the Classes folder — MovieDetailsViewController.h,
MovieDetailsViewController.m, and MovieDetailsViewController.xib

 3 . Double-click the MovieDetailsViewController.xib file to edit it in Interface Builder.

 4 . Populate the View window with a Label view (see Figure 8-29).

 5 . Add the following bold code in the MovieDetailsViewController.h file:

#import<UIKit/UIKit.h>

@interfaceMovieDetailsViewController:UIViewController{
 IBOutlet UILabel *label;
 NSString *movieSelected;
}

@property (nonatomic, retain) UILabel *label;
@property (nonatomic, retain) NSString *movieSelected;

@end

tableView:didSelectRowAtIndexPath:

tableView:accessoryButtonTappedForRowWithIndexPath:

figure 8-27

234 ❘ chApter 8 uSinG the table View

figure 8-28

figure 8-28

 6 . In Interface Builder, control-click the File’s Owner item and drag and drop it over the Label view.
Select label.

Displaying Sections ❘ 235

 7 . Add the following bold code in MovieDetailsViewController.m:

#import“MovieDetailsViewController.h”

@implementationMovieDetailsViewController

@synthesize label;
@synthesize movieSelected;

-(void) viewDidAppear:(BOOL)animated {
 label.text = self.movieSelected;
}

- (void)viewDidLoad {
 self.title = @”Movie Details”;
 [super viewDidLoad];
}

-(void)dealloc{
 [movieSelected release];
 [label release];
[superdealloc];
}

 8 . Add the following bold code in RootViewController.h:

#import<UIKit/UIKit.h>
#import “MovieDetailsViewController.h”

@interfaceRootViewController:UITableViewController
<UISearchBarDelegate>{

 MovieDetailsViewController *detailsViewController;

NSDictionary*movieTitles;
NSArray*years;

IBOutletUISearchBar*searchBar;

BOOLisSearchOn;
BOOLcanSelectRow;
NSMutableArray*listOfMovies;
NSMutableArray*searchResult;
}

@property(nonatomic,retain)NSDictionary*movieTitles;
@property(nonatomic,retain)NSArray*years;
@property(nonatomic,retain)UISearchBar*searchBar;

@property (nonatomic, retain) MovieDetailsViewController *detailsViewController;

-(void)doneSearching:(id)sender;
-(void)searchMoviesTableView;

@end

236 ❘ chApter 8 uSinG the table View

 9 . Add the following bold code in RootViewController.m:

#import“RootViewController.h”

@implementationRootViewController

@synthesizemovieTitles;
@synthesizeyears;
@synthesizesearchBar;

@synthesize detailsViewController;

 10 . In the RootViewController.m file, insert the following bold statement in the viewDidLoad method:

-(void)viewDidLoad{
 self.navigationItem.title = @”List of Movies”;

//---pathtothepropertylistfile---
NSString*path=[[NSBundlemainBundle]pathForResource:@”Movies”
ofType:@”plist”];
//---loadthelistintothedictionary---
NSDictionary*dic=[[NSDictionaryalloc]initWithContentsOfFile:path];

//---savethedictionaryobjecttotheproperty---
self.movieTitles=dic;
[dicrelease];

//---detailsomitted---
//...
//...
[superviewDidLoad];
}

 11 . Code the tableView:didSelectRowAtIndexPath: method as follows:

-(void)tableView:(UITableView*)tableView
didSelectRowAtIndexPath:(NSIndexPath*)indexPath{
 NSString *year = [self.years objectAtIndex:[indexPath section]];
 NSArray *movieSection = [self.movieTitles objectForKey:year];
 NSString *movieTitle = [movieSection objectAtIndex:[indexPath row]];
 NSString *message = [[NSString alloc]
 initWithFormat:@”You have selected %@”,
 movieTitle];

 //---Navigate to the details view---
 if (self.detailsViewController == nil) {
 MovieDetailsViewController *d = [[MovieDetailsViewController alloc]
 initWithNibName:@”MovieDetailsViewController”
 bundle:[NSBundle mainBundle]];
 self.detailsViewController = d;
 [d release];
 }

 //---set the movie selected in the method of the
 // MovieDetailsViewController---//

Displaying Sections ❘ 237

 self.detailsViewController.movieSelected = message;
 [self.navigationController pushViewController:self.detailsViewController
 animated:YES];
}

 12 . Finally, add the following statement in bold to the dealloc method:

-(void)dealloc{
 [detailsViewController release];
[listOfMoviesrelease];
[searchResultrelease];
[searchBarrelease];
[movieTitlesrelease];
[yearsrelease];
[superdealloc];
}

 13 . Press Command-R to test the application on the iPhone 4 Simulator. Figure 8-30 shows that when
you click one of the movies in the Table view, the application navigates to another View window,
showing the name of the movie selected.

figure 8-30

How It Works

In order to navigate to another View window, you first need to create a new View window with
its corresponding View Controller. In order to pass the name of the movie selected from the

238 ❘ chApter 8 uSinG the table View

RootViewController to the MovieDetailsViewController, you expose a property named movieSelected
on the MovieDetailsViewController:

#import<UIKit/UIKit.h>

@interfaceMovieDetailsViewController:UIViewController{
IBOutletUILabel*label;
 NSString *movieSelected;
}

@property(nonatomic,retain)UILabel*label;
@property (nonatomic, retain) NSString *movieSelected;

@end

The RootViewController class will use this property to pass the name of the movie selected.

The MovieDetailsViewController class displays the name of the movie selected in the Label view every
time the View window appears:

-(void) viewDidAppear:(BOOL)animated {
 label.text = self.movieSelected;
}

When the user selects an item in the Table view, you first determine the name of the movie (in the
tableView:didSelectRowAtIndexPath: method):

 NSString *year = [self.years objectAtIndex:[indexPath section]];
 NSArray *movieSection = [self.movieTitles objectForKey:year];
 NSString *movieTitle = [movieSection objectAtIndex:[indexPath row]];
 NSString *message = [[NSString alloc]
 initWithFormat:@”You have selected %@”,
 movieTitle];

You then navigate to the MovieDetailsViewController class by instantiating a copy of it and then set-
ting the movieSelected property to the name of the movie selected.

Finally, to navigate to the new View window, you use the pushViewController: method of the
Navigation Controller:

 //---Navigate to the details view---
 if (self.detailsViewController == nil) {
 MovieDetailsViewController *d = [[MovieDetailsViewController alloc]
 initWithNibName:@”MovieDetailsViewController”
 bundle:[NSBundle mainBundle]];
 self.detailsViewController = d;
 [d release];
 }

 //---set the movie selected in the method of the
 // MovieDetailsViewController---//
 self.detailsViewController.movieSelected = message;
 [self.navigationController pushViewController:self.detailsViewController
 animated:YES];

Summary ❘ 239

SummAry

In this chapter, you had a good look at the Table view and learned how to customize it to display
items in various formats. You also learned how to implement search functionality in the Table view,
which is an essential function in real-world applications. In addition, you also saw how to move
between View windows in a Navigation-based application.

exerciSeS

 1 . Name the two protocols to which your View Controller must conform when using the Table view in
your view . Briefly describe their uses .

 2 . Which method should be implemented if you want to add an index in a Table view?

 3 . Name the three disclosure and checkmark images that you can use . Which one handles user taps?

Answers to Exercises can be found in Appendix E, on Wrox.com.

240 ❘ chApter 8 uSinG the table View

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

Adding items to a
table view

Handle the various events in the UITableViewDataSource protocol .

Allowing users to select
rows in a table view

Handle the various events in the UITableViewDelegate protocol .

Adding images to rows in
a table view

Use the image property of the UITableViewCell class and set it to an
instance of the UIImage class containing an image .

using a property list with a
table view

Use the following code snippet to locate the property list:
NSString *path = [[NSBundle mainBundle]
pathForResource:@”Movies”
ofType:@”plist”];

Then use a combination of NSDictionary and NSArray objects to
retrieve the key/value pairs stored in the property list .

grouping items in a table
view in sections

Implement the following methods:
numberOfSectionsInTableView:
tableView:numberOfRowsInSection:
tableView:titleForHeaderInSection:

Adding an index to a
table view

Implement the sectionIndexTitlesForTableView: method .

Adding disclosure and
checkmark images to a
row in a table view

Set the accessoryType property of an UITableViewCell object to
one of the following:
UITableViewCellAccessoryDetailDisclosureButton
UITableViewCellAccessoryCheckmark
UITableViewCellAccessoryDisclosureIndicator

implementing a search in
a table view

Use the Search Bar view and handle the various events in the
UISearchBarDelegate protocol .

navigating to another
view window

Use the pushViewController: method of the Navigation Controller

Application Preferences

whAt yOu will leArn in thiS chApter

How to add application preferences to your application➤➤

How to programmatically access the Settings values➤➤

How to reset your application’s preferences settings➤➤

If you are a relatively seasoned Mac OS X user,
you’re likely familiar with the concept of applica-
tion preferences. Almost every Mac OS X appli-
cation has application-specifi c settings that are
used for confi guring the application’s appearance
and behavior. These settings are known as the
application preferences.

In the iPhone OS, applications also have applica-
tion preferences. In contrast to Mac OS X appli-
cations, however, whose application preferences
are an integral part of the application, iPhone
preferences are centrally managed by an applica-
tion called Settings (see Figure 9-1).

The Settings application displays the preferences
of system applications as well as third-party
applications. Tapping any setting displays the
details, where you can confi gure the preferences
of an application.

In this chapter, you learn how to incorporate
application preferences into your application and
modify them programmatically during runtime.

figure 9-1

9

242 ❘ chApter 9 aPPlicatiOn PreFerenceS

creAting ApplicAtiOn preferenceS

Creating application preferences for your iPhone application is a relatively straightforward process.
It involves adding a resource called the Settings Bundle to your project, configuring a property list
file, and then deploying your application. When your application is deployed, the application prefer-
ences are automatically created for you in the Settings application.

The following Try It Out shows how to add application preferences to your iPhone application proj-
ect in Xcode.

Adding Application Preferencestry it Out

 1 . Using Xcode, create a new View-based Application (iPhone) project and name it
ApplicationSettings.

 2 . Right-click the project name in Xcode and add a new file. Select the Resource template category
and click Settings Bundle (see Figure 9-2). Click Next.

figure 9-2

 3 . When asked to name the file, use the default name of Settings.bundle and click Finish.

 4 . The Settings.bundle item should now be part of your project. Click it and view the content of the
Root.plist file using the default Property List editor (see Figure 9-3).

 5 . Press Command-R to test the application on the iPhone 4 Simulator. When the application is
loaded on the Simulator, press the Home key to return to the main screen of the iPhone. Click the
Settings application. You can now see a new Settings entry, ApplicationSettings (see Figure 9-4).
Click the ApplicationSettings entry to see the default settings created for you.

Creating Application Preferences ❘ 243

figure 9-3

figure 9-4

244 ❘ chApter 9 aPPlicatiOn PreFerenceS

How It Works

It seems almost magical that without coding a single line, you have incorporated your application pref-
erences into your application. The magic part is actually the Settings.bundle file that you have added
to your project. It contains two files: Root.plist and Root.strings. The Root.plist file is an XML file
that contains a collection of dictionary objects (key/value pairs). These key/value pairs are translated
into the preferences entries you see in the Settings application.

Take a moment to review the use of the various keys used in the Root.plist file. There are two root-
level keys in the Root.plist file:

StringsTable➤➤ , which contains the name of the strings file associated with this file. In this case, it is
pointing to Root.strings. This file provides the localized content to display to the user for each of
your preferences.

PreferenceSpecifiers➤➤ , which is of type Array and contains an array of dictionaries, with each
item containing the information for a single preference.

Each preference is represented by an item (known as PreferenceSpecifiers), such as Item0, Item1,
Item2, and so on. Each item has a Type key, which indicates the type of data stored. Table 9-1 describes
the preference specifiers.

tABle 9-1: List of Preference Specifiers and Usage

element type DeScriptiOn uSe fOr

PSTextFieldSpecifier A text field preference .
Displays an optional title
and an editable text field .

Preferences that require the user
to specify a custom string value

PSTitleValueSpecifier A read-only string
preference

Displaying preference values as
formatted strings

PSToggleSwitchSpecifier A toggle switch preference Configuring a preference that can
have only one of two values

PSSliderSpecifier A slider preference Preferences that represent a range
of values . The value for this type
is a real number whose minimum
and maximum you specify .

PSMultiValueSpecifier A multivalue preference Preferences that support a set of
mutually exclusive values

PSGroupSpecifier A group item preference Organizing groups of preferences
on a single page

PSChildPaneSpecifier A child pane preference Linking to a new page of
preferences

Creating Application Preferences ❘ 245

Each PreferenceSpecifiers key contains a list of subkeys that you can use. For example, the
PSTextFieldSpecifier key provides Type, Title, Key, DefaultValue, IsSecure, KeyBoardType,
AutocapitalizationType, and AutocorrectionType keys. You then set each key with its appropriate values.

Examine the Root.plist fi le in more detail. Note, for example, that Item2 has four keys under it:
Type, Title, Key, and DefaultValue. The Type key specifi es the type of information it is going to store.
In this case, it is a PSToggleSwitchSpecifier, which means it will be represented visually as an On/
Off switch. The Title key specifi es the text that will be shown for this item (Item 2). The Key key is the
identifi er that uniquely identifi es this key so that you can programmatically retrieve the value of this
item in your application. Finally, the DefaultValue key specifi es the default value of this item. In this
case, it is checked, indicating that the value is On.

NOTE The key/value pair in the Root.plist fi le is case sensitive, so you need
to be careful when modifying the entries. A typo can result in a nonfunctional
application.

In the next Try It Out, you modify the Root.plist fi le so that you can use it to store a user’s cre-
dentials. This is very useful when you are writing an application that requires users to log in to a
server. When users access your application for the fi rst time, they will supply their login credentials,
such as username and password. Your application can then store the credentials in the application
preferences so that the next time a user accesses your application, the application can automatically
retrieve the credentials without asking the user to supply them.

NOTE For more information on the use of each key, refer to Apple’s “Settings
Application Schema Reference” documentation. The easiest way to locate
it is to do a Web search for the title. The full URL is http://developer.apple
.com/iPhone/library/documentation/PreferenceSettings/Conceptual/

SettingsApplicationSchemaReference/Introduction/Introduction.html.

Modifying the Application Preferencestry it Out

1 . In Xcode (using the same project created in the previous section), select the Root.plist fi le and
remove all four items under the PreferenceSpecifiers key. To do so, select individual items under
the PreferenceSpecifiers key and then press the Delete key.

2 . To add a new item under the PreferenceSpecifiers key, select the PreferenceSpecifiers key
(see Figure 9-5) and click the Add Child button (the button on the bottom right).

figure 9-5

http://developer.apple.com/iPhone/library/documentation/PreferenceSettings/Conceptual/SettingsApplicationSchemaReference/Introduction/Introduction.html
http://developer.apple.com/iPhone/library/documentation/PreferenceSettings/Conceptual/SettingsApplicationSchemaReference/Introduction/Introduction.html
http://developer.apple.com/iPhone/library/documentation/PreferenceSettings/Conceptual/SettingsApplicationSchemaReference/Introduction/Introduction.html

246 ❘ chApter 9 aPPlicatiOn PreFerenceS

 3 . A new item is added for you. To add addi-
tional items, click the Add Sibling button
(see Figure 9-6; the button on the bottom
right). Click the Add Sibling button three
more times.

 4 . The Root.plistfile should now look like
Figure 9-7.

 5 . Change the Type of Item0to Dictionary
and expand it by clicking the arrow dis-
played to the left of it (see Figure 9-8).
Click the Add Child button to add a child
to Item0.

 6 . A new item is added under Item0 (see
Figure 9-9). Click the Add Sibling button to
add another item under Item0.

Remember that you use the Add Sibling
button to add a new item within the same
level. Use the Add Child button to add a
new child item under the current level.

 7 . The Root.plist file should now look like
Figure 9-10.

 8 . Modify the entire Root.plist file so that
it looks like Figure 9-11. Ensure that the
capitalization of each key and value pair is
correct. Pay particular attention to the Type
of each item.

 9 . Save the project and press Command-R
to test the application on the iPhone 4
Simulator. Click the Home button and
launch the Settings application again. Select
the ApplicationSettings settings and observe
the preferences shown (see Figure 9-12).
Clicking the Favorite Color setting will dis-
play a page for choosing your favorite color
(see Figure 9-13).

 10 . Make some changes to the settings values and then press the Home button to return to the Home
screen. The changes in the settings are automatically saved to the device. When you return to the
Settings page again, the new values will be displayed.

How It Works

What you have done is basically modify the Root.plist file to store three preferences: Login Name,
Password, and Favorite Color. For the Password field, you use the IsSecure key to indicate that the

figure 9-6

figure 9-7

figure 9-8

figure 9-9

figure 9-10

Creating Application Preferences ❘ 247

value must be masked when displaying it to the user. Of
particular interest is the Favorite Color preference, for
which you use the Titles and Values keys to display a list
of selectable options and their corresponding values to
store on the iPhone.

The following preference specifiers are used in this
example:

PSGroupSpecifier➤➤ — Used to display a group for
the settings. In this case, all the settings are grouped
under the Account Information group.

PSTextFieldSpecifier➤➤ — Specifies a text field.

PSMultiValueSpecifier➤➤ — Specifies a list of
selectable values. The Titles item contains a list
of visible text from which users can select. The
Values item is the corresponding value for the text
selected by the user. For example, if a user selects
Blue Color as the favorite color, the value Blue
will be stored on the iPhone.

figure 9-12

 3 . A new item is added for you. To add addi-
tional items, click the Add Sibling button
(see Figure 9-6; the button on the bottom
right). Click the Add Sibling button three
more times.

 4 . The Root.plistfile should now look like
Figure 9-7.

 5 . Change the Type of Item0to Dictionary
and expand it by clicking the arrow dis-
played to the left of it (see Figure 9-8).
Click the Add Child button to add a child
to Item0.

 6 . A new item is added under Item0 (see
Figure 9-9). Click the Add Sibling button to
add another item under Item0.

Remember that you use the Add Sibling
button to add a new item within the same
level. Use the Add Child button to add a
new child item under the current level.

 7 . The Root.plist file should now look like
Figure 9-10.

 8 . Modify the entire Root.plist file so that
it looks like Figure 9-11. Ensure that the
capitalization of each key and value pair is
correct. Pay particular attention to the Type
of each item.

 9 . Save the project and press Command-R
to test the application on the iPhone 4
Simulator. Click the Home button and
launch the Settings application again. Select
the ApplicationSettings settings and observe
the preferences shown (see Figure 9-12).
Clicking the Favorite Color setting will dis-
play a page for choosing your favorite color
(see Figure 9-13).

 10 . Make some changes to the settings values and then press the Home button to return to the Home
screen. The changes in the settings are automatically saved to the device. When you return to the
Settings page again, the new values will be displayed.

How It Works

What you have done is basically modify the Root.plist file to store three preferences: Login Name,
Password, and Favorite Color. For the Password field, you use the IsSecure key to indicate that the

figure 9-11

figure 9-13

248 ❘ chApter 9 aPPlicatiOn PreFerenceS

prOgrAmmAticAlly AcceSSing the SettingS vAlueS

The preferences settings are of little use if you can’t programmatically access them from within your
application. In the following sections, you modify the application so that you can load the prefer-
ences settings as well as make changes to them programmatically.

First, use the following Try It Out to prepare the UI by connecting the necessary outlets and actions.

Preparing the Uitry it Out

 1 . Using the project created in the previous section, double-click the
ApplicationSettingsViewController.xib file to edit it in Interface Builder.

 2 . Populate the View window with the following views (see Figure 9-14):

Round Rect Button➤➤

Label➤➤

Text Field➤➤

PickerView➤➤

 3 . In Xcode, insert the following code that appears in bold into the
ApplicationSettingsViewController.h file:

#import<UIKit/UIKit.h>

@interfaceApplicationSettingsViewController:UIViewController
<UIPickerViewDataSource, UIPickerViewDelegate> {
 IBOutlet UITextField *loginName;
 IBOutlet UITextField *password;
 IBOutlet UIPickerView *favoriteColor;
}

@property (nonatomic, retain) UITextField *loginName;
@property (nonatomic, retain) UITextField *password;
@property (nonatomic, retain) UIPickerView *favoriteColor;

-(IBAction) loadSettings: (id) sender;
-(IBAction) saveSettings: (id) sender;
-(IBAction) doneEditing: (id) sender;

@end

 4 . In Interface Builder, connect the outlets and action to the various views. In the
ApplicationSettingsViewController.xib window, do the following:

Control-click and drag the File’s Owner item to the first TextField view and select ➤➤ loginName.

Control-click and drag the File’s Owner item to the second TextField view and select ➤➤ password.

Control-click and drag the File’s Owner item to the Picker view and select ➤➤ favoriteColor.

Control-click and drag the Picker view to the File’s Owner item and select ➤➤ dataSource.

Control-click and drag the Picker view to the File’s Owner item and select ➤➤ delegate.

Programmatically Accessing the Settings Values ❘ 249

Control-click and drag the Load Settings Value button to the File’s Owner item and select ➤➤

loadSettings:.

Control-click and drag the Save Settings Value button to the File’s Owner item and select ➤➤

saveSettings:.

Right-click the Load Settings Value button and connect the ➤➤ DidEndonExit event to the
File’s Owner item. Select doneEditing:.

Right-click the Save Settings Value button and connect the ➤➤ DidEndonExit event to the
File’s Owner item. Select doneEditing:.

 5 . Right-click the File’s Owner item to verify that all the connections are connected properly (see
Figure 9-15).

 6 . Save the project in Interface Builder.

 7 . In Xcode, add the following bold code to the ApplicationSettingsViewController.m file:

#import“ApplicationSettingsViewController.h”

@implementationApplicationSettingsViewController

@synthesize loginName;
@synthesize password;
@synthesize favoriteColor;

NSMutableArray *colors;
NSString *favoriteColorSelected;

-(IBAction) doneEditing:(id) sender {

prOgrAmmAticAlly AcceSSing the SettingS vAlueS

The preferences settings are of little use if you can’t programmatically access them from within your
application. In the following sections, you modify the application so that you can load the prefer-
ences settings as well as make changes to them programmatically.

First, use the following Try It Out to prepare the UI by connecting the necessary outlets and actions.

Preparing the Uitry it Out

 1 . Using the project created in the previous section, double-click the
ApplicationSettingsViewController.xib file to edit it in Interface Builder.

 2 . Populate the View window with the following views (see Figure 9-14):

Round Rect Button➤➤

Label➤➤

Text Field➤➤

PickerView➤➤

 3 . In Xcode, insert the following code that appears in bold into the
ApplicationSettingsViewController.h file:

#import<UIKit/UIKit.h>

@interfaceApplicationSettingsViewController:UIViewController
<UIPickerViewDataSource, UIPickerViewDelegate> {
 IBOutlet UITextField *loginName;
 IBOutlet UITextField *password;
 IBOutlet UIPickerView *favoriteColor;
}

@property (nonatomic, retain) UITextField *loginName;
@property (nonatomic, retain) UITextField *password;
@property (nonatomic, retain) UIPickerView *favoriteColor;

-(IBAction) loadSettings: (id) sender;
-(IBAction) saveSettings: (id) sender;
-(IBAction) doneEditing: (id) sender;

@end

 4 . In Interface Builder, connect the outlets and action to the various views. In the
ApplicationSettingsViewController.xib window, do the following:

Control-click and drag the File’s Owner item to the first TextField view and select ➤➤ loginName.

Control-click and drag the File’s Owner item to the second TextField view and select ➤➤ password.

Control-click and drag the File’s Owner item to the Picker view and select ➤➤ favoriteColor.

Control-click and drag the Picker view to the File’s Owner item and select ➤➤ dataSource.

Control-click and drag the Picker view to the File’s Owner item and select ➤➤ delegate.

figure 9-14 figure 9-15

250 ❘ chApter 9 aPPlicatiOn PreFerenceS

 [sender resignFirstResponder];
}

-(void)viewDidLoad{
 //---create an array containing the colors values---
 colors = [[NSMutableArray alloc] init];
 [colors addObject:@”Red”];
 [colors addObject:@”Green”];
 [colors addObject:@”Blue”];
[superviewDidLoad];
}

//---number of components in the Picker view---
- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)thePickerView {
 return 1;
}

//---number of items(rows) in the Picker view---
- (NSInteger)pickerView:(UIPickerView *)thePickerView
numberOfRowsInComponent:(NSInteger)component {
 return [colors count];
}

//---populating the Picker view---
- (NSString *)pickerView:(UIPickerView *)thePickerView
 titleForRow:(NSInteger)row
 forComponent:(NSInteger)component {
 return [colors objectAtIndex:row];
}

//---the item selected by the user---
- (void)pickerView:(UIPickerView *)thePickerView
 didSelectRow:(NSInteger)row
 inComponent:(NSInteger)component {
 favoriteColorSelected = [colors objectAtIndex:row];
}

-(void)dealloc{
 [colors release];
 [favoriteColorSelected release];
 [loginName release];
 [password release];
 [favoriteColor release];
[superdealloc];
}

8 . That’s it! Press Command-R to test the application on the iPhone 4 Simulator. Figure 9-16 shows
the Picker view loaded with the three colors.

NOTE Clicking the buttons at this point will cause the application to crash, as
they are not coded yet. You will do that in the next section.

Programmatically Accessing the Settings Values ❘ 251

figure 9-16

How It Works

So far, all the work that has been done prepares the UI for displaying the values retrieved from the pref-
erences settings. In particular, you need to prepare the Picker view to display a list of colors from which
the user can choose.

To load the Picker view with the three colors, ensure that the ApplicationSettingsViewController
class conforms to the UIPickerViewDataSource and UIPickerViewDelegate protocols:

@interfaceApplicationSettingsViewController:UIViewController
<UIPickerViewDataSource, UIPickerViewDelegate> {

The UIPickerViewDataSource protocol defines the methods to populate the Picker view with items,
while the UIPickerViewDelegate protocol defines the methods to enable users to select an item from the
Picker view.

In the ApplicationSettingsViewController.m file, you first create an NSMutableArray object to store
the list of colors available for selection, in the viewDidLoad method:

-(void)viewDidLoad{
//---create an array containing the colors values---
colors=[[NSMutableArrayalloc]init];
[colorsaddObject:@”Red”];
[colorsaddObject:@”Green”];
[colorsaddObject:@”Blue”];
[superviewDidLoad];
}

252 ❘ chApter 9 aPPlicatiOn PreFerenceS

To set the number of components (columns) in the Picker view, implement the
numberOfComponentsInPickerView: method:

//---number of components in the Picker view---
- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)thePickerView {
 return 1;
}

To set the number of items (rows) you want to display in the Picker view, implement the
pickerView:numberOfRowsInComponent: method:

//---number of items(rows) in the Picker view---
- (NSInteger)pickerView:(UIPickerView *)thePickerView
numberOfRowsInComponent:(NSInteger)component {
 return [colors count];
}

To populate the Picker view with the three colors, implement the
pickerView:titleForRow:forComponent: method:

//---populating the Picker view---
- (NSString *)pickerView:(UIPickerView *)thePickerView
 titleForRow:(NSInteger)row
 forComponent:(NSInteger)component {
 return [colors objectAtIndex:row];
}

To save the color selected by the user in the Picker view, implement the
pickerView:didSelectRow:inComponent: method:

//---the item selected by the user---
- (void)pickerView:(UIPickerView *)thePickerView
 didSelectRow:(NSInteger)row
 inComponent:(NSInteger)component {
 favoriteColorSelected = [colors objectAtIndex:row];
}

The color selected will now be saved in the favoriteColorSelected object.

loading the Settings values
With the user interface of the application ready, it is now time to see how you can programmatically
load the values of the preferences settings and then display them in your application. This display is
useful because it gives users a chance to view the values of the settings without needing to go to the
Settings application.

Loading Settings Valuestry it Out

 1 . Using the project created in the previous section, modify the
application:didFinishLaunchingWithOptions: method in the
ApplicationSettingsAppDelegate.m file:

#import“ApplicationSettingsAppDelegate.h”

Programmatically Accessing the Settings Values ❘ 253

#import“ApplicationSettingsViewController.h”

@implementationApplicationSettingsAppDelegate

@synthesizewindow;
@synthesizeviewController;

-(BOOL)application:(UIApplication*)application
didFinishLaunchingWithOptions:(NSDictionary*)launchOptions{
// -- initialize the settings value first;
 // if not all settings values will be null --
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 if (![defaults objectForKey:@”login_name”])
 [defaults setObject:@”login name” forKey:@”login_name”];

 if (![defaults objectForKey:@”password”])
 [defaults setObject:@”password” forKey:@”password”];

 if (![defaults objectForKey:@”color”])
 [defaults setObject:@”Green” forKey:@”color”];

 [defaults synchronize];

//Overridepointforcustomizationafterapplicationlaunch.

//Addtheviewcontroller’sviewtothewindowanddisplay.
[windowaddSubview:viewController.view];
[windowmakeKeyAndVisible];

returnYES;
}

 2 . Insert the following method into the ApplicationSettingsViewController.m file:

- (IBAction) loadSettings: (id) sender{
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 loginName.text = [defaults objectForKey:@”login_name”];
 password.text = [defaults objectForKey:@”password”];

 //---find the index of the array for the color saved---
 favoriteColorSelected = [[NSString alloc] initWithString:
 [defaults objectForKey:@”color”]];

 int selIndex = [colors indexOfObject:favoriteColorSelected];

 //---display the saved color in the Picker view---
 [favoriteColor selectRow:selIndex inComponent:0 animated:YES];
}

 3 . Press Command-R to test the application on the iPhone 4 Simulator. When the application is
loaded, click the Load Settings Values button. You should see the settings values displayed in the
Text Field views and the Picker view (see Figure 9-17).

254 ❘ chApter 9 aPPlicatiOn PreFerenceS

figure 9-17

How It Works

To load the values of the preferences settings, you use a class known as NSUserDefaults:

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];

The preceding statement returns the one instance of the NSUserDefaults class. Think of
NSUserDefaults as a common database that you can use to store your application preferences settings.

When your application runs for the first time, you need to set the values of the settings before you can
use them. Hence, the best place to initialize them is in the application delegate.

To retrieve the values of the preferences settings, you use the objectForKey: method to check whether
each setting is null. If it is, the setting has not been initialized yet and hence you need to set it. To ini-
tialize the setting, use the setObject:forKey: method:

-(BOOL)application:(UIApplication*)application
didFinishLaunchingWithOptions:(NSDictionary*)launchOptions{
// -- initialize the settings value first;
 // if not all settings values will be null --
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 if (![defaults objectForKey:@”login_name”])
 [defaults setObject:@”login name” forKey:@”login_name”];

 if (![defaults objectForKey:@”password”])
 [defaults setObject:@”password” forKey:@”password”];

 if (![defaults objectForKey:@”color”])

Programmatically Accessing the Settings Values ❘ 255

 [defaults setObject:@”Green” forKey:@”color”];

 [defaults synchronize];

[windowaddSubview:viewController.view];
[windowmakeKeyAndVisible];

returnYES;
}

Note that to immediately save the settings values to the Settings application, you should call the
synchronize method of the NSUserDefaults instance.

To load the settings value, likewise you use the objectForKey: method, specifying the name of the
preference setting you want to retrieve:

- (IBAction) loadSettings: (id) sender{
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 loginName.text = [defaults objectForKey:@”login_name”];
 password.text = [defaults objectForKey:@”password”];

 //---find the index of the array for the color saved---
 favoriteColorSelected = [[NSString alloc] initWithString:
 [defaults objectForKey:@”color”]];

 int selIndex = [colors indexOfObject:favoriteColorSelected];

 //---display the saved color in the Picker view---
 [favoriteColor selectRow:selIndex inComponent:0 animated:YES];
}

resetting the preferences Settings values
Sometimes you may want to reset the values of the preferences settings of your application. This is
especially true if you have made an error in the Root.plist file and want to reset all the settings.
The easiest way to do this is to remove the application from the device or Simulator. To do so, sim-
ply tap (or click the Simulator) and hold the application’s icon, and when the icons start to wriggle,
tap the X button to remove the application. The preferences settings associated with the application
will also be removed.

Another way to clear the values of the preferences settings is to navigate to the folder containing
your application (on the iPhone Simulator). The applications on the iPhone Simulator are stored
in the following folder: ~/Library/ApplicationSupport/iPhoneSimulator>/<version_no>/
Applications/(note that the tilde symbol (~) represents your home directory and not your root
directory). Inside this folder, you need to find the folder containing your application. Within the
application folder is a Library/Preferences folder. Delete the file ending with <application_name>
.plist (see Figure 9-18) and your preferences settings will be reset.

256 ❘ chApter 9 aPPlicatiOn PreFerenceS

figure 9-18

Saving the Settings values
Now that you have seen how to load the values of preferences settings, the following Try It Out
demonstrates how to save the values back to the preferences settings. This enables users to directly
modify their preferences settings from within your application, instead of using the Settings applica-
tion to do so.

Saving Settings Valuestry it Out

 1 . Using the same project created in the previous section, insert the following method in the
ApplicationSettingsViewController.m file:

-(IBAction)saveSettings:(id)sender{
 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 [defaults setObject:loginName.text forKey:@”login_name”];
 [defaults setObject:password.text forKey:@”password”];
 [defaults setObject:favoriteColorSelected forKey:@”color”];
 [defaults synchronize];

UIAlertView*alert=[[UIAlertViewalloc]
initWithTitle:@”SettingsValueSaved”
message:@”SettingsSaved”
delegate:nil
cancelButtonTitle:@”Done”
otherButtonTitles:nil];
[alertshow];
[alertrelease];
}

 2 . Press Command-R to test the application on the iPhone 4 Simulator. Make some changes to the
login name, password, and favorite color. When you click the Save Settings Value button, all the
changes are made to the device (see Figure 9-19). When you check the Settings application, you will
see the updated settings values (see Figure 9-20).

Summary ❘ 257

figure 9-19 figure 9-20

How It Works

To save the values back to the preferences settings, you use the same approach that you use to retrieve
those settings — that is, you use the NSUserDefaults class:

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
 [defaults setObject:loginName.text forKey:@”login_name”];
 [defaults setObject:password.text forKey:@”password”];
 [defaults setObject:favoriteColorSelected forKey:@”color”];
 [defaults synchronize];

As usual, rather than use the objectForKey: method, you now use the setObject:forKey: method to
save the values.

SummAry

This chapter explained how you can make use of the Application Preferences feature of the iPhone
to save your application preferences to the Settings application. This enables you to delegate most
of the mundane tasks of saving and loading an application’s preferences settings to the OS. All you
need to do is use the NSUserDefaults class to programmatically access the preferences settings.

258 ❘ chApter 9 aPPlicatiOn PreFerenceS

exerciSeS

 1 . You have learned that you can use the NSUserDefaults class to access the preferences settings
values for your application . What are the methods for retrieving and saving the values?

 2 . What are the two ways in which you can remove the preferences settings for an application?

 3 . What is the difference between the Add Child button and the Add Sibling button in the Property
List editor?

Answers to the Exercises can be found in Appendix E, on Wrox.com.

Summary ❘ 259

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

Adding application prefer-
ences to your application

Add a Settings Bundle file to your project and modify the Root.plist file .

loading the value of a pref-
erence setting

NSUserDefaults *defaults =
 [NSUserDefaults standardUserDefaults];
loginName.text = [defaults
 objectForKey:@”login_name”];

resetting preferences set-
tings values

Either remove the entire application from the Home screen, or remove
it via the iPhone Simulator folder on your Mac .

Saving the value of a prefer-
ence setting

NSUserDefaults *defaults = [NSUserDefaults
standardUserDefaults];
[defaults setObject:loginName.text
 forKey:@”login_name”];
[defaults synchronize];

File Handling

whAt yOu will leArn in thiS chApter

Where your applications are stored on the iPhone➤➤

The various folders within your Applications folder➤➤

How to read and write to fi les in the Documents and tmp folders➤➤

How to use a property to store structured data➤➤

How to programmatically retrieve values stored in a property list➤➤

How to modify the values retrieved from a property list and save the ➤➤

changes to a fi le

How to copy bundled resources to the application’s folder during ➤➤

runtime

All the applications you have developed up to this point are pretty straightforward — the
application starts, performs something interesting, and ends. In Chapter 9, you saw how you
can make use of the application settings feature to save the preferences of your application to
a central location managed by the Settings application. Sometimes, however, you simply need
to save some data to your application’s folder for use later. For example, rather than keep fi les
you download from a remote server in memory, a more effective and memory-effi cient method
is to save them in a fi le so that you can use them later (even after the application has shut
down and restarted).

In this chapter, you learn about the two available approaches to persisting data in your appli-
cation so that you can access it later: saving the data as fi les or a property list. You also learn
how to bundle resources such as text fi les and database fi les with your application so that
when the application is installed on the user’s device, the resources can be copied onto the
local storage of the device and used from there.

10

262 ❘ chApter 10 File handlinG

unDerStAnDing the ApplicAtiOn fOlDerS

Your applications are stored in the iPhone fi le system, so you’ll fi nd it useful to understand the folder
structure of the iPhone.

On the desktop, the content of the iPhone Simulator is stored in the ~/Library/
ApplicationSupport/iPhoneSimulator>/<version_no>/ folder.

NOTE The ~ (tilde) represents the current user’s directory. Specifi cally, the pre-
ceding directory is equivalent to the following:

/Users/<username>/Library/ApplicationSupport/
iPhoneSimulator>/<version_no>/

Within this folder are fi ve subfolders:

Applications➤➤

Library➤➤

Media➤➤

Root➤➤

tmp➤➤

The Applications folder contains all your installed applications (see Figure 10-1). Within it are
several folders with long fi lenames. These fi lenames are generated by Xcode to uniquely iden-
tify each of your applications. Each application’s folder holds your application’s executable fi le
(the .app fi le, which includes all embedded resources), together with a few other folders, such as
Documents, Library, and tmp. On the iPhone, all applications run within their own sandboxed envi-
ronments — that is, an application can access only the fi les stored within its own folder; it cannot
access the folders of other applications.

figure 10-1

Understanding the Application Folders ❘ 263

using the Documents and library folders
The Documents folder is where you can store files used by your application, whereas the Library
folder stores the application-specific settings. The tmp folder stores temporary data required by your
application.

How you do write to these folders? The following Try It Out provides an example of doing just that.
You can download the indicated code files to work through the project.

Writing and Reading from Filestry it Out

codefile FilesHandling.zip available for download at Wrox.com

 1 . Using Xcode, create a new View-based Application project and name it FilesHandling.

 2 . In the FilesHandlingViewController.h file, add the following bold statements:

#import<UIKit/UIKit.h>

@interfaceFilesHandlingViewController:UIViewController{

}

-(NSString *) documentsPath;
-(NSString *) readFromFile:(NSString *) filePath;
-(void) writeToFile:(NSString *) text
 withFileName:(NSString *) filePath;

@end

 3 . In the FilesHandlingViewController.m file, add the following bold statements:

#import“FilesHandlingViewController.h”

@implementationFilesHandlingViewController

//---finds the path to the application’s Documents directory---
-(NSString *) documentsPath {
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDir = [paths objectAtIndex:0];
 return documentsDir;
}

//---write content into a specified file path---
-(void) writeToFile:(NSString *) text
 withFileName:(NSString *) filePath {
 NSMutableArray *array = [[NSMutableArray alloc] init];
 [array addObject:text];
 [array writeToFile:filePath atomically:YES];
 [array release];

264 ❘ chApter 10 File handlinG

}

//---read content from a specified file path---
-(NSString *) readFromFile:(NSString *) filePath {
 //---check if file exists---
 if ([[NSFileManager defaultManager] fileExistsAtPath:filePath]) {
 NSArray *array =
 [[NSArray alloc] initWithContentsOfFile: filePath];
 NSString *data =
 [NSString stringWithFormat:@”%@”,
 [array objectAtIndex:0]];
 [array release];
 return data;
 }
 else
 return nil;
}

-(void)viewDidLoad{
 //---formulate filename---
 NSString *fileName =
 [[self documentsPath] stringByAppendingPathComponent:@”data.txt”];

 //---write something to the file---
 [self writeToFile:@”a string of text” withFileName:fileName];

 //---read it back---
 NSString *fileContent = [self readFromFile:fileName];

 //---display the content read in the Debugger Console window---
 NSLog(@”%@”, fileContent);
[superviewDidLoad];
}

 4 . Press Command-R to test the application on the iPhone 4 Simulator.

 5 . Go to Finder and navigate to the
Documents folder of your application.
The data.txt file is now visible (see
Figure 10-2).

 6 . When you deploy the application,
the location of the file on the real
device is /private/var/mobile/
Applications/<application_id>/

Documents/data.txt.

 7 . Double-click the data.txt file to see its
contents as follows:

<?xmlversion=”1.0”encoding=”UTF-8”?>
<!DOCTYPEplistPUBLIC“-//Apple//DTDPLIST1.0//EN”
“http://www.apple.com/DTDs/PropertyList-1.0.dtd”>
<plistversion=”1.0”>

figure 10-2

Understanding the Application Folders ❘ 265

<array>
<string>astringoftext</string>
</array>
</plist>

 8 . Turn on the Debugger Console window (Shift-Command-R) and the application will print the
string “a string of text.”

How It Works

You first define the documentsPath method, which returns the path to the Documents directory:

//---finds the path to the application’s Documents directory---
-(NSString *) documentsPath {
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDir = [paths objectAtIndex:0];
 return documentsDir;
}

Basically, you use the NSSearchPathForDirectoriesInDomains() function to create a list of
directory search paths, indicating that you want to look for the Documents directory (using the
NSDocumentDirectory constant). The NSUserDomainMask constant indicates that you want to search from
the application’s home directory, and the YES argument indicates that you want to obtain the full path
of all the directories found.

To obtain the path to the Documents folder, simply extract the first item of the paths array (because
there is only one Documents folder in an iPhone application’s folder). In fact, this block of code is
derived from the Mac OS X API, which might return multiple folders; but in the case of the iPhone,
there can only be one Documents folder per application.

You next define the writeToFile:withFileName: method, which creates an NSMutableArray and adds
the text to be written to the file to it:

//---write content into a specified file path---
-(void) writeToFile:(NSString *) text
 withFileName:(NSString *) filePath {
 NSMutableArray *array = [[NSMutableArray alloc] init];
 [array addObject:text];
 [array writeToFile:filePath atomically:YES];
 [array release];
}

To persist the content (a process known as serialization) of the NSMutableArray to a file, you use its
writeToFile:atomically: method. The atomically: parameter indicates that the file should first be
written to a temporary file before it is renamed to the filename specified. This approach guarantees that
the file will never be corrupted, even if the system crashes during the writing process.

To read the content from a file, you define the readFromFile: method:

//---read content from a specified file path---
-(NSString *) readFromFile:(NSString *) filePath {

266 ❘ chApter 10 File handlinG

 //---check if file exists---
 if ([[NSFileManager defaultManager] fileExistsAtPath:filePath]) {
 NSArray *array =
 [[NSArray alloc] initWithContentsOfFile: filePath];
 NSString *data =
 [NSString stringWithFormat:@”%@”,
 [array objectAtIndex:0]];
 [array release];
 return data;
 }
 else
 return nil;
}

You first use an instance of the NSFileManager class to determine whether the specified file exists. If it
does, then you read the content of the file into an NSArray object. In this case, because you know that
the file contains a single line of text, you extract the first element in the array.

With all the methods in place, you are ready to make use of them. When the view is loaded, you create
the pathname for a file that you want to save. You then write a string of text into the file and immedi-
ately read it back and print it in the Debugger Console window:

-(void)viewDidLoad{
 //---formulate filename---
 NSString *fileName =
 [[self documentsPath] stringByAppendingPathComponent:@”data.txt”];

 //---write something to the file---
 [self writeToFile:@”a string of text” withFileName:fileName];

 //---read it back---
 NSString *fileContent = [self readFromFile:fileName];

 //---display the content read in the Debugger Console window---
 NSLog(@”%@”, fileContent);
[superviewDidLoad];
}

Storing files in the temporary folder
In addition to storing files in the Documents directory, you can store temporary files in the tmp
folder. Files stored in the tmp folder are not backed up by iTunes, so you need to find a permanent
place for the files you want to be sure to keep. To get the path to the tmp folder, you can call the
NSTemporaryDirectory() function, like this:

-(NSString *) tempPath{
 return NSTemporaryDirectory();
}

Using Property Lists ❘ 267

The following statement returns the path of a fi le (“data.txt”) to be stored in the tmp folder:

 NSString *fileName =
 [[self tempPath] stringByAppendingPathComponent:@”data.txt”];

uSing prOperty liStS

In iPhone programming, you can use property lists to store structured data using key/value pairs.
Property lists are stored as XML fi les and are highly transportable across fi le systems and networks.
For example, you might want to store a list of App Store application titles in your application.
Because applications in the App Store are organized by category, it would be natural to store this
information using a property list employing the structure shown in the following table:

cAtegOry titleS

Games “AnimalPark”,“BiologyQuiz”,“CalculusTest”

Entertainment “EyeBalls-iBlower”,“iBell”,“iCardsBirthday”

Utilities “BatteryMonitor”,“iSystemInfo”

In Xcode, you can create and add a property list in the Resources folder of your application and
populate it with items using the built-in Property List Editor. The property list is deployed together
with the application. Programmatically, you can retrieve the values stored in a property list using
the NSDictionary class. More important, if you need to make changes to a property list, you can
write the changes to a fi le so that you can later refer to the fi le directly instead of the property list.

In the following Try It Out, you create a property list and populate it with some values. You then
read the values from the property list during runtime, make some changes, and save the modifi ed
values to another property list fi le in the Documents directory.

NOTE To store application-specifi c settings that users can modify outside your
application, consider using the NSUserDefaults class to store the settings in the
Settings application. Application settings are discussed in Chapter 9.

Creating and Modifying a Property Listtry it Out

 1 . Using the same project created earlier, right-click the project name in Xcode and choose Add ➪
New File.

 2 . Select the Resource item on the left of the New File dialog and select the Property List template on
the right of the dialog (see Figure 10-3).

 3 . Name the property list Apps.plist.

268 ❘ chApter 10 File handlinG

 4 . Populate Apps.plist as shown in Figure 10-4.

figure 10-3

figure 10-4

Using Property Lists ❘ 269

 5 . Add the following bold statements to the viewDidLoad method:

-(void)viewDidLoad{
//---formulatefilename---
NSString*fileName=
[[selfdocumentsPath]stringByAppendingPathComponent:@”data.txt”];

//---writesomethingtothefile---
[selfwriteToFile:@”astringoftext”withFileName:fileName];

//---readitback---
NSString*fileContent=[selfreadFromFile:fileName];

//---displaythecontentreadintheDebuggerConsolewindow---
NSLog(@”%@”,fileContent);

//---get the path to the property list file---
 NSString *plistFileName =
 [[self documentsPath]
 stringByAppendingPathComponent:@”Apps.plist”];

 //---if the property list file can be found---
 if ([[NSFileManager defaultManager] fileExistsAtPath:plistFileName]) {

 //---load the content of the property list file into a NSDictionary
 // object---
 NSDictionary *dict =
 [[NSDictionary alloc]
 initWithContentsOfFile:plistFileName];

 //---for each category---
 for (NSString *category in dict) {
 NSLog(@”%@”, category);
 NSLog(@”========”);

 //---return all titles in an array---
 NSArray *titles = [dict valueForKey:category];

 //---print out all the titles in that category---
 for (NSString *title in titles) {
 NSLog(@”%@”, title);
 }
 }
 [dict release];
 }
 else {
 //---load the property list from the Resources folder---
 NSString *pListPath =
 [[NSBundle mainBundle] pathForResource:@”Apps”

270 ❘ chApter 10 File handlinG

 ofType:@”plist”];

 NSDictionary *dict =
 [[NSDictionary alloc] initWithContentsOfFile:pListPath];

 //---make a mutable copy of the dictionary object---
 NSMutableDictionary *copyOfDict = [dict mutableCopy];

 //---get all the different categories---
 NSArray *categoriesArray =
 [[copyOfDict allKeys]
 sortedArrayUsingSelector:@selector(compare:)];

 //---for each category---
 for (NSString *category in categoriesArray) {
 //---get all the app titles in that category---
 NSArray *titles = [dict valueForKey:category];

 //---make a mutable copy of the array---
 NSMutableArray *mutableTitles = [titles mutableCopy];

 //---add a new title to the category---
 [mutableTitles addObject:@”New App title”];

 //---set the array back to the dictionary object---
 [copyOfDict setObject:mutableTitles forKey:category];
 [mutableTitles release];
 }

 //---write the dictionary to file---
 fileName =
 [[self documentsPath]
 stringByAppendingPathComponent:@”Apps.plist”];
 [copyOfDict writeToFile:fileName atomically:YES];
 [dict release];
 [copyOfDict release];
 }
[superviewDidLoad];
}

 6 . Press Command-R to test the application on the iPhone 4 Simulator.

 7 . When you first run the application, you’ll see that it creates a new .plist file in the Documents
directory. Double-click the .plist file to view it using the Property List Editor; you will see a new
item named NewApptitle for each category of applications (see Figure 10-5).

 8 . Run the application a second time. It prints the content of the .plist file in the Documents direc-
tory to the Debugger Console window (see Figure 10-6), proving the existence of the property list
in the Documents folder.

Using Property Lists ❘ 271

figure 10-5

figure 10-6

How It Works

The first part of this example shows how you can add a property list file to your application. In
the property list file, you add three keys representing the category of applications in the App Store:
Entertainment, Games, and Utilities. Each category contains a list of application titles.

272 ❘ chApter 10 File handlinG

When the view is loaded, you look for a file named Apps.plist in the Documents directory of your
application:

 //---get the path to the property list file---
 NSString *plistFileName =
 [[self documentsPath]
 stringByAppendingPathComponent:@”Apps.plist”];

If the file is found, you load its contents into an NSDictionary object:

 //---if the property list file can be found---
 if ([[NSFileManager defaultManager] fileExistsAtPath:plistFileName]) {

 //---load the content of the property list file into a NSDictionary
 // object---
 NSDictionary *dict =
 [[NSDictionary alloc]
 initWithContentsOfFile:plistFileName];

 //...
 //...
 }

Next, you enumerate through all the keys in the dictionary object and print the title of each application
in the Debugger Console window:

 //---for each category---
 for (NSString *category in dict) {
 NSLog(@”%@”, category);
 NSLog(@”========”);

 //---return all titles in an array---
 NSArray *titles = [dict valueForKey:category];

 //---print out all the titles in that category---
 for (NSString *title in titles) {
 NSLog(@”%@”, title);
 }
 }
 [dict release];

When the application is run for the first time, the Apps.plist file is not available, so you load it from
the Resources folder:

 else {
 //---load the property list from the Resources folder---
 NSString *pListPath =
 [[NSBundle mainBundle] pathForResource:@”Apps”
 ofType:@”plist”];

 NSDictionary *dict =
 [[NSDictionary alloc] initWithContentsOfFile:pListPath];

 //...
 //...
 }

Using Property Lists ❘ 273

Because you are making changes to the dictionary object, you need to make a mutable copy of it and
assign it to an NSMutableDictionary object:

 //---make a mutable copy of the dictionary object---
 NSMutableDictionary *copyOfDict = [dict mutableCopy];

This step is important because the NSDictionary object is immutable, meaning that after the items
are populated from the property list, you cannot add content to the dictionary object. Using the
mutableCopy method of the NSDictionary class allows you to create a mutable instance of the diction-
ary object, which is NSMutableDictionary.

You then retrieve an array containing all the keys in the mutable dictionary object:

 //---get all the different categories---
 NSArray *categoriesArray =
 [[copyOfDict allKeys]
 sortedArrayUsingSelector:@selector(compare:)];

You use this array to loop through all the keys in the dictionary so that you can add some additional
titles to each category:

 //---for each category---
 for (NSString *category in categoriesArray) {

 }

Note that you cannot enumerate using the NSMutableDictionary object like this:

 for (NSString *category in copyOfDict) {
 //...
 }

That’s because you cannot add items to the NSMutableDictionary object while it is being enumerated.
Therefore, you need to loop using an NSArray object.

When you’re inside the loop, you extract all the titles of the applications in each category and make a
mutable copy of the array containing the titles of the applications:

 //---get all the app titles in that category---
 NSArray *titles = [dict valueForKey:category];

 //---make a mutable copy of the array---
 NSMutableArray *mutableTitles = [titles mutableCopy];

You can now add a new title to the mutable array containing the application titles:

 //---add a new title to the category---
 [mutableTitles addObject:@”New App title”];

After the additional item is added to the mutable array, you set it back to the mutable dictionary object:

 //---set the array back to the dictionary object---
 [copyOfDict setObject:mutableTitles forKey:category];
 [mutableTitles release];

274 ❘ chApter 10 File handlinG

Finally, you write the mutable dictionary object to a file using the writeToFile:atomically: method:

 //---write the dictionary to file---
 fileName =
 [[self documentsPath]
 stringByAppendingPathComponent:@”Apps.plist”];
 [copyOfDict writeToFile:fileName atomically:YES];
 [dict release];
 [copyOfDict release];

cOpying BunDleD reSOurceS

In the previous section, you learned how to embed a property list file into your application and
then programmatically recreate the property list and save it in the Documents folder during runtime.
While that example showed the various ways to manipulate a property list, in general it is much
easier to simply copy the resource (such as the property list) into the Documents folder directly.

All resources embedded within your application (commonly known as bundled resources) are read-
only. If you need to make changes to them, you need to copy them into the application’s folders,
such as the Documents or tmp folders. You can do so by copying the resource when the application
starts. The ideal location to perform this is in the application delegate. Using the preceding example,
you could define the following copyFileInBundleToDocumentsFolder:withExtension: method in the
FilesHandlingAppDelegate.m file:

- (void) copyFileInBundleToDocumentsFolder:(NSString *) fileName
 withExtension:(NSString *) ext {

 //---get the path of the Documents folder---
 NSArray *paths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);

 NSString *documentsDirectory = [paths objectAtIndex:0];

 //---get the path to the file you want to copy in the Documents folder---
 NSString *filePath =
 [documentsDirectory
 stringByAppendingPathComponent:
 [NSString stringWithString:fileName]];

 filePath = [filePath stringByAppendingString:@”.”];
 filePath = [filePath stringByAppendingString:ext];

 //---check if file is already in Documents folder,
 // if not, copy it from the bundle---
 NSFileManager *fileManager = [NSFileManager defaultManager];

Summary ❘ 275

 if (![fileManager fileExistsAtPath:filePath]) {

 //---get the path of the file in the bundle---
 NSString *pathToFileInBundle =
 [[NSBundle mainBundle] pathForResource:fileName ofType:ext];

 //---copy the file in the bundle to the Documents folder---
 NSError *error = nil;
 bool success =
 [fileManager copyItemAtPath:pathToFileInBundle
 toPath:filePath error:&error];

 if (success) {
 NSLog(@”File copied”);
 }
 else {
 NSLog(@”%@”, [error localizedDescription]);
 }
 }
}

This method simply copies the specified file to the Documents folder if it is not already there.

To copy the property list when the application is starting, call the
copyFileInBundleToDocumentsFolder:withExtension: method in
the application:didFinishLaunchingWithOptions: event:

-(BOOL)application:(UIApplication*)application
didFinishLaunchingWithOptions:(NSDictionary*)launchOptions{

 //---copy the txt files to the Documents folder---
 [self copyFileInBundleToDocumentsFolder:@”Apps”
 withExtension:@”plist”];

//Overridepointforcustomizationafterapplicationlaunch.

//Addtheviewcontroller’sviewtothewindowanddisplay.
[windowaddSubview:viewController.view];
[windowmakeKeyAndVisible];

returnYES;
}

Doing so ensures that the property list is always copied to the Documents folder when the application
begins running.

SummAry

This chapter demonstrated how to write a file to the file system of the iPhone and how to read it
back. In addition, you saw how structured data can be represented using a property list and how
you can programmatically work with a property list using a dictionary object. The next chapter
shows you how to use databases to store more complex data.

276 ❘ chApter 10 File handlinG

exerciSeS

 1 . Describe the uses of the various folders within an application’s folder .

 2 . What is the difference between the NSDictionary and NSMutableDictionary classes?

 3 . Name the paths of the Documents and tmp folders on a real device .

Answers to exercises can be found in Appendix E, on Wrox.com.

Summary ❘ 277

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

Subdirectories in each of the
applications folders

Documents, Library, and tmp

getting the path of the
Documents directory

NSArray *paths =
 NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
NSString *documentsDir = [paths objectAtIndex:0];

getting the path of the tmp
directory

-(NSString *) tempPath{
 return NSTemporaryDirectory();
}

checking whether a file exists if ([[NSFileManager defaultManager]
 fileExistsAtPath:filePath]) {
}

loading a property list from
the Resources folder

NSString *pListPath =
 [[NSBundle mainBundle]
 pathForResource:@”Apps”
 ofType:@”plist”];

creating a mutable copy of
an NSDictionary object

NSDictionary *dict =
 [[NSDictionary alloc]
 initWithContentsOfFile:plistFileName];
NSMutableDictionary *copyOfDict = [dict mutableCopy];

using bundled resources in
your application

Copy the resources onto the application’s folders, such as
Documents or tmp . You should copy the resources in the applica-
tion’s delegate when the application has just finished launching .

Database Storage Using SQLite3

whAt yOu will leArn in thiS chApter

How to use the SQLite3 database in your Xcode project➤➤

How to create and open a SQLite3 database➤➤

How to use the various SQLite3 functions to execute SQL strings➤➤

How to use bind variables to insert values into a SQL string➤➤

How to bundle a pre-built SQLite database with your application➤➤

As you continue on your iPhone development journey, you will soon realize that your applica-
tion needs to fi nd a way to save data. For example, you may want to save the text that the user
is entering into a Text Field, or in an RSS application the last item that the user has read.

For simple applications, you can write the data you want to persist to a simple text fi le. For
more structured data, you can use a property list. For large and complex data, it is more effi -
cient to store it using a database. The iPhone comes with the SQLite3 database library, which
you can use to store your data. With your data stored in a database, your application can
populate a Table view or store a large amount of data in a structured manner.

NOTE Besides using SQLite for data storage, developers can also use another
framework for storage: Core Data. Core Data is part of the Cocoa API, which
was fi rst introduced in the iPhone SDK 3.0. It is basically a framework for manip-
ulating data without worrying about the details of storage and retrieval. A dis-
cussion of Core Data is beyond the scope of this book.

This chapter shows you how to use the embedded SQLite3 database library in your
applications.

11

280 ❘ chApter 11 databaSe StOraGe uSinG SQlite3

uSing Sqlite3

To use a SQLite3 database in your application, you first need to add the libsqlite3.dylib library
to your Xcode project. Use the following Try It Out to find out how. You will need to download the
code files indicated for this and the rest of the Try It Out features in this chapter.

Preparing Your Project to Use SQLite3try it Out

codefile Databases.zip available for download at Wrox.com

 1 . Using Xcode, create a new View-based Application project and name it Databases.

 2 . Right-click the Frameworks folder in your project and add the libsqlite3.dylib library to it (see
Figure 11-1).

figure 11 -1

 3 . In the DatabasesViewController.h file, declare a variable of type sqlite3 as well as a method
named filePath (see the code in bold):

#import<UIKit/UIKit.h>
#import “sqlite3.h”

@interfaceDatabasesViewController:UIViewController{

Using SQLite3 ❘ 281

sqlite3 *db;
}

-(NSString *) filePath;

@end

4 . In the DatabasesViewController.m fi le, defi ne the filePath method as shown in bold:

#import“DatabasesViewController.h”

@implementationDatabasesViewController

-(NSString *) filePath {
 NSArray *paths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory,
 NSUserDomainMask,
 YES);

 NSString *documentsDir = [paths objectAtIndex:0];
 return [documentsDir stringByAppendingPathComponent:@”database.sql”];
}

How It Works

To work with SQLite3, you must link your application to a dynamic library called libsqlite3.dylib.
The libsqlite3.dylib that you selected is an alias to the latest version of the SQLite3 library. On an
actual iPhone device, the libsqlite3.dylib is located in the /usr/lib/ directory.

To use a SQLite database, you need to create an object of type sqlite3:

sqlite3*db;

The filePath method returns the full path to the SQLite database that will be created in the Documents
directory on your iPhone (within your application’s sandbox):

-(NSString *) filePath {
 NSArray *paths = NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory,
 NSUserDomainMask,
 YES);

 NSString *documentsDir = [paths objectAtIndex:0];
 return [documentsDir stringByAppendingPathComponent:@”database.sql”];
}

NOTE Chapter 10 discusses the various folders that you can access within your
application’s sandbox.

282 ❘ chApter 11 databaSe StOraGe uSinG SQlite3

creAting AnD Opening A DAtABASe

After the necessary library is added to the project, you can open a database for usage. You use the
various C functions included with SQLite3 to create or open a database, as demonstrated in the fol-
lowing one-step Try It Out.

Opening a Databasetry it Out

 1 . Using the Databases project created previously, define the openDB method in the
DatabasesViewController.m file:

-(void) openDB {
 //---create database---
 if (sqlite3_open([[self filePath] UTF8String], &db) != SQLITE_OK) {
 sqlite3_close(db);
 NSAssert(0, @”Database failed to open.”);
 }
}

-(void)viewDidLoad{
[selfopenDB];
[superviewDidLoad];
}

How It Works

The sqlite3_open() C function opens a SQLite database whose filename is specified as the first
argument:

[self filePath] UTF8String]

In this case, the filename of the database is specified as a C string using the UTF8String method of the
NSString class because the sqlite3_open() C function does not understand an NSString object.

The second argument contains a handle to the sqlite3 object, which in this case is db.

If the database is available, it is opened. If the specified database is not found, a new database is cre-
ated. If the database is successfully opened, the function will return a value of 0 (represented using the
SQLITE_OK constant).

The following list from www.sqlite.org/c3ref/c_abort.html shows the result codes returned by the
various SQLite functions:

#defineSQLITE_OK0/*Successfulresult*/
#defineSQLITE_ERROR1/*SQLerrorormissingdatabase*/
#defineSQLITE_INTERNAL2/*InternallogicerrorinSQLite*/
#defineSQLITE_PERM3/*Accesspermissiondenied*/
#defineSQLITE_ABORT4/*Callbackroutinerequestedanabort*/
#defineSQLITE_BUSY5/*Thedatabasefileislocked*/
#defineSQLITE_LOCKED6/*Atableinthedatabaseislocked*/
#defineSQLITE_NOMEM7/*Amalloc()failed*/
#defineSQLITE_READONLY8/*Attempttowriteareadonlydatabase*/
#defineSQLITE_INTERRUPT9/*Operationterminatedbysqlite3_interrupt()*/
#defineSQLITE_IOERR10/*SomekindofdiskI/Oerroroccurred*/

http://www.sqlite.org/c3ref/c_abort.html

Creating and Opening a Database ❘ 283

#defineSQLITE_CORRUPT11/*Thedatabasediskimageismalformed*/
#defineSQLITE_NOTFOUND12/*NOTUSED.Tableorrecordnotfound*/
#defineSQLITE_FULL13/*Insertionfailedbecausedatabaseisfull*/
#defineSQLITE_CANTOPEN14/*Unabletoopenthedatabasefile*/
#defineSQLITE_PROTOCOL15/*NOTUSED.Databaselockprotocolerror*/
#defineSQLITE_EMPTY16/*Databaseisempty*/
#defineSQLITE_SCHEMA17/*Thedatabaseschemachanged*/
#defineSQLITE_TOOBIG18/*StringorBLOBexceedssizelimit*/
#defineSQLITE_CONSTRAINT19/*Abortduetoconstraintviolation*/
#defineSQLITE_MISMATCH20/*Datatypemismatch*/
#defineSQLITE_MISUSE21/*Libraryusedincorrectly*/
#defineSQLITE_NOLFS22/*UsesOSfeaturesnotsupportedonhost*/
#defineSQLITE_AUTH23/*Authorizationdenied*/
#defineSQLITE_FORMAT24/*Auxiliarydatabaseformaterror*/
#defineSQLITE_RANGE25/*2ndparametertosqlite3_bindoutofrange*/
#defineSQLITE_NOTADB26/*Fileopenedthatisnotadatabasefile*/
#defineSQLITE_ROW100/*sqlite3_step()hasanotherrowready*/
#defineSQLITE_DONE101/*sqlite3_step()hasfinishedexecuting*/

examining the Database created
If the database is created successfully, it can be found in the Documents folder of your application’s
sandbox on the iPhone 4 Simulator in the ~/Library/ApplicationSupport/iPhoneSimulator/4.0/
Applications/<App_ID>/Documents/ folder. Figure 11-2 shows the database.sql file.

figure 11 -2

creating a table
After the database is created, you can create a table to store some data. The following one-step Try
It Out demonstrates how to create a table with two text fields. For illustration purposes, create a
table named Contacts, with two fields called email and name.

Creating a Tabletry it Out

 1 . Using the same Databases project, define the createTableNamed:with-Field1:withField2:
method in the DatabasesViewController.m file as follows:

-(void) createTableNamed:(NSString *) tableName
 withField1:(NSString *) field1

284 ❘ chApter 11 databaSe StOraGe uSinG SQlite3

 withField2:(NSString *) field2 {

 char *err;
 NSString *sql = [NSString stringWithFormat:
 @”CREATE TABLE IF NOT EXISTS ‘%@’ (‘%@’
 TEXT PRIMARY KEY, ‘%@’ TEXT);”,
 tableName, field1, field2];
 //---the above SQL statement to be typed in a single line---

 if (sqlite3_exec(db, [sql UTF8String], NULL, NULL, &err)
 != SQLITE_OK) {
 sqlite3_close(db);
 NSAssert(0, @”Tabled failed to create.”);
 }
}

-(void)viewDidLoad{
[selfopenDB];
 [self createTableNamed:@”Contacts”
 withField1:@”email”
 withField2:@”name”];
[superviewDidLoad];
}

How It Works

The createTableNamed:withField1:withField2: method takes three parameters: tableName, field1,
and field2.

Using these parameters, you fi rst formulate a SQL string and then create a table using the sqlite3_
exec() C function, with the important arguments to this function being the sqlite3 object, the SQL
query string, and a pointer to a variable for error messages. If an error occurs in creating the database,
you use the NSAssert method to halt the application and close the database connection.

If the operation is successful, a table named Contacts with two fi elds (email and name) is created.

NOTE For a jump start in the SQL language, check out the SQL tutorial at
http://w3schools.com/sql/default.asp.

inserting records
After the table is created, you can insert some records into it. The following Try It Out shows you
how to write three rows of records in the table created in the previous section.

http://w3schools.com/sql/default.asp

Creating and Opening a Database ❘ 285

inserting Recordstry it Out

 1 . In the Databases project, define the
insertRecordIntoTableNamed:withField1:field1Value:andField2:field2Value: method in the
DatabasesViewController.m file as follows and modify the viewDidLoad method as shown in bold:

-(void) insertRecordIntoTableNamed:(NSString *) tableName
 withField1:(NSString *) field1
 field1Value:(NSString *) field1Value
 andField2:(NSString *) field2
 field2Value:(NSString *) field2Value {

 NSString *sql = [NSString stringWithFormat:
 @”INSERT OR REPLACE INTO ‘%@’ (‘%@’, ‘%@’)
 VALUES (‘%@’,’%@’)”, tableName, field1, field2,
 field1Value, field2Value];
 //---the above SQL statement to be typed in a single line---

 char *err;
 if (sqlite3_exec(db, [sql UTF8String], NULL, NULL, &err)
 != SQLITE_OK) {
 sqlite3_close(db);
 NSAssert(0, @”Error updating table.”);
 }
}

-(void)viewDidLoad{
[selfopenDB];
[selfcreateTableNamed:@”Contacts”
withField1:@”email”
withField2:@”name”];
 for (int i=0; i<=2; i++) {
 NSString *email = [[NSString alloc] initWithFormat:
 @”user%d@learn2develop.net”,i];

 NSString *name = [[NSString alloc] initWithFormat: @”user %d”,i];
 [self insertRecordIntoTableNamed:@”Contacts”
 withField1:@”email” field1Value:email
 andField2:@”name” field2Value:name];
 [email release];
 [name release];
 }
[superviewDidLoad];
}

How It Works

The code in this example is similar to that of the previous one; you formulate a SQL string and use the
sqlite3_exec() C function to insert a record into the database:

 NSString *sql = [NSString stringWithFormat:
 @”INSERT OR REPLACE INTO ‘%@’ (‘%@’, ‘%@’)
 VALUES (‘%@’,’%@’)”, tableName, field1, field2,

286 ❘ chApter 11 databaSe StOraGe uSinG SQlite3

 field1Value, field2Value];
 //---the above SQL statement to be typed in a single line---

 char *err;
 if (sqlite3_exec(db, [sql UTF8String], NULL, NULL, &err)
 != SQLITE_OK) {
 sqlite3_close(db);
 NSAssert(0, @”Error updating table.”);
 }

In the viewDidLoad method, you insert three records into the database by calling the
insertRecordIntoTableNamed:withField1:field1Value:andField2:field2Value: method:

 for (int i=0; i<=2; i++) {
 NSString *email = [[NSString alloc] initWithFormat:
 @”user%d@learn2develop.net”,i];

 NSString *name = [[NSString alloc] initWithFormat: @”user %d”,i];
 [self insertRecordIntoTableNamed:@”Contacts”
 withField1:@”email” field1Value:email
 andField2:@”name” field2Value:name];
 [email release];
 [name release];
 }

Bind variables
When formulating SQL strings, you often need to insert values into the query string and ensure that
the string is well formulated and contains no invalid characters. In the preceding section, you saw
that to insert a row into the database, you had to formulate your SQL statement like this:

 NSString *sql = [NSString stringWithFormat:
 @”INSERT OR REPLACE INTO ‘%@’ (‘%@’, ‘%@’)
 VALUES (‘%@’,’%@’)”, tableName, field1, field2,
 field1Value, field2Value];
 //---the above SQL statement to be typed in a single line---

 char *err;
 if (sqlite3_exec(db, [sql UTF8String], NULL, NULL, &err)
 != SQLITE_OK) {
 sqlite3_close(db);
 NSAssert(0, @”Error updating table.”);
 }

SQLite supports a feature known as bind variables to help you formulate your SQL string. For
example, the preceding SQL string can be formulated as follows using bind variables:

 NSString *sqlStr = [NSString stringWithFormat:
 @”INSERT OR REPLACE INTO ‘%@’ (‘%@’, ‘%@’)
 VALUES (?,?)”, tableName, field1, field2];
 const char *sql = [sqlStr UTF8String];

Creating and Opening a Database ❘ 287

Here, the ? is a placeholder for you to replace with the actual value of the query. In the preceding
statement, assuming that tableName is Contacts, field1 is email, and field2 is name, the sql is now
as follows:

INSERT OR REPLACE INTO Contacts (‘email’, ‘name’) VALUES (?,?)

NOTE The ? can be inserted only into the VALUES and WHERE section of the SQL
statement; you cannot insert it into a table name, for example. The following
statement would be invalid:

INSERT OR REPLACE INTO ? (‘email’, ‘name’) VALUES (?,?)

To substitute the values for the ?, create a sqlite3_stmt object and use the sqlite3_prepare_v2()
function to compile the SQL string into a binary form and then insert the placeholder values using
the sqlite3_bind_text() function, like this:

 sqlite3_stmt *statement;

 if (sqlite3_prepare_v2(db, sql, -1, &statement, nil) == SQLITE_OK) {
 sqlite3_bind_text(statement, 1, [field1Value UTF8String],
 -1, NULL);
 sqlite3_bind_text(statement, 2, [field2Value UTF8String],
 -1, NULL);
 }

NOTE To bind integer values, use the sqlite3_bind_int() function.

After the preceding call, the SQL string looks like this:

INSERT OR REPLACE INTO Contacts (‘email’, ‘name’) VALUES
 (‘user0@learn2develop.net’, ‘user0’)

To execute the SQL statement, you use the sqlite3_step() function, followed by the sqlite3_
finalize() function to delete the prepared SQL statement:

 if (sqlite3_step(statement) != SQLITE_DONE)
 NSAssert(0, @”Error updating table.”);
 sqlite3_finalize(statement);

Using bind variables, the insertRecordIntoTableNamed:withField1:field1Value:andField2:
field2Value: method could now be rewritten as follows:

-(void)insertRecordIntoTableNamed:(NSString*)tableName
withField1:(NSString*)field1
field1Value:(NSString*)field1Value
andField2:(NSString*)field2

288 ❘ chApter 11 databaSe StOraGe uSinG SQlite3

field2Value:(NSString*)field2Value{

 NSString *sqlStr = [NSString stringWithFormat:
 @”INSERT OR REPLACE INTO ‘%@’ (‘%@’, ‘%@’)
 VALUES (?,?)”, tableName, field1, field2];
 //---the above SQL statement to be typed in a single line---

 const char *sql = [sqlStr UTF8String];
 sqlite3_stmt *statement;
 if (sqlite3_prepare_v2(db, sql, -1, &statement, nil) == SQLITE_OK) {
 sqlite3_bind_text(statement, 1, [field1Value UTF8String],
 -1, NULL);
 sqlite3_bind_text(statement, 2, [field2Value UTF8String],
 -1, NULL);
 }

 if (sqlite3_step(statement) != SQLITE_DONE)
 NSAssert(0, @”Error updating table.”);

 sqlite3_finalize(statement);
}

NOTE In the Inserting Records section, you used the sqlite3_exec() function
to execute SQL statements. In this example, you actually use a combination of
the sqlite3_prepare(), sqlite3_step(), and sqlite3_finalize() functions to
do the same thing. In fact, the sqlite3_exec() function is actually a wrapper for
these three functions. For non-query SQL statements (such as for creating tables,
inserting rows, and so on), it is always better to use the sqlite3_exec() function.

retrieving records
Now that the records have been successfully inserted into the table, it is time to retrieve them. This
is a good way to ensure that they have actually been saved. The following Try It Out shows you how
to retrieve your records.

Retrieving the Records from the Tabletry it Out

 1 . In the Databases project, defi ne the getAllRowsFromTableNamed: method in the
DatabasesViewController.m fi le as follows and modify the viewDidLoad method as shown in bold:

-(void) getAllRowsFromTableNamed: (NSString *) tableName {
 //---retrieve rows---
 NSString *qsql = [NSString stringWithFormat:@”SELECT * FROM %@”,
 tableName];

 sqlite3_stmt *statement;

Creating and Opening a Database ❘ 289

 if (sqlite3_prepare_v2(db, [qsql UTF8String], -1,
 &statement, nil) == SQLITE_OK) {
 while (sqlite3_step(statement) == SQLITE_ROW) {
 char *field1 = (char *) sqlite3_column_text(statement, 0);
 NSString *field1Str =
 [[NSString alloc] initWithUTF8String: field1];

 char *field2 = (char *) sqlite3_column_text(statement, 1);
 NSString *field2Str =
 [[NSString alloc] initWithUTF8String: field2];

 NSString *str = [[NSString alloc] initWithFormat:@”%@ - %@”,
 field1Str, field2Str];
 NSLog(@”%@”, str);

 [field1Str release];
 [field2Str release];
 [str release];
 }

 //---deletes the compiled statement from memory---
 sqlite3_finalize(statement);
 }
}

-(void)viewDidLoad{
[selfopenDB];
[selfcreateTableNamed:@”Contacts”
withField1:@”email”
withField2:@”name”];

for(inti=0;i<=2;i++){
NSString*email=[[NSStringalloc]initWithFormat:
@”user%d@learn2develop.net”,i];

NSString*name=[[NSStringalloc]initWithFormat:@”user%d”,i];
[selfinsertRecordIntoTableNamed:@”Contacts”
withField1:@”email”field1Value:email
andField2:@”name”field2Value:name];
[emailrelease];
[namerelease];
}

 [self getAllRowsFromTableNamed:@”Contacts”];
 sqlite3_close(db);
[superviewDidLoad];
}

 2 . Press Command-R to test the application. In Xcode, press Command-Shift-R to display the
Debugger Console window. When the application has loaded, the Debugger Console displays the
records (see Figure 11-3), proving that the rows are indeed in the table.

290 ❘ chApter 11 databaSe StOraGe uSinG SQlite3

figure 11 -3

How It Works

To retrieve the records from the table, you first prepare the SQL statement and then use the sqlite3_
step() function to execute the prepared statement. The sqlite3_step() function returns a value of
100 (represented by the SQLITE_ROW constant) if another row is ready. In this case, you call the sqlite3_
step() function using a while loop, continuing as long as it returns a SQLITE_ROW:

 if (sqlite3_prepare_v2(db, [qsql UTF8String], -1,
 &statement, nil) == SQLITE_OK) {
 while (sqlite3_step(statement) == SQLITE_ROW) {
 char *field1 = (char *) sqlite3_column_text(statement, 0);
 NSString *field1Str =
 [[NSString alloc] initWithUTF8String: field1];

 char *field2 = (char *) sqlite3_column_text(statement, 1);
 NSString *field2Str =
 [[NSString alloc] initWithUTF8String: field2];

 NSString *str = [[NSString alloc] initWithFormat:@”%@ - %@”,
 field1Str, field2Str];
 NSLog(@”%@”, str);

 [field1Str release];
 [field2Str release];
 [str release];
 }

 //---deletes the compiled statement from memory---
 sqlite3_finalize(statement);
 }

To retrieve the value for the first field in the row, you use the sqlite3_column_text() function by pass-
ing it the sqlite3_stmt object as well as the index of the field you are retrieving. For example, you use
the following to retrieve the first field of the returned row:

char*field1=(char*)sqlite3_column_text(statement,0);

To retrieve an integer column (field), use the sqlite3_column_int() function.

Bundling SQLite Databases with Your Application ❘ 291

BunDling Sqlite DAtABASeS with yOur ApplicAtiOn

While programmatically creating a SQLite database and using it during runtime is very fl exible,
most of the time you just need to create the database fi le during the designing stage of your devel-
opment, and bundle the database with your application so that it can be used during runtime.
Therefore, instead of creating the database fi le using code, you need to create it in Mac OS X.

Fortunately, you can easily create a SQLite database fi le in Mac OS X by using the sqlite3 appli-
cation in Terminal. Figure 11-4 shows the command that you need to create a database named
mydata.sql, containing a table named Contacts with two fi elds: email and name. It also inserts a
row into the table and then retrieves it to verify that it is inserted properly.

figure 11 -4

The commands are as follows:

sqlite3mydata.sql➤➤

CREATETABLEIFNOTEXISTSContacts(emailTEXTPRIMARYKEY,nameTEXT);➤➤

INSERTINTOContacts(email,name)VALUES(‘weimenglee@gmail.com’,‘weimenglee’);➤➤

SELECT*FROMContacts➤➤

NOTE Remember to end each command with a semicolon (;). Also, by default,
when you launch Terminal, you are in your home directory. Hence, running the
sqlite3 application will save your database fi le in your home directory.

Even though you could use the sqlite3 application to insert records into the database, it would
be much easier to use a graphical tool to do that. You can use the SQLite Database Browser (see

292 ❘ chApter 11 databaSe StOraGe uSinG SQlite3

Figure 11-5), which you can download free from http://sourceforge.net/projects/
sqlitebrowser/. Using the SQLite Database Browser, you can perform a wide variety of functions
with the database file.

figure 11 -5

SummAry

This chapter provided a brief introduction to the SQLite3 database used in the iPhone. With SQLite3,
you can now store all your structured data in an efficient manner and perform complex aggregations on
your data. To learn more about SQLite, visit its official page at: www.sqlite.org/.

exerciSeS

 1 . Explain the difference between the sqlite3_exec() function and the three functions sqlite3_
prepare(), sqlite3_step(), and sqlite3_finalize() .

 2 . How do you obtain a C-style string from an NSString object?

 3 . Write the code segment to retrieve a set of rows from a table .

Answers to the Exercises can be found in Appendix E, on Wrox.com.

http://sourceforge.net/projects/sqlitebrowser/
http://www.sqlite.org/
http://sourceforge.net/projects/sqlitebrowser/

Summary ❘ 293

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

using a Sqlite3 database in
your application

Add a reference to the libsqlite3.dyliblibrary to your project .

Obtaining a c-style string from
an NSString object

Use the UTF8String method of the NSString class .

creating and opening a
Sqlite3 database

Use the sqlite3_open() C function .

executing a Sql query Use the sqlite3_exec() C function .

closing a database connection Use the sqlite3_close() C function .

using bind variables Create a sqlite3_stmt object .

Use the sqlite3_prepare_v2() C function to prepare the
statement .

Use the sqlite3_bind_text() (or sqlite3_bind_int(), and so
on) C function to insert the values into the statement .

Use the sqlite3_step() C function to execute the statement .

Use the sqlite3_finalize() C function to delete the statement
from memory .

retrieving records Use the sqlite3_step() C function to retrieve each individual row .

retrieving columns from a row Use the sqlite3_column_text() (or sqlite3_column_int(),
and so on) C function .

PART III
Advanced iOS 4 programming
techniques

chApter ⊲ 12: Simple Animations and Video Playback

chApter ⊲ 13: Accessing Built-In Applications

chApter ⊲ 14: Recognizing Gestures

chApter ⊲ 15: Accessing the Accelerometer

Simple Animations and
Video Playback

whAt yOu will leArn in thiS chApter

How to use the NSTimer class to create timers that call methods at ➤➤

regular intervals

How to perform simple animations using the NSTimer class➤➤

How to perform affi ne transformation on an Image View➤➤

How to animate a series of images using Image View➤➤

How to play back videos in your iPhone application➤➤

Up to this point, the applications you have written have all made use of the standard views
provided by the iPhone SDK. As Apple has reiterated, the iPhone is not just for serious work; it
is also a gaming platform.

In this chapter, you have some fun creating something visual. You learn how to perform some
simple animations using a timer object and then perform some transformations on a view.
Although it is beyond the scope of this book to show you how to create animations using
OpenGL ES, this chapter does demonstrate some interesting techniques that you can use to
make your applications come alive. In addition, you will also learn how to play back a video in
your iPhone application.

uSing the nStimer clASS

One of the easiest ways to get started with animation is to use the NSTimer class. The NSTimer
class creates timer objects, which enable you to call a method at a regular time interval. Using
an NSTimer object, you can update an image at regular time intervals, thereby creating an
impression that it is being animated.

12

298 ❘ chApter 12 SimPle animatiOnS and VideO PlaYbacK

In the following Try It Out, you learn how to display a bouncing ball on the screen using the
NSTimer class. When the ball touches the sides of the screen, it bounces off in the opposite direction.
You also learn how to control the frequency with which the ball animates. Download the code files
indicated here for this and other Try It Out features within this chapter.

Animating a Balltry it Out

codefile Animation.zip is available for download at Wrox.com

 1 . Using Xcode, create a new View-based Application (iPhone) project and name it Animation.

 2 . Drag and drop an image named tennisball.jpg to the Resources folder in Xcode. When the Add
dialog appears, check the Copy Item into the Destination Group’s Folder (If Needed) option so that
the image is copied into the project (see Figure 12-1).

figure 12-1

 3 . Double-click the AnimationViewController.xib file to edit it in Interface Builder.

 4 . Drag and drop an Image View onto the View window and set its Image property to tennisball.jpg
(see Figure 12-2).

Ensure that the size of the Image View fits the entire tennis ball image. Later, you will move the
Image View on the screen, so it is important not to fill the entire screen with the Image View.

 5 . Select the View (outside the Image View) and change the background color to black (see
Figure 12-3).

Using the nSTimer Class ❘ 299

figure 12-2

figure 12-3

300 ❘ chApter 12 SimPle animatiOnS and VideO PlaYbacK

 6 . Add a Label and a Slider view from the Library onto the View window (see the lower-left corner of
Figure 12-4). Set the Initial property of the Slider view to 0.01.

figure 12-4

 7 . In the AnimationViewController.h file, declare the following outlets, fields, and actions (shown
in bold):

#import<UIKit/UIKit.h>

@interfaceAnimationViewController:UIViewController{
 IBOutlet UIImageView *imageView;
 IBOutlet UISlider *slider;

 CGPoint delta;
 NSTimer *timer;
 float ballRadius;
}

@property (nonatomic, retain) UIImageView *imageView;
@property (nonatomic, retain) UISlider *slider;

-(IBAction) sliderMoved:(id) sender;

@end

Using the nSTimer Class ❘ 301

 8 . Back in Interface Builder, connect the outlets and actions as follows (see Figure 12-5 for the con-
nections after all the outlets and actions are connected):

Control-click and drag the File’s Owner item to the Image View and select ➤➤ imageView.

Control-click and drag the File’s Owner item to the Slider view and select ➤➤ slider.

Control-click and drag the Slider view to the File’s Owner item and select ➤➤ sliderMoved:.

figure 12-5

 9 . Add the following bold statements to the AnimationViewController.m file:

#import“AnimationViewController.h”

@implementationAnimationViewController

@synthesize imageView;
@synthesize slider;

-(void) onTimer {
 imageView.center = CGPointMake(imageView.center.x + delta.x,
 imageView.center.y + delta.y);

 if (imageView.center.x > self.view.bounds.size.width - ballRadius ||
 imageView.center.x < ballRadius)
 delta.x = -delta.x;

 if (imageView.center.y > self.view.bounds.size.height - ballRadius ||
 imageView.center.y < ballRadius)
 delta.y = -delta.y;
}

-(void)viewDidLoad{
 ballRadius = imageView.frame.size.width / 2;
 [slider setShowValue:YES];
 delta = CGPointMake(12.0,4.0);
 timer = [NSTimer scheduledTimerWithTimeInterval:slider.value
 target:self
 selector:@selector(onTimer)

302 ❘ chApter 12 SimPle animatiOnS and VideO PlaYbacK

 userInfo:nil
 repeats:YES];
[superviewDidLoad];
}

-(IBAction) sliderMoved:(id) sender {
 [timer invalidate];
 timer = [NSTimer scheduledTimerWithTimeInterval:slider.value
 target:self
 selector:@selector(onTimer)
 userInfo:nil
 repeats:YES];
}

-(void)dealloc{
 [timer invalidate];
 [imageView release];
 [slider release];
[superdealloc];
}

 10 . Press Command-R to test the application on the iPhone 4 Simulator. The tennis ball should now
be animated on the screen (see Figure 12-6). Vary the speed of the animation by moving the
slider — to the right to slow it down and to the left to speed it up.

figure 12-6

Using the nSTimer Class ❘ 303

How It Works

When the view is loaded, the fi rst thing you do is get the radius of the tennis ball, which in this case is
half the width of the image:

ballRadius=imageView.frame.size.width/2;

This value is used during the animation to check whether the tennis ball has touched the edges of the
screen.

To set the slider to show its value, you use the setShowValue: method:

 [slider setShowValue:YES];

NOTE The setShowValue: method is undocumented, hence the compiler
will sound a warning. Be forewarned that using any undocumented methods
may result in your application being rejected when you submit it to Apple for
approval. In general, use undocumented methods only for debugging purposes.

You also initialize the delta variable:

 delta = CGPointMake(12.0,4.0);

The delta variable is used to specify how many pixels the image must move every time the timer fi res.
The preceding code tells it to move 12 pixels horizontally and 4 pixels vertically.

You next call the scheduledTimerWithTimeInterval:target:selector:userInfo:repeats: class
method of the NSTimer class to create a new instance of the NSTimer object:

 timer = [NSTimer scheduledTimerWithTimeInterval:slider.value
 target:self
 selector:
 @selector(onTimer)
 userInfo:nil
 repeats:YES];

The scheduledTimerWithTimeInterval: parameter specifi es the number of seconds between fi rings of
the timer. Here, you set it to the value of the Slider view, which accepts a value from 0.0 to 1.0. For
example, if the slider’s value is 0.5, the timer object will fi re every half-second.

The selector: parameter specifi es the method to call when the timer fi res, and the repeats: parameter
indicates whether the timer object will repeatedly reschedule itself. In this case, when the timer fi res, it
calls the onTimer method, which you defi ne next.

In the onTimer method, you change the position of the Image View by setting its center property to a
new value. After repositioning, you check whether the image has touched the edges of the screen; if it
has, the value of the delta variable is negated:

-(void) onTimer {

304 ❘ chApter 12 SimPle animatiOnS and VideO PlaYbacK

imageView.center=CGPointMake(imageView.center.x+delta.x,
imageView.center.y+delta.y);
if(imageView.center.x>
 self.view.bounds.size.width-ballRadius||
imageView.center.x<ballRadius)
delta.x=-delta.x;

if(imageView.center.y>
 self.view.bounds.size.height-ballRadius||
imageView.center.y<ballRadius)
delta.y=-delta.y;
}

When you move the slider, the sliderMoved: method is called. In this method, fi rst invalidate the timer
object and then create another instance of the NSTimer class:

-(IBAction) sliderMoved:(id) sender {
 [timer invalidate];
 timer = [NSTimer scheduledTimerWithTimeInterval:slider.value
 target:self
 selector:
 @selector(onTimer)
 userInfo:nil
 repeats:YES];
}

Moving the slider enables you to change the frequency at which the image is animated.

NOTE After an NSTimer object is started, you cannot change its fi ring interval.
Therefore, the only way to change the interval is to invalidate the current one
and create a new NSTimer object.

Animating the visual change
You may have noticed that as you move the slider toward the right, the animation slows and
becomes choppy.

To make the animation smoother, you can animate the visual changes by using an animation block.
The start of the animation block is defi ned by the beginAnimations:context: class method of the
UIView class:

 [UIView beginAnimations:@”my_own_animation” context:nil];

//---animate for the duration of the slider value (time interval)---
[UIViewsetAnimationDuration:slider.value];

Transforming Views ❘ 305

//---set the animation curve type---
[UIViewsetAnimationCurve:UIViewAnimationCurveLinear];

imageView.center=CGPointMake(imageView.center.x+delta.x,
imageView.center.y+delta.y);

 //---committing the animations--
[UIViewcommitAnimations];

To end an animation block, you call the commitAnimations class method of the UIView class. The
preceding code animates the Image View when it moves from one position to another. This results in
a much smoother animation.

trAnSfOrming viewS

You can use the NSTimer class to simulate a simple animation by continuously changing the position
of the Image View, but you can use the transformation techniques supported by the iPhone SDK to
achieve the same effect.

Transforms are defi ned in Core Graphics (a C-based API that is based on the Quartz advanced
drawing engine; you use this framework to handle things such as drawings, transformations, image
creation, etc.), and the iPhone SDK supports standard affi ne 2D transforms. You can use the iPhone
SDK to perform the following affi ne 2D transforms:

Translation➤➤ — Moves the origin of the view by the amount specifi ed using the x and y axes.

Rotation➤➤ — Moves the view by the angle specifi ed.

Scaling➤➤ — Changes the scale of the view by the x and y factors specifi ed.

NOTE An affi ne transformation is a linear transformation that preserves
co-linearity and ratio of distances. This means that all the points lying on a line
initially will remain in a line after the transformation, with the respective distance
ratios between them maintained.

Figure 12-7 shows the effects of the various transformations.

translation
To perform an affi ne transform on a view, simply use its transform property. Recall that in the pre-
vious example, you set the new position of the view through its center property:

 imageView.center = CGPointMake(imageView.center.x + delta.x,
 imageView.center.y + delta.y);

306 ❘ chApter 12 SimPle animatiOnS and VideO PlaYbacK

Rotated

Scaled

figure 12-7

Using 2D transformation, you can use its transform property and set it to a CGAffineTransform data
structure returned by the CGAffineTransformMakeTranslation() function, like this:

//--add the following bold line in the AnimationViewController.h file--
#import<UIKit/UIKit.h>

@interfaceAnimationViewController:UIViewController{
IBOutletUIImageView*imageView;
IBOutletUISlider*slider;
CGPointdelta;
NSTimer*timer;
floatballRadius;

 //--add this line--
CGPointtranslation;
}

@property(nonatomic,retain)UIImageView*imageView;

Transforming Views ❘ 307

@property(nonatomic,retain)UISlider*slider;

-(IBAction)sliderMoved:(id)sender;

@end

//--add the following bold line in the AnimationViewController.m file--
-(void)viewDidLoad{
ballRadius=imageView.frame.size.width/2;
[slidersetShowValue:YES];
delta=CGPointMake(12.0,4.0);

translation=CGPointMake(0.0,0.0);

timer=[NSTimerscheduledTimerWithTimeInterval:slider.value
target:self
selector:@selector(onTimer)
userInfo:nil
repeats:YES];
[superviewDidLoad];
}

-(void)onTimer{
 [UIView beginAnimations:@”my_own_animation” context:nil];

 //---animate for the duration of the slider value (time interval)---
 [UIView setAnimationDuration:slider.value];

 //---set the animation curve type---
 [UIView setAnimationCurve:UIViewAnimationCurveLinear];

 imageView.transform =
 CGAffineTransformMakeTranslation(translation.x, translation.y);

 [UIView commitAnimations];

 translation.x += delta.x;
 translation.y += delta.y;

 if (imageView.center.x + translation.x >
 self.view.bounds.size.width - ballRadius ||
 imageView.center.x + translation.x < ballRadius)
 delta.x = -delta.x;

 if (imageView.center.y + translation.y >
 self.view.bounds.size.height - ballRadius ||
 imageView.center.y + translation.y < ballRadius)
 delta.y = -delta.y;
}

The CGAffineTransformMakeTranslation() function takes two arguments: the value to move for the
x axis and the value to move for the y axis.

The preceding code achieves the same effect as setting the center property of Image View.

308 ❘ chApter 12 SimPle animatiOnS and VideO PlaYbacK

rotation
The rotation transformation enables you to rotate a view using the angle you specify. In the follow-
ing Try It Out, you modify the code from the previous example so that the tennis ball rotates as it
bounces across the screen.

Rotating the Tennis Balltry it Out

 1 . In the AnimationViewController.h file, add the declaration for the angle variable as shown
in bold:

#import<UIKit/UIKit.h>

@interfaceAnimationViewController:UIViewController{
IBOutletUIImageView*imageView;
IBOutletUISlider*slider;
CGPointdelta;
NSTimer*timer;
floatballRadius;

CGPointtranslation;

 //--add this line--
 float angle;
}

@property(nonatomic,retain)UIImageView*imageView;
@property(nonatomic,retain)UISlider*slider;

-(IBAction)sliderMoved:(id)sender;

@end

 2 . In the AnimationViewController.m file, add the following bold statements:

-(void)viewDidLoad{

 //---set the angle to 0---
 angle = 0;

ballRadius=imageView.frame.size.width/2;
[slidersetShowValue:YES];
delta=CGPointMake(12.0,4.0);

translation=CGPointMake(0.0,0.0);

timer=[NSTimerscheduledTimerWithTimeInterval:slider.value
target:self
selector:@selector(onTimer)
userInfo:nil
repeats:YES];
[superviewDidLoad];

Transforming Views ❘ 309

}

-(void)onTimer{
 //---rotation---
 [UIView beginAnimations:@”my_own_animation” context:nil];

 //---animate for the duration of the slider value (time interval)---
 [UIView setAnimationDuration:slider.value];

 //---set the animation curve type---
 [UIView setAnimationCurve:UIViewAnimationCurveLinear];

 imageView.transform = CGAffineTransformMakeRotation(angle);

 [UIView commitAnimations];

 angle += 0.02;
 if (angle>6.2857) angle = 0;

 imageView.center = CGPointMake(imageView.center.x + delta.x,
 imageView.center.y + delta.y);

 if (imageView.center.x > self.view.bounds.size.width - ballRadius ||
 imageView.center.x < ballRadius)
 delta.x = -delta.x;

 if (imageView.center.y > self.view.bounds.size.height - ballRadius ||
 imageView.center.y < ballRadius)
 delta.y = -delta.y;
}

 3 . Press Command-R to test the application. The tennis ball now rotates as it bounces across the
screen.

How It Works

To rotate a view, set its transform property using a CGAffineTransform data structure returned by the
CGAffineTransformMakeRotation() function. The CGAffineTransformMakeRotation() function takes a
single argument, which contains the angle to rotate (in radians). After each rotation, you increment the
angle by 0.02:

//---rotation---
imageView.transform=CGAffineTransformMakeRotation(angle);
...
angle+=0.02;

A full rotation takes 360 degrees, which works out to be 2PI radians (recall that PI is equal to 22/7,
which is approximately 3.142857). If the angle exceeds 6.2857 (=2*3.142857), you reset angle to 0:

if(angle>6.2857)angle=0;

310 ❘ chApter 12 SimPle animatiOnS and VideO PlaYbacK

Scaling
For scaling of views, you use the CGAffineTransformMakeScale() function to return a
CGAffineTransform data structure and set it to the transform property of the view:

 imageView.transform = CGAffineTransformMakeScale(angle,angle);

CGAffineTransformMakeScale()takes two arguments: the factor to scale for the x axis and the factor
to scale for the y axis.

If you modify the previous Try It Out with the preceding statement, the tennis ball gets bigger as it
bounces on the screen (see Figure 12-8). It then resets back to its original size and grows again.

figure 12-8

AnimAting A SerieS Of imAgeS

So far, you have seen that you can use an Image View to display a static image. In addition, you can
use it to display a series of images and then alternate between them.

The following Try It Out shows how this is done using an Image View.

Animating a Series of images ❘ 311

Displaying a Series of imagestry it Out

codefile Animations2.zip is available for download at Wrox.com

 1 . Using Xcode, create a new View-based Application
(iPhone) project and name it Animations2.

 2 . Add a series of images to the Resources folder by
dragging and dropping them into the Resources folder
in Xcode. When the Add dialog appears, check the
Copy Item into Destination Group’s Folder (If Needed)
option so that each of the images will be copied into
the project. Figure 12-9 shows the images added.

 3 . In the Animations2ViewController.m file, add the fol-
lowing bold statements:

-(void)viewDidLoad{
 NSArray *images = [NSArray arrayWithObjects:
 [UIImage imageNamed:@”MacSE.jpeg”],
 [UIImage imageNamed:@”imac.jpeg”],
 [UIImage imageNamed:@”MacPlus.jpg”],
 [UIImage imageNamed:@”imac_old.jpeg”],
 [UIImage imageNamed:@”Mac8100.jpeg”],
 nil];

 CGRect frame = CGRectMake(0,0,320,460);
 UIImageView *imageView = [[UIImageView alloc] initWithFrame:frame];
 imageView.animationImages = images;
 imageView.contentMode = UIViewContentModeScaleAspectFit;

 //---seconds to complete one set of animation---
 imageView.animationDuration = 3;

 //---continuous---
 imageView.animationRepeatCount = 0;

 //--start the animation---
 [imageView startAnimating];

 //--add the image view to the View window---
 [self.view addSubview:imageView];

 [imageView release];
[superviewDidLoad];
}

 4 . Press Command-R to view the series of images on the iPhone 4 Simulator. The images are dis-
played in the Image View (see Figure 12-10), one at a time.

figure 12-9

312 ❘ chApter 12 SimPle animatiOnS and VideO PlaYbacK

figure 12-10

How It Works

You first create an NSArray object and initialize it with a few UIImage objects:

NSArray*images=[NSArrayarrayWithObjects:
[UIImageimageNamed:@”MacSE.jpeg”],
[UIImageimageNamed:@”imac.jpeg”],
[UIImageimageNamed:@”MacPlus.jpg”],
[UIImageimageNamed:@”imac_old.jpeg”],
[UIImageimageNamed:@”Mac8100.jpeg”],
nil];

You then instantiate a UIImageView object:

 CGRect frame = CGRectMake(0,0,320,460);
 UIImageView *imageView = [[UIImageView alloc] initWithFrame:frame];

To get the Image View to display the series of images, set its animationImages property to the images
object. You also set the display mode of the Image View:

 imageView.animationImages = images;
 imageView.contentMode = UIViewContentModeScaleAspectFit;

To control how fast the images are displayed, you set the animationDuration property to a value. This
value indicates the number of seconds that the Image View will take to display one complete set of

Playing Video on the iPhone ❘ 313

images. The animationRepeatCount property enables you to specify how many times you want the ani-
mation to occur. Set it to 0 if you want it to be displayed indefinitely:

 //---seconds to complete one set of animation---
 imageView.animationDuration = 3;

 //---continuous---
 imageView.animationRepeatCount = 0;

Finally, you start the animation by calling the startAnimating method. You also need to add the Image
View to the View window by calling the addSubView: method:

 //--start the animation---
 [imageView startAnimating];

 //--add the image view to the View window---
 [self.view addSubview:imageView];

Note that the animation technique described in this section is suitable for a moderate number of ani-
mating objects. For more complex animation, you might want to explore OpenGL ES.

plAying viDeO On the iphOne

Playing videos is one of the most commonly performed tasks on the iPhone. Prior to iOS 4 for the
iPhone, all videos must be played full-screen. However, on the iOS 4, this rule has been relaxed –
you can now embed videos within your iPhone applications. This makes it possible for you to embed
more than one video in any View window. This section shows you how to enable video playback in
your iPhone applications.

enabling Video Playbacktry it Out

codefile PlayVideo.zip is available for download at Wrox.com

 1 . Using Xcode, create a new View-based Application
(iPhone) project and name it PlayVideo.

 2 . Drag a sample video into the Resources folder of
your Xcode project (see Figure 12-11).

 3 . Right-click the Frameworks folder and add the
MediaPlayer.framework to your project (see
Figure 12-12).

figure 12-11

314 ❘ chApter 12 SimPle animatiOnS and VideO PlaYbacK

figure 12-12

 4 . In the PlayVideoViewController.h file, code the following in bold:

#import<UIKit/UIKit.h>
#import <MediaPlayer/MediaPlayer.h>

@interfacePlayVideoViewController:UIViewController{
 MPMoviePlayerController *player;
}

@end

 5 . In the PlayVideoViewController.m file, code the following in bold:

#import“PlayVideoViewController.h”

@implementationPlayVideoViewController

-(void)viewDidLoad{
 NSString *url = [[NSBundle mainBundle]
 pathForResource:@”Trailer”
 ofType:@”m4v”];

 player = [[MPMoviePlayerController alloc]
 initWithContentURL:[NSURL fileURLWithPath:url]];

 [[NSNotificationCenter defaultCenter]

Playing Video on the iPhone ❘ 315

 addObserver:self
 selector:@selector(movieFinishedCallback:)
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:player];

 //--set the size of the movie view and then add it to the View window--
 player.view.frame = CGRectMake(10, 10, 300, 300);
 [self.view addSubview:player.view];

 //--play movie--
 [player play];
[superviewDidLoad];
}

//--called when the movie is done playing--
- (void) movieFinishedCallback:(NSNotification*) aNotification {
 MPMoviePlayerController *moviePlayer = [aNotification object];
 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:moviePlayer];
 [moviePlayer.view removeFromSuperview];
 [player release];
}

 6 . To test the application on the iPhone 4 Simulator, press Command-R. Figure 12-13 shows the
movie playing on the iPhone 4 Simulator.

figure 12-13

316 ❘ chApter 12 SimPle animatiOnS and VideO PlaYbacK

 7 . Click the movie and you will be able to display the movie full-screen. Figure 12-14 shows two dif-
ferent scenes from the same movie; one shown full-screen width.

figure 12-14

How It Works

Basically, you use the MPMoviePlayerController class to control the playback of a video:

 player = [[MPMoviePlayerController alloc]
 initWithContentURL:[NSURL fileURLWithPath:url]];

You then use the NSNotificationCenter class to register a notification so that when the movie is done
playing (i.e., it ends), the movieFinishedCallback: method can be called:

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(movieFinishedCallback:)
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:player];

To display the movie on the View window, you set the size of the movie and then add its view property
to the View window and then play it:

 //--set the size of the movie view and then add it to the View window--
 player.view.frame = CGRectMake(10, 10, 300, 300);
 [self.view addSubview:player.view];

 //--play movie--
 [player play];

Summary ❘ 317

When the movie stops playing, you should unregister the notification, remove the movie, and then
release the player object:

//--called when the movie is done playing--
- (void) movieFinishedCallback:(NSNotification*) aNotification {
 MPMoviePlayerController *moviePlayer = [aNotification object];
 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:moviePlayer];
 [moviePlayer.view removeFromSuperview];
 [player release];
}

SummAry

In this chapter, you have seen the usefulness of the NSTimer class and how it can help you perform
some simple animations. You have also learned about the various affine transformations supported
by the iPhone SDK. Next, you learned how the Image View enables you to animate a series of
images at a regular time interval. Last, but not least, you learned how to play back a video in your
iPhone application.

exerciSeS

 1 . Name the three affine transformations supported by the iPhone SDK .

 2 . How do you pause an NSTimer object and then resume it?

 3 . What is the purpose of enclosing your block of code with the beginAnimations and
commitAnimations methods of the UIView class, as shown in the following code snippet?

[UIView beginAnimations:@”my_own_animation” context:nil];
//---code to effect visual change---
[UIView commitAnimations];

 4 . Name the class that you can use for video playback .

Answers to the Exercises can be found in Appendix E, on Wrox.com.

318 ❘ chApter 12 SimPle animatiOnS and VideO PlaYbacK

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

using the
NSTimer object to
create timers

Create a timer object that will call the onTimer method every half-second:
timer = [NSTimer scheduledTimerWithTimeInterval: 0.5
 target:self
 selector:@selector(onTimer)
 userInfo:nil
 repeats:YES];

Stopping the
NSTimer object

[timer invalidate];

Animating visual
changes

[UIView beginAnimations:@”my_own_animation” context:nil];

//---code to effect visual change---
[UIView commitAnimations];

performing affine
transformations

Use the transform property of the view .

translation Use the CGAffineTransformMakeTranslation() function to return a
CGAffineTransform data structure and set it to the transform property .

rotation Use the CGAffineTransformMakeRotation() function to return a
CGAffineTransform data structure and set it to the transform property .

Scaling Use the CGAffineTransformMakeScale() function to return a
CGAffineTransform data structure and set it to the transform property .

Animating a
series of images
using image view

Set the animationImages property to an array containing UIImage objects .

Set the animationDuration property .

Set the animationRepeatCount property .

Call the startAnimating method .

playing back a
video

Use the MPMoviePlayerController class .

Accessing Built-in Applications

whAt yOu will leArn in thiS chApter

How to send e-mails from within your application➤➤

Invoking Safari from within your application➤➤

How to invoke the phone from within your application➤➤

How to send SMS messages from within your application➤➤

Accessing the camera and Photo Library➤➤

The iPhone comes with a number of built-in applications that make it one of the most popu-
lar mobile devices of all time. Some of these applications are Mail, Phone, Safari, SMS, and
Calendar. These applications perform most of the tasks you would expect from a mobile
phone. As an iPhone developer, you can also programmatically invoke these applications from
within your application using the various APIs provided by the iPhone SDK.

In this chapter, you learn how to invoke some of the built-in applications that are bundled
with the iPhone, as well as how to interact with them from within your iPhone application.

SenDing e-mAilS

Sending e-mails is one of the many tasks performed by iPhone users. Sending e-mails on the
iPhone is accomplished using the built-in Mail application, which is a rich HTML mail client
that supports POP3, IMAP, and Exchange e-mail systems, and most web-based e-mails such
as Yahoo! and Gmail.

13

320 ❘ chApter 13 acceSSinG built-in aPPlicatiOnS

There are times where you need to allow your user to send an e-mail in your iPhone application. A
good example is embedding a feedback button in your application that users can click to send feed-
back to you directly. You have two ways to send e-mails programmatically:

Build your own e-mail client and implement all the necessary protocols necessary to commu-➤➤

nicate with an e-mail server.

Invoke the built-in Mail application and ask it to send the e-mail for you.➤➤

Unless you are well versed in network communications and familiar with all the e-mail protocols,
your most logical choice is the second option — invoke the Mail application to do the job. The
following Try It Out shows you how (you need to download the code files indicated here to work
through this example).

Sending e-mails Using the Mail Applicationtry it Out

Codefile [Emails.zip] is available for download at Wrox.com

 1 . Using Xcode, create a View-based Application project and
name it Emails.

 2 . Double-click the EmailsViewController.xib file to edit it
in Interface Builder.

 3 . Populate the View window with the following views (see
Figure 13-1):

Label➤➤

TextField➤➤

TextView➤➤ (remember to delete the sample text inside
the view)

Button➤➤

 4 . Insert the following statements in bold into the EmailsViewController.h file:

#import<UIKit/UIKit.h>

@interfaceEmailsViewController:UIViewController{
 IBOutlet UITextField *to;
 IBOutlet UITextField *subject;
 IBOutlet UITextView *body;
}

@property (nonatomic, retain) UITextField *to;
@property (nonatomic, retain) UITextField *subject;

figure 13-1

Sending e-Mails ❘ 321

@property (nonatomic, retain) UITextView *body;

-(IBAction) btnSend: (id) sender;

@end

 5 . Back in Interface Builder, Control-click and drag the File’s Owner item to each of the three Text
Field and Text View views and select to, subject, and body, respectively.

 6 . Control-click and drag the Button view to the File’s Owner item and select btnSend:.

 7 . Insert the following code in bold into the EmailsViewController.m file:

#import“EmailsViewController.h”

@implementationEmailsViewController

@synthesize to, subject, body;

- (void) sendEmailTo:(NSString *) toStr
 withSubject:(NSString *) subjectStr
 withBody:(NSString *) bodyStr {

 NSString *emailString =
 [[NSString alloc]
 initWithFormat:@”mailto:?to=%@&subject=%@&body=%@”,
 [toStr
 stringByAddingPercentEscapesUsingEncoding:
 NSASCIIStringEncoding],
 [subjectStr
 stringByAddingPercentEscapesUsingEncoding:
 NSASCIIStringEncoding],
 [bodyStr
 stringByAddingPercentEscapesUsingEncoding:
 NSASCIIStringEncoding]];
 [[UIApplication sharedApplication] openURL:[NSURL URLWithString:emailString]];
 [emailString release];
}

-(IBAction) btnSend: (id) sender{
 [self sendEmailTo:to.text withSubject:subject.text withBody:body.text];
}

-(void)dealloc{
 [to release];
 [subject release];
 [body release];
[superdealloc];
}

 8 . Press Command-R to test the application on a real iPhone. Figure 13-2 shows the application in
action. After you have filled in the Text Field and Text View views with the necessary information,
click the Send button to invoke the Mail application and fill it with all the information you have
typed in your application. Clicking the Send button in Mail sends the e-mail.

322 ❘ chApter 13 acceSSinG built-in aPPlicatiOnS

figure 13-2

How It Works

The magic of invoking the Mail application lies in the string that you create in the
sendEmailTo:withSubject:withBody: method that you have defined:

 NSString *emailString =
 [[NSString alloc]
 initWithFormat:@”mailto:?to=%@&subject=%@&body=%@”,
 [toStr
 stringByAddingPercentEscapesUsingEncoding:
 NSASCIIStringEncoding],
 [subjectStr
 stringByAddingPercentEscapesUsingEncoding:
 NSASCIIStringEncoding],
 [bodyStr
 stringByAddingPercentEscapesUsingEncoding:
 NSASCIIStringEncoding]];

Basically, this is a URL string with the mailto: protocol indicated. The various parameters, such as
to, subject, and body, are inserted into the string. Note that you use the
stringByAddingPercentEscapesUsingEncoding: method of the NSString class to encode the various
parameters with the correct percent escapes so that the result is a valid URL string.

To invoke the Mail application, simply call the sharedApplication method to return the singleton
application instance and then use the openURL: method to invoke the Mail application:

 [[UIApplication sharedApplication] openURL:[NSURL URLWithString:emailString]];

Sending e-Mails ❘ 323

NOTE Remember that this example works only on a real device. Testing it on
the iPhone 4 Simulator will not work. Appendix A discusses how to prepare your
iPhone for testing.

The downside of using this approach is that when you tap the Send button, the application is pushed
to the background when the Mail application takes over. When the e-mail is sent, you have to manu-
ally bring the application to the foreground again; otherwise, it will not appear. To compose the
e-mail from within your application and then get the Mail application to send it for you, you can use
the MFMailComposeViewController class. The following Try It Out shows how this can be done.

Sending e-mails without Leaving the Applicationtry it Out

1 . Using the same project created in the previous Try It Out, add a new Round Rect button to
the EmailViewController.xib fi le (see Figure 13-3).

2 . In Xcode, right-click the Frameworks folder and add the MessageUI.framework fi le (see
Figure 13-4).

figure 13-3 figure 13-4

324 ❘ chApter 13 acceSSinG built-in aPPlicatiOnS

 3 . Add the following statement in bold to the EmailsViewController.h file:

#import<UIKit/UIKit.h>
#import <MessageUI/MFMailComposeViewController.h>

@interfaceEmailsViewController:UIViewController
 <MFMailComposeViewControllerDelegate> {
IBOutletUITextField*to;
IBOutletUITextField*subject;
IBOutletUITextView*body;
}

@property(nonatomic,retain)UITextField*to;
@property(nonatomic,retain)UITextField*subject;
@property(nonatomic,retain)UITextView*body;

-(IBAction)btnSend:(id)sender;
-(IBAction) btnComposeEmail: (id) sender;

@end

 4 . In Interface Builder, Control-click and drag the Compose E-mail button over the File’s Owner item.
Select btnComposeEmail:.

 5 . Add the following statement in bold to the EmailsViewController.m file:

#import“EmailsViewController.h”

@implementationEmailsViewController

@synthesizeto,subject,body;

-(IBAction) btnComposeEmail: (id) sender {
 MFMailComposeViewController *picker =
 [[MFMailComposeViewController alloc] init];
 picker.mailComposeDelegate = self;

 [picker setSubject:@”Email subject here”];
 [picker setMessageBody:@”Email body here” isHTML:NO];
 [self presentModalViewController:picker animated:YES];
 [picker release];
}

- (void)mailComposeController:(MFMailComposeViewController*)controller
 didFinishWithResult:(MFMailComposeResult)result
 error:(NSError*)error {
 [controller dismissModalViewControllerAnimated:YES];
}

Sending e-Mails ❘ 325

6 . Press Command-R to test the application on a real iPhone.
Like the previous Try It Out, you will see the Mail applica-
tion’s compose screen (see Figure 13-5). However, unlike the
previous example, when the e-mail is sent, control is returned
to the application.

How It Works

The MFMailComposeViewController class presents the window
for composing a message modally and does not cause the current
application to go into the background. This is very useful when
you want to resume with the current application after the e-mail
has been sent.

invoking Safari
If you want to invoke the Safari Web browser on your iPhone, you can also make use of a URL
string and then use the openURL: method of the application instance, like this:

[[UIApplicationsharedApplication]
openURL:[NSURLURLWithString:@”http://www.apple.com”]];

The preceding code snippet invokes Safari to open the www.apple.com page (see Figure 13-6).

invoking the phone
To make a phone call using the iPhone’s phone dialer, use the following URL string:

[[UIApplicationsharedApplication]
openURL:[NSURLURLWithString:@”tel:96924065”]];

The preceding statement invokes the dialer of the iPhone using the phone number specifi ed.

NOTE The preceding statement works only for the iPhone, and not the iPod touch,
of course, because the iPod touch does not have phone capabilities. Also, you would
need to use a real device to test this out; the code does not have an eff ect on the
iPhone Simulator. Appendix A discusses how to prepare your iPhone for testing.

figure 13-5

http://www.apple.com

326 ❘ chApter 13 acceSSinG built-in aPPlicatiOnS

invoking SmS
You can also use a URL string to send SMS messages using the SMS application:

[[UIApplicationsharedApplication]
openURL:[NSURLURLWithString:@”sms:96924065”]];

The preceding statement invokes the SMS application (see Figure 13-7). Note that the current appli-
cation will be sent to the background.

figure 13-6 figure 13-7

NOTE As noted in the preceding section, this statement works only for iPhone,
and not iPod touch, because the iPod touch does not have a phone, and there-
fore messaging, capabilities. Also, you would need to use a real device to test
this out; the code does not have an eff ect on the iPhone Simulator. Appendix A
discusses how to prepare your iPhone for testing.

In the iPhone SDK 4, you can also send SMS messages directly from within your application. The
following Try It Out shows how to do this.

Sending SMS Messages without Leaving Your Applicationtry it Out

1 . Using the previous project – Emails, add the following statements in bold to the
EmailsViewController.h fi le:

#import<UIKit/UIKit.h>
#import<MessageUI/MFMailComposeViewController.h>
#import <MessageUI/MFMessageComposeViewController.h>

@interfaceEmailsViewController:UIViewController

Sending e-Mails ❘ 327

<MFMailComposeViewControllerDelegate,
MFMessageComposeViewControllerDelegate>{
IBOutletUITextField*to;
IBOutletUITextField*subject;
IBOutletUITextView*body;
}

@property(nonatomic,retain)UITextField*to;
@property(nonatomic,retain)UITextField*subject;
@property(nonatomic,retain)UITextView*body;

-(IBAction)btnSend:(id)sender;
-(IBAction)btnComposeEmail:(id)sender;

@end

 2 . Add the following statements in bold to the EmailsViewController.m file

-(IBAction)btnComposeEmail:(id)sender{
 MFMessageComposeViewController *picker =
 [[MFMessageComposeViewController alloc] init];
 picker.messageComposeDelegate = self;

 [picker setBody:@”This message sent from the application.”];
 [self presentModalViewController:picker animated:YES];
 [picker release];
}

- (void)messageComposeViewController:(MFMessageComposeViewController *)controller
 didFinishWithResult:(MessageComposeResult)result {
 [controller dismissModalViewControllerAnimated:YES];
}

 3 . Press Command-R to test the application on an iPhone
device. You will be able to compose your SMS message (see
Figure 13-8). When the message is sent, control is returned
to your application.

How It Works

The MFMessageComposeViewController class is one of the new
APIs in the iPhone 4 SDK. It presents the SMS composer window
modally and does not cause the current application to go into the
background. This is very useful when you want to resume with
the current application after the SMS message has been sent.

figure 13-8

328 ❘ chApter 13 acceSSinG built-in aPPlicatiOnS

intercepting SmS meSSAgeS

One of the most frequently requested features of the iPhone SDK is the capa-
bility to intercept incoming SMS messages from within an iPhone application.
Unfortunately, the current version of the SDK does not provide a means to do this.

Likewise, you cannot send SMS messages directly from within your application;
the messages must be sent from the built-in SMS application itself. This require-
ment prevents rogue applications from sending SMS messages without the user’s
knowledge.

AcceSSing the cAmerA AnD the phOtO liBrAry

The iPhone has a camera (the iPhone 4 has two – one front facing and one rear facing) that enables
users to both take pictures and record videos. These pictures and videos are saved in the Photos
application. As a developer, you have two options to manipulate the camera and to access the pic-
tures and videos stored in the Photos application:

You can invoke the camera to take pictures or record a video.➤➤

You can invoke the Photos application to allow users to select a picture or video from the ➤➤

photo albums. You can then use the picture or video selected in your application.

Accessing the photo library
Every iPhone and iPod touch device includes the Photos application, in which any pictures and vid-
eos are stored. Using the iPhone SDK, you can use the UIImagePickerController class to program-
matically display a UI that enables users to select pictures and videos from the Photos application.
The following Try It Out demonstrates how you can do that in your application.

Accessing the Photos in the Photo Librarytry it Out

Codefi le [PhotoLibrary.zip] is available for download at Wrox.com

1 . Using Xcode, create a View-based Application project and name it PhotoLibrary.

2 . Double-click the PhotoLibraryViewController.xib fi le to edit it in Interface Builder.

 3 . Populate the View window with the following views (see Figure 13-9):

Round Rect Button➤➤

ImageView➤➤

 4 . In the Attributes Inspector window for the ImageView view, set the Mode to Aspect Fit (see
Figure 13-10).

Accessing the Camera and the Photo Library ❘ 329

figure 13-9 figure 13-10

 5 . In the PhotoLibraryViewController.h file, insert the following statements that appear in bold:

#import<UIKit/UIKit.h>

@interfacePhotoLibraryViewController:UIViewController
 <UINavigationControllerDelegate,
 UIImagePickerControllerDelegate>{

 IBOutlet UIImageView *imageView;
 UIImagePickerController *imagePicker;
}

@property (nonatomic, retain) UIImageView *imageView;

-(IBAction) btnClicked: (id) sender;

@end

 6 . Back in Interface Builder, Control-click and drag the File’s Owner item to the ImageView view and
select imageView.

 7 . Control-click and drag the Button view to the File’s Owner item and select btnClicked:.

330 ❘ chApter 13 acceSSinG built-in aPPlicatiOnS

 8 . In the PhotoLibraryViewController.m file, insert the following statements that appear in bold:

#import“PhotoLibraryViewController.h”

@implementationPhotoLibraryViewController

@synthesize imageView;

-(void)viewDidLoad{
 imagePicker = [[UIImagePickerController alloc] init];
[superviewDidLoad];
}

- (IBAction) btnClicked: (id) sender{
 imagePicker.delegate = self;
 imagePicker.sourceType =
 UIImagePickerControllerSourceTypePhotoLibrary;

 //---show the Image Picker---
 [self presentModalViewController:imagePicker animated:YES];
}

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info {
 UIImage *image;
 NSURL *mediaUrl;
 mediaUrl = (NSURL *)[info valueForKey:
 UIImagePickerControllerMediaURL];

 if (mediaUrl == nil) {
 image = (UIImage *) [info valueForKey:
 UIImagePickerControllerEditedImage];
 if (image == nil) {
 //---original image selected---
 image = (UIImage *)
 [info valueForKey:UIImagePickerControllerOriginalImage];

 //---display the image---
 imageView.image = image;
 }
 else { //---edited image picked---
 //---get the cropping rectangle applied to the image---
 CGRect rect =
 [[info valueForKey:UIImagePickerControllerCropRect]
 CGRectValue];

 //---display the image---
 imageView.image = image;
 }
 }
 else {
 //---video picked---
 // -- implement this later --
 }
 //---hide the Image Picker---
 [picker dismissModalViewControllerAnimated:YES];

Accessing the Camera and the Photo Library ❘ 331

}

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker {
 //---user did not select image/video; hide the Image Picker---
 [picker dismissModalViewControllerAnimated:YES];
}

-(void)dealloc{
 [imageView release];
 [imagePicker release];
[superdealloc];
}

 9 . Press Command-R to test the application on the iPhone 4 Simulator.

 10 . When the application is loaded, tap the Load Photo Library button. The Photo Albums on the
iPhone 4 Simulator appear. Select a particular album (see Figure 13-11), and then select a picture.
The selected picture is then displayed on the ImageView view (see Figure 13-12).

How It Works

Access to the Photo Library is provided by the UIImagePickerController class, which provides the UI
for choosing and taking pictures and videos on your iPhone. All you need to do is create an instance
of this class and provide a delegate that conforms to the UIImagePickerControllerDelegate protocol.
In addition, your delegate must conform to the UINavigationControllerDelegate protocol because the
UIImagePickerController class uses the navigation controller to enable users to select photos from the
Photo Library. Therefore, you first need to specify the protocols in PhotoLibraryViewController.h:

@interfacePhotoLibraryViewController:UIViewController
 <UINavigationControllerDelegate,
 UIImagePickerControllerDelegate> {
...

figure 13-11 figure 13-12

332 ❘ chApter 13 acceSSinG built-in aPPlicatiOnS

When the Load Library button is clicked, you set the type of picker interface displayed by the
UIImagePickerController class and then display it modally:

- (IBAction) btnClicked: (id) sender{
 imagePicker.delegate = self;

 imagePicker.sourceType =
 UIImagePickerControllerSourceTypePhotoLibrary;

 //---show the Image Picker---
 [self presentModalViewController:imagePicker animated:YES];
}

Note that if you want the picture to be editable when the user chooses the picture, you can add the fol-
lowing statement:

 imagePicker.allowsEditing = YES;

By default, the source type is always UIImagePickerControllerSourceTypePhotoLibrary, but you can
change it to one of the following:

UIImagePickerControllerSourceTypeCamera➤➤ — for taking photos directly with the camera

UIImagePickerControllerSourceTypeSavedPhotosAlbum➤➤ — for directly going to the Photo Albums
application

When a picture/video has been selected by the user, the
imagePickerController:didFinishPickingMediaWithInfo: event fires, which you handle by checking
the type of media selected by the user:

- (void)imagePickerController:(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info {

 UIImage *image;
 NSURL *mediaUrl;
 mediaUrl = (NSURL *)[info valueForKey:UIImagePickerControllerMediaURL];

 if (mediaUrl == nil) {
 image = (UIImage *) [info valueForKey:UIImagePickerControllerEditedImage];
 if (image == nil) {
 //---original image selected---
 image = (UIImage *)
 [info valueForKey:UIImagePickerControllerOriginalImage];

 //---display the image---
 imageView.image = image;
 }
 else { //---edited image picked---
 //---get the cropping rectangle applied to the image---
 CGRect rect =
 [[info valueForKey:UIImagePickerControllerCropRect]
 CGRectValue];

 //---display the image---
 imageView.image = image;

Accessing the Camera and the Photo Library ❘ 333

 }
 }
 else {
 //---video picked---
 // -- implement this later --
 }
 //---hide the Image Picker---
 [picker dismissModalViewControllerAnimated:YES];
}

The type of media selected by the user is encapsulated in the info: parameter. You use the
valueForKey: method to extract the appropriate media type and then typecast it to the respective type:

 mediaUrl = (NSURL *)[info valueForKey:UIImagePickerControllerMediaURL];

If the user cancels the selection, the imagePickerControllerDidCancel: event fires. In this case, you
simply dismiss the Image Picker:

- (void)imagePickerControllerDidCancel:(UIImagePickerController *)picker {
 //---user did not select image/video; hide the Image Picker---
 [picker dismissModalViewControllerAnimated:YES];
}

Notice that in the preceding example, the user can see only the photos in the Photo Library. What if
the user wants to access videos? The following Try It Out shows you how to enable users to select a
video from the Photo Library and then play it in the application.

Accessing the Videos in the Photo Librarytry it Out

 1 . Using the same project, add the MediaPlayer.framework and MobileCoreServices.framework files
to the Frameworks folder of the Xcode project (see Figure 13-13).

 2 . In the PhotoLibraryViewController.h file, insert the following statements that appear in bold:

#import<UIKit/UIKit.h>
#import <MediaPlayer/MediaPlayer.h>
#import <MobileCoreServices/MobileCoreServices.h>

@interfacePhotoLibraryViewController:UIViewController
<UINavigationControllerDelegate,UIImagePickerControllerDelegate>{

IBOutletUIImageView*imageView;
UIImagePickerController*imagePicker;
}

@property(nonatomic,retain)UIImageView*imageView;

-(IBAction)btnClicked:(id)sender;

@end

334 ❘ chApter 13 acceSSinG built-in aPPlicatiOnS

figure 13-13

 3 . In the PhotoLibraryViewController.m file, insert the following statements that appear in bold:

-(IBAction)btnClicked:(id)sender{
imagePicker.delegate=self;

imagePicker.sourceType=UIImagePickerControllerSourceTypePhotoLibrary;

 NSArray *mediaTypes =
 [NSArray arrayWithObjects:kUTTypeImage, kUTTypeMovie, nil];
 imagePicker.mediaTypes = mediaTypes;

//---showtheImagePicker---
[selfpresentModalViewController:imagePickeranimated:YES];
}

-(void)imagePickerController:(UIImagePickerController*)picker
didFinishPickingMediaWithInfo:(NSDictionary*)info{
UIImage*image;
NSURL*mediaUrl;
mediaUrl=(NSURL*)[infovalueForKey:UIImagePickerControllerMediaURL];
if(mediaUrl==nil){
image=(UIImage*)[infovalueForKey:UIImagePickerControllerEditedImage];
if(image==nil){

Accessing the Camera and the Photo Library ❘ 335

//---originalimageselected---
image=(UIImage*)
[infovalueForKey:UIImagePickerControllerOriginalImage];

//---displaytheimage---
imageView.image=image;
}
else{//---editedimagepicked---
//---getthecroppingrectangleappliedtotheimage---
CGRectrect=
[[infovalueForKey:UIImagePickerControllerCropRect]
CGRectValue];

//---displaytheimage---
imageView.image=image;
}
}
else{
 //---video picked---
 MPMoviePlayerController *player =
 [[MPMoviePlayerController alloc]
 initWithContentURL:mediaUrl];

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(movieFinishedCallback:)
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:player];

 //---play partial screen---
 player.view.frame = CGRectMake(0, 0, 320, 460);
 [self.view addSubview:player.view];

 [player play];
 }
//---hidetheImagePicker---
[pickerdismissModalViewControllerAnimated:YES];
}

- (void) movieFinishedCallback:(NSNotification*) aNotification {
 MPMoviePlayerController *player = [aNotification object];
 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:player];

 [player.view removeFromSuperview];
 [player autorelease];
}

 4 . Press Command-R to test the application on the iPhone 4 Simulator. You can now select a video
and then click the Choose button (see Figure 13-14). The video will be compressed and then played
in the application.

336 ❘ chApter 13 acceSSinG built-in aPPlicatiOnS

figure 13-14

How It Works

By default, the UIImagePickerController object always displays images. To allow movies to be dis-
played and selected, you need to set the mediaTypes property of the UIImagePickerController object.
This property takes an NSArray object containing the types of media you want to display. Here, you set
the media types to be kUTTypeImage and kUTTypeMovie:

imagePicker.sourceType=UIImagePickerControllerSourceTypePhotoLibrary;

 NSArray *mediaTypes =
 [NSArray arrayWithObjects:kUTTypeImage, kUTTypeMovie, nil];
 imagePicker.mediaTypes = mediaTypes;

//---showtheImagePicker---
[selfpresentModalViewController:imagePickeranimated:YES];

When a movie is selected, you will then play it using the MPMoviePlayerController class:

if(mediaUrl==nil){
//...
//...
}
else{
 //---video picked---
 MPMoviePlayerController *player =
 [[MPMoviePlayerController alloc]
 initWithContentURL:mediaUrl];

 [[NSNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(movieFinishedCallback:)
 name:MPMoviePlayerPlaybackDidFinishNotification

Accessing the Camera and the Photo Library ❘ 337

 object:player];

 //---play partial screen---
 player.view.frame = CGRectMake(0, 0, 320, 460);
 [self.view addSubview:player.view];

 [player play];
 }
//---hidetheImagePicker---
[pickerdismissModalViewControllerAnimated:YES];
}

When the movie has finished playing, simply remove it from the View window:

- (void) movieFinishedCallback:(NSNotification*) aNotification {
 MPMoviePlayerController *player = [aNotification object];
 [[NSNotificationCenter defaultCenter]
 removeObserver:self
 name:MPMoviePlayerPlaybackDidFinishNotification
 object:player];

 [player.view removeFromSuperview];
 [player autorelease];
}

Accessing the camera
Besides accessing the Photo Library, you can also access the camera on your iPhone. Although
accessing the hardware is the focus of the next chapter, you take a look here at how to access the
camera because it is also accomplished using the UIImagePickerController class.

In the following Try It Out, you modify the existing project created in the previous section. There
isn’t much to modify because most of the code you have written still applies.

Activating the Cameratry it Out

 1 . Using the same project created in the previous section, edit the PhotoLibraryViewController.m file
by changing the source type of the Image Picker to camera (see code highlighted in bold):

-(IBAction)btnClicked:(id)sender{
imagePicker.delegate=self;

 //---comment this out---
 /*
 imagePicker.sourceType = UIImagePickerControllerSourceTypePhotoLibrary;
 NSArray *mediaTypes =
 [NSArray arrayWithObjects:kUTTypeImage, kUTTypeMovie, nil];
 imagePicker.mediaTypes = mediaTypes;
 */

 //---invoke the camera---
 imagePicker.sourceType = UIImagePickerControllerSourceTypeCamera;
 NSArray *mediaTypes =
 [NSArray arrayWithObjects:kUTTypeImage, kUTTypeMovie, nil];

338 ❘ chApter 13 acceSSinG built-in aPPlicatiOnS

 imagePicker.mediaTypes = mediaTypes;

 imagePicker.cameraCaptureMode = UIImagePickerControllerCameraCaptureModeVideo;
 imagePicker.allowsEditing = YES;

//---showtheImagePicker---
[selfpresentModalViewController:imagePickeranimated:YES];
}

 2 . In the PhotoLibraryViewController.m file, define the following two methods:

- (NSString *) filePath: (NSString *) fileName {
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDir = [paths objectAtIndex:0];
 return [documentsDir stringByAppendingPathComponent:fileName];
}

- (void) saveImage{
 //---get the date from the ImageView---
 NSData *imageData =
 [NSData dataWithData:UIImagePNGRepresentation(imageView.image)];

 //---write the date to file---
 [imageData writeToFile:[self filePath:@”MyPicture.png”] atomically:YES];
}

 3 . Insert the following statements that appear in bold:

-(void)imagePickerController:(UIImagePickerController*)picker
didFinishPickingMediaWithInfo:(NSDictionary*)info{
UIImage*image;
NSURL*mediaUrl;
mediaUrl=(NSURL*)[infovalueForKey:UIImagePickerControllerMediaURL];

if(mediaUrl==nil){
image=(UIImage*)[infovalueForKey:UIImagePickerControllerEditedImage];
if(image==nil){
//---originalimageselected---
image=(UIImage*)
[infovalueForKey:UIImagePickerControllerOriginalImage];

//---displaytheimage---
imageView.image=image;

 //---save the image captured---
 [self saveImage];
}
else{//---editedimagepicked---

//---getthecroppingrectangleappliedtotheimage---
CGRectrect=
[[infovalueForKey:UIImagePickerControllerCropRect]
CGRectValue];

//---displaytheimage---

Accessing the Camera and the Photo Library ❘ 339

imageView.image=image;

 //---save the image captured---
 [self saveImage];
}
}
else{
//---videopicked---
MPMoviePlayerController*player=
[[MPMoviePlayerControlleralloc]
initWithContentURL:mediaUrl];

[[NSNotificationCenterdefaultCenter]
addObserver:self
selector:@selector(movieFinishedCallback:)
name:MPMoviePlayerPlaybackDidFinishNotification
object:player];

//---playpartialscreen---
player.view.frame=CGRectMake(0,0,320,460);
[self.viewaddSubview:player.view];

[playerplay];
}
//---hidetheImagePicker---
[pickerdismissModalViewControllerAnimated:YES];
}

 4 . Press Command-R to test the application on a real iPhone.

 5 . Tap the Load Photo Library button. You can now use your iPhone’s camera to take photos and
videos. If you use it to take a picture (see Figure 13-15), the picture is saved to the Documents folder
of your application. If you take a video, the video can be played back using the media player on
your device (see Figure 13-16).

figure 13-15

340 ❘ chApter 13 acceSSinG built-in aPPlicatiOnS

figure 13-16

How It Works

In this exercise you modified the source type of the Image Picker to camera:

 imagePicker.sourceType = UIImagePickerControllerSourceTypeCamera;

When the camera takes a picture, the picture is passed back in the
imagePickerController:didFinishPickingMediaWithInfo: method and displayed in the ImageView
view. However, it is your responsibility to manually save the image to a location on the phone. In this
case, you defined the filePath: method to save the picture to the Documents folder of your application:

- (NSString *) filePath: (NSString *) fileName {
 NSArray *paths =
 NSSearchPathForDirectoriesInDomains(
 NSDocumentDirectory, NSUserDomainMask, YES);
 NSString *documentsDir = [paths objectAtIndex:0];
 return [documentsDir stringByAppendingPathComponent:fileName];
}

The saveImage: method extracts the image data on the ImageView view and then calls the filePath:
method to save the data into a file named MyPicture.png:

- (void) saveImage{
 //---get the date from the ImageView---
 NSData *imageData =
 [NSData dataWithData:UIImagePNGRepresentation(imageView.image)];

 //---write the date to file---
 [imageData writeToFile:[self filePath:@”MyPicture.png”] atomically:YES];
}

Summary ❘ 341

For video recording, the video captured by the iPhone’s camera is saved on the device and returned as a
URL. You can use the MPMoviePlayerController class (available in the MediaPlayer framework) to play
back the video.

NOTE By default on the iPhone 4, the rear camera is always activated
when you use the UIImagePickerController class. If you want to acti-
vate the front camera instead, you can set the cameraDevice prop-
erty of the UIImagePickerController class, which can be one of the
following values: UIImagePickerControllerCameraDeviceRear (default), or
UIImagePickerControllerCameraDeviceFront.

NOTE Appendix A discusses how to prepare your iPhone for testing.

SummAry

In this chapter, you learned how you can easily integrate the various built-in applications into your
own iPhone applications. In particular, you saw how you can invoke the built-in SMS, Mail, Safari,
and Phone simply by using a URL string. In addition, you learned how to send SMS and e-mail mes-
sages without leaving your application. You also learned about accessing the Photo Library applica-
tions using the classes provided by the iPhone SDK.

exerciSeS

1 . Name the various URL strings for invoking the Safari, Mail, SMS, and Phone applications .

2 . What is the class name for invoking the Image Picker UI in the iPhone?

3 . What is the class name for invoking the Mail Composer UI in the iPhone?

4 . What is the class name for invoking the Message Composer UI in the iPhone?

Answers to the Exercises can be found in Appendix E, on Wrox.com.

342 ❘ chApter 13 acceSSinG built-in aPPlicatiOnS

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

Sending e-mail from
within your application

NSString *emailString =
 @”mailto:?to=user@email.com&subject=Subject&body=Body”;
[[UIApplication sharedApplication] openURL:[NSURL
 URLWithString:emailString]];

invoking Safari [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString: @”http://www.apple.com”]];

invoking the phone [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString: @”tel:96924065”]];

invoking SmS [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString: @”sms:96924065”]];

Accessing the photo
library

Use the UIImagePickerController class and ensure that your
View Controller conforms to the UINavigationControllerDelegate
protocol .

invoking the mail
composer ui

Use the MFMailComposeViewController class .

invoking the message
composer ui

Use the MFMessageComposeViewController class .

mailto:user@email.com&subject=Subject&body=Body%E2%80%9D
http://www.apple.com%E2%80%9D

Recognizing gestures

whAt yOu will leArn in thiS chApter

How to use the six gesture recognizers to recognize commonly used ➤➤

gestures

How to detect touches in your application➤➤

How to diff erentiate between single and double taps➤➤

How to implement the pinch gesture➤➤

How to implement the drag gesture➤➤

One of the most important selling points of the iPhone is its screen, which can detect multiple
points of input. Multi-touch inputs allow for very natural interaction between users and your
applications. Because of multi-touch, the mobile Safari Web browser is easily one of the most
user-friendly Web browsers available on a smart phone. The iPhone recognizes various multi-
touch sequences, known as gestures, and performs the appropriate action associated with each.

In this chapter, you learn how to recognize gestures in your application and then implement some
cool features that improve the interaction between the user and the application, such as a jigsaw
puzzle application. By detecting touches, your application enables users to rearrange the locations
of the onscreen images, as well as change the size of the images using the pinching gesture.

recOgnizing geStureS

Beginning with version 3.2 of the iPhone SDK, Apple introduced a new set of classes known
as gesture recognizers. Gesture recognizers enable you to easily detect gestures performed by
the user. For example, the user may use two fi ngers to pinch the screen, indicating an intention

14

344 ❘ chApter 14 recOGnizinG GeStureS

to zoom in and out of an image. Instead of writing the code to detect the fi ngers movement, gesture
recognizers provide an easy way to detect the various gestures supported by the iPhone.

NOTE The various gesture recognizers only work for devices running iOS 3.2 or
above, so if your application uses them it won’t be able to run on pre-iPhone 3.2
devices.

The iPhone SDK 3.2/4.0 supports six gesture recognizers:

UITapGestureRecognizer➤➤ — Detects tap(s) on a view.

UIPinchGestureRecognizer➤➤ — Detects pinching in and out of a view.

UIPanGestureRecognizer➤➤ — Detects panning or dragging of a view.

UISwipeGestureRecognizer➤➤ — Detects swiping of a view.

UIRotationGestureRecognizer➤➤ — Detects rotation of a view.

UILongPressGestureRecognizer➤➤ — Detects long presses on a view (also known as “touch
and hold”).

All six gesture recognizers inherit from the UIGestureRecognizer base class. To get started with ges-
ture recognizers, let’s build an application that detects taps on a view, and then progressively detects
other gestures.

tapping
To use a gesture recognizer, all you need to do is create an instance of the appropriate gesture
recognizer, confi gure it accordingly, and then connect it to an event handler that will perform the
required action when the gesture is recognized. The following Try It Out shows you how to detect
taps on the iPhone screen.

Recognizing Tappingtry it Out

codefi le Gestures.zip is available for download at Wrox.com

1 . Using Xcode, create a new View-based Application (iPhone) project and name it Gestures.

2 . Drag and drop the image named architecture.jpg onto the Resources folder of the Xcode proj-
ect. When the Add dialog appears, check the Copy Item into the Destination Group’s Folder (If
Needed) option so that the image is copied into the project (see Figure 14-1).

 3 . Double-click the GesturesViewController.xib fi le located in the Resources folder to edit it in
Interface Builder.

 4 . Add an ImageView from the Library to the View window.

Recognizing gestures ❘ 345

 5 . Select the ImageView and view its Attributes Inspector window (Tools ➪ Attributes Inspector). Set
its properties as follows (see Figure 14-2):

Image➤➤ — architecture.jpg

Mode➤➤ — Aspect Fit

Check the User Interaction Enabled option.➤➤

Check the Multiple Touch option.➤➤

 6 . Save the file in Interface Builder.

figure 14-1

 7 . Back in Xcode, edit the GesturesViewController.h file by adding the following bold statements:

#import<UIKit/UIKit.h>

@interfaceGesturesViewController:UIViewController{
 IBOutlet UIImageView *imageView;
}

@property (nonatomic, retain) UIImageView *imageView;

@end

346 ❘ chApter 14 recOGnizinG GeStureS

 8 . In Interface Builder, connect the imageView outlet to the ImageView by control-clicking and drag-
ging the File’s Owner item over the ImageView. Select imageView.

 9 . In Xcode, edit the GesturesViewController.m file and add the following bold statements:

#import“GesturesViewController.h”

@implementationGesturesViewController

@synthesize imageView;

-(void)viewDidLoad{
 //---tap gesture---
 UITapGestureRecognizer *tapGesture =
 [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleTapGesture:)];

 tapGesture.numberOfTapsRequired = 2;
 [imageView addGestureRecognizer:tapGesture];
 [tapGesture release];

[superviewDidLoad];
}

//---handle tap gesture---
-(IBAction) handleTapGesture:(UIGestureRecognizer *) sender {
 if (sender.view.contentMode == UIViewContentModeScaleAspectFit)
 sender.view.contentMode = UIViewContentModeCenter;
 else
 sender.view.contentMode = UIViewContentModeScaleAspectFit;
}

-(void)dealloc{
 [imageView release];
[superdealloc];
}

 10 . To test the application on the iPhone 4 Simulator, press Command-R.

 11 . Figure 14-3 shows the image displayed on the iPhone 4 Simulator. When you double-click the
image (which is double-tap on a real device), it is enlarged. When you double-click the image
again, it switches back to its original size.

How It Works

To detect taps on a view, you first create an instance of the UITapGestureRecognizer class:

 UITapGestureRecognizer *tapGesture =
 [[UITapGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleTapGesture:)];

Recognizing gestures ❘ 347

figure 14-2

figure 14-3

348 ❘ chApter 14 recOGnizinG GeStureS

You set the current View Controller (self) to be the target of the gesture recognizer (which means
you will handle all the messages sent when a gesture is detected in this current View Controller). The
action: parameter specifi es a selector that identifi es the method name to handle the recognized gesture.

To recognize double-taps, set the numberOfTapsRequired property to 2:

 tapGesture.numberOfTapsRequired = 2;

To attach the gesture recognizer to a view, in this case imageView, pass the tapGesture object to the
addGestureRecognizer: method:

 [imageView addGestureRecognizer:tapGesture];

Finally, release the tapGesture recognizer object:

 [tapGesture release];

When a double-tap is detected by the application, the handleTapGesture: method will be invoked:

//---handle tap gesture---
-(IBAction) handleTapGesture:(UIGestureRecognizer *) sender {
 if (sender.view.contentMode == UIViewContentModeScaleAspectFit)
 sender.view.contentMode = UIViewContentModeCenter;
 else
 sender.view.contentMode = UIViewContentModeScaleAspectFit;
}

In handleTapGesture:, you can reference the view that has recognized the gesture, in this case
imageView, by the sender.view object (alternatively, you can directly refer to the ImageView via self
.imageView). This method is useful, as you may have multiple views attached to the same gesture han-
dler and sender.view will automatically refer to the view that recognized the gesture.

In this gesture handler, you toggle the image between the UIViewContentModeScaleAspectFit and
UIViewContentModeCenter modes.

DiScrete geStureS AnD cOntinuOuS geStureS

There are two types of gestures: discrete and continuous. A discrete gesture sends a
single message to the target when the gesture is recognized. For example, when you
double-tap on a view and the gesture is detected, the target (the method handling
the gesture) is only invoked once. A continuous gesture, conversely, sends multiple
messages to the target until the gesture ends. An example of a continuous gesture
is the pinch gesture. As you put your fi ngers on the screen and pinch on a view, the
target is called repeatedly until you lift your fi ngers off your screen.

The UITapGestureRecognizer, UISwipeGestureRecognizer, and
UILongPressGestureRecognizer are all discrete gesture recognizers.
The UIPinchGestureRecognizer, UIPanGestureRecognizer, and
UIRotationGestureRecognizer are all continuous gesture recognizers.

Recognizing gestures ❘ 349

pinching
The pinch gesture is very popular on the iPhone (and on the iPad). In the pinch gesture, you place
two fingers on the screen and move them either apart or closer together to indicate your intention to
zoom in or out of a view. The following Try It Out shows you how to recognize the pinch gesture in
your application to change the size of an ImageView. Note that all the Try It Outs in this chapter use
source code and images from the zip file you downloaded for the first Try It Out.

Recognizing Pinchingtry it Out

 1 . Using the same project created in the previous Try It Out, edit the GesturesViewController.m file
by adding the following bold statements:

#import“GesturesViewController.h”

@implementationGesturesViewController

@synthesizeimageView;

CGFloat lastScaleFactor = 1;

-(void)viewDidLoad{
//---tapgesture---
UITapGestureRecognizer*tapGesture=
[[UITapGestureRecognizeralloc]
initWithTarget:self
action:@selector(handleTapGesture:)];

tapGesture.numberOfTapsRequired=2;
[imageViewaddGestureRecognizer:tapGesture];
[tapGesturerelease];

 //---pinch gesture---
 UIPinchGestureRecognizer *pinchGesture =
 [[UIPinchGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handlePinchGesture:)];

 [imageView addGestureRecognizer:pinchGesture];
 [pinchGesture release];

[superviewDidLoad];
}

//---handle pinch gesture---
-(IBAction) handlePinchGesture:(UIGestureRecognizer *) sender {
 CGFloat factor = [(UIPinchGestureRecognizer *) sender scale];

 if (factor > 1) {
 //---zooming in---
 sender.view.transform = CGAffineTransformMakeScale(
 lastScaleFactor + (factor-1),

350 ❘ chApter 14 recOGnizinG GeStureS

 lastScaleFactor + (factor-1));
 } else {
 //---zooming out---
 sender.view.transform = CGAffineTransformMakeScale(
 lastScaleFactor * factor,
 lastScaleFactor * factor);
 }

 if (sender.state == UIGestureRecognizerStateEnded){
 if (factor > 1) {
 lastScaleFactor += (factor-1);
 } else {
 lastScaleFactor *= factor;
 }
 }
}

 2 . To test the application on the iPhone 4 Simulator, press Command-R.

 3 . Press the Option button and you will be able to simulate the touch of two fingers on the screen.
You will see two translucent white circle dots on the simulator. Click and drag the mouse to move
them apart. Observe that the size of the image changes as you move the mouse (see Figure 14-4).

figure 14-4

Recognizing gestures ❘ 351

How It Works

As with the UITapGestureRecognizer, you first create an instance of the UIPinchGestureRecognizer
and then connect it to a gesture handler:

 //---pinch gesture---
 UIPinchGestureRecognizer *pinchGesture =
 [[UIPinchGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handlePinchGesture:)];

 [imageView addGestureRecognizer:pinchGesture];
 [pinchGesture release];

When a pinch gesture is recognized, the handlePinchGesture: method is invoked to handle it. Recall
that the pinch gesture is a continuous gesture, and hence the handlePinchGesture: method will be
called repeatedly as long as the fingers are on the screen.

To know whether this is a “zoom in” or “zoom out” gesture, you examine the scale property of the
UIPinchGestureRecognizer object:

 CGFloat factor = [(UIPinchGestureRecognizer *) sender scale];

If the fingers are moving apart, the value of scale is 1 or greater. If the fingers are moving closer, the
value is smaller than 1. Every time you perform a pinch gesture, your application needs to remember
the scale factor so that the next time you perform the gesture, you can resize the image based on its last
drawn size. This is done when the pinch gesture ends (when the fingers are lifted off the screen). You
examine the sender.state to determine whether the gesture has ended and then proceed to save the
last scale factor:

 if (sender.state == UIGestureRecognizerStateEnded){
 if (factor > 1) {
 lastScaleFactor += (factor-1);
 } else {
 lastScaleFactor *= factor;
 }
 }

You change the size of the ImageView using the CGAffineTransformMakeScale() method.

 if (factor > 1) {
 //---zooming in---
 sender.view.transform = CGAffineTransformMakeScale(
 lastScaleFactor + (factor-1),
 lastScaleFactor + (factor-1));
 } else {
 //---zooming out---
 sender.view.transform = CGAffineTransformMakeScale(
 lastScaleFactor * factor,
 lastScaleFactor * factor);
 }

352 ❘ chApter 14 recOGnizinG GeStureS

rotation
Another gesture that is supported by the iPhone SDK 3.2/4.0 is rotation. In the rotation gesture,
you place two fingers on the screen and rotate them in a circular fashion. The following Try It Out
shows how to use the UIRotationGestureRecognizer class to rotate the ImageView.

Recognizing Rotationtry it Out

 1 . Using the same project created in the previous Try It Out, edit the GesturesViewController.m file
by adding the following bold statements:

#import“GesturesViewController.h”

@implementationGesturesViewController

@synthesizeimageView;

CGFloatlastScaleFactor=1;

CGFloat netRotation;

-(void)viewDidLoad{
//---tapgesture---
UITapGestureRecognizer*tapGesture=
[[UITapGestureRecognizeralloc]
initWithTarget:self
action:@selector(handleTapGesture:)];

tapGesture.numberOfTapsRequired=2;
[imageViewaddGestureRecognizer:tapGesture];
[tapGesturerelease];

//---pinchgesture---
UIPinchGestureRecognizer*pinchGesture=
[[UIPinchGestureRecognizeralloc]
initWithTarget:self
action:@selector(handlePinchGesture:)];

[imageViewaddGestureRecognizer:pinchGesture];
[pinchGesturerelease];

 //---rotate gesture---
 UIRotationGestureRecognizer *rotateGesture =
 [[UIRotationGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleRotateGesture:)];

 [imageView addGestureRecognizer:rotateGesture];

Recognizing gestures ❘ 353

 [rotateGesture release];

[superviewDidLoad];
}

//---handle rotate gesture---
-(IBAction) handleRotateGesture:(UIGestureRecognizer *) sender {
 CGFloat rotation = [(UIRotationGestureRecognizer *) sender rotation];
 CGAffineTransform transform = CGAffineTransformMakeRotation(
 rotation + netRotation);
 sender.view.transform = transform;

 if (sender.state == UIGestureRecognizerStateEnded){
 netRotation += rotation;
 }
}

 2 . To test the application on the iPhone 4 Simulator, press Command-R.

 3 . Press the Option button to simulate two fingers touching the screen. Click and drag the mouse
in either a clockwise or a counterclockwise direction. Observe that the ImageView rotates (see
Figure 14-5).

figure 14-5

354 ❘ chApter 14 recOGnizinG GeStureS

How It Works

As usual, you create an instance of the UIRotationGestureRecognizer class and connect it to a handler
method:

 //---rotate gesture---
 UIRotationGestureRecognizer *rotateGesture =
 [[UIRotationGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleRotateGesture:)];

 [imageView addGestureRecognizer:rotateGesture];
 [rotateGesture release];

When a rotation gesture is recognized, the handleRotateGesture: method is invoked. Because the rota-
tion gesture is a continuous gesture, this method is called repeatedly.

To obtain the amount of rotation, you examine the rotation property of the
UIRotationGestureRecognizer object:

 CGFloat rotation = [(UIRotationGestureRecognizer *) sender rotation];

The amount to rotate is represented in radians. To ensure that the ImageView rotates based on its last
position, you save the angle of rotation when the rotation gesture is completed:

 if (sender.state == UIGestureRecognizerStateEnded){
 netRotation += rotation;
 }

Finally, you perform the rotation using the CGAffineTransformMakeRotation() method:

 CGAffineTransform transform = CGAffineTransformMakeRotation(
 rotation + netRotation);
 sender.view.transform = transform;

panning (or Dragging)
A very common gesture that most iPhone users will encounter is the pan (or drag) gesture. Panning
involves using the finger to touch a view on the screen and then moving it while the finger is still
on the screen. In the following Try It Out, you will use the UIPanGestureRecognizer to move the
ImageView.

Recognizing Panningtry it Out

 1 . Using the same project created in the previous Try It Out, edit the GesturesViewController.m file
by adding the following bold statements:

Recognizing gestures ❘ 355

#import“GesturesViewController.h”

@implementationGesturesViewController

@synthesizeimageView;

CGFloatlastScaleFactor=1;

CGFloatnetRotation;

CGPoint netTranslation;

-(void)viewDidLoad{
//---tapgesture---
UITapGestureRecognizer*tapGesture=
[[UITapGestureRecognizeralloc]
initWithTarget:self
action:@selector(handleTapGesture:)];

tapGesture.numberOfTapsRequired=2;
[imageViewaddGestureRecognizer:tapGesture];
[tapGesturerelease];

//---pinchgesture---
UIPinchGestureRecognizer*pinchGesture=
[[UIPinchGestureRecognizeralloc]
initWithTarget:self
action:@selector(handlePinchGesture:)];

[imageViewaddGestureRecognizer:pinchGesture];
[pinchGesturerelease];

//---rotategesture---
UIRotationGestureRecognizer*rotateGesture=
[[UIRotationGestureRecognizeralloc]
initWithTarget:self
action:@selector(handleRotateGesture:)];

[imageViewaddGestureRecognizer:rotateGesture];
[rotateGesturerelease];

 //---pan gesture---
 UIPanGestureRecognizer *panGesture =
 [[UIPanGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handlePanGesture:)];

 [imageView addGestureRecognizer:panGesture];
 [panGesture release];

[superviewDidLoad];

356 ❘ chApter 14 recOGnizinG GeStureS

}

//---handle pan gesture---
-(IBAction) handlePanGesture:(UIGestureRecognizer *) sender {
 CGPoint translation =
 [(UIPanGestureRecognizer *) sender translationInView:imageView];

 sender.view.transform = CGAffineTransformMakeTranslation(
 netTranslation.x + translation.x,
 netTranslation.y + translation.y);

 if (sender.state == UIGestureRecognizerStateEnded){
 netTranslation.x += translation.x;
 netTranslation.y += translation.y;
 }
}

 2 . To test the application on the iPhone 4 Simulator, press Command-R.

 3 . Click the ImageView and move the mouse. Observe that the ImageView moves with your mouse
(see Figure 14-6).

figure 14-6

How It Works

You create an instance of the UIPanGestureRecognizer class and connect it to a handler method:

Recognizing gestures ❘ 357

//---pan gesture---
 UIPanGestureRecognizer *panGesture =
 [[UIPanGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handlePanGesture:)];

 [imageView addGestureRecognizer:panGesture];
 [panGesture release];

When a panning gesture is recognized, the handlePanGesture: method is invoked. Panning is a con-
tinuous gesture, so this method is called repeatedly.

To obtain the amount of panning, you examine the translation property of the
UIPanGestureRecognizer object:

 CGPoint translation =
 [(UIPanGestureRecognizer *) sender translationInView:imageView];

To ensure that the ImageView can be moved from its last drawn position, you save the current panning
amount when the gesture ends:

 if (sender.state == UIGestureRecognizerStateEnded){
 netTranslation.x += translation.x;
 netTranslation.y += translation.y;
 }

Finally, you move the ImageView using the CGAffineTransformMakeTranslation() method:

 sender.view.transform = CGAffineTransformMakeTranslation(
 netTranslation.x + translation.x,
 netTranslation.y + translation.y);

Swiping
Another common gesture that you will encounter is the swipe. Using the swipe gesture, a user
touches the screen with a finger, moves it in a particular direction, and then lifts it off the screen.
The swipe gesture is commonly used for switching between views (such as viewing a series of photos
in the Photos application).

The following Try It Out illustrates how to use the UISwipeGestureRecognizer to recognize the
swipe gesture and then display different images in the ImageView.

Recognizing Swipingtry it Out

 1 . Using the same project created in the previous Try It Out, drag and drop the two images named
Buildings.jpeg and Bridge.jpeg onto the Resources folder of the Xcode project. When the Add
dialog appears, check the Copy Item into Destination Group’s Folder (If Needed) option so that
each image is copied into the project (see Figure 14-7).

358 ❘ chApter 14 recOGnizinG GeStureS

figure 14-7

 2 . Edit the GesturesViewController.m file by adding the following bold statements:

#import“GesturesViewController.h”

@implementationGesturesViewController

@synthesizeimageView;

CGFloatlastScaleFactor=1;

CGFloatnetRotation;

CGPointnetTranslation;

NSArray *images;
int imageIndex = 0;

-(void)viewDidLoad{

Recognizing gestures ❘ 359

//---tapgesture---
UITapGestureRecognizer*tapGesture=
[[UITapGestureRecognizeralloc]
initWithTarget:self
action:@selector(handleTapGesture:)];

tapGesture.numberOfTapsRequired=2;
[imageViewaddGestureRecognizer:tapGesture];
[tapGesturerelease];

//---pinchgesture---
UIPinchGestureRecognizer*pinchGesture=
[[UIPinchGestureRecognizeralloc]
initWithTarget:self
action:@selector(handlePinchGesture:)];

[imageViewaddGestureRecognizer:pinchGesture];
[pinchGesturerelease];

//---rotategesture---
UIRotationGestureRecognizer*rotateGesture=
[[UIRotationGestureRecognizeralloc]
initWithTarget:self
action:@selector(handleRotateGesture:)];

[imageViewaddGestureRecognizer:rotateGesture];
[rotateGesturerelease];

//---pangesture---
UIPanGestureRecognizer*panGesture=
[[UIPanGestureRecognizeralloc]
initWithTarget:self
action:@selector(handlePanGesture:)];

 //---comment out this line---
 //[imageView addGestureRecognizer:panGesture];

[panGesturerelease];

//---swipe gesture---
 images = [[NSArray alloc] initWithObjects:
 @”architecture.jpg”,
 @”Buildings.jpeg”,
 @”Bridge.jpeg”, nil];

 //---right swipe (default)---
 UISwipeGestureRecognizer *swipeGesture =
 [[UISwipeGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleSwipeGesture:)];

 [imageView addGestureRecognizer:swipeGesture];
 [swipeGesture release];

 //---left swipe---

360 ❘ chApter 14 recOGnizinG GeStureS

 UISwipeGestureRecognizer *swipeLeftGesture =
 [[UISwipeGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleSwipeGesture:)];
 swipeLeftGesture.direction = UISwipeGestureRecognizerDirectionLeft;

 [imageView addGestureRecognizer:swipeLeftGesture];
 [swipeLeftGesture release];

[superviewDidLoad];
}

//---handle swipe gesture---
-(IBAction) handleSwipeGesture:(UIGestureRecognizer *) sender {
 UISwipeGestureRecognizerDirection direction =
 [(UISwipeGestureRecognizer *) sender direction];

 switch (direction) {
 case UISwipeGestureRecognizerDirectionUp:
 NSLog(@”up”);
 break;
 case UISwipeGestureRecognizerDirectionDown:
 NSLog(@”down”);
 break;
 case UISwipeGestureRecognizerDirectionLeft:
 imageIndex++;
 break;
 case UISwipeGestureRecognizerDirectionRight:
 imageIndex -- ;
 break;
 default:
 break;
 }
 imageIndex = (imageIndex < 0) ? ([images count] - 1):
 imageIndex % [images count];
 imageView.image = [UIImage imageNamed:
 [images objectAtIndex:imageIndex]];
}

-(void)dealloc{
 [images release];
[imageViewrelease];
[superdealloc];
}

 3 . Test the application on the iPhone 4 Simulator by pressing Command-R.

 4 . Click the ImageView and drag the mouse from left to right and then from right to left. The
ImageView changes its image as you swipe it with your mouse (see Figure 14-8).

Recognizing gestures ❘ 361

figure 14-8

How It Works

You first instantiate the images NSArray object with the names of the three images:

//---swipe gesture---
images=[[NSArrayalloc]initWithObjects:
@”architecture.jpg”,
@”Buildings.jpeg”,
@”Bridge.jpeg”,nil];

By default, the UISwipeGestureRecognizer only recognizes right swipes (swiping from left to right).
Hence, to recognize right swipes, you create an instance of the UISwipeGestureRecognizer class:

 //---right swipe (default)---
 UISwipeGestureRecognizer *swipeGesture =
 [[UISwipeGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleSwipeGesture:)];

 [imageView addGestureRecognizer:swipeGesture];
 [swipeGesture release];

362 ❘ chApter 14 recOGnizinG GeStureS

To recognize left swipes (swiping from right to left), you need to create another instance of the
UISwipeGestureRecognizer class and confi gure its direction property, like this:

 //---left swipe---
 UISwipeGestureRecognizer *swipeLeftGesture =
 [[UISwipeGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleSwipeGesture:)];
 swipeLeftGesture.direction = UISwipeGestureRecognizerDirectionLeft;

 [imageView addGestureRecognizer:swipeLeftGesture];
 [swipeLeftGesture release];

When the swipe gestures are recognized, the handleSwipeGesture: method is invoked. Here, you
examine the direction property of the UISwipeGestureRecognizer object to obtain the direction of
the swipe:

 UISwipeGestureRecognizerDirection direction =
[(UISwipeGestureRecognizer*)senderdirection];

Depending on the swipe direction, the image in the ImageView changes accordingly:

 switch (direction) {
 case UISwipeGestureRecognizerDirectionUp:
 NSLog(@”up”);
 break;
 case UISwipeGestureRecognizerDirectionDown:
 NSLog(@”down”);
 break;
 case UISwipeGestureRecognizerDirectionLeft:
 imageIndex++;
 break;
 case UISwipeGestureRecognizerDirectionRight:
 imageIndex -- ;
 break;
 default:
 break;
 }
 imageIndex = (imageIndex < 0) ? ([images count] - 1):
 imageIndex % [images count];
 imageView.image = [UIImage imageNamed:
 [images objectAtIndex:imageIndex]];

NOTE Remember to comment out the statements for the pan gesture rec-
ognizer. The swipe gesture recognizer will not work with the pan gesture
recognizer.

Recognizing gestures ❘ 363

long press
Use the long press gesture recognizer to detect whether the user is touching a view and then hold-
ing onto it. A very common use of the long press gesture is when you want to save an image in the
mobile Safari Web browser. When you long press on an image, an action sheet pops up, enabling
you to save or copy that image.

The following Try It Out shows you how to recognize a long press using the
UILongPressGestureRecognizer.

Recognizing Long Pressestry it Out

 1 . Using the same project created in the previous Try It Out, edit the GesturesViewController.m file
by adding the following bold statements:

#import“GesturesViewController.h”

@implementationGesturesViewController

@synthesizeimageView;

CGFloatlastScaleFactor=1;

CGFloatnetRotation;

CGPointnetTranslation;

NSArray*images;
intimageIndex=0;

-(void)viewDidLoad{
//---tapgesture---
UITapGestureRecognizer*tapGesture=
[[UITapGestureRecognizeralloc]
initWithTarget:self
action:@selector(handleTapGesture:)];

tapGesture.numberOfTapsRequired=2;
[imageViewaddGestureRecognizer:tapGesture];
[tapGesturerelease];

//---pinchgesture---
UIPinchGestureRecognizer*pinchGesture=
[[UIPinchGestureRecognizeralloc]
initWithTarget:self
action:@selector(handlePinchGesture:)];

[imageViewaddGestureRecognizer:pinchGesture];
[pinchGesturerelease];

//---rotategesture---
UIRotationGestureRecognizer*rotateGesture=
[[UIRotationGestureRecognizeralloc]
initWithTarget:self

364 ❘ chApter 14 recOGnizinG GeStureS

action:@selector(handleRotateGesture:)];

[imageViewaddGestureRecognizer:rotateGesture];
[rotateGesturerelease];

//---pangesture---
UIPanGestureRecognizer*panGesture=
[[UIPanGestureRecognizeralloc]
initWithTarget:self
action:@selector(handlePanGesture:)];

//---commentthisout---
//[imageViewaddGestureRecognizer:panGesture];

[panGesturerelease];

//---swipegesture---
images=[[NSArrayalloc]initWithObjects:
@”architecture.jpg”,
@”Buildings.jpeg”,
@”Bridge.jpeg”,nil];

//---rightswipe(default)---
UISwipeGestureRecognizer*swipeGesture=
[[UISwipeGestureRecognizeralloc]
initWithTarget:self
action:@selector(handleSwipeGesture:)];

[imageViewaddGestureRecognizer:swipeGesture];
[swipeGesturerelease];

//---leftswipe---
UISwipeGestureRecognizer*swipeLeftGesture=
[[UISwipeGestureRecognizeralloc]
initWithTarget:self
action:@selector(handleSwipeGesture:)];
swipeLeftGesture.direction=UISwipeGestureRecognizerDirectionLeft;

[imageViewaddGestureRecognizer:swipeLeftGesture];
[swipeLeftGesturerelease];

 //---long press gesture---
 UILongPressGestureRecognizer *longpressGesture =
 [[UILongPressGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleLongpressGesture:)];

 longpressGesture.minimumPressDuration = 1;
 longpressGesture.allowableMovement = 15;
 longpressGesture.numberOfTouchesRequired = 1;

 [imageView addGestureRecognizer:longpressGesture];

Recognizing gestures ❘ 365

 [longpressGesture release];

[superviewDidLoad];
}

//---handle long press gesture---
-(IBAction) handleLongpressGesture:(UIGestureRecognizer *) sender {
 UIActionSheet *actionSheet = [[UIActionSheet alloc]
 initWithTitle:@”Image options”
 delegate:self
 cancelButtonTitle:nil
 destructiveButtonTitle:nil
 otherButtonTitles:
 @”Save Image”, @”Copy”, nil];
 //---remember to implement the UIActionSheetDelegate protocol in your
 // view controller---
 [actionSheet showInView:self.view];
 [actionSheet release];
}

 2 . To test the application on the iPhone 4 Simulator, press Command-R.

 3 . Click the ImageView and hold it there. Observe that an action sheet pops up, asking you to either
save the image or copy it (see Figure 14-9).

figure 14-9

366 ❘ chApter 14 recOGnizinG GeStureS

How It Works

As usual, you create an instance of the UIPanGestureRecognizer class and connect it to a handler
method:

 //---long press gesture---
 UILongPressGestureRecognizer *longpressGesture =
 [[UILongPressGestureRecognizer alloc]
 initWithTarget:self
 action:@selector(handleLongpressGesture:)];

You confi gure the recognizer so that it recognizes the long press only when the user has touched the
view using one fi nger, for one second, and does not move that fi nger more than 15 pixels from the origi-
nal point of contact:

 longpressGesture.minimumPressDuration = 1;
 longpressGesture.allowableMovement = 15;
 longpressGesture.numberOfTouchesRequired = 1;

You then attach the recognizer to the ImageView:

 [imageView addGestureRecognizer:longpressGesture];
 [longpressGesture release];

When a long press is detected, the handleLongpressGesture: method is invoked. Here, you simply dis-
play an action sheet:

//---handle long press gesture---
-(IBAction) handleLongpressGesture:(UIGestureRecognizer *) sender {
 UIActionSheet *actionSheet = [[UIActionSheet alloc]
 initWithTitle:@”Image options”
 delegate:self
 cancelButtonTitle:nil
 destructiveButtonTitle:nil
 otherButtonTitles:
 @”Save Image”, @”Copy”, nil];
 //---remember to implement the UIActionSheetDelegate protocol in your
 // view controller---
 [actionSheet showInView:self.view];
 [actionSheet release];
}

NOTE You need to implement the necessary action to perform when the user
clicks a button in your action sheet. The implementation details are not shown
in this example. Remember to implement the UIActionSheetControllerDelegate
protocol in your View Controller, though.

Detecting Touches ❘ 367

Detecting tOucheS

While the gesture recognizers greatly simplify your life in detecting gestures, sometimes you simply
want to detect touches on the screen and perform some custom action (such as writing a doodle
application that enables users to use their fi ngers to make a sketch).

To detect touches on the screen of the iPhone, you need to acquaint yourself with a few events that
handle the detection of touches. Through these events, you will know whether users have single-
tapped, double-tapped, or moved their fi ngers on your application, and react accordingly. These
events are as follows:

touchesBegan:withEvent:➤➤ — Fires when one or more fi ngers touch in a view or window.

touchesMoved:withEvent:➤➤ — Fires when one or more fi ngers move within a view or window.

touchesEnded:withEvent:➤➤ — Fires when one or more fi ngers are raised from a view or window.

touchesCancelled:withEvent:➤➤ — Fires when a system event (such as a low-memory warning)
cancels the touch event.

These events are defi ned in the UIResponder class, which is the superclass of UIApplication, UIView,
and its subclasses. Hence, you can implement event handlers for these events in your View Controller.

NOTE The four touch events are the foundation events used by the gesture
recognizers described earlier in this chapter. To create custom gesture recogniz-
ers to recognize your own gestures (such as a fi gure-eight gesture), you need
to implement your own event handlers for these four events. Creating your own
custom gesture recognizer is beyond the scope of this book.

Detecting Single touch
Time to get the engine rolling! Make sure you download the code indicated here so you can work
through the following Try It Out activity, in which you’ll see how to detect when the user is tapping
on the screen.

Detecting Tapstry it Out

codefi le MultiTouch.zip is available for download at Wrox.com

1 . Using Xcode, create a new View-based Application (iPhone) project and name it MultiTouch.

2 . Drag and drop an image into the Resources folder. Figure 14-10 shows an image named apple.jpeg
located in the Resources folder.

3 . Double-click the MultiTouchViewController.xib fi le to edit it in Interface Builder.

4 . Populate the View window with an ImageView. Ensure that the ImageView covers the entire View
window.

368 ❘ chApter 14 recOGnizinG GeStureS

figure 14-10

 5 . Select the ImageView and view its Attributes Inspector window (see Figure 14-11). Set its Image
property to apple.jpeg.

figure 14-11

Detecting Touches ❘ 369

 6 . In the MultiTouchViewController.h file, add the following statements that appear in bold:

#import<UIKit/UIKit.h>

@interfaceMultiTouchViewController:UIViewController{
 IBOutlet UIImageView *imageView;
}

@property (nonatomic, retain) UIImageView *imageView;

@end

 7 . Back in Interface Builder, Control-click and drag the File’s Owner item to the ImageView. Select
ImageView.

 8 . In the MultiTouchViewController.m file, add the following statements that appear in bold:

#import“MultiTouchViewController.h”

@implementationMultiTouchViewController

@synthesize imageView;

//---fired when the user finger(s) touches the screen---
-(void) touchesBegan: (NSSet *) touches withEvent: (UIEvent *) event {
 //---get all touches on the screen---
 NSSet *allTouches = [event allTouches];

 //---compare the number of touches on the screen---
 switch ([allTouches count])
 {
 //---single touch---
 case 1: {
 //---get info of the touch---
 UITouch *touch = [[allTouches allObjects] objectAtIndex:0];

 //---compare the taps---
 switch ([touch tapCount])
 {
 //---single tap---
 case 1: {
 imageView.contentMode =
 UIViewContentModeScaleAspectFit;
 } break;

 //---double tap---
 case 2: {
 imageView.contentMode = UIViewContentModeCenter;
 } break;
 }
 } break;
 }

370 ❘ chApter 14 recOGnizinG GeStureS

}

-(void)dealloc{
 [imageView release];
[superdealloc];
}

 9 . Press Command-R to test the application on the iPhone 4 Simulator.

 10 . Single-tap the apple icon to enlarge it (see Figure 14-12). Double-tap it to return it to its original size.

figure 14-12

How It Works

This application works by sensing the user’s touch on the screen of the iPhone. When the user touches
the screen, the View or View Controller fires a series of events that you can handle. There are four such
events:

touchesBegan:withEvent:➤➤

touchesEnded:withEvent:➤➤

touchesMoved:withEvent:➤➤

touchesCancelled:withEvent:➤➤

Detecting Touches ❘ 371

Take a closer look at the first event. The touchesBegan:withEvent: event is fired when at least one
touch is sensed on the screen. In this event, you can determine how many fingers are on the screen by
calling the allTouches method of the UIEvent object (event):

 //---get all touches on the screen---
 NSSet *allTouches = [event allTouches];

The allTouches method returns an NSSet object containing a set of UITouch objects. To determine how
many fingers are on the screen, simply count the number of UITouch objects in the NSSet object using
the count method. In this case, you are currently interested only in a single touch, therefore you imple-
ment only the case for one touch:

 //---compare the number of touches on the screen---
 switch ([allTouches count])
 {
 //---single touch---
 case 1: {
 //---get info of the touch---
 UITouch *touch = [[allTouches allObjects] objectAtIndex:0];

 //---compare the taps---
 switch ([touch tapCount])
 {
 //---single tap---
 case 1: {
 imageView.contentMode =
 UIViewContentModeScaleAspectFit;
 } break;

 //---double tap---
 case 2: {
 imageView.contentMode = UIViewContentModeCenter;
 } break;
 }
 } break;
 }

You extract details of the first touch by using the allObjects method of the NSSet object to return an
NSArray object. You then use the objectAtIndex: method to obtain the first array item.

The UITouch object (touch) contains the tapCount property, which indicates whether the user has single-
tapped the screen or performed a double-tap (or more). If the user single-tapped the screen, you resize
the image to fit the entire ImageView view using the UIViewContentModeScaleAspectFit constant. If it is
a double-tap, you restore it to its original size using the UIViewContentModeCenter constant.

The other three events are not discussed in this section. The touchesEnded:withEvent: event is fired
when the user’s finger or fingers are lifted from the screen. The touchesMoved:withEvent: event is fired
continuously when the user’s finger or fingers are touching and moving on the screen. Finally, if the
application is interrupted while the user’s finger is on the screen, the touchesCancelled:withEvent:
event is fired.

372 ❘ chApter 14 recOGnizinG GeStureS

NOTE In addition to detecting taps in the touchesBegan:withEvent: event, you
can also detect them in the touchesEnded:withEvent: event.

In the next section, you learn how to detect multi-touches in your application.

unDerStAnDing multi-tApping

When a user performs a multi-tap on the screen, your application will fi re the
touchesBegan: and touchesEnded: events multiple times. For example, if the user
taps on the screen once, the touchesBegan: and touchesEnded: events will be fi red
once, with the tapCount property of the UITouch object returning a value of 1.
However, if the user taps the screen twice (in quick succession), then the
touchesBegan: and touchesEnded: events will be fi red twice; the fi rst time these
events are fi red, the tapCount property will be 1, the second time the tapCount
property will be 2.

Understanding the way multi-taps are detected is important because if you are
detecting double-taps, your application might redundantly execute blocks of
code that are designed for single-tap. For example, in the preceding Try It Out,
double-tapping on the image will fi rst try to change the mode of the image to
UIViewContentModeScaleAspectFit (which is what single-tap is supposed to do; in
this case, because the image is already in the UIViewContentModeScaleAspectFit
mode, the user won’t notice any difference), then it changes back to the
UIViewContentModeCenter mode (which is what double-tap is supposed to do).
Ideally, it should not need to execute the block of code for single-tap.

To solve this problem, you have to write some code to check whether a second tap
is indeed coming:

When a single-tap is detected, use a timer using an ➤➤ NSTimer object.

When a double-tap is detected, stop the timer and check whether the time ➤➤

difference between the second tap and the fi rst tap is small enough (such as a
fraction of a second) to constitute a double-tap. If it is, execute the code for
double-tap. If it isn’t, execute the code for single-tap.

If you are simply detecting for multi-taps in your application, the easiest method is
to use the UITapGestureRecognizer, illustrated earlier.

Detecting multi-touches
Detecting multi-touches is very simple once you understand the concepts in the previous section.
The capability to detect for multi-touches is very useful because you can use that to zoom in on
views in your application.

Detecting Touches ❘ 373

The following Try It Out demonstrates how to detect multi-touches.

Detecting Multi-Touchestry it Out

 1 . Using the same project created in the previous section, modify the touchesBegan:withEvent:
method by adding the following statements that appear in bold:

//---firedwhentheuserfinger(s)touchesthescreen---
-(void)touchesBegan:(NSSet*)toucheswithEvent:(UIEvent*)event{
//---getalltouchesonthescreen---
NSSet*allTouches=[eventallTouches];

//---comparethenumberoftouchesonthescreen---
switch([allTouchescount])
{
//---singletouch---
case1:{
//---getinfoofthetouch---
UITouch*touch=[[allTouchesallObjects]objectAtIndex:0];

//---comparethetaps---
switch([touchtapCount])
{
//---singletap---
case1:{
imageView.contentMode=
UIViewContentModeScaleAspectFit;
}break;

//---doubletap---
case2:{
imageView.contentMode=UIViewContentModeCenter;
}break;
}
}break;

 //---double-touch---
 case 2: {
 //---get info of first touch---
 UITouch *touch1 = [[allTouches allObjects] objectAtIndex:0];

 //---get info of second touch---
 UITouch *touch2 = [[allTouches allObjects] objectAtIndex:1];

 //---get the points touched---
 CGPoint touch1PT = [touch1 locationInView:[self view]];
 CGPoint touch2PT = [touch2 locationInView:[self view]];

 NSLog(@”Touch1: %.0f, %.0f”, touch1PT.x, touch1PT.y);
 NSLog(@”Touch2: %.0f, %.0f”, touch2PT.x, touch2PT.y);
 } break;
}
}

374 ❘ chApter 14 recOGnizinG GeStureS

 2 . Press Command-R to test the application on the iPhone 4 Simulator.

 3 . In the iPhone 4 Simulator, press the Option key, and two circles should appear. Clicking the screen
simulates two fingers touching the screen of the device.

 4 . Open the Debugger Console window (press Command-Shift-R) and observe the output as you
Option-click the screen of the iPhone 4 Simulator multiple times (see Figure 14-13).

figure 14-13

How It Works

As you do when detecting for single-touch, you check for multi-touches in the
touchesBegan:withEvent: event. Rather than receive information about the first touch, you now obtain
information for both the first touch and the second touch:

 //---get info of first touch---
UITouch*touch1=[[allTouchesallObjects]objectAtIndex:0];

//---get info of second touch---
UITouch*touch2=[[allTouchesallObjects]objectAtIndex:1];

To get the coordinates (represented as a CGPoint structure) of each touch, you use the locationInView:
method of the UITouch class and pass it the view whose coordinate system in which you want the touch
located:

 //---get the points touched---
CGPointtouch1PT=[touch1locationInView:[selfview]];
CGPointtouch2PT=[touch2locationInView:[selfview]];

The coordinates returned by the locationInView: method are relative to the view specified. In the pre-
ceding snippet, the coordinates displayed are relative to the main View window.

The x and y coordinates of a CGPoint structure are represented using the CGFloat type, so you need to
use the %f format specifier when printing them in the Debugger Console window:

 NSLog(@”Touch1: %.0f, %.0f”, touch1PT.x, touch1PT.y);
 NSLog(@”Touch2: %.0f, %.0f”, touch2PT.x, touch2PT.y);

Detecting Touches ❘ 375

To detect more than two touches, you simply extend the preceding code to get information about the
third touch, fourth touch, and so on.

NOTE Using the iPhone 4 Simulator, the coordinates for the two touches are
often interchanged as you Option-click the same spot on the screen of the
Simulator.

implementing the pinch gesture
You can combine the UIPinchGestureRecognizer, which you used earlier in this chapter, with
what you’ve just learned about detecting for multi-touches to implement your own pinch gesture
recognizer.

In the earlier pinch gesture example, you used the CGAffineTransformMakeScale() method to alter
the size of the image. In this example, you will see another technique for changing the size of an
image in the ImageView — you will alter the size of the image as it is being pinched.

In the following Try It Out, you learn how to implement the pinch gesture to zoom the image in and
out in the ImageView.

Zooming in and Outtry it Out

1 . Using the same project created in the previous section, add the following statement that appears in
bold to the MultiTouchViewController.h fi le:

#import<UIKit/UIKit.h>

@interfaceMultiTouchViewController:UIViewController{
IBOutletUIImageView*imageView;
}

@property(nonatomic,retain)UIImageView*imageView;

-(CGFloat) distanceBetweenTwoPoints:(CGPoint)fromPoint
 toPoint:(CGPoint)toPoint;

@end

2 . In the MultiTouchViewController.m fi le, implement the
distanceBetweenTwoPoints:toPoint: and touchesMoved:withEvent: methods and add the
statements that appear in bold to the touchesBegan:withEvent: method:

#import“MultiTouchViewController.h”

@implementationMultiTouchViewController

@synthesizeimageView;

376 ❘ chApter 14 recOGnizinG GeStureS

CGFloat originalDistance;

-(CGFloat) distanceBetweenTwoPoints:(CGPoint)fromPoint
 toPoint:(CGPoint)toPoint {
 float lengthX = fromPoint.x - toPoint.x;
 float lengthY = fromPoint.y - toPoint.y;
 return sqrt((lengthX * lengthX) + (lengthY * lengthY));
}

//---firedwhentheuserfinger(s)touchesthescreen---
-(void)touchesBegan:(NSSet*)toucheswithEvent:(UIEvent*)event{
//---getalltouchesonthescreen---
NSSet*allTouches=[eventallTouches];

//---comparethenumberoftouchesonthescreen---
switch([allTouchescount])
{
//---singletouch---
case1:{
//---getinfoofthetouch---
UITouch*touch=[[allTouchesallObjects]objectAtIndex:0];

//---comparethetaps---
switch([touchtapCount])
{
//---singletap---
case1:{
imageView.contentMode=
UIViewContentModeScaleAspectFit;
}break;
//---doubletap---
case2:{
imageView.contentMode=UIViewContentModeCenter;
}break;
}
}break;

//---double-touch---
case2:{
//---getinfooffirsttouch---
UITouch*touch1=[[allTouchesallObjects]objectAtIndex:0];

//---getinfoofsecondtouch---
UITouch*touch2=[[allTouchesallObjects]objectAtIndex:1];

//---getthepointstouched---
CGPointtouch1PT=[touch1locationInView:[selfview]];
CGPointtouch2PT=[touch2locationInView:[selfview]];

NSLog(@”Touch1:%.0f,%.0f”,touch1PT.x,touch1PT.y);
NSLog(@”Touch2:%.0f,%.0f”,touch2PT.x,touch2PT.y);

//---record the distance made by the two touches---
 originalDistance = [self distanceBetweenTwoPoints:touch1PT

Detecting Touches ❘ 377

 toPoint:touch2PT];
}break;

}
}

//---fired when the user moved his finger(s) on the screen---
-(void) touchesMoved: (NSSet *) touches withEvent: (UIEvent *) event {
 //---get all touches on the screen---
 NSSet *allTouches = [event allTouches];

 //---compare the number of touches on the screen---
 switch ([allTouches count])
 {
 //---single touch---
 case 1: {
 } break;

 //---double-touch---
 case 2: {
 //---get info of first touch---
 UITouch *touch1 = [[allTouches allObjects] objectAtIndex:0];

 //---get info of second touch---
 UITouch *touch2 = [[allTouches allObjects] objectAtIndex:1];

 //---get the points touched---
 CGPoint touch1PT = [touch1 locationInView:[self view]];
 CGPoint touch2PT = [touch2 locationInView:[self view]];

 NSLog(@”Touch1: %.0f, %.0f”, touch1PT.x, touch1PT.y);
 NSLog(@”Touch2: %.0f, %.0f”, touch2PT.x, touch2PT.y);

 CGFloat currentDistance =
 [self distanceBetweenTwoPoints:touch1PT
 toPoint:touch2PT];

 //---zoom in---
 if (currentDistance > originalDistance) {
 imageView.frame = CGRectMake(
 imageView.frame.origin.x - 2,
 imageView.frame.origin.y - 2,
 imageView.frame.size.width + 4,
 imageView.frame.size.height + 4);
 }
 else {
 //---zoom out---
 imageView.frame = CGRectMake(
 imageView.frame.origin.x + 2,
 imageView.frame.origin.y + 2,
 imageView.frame.size.width - 4,
 imageView.frame.size.height - 4);
 }
 originalDistance = currentDistance;

378 ❘ chApter 14 recOGnizinG GeStureS

 } break;
 }
}

3 . Press Command-R to test the application on the iPhone 4 Simulator.

4 . Single-tap the ImageView to enlarge it. To zoom the image in and out, Option-click the image (see
Figure 14-14).

NOTE To use the pinch gesture on an image, you need to enlarge the
image fi rst. That’s because the image can only be resized if its display
mode is set to UIViewContentModeScaleAspectFit. Hence, in this case, you
need to single-tap on the image (which actually sets the image mode to
UIViewContentModeScaleAspectFit) before you can try the pinching eff ect.

figure 14-14

How It Works

To detect for the pinch gesture, you fi nd the distance between the two fi ngers and constantly compare
that distance so that you know whether the two fi ngers are moving toward or away from each other.

Detecting Touches ❘ 379

To find the distance between two fingers, you define the distanceBetweenTwoPoints:toPoint: method:

-(CGFloat) distanceBetweenTwoPoints:(CGPoint)fromPoint
 toPoint:(CGPoint)toPoint {
 float lengthX = fromPoint.x - toPoint.x;
 float lengthY = fromPoint.y - toPoint.y;
 return sqrt((lengthX * lengthX) + (lengthY * lengthY));
}

This method takes two CGPoint structures and then calculates the distance between them. No rocket
science here — just the Pythagorean theorem in action.

When the two fingers first touch the screen, you record their distance in the touchesBegan:withEvent:
method (see the code in bold):

//---firedwhentheuserfinger(s)touchesthescreen---
-(void)touchesBegan:(NSSet*)touches
withEvent:(UIEvent*)event{
//---getalltouchesonthescreen---
NSSet*allTouches=[eventallTouches];

//---comparethenumberoftouchesonthescreen---
switch([allTouchescount])
{
//---singletouch---
case1:{
//---getinfoofthetouch---
//...
//...
}break;

//---double-touch---
case2:{
//---getinfooffirsttouch---
UITouch*touch1=
[[allTouchesallObjects]objectAtIndex:0];

//---getinfoofsecondtouch---
UITouch*touch2=
[[allTouchesallObjects]objectAtIndex:1];

//---getthepointstouched---
CGPointtouch1PT=
[touch1locationInView:[selfview]];
CGPointtouch2PT=
[touch2locationInView:[selfview]];

NSLog(@”Touch1:%.0f,%.0f”,touch1PT.x,touch1PT.y);
NSLog(@”Touch2:%.0f,%.0f”,touch2PT.x,touch2PT.y);

 //---record the distance made by the two touches---
 originalDistance =
 [self distanceBetweenTwoPoints:touch1PT

380 ❘ chApter 14 recOGnizinG GeStureS

 toPoint:touch2PT];
}break;
}
}

As the two fingers move on the screen, you constantly compare their current distance with the original
distance. If the current distance is greater than the original distance, this is a zoom-in gesture. If not, it
is a zoom-out gesture:

//---firedwhentheusermovedhisfinger(s)onthescreen---
-(void)touchesMoved:(NSSet*)touches
withEvent:(UIEvent*)event{

//---getalltouchesonthescreen---
NSSet*allTouches=[eventallTouches];

//---comparethenumberoftouchesonthescreen---
switch([allTouchescount])
{
//---singletouch---
case1:{
}break;

 //---double-touch---
 case 2: {
 //---get info of first touch---
 UITouch *touch1 =
 [[allTouches allObjects] objectAtIndex:0];

 //---get info of second touch---
 UITouch *touch2 =
 [[allTouches allObjects] objectAtIndex:1];

 //---get the points touched---
 CGPoint touch1PT =
 [touch1 locationInView:[self view]];
 CGPoint touch2PT =
 [touch2 locationInView:[self view]];

 NSLog(@”Touch1: %.0f, %.0f”, touch1PT.x, touch1PT.y);
 NSLog(@”Touch2: %.0f, %.0f”, touch2PT.x, touch2PT.y);

 CGFloat currentDistance =
 [self distanceBetweenTwoPoints:touch1PT
 toPoint:touch2PT];

 //---zoom in---
 if (currentDistance > originalDistance) {
 imageView.frame =
 CGRectMake(
 imageView.frame.origin.x - 2,
 imageView.frame.origin.y - 2,
 imageView.frame.size.width + 4,
 imageView.frame.size.height + 4);

Detecting Touches ❘ 381

 }
 else {
 //---zoom out---
 imageView.frame =
 CGRectMake(
 imageView.frame.origin.x + 2,
 imageView.frame.origin.y + 2,
 imageView.frame.size.width - 4,
 imageView.frame.size.height - 4);
 }
 originalDistance = currentDistance;
 } break;
 }
}

implementing the Drag gesture
Another gesture that you can implement is the drag, which is touching an item on the screen
and then dragging it by moving the finger. In the following Try It Out, you learn how to drag an
ImageView on the screen by implementing the drag gesture.

Dragging the imageViewtry it Out

 1 . Using the MultiTouch project created earlier, resize the ImageView so that it fits the size of the
image (see Figure 14-15).

 2 . Add the following statements that appear in bold to the touchesMoved:withEvent: method:

//---firedwhentheusermovedhisfinger(s)onthescreen---
-(void)touchesMoved:(NSSet*)toucheswithEvent:(UIEvent*)event{
//---getalltouchesonthescreen---
NSSet*allTouches=[eventallTouches];

//---comparethenumberoftouchesonthescreen---
switch([allTouchescount])
{
 //---single touch---
 case 1: {
 //---get info of the touch---
 UITouch *touch = [[allTouches allObjects] objectAtIndex:0];

 //---check to see if the image is being touched---
 CGPoint touchPoint = [touch locationInView:[self view]];

 if (touchPoint.x > imageView.frame.origin.x &&
 touchPoint.x < imageView.frame.origin.x +
 imageView.frame.size.width &&
 touchPoint.y > imageView.frame.origin.y &&
 touchPoint.y <imageView.frame.origin.y +
 imageView.frame.size.height) {
 [imageView setCenter:touchPoint];

382 ❘ chApter 14 recOGnizinG GeStureS

 }
 } break;

//---double-touch---
case2:{
//---getinfooffirsttouch---
UITouch*touch1=[[allTouchesallObjects]objectAtIndex:0];

//---getinfoofsecondtouch---
UITouch*touch2=[[allTouchesallObjects]objectAtIndex:1];

//...
//...
}break;
}
}

 3 . Press Command-R to test the application on the iPhone 4 Simulator.

 4 . You can now tap the ImageView and then move the image anywhere on the screen simply by mov-
ing your finger (see Figure 14-16).

figure 14-15 figure 14-16

Summary ❘ 383

How It Works

The concept for this example is very simple. When a finger taps the screen, you check whether the posi-
tion of the finger falls within the range of the ImageView:

 //---check to see if the image is being touched---
 CGPoint touchPoint = [touch locationInView:[self view]];

 if (touchPoint.x > imageView.frame.origin.x &&
 touchPoint.x < imageView.frame.origin.x +
 imageView.frame.size.width &&
 touchPoint.y > imageView.frame.origin.y &&
 touchPoint.y <imageView.frame.origin.y +
 imageView.frame.size.height) {
 [imageView setCenter:touchPoint];
 }

If it does, then you simply reposition the ImageView by calling its setCenter property.

Using this technique, you can easily write a jigsaw puzzle application that enables users to rearrange the
different pieces of the jigsaw puzzle simply by dragging them on the screen.

SummAry

In this chapter, you saw the use of the various gesture recognizers included in the iPhone SDK 3.2/4.0
that enable you to easily recognize the gestures commonly performed on an iPhone. In addition, you
have seen the various events that you can handle if you want to perform your own tracking of the
user’s touch. Using these events, you can write your own routine to detect multiple touches in your
application and use this knowledge to create some really interesting applications.

exerciSeS

 1 . Name the six gesture recognizers included in the iPhone SDK 3 .2/4 .0 .

 2 . Name the gestures that are discrete and those that are continuous .

 3 . Name the four events for detecting touches in your application .

 4 . What is the difference between multi-taps and multi-touches?

 5 . How do you simulate multi-touch on the iPhone Simulator?

Answers to the exercises can be found in Appendix E, on Wrox.com.

384 ❘ chApter 14 recOGnizinG GeStureS

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

new gesture recognizers UITapGestureRecognizer

UIPinchGestureRecognizer

UIPanGestureRecognizer

UISwipeGestureRecognizer

UIRotationGestureRecognizer

UILongPressGestureRecognizer

Discrete gesture A discrete gesture sends a single message to the target when the
gesture is recognized .

continuous gesture A continuous gesture sends multiple messages to the target until
the gesture ends .

Detect touches on the view Handle the following events in the view or View Controller:

touchesBegan:withEvent:

touchesEnded:withEvent:

touchesMoved:withEvent:

touchesCancelled:withEvent:

Detect for taps (single,
double, and so on)

You can detect for taps in either the touchesBegan:withEvent: or
touchesEnded:withEvent: method .

implement pinch gesture Compare the distance made by the two touch points to determine
whether the gesture is zoom in or zoom out .

implement drag gesture Ensure that the touch point falls within the area occupied by the
view in question .

Accessing the Accelerometer

whAt yOu will leArn in thiS chApter

How to obtain accelerometer data from your iPhone➤➤

How to detect shakes to your device➤➤

iPhone’s built-in accelerometer enables your program
to detect the orientation of the device and adapt the
content to suit the new orientation. For example,
when you rotate your device sideways, the Safari Web
browser automatically switches the screen to land-
scape mode to provide a wider viewing space.

In this chapter, you learn how to access the accel-
erometer and use the Shake API to detect shakes to
your iPhone.

uSing the AccelerOmeter

The accelerometer in iPhone measures the accelera-
tion of the device relative to freefall. A value of 1
indicates that the device is experiencing 1 g of force
exerted on it (1 g of force being the gravitational pull
of the earth, which your device experiences when it is
stationary). The accelerometer measures the accelera-
tion of the device in three different axes: x, y and z.
Figure 15-1 shows the different axes measured by the
accelerometer.

-Z

+X

-X

+Z

+Y

-Y

figure 15-1

15

386 ❘ chApter 15 acceSSinG the accelerOmeter

Table 15-1 shows example readings of the three axes when the device is in the various positions.
Bear in mind that you won’t see the exact same values as these, because they are always fl uctuating
due to the accelerometer’s sensitivity.

tABle 15-1: Example Readings of the X, Y, and Z Axes

pOSitiOn x y z

Vertical upright position 0 .0 -1 .0 0 .0

Landscape left 1 .0 0 .0 0 .0

Landscape right -1 .0 0 .0 0 .0

Upside down 0 .0 1 .0 0 .0

Flat up 0 .0 0 .0 -1 .0

Flat down 0 .0 0 .0 1 .0

If the iPhone is held upright and moved to the right quickly, the value of the x-axis will increase
from 0 to a positive value. If it is moved to the left quickly, the value of the x-axis will decrease from
0 to a negative value. If the device is moved upward quickly, the value of the y-axis will increase
from -1.0 to a larger value. If the device is moved downward quickly, the value of the y-axis will
decrease from -1.0 to a smaller value.

If the device is horizontal and then moved downward, the value of the z-axis will decrease from
-1.0 to a smaller number. If it is moved upward, the value of the z-axis will increase from -1.0 to
a bigger number.

NOTE The accelerometer used on the iPhone gives a maximum reading of
about +/- 2.3 g, with a resolution of about 0.018 g.

In the following Try it Out, you programmatically access the data returned by the accelerometer.
Obtaining the accelerometer data enables you to build very interesting applications, such as a spirit
level, as well as games that depend on motion detection.

Accessing the Accelerometer Datatry it Out

codefi le Accelerometer.zip available for download at Wrox.com

1 . Using Xcode, create a new View-based Application (iPhone) project and name it Accelerometer.

2 . In the AccelerometerViewController.h fi le, add the following statements that appear in bold:

#import<UIKit/UIKit.h>

@interfaceAccelerometerViewController:UIViewController

Using the Accelerometer ❘ 387

<UIAccelerometerDelegate>{
}

@end

3 . In the AccelerometerViewController.m fi le, add the following statements that appear in bold:

#import“AccelerometerViewController.h”

@implementationAccelerometerViewController

-(void)viewDidLoad{
 UIAccelerometer *accel = [UIAccelerometer sharedAccelerometer];
 accel.delegate = self;
 accel.updateInterval = 1.0f/60.0f;

[superviewDidLoad];
}

- (void)accelerometer:(UIAccelerometer *)acel
 didAccelerate:(UIAcceleration *)acceleration {
 NSLog(@”x: %g”, acceleration.x);
 NSLog(@”y: %g”, acceleration.y);
 NSLog(@”z: %g”, acceleration.z);
}

4 . Press Command-R to test the application on a real iPhone device. Figure 15-2 shows example data
displayed by the application when my iPhone is held in my hand.

figure 15-2

NOTE For accelerometer data, you need a real device; the iPhone Simulator
does not return any readings for accelerometer data.

388 ❘ chApter 15 acceSSinG the accelerOmeter

How It Works

To use the accelerometer in your iPhone, you implement the UIAccelerometerDelegate protocol in your
delegate (such as the View Controller):

@interfaceAccelerometerViewController:UIViewController
<UIAccelerometerDelegate>{

When the view is loaded, you first obtain a single instance of the UIAccelerometer class using the
sharedAccelerometer method. You then specify the delegate of the instance and the update interval for
which you want to obtain accelerometer data:

-(void)viewDidLoad{
 UIAccelerometer *accel =
 [UIAccelerometer sharedAccelerometer];
 accel.delegate = self;
 accel.updateInterval = 1.0f/60.0f;

[superviewDidLoad];
}

The updateInterval property specifies the interval in seconds — that is, the number of seconds
between updates. In this case, you want the accelerometer data to be updated 60 times a second.

The UIAccelerometerDelegate protocol defines a single method that you need to implement to obtain
accelerometer data: accelerometer:didAccelerate:. You then extract the values of the three axes and
display them in the Debugger Console window:

- (void)accelerometer:(UIAccelerometer *)acel
 didAccelerate:(UIAcceleration *)acceleration {
 NSLog(@”x: %g”, acceleration.x);
 NSLog(@”y: %g”, acceleration.y);
 NSLog(@”z: %g”, acceleration.z);
}

viSuAlizing the AccelerOmeter DAtA

Printing out the raw values of the accelerometer data is not very exciting. Instead, the following Try
It Out shows you how to modify the application so that you can use the accelerometer data to move
a tennis ball on the screen.

Visualizing the Accelerometer Datatry it Out

 1 . Using the same project created in the previous section, add an image of a tennis ball to the
Resources folder as shown in Figure 15-3.

 2 . Double-click the AccelerometerViewController.xib file to edit it in Interface Builder.

 3 . Add an Image View to the View window and set its Image attribute to tennisball.jpg(see
Figure 15-4). Also, set the background color of the View window to black (see Figure 15-5).

Visualizing the Accelerometer Data ❘ 389

figure 15-3

figure 15-4

390 ❘ chApter 15 acceSSinG the accelerOmeter

figure 15-5

 4 . In the AccelerometerViewController.h file, add the following code in bold:

#import<UIKit/UIKit.h>

@interfaceAccelerometerViewController:UIViewController
<UIAccelerometerDelegate>{
 IBOutlet UIImageView *imageView;
 CGPoint delta;
 CGPoint translation;
 float ballRadius;
}

@property (nonatomic, retain) UIImageView *imageView;

@end

 5 . In Interface Builder, Control-click and drag the File’s Owner item over the Image View. Select
imageView.

Visualizing the Accelerometer Data ❘ 391

 6 . In the AccelerometerViewController.m file, add the following code in bold:

#import“AccelerometerViewController.h”

@implementationAccelerometerViewController

@synthesize imageView;

-(void)viewDidLoad{
UIAccelerometer*accel=[UIAccelerometersharedAccelerometer];
accel.delegate=self;
accel.updateInterval=1.0f/60.0f;

 ballRadius = imageView.frame.size.width / 2;
 delta = CGPointMake(12.0,4.0);
 translation = CGPointMake(0.0,0.0);

[superviewDidLoad];
}

-(void)accelerometer:(UIAccelerometer*)acel
didAccelerate:(UIAcceleration*)acceleration{

 //--Comment this out--
 // NSLog(@”x: %g”, acceleration.x);
 // NSLog(@”y: %g”, acceleration.y);
 // NSLog(@”z: %g”, acceleration.z);

 if (acceleration.x>0) delta.x = 2; else delta.x = -2;
 if (acceleration.y>0) delta.y = -2; else delta.y = 2;

 [UIView beginAnimations:@”translate” context:nil];

 imageView.transform =
 CGAffineTransformMakeTranslation(translation.x, translation.y);
 translation.x = translation.x + delta.x;
 translation.y = translation.y + delta.y;

 [UIView commitAnimations];

 if (imageView.center.x + translation.x > 320 - ballRadius ||
 imageView.center.x + translation.x < ballRadius) {
 translation.x -= delta.x;
 }

 if (imageView.center.y + translation.y > 460 - ballRadius ||
 imageView.center.y + translation.y < ballRadius) {
 translation.y -= delta.y;
 }
}

-(void)dealloc{
 [imageView release];
[superdealloc];
}

392 ❘ chApter 15 acceSSinG the accelerOmeter

7 . Press Command-R to test the application on a real iPhone device. Observe that as you move the
device, the tennis ball moves in the same direction as your hand (see Figure 15-6).

figure 15-6

NOTE Remember to comment out the three NSLog() statements. If you don’t, the
application will be too busy trying to output the accelerometer data and this will
aff ect the animation of the image.

How It Works

This exercise enables you to visually examine the data reported by the accelerometer. In this case, only
the data from the x and y axes is used. The delta variable represents the amount to move, both in the
x-axis and the y-axis.

To move the image, you apply a translation via the Image View’s transform property:

 [UIView beginAnimations:@”translate” context:nil];

imageView.transform=
CGAffineTransformMakeTranslation(
 translation.x,translation.y);
translation.x=translation.x+delta.x;
translation.y=translation.y+delta.y;

[UIViewcommitAnimations];

The translation variable keeps track of the current translation so that the image will animate smoothly.

Using the Shake APi to Detect Shakes ❘ 393

uSing the ShAke Api tO Detect ShAkeS

Beginning with the iPhone OS 3.0, Apple introduced the Shake API, which helps your application to
detect shakes to the device. In reality, this API comes in the form of three events that you can handle
in your code:

motionBegan:➤➤

motionEnded:➤➤

motionCancelled:➤➤

These three events are defined in the UIResponder class, which is the superclass of UIApplication,
UIView, and its subclasses (including UIWindow). The following Try It Out shows you how to detect
shakes to your device using these three events.

Using the Shake APitry it Out

codefile Shake.zip available for download at Wrox.com

 1 . Using Xcode, create a new View-based Application (iPhone) project and name it Shake.

 2 . Double-click the ShakeViewController.xib file to edit it in Interface Builder.

 3 . Populate the View window with the following views, and you’ll see Figure 15-7:

TextField➤➤

DatePicker➤➤

figure 15-7

394 ❘ chApter 15 acceSSinG the accelerOmeter

 4 . Insert the following statements that appear in bold into the ShakeViewController.h file:

#import<UIKit/UIKit.h>

@interfaceShakeViewController:UIViewController{
 IBOutlet UITextField *textField;
 IBOutlet UIDatePicker *datePicker;
}

@property (nonatomic, retain) UITextField *textField;
@property (nonatomic, retain) UIDatePicker *datePicker;

-(IBAction) doneEditing: (id) sender;

@end

 5 . In Interface Builder:

Control-click and drag the File’s Owner item to the TextField view and select ➤➤ textField.

Control-click and drag the File’s Owner item to the DatePicker view and select ➤➤ datePicker.

Right-click the TextField view and connect its ➤➤ DidEndonExit event to the File’s Owner
item. Select doneEditing:.

 6 . Insert the following statements that appear in bold to the ShakeViewController.m file:

#import“ShakeViewController.h”

@implementationShakeViewController

@synthesize textField, datePicker;

- (void) viewDidAppear:(BOOL)animated {
 [self.view becomeFirstResponder];
 [super viewDidAppear:animated];
}

- (IBAction) doneEditing: (id) sender {
 //---when keyboard is hidden, make the view
 // the first responder
 // or else the Shake API will not work---
 [self.view becomeFirstResponder];
}

- (void)motionBegan:(UIEventSubtype)motion
 withEvent:(UIEvent *)event {
 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@”motionBegan:”);
 }
}

- (void)motionCancelled:(UIEventSubtype)motion
 withEvent:(UIEvent *)event {

 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@”motionCancelled:”);
 }

Using the Shake APi to Detect Shakes ❘ 395

}

- (void)motionEnded:(UIEventSubtype)motion
 withEvent:(UIEvent *)event {
 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@”motionEnded:”);
 }
}

-(void)dealloc{
 [textField release];
 [datePicker release];
[superdealloc];
}

 7 . Right-click the Classes group in Xcode and choose Add ➪ New File. Choose the Cocoa Touch
Class item on the left and select the Objective-C class template. Choose the UIView subclass (see
Figure 15-8) and click Next. Name the file ShakeView.m.

figure 15-8

 8 . Insert the following statements in bold in ShakeView.m:

#import“ShakeView.h”

@implementationShakeView

-(id)initWithFrame:(CGRect)frame{
if((self=[superinitWithFrame:frame])){
//Initializationcode
}
returnself;
}

/*

396 ❘ chApter 15 acceSSinG the accelerOmeter

//OnlyoverridedrawRect:ifyouperformcustomdrawing.
//Anemptyimplementationadverselyaffectsperformanceduringanimation.
-(void)drawRect:(CGRect)rect{
//Drawingcode
}
*/

-(void)dealloc{
[superdealloc];
}

- (BOOL)canBecomeFirstResponder {
 return YES;
}

@end

 9 . In Interface Builder, select the View item in the ShakeViewController.xib window and view its
Identity Inspector window. Set ShakeView as its class name (see Figure 15-9).

figure 15-9

 10 . Save the file in Interface Builder.

 11 . Press Command-R to test the application on the iPhone 4 Simulator. Open the Debugger Console
window by pressing Command-Shift-R in Xcode.

 12 . With the application in the iPhone 4 Simulator, choose Hardware ➪ Shake Gesture to simulate shak-
ing the device. Observe the information printed in the Debugger Console window (see Figure 15-10).

 13 . Tap the TextField view to make the keyboard appear. Choose Hardware ➪ Shake Gesture to simu-
late shaking the device again. Observe the values printed in the Debugger Console window.

Using the Shake APi to Detect Shakes ❘ 397

figure 15-10

 14 . Close the keyboard by clicking the return key on the keyboard. Simulate shaking the device again
and observe the output on the Debugger Console window.

How It Works

Be aware that the three events used for monitoring shakes are fired only when there is a first responder
in your View. Hence, the first thing you do when your View appears is set it to become the first
responder (in the ShakeViewController.m file):

- (void) viewDidAppear:(BOOL)animated {
 [self.view becomeFirstResponder];
 [super viewDidAppear:animated];
}

However, by default, the View cannot be a first responder, so you need to create a UIView subclass
(ShakeView.m) so that you can override the default canBecomeFirstResponder method to return a YES:

- (BOOL)canBecomeFirstResponder {
 return YES;
}

Doing so allows your View to become a first responder. By default, Interface Builder wires your View
with the UIView base class (with which you need not do anything most of the time). You now need to
tell Interface Builder to use the newly created ShakeView subclass.

Next, you handle the three events in the ShakeViewController.m file:

- (void)motionBegan:(UIEventSubtype)motion

398 ❘ chApter 15 acceSSinG the accelerOmeter

 withEvent:(UIEvent *)event {
 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@”motionBegan:”);
 }
}

- (void)motionCancelled:(UIEventSubtype)motion
 withEvent:(UIEvent *)event {

 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@”motionCancelled:”);
 }
}

- (void)motionEnded:(UIEventSubtype)motion
 withEvent:(UIEvent *)event {
 if (event.subtype == UIEventSubtypeMotionShake) {
 NSLog(@”motionEnded:”);
 }
}

For each event, you first check that the motion is indeed a shake; then, print a debugging statement in
the Debugger Console.

In the doneEditing: method (which is fired when the user dismisses the keyboard by tapping the return
key), you make the View the first responder:

- (IBAction) doneEditing: (id) sender {
 //---when keyboard is hidden, make the view
 // the first responder
 // or else the Shake API will not work---
 [self.view becomeFirstResponder];
}

If you don’t do this, the three motion-sensing events are not fired. The key point to remember is that
something must be the first responder.

The motionBegan: event is fired when the OS suspects that the device is being shaken. If eventually the
OS determines that the action is not a shake, the motionCancelled: event is fired. When the OS finally
determines that the action is a shake action, the motionEnded: event is fired.

performing an Action when the Device is Shaken
Now modify your project so that when the iPhone is shaken, the DatePicker view is reset to the cur-
rent date.

Resetting the DatePicker When Shakentry it Out

 1 . In the ShakeViewController.m file, add the following statements that appear in bold:

- (void)ResetDatePicker {
 [datePicker setDate:[NSDate date]];

Summary ❘ 399

}

-(void)motionEnded:(UIEventSubtype)motion
withEvent:(UIEvent*)event{
if(event.subtype==UIEventSubtypeMotionShake){
NSLog(@”motionEnded:”);
[self ResetDatePicker];
}
}

 2 . Press Command-R to test the application on the iPhone Simulator. Set the DatePicker view to
some date. Choose Hardware ➪ Shake Gesture to simulate shaking the device. Notice that the
DatePicker view resets to the current date.

How It Works

In this example, you first added a ResetDatePicker method to reset the DatePicker view to the current
date:

- (void)ResetDatePicker {
 [datePicker setDate:[NSDate date]];
}

When the device is shaken, you called the ResetDatePicker method to reset the DatePicker view to the
current date:

-(void)motionEnded:(UIEventSubtype)motion
withEvent:(UIEvent*)event{
if(event.subtype==UIEventSubtypeMotionShake){
NSLog(@”motionEnded:”);
[self ResetDatePicker];
}
}

SummAry

In this chapter, you have seen how to obtain the accelerometer data of your iPhone. You also saw
how to use the Shake API to help you determine whether your device is being shaken. Combining
this knowledge enables you to create very compelling applications.

exerciSeS

 1 . Name the protocol that your delegate needs to conform to in order to use the accelerometer on
your iPhone .

 2 . Name the three events in the Shake API in the iPhone SDK 3 .0 .

Answers to the Exercises can be found in Appendix E, on Wrox.com.

400 ❘ chApter 15 acceSSinG the accelerOmeter

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

Accessing the accelerometer Ensure that your View Controller conforms to the
UIAccelerometerDelegate protocol and create an instance of
the UIAccelerometer class .

To listen to changes in acceleration, implement the
accelerometer:didAccelerate: method .

Detecting shakes You can use either the accelerometer data or the new Shake API in
the iPhone OS 3 .0 . For the Shake API, handle the following events:
motionBegan:, motionEnded:, and motionCancelled: .

PART IV
network programming techniques

chApter ⊲ 16: Web Services

chApter ⊲ 17: Bluetooth Programming

chApter ⊲ 18: Bonjour Programming

chApter ⊲ 19: Apple Push Notifi cation Services

chApter 20: ⊲ Displaying Maps

chApter 2 ⊲ 1: Background Applications

Web Services

whAt yOu will leArn in thiS chApter

Understanding the various ways to consume Web services in your ➤➤

iPhone applications

How to communicate with a Web service using SOAP➤➤

How to parse the result of a Web service call using the NSXMLParser ➤➤

class

Communicating with the outside world is one of the ways to make your iPhone applications
interesting and useful. This is especially true today when so many Web services provide such
useful functionality. However, consuming Web services in an iPhone is not for the fainthearted.
Unlike other development tools (such as Microsoft Visual Studio), Xcode does not have built-in
tools that make consuming Web services easy. Everything must be done by hand, and you need
to know how to form the relevant XML messages to send to the Web services and then parse
the returning XML result.

This chapter explains how to communicate with XML Web services from within your iPhone
application. Working through the examples in this chapter will give you a solid foundation for
consuming other Web services that you will need in your own projects.

NOTE For an introduction to XML Web services, check out this link: www.w3schools
.com/webservices/ws_intro.asp.

BASicS Of cOnSuming xml weB ServiceS

Before you create an Xcode project to consume a Web service, it is good to examine a real
Web service to see the different ways you can consume it. My favorite example is to use an
ASMX XML Web service created using .NET. For the purposes of this discussion, we’ll look

16

http://www.w3schools.com/webservices/ws_intro.asp
http://www.w3schools.com/webservices/ws_intro.asp

404 ❘ chApter 16 web SerViceS

at a Web service called IPToCountry, which enables you to supply an IP address and then returns
the country to which the IP address belongs.

The IPToCountry Web service is located at www.ecubicle.net/iptocountry.asmx. If you use Safari
to load this URL, you will see that it exposes two Web methods, as shown in Figure 16-1.

figure 16-1

For this example, use the FindCountryAsXml method, which returns the result (the country) as an
XML string. Clicking the FindCountryAsXml link reveals the page shown in Figure 16-2.

figure 16-2

http://www.ecubicle.net/iptocountry.asmx

Basics of Consuming XML Web Services ❘ 405

The important parts are the sections following the Test section shown on the page. They detail the vari-
ous ways in which you can consume the Web service — SOAP, and optionally, HTTP GET and HTTP
POST. In the .NET world, accessing the Web service is a pretty straightforward affair — Visual Studio
provides a built-in tool to create a Web proxy service object for the Web service simply by downloading
the WSDL document. For iPhone development, you need to get your hands dirty, so you must under-
stand the underlying mechanics of how to consume a Web service.

using SOAp 1 .1
The most common method to consume a Web service is using SOAP (Simple Object Access Protocol).
When using SOAP, you need to use the POST method to send the following request to the Web service:

POST/iptocountry.asmxHTTP/1.1
Host:www.ecubicle.net
Content-Type:text/xml;charset=utf-8
Content-Length:length
SOAPAction:“http://www.ecubicle.net/webservices/FindCountryAsXml”

<?xmlversion=”1.0”encoding=”utf-8”?>
<soap:Envelopexmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=http://www.w3.org/2001/XMLSchema
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/“>
<soap:Body>
<FindCountryAsXmlxmlns=”http://www.ecubicle.net/webservices/“>
<V4IPAddress>string</V4IPAddress>
</FindCountryAsXml>
</soap:Body>
</soap:Envelope>

The bold italic word in the code is the placeholder where you need to substitute the actual value.
Note a few important things in this example:

The URL for the Web service is ➤➤ http://www.ecubicle.net/iptocountry.asmx. This is the
URL as shown in Figure 16-1.

The URL for the ➤➤ SOAPAction is http://www.ecubicle.net/webservices/FindCountryAsXml.

The ➤➤ Content-Type for the request is text/xml;charset=utf-8.

The ➤➤ HTTPmethod is POST.

The ➤➤ SOAP request is as follows:

<?xmlversion=”1.0”encoding=”utf-8”?>
<soap:Envelopexmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/“>
<soap:Body>
<FindCountryAsXmlxmlns=”http://www.ecubicle.net/webservices/“>
<V4IPAddress>string</V4IPAddress>
</FindCountryAsXml>
</soap:Body>
</soap:Envelope>

http://www.ecubicle.net/iptocountry.asmx
http://www.ecubicle.net/webservices/FindCountryAsXml

406 ❘ chApter 16 web SerViceS

The ➤➤ Content-Length of the SOAP request is the total number of characters in the request.

The Web service will return the following response:➤➤

HTTP/1.1200OK
Content-Type:text/xml;charset=utf-8
Content-Length:length

<?xmlversion=”1.0”encoding=”utf-8”?>
<soap:Envelopexmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/“>
<soap:Body>
<FindCountryAsXmlResponsexmlns=”http://www.ecubicle.net/webservices/“>
<FindCountryAsXmlResult>xml result</FindCountryAsXmlResult>
</FindCountryAsXmlResponse>
</soap:Body>
</soap:Envelope>

The result (country) will be enclosed within the block of XML results (shown in bold above). You
would need to extract it from the XML result.

using SOAp 1 .2
Using SOAP 1.2 is very similar to using SOAP 1.1. The following shows the SOAP request for
SOAP 1.2:

POST/iptocountry.asmxHTTP/1.1
Host:www.ecubicle.net
Content-Type:application/soap+xml;charset=utf-8
Content-Length:length

<?xmlversion=”1.0”encoding=”utf-8”?>
<soap12:Envelopexmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap12=”http://www.w3.org/2003/05/soap-envelope”>
<soap12:Body>
<FindCountryAsXmlxmlns=”http://www.ecubicle.net/webservices/“>
<V4IPAddress>string</V4IPAddress>
</FindCountryAsXml>
</soap12:Body>
</soap12:Envelope>

The SOAP response for SOAP 1.2 would be as follows:

HTTP/1.1200OK
Content-Type:application/soap+xml;charset=utf-8
Content-Length:length

<?xmlversion=”1.0”encoding=”utf-8”?>
<soap12:Envelopexmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap12=”http://www.w3.org/2003/05/soap-envelope”>
<soap12:Body>
<FindCountryAsXmlResponsexmlns=”http://www.ecubicle.net/webservices/“>

Consuming a Web Service in Your iPhone Application ❘ 407

<FindCountryAsXmlResult>xml result</FindCountryAsXmlResult>
</FindCountryAsXmlResponse>
</soap12:Body>
</soap12:Envelope>

cOnSuming weB ServiceS uSing SOAp, http get, AnD http pOSt

Besides using SOAP to communicate with a Web service, two more methods
are available: HTTP and HTTP POST. Using HTTP GET (the simplest), all the
information you need to pass to the Web service can be sent through the query
string. For example, you can invoke a Web service through the query string like this:
www.somewebservice.com/webservice.asmx?key1=value1&key2=value2. However,
the query string has a limit on its length, and is hence not suitable if you need to pass
a lot of data to the Web service.

An alternative to this would be to use the HTTP POST method, which allows more
data to be sent. Using the example just used, instead of passing all the keys and their
values through the URL, you would send them through the HTTP headers. However,
HTTP POST has its limitations as well. As with HTTP GET, the data to be sent must
be formatted as key/value pairs but each key/value pair is limited in size to 1024 char-
acters. The most versatile method is to use the SOAP method, which allows complex
data types to be sent to the Web service through the SOAP request.

As not all Web services support HTTP GET and HTTP POST, this chapter will not
discuss them in detail. Readers who are interested in learning more about how to con-
sume Web services using HTTP GET and HTTP POST can refer to my online article
at www.devx.com/wireless/Article/43209.

cOnSuming A weB Service in yOur iphOne ApplicAtiOn

Now you’re ready to tackle the exciting task of consuming a Web service in your iPhone application!
In the following Try It Out, you learn how to communicate with the Web service using the SOAP
method.

Consuming Web Services Using SOAPtry it Out

1 . Using Xcode, create a View-based Application (iPhone) project and name it WebServices.

2 . Double-click the WebServicesViewController.xib fi le to edit it in Interface Builder.

3 . Double-click the View item and populate the View window with the views as follows (see also
Figure 16-3):

Label (name it IP ➤➤ Address)

Text Field➤➤

http://www.somewebservice.com/webservice.asmx?key1=value1&key2=value2
http://www.devx.com/wireless/Article/43209

408 ❘ chApter 16 web SerViceS

Round Rect Button (name it ➤➤ Find Country)

Activity Indicator➤➤

 4 . Select the Activity Indicator view and display its Attributes Inspector window. Check the Hide
When Stopped attribute (see Figure 16-4).

 5 . In Xcode, edit the WebServicesViewController.h file by adding the following bold statements:

#import<UIKit/UIKit.h>

@interfaceWebServicesViewController:UIViewController{
 IBOutlet UITextField *ipAddress;
 IBOutlet UIActivityIndicatorView *activityIndicator;

 NSMutableData *webData;
 NSMutableString *soapResults;
 NSURLConnection *conn;
}

@property (nonatomic, retain) UITextField *ipAddress;
@property (nonatomic, retain) UIActivityIndicatorView *activityIndicator;

-(IBAction) btnFindCountry:(id)sender;

@end

 6 . Save the file and return to Interface Builder.

figure 16-3 figure 16-4

Consuming a Web Service in Your iPhone Application ❘ 409

 7 . Perform the following actions:

Control-click the File’s Owner item and drag it ➤➤

over the Text Field view. Select ipAddress.

Control-click the File’s Owner item and drag ➤➤

it over the Activity Indicator view. Select
activityIndicator.

Control-click the Round Rect Button view ➤➤

and drag it over the File’s Owner item. Select
btnFindCountry:.

 8 . Right-click the File’s Owner item now and you
should see the connections as shown in Figure 16-5.

 9 . In the WebServicesViewController.m file, add the
following bold statements:

#import“WebServicesViewController.h”

@implementationWebServicesViewController

@synthesize ipAddress;
@synthesize activityIndicator;

- (IBAction)btnFindCountry:(id)sender {
 NSString *soapMsg =
 [NSString stringWithFormat:
 @”<?xml version=\”1.0\” encoding=\”utf-8\”?>”
 “<soap:Envelope xmlns:xsi=”
 “\”http://www.w3.org/2001/XMLSchema-instance\” “
 “xmlns:xsd=\”http://www.w3.org/2001/XMLSchema\” “
 “xmlns:soap=\”http://schemas.xmlsoap.org/soap/envelope/\”>”
 “<soap:Body>”
 “<FindCountryAsXml xmlns=\”http://www.ecubicle.net/webservices/\”>”
 “<V4IPAddress>%@</V4IPAddress>”
 “</FindCountryAsXml>”
 “</soap:Body>”
 “</soap:Envelope>”, ipAddress.text];

 //---print it to the Debugger Console for verification---
 NSLog(@”%@”,soapMsg);
 NSURL *url = [NSURL URLWithString:
 @”http://www.ecubicle.net/iptocountry.asmx”];
 NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];

 //---set the various headers---
 NSString *msgLength = [NSString stringWithFormat:@”%d”,
 [soapMsg length]];
 [req addValue:@”text/xml; charset=utf-8”
 forHTTPHeaderField:@”Content-Type”];
 [req addValue:@”http://www.ecubicle.net/webservices/FindCountryAsXml”
 forHTTPHeaderField:@”SOAPAction”];

figure 16-5

410 ❘ chApter 16 web SerViceS

 [req addValue:msgLength forHTTPHeaderField:@”Content-Length”];

 //---set the HTTP method and body---
 [req setHTTPMethod:@”POST”];
 [req setHTTPBody:[soapMsg dataUsingEncoding:NSUTF8StringEncoding]];

 //---start animating --
 [activityIndicator startAnimating];

 conn = [[NSURLConnection alloc] initWithRequest:req
 delegate:self];
 if (conn) {
 webData = [[NSMutableData data] retain];
 }
}

-(void) connection:(NSURLConnection *) connection
didReceiveResponse:(NSURLResponse *) response {
 [webData setLength: 0];
}

-(void) connection:(NSURLConnection *) connection
 didReceiveData:(NSData *) data {
 [webData appendData:data];
}

-(void) connection:(NSURLConnection *) connection
 didFailWithError:(NSError *) error {
 [webData release];
 [connection release];
}

-(void) connectionDidFinishLoading:(NSURLConnection *) connection {
 NSLog(@”DONE. Received Bytes: %d”, [webData length]);
 NSString *theXML = [[NSString alloc]
 initWithBytes:[webData mutableBytes]
 length:[webData length]
 encoding:NSUTF8StringEncoding];

 //---shows the XML---
 NSLog(@”%@”,theXML);
 [theXML release];

 //---stop animating---
 [activityIndicator stopAnimating];

 [connection release];
 [webData release];
}

-(void)dealloc{
[ipAddressrelease];
[activityIndicatorrelease];
[superdealloc];
}

Consuming a Web Service in Your iPhone Application ❘ 411

 10 . Press Command-R to test the application on the iPhone 4 Simulator. Enter the IP address 3.4.5.6
in the Text Field, and click the Find Country button.

 11 . In Xcode, press Shift-Command-R to open the Debugger Console window. Observe that the fol-
lowing was sent to the Web service:

<?xmlversion=”1.0”encoding=”utf-8”?>
<soap:Envelope
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>
<soap:Body>
<FindCountryAsXmlxmlns=”http://www.ecubicle.net/webservices/”>
<V4IPAddress>3.4.5.6</V4IPAddress>
</FindCountryAsXml>
</soap:Body>
</soap:Envelope>

 12 . The Web service responded with the following:

<?xmlversion=”1.0”encoding=”utf-8”?>
<soap:Envelope
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<soap:Body>
<FindCountryAsXmlResponse
xmlns=”http://www.ecubicle.net/webservices/”>
<FindCountryAsXmlResult>
<IPCountryServicexmlns=””>
 <Country>United States</Country>
</IPCountryService>
</FindCountryAsXmlResult>
</FindCountryAsXmlResponse>
</soap:Body>
</soap:Envelope>

The response from the Web service indicates that you have managed to communicate with it. The chal-
lenge now is how to parse the XML to extract the relevant result that you want. In this case, the result
you want is encapsulated in the <Country> element. In the next section you’ll learn how to parse the
XML response.

How It Works

Let’s spend some time examining what you just did. First, you create the SOAP request packet:

 NSString *soapMsg =
[NSStringstringWithFormat:
@”<?xml version=\”1.0\” encoding=\”utf-8\”?>”
“<soap:Envelope xmlns:xsi=”
“\”http://www.w3.org/2001/XMLSchema-instance\” “
“xmlns:xsd=\”http://www.w3.org/2001/XMLSchema\” “
“xmlns:soap=\”http://schemas.xmlsoap.org/soap/envelope/\”>”
“<soap:Body>”
“<FindCountryAsXml xmlns=\”http://www.ecubicle.net/webservices/\”>”

http://www.w3.org/2001/XMLSchema-instance%5C%E2%80%9D
http://www.w3.org/2001/XMLSchema%5C%E2%80%9D
http://schemas.xmlsoap.org/soap/envelope/%5C%E2%80%9D%3E%E2%80%9D
http://www.ecubicle.net/webservices/%5C%E2%80%9D%3E%E2%80%9D

412 ❘ chApter 16 web SerViceS

“<V4IPAddress>%@</V4IPAddress>”
“</FindCountryAsXml>”
“</soap:Body>”
“</soap:Envelope>”,ipAddress.text];

Next, you create a URL load request object using an instance of the NSMutableURLRequest and NSURL
objects:

 NSURL *url = [NSURL URLWithString:
 @”http://www.ecubicle.net/iptocountry.asmx”];
 NSMutableURLRequest *req = [NSMutableURLRequest requestWithURL:url];

You then populate the request object with the various headers, such as Content-Type, SOAPAction, and
Content-Length. You also set the HTTP method and HTTP body:

 //---set the various headers---
 NSString *msgLength = [NSString stringWithFormat:@”%d”,
 [soapMsg length]];
 [req addValue:@”text/xml; charset=utf-8”
 forHTTPHeaderField:@”Content-Type”];
 [req addValue:@”http://www.ecubicle.net/webservices/FindCountryAsXml”
 forHTTPHeaderField:@”SOAPAction”];
 [req addValue:msgLength forHTTPHeaderField:@”Content-Length”];
 //---set the HTTP method and body---
 [req setHTTPMethod:@”POST”];
 [req setHTTPBody:[soapMsg dataUsingEncoding:NSUTF8StringEncoding]];

Before you make the actual request to the Web service, you get the Activity Indicator view to start ani-
mating, providing a visual feedback to the user that the application is waiting for a response from the
Web service:

 //---start animating --
 [activityIndicator startAnimating];

To establish the connection with the Web service, you use the NSURLConnection class together with the
request object just created:

 conn = [[NSURLConnection alloc] initWithRequest:req
 delegate:self];
 if (conn) {
 webData = [[NSMutableData data] retain];
 }

The NSURLConnection object will now proceed to send the request to the Web service and asynchronously
call the various methods (which you will define next) when responses are received from the Web service.
The data method of the NSMutableData class returns an empty data object. The NSMutableData object
represents a wrapper for byte buffers, which you will use to receive incoming data from the Web service.

When data starts streaming in from the Web service, the connection:didReceiveResponse: method is
called, which you need to implement here:

-(void) connection:(NSURLConnection *) connection
didReceiveResponse:(NSURLResponse *) response {
 [webData setLength: 0];
}

Parsing the XML Response ❘ 413

Here, you initialize the length of webData to zero.

As the data progressively comes in from the Web service, the connection:didReceiveData: method is
called. Here, you append the data received to the webData object:

-(void) connection:(NSURLConnection *) connection
 didReceiveData:(NSData *) data {
 [webData appendData:data];
}

If there is an error during the transmission, the connection:didFailWithError: method is called:

-(void) connection:(NSURLConnection *) connection
 didFailWithError:(NSError *) error {
 [webData release];
 [connection release];
}

It is important that you handle a communication failure gracefully so that the user can try again later.

When the connection has finished and successfully downloaded the response, the
connectionDidFinishLoading: method is called:

-(void) connectionDidFinishLoading:(NSURLConnection *) connection {
 NSLog(@”DONE. Received Bytes: %d”, [webData length]);
 NSString *theXML = [[NSString alloc]
 initWithBytes:[webData mutableBytes]
 length:[webData length]
 encoding:NSUTF8StringEncoding];
 //---shows the XML---
 NSLog(@”%@”,theXML);
 [theXML release];

 //---stop animating --
 [activityIndicator stopAnimating];

 [connection release];
 [webData release];
}

Here, you simply print the XML response received from the Web service to the Debugger Console win-
dow and then stop the Activity Indicator view from animating.

pArSing the xml reSpOnSe

In the iPhone SDK, you can use the NSXMLParser object to parse an XML response returned by the
Web service. The NSXMLParser class is an implementation of the Simple API for the XML (SAX)
mechanism, which parses an XML document serially.

414 ❘ chApter 16 web SerViceS

An NSXMLParser object reads an XML document, scanning it from beginning to end. As it encounters
the various items in the document (such as elements, attributes, comments, and so on), it notifies its
delegates so that appropriate actions can be taken (such as extracting the value of an element, etc.).

In the following Try It Out, you will parse the XML result returned by the Web service so that you
can display the country of the IP address that you have sent to the Web service.

Parsing the XML Result Returned by the Web Servicetry it Out

 1 . Using the WebServices project created in the previous section, add the following statements to the
WebServicesViewController.h file to parse the response from the Web service:

#import<UIKit/UIKit.h>

@interfaceWebServicesViewController:UIViewController
 <NSXMLParserDelegate> {

IBOutletUITextField*ipAddress;
IBOutletUIActivityIndicatorView*activityIndicator;

NSMutableData*webData;
NSMutableString*soapResults;
NSURLConnection*conn;

 NSXMLParser *xmlParser;
 BOOL elementFound;
}

@property(nonatomic,retain)UITextField*ipAddress;
@property(nonatomic,retain)UIActivityIndicatorView*activityIndicator;

-(IBAction)btnFindCountry:(id)sender;

@end

 2 . In the WebServicesViewController.m file, add the following bold statements to the
connectionDidFinishLoading: method:

-(void)connectionDidFinishLoading:(NSURLConnection*)connection{
NSLog(@”DONE.ReceivedBytes:%d”,[webDatalength]);
NSString*theXML=[[NSStringalloc]
initWithBytes:[webDatamutableBytes]
length:[webDatalength]
encoding:NSUTF8StringEncoding];

//---showstheXML---
NSLog(@”%@”,theXML);
[theXMLrelease];

//---stopanimating---
[activityIndicatorstopAnimating];

 if (xmlParser) {
 [xmlParser release];

Parsing the XML Response ❘ 415

 }

 xmlParser = [[NSXMLParser alloc] initWithData: webData];
 [xmlParser setDelegate:self];
 [xmlParser setShouldResolveExternalEntities:YES];
 [xmlParser parse];

[connectionrelease];
[webDatarelease];
}

 3 . In the WebServicesViewController.m file, add the following methods:

//---when the start of an element is found---
-(void) parser:(NSXMLParser *) parser
didStartElement:(NSString *) elementName
 namespaceURI:(NSString *) namespaceURI
 qualifiedName:(NSString *) qName
 attributes:(NSDictionary *) attributeDict {

 if ([elementName isEqualToString:@”Country”]) {
 if (!soapResults) {
 soapResults = [[NSMutableString alloc] init];
 }
 elementFound = YES;
 }
}

//---when the text in an element is found---
-(void)parser:(NSXMLParser *) parser
foundCharacters:(NSString *)string {
 if (elementFound) {
 [soapResults appendString: string];
 }
}

//---when the end of element is found---
-(void)parser:(NSXMLParser *)parser
didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
qualifiedName:(NSString *)qName {

 if ([elementName isEqualToString:@”Country”]) {
 //---displays the country---
 NSLog(@”%@”, soapResults);
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Country found!”
 message:soapResults
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];

 [alert show];
 [alert release];
 [soapResults setString:@””];
 elementFound = FALSE;

416 ❘ chApter 16 web SerViceS

 }
}

-(void)dealloc{
[soapResultsrelease];

[ipAddressrelease];
[activityIndicatorrelease];
[superdealloc];
}

 4 . Test the application on the iPhone 4 Simulator by pressing Command-R. Enter an IP address and
click the Find Country button. The application displays the result, as shown in Figure 16-6.

figure 16-6

How It Works

To parse the XML result, you create an instance of the NSXMLParser class and then initialize it with the
response returned by the Web service. The NSXMLParser is an implementation of the Simple API for
the XML (SAX) parser. It parses an XML document sequentially, in an event-driven manner. As the
parser encounters the various elements, attributes, and so forth, in an XML document, it raises events
where you can insert your own event handlers to do your processing.

As the NSXMLParser object encounters the various items in the XML document, it fires off several meth-
ods, which you need to define:

Parsing the XML Response ❘ 417

parser:didStartElement:namespaceURI:qualifiedName:attributes:➤➤ — Fired when the start tag
of an element is found:

//---when the start of an element is found---
-(void) parser:(NSXMLParser *) parser
didStartElement:(NSString *) elementName
 namespaceURI:(NSString *) namespaceURI
 qualifiedName:(NSString *) qName
 attributes:(NSDictionary *) attributeDict {

 if ([elementName isEqualToString:@”Country”]) {
 if (!soapResults) {
 soapResults = [[NSMutableString alloc] init];
 }
 elementFound = YES;
 }
}

Here, you check to see whether the tag is <Country>. If it is, you set the Boolean variable elementFound
to YES.

parser:foundCharacters:➤➤ — Fired when the text of an element is found:

//---when the text in an element is found---
-(void)parser:(NSXMLParser *) parser
foundCharacters:(NSString *)string {
 if (elementFound) {
 [soapResults appendString: string];
 }
}

Here, if the <Country> tag is found, you start to extract the value of the Country element into the
soapResults object.

parser:didEndElement:namespaceURI:qualifiedName:➤➤ — Fired when the end of an element is
found:

//---when the end of element is found---
-(void)parser:(NSXMLParser *)parser
didEndElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
qualifiedName:(NSString *)qName {

 if ([elementName isEqualToString:@”Country”]) {
 //---displays the country---
 NSLog(@”%@”, soapResults);
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Country found!”
 message:soapResults
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];

 [alert show];
 [alert release];

418 ❘ chApter 16 web SerViceS

 [soapResults setString:@””];
 elementFound = FALSE;
 }
}

Here, you simply look for the </Country> tag to confirm that the value of the Country element has been
correctly extracted. You then print out the value using a UIAlertView object.

SummAry

This chapter explored the various ways you can consume a Web service in your iPhone applica-
tions — SOAP, HTTP GET, and HTTP POST. You also learned how to extract data from an
XML document. It is hoped that you now have a good idea of what is involved in consuming
Web services.

exerciSeS

 1 . Name the three ways in which you can consume a Web service in your iPhone applications .

 2 . Name the three key events you need to handle when using the NSURLConnection class .

 3 . Describe the steps by which the NSXMLParser class parses the content of an XML document .

Answers to the Exercises can be found in Appendix E, on Wrox.com.

Summary ❘ 419

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

ways to consume a
web service

SOAP 1 .1/1 .2, HTTP GET, and HTTP POST

formulating a url
request

Use the NSMutableURLRequest class .

establishing a url
connection

Use the NSURLConnection class .

class for storing byte
buffers

Use the NSMutableData class .

events fired by the
NSURLConnection

class

connection:didReceiveResponse:
connection:didReceiveData:
connection:didFailWithError:
connectionDidFinishLoading:

parsing xml content Use the NSXMLParser class .

events fired by the
NSXMLParser class

parser:didStartElement:namespaceURI:qualifiedName:attributes:
parser:foundCharacters:
parser:didEndElement:namespaceURI:qualifiedName:

Bluetooth Programming

whAt yOu will leArn in thiS chApter

How to use the various APIs within the Game Kit framework for ➤➤

Bluetooth communications

How to look for peer Bluetooth devices using the ➤➤

GKPeerPickerController class

How to send and receive data from a connected device➤➤

How to implement Bluetooth voice chat➤➤

The iPhone comes with built-in Bluetooth functionality, enabling it to communicate with other
Bluetooth devices, such as Bluetooth headsets, iPhone, iPod touch, and iPad. This chapter
shows you how to write iPhone applications that use Bluetooth to communicate with another
device, performing tasks such as sending and receiving text messages, as well as voice chatting.
Daunting as it may sound, Bluetooth programming is actually quite simple using the iPhone
SDK. All the Bluetooth functionalities are encapsulated within the Game Kit framework.

NOTE To test the concepts covered in this chapter, you need two devices: iPads,
iPhones (4, 3G or 3GS), or iPod touches (second generation or later) running iPhone
OS 3.0 or later.

uSing the gAme kit frAmewOrk

One of the neat features available in the iPhone SDK is the Game Kit framework, which con-
tains APIs that enable communications over a Bluetooth network. You can use these APIs to
create peer-to-peer games and applications with ease. Unlike other mobile platforms, using

17

422 ❘ chApter 17 bluetOOth PrOGramminG

Bluetooth as a communication channel in the iPhone is much easier than you might expect. In this
section, you will learn how to build a simple application that enables two iPhone (or iPad and iPod
touch) devices to communicate with each other.

Searching for peer Devices
Before any exchanges of data can take place, the first step to Bluetooth communication is for the
devices to locate each other. The following Try It Out shows you how to use the Game Kit frame-
work to locate your Bluetooth peer.

Looking for Peer Devicestry it Out

codefile Bluetooth.zip available for download at Wrox.com

 1 . Using Xcode, create a new View-based Application project and name it Bluetooth.

 2 . Add the GameKit.framework to your project (see Figure 17-1).

figure 17-1

Using the game Kit Framework ❘ 423

 3 . Double-click BluetoothViewController.xib to edit it in Interface Builder. As shown in
Figure 17-2, add the following views to the View window:

Round Rect buttons (name them ➤➤ Connect, Disconnect, and Send)

Label (name it “Enter message here”)➤➤

Text Field➤➤

figure 17-2

 4 . In the BluetoothViewController.h file, add the following statements shown in bold:

#import<UIKit/UIKit.h>
#import <GameKit/GameKit.h>

@interfaceBluetoothViewController:UIViewController
 <GKSessionDelegate,
 GKPeerPickerControllerDelegate> {

 GKSession *currentSession;
 GKPeerPickerController *picker;

 IBOutlet UITextField *txtMessage;
 IBOutlet UIButton *connect;
 IBOutlet UIButton *disconnect;
}

@property (nonatomic, retain) GKSession *currentSession;

424 ❘ chApter 17 bluetOOth PrOGramminG

@property (nonatomic, retain) UITextField *txtMessage;
@property (nonatomic, retain) UIButton *connect;
@property (nonatomic, retain) UIButton *disconnect;

-(IBAction) btnSend:(id) sender;
-(IBAction) btnConnect:(id) sender;
-(IBAction) btnDisconnect:(id) sender;

@end

 5 . Back in Interface Builder, perform the following actions:

Control-click the File’s Owner item and drag and drop it over the Text➤➤ Field view. Select
txtMessage.

Control-click the File’s Owner item and drag and drop it over the Connect button. Select ➤➤

connect.

Control-click the File’s Owner item and drag ➤➤

and drop it over the Disconnect button. Select
disconnect.

Control-click the Send button and drag and ➤➤

drop it over the File’s Owner item. Select
btnSend:.

Control-click the Connect button and drag ➤➤

and drop it over the File’s Owner item. Select
btnConnect:.

Control-click the Disconnect button and drag ➤➤

and drop it over the File’s Owner item. Select
btnDisconnect:.

 6 . Right-click on the File’s Owner item to verify that
all the connections are made correctly (see Figure 17-3).

 7 . In the BluetoothViewController.m file, add the following statements in bold:

#import“BluetoothViewController.h”

@implementationBluetoothViewController

@synthesize currentSession;
@synthesize txtMessage;
@synthesize connect;
@synthesize disconnect;

-(void)viewDidLoad{
 [connect setHidden:NO];
 [disconnect setHidden:YES];
[superviewDidLoad];
}

//---select a nearby Bluetooth device---

figure 17-3

Using the game Kit Framework ❘ 425

-(IBAction) btnConnect:(id) sender {
 picker = [[GKPeerPickerController alloc] init];
 picker.delegate = self;
 picker.connectionTypesMask = GKPeerPickerConnectionTypeNearby;

 [connect setHidden:YES];
 [disconnect setHidden:NO];
 [picker show];
}

//---did connect to a peer---
-(void)peerPickerController:(GKPeerPickerController *)pk
 didConnectPeer:(NSString *)peerID
 toSession:(GKSession *)session {
 self.currentSession = session;
 session.delegate = self;
 [session setDataReceiveHandler:self withContext:nil];
 picker.delegate = nil;
 [picker dismiss];
 [picker autorelease];
}

-(void)peerPickerControllerDidCancel:(GKPeerPickerController *)pk {
 picker.delegate = nil;
 [picker autorelease];
 [connect setHidden:NO];
 [disconnect setHidden:YES];
}

//---connection was cancelled---
-(IBAction) btnDisconnect:(id) sender {
 [self.currentSession disconnectFromAllPeers];
 [self.currentSession release];
 currentSession = nil;
 [connect setHidden:NO];
 [disconnect setHidden:YES];
}

//---session state changed---
-(void)session:(GKSession *)session
 peer:(NSString *)peerID
didChangeState:(GKPeerConnectionState)state {

 switch (state) {
 case GKPeerStateConnected:
 NSLog(@”connected”);
 break;

 case GKPeerStateDisconnected:
 NSLog(@”disconnected”);
 [self.currentSession release];
 currentSession = nil;
 [connect setHidden:NO];
 [disconnect setHidden:YES];
 break;
 }

426 ❘ chApter 17 bluetOOth PrOGramminG

figure 17-4

}

//---session failed with error---
-(void)session:(GKSession *)session
didFailWithError:(NSError *)error {
 NSLog(@”%@”,[error description]);
}

-(void)dealloc{
 [txtMessage release];
 [currentSession release];
 [connect release];
 [disconnect release];

[superdealloc];
}

 8 . Deploy the application onto two devices (either iPhone, iPad, or iPod touch).

 9 . Once the application is deployed onto two devices, launch the application on both devices. If
Bluetooth is not turned on, you will be asked to turn it on (see Figure 17-4). Tap the Connect but-
ton on each device. You will see the standard UI to discover other devices (see Figure 17-5).

 10 . After a few seconds, both devices should be able to find each other (see Figure 17-6). Tap the name
of the found device and the application will attempt to connect to it.

 11 . When another device tries to connect to your device, a popup is displayed, as shown in
Figure 17-7. Tap Accept to connect or tap Decline to decline the connection.

figure 17-5

Using the game Kit Framework ❘ 427

figure 17-6 figure 17-7

How It Works

The GKSession object is used to represent a session between two connected Bluetooth devices. You use
it to send and receive data between the two devices. Hence, you first create a variable of type GKSession:

 GKSession *currentSession;

The GKPeerPickerController class provides a standard UI to enable your application to discover and
connect to another Bluetooth device. This is the easiest way to connect to another Bluetooth device.

To discover and connect to another Bluetooth device, implement the btnConnect: method as follows:

-(IBAction) btnConnect:(id) sender {
 picker = [[GKPeerPickerController alloc] init];
 picker.delegate = self;
 picker.connectionTypesMask = GKPeerPickerConnectionTypeNearby;

 [connect setHidden:YES];
 [disconnect setHidden:NO];
 [picker show];
}

The connectionTypesMask property indicates the types of connections from which the
user can choose. There are two types available: GKPeerPickerConnectionTypeNearby and
GKPeerPickerConnectionTypeOnline. For Bluetooth communication, use the
GKPeerPickerConnectionTypeNearby constant. The GKPeerPickerConnectionTypeOnline
constant indicates an Internet-based connection.

When remote Bluetooth devices are detected and the user has selected and connected to one of them,
the peerPickerController:didConnectPeer:toSession: method is called. It is implemented as follows:

-(void)peerPickerController:(GKPeerPickerController *)pk

428 ❘ chApter 17 bluetOOth PrOGramminG

 didConnectPeer:(NSString *)peerID
 toSession:(GKSession *)session {
 self.currentSession = session;
 session.delegate = self;
 [session setDataReceiveHandler:self withContext:nil];
 picker.delegate = nil;
 [picker dismiss];
 [picker autorelease];
}

When the user has connected to the peer Bluetooth device, you save the GKSession object to the
currentSession property. This enables you to use the GKSession object to communicate with
the remote device.

If the user cancels the Bluetooth Picker, the peerPickerControllerDidCancel: method is called. It’s
defined as follows:

-(void)peerPickerControllerDidCancel:(GKPeerPickerController *)pk {
 picker.delegate = nil;
 [picker autorelease];
 [connect setHidden:NO];
 [disconnect setHidden:YES];
}

To disconnect from a connected device, use the disconnectFromAllPeers method from the GKSession
object:

-(IBAction) btnDisconnect:(id) sender {
 [self.currentSession disconnectFromAllPeers];
 [self.currentSession release];
 currentSession = nil;
 [connect setHidden:NO];
 [disconnect setHidden:YES];
}

When a device is connected or disconnected, the session:peer:didChangeState: method is called:

-(void)session:(GKSession *)session
 peer:(NSString *)peerID
didChangeState:(GKPeerConnectionState)state {

 switch (state) {
 case GKPeerStateConnected:
 NSLog(@”connected”);
 break;

 case GKPeerStateDisconnected:
 NSLog(@”disconnected”);
 [self.currentSession release];
 currentSession = nil;
 [connect setHidden:NO];
 [disconnect setHidden:YES];
 break;
 }
}

Using the game Kit Framework ❘ 429

Handling this event enables you to determine when a connection is established or ended. For example,
when the connection is established, you might want to immediately start sending data to the other device.

Sending and receiving Data
Once two devices are connected via Bluetooth, you can begin to send data between them. The data
is transmitted using the NSData object (which is actually a bytes buffer), so you are free to define
your own data format to send any types of data (such as images, text files, binary files, and so on).

The following Try It Out shows how to send a simple text message to another Bluetooth-connected
device.

Sending Text to Another Devicetry it Out

 1 . Using the project created in the previous section, add the following methods to the
BluetoothViewController.m file:

//---send data to peer---
- (void) mySendDataToPeers:(NSData *) data {
 if (currentSession)
 [self.currentSession sendDataToAllPeers:data
 withDataMode:GKSendDataReliable
 error:nil];
}

-(IBAction) btnSend:(id) sender {
 //---convert an NSString object to NSData---
 NSData* data;
 NSString *str = [NSString stringWithString:txtMessage.text];
 data = [str dataUsingEncoding: NSASCIIStringEncoding];
 [self mySendDataToPeers:data];
}

//---data received from peer---
- (void) receiveData:(NSData *)data
 fromPeer:(NSString *)peer
 inSession:(GKSession *)session
 context:(void *)context {
 //---convert the NSData to NSString---
 NSString* str;
 str = [[NSString alloc] initWithData:data
 encoding:NSASCIIStringEncoding];

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Data received”
 message:str
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];

430 ❘ chApter 17 bluetOOth PrOGramminG

 [str release];
}

2 . Deploy the application onto two devices. Connect the devices using Bluetooth. Now enter some
text and start sending to the other device. Data received from another device is shown in an Alert
view (see Figure 17-8).

figure 17-8

How It Works

To send data to the connected Bluetooth device, use the mysendDataToAllPeers: method of the
GKSession object. The data that you send is transmitted via an NSData object.

The mySendDataToAllPeers: method is defi ned as follows:

- (void) mySendDataToPeers:(NSData *) data {
 if (currentSession)
 [self.currentSession sendDataToAllPeers:data
 withDataMode:GKSendDataReliable
 error:nil];
}

NOTE Note the use of the GKSendDataReliable constant. This constant means
that the GKSession object continues to send the data until it is successfully trans-
mitted or the connection times out. The data is delivered in the order it is sent.
Use this constant when you need to ensure guaranteed delivery. Conversely, the
GKSendDataUnreliable constant indicates that the GKSession object sends the
data once and does not retry if an error occurs. The data sent can be received
out of order by recipients. Use this constant for small packets of data that must
arrive quickly in order to be useful to the recipient.

implementing Voice Chatting ❘ 431

The btnSend: method enables text entered by the user to be sent to the remote device:

-(IBAction) btnSend:(id) sender {
 //---convert an NSString object to NSData---
 NSData* data;
 NSString *str = [NSString stringWithString:txtMessage.text];
 data = [str dataUsingEncoding: NSASCIIStringEncoding];
 [self mySendDataToPeers:data];
}

When data is received from the other device, the receiveData:fromPeer:inSession:context: method
is called:

- (void) receiveData:(NSData *)data
 fromPeer:(NSString *)peer
 inSession:(GKSession *)session
 context:(void *)context {
 //---convert the NSData to NSString---
 NSString* str;
 str = [[NSString alloc] initWithData:data
 encoding:NSASCIIStringEncoding];

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Data received”
 message:str
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 [str release];
}

Here, the received data is in the NSData format. To display it using the UIAlertView class, you convert it
to an NSString object.

implementing vOice chAtting

Another cool feature of the Game Kit framework is its support for voice chat.

The Voice Chat service in the Game Kit enables two devices to establish a voice chat. The voice chat
takes place over either an Internet connection or a Bluetooth connection. This section shows you
how to implement voice chatting over a Bluetooth communication channel.

Bluetooth Voice Chattingtry it Out

codefile BluetoothChat.zip available for download at Wrox.com

 1 . Using Xcode, create a new View-based Application project and name it BluetoothChat.

432 ❘ chApter 17 bluetOOth PrOGramminG

 2 . Add the GameKit and AVFoundation frameworks to the Frameworks folder of the project (see
Figure 17-9).

 3 . Drag and drop a WAV file onto the Resources folder in Xcode (see Figure 17-10).

figure 17-9 figure 17-10

 4 . Double-click the BluetoothViewController.xib file to edit it in Interface Builder.

 5 . Populate the View window with three Round Rect Button views (see Figure 17-11). Name them
MUTE, Disconnect, and Connect.

 6 . Add the following bold statements to the BluetoothChatViewController.h file:

#import<UIKit/UIKit.h>

#import <GameKit/GameKit.h>
#import <AVFoundation/AVFoundation.h>

@interfaceBluetoothChatViewController:UIViewController
 <GKVoiceChatClient,
 GKPeerPickerControllerDelegate,
 GKSessionDelegate> {

 GKSession *currentSession;
 IBOutlet UIButton *connect;
 IBOutlet UIButton *disconnect;
 GKPeerPickerController *picker;
}

@property (nonatomic, retain) GKSession *currentSession;
@property (nonatomic, retain) UIButton *connect;
@property (nonatomic, retain) UIButton *disconnect;

-(IBAction)btnMute:(id) sender;
-(IBAction)btnUnmute:(id) sender;
-(IBAction)btnConnect:(id) sender;
-(IBAction)btnDisconnect:(id) sender;

@end

implementing Voice Chatting ❘ 433

 7 . In the BluetoothViewController.xib window, perform the
following connections:

Control-click the File’s Owner item and drag and drop ➤➤

it over the Connect button. Select connect.

Control-click the File’s Owner item and drag and drop ➤➤

it over the Disconnect button. Select disconnect.

Control-click the Connect button and drag and drop it ➤➤

over the File’s Owner item. Select btnConnect:.

Control-click the Disconnect button and drag and drop ➤➤

it over the File’s Owner item. Select btnDisconnect:.

Right-click the Mute button and connect the Touch ➤➤

Down event to the File’s Owner item. Select btnMute:.

Right-click the Mute button and connect the Touch ➤➤

Up Inside event to the File’s Owner item. Select
btnUnmute:.

 8 . To verify that all the connections are made correctly, right-
click the File’s Owner item and view its connections (see
Figure 17-12).

figure 17-12

 9 . Add the following bold statements to the BluetoothViewController.m file:

#import“BluetoothChatViewController.h”

@implementationBluetoothChatViewController

@synthesize currentSession;
@synthesize connect;

figure 17-11

434 ❘ chApter 17 bluetOOth PrOGramminG

@synthesize disconnect;

NSString *recorderFilePath;
AVAudioPlayer *audioPlayer;

-(void)viewDidLoad{
 [connect setHidden:NO];
 [disconnect setHidden:YES];
[superviewDidLoad];
}

//---select a nearby Bluetooth device---
-(IBAction) btnConnect:(id) sender {
 picker = [[GKPeerPickerController alloc] init];
 picker.delegate = self;
 picker.connectionTypesMask = GKPeerPickerConnectionTypeNearby;

 [connect setHidden:YES];
 [disconnect setHidden:NO];
 [picker show];
}

//---disconnect from the other device---
-(IBAction) btnDisconnect:(id) sender {
 [self.currentSession disconnectFromAllPeers];
 [self.currentSession release];
 currentSession = nil;

 [connect setHidden:NO];
 [disconnect setHidden:YES];
}

//---did connect to a peer---
-(void) peerPickerController:(GKPeerPickerController *)pk
 didConnectPeer:(NSString *)peerID
 toSession:(GKSession *) session {
 self.currentSession = session;
 session.delegate = self;
 [session setDataReceiveHandler:self withContext:nil];
 picker.delegate = nil;

 [picker dismiss];
 [picker autorelease];
}

//---connection was cancelled---
-(void) peerPickerControllerDidCancel:(GKPeerPickerController *)pk {
 picker.delegate = nil;
 [picker autorelease];

 [connect setHidden:NO];
 [disconnect setHidden:YES];
}

//---mute the voice chat---

implementing Voice Chatting ❘ 435

-(IBAction) btnMute:(id) sender {
 [GKVoiceChatService defaultVoiceChatService].microphoneMuted = YES;
}

//---unmute the voice chat---
-(IBAction) btnUnmute:(id) sender {
 [GKVoiceChatService defaultVoiceChatService].microphoneMuted = NO;
}

//---returns a unique ID that identifies the local user---
-(NSString *) participantID {
 return currentSession.peerID;
}

//---sends voice chat configuration data to the other party---
-(void) voiceChatService:(GKVoiceChatService *) voiceChatService
 sendData:(NSData *) data
 toParticipantID:(NSString *) participantID {

 [currentSession sendData:data toPeers:
 [NSArray arrayWithObject:participantID]
 withDataMode:GKSendDataReliable error:nil];
}

//---session state changed---
-(void) session:(GKSession *)session
 peer:(NSString *)peerID
 didChangeState:(GKPeerConnectionState)state {
 switch (state) {
 case GKPeerStateConnected: {
 //---plays an audio file---
 NSString *soundFilePath = [[NSBundle mainBundle]
 pathForResource:@”beep”
 ofType:@”wav”];

 NSURL *fileURL = [[NSURL alloc]
 initFileURLWithPath:soundFilePath];

 AVAudioPlayer *audioPlayer =
 [[AVAudioPlayer alloc] initWithContentsOfURL:fileURL
 error:nil];

 [fileURL release];
 [audioPlayer play];

 NSError *error;
 AVAudioSession *audioSession = [AVAudioSession sharedInstance];

 if (![audioSession
 setCategory:AVAudioSessionCategoryPlayAndRecord
 error:&error]) {
 NSLog(@”Error setting category: %@”,
 [error localizedDescription]);
 }

 if (![audioSession setActive:YES error:&error]) {

436 ❘ chApter 17 bluetOOth PrOGramminG

 NSLog(@”Error activating audioSession: %@”,
 [error description]);
 }

 [GKVoiceChatService defaultVoiceChatService].client = self;

 //---initiating the voice chat---
 if (![[GKVoiceChatService defaultVoiceChatService]
 startVoiceChatWithParticipantID:peerID error:&error]) {
 NSLog(@”Error starting startVoiceChatWithParticipantID:%@”,
 [error userInfo]);
 }
 } break;

 case GKPeerStateDisconnected: {
 [[GKVoiceChatService defaultVoiceChatService]
 stopVoiceChatWithParticipantID:peerID];

 [self.currentSession release];
 currentSession = nil;

 [connect setHidden:NO];
 [disconnect setHidden:YES];
 } break;
 }
}

//---data received from the other party---
-(void) receiveData:(NSData *)data
 fromPeer:(NSString *)peer
 inSession:(GKSession *)session
 context:(void *)context {

 //---start the voice chat when initiated by the client---
 [[GKVoiceChatService defaultVoiceChatService]
 receivedData:data fromParticipantID:peer];
}

//---session failed with error---
-(void) session:(GKSession *)session
didFailWithError:(NSError *)error {
 NSLog(@”%@”,[error description]);
}

-(void)dealloc{
 if (currentSession) [currentSession release];
 [connect release];
 [disconnect release];
[superdealloc];
}

 10 . To test the application, deploy it onto two devices. (For the iPod touch, you need to connect it to an
external microphone, as it does not include one.) Then run the application and press the Connect
button to use Bluetooth to connect the two devices. As soon as the two devices are connected, you

implementing Voice Chatting ❘ 437

can start chatting! To temporarily mute the conversation, press and hold the MUTE button. When it
is released, the conversation resumes. Have fun!

How It Works

When two Bluetooth devices are connected, you fi rst play the beep sound and start the audio session
(via the session:peer:didChangeState: method):

 //---plays an audio file---
 NSString *soundFilePath = [[NSBundle mainBundle]
 pathForResource:@”beep”
 ofType:@”wav”];

 NSURL *fileURL = [[NSURL alloc]
 initFileURLWithPath:soundFilePath];

 AVAudioPlayer *audioPlayer =
 [[AVAudioPlayer alloc] initWithContentsOfURL:fileURL
 error:nil];

 [fileURL release];
 [audioPlayer play];

 NSError *error;
 AVAudioSession *audioSession = [AVAudioSession sharedInstance];

 if (![audioSession
 setCategory:AVAudioSessionCategoryPlayAndRecord
 error:&error]) {
 NSLog(@”Error setting category: %@”,
 [error localizedDescription]);
 }

 if (![audioSession setActive:YES error:&error]) {
 NSLog(@”Error activating audioSession: %@”,
 [error description]);
 }

 [GKVoiceChatService defaultVoiceChatService].client = self;

WARNING If you do not start the audio player, the voice chat might not work.

You then retrieve a singleton instance of the GKVoiceChatService class and call its
startVoiceChatWithParticipantID:error: method to start the voice chat:

 //---initiating the voice chat---
 if (![[GKVoiceChatService defaultVoiceChatService]
 startVoiceChatWithParticipantID:peerID
 error:&error]) {
 NSLog(@”Error starting startVoiceChatWithParticipantID:%@”,

438 ❘ chApter 17 bluetOOth PrOGramminG

 [error userInfo]);
 }

Calling the startVoiceChatWithParticipantID:error: method invokes the
voiceChatService:sendData:toParticipantID: method (defined in the GKVoiceChatClient protocol),
which makes use of the current Bluetooth session to send the configuration data to the other connected
device:

//---sends voice chat configuration data to the other party---
-(void) voiceChatService:(GKVoiceChatService *) voiceChatService
 sendData:(NSData *) data
 toParticipantID:(NSString *) participantID {

 [currentSession sendData:data toPeers:
 [NSArray arrayWithObject:participantID]
 withDataMode:GKSendDataReliable error:nil];
}

When it has received the configuration data, the other device starts the Voice Chat service by calling
the receivedData:fromParticipantID: method (also defined in the GKVoiceChatClient protocol):

//---data received from the other party---
-(void) receiveData:(NSData *)data
 fromPeer:(NSString *)peer
 inSession:(GKSession *)session
 context:(void *)context {

 //---start the voice chat when initiated by the client---
 [[GKVoiceChatService defaultVoiceChatService]
 receivedData:data fromParticipantID:peer];
}

The GKVoiceChatService uses the configuration information that was exchanged between the two
devices and creates its own connection to transfer voice data.

You can mute the microphone by setting the microphoneMuted property to YES:

[GKVoiceChatService defaultVoiceChatService].microphoneMuted = YES;

SummAry

This chapter has demonstrated how easy it is to connect two iPhones (or iPads and iPod
touches) using Bluetooth. Using the concepts shown in this chapter, you can build networked games
and other interesting applications easily. You also saw how the Game Kit framework provides the
GKVoiceChatService class, which makes voice communication between two devices seamless. It is
not necessary to understand how the voices are transported between two devices — all you need
to know is how to call the relevant methods to initialize the chat. However, there is one important
thing you should know: Voice chat works not only over Bluetooth, but over any communication
channel. In fact, if you have two devices connected using TCP/IP, you can stream the voices over
the wire.

Summary ❘ 439

exerciSeS

 1 . What class can you use to locate peer Bluetooth devices?

 2 . Name the object that is responsible for managing the session between two connected Bluetooth
devices .

 3 . Name the method from the GKVoiceChatService class that you need to call to establish a voice chat .

 4 . Name the two methods defined in the GKVoiceChatClient protocol that establish a voice chat
channel .

Answers to the Exercises can be found in Appendix E, on Wrox.com.

440 ❘ chApter 17 bluetOOth PrOGramminG

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

looking for
peer Bluetooth
devices

Use the GKPeerPickerController class .

communicating
between two
Bluetooth
devices

Use the GKSession class .

establishing a
voice chat

Call the startVoiceChatWithParticipantID:error: method from the
GKVoiceChatService class .

On the initiator, call the voiceChatService:sendData:toParticipantID:
method defined in the GKVoiceChatClient protocol .

On the receiver, call the receivedData:fromParticipantID: method defined in
the GKVoiceChatClient protocol .

muting the
microphone

[GKVoiceChatService defaultVoiceChatService].microphoneMuted = YES;

Bonjour Programming

whAt yOu will leArn in thiS chApter

How to publish a service on the network using the NSNetService class➤➤

How to discover services on the network using the ➤➤

NSNetServiceBrowser class

How to resolve the IP addresses of services on the network➤➤

Bonjour is Apple’s implementation of the Zeroconf protocol, which enables the automatic
discovery of computers, devices, and services on an IP network. In this chapter, you will learn
how to implement Bonjour on the iPhone by using the NSNetService class to publish a service.
You will also use the NSNetServiceBrowser class to discover services that have been published.

creAting the ApplicAtiOn

In this section, you will create the user interface for the application. You’ll use a Table view to
display the users that you have discovered on the network. As users are discovered, they will
be added to the Table view.

Creating the Application’s Uitry it Out

 1 . Using Xcode, create a View-based Application (iPhone) project and name it Bonjour.

 2 . Double-click the BonjourViewController.xib fi le to edit it in Interface Builder. Populate the
View window with the following views (see Figure 18-1):

Label (set its text to ➤➤ Discovered Users)

Table View➤➤

Text View➤➤

18

442 ❘ chApter 18 bOnjOur PrOGramminG

figure 18-1

 3 . In the BonjourViewController.h file, add the following bold statements:

#import<UIKit/UIKit.h>

@interfaceBonjourViewController:UIViewController
<UITableViewDelegate,
 UITableViewDataSource>{
 //---outlets---
 IBOutlet UITableView *tbView;
 IBOutlet UITextView *debug;
}

//---expose the outlets as properties---
@property (nonatomic, retain) UITableView *tbView;
@property (nonatomic, retain) UITextView *debug;

@end

 4 . In the BonjourViewController.xib window, perform the following connections:

Control-click the File’s Owner item and drag and drop it over the Table view. Select ➤➤ tbView.

Control-click the File’s Owner item and drag and drop it over the Text View. Select ➤➤ debug.

Right-click the Table view and connect the ➤➤ dataSource outlet to the File’s Owner item.

Right-click the Table view and connect the ➤➤ delegate outlet to the File’s Owner item.

Publishing a Service ❘ 443

 5 . To verify that all the connections are made correctly,
right-click the File’s Owner item and view its connec-
tions (see Figure 18-2).

How It Works

Because you’ll use the Table view to display the list of users
discovered on the network, you need to set the dataSource
and delegate outlets to the File’s Owner item. The Text
View will be used to show the various things happening
in the background. This is very useful for debugging your
application and understanding what happens as services
are discovered on the network.

puBliShing A Service

With all the views and outlets wired up, you can publish a service using the NSNetService class. The
following Try It Out shows you how.

Publishing a Service on the networktry it Out

 1 . Using the same project created in the previous section, add the following bold statements to the
BonjourAppDelegate.h file:

#import<UIKit/UIKit.h>

@classBonjourViewController;

@interfaceBonjourAppDelegate:NSObject
<UIApplicationDelegate,
NSNetServiceDelegate>{

UIWindow*window;
BonjourViewController*viewController;

 //---use this to publish a service---
 NSNetService *netService;
}

@property(nonatomic,retain)IBOutletUIWindow*window;
@property(nonatomic,retain)IBOutletBonjourViewController
*viewController;

@end

figure 18-2

444 ❘ chApter 18 bOnjOur PrOGramminG

 2 . In the BonjourAppDelegate.m file, add the following statements in bold:

#import“BonjourAppDelegate.h”
#import“BonjourViewController.h”

@implementationBonjourAppDelegate

@synthesizewindow;
@synthesizeviewController;

-(BOOL)application:(UIApplication*)application
didFinishLaunchingWithOptions:(NSDictionary*)launchOptions{

//Addtheviewcontroller’sviewtothewindowanddisplay.
[windowaddSubview:viewController.view];
[windowmakeKeyAndVisible];

 //---publish the service---
 netService = [[NSNetService alloc] initWithDomain:@””
 type:@”_MyService._tcp.”
 name:@””
 port:9876];
 netService.delegate = self;
 [netService publish];

returnYES;
}

-(void)netService:(NSNetService *)aNetService
 didNotPublish:(NSDictionary *)dict {
 NSLog(@”Service did not publish: %@”, dict);
}

- (void)applicationWillTerminate:(UIApplication *)application {
 //---stop the service when the application is terminated---
 [netService stop];
}

- (void)applicationDidEnterBackground:(UIApplication *)application {
 //---stop the service when the application is paused---
 [netService stop];
}

- (void)applicationWillEnterForeground:(UIApplication *)application {
 [netService publish];
}

-(void)dealloc{
 [netService release];
[viewControllerrelease];
[windowrelease];
[superdealloc];
}

Publishing a Service ❘ 445

How It Works

To publish a service on the network, you use the NSNetService class to advertise your presence on the
network:

 //---use this to publish a service---
NSNetService*netService;

Here, you advertise your presence on the network by publishing a network service when your applica-
tion has finished launching (application:DidFinishLaunchingWithOptions:). You publish a network
service first by instantiating it with several parameters to the NSNetService class:

 //---publish the service---
netService=[[NSNetServicealloc]initWithDomain:@””
type:@”_MyService._tcp.”
name:@””
port:9876];

The first argument specifies the domain for the service. You use @“” to denote the default domain. The
second argument indicates the service type and transport layer. In this example, you named the service
as MyService and it uses TCP as the protocol. Note that you need to prefix the service name and pro-
tocol with an underscore (_) and end the protocol with a period (.). The third argument specifies the
name of the service — you have used an empty string in this case. Finally, you specify the port number
on which the service is published via the fourth argument.

To publish the service, you use the publish method of the NSNetService class:

 netService.delegate = self;
[netServicepublish];

You also implemented the netService:didNotPublish: method so that in the event that the service is
not published successfully, you write a message to the Debugger Console window (or perhaps display
an alert to the user):

-(void)netService:(NSNetService *)aNetService
 didNotPublish:(NSDictionary *)dict {
 NSLog(@”Service did not publish: %@”, dict);
}

When the application exits (applicationWillTerminate:) or goes into background mode
(applicationDidEnterBackground:) you stop publishing the service:

- (void)applicationWillTerminate:(UIApplication *)application {
 //---stop the service when the application is terminated---
 [netService stop];
}

- (void)applicationDidEnterBackground:(UIApplication *)application {
 //---stop the service when the application is paused---
 [netService stop];
}

446 ❘ chApter 18 bOnjOur PrOGramminG

When the application returns to the foreground (applicationWillEnterForeground:), you publish the
service again:

- (void)applicationWillEnterForeground:(UIApplication *)application {
 [netService publish];
}

BrOwSing fOr ServiceS

Now that you have seen how to publish a service, this section demonstrates how you can browse for
services that have been published on the network. You will use the NSNetServiceBrowser class to
discover services published on the network.

Browsing for Services on the networktry it Out

 1 . Using the Bonjour project from the previous Try it Out, add the following bold statements to the
BonjourViewController.h file:

#import<UIKit/UIKit.h>

@interfaceBonjourViewController:UIViewController
<UITableViewDelegate,
UITableViewDataSource,
 NSNetServiceDelegate,
 NSNetServiceBrowserDelegate>{

//---outlets---
IBOutletUITableView*tbView;
IBOutletUITextView*debug;

 //---use for browsing services---
 NSNetServiceBrowser *browser;
 NSMutableArray *services;
}

-(void) resolveIPAddress:(NSNetService *)service;
-(void) browseServices;

//---exposetheoutletsasproperties---
@property(nonatomic,retain)UITableView*tbView;
@property(nonatomic,retain)UITextView*debug;

@property (readwrite, retain) NSNetServiceBrowser *browser;
@property (readwrite, retain) NSMutableArray *services;

@end

Browsing for Services ❘ 447

 2 . In the BonjourViewController.m file, add the following bold statements:

#import“BonjourViewController.h”

#import <netinet/in.h>
#import <arpa/inet.h>

@implementationBonjourViewController

@synthesize tbView;
@synthesize debug;
@synthesize browser;
@synthesize services;

//---set the number of rows in the TableView---
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [services count];
}

//---display the individual rows in the TableView---
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @”Cell”;
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 }

 //---display the hostname of each service---
 cell.textLabel.text =
 [[services objectAtIndex:indexPath.row] hostName];

 return cell;
}

//---browse for services---
-(void) browseServices {
 services = [NSMutableArray new];
 self.browser = [[NSNetServiceBrowser new] autorelease];
 self.browser.delegate = self;
 [self.browser searchForServicesOfType:@”_MyService._tcp.”
 inDomain:@””];
}

//---browse for services when the View is loaded---
-(void) viewDidLoad {
 debug.text = @””;

448 ❘ chApter 18 bOnjOur PrOGramminG

 [self browseServices];
 [super viewDidLoad];
}

//---services found---
-(void)netServiceBrowser:(NSNetServiceBrowser *)aBrowser
 didFindService:(NSNetService *)aService
 moreComing:(BOOL)more {

 [services addObject:aService];
 debug.text = [debug.text stringByAppendingString:
 @”Found service. Resolving address...\n”];
 [self resolveIPAddress:aService];
}

//---services removed from the network---
-(void)netServiceBrowser:(NSNetServiceBrowser *)aBrowser
 didRemoveService:(NSNetService *)aService
 moreComing:(BOOL)more {

 [services removeObject:aService];
 debug.text = [debug.text stringByAppendingFormat:@”Removed: %@\n”,
 [aService hostName]];

 [self.tbView reloadData];
}

//---resolve the IP address(es) of a service---
-(void)resolveIPAddress:(NSNetService *)service {
 NSNetService *remoteService = service;
 remoteService.delegate = self;
 [remoteService resolveWithTimeout:0];
}

//---managed to resolve---
-(void)netServiceDidResolveAddress:(NSNetService *)service {
 NSData *address = nil;
 struct sockaddr_in *socketAddress = nil;
 NSString *ipString = nil;
 int port;

 //---get the IP address(es) of a service---
 for(int i=0;i < [[service addresses] count]; i++) {
 address = [[service addresses] objectAtIndex: i];
 socketAddress = (struct sockaddr_in *) [address bytes];
 ipString = [NSString stringWithFormat: @”%s”,
 inet_ntoa(socketAddress->sin_addr)];

 port = socketAddress->sin_port;
 debug.text = [debug.text stringByAppendingFormat:
 @”Resolved: %@ -- >%@:%hu\n”,
 [service hostName], ipString, port];
 }
 //---reload the table view---
 [self.tbView reloadData];

Browsing for Services ❘ 449

}

//---did not manage to resolve---
-(void)netService:(NSNetService *)service
 didNotResolve:(NSDictionary *)errorDict {
 debug.text = [debug.text stringByAppendingFormat:
 @”Could not resolve: %@\n”, errorDict];
}

-(void)dealloc{
 [tbView release];
 [debug release];
 [browser release];
 [services release];
[superdealloc];
}

 3 . That’s it! Deploy the application onto at least two
devices (one on the iPhone 4 Simulator and one on a
real device). When the application is running, it will
search for all services published on the same network.
As services are discovered, their names appear in the
Table view. Figure 18-3 shows the Table view dis-
playing the hostname of the devices it has discovered.
In this example:

“Wei-Meng-Lees-iMac.local” refers to the ➤➤

iPhone Simulator running the application.

“Wei-Meng-Lees-iPhone.local” refers to my ➤➤

iPhone running the application.

“Wei-Meng-Lees-iPod.local” refers to my iPod ➤➤

touch running the application.

How It Works

There is quite a bit of coding involved here, so let’s take a
more detailed look.

First, you defined the browseServices method, which uses
the NSNetServiceBrowser class to search for the service
named “_MyService._tcp.” in the default domain:

//---browse for services---
-(void) browseServices {
 services = [NSMutableArray new];
 self.browser = [[NSNetServiceBrowser new] autorelease];
 self.browser.delegate = self;
 [self.browser searchForServicesOfType:@”_MyService._tcp.”
 inDomain:@””];
}

figure 18-3

450 ❘ chApter 18 bOnjOur PrOGramminG

As services are discovered, the netServiceBrowser:didFindService:moreComing: method will be
called. In this method, you add all the discovered services to the services mutable array:

//---services found---
-(void)netServiceBrowser:(NSNetServiceBrowser *)aBrowser
 didFindService:(NSNetService *)aService
 moreComing:(BOOL)more {

 [services addObject:aService];
 debug.text = [debug.text stringByAppendingString:
 @”Found service. Resolving address...\n”];
 [self resolveIPAddress:aService];
}

You also try to resolve the IP address of the discovered service by calling the resolveIPhonedress:
method, which you will define.

The resolveIPAddress: method uses the resolveWithTimeout: method of the NSNetService instance
(representing the service that was discovered) to obtain its IP addresses:

//---resolve the IP address(es) of a service---
-(void)resolveIPAddress:(NSNetService *)service {
 NSNetService *remoteService = service;
 remoteService.delegate = self;
 [remoteService resolveWithTimeout:0];
}

If it managed to resolve the IP addresses of the service, the netServiceDidResolveAddress: method is
called. If it did not manage to resolve the IP address, the netService:didNotResolve: method is called.

In the netServiceDidResolveAddress: method, you extract all the available IP addresses of the service
and display them on the TextView. You then try to reload the Table view using the reloadData method
of the UITableView class:

//---managed to resolve---
-(void)netServiceDidResolveAddress:(NSNetService *)service {
 NSData *address = nil;
 struct sockaddr_in *socketAddress = nil;
 NSString *ipString = nil;
 int port;

 //---get the IP address(es) of a service---
 for(int i=0;i < [[service addresses] count]; i++) {
 address = [[service addresses] objectAtIndex: i];
 socketAddress = (struct sockaddr_in *) [address bytes];
 ipString = [NSString stringWithFormat: @”%s”,
 inet_ntoa(socketAddress->sin_addr)];

 port = socketAddress->sin_port;
 debug.text = [debug.text stringByAppendingFormat:
 @”Resolved: %@ -- >%@:%hu\n”,

Browsing for Services ❘ 451

 [service hostName], ipString, port];
 }
 //---reload the table view---
 [self.tbView reloadData];
}

When services are removed from the network, the netServiceBrowser:didRemoveService: method is
called; therefore, in this method you remove the service from the services mutable array:

//---services removed from the network---
-(void)netServiceBrowser:(NSNetServiceBrowser *)aBrowser
 didRemoveService:(NSNetService *)aService
 moreComing:(BOOL)more {

 [services removeObject:aService];
 debug.text = [debug.text stringByAppendingFormat:@”Removed: %@\n”,
 [aService hostName]];

 [self.tbView reloadData];
}

The rest of the code involves loading the Table view with the hostname of the services that have been
discovered. In particular, you display the host name of each service in the Table view:

//---set the number of rows in the TableView---
- (NSInteger)tableView:(UITableView *)tableView
 numberOfRowsInSection:(NSInteger)section {
 return [services count];
}

//---display the individual rows in the TableView---
- (UITableViewCell *)tableView:(UITableView *)tableView
 cellForRowAtIndexPath:(NSIndexPath *)indexPath {

 static NSString *CellIdentifier = @”Cell”;
 UITableViewCell *cell =
 [tableView dequeueReusableCellWithIdentifier:CellIdentifier];

 if (cell == nil) {
 cell = [[[UITableViewCell alloc]
 initWithStyle:UITableViewCellStyleDefault
 reuseIdentifier:CellIdentifier] autorelease];
 }

 //---display the hostname of each service---
 cell.textLabel.text =
 [[services objectAtIndex:indexPath.row] hostName];

 return cell;
}

452 ❘ chApter 18 bOnjOur PrOGramminG

DOing mOre with tcp/ip

With peers on the network discovered, what can you do next? You can use TCP/
IP to connect with your peers on the network and send messages to them. Using
TCP/IP for networking is beyond the scope of this book. However, interested
users can download a working application from the author’s website — http://
www.learn2develop.net — that illustrates how to build a chat application using
Bonjour.

SummAry

This chapter explained how to publish a service on the network using the NSNetService class and
how to discover services on the local network using the NSNetServiceBrowser class. Once peers are
discovered on the network, you can connect to them and initiate a peer-to-peer communication. A
chat application is a good example of a Bonjour application.

exerciSeS

1 . What class can you use to publish a service on the network?

2 . What class can you use to discover services on the network?

3 . Name the method that is called when a service is discovered .

4 . Name the method that is called when a service is removed .

Answers to the Exercises can be found in Appendix E, on Wrox.com.

http://www.learn2develop.net
http://www.learn2develop.net

Summary ❘ 453

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

publishing a service Use the NSNetService class .

Discovering services Use the NSNetServiceBrowser class .

resolving the ip addresses
of a service

Use the resolveWithTimeout: method of an NSNetService object .

getting the ip addresses
of a service

Use the addresses method of an NSNetService object .

method that is called when
a service is discovered

netServiceBrowser:didFindService:moreComing:

method that is called when
a service is removed

netServiceBrowser:didRemoveService:moreComing:

Apple Push notifi cation Service

whAt yOu will leArn in thiS chApter

How to use the Apple Push Notifi cation service➤➤

Generating a certifi cate request➤➤

Generating a development certifi cate➤➤

How to create an App ID➤➤

How to confi gure an App ID for push notifi cation➤➤

Creating a provisioning profi le➤➤

How to provision a device➤➤

How to deploy an iPhone application onto a device➤➤

Using a push notifi cation provider application➤➤

One of the key limitations of the iPhone is its constraint on running applications in the
background, which means that applications requiring a constant state of connectivity (such
as social networking applications) will not be able to receive timely updates when the user
switches to another application.

NOTE Chapter 21 discusses the new multi-tasking feature of iOS 4. While you
now have the ability to run your application in the background, the types of
applications that are allowed to do so are limited. Also, applications running in
the background are not allowed to have any network connectivity.

19

456 ❘ chApter 19 aPPle PuSh nOtiFicatiOn SerVice

To overcome this limitation, Apple released the Apple Push Notification service (APNs). The APNs
enable your device to remain connected to Apple’s push notification server (PNS). When you want
to send a push notification to an application installed on the users’ devices, you (the provider) can
contact the APNs so that it can deliver a push message to the particular application installed on the
intended device.

When your iPhone application uses the Apple Push Notification service, the device remains con-
nected to the APNs server using an open TCP/IP connection. To send notifications to your applica-
tion running on iPhone devices, you need to write a provider application that communicates with
that server. Your provider application will send messages to the APNs server, which in turn relays
the message to the various devices running your application by pushing the message to these devices
through the TCP/IP connection.

While the steps for using the APNs are straightforward, you need to be aware of several details in
order to enable messages to be pushed successfully to the devices. In this chapter, you learn how to
create an iPhone application using the APNs. The following sections take you through the steps for
APNs programming in more detail.

generAting A certificAte requeSt

The first step to using the APNs is to generate a certificate request file so that you can request two
development certificates — one for code-signing your application and one to be used by your pro-
vider to send notifications to the APNs server. The following Try It Out shows you how to generate
the certificate request.

generating a Certificate Requesttry it Out

 1 . Launch the Keychain Access application (an application in Mac OS X that manages your security
credentials) in your Mac OS X (you can do so by typing Keychain in Spotlight).

 2 . Select Keychain Access ➪ Certificate Assistant ➪ Request a Certificate From a Certificate Authority
(see Figure 19-1).

figure 19-1

generating a Development Certificate ❘ 457

 3 . Enter the information required, select the Saved to disk option, and click Continue (see
Figure 19-2).

figure 19-2

 4 . Save the certificate request using the suggested name and click Save (see Figure 19-3). Click Done
in the next screen.

figure 19-3

How It Works

This part is straightforward — use the Keychain Access application to generate a certificate request so
that you can send it to Apple later to request certificates.

generAting A DevelOpment certificAte

Once the certificate request is generated, you use it to request a development certificate from Apple.
The development certificate is used for code-signing your application so that you can deploy it on a
real device.

458 ❘ chApter 19 aPPle PuSh nOtiFicatiOn SerVice

generating a Development Certificatetry it Out

 1 . Sign in to the iPhone Developer Program at http://developer.apple.com/iphone. Click the
iPhone Provisioning Portal on the right side of the page (see Figure 19-4). The welcome page opens
(see Figure 19-5).

figure 19-4

figure 19-5

http://developer.apple.com/iphone

generating a Development Certificate ❘ 459

 2 . Click the Certificates tab on the left. The page shown in Figure 19-6 opens.

figure 19-6

 3 . Click the Request Certificate button in the lower-right corner. The page shown in Figure 19-7
opens. Click the Choose File button and select the certificate request file that you created in the
previous section, and then click Submit.

figure 19-7

460 ❘ chApter 19 aPPle PuSh nOtiFicatiOn SerVice

 4 . Your certificate is now pending approval. Refresh the page. After a few seconds the certificate will
be ready and you can download it (see Figure 19-8).

figure 19-8

 5 . Once the certificate is downloaded, double-click it to install it in the Keychain Access application.
Figure 19-9 shows the development certificate installed in the Keychain Access application.

figure 19-9

Creating an Application iD ❘ 461

How It Works

This Try It Out generates the development certifi cate that you need to code-sign your application so that
it can be deployed to a real iPhone for testing. The certifi cate installed in the Keychain Access application
contains the private and public key pair. It is a good idea to back up the certifi cate at this juncture so that
in the event that you need to shift your development work to another computer, you can simply restore the
certifi cate from the backup. Downloading the certifi cate from the iPhone Development Portal and install-
ing the certifi cate to another computer will not work because the certifi cate downloaded from Apple con-
tains only the public key, not the private key.

creAting An ApplicAtiOn iD

Each iPhone application that uses the APNs must have a unique application ID that identifi es itself.
In the following Try It Out, you create an App ID for push notifi cation.

Creating an App iD for Your Applicationtry it Out

1 . In the iPhone Provisioning Portal, click the App IDs tab on the left and then click the New App ID
button (see Figure 19-10).

figure 19-10

2 . As shown in Figure 19-11, enter PushAppID for the Description and select Generate New for the
Bundle Seed ID. For the Bundle Identifi er, enter net.learn2develop.MyPushApp. When you are
done, click Submit.

NOTE App IDs are globally universal, even amongst developers. So in this step,
instead of entering net.learn2develop.MyPushApp for the Bundle Identifi er, you
should enter your own unique Bundle Identifi er. A good recommendation is to
use your reverse domain name, such as com.yourcompany.MyPushApp.

462 ❘ chApter 19 aPPle PuSh nOtiFicatiOn SerVice

figure 19-11

 3 . You should now see the App ID that you have created, together with any you may have previously
created (see Figure 19-12).

figure 19-12

How It Works

For applications using the APNs, you need to specifically create an App ID to uniquely identify the
application. The next section demonstrates how to configure the new App ID for push notifications.

configuring an App iD for push notifications
Once an App ID is created, you need to configure it for push notifications. The following Try It Out
shows you how to do this.

Creating an Application iD ❘ 463

Configuring an App iD for Push notificationstry it Out

 1 . To configure an App ID for push notification, click the Configure link displayed to the right of the
App ID (see Figure 19-12). The Configure option (see Figure 19-13) becomes available.

figure 19-13

 2 . Check the Enable for Apple Push Notification service option and click the Configure button on the
right of the Development Push SSL Certificate.

 3 . The Apple Push Notification service SSL Certificate Assistant screen opens (see Figure 19-14). Click
Continue.

 4 . Click the Choose File button to locate the certificate request file that you saved earlier, and then
click Generate.

figure 19-14

464 ❘ chApter 19 aPPle PuSh nOtiFicatiOn SerVice

 5 . Your SSL certificate will now be generated. Click Continue (see Figure 19-15).

figure 19-15

 6 . Click the Download Now button to download the SSL certificate, and then click Done (see
Figure 19-16).

figure 19-16

Creating an Application iD ❘ 465

 7 . The SSL certificate you download is named aps.developer.identity.cer. Double-click it to install
it in the Keychain Access application (see Figure 19-17). The SSL certificate is used by your provider
application in order to contact the APNs to send push notifications to your applications.

figure 19-17

How It Works

When the App ID is configured for push notifications, you need to upload the certificate signing request
that you generated earlier to Apple so that you can obtain an SSL certificate for your provider application.
Once the SSL certificate is downloaded, you install it into your Keychain Access application.

creating a provisioning profile
Next, you create a provisioning profile so that your application can be installed onto a real
iPhone device.

Creating a Provisioning Profiletry it Out

 1 . In the iPhone Provisioning Portal, select the Provisioning tab on the left and click the New Profile
button (see Figure 19-18).

figure 19-18

466 ❘ chApter 19 aPPle PuSh nOtiFicatiOn SerVice

2 . Enter PushAppProfi le as the profi le name, and select PushAppID as the App ID (see Figure 19-19).
Finally, check all the devices that you want to provision (you can register these devices with the
iPhone Provisioning Portal through the Devices tab). When you are done, click Submit.

NOTE Appendix A describes how to register your devices through the iPhone
Provisioning Portal.

3 . The provisioning profi le is now pending approval. After a few seconds, it appears (just refresh the
browser if it is not ready). Click the Download button to download the provisioning profi le (see
Figure 19-20).The downloaded provisioning profi le is named PushAppProfile.mobileprovision.

figure 19-19

figure 19-20

Creating the iPhone Application ❘ 467

How It Works

The provisioning profile associates one or more development certificates with one or more devices and
an App ID so that you can install your signed iPhone application on a real iPhone.

provisioning a Device
With the provision profile created, you will now install it onto a real device. Once a device is provi-
sioned, your signed iPhone application will be able to run on your iPhone.

Provisioning a Devicetry it Out

 1 . Connect your iPhone to your Mac.

 2 . Drag and drop the downloaded MyDevicesProfile.mobileprovision file onto the Xcode icon on
the Dock.

 3 . Launch the Organizer application from within Xcode and select the device currently connected to
your Mac. You should see the MyDevicesProfile installed on the device.

How It Works

Any devices on which you want to test your application must be provisioned. If a device is not provi-
sioned, you will not be able to install your application on it.

creAting the iphOne ApplicAtiOn

Finally, you can write your iPhone application to receive push notifications. The following Try It
Out shows how you can programmatically receive notifications received from the APNs server.

Creating an iPhone Applicationtry it Out

 1 . In Xcode, create a new View-based Application project and name it ApplePushNotification.

 2 . Drag and drop a WAV file (shown as beep.wav in
this example) onto the Resources folder in Xcode (see
Figure 19-21).

 3 . Expand the Targets item in Xcode and double-click the
ApplePushNotification item. In the info window, click the
Properties tab (see Figure 19-22).

 4 . In the Identifier textbox, type net.learn2develop.MyPushApp
(which is the Bundle Identifier you set in Figure 19-11;
change this to match the Bundle Identifier you set earlier).

figure 19-21

468 ❘ chApter 19 aPPle PuSh nOtiFicatiOn SerVice

figure 19-22

 5 . Click the Build tab and locate the Code Signing Identity setting. In the Any iPhone OS Device
item (located under the Code Signing Identity setting), select the PushAppProfile as shown in
Figure 19-23.

figure 19-23

Creating the iPhone Application ❘ 469

 6 . In the ApplePushNotificationAppDelegate.m file, type the following bold code:

#import“ApplePushNotificationAppDelegate.h”
#import“ApplePushNotificationViewController.h”

@implementationApplePushNotificationAppDelegate

@synthesizewindow;
@synthesizeviewController;

#pragmamark-
#pragmamarkApplicationlifecycle

-(BOOL)application:(UIApplication*)application
didFinishLaunchingWithOptions:(NSDictionary*)launchOptions{

//Overridepointforcustomizationafterapplicationlaunch.

//Addtheviewcontroller’sviewtothewindowanddisplay.
[windowaddSubview:viewController.view];
[windowmakeKeyAndVisible];

 NSLog(@”Registering for push notifications...”);
 [[UIApplication sharedApplication]
 registerForRemoteNotificationTypes:
 (UIRemoteNotificationTypeAlert |
 UIRemoteNotificationTypeBadge |
 UIRemoteNotificationTypeSound)];

returnYES;
}

- (void)application:(UIApplication *)app
didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken {
 NSString *str =
 [NSString stringWithFormat:@”Device Token=%@”,deviceToken];
 NSLog(@”%@”, str);
}

- (void)application:(UIApplication *)app
didFailToRegisterForRemoteNotificationsWithError:(NSError *)err {
 NSString *str = [NSString stringWithFormat: @”Error: %@”, err];
 NSLog(@”%@”, str);
}

- (void)application:(UIApplication *)application
didReceiveRemoteNotification:(NSDictionary *)userInfo {
 for (id key in userInfo) {
 NSLog(@”key: %@, value: %@”, key, [userInfo objectForKey:key]);
 }
}

470 ❘ chApter 19 aPPle PuSh nOtiFicatiOn SerVice

 7 . Press Command-R to test the application on a real device. When the application is loaded, you will
be asked to turn on Push Notification so that your application can receive notifications. Tap the
Settings button to turn on notifications.

 8 . Press Shift-Command-R in Xcode to display the Debugger Console window. Carefully observe
the device token that is printed. The device token is of the format: xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx. Record this device token (you might want to cut
and paste it into a text file). You will need it later so your provider application can uniquely iden-
tify the devices that will receive push notifications.

How It Works

To receive push notifications, you first need to configure your application with the App ID that you
created earlier. You then configure your application so it is signed with the correct provisioning profile
associated with your development certificate.

To register your application for push notification, you use the registerForRemoteNotificationTypes:
method of the UIApplication class:

 [[UIApplication sharedApplication]
 registerForRemoteNotificationTypes:
 (UIRemoteNotificationTypeAlert |
 UIRemoteNotificationTypeBadge |
 UIRemoteNotificationTypeSound)];

This registers your application for the three types of notifications — alert, badge, and sound.

If the registration is successful, the application:didRegisterForRemoteNotificationsWithDeviceToken:
event will be called:

- (void)application:(UIApplication *)app
didRegisterForRemoteNotificationsWithDeviceToken:(NSData *)deviceToken {
 NSString *str =
 [NSString stringWithFormat:@”Device Token=%@”,deviceToken];
 NSLog(@”%@”, str);
}

At this juncture, you print out the device token. In a real application, you should programmatically
send the device token back to the provider application so that it can maintain a list of devices that need
to be sent the notifications. In fact, Apple recommends that every time your application starts up, you
send the device token to the provider application to inform the provider that the application is still in
use.

If the registration fails, the application:didFailToRegisterForRemoteNotificationsWithError: event
is called:

- (void)application:(UIApplication *)app
didFailToRegisterForRemoteNotificationsWithError:(NSError *)err {
 NSString *str = [NSString stringWithFormat: @”Error: %@”, err];
 NSLog(@”%@”, str);
}

Creating the Push notifi cation Provider ❘ 471

If the application is running when it receives a push notifi cation, the
application:didReceiveRemoteNotification: event is called:

- (void)application:(UIApplication *)application
didReceiveRemoteNotification:(NSDictionary *)userInfo {
 for (id key in userInfo) {
 NSLog(@”key: %@, value: %@”, key, [userInfo objectForKey:key]);
 }
}

Here, you can examine the content of the message received. If the appli-
cation is not running when it receives a push notifi cation, the user is
prompted with an alert (see Figure 19-24).

Clicking the View button launches the application and fi res the
application:didReceiveRemoteNotification: event.

creAting the puSh nOtificAtiOn prOviDer

A push notifi cation provider is an application written by the application’s developer to send push
notifi cations to the iPhone application through the APNs.

Here are the basic steps to send push notifi cations to your applications via the APNs server:

 1 . Communicate with the APNs server using the SSL Certifi cate you created earlier.

 2 . Construct the payload for the message you want to send.

 3 . Send the push notifi cation containing the payload to the APNs.

The APNs is a stream TCP socket that your provider can communicate with using a SSL secured
communication channel. You send the push notifi cation (containing the payload) as a binary stream.
Once you are connected to the APNs, you can send as many push notifi cations as you want within
the duration of the connection.

NOTE Refrain from opening and closing the connections to the APNs for each
push notifi cation that you want to send. Rapid opening and closing of connec-
tions to the APNs will be deemed a denial-of-service (DOS) attack and may pre-
vent your provider from sending push notifi cations to your applications.

The format of a push notifi cation message looks like Figure 19-25 (taken from Apple’s
documentation).

figure 19-24

472 ❘ chApter 19 aPPle PuSh nOtiFicatiOn SerVice

Token length

(big endian) (big endian)

Command

Bytes: 1

0 0 32 0 34 {"aps":{"alert":"You have mail!"}}deviceToken (binary)

2 32 2 34

Payload length

figure 19-25

NOTE For more details on APNs, refer to the Apple Push Notifi cation Service
Programming Guide. The full path to this guide is http://developer.apple
.com/iphone/library/documentation/NetworkingInternet/Conceptual/

RemoteNotificationsPG/Introduction/Introduction.html.

The payload is a JSON-formatted string (maximum 256 bytes) carrying the information you want
to send to your application. An example of a payload looks like the following:

{
 “aps”:
 {
 “alert”:”You got a new message!”,
 “badge”:5,
 “sound”:”beep.wav”
 },
 “acme1”:”bar”,
 “acme2”:42
}

To save yourself the trouble of developing a push notifi cation provider from scratch, you can use the
PushMeBaby application (for Mac OS X) written by Stefan Hafeneger (available at http://stefan
.hafeneger.name/download/PushMeBabySource.zip).

The following Try It Out shows how to modify the PushMeBaby application to send a notifi cation to
your application.

Modifying the Provider Applicationtry it Out

 1 . Download the source of the PushMeBaby application and then
open it in Xcode.

 2 . Right-click the Resources folder in Xcode and select Add Existing
Files. Select the aps_developer_identity.cer fi le that you down-
loaded earlier (see Figure 19-26).

figure 19-26

http://developer.apple
http://stefan

Creating the Push notification Provider ❘ 473

 3 . In the ApplicationDelegate.m file, modify the code as shown in bold, replacing the xxxxxxxx
xxx with the actual device token
you obtained earlier:

-(id)init{
self=[superinit];
if(self!=nil){
 self.deviceToken = @”xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx”;
 //---the above statement all in a single line --

 self.payload = @”{\”aps\”:{\”alert\”:\”You got a new
message!\”,\”badge\”:5,\”sound\”:\”beep.wav\”},
\”acme1\”:\”bar\”,\”acme2\”:42}”;
 //---the above statement all in a single line --

self.certificate=[[NSBundlemainBundle]
pathForResource:@”aps_developer_identity”ofType:@”cer”];
}
returnself;
}

 4 . Press Command-R to test the application. You will be asked to grant access to the certificate. Click
Always Allow (see Figure 19-27).

figure 19-27

 5 . On the iPhone, ensure that the ApplePushNotification application is not running. To send a message
to the device, click the Push button. The server essentially sends the following message to the APNs:

{
“aps”:
{
“alert”:”Yougotanewmessage!”,
“badge”:5,
“sound”:”beep.wav”
},
“acme1”:”bar”,
“acme2”:42
}

474 ❘ chApter 19 aPPle PuSh nOtiFicatiOn SerVice

 6 . If the message is pushed correctly, you will see the notification as shown in Figure 19-28.

figure 19-28

 7 . Debug the ApplePushNotification application by pressing Command-R and send a push message
from the PushMeBaby application; the Debugger Console window will display the following output:

2010-06-30 23:03:38.876 ApplePushNotification[408:307] key: aps, value: {
 alert = “You got a new message!”;
 badge = 5;
 sound = “beep.wav”;
}
2010-06-30 23:03:38.879 ApplePushNotification[408:307] key: acme1, value: bar
2010-06-30 23:03:38.881 ApplePushNotification[408:307] key: acme2, value: 42

How It Works

Basically, the role of the provider is to send notifications to the APNs server for relaying to the devices.
Hence, you are sending a message of the following format:

{
“aps”:
{
“alert”:”Yougotanewmessage!”,
“badge”:5,
“sound”:”beep.wav”
},
“acme1”:”bar”,
“acme2”:42
}

The beep.wav filename indicates to the client to play the beep.wav file when the notification is received.

Summary ❘ 475

SummAry

In this chapter, you have seen the various steps required to build an iPhone application that utilizes
the Apple Push Notification service. Take some time to go through the steps to obtain your develop-
ment certificates and provisioning profile, for they commonly trip up a developer. Once you get the
service working, however, the effort is well worth it!

exerciSeS

 1 . Name the two certificates that you need to generate in order to use the Apple Push Notification
service .

 2 . Why is it recommended that you back up the development certificate in the Keychain Access
application?

 3 . Name the method used for registering for push notifications .

 4 . What is the use of the device token?

 5 . Name the event where you can obtain the notification pushed to your device .

Answers to the Exercises can be found in Appendix E, on Wrox.com.

476 ❘ chApter 19 aPPle PuSh nOtiFicatiOn SerVice

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

Steps to using
Apns

Generate a Certificate Request .

Generate a Development certificate .

Create an App ID .

Configure App ID for Push Notification .

Create a Provisioning Profile .

Provision a device .

Create the iPhone application .

Deploy the application onto a device .

Create the Push Notification Provider application .

Development
certificate

The certificate you download from Apple contains only the public key; the
private key is saved in Keychain Access when you generated the certificate
request .

It is recommended that you backup the development certificate .

provisioning
profile

Specifies which devices can be allowed to deploy your applications .

registering for
push notification

Use the registerForRemoteNotificationTypes: method of the
UIApplication class .

Obtaining the
device token

Obtainable from the
application:didRegisterForRemoteNotificationsWithDeviceToken: event

Obtaining the
push notifica-
tion sent to the
device

Obtainable from the application:didReceiveRemoteNotification: event

Displaying Maps

whAt yOu will leArn in thiS chApter

How to display Google Maps using the Map Kit framework➤➤

How to obtain geographical data using the Core Location framework➤➤

How to obtain directional data to rotate a map➤➤

How to add annotations to a map➤➤

How to perform reverse geocoding to obtain an address➤➤

With the advent of mobile devices, users have become accustomed to having access to locale
information at their fi ngertips. In this chapter, you will learn how to use the Map Kit to give
users that information quickly and easily.

DiSplAying mApS AnD mOnitOring
chAngeS uSing the mAp kit

The iPhone SDK 4.0 ships with the Map Kit framework, a set of libraries that work with the
Google Mobile Maps Service. You can use the Map Kit to display maps within your iPhone appli-
cation, as well as to display your current location. In fact, you can enable the Map Kit to track
your current location simply by setting a single property, and Map Kit will then automatically
display your current location as you move.

In the following Try It Out, you will get started with the Map Kit. In particular, you will use
Map Kit to display your current location on the map.

20

478 ❘ chApter 20 diSPlaYinG maPS

getting Started with Map Kittry it Out

codefile Maps.zip available for download at Wrox.com

 1 . Using Xcode, create a View-based Application project and name it Maps.

 2 . Add the MapKit.framework to the Frameworks folder of the project (see Figure 20-1).

figure 20-1

 3 . Double-click the MapsViewController.xib file to edit it in Interface Builder.

 4 . Populate the View window with the following views (see Figure 20-2):

Map View➤➤

Round Rect Button (label it as Show My Location; be sure to label this correctly, including ➤➤

the capitalization)

 5 . In the MapsViewController.h file, add the following bold statements:

#import<UIKit/UIKit.h>
#import <MapKit/MapKit.h>

@interfaceMapsViewController:UIViewController{
 IBOutlet UIButton *btnShowLocation;

Displaying Maps and Monitoring Changes Using the Map Kit ❘ 479

 IBOutlet MKMapView *mapView;
}

@property (nonatomic, retain) UIButton *btnShowLocation;
@property (nonatomic, retain) MKMapView *mapView;

-(IBAction) showLocation:(id) sender;

@end

figure 20-2

 6 . In Interface Builder, perform the following actions:

Control-click and drag the File’s Owner item and drop it over the Map View. Select ➤➤ mapView.

Control-click and drag the File’s Owner item and drop it over the Show My Location button. ➤➤

Select btnShowLocation.

Control-click and drag the Show My Location button and drop it over the File’s Owner item. ➤➤

Select showLocation:.

 7 . In the MapsViewController.m file, add the following bold statements:

#import“MapsViewController.h”

@implementationMapsViewController

@synthesize btnShowLocation;

480 ❘ chApter 20 diSPlaYinG maPS

@synthesize mapView;

-(IBAction) showLocation:(id) sender {
 if ([[btnShowLocation titleForState:UIControlStateNormal]
 isEqualToString:@”Show My Location”]) {
 [btnShowLocation setTitle:@”Hide My Location”
 forState:UIControlStateNormal];
 mapView.showsUserLocation = YES;
 } else {
 [btnShowLocation setTitle:@”Show My Location”
 forState:UIControlStateNormal];
 mapView.showsUserLocation = NO;
 }
}

-(void)dealloc{
 [mapView release];
 [btnShowLocation release];
[superdealloc];
}

 8 . Press Command-R to test the application on the iPhone 4 Simulator. You should now be able to
see the map. Click the Show My Location button to view your current location (see Figure 20-3).
You can also zoom out of the map by pinching it, and zoom in by spreading your two fingers apart
on the screen.

figure 20-3

Displaying Maps and Monitoring Changes Using the Map Kit ❘ 481

NOTE The map may take up to 20 seconds to locate your current location. In
addition, the location displayed in the iPhone 4 Simulator is locked on Apple’s
headquarters in Cupertino, CA, not your actual location.

How It Works

To show your current location on the map, you simply set the showsUserLocation of the MKMapView
object to YES:

 mapView.showsUserLocation = YES;

The map will automatically obtain the device’s location using the Core Location framework (discussed
in the second part of this chapter). As long as the showsUserLocation property is set to YES, the map
will continually update to display the user’s location.

Note that this property merely specifi es whether the user’s location is displayed on the map (represented
as a throbbing blue circle); it does not center the map to display the user’s location. Hence, if you are
viewing the map of another location, your current location indicator may not be visible on the map.

Observe that as you pinch the map to zoom it in or out, it is important to keep track of the zoom
level of the map so that when the user restarts the application, you can display the map using the
previous zoom level.

In the following Try It Out, you keep track of the map zoom level as the user changes it.

Printing Out the Map’s Zoom Leveltry it Out

1 . Using the Maps project created in the previous section, edit the MapsViewController.h fi le by adding
the following bold statement:

#import<UIKit/UIKit.h>
#import<MapKit/MapKit.h>

@interfaceMapsViewController:UIViewController
 <MKMapViewDelegate>{
IBOutletUIButton*btnShowLocation;
IBOutletMKMapView*mapView;
}

@property(nonatomic,retain)UIButton*btnShowLocation;
@property(nonatomic,retain)MKMapView*mapView;

-(IBAction)showLocation:(id)sender;

@end

482 ❘ chApter 20 diSPlaYinG maPS

 2 . In the MapsViewController.m file, add the following bold statements:

-(void)viewDidLoad{
//---connect the delegate of the MKMapView object to
// this view controller programmatically; you can also connect
// it via Interface Builder---
mapView.delegate=self;
mapView.mapType=MKMapTypeHybrid;
[superviewDidLoad];
}

-(void)mapView:(MKMapView *)mv regionWillChangeAnimated:(BOOL)animated {
 //---print out the region span - aka zoom level---
 MKCoordinateRegion region = mapView.region;
 NSLog(@”%f”,region.span.latitudeDelta);
 NSLog(@”%f”,region.span.longitudeDelta);
}

 3 . Press Command-R to test the application on the iPhone 4 Simulator. Zoom in and out of the map
and observe the values displayed on the Debugger Console window (see Figure 20-4).

figure 20-4

How It Works

Whenever the zoom level of the map changes, the mapView:regionWillChangeAnimated: event is
fired. Hence, implement the event handler for this event if you want to know when a map is pinched.

getting Location Data ❘ 483

The mapView:regionWillChangeAnimated: event is defined in the MKMapViewDelegate protocol, so
you need to implement this protocol in the View Controller:

@interfaceMapsViewController:UIViewController
 <MKMapViewDelegate>{

The region displayed by the map is defined by the region property, which is a structure of type
MKCoordinateRegion:

 //---print out the region span - aka zoom level---
 MKCoordinateRegion region = mapView.region;

The MKCoordinateRegion structure contains a member called center (of type CLLocationCoordinate2D)
and another member called span, of type MKCoordinateSpan. The MKCoordinateSpan structure in turn
contains two members: latitudeDelta and longitudeDelta (both of type CLLocationDegrees, which is
a double):

 NSLog([NSString stringWithFormat:@”%f”,
 region.span.latitudeDelta]);
 NSLog([NSString stringWithFormat:@”%f”,
 region.span.longitudeDelta]);

Both members define the amount of distance to display for the map:

latitudeDelta➤➤ — One degree of latitude is approximately 111 kilometers (69 miles).

longitudeDelta➤➤ — One degree of longitude spans a distance of approximately 111 kilome-
ters (69 miles) at the equator but shrinks to 0 kilometers at the poles.

Examine the value of these two structures as you zoom in and out of the map — they are a good indicator
of the map’s zoom level.

getting lOcAtiOn DAtA

Nowadays, mobile devices are commonly equipped with GPS receivers. Because of the many satellites
orbiting the earth, courtesy of the U.S. government, you can use a GPS receiver to find your location
easily. However, GPS requires a clear sky to work and hence does not always work indoors or where
satellites can’t penetrate (such as a tunnel through a mountain).

Another effective way to locate your position is through cell tower triangulation. When a mobile
phone is switched on, it is constantly in contact with base stations surrounding it. By knowing the
identity of cell towers, it is possible to correlate this information into a physical location through
the use of various databases containing the cell towers’ identities and their exact geographical loca-
tions. Cell tower triangulation has its advantages over GPS because it works indoors, without the
need to obtain information from satellites. However, it is not as precise as GPS because its accuracy
depends on the area you are in. Cell tower triangulation works best in densely populated areas
where the cell towers are closely located.

484 ❘ chApter 20 diSPlaYinG maPS

A third method of locating your position is to rely on Wi-Fi triangulation. Rather than connect
to cell towers, the device connects to a Wi-Fi network and checks the service provider against
databases to determine the location serviced by the provider. Of the three methods described here,
Wi-Fi triangulation is the least accurate.

On the iPhone, Apple provides the Core Location framework to help you determine your physical
location. The beauty of this framework is that it makes use of all three approaches, and whichever
method it uses is totally transparent to the developer. You simply specify the accuracy you need, and
Core Location determines the best way to obtain the results for you.

Sound amazing? It is. The following Try It Out shows you how this is done in code.

Obtaining Location Coordinatestry it Out

codefile LBS.zip available for download at Wrox.com

 1 . Using Xcode, create a View-based Application project and name it LBS.

 2 . Add the CoreLocation.framework to the Frameworks folder (see Figure 20-5).

figure 20-5

getting Location Data ❘ 485

 3 . Double-click LBSViewController.xib to edit it in Interface Builder. Populate the View window
with the following views (see Figure 20-6):

Label (name them ➤➤ Latitude, Longitude, and Accuracy)

Text Field➤➤

figure 20-6

 4 . In the LBSViewController.h file, add the following statements that appear in bold:

#import<UIKit/UIKit.h>
#import<CoreLocation/CoreLocation.h>

@interfaceLBSViewController:UIViewController
<CLLocationManagerDelegate> {
 IBOutlet UITextField *accuracyTextField;
 IBOutlet UITextField *latitudeTextField;
 IBOutlet UITextField *longitudeTextField;
 CLLocationManager *lm;
}

@property (retain, nonatomic) CLLocationManager *lm;
@property (retain, nonatomic) UITextField *accuracyTextField;
@property (retain, nonatomic) UITextField *latitudeTextField;
@property (retain, nonatomic) UITextField *longitudeTextField;

@end

486 ❘ chApter 20 diSPlaYinG maPS

 5 . In Interface Builder, perform the following actions:

Control-click and drag the File’s Owner item and drop it over the first Text Field view. Select ➤➤

latitudeTextField.

Control-click and drag the File’s Owner item and drop it over the second Text Field view. ➤➤

Select longitudeTextField.

Control-click and drag the File’s Owner item and drop it over the third Text Field view. ➤➤

Select accuracyTextField.

 6 . In the LBSViewController.m file, add the following statements that appear in bold:

#import“LBSViewController.h”

@implementationLBSViewController

@synthesize lm;
@synthesize latitudeTextField;
@synthesize longitudeTextField;
@synthesize accuracyTextField;

-(void)viewDidLoad{
 self.lm = [[CLLocationManager alloc] init];
 lm.delegate = self;
 lm.desiredAccuracy = kCLLocationAccuracyBest;
 lm.distanceFilter = kCLDistanceFilterNone;
 [lm startUpdatingLocation];
[superviewDidLoad];
}

- (void) locationManager:(CLLocationManager *) manager
 didUpdateToLocation:(CLLocation *) newLocation
 fromLocation:(CLLocation *) oldLocation {

 //---display latitude---
 NSString *lat = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.coordinate.latitude];
 latitudeTextField.text = lat;

 //---display longitude---
 NSString *lng = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.coordinate.longitude];
 longitudeTextField.text = lng;

 //---display accuracy---
 NSString *acc = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.horizontalAccuracy];
 accuracyTextField.text = acc;

 [acc release];
 [lat release];
 [lng release];

getting Location Data ❘ 487

}

- (void) locationManager:(CLLocationManager *) manager
 didFailWithError:(NSError *) error {
 NSString *msg = [[NSString alloc]
 initWithString:@”Error obtaining location”];
 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:@”Error”
 message:msg
 delegate:nil
 cancelButtonTitle:@”Done”
 otherButtonTitles:nil];
 [alert show];
 [msg release];
 [alert release];
}

-(void)dealloc{
 [lm release];
 [latitudeTextField release];
 [longitudeTextField release];
 [accuracyTextField release];
[superdealloc];
}

 7 . Press Command-R to test the application on the iPhone 4 Simulator. Observe the latitude, longitude,
and accuracy reported (see Figure 20-7). The accuracy indicates the radius of uncertainty for the
location, measured in meters.

figure 20-7

488 ❘ chApter 20 diSPlaYinG maPS

NOTE If you test the application on the iPhone 4 Simulator, the application will
report the location of your Mac.

How It Works

First, to use the CLLocationManager class, you need to implement the CLLocationManagerDelegate
protocol in your View Controller:

@interfaceLBSViewController:UIViewController
<CLLocationManagerDelegate> {

When the View is loaded, you create an instance of the CLLocationManager class:

-(void)viewDidLoad{
 self.lm = [[CLLocationManager alloc] init];
 lm.delegate = self;
 lm.desiredAccuracy = kCLLocationAccuracyBest;
 lm.distanceFilter = kCLDistanceFilterNone;
 [lm startUpdatingLocation];
[superviewDidLoad];
}

You then proceed to specify the desired accuracy using the desiredAccuracy property. You can use the
following constants to specify the accuracy that you want:

kCLLocationAccuracyBestForNavigation➤➤

kCLLocationAccuracyBest➤➤

kCLLocationAccuracyNearestTenMeters➤➤

kCLLocationAccuracyHundredMeters➤➤

kCLLocationAccuracyKilometer➤➤

kCLLocationAccuracyThreeKilometers➤➤

While you can specify the accuracy that you want, the actual accuracy is not guaranteed. Also, specifying
a location with greater accuracy takes a signifi cant amount of time and your device’s battery power.

The distanceFilter property enables you to specify the distance a device must move laterally before an
update is generated. The unit for this property is in meters, relative to its last position. To be notifi ed of
all movements, use the kCLDistanceFilterNone constant.

Finally, you start the location manager using the startUpdatingLocation method. The user can enable/
disable location services in the Settings application. If the service is not enabled and you go ahead with the
location update, the application will ask the user if he or she would like to enable the location services.

To obtain location information, you need to handle two events:

locationManager:didUpdateToLocation:fromLocation:➤➤

locationManager:didFailWithError:➤➤

getting Location Data ❘ 489

When a new location value is available, the locationManager:didUpdateToLocation:fromLocation:
event is fired. If the location manager cannot determine the location, it fires the
locationManager:didFailWithError: event.

When a location value is obtained, you display its latitude and longitude along with its accuracy using
the CLLocation object:

- (void) locationManager:(CLLocationManager *) manager
 didUpdateToLocation:(CLLocation *) newLocation
 fromLocation:(CLLocation *) oldLocation {

 //---display latitude---
 NSString *lat = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.coordinate.latitude];
 latitudeTextField.text = lat;

 //---display longitude---
 NSString *lng = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.coordinate.longitude];
 longitudeTextField.text = lng;

 //---display accuracy---
 NSString *acc = [[NSString alloc] initWithFormat:@”%f”,
 newLocation.horizontalAccuracy];
 accuracyTextField.text = acc;

 [acc release];
 [lat release];
 [lng release];
}

The horizontalAccuracy property of the CLLocation object specifies the radius of accuracy, in meters.

Displaying location using a map
Obtaining the location value of a position is interesting, but it isn’t very useful if you can’t visually
locate it on a map. Hence, the most ideal situation would be to use the location information to dis-
play the location on a map. In the following Try It Out, you will use the Map Kit that you learned
how to use in the first part of this chapter to display the map of the location coordinates returned by
the Core Location framework. You will also learn how to create the map programmatically, instead
of creating it in Interface Builder.

Displaying the Location Using a Maptry it Out

 1 . Using the LBS project that you just created, add the MapKit.framework to the Frameworks folder
(see Figure 20-8).

490 ❘ chApter 20 diSPlaYinG maPS

figure 20-8

 2 . Add the following bold statements to the LBSViewController.h file:

#import<UIKit/UIKit.h>
#import<CoreLocation/CoreLocation.h>
#import <MapKit/MapKit.h>

@interfaceLBSViewController:UIViewController
<CLLocationManagerDelegate,
MKMapViewDelegate>{
IBOutletUITextField*accuracyTextField;
IBOutletUITextField*latitudeTextField;
IBOutletUITextField*longitudeTextField;
CLLocationManager*lm;

 MKMapView *mapView;
}

@property(retain,nonatomic)CLLocationManager*lm;
@property(retain,nonatomic)UITextField*accuracyTextField;
@property(retain,nonatomic)UITextField*latitudeTextField;
@property(retain,nonatomic)UITextField*longitudeTextField;

@end

 3 . In the LBSViewController.m file, add the following bold statements:

#import“LBSViewController.h”

@implementationLBSViewController

@synthesizelm;
@synthesizelatitudeTextField;
@synthesizelongitudeTextField;
@synthesizeaccuracyTextField;

-(void)viewDidLoad{
self.lm=[[CLLocationManageralloc]init];
lm.delegate=self;
lm.desiredAccuracy=kCLLocationAccuracyBest;

getting Location Data ❘ 491

lm.distanceFilter=kCLDistanceFilterNone;
[lmstartUpdatingLocation];

 //---display the map in a region---
 mapView = [[MKMapView alloc]
 initWithFrame:CGRectMake(0, 120, 320, 340)];
 mapView.delegate = self;
 mapView.mapType = MKMapTypeHybrid;
 [self.view addSubview:mapView];

[superviewDidLoad];
}

-(void)locationManager:(CLLocationManager*)manager
didUpdateToLocation:(CLLocation*)newLocation
fromLocation:(CLLocation*)oldLocation{

//---displaylatitude---
NSString*lat=[[NSStringalloc]initWithFormat:@”%f”,
newLocation.coordinate.latitude];
latitudeTextField.text=lat;

//---displaylongitude---
NSString*lng=[[NSStringalloc]initWithFormat:@”%f”,
newLocation.coordinate.longitude];
longitudeTextField.text=lng;

//---displayaccuracy---
NSString*acc=[[NSStringalloc]initWithFormat:@”%f”,
newLocation.horizontalAccuracy];
accuracyTextField.text=acc;

[accrelease];
[latrelease];
[lngrelease];

 //---update the map---
 MKCoordinateSpan span;
 span.latitudeDelta = .001;
 span.longitudeDelta = .001;
 MKCoordinateRegion region;
 region.center = newLocation.coordinate;
 region.span = span;
 [mapView setRegion:region animated:TRUE];
}

-(void)dealloc{
 [mapView release];
[lmrelease];
[latitudeTextFieldrelease];
[longitudeTextFieldrelease];
[accuracyTextFieldrelease];
[superdealloc];
}

492 ❘ chApter 20 diSPlaYinG maPS

4 . Press Command-R to test the application on the iPhone 4 Simulator. Observe the map displaying
the location reported by the location manager (see Figure 20-9). The center of the map is the loca-
tion reported.

figure 20-9

NOTE If you test the application on an actual iPhone device, you will see that
the map updates itself dynamically when you move about.

How It Works

To use the Map Kit in your application, you fi rst need to add the MapKit.framework to your project.

Then, you implement the MKMapViewDelegate protocol in the View Controller to handle the various
methods associated with the MapView:

@interfaceLBSViewController:UIViewController
<CLLocationManagerDelegate,
MKMapViewDelegate>{

When the view has loaded, you create an instance of the MKMapView class and set the map type
(hybrid — map and satellite) to display:

 //---display the map in a region---

getting Location Data ❘ 493

 mapView = [[MKMapView alloc]
 initWithFrame:CGRectMake(0, 120, 320, 340)];
 mapView.delegate = self;
 mapView.mapType = MKMapTypeHybrid;
 [self.view addSubview:mapView];

In this case, you specify the size of the map to display. You set the delegate property to self so that
the View Controller can implement the methods declared in the MKMapViewDelegate protocol.

When the location information is updated, you zoom into the location using the setRegion: method of
the mapView object:

 //---update the map---
 MKCoordinateSpan span;
 span.latitudeDelta=.001;
 span.longitudeDelta=.001;
 MKCoordinateRegion region;
 region.center = newLocation.coordinate;
 region.span = span;
 [mapView setRegion:region animated:TRUE];

NOTE For more information on the MKMapView class, refer to Apple’s documenta-
tion at http://developer.apple.com/iphone/library/navigation/Frameworks/
CocoaTouch/MapKit/index.html.

getting Directional information
The iPhone comes with a built-in compass. The following Try It Out shows you how to program-
matically obtain directional information using this new feature.

incorporating a Compasstry it Out

You will need a real device (iPhone) to test this application.

1 . Using the LBS project, add an image named Compass.gif to the Resources folder of the project (see
Figure 20-10).

2 . In Interface Builder, drag and drop an ImageView to the View window and set its Image attribute
to Compass.gif in the Attributes Inspector window as follows (see Figure 20-11).

3 . Add a Label view to the View window (see Figure 20-12).

4 . Set the background color of the View window to white (see Figure 20-13).

http://developer.apple.com/iphone/library/navigation/Frameworks/CocoaTouch/MapKit/index.html
http://developer.apple.com/iphone/library/navigation/Frameworks/CocoaTouch/MapKit/index.html

494 ❘ chApter 20 diSPlaYinG maPS

figure 20-10

figure 20-11

 5 . In the LBSViewController.h file, add the following bold statements:

#import<UIKit/UIKit.h>
#import<CoreLocation/CoreLocation.h>

#import<MapKit/MapKit.h>

@interfaceLBSViewController:UIViewController

getting Location Data ❘ 495

figure 20-12 figure 20-13

<CLLocationManagerDelegate,
MKMapViewDelegate>{
IBOutletUITextField*accuracyTextField;
IBOutletUITextField*latitudeTextField;
IBOutletUITextField*longitudeTextField;
CLLocationManager*lm;

MKMapView*mapView;

 IBOutlet UIImageView *compass;
 IBOutlet UILabel *heading;
}

@property(retain,nonatomic)CLLocationManager*lm;
@property(retain,nonatomic)UITextField*accuracyTextField;
@property(retain,nonatomic)UITextField*latitudeTextField;
@property(retain,nonatomic)UITextField*longitudeTextField;

@property (nonatomic, retain) UIImageView *compass;
@property (nonatomic, retain) UILabel *heading;

@end

496 ❘ chApter 20 diSPlaYinG maPS

 6 . In Interface Builder, perform the following actions:

Control-click and drag the File’s Owner item and drop it over the ImageView. Select ➤➤ compass.

Control-click and drag the File’s Owner item and drop it over the Label view. Select ➤➤ heading.

 7 . In the LBSViewController.m file, add the following bold statements:

#import“LBSViewController.h”

@implementationLBSViewController

@synthesizelm;
@synthesizelatitudeTextField;
@synthesizelongitudeTextField;
@synthesizeaccuracyTextField;

@synthesize compass;
@synthesize heading;

-(void)viewDidLoad{
self.lm=[[CLLocationManageralloc]init];
lm.delegate=self;
lm.desiredAccuracy=kCLLocationAccuracyBest;
lm.distanceFilter=kCLDistanceFilterNone;
[lmstartUpdatingLocation];

 //---get the compass readings---
 [lm startUpdatingHeading];

//---displaythemapinaregion---
mapView=[[MKMapViewalloc]
initWithFrame:CGRectMake(0,120,320,340)];
mapView.delegate=self;
mapView.mapType=MKMapTypeHybrid;
[self.viewaddSubview:mapView];

[superviewDidLoad];
}

- (void)locationManager:(CLLocationManager *)manager
 didUpdateHeading:(CLHeading *)newHeading {

 heading.text = [NSString stringWithFormat:@”%.2f degrees”,
 newHeading.magneticHeading];

 // -- -- headings is in degrees -- --
 double d = newHeading.magneticHeading;

 //---convert degrees to radians---
 double radians = d / 57.2957795;

 compass.transform = CGAffineTransformMakeRotation(-radians);

getting Location Data ❘ 497

}

-(void)dealloc{
 [compass release];
 [heading release];
[mapViewrelease];
[lmrelease];
[latitudeTextFieldrelease];
[longitudeTextFieldrelease];
[accuracyTextFieldrelease];
[superdealloc];
}

 8 . Press Command-R to test the application on an actual iPhone. Observe the image as you turn the
device (see Figure 20-14).

figure 20-14

How It Works

Getting directional information is similar to getting location data; you use the Core Location framework.
Instead of calling the startUpdatingLocation method of the CLLocationManager object, you call the
startUpdatingHeading method:

 //---get the compass readings---
 [lm startUpdatingHeading];

498 ❘ chApter 20 diSPlaYinG maPS

When directional information is available, the locationManager:didUpdateHeading: method will con-
tinually fire:

- (void)locationManager:(CLLocationManager *)manager
 didUpdateHeading:(CLHeading *)newHeading {

 heading.text = [NSString stringWithFormat:@”%.2f degrees”,
 newHeading.magneticHeading];

 // -- -- headings is in degrees -- --
 double d = newHeading.magneticHeading;

 // -- -- convert degrees to radians -- --
 double radians = d / 57.2957795;

 compass.transform = CGAffineTransformMakeRotation(-radians);
}

The magneticHeading property of the CLHeading parameter will contain the readings in degrees, with 0
representing magnetic North. The ImageView is then rotated based on the value of the heading. Note that
you need to convert the degrees into radians for the CGAffineTransformMakeRotation() method.

rotating the map
The previous section showed how you can programmatically rotate the image of a compass based on
the directional heading information obtained from the Core Location framework. Using this concept,
you could also rotate the map whenever the direction of your device changes. This is very useful when
you are using the map for navigational purposes. By itself, the Map View does not support map rota-
tion, but the following Try It Out shows how you can improvise.

Rotating the Maptry it Out

 1 . Using the LBS project, double-click the LBSViewController.xib file to edit it in Interface Builder.

 2 . Drag and drop a View view from the Library and set its size and location via its Size Inspector win-
dow as follows (see also Figure 20-15):

X:➤➤ 0

Y:➤➤ 120

W:➤➤ 320

H:➤➤ 340

 3 . In the Attributes Inspector window for the View, check the Clip Subviews option (see Figure 20-16).

getting Location Data ❘ 499

figure 20-15

figure 20-16

500 ❘ chApter 20 diSPlaYinG maPS

 4 . In Xcode, add the following bold statements to the LBSViewController.h file:

#import<UIKit/UIKit.h>
#import<CoreLocation/CoreLocation.h>
#import<MapKit/MapKit.h>

@interfaceLBSViewController:UIViewController
<CLLocationManagerDelegate,
MKMapViewDelegate>{
IBOutletUITextField*accuracyTextField;
IBOutletUITextField*latitudeTextField;
IBOutletUITextField*longitudeTextField;
CLLocationManager*lm;

MKMapView*mapView;

IBOutletUIImageView*compass;
IBOutletUILabel*heading;

 IBOutlet UIView *viewForMap;
}

@property(retain,nonatomic)CLLocationManager*lm;
@property(retain,nonatomic)UITextField*accuracyTextField;
@property(retain,nonatomic)UITextField*latitudeTextField;
@property(retain,nonatomic)UITextField*longitudeTextField;

@property(nonatomic,retain)UIImageView*compass;
@property(nonatomic,retain)UILabel*heading;

@property (nonatomic, retain) UIView *viewForMap;

@end

 5 . In Interface Builder, Control-click and drag the File’s Owner item and drop it over the newly added
View view. Select viewForMap.

 6 . Add the following bold statements to the LBSViewController.m file:

#import“LBSViewController.h”

@implementationLBSViewController

@synthesizelm;
@synthesizelatitudeTextField;
@synthesizelongitudeTextField;
@synthesizeaccuracyTextField;

@synthesizecompass;
@synthesizeheading;

@synthesize viewForMap;

-(void)viewDidLoad{

getting Location Data ❘ 501

self.lm=[[CLLocationManageralloc]init];
lm.delegate=self;
lm.desiredAccuracy=kCLLocationAccuracyBest;
lm.distanceFilter=kCLDistanceFilterNone;
[lmstartUpdatingLocation];

//---getthecompassreadings---
[lmstartUpdatingHeading];

//---displaythemapinaregion---
mapView=[[MKMapViewalloc]
 initWithFrame:CGRectMake(-90, -80, 500,500)];
 // initWithFrame:CGRectMake(0, 120, 320, 340)];

mapView.delegate=self;
mapView.mapType=MKMapTypeHybrid;

 // [self.view addSubview:mapView];
 [self.viewForMap addSubview:mapView];

[superviewDidLoad];
}

-(void)locationManager:(CLLocationManager*)manager
didUpdateHeading:(CLHeading*)newHeading{

heading.text=[NSStringstringWithFormat:@”%.2fdegrees”,
newHeading.magneticHeading];

//---headingsisindegress---
doubled=newHeading.magneticHeading;

//---convertdegreestoradians---
doubleradians=d/57.2957795;

compass.transform=CGAffineTransformMakeRotation(-radians);

 //---rotate the map---
 mapView.transform = CGAffineTransformMakeRotation(-radians);
}

-(void)dealloc{
 [viewForMap release];
[compassrelease];
[headingrelease];
[mapViewrelease];
[lmrelease];
[latitudeTextFieldrelease];
[longitudeTextFieldrelease];
[accuracyTextFieldrelease];
[superdealloc];
}

502 ❘ chApter 20 diSPlaYinG maPS

 7 . Deploy the application to a real iPhone device. Observe that as you rotate the iPhone, the map will
rotate as well (see Figure 20-17).

figure 20-17

How It Works

How the map rotates is actually very simple. While you might first assume that the easiest way would
be to apply the transformation to the mapView, doing so not only rotates the map, it also rotates the
entire rectangle (see Figure 20-18).

figure 20-18

getting Location Data ❘ 503

The trick is to embed the mapView within another View view and rotate it within the View. Hence, you
added another View view (viewForMap) in the View window and set it to Clip Subviews. Essentially, all
the views added to this View will not display beyond its boundary.

Instead of displaying the map in the original size, you now need to set it to a minimum of 466.90 x
466.90 pixels. This is the length of the diagonal of the viewable rectangle of the map. For simplicity,
round it up to 500 x 500 pixels.

The mapView is now added to viewForMap, instead of self.view:

 // [self.view addSubview:mapView];
 [self.viewForMap addSubview:mapView];

Recall that the initial position of the mapView was (0, 120):

//---displaythemapinaregion---
mapView=[[MKMapViewalloc]
initWithFrame:CGRectMake(0,120,320,340)];

But it must now be changed to (-90, -80):

//---displaythemapinaregion---
mapView=[[MKMapViewalloc]
 initWithFrame:CGRectMake(-90, -80, 500,500)];
 // initWithFrame:CGRectMake(0, 120, 320, 340)];

Figure 20-19 shows how the new coordinate of (-90, -80) was derived. Remember that when you try to
add a view to another, the coordinate specified is always with respect to the view you are adding to. In
this case, the reference point (0,0) is at viewForMap.

figure 20-19

504 ❘ chApter 20 diSPlaYinG maPS

Finally, to rotate the map, apply the CGAffineTransformMakeRotation() method to the mapView:

 //---rotate the map---
 mapView.transform = CGAffineTransformMakeRotation(-radians);

Displaying Annotations
So far, you have used Core Location to report your current location and heading, and then used
Map Kit to display a map representing your location. A visual improvement you can make to the
project is to add a pushpin to the map, representing your current location.

In the following Try It Out, you learn how to add annotations to the map in Map Kit. Annotations
enable you to display pushpins on the map, denoting specific locations.

Displaying a Pushpintry it Out

 1 . Continuing with the LBS project, add a new Objective-C class file to the Classes folder of the
project (see Figure 20-20).

figure 20-20

 2 . Name it MyAnnotation.m. Once it is added, you should see the MyAnnotation.h and
MyAnnotation.m files under the Classes folder (see Figure 20-21).

getting Location Data ❘ 505

figure 20-21

 3 . Populate the MyAnnotation.h file as follows:

#import <Foundation/Foundation.h>
#import <MapKit/MapKit.h>

@interfaceMyAnnotation:NSObject<MKAnnotation>{
CLLocationCoordinate2Dcoordinate;
NSString*title;
NSString*subtitle;
}

@property (nonatomic, readonly) CLLocationCoordinate2D coordinate;
@property (nonatomic, retain) NSString *title;
@property (nonatomic, retain) NSString *subtitle;

-(id)initWithCoordinate:(CLLocationCoordinate2D) c
 title:(NSString *) t
 subtitle:(NSString *) st;
-(void) moveAnnotation: (CLLocationCoordinate2D) newCoordinate;

-(NSString *)subtitle;
-(NSString *)title;

@end

 4 . Populate the MyAnnotation.m file as follows:

#import “MyAnnotation.h”

@implementation MyAnnotation

@synthesize coordinate;
@synthesize title;
@synthesize subtitle;

-(NSString *)subtitle {
 return subtitle;

506 ❘ chApter 20 diSPlaYinG maPS

}

-(NSString *)title {
 return title;
}

-(id)initWithCoordinate:(CLLocationCoordinate2D) c
 title:(NSString *) t
 subtitle:(NSString *) st {
 coordinate = c;
 self.title = t;
 self.subtitle = st;
 return self;
}

-(void) moveAnnotation: (CLLocationCoordinate2D) newCoordinate {
 coordinate = newCoordinate;
}

- (void) dealloc{
 [title release];
 [subtitle release];
 [super dealloc];
}

@end

 5 . In the LBSViewController.h file, add the following bold statements:

#import<UIKit/UIKit.h>
#import<CoreLocation/CoreLocation.h>
#import<MapKit/MapKit.h>

#import “MyAnnotation.h”

@interfaceLBSViewController:UIViewController
<CLLocationManagerDelegate,
MKMapViewDelegate>{
IBOutletUITextField*accuracyTextField;
IBOutletUITextField*latitudeTextField;
IBOutletUITextField*longitudeTextField;
CLLocationManager*lm;

MKMapView*mapView;

IBOutletUIImageView*compass;
IBOutletUILabel*heading;

IBOutletUIView*viewForMap;

 MyAnnotation *annotation;
}

@property(retain,nonatomic)CLLocationManager*lm;
@property(retain,nonatomic)UITextField*accuracyTextField;

getting Location Data ❘ 507

@property(retain,nonatomic)UITextField*latitudeTextField;
@property(retain,nonatomic)UITextField*longitudeTextField;

@property(nonatomic,retain)UIImageView*compass;
@property(nonatomic,retain)UILabel*heading;

@property(nonatomic,retain)UIView*viewForMap;

@end

 6 . In the LBSViewController.m file, add the following bold statements:

-(void)locationManager:(CLLocationManager*)manager
didUpdateToLocation:(CLLocation*)newLocation
fromLocation:(CLLocation*)oldLocation{

//---displaylatitude---
NSString*lat=[[NSStringalloc]initWithFormat:@”%f”,
newLocation.coordinate.latitude];
latitudeTextField.text=lat;

//---displaylongitude---
NSString*lng=[[NSStringalloc]initWithFormat:@”%f”,
newLocation.coordinate.longitude];
longitudeTextField.text=lng;

//---displayaccuracy---
NSString*acc=[[NSStringalloc]initWithFormat:@”%f”,
newLocation.horizontalAccuracy];
accuracyTextField.text=acc;

[accrelease];
[latrelease];
[lngrelease];

//---updatethemap---
MKCoordinateSpanspan;
span.latitudeDelta=.002;
span.longitudeDelta=.002;
MKCoordinateRegionregion;
region.center=newLocation.coordinate;
region.span=span;
[mapViewsetRegion:regionanimated:TRUE];

 //---display an annotation here---
 if (annotation) {
 [annotation moveAnnotation:newLocation.coordinate];
 }
 else {
 annotation = [[MyAnnotation alloc]
 initWithCoordinate:newLocation.coordinate
 title:@”You are here”
 subtitle:[NSString
 stringWithFormat:@”Lat: %@. Lng: %@”,
 latitudeTextField.text,

508 ❘ chApter 20 diSPlaYinG maPS

 longitudeTextField.text]];
 [mapView addAnnotation:annotation];
 }
}

-(void)dealloc{
 [annotation release];
[viewForMaprelease];
[compassrelease];
[headingrelease];
[mapViewrelease];
[lmrelease];
[latitudeTextFieldrelease];
[longitudeTextFieldrelease];
[accuracyTextFieldrelease];
[superdealloc];
}

 7 . Press Command-R to test the application on the iPhone 4 Simulator. You’ll see the pushpin inserted
into the current position. When you tap on it, it displays the information in the annotation view as
shown in Figure 20-22. Also observe that as you test it on a real device, the pushpin is relocated on
the map to represent your current location as you move.

figure 20-22

getting Location Data ❘ 509

How It Works

You first created the MyAnnotation class, which inherits from the MKAnnotation base class. Within the
MyAnnotation class, you implemented several properties (including coordinate, which specifies the center
point of the annotation) and methods, in particular:

title➤➤ — Returns the title to be displayed on the annotation.

subtitle➤➤ — Returns the subtitle to be displayed on the annotation.

moveAnnotation:➤➤ — Changes the location of the annotation.

As the location of the device changes, you display an annotation to represent the current location:

 //---display an annotation here---
 if (annotation) {
 [annotation moveAnnotation:newLocation.coordinate];
 }
 else {
 annotation = [[MyAnnotation alloc]
 initWithCoordinate:newLocation.coordinate
 title:@”You are here”
 subtitle:[NSString
 stringWithFormat:@”Lat: %@. Lng: %@”,
 latitudeTextField.text,
 longitudeTextField.text]];
 [mapView addAnnotation:annotation];
 }

Note that if an annotation is already present, you simply move its position by calling the moveAnnotation:
method.

reverse geocoding
While knowing your location coordinates is useful, and displaying your location on the Google Maps
is cool, the capability to know your current address is even cooler! The process of finding your address
from a pair of latitude and longitude coordinates is known as reverse geocoding. The following Try It
Out shows how to obtain the address of a location given its latitude and longitude. You will do so via
the API exposed by the Map Kit.

Obtaining an Address from Latitude and Longitudetry it Out

 1 . Continuing with the LBS project, add the following bold statements to the LBSViewController.h file:

#import<UIKit/UIKit.h>
#import<CoreLocation/CoreLocation.h>
#import<MapKit/MapKit.h>
#import“MyAnnotation.h”

#import <MapKit/MKReverseGeocoder.h>

@interfaceLBSViewController:UIViewController

510 ❘ chApter 20 diSPlaYinG maPS

<CLLocationManagerDelegate,
MKMapViewDelegate,
MKReverseGeocoderDelegate>{
IBOutletUITextField*accuracyTextField;
IBOutletUITextField*latitudeTextField;
IBOutletUITextField*longitudeTextField;
CLLocationManager*lm;

MKMapView*mapView;

IBOutletUIImageView*compass;
IBOutletUILabel*heading;

IBOutletUIView*viewForMap;

MyAnnotation*annotation;

 NSString *location;
 MKReverseGeocoder *geocoder;
}

@property(retain,nonatomic)CLLocationManager*lm;
@property(retain,nonatomic)UITextField*accuracyTextField;
@property(retain,nonatomic)UITextField*latitudeTextField;
@property(retain,nonatomic)UITextField*longitudeTextField;

@property(nonatomic,retain)UIImageView*compass;
@property(nonatomic,retain)UILabel*heading;

@property(nonatomic,retain)UIView*viewForMap;

@end

 2 . In the LBSViewController.m file, add the following bold statements:

-(void)locationManager:(CLLocationManager*)manager
didUpdateToLocation:(CLLocation*)newLocation
fromLocation:(CLLocation*)oldLocation{

 //---perform reverse geocoding---
 if (!geocoder) {
 geocoder=[[MKReverseGeocoder alloc]
 initWithCoordinate:newLocation.coordinate];
 geocoder.delegate = self;
 [geocoder start];
 }

//---displaylatitude---
NSString*lat=[[NSStringalloc]initWithFormat:@”%f”,
newLocation.coordinate.latitude];
latitudeTextField.text=lat;

//---displaylongitude---
NSString*lng=[[NSStringalloc]initWithFormat:@”%f”,
newLocation.coordinate.longitude];

getting Location Data ❘ 511

longitudeTextField.text=lng;

//---displayaccuracy---
NSString*acc=[[NSStringalloc]initWithFormat:@”%f”,
newLocation.horizontalAccuracy];
accuracyTextField.text=acc;

[accrelease];
[latrelease];
[lngrelease];

//---updatethemap---
MKCoordinateSpanspan;
span.latitudeDelta=.002;
span.longitudeDelta=.002;
MKCoordinateRegionregion;
region.center=newLocation.coordinate;
region.span=span;
[mapViewsetRegion:regionanimated:TRUE];

//---displayanannotationhere---
if(annotation){
[annotationmoveAnnotation:newLocation.coordinate];
}
else{
annotation=[[MyAnnotationalloc]
initWithCoordinate:newLocation.coordinate
title:@”Youarehere”
subtitle:[NSString
stringWithFormat:@”Lat:%@.Lng:%@”,
latitudeTextField.text,
longitudeTextField.text]];
[mapViewaddAnnotation:annotation];
}
}

- (void)reverseGeocoder:(MKReverseGeocoder *)geo
 didFailWithError:(NSError *)error{
 [geocoder release];
 geocoder = nil;
}

- (void)reverseGeocoder:(MKReverseGeocoder *)geo
 didFindPlacemark:(MKPlacemark *)placemark {
 location = [NSString stringWithFormat:@”%@, %@”,
 placemark.locality, placemark.country];
 annotation.subtitle = location;
 [geocoder release];
 geocoder = nil;
}

 3 . Press Command-R to test the application on the iPhone 4 Simulator. Notice that the Annotation
view now displays the address of the location (see Figure 20-23).

512 ❘ chApter 20 diSPlaYinG maPS

figure 20-23

How It Works

To perform reverse geocoding, use the MKReverseGeocoder class available in the Map Kit framework:

 MKReverseGeocoder *geocoder;

When a location is obtained (via the locationManager:didUpdateToLocation:fromLocation: event),
you instantiate the MKReverseGeocoder class by setting it to a location coordinate:

 //---perform reverse geocoding---
 if (!geocoder) {
 geocoder=[[MKReverseGeocoder alloc]
 initWithCoordinate:newLocation.coordinate];
 geocoder.delegate = self;
 [geocoder start];
 }

The MKReverseGeocoder class works asynchronously, and will fire the
reverseGeocoder:didFindPlacemark: event when an address has been found. Hence, you need to
implement the MKReverseGeocoderDelegate protocol in the View Controller:

@interfaceLBSViewController:UIViewController
<CLLocationManagerDelegate,
MKMapViewDelegate,
MKReverseGeocoderDelegate>{

When the address is found, you display the address as the subtitle of the annotation:

- (void)reverseGeocoder:(MKReverseGeocoder *)geo
 didFindPlacemark:(MKPlacemark *)placemark {
 location = [NSString stringWithFormat:@”%@, %@”,
 placemark.locality, placemark.country];
 annotation.subtitle = location;
 [geocoder release];
 geocoder = nil;
}

If the address cannot be found, the reverseGeocoder:didFailWithError: event will be fired:

- (void)reverseGeocoder:(MKReverseGeocoder *)geo
 didFailWithError:(NSError *)error{

getting Location Data ❘ 513

 [geocoder release];
 geocoder = nil;
}

Displaying a Disclosure Button
When displaying an annotation on the map, it is customary to provide users with the option to
select the annotation so that more details about the location can be shown. For example, the user
may want to know the detailed address of the location, or you can provide routing information for
the selected location. In Map Kit, you can add this option through a disclosure button. The follow-
ing Try It Out shows how to display the disclosure button in an annotation.

Displaying a Disclosure Buttontry it Out

 1 . Continuing with the LBS project, add the following methods to the LBSViewController.m file:

- (MKAnnotationView *)mapView:(MKMapView *)aMapView
 viewForAnnotation:(id)ann {

 NSString *identifier = @”myPin”;
 MKPinAnnotationView *pin = (MKPinAnnotationView *)
 [aMapView dequeueReusableAnnotationViewWithIdentifier:identifier];
 if (pin == nil) {
 pin = [[[MKPinAnnotationView alloc] initWithAnnotation:ann
 reuseIdentifier:identifier]
 autorelease];
 } else {
 pin.annotation = ann;
 }

 //---display a disclosure button on the right---
 UIButton *myDetailButton =
 [UIButton buttonWithType:UIButtonTypeDetailDisclosure];
 myDetailButton.frame = CGRectMake(0, 0, 23, 23);
 myDetailButton.contentVerticalAlignment =
 UIControlContentVerticalAlignmentCenter;
 myDetailButton.contentHorizontalAlignment =
 UIControlContentHorizontalAlignmentCenter;

 [myDetailButton addTarget:self
 action:@selector(checkButtonTapped:)
 forControlEvents:UIControlEventTouchUpInside];

 pin.rightCalloutAccessoryView = myDetailButton;
 pin.enabled = YES;
 pin.animatesDrop=TRUE;
 pin.canShowCallout=YES;

 return pin;

514 ❘ chApter 20 diSPlaYinG maPS

}

-(void) checkButtonTapped:(id) sender {
 //---know which button was clicked;
 // useful for multiple pins on the map---
 // UIControl *btnClicked = sender;
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Your Current Location”
 message:location
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

 2 . Press Command-R to test the application on the iPhone 4 Simulator. The Annotation view now
displays a disclosure button to the right of it (see Figure 20-24). Clicking the button displays an
Alert view.

figure 20-24

How It Works

What you did was override the mapView:viewForAnnotation: method (defined in the MKMapViewDelegate
protocol), which is fired every time you add an annotation to the map.

Notice the following block of code:

 NSString *identifier = @”myPin”;
 MKPinAnnotationView *pin = (MKPinAnnotationView *)
 [aMapView dequeueReusableAnnotationViewWithIdentifier:identifier];
 if (pin == nil) {
 pin = [[[MKPinAnnotationView alloc] initWithAnnotation:ann
 reuseIdentifier:identifier]
 autorelease];
 } else {
 pin.annotation = ann;
 }

Summary ❘ 515

It tries to reuse any annotation objects that are currently not visible on the screen. Imagine you have
10,000 annotations on the map; maintaining MKPinAnnotationView objects in memory is not a feasible
option (too much memory is used). Hence, this code tries to reuse MKPinAnnotationView objects that are
currently not visible on the screen.

The following code block displays a disclosure button next to the annotation:

 //---display a disclosure button on the right---
 UIButton *myDetailButton =
 [UIButton buttonWithType:UIButtonTypeDetailDisclosure];
 myDetailButton.frame = CGRectMake(0, 0, 23, 23);
 myDetailButton.contentVerticalAlignment =
 UIControlContentVerticalAlignmentCenter;
 myDetailButton.contentHorizontalAlignment =
 UIControlContentHorizontalAlignmentCenter;

 [myDetailButton addTarget:self
 action:@selector(checkButtonTapped:)
 forControlEvents:UIControlEventTouchUpInside];

 pin.rightCalloutAccessoryView = myDetailButton;
 pin.enabled = YES;
 pin.animatesDrop=TRUE;
 pin.canShowCallout=YES;

When the disclosure button is clicked, it fires the checkButtonTapped: method:

-(void) checkButtonTapped:(id) sender {
 //---know which button was clicked;
 // useful for multiple pins on the map---
 // UIControl *btnClicked = sender;
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Your Current Location”
 message:location
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

In this case, you simply display an Alert view. You can also display another View window to show more
detailed information.

SummAry

This chapter explained how to use the Map Kit framework to display the Google Maps in your iPhone
application. You also saw how to use the Core Location framework to help you obtain your location
information. Combining the Map Kit and the Core Location frameworks enables you to create very
compelling location-based services.

516 ❘ chApter 20 diSPlaYinG maPS

exerciSeS

 1 . Name the property of the MKMapView class that enables you to show your current location on the map .

 2 . Name the protocol that you need to implement in order to monitor changes in your map .

 3 . Name the method that you need to call to start updating your location .

 4 . Name the method that you need to call to start updating your heading .

 5 . Name the class responsible for reverse geocoding .

Answers to the Exercises can be found in Appendix E, on Wrox.com.

Summary ❘ 517

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

framework for display-
ing google maps

Map Kit

framework for obtaining
geographical location

Core Location

class for displaying
google maps

MKMapView

Showing current location
on the map

showsUserLocation

monitoring changes in
the map

Implement the MKMapViewDelegate protocol .

changing the zoom level
of the map

Set the latitudeDelta and longitudeDelta properties of the map .

monitoring changes in
location

Implement the CLLocationManagerDelegate protocol .

getting location updates Call the startUpdatingLocation method .

getting directional
updates

Call the startUpdatingHeading method .

rotating the map Embed the MapView in another View and rotate the MapView .

Displaying annotations Create a class that inherits from the MKAnnotation base class .

Background Applications

whAt yOu will leArn in thiS chApter

How background code execution works in your iPhone applications➤➤

Monitoring application states➤➤

How to detect and opt out of background execution➤➤

How to track location information in the background➤➤

Creating local notifi cations➤➤

One of the main features of iOS 4 is its support for background applications. Unlike the previ-
ous versions of the iPhone OS, iOS 4 does not automatically terminate your application when
you press the Home button on your device. Instead, your application is put into a suspended
state and all processing is paused. When you tap on the application icon again, the application
resumes from its suspended state and continues execution. If your application should continue
executing in the background, you need to modify it to inform the OS.

In this chapter, you will examine how background execution works and some of the limitations
placed on your applications. In particular, you will learn how to modify the location applica-
tion covered in Chapter 20 so that it will continue working even after the user has switched it
to the background. Last but not least, you will learn about the local notifi cation feature that is
new in iOS 4.

unDerStAnDing BAckgrOunD executiOn On the iphOne

While iOS 4 supports background code execution, there are several things that you need to
understand before you write your application:

In order to support background code execution, all applications must be compiled ➤➤

against the iPhone 4 SDK. In other words, if you have downloaded an application

21

520 ❘ chApter 21 bacKGrOund aPPlicatiOnS

from the App Store that is compiled using an older SDK (prior to 4.0), the application will still
terminate when you press the Home button on your iPhone 4 device.

Background code execution is supported only on certain devices. Specifically, only iPod third-➤➤

generation, iPhone 3GS, and iPhone 4 devices support background code execution. Running
iOS 4 on any other devices does not enable background code execution.

Background code execution is limited to three specific types of applications:➤➤

Audio➤➤ — Playing music in the background

Location➤➤ — Getting location data in the background

VOIP➤➤ — Making phone calls through an Internet connection

If an application does not meet any of the preceding three criteria, it will be suspended when ➤➤

the Home button is pressed.

When an application switches to the background (regardless of whether it is allowed to ➤➤

execute in the background or not), you should always disconnect all network connections
(with the exception of VOIP applications). Applications that have active network connections
are automatically terminated by the OS when they enter background mode. For example, if
your location-based application is transmitting location data to a remote server, you should
disable the transmission when the application is switched to the background. While you can
continue receiving location data, transmitting it over a network is prohibited when the appli-
cation is in the background. In this scenario, you might want to log the location data to a
database and resend it to the remote server when the application is in the foreground again.

Programming multi-tasking iPhone applications can be a very complex task. The following sections
touch on some of the basics to get you started quickly.

examining the Different Application States
The iOS 4 includes additional events that you can handle in your application delegate so that you
can monitor your application’s current state. The following Try It Out shows the various states that
an application goes through.

Handling States eventstry it Out

codefile States.zip available for download at Wrox.com

 1 . Using Xcode, create a View-based Application (iPhone) project and name it States.

 2 . Add the following bold code to the StatesAppDelegate.m file:

#import“StatesAppDelegate.h”
#import“StatesViewController.h”

@implementationStatesAppDelegate

@synthesizewindow;

Understanding Background execution on the iPhone ❘ 521

@synthesizeviewController;

-(BOOL)application:(UIApplication*)application
didFinishLaunchingWithOptions:(NSDictionary*)launchOptions{

 NSLog(@”application:didFinishLaunchingWithOptions:”);
//Overridepointforcustomizationafterapplicationlaunch.

//Addtheviewcontroller’sviewtothewindowanddisplay.
[windowaddSubview:viewController.view];
[windowmakeKeyAndVisible];

returnYES;
}

-(void)applicationWillResignActive:(UIApplication*)application{

 NSLog(@”applicationWillResignActive:”);
/*
Sentwhentheapplicationisabouttomovefromactivetoinactive
state.Thiscanoccurforcertaintypesoftemporaryinterruptions(such
asanincomingphonecallorSMSmessage)orwhentheuserquitsthe
applicationanditbeginsthetransitiontothebackgroundstate.

Usethismethodtopauseongoingtasks,disabletimers,andthrottle
downOpenGLESframerates.Gamesshouldusethismethodtopausethe
game.
*/
}

-(void)applicationDidEnterBackground:(UIApplication*)application{

 NSLog(@”applicationDidEnterBackground:”);
/*
Usethismethodtoreleasesharedresources,saveuserdata,
invalidatetimers,andstoreenoughapplicationstateinformationto
restoreyourapplicationtoitscurrentstateincaseitisterminatedlater.
Ifyourapplicationsupportsbackgroundexecution,calledinsteadof
applicationWillTerminate:whentheuserquits.
*/
}

-(void)applicationWillEnterForeground:(UIApplication*)application{

 NSLog(@”applicationWillEnterForeground:”);
/*
Calledaspartoftransitionfromthebackgroundtotheinactive
state:hereyoucanundomanyofthechangesmadeonenteringthebackground.
*/
}

-(void)applicationDidBecomeActive:(UIApplication*)application{

 NSLog(@”applicationDidBecomeActive:”);
/*

522 ❘ chApter 21 bacKGrOund aPPlicatiOnS

Restartanytasksthatwerepaused(ornotyetstarted)whilethe
applicationwasinactive.Iftheapplicationwaspreviouslyinthe
background,optionallyrefreshtheuserinterface.
*/
}

-(void)applicationWillTerminate:(UIApplication*)application{

 NSLog(@”applicationWillTerminate:”);
/*
Calledwhentheapplicationisabouttoterminate.
SeealsoapplicationDidEnterBackground:.
*/
}

 3 . In Xcode, press Command-Shift-R to display the Debugger Console window.

 4 . Press Command-R to test the application on the iPhone 4 Simulator.

 5 . Observe the output in the Debugger Console window (see Figure 21-1).

figure 21-1

 6 . On the iPhone 4 Simulator, press the Home button to send the application to the background.
Observe the output in the Debugger Console window again:

2010-06-07 21:23:03.928 States[12824:207] applicationWillResignActive:
2010-06-0721:23:03.963States[12824:207]applicationDidEnterBackground:

 7 . In the Home screen of the iPhone 4 Simulator, click the application icon to start it again. Observe
the output of the Debugger Console window:

2010-06-07 21:23:32.090 States[12824:207] applicationWillEnterForeground:
2010-06-0721:23:32.091States[12824:207]applicationDidBecomeActive:

How It Works

This exercise demonstrates the various states that an application goes through when it is loaded and
when it goes into background mode.

In general, you should save your application state in the applicationDidEnterBackground: event when
the application goes into the background. When an application goes into the background, execution
of the application is suspended.

When the application returns to the foreground, you should restore its state in the
applicationDidBecomeActive: event.

Understanding Background execution on the iPhone ❘ 523

Opting Out of Background mode
Although the default behavior of all applications compiled using the iPhone 4 SDK is to support back-
ground mode, you can override this behavior by adding an entry to your application’s Info.plist file.
The following Try It Out demonstrates how.

Disabling Background Modetry it Out

 1 . Using the same project created in the previous section, add a new key to the States-info.plist
file and label the key UIApplicationExitsOnSuspend (see Figure 21-2).

figure 21-2

 2 . Enable the check box displayed next to the
key (note that the key has now changed to
the friendly name “Application does not run
in background” (see Figure 21-3).

 3 . Press Command-R to test the application on
the iPhone 4 Simulator again. When the appli-
cation has been loaded onto the Simulator,
press the Home button. Observe the output
shown on the Debugger Console window (see
Figure 21-4). figure 21-3

524 ❘ chApter 21 bacKGrOund aPPlicatiOnS

figure 21-4

How It Works

This example shows how to disable the background mode for your application. When you enable the
UIApplicationExitsOnSuspend key in your application, the iOS will automatically terminate your appli-
cation when the Home button is pressed.

Detecting multi-tasking Support
Because not all devices running the iOS support background applications, it is important that your
applications have a way to detect this.

You can do so via the following code snippet:

-(void)viewDidLoad{
 UIDevice *device = [UIDevice currentDevice];
 bool backgroundSupported = NO;

 if ([device respondsToSelector:@selector(isMultitaskingSupported)])
 backgroundSupported = device.multitaskingSupported;

 if (backgroundSupported)
 NSLog(@”Supports multitasking”);
 else {
 NSLog(@”Does not support multitasking”);
 }
[superviewDidLoad];
}

tracking locations in the Background
Now that you have seen the basics of how an application behaves when it is suspended and how to
disable multi-tasking for an application, this section looks at an example showing how an applica-
tion can continue to run even when it is in the background.

One of the three types of applications permitted to run in the background is the location-based services
application. In Chapter 20, you learned how to use the Core Location framework to obtain geographi-
cal data. The limitation with the example shown in that chapter is that as soon as the application goes
into the background, your application will no longer be able to receive location updates.

Understanding Background execution on the iPhone ❘ 525

The following Try It Out demonstrates how to enable the application to continue receiving location
updates even as it goes into the background.

Tracking Locations in the Backgroundtry it Out

 1 . Using the LBS project created in Chapter 20, select the LBS-Info.plist file and add a new key to it.

 2 . Right-click the newly created key and select Show Raw Keys/Values (see Figure 21-5).

figure 21-5

 3 . Add the key named UIBackgroundModes (see Figure 21-6).

 4 . Expand the key and set its first value to location (see Figure 21-7).

figure 21-6 figure 21-7

526 ❘ chApter 21 bacKGrOund aPPlicatiOnS

 5 . In the LBSAppDelegate.m file, add the following bold statements:

#import“LBSAppDelegate.h”
#import“LBSViewController.h”

@implementationLBSAppDelegate

@synthesizewindow;
@synthesizeviewController;

-(BOOL)application:(UIApplication*)application
didFinishLaunchingWithOptions:(NSDictionary*)launchOptions{

//Overridepointforcustomizationafterapplicationlaunch.

//Addtheviewcontroller’sviewtothewindowanddisplay.
[windowaddSubview:viewController.view];
[windowmakeKeyAndVisible];

returnYES;
}

-(void)applicationWillResignActive:(UIApplication*)application{

 NSLog(@”applicationWillResignActive:”);
/*
Sentwhentheapplicationisabouttomovefromactivetoinactive
state.Thiscanoccurforcertaintypesoftemporaryinterruptions(such
asanincomingphonecallorSMSmessage)orwhentheuserquitsthe
applicationanditbeginsthetransitiontothebackgroundstate.
Usethismethodtopauseongoingtasks,disabletimers,andthrottle
downOpenGLESframerates.Gamesshouldusethismethodtopausethegame.
*/
}

-(void)applicationDidEnterBackground:(UIApplication*)application{

 NSLog(@”applicationDidEnterBackground:”);
/*
Usethismethodtoreleasesharedresources,saveuserdata,
invalidatetimers,andstoreenoughapplicationstateinformationto
restoreyourapplicationtoitscurrentstateincaseitisterminatedlater.
Ifyourapplicationsupportsbackgroundexecution,calledinsteadof
applicationWillTerminate:whentheuserquits.
*/
}

-(void)applicationWillEnterForeground:(UIApplication*)application{

 NSLog(@”applicationWillEnterForeground:”);
/*
Calledaspartoftransitionfromthebackgroundtotheinactive
state:hereyoucanundomanyofthechangesmadeonenteringthebackground.
*/

Understanding Background execution on the iPhone ❘ 527

}

-(void)applicationDidBecomeActive:(UIApplication*)application{

 NSLog(@”applicationDidBecomeActive:”);
/*
Restartanytasksthatwerepaused(ornotyetstarted)whilethe
applicationwasinactive.Iftheapplicationwaspreviouslyinthe
background,optionallyrefreshtheuserinterface.
*/
}

-(void)applicationWillTerminate:(UIApplication*)application{

 NSLog(@”applicationWillTerminate:”);
/*
Calledwhentheapplicationisabouttoterminate.
SeealsoapplicationDidEnterBackground:.
*/
}

 6 . In the LBSViewController.m file, add the following bold statements:

-(void)locationManager:(CLLocationManager*)manager
didUpdateToLocation:(CLLocation*)newLocation
fromLocation:(CLLocation*)oldLocation{

//...
//...
//---displayaccuracy---
NSString*acc=[[NSStringalloc]initWithFormat:@”%f”,
newLocation.horizontalAccuracy];
accuracyTextField.text=acc;

 //---print out the lat and long---
 NSLog(@”%@|%@”,latitudeTextField.text, longitudeTextField.text);

[accrelease];
[latrelease];
[lngrelease];

//---updatethemap---
MKCoordinateSpanspan;
//...
//...
}

 7 . Press Command-R to test the application on a real device. When the application has finished load-
ing on the device, press the Home button to send the application to the background. Observe the
output shown in the Debugger Console window (press Command-Shift-R in Xcode). You may
need to move your device so that it can get new location updates:

2010-07-0723:03:54.176LBS[2408:307]applicationDidBecomeActive:
2010-07-0723:03:54.865LBS[2408:307]1.125160|100.850620

528 ❘ chApter 21 bacKGrOund aPPlicatiOnS

2010-07-0723:03:56.719LBS[2408:307]applicationWillResignActive:
2010-07-0723:03:56.849LBS[2408:307]applicationDidEnterBackground:
2010-07-0723:04:13.544LBS[2408:307]1.125195|100.850548
2010-07-0723:05:30.114LBS[2408:307]1.125136|100.850717
2010-07-0723:08:57.057LBS[2408:307]1.125250|100.850394
2010-07-0723:09:11.354LBS[2408:307]1.125181|100.850464
2010-07-0723:10:13.610LBS[2408:307]1.125181|100.850464

How It Works

In order to enable your application to continue receiving location data even when it goes into the
background, you need to set the UIBackgroundModes key in the Info.plist file to location. The
UIBackgroundModes key is an array, and it can contain one or more of the following values:

location➤➤

audio➤➤

voip➤➤

Note that no change to your code is required in order to enable your application to run in the back-
ground — you need only set the UIBackgroundModes key. The output shown in the Debugger Console
window proves that even though the application has gone into the background, it continues to receive
location data:

2010-07-0723:03:56.719LBS[2408:307]applicationWillResignActive:
2010-07-0723:03:56.849LBS[2408:307]applicationDidEnterBackground:
2010-07-0723:04:13.544LBS[2408:307]1.125195|100.850548
2010-07-0723:05:30.114LBS[2408:307]1.125136|100.850717

making your location Apps more energy efficient
The project that you modified in the previous section enables you to continuously track your loca-
tion even though the application may be running in the background. While some scenarios require
you to track all location changes, many do not. For example, your application may just need to track
a point every few hundred meters. In this case, it is important to prevent the application from con-
tinuously tracking every single point, as this takes a heavy toll on the battery.

Instead of using the startUpdatingLocation method of the CLLocationManager class to receive loca-
tion updates, you can use the new startMonitoringSignificantLocationChanges method, like this:

-(void)viewDidLoad{
self.lm=[[CLLocationManageralloc]init];
lm.delegate=self;
lm.desiredAccuracy=kCLLocationAccuracyBest;

 // lm.distanceFilter = kCLDistanceFilterNone;
 // [lm startUpdatingLocation];
 [lmstartMonitoringSignificantLocationChanges];

//...

Understanding Background execution on the iPhone ❘ 529

//...
//...
[superviewDidLoad];
}

The startMonitoringSignificantLocationChanges method reports location data only when the
device has moved a significant distance. Specifically, it reports location data only when it detects
that the device has switched to another cell tower. As such, this method works only with iPhones
(and only iPhone 3GS and iPhone 4; the older iPhone 3G does not support this feature). If you use
this method to track location, the distanceFilter property is not needed. When a location update
is received, it calls the same locationManager:didUpdateToLocation:fromLocation: method to
report location data.

Using the startMonitoringSignificantLocationChanges method greatly reduces the power con-
sumption of your device, as it does not use the power-intensive GPS radio. Note also that if you use
this feature, there is no need to have the UIBackgroundModes key in the Info.plist file — the OS
will automatically wake your application up from suspended mode to receive the location data.

If your application is terminated when a new location update event is received, it will automatically
relaunch your application. To determine whether the application is restarted due to a change in loca-
tion, you can check for the UIApplicationLaunchOptionsLocationKey key in the application’s delegate’s
application:didFinishLaunchingWithOptions: event, like this:

#import“LBSAppDelegate.h”
#import“LBSViewController.h”

@implementationLBSAppDelegate

@synthesizewindow;
@synthesizeviewController;

-(BOOL)application:(UIApplication*)application
didFinishLaunchingWithOptions:(NSDictionary*)launchOptions{

 //---if application is restarted due to changes in location---
 if ([launchOptions
 objectForKey:UIApplicationLaunchOptionsLocationKey]) {

 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”LBS app restarted”
 message:@”App restarted due to changes in location.”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];

 [alert show];
 [alert release];
 }
//Overridepointforcustomizationafterapplicationlaunch.

//Addtheviewcontroller’sviewtothewindowanddisplay.
[windowaddSubview:viewController.view];

530 ❘ chApter 21 bacKGrOund aPPlicatiOnS

[windowmakeKeyAndVisible];

returnYES;
}

Once the application is restarted, you should create another instance of the CLLocationManager class
and start the monitoring again.

To stop monitoring for location changes, use the stopMonitoringSignificantLocationChanges method:

[lm stopMonitoringSignificantLocationChanges];

lOcAl nOtificAtiOn

In Chapter 19, you learned about the Apple Push Notification service (APNs), which enables an
application to receive notifications, even if it is no longer running on the device. Using the APNs, the
provider of an application can continuously keep the user updated, by pushing messages directly to
the user through Apple’s Push server.

In addition to the APNs, the iPhone also supports another notification framework, local notifications.
While the notifications for APNs are sent by the application provider, the notifications sent by a local
notification are scheduled by the application and delivered by the iOS on the same device. For exam-
ple, suppose you are writing a to-do list application. At a specific time, your application will display
notifications to the user, reminding them of some future tasks. This scenario is a perfect example of
the use of local notifications. Another good use of a local notification is that of a location application.
The user may be running your application in the background, and when it detects that the user is in
the vicinity of a certain location, it can display a notification.

The following example illustrates the building blocks that you need to have in place in order to create
an application that uses local notifications.

Creating Local notificationstry it Out

codefile LocalNotification.zip available for download at Wrox.com

 1 . Using Xcode, create a new View-based Application (iPhone) project and name it LocalNotification.

 2 . Double-click on the LocalNotificationViewController.xib file to edit it in Interface Builder.

 3 . Populate the View window with the following views (see Figure 21-8):

Label (name it ➤➤ Enter notification message)

Text Field➤➤

Two Buttons (name them ➤➤ Set and Cancel all notifications)

 4 . In the LocalNotificationViewController.h file, add the following bold statements:

#import<UIKit/UIKit.h>

@interfaceLocalNotificationViewController:UIViewController{

Local notification ❘ 531

 IBOutlet UITextField *message;
}

@property (nonatomic, retain) UITextField *message;

-(IBAction) btnSet:(id) sender;
-(IBAction) btnCancelAll:(id) sender;

@end

figure 21-8

 5 . Back in Interface Builder, perform the following actions:

Control-click the File’s Owner item and drag and drop it over the Text Field. Select ➤➤ message.

Control-click the Set button and drag and drop it over the File’s Owner item. Select ➤➤ btnSet:.

Control-click the Set button and drag and drop it over the File’s Owner item. Select ➤➤

btnCancelAll:.

 6 . In the LocalNotificationViewController.m file, add the following bold statements:

#import“LocalNotificationViewController.h”

@implementationLocalNotificationViewController

@synthesize message;

-(IBAction) btnSet:(id) sender {
 UILocalNotification *localNotification =

532 ❘ chApter 21 bacKGrOund aPPlicatiOnS

 [[UILocalNotification alloc] init];

 //---set the notification to go off in 5 seconds time---
 localNotification.fireDate =
 [[NSDate alloc] initWithTimeIntervalSinceNow:5];

 //---the message to display for the alert---
 localNotification.alertBody = message.text;

 localNotification.applicationIconBadgeNumber = 1;

 //---uses the default sound---
 localNotification.soundName = UILocalNotificationDefaultSoundName;

 //---title for the button to display---
 localNotification.alertAction = @”View Details”;

 //---schedule the notification---
 [[UIApplication sharedApplication]
 scheduleLocalNotification:localNotification];

 [localNotification release];
}

-(IBAction) btnCancelAll:(id) sender {
 //---cancel all notifications---
 [[UIApplication sharedApplication] cancelAllLocalNotifications];
}

-(void)dealloc{
 [message release];
[superdealloc];
}

 7 . In the LocalNotificationAppDelegate.m file, add the following bold statements:

#import“LocalNotificationAppDelegate.h”
#import“LocalNotificationViewController.h”

@implementationLocalNotificationAppDelegate

@synthesizewindow;
@synthesizeviewController;

- (void)application:(UIApplication *)application
didReceiveLocalNotification:(UILocalNotification *)notification {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Inside application:didReceiveLocalNotification:”
 message:notification.alertBody
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];

 [alert show];
 [alert release];
}

-(BOOL)application:(UIApplication*)application

Local notification ❘ 533

didFinishLaunchingWithOptions:(NSDictionary*)launchOptions{
 UILocalNotification *localNotification =
 [launchOptions objectForKey:
 UIApplicationLaunchOptionsLocalNotificationKey];

 if (localNotification) {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Inside application:didFinishLaunchingWithOptions:”
 message:localNotification.alertBody
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }

//Overridepointforcustomizationafterapplicationlaunch.

//Addtheviewcontroller’sviewtothewindowanddisplay.
[windowaddSubview:viewController.view];
[windowmakeKeyAndVisible];

returnYES;
}

 8 . Press Command-R to test the application on the
iPhone 4 Simulator.

 9 . Enter a message Time’s up! and click the Set button
to set the local notification to fire in five seconds (see
Figure 21-9). Exit the application immediately by press-
ing the Home button. The application will go into the
background.

 10 . About five seconds later, the notification will
appear (see Figure 21-10). If you click the View Details
button, the application will return to the foreground.
The Alert view (see Figure 21-11) shows that the
application:didReceiveLocalNotification: event
in the application delegate was fired.

 11 . Enter a notification message again and click the Set
button again. This time, press the Home button to exit
the application and then double-click the Home button
and terminate the application so that it does not run in
the background anymore.

 12 . About five seconds later, the notification will appear
again. If you click the View Details button, the appli-
cation will return to the foreground. This time, the
Alert view shows that the application:didFinishLaunchingWithOptions:
event in the application delegate was fired instead (see Figure 21-12).

figure 21-9

534 ❘ chApter 21 bacKGrOund aPPlicatiOnS

figure 21-10 figure 21-11

figure 21-12

Local notification ❘ 535

How It Works

Creating a local notification is very straightforward:

 UILocalNotification *localNotification =
 [[UILocalNotification alloc] init];

Once you have obtained an instance of the UILocalNotification class, you need to configure the object
with various information, such as the time in which the notification will fire, the message to display, the
badge number to display for your application icon, the sound to play, as well as the caption of the button to
display:

 //---set the notification to go off in 5 seconds time---
 localNotification.fireDate =
 [[NSDate alloc] initWithTimeIntervalSinceNow:5];

 //---the message to display for the alert---
 localNotification.alertBody = message.text;

 localNotification.applicationIconBadgeNumber = 1;

 //---uses the default sound---
 localNotification.soundName = UILocalNotificationDefaultSoundName;

 //---title for the button to display---
 localNotification.alertAction = @”View Details”;

In the preceding code, you use the fireDate property to set the local
notification to fire in five seconds. The alertBody property sets the mes-
sage to display. The applicationIconBadgeNumber property displays
a badge number next to the application’s icon (this badge number will
be displayed when the local notification fires). The soundName property
enables you to specify the filename of a sound resource that is bundled
with your application. If you want to play the system’s default sound,
use the UILocalNotificationDefaultSoundName constant. Finally, the
alertAction property enables you to customize the button caption of
the notification (see Figure 21-13).

To schedule a future local notification, use the scheduleLocalNotification:method of the
UIApplication class:

 //---schedule the notification---
 [[UIApplication sharedApplication]
 scheduleLocalNotification:localNotification];

If you want to display the notification instantly, use the presentLocalNotificationNow: method instead:

 //---display the notification now---
 [[UIApplication sharedApplication]
 presentLocalNotificationNow:localNotification];

This is very useful for cases in which your application is executing in the background and you want to
display a notification to draw the user’s attention.

figure 21-13

536 ❘ chApter 21 bacKGrOund aPPlicatiOnS

When the notification is displayed (it will be displayed only if the application is not in the foreground),
the user has two options: close the notification or view the application that generated the notification.
When the user views the notification, the application:didReceiveLocalNotification:method in the
application’s delegate will be called:

- (void)application:(UIApplication *)application
didReceiveLocalNotification:(UILocalNotification *)notification {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Inside application:didReceiveLocalNotification:”
 message:notification.alertBody
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];

 [alert show];
 [alert release];
}

Here, you can simply print out the details of the notification through the notification parameter.

Note that the application:didReceiveLocalNotification:method is also called when the application
is running and the local notification is fired. In this case, the local notification will not appear.

If the application is not running when the local notification occurs, viewing the application will invoke
the application:didFinishLaunchingWithOptions: method instead:

-(BOOL)application:(UIApplication*)application
didFinishLaunchingWithOptions:(NSDictionary*)launchOptions{
 UILocalNotification *localNotification =
 [launchOptions objectForKey:
 UIApplicationLaunchOptionsLocalNotificationKey];

 if (localNotification) {
 UIAlertView *alert = [[UIAlertView alloc]
 initWithTitle:@”Inside application:didFinishLaunchingWithOptions:”
 message:localNotification.alertBody
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
 }

//Overridepointforcustomizationafterapplicationlaunch.

//Addtheviewcontroller’sviewtothewindowanddisplay.
[windowaddSubview:viewController.view];
[windowmakeKeyAndVisible];

returnYES;
}

To obtain details about the notification, you have to use the launchOptions parameter, by querying the
details using the UIApplicationLaunchOptionsLocalNotificationKey constant.

Summary ❘ 537

To cancel all scheduled notifications, you can call the cancelAllLocalNotifications method of the
UIApplication class:

 //---cancel all notifications---
[[UIApplicationsharedApplication]cancelAllLocalNotifications];

SummAry

In this chapter, you have seen how background execution works and how you can utilize it to make
your applications more useful. Combining all the different concepts discussed in this chapter will enable
you to write compelling iPhone applications. Note that at the time of writing, the multi-tasking feature
of iOS applies only to the newer iPhone 3GS and iPhone 4. Support for multi-tasking on the iPad will
be available by the end of 2010.

exerciSeS

 1 . Name the three types of applications that are allowed to execute in the background .

 2 . Which devices support multi-tasking?

 3 . For the CLLocationManager class, when should you use the startUpdatingLocation and
startMonitoringSignificantLocationChanges methods? Why?

 4 . What is the difference between Apple Push Notification service and local notifications?

Answers to the Exercises can be found in Appendix E, on Wrox.com.

538 ❘ chApter 21 bacKGrOund aPPlicatiOnS

whAt yOu leArneD in thiS chApter ⊲

tOpic key cOnceptS

Opting out of background
execution

Use the UIApplicationExitsOnSuspend key .

tracking locations in the
background

Use the UIBackgroundModes key .

monitoring significant
location changes

Use the startMonitoringSignificantLocationChanges method .

creating local
notifications

Use the UILocalNotification class .

Scheduling a local
notification

[[UIApplicationsharedApplication]

scheduleLocalNotification:localNotification];

presenting a local
notification

[[UIApplicationsharedApplication]

presentLocalNotificationNow:localNotification];

PART V
Appendices

AppenDix A: ⊲ Testing on an Actual Device

AppenDix B: ⊲ Getting Around in Xcode

AppenDix c: ⊲ Getting Around in Interface Builder

AppenDix D: ⊲ Crash Course in Objective-C

AppenDix e: ⊲ Answers to Exercises (found online at Wrox .com)

Testing on an Actual Device
Although the iPhone Simulator is a very handy tool that enables you to test your iPhone/iPad
applications without needing an actual device, nothing beats testing on a real device. This is
especially true when you are ready to roll out your application to the world — you must ensure
that it works correctly on real devices. In addition, if your application requires access to hard-
ware features on an iPhone, iPod touch, or iPad, such as the accelerometer, gyroscope, and
GPS, you need to test it on a real device — the iPhone Simulator is simply not adequate.

This appendix walks through the steps you need to take to test your applications on a real
device, be it the iPhone, iPod touch, or iPad. In addition, you will also learn how to prepare
your application for submission to the App Store.

Signing up fOr the iphOne DevelOper prOgrAm

The fi rst step toward testing your application on a real device is to sign up for the iPhone
Developer Program at http://developer.apple.com/iphone/program/. Two programs are
available: Standard and Enterprise. For most developers who want to release applications on the
App Store, the Standard program, which costs $99, is suffi cient. Check out http://developer
.apple.com/iphone/program/apply.html to learn more about the differences between the
Standard and Enterprise programs.

If you just want to test your application on your actual iPhone/iPod touch, sign up for the
Standard program.

OBtAining the uDiD Of yOur Device

To test your application on your device, you need to perform a series of steps to prepare your
Mac and your device. The following sections walk you through the necessary steps, from
obtaining your certifi cate to deploying your application onto the device.

A

http://developer.apple.com/iphone/program/
http://developer.apple.com/iphone/program/apply.html
http://developer.apple.com/iphone/program/apply.html

542 ❘ AppenDix A teStinG On an actual deVice

First, you need to obtain the 40-character identifier that uniquely identifies your device. This iden-
tifier is known as the UDID — Unique Device Identifier. Every device sold by Apple has a unique
UDID. To do so, connect your device to your Mac and start Xcode. Choose Window ➪ Organizer
to launch the Organizer application. Figure A-1 shows the Organizer application displaying the
identifier of my iPhone. Copy the identifier and save it somewhere; you will need it later.

figure A-1

lOgging in tO the iphOne prOviSiOning pOrtAl

Once you have signed up for the iPhone Developer Program, you can log in to the iPhone Dev
Center website located at http://developer.apple.com/iphone/index.action. Figure A-2 shows
the page displayed after you have logged in to the iPhone Dev Center.

On the right side of the page, you will see a section named iPhone Developer Program. The first item
listed under this section is iPhone Provisioning Portal. This portal contains all the details about pre-
paring your Mac and devices for testing and deployment. Click the iPhone Provisioning Portal item
to display the window shown in Figure A-3.

The pane on the left contains several links to pages where you can submit various information
required to prepare your Mac and devices for testing. The center pane contains the welcome message
and a Launch Assistant button. If you are using this page for the first time, the Launch Assistant pro-
vides an easy-to-follow series of guided instructions to help you test your applications on your devices.
However, to help you better understand the details of the process, the following sections describe each
step by walking through the various links displayed on the left side of the page.

http://developer.apple.com/iphone/index.action

Logging in to the iPhone Provisioning Portal ❘ 543

figure A-2

figure A-3

544 ❘ AppenDix A teStinG On an actual deVice

generAting A certificAte

The first step toward testing your application on a real device is to obtain a digital certificate from
Apple so that Xcode can use it to code-sign your application. Any applications that are run on your
devices must be code-signed. For testing purposes, you will need a development certificate. Once
you are ready to distribute your application (such as through the App Store), you will then need a
distribution certificate (discussed later in this Appendix).

To request a development certificate from Apple, you need to generate a certificate signing request
(CSR). You can do this using the Keychain Access application located in the Applications/
Utilities/ folder.

In the Keychain Access application, choose Keychain Access ➪ Certificate Assistant and select
Request a Certificate From a Certificate Authority (see Figure A-4).

figure A-4

In the Certificate Assistant window (see Figure A-5), enter your e-mail address, check the Saved to
disk option, and click Continue.

You will be asked to save the request to a file. Use the default name suggested and click Save (see
Figure A-6).

figure A-6figure A-5

generating a Certificate ❘ 545

On the iPhone Provisioning Portal page, click the Certificates item displayed on the left (see
Figure A-7). Four tabs will be displayed on the right side of the page — Development, Distribution,
History, and How To.

In the Development tab, click the Request Certificate button to request a development certificate
from Apple. You will see a detailed list of instructions telling you to generate a certificate request
using the Keychain Access application (see Figure A-8). As you have already performed this step
earlier in this Appendix, click the Choose file button to upload the certificate request file to Apple.
After the file is selected, click Submit to send it to Apple.

figure A-7

figure A-8

546 ❘ AppenDix A teStinG On an actual deVice

As shown in Figure A-9, the development certificate will now have a status of Pending Issuance.

figure A-9

Simply refresh the page or click the Development tab once more and your development certificate
will now be ready (see Figure A-10).

figure A-10

Click the Download button to download the development certificate. When it is downloaded to your
Mac, double-click the developer_identity.cer file. When prompted, click OK. The certificate will
now be installed in the Keychain Access application, which you can verify (see Figure A-11).

Registering Your Devices ❘ 547

figure A-11

regiStering yOur DeviceS

The next step is to register your devices with the iPhone Provisioning Portal so that you can later
associate them with the provisioning profiles (more on this shortly).

Back on the iPhone Provisioning Portal page, click the Devices item displayed on the left side of the
page (see Figure A-12). On the right of the page, you will see that you can both add devices and
upload a list of devices to register.

figure A-12

Click the Add Devices button to register one or more devices. Give your device a name and enter
its Device ID (see Figure A-13). You obtained the Device ID (UDID) of your device earlier, in the
“Obtaining the UDID of Your Device” section. To register additional devices, click the plus (+) but-
ton. Then click Submit.

548 ❘ AppenDix A teStinG On an actual deVice

NOTE For the Standard Program, you can register up to 100 devices for testing.
All added devices count toward your 100-device limit, whether you use them or
not. In other words, if you register fi ve devices and then lose them in the bar, you
can register only 95 more devices — the slots taken up by the other fi ve devices
cannot be recovered. You can reset the list only when you renew your member-
ship annually.

figure A-13

creAting An ApplicAtiOn iD

The next step of the process is to create an Application ID (App ID) that you will use to identify
your application. An App ID is a series of characters used to uniquely identify an application (or
applications) on your iPhone. An App ID is represented in the following format: <Bundle Seed
ID>.<CF Bundle Identifi er>.

On the iPhone Provisioning Portal page, click the App IDs item on the left (see Figure A-14).

Creating an Application iD ❘ 549

Click the New App ID button to create a new App ID. On the right of the page, you enter the details
for the App ID (see Figure A-15).

figure A-14

figure A-15

550 ❘ AppenDix A teStinG On an actual deVice

Enter a description for the App ID you are creating. For this example, it is Learn2DevelopAppID.
This name will be used to identify your App ID. You will leave the Bundle Seed ID to be automati-
cally generated for you. For the Bundle Identifier, you have two options:

Give it a unique identifier, e.g., ➤➤ com.yourcompany.appname

Use a wildcard character (*) as the trailing character, e.g., ➤➤ com.yourcompany.*, or simply use *

Using the wildcard character allows you to use a single App ID for all your applications, while if
you use a unique identifier for the Bundle Identifier, you will need to have a unique App ID for each
application.

In general, it is easier to use the wildcard character, as you can use one App ID for all your applica-
tions. Here, I used the * for the Bundle Identifier. When you compile your application, this wildcard
will be substituted with the Bundle Identifier specified in the info.plist file in your Xcode.

creAting A prOviSiOning prOfile

In order for your application to be able to execute on a device, the device must be provisioned with a
file known as a provisioning profile.

On the iPhone Provisioning Portal page, click the Provisioning item displayed on the left (see
Figure A-16).

figure A-16

Under the Development tab, shown in Figure A-17, provide a name for your provisioning profile,
check the certificate name, select the App ID created in the previous section, and then check all the
device names that you want to test on. Click Submit.

The provisioning profile that you have created will now be pending issuance (see Figure A-18).

Creating a Provisioning Profile ❘ 551

figure A-17

figure A-18

Refresh the page or click the Development tab again and the provisioning profile should now be
ready for download (see Figure A-19). Download the generated provisioning profile onto your Mac
by clicking the Download button.

figure A-19

552 ❘ AppenDix A teStinG On an actual deVice

Drag and drop the downloaded provisioning profi le onto the Xcode icon that is on the Dock (see
Figure A-20).

figure A-20

Doing so installs the provisioning profi le onto the Organizer application (part of Xcode; see
Figure A-21). It also installs the provisioning profi le onto your connected iPhone, iPod touch, or
iPad device.

figure A-21

To verify that the provisioning profi le is indeed installed on your device, select the device that is cur-
rently connected to your Mac and view the Provisioning section of the Summary tab (see Figure A-22).

NOTE If you don’t see the provisioning profi le, simply disconnect your device and
connect again. If, after reconnecting the device, the provisioning profi le is not there,
click the “+” button to manually add the provisioning profi le to your device.

Creating a Provisioning Profile ❘ 553

You are now almost ready to deploy your iPhone application onto your iPhone, iPod touch, or iPad.
In Xcode, select Device – 4.0 ➪ Debug and press Command-R. When you are prompted to sign your
application using the certificate, click Always Allow (see Figure A-23).

figure A-22

figure A-23

554 ❘ AppenDix A teStinG On an actual deVice

unDerStAnDing ApplicAtiOn iD AnD the wilDcArD

Earlier, I mentioned that you can use the wildcard character for your App ID. If you do not wish to
use the wildcard character, you need to perform the following additional step.

Figure A-24 assumes that you have an App ID called HelloWorldAppID.

In Figure A-25, the provisioning profile HelloWorldProfile is associated with this App ID.

figure A-24

figure A-25

Understanding Application iD and the Wildcard ❘ 555

If you were to install the HelloWorldProfile provisioning profile onto your device, you would have to
modify the Bundle Identifier in your Xcode project to match the Bundle Identifier (net.learn2develop
.HelloWorld) specified in the HelloWorldAppID App ID. To do so, expand the Targets item in your
Xcode project and click the Info button located in the toolbar (see Figure A-26).

figure A-26

In the Build tab, under the Code Signing Identity setting, observe that only the
Learn2DevelopProfile (which uses the * character) matches the application identifier
(see Figure A-27). The HelloWorldProfile does not match the application, as the application
identifier is not the same. Your application identifier at the moment is com.yourcompany
.HelloWorld.

Click the Properties tab and set the Identifier to net.learn2develop.HelloWorld (see Figure A-28).

Once this is done, the HelloWorldProfile will now match your Bundle Identifier (see Figure A-29).

You will then be able to sign your application based on this provisioning profile.

556 ❘ AppenDix A teStinG On an actual deVice

figure A-27

figure A-28

Preparing for App Store Submission ❘ 557

figure A-29

prepAring fOr App StOre SuBmiSSiOn

Preparing for submission to the App Store is very similar to preparing your application for test-
ing on your device. Instead of using a development certificate, you use a distribution certificate.
Also, instead of using a development provisioning profile, you use a distribution provisioning
profile.

To create a distribution certificate, repeat the same process outlined earlier for creating the devel-
opment certificate. The distribution certificate is created in the Distribution tab (see Figure A-30).

figure A-30

558 ❘ AppenDix A teStinG On an actual deVice

For the distribution provisioning profile, select Provisioning from the panel on the left, and then
click the Distribution tab (see Figure A-31). Click the New Profile button to create a new distribu-
tion provisioning profile.

figure A-31

You need to select the distribution method (App Store; see Figure A-32), name the distribution pro-
visioning profile, and select the App ID. Note that there is no need to select the devices because the
application will be hosted on the App Store and available to all users.

figure A-32

Once the distribution provisioning profile is created, download it and install it in Xcode.

To prepare your application for submission, select your project name in Xcode and click the Info
button. Select the Configurations tab (see Figure A-33) and then select Release. Click the Duplicate
button to make a copy of it.

Preparing for App Store Submission ❘ 559

Name the duplicate Distribution (see Figure A-34).

figure A-33

figure A-34

560 ❘ AppenDix A teStinG On an actual deVice

Back in Xcode, select the HelloWorld item listed under Targets and click the Info button. Select the
Build tab and set the following items:

Confi guration➤➤ — Distribution (see Figure A-35)

Any iPhone OS Device➤➤ — iPhone Distribution:<Your Name>

Under the Overview item in the toolbar of Xcode, select Distribution (see Figure A-36). Then, com-
pile the application by selecting Build ➪ Build.

figure A-35

NOTE You need to ensure that your application has an icon that is 57 x 57 pix-
els in size. Otherwise, your application will not be compiled correctly and will be
rejected by Apple when it is submitted for approval.

You can verify that the application is built and signed correctly by selecting Build ➪ Build Results.
Ensure that the code signing process is performed correctly (see Figure A-37).

Preparing for App Store Submission ❘ 561

figure A-36

figure A-37

562 ❘ AppenDix A teStinG On an actual deVice

The binary that is compiled is listed under the Products folder in your Xcode project. To see its
location on your Mac, right-click the .app file and select Reveal in Finder (see Figure A-38).

There are two files in the folder. Right-click the .app file and select the Compress option (see Figure
A-39). You will need to submit the compressed zip file to Apple.

figure A-38

figure A-39

Summary ❘ 563

For submission to the App Store, you use the iTunes Connect page shown earlier on the right side of
the iPhone Dev Center (refer to Figure A-2).

Inside iTunes Connect, you can find detailed instructions for submitting your application to the App
Store (see Figure A-40). Details about submitting the application are beyond the scope of this book.

figure A-40

SummAry

In this appendix, you have seen the various steps required to deploy your application to your iPhone,
iPod touch, or iPad. Although the number of steps may seem intimidating, it is actually quite a straight-
forward process. The iPhone Developer Program allows you to provision up to 100 devices for testing
purposes. After a device is provisioned, you can use the development certificate to deploy your applica-
tions onto it. For submission to the App Store, you need a distribution certificate and a provisioning
profile.

getting Around in Xcode
Xcode is the integrated development environment (IDE) that Apple uses for developing Mac
OS X, iPhone, and iPad applications. It is a suite of applications that includes a set of compil-
ers, documentation, and Interface Builder (discussed in Appendix C).

Using Xcode, you can build your iPhone and iPad applications from the comfort of an intel-
ligent text editor, coupled with many different tools to help debug your applications. If you are
new to Xcode, this appendix can serve as a useful guide to get you started quickly. Appendix C
covers the Interface Builder in more detail.

lAunching xcODe

The easiest way to launch Xcode is to type Xcode in the textbox of Spotlight. Alternatively,
you can launch Xcode by navigating to the /Developer/Applications/ folder and double-
clicking the Xcode icon.

NOTE For convenience, you can also drag the Xcode icon to the Dock so that in
the future you can launch it directly from there.

At the time of writing, the version of Xcode available is version 3.2.3.

project types Supported
Xcode supports the building of iPhone, iPad, and Mac OS X applications. When you create a
new project in Xcode (which you do by choosing File ➪ New Project), the New Project dialog
appears, as shown in Figure B-1.

As shown on the left, you can create two main project types: iPhone OS and Mac OS X. Under
the iPhone OS category are the Application and Library items.

B

566 ❘ AppenDix B GettinG arOund in XcOde

figure B-1

If you select the Application item, you will see all the different project types you can create:

Navigation-based Application (iPhone only)➤➤

OpenGL ES Application (iPhone and iPad)➤➤

Split View-based Application (iPad only)➤➤

Tab Bar Application (iPhone and iPad)➤➤

Utility Application (iPhone only)➤➤

View-based Application (iPhone and iPad)➤➤

Window-based Application (iPhone and iPad)➤➤

For the Navigation-based Application, Split View-based Application, Utility Application, and
Window-based Application project types, you have the option to use Core Data for storage.

NOTE Core Data is part of the Cocoa API that was fi rst introduced with the
iPhone SDK 3.0. It is basically a framework for manipulating data without wor-
rying about the details of storage and retrieval. A discussion of Core Data is
beyond the scope of this book.

Launching Xcode ❘ 567

Select the project type you want to create and click the Choose button. Then name the project.

When the project is created, Xcode displays all the files that make up your project (see Figure B-2).

figure B-2

The Xcode window is divided into five sections:

Toolbar — ➤➤ Displays the buttons for commonly performed actions.

Groups and Files List — ➤➤ Displays the files in a project. Files are grouped into folders and cat-
egories for easier management.

Status Bar — ➤➤ Displays the status information about the current action.

Detail View — ➤➤ Displays the files contained in the folders and groups selected in the Groups
and Files List section.

Editor — ➤➤ Displays the appropriate editor showing the file currently selected.

To edit a code file, click the filename of a file to open the appropriate editor. For example, if you click
an .h or .m file, the code editor in which you can edit your source code is displayed (see Figure B-3).

Click a .plist file, and the XML Property List editor launches (see Figure B-4).

568 ❘ AppenDix B GettinG arOund in XcOde

figure B-3

figure B-4

customizing the toolbar
The Xcode window contains the toolbar section, in which you can place your favorite items for
quick access. By default, the following items are placed in the toolbar:

Overview — ➤➤ Enables you to select target settings such as the active SDK (iOS version and
device versus Simulator) as well as active configurations (Debug or Release).

Launching Xcode ❘ 569

Action — ➤➤ Specifies the action you can perform with a selected item.

Breakpoints — ➤➤ Toggles the Build and Run item (see the next item) to Build and Debug so
that you can attach a debugger to the application.

Build and Run — ➤➤ Enables you to build and deploy the application.

Tasks — ➤➤ Stops any operation in progress.

Info — ➤➤ Displays detailed information about a selected item.

Search — ➤➤ Filters the items currently displayed in the Detail View section.

You can add items to the toolbar by right-clicking the toolbar and selecting Customize Toolbar. A
drop-down pane then shows all the items that you can add to the toolbar (see Figure B-5). To add an
item, just drag it directly onto the toolbar.

figure B-5

code Sense
One of the most common features of a modern IDE is code completion, whereby the IDE automati-
cally tries to complete the statement you are typing based on the current context. In Xcode, the code-
completion feature is known as Code Sense. For example, if you type the
letters uial in a method, such as the viewDidLoad() method, Code Sense
automatically suggests the UIAlertView class, as shown in Figure B-6
(note that the suggested characters are displayed in gray). To accept the
suggested word, simply press the Tab or Enter key, or Ctrl-/. figure B-6

570 ❘ AppenDix B GettinG arOund in XcOde

You can also invoke the Code Sense feature by pressing the Esc key or F5. Code Sense displays a list
of words starting with the letters you have typed (see Figure B-7).

figure B-7

Xcode automatically recognizes the code you are typing and inserts the relevant parameters’
placeholders. For example, if you invoke the methods of an object, Xcode inserts the placehold-
ers of the various parameters. Figure B-8 shows an example of the placeholders inserted for the
UIAlertView object after you type “i.” To accept the placeholders for the various parameters,
press the Tab key (you can also press the Enter key, or Ctrl-/). Press Ctrl-/ to move to each
parameter placeholder and then enter a value. Alternatively, click each placeholder and type
over it.

figure B-8

running the Application
To execute an application, you first select the active SDK to use.
You also choose whether you want to test it on a real device or
use the included iPhone Simulator (the iPhone Simulator 4 simu-
lates the iPhone, whereas the iPhone Simulator 3.2 simulates
the iPad). You do so by selecting from the Overview list (see
Figure B-9).

To run the application, press Command-R, and Xcode
builds and deploys the application onto the selected device or
Simulator.

figure B-9

Debugging Your Applications ❘ 571

DeBugging yOur ApplicAtiOnS

Debugging your iPhone applications is an essential part of your development journey. Xcode
includes debugger utilities that help you trace and examine your code as you execute your applica-
tion. The following sections describe some of the tips and tricks that you can employ when develop-
ing your iPhone applications.

errors
When you try to run your application, Xcode first tries to build the project before it can deploy the
application onto the real device or Simulator. Any syntax errors that Xcode detects are immediately
highlighted with the exclamation icons. Figure B-10 shows an Xcode-highlighted syntax error. The
error with the code block is the missing brace symbol ([) for the [[UIAlertViewalloc] statement.

figure B-10

You can also click the error icon located at the lower-right corner of the window to view the list of
errors (see Figure B-11).

figure B-11

572 ❘ AppenDix B GettinG arOund in XcOde

warnings
Objective-C is a case-sensitive language; therefore, a common mistake made by beginners is mixing up
the capitalization for some of the method names. Consider the block of code shown in Figure B-12.

Can you spot the error? Syntactically, the statements are correct. However, one of the parameters appears
with the wrong capitalization: initwithTitle: was misspelled — it should be initWithTitle: (note
the capital “W”). When you compile the program, Xcode will not flag this code as an error; instead, it
issues a warning message (as shown in the figure).

figure B-12

Pay special attention to a warning message in Xcode, and verify that the method name is spelled
correctly, including case. Failing to do so may result in a runtime exception.

When a runtime exception occurs, the best way to troubleshoot the error is to open the Debugger
Console window by pressing Shift-Command-R. The Debugger Console window displays all the
debugging information that is printed when Xcode debugs your application. This window usually
contains the clue that helps you determine exactly what went wrong behind the scenes. Figure B-13
shows the content of the Debugger Console window when an exception occurs. To determine the
cause of the crash, scroll to the bottom of the window and look for the section displayed in bold. In
this case, note the reason stated — the problem is with the UIAlertView object.

figure B-13

Debugging Your Applications ❘ 573

Setting Breakpoints
Setting breakpoints in your code is helpful when debugging your application. Breakpoints enable
you to execute your code line-by-line and examine the values of variables so you can check that they
perform as expected.

In Xcode, you set a breakpoint by clicking the left column of the code editor — a breakpoint arrow
will appear (see Figure B-14).

figure B-14

NOTE You can toggle the state of a breakpoint by clicking it to enable or dis-
able it. Breakpoints displayed in dark blue are enabled; those displayed in light
blue are disabled. To remove a breakpoint, click on it and drag it out of its rest-
ing place. It will vanish.

After you have set breakpoints in your application, press Command-Y to debug your application.
The code will stop at your breakpoints.

NOTE If you press Command-R to run the application, your code will not stop at
the breakpoints.

When the application reaches the breakpoint you have set, Xcode indicates the current line of execu-
tion with a red arrow (see Figure B-15).

figure B-15

At this juncture, you can do several things:

Step Into (Shift-Command-I)➤➤ — Step into the statements in a function/method.

Step Over (Shift-Command-O)➤➤ — Execute all the statements in a function or method and
continue to the next statement.

574 ❘ AppenDix B GettinG arOund in XcOde

Step Out (Shift-Command-T)➤➤ — Finish executing all the statements in a function or method
and continue to the next statement after the function call.

If you want to resume the execution of your application, press Option-Command-P.➤➤ You
can also examine the values of variables and objects by clicking the Show Debugger button
(shown enclosed by the box in Figure B-16). You can also move your mouse over the objects
and variables you are interested in to view their values.

figure B-16

using nSlog
In addition to setting breakpoints to trace the flow of your application, you can use the NSLog()
function to print debugging messages to the Debugger Console window. The following statement in
bold prints a message to the Debugger Console window when the application changes orientation:

-(void)willRotateToInterfaceOrientation:(UIInterfaceOrientation)
toInterfaceOrientationduration:(NSTimeInterval)duration{
 NSLog(
 @”In the willRotateToInterfaceOrientation:duration: event handler”);

UIInterfaceOrientationdestOrientation=toInterfaceOrientation;
if(destOrientation==UIInterfaceOrientationPortrait){
btn.frame=CGRectMake(20,20,280,37);
}
else{
btn.frame=CGRectMake(180,243,280,37);
}
}

Debugging Your Applications ❘ 575

Figure B-17 shows the output in the Debugger Console window (press Shift-Command-R to display it).

figure B-17

Documentation
During the course of your development, you often need to check the various methods, classes, and
objects used in the iPhone SDK. The best way to check them out is to refer to the documentation.
Xcode enables you to quickly and easily browse the definitions of classes, properties, and methods
through the use of the Option key. To view the help documentation for an item, simply press the
Option key. The cursor changes to cross-hairs. Double-click the item you want to check out, and
a small window showing the summary of the selected item appears (see Figure B-18). Clicking the
book icon (see the callout on the figure) on the top-right corner of the window displays the full
Developer Documentation window.

figure B-18

getting Around in
interface Builder

Interface Builder is one of the tools included with the iPhone SDK. It is a visual design tool
that you can use to build the user interface of your iPhone applications. Although it is not
strictly required for the development of your iPhone applications, Interface Builder plays an
integral role in your journey of learning about iPhone application development. This appendix
covers some of the important features of Interface Builder.

 .xiB winDOw

The most direct way to launch Interface Builder is to double-click any of the .xib fi les in
your Xcode project. For example, if you have created a View-based Application project, there
are two .xib fi les in the Resources folder of Xcode. Double-clicking either of them launches
Interface Builder.

When Interface Builder is launched, the fi rst window
that you see has the same name as your .xib fi le (see
Figure C-1).

Within this window are several items; and depending on
what you have double-clicked, you should see some of
the following:

File’s Owner➤➤

First Responder➤➤

View, Table View, Window, and so on➤➤

Some View Controllers and delegates➤➤

figure c-1

C

578 ❘ AppenDix c GettinG arOund in interFace builder

By default, the .xib window is displayed in icon mode.
But you can also switch to list mode, where you can view
some of the items in more detail. For example, Figure C-2
shows that when viewed in list mode, the View item
displays a hierarchy of views contained within a typical
View Controller.

DeSigning the view

To design the user interface of your application, you typi-
cally double-click the View (or Table view or other) item
on the .xib window to visually display the window. To populate your View window with views,
you drag and drop objects listed in the Library window (see the “Library” section for more informa-
tion on the Library window). Figure C-3 shows a Label view being dropped and positioned onto the
View window.

As you position the view on the window, gridlines appear to guide you.

The View window also allows you to rotate the orientation of your view so that you can see how
your view looks when it is rotated to the landscape orientation (see Figure C-4; clicking the arrow in
the upper-right corner rotates the window).

figure c-2

figure c-3 figure c-4

inspector Window ❘ 579

interfAce BuilDer keyBOArD ShOrtcutS

As you add more views to the View window, you begin to realize that you are
spending a lot of time fi guring out their actual sizes and locations with respect to
other views. Here are two tips to make your life easier:

To make a copy of a view on the View window, simply Option-click and drag
a view.

If a view is currently selected, pressing the Option key and then moving the mouse
over the view displays that view’s size information (see the left of Figure C-5). If
you move the mouse over another view, it displays the distance between that view
and the selected view (see the right of Figure C-5).

figure c-5

inSpectOr winDOw

To customize the various attributes and properties of views, Interface Builder provides an Inspector
window that is divided into four windows:

Attributes Inspector➤➤

580 ❘ AppenDix c GettinG arOund in interFace builder

Connections Inspector➤➤

Size Inspector➤➤

Identity Inspector➤➤

You can invoke the Inspector window by choosing Tools ➪ Inspector.

The following sections discuss each of the Inspector windows in more detail.

Attributes inspector window
The Attributes Inspector window (see Figure C-6) is where you configure the attributes of views in
Interface Builder. The window content is dynamic and varies according to what is selected in the
View window.

To open the Attributes Inspector window, choose Tools ➪ Attributes Inspector.

connections inspector window
The Connections Inspector window (see Figure C-7) is where you connect the outlets and actions
to your View Controller in Interface Builder. Its content is dynamic and varies according to what is
selected in the View window.

To open the Connections Inspector window, choose Tools ➪ Connections Inspector.

figure c-6 figure c-7

Library ❘ 581

Size inspector window
The Size Inspector window (see Figure C-8) is where you configure the size and positioning of views
in Interface Builder.

Open it by selecting Tools ➪ Size Inspector.

identity inspector window
The Identity Inspector window (see Figure C-9) is where you configure the various properties of
your selected view.

Open the Identity Inspector window by choosing Tools ➪ Identity Inspector.

liBrAry

The Library (Tools ➪ Library) contains a set of views that you can use to build the user interface of
your iPhone application. Figure C-10 shows part of the Library’s set of views.

figure c-8 figure c-9 figure c-10

582 ❘ AppenDix c GettinG arOund in interFace builder

You can configure the Library to display its views in different
modes (see Figure C-11):

Icons➤➤

Icons and Labels (which is the mode shown in ➤➤

Figure C-10)

Icons and Descriptions➤➤

Small Icons and Labels➤➤

Figure C-12 shows the Library displayed in the Icons and
Descriptions mode.

OutletS AnD ActiOnS

Outlets and actions are fundamental mechanisms in iPhone pro-
gramming through which your code can connect to the views in
your user interface (UI). When you use outlets, your code can
programmatically reference the views on your UI, with actions
serving as event handlers that handle the different events fired
by the various views.

Although you can write code to connect actions and outlets,
Interface Builder simplifies the process by enabling you to use
the drag-and-drop technique.

creating Outlets and Actions
To create an action in Interface Builder, open the Library window
and click the Classes tab. Select the View Controller that you are
working on and then select Actions in the drop-down list at the
lower part of the window (see Figure C-13; in this example the
selected View Controller is HelloWorldViewController).

Click the plus sign (+) button and name your action. Remember
to include the colon (:) character at the end of the action name
if you want to pass additional arguments in to the action (use-
ful when you have multiple views connected to an action). The
colon character enables the action to have an input parameter
of type id (which you can change to other types), like this:

-(IBAction)myAction1:(id)sender;

figure c-11

figure c-12

Outlets and Actions ❘ 583

Be sure to note that in Figure C-13 the action is listed under the HelloWorldViewController.xib
header. This is because the action is defi ned within Interface Builder.

Likewise, select Outlets in the drop-down list to add an outlet to your View Controller. Click the
plus sign (+) button in the Outlets section to create an outlet (see Figure C-14). It is always good to
denote the specifi c type for the outlet that you are defi ning.

NOTE You can delete outlets and actions that you have created in Interface
Builder by clicking the minus (–) button.

Using the preceding example, if you want the outlet to connect to a UITextField view, you should
specify the type of myOutlet1 as UITextField rather than id.

After the outlet and action are created using Interface Builder, you still need to defi ne them in the .h
fi le, like this:

#import<UIKit/UIKit.h>

@interfaceHelloWorldViewController:UIViewController{
 IBOutlet UITextField *myTextField;
}

-(IBAction) myAction1:(id) sender;

@end

figure c-13 figure c-14

584 ❘ AppenDix c GettinG arOund in interFace builder

NOTE Whether you are in Xcode or Interface Builder, be sure to save the fi le
after you have modifi ed it. When a .xib fi le in Interface Builder has been modi-
fi ed but not yet saved, the close window icon at the top, left corner of the win-
dow will contain a black dot (see the top of Figure C-15). When the fi le is saved,
the black dot disappears (see the bottom of Figure C-15).

In the Library window in Interface Builder, you can see that both the outlet and action are now
listed under the HelloWorldViewController.h header (see Figure C-16). If you click the plus sign
(+) button again, another outlet or action will be listed under the HelloWorldViewController.xib
header until you defi ne the outlet or action in the .h fi le.

NOTE It is not strictly necessary to create your actions and outlets in Interface
Builder. However, doing so enables you to connect the views before writing any
code. This is useful if you have designers and developers working on diff erent
aspects of the project.

NOTE Outlets and actions defi ned in the .h fi le cannot be deleted in the Library
window by clicking the minus sign (–) button. They must be deleted in the .h fi le.

Actually, it is much simpler to defi ne the outlets and actions directly in the .h fi les of your View
Controllers fi rst. That saves you the trouble of defi ning them in the Library window of Interface
Builder.

Alternatively, if you do not want to manually type in the decla-
ration of the outlets and actions in your View Controller class,
you can create the outlets and actions in Interface Builder (as
just described), select the File’s Owner item, and then choose
File ➪ Write Class Files. This causes Interface Builder to gener-
ate the code for the outlets and actions that you have added
in the Library window. When you use this option, Interface
Builder fi rst asks whether you want to replace or merge with the
View Controller fi les (if they are already present). Replacing the
fi les causes the existing fi les to be replaced, and all the changes
you have made to the fi le will be gone. Therefore, this is not the
recommended option. Merging the fi les enables you to select
the segments of code that you want to merge into your existing
fi les. This is the safer option. figure c-15

Outlets and Actions ❘ 585

figure c-16

Take note that for code generated by Interface Builder, the outlets will not be exposed as properties.
You must manually add the code to expose the properties using the @property keyword and the
@synthesize keyword to generate the getters and setters for the properties.

NOTE In general, it is always easier to defi ne the outlets and actions manually,
rather than have Interface Builder do it for you.

connecting Outlets and Actions
You have two options for connecting the outlets and actions to the views; they are discussed in the
following sections.

Method 1
To connect outlets, Control-click and drag the File’s Owner item to the view to which you want to
connect (see Figure C-17).

When you release the mouse button, a list appears from which you can select the correct outlet.
When defi ning your outlets (in the Library window or in code), remember that you can specify the
type of view your outlet is referring to. When you release the mouse button, Interface Builder lists

586 ❘ AppenDix c GettinG arOund in interFace builder

only the outlets that match the type of view you have selected. For example, if you defined
myOutlet1 as UIButton and you Control-click and drag the File’s Owner item to a Text Field view
on the View window, myOutlet1 does not appear in the list of outlets.

figure c-17

To connect actions, Control-click and drag the view to the File’s Owner item in the .xib window
(see Figure C-18).

figure c-18

Outlets and Actions ❘ 587

When you release the mouse button, a list appears from which you can select the correct action.

When you have connected the outlets and actions, a good practice is to view all the connections in
the File’s Owner item by right-clicking it. Figure C-19 shows that the File’s Owner item is connected
to the Text Field view through the myOutlet1 outlet,
and the Button’s TouchUpInside event is con-
nected to the myAction1: action.

How does the Button know that it is the
TouchUpInside event (and not other events) that
should be connected to the myAction1: action when
you Control-click and drag the Button to the File’s
Owner item? The TouchUpInside event is such
a commonly used event that it is the default event
selected when you perform a Control-click and drag
action. What if you want to connect an event other
than the default event? The second method shows
you how.

Method 2
An alternative method for connecting outlets is to right-click the File’s Owner item and connect the
outlet to the view directly (see Figure C-20).

To connect actions, you can connect the relevant action with the views to which you want to con-
nect (see Figure C-21). When you release the mouse button, the list of available events appears, and
you can select the event you want.

figure c-20

figure c-19

588 ❘ AppenDix c GettinG arOund in interFace builder

Alternatively, you can right-click the view in question and connect the relevant events to the File’s
Owner item (see Figure C-22). When you release the mouse button, a list of actions appears. Select
the action to which you want to connect.

figure c-21

figure c-22

Outlets and Actions ❘ 589

As mentioned earlier, it is always good to right-click the File’s Owner item after all the connections
are made. One very common mistake that developers tend to make is changing the name of the
actions or outlets after the connections are made. For example, suppose you now change the original
outlet name from myOutlet1 to myTextField:

IBOutletUITextField*myTextField;

Now, if you right-click the File’s Owner item in
Interface Builder, you will see that the original con-
nection is displayed in yellow (see Figure C-23),
together with a triangle icon on the right. All broken
connections in Interface Builder are displayed in yel-
low. To remedy this, click the “x” button to remove
the connection and connect the appropriate outlet
again.

figure c-23

Crash Course in Objective-C
Objective-C is an object-oriented programming language used by Apple primarily for pro-
gramming Mac OS X and iPhone/iPad applications. It is an extension to the standard ANSI C
language and hence it should be an easy language to pick up if you are already familiar with
the C programming language. This appendix assumes that you already have some background
in C programming and focuses on the object-oriented aspects of the language. If you are com-
ing from a Java or .NET background, many of the concepts should be familiar to you; you just
have to understand the syntax of Objective-C and, in particular, pay attention to the section
on memory management.

Objective-C source code fi les are contained in two types of fi les:

.h➤➤ — header fi les

.m➤➤ — implementation fi les

For the discussions that follow, assume that you have created a View-based Application project
using Xcode and added an empty class named SomeClass to your project.

DirectiveS

If you observe the content of the SomeClass.h fi le, you will notice that at the top of the fi le is
an #import statement:

#import <Foundation/Foundation.h>

@interfaceSomeClass:NSObject{

}

@end

The #import statement is known as a preprocessor directive. In C and C++, you use the
#include preprocessor directive to include a fi le’s content with the current source. In

D

592 ❘ AppenDix D craSh cOurSe in ObjectiVe-c

Objective-C, you use the #import statement to do the same, except that the compiler ensures that
the fi le is included at most only once. To import a header fi le from one of the frameworks, you spec-
ify the header fi lename using angle brackets (<>) in the #import statement. To import a header fi le
from within your project, you use the “and” characters, as in the case of the SomeClass.m fi le:

#import “SomeClass.h”

@implementationSomeClass

@end

clASSeS

In Objective-C, you will spend a lot of time dealing with classes and objects. Hence it is important
that you understand how classes are declared and defi ned in Objective-C.

@interface
To declare a class, you use the @interface compiler directive, like this:

@interface SomeClass : NSObject {

}

This is done in the header fi le (.h) and the class declaration contains no implementation. The pre-
ceding code declares a class named SomeClass, and this class inherits from the base class named
NSObject.

NOTE While you typically put your code declaration in an .h fi le, you can also
put it inside an .m if need be. This is usually done for small projects.

NOTE NSObject is the root class of most Objective-C classes. It defi nes the
basic interface of a class and contains methods common to all classes that
inherit from it. NSObject also provides the standard memory management and
initialization framework used by most objects in Objective-C as well as refl ection
and type operations.

In a typical View Controller class, the class inherits from the UIViewController class, such as in the
following:

@interfaceHelloWorldViewController:UIViewController{

}

Classes ❘ 593

@implementation
To implement a class declared in the header fi le, you use the @implementation compiler directive,
like this:

#import“SomeClass.h”

@implementation SomeClass

@end

This is done in a separate fi le from the header fi le. In Objective-C, you defi ne your class in an .m fi le.
Note that the class defi nition ends with the @end compiler directive.

NOTE As mentioned earlier, you can also put your declaration inside an .m fi le.
Hence, in your .m fi le you would then have both the @interface and
@implementation directives.

@class
If your class references another class defi ned in another fi le, you need to import the header fi le
of that fi le before you can use it. Consider the following example where you have defi ned two
classes — SomeClass and AnotherClass. If you are using an instance of AnotherClass from within
SomeClass, you need to import the AnotherClass.h fi le, as in the following code snippet:

//--SomeClass.h--
#import<Foundation/Foundation.h>
#import “AnotherClass.h”

@interfaceSomeClass:NSObject{
 //---anobjectfromAnotherClass---
 AnotherClass *anotherClass;
}

@end

//---AnotherClass.h---
#import <Foundation/Foundation.h>

@interface AnotherClass : NSObject {

}

@end

However, if within AnotherClass you want to create an instance of SomeClass, you will not be able
to simply import SomeClass.h in AnotherClass, like this:

//--SomeClass.h--
#import<Foundation/Foundation.h>

594 ❘ AppenDix D craSh cOurSe in ObjectiVe-c

#import“AnotherClass.h”

@interfaceSomeClass:NSObject{
//---anobjectfromAnotherClass---
AnotherClass*anotherClass;
}

@end

//---AnotherClass.h---
#import<Foundation/Foundation.h>
#import “SomeClass.h” //---cannot simply import here---

@interfaceAnotherClass:NSObject{
 SomeClass *someClass; //---using an instance of SomeClass---
}

@end

Doing so results in circular inclusion. To prevent that, Objective-C uses the @class compiler direc-
tive as a forward declaration to inform the compiler that the class you specified is a valid class. You
usually use the @class compiler directive in the header file, and in the implementation file you can
use the @import compiler directive to tell the compiler more about the content of the class that you
are using.

Using the @class compiler directive, the program now looks like this:

//--SomeClass.h--
#import<Foundation/Foundation.h>

@class AnotherClass; //---forward declaration---

@interfaceSomeClass:NSObject{
//---anobjectfromAnotherClass---
AnotherClass*anotherClass;
}

@end

//---AnotherClass.h---
#import<Foundation/Foundation.h>

@class SomeClass; //---forward declaration---

@interfaceAnotherClass:NSObject{
SomeClass*someClass;//---usinganinstanceofSomeClass---
}

@end

Classes ❘ 595

NOTE Another notable reason to use forward declaration where possible is that
it will reduce your compile times because the compiler does not need to traverse
as many included header fi les and their includes, etc.

class instantiation
To create an instance of a class, you typically use the alloc keyword (more on this in the
Memory Management section) to allocate memory for the object and then return it to a variable
of the class type:

SomeClass*someClass=[SomeClassalloc];

In Objective-C, you need to prefi x an object name with the * character when you declare an object.
If you are declaring a variable of primitive type (such as float, int, CGRect, NSInteger, and so on),
the * character is not required. Here are some examples:

CGRectframe;//---CGRectisastructure---
intnumber;//---intisaprimitivetype---
NSString*str;//---NSStringisaclass

Besides specifying the returning class type, you can also use the id type, like this:

idsomeClass=[SomeClassalloc];
idstr;

The id type means that the variable can refer to any type of object and hence the * is implicitly
implied.

fields
Fields are the data members of objects. For example, the following code shows that SomeClass has
three fi elds — anotherClass, rate, and name:

//--SomeClass.h--
#import<Foundation/Foundation.h>

@classAnotherClass;//---forwarddeclaration---

@interfaceSomeClass:NSObject{
//---anobjectfromAnotherClass---
 AnotherClass *anotherClass;
 float rate;
 NSString *name;
}

@end

@end

596 ❘ AppenDix D craSh cOurSe in ObjectiVe-c

Access privileges
By default, the access privilege of all fi elds is @protected. However, the access privilege can also be
@public or @private. The following list shows the various access privileges:

@private➤➤ — visible only to the class that declares it

@public➤➤ — visible to all classes

@protected➤➤ — visible to the class that declares it as well as to inheriting classes

Using the example shown in the previous section, if you now try to access the fi elds in SomeClass
from another class, such as a View Controller, you will not be able to see them:

SomeClass*someClass=[SomeClassalloc];
someClass->rate=5;//---rateisdeclaredprotected---
someClass->name=@”Wei-MengLee”;//---nameisdeclaredprotected---

NOTE Observe that to access the fi elds in a class directly, you use the ->
operator.

To make the rate and name visible outside the class, modify the SomeClass.h fi le by adding the
@public compiler directive:

//--SomeClass.h--
#import<Foundation/Foundation.h>

@classAnotherClass;//---forwarddeclaration---

@interfaceSomeClass:NSObject{
//---anobjectfromAnotherClass---
AnotherClass*anotherClass;

@public
floatrate;

@public
NSString*name;
}

@end

The following two statements would now be valid:

someClass->rate=5;//---rateisnowdeclaredpublic---
someClass->name=@”Wei-MengLee”;//---nameisnowdeclaredpublic---

Although you can access the fi elds directly, doing so goes against the design principles of object-
oriented programming’s rule of encapsulation. A better way is to encapsulate the two fi elds you
want to expose in properties. Refer to the “Properties” section later in this appendix.

Classes ❘ 597

methods
Methods are functions that are defi ned in a class. Objective-C supports two types of methods —
instance methods and class methods.

Instance methods can be called only using an instance of the class. Instance methods are prefi xed
with the minus sign (-) character.

Class methods can be invoked directly using the class name and do not need an instance of the class
in order to work. Class methods are prefi xed with the plus sign (+) character.

NOTE In some programming languages, such as C# and Java, class methods
are known as static methods.

The following code sample shows SomeClass with three instance methods and one class method
declared:

//--SomeClass.h--
#import<Foundation/Foundation.h>

@classAnotherClass;//---forwarddeclaration---

@interfaceSomeClass:NSObject{
//---anobjectfromAnotherClass---
AnotherClass*anotherClass;
floatrate;
NSString*name;
}

//---instance methods---
-(void) doSomething;
-(void) doSomething:(NSString *) str;
-(void) doSomething:(NSString *) str withAnotherPara:(float) value;

//---class method---
+(void) alsoDoSomething;

@end

The following shows the implementation of the methods that were declared in the header fi le:

#import“SomeClass.h”

@implementationSomeClass

-(void) doSomething {
 //---implementation here---
}

-(void) doSomething:(NSString *) str {
 //---implementation here---

598 ❘ AppenDix D craSh cOurSe in ObjectiVe-c

}

-(void) doSomething:(NSString *) str withAnotherPara:(float) value {
 //---implementation here---
}

+(void) alsoDoSomething {
 //---implementation here---
}

@end

To invoke the three instance methods, you first need to create an instance of the class and then call
them using the instance created:

SomeClass*someClass=[SomeClassalloc];
[someClassdoSomething];
[someClassdoSomething:@”sometext”];
[someClassdoSomething:@”sometext”withAnotherPara:9.0f];

Class methods can be called directly using the class name, as the following shows:

[SomeClassalsoDoSomething];

In general, you create instance methods when you need to perform some actions that are related to
the particular instance of the class (that is, the object). For example, suppose you defined a class that
represents the information of an employee. You may expose an instance method that allows you to
calculate the overtime wage of an employee. In this case, you use an instance method because the
calculation involves data specific to a particular employee object.

Class methods, on the other hand, are commonly used for defining helper methods. For example,
you might have a class method called GetOvertimeRate: that returns the rates for working overtime.
As all employees get the same rate for working overtime (assuming this is the case for your com-
pany), then there is no need to create instance methods, and thus a class method will suffice.

The next section shows how to call methods with a varying number of parameters.

message Sending (calling methods)
In Objective-C, you use the following syntax to call a method:

[object method];

Strictly speaking, in Objective-C you do not call a method; you send a message to an object. The
message to be passed to an object is resolved during runtime and is not enforced at compile time.
This is why the compiler does not stop you from running your program even though you may have
misspelled the name of a method. It does try to warn you that the target object may not respond to
your message, though, because the target object will simply ignore the message. Figure D-1 shows
the warning by the compiler when one of the parameters for the UIAlertView’s initializer is mis-
spelled (the cancelButtonsTitle: should be cancelButtonTitle:).

Classes ❘ 599

NOTE For the ease of understanding, I use the more conventional term of
“calling a method” to refer to Objective-C’s message sending mechanism.

figure D-1

Using the example from the previous section, the doSomething method has no parameter:

-(void)doSomething{
//---implementationhere---
}

Therefore, you can call it like this:

[someClassdoSomething];

If a method has one or more inputs, you call it using the following syntax:

[object method:input1]; //---one input---
[object method:input1 andSecondInput:input2]; //---two inputs---

The interesting thing about Objective-C is the way you call a method with multiple inputs. Using the
earlier example:

-(void) doSomething:(NSString *) str withAnotherPara:(float) value {
//---implementation here---
}

The name of the preceding method is doSomething:withAnotherPara:.

It is important to note the names of methods and to differentiate those that have parameters from
those that do not. For example, doSomething refers to a method with no parameter, whereas
doSomething: refers to a method with one parameter, and doSomething:withAnotherPara: refers to
a method with two parameters. The presence or absence of colons in a method name dictates which
method is invoked during runtime. This is important when passing method names as arguments,
particularly when using the @selector (discussed in the Selectors section) notation to pass them to a
delegate or notifi cation event.

Method calls can also be nested, as the following example shows:

NSString*str=[[NSStringalloc]initWithString:@”HelloWorld”];

Here, you fi rst call the alloc class method of the NSString class and then call the initWithString:
method of the returning result from the alloc method, which is of type id, a generic C type that
Objective-C uses for an arbitrary object.

600 ❘ AppenDix D craSh cOurSe in ObjectiVe-c

In general, you should not nest more than three levels because anything more than that makes the
code difficult to read.

properties
Properties allow you to expose your fields in your class so that you can control how values are set
or returned. In the earlier example (in the Access Privileges section), you saw that you can directly
access the fields of a class using the -> operator. However, this is not the ideal way and you should
ideally expose your fields as properties.

Prior to Objective-C 2.0, programmers had to declare methods to make the fields accessible to other
classes, like this:

//--SomeClass.h--
#import<Foundation/Foundation.h>

@classAnotherClass;//---forwarddeclaration---

@interfaceSomeClass:NSObject{
//---anobjectfromAnotherClass---
AnotherClass*anotherClass;
 float rate;
 NSString *name;
}

//---expose the rate field---
-(float) rate; //---get the value of rate---
-(void) setRate:(float) value; //---set the value of rate

//---expose the name field---
-(NSString *) name; //---get the value of name---
-(void) setName:(NSString *) value; //---set the value of name---

//---instancemethods---
-(void)doSomething;
-(void)doSomething:(NSString*)str;
-(void)doSomething:(NSString*)strwithAnotherPara:(float)value;

//---classmethod---
+(void)alsoDoSomething;

@end

These methods are known as getters and setters (or sometimes better known as accessors and
mutators). The implementation of these methods may look like this:

#import“SomeClass.h”

@implementationSomeClass

-(float) rate {
 return rate;
}

-(void) setRate:(float) value {

Classes ❘ 601

 rate = value;
}

-(NSString *) name {
 return name;
}

-(void) setName:(NSString *) value {
 [value retain];
 [name release];
 name = value;
}

-(void)doSomething{
//---implementationhere---
}

-(void)doSomething:(NSString*)str{
//---implementationhere---
NSLog(str);
}

-(void)doSomething:(NSString*)strwithAnotherPara:(float)value{
//---implementationhere---
}

+(void)alsoDoSomething{
//---implementationhere---
}

@end

To set the value of these properties, you need to call the methods prefixed with the set keyword:

SomeClass*sc=[[SomeClassalloc]init];
[scsetRate:5.0f];
[scsetName:@”Wei-MengLee”];

Alternatively, you can use the dot notation introduced in Objective-C 2.0:

SomeClass*sc=[[SomeClassalloc]init];
sc.rate=5;
sc.name=@”Wei-MengLee”;

To obtain the values of properties, you can either call the methods directly or use the dot notation in
Objective-C 2.0:

NSLog([scname]);//---callthemethod---
NSLog(sc.name);//---dotnotation

To make a property read only, simply remove the method prefixed with the set keyword.

Notice that within the setName: method, you have various statements using the retain and release
keywords. These keywords relate to memory management in Objective-C; you learn more about
them in the “Memory Management” section, later in this appendix.

602 ❘ AppenDix D craSh cOurSe in ObjectiVe-c

In Objective-C 2.0, you don’t need to define getters and setters in order to expose fields as proper-
ties. You can do so via the @property and @synthesize compiler directives. Using the same example,
you can use the @property to expose the rate and name fields as properties, like this:

//--SomeClass.h--
#import<Foundation/Foundation.h>

@classAnotherClass;//---forwarddeclaration---

@interfaceSomeClass:NSObject{
//---anobjectfromAnotherClass---
AnotherClass*anotherClass;
floatrate;
NSString*name;
}

@property float rate;
@property (retain, nonatomic) NSString *name;

//---instancemethods---
-(void)doSomething;
-(void)doSomething:(NSString*)str;
-(void)doSomething:(NSString*)strwithAnotherPara:(float)value;

//---classmethod---
+(void)alsoDoSomething;

@end

The first @property statement defines rate to be a property. The second statement defines name as
a property as well, but it also specifies the behavior of this property. In this case, it indicates the
behavior as retain and nonatomic, which you learn more about in the section on memory manage-
ment later in this appendix. In particular, nonatomic means that the property is not accessed in a
thread-safe manner. This is alright if you are not writing multi-threaded applications. Most of the
time, you will use the retain and nonatomic combination when declaring properties.

In the implementation file, rather than define the getter and setter methods, you can simply use the
@synthesize keyword to get the compiler to automatically generate the getters and setters for you:

#import“SomeClass.h”

@implementationSomeClass

@synthesize rate, name;

As shown, you can combine several properties using a single @synthesize keyword. However, you
can also separate them into individual statements:

@synthesize rate;
@synthesizename;

Classes ❘ 603

You can now use your properties as usual:

//---settingusingsetRate---
[scsetRate:5.0f];
[scsetName:@”Wei-MengLee”];

//---settingusingdotnotation---
sc.rate=5;
sc.name=@”Wei-MengLee”;

//---getting---
NSLog([scname]);//---usingthenamemethod
NSLog(sc.name);//---dotnotation

To make a property read only, use the readonly keyword. The following statement makes the name
property read only:

@property(readonly)NSString*name;

initializers
When you create an instance of a class, you often initialize it at the same time. For example, in the
earlier example (in the Class Instantiation section), you had this statement:

SomeClass*sc=[[SomeClassalloc]init];

The alloc keyword allocates memory for the object, and when an object is returned, the init method
is called on the object to initialize the object. Recall that in SomeClass, you do not define a method
named init. So where does the init method come from? It is actually defined in the NSObject class,
which is the base class of most classes in Objective-C. The init method is known as an initializer.

If you want to create additional initializers, you can define methods that begin with the init word.
(The use of the init word is more of a norm than a hard-and-fast rule.)

//--SomeClass.h--
#import<Foundation/Foundation.h>

@classAnotherClass;//---forwarddeclaration---

@interfaceSomeClass:NSObject{
//---anobjectfromAnotherClass---
AnotherClass*anotherClass;
floatrate;
NSString*name;
}

@propertyfloatrate;
@property(retain,nonatomic)NSString*name;

//---instancemethods---
-(void)doSomething;

604 ❘ AppenDix D craSh cOurSe in ObjectiVe-c

-(void)doSomething:(NSString*)str;
-(void)doSomething:(NSString*)strwithAnotherPara:(float)value;

//---classmethod---
+(void)alsoDoSomething;

- (id)initWithName:(NSString *) n;
- (id)initWithName:(NSString *) n andRate:(float) r;

@end

The preceding example contains two additional initializers: initWithName: and
initWithName:andRate:. You can provide the implementations for the two initializers as follows:

#import“SomeClass.h”

@implementationSomeClass

@synthesizerate,name;

- (id)initWithName:(NSString *) n {
 return [self initWithName:n andRate:0.0f];
}

- (id)initWithName:(NSString *) n andRate:(float) r {
 if (self = [super init]) {
 self.name = n;
 self.rate = r;
 }
 return self;
}

//...
//...

Note that in the initWithName:andRate: initializer implementation, you first call the init initializer
of the super (base) class so that its base class is properly initialized, which is necessary before you
can initialize the current class:

-(id)initWithName:(NSString*)nandRate:(float)r{
if(self=[superinit]){
self.name=n;
self.rate=r;
}
returnself;
}

The rule for defining an initializer is simple: If a class is initialized properly, it should return a refer-
ence to self (hence the id type). If it fails, it should return nil.

Memory Management ❘ 605

For the initWithName: initializer implementation, notice that it calls the initWithName:andRate:
initializer:

-(id)initWithName:(NSString*)n{
return[selfinitWithName:nandRate:0.0f];
}

In general, if you have multiple initializers, each with different parameters, you should chain them
by ensuring that they all call a single initializer that performs the call to the super class’s init ini-
tializer. In Objective-C, the initializer that performs the call to the super class’s init initializer is
called the designated initializer.

NOTE As a general guide, the designated initializer should be the one with the
greatest number of parameters.

To use the initializers, you can now call them during instantiation time:

SomeClass*sc1=[[SomeClassalloc]initWithName:@”Wei-MengLee”
andRate:35];
SomeClass*sc2=[[SomeClassalloc]initWithName:@”Wei-MengLee”];

memOry mAnAgement

Memory management in Objective-C programming (especially for iPhone) is a very important topic
that every iPhone developer needs to be aware of. As do all other popular languages, Objective-C sup-
ports garbage collection, which helps to remove unused objects when they go out of scope and hence
releases memory that can be reused. However, because of the severe overhead involved in implement-
ing garbage collection, the iPhone does not support garbage collection. This leaves you, the developer,
to manually allocate and de-allocate the memory of objects when they are no longer needed.

This section discusses the various aspects of memory management on the iPhone.

reference counting
To help you allocate and de-allocate memory for objects, the iPhone OS uses a scheme known as
reference counting to keep track of objects to determine whether they are still needed or can be
disposed of. Reference counting basically uses a counter for each object, and as each object is cre-
ated, the count increases by 1. When an object is released, the count decreases by 1. When the count
reaches 0, the memory associated with the object is reclaimed by the OS.

In Objective-C, a few important keywords are associated with memory management. The following
sections take a look at each of them.

606 ❘ AppenDix D craSh cOurSe in ObjectiVe-c

alloc
The alloc keyword allocates memory for an object that you are creating. You have seen it in almost
all exercises in this book. An example is as follows:

NSString*str=[[NSStringalloc]initWithString:@”Hello”];

In this example, you are creating an NSString object and instantiating it with a default string. When
the object is created, the reference count of that object is 1. Because you are the one creating it, the
object belongs to you, and it is your responsibility to release the memory when you are done with it.

NOTE See the “release” section for information on how to release an object.

So how do you know when an object is owned, and by whom? Consider the following example:

NSString*str=[[NSStringalloc]initWithString:@”Hello”];
NSString*str2=str;

In this example, you use the alloc keyword for str, so you own str. Therefore, you need to release
it when you no longer need it. However, str2 is simply pointing to str, so you do not own str2,
meaning that you need not release str2 when you are done using it.

new
Besides using the alloc keyword to allocate memory for an object, you can also use the new key-
word, like this:

NSString*str=[NSStringnew];

The new keyword is functionally equivalent to

NSString*str=[[NSStringalloc]init];

As with the alloc keyword, using the new keyword makes you the owner of the object, so you need
to release it when you are done with it.

retain
The retain keyword increases the reference count of an object by 1. Consider the previous example:

NSString*str=[[NSStringalloc]initWithString:@”Hello”];
NSString*str2=str;

In that example, you do not own str2 because you do not use the alloc keyword on the object.
When str is released, the str2 will no longer be valid.

NOTE How do you release str2, then? Well, it is autoreleased. See the
“Convenience Method and Autorelease” section for more information.

Memory Management ❘ 607

If you want to make sure that str2 is available even if str is released, you need to use the retain
keyword:

NSString*str=[[NSStringalloc]initWithString:@”Hello”];
NSString*str2=str;
[str2retain];
[strrelease];

In the preceding case, the reference count for str is now 2. When you release str, str2 will still be
valid. When you are done with str2, you need to release it manually.

NOTE As a general rule, if you own an object (using alloc or retain), you need
to release it.

release
When you are done with an object, you need to manually release it by using the release keyword:

NSString*str=[[NSStringalloc]initWithString:@”Hello”];

//...dowhatyouwantwiththeobject...

[strrelease];

When you use the release keyword on an object, it causes the reference count of that object to
decrease by 1. When the reference count reaches 0, the memory used by the object is released.

One important aspect to keep in mind when using the release keyword is that you cannot release
an object that is not owned by you. For example, consider the example used in the previous section:

NSString*str=[[NSStringalloc]initWithString:@”Hello”];
NSString*str2=str;
[strrelease];
[str2release];//---thisisnotOKasyoudonotownstr2---

Attempting to release str2 will result in a runtime error because you cannot release an object not
owned by you. However, if you use the retain keyword to gain ownership of an object, you do need
to use the release keyword:

NSString*str=[[NSStringalloc]initWithString:@”Hello”];
NSString*str2=str;
[str2retain];
[strrelease];
[str2release];//---thisisnowOKasyounowownstr2---

Recall that earlier in the section on properties, you defi ned the setName: method, where you set the
value of the name fi eld:

-(void)setName:(NSString*)value{
 [value retain];

608 ❘ AppenDix D craSh cOurSe in ObjectiVe-c

 [name release];
name=value;
}

Notice that you first had to retain the value object, followed by releasing the name object and then
finally assigning the value object to name. Why do you need to do that as opposed to the following?

-(void)setName:(NSString*)value{
 name = value;
}

Well, if you were using garbage collection, the preceding statement would be valid. However,
because iPhone OS does not support garbage collection, the preceding statement will cause the
original object referenced by the name object to be lost, thereby causing a memory leak. To prevent
that leak, you first retain the value object to indicate that you wish to gain ownership of it; then you
release the original object referenced by name. Finally, assign value to name:

[valueretain];
[namerelease];
name=value;

Convenience Method and Autorelease
So far, you learned that all objects created using the alloc or new keywords are owned by you.
Consider the following case:

NSString*str=[NSStringstringWithFormat:@”%d”,4];

In this statement, do you own the str object? The answer is no, you don’t. This is because the
object is created using one of the convenience methods — static methods that are used for
allocating and initializing objects directly. In the preceding case, you create an object but you
do not own it. Because you do not own it, you cannot release it manually. In fact, objects cre-
ated using this method are known as autorelease objects. All autorelease objects are temporary
objects and are added to an autorelease pool. When the current method exits, all the objects
contained within it are released. Autorelease objects are useful for cases in which you simply
want to use some temporary variables and do not want to burden yourself with allocations and
de-allocations.

The key difference between an object created using the alloc (or new) keyword and one created
using a convenience method is that of ownership, as the following example shows:

NSString*str1=[[NSStringalloc]initWithFormat:@”%d”,4];
[str1release];//---thisisokbecauseyouownstr1---

NSString*str2=[NSStringstringWithFormat:@”%d”,4];
[str2release];//---thisisnotokbecauseyoudon’townstr2---
//---str2willberemovedautomaticallywhentheautorelease
//poolisactivated---

Memory Management ❘ 609

unDerStAnDing reference cOunting uSing An AnAlOgy

When you think of memory management using reference counting, it is always
good to use a real-life analogy to put things into perspective.

Imagine a room in the library that you can reserve for studying purposes. Initially,
the room is empty and hence the lights are off. When you reserve the room, the
librarian increases a counter to indicate the number of persons using the room.
This is similar to creating an object using the alloc keyword.

When you leave the room, the librarian decreases the counter, and if the counter is
now 0, this means that the room is no longer being used and the lights can thus be
switched off. This is similar to using the release keyword to release an object.

There may be times when you have booked the room and are the only one in the
room (hence, the counter is 1) until a friend of yours comes along. He may simply
come and visit you and therefore doesn’t register with the librarian. Hence, the
counter does not increase. Because he is just visiting you and hasn’t booked the
room, he has no rights to decide whether the lights should be switched off. This is
similar to assigning an object to another variable without using the alloc keyword.
In this case, if you leave the room (release), the lights will be switched off and your
friend will have to leave.

Consider another situation in which you are using the room and another person
also booked the room and shares it with you. In this case, the counter is now 2. If
you leave the room, the counter goes down to 1, but the lights are still on because
another person is in the room. This situation is similar when you create an object
and assign it to another variable that uses the retain keyword. In such a situation,
the object is released only when both objects release it.

If you want to take ownership of an object when using a convenience method, you can do so using
the retain keyword:

NSString*str2=[[NSStringstringWithFormat:@”%d”,4]retain];

To release the object, you can use either the autorelease or release keyword. You learned earlier
that the release keyword immediately decreases the reference count by 1 and that the object is
immediately de-allocated from memory when the reference count reaches 0. In contrast, the
autorelease keyword promises to decrease the reference count by 1, not immediately, but sometime
later. It is like saying, “Well, I still need the object now, but later on I can let it go.” The following
code makes it clear:

NSString*str=[[NSStringstringWithFormat:@”%d”,4]retain];
[strautorelease];//youdon’townitanymore;stillavailable
NSlog(str);//stillaccessiblefornow

610 ❘ AppenDix D craSh cOurSe in ObjectiVe-c

NOTE After you have autoreleased an object, do not release it anymore.

Note that the statement

NSString*str2=[NSStringstringWithFormat:@”%d”,4];

has the same effect as

NSString*str2=@”4”;

Although autorelease objects seem to make your life simple by automatically releasing objects that
are no longer needed, you have to be careful when using them. Consider the following example:

for(inti=0;i<=99999;i++){
NSString*str=[NSStringstringWithFormat:@”%d”,i];
//...
//...
}

You are creating an NSString object for each iteration of the loop. Because the objects are not
released until the function exits, you may well run out of memory before the autorelease pool (see
next section) can kick in to release the objects.

One way to solve this dilemma is to use an autorelease pool, as discussed in the next section.

reference cOunting: the AnAlOgy cOntinueS

Continuing with our analogy of the room in the library, imagine that you are about
to sign out with the librarian when you realize that you have left your books in
the room. You tell the librarian that you are done with the room and want to sign
out now, but because you left your books in the room, you tell the librarian not to
switch off the lights yet so that you can go back to get the books. At a later time,
the librarian can switch off the lights at his or her own choosing. This is the behav-
ior of autoreleased objects.

Autorelease Pools
All autorelease objects are temporary objects and are added to an autorelease pool. When the cur-
rent method exits, all the objects contained within it are released. However, sometimes you want to
control how the autorelease pool is emptied, rather than wait for it to be called by the OS. To do so,
you can create an instance of the NSAutoreleasePool class, like this:

for(inti=0;i<=99999;i++){
 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

Memory Management ❘ 611

NSString*str1=[NSStringstringWithFormat:@”%d”,i];
NSString*str2=[NSStringstringWithFormat:@”%d”,i];
NSString*str3=[NSStringstringWithFormat:@”%d”,i];
//...
//...
 [pool release];
}

In this example, for each iteration of the loop, an NSAutoreleasePool object is created, and all the
autorelease objects created within the loop — str1, str2, and str3 — go into it. At the end of each
iteration, the NSAutoreleasePool object is released so that all the objects contained within it are
automatically released. This ensures that you have at most three autorelease objects in memory at
any one time.

dealloc
You have learned that by using the alloc or the new keyword, you own the object that you have cre-
ated. You have also seen how to release the objects you own using the release or autorelease key-
word. So when is a good time for you to release them?

As a rule of thumb, you should release the objects as soon as you are done with them. So if you cre-
ated an object in a method, you should release it before you exit the method. For properties, recall
that you can use the @property compiler directive together with the retain keyword:

@property(retain,nonatomic)NSString*name;

Because the values of the property will be retained, it is important that you free it before you
exit the application. A good place to do so is in the dealloc method of a class (such as a View
Controller):

-(void)dealloc{
[self.namerelease];//---releasethenameproperty---
[superdealloc];
}

The dealloc method of a class is fired whenever the reference count of its object reaches 0. Consider
the following example:

SomeClass*sc1=[[SomeClassalloc]initWithName:@”Wei-MengLee”
andRate:35];
//...dosomethinghere…
[sc1release];//---referencecountgoesto0;deallocwillbecalled---

The preceding example shows that when the reference count of sc1 goes to 0 (when the release
statement is called), the dealloc method defined within the class will be called. If you do not define
this method in the class, its implementation in the base class will be called.

612 ❘ AppenDix D craSh cOurSe in ObjectiVe-c

Memory Management Tips
Memory management is a tricky issue in iPhone programming. Although there are tools that you
can use to test for memory leaks, this section presents some simple things you can do to detect mem-
ory problems that might affect your application.

First, ensure that you implement the didReceiveMemoryWarning method in your View Controller:

-(void)didReceiveMemoryWarning{
//Releasestheviewifitdoesn’thaveasuperview.
[superdidReceiveMemoryWarning];
//---insertcodeheretofreeunusedobjects---
//Releaseanycacheddata,images,etcthataren’tinuse.
}

The didReceiveMemoryWarning method will be called whenever your iPhone runs out of memory.
You should insert code in this method so that you can free resources/objects that you do not need.

In addition, you should also handle the applicationDidReceiveMemoryWarning: method in your
application delegate:

-(void)applicationDidReceiveMemoryWarning:(UIApplication*)application{
/*
Freeupasmuchmemoryaspossiblebypurgingcached
dataobjectsthatcanberecreated(orreloadedfrom
disk)later.
*/
//---insertcodeheretofreeunusedobjects---
}

In this method, you should stop all memory-intensive activities, such as audio and video playback.
You should also remove all images cached in memory.

prOtOcOlS

In Objective-C, a protocol declares a programmatic interface that any class can choose to imple-
ment. A protocol declares a set of methods, and an adopting class may choose to implement one or
more of its declared methods. The class that defines the protocol is expected to call the methods in
the protocols that are implemented by the adopting class.

The easiest way to understand protocols is to examine the UIAlertView class. As you have experi-
enced in the various chapters in this book, you can simply use the UIAlertView class by creating an
instance of it and then calling its show method:

UIAlertView*alert=[[UIAlertViewalloc]
initWithTitle:@”Hello”
message:@”Thisisanalertview”
delegate:self
cancelButtonTitle:@”OK”
otherButtonTitles:nil];
[alertshow];

Protocols ❘ 613

The preceding code displays an Alert view with one button — OK. Tapping the OK button auto-
matically dismisses the Alert view. If you want to display additional buttons, you can set the
otherButtonTitles: parameter like this:

UIAlertView*alert=[[UIAlertViewalloc]
initWithTitle:@”Hello”
message:@”Thisisanalertview”
delegate:self
cancelButtonTitle:@”OK”
 otherButtonTitles:@”Option 1”, @”Option 2”, nil];
[alertshow];

The Alert view now displays three buttons — OK, Option 1, and Option 2. But how do you know
which button was tapped by the user? You can determine this by handling the relevant method(s)
that will be fi red by the Alert view when the buttons are clicked. This set of methods is defi ned by
the UIAlertViewDelegate protocol. This protocol defi nes the following methods:

alertView:clickedButtonAtIndex:➤➤

willPresentAlertView:➤➤

didPresentAlertView:➤➤

alertView:willDismissWithButtonIndex:➤➤

alertView:didDismissWithButtonIndex:➤➤

alertViewCancel:➤➤

If you want to implement any of the methods in the UIAlertViewDelegate protocol, you need to
ensure that your class, in this case the View Controller, conforms to this protocol. A class conforms
to a protocol using angle brackets (<>), like this:

@interfaceObjCTestViewController:UIViewController
 <UIAlertViewDelegate> { //---this class conforms to the
 // UIAlertViewDelegate protocol---

}

@end

NOTE To conform to more than one delegate, separate the protocols with com-
mas, such as <UIAlertViewDelegate,UITableViewDataSource>.

After the class conforms to a protocol, you can implement the method in your class:

-(void)alertView:(UIAlertView*)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex{

NSLog([NSStringstringWithFormat:@”%d”,buttonIndex]);

}

614 ❘ AppenDix D craSh cOurSe in ObjectiVe-c

Delegate
In Objective-C, a delegate is just an object that has been assigned by another object as the object
responsible for handling events. Consider the case of the UIAlertView example that you have seen
previously:

UIAlertView*alert=[[UIAlertViewalloc]
initWithTitle:@”Hello”
message:@”Thisisanalertview”
 delegate:self
cancelButtonTitle:@”OK”
otherButtonTitles:@”Option1”,@”Option2”,nil];
[alertshow];

The initializer of the UIAlertView class includes a parameter called the delegate. Setting this
parameter to self means that the current object is responsible for handling all the events fired by
this instance of the UIAlertView class. If you don’t need to handle events fired by this instance, you
can simply set it to nil:

UIAlertView*alert=[[UIAlertViewalloc]
initWithTitle:@”Hello”
message:@”Thisisanalertview”
 delegate:nil
cancelButtonTitle:@”OK”
 otherButtonTitles:@”Option1”,@”Option2”,nil];
[alertshow];

If you have multiple buttons on the Alert view and want to know which button was tapped, you
need to handle the methods defined in the UIAlertViewDelegate protocol. You can either implement
it in the same class in which the UIAlertView class was instantiated (as shown in the previous sec-
tion), or create a new class to implement the method, like this:

//--SomeClass.m--
@implementationSomeClass

-(void)alertView:(UIAlertView*)alertView
clickedButtonAtIndex:(NSInteger)buttonIndex{

NSLog([NSStringstringWithFormat:@”%d”,buttonIndex]);

}
@end

To ensure that the Alert view knows where to look for the method, create an instance of SomeClass
and then set it as the delegate:

SomeClass *myDelegate = [[SomeClass alloc] init];
UIAlertView*alert=[[UIAlertViewalloc]
initWithTitle:@”Hello”
message:@”Thisisanalertview”
delegate:myDelegate;
cancelButtonTitle:@”OK”
otherButtonTitles:@”Option1”,@”Option2”,nil];
[alertshow];

Selectors ❘ 615

SelectOrS

In Objective-C, a selector is the name used to select a method to execute for an object. It is used to
identify a method. You have seen the use of a selector in some of the chapters in this book. Here is
one of them:

//---createaButtonview---
CGRectframe=CGRectMake(10,50,300,50);
UIButton*button=[UIButtonbuttonWithType:UIButtonTypeRoundedRect];
button.frame=frame;
[buttonsetTitle:@”ClickMe,Please!”
forState:UIControlStateNormal];
button.backgroundColor=[UIColorclearColor];
[buttonaddTarget:self
action:@selector(buttonClicked:)
forControlEvents:UIControlEventTouchUpInside];

The preceding code shows that you are dynamically creating a UIButton object. In order to handle
the event (for example, the TouchUpInside event) raised by the button, you need to call the
addTarget:action:forControlEvents: method of the UIButton class:

[buttonaddTarget:self
action:@selector(buttonClicked:)
forControlEvents:UIControlEventTouchUpInside];

The action: parameter takes in an argument of type SEL (selector). In the preceding code, you pass
in the name of the method that you have defi ned — buttonClicked: — which is defi ned within the
class:

-(IBAction)buttonClicked:(id)sender{
//...
}

Alternatively, you can create an object of type SEL and then instantiate it by using the
NSSelectorFromString function (which takes in a string containing the method name):

NSString*nameOfMethod=@”buttonClicked:”;
SELmethodName=NSSelectorFromString(nameOfMethod);

The call to the addTarget:action:forControlEvents: method now looks like this:

[buttonaddTarget:self
action:methodName
forControlEvents:UIControlEventTouchUpInside];

NOTE When naming a selector, be sure to specify the full name of the method.
For example, if a method name has one or more parameters, you need to add a
“:” in the sector, such as:

NSString*nameOfMethod=@”someMethod:withPara1:andPara2:”;

616 ❘ AppenDix D craSh cOurSe in ObjectiVe-c

NOTE Because Objective-C is an extension of C, it is common to see C func-
tions interspersed throughout your Objective-C application. C functions use the
parentheses () to pass in arguments for parameters.

cAtegOrieS

A category in Objective-C allows you to add methods to an existing class without the need to sub-
class it. You can also use a category to override the implementation of an existing class.

NOTE In some languages (such as C#), a category is known as an extension
method.

As an example, imagine that you want to test whether a string contains a valid e-mail address. You
can add an isEmail method to the NSString class so that you can call the isEmail method on any
NSString instance, like this:

NSString*email=@”weimenglee@gmail.com”;
if([emailisEmail]){
//...
}

To do so, you can simply create a new class fi le and code it as follows:

//--Utils.h--
#import<Foundation/Foundation.h>

//---NSString is the class you are extending---
@interface NSString (stringUtils)

//---the method you are adding to the NSString class---
-(BOOL) isEmail;

@end

Basically, it looks the same as declaring a new class except that it does not inherit from any other
class. The stringUtils is a name that identifi es the category you are adding, and you can use any
name you want.

Next, you need to implement the method(s) you are adding:

//--Utils.m--
#import“Utils.h”

@implementationNSString(Utilities)

-(BOOL)isEmail{

Categories ❘ 617

NSString*emailRegEx=
@”(?:[a-z0-9!#$%\\&‘*+/=?\\^_`{|}~-]+(?:\\.[a-z0-9!#$%\\&‘*+/=?\\^_`{|}”
@”~-]+)*|\“(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21\\x23-\\x5b\\x5d-\\”
@”x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])*\“)@(?:(?:[a-z0-9](?:[a-”
@”z0-9-]*[a-z0-9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?|\\[(?:(?:25[0-5”
@”]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-”
@”9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\\x01-\\x08\\x0b\\x0c\\x0e-\\x1f\\x21”
@”-\\x5a\\x53-\\x7f]|\\\\[\\x01-\\x09\\x0b\\x0c\\x0e-\\x7f])+)\\])”;

NSPredicate*regExPredicate=[NSPredicate
predicateWithFormat:@”SELFMATCHES%@”,
emailRegEx];

return[regExPredicateevaluateWithObject:self];
}

@end

NOTE The code for validating an e-mail address using regular expression is
adapted from http://cocoawithlove.com/2009/06/
verifying-that-string-is-email-address.html.

You can then test for the validity of an e-mail address using the newly added method:

NSString*email=@”weimenglee@gmail.com”;
if([emailisEmail])
NSLog(@”Validemail”);
else
NSLog(@”Invalidemail”);

http://cocoawithlove.com/2009/06/verifying-that-string-is-email-address.html
http://cocoawithlove.com/2009/06/verifying-that-string-is-email-address.html

619

A
accelerometer

axes, 386
data

accessing, 386–388
visualizing, 388–392

g force, 385
orientation, 385

Accelerometer project, 386–388
action: parameter, 98
action sheets, 52–53

dismissed by user, 53
IBAction method, 53
View window, 53
viewDidLoad method, 53

actions, 41–47
bgTouched:, 164
btnClicked:, 100
buttonClicked:, 96
connecting, 95–98, 575–579
creating, 95–98, 572–575
doneEditing:, 160
synchronizing, 46
views

connecting, 46
linking, 96–98

addSubview: method, 91, 95
affine 2D transforms, 307

rotation, 310–311
scaling, 312
translation, 307–309

alert views, 48–52
events, 51
show method, 51

allObjects method, 371
allTouches method, 371
animation

ball, 300–306
caching images, 102
curve, 102
images

series, 312–315
updates, 299

ImageViews, 61
OpenGL ES, 299
speed, 315
switching views, 101–103
timer object and, 299
visual changes, 306–307

animation block, 306–307
Animation project, 300–306
animationDuration property, 315
animationImages property, 314
Animations2 project, 313
annotations in maps, 504–509

disclosure button, 513–515
APNs (Apple Push Notification service)

App ID, 461–462
configuration, 462–465

application, 467–471
certificate request file, 456–457
development certificate, generating, 457–461
PNS (push notification server), 456
provisioning a device, 467
provisioning profile, 465–467
push notification provider, 471–474

App ID, 548–550
wildcard character, 554–557

App Store
categories, 273
distribution provisioning profile, 557
submission, preparation, 557–631

appearance of keyboard, 158
application preferences, 241

creating, 242–245
Favorite Color, 247
modifying, 245–247
settings

accessing programmatically, 248–257
NSUserDefaults class, 254
resetting values, 255–256
saving values, 256–257
values loaded, 252–255
values retrieved, 251

specifiers, 244
PSGroupSpecifier, 247
PSMultiValueSpecifier, 247
PSTextFieldSpecifier, 247

system applications, 241
application-specific settings, 269
applications

background, 455
overview, 519–520

built-in (See built-in applications)
delegate, 79–81
executable files, 264
filenames, 264
folder, 12
folders, 264–269

inDex

620

applications – code

icons
adding, 34–36
custom, 34–36

iPhone Simulator
deployed, 12
uninstalling, 11–13

provider, push notification and, 456
push notification receipt, 467–471
sandboxed environments, 264
Settings, 241
state, 520–522
Universal, 141–149

Applications folder, 264
ApplicationSettings project, 242
Apps.plist file, 274
arrays

indexing and, 219
NSMutableArray, 202

arrows, Table view, 231–233
Attributes Inspector window, 54, 580

HelloWorldViewController, 89
Tab Bar items, 124
Text Field view, 157

Auto-Enable Return Key check box, 158
AVFoundation framework, 432
axes, accelerometer, 386

B
background applications, 455

multi-tasking support, 524
overview, 521–522
tracking locations, 524–528

background mode, disabling, 523–524
Badge property, 127
ball animation, 300–306
bars, Library window, 48
becomeFirstResponder method, 165
beginAnimations: method, 102
bgTouched: action, 164
bind variables (SQLite), 286–288
Bluetooth, 421

connections, accept/decline, 426
disconnecting, 428
Game Kit framework, 421–422
peer devices, searching for, 422–429
sending/receiving data, 429–4311
voice chatting, 431–438

Bluetooth project, 422–429
BluetoothChat project, 431–438
Bonjour

application UI, 441–443
introduction, 441
services

browsing network for, 446–452
publishing, 443–446

Boolean variables, searches, 228
browseServices method, 449
btnClicked: action, 100
btnConnect: method, 427
btnSend: method, 431
built-in applications, invoking, 319
bundled resources, copying, 276–277
Button view, 67

ordering, 69
buttonClicked: method, 67, 96
buttonWithType: method, 67

c
caching, images, animation and, 102
camera, accessing, 337–341
capitalization, 157
categories (Objective-C), 616–617
cell tower triangulation, 483
Certificate Assistant window, 544
certificate request, generation, 456–457
characters, Search Bar, 230
characters on keyboard, 156
check marks, Table view, 231–233
classes

CLLocationManager, 488, 528
gesture recognizers, 343–344
GKVoiceChatService, 437
NSFileManager, 268
NSNetService, 441, 445
NSNotificationCenter, 318
NSTimer, 299–307
NSUserDefaults, 253
Objective-C, 592–595
RootViewController, 211
UIAccelerometer, 388
UIAlertView, 51
UIGestureRecognizer, 344
UIImagePickerController, 331
UIPageControl, 54
UITabBarController, 123, 125
UITableView, 203
UIView, 61
ViewBasedAppViewController, 83

CLLocationManager class, 488, 528
Cocoa API, Core Data, 279
Cocoa Framework, 15
Cocoa Touch Class, 15, 86

layer, 16
code

separate targets, 149–151
views, creating, 64–68
writing, Interface Builder, 31–33

applications (conitnued)

621

Code Sense – e-mail

Code Sense, 7, 569–570
commitAnimations: method, 103
commitAnimations method, 307
compass, 493–498
compiler

getter, creating, 47
setter, creating, 47

Connections Inspector window, 580
connectionTypesMask property, 427
containers, UIView object, 66
continuous gestures, 348
controllers, Library window, 48
coordinates

maps, 483–489
touches, 374

copying, bundled resources, 276–277
Core Data, 279
Core Graphics, transforms, 307
Core Location framework, 481
Core OS, 15
correction, 157
count method, touches and, 371
curve of animation, 102

D
Data Views, Library window, 48
databases, 279

building, 291–292
opening, 282–283
records

inserting, 284–286
retrieving, 288–290

tables, creating, 283–284
Databases project, 282
dataSource outlet, File’s Owner item, 202
dealloc method, 237
Debugger Console window, 268

.plist file, 272
debugger (Xcode)

breakpoints, 573–574
documentation, 575
errors, 571
NSLog() function, 574–575
warnings, 572

DefaultValue key, 245
delegate class, UIApplicationDelegate protocol, 81
delegate outlet, 175
delta variable, 305
destination orientation, 190
Detail View Controller, 106, 108–109
DetailsViewController class, protocols, 112
detecting keyboard presence, 165–178
detecting platforms, 139

detecting shakes, 392–398
developer certificates, 18

Certificate Assistant window, 544
development certificate, generating, 457–461, 544–547
device location, 481, 483–484
device registration, 547–548
device rotation

constants, 184–185
events, 185–187
iPad, 183
iPhone, 183
programmatically rotating, 190–192
resolution and, 18
responding to, 181–190
runtime, 191
Safari and, 181–182

device target setting, modifying, 134–139
devices, detecting, 139–141
dialer, invoking, 325–326
dictionary object

keys, 274
mutable copy, 275

DidEndonExit event, 159
directories

Documents, 267
search paths, 267

disclosure button in maps, 513–515
disclosures, Table view, 231–233
discrete gestures, 348
dismissing keyboard, 159–165
displaying, selections, 233–238
distribution certificate

App Store, 557
generating, 544–547

distribution provisioning profile, 557
Documents directory, 267

Apps.plist file, 274
.plist file, 272

Documents folder, 265–268
database, 283

doneEditing: action, 160
doneSearching: method, 229
dots for selected page, 54
double taps, 348
downloads, iPhone SDK, 4
dragging, 354–357

implementing, 381–383
DynamicViews project, 64–68

e
e-mail

feedback button, 320
sending, 319–320

from application, 323–325

622

e-mail – getter

Mail, 320–323
programmatically, 320

web-based, 319
Entertainment category (App Store), 273
events

device rotation, 185–187
DidEndonExit, 159
motionBegan:, 398
motionCancelled:, 398
motionEnded:, 398
responder chain, 165
state, 520–522
tableView:cellForRowAtIndexPath:, 203, 204
tableView:numberOfRowsInSection:, 203
touch detection, 367
TouchUpInside, 163, 164
touchesBegan:, 372
touchesBegan:withEvent:, 371
touchesEnded:, 372
touchesEnded:withEvent:, 372
willAnimateFirstHalfOf

RotationToInterfaceOrientation, 185
willAnimateRotationToInterfaceOrientation:,

186–187
willAnimateSecondHalfOf

RotationFromInterfaceOrientation, 185–186
willRotateToInterfaceOrientation:, 186

Exchange, 319
executable files, 264
extensions, .xib, 77

f
Favorite Color preference, 247
feedback button, e-mail, 320
FileHandling project, 265–268
filenames

applications, 264
Xcode projects, 82

filePath method, 280, 281
defining, 281

files
Apps.plist, 274
default, 75–76
main.m, 76
MinWindow.xib, 78
NIB, 77
reading from, 265–268
temporary, 268–269
writing to, 265–268

File’sOwner, 78
FirstResponder, 78
First Responder, Search Bar, 229
folders

applications, 12, 264–269

Applications, 264
Documents, 265–268
executable files, 264
Library, 264, 265–268
Media, 264
Root, 264
tmp, 264, 265

footers, Table view, 204
forControlEvents: method, 98
frame property, 190
functions

NSLog(), 574–575
NSTemporaryDirectory(), 268–269
SQLite, result codes, 282–283
sqlite3_bind_text(), 287
sqlite3_column_int(), 290
sqlite3_column_text(), 290
sqlite3_exec(), 284, 288
sqlite3_finalize(), 287, 288
sqlite3_open(), 282
sqlite3_prepare(), 288
sqlite3_prepare_v2(), 287
sqlite3_step(), 287, 288
UIApplicationMain(), 76

g
g force, 385
Game Kit framework, Bluetooth and, 421–422

peers, 422–429
Games category (App Store), 273
gesture recognizers, 343–344

UILongPressGestureRecognizer, 344
UIPanGestureRecognizer, 344
UIPinchedGestureRecognizer, 344
UIRotationGestureRecognizer, 344
UISwipeGestureRecognizer, 344
UITapGestureRecognizer, 344

gestures, 343
continuous, 348
discrete, 348
dragging, 354–357

implementing, 381–383
iPhone Simulator, 11
long press, 363–366
panning, 354–357
pinching, 349–351

implementing, 375–381
zoom in/out, 351

recognizing, 343–344
rotation, 352–354
swiping, 357–362
tapping, 344–348

Gestures project, 344–348
getter, creating, 47

e-mail (conitnued)

623

gKSession object – iPhone OS

GKSession object, 427
GKVoiceChatService class, 437
glossy effect for icons, 34
Gmail, 319
Google Mobile Maps Service, 477
GPS receivers, 483

h
handleLongpressGesture: method, 366
handlePanGesture: method, 357
handlePinchGesture: method, 351
handleRotationGesture: method, 354
handleTapGesture: method, 348
headers, Table view, 204
Hello World, 23
HelloWorldViewController, 88
hierarchies, views, 68–69

removing, 69
Home screen, iPhone, dots for selected page, 54
HTTP GET, 407
HTTP POST, 407

i
IBAction keyword, 45, 46
IBAction method, action sheets, 53
IBOutlet keyword, 45
icons

adding, 34–36
custom, 34–36
glossy effect, 34

IDE, Xcode, 7
Identity Inspector window, 88, 571

Search Tab Bar Item, 129
Image View

dragging in, 381–383
image series, 314

images
animation

caching, 102
series, 312–315

Table view, 204–206
updating, 299

ImageViews
animation, 61
View window, 54–55

arranging, 58
indents, Table view, 209
indexing, Table view, 219
initialinterfaceorientation key, 191
inputs

appearance, 158
Auto-Enable Return Key check box, 158

capitalize, 157
correction, 157
keyboard type, 158
Library window, 48
multi-touch, 343, 372–375
return key, 158
screen, 343
secure check box, 158
Text Input Traits, 157–158
TextField view, 156–157
type, customizing, 157–165

Inspector window, 579–580
Attributes Inspector window, 580
Connections Inspector window, 570
Identity Inspector window, 571
Size Inspector window, 571

Instruments, 14
Interface Builder, 13

actions
connection, 585–589
creating, 582–585

code writing, 31–33
IBOutlet keyword, 46
Inspector window, 579–580

Attributes Inspector window, 580
Connections Inspector window, 580
Identity Inspector window, 581
Size Inspector window, 581

keyboard shortcuts, 579
Label view, 27
Library window, 27, 48, 581–582
outlets

connection, 585–589
creating, 582–585

pixels, 169
points, 169
saving in, 30
unit of dimension, 169
View window, 27
.xib window, 577–578

interfaceOrientation argument, 184
interfaceOrientation property, 190
iPad, 17

iPhone Simulator, 135
orientations, 183

iPhone
Home screen, dots for selected page, 54
video playback, 315–319

iPhone 4 Simulator, keyboard, 161
iPhone Developer Program

developer certificate, 18
signup, 541

iPhone OS
architecture, 14–16
iPad, 133

624

iPhone OS – low-memory warning

iPod, 133
versions, 17–18

iPhone Provisioning Portal
login, 542–543
provisioning profile, 550–553

iPhone SDK
Dashcode, 6
downloading, 4
installation, 5
Instruments, 6
Interface Builder, 6, 26
iPhone Simulator, 6, 8–13
system requirements, 4
Xcode, 6–8

iPhone Simulator, 5, 8–13
applications, uninstalling, 11–13
devices simulated, 9
emulator comparison, 8
gestures, 11
iPad, 135
limitations, 11
location data, 11
low-memory warning, 11
screen rotation, 10
speed, 11
Xcode and, 8–9

IPToCountry Web service, 404–405
IsSecure key, 246–247
item selected, Table view, 206–209

j
JSON, string, 472

k
Key key, 245
keyboard

appearance, 158
Auto-Enable Return Key check box, 158
automatically appearing, 156
capitalization, 157
characters, 156
correction, 157
detecting presence, 165–178
dismissing, 159–165
displaying automatically, 165
key concepts, 166
languages, 156
return key, 158
Scroll View and, 166–171
Search Bar, 227
secure check box, 158

size, 165
landscape, 177
portrait, 177

type, 158
UIKeyboardDidHideNotification, 176
UIKeyboardDidShowNotification, 176
using, 155–157

keyboardDidHide: method, 177
keyboardDidShow: method, 176
KeyboardInputs project, 160, 161
Keychain Access application, 456

development certificate, 544
keys

DefaultValue, 245
initialinterfaceorientation, 191
IsSecure, 246–247
Key, 245
PreferenceSpecifiers, 244–245
Root.plist, 244

case sensitivity, 245
Title, 245
Type, 245

keywords
IBAction, 45, 46
IBOutlet, 45
nonatomic, 46
@property, 46
@synthesize, 47

l
Label view, ordering, 69
landscape mode, keyboard size, 177
languages, keyboard, 156
latitude/longitude, addresses from, 509–513
libraries, libsqlite3.dylib, 280
Library folder, 264, 265–268
Library window, 48, 581–582

Controllers, 48
Data Views, 48
Inputs and Values, 48
Windows Views & Bars, 48

libsqlite3.dylib library, 280
linking applications, 281

listOfMovies, 202
Load Photo Library button, 331
loadView method, 66
local notifications, 530–537
LocalNotification project, 530–537
location apps efficiency, 528–530
location data, 11

background tracking, 524–528
long press, 363–366
low-memory warning, iPhone Simulator, 11

iPhone OS (conitnued)

625

Mail – navigation Controller

m
Mail, 319

invoking, 322–323
sending e-mail, 320–323

mailto: protocol, 322
main.m file, 76
Map Kit, introduction, 477
maps

annotations, 504–509
disclosure button, 513–515

compass, 493–498
directional information, 493–498
displaying location, 489–493
distance to display, 483
Google Mobile Maps Service, 477
latitude/longitude, addresses from, 509–513
location coordinates, 483–489
reverse geocoding, 509–513
rotating, 498–504
Show My Location button, 480
zooming, 480

printing zoom level, 481–483
Maps project, 478–481
mapView, 503
Media folder, 264
Media layer, 16
mediaTypes property, 336
memory management (Objective-C), 605–612
messages, user, UIAlertView, 49
methods

addSubview:, 91, 95
allObjects, 371
allTouches, 371
becomeFirstResponder, 165
beginAnimations:, 102
browseServices, 449
btnConnect:, 427
btnSend:, 431
buttonClicked:, 67
buttonWithType:, 67
commitAnimations, 307
commitAnimations:, 103
count, 371
dealloc, 237
doneSearching:, 229
filePath, 280, 281
forControlEvents:, 98
handleLongpressGesture:, 366
handlePanGesture:, 357
handlePinchGesture:, 351
handleRotationGesture:, 354
handleTapGesture:, 348
IBAction, 53

keyboardDidHide:, 177
keyboardDidShow:, 176
loadView, 66
mySendDataToPeers:, 430
numberOfSectionsInTableView:, 218
objectForKey:, 254
Objective-C, 597–598

convenience methods, 608–610
onTimer, 305
openDB, 282
openURL:, 322–323, 325
pageTurning, 60
positionViews, 190
presentLocalNotificationNow:, 536
publish, 445
readFromFile:, 267
reloadData, 229
removeFromSuperview, 69
removeFromSuperview:, 100
resignFirstResponder, 176
resolveIPAddress:, 449
resolveWithTimeout:, 449
saveImage:, 340
scheduleLocalNotification:, 536
setAnimationCurve:, 102
setAnimationDuration:, 102
setAnimationTransition:, 102
setObject:forKey:, 256
setShowValue:, 305
shouldAutorotateToInterfaceOrientation:, 183
show, 51
sliderMoved:, 306
startAnimating, 315
UTF8String, 282
viewDidLoad, 49, 53
writeToFile:atomically:, 267, 276

MinWindow.xib file, 78
motionBegan: event, 398
motionCancelled: event, 398
motionEnded: event, 398
multi-tapping, 372
multi-tasking support, 524
multi-touch inputs, 343

detecting, 372–375
MultiTouch project, 367–372
mySendDataToPeers: method, 430

n
Navigation Bar, Split-view application, 106
Navigation-based Applications, 556

Table view, 210
displaying sections, 210–220

Navigation Controller, Split-view application and, 106

626

niB files – pinching

NIB files, 77
nonatomic keyword, 46
notification parameter, 536
NSArray object, 314
NSDictionary object, 217, 275
NSFileManager class, 268
NSIndexPath parameter, 203
NSLog() function, 574–575
NSMutableArray object, listOfMovies, 202
NSMutableDictionary object, 275
NSNetService class, 441, 445
NSNotificationCenter class, 318
NSTemporaryDirectory() function, 268–269
NSTimer class, 299–307
NSTimer object, new instance, 305
NSUserDefaults class, 253
numberOfSectionsInTableView: method, 218

O
objectForKey: method, 254
Objective-C

access privileges, 596
autorelease objects, 608
autorelease pools, 610–611
categories, 616–617
classes

@class, 593–595
@implementation, 593
instantiation, 595
@interface, 592

directives, 591–592
preprocessor directives, 591

fields, 595
initializers, 603–605
keywords

alloc, 606
dealloc, 611
new, 606
release, 607–608
retain, 606–607

memory management
didReceiveMemoryWarning method, 612
reference counting, 605–612

message sending, 598–600
methods, 597–598

calling, 598–600
covenience methods, 608–610

properties, 600–603
protocols, 612–613

delegates, 614
selectors, 615–616

objects
GKSession, 427

NSArray, 314
NSDictionary, 217, 275
NSMutableDictionary, 275
NSTimer, 305
sqlite3, 281
UIImageView, 314
UITouch, 371

onTimer method, 305
openDB method, 282
OpenGL ES, 299, 556
openURL: method, 322–323, 325
orientations

accelerometer, 385
destination, 190
iPad, 183
View window, 191–192
views, repositioning, 187–190

outlets, 41–47
connecting, 585–589
creating, 582–585
exposed as properties, 46
views, connecting, 46

OutletsAndActions project, 42–47

p
pages, selected, dots, 54
pageTurning method, 60
panning, 354–357
parameters

action:, 98
notification, 536
NSIndexPath, 203
toInterfaceOrientation, 185

parsing, XML response to Web service, 413–418
persistence, text files, 279
phone dialer, invoking, 325–326
Photo library

accessing, 328–333
Load Photo Library button, 331
video, access, 333–337

PhotoLibrary project, 328–333
Photos application

editing photos, 331
Photo library, access, 328–333

Picker view, 251
color, 252
columns, 252
populating, 251
rows, 252

pinching, 349–351
implementing, 375–381
zoom in/out, 351, 375–381

627

platforms – responder chain

platforms
detecting programmatically, 139–141
resolutions, 20

PlayVideo project, 315–319
.plist file, creating, 272
PNS (push notification server), 456
portrait mode, keyboard size, 177
positionViews method, 190
preferences. See application preferences
PreferenceSpecifiers key, 244–245

new items, 245–246
presentLocalNotificationNow: method, 536
printing

local notifications, 536
map zoom level, 481–483
views, 69

projects
Accelerometer, 386–388
Animation, 300–306
Animations2, 313
ApplicationSettings, 242
Bluetooth, 422–429
BluetoothChat, 431–438
DynamicViews, 64–68
FileHandling, 265–268
Gestures, 344–348
KeyboardInputs, 160, 161
LocalNotification, 530–537
Maps, 478–481
MultiTouch, 367–372
PhotoLibrary, 328–333
preparing for SQLite3, 280–281
ScreenRotations, 182–184
Scroller, 166–171
tabBarApp, 122
UsingViews, 49
WebServices, 407–413
windowBasedApp, 85
Xcode, filenames, 82

properties
animationDuration, 315
animationImages, 314
Badge, 127
connectionTypesMask, 427
frame, 190
interfaceOrientation, 190
mediaTypes, 336
Objective-C, 600–603
Style, 216
transform, 307, 392
updateInterval, 388
view, 68
view positioning, 190

@property keyword, 46
Property List Editor, 269

.plist file, 272
Property List template, 269–270
property lists, 279

creating, 269–276
key/value pairs, 269
modifying, 269–276

protocols
mailto:, 322
UIActionSheetDelegate, 52–53
UIAlertViewDelegate, 51-52
UITableViewDataSource, 203
UITableViewDelegate, 206-207
Zeroconf, 441

provider application, push notification and, 456
provisioning device, 467
provisioning profile, 550–553
publish method, 445
push notification, 456

App ID, 461–462
configuration, 462–465

development certificate, generating, 457–461
provider, creating, 471–474
provider application, 456
provisioning device, 467
provisioning profile, 465–467
receipt, application for, 467–471

r
readFromFile: method, 267
reading from files, 265–268
recording video, 341
records (databases)

inserting, 284–286
retrieving, 288–290

reference counting (Objective-C), 605–612
reloadData method, 229
removeFromSuperview: method, 100
removeFromSuperview method, 69
resignFirstResponder method, 176
resolution, 18–20

older iPhones, 19
by platform, 20

resolveIPAddress: method, 449
resolveWithTimeout: method, 449
resources, bundled, copying, 276–277
Resources folder

Apps.plist file, loading, 274
Property List Editor, 269
property lists, 269

responder chain, 165

628

responding to device rotation – SQLite

responding to device rotation, 181
return key, 158
reverse geocoding, 509–513
Root folder, 264
Root View Controller, Split-view application, 106, 108
Root.plist file, 244

case sensitivity, 245
preferences, 246–247
user credentials, 245

RootViewController class, 211
RootViewController.m file, 112
rotating map, 498–504
rotation. See device rotation

affine 2D transforms, 305, 310–311
rotation gesture, 352–354
rows, Table view, height, 210
runtime, device rotation, 191

S
Safari

invoking, 325
multi-touch inputs and, 343
rotations and, 181–182

sandboxed environments, 264
saveImage: method, 340
scaling, affine 2D transforms, 312
scheduleLocalNotification: method, 536
screen, input, 343
screen orientation

constants, 184–185
supporting, 182–184

screen resolutions, 18–20
older iPhones, 19
by platform, 20

screen rotation
iPhone Simulator, 10
programmatically rotating, 190–192

ScreenRotations project, 182–184
Scroll View

keyboard and, 166–171
Size Inspector window, 173

Scroller project, 166–171
scrolling views, 171–178
Search Bar, 221–223

characters, 230
First Responder status, 229
keyboard, 227

searches
Boolean variables, 228
directory search paths, 267
Table view, 220

sections, displaying in Table view, 210–220
secure check box, 158

selected page, dots, 54
selections

displaying, 233–238
Table view, 206–209

sending e-mail, 319–320
from application, 323–325
Mail, 320–323
programmatically, 320

sending SMS messages from application, 326–327
separate targets, code bases, 149–151
serialization, 267
series of images, animation, 312–315
services (Bonjour)

browsing network for, 446–452
publishing, 443–446

setAnimationCurve: method, 102
setAnimationDuration: method, 102
setAnimationTransition: method, 102
setObject:forKey: method, 256
setShowValue: method, 305
setter, creating, 47
Settings application, 241

application preferences, 242
Settings.bundle, files, 244
Shake API, detecting shakes, 392–398
shakes

detecting, 392–398
performing action, 398–399

shouldAutorotateToInterfaceOrientation: method, 183
show method, 51
single touches, detecting, 367–372
Sittings.bundle, 242
Size Inspector window, 581

Scroll View, 173
sliderMoved: method, 306
SMS

intercepting messages, 328
invoking, 326
sending messages, from application, 326–327

SOAP
SOAP 1.1, 405–406
SOAP 1.2, 406–407
Web services, consuming, 407–413

splash screen, displaying, 36–39
Split-View application, 556

creating, 103–114
Detail View Controller, 106, 108-109
displaying items, 114–122
Root View Controller, 106, 108
Spilt View Controller item, 106–107
template, 103–122

splitViewBasedApp, 103
SQL, strings, 284

bind variables, 286–288
SQLite, functions, result codes, 282–283

629

SQLite3 – touches

SQLite3, 279
bind variables, 286–288
databases

building, 291–292
opening, 282–283
records, 284–286
retrieving records, 288–290
table creation, 283–284

preparing projects for, 280–281
sqlite3, 291–292
SQLite Database Browser, 291–292
sqlite3 object, 281
sqlite3 variable, 280
sqlite3_bind_text() function, 287
sqlite3_column_int() function, 290
sqlite3_column_text() function, 290
sqlite3_exec() function, 284, 288
sqlite3_finalize() function, 287, 288
sqlite3_open() function, 282
sqlite3_prepare() function, 288
sqlite3_prepare_v2() function, 287
sqlite3_step() function, 287, 288
startAnimating method, 315
state, events, 520–522
Style property, 216
subclasses, UIViewController template, 86
swiping, 357–362
switching views, 99–101

animating, 101–103
View windows, 233

synchronization, actions, 46
@synthesize keyword, 47
system applications, preferences, 241
system requirements, iPhone SDK, 4

t
Tab Bar application, 556

creating, 122–125
items, Attributes Inspector window, 124
Tab Bar items, adding, 126–130
template, 122–130

tabBarApp project, 122
Table view

arrows, 231–233
cells, 203
check marks, 231–233
disclosures, 231–233
footers, 204
headers, 204
images, adding, 204–206
indenting, 209
indexing, 219
item selected, 206–209

Navigation-based Applications, 210
displaying sections, 210–220

populating, 202
rows

displaying, 203
height, 210

search capability, 219–230
selections, 206–209
style, 216
using, 198–204

tables (databases), 283–284
tableView:cellForRowAtIndexPath: event, 203, 204
tableView:numberOfRowsInSection: event, 203
tag property, printing value, 69
tapping, 344–348

detecting taps, 367–372
double taps, 348
multi-tapping, 372

Targeted Device Family, modifying, 134–139
targets, separate, code bases and, 149–151
TCP/IP, 452
templates, 7

Property List, 269–270
Split-View application, 103–122
Tab Bar, 122–130
UIViewController subclass, 86
Window-based Application, 85–103

temporary files, 268–269
Terminal, sqlite3, 291–292
testing

App ID (Application ID), 548–550
wildcard character, 554–557

development certificate, 544–547
device registration, 547–548
iPhone Developer Program signup, 541
real devices, 18

Text Field view
Attributes Inspector window, 157
DidEndonExit event, 159
inputs, 156–157
keyboard and, 155

text files, persistence, 279
Text Input Traits, 157–158
TextView view, keyboard and, 155
timer object, animation and, 299
Title key, 245
tmp folder, 264, 265

temporary files, 268–269
toInterfaceOrientation parameter, 185
TouchUpInside event, 163, 164
touches

coordinates, 374
events, 367
single, 367–372
taps, 367–372

630

touchesBegan: event – views

touchesBegan: event, 372
touchesBegan:withEvent: event, 371
touchesEnded: event, 372
touchesEnded:withEvent: event, 372
transform property, 307, 392
transforms

affine 2D, 307
views, 299

rotation, 308–309
scaling, 312
translation, 307–309

Type key, 245

u
UDID (Unique Device Identifier), 542
UI

preparing for preference access, 248–252
re-layout, 139
Targeted Device Family, 138

UIAccelerometer class, 388
UIActionSheetDelegate protocol, 52–53
UIAlertView, 48–52
UIAlertView class, 51
UIAlertViewDelegate protocol, 51-52
UIApplicationDelegate protocol, 81
UIApplicationMain() function, 76
UIGestureRecognizer base class, 344
UIImagePickerController class, 331
UIImageView object, 314
UIKeyboardDidHideNotification, 176
UIKeyboardDidShowNotification, 176
UILongPressGestureRecognizer, 344
UIPageControl class, 54
UIPanGestureRecognizer, 344, 354–357, 366
UIPinchedGestureRecognizer, 344
UIPinchGestureRecognizer, 375–381
UIRotationGestureRecognizer, 344, 352–354
UIs, View Controllers, 81–84
UISplitViewController, 105
UISwipeGestureRecognizer, 344, 357–362
UITabBarController class, 123, 125
UITableView class, 203
UITableViewCell object, 204
UITableViewDataSource protocol, 203
UITableViewDelegate protocol, 206-207
UITapGestureRecognizer, 344, 346
UITouch objects, 371
UIView class, animation and, 61, 306–307
UIView object, as container, 66
UIViewController subclass template, 86
UIWebView, 62
Universal applications, 141–149
updateInterval property, 388
URLs (Uniform Resource Locators), Web views, loading, 64

user interfaces, Interface Builder, 13
user messages, UIAlertView, 49
UsingViews project, 49
UTF8String method, 282
Utilities category (App Store), 273
Utility application, 556

v
values, Library window, 48
variables

bind variables (SQLite3), 286–288
delta, 305
sqlite3, 280

video
Photo library, accessing, 333–337
playback, iPhone, 315–319
recording, 341

ViewBasedAppViewController, 78
View-based Application, 198–204, 556
View-based Application project, template, 74–84
View Controllers, 73

adding, programmatically, 91–95
HelloWorldViewController, 88
UIs and, 81–84
UISplitViewController, 105
view property, 68
Window-based Application, 85–103
windows, associating, 90

View item, 82
view property, 68
View window

action sheet, 53
background color, 55
ImageViews, 54–55

arranging, 58
navigating between, 233
orientation, 191–192
viewBasedAppViewController class, 83

viewBasedAppAppDelegate, 78
ViewBasedAppViewController class, 83
viewDidLoad method, 49

action sheets, 53
views, 47

actions and, 45
connecting, 46
linking, 96–98

adding, programmatically, 91
alert views, 48–52
Button, 67
creating, from code, 64–68
definition, 81
hierarchy, 68–69

removing, 69
Library window, 48

631

visual changes – zoom in/out

outlets and, 45
connecting, 46

positioning, properties, 190
printing, 69
repositioning, orientation change, 187–190
Scroll View, 166–171
scrolling, 171–178
switching, 99–101

animating, 101–103
Table view, using, 198–204
Text Field, 155
TextView, 155
transforms, 299

rotation, 310–311
scaling, 312
translation, 307–309

transitions, 101–103
UIAlertView, 48–52
Web view, 62–64

visual changes, animating, 306–307
Voice Chat, 431–438

w
Web pages, loading, 62
Web services

consuming
SOAP, 407–413
XML, 403–407

HTTP GET, 407
HTTP POST, 407
introduction, 403
IPToCountry, 404–405
SOAP 1.1 and, 405–406
SOAP 1.2 and, 406–407
XML response, parsing, 413–418

Web views, 62–64
loading, URLs and, 64

WebServices project, 407–413
Wi-Fi triangulation, 484
willAnimateFirstHalfOf

RotationToInterfaceOrientation event, 185
willAnimateRotationToInterfaceOrientation: event,

186–187
willAnimateSecondHalfOf

RotationFromInterfaceOrientation event, 185–186
willRotateToInterfaceOrientation: event, 186
Window-based Application, 556

template, 85–103
Window item, 78
windowBasedApp project, 85
windows

associating, with View Controllers, 90
Attributes Inspector, 54

Attributes Inspector window, HelloWorldView
Controller, 89

Debugger Console, 268
Identity Inspector, 88
Library window, 48, 571–572
Xcode, 566

writeToFile:atomically: method, 267, 276
writing to files, 265–268

x
Xcode, 6–8

applications, running, 570
code completion, 569
Code Sense, 7, 569–570
debugger

breakpoints, 573–574
documentation, 575
errors, 571
NSLog() function, 574–575
warnings, 572

Interface Builder, 26–31
code writing, 31–33

iPhone Simulator and, 8–9
launching, 565–570
new project, 24
project types, 565–568
projects

filenames, 82
groups, 24

splash screen, 36–39
starting, 23
toolbar, customization, 568–569
Welcome screen, 23–24
window, 566

.xib extension, 77
XIB files

editing, 77–84
XML files, 78

.xib window
Interface Builder, 577–578
views, designing, 578–579

XML files, XIB files, 78
XML response to Web service, parsing, 413–418
XML Web services, consuming, 403–407

y
Yahoo!, 319

z
Zeroconf protocol, 441
zoom in/out, 351, 375–381

Answers to Exercises
This appendix provides the solutions for the end-of-chapter exercises located in Chapters 2–21
(there are no exercises in Chapter 1).

ChApter 2 exerCise solutions

Answer to Question 1
The minimum image size you should design is 57 × 57 pixels (or 114 × 114 pixels for high
resolution). It is OK to design a larger image because the iPhone automatically resizes it for
you. In general, try to design a larger image because doing so prepares your application for the
newer devices that Apple may roll out.

Answer to Question 2
The easiest way to add a splash screen is to add an image named Default.png to the Resources
folder of your Xcode project. This image must be sized 480 × 320 pixels (or 960 × 640 pixels
for high resolution).

Answer to Question 3
This is to ensure that the image is always copied into the Resources folder. If not, Xcode only
makes a reference to the image; it is not physically in the Resources folder.

ChApter 3 exerCise solutions

Answer to Question 1
In the .h fi le:

#import <UIKit/UIKit.h>

@interface OutletsAndActionsViewController : UIViewController {

E

2 ❘ Appendix e Answers to exercises

 //---declaring the outlet---
 IBOutlet UITextField *txtName;
}

//---expose the outlet as a property---
@property (nonatomic, retain) UITextField *txtName;

@end

In the .m file:

#import “OutletsAndActionsViewController.h”

@implementation OutletsAndActionsViewController

//---synthesize the property---
@synthesize txtName;

- (void)dealloc {
 //---release the outlet---
 [txtName release];
 [super dealloc];
}

Answer to Question 2
In the .h file:

//---declaring the action---
-(IBAction) btnClicked:(id) sender;

In the .m file:

@implementation OutletsAndActionsViewController

-(IBAction) btnClicked:(id) sender {
 //---action implementation here---
}

Answer to Question 3
Use the Alert view when you simply want to notify the user when something happens. Use an action
sheet when the user needs to make a selection, usually from a set of options.

Answer to Question 4
 //---create a Button view---
 frame = CGRectMake(10, 70, 300, 50);
 UIButton *button = [UIButton buttonWithType:UIButtonTypeRoundedRect];

Chapter 4 Exercise Solutions ❘ 3

 button.frame = frame;

 [button setTitle:@”Click Me, Please!” forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];
 button.tag = 2000;
 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside];

ChApter 4 exerCise solutions

Answer to Question 1
mySecondViewController = [[MySecondViewController alloc]
 initWithNibName:nil
 bundle:nil];

Answer to Question 2
- (void)viewDidLoad {
 //---create a CGRect for the positioning---
 CGRect frame = CGRectMake(20, 10, 280, 50);

 //---create a Label view---
 label = [[UILabel alloc] initWithFrame:frame];
 label.textAlignment = UITextAlignmentCenter;
 label.font = [UIFont fontWithName:@”Verdana” size:20];
 label.text = @”This is a label”;

 //---create a Button view---
 frame = CGRectMake(20, 60, 280, 50);
 button = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 button.frame = frame;
 [button setTitle:@”OK” forState:UIControlStateNormal];
 button.backgroundColor = [UIColor clearColor];

 //---add the views to the View window---
 [self.view addSubview:label];
 [self.view addSubview:button];
 [super viewDidLoad];
}

Answer to Question 3
 //---add the action handler and set current class as target---
 [button addTarget:self
 action:@selector(buttonClicked:)
 forControlEvents:UIControlEventTouchUpInside]; c om

>

4 ❘ Appendix e Answers to exercises

 //...
 //...
 //...
 //...
-(IBAction) buttonClicked: (id) sender{
 //---add implementation here---
}

Answer to Question 4
In the HelloWorldViewController.h file, add the following code in bold:

#import <UIKit/UIKit.h>

@interface HelloViewController : UIViewController {

}

-(IBAction) buttonClicked: (id) sender;

@end

In the HelloWorldViewController.m file, add the following code:

-(IBAction) buttonClicked: (id) sender{
 UIAlertView *alert =
 [[UIAlertView alloc] initWithTitle:@”Button Clicked!”
 message:@”Button was clicked!”
 delegate:self
 cancelButtonTitle:@”OK”
 otherButtonTitles:nil];
 [alert show];
 [alert release];
}

In the HelloWorldViewController.xib file, Control-click and drag the button and drop it over the
File’s Owner item. Select btnClicked:.

ChApter 5 exerCise solutions

Answer to Question 1
A Universal application has only a single target, whereas the other approach results in multiple
targets for different platforms. Hence, for the Universal application, you will only have one output
bundle; for the other approach you will have multiple output bundles.

Answer to Question 2
To detect the platform on which your application is running, use the UI_USER_INTERFACE_IDIOM()
function.

Chapter 7 Exercise Solutions ❘ 5

Answer to Question 3
The different values for the Targeted Device Family setting are iPhone, iPad, and iPhone/iPad.

ChApter 6 exerCise solutions

Answer to Question 1
First, handle the Did End on Exit event (or implement the textFieldShouldReturn: method in the
View Controller). Then call the resignFirstResponder method of the UITextField outlet to release
its first-responder status.

Answer to Question 2
Register for the notifications UIKeyboardDidShowNotification and
UIKeyboardDidHideNotification.

Answer to Question 3
 NSDictionary* info = [notification userInfo];

 //---obtain the size of the keyboard---
 NSValue *aValue = [info objectForKey:UIKeyboardFrameEndUserInfoKey];
 CGRect keyboardRect =
 [self.view convertRect:[aValue CGRectValue] fromView:nil];

 NSLog(@”%f”, keyboardRect.size.height);

Answer to Question 4
Use the UIScrollView to contain views so that the user can scroll through them. Then, set the new
size of the scroll view:

- (void)viewDidLoad {
 //---set this to the screen size---
 scrollView.frame = CGRectMake(0, 0, 320, 460);
 //---set this to the final size of the scroll view---
 [scrollView setContentSize:CGSizeMake(320, 713)];
 [super viewDidLoad];
}

ChApter 7 exerCise solutions

Answer to Question 1
- (BOOL)shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation)interfaceOrientation {

6 ❘ Appendix e Answers to exercises

 // Return YES for supported orientations
 return (interfaceOrientation ==
 UIInterfaceOrientationLandscapeRight ||
 interfaceOrientation ==
 UIInterfaceOrientationLandscapeLeft);
}

Answer to Question 2
The frame property defines the rectangle occupied by the view, with respect to its superview (the
view that contains it). Using the frame property enables you to set the positioning and size of a view.
Besides using the frame property, you can also use the center property, which sets the center of the
view, also with respect to its superview. You usually use the center property when you are perform-
ing some animation and just want to change the position of a view.

ChApter 8 exerCise solutions

Answer to Question 1
The two protocols are UITableViewDataSource and UITableViewDelegate.

The UITableViewDataSource protocol contains events in which you can populate the Table view
with the various items.

The UITableViewDelegate protocol contains events in which you can handle the selection of rows in
a Table view.

Answer to Question 2
To add an index list to your Table view, you need to implement the
sectionIndexTitlesForTableView: method.

Answer to Question 3
The three disclosure and checkmark images are as follows:

UITableViewCellAccessoryDetailDisclosureButton➤➤

UITableViewCellAccessoryCheckmark➤➤

UITableViewCellAccessoryDisclosureIndicator➤➤

The UITableViewCellAccessoryDetailDisclosureButton image handles a user’s tap event. The event
name is tableView:accessoryButtonTappedForRowWithIndexPath:.

Chapter 10 Exercise Solutions ❘ 7

ChApter 9 exerCise solutions

Answer to Question 1
To retrieve the values for preferences settings, you use the objectForKey: method. To save the values
for preferences settings, you use the setObject:forKey: method.

Answer to Question 2
You can either remove the application from the device or Simulator, or you can remove the file end-
ing with application_name.plist in the application folder within the Simulator.

Answer to Question 3
The Add Child button is represented by three horizontal lines. It adds a child item to the currently
selected item. The Add Sibling button is represented by a plus sign (+). It adds an item on the same
level as the currently selected item.

ChApter 10 exerCise solutions

Answer to Question 1
The three folders are Documents, Library, and tmp. Developers can use the Documents folder to store
application-related data. The Library stores application-specific settings, such as those used by the
NSUserDefaults class. The tmp folder can be used to store temporary data that will not be backed up
by iTunes.

Answer to Question 2
The NSDictionary class creates a dictionary object whose items are immutable; that is, after it is
populated, you can no longer add items to it. The NSMutableDictionary class, conversely, creates a
mutable dictionary object that allows items to be added to it after it is loaded.

Answer to Question 3
Location of the Documents directory on a real device:

/private/var/mobile/Applications/<application_id>/Documents/

Location of the tmp directory on a real device:

/private/var/mobile/Applications/<application_id>/tmp/

8 ❘ Appendix e Answers to exercises

ChApter 11 exerCise solutions

Answer to Question 1
The sqlite3_exec() function is actually a wrapper for the three functions sqlite3_prepare();
sqlite3_step(); and sqlite3_finalize(). For non-query SQL statements (such as for creating
tables, inserting rows, and so on), it is always better to use the sqlite3_exec() function.

Answer to Question 2
To obtain a C-style string from an NSString object, use the UTF8String method from the
NSString class.

Answer to Question 3
-(void) getAllRowsFromTableNamed: (NSString *) tableName {
 //---retrieve rows---
 NSString *qsql = [NSString stringWithFormat:@”SELECT * FROM %@”,
 tableName];

 sqlite3_stmt *statement;
 if (sqlite3_prepare_v2(db, [qsql UTF8String], -1,
 &statement, nil) == SQLITE_OK) {
 while (sqlite3_step(statement) == SQLITE_ROW) {
 char *field1 = (char *) sqlite3_column_text(statement, 0);
 NSString *field1Str =
 [[NSString alloc] initWithUTF8String: field1];

 char *field2 = (char *) sqlite3_column_text(statement, 1);
 NSString *field2Str =
 [[NSString alloc] initWithUTF8String: field2];

 NSString *str = [[NSString alloc] initWithFormat:@”%@ - %@”,
 field1Str, field2Str];
 NSLog(@”%@”, str);

 [field1Str release];
 [field2Str release];
 [str release];
 }

 //---deletes the compiled statement from memory---
 sqlite3_finalize(statement);
 }
}

Chapter 13 Exercise Solutions ❘ 9

ChApter 12 exerCise solutions

Answer to Question 1
The three affine transformations are translation, rotation, and scaling.

Answer to Question 2
The only way to pause the NSTimer object is to call its invalidate method. To resume it, you have to
create a new NSTimer object.

Answer to Question 3
The beginAnimations and commitAnimations methods of the UIView class enable you to enclose
blocks of code that cause visual changes such that the changes in visual appearance will be ani-
mated, and not appear choppily.

Answer to Question 4
You can play a video using the MPMoviePlayerController class.

ChApter 13 exerCise solutions

Answer to Question 1
For invoking Safari:

@”http://www.apple.com”

For invoking Mail:

@”mailto:?to=weimenglee@gmail.com&subject=Hello&body=Content of email”

For invoking SMS:

@”sms:96924065”

For invoking Phone:

@”tel:1234567890”

Answer to Question 2
The class name is UIImagePickerController.

10 ❘ Appendix e Answers to exercises

Answer to Question 3
The class name is MFMailComposeViewController.

Answer to Question 4
The class name is MFMessageComposeViewController.

ChApter 14 exerCise solutions

Answer to Question 1
The six gesture recognizers are as follows:

UITapGestureRecognizer➤➤ for detecting tap(s) on a view

UIPinchGestureRecognizer➤➤ for detecting pinching in and out of a view

UIPanGestureRecognizer➤➤ for detecting panning or dragging of a view

UISwipeGestureRecognizer➤➤ for detecting swiping of a view

UIRotationGestureRecognizer➤➤ for detecting rotation of a view

UILongPressGestureRecognizer➤➤ for detecting long presses on a view (also known as
“touch and hold”)

Answer to Question 2
Discrete gestures:

UITapGestureRecognizer➤➤

UISwipeGestureRecognizer➤➤

UILongPressGestureRecognizer➤➤

Continuous gestures:

UIPinchGestureRecognizer➤➤

UIPanGestureRecognizer➤➤

UIRotationGestureRecognizer➤➤

Answer to Question 3
The four events are as follows:

touchesBegan:withEvent:➤➤

Chapter 16 Exercise Solutions ❘ 11

touchesEnded:withEvent:➤➤

touchesMoved:withEvent:➤➤

touchesCancelled:withEvent:➤➤

Answer to Question 4
When you multi-tap, you tap a single point in quick succession. This is similar to double-clicking
in the Mac OS X. When you multi-touch, you touch multiple contact points on the screen.

Answer to Question 5
Pressing the Option key enables you to simulate multi-touch on the iPhone Simulator.

ChApter 15 exerCise solutions

Answer to Question 1
The protocol is UIAccelerometerDelegate.

Answer to Question 2
The three events are as follows:

motionBegan:➤➤

motionEnded:➤➤

motionCancelled:➤➤

ChApter 16 exerCise solutions

Answer to Question 1
The three ways are SOAP 1.1/1.2, HTTP GET, and HTTP POST.

Answer to Question 2
The three key events are as follows:

connection:didReceiveResponse:➤➤

connection:didReceiveData:➤➤

connectionDidFinishLoading:➤➤

12 ❘ Appendix e Answers to exercises

Answer to Question 3
The NSXmlParser class fires off the following events as it parses the content of an XML document:

parser:didStartElement:namespaceURI:qualifiedName:attributes:➤➤

parser:foundCharacters:➤➤

parser:didEndElement:namespaceURI:qualifiedName:➤➤

ChApter 17 exerCise solutions

Answer to Question 1
The class is GKPeerPickerController.

Answer to Question 2
The class is GKSession.

Answer to Question 3
Call the startVoiceChatWithParticipantID:error: method from the GKVoiceChatService class.

Answer to Question 4
On the initiator, call the voiceChatService:sendData:toParticipantID: method defined in the
GKVoiceChatClient protocol.

On the receiver, call the receivedData:fromParticipantID: method defined in the
GKVoiceChatClient protocol.

ChApter 18 exerCise solutions

Answer to Question 1
The class is NSNetService.

Answer to Question 2
The class is NSNetServiceBrowser.

Answer to Question 3
The method name is netServiceBrowser:didFindService:moreComing:.

Chapter 20 Exercise Solutions ❘ 13

Answer to Question 4
The method name is netServiceBrowser:didRemoveService:moreComing:.

ChApter 19 exerCise solutions

Answer to Question 1
The two certificates are the development certificate and the SSL certificate for the provider application.

Answer to Question 2
This ensures that you have the private and public key pair of the certificate.

Answer to Question 3
The method is registerForRemoteNotificationTypes:.

Answer to Question 4
The device token is used to uniquely identify the recipient of the push notification, and is needed by
the APNs server.

Answer to Question 5
The event is application:didReceiveRemoteNotification:.

ChApter 20 exerCise solutions

Answer to Question 1
The property is showsUserLocation.

Answer to Question 2
The protocol is MKMapViewDelegate.

Answer to Question 3
The method is startUpdatingLocation.

Answer to Question 4
The method is startUpdatingHeading.

14 ❘ Appendix e Answers to exercises

Answer to Question 5
The class is MKReverseGeocoder.

ChApter 21 exerCise solutions

Answer to Question 1
The three types of applications are audio, location, and VOIP.

Answer to Question 2
At the time of writing, multi-tasking is supported only on iPod touch (third generation), iPhone 3GS,
and iPhone 4.

Answer to Question 3
You use the startUpdatingLocation method to keep track of changes in location coordinates
(using a combination of GPS, cell tower triangulation, and WiFi triangulation), while the
startMonitoring SignificantLocationChanges method monitors for significant location changes
(using cell tower triangulation) and notifies you only when the cell tower changes.

Answer to Question 4
Apple Push Notification service is a mobile service provided by Apple. It uses push technology to
forward notification messages to the iPhone/iPod touch/iPad through a constantly connected IP con-
nection. To use this service, an application provider must send a message to Apple’s server, which in
turn will send a notification to the application on the user’s device.

Local notification, conversely, is a messaging service that can be used locally on the device. Applications
running on an iPhone/iPod touch/iPad can schedule notifications to be fired at a scheduled time. m >

Programmer to ProgrammerTM

Take your library
wherever you go.

Now you can access complete Wrox books online, wherever
you happen to be! Every diagram, description, screen capture,
and code sample is available with your subscription to the
Wrox Reference Library. For answers when and where you need
them, go to wrox.books24x7.com and subscribe today!

• ASP.NET
• C#/C++
• Database
• Java
• Mac
• Microsoft Office
• .NET

• Open Source
• PHP/MySQL
• SQL Server
• Visual Basic
• Web
• XML

Find books on

www.wrox.com

http://www.wrox.com

	WroxBooks
	Beginning iOS 4 Application Development
	About the Author
	About the Technical Editor
	Acknowledgments
	Contents
	Introduction
	Part I: Getting Started
	Chapter 1: Getting Started with iOS 4 Programming
	Obtaining the iPhone SDK
	Components of the iPhone SDK
	Architecture of the iPhone OS
	Some Useful Information before You Get Started
	Summary

	Chapter 2: Write Your First Hello World! Application
	Getting Started with Xcode
	Customizing Your Application Icon
	Displaying a Splash Screen
	Summary

	Chapter 3: Views, Outlets, and Actions
	Outlets and Actions
	Using Views
	Adding Views Dynamically Using Code
	Understanding View Hierarchy
	Summary

	Chapter 4: View Controllers
	The View-Based Application Template
	The Window-Based Application Template
	The Split View-Based Application Template
	The Tab Bar Application Template
	Summary

	Chapter 5: Multi-Platform Support for the iPhone and iPad
	Technique 1 — Modifying the Device Target Setting
	Technique 2 — Creating Universal Applications
	Technique 3 — Maintaining Two Code Bases
	Making Your Choice
	Summary

	Chapter 6: Keyboard Inputs
	Using the Keyboard
	Customizing the Type of Inputs
	Detecting the Presence of the Keyboard
	Summary

	Chapter 7: Screen Rotations
	Responding to Device Rotations
	Programmatically Rotating the Screen
	Summary

	Part II: Displaying and Persisting Data
	Chapter 8: Using the Table View
	A Simple Table View
	Using the Table View in a Navigation-Based Application
	Displaying Sections
	Summary

	Chapter 9: Application Preferences
	Creating Application Preferences
	Programmatically Accessing the Settings Values
	Summary

	Chapter 10: File Handling
	Understanding the Application Folders
	Using Property Lists
	Copying Bundled Resources
	Summary

	Chapter 11: Database Storage Using SQLite3
	Using SQLite3
	Creating and Opening a Database
	Bundling SQLite Databases with Your Application
	Summary

	Part III: Advanced iOS 4 Programming Techniques
	Chapter 12: Simple Animations and Video Playback
	Using the NSTimer Class
	Transforming Views
	Animating a Series of Images
	Playing Video on the iPhone
	Summary

	Chapter 13: Accessing Built-In Applications
	Sending E‑Mails
	Accessing the Camera and the Photo Library
	Summary

	Chapter 14: Recognizing Gestures
	Recognizing Gestures
	Detecting Touches
	Summary

	Chapter 15: Accessing the Accelerometer
	Using the Accelerometer
	Visualizing the Accelerometer Data
	Using the Shake API to Detect Shakes
	Summary

	Part IV: Network Programming Techniques
	Chapter 16: Web Services
	Basics of Consuming XML Web Services
	Consuming a Web Service in Your iPhone Application
	Parsing the XML Response
	Summary

	Chapter 17: Bluetooth Programming
	Using the Game Kit Framework
	Implementing Voice Chatting
	Summary

	Chapter 18: Bonjour Programming
	Creating the Application
	Publishing a Service
	Browsing for Services
	Summary

	Chapter 19: Apple Push Notification Service
	Generating a Certificate Request
	Generating a Development Certificate
	Creating an Application ID
	Creating the iPhone Application
	Creating the Push Notification Provider
	Summary

	Chapter 20: Displaying Maps
	Displaying Maps and Monitoring Changes Using the Map Kit
	Getting Location Data
	Summary

	Chapter 21: Background Applications
	Understanding Background Execution on the iPhone
	Local Notification
	Summary

	Part V: Appendices
	Appendix A: Testing on an Actual Device
	Signing Up for the iPhone Developer Program
	Obtaining the UDID of Your Device
	Logging in to the iPhone Provisioning Portal
	Generating a Certificate
	Registering Your Devices
	Creating an Application ID
	Creating a Provisioning Profile
	Understanding Application ID and the Wildcard
	Preparing for App Store Submission
	Summary

	Appendix B: Getting Around in Xcode
	Launching Xcode
	Debugging Your Applications

	Appendix C: Getting Around in Interface Builder
	.xib Window
	Designing the View
	Inspector Window
	Library
	Outlets and Actions

	Appendix D: Crash Course in Objective-C
	Directives
	Classes
	Memory Management
	Protocols
	Selectors
	Categories

	Index
	Appendix E: Answers to Exercises
	Chapter 2 Exercise Solutions
	Chapter 3 Exercise Solutions
	Chapter 4 Exercise Solutions
	Chapter 5 Exercise Solutions
	Chapter 6 Exercise Solutions
	Chapter 7 Exercise Solutions
	Chapter 8 Exercise Solutions
	Chapter 9 Exercise Solutions
	Chapter 10 Exercise Solutions
	Chapter 11 Exercise Solutions
	Chapter 12 Exercise Solutions
	Chapter 13 Exercise Solutions
	Chapter 14 Exercise Solutions
	Chapter 15 Exercise Solutions
	Chapter 16 Exercise Solutions
	Chapter 17 Exercise Solutions
	Chapter 18 Exercise Solutions
	Chapter 19 Exercise Solutions
	Chapter 20 Exercise Solutions
	Chapter 21 Exercise Solutions

