
www.allitebooks.com

 

g

Updates, source code, and Wrox technical support at www.wrox.com

Beginning

PHP6, Apache, 
MySQL

®

  
Web Development

Timothy Boronczyk, Elizabeth Naramore, Jason Gerner, Yann Le Scouarnec, 
Jeremy Stolz, Michael K. Glass

Wrox Programmer to Programmer TM

http://www.allitebooks.org


www.allitebooks.com

Get more out of 
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in 

our P2P forums

Wrox Online Library
Hundreds of our books are available online 

through Books24x7.com

Wrox Blox 
Download short informational pieces and 

code to keep you up to date and out of 

trouble!

Chapters on Demand
Purchase individual book chapters in pdf 

format

Join the Community
Sign up for our free monthly newsletter at 

newsletter.wrox.com 

Browse
Ready for more Wrox? We have books and 

e-books available on .NET, SQL Server, Java, 

XML, Visual Basic, C#/ C++, and much more!

Contact Us. 
We always like to get feedback from our readers. Have a book idea? 

Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

http://www.allitebooks.org


www.allitebooks.com

Beginning 

PHP6, Apache, MySQL® Web Development

Introduction ......................................................................................................... xxiii

Part I: Movie Review Web Site

Chapter 1: Configuring Your Installation ..........................................................3

Chapter 2: Creating PHP Pages Using PHP6 ..................................................19

Chapter 3: Using PHP with MySQL ................................................................77

Chapter 4: Using Tables to Display Data ......................................................105

Chapter 5: Form Elements: Letting the User Work with Data ........................131

Chapter 6: Letting the User Edit the Database .............................................153

Chapter 7: Manipulating and Creating Images with PHP...............................175

Chapter 8: Validating User Input .................................................................217

Chapter 9: Handling and Avoiding Errors ......................................................241

Part II: Comic Book Fan Site

Chapter 10: Building Databases ..................................................................263

Chapter 11: Sending E-mail .........................................................................315

Chapter 12: User Logins, Profiles, and Personalization .................................355

Chapter 13: Building a Content Management System ..................................407

Chapter 14: Mailing Lists ............................................................................469

Chapter 15: Online Stores ...........................................................................505

Chapter 16: Creating a Bulletin Board System .............................................557

Chapter 17: Using Log Files to Improve Your Site .........................................627

Chapter 18: Troubleshooting .......................................................................641

Appendix A: Answers to Exercises ..............................................................649

Appendix B: PHP Quick Reference...............................................................685

(continued)

http://www.allitebooks.org


www.allitebooks.com

Appendix C: PHP6 Functions .......................................................................695

Appendix D: MySQL Data Types ...................................................................753

Appendix E: MySQL Quick Reference ...........................................................757

Appendix F: Comparison of Text Editors .......................................................761

Appendix G: Choosing a Third-Party Host .....................................................765

Appendix H: An Introduction to PHP Data Objects ........................................769

Appendix I: Installation and Configuration on Linux ......................................777

Index .........................................................................................................785

http://www.allitebooks.org


www.allitebooks.com

Beginning 

PHP6, Apache, MySQL® Web Development

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

Beginning

PHP6, Apache, MySQL® Web Development

Timothy Boronczyk

Elizabeth Naramore

Jason Gerner

Yann Le Scouarnec

Jeremy Stolz

Michael K. Glass

Wiley Publishing, Inc.

http://www.allitebooks.org


www.allitebooks.com

Beginning PHP6, Apache, MySQL® Web Development
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-39114-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data.

Beginning PHP6, Apache, MySQL web development / Timothy Boronczyk . . . [et al.].
   p. cm.
  Includes index.
  ISBN 978-0-470-39114-3 (paper/website)
   1. Web sites—Design. 2. Apache (Computer file : Apache Group) 3. PHP (Computer program 
  language) 4. MySQL (Electronic resource) I. Boronczyk, Tim, 1979-
 TK5105.888.B426 2009
 006.7'8—dc22

2008047012

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by 
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted 
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written 
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the 
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. 
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & 
Sons, Inc., 111 River Street, Hoboken, NJ  07030, (201) 748-6011, fax (201) 748-6008, or online at 
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or 
warranties with respect to the accuracy or completeness of the contents of this work and specifically 
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No 
warranty may be created or extended by sales or promotional materials. The advice and strategies contained 
herein may not be suitable for every situation. This work is sold with the understanding that the publisher is 
not engaged in rendering legal, accounting, or other professional services. If professional assistance is 
required, the services of a competent professional person should be sought. Neither the publisher nor the 
author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in 
this work as a citation and/or a potential source of further information does not mean that the author or the 
publisher endorses the information the organization or Web site may provide or recommendations it may 
make. Further, readers should be aware that Internet Web sites listed in this work may have changed or 
disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department 
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related 
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the 
United States and other countries, and may not be used without written permission. MySQL is a registered 
trademark of MySQL AB. All other trademarks are the property of their respective owners. Wiley 
Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not 
be available in electronic books.

www.wiley.com
http://www.allitebooks.org


www.allitebooks.com

          About the Authors          
  Timothy Boronczyk  is a native of Syracuse, New York, where he works as a programmer by day and a 
freelance developer, writer, and technical editor by night. He has been involved in web design since 
1998, and over the years has written several articles on PHP programming and various design topics, as 
well as the book  PHP and MySQL: Create - Modify - Reuse  (Wrox). Timothy holds a degree in software 
application programming, is a Zend Certified Engineer, and recently started his first business venture, 
Salt City Tech ( www.saltcitytech.com ). In his spare time, he enjoys photography, hanging out with 
friends, and sleeping with his feet hanging off the end of his bed. He ’ s easily distracted by shiny objects. 

  Elizabeth Naramore  graduated from Miami University (Ohio) with a degree in organizational behavior 
and has been a web developer since 1997. Her main focus is in e - commerce, but she develops sites across 
numerous industries. She is currently a moderator at PHPBuilder.com, an online help center for PHP. 
She lives in Cincinnati, Ohio, with her husband and two children, and looks forward to someday 
returning to Miami U. to get her masters in computer science. 

  Jason  “ Goldbug ”  Gerner  currently spends his days working as a web developer in Cincinnati and burns 
free time complaining about lack of support for web standards and abusing XML. He can often be found 
lurking in the PHPBuilder.com discussion forums, waiting to chime in with nagging comments about 
CSS or code efficiency. 

  Yann  “ Bunkermaster ”  Le Scouarnec  is the senior developer for Jolt Online Gaming, a British gaming 
company. He is a moderator at PHPBuilder.com and a developer of open source PHP software for the 
gaming community. He has also worked for major software corporations as a software quality expert. 

  Jeremy  “ Stolzyboy ”  Stolz  is a web developer at J & M Companies, Inc. ( www.jmcompanies.com ), a print 
company in Fargo, North Dakota. Jeremy is primarily a PHP/MySQL developer, but he has also worked 
with many other languages. When not working, he frequents the Internet and tries to keep his 
programming skills sharp and up to date. He is a contributor to and moderator at PHPBuilder.com.  

  Michael  “ BuzzLY ”  Glass  has been a gladiator in the software/Web site development arena for more 
than eight years. He has more than ten years of commercial programming experience with a wide 
variety of technologies, including PHP, Java, Lotus Domino, and Vignette StoryServer. He divides his 
time between computer programming, playing pool in the APA, and running his web site at 
 www.ultimatespin.com . You can usually find him slinking around on the PHPBuilder.com forums, 
where he is a moderator with the nickname BuzzLY.         

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Acquisitions Editor
Jenny Watson

Development Editor
Adaobi Obi Tulton

Technical Editor
Robert Shimonski

Production Editor
Kathleen Wisor

Copy Editor
Foxxe Editorial Services

Editorial Manager
Mary Beth Wakefield 

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Jen Larsen, Word One

Indexer
Robert Swanson

Credits





          Acknowledgments          

 Thanks to my husband and soul mate, who continues to be supportive of everything I do, and who 
inspires me to always do a little better. Thanks to my children, who make me understand the importance 
of looking outside the box and keeping my sense of humor, and who make me proud to be a mom. Also, 
thank you to Debra for always keeping us on track, and for having faith in us.  

—   Elizabeth Naramore  

 I thank all the innocent bystanders who got pushed around because of this project: Debra and Nancy, 
who were patient enough not to have homicidal thoughts; and my wife and kids, who barely saw me for 
six months.  

—   Yann Le Scouarnec  

 I ’ d like to thank my wife, my baby daughter, and the rest of my family for being patient with me 
while I was working on this project.  

—   Jeremy Stolz  

 Thanks, Staci, for putting up with long and late hours at the computer. Elizabeth and Jason, it wouldn ’ t 
have been the same project without you two. And thanks to my code testers at  www.ultimatespin.com : 
Spidon, Kaine, Garmy, Spidermanalf, Ping, Webhead, and FancyDan. You guys rock! 

 To Donna and Gerry, who have influenced my life more than they can ever know, and who have taught 
me the importance of finishing what you ’ ve started.  

—   Michael Glass          





Beginning 

PHP6, Apache, MySQL® Web Development





Contents

Introduction xxiii

Part I: Movie Review Web Site

Chapter 1: Configuring Your Installation 3

Projects in This Book 3
A Brief Introduction to Apache, MySQL, PHP, and Open Source 4

A Brief History of Open Source Initiatives 4

Why Open Source Rocks 5

How the AMP Pieces Work Together 5
Installing Apache, MySQL, and PHP on Windows 6

Installing Apache 6

Installing PHP 10

Configuring PHP to Use MySQL 11

Installing MySQL 13

Where to Go for Help and Other Valuable Resources 17
Help within the Programs 18

Source Web Sites 18

Summary 18

Chapter 2: Creating PHP Pages Using PHP6 19

Overview of PHP Structure and Syntax 20
How PHP Fits with HTML 20

The Rules of PHP Syntax 20

The Importance of Coding Practices 21

Creating Your First Program 23
Using HTML to Spice Up Your Pages 26

Integrating HTML with PHP 26

Considerations with HTML inside PHP 28

Using Constants and Variables to Add Functionality 29
Overview of Constants 29

Overview of Variables 31

Passing Variables between Pages 33
Passing Variables through a URL 33



Contents

xvi

Passing Variables with Sessions 38

Passing Variables with Cookies 41

Passing Information with Forms 44

Using if/else Arguments 49
Using if Statements 49

Using if and else Together 51

Using Includes for Efficient Code 52
Using Functions for Efficient Code 55
All about Arrays 59

Array Syntax 60

Sorting Arrays 61

foreach Constructs 63

While You’re Here . . . 67
Alternate Syntax for PHP 72

Alternates to the echo Command 72

Alternates to Logical Operators 73

Alternates to Double Quotes: Using heredoc 73

Alternates to Incrementing/Decrementing Values 73

OOP Dreams 74
Classes 74

Properties and Methods 75

Why Use OOP? 75

Summary 76
Exercises 76

Chapter 3: Using PHP with MySQL 77

Overview of MySQL Structure and Syntax 77
MySQL Structure 78

MySQL Syntax and Commands 84

How PHP Fits with MySQL 85
Connecting to the MySQL Server 86
Looking at a Ready-Made Database 86
Querying the Database 91

WHERE, oh WHERE 91

Working with PHP and Arrays of Data: foreach 94

A Tale of Two Tables 97

Helpful Tips and Suggestions 102
Documentation 102

Using MySQL Query Browser 102

Summary 103
Exercises 103



Contents

xvii

Chapter 4: Using Tables to Display Data 105

Creating a Table 105
Wait a Minute 110
Who’s the Master? 118
A Lasting Relationship 125
Summary 129
Exercises 129

Chapter 5: Form Elements: Letting the User Work with Data 131

Your First Form 131
FORM Element 134

INPUT Element 134

Processing the Form 135

Driving the User Input 135
One Form, Multiple Processing 139

Radio INPUT Element 142

Multiple Submit Buttons 143

Basic Input Testing 143

Ternary Operator 144

Linking Forms Together 145
Summary 151
Exercises 152

Chapter 6: Letting the User Edit the Database 153

Preparing the Battlefield 153
Inserting a Record in a Relational Database 156
Deleting a Record 162
Editing Data in a Record 167
Summary 174
Exercise 174

Chapter 7: Manipulating and Creating Images with PHP 175

Working with the GD Library 175
What File Types Can I Use with GD & PHP? 176

Enabling GD in PHP 176

Allowing Users to Upload Images 177
Converting Image File Types 188
Special Effects 192
Adding Captions 202



www.allitebooks.com

Contents

xviii

Adding Watermarks and Merging Images 209
Creating Thumbnails 212
Summary 216
Exercises 216

Chapter 8: Validating User Input 217

Users Are Users Are Users . . . 217
Incorporating Validation into the Movie Site 218
Forgot Something? 218
Checking for Format Errors 226
Summary 238
Exercises 239

Chapter 9: Handling and Avoiding Errors 241

How the Apache Web Server Deals with Errors 241
Apache’s ErrorDocument Directive 242

Apache’s ErrorDocument: Advanced Custom Error Page 246

Error Handling and Creating Error-Handling Pages with PHP 248
Error Types in PHP 249

Generating PHP Errors 250

Other Methods of Error Handling 256
Exceptions 256

Not Meeting Conditions 258

Parse Errors 260

Summary 260
Exercises 260

Part II: Comic Book Fan Site

Chapter 10: Building Databases 263

Getting Started 263
What Is a Relational Database? 264

Keys 265

Relationships 265

Referential Integrity 266

Normalization 266

Designing Your Database 267
Creating the First Table 267

http://www.allitebooks.org


Contents

xix

What’s So Normal about These Forms? 271

Standardization 272

Finalizing the Database Design 272

Creating a Database in MySQL 273
Creating the Comic Character Application 278
Summary 312
Exercises 313

Chapter 11: Sending E-mail 315

Setting Up PHP to Use E-mail 316
Sending an E-mail 316
Dressing Up Your E-mails with HTML 322

Multipart Messages 326

Storing Images 328
Getting Confirmation 330
Creating a Reusable Mail Class 343
Summary 352
Exercises 353

Chapter 12: User Logins, Profiles, and Personalization 355

The Easiest Way to Protect Your Files 356
Friendlier Logins Using PHP’s Session and Cookie Functions 359
Using Database-Driven Information 365

Using Cookies in PHP 388

Administrator Registration 393

Summary 405
Exercises 406

Chapter 13: Building a Content Management System 407

Fresh Content Is a Lot of Work 407
You Need a Content Management System 408

Laying Down the Rules 408
Preparing the Database 409
Coding for Reusability 412
Transaction Pages 420
User Interface 432

General Functionality 432

User Management 442

Article Publishing 447



Contents

xx

Additional CMS Features 461

Summary 467
Exercises 468

Chapter 14: Mailing Lists 469

What Do You Want to Send Today? 469
Coding the Administration Application 470
Sign Me Up! 486
Mailing List Ethics 502

A Word about Spam 502

Opt-In versus Opt-Out 503

Summary 503
Exercises 504

Chapter 15: Online Stores 505

Adding E-Commerce to the Comic Book Fan Site 506
Something to Sell 506

A Shopping Cart 507

E-Commerce, Any Way You Slice It 551
Information Is Everything 552

Importance of Trust 552

Professional Look 553

Easy Navigation 554

Competitive Pricing 554

Appropriate Merchandise 554

Timely Delivery 555

Communication 555

Customer Feedback 555

Summary 556
Exercises 556

Chapter 16: Creating a Bulletin Board System 557

Your Bulletin Board 557
Preparing the Database 558
Reusable Code 564

Pagination 573

Breadcrumbs 577

A Last Look at User Authentication 579

Transaction Pages 580



Contents

xxi

Account Functionality 593
User Administration 605

Forum Functionality 606
Board Administration 610

Forum Administration 612

BBcode Administration 612

Searching 623

Afterthoughts 624
Summary 625
Exercises 625

Chapter 17: Using Log Files to Improve Your Site 627

Locating Your Logs 628
Apache 628

PHP 630

MySQL 630

Analyzing Your Log Data 633
Webalizer 633

Analog 634

AWStats 634

HTTP Analyze 635

Google Analytics 636

Putting the Analysis to Work 637
Site Health 637

User Preferences and Information 638

Number of Hits and Page Views 638

Trends over Time 638

Referring Sites 638

Summary 639

Chapter 18: Troubleshooting 641

Installation Troubleshooting 641
Parse Errors 642

Cleanup on Line 26 . . . Oops, I Mean 94 642

Elementary, My Dear Watson! 642

Empty Variables 643
Consistent and Valid Variable Names 643

Open a New Browser 643

“Headers Already Sent” Error 644
General Debugging Tips 645



Contents

xxii

Use echo 645

Divide and Conquer 646

Test, Test, Test! 646

Debug with Xdebug 647

Where to Go for Help 647
www.wrox.com 647

PHPBuilder.com 647

Source Web Sites 647

Search and Rescue 648

IRC Channels 648

Summary 648

Appendix A: Answers to Exercises 649

Appendix B: PHP Quick Reference 685

Appendix C: PHP6 Functions 695

Appendix D: MySQL Data Types 753

Appendix E: MySQL Quick Reference 757

Appendix F: Comparison of Text Editors 761

Appendix G: Choosing a Third-Party Host 765

Appendix H: An Introduction to PHP Data Objects 769

Appendix I: Installation and Configuration on Linux 777

Index 785



                    Introduction          

 Welcome to  Beginning PHP6, Apache, MySQL Web Development , your new trusty resource for assistance in 
creating your own dynamic web sites. There are a lot of technologies available that can be used to deliver 
great web sites, and we ’ re glad you chose the Apache/MySQL/PHP (sometimes referred to simply as 
AMP) approach. You may or may not have had a taste of these three components in the past, but either 
way we ’ re confident that you will be impressed with the power that lies within them. With this guide by 
your side, you ’ ll soon learn why this combination is rapidly becoming the most popular way to develop 
dynamic web sites! 

 Apache, MySQL and PHP are each complex in and of themselves, and it ’ s impossible for this book to 
cover every advanced detail of all three. The purpose of this book is to give you the best possible 
foundation for understanding how each of the core components work separately and together, which 
will enable you to take full advantage of all that they have to offer. Where we cannot discuss some of the 
advanced topics, either because it would lead us off on a tangent and cause us to lose focus or because of 
the space constraints of print media, we provide plenty of direction to authoritative resources you can go 
to for more information. We show you the tip of the iceberg and provide you with the tools to explore 
it to its greatest depths. When you ’ ve finished reading this book, you ’ ll have a thorough understanding 
of the core concepts you need to be an effective developer using Apache, MySQL, and PHP, and 
hopefully a burning desire to continue learning and growing as a developer.  

  Who ’ s This Book For? 
 We assume that anyone reading this book has some experience with web site development concepts and 
a basic working knowledge of HTML and CSS. Knowledge of other programming languages besides 
PHP is not a prerequisite for this book, but certainly any programming experience you have will help 
you understand and apply the concepts we present. 

 This book is geared toward the  “ newbie ”  to Apache, MySQL, and PHP, and we ’ ve done our best to distill 
many of the core concepts and code snippets down to their most basic levels. You will find more 
complex and perhaps more efficient ways of accomplishing the same tasks we present in this book as 
your knowledge, comfort level, and experience increase. When that happens, you can congratulate 
yourself and know that you have come over to the  “ dark side ”  to join us as Apache, MySQL, and PHP 
enthusiasts!  

  What ’ s Covered in the Book 
 A variety of topics are covered in this book: 

  Installation and configuration of Apache, MySQL, and PHP  .

  Basic introduction to each component and how they interact with one another  .

❑

❑



                    Introduction        

xxiv

  Gathering information from and interacting with your web site visitors  .

  How to avoid errors and how to handle them when they inevitably occur  .

  Creating, altering and working with image files  .

  Handling user registration and logins  .

  E - mailing and setting up e - mail lists  .

  Building a content management system  .

  Enhancing your web site by adding e - commerce capabilities  .

  Incorporating a discussion forum into your site  .

  Monitoring the health of your web site through the use of activity logs and error logs  .

  Selecting a third - party web hosting provider  .

  Finding the text editor that ’ s right for you  .

  Using multiple interfaces to connect to MySQL from PHP    .

 As you read through the chapters in this book and learn about each of these topics, you will be creating 
two complete web sites. The first is a movie review site that displays information about films and their 
respective reviews. This project will cover the basics, such as writing PHP code, creating a MySQL 
database, filling the database with data and showing specific information to your visitors based on what 
they want to see. 

 The second project is a comic book fan web site. This site will be developed in the latter part of the book 
and will incorporate some of the more complex topics of working with Apache, MySQL and PHP. You 
will create a truly interactive web site where your visitors can interact with you and with other members 
of the site. 

 We take you step by step through the development of each of these sites, and you will continually build 
upon them as new concepts are introduced. Note, however, that each of the chapters in this book has 
been designed as a standalone chapter, so that if you are not particularly interested in reading a specific 
topic then you are free to move on to another. 

 If you thought the days of the  “ pop quiz ”  were over, think again! We have provided handy exercises at 
the end of most of the chapters to test your knowledge of discussed topic and challenge you to think one 
step further. We ’ ve provided answers to these exercises in Appendix A. 

 As any programmer knows, software is constantly being improved and debugged, and while we used 
the latest and greatest versions of Apache, MySQL, and PHP at the time of publishing, chances are those 
versions won ’ t be around for long. It is important for you to visit the source web sites for each 
component to get the most updated versions and recent release notes. We recommend that you always 
use the most recent stable releases when developing web sites using Apache, MySQL, and PHP. Using 
older software versions or versions that have not been fully tested by the developers can be dangerous to 
your application and leave bugs in your code. 

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑



                    Introduction        

xxv

 The most recent stable versions that were in effect at the time of this book ’ s writing were: 

   PHP:  Version 6.0.0  

   Apache:  Version 2.2.9  

   MySQL:  Version 5.0.67    

 Future editions of this book will address changes and improvements in these programs as they become 
available.  

  What You Need to Use This Book 
 This book is designed to be multiplatform and we cover topics and issues for both Windows - based and 
Linux - based machines. You will need Apache, MySQL and PHP to do the exercises in this book. All three 
are open source programs, so you can download and use them free of charge. We have provided 
instructions for downloading and installing all three components in Chapter  1  and Appendix I. 

 You will also need a text editor to enter your code. Many editors are available that you can use, and 
some of the more popular ones are compared in Appendix F. Finally, you ’ ll need a web browser, such as 
Mozilla Firefox, Internet Explorer, Google Chrome, Apple Safari or Opera to view your web pages.  

  Conventions 
 To help you follow along and get the most from the text, we ’ ve used a number of conventions 
throughout the book.    

Try It Out   

 The  Try It Out  is an exercise you should work through, following the text in the book.   

  1.   They usually consist of a set of steps.  

  2.   Each step has a number.  

  3.   Follow the steps through with your copy of the database.     

  How It Works 
 After each  Try It Out , the code you ’ ve typed will be explained in detail.     

 Boxes like this one hold important, not - to - be forgotten information that is directly 
relevant to the surrounding text.   

     Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.   

❑

❑

❑



                    Introduction        

xxvi

 As for styles in the text: 

  We  highlight  important words when we introduce them  

  We show filenames, URLs, and code within the text like this:  www.example.com   

  We present code in two different ways: 

In code examples we highlight new and important code with a gray background.

The highlighting is not used for code that’s less important in the present 
context, or that has been shown before.        

  Source Code 
 As you work through the examples in this book, you may choose either to type in all the code manually 
or to use the source code files that accompany the book. All of the source code used in this book is 
available for download at  www.wrox.com . Once at the site, simply locate the book ’ s title (either by using 
the Search box or by using one of the title lists) and click the Download Code link on the book ’ s detail 
page to obtain all the source code for the book.     

 Because many books have similar titles, you may find it easiest to search by ISBN; for this book the 
ISBN is 987 - 0 - 7403 - 9114 - 3.   

 Alternatively, you can go to the main Wrox code download page at  www.wrox.com/WileyCDA/
Section/id - 105127.html  to see the code available for this book and all other Wrox books. 

 Once you download the code, just uncompress it with your favorite compression utility.  

  Errata 
 We make every effort to ensure that there are no errors in the text or in the code. However, no one is 
perfect and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or 
faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may save 
another reader hours of frustration and at the same time you will be helping us provide even higher -
 quality information. 

 To find the errata page for this book, go to  www.wrox.com  and locate the title using the Search box or 
one of the title lists. Then, click the Book Errata link on the book details page. On this page you can view 
all errata that has been submitted for this book and posted by Wrox editors. A complete book list 
including links to each book ’ s errata is also available at  www.wrox.com/WileyCDA/Section/
id - 105077.html . 

 If you don ’ t spot  “ your ”  error on the Book Errata page, go to  www.wrox.com/WileyCDA/Section/
id - 106036.html  and complete the form there to send us the error you have found. We ’ ll check the 
information and, if appropriate, post a message to the book ’ s errata page and fix the problem in 
subsequent editions of the book.  

❑

❑

❑



                    Introduction        

xxvii

  p2p.wrox.com 
 For author and peer discussion, join the P2P forums at  p2p.wrox.com . The forums are a web - based 
system for you to post messages relating to Wrox books and related technologies and interact with other 
readers and technology users. The forums offer a subscription feature to e - mail you topics of interest of 
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts, 
and your fellow readers are present on these forums. 

 At  p2p.wrox.com  you will find a number of different forums that will help you not only as you read this 
book but also as you develop your own applications. You can read messages in the forums without joining 
P2P, but you must join in order to post your own messages. To join the forums, just follow these steps: 

  1.   Go to  p2p.wrox.com , and click the Register Now link.  

  2.   Read the terms of use and click Agree.  

  3.   Provide the required information to join as well as any optional information you wish 
to provide and click Submit.  

  4.   You will receive an e - mail with information describing how to verify your account and complete 
the joining process.    

 Once you join, you can post new messages and respond to messages other users post. You can read 
messages at any time on the Web. If you would like to have new messages from a particular forum 
e - mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing. 

 For more information about how to use Wrox P2P, be sure to read the P2P FAQs for answers to questions 
about how the forum software works as well as many common questions specific to P2P and Wrox 
books. To read the FAQs, click the FAQ link on any P2P page.                 



www.allitebooks.com

http://www.allitebooks.org


Part I

Movie Review Web Site

Chapter 1: Configuring Your Installation

Chapter 2: Creating PHP Pages Using PHP6

Chapter 3: Using PHP with MySQL

Chapter 4: Using Tables to Display Data

Chapter 5: Form Elements: Letting the User Work with Data

Chapter 6: Letting the User Edit the Database

Chapter 7: Manipulating and Creating Images with PHP

Chapter 8: Validating User Input

Chapter 9: Handling and Avoiding Errors





1
Configuring Your 

Installation  

 We assume that since you ’ ve spent your hard - earned money to purchase this book, you 
undoubtedly know the enormous benefits of using Apache, MySQL, and PHP (AMP) together to 
create and deliver dynamic web sites. But just in case you found this book on your desk one 
Monday morning with a sticky note from your boss reading  “ Learn this!, ”  this chapter looks at 
what makes the  “ AMP ”  combination so popular. This chapter also walks you through installing 
and configuring all three components of the AMP platform on Windows (installation and 
configuration for Linux - based platforms can be found in Appendix  I ).  

  Projects in This Book 
 You will develop two complete web sites and a few  “ side projects ”  over the course of this book: 

   Movie Review web site:  By developing this site, you will be introduced to the necessary 
skills to write a PHP program, work with variables and include files, and use data from 
MySQL. Using PHP and MySQL together makes your site truly dynamic as pages are 
created on the fly for your visitors. You will also get experience in validating user input 
while working on this site.  

   Comic Book Fan web site:  While creating this web site, you ’ ll learn how to build and 
normalize databases from scratch, manipulate images and send e - mails from PHP. You ’ ll 
also learn about authenticating users, managing content through a Content Management 
System, creating a mailing list, setting up an e - commerce section and developing and 
customizing a discussion forum.    

 This book also covers how to learn about your visitors through the use of log files and how to 
troubleshoot common mistakes or problems you will undoubtedly encounter while programming. 
The appendixes in this book will provide you with the necessary reference materials you ’ ll need 
to assist you in your web development journey once you complete the book and propose tools to 
help make you a more efficient coder. After reading this book, you will be able to create a 
well - designed, dynamic web site using freely available tools.  

❑

❑



Part I: Movie Review Web Site

4

  A Brief Introduction to Apache, My SQL, 

PHP , and Open Source 
 There are many open source projects from address books to full - fledged operating systems. Apache, 
MySQL, and PHP are all open source projects that can be installed on a wide variety of platforms. They 
are most popular on Linux (giving the acronym  “ LAMP ” ) although Windows - based Apache, MySQL 
and PHP installations are becoming increasingly popular, especially for developers. 

 The open source movement is a collaboration of some of the finest minds in programming and 
development, which make up the open source community. The open source movement is defined by the 
efforts of the community to make for easier development and standardization of systems, applications 
and/or programs. By allowing the open exchange of source code and other information, programmers 
from all over the world contribute to making truly powerful and efficient pieces of software usable by 
everyone. This is the opposite of the closed source model, which is more commonly referred to as 
 “ proprietary. ”  Bugs get fixed, improvements are made, and a good software program can becomes a 
great program through the contributions of many people to publicly available source codes. 

  A Brief History of Open Source Initiatives 
 The term  open source  was coined in 1998 after Netscape decided to publish the source code for its 
popular Navigator browser. This announcement prompted a small group of software developers 
who had been long - time supporters of the soon - to - be open source ideology to formally develop the 
Open Source Initiative (OSI) and the Open Source Definition. An excerpt taken from the OSI ’ s web site 
( www.opensource.org ) briefly defines the organization ’ s objectives:   

  The OSI is a non - profit corporation formed to educate about and advocate for the benefits of 
open source and to build bridges among different constituencies in the open - source 
community. [ . . .  ] One of our most important activities is as a standards body, maintaining 
the Open Source Definition for the good of the community.    

 Although the OSI ’ s ideology was initially promoted in the hacker community, a global base of 
programmers began to offer suggestions and supply fixes to improve Netscape ’ s performance upon 
Netscape ’ s release of the browser ’ s source code. The OSI ’ s mission was off and running and the 
mainstream computing world began to embrace the idea. 

 Linux was the first operating system that could be considered open source (although BSD distributed 
from the University of California Berkeley in 1989 was a close runner - up), and many programs followed 
soon thereafter. Large software corporations such as Corel began to offer versions of their programs that 
worked on Linux machines. People soon had entire open source systems, from the operating system 
right up to the applications they used every day. 

 Although there are now numerous classifications of OSI open source licenses, any software that 
bears the OSI certification seal can be considered open source because it has passed the Open Source 
Definition test. These programs are available from a multitude of web sites; the most popular is  
www.sourceforge.net , which houses more than 175,000 open source projects!  



Chapter 1: Confi guring Your Installation

5

  Why Open Source Rocks 
 Open source programs are very cool because: 

   Open source programs are free:  The greatest thing about open source software is that its source 
code is free of charge and widely available to the general public. This makes it easy for software 
developers and programmers to volunteer their time to improve existing software and create 
new programs. Open source software cannot, by definition, require any sort of licensing or sales 
fees that restrict access to its source code.  

   Open source programs are cross - platform and  “ technology - neutral ” :  By requiring open source 
software to be non – platform specific, the open source community has ensured that the programs 
are usable by virtually everyone. According to the Open Source Definition provided by the OSI 
at  http://opensource.org/docs/definition.php , open source programs must not be 
dependent on any  “ individual technology or style of interface ”  and must be  “ technology -
 neutral. ”  As long as the software can run on more than one operating system, it meets that 
criteria.  

   Open source programs must not restrict other software:  This means that if an open source 
program is distributed along with other programs, those other programs are free to be open 
source or proprietary in nature. This gives software developers maximum control and flexibility.  

   Open source programs embrace diversity:  The diversity of minds and cultures simply produce 
a better result. For this reason, open source programs cannot discriminate against any person or 
group, nor can they discriminate against any field of endeavor. For example, a program 
designed for use in the medical profession cannot be limited to that profession if someone in 
another field wants to take the program ’ s source code and modify it to fit his or her needs.    

 For a complete list of criteria a piece of software must meet before it can be considered  “ open source, ”  
or for more information about the OSI and the open source community, visit the OSI web site at  
www.opensource.org .   

  How the  AMP  Pieces Work Together 
 Now that you ’ ve learned about some of the spirit and history of open source, it ’ s important to 
understand the role Apache, MySQL and PHP play in creating your web site. 

 Imagine for a moment that your dynamic web site is like a fancy restaurant. Hungry diners come to your 
place and each one wants something different and specific. They don ’ t worry so much about how the 
food is prepared so long as it looks great and tastes delicious. Unlike a buffet spread where everything is 
laid out and your patrons just pick and choose from what ’ s available, a nice restaurant encourages 
interaction between the patron and waiter and complete customization of any meal to meet any specific 
dietary needs. Similarly, your web site shouldn ’ t be a static page with little interaction from its visitors; 
it should be a dynamic site where visitors can choose what they want to see. 

❑

❑

❑

❑



Part I: Movie Review Web Site

6

 Continuing with this scenario, you can characterize the components of the AMP platform as follows: 

   PHP:  Whatever people ask for, your highly trained master of culinary arts, the chef, prepares it 
without complaint. She is quick, flexible, and able to prepare a multitude of different types of 
foods. PHP acts in much the same way as it mixes and matches dynamic information to meet the 
request for fresh web pages.  

   MySQL:  Every chef has a well - stocked stockroom of ingredients. In this case, the ingredients 
used by PHP are records of information stored in MySQL ’ s databases.  

   Apache:  This is the waiter. He gets requests from the patron and relays them back to the kitchen 
with specific instructions about how the meal should be prepared. Then he serves the meal once 
it is complete.    

 When a patron (web site visitor) comes to your restaurant (web site), he or she sits down and orders a 
meal with specific requirements (requests a particular page or resource), such as a steak served medium 
well. The waiter (Apache) takes those specific requirements back to the kitchen and passes them off to 
the chef (PHP). The chef then goes to the stockroom (MySQL) to retrieve the ingredients (data) to 
prepare the meal and presents the final dish (web page) back to the waiter, who in turn serves it to the 
patron exactly the way he or she ordered it. 

 You can choose to install one, two or all three of the AMP components based on your specific needs. 
Each is a powerful application in its own right. But the reason the Apache, MySQL, and PHP 
combination has become so popular is that they work incredibly well together. We obviously 
recommend that you install all three. You can even benefit from installing them on your development 
system that is separate from your hosting server. This way, you can develop and test your site in the 
comfort of your own workspace without having to upload scripts up to the hosting server to test every 
little change. It also gives you a safe environment to test your code without breaking a live web site.  

  Installing Apache, My SQL , and  PHP  

on Windows 
 After following these instructions, you will have successfully installed Apache, MySQL, and PHP on 
your Windows system. We cover installing them on Windows XP –  and Windows Vista – based systems. 
You should review each component ’ s web site if you want more detailed installation instructions or 
information on other supported platforms.   

   Apache:  http://httpd.apache.org/docs/2.2/platform/windows.html  

   MySQL:  http://dev.mysql.com/doc/refman/5.1/en/windows - installation.html  

   PHP:  www.php.net/install.windows    

  Installing Apache 
 As your web server, Apache ’ s main job is to listen to any incoming requests from a browser and return 
an appropriate response. Apache is quite powerful and can accomplish virtually any task that you as a 
webmaster require. 

❑

❑

❑

❑

❑

❑



Chapter 1: Confi guring Your Installation

7

 According to the Netcraft web site ( www.netcraft.com ), Apache is running over 83.5 million Internet 
servers, more than Microsoft, Sun ONE, and Zeus combined at the time of this writing. Its flexibility, 
power, and, of course, price make it a popular choice. It can be used to host a web site for the general 
public, a company - wide intranet or for simply testing your pages before they are uploaded to a secure 
server on another machine. 

 Follow these steps to download and install Apache on your Windows machine (installation instructions 
can be found in Appendix  I ): 

  1.   Go to  www.apache.org , and click the HTTP Server link in the Apache Projects list. The Apache 
Software Foundation offers many different software packages, though the HTTP Server is the 
only one we are concerned with.  

  2.   Click the Download link under the most recent version of Apache.  

  3.   Click the Win 32 Binary (MSI Installer) link to download the installation package. Whether you 
choose the download without mod_ssl or the one that includes OpenSLL depends on your local 
laws, needs and personal preferences. We do not use any of the functionality offered by mod_ssl 
in this book, so if you want to lean towards the safe side feel free to download the package 
without  mod_ssl . 

  If you experience problems downloading this file, you can try downloading from a 
different mirror site. Select an available mirror from the drop - down box near the top of the 
download page.  

  4.   You should be able to double - click the MSI file to initiate the installation wizard for Apache once 
it has finished downloading, but you may experience some issues depending on what security 
policies Windows has in effect. We recommend running the installer with administrative 
privileges from within a console window. 

  To open a console as an Administrator in Windows XP, navigate through Start  All Programs  
Accessories, right - click on Command Prompt and select the Run As option. In Windows Vista, 
navigate through Start  All Programs  Accessories, right - click on Command Prompt, and 
select the Run as Administrator option.  

  5.   Use the  cd  command to navigate to where you downloaded the installer file, and then run the 
installer using  msiexec  - i . The Installation Wizard will open.   

cd C:\Users\Timothy\Downloads\

msiexec -i apache_2.2.9-win32-x86-no_ssl-r2.msi   

  6.   After accepting the installation agreement, you will see a screen that is equivalent to a  
readme.txt  file  —  it gives basic information about the Apache software and where to go to 
find more information. We highly recommend that you read this.  

  7.   Enter the following information on the Server Information screen:  

❑   Domain name: For example,  example.com   

❑   Server name: For example,  www.example.com   

❑   Net administrator ’ s e - mail address  

❑   Whether to install Apache for all users or only the current user.   

  We recommend the default option, which is to install Apache for all users on port 80 as a service.  



Part I: Movie Review Web Site

8

  8.   At the Setup Type screen, the Typical installation option is recommended for beginners and will 
suffice for most of your needs. If you have special circumstances or are an advanced user, feel 
free to chose the Custom setup option.  

  9.   You can specify which directory Apache will be installed in on the Destination Folder screen. 
Again, we recommend the default ( C:\Program Files\Apache Software Foundation\
Apache2.2 ), although you may want to change this depending on your needs and your 
system ’ s configuration.  

  10.   How long it takes for Apache to be installed on your system depends on many factors, but 
typically it shouldn ’ t take longer than a couple minutes. The wizard will tell you when it has 
finished, and you can click the Finish button to close the window.  

  11.   To close the console window from which you launched the installation file, you can either click 
the X in the window ’ s top - right corner or enter  exit  at the prompt.  

  12.   Next, bring up the System Properties window. In Windows XP, this is done by right - clicking on 
the My Computer icon on your desktop and selecting Properties. In Windows Vista, this is done 
by right - clicking on the Computer icon on your desktop, selecting Properties, and then selecting 
Advanced System Settings.  

  13.   Select the Advanced tab, and then click the Environment Variables button. Select PATH from 
the System variables section and then Edit. Add the path to Apache ’ s  bin  directory to the end 
of the existing list ( C:\Program Files\Apache Software Foundation\Apache2.2\bin  by 
default). This will allow you to run Apache ’ s utilities from the command line without having to 
explicitly type the full path each time.    

  Starting and Stopping Apache 

 Apache runs as a service waiting for web requests and handling them in the background; you don ’ t 
interact with it on the desktop like other applications. Instead, you set Apache ’ s options with its 
configuration file. There are three ways to start and stop the server: 

  Windows Service Manager: Go to Start  Control Panel  Administrative Tools, and click on 
the Services icon. Alternatively, you can go to Start  Run and execute  services.msc . If you 
installed Apache as a Windows service for all users (the suggested installation type), then you 
will see its entry in the listing of services. Just highlight the entry and click the desired action 
(start, stop or restart).  

  The  net  command: The  net  command is used to monitor network related services. Open up a 
command window that has administrative privileges, and type  net start apache2.2  to start 
Apache and  net stop apache2.2  to stop Apache.  

  Apache Service Monitor: The Apache Service Monitor is installed by default with Apache and 
typically can be found running in your system tray. If it ’ s not there, then you can find it by going 
to Start  All Programs  Apache HTTP Server 2.2  Monitor Apache Servers. Just highlight the 
server ’ s entry and click the desired action button (start, stop or restart).    

 Apache only reads its main configuration file once when it starts up, so you will need to restart Apache 
any time you make changes to its configuration file for those changes to be active.  

❑

❑

❑



Chapter 1: Confi guring Your Installation

9

  Testing Your Installation 

 To test the installation of your Apache server, open a web browser and type the following URL: 

http://localhost/  

 If the installation was successful then you will see an Apache  “ success ”  page in your browser. If not, 
check your error log by opening the  error. log  file, which you can find in the  logs  subdirectory of 
Apache ’ s installation directory ( C:\Program Files\Apache Software Foundation\Apache2.2\
logs  by default). By searching through the log file, you can find issues, or maybe an indication of where 
your installation may have experienced a problem. For a more in - depth discussion of logs, please refer to 
Chapter  17 . 

 If you had installation problems, note that you might experience some errors such  “ no services installed ”  
if Apache is trying to share port 80 with another web server or application, such as a locally installed 
firewall application. To fix this, you can tell Apache to use a different port. Open your  httpd.conf  file 
in the  conf  subdirectory ( C:\Program Files\Apache Software Foundation\Apache2.2\conf  by 
default) and locate the following lines: 

# Listen: Allows you to bind Apache to specific IP addresses and/or
# ports, instead of the default. See also the  < VirtualHost > 
# directive.
#
# Change this to Listen on specific IP addresses as shown below to 
# prevent Apache from glomming onto all bound IP addresses (0.0.0.0)
#
#Listen 12.34.56.78:80
Listen 80  

 Change the last line of this block to read: 

Listen 8080  

 Then, locate the following lines: 

# ServerName gives the name and port that the server uses to identify itself.
# This can often be determined automatically, but we recommend you specify
# it explicitly to prevent problems during startup.
#
# If this is not set to valid DNS name for your host, server-generated
# redirections will not work. See also the UseCanonicalName directive.
#
# If your host doesn’t have a registered DNS name, enter its IP address here.
# You will have to access it by its address anyway, and this will make 
# redirections work in a sensible way.
#
ServerName www.example.com:80  

 Change the last line of this section to the following: 

ServerName www.example.com:8080  



www.allitebooks.com

Part I: Movie Review Web Site

10

 Now restart Apache and retest the installation with the following: 

http://localhost:8080/  

 If you are still experiencing problems, the Apache Foundation has provided a nifty document about 
some other issues that may arise during installation. You can view it by going to  http://httpd
.apache.org/docs/2.2/platform/windows.html .   

  Installing  PHP  
 PHP is a server - side scripting language that allows your web site to be truly dynamic. PHP stands 
for  PHP: Hypertext Preprocessor  (and, yes, we ’ re aware PHP is a  “ recursive acronym ”     —  probably meant 
to confuse the masses). Its flexibility and relatively small learning curve (especially for programmers 
who have a background in other programming languages like C, Java and Perl) make it one of the most 
popular scripting languages used today. PHP ’ s popularity continues to increase as businesses and 
individuals everywhere embrace it as an alternative to Microsoft ’ s ASP.NET languages. According to 
Netcraft, PHP code can be found running on approximately 21 million web sites. 

 There are several different installation methods for PHP, though we strongly recommend you follow the 
manual installation process. At the time of publication, the automated installer is not complete, secure or 
intended for use on live servers. Follow these steps to install PHP on your system: 

  1.   Go to the PHP web site at  www.php.net .  

  2.   Click on the Download link to go to the site ’ s downloads page.  

  3.   Scroll down to the Windows Binary section, and click on the appropriate link to download the 
latest PHP .zip package.  

  4.   Click any of the mirror sites to begin the download. If you have difficulties downloading from 
one mirror, then try a different mirror that may be closer to you.  

  5.   Once the Zip file has been downloaded, extract its contents using any standard unzip program 
and save it to the directory of your choice. We recommend a directory named  C:\PHP . 

  Both Windows XP and Windows Vista have built - in capabilities to extract files from Zip 
archives. If you are on a different version of Windows or prefer to use a dedicated compression 
tool, we recommend 7 - Zip available at  www.7 - zip.org . It is a free application that can work 
with many different compression formats, including Zip.  

  6.   It is advised to run PHP with a  php.ini  file. By default, the PHP installation provides 
two copies of the file with common configuration values:  php.ini - dist  and  
php.ini - recommended . Rename the configuration file of your choice to  php.ini . 

  The  php.ini - dist  file is meant to be used for development purposes while  
php.ini - recommended  has additional security measures and should be used when your site 
goes live. Depending on your reason for using PHP, choose the  php.ini  file that best suits your 
needs. For the purposes of this book, we are going to be using the  php.ini - dist . Feel free to 
switch to the  php.ini - recommended  file as your default once you are more familiar with how 
PHP behaves.  

  7.   Bring up the System Properties window. In Windows XP, this is done by right - clicking on the 
My Computer icon on your desktop and selecting Properties. In Windows Vista, this is done by 
right - clicking on the Computer icon on your desktop, selecting Properties and then Advanced 
System Settings.  

http://www.allitebooks.org


Chapter 1: Confi guring Your Installation

11

  8.   Select the Advanced tab, and then click the Environment Variables button. Add the directory to 
which you extracted PHP to your System ’ s  PATH  variable ( C:\PHP  in our configuration). Also 
create a new System variable  PHPRC  with the same directory as its value. This allows other 
applications (such as Apache) to find PHP without your having to copy files into your System 
directory.     

  Configuring  PHP  to Use My SQL  
 MySQL support was included in earlier versions of PHP by default, but starting with PHP version 5 you 
now have to specifically enable this. For PHP to play nice with MySQL, you need to make two changes 
to your  php.ini  file. Open the file using your text editor and locate the following lines: 

; Directory in which the loadable extensions (modules) reside.
extension_dir = “./”  

 Change the line to: 

extension_dir = “C:\PHP\ext”  

 Then locate the following line: 

;extension=php_mysql.dll  

 The semicolon is what denotes a comment within this file and will be ignored. Simply remove the 
semicolon at the beginning of the line to uncomment it: 

extension=php_mysql.dll  

 Finally, copy the file  libmysql.dll  from your  C:\PHP  directory into your  C:\Windows\System32  or 
 C:\WINNT\System32  directory. 

  Configuring Apache to Use  PHP  

 Now that both Apache and PHP are installed, there are a few more customizable options that need to be 
adjusted. To configure Apache to recognize a PHP file as one that needs to be parsed with the PHP 
engine, you need to first locate the following lines in your  httpd.conf  file: 

# AddType allows you to add to or override the MIME configuration
# file specified in TypesConfig for specific file types.
#
#AddType application/x-gzip .tgz
#
# AddEncoding allows you to have certain browsers uncompress
# information on the fly. Note: Not all browsers support this.
#
#AddEncoding x-compress .Z
#AddEncoding x-gzip .gz .tgz
#
# If the AddEncoding directives above are commented-out, then you
# probably should define those extensions to indicate media types:
#
AddType application/x-compress .Z
AddType application/x-gzip .gz .tgz   



Part I: Movie Review Web Site

12

 Then add the following lines: 

AddType application/x-httpd-php .php 
AddType application/x-httpd-php-source .phps
PHPIniDir “C:\PHP”   

 If you installed PHP in a location other than the recommended  C:\PHP , then make sure your path 
matches the location of the directory. 

 Next, you need to add the PHP module into your  httpd.conf  program so that Apache can properly 
coordinate with PHP to serve the dynamically generated pages PHP will produce. In your configuration 
file, locate the following lines: 

# Dynamic Shared Object (DSO) Support
#
# To be able to use the functionality of a module which was built as a DSO you
# have to place corresponding ‘LoadModule’ lines at this location so the
# directives contained in it are actually available _before_ they are used.
# Statically compiled modules (those listed by ‘httpd -l’) do not need
# to be loaded here.
#
# Example:
# LoadModule foo_module modules/mod_foo.so
#
LoadModule actions_module modules/mod_actions.so
LoadModule alias_module modules/mod_alias.so
LoadModule asis_module modules/mod_asis.so
LoadModule auth_basic_module modules/mod_auth_basic.so
#LoadModule auth_digest_module modules/mod_auth_digest.so
...
#LoadModule usertrack_module modules/mod_usertrack.so
#LoadModule version_module modules/mod_version.so
#LoadModule vhost_alias_module modules/mod_vhost_alias.so  

 Add the following line: 

LoadModule php6_module “C:\PHP\php6apache2_2.dll”  

 Again, make sure your path matches the location of the  php6apache2_2.dll  file if you did not install 
PHP in the recommended directory. 

 Oh, and remember to restart Apache after you ’ ve saved your modifications to  httpd.conf  or else 
Apache will not be aware of your changes!  



Chapter 1: Confi guring Your Installation

13

  Testing the Configuration 

 To ensure that both PHP and Apache have been configured to work together, let ’ s write a short test 
program. Open notepad and type the following program: 

 < html > 
  < head > 
   < title > PHP Testing < /title > 
  < /head > 
  < body > 
 < ?php
echo “ < p > If you see this then we did it right! < /p > ”;
? > 
  < /body > 
 < /html >   

 Save this file as  test.php  in Apache ’ s  htdocs  directory. By default it is at  C:\Program Files\Apache 
Software Foundation\Apache2.2\htdocs . Then, open your web browser and visit 
 http://localhost/test.php . You should see the screen shown in Figure  1 - 1 .     

 Figure 1 - 1 

  Installing My SQL  
 Another open source favorite, MySQL, is the database construct that enables PHP and Apache to work 
together to access and display data in a readable format to a browser. It is a Structured Query Language 
(SQL) server designed for heavy loads and processing of complex queries. As a relational database 
system, MySQL allows many different tables to be joined together for maximum efficiency and speed. 



Part I: Movie Review Web Site

14

 MySQL is the perfect choice for providing data via the Internet because of its ability to handle heavy 
loads, its advanced security measures and (depending on who you ask) it ’ s easier to manage than some 
of the other open source database servers available. Follow these steps to install MySQL on your 
Windows system: 

  1.   Go to the MySQL web site at  www.mysql.com , and click the Developer Zone tab. Then, click the 
Downloads link on the navigation bar just under the tabs.  

  2.   Scroll down and click on the link for the latest General Availability version of MySQL.  

  3.   Scroll down to the Windows section of the downloadable files and click Pick a Mirror next to the 
Windows Essentials package.  

  4.   Select the download from a nearby mirror and the download will begin.  

  5.   As was with Apache, you should be able to double - click the MSI file to initiate the Installation 
Wizard, but you may experience some issues depending on what security policies Windows has 
in effect. We recommend running the installer with administrative privileges from within a 
console window. 

  To open a console as an Administrator in Windows XP, navigate through Start  All Programs  
Accessories, right - click on Command Prompt, and select the Run As option. In Windows Vista, 
navigate through Start  All Programs  Accessories, right - click on Command Prompt, and 
select the Run as administrator option.  

  6.   Use the  cd  command to navigate to where you downloaded the installer file, and then run the 
installer using  msiexec  - i . The Installation Wizard will open.   

cd C:\Users\Timothy\Downloads\
msiexec -i mysql-essential-5.1.26-rc-win32.msi   

  7.   At the Setup Type screen, the Typical installation option is recommended for beginners and will 
suffice for most of your needs. If you have special circumstances or are an advanced user, feel 
free to choose the Complete or Custom setup options instead.  

  8.   How long it takes for MySQL to be installed on your system depends on many factors, but the 
installation should proceed quickly and shouldn ’ t take longer than a couple of minutes. After 
the wizard has finished installing the appropriate files, its final screen will simply indicate the 
installation is complete. Click Finish to end the wizard.  

  9.   To close the console window from which you launched the installation file, you can either click 
the X in the window ’ s top - right corner or enter  exit  at the prompt.    

  Configuring My SQL  

 The MySQL Server Instance Configuration Wizard is used on Windows to install MySQL as a service and 
establish a basic configuration. Go to Start  All Programs  MySQL  MySQL Server Instance 
Configuration Wizard to launch the utility. 

 You can choose either a Detailed Configuration or Standard Configuration, and we recommend the 
Standard Configuration option unless you are an advanced user. 



Chapter 1: Confi guring Your Installation

15

 We also recommend you check the option to include the bin directory in Window ’ s PATH variable. This 
will allow you to run MySQL ’ s utilities from the command line without having to explicitly type the full 
path each time and without having to manually configure the PATH variable as you did with Apache 
and PHP. 

 Last, we recommend you specify a password for MySQL ’ s root user so your installation isn ’ t left 
vulnerable to unauthorized access. 

 The Configuration Wizard will prepare a basic configuration file at  C:\Program Files\MySQL\MySQL 
Server 5.1\my.ini  by default and install MySQL as a windows service. You can fine - tune your 
installation by modifying the directives in  my.ini . MySQL only reads this file once when it starts up, so 
you will need to restart MySQL any time you make changes to it for them to be active.  

  Starting and Stopping My SQL  

 Like Apache, MySQL runs as a background service without much interaction on the desktop. You can 
start and stop the server in one of two ways: 

  Windows Service Manager: Go to Start  Control Panel  Administrative Tools, and click on 
the Services icon. Alternatively, you can go to Start  Run and execute  services.msc . 
Highlight the MySQL entry, and click the desired action (start, stop, or restart).  

  The  net  command: Open up a command window that has administrative privileges, and type 
 net start mysql  to start MySQL and  net stop mysql  to stop MySQL.     

  Testing Your Installation 

 As with the other applications, it ’ s a good idea to test your MySQL installation. MySQL comes with a 
command - line client that you can use to connect to the MySQL server that is running and execute 
queries against your databases. Go to a command line and run: 

mysql.exe -u root -p test  

 MySQL should prompt you for a password, and you need to enter whatever you set it as for the root 
user when you configured the MySQL installation. 

 The   - u  option provides the username that you ’ re using to connect to MySQL, in this case  root , and 
  - p  tells MySQL to prompt you for the password.  test  is the name of the database you will be using. 
The  test  database is installed by default. 

 The prompt will change to  mysql   and whatever you enter will be sent to the MySQL server. See what 
database tables have been set up by default. Type the following: 

SHOW DATABASES;    

  You should see three existing databases,  information_schema ,  mysql  and  test . To see what tables 
there are in the  mysql  database, type the following: 

SHOW TABLES FROM mysql;     

 To exit the MySQL client, type  exit .  

❑

❑



Part I: Movie Review Web Site

16

  Setting Up Dedicated My SQL  User Accounts 

 Malicious hackers can be quite crafty in the ways in which they break into your system, especially if you 
are directly connected to the Internet. MySQL allows you to pick and choose what user is allowed to 
perform what function based on the privileges that you establish. All user privilege information is stored 
in a database called  mysql . 

 If you ’ re the only one accessing the MySQL database, you may not have to worry about adding users. 
You have already used MySQL ’ s root account to verify you can communicate with the running instance 
of the MySQL server. However, use of the root account should be limited for administrative tasks only. 
What if you have, say, an Aunt Edna who is going to help you out by inputting some backlogged 
information? You want her to be able to go into the tables and look at things, and even insert 
some information. But you probably don ’ t want her to be able to delete your entire database. By 
restricting her privileges as a user, you help to protect your data. 

 Connect to MySQL using the MySQL command - line client as the  root  user as previously discussed. 
Then follow these steps: 

  1.   If you would like to see all the privileges that can be assigned, you can type the following: 

SHOW COLUMNS FROM user FROM mysql;   

  2.   You only want to look at what users are already there, so type the following: 

SELECT user, host FROM mysql.user;  

  You should see what is depicted in Figure  1 - 2 .    

Figure 1-2

  3.   Because you want to set up a secure service, you want to remove the blank user for the 
 localhost  host. Type the following: 

  DELETE FROM mysql.user WHERE Host= “ localhost ”  AND User= “  “ ;  



Chapter 1: Confi guring Your Installation

17

  You will get a response from MySQL that states: 

  Query OK, 1 row affected (0.02 sec)  

  Note the time it takes to process the query may differ based on the speed of your computer, but 
the important thing here is that you see  “ Query OK. ”   

  4.   Now you ’ re going to  GRANT  Aunt Edna some privileges as a new user, so type the following: 

GRANT SELECT,INSERT,UPDATE ON *.*
TO edna@localhost
IDENTIFIED BY “ednapass”;     

 You ’ ll notice how the prompt changed to   -  >   on the second line. MySQL will not run the query until it 
encounters the terminating semicolon. This allows you to enter longer queries on multiple lines. 

 You have now established  edna  as a valid user will be allowed access to your MySQL system provided 
two things: 

  She attempts her connection from the localhost  —  not a different connection from a remote 
computer.  

  She supplies the correct password:  ednapass .    

 Your Aunt Edna will now be allowed to select information from the database, insert new information in 
the database, and update old information in the database. By giving her access to all the tables in the 
database (via the use of  ON     *.* ), you have allowed her to modify any table in existence. 

 As you become more familiar with working with tables and MySQL commands, modifying privileges or 
user information will become easier for you because the information is all stored in a table (just like 
everything else in MySQL). 

 A complete list of privileges that you can grant is available at the MySQL web site,  http://dev.mysql
.com/doc/refman/5.1/en/privileges - provided.html .    

  Where to Go for Help and Other 

Valuable Resources 
 Although we ’ ve certainly tried to make this as easy as possible for you, there are so many different 
variables in computers and their setups that it is virtually impossible to cover every possible situation. 
Anyone who works with computers on a regular basis is surely aware that, while in theory everything 
seems relatively simple, things don ’ t always go as planned (or as you think they should). To your 
advantage, there are several avenues for help should you find yourself in a difficult situation. 

❑

❑



Part I: Movie Review Web Site

18

  Help within the Programs 
 Before getting online and searching for help, you can try looking for answers to your problems within 
the programs themselves. 

 In Apache, the manual was installed with the standard installation and can be accessed in  C:\Program 
Files\Apache Software Foundation\Apache2.2\manual . A check of your error log will be most 
helpful as well ( C:\Program Files\Apache Software Foundation\Apache2.2\logs\error.log ). 

 With the MySQL client, you can see some information and command - line arguments by typing the 
following at your command prompt: 

mysql.exe --help  

 This provides a multitude of commands that will help you find what you need, or at the very least, a 
valuable  “ cheat sheet ”  for administering your MySQL server. In addition, this will allow you to see the 
current settings for your server at a glance, so you can potentially troubleshoot any problem spots.  

  Source Web Sites 
 You undoubtedly know where to find these by now, but just in case, the web sites associated with each 
of our three components have incredibly detailed information to help you work out any issues or report 
any bugs you may find: 

  For Apache questions and information:  www.apache.org   

  For PHP questions and information:  www.php.net   

  For MySQL questions and information:  www.mysql.com       

  Summary 
 By now, you should have an idea of what AMP is and how it fits into the world of open source software. 
You know that the abbreviation AMP refers to Apache, MySQL, and PHP, all of which work together to 
help you develop dynamic web sites. 

 Now you ’ ve installed, configured and tested the installation for Apache, MySQL, and PHP, you should 
be ready to start making a web site! You ’ ll get your hands dirty in the next chapter starting with lessons 
on PHP code and the creation of your movie review web site.                    

❑

❑

❑



                                                                                                        2    
Creating  PHP  Pages 

Using  PHP 6          

 This chapter discusses the basics of PHP and starts you on your way to creating your first 
complete web site. The site will feature movie reviews, and your visitors will be able to find 
information about a particular movie after you complete your web site. Perhaps more importantly, 
you will be well on your way to being able to program in PHP. 

 This chapter covers the following basic PHP commands and structures: 

  Using  echo  to display text  

  Constants and variables  

  Using a URL to pass variable values  

  Sessions and cookies  

  HTML forms  

   if / else  statements  

  Includes  

  Functions  

  Arrays and  foreach   

   while  and  do / while   

  Using classes and methods with object - oriented programming (OOP)    

 By the end of this chapter, if you actually try all the  “ Try It Out ”  exercises, you will have created a 
simple login form, given your users the option to either see a review of your favorite movie or see 
a list of your top favorite movies, and offered them a numbered list of the movies based on how 
many they want to see. You can even alphabetize the list for them, if you so desire.  

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑



www.allitebooks.com

20

Part I: Movie Review Web Site

  Overview of  PHP  Structure and Syntax 
 PHP programs are written using a text editor, such as Notepad, Simple Text, or vi, just like HTML pages. 
However, unlike HTML, PHP files end with a  .php  extension. This extension signifies to the server that 
it needs to parse the PHP code before sending the resulting HTML code to the viewer ’ s web browser. 

 In a five - star restaurant, patrons see just a plate full of beautiful food served up just for them. They don ’ t 
see where the food comes from, nor how it was prepared. In a similar fashion, PHP fits right into your 
HTML code and is invisible to the people visiting your site. 

  How  PHP  Fits with  HTML  
 We assume that you know some HTML and CSS before you embark on your Apache, MySQL, and PHP 
journey, and you ’ ve undoubtedly seen how JavaScript code and other languages can be interspersed 
within the HTML markup in an HTML document. What makes PHP so different is that it not only allows 
HTML pages to be created on the fly, but it is invisible to your web site visitors. The only thing they see 
when they view the source of your code is the resulting HTML output. In this respect, PHP gives you a 
bit more security by hiding your programming logic. 

 HTML can also be written inside the PHP code of your page, which allows you to format text while 
keeping blocks of code together. This will also help you write organized, efficient code, and the browser 
(and, more importantly, the person viewing the site) won ’ t know the difference. 

 PHP can also be written as a standalone program with no HTML at all. This is helpful for storing your 
connection variables, redirecting your visitors to another page of your site, or performing other functions 
discussed in this book.  

  The Rules of  PHP  Syntax 
 One of the benefits of using PHP is that the language is relatively simple and straightforward. As with 
any computer language, there is usually more than one way to perform the same task. You can research 
different ways to make your code more efficient once you feel comfortable writing PHP programs. But 
for the sake of simplicity, we cover only the most common uses, rules, and functions of PHP. 

 First, you should always keep these two basic rules of PHP in mind: 

  PHP code is denoted in the page with opening and closing tags, as follows: 

 < ?php
? >    

  Generally speaking, PHP statements end with a semicolon: 

 < ?php
$num = 1 + 2;
echo $num;
? >      

❑

❑

http://www.allitebooks.org


Chapter 2: Creating PHP Pages Using PHP6

21

 You can add comments in your program by using double forward slashes ( // ) for one - line comments 
or  /*  to mark the start and  */  to mark the end of a comment that may extend over several lines. 
You will see plenty of comments in code throughout this book. 

 And there you have it! Now you ’ re an expert. Okay   —   there might be a few more things you need to 
learn, but this gets you started.  

  The Importance of Coding Practices 
 Before you jump in, you should realize how the structure of your code can affect your script. As far as 
the web server parsing the PHP code is concerned, the structure of your code really doesn ’ t matter. 
Indentation doesn ’ t matter, and, generally speaking, neither do carriage returns. This gives you freedom 
as a programmer to format your source code as you see fit. To the server, your code will show up as one 
continuous line, regardless of tabs, indents, and line returns. But to the human eye, how well your code 
is laid out can really make a difference. 

 Take a look at the following examples. 

   Example 1:  

 < ?php
//check to make sure the first name is equal to Joe before granting access
if ($_POST[‘fname’] == ‘Joe’) {
    echo ‘ < p > Hi ‘ . $_POST[‘fname’] . ‘ < /p > ’;
} else { 
    echo ‘ < p > Your name isn\’t Joe so you cannot enter the web site. < /p > ’;
}
? >    

   Example 2:  

 < ?php
  //check to make sure the first name is equal to Joe before granting access
                   
  if ($_POST[‘fname’] == ‘Joe’) 
    {
      echo ‘ < p > ’;
      echo ‘Hi ‘;
      echo $_POST[‘fname’];
      echo ‘ < /p > ’;
    }
  else
    {
      echo ‘ < p > ’;
      echo ‘Your name\’s not Joe so you cannot enter the web site!’;
      echo ‘ < /p > ’;
    }
? >    

 You can see that although Example 2 involves more typing, it will be much easier to spot any missing 
syntax or locate a specific portion of the code for the purpose of troubleshooting problems. This is 



22

Part I: Movie Review Web Site

especially important when you are just starting out. When you become more experienced as a coder, you 
can condense the whitespace (spaces, tabs, and carriage returns). 

  What Makes a Great Program? 

 Truly professional code follows three general guidelines: 

   Consistency:  Blocks of well - written code always look the same, having the same indentation, 
syntax shortcuts, and consistent bracket placement and formatting styles throughout. The great 
thing about PHP is that it really doesn ’ t care about tabs or indents, so you are free to create a 
style that is all your own and works best for you. 

 In addition, although there may be more than one possible syntax for accomplishing the same goal, good 
coders will be consistent with whichever method they choose. For example, the following two snippets 
of code mean the same thing, as far as PHP is concerned: 

 < ?php
if ($_POST[‘fname’] == ‘Joe’) {
    echo ‘ < p > Hi ‘ . $_POST[‘fname’] . ‘ < /p > ’;
}
? >     

 < ?php
if($_POST[‘fname’]==’Joe’){echo(‘ < p > Hi ‘ . $_POST[‘fname’] . ‘ < /p > ’);}
? >   

 You should pick one style and stick with it throughout your program.  

   Frequent comments:  The more you use comments throughout your code, the better off you will 
be. Although it ’ s not so important in smaller, simpler programs, as your programs become more 
and more complex, it will be hard for you to remember what you did, where you did it, and 
why you did it the way you did. Detailed comments act as a road map and can help you find 
your way. Also, if you are working on a collaborative project, using comments will help your 
fellow programmers follow your logic as well.  

   The use of line numbers:  Some text editors insert line numbers for you, while others do not. 
Text editors are discussed later in this chapter, but you should know that it is important to 
denote line numbers somehow in your code, if they are not provided for you, because PHP lets 
you know when your program generates errors, and it notifies you of the line number in which 
the error occurs. You can imagine how time - consuming and inefficient your debugging will be if 
you have to count lines manually every time you encounter an error.     

  Why Should You Care about What Your Code Looks Like? 

 It ’ s important to follow good coding practices for three reasons: 

   For efficiency:  The easier your code is to read and follow, the easier it will be to keep track of 
where you are within your code, and the quicker it will be to pick up where you left off after a 
break.  

❑

❑

❑

❑



Chapter 2: Creating PHP Pages Using PHP6

23

   For debugging:  Knowing where your problem lies is a major debugging tool. If comments are 
used correctly, you can easily follow your own logic, and if you have line numbers and 
consistent formatting, you can easily scan your document to pinpoint a trouble area.  

   For future expansions and modifications:  Using comments in your code is especially important 
for future changes because it ’ s difficult to remember the logic behind code that was written 
years or even just months ago. Also, if you are working on code that involves a team, if everyone 
is using the same coding style, it will be much easier to make changes or additions to someone 
else ’ s work down the road.    

 Okay, enough preaching about good code   —   let ’ s get to it.    

  Creating Your First Program 
 You can ’ t get much simpler than this first program, but try it out to get a feel for what the results look 
like. The PHP statement  echo  ,  seen in the example that follows, is one of the most commonly used PHP 
functions and one that you will undoubtedly become intimate with. It is used to send text (or variable 
values or a variety of other things) to the browser.    

            Try It Out  Using echo    

 Try using  echo  to see what results you achieve.   

  1.   Enter the following program in your favorite text editor (Notepad, Simple Text, or whatever 
you choose), and save it as  firstprog.php . 

  Regardless of your editor, make sure you save it in a plaintext format to avoid parsing 
problems. If you ’ re using Notepad, double - check to ensure that the file is not saved as 
 firstprog.php.txt  by default.   

 < html > 
  < head > 
   < title > My First PHP Program < /title > 
  < /head > 
  < body > 
 < ?php
echo “I’m a lumberjack.”;
? > 
  < /body > 
 < /html >    

  2.   Open this program using your browser. Your resulting screen should look like the one in 
Figure  2 - 1 .    

❑

❑



24

Part I: Movie Review Web Site

  3.   Now view the source of the HTML code, so you can see what happened with the PHP 
portions of the code. As you can see, the PHP portion of the code has vanished, leaving only 
the resulting HTML code.  

  4.   Now add the following highlighted line to your script, so you can get a better feel for how 
your PHP code will be parsed: 

 < html > 
  < head > 
   < title > My First PHP Program < /title > 
  < /head > 
  < body > 
 < ?php
echo “I’m a lumberjack.”;

echo ‘And I\’m okay.’;

? > 
  < /body > 
 < /html >    

  5.   Save the revised file and open it in your browser. As you can see, the line runs together 
without a line break, even though you had your PHP code on two different lines, as shown 
in Figure  2 - 2 .       

Figure 2-1



Chapter 2: Creating PHP Pages Using PHP6

25

  How It Works 
 When a browser calls a PHP program, it first searches through the entire code line by line to locate all 
PHP sections (those encased in the   < ?php  and  ? >   tags), and it then processes them one at a time. To 
the server, all PHP code is treated as one line, which is why your two lines of code were shown as one 
continuous line on the screen. After the PHP code has been parsed accordingly, the server goes back 
and gobbles up the remaining HTML and spits it out to the browser, PHP sections included. 

 Also, you should have noticed that you used single quotation marks ( ‘ ) in your addition, which we 
did to highlight an important point. There are different ways to mark the start and end of a string of 
text, with the most common being the use of double quotation marks (  “  ) or single quotation marks. 
PHP treats single - quoted and double - quoted strings differently, which you will learn more about later, 
but choosing your quotes can be an important detail when you want to include a single quote/
apostrophe or double quotation marks in your text. 

 PHP can easily understand the following statement: 

echo “I’m a lumberjack.”;  

 The statement instructs PHP to output the sequence of characters  I ’ m a lumberjack.  to the 
browser. It knows where the start and end of the sequence is because the text is surrounded in double 
quotation marks. 

 While single quotation marks are an entirely valid way to delimit a string, PHP would become 
confused with the following statement: 

echo ‘I’m a lumberjack.’;  

Figure 2-2



26

Part I: Movie Review Web Site

 In fact, PHP would display a scary error message: 

Parse error: syntax error, unexpected T_STRING, expecting ‘,’ or ‘;’ in C:\
Program Files\Apache Software Foundation\Apache2.2\htdocs\firstprog.php on 
line 7  

 The problem is the apostrophe in the word  I ’ m . PHP thinks it matches the single quotation mark that 
started the string of text, making the text just  I . The rest of the statement,  m a lumberjack. , is 
unintelligible gibberish to PHP. 

 The same problem would happen if you were using double quotation marks and wrote a 
statement like: 

echo “Joe says, “Hello World!””;  

 You can solve this dilemma simply by using single quotation marks to delimit the string: 

echo ‘Joe says, “Hello World!”’;  

 Now it ’ s quite clear to PHP what your intention is, and it can dutifully output  Joe says,  “ Hello 
World! ”   to the browser. 

 Another way to address the problem is to escape any single quotes/apostrophes in your single - quoted 
strings and double quotes in double - quoted strings by using a backslash ( \ ). Escaping lets PHP know 
it should ignore the special meaning of the character and treat it as if it were any other plain character 
in the string. 

 Feel free to experiment with different quotation marks and escaping. You ’ ll see many different 
examples as you progress through this book.   

 

  Using  HTML  to Spice Up Your Pages 
 As you can see in the previous example, using PHP code to output plaintext results in rather bland 
pages. You can make them look more professional and less utilitarian by adding some HTML to your 
output. HTML can be inserted within your PHP block of code using the  echo  statement. In fact, anything 
you can code in HTML can be output from within a PHP section of code. 

  Integrating  HTML  with  PHP  
 You will be better able to see how easily you can use HTML in the PHP program with the following 
practical example.    



Chapter 2: Creating PHP Pages Using PHP6

27

 Try It Out  Using  PHP  within  HTML    

 In this example, you ’ ll use some PHP and HTML together.   

  1.   Modify the highlighted lines of  firstprog.php : 

 < html > 
  < head > 
   < title > My First PHP Program < /title > 
  < /head > 
  < body > 
 < ?php

echo “ < h1 > I’m a lumberjack. < /h1 > ”;
echo “ < h2 > And I’m okay. < /h2 > ”;

? > 
  < /body > 
 < /html >    

  2.   Save your file, and reload the page. Your screen should now look something like the one in 
Figure  2 - 3 .       

Figure 2-3



28

Part I: Movie Review Web Site

  How It Works 
 The  echo  statement basically outputs whatever it ’ s told to the browser, whether it be HTML code, 
variable values, or plaintext. We wanted to prove a point, and so here we simply chose to  echo  HTML 
code in this example.   

echo “ < h1 > I’m a lumberjack. < /h1 > ”;
echo “ < h2 > And I’m okay. < /h2 > ”;  

 You can see that by inserting some HTML code within the PHP section of the program, you 
accomplish two things: 

  You can improve the look of your site.  

  You can keep PHP lines of code together without having to jump back and forth between HTML 
and PHP.    

 If you view the source of your HTML code, you will see the HTML code you inserted using the  echo  
statement displayed just as you intended.  

  Considerations with  HTML  inside  PHP  
 The following list discusses some pitfalls commonly seen with the practice of inserting HTML 
inside PHP: 

   You have to check for double quotation marks.  As you may have noted when you worked 
through the previous example, using the  echo  statement may involve the use of double 
quotation marks. Because HTML also uses double quotation marks, you can do one of two 
things to avoid problems:  

  Escape your HTML double quotation marks with a backslash, as in the following: 

     echo “ < p style=\”font-size: 80%;\” > ”;   

  Use single quotation marks around your HTML. This can help improve the readability of 
your code if you have many quotes.     

     echo ‘ < p style=”font-size: 80%;” > ’;   

   Remember that you still have to follow PHP ’ s rules, even though you ’ re coding in HTML.  
Sometimes when you begin to code in HTML within your PHP section, you can temporarily 
forget that you need to follow PHP guidelines and end your sentences with a semicolon, as well 
as close all quotes at the end of your  echo  statements.  

   Don ’ t try to cram too much HTML into your PHP.  If you find yourself in the middle of a PHP 
portion of your program, and your HTML is becoming increasingly complex or lengthy, 
consider ending the PHP section and coding strictly in HTML. Consider the following examples:  

❑

❑

❑

❏

❏

❑

❑



Chapter 2: Creating PHP Pages Using PHP6

29

  Example 1: 

 < ?php
    echo ‘ < table style=”font-family: Arial,sans-serif; font-size: 80%; ‘;
    echo ‘width: 100%;” > ’;
    echo ‘ < tr > ’;
    echo ‘ < td style=”width: 50%;” > ’;
    echo ‘First Name:’;
    echo ‘ < /td > ’;
    echo ‘ < td style=”width: 50%” > ’;
    echo $_POST[‘fname’];
    echo ‘ < /td > ’;
    echo ‘ < /tr > ’;
    echo ‘ < /table > ’; 
? >    

  Example 2: 

 < table style=”font-family: Arial,sans-serif; font-size: 80%; width: 100%;” > 
  < tr > 
   < td style=”width: 50%;” > 
   First Name:
   < /td > 
   < td style=”width: 50%” > 
 < ?php echo $_POST[‘fname’];? > 
   < /td > 
  < /tr > 
 < /table >        

 Although we have not yet discussed variables, you can see in the first example that the only thing PHP 
was really needed for was to provide the value represented by  $_POST[‘fname’]  and display it on the 
screen. The rest of the related code was just to output HTML. In this instance, you ’ re better off just 
staying in HTML and pulling out the PHP line when you need it, instead of coding all of the HTML 
inside PHP. It really doesn ’ t matter to the server, but for human beings it makes for easier formatting, 
easier debugging, and less typing (which is always a good thing). In essence, it is up to you to balance 
your HTML with PHP and discover what works best for your coding style.   

  Using Constants and Variables to 

Add Functionality 
 We ’ ve covered the basics of using the  echo  function to display text the way you want it. Really, this 
works no differently from coding an HTML page. However, using constants and variables allows you to 
take advantage of the true power of PHP. 

  Overview of Constants 
 A constant is a placeholder for a value that you reference within your code that is formally defined 
before using it. When naming constants, remember they must begin with a letter or an underscore, and 
cannot begin with a number. Names are also case - sensitive, though typically they are named using all 
capital letters so you can easily identify them within your code. 

❏

❏



www.allitebooks.com

30

Part I: Movie Review Web Site

 You define a value assigned to a constant with the PHP function  define() . Once you ’ ve defined a 
constant, it can ’ t be changed or undefined.    

Try It Out  Using Constants   

 In this exercise, you ’ ll see how you can use constants in your program.   

  1.   Open your text editor, and type the following program: 

 < html > 
  < head > 
   < title > My Movie Site < /title > 
  < /head > 
  < body > 
 < ?php
define (‘FAVMOVIE’, ‘The Life of Brian’);
echo ‘My favorite movie is ‘;
echo FAVMOVIE;
? > 
  < /body > 
 < /html >    

  2.   Save this file as  moviesite.php , and open it in your browser. You should see the text shown 
in Figure  2 - 4 .       

Figure 2-4

http://www.allitebooks.org


Chapter 2: Creating PHP Pages Using PHP6

31

  How It Works 
 By defining the constant known as  FAVMOVIE , you have set the value as  “ The Life of Brian, ”  which can 
be recalled and displayed later on. Although this constant can ’ t be changed or reset throughout your 
script, it is available for use by any part of your script.  

  Overview of Variables 
 Unlike constants, variables are obviously meant to be variable   —   they are meant to change or be 
changed at some point in your program. Variables do not need to be defined or declared and can simply 
be assigned when needed. They act as a container that stores information for later use in your scripts, 
and the contents of them can be changed. 

 Variables are denoted with a dollar sign ( $ ) and are case - sensitive (in other words,  $dateEntered  and 
 $DateEntered  are treated as different variables). The first letter of the variable name must be an 
underscore or letter, and cannot be a number.     

 Try It Out  Using Variables   

 In this exercise, you ’ ll add variables to your existing script.   

  1.   Open your text editor, and make the following changes to your  moviesite.php  file (noted in 
highlighted lines): 

 < html > 
  < head > 
   < title > My Movie Site < /title > 
  < /head > 
  < body > 
 < ?php
define(‘FAVMOVIE’, ‘The Life of Brian’);
echo ‘My favorite movie is ‘;
echo FAVMOVIE;

echo ‘ < br/ > ’;
$movierate = 5;
echo ‘My movie rating for this movie is: ‘;
echo $movierate;

? > 
  < /body > 
 < /html >    

  2.   Save the changes, and access the file in your browser. Your screen should now look like the 
one in Figure  2 - 5 .       



32

Part I: Movie Review Web Site

  How It Works 
 The value 5 is assigned to the variable  movierate . Numbers do not need to be quoted as strings do. In 
fact, the following would cause PHP to see the value of  movierate  as a string containing the character 5: 

$movierate = ‘5’;  

 Keeping this value as an integer makes it much easier to perform mathematical calculations on it later 
on, such as giving the viewer the average movie rate. For example: 

 < ?php
$bobsmovierate = 5;
$joesmovierate = 7;
$grahamsmovierate = 2;
$zabbysmovierate = 1;
$avgmovierate = (($bobsmovierate + $joesmovierate + $grahamsmovierate
                + $zabbysmovierate) / 4);
echo ‘The average movie rating for this movie is: ‘;
echo $avgmovierate;
? >   

Figure 2-5



Chapter 2: Creating PHP Pages Using PHP6

33

 PHP also has numerous built - in mathematical functions that you can use on variables that contain 
numbers, such as:  

   rand([$min, $max]) : Returns a random number.  

   ceil($value) : Returns the next highest integer by rounding the value upwards.  

   floor($value) : Returns the next lowest integer by rounding the value downwards.  

   number_format($number[,$decimal_places[,$decimal_point, $thousands_sep]]) : 
Formats the number based on the chosen number of decimal places, using the designated 
decimal point and thousands separator if they are provided. By default, PHP uses a period for 
the decimal point and a comma for the thousands separator, so if that ’ s acceptable for you, you 
can leave off the optional parameters, as noted by the brackets above. If you would like to take 
out the comma, for example, you could type the following code: 

$price = 12345.67;
number_format($price);             //returns 12,345.67
number_format($price, 2, ‘.’, ‘’); //returns 12345.67   

   max($value1[, $value2[, $...]]) : Returns the largest value found in the set of supplied 
arguments.  

   min($value1[, $value2[, $...]]) : Returns the smallest value found in the set of supplied 
arguments.    

 For a listing of more useful functions that are available to you in PHP, please refer to Appendix  C .   

  Passing Variables between Pages 
 Suppose your web site allows viewers to enter their name on the front page. You ’ d like to be able to 
greet the user by name on each page in your web site, but to do so you need some way to pass the value 
of the name variable from page to page. There are basically four ways to accomplish this task: pass the 
variables in the URL, through a session, via a cookie, or with an HTML form. The method you choose is 
based on the situation and what best fits your needs at the time. 

  Passing Variables through a  URL  
 The first method of passing variables between pages is through the page ’ s URL. You ’ ve undoubtedly 
seen URLs such as this: 

http://www.mydomain.com/news/articles/showart.php?id=12345  

 This is an example of passing variable values through the URL. It requests that the article with the ID 
number of  “ 12345 ”  be chosen for the  showart.php  program. The text after the URL is called the  query 
string . 

❑

❑

❑

❑

❑

❑



34

Part I: Movie Review Web Site

 You can also combine variables in a URL by using an ampersand (  &  ), as in this example: 

http://www.mydomain.com/news/articles/showart.php?id=12345 & lang=en  

 This asks to retrieve the file with an ID of  “ 12345 ”  and the language presumably equal to  “ en, ”  for 
English. 

 There are a few disadvantages to passing variables through a URL: 

  Everyone can see the values of the variables, so passing sensitive information isn ’ t really very 
secure using this method.  

  The user can arbitrarily change the variable value in the URL and try different combinations, 
leaving your web site potentially open to showing something you ’ d rather not show.  

  A user might also pull up inaccurate or old information using a saved URL with older variables 
embedded in it (from a bookmark, for example).    

 Variables that you pass around in this way are accessible in your PHP code through the special  $_GET  
array. The variable name that appears in the URL is used as a key, so to retrieve the value of  id  you 
would reference  $_GET[‘id’] , or to retrieve the value of  lang  you would reference  $_GET[‘lang’] .   

Try It Out  Using  URL  Variables   

 In this exercise, you ’ ll modify your program to show the URL variables in action.   

  1.   Modify your  moviesite.php  file as follows (changes are highlighted): 

 < html > 
  < head > 
   < title > My Movie Site -  < ?php echo $_GET[‘favmovie’]; ? >  < /title > 
  < /head > 
  < body > 
 < ?php

//delete this line: define(‘FAVMOVIE’, ‘The Life of Brian’);

echo ‘My favorite movie is ‘;

echo $_GET[‘favmovie’];

echo ‘ < br/ > ’;
$movierate = 5;
echo ‘My movie rating for this movie is: ‘;
echo $movierate;
? > 
  < /body > 
 < /html >    

  2.   Save your  moviesite.php  file, and start a new document in your text editor.  

❑

❑

❑



Chapter 2: Creating PHP Pages Using PHP6

35

  3.   Type the following code: 

 < html > 
  < head > 
   < title > Find my Favorite Movie! < /title > 
  < /head > 
 < body > 
 < ?php
echo ‘ < a href=”moviesite.php?favmovie=Stripes” > ’;
echo ‘Click here to see information about my favorite movie!’;
echo ‘ < /a > ’;
? > 
  < /body > 
 < /html >    

  4.   Save this file as  movie1.php , and open it in your browser. Your screen should look like the 
one in Figure  2 - 6 .    

Figure 2-6

  5.   Now click the link and see what you get (see Figure  2 - 7 ).      



36

Part I: Movie Review Web Site

 You see the value for  $favmovie  as  “ Stripes ”  in the URL, as shown in Figure  2 - 7 , but it is also made 
available in the rest of the script by  $_GET[‘favmovie’]  and shows in the page ’ s title and body text.  

 How It Works 
Here are a few points to note about your program:

  As you can see from the  “ Title ”  section of your program, PHP code can be inserted in a straight 
line in the midst of your HTML code. This is helpful when you just need to insert one tidbit of 
information grabbed from PHP.  

  You can also insert PHP information anywhere in your HTML program, including the title.  

  If you do not reference the  favmovie  value using  $_GET , but instead just use  $favmovie , there 
is nothing shown for the value. If you have  E_ALL  turned on in your  php.ini  file, you will see 
the  “ undefined variable ”  error message. You did not need to do this when you referenced 
 $movierate , though, as the value is kept within  moviesite.php ; you did not get the 
information from another page or source.  

  Special Characters in  URL s 

 Passing variables through a URL poses an interesting problem if there are spaces, ampersands, or other 
special characters in the value of your variable. Luckily, substitutes exist for special characters that 
maintain the integrity of the variables ’  values. There is a special function called  urlencode()  to use 
when passing these values through a URL. If you wanted to change your favorite movie from  “ Stripes ”  

❑

❑

❑

Figure 2-7



Chapter 2: Creating PHP Pages Using PHP6

37

to  “ Life of Brian, ”  you would use  urlencode()  to encode the value and insert the proper HTML special 
characters. 

 To try this out, perform these steps: 

  1.   Make the following highlighted changes to your  movie1.php  file: 

 < html > 
  < head > 
   < title > Find my Favorite Movie! < /title > 
  < /head > 
  < body > 
 < ?php

//add this line:
$myfavmovie = urlencode(‘Life of Brian’);

                   
//change this line:
echo “ < a href=\”moviesite.php?favmovie=$myfavmovie\” > ”;

echo ‘Click here to see information about my favorite movie!’;
echo ‘ < /a > ’;
? > 
  < /body > 
 < /html >    

  2.   Save the file, and open it again in your browser. Clicking the link now displays the page shown 
in Figure  2 - 8 .        

Figure 2-8



38

Part I: Movie Review Web Site

  Passing Variables with Sessions 
 As we mentioned before, passing a value through a URL is fine if the information is not of a particularly 
sensitive nature, or if it is relatively static and there is no danger of a user pulling up old information 
from a previously saved page. If you are transmitting information such as usernames or passwords, 
however, or personal information such as addresses and phone numbers, better methods exist for 
passing the information while keeping it private, such as using cookies. You ’ ll learn more about cookies 
in Chapter  12 . 

 A  session  is basically a temporary set of variables that exists only until the browser has shut down. 
Examples of session information include a session ID and whether or not an authorized person has 
logged in to the site. This information is stored temporarily for your PHP programs to refer back to 
whenever needed. 

 Every session is assigned a unique session ID, which keeps all the current information together. Your 
session ID can either be passed through the URL or through the use of cookies. Although it is preferable 
for security reasons to pass the session ID through a cookie so that it is hidden from the human eye, if 
cookies are not enabled then the backup method is through the URL. 

 This setting is determined in your  php.ini  file. If you would like to force the user to pass variables 
through cookies (instead of allowing a backup plan), you would set the following line: 

session.use_only_cookies = 1   

 Also, make sure before using sessions that your  php.ini  file has been modified to show a valid path for 
 session.save_path , as described in Chapter  1 . 

 Then all you need to do to begin a session in PHP is call the function  session_start() . But first, you 
need to decide what information will be stored in your session. Anything that has been stored in a 
database can be retrieved and stored temporarily along with your session information. Usually, it is 
information such as username and login information, but it can also be preferences that have been set at 
some point by the user. A session identifier will also be stored in the session array of variables.    

Try It Out  Passing the Visitor ’ s Username   

 Suppose you want to pass your visitor ’ s username, and whether or not he or she has authentically 
logged in to the site between the first page and the second page. This functionality will be discussed 
more in Chapter  12 , but for now we ’ ll whip together a quick sample to highlight passing the visitor ’ s 
username in a session variable. 

 Follow these steps: 

  1.   Change your  movie1.php  file to include the following highlighted lines.   

 < ?php
session_start();
$_SESSION[‘username’] = ‘Joe12345’;
$_SESSION[‘authuser’] = 1;
? > 

 < html > 



Chapter 2: Creating PHP Pages Using PHP6

39

  < head > 
   < title > Find my Favorite Movie! < /title > 
  < /head > 
  < body > 
 < ?php
$myfavmovie = urlencode(‘Life of Brian’);
echo “ < a href=\”moviesite.php?favmovie=$myfavmovie\” > ”;
echo ‘Click here to see information about my favorite movie!’;
echo ‘ < /a > ’;
? > 
  < /body > 
 < /html >    

  2.   Now save your  movie1.php  file.  

  3.   Open  moviesite.php  to make the following highlighted changes: 

 < ?php
session_start();
                   
//check to see if user has logged in with a valid password
if ($_SESSION[‘authuser’] != 1) {
    echo ‘Sorry, but you don\’t have permission to view this page!’;
    exit();
}
? > 

 < html > 
  < head > 
   < title > My Movie Site -  < ?php echo $_GET[‘favmovie’]; ? >  < /title > 
  < /head > 
  < body > 
 < ?php

echo ‘Welcome to our site, ‘;
echo $_SESSION[‘username’];
echo ‘!  < br/ > ’;

echo ‘My favorite movie is ‘;
echo $_GET[‘favmovie’];
echo ‘ < br/ > ’;
$movierate = 5;
echo ‘My movie rating for this movie is: ‘;
echo $movierate;
? > 
  < /body > 
 < /html >    

  4.   Click the link in  movie1.php , and you should see the text for  moviesite.php  shown in 
Figure  2 - 9 .       



www.allitebooks.com

40

Part I: Movie Review Web Site

 How It Works 
Here are a few important things to note about this procedure:

  All PHP session information is at the top of the page, before any HTML code is used. This is 
very important! If there is even a leading space before the PHP code at the top of the page, you 
will receive an error such as: 

Warning: session_start(): Cannot send session cache limiter - headers already 
sent(output started at C:\Program Files\Apache Software Foundation\Apache2.2\
htdocs\moviesite.php:1) in C:\Program Files\Apache Software Foundation\
Apache2.2\htdocs\moviesite.php on line 2   

  Some other situations also will give you the  “ headers already sent ”  error, which we discuss in 
Chapter  18 .  

  Refer to the session variables using syntax  $_SESSION[‘varname’] . If you don ’ t, then the 
variables will contain empty values, and you may receive a warning message.  

  You must use the function  session_start()  before you send any output to the browser and 
before you use any session variables. It ’ s best to place  session_start()  at the beginning of 
your script.  

❑

❑

❑

❑

Figure 2-9

http://www.allitebooks.org


Chapter 2: Creating PHP Pages Using PHP6

41

  Passing Variables with Cookies 
 Cookies are tiny bits of information stored on your web site visitor ’ s computer. There appears to be some 
sort of paranoia about using cookies. In theory, cookies can be intercepted to gain information such as a 
person ’ s IP address and operating system, but cookies are primarily used for storing information only. 
A few ad campaigns have developed technology to use cookies to track your browsing habits, and many 
people see this as an invasion of privacy, so some people choose to disable this feature in their web 
browsers. Also, because cookies are stored in a commonly named directory, anyone with access to 
someone else ’ s computer (either via a hack or physical location) can potentially open cookie files and 
glean information about the owner. Because of these possibilities, it ’ s not a good idea to store any private 
information on a computer.     

 For more information on cookies and the potential security risks (however minute), you are encouraged 
to visit the W3 Security FAQ web site at  www.w3.org/Security/faq/wwwsf2.html#CLT - Q10 .   

 Because your visitors may either have cookies turned off or may physically delete cookies from their 
computers, relying on cookie information probably isn ’ t the best idea from a web development standpoint. 

 So why do developers use cookies, anyway? The advantage of storing information in a cookie versus a 
session is longevity. Sessions alone can ’ t store information for more than the length of time the browser 
window is open. Like the elusive and mean - spirited video game that loses all high scores once it ’ s 
unplugged, a session loses all information once a browser closes. Cookies, on the other hand, can live on 
a person ’ s computer for as long as the developer has decided is long enough, and then they 
automatically expire. It is because of this longevity that cookies are fabulous for storing information such 
as a visitor ’ s username or language preferences. These are the pieces of information that users won ’ t 
have to retype every time they visit your site, and if for some reason someone did get wind of the 
information, it wouldn ’ t be the end of the world. 

 We mentioned earlier that sessions alone can ’ t store information for very long. However, you can alter 
this limitation if you use sessions in conjunction with cookies. If your sessions are passing variables 
using cookies, you  can  set the life of these cookies to longer than the life of the browser, using the 
 session.cookie_lifetime  configuration in your  php.ini  file. Keep in mind, however, that not only 
will the session information be stored on the person ’ s computer, but the Session ID also will be stored, 
and that can cause you problems later on. 

 To set a cookie, you use the appropriately named  setcookie()  function. When setting a cookie, you can 
determine the following information set along with it: 

  Cookie name (this is mandatory).  

  Value of the cookie (such as the person ’ s username).  

  Time in seconds when the cookie will expire. (This time is based on a UNIX timestamp, but you 
can set it using the syntax  time()+60*60*24*365 , which keeps the cookie alive for a year. This 
is optional, but if it is not set, then the cookie will expire when the browser is closed.)  

  Path (the directory where the cookie will be saved   —   the default is usually sufficient; this is 
optional).  

  Domain (domains that may access this cookie   —   this is optional).  

  Whether a cookie must have a secure HTTPS connection to be set (defaults to 0; to enable this 
feature, set this to 1).    

❑

❑

❑

❑

❑

❑



42

Part I: Movie Review Web Site

 You make each of these settings as follows: 

 setcookie ($name[, $value[, $expire[, $path[, $domain[, $secure]]]]])  

 As you can probably guess by now, those values will be referenced in the script as 
 $_COOKIE[‘cookiename’] .    

Try It Out  Setting a Cookie   

 In this exercise, you ’ ll have the web site set a cookie on Joe ’ s machine so that he (theoretically) doesn ’ t 
have to type his username (Joe12345) every time he comes back to visit. To do this, follow these steps: 

  1.   Modify your  movie1.php  file as shown: 

 < ?php

setcookie(‘username’, ‘Joe’, time() + 60);

session_start();

//delete this line: $_SESSION[‘username’] = ‘Joe12345’;

$_SESSION[‘authuser’] = 1;
? > 
 < html > 
  < head > 
   < title > Find my Favorite Movie! < /title > 
  < /head > 
  < body > 
 < ?php
$myfavmovie = urlencode(‘Life of Brian’);
echo “ < a href=\”moviesite.php?favmovie=$myfavmovie\” > ”;
echo ‘Click here to see information about my favorite movie!’;
echo ‘ < /a > ’;
? > 
  < /body > 
 < /html >    

  2.   Save the file.  

  3.   Make the following changes to your  moviesite.php  file: 

 < ?php
session_start();
                   
//check to see if user has logged in with a valid password
if ($_SESSION[‘authuser’] != 1) {
    echo ‘Sorry, but you don\’t have permission to view this page!’;
    exit();
}
? > 
 < html > 
  < head > 
   < title > My Movie Site -  < ?php echo $_GET[‘favmovie’]; ? >  < /title > 
  < /head > 



Chapter 2: Creating PHP Pages Using PHP6

43

 < body > 
 < ?php
echo ‘Welcome to our site, ‘;

echo $_COOKIE[‘username’];

echo ‘!  < br/ > ’;
echo ‘My favorite movie is ‘;
echo $_GET[‘favmovie’];
echo ‘ < br/ > ’;
$movierate=5;
echo ‘My movie rating for this movie is: ‘;
echo $movierate;
? > 
  < /body > 
 < /html >    

  4.   Save the file.  

  5.   Close out your browser window and open a new window (in case you have any session 
information from the previous example lingering about). Then open the  movie1.php  file. 
Click the link, and your screen should look like the one in Figure  2 - 10 .       

Figure 2-10



44

Part I: Movie Review Web Site

  How It Works 
 If you didn ’ t notice, you changed the username from Joe12345 when you were using sessions, to Joe 
when you were using cookies. This was to double - check that the information was coming from the 
cookie, and not the session. When using cookies, remember the following: 

  Like sessions, cookies must be placed at the very top of the page, before your first   < html >   line. 
Otherwise, you get a  “ headers already sent ”  error.  

  The expire time for the cookie was set to 60 seconds so you could play with and test your 
cookies without having to wait around for them to expire. For a normal application storing 
usernames, it would be logical to set this higher.  

  Unlike sessions, cookie information can ’ t be accessed in the current page where the cookies have 
been set. You have to move on to the next page for the cookie to be set and accessible to your 
program.  

   

  Passing Information with Forms 
 Up until now, you ’ ve passed information among pages successfully, but you ’ ve been the one to supply 
all the information. Although it would be a great world if you really knew that much about your web 
site visitors, it might get a little labor - intensive on your part. What do you say to letting your users 
supply you with information for a change? 

 If you ’ ve never filled out a form online, then you have probably been living in a cave somewhere with 
no Internet access. Forms are the great Venus flytraps, just lying in wait to gobble up useful information 
from web site visitors. Forms allow your web site to be truly interactive; they take data from the user and 
send it off somewhere to be massaged, manipulated, and perhaps stored, and then some result is sent 
back to the user. You ’ ll have the chance to work more with forms in Chapter  5 , but we will briefly touch 
on them here to make sure you have a basic understanding of how they work. 

  Fast Primer on Forms 

 In case you are a bit rusty on the syntax of forms, or if you just need a quick reference, here is a down - and -
 dirty discussion of forms. Forms are coded in HTML and stay in HTML. A form is made up of four parts: 

   Opening tag line:  Indicated by   < form >  . This tag line must include an  action  attribute and a 
 method  attribute. An action gives the form a URL or path to another program that will take 
the data included in the form and carry it from there. A method ( GET  or  POST ) tells the form 
how the data is to be carried. ( POST  is generally the preferred method; it ’ s more secure because 
it doesn ’ t pass its information along in the URL.)  

   Content of the form, including input fields:  Input fields are the areas where the user types in 
the information (or selects it in the case of a check box or radio button). An input field must 
include a  type  and  name  attribute, but can include other attributes such as  maxlength . The type 
of an input field can be one of many different selections, the most common being:  

   Text:  Used for collecting from 2 characters up to 2,000 characters. The parameter used to 
limit the number of accepted characters for a particular input field is  maxlength . To collect 
large amounts of input (such as comments), the input field  textarea  is recommended 
over  text .  

❑

❑

❑

❑

❑

❏



Chapter 2: Creating PHP Pages Using PHP6

45

   Check box:  Used to allow users to make a selection from a list of choices; also permits 
users to make more than one choice. Individual choices must be indicated with a  value  
attribute.  

   Radio:  Also known as radio buttons. Used for allowing users to choose from a list, but 
radio buttons permit only one choice. Individual choices must be indicated with a  value  
attribute.  

   Select:  Also known as drop - down boxes. Used for allowing users to choose from a list of 
choices. Individual choices are indicated with an  option / value  pair.  

   Password:  Hides what the user is typing behind asterisks, but does not compromise the 
value of the variable.    

   The name of the input field will also do double duty as your variable name in your PHP 
program. To avoid issues with PHP parsing, you should name your input fields according to the 
PHP variable naming guidelines covered earlier in this chapter.  

   Action button(s) or images, typically submit/clear or a user - defined button, technically 
considered input types as well:  These are indicated with the input types  submit ,  reset , and 
 image  for user - created buttons.  

   Closing tag line:  Indicated with a   < /form >   tag.    

 Got it? Good! Now let ’ s move on .     

Try It Out  Using Forms to Get Information   

 Because your program is slowly increasing in size, for this exercise, we suggest you switch to a text 
editor that will add line numbers to your document. If you are using a text editor that inserts these 
line numbers already, you do not need to worry about adding these in. Otherwise, you may want to 
add periodic line numbers as comments to help you keep track. In addition to adding line numbers 
to your program, you are also going to insert comments to help you keep track of what is going on. 

 Here ’ s how to use forms to get information from visitors: 

  1.   Open your  movie1.php  file and make the following changes: 

 < ?php

//delete this line: setcookie(‘username’, ‘Joe’, time() + 60);

session_start();

$_SESSION[‘username’] = $_POST[‘user’];
$_SESSION[‘userpass’] = $_POST[‘pass’];
$_SESSION[‘authuser’] = 0;
                   
//Check username and password information
if (($_SESSION[‘username’] == ‘Joe’) and
    ($_SESSION[‘userpass’] == ‘12345’)) {
    $_SESSION[‘authuser’] = 1;
} else {
    echo ‘Sorry, but you don\’t have permission to view this page!’;
    exit();     
}

? > 

❏

❏

❏

❏

❑

❑



46

Part I: Movie Review Web Site

 < html > 
  < head > 
   < title > Find my Favorite Movie! < /title > 
  < /head > 
  < body > 
 < ?php
$myfavmovie = urlencode(‘Life of Brian’);
echo “ < a href=\”moviesite.php?favmovie=$myfavmovie\” > ”;
echo “Click here to see information about my favorite movie!”;
echo “ < /a > ”;
? > 
  < /body > 
 < /html >    

  2.   Now make these changes to your  moviesite.php  file: 

 < ?php
session_start();
                   
//check to see if user has logged in with a valid password
if ($_SESSION[‘authuser’] !=1 ) {
    echo ‘Sorry, but you don\’t have permission to view this page!’;
    exit();
}
? > 
 < html > 
  < head > 
   < title > My Movie Site -  < ?php echo $_GET[‘favmovie’]; ? >  < /title > 
  < /head > 
  < body > 
 < ?php
echo ‘Welcome to our site, ‘;

//delete this line: echo $_COOKIE[‘username’];
echo $_SESSION[‘username’];

echo ‘!  < br/ > ’;
echo ‘My favorite movie is ‘;
echo $_GET[‘favmovie’];
echo ‘ < br/ > ’;
$movierate = 5;
echo ‘My movie rating for this movie is: ‘;
echo $movierate;
? > 
  < /body > 
 < /html >    

  3.   Start a new file: 

 < ?php
session_unset();
? > 
 < html > 
  < head > 
   < title > Please Log In < /title > 
  < /head > 



Chapter 2: Creating PHP Pages Using PHP6

47

  < body > 
   < form method=”post” action=”movie1.php” > 
    < p > Enter your username: 
     < input type=”text” name=”user”/ > 
    < /p > 
    < p > Enter your password: 
     < input type=”password” name=”pass”/ > 
    < /p > 
    < p > 
     < input type=”submit” name=”submit” value=”Submit”/ > 
    < /p > 
   < /form > 
  < /body > 
 < /html >    

  4.   Save this file as  login.php .  

  5.   Load the  login.php  file into your browser. Your screen will look like the one shown in Figure  2 - 11 .    

Figure 2-11

  6.   Log in with the username Joe12345 and the password 12345. The username is wrong, so if the 
authorization script works, your screen should look like the one shown in Figure  2 - 12 .      



48

Part I: Movie Review Web Site

 Now try logging in with the correct username (Joe) and password (12345). Your  movie1.php  site 
should load as it did before, and the link should take you to the  moviesite.php  page.  

  How It Works 
 In  login.php , you first release any variables from sessions that may be lingering around, with the 
command  session_unset() . Then you ask for two variables from the user: username and password 
(variable names  user  and  pass , respectively). These are submitted to  movie1.php  (the  “ action ”  in the 
form) via the  POST  method (the  “ method ”  in the form). This is why you have to refer to them using 
the  $_POST  syntax at the beginning of  movie1.php . 

 The file  movie1.php  actually accomplishes several things: 

  It starts the session and, by default, registers the variables. Values are set based on the 
information sent from the form in  login.php .  

  It checks to see if the username and password are acceptable. In real life, you would match this 
information to a database for authentication and verification.  

  It sets the  authuser  to 1 if the acceptable username/password combination has been supplied, 
which grants the user permission to then proceed to other pages in the site, such as  moviesite.php .  

  If the username/password combination is not acceptable, a tactful error message is displayed to 
the user.    

❑

❑

❑

❑

Figure 2-12



Chapter 2: Creating PHP Pages Using PHP6

49

 Because the information is passed on to  moviesite.php  as before, the only thing  moviesite.php  has 
to check is that the user is authorized through the  authuser  variable.  

  Using if/else Arguments 
 You ’ ve seen now that you can assign many different values to variables. At some point in the course of 
your script, you ’ re going to want to take specific actions based on the value of a variable. For example, 
consider a  $password  variable. If users suppy the correct password, you ’ ll want to grant them access to 
the site. If a user enters an incorrect password, you might want to ask him or her to try again or maybe 
lock the user out. You can use the  if  statement to dictate the action your script takes based on the value 
of a variable. And if you add the  else  statement to an  if , you open up a whole range of possible 
actions. 

  Using if Statements 
 The syntax for a basic  if  statement is as follows: 

if ( condition )  action to be taken if true ;  

 As in this example: 

if ($stockmarket  >  10000) echo ‘Hooray! Time to Party!’;  

 If the action to take is longer than a simple statement that will easily fit on one line, you must use 
brackets ( {} ) to enclose your action section: 

if ($stockmarket  >  10000) {
    echo ‘Hooray! Time to Party!’;
    $mood = ‘happy’;
    $retirement = ‘potentially obtainable’;
}  

 It is often advised to use brackets whether they are technically required or not, just so you don ’ t add 
lines later and forget to add the brackets as well. Sometimes this can save you a lot of grief. 

  Operators 

 The operators used to compare two values are similar to those comparison operators you likely 
encountered in elementary - school math. A list of these operators follows. Please note that these are only 
for use within the  if  statement itself, and are not to be used when assigning values to variables. 



50

Part I: Movie Review Web Site

     Operator      Appropriate Syntax   

    equal to     ==   

    not equal to     != or  <  >    

    greater than      >    

    less than      <    

    greater than or equal to      > =   

    less than or equal to      < =   

    equal to, AND data types match (both are integers, or both are strings)     ===   

    not equal to, OR the data types are not the same     !==   

 Make sure you don ’ t confuse the = operator with the == or === operator. The = operator is used to 
assign values to variables. The == and === operators test for equality.    

  Special Syntax Considerations 

 You should pay special attention to the use of semicolons in  if  statements. Semicolons are required in 
individual lines within the  if  statement, but not at the end of the  if  statement itself. Also, take special 
note of the use of the double equals sign when comparing values. This takes some getting used to and 
can slip you up if you ’ re not careful. 

 The way you indent your lines does not matter to PHP, but it does to the human eye. If possible, try to 
keep your indenting consistent and easy to read.     

Try It Out  Using if   

 This exercise will start you off with a brief script to illustrate  if  by itself.   

  1.   Open your text editor, and type the following program: 

 < html > 
  < head > 
   < title > How many days in this month? < /title > 
  < /head > 
  < body > 
 < ?php
date_default_timezone_set(‘America/New_York’);
$month = date(‘n’);
if ($month ==  1) { echo ‘31’; }
if ($month ==  2) { echo ‘28 (unless it\’s a leap year)’; }
if ($month ==  3) { echo ‘31’; }
if ($month ==  4) { echo ‘30’; }
if ($month ==  5) { echo ‘31’; }
if ($month ==  6) { echo ‘30’; }



Chapter 2: Creating PHP Pages Using PHP6

51

if ($month ==  7) { echo ‘31’; }
if ($month ==  8) { echo ‘31’; }
if ($month ==  9) { echo ‘30’; }
if ($month == 10) { echo ‘31’; }
if ($month == 11) { echo ‘30’; }
if ($month == 12) { echo ‘31’; }
? > 
  < /body > 
 < /html >    

  2.   Save this as  date.php , and open it in your browser.  

    The result should display the number of days in the current month.     

  How It Works 
 The script gets the value for variable  $month  by tapping into one of PHP ’ s numerous built - in date 
functions;  date(‘n’)  returns a value equal to the numerical equivalent of the month as set in your 
server, such as 1 for January, 2 for February, and so on. (We talk more about  date()  in Appendix  C .) 

 Then the script tests the  if  statements for each potential value for  $month  until it gets the right 
answer. If the first  if  statement is false, the program immediately goes to the next line and executes it. 
When it gets to the right month, it carries out the rest of the statement in the line and then goes to the 
next line and executes it as well. It does not stop once it comes across a true statement, but continues 
as if nothing has happened.  

  Using if and else Together 
 Using  if  by itself is fine and dandy in some cases, but there are other times when the  if / else  combination 
is more appropriate. For example, suppose you usually want to show a certain message on your site, but 
you have a holiday message you ’ d like shown for the month of December. Or suppose that on your movie 
review site, you want to show an abbreviated version of a movie review for those who haven ’ t yet seen the 
movie. It ’ s these  “ either/or ”  cases where you need to whip out the all - powerful  if / else  combination.     

      Try It Out  Using if and else    

 Let ’ s keep with the date theme and let the user know whether or not the current year is a leap year. 
Follow these steps to accomplish this: 

  1.   Open your text editor, and enter the following code: 

 < html > 
  < head > 
   < title > Is it a leap year? < /title > 
  < /head > 
  < body > 
 < ?php
date_default_timezone_set(‘America/New_York’);
$leapyear = date(‘L’);



52

Part I: Movie Review Web Site

if ($leapyear == 1) {
    echo ‘Hooray! It\’s a leap year!’;
}
else {
    echo ‘Aww, sorry, mate. No leap year this year.’;
}
? > 
  < /body > 
 < /html >    

  2.   Save this file as  leapyear.php , and open it in your browser.    

 You should now see a statement based on whether or not the current year is a leap year.  

  How It Works 
 Suppose the year is 2003. That ’ s not a leap year, so the value of  $leapyear  would be 0. When the 
script reads the  if  statement, the condition is false, so the script skips down to the next line, the  else  
statement, and then executes the code it finds there. This is basically the same as when  if  is used 
alone. Now, however, suppose the year is 2004. That is a leap year, so the code in the  if  statement is 
executed. When that ’ s done, the script skips the  else  statement and continues on with the script. 

 The  if  and  else  statements can be very helpful in controlling the flow and resulting output of your 
scripts. With them, you can tailor your site accordingly, with basically unlimited possibilities. You can 
display different messages based on a person ’ s age (if users are over 18, they see one message; if they 
are under 18, they see another one). You can display a message if it ’ s Tuesday versus if it ’ s Wednesday. 
You can display a  “ good morning, ”     “ good afternoon, ”  or  “ good evening ”  message based on the time 
of day. You can also place  if  statements within other  if  statements so that your script checks for the 
day of the week, and if it ’ s a certain day, it checks for the time and displays a message, such as  “ It ’ s 
Friday afternoon   —   the weekend ’ s almost here! ”    

 

  Using Includes for Efficient Code 
 Are you getting sick of typing the same things over and over again? The makers of PHP have blessed us 
frustrated developers with a little time - saving device called  includes , which save you from reentering 
frequently used text over and over. 

 Suppose that you want to type the same message on every page of your site. Perhaps it is your 
company ’ s name and address, or maybe today ’ s date. If you are coding each page of your site from 
scratch, this is not very efficient, for a couple of reasons: 

  You are typing the same information over and over again, which is never good.  

  In the case of an update or a change, you have to make the change in every single page of your 
site. Again, this is redundant and time - consuming, and it increases the chances for human errors.    

 A solution to this problem is to use an include.  Includes  are PHP files that get pulled into other PHP files. 
You take commonly used information and put it in a separate file. For example, if you have a set of 

❑

❑



Chapter 2: Creating PHP Pages Using PHP6

53

defined variables that need to be referenced in every page on your site, you could define them once in a 
single PHP script. Then, on each of your pages where you want the variables to appear, you use an 
 include  statement that specifies the file that defines the variables. When your script is parsed, the 
parser inserts the code from the include file into your page, just as if you ’ d typed it there yourself. The 
final output is then sent to the browser. 

 Includes can really use any extension, and some people use  .inc  to remind themselves the file should be 
included into other script files. However, you should still use the  .php  extension. The file extension 
should commonly hint at the type of file, and it is indeed PHP code, after all. But why would you 
consider naming a file anything other than PHP? If you are storing potentially sensitive information (for 
example, server variables such as passwords), then giving the file a  .php  extension makes sure it is 
never accessible to anyone directly, because the information is parsed before it is sent to the browser. If 
you keep your project well organized, then you shouldn ’ t have any difficulty remembering that a file is 
an include. 

 You can add an include in any other file, and if you place the  include  statement in an  if  statement, you 
can control when the include is inserted.    

Try It Out  Adding a Welcome Message   

 Suppose you want every page in the movie review site to show a welcome message and perhaps 
today ’ s date. You want to create a file that includes this information, so follow these steps: 

  1.   Open your text editor, and type the following: 

 < div style=”text-align: center” > 
  < p > Welcome to my movie review site! < br/ > 
 < ?php
date_default_timezone_set(‘America/New_York’);
echo ‘Today is ‘;
echo date(‘F d’);
echo ‘, ‘;
echo date(‘Y’);
? > 
  < br/ > 
 < /div >    

  2.   Save this file as  header.php .  

  3.   To include this file in the three existing movie web site files, add the following line, 
immediately after the   < body >   tag, to  login.php ,  movie1.php , and  moviesite.php : 

 < ?php include ‘header.php’; ? >    

  4.   Save your files.  

  5.   Take a look at the files again. If you open  login.php , you should see the screen shown in 
Figure  2 - 13 .   



54

Part I: Movie Review Web Site

 You will see the same two lines on every page where you have included the  header.php  file.     

  How It Works 
 When PHP comes across an  include  line in a script, it stops working on the current program and 
immediately shoots on over to whatever file it ’ s told to include. The server parses that second file and 
carries the results back to the original file, where the parsing continues from where it left off. 

 Suppose you decided you didn ’ t want dates to be shown with leading zeros. Luckily, PHP has a 
solution for that when formatting the date function. Make the following change to your  header.php  
file and see what happens: 

 < div style=”text-align: center” > 
  < p > Welcome to my movie review site! < br/ > ’;
 < ?php
date_default_timezone_set(‘America/New_York’);
echo ‘Today is ‘;
echo date(‘F j’);
echo ‘, ‘;
echo date(‘Y’);
? > 
  < /p > 
 < /div >   

 Your problem is fixed  …  but the best thing is that it ’ s fixed in all the pages in your site in one fell 
swoop, thanks to the magic of includes.  

Figure 2-13



Chapter 2: Creating PHP Pages Using PHP6

55

  Using Functions for Efficient Code 
 As with includes, functions make your code (and your typing) more efficient and easier to debug. 
 Functions  are blocks of code that can be called from anywhere in your program. They enable you to 
execute lines of code without having to retype them every time you want to use them. Functions can help 
set or update variables. You can also set a function to execute only if a certain criterion has been fulfilled. 

 Functions are miniprograms within themselves. They don ’ t know about any other variables around them 
unless you let the other variables outside the function come in through a door called  global . You use the 
 global     $varname  command to make an outside variable ’ s value accessible to the function. This does  not  
apply to any values assigned to any variables that are global by default, such as  $_POST ,  $_GET , and so on. 

 Your function can be located anywhere within your script and can be called from anywhere within your 
script. Therefore, you can list all your commonly used functions at the top of your program, and they can 
all be kept together for easier debugging. Better yet, you can put all your functions in a file and  include  
them in your programs. Now you ’ re rolling!     

 PHP provides you with a comprehensive set of built - in functions (which you can find in Appendix  C ), 
but sometimes you need to create your own customized functions.      

   Try It Out  Working with Functions    

 This exercise demonstrates functions in action by adding a list of favorite movies to your movie 
reviews site.   

  1.   Open your  movie1.php  page, and modify it as shown in the highlighted text: 

 < ?php
session_start();
$_SESSION[‘username’] = $_POST[‘user’];
$_SESSION[‘userpass’] = $_POST[‘pass’];
$_SESSION[‘authuser’] = 0;
                   
//Check username and password information
if (($_SESSION[‘username’] == ‘Joe’) and
    ($_SESSION[‘userpass’] == ‘12345’)) {
    $_SESSION[‘authuser’] = 1;
} else {
    echo ‘Sorry, but you don\’t have permission to view this page!’;
    exit();     
}
? > 
 < html > 
  < head > 
   < title > Find my Favorite Movie! < /title > 
  < /head > 
  < body > 
 < ?php include ‘header.php’; ? > 
 < ?php
$myfavmovie = urlencode(‘Life of Brian’);
echo “ < a href=\”moviesite.php?favmovie=$myfavmovie\” > ”;
echo “Click here to see information about my favorite movie!”;



56

Part I: Movie Review Web Site

echo “ < /a > ”;
? > 

   < br/ > 
   < a href=”moviesite.php?movienum=5” > Click here
   to see my top 5 movies. < /a > 
   < br/ > 
   < a href=”moviesite.php?movienum=10” > Click here
   to see my top 10 movies. < /a > 

  < /body > 
 < /html >    

  2.   Now modify  moviesite.php  as shown: 

 < ?php
session_start();
                   
//check to see if user has logged in with a valid password
if ($_SESSION[‘authuser’] !=1 ) {
    echo “Sorry, but you don’t have permission to view this page!”;
    exit();
}
? > 
 < html > 
  < head > 

   < title > 
 < ?php
if (isset($_GET[‘favmovie’])) {
    echo ‘ - ‘;
    echo $_GET[‘favmovie’];
}
? > 
   < /title > 

  < /head > 
  < body > 
 < ?php include ‘header.php’; ? > 
 < ?php

function listmovies_1() {
    echo ‘1. Life of Brian < br/ > ’;
    echo ‘2. Stripes < br/ > ’;
    echo ‘3. Office Space < br/ > ’;
    echo ‘4. The Holy Grail < br/ > ’;
    echo ‘5. Matrix < br/ > ’;
}
                   
function listmovies_2() {
    echo ‘6. Terminator 2 < br/ > ’;
    echo ‘7. Star Trek IV < br/ > ’;
    echo ‘8. Close Encounters of the Third Kind < br/ > ’;
    echo ‘9. Sixteen Candles < br/ > ’;
    echo ‘10. Caddyshack < br/ > ’;
}
                   
if (isset($_GET[‘favmovie’])) {

    echo ‘Welcome to our site, ‘;



Chapter 2: Creating PHP Pages Using PHP6

57

    echo $_SESSION[‘username’];
    echo ‘!  < br/ > ’;
    echo ‘My favorite movie is ‘;
    echo $_GET[‘favmovie’];
    echo ‘ < br/ > ’;
    $movierate = 5;
    echo ‘My movie rating for this movie is: ‘;
    echo $movierate;
} else {
    echo ‘My top ‘;
    echo $_GET[‘movienum’];
    echo ‘ movies are:’;
    echo ‘ < br/ > ’;
     
    listmovies_1();
    if ($_GET[‘movienum’] == 10) {
        listmovies_2();
    }
}     
? > 
  < /body > 
 < /html >    

  3.   Now you must go through the  login.php  file before you can see your changes. Log in as Joe 
and use the password 12345. Your  movie1.php  page should look like the one in Figure  2 - 14 .    

Figure 2-14

  4.   Click the  “ 5 movies ”  link. Your screen should look like Figure  2 - 15 .    



58

Part I: Movie Review Web Site

Figure 2-15

  5.   Go back and click the  “ top 10 ”  link; your screen will look like the one in Figure  2 - 16 .       

Figure 2-16



Chapter 2: Creating PHP Pages Using PHP6

59

  How It Works 
 This has been a rudimentary look at how to use functions, but you can see how they work. The 
 movie1.php  page gave users the option of looking at 5 or 10 of your favorite movies. Whichever link 
they choose sets the value for  $movienum . 

 In addition,  moviesite.php  accomplishes several other tasks: 

  It sets up the functions  listmovies_1()  and  listmovies_2() , which prints a portion of the 
total top 10 list.  

  You also added this line: 

if (isset($_GET[‘favmovie’])) {  

  The  isset  function checks to see if a variable has been set yet (this doesn ’ t check the value, just 
whether or not it has been used). You didn ’ t want to show users the information about your 
favorite movie if they didn ’ t click on the link to see it, so you used  if / else  to take it right out 
of there. If the variable  favmovie  has not yet been set, the program jumps on down to the  else  
portion.  

  The script performs another  if  statement to check the value of  movienum  to run the correct 
corresponding functions.  

  It also references the  movienum  variable for the title of the list, so the program displays the 
correct number of movies in the list.    

 As you get more advanced in your PHP programming skills, you might store a list of all your favorite 
movies in a database and reference them that way, changing your  listmovies()  function to list only 
one movie at a time and running the function  listmovies()  a number of times. You could also give 
your users the option of choosing how many movies they want displayed, perhaps through a drop -
 down box or radio buttons. That would be your new  movienum  variable.   

  All about Arrays 
 You ’ ve learned about variables and how they are used, but what if you need to have more than one 
value assigned to that variable? That, my friend, is a good old - fashioned array.  Arrays  are nothing more 
than lists of information mapped with keys and stored under one variable name. For example, you can 
store a person ’ s name and address or a list of states in one variable. 

 Arrays can be a hard thing to wrap your brain around, so let ’ s take a visual approach. Say you see a man 
sitting at a table at a local restaurant. He has several characteristics that are unique to him, such as first 
name, last name, and age. You could easily store this pertinent information in three variables: 
 $firstname ,  $lastname , and  $age . 

 Now, suppose his wife sits down to join him. How can you store her information? If you use the same 
variable names, how will you know which is her information and which is her husband ’ s? This is where 
arrays come in. You can store all of his information under one variable, and all of her information under 
another. 

❑

❑

❑

❑



60

Part I: Movie Review Web Site

 If you put all the information in a chart, it would look like this:

         First Name      Last Name      Age   

    Husband    Albert    Einstein    129  

    Wife    Mileva    Einstein    128  

 An array is just a row of information, and its keys are the column headers.  Keys  are identifiers that help 
keep the information organized and easy to access. In this instance, you wouldn ’ t know what each of 
those variables represented if you didn ’ t have column headers. Now let ’ s see how you can use arrays in 
PHP syntax. 

  Array Syntax 
 With an array, you can store multiple pieces of related information under one variable name, like this: 

 < ?php
$husband = array(‘firstname’ = > ’Albert’, 
                 ‘lastname’  = > ’Einstein’, 
                 ‘age’       = > ’129’);
                   
echo $husband[‘firstname’];
? >   

 Notice how you use =  >   instead of = when assigning values to keys of arrays. All of Albert ’ s information 
is stored in the variable name  husband . By using the key  “ firstname ”  you can retrieve his first name. 
Likewise,  “ lastname ”  will retrieve his last name, and  “ age ”  his age. 

 You don ’ t have to store all the values at the same time, though, as in the previous example. Instead, you 
can assign each member of the array directly, referencing its key in the following manner: 

 < ?php
$husband[‘firstname’] = ‘Albert’;
$husband[‘lastname’]  = ‘Einstein’;
$husband[‘age’]       = 129;
? >   

 This has the same effect as our first example. And if this looks familiar to you already, great! It should! 
Those special variables we discussed earlier, like  $_GET ,  $_POST ,  $_COOKIE , and  $_SESSION , are arrays! 

 You can also have arrays within arrays (also known as  multidimensional arrays ). In the earlier example, 
you had two people sitting at one table. What if you pulled up another table and added a few more 
people to the mix? How in the heck would you store everyone ’ s information and keep it all separate and 
organized? Like this!   

 < ?php
$table[1] = array(‘husband’ = >  array(‘firstname’ = >  ‘Albert’,
                                     ‘lastname’  = >  ‘Einstein’,
                                     ‘age’       = >  129), 



Chapter 2: Creating PHP Pages Using PHP6

61

                  ‘wife’    = >  array(‘firstname’ = >  ‘Mileva’, 
                                     ‘lastname’  = >  ‘Einstein’,
                                     ‘age’       = >  128));
                   
// do the same for each table in your restaurant
? >   

 Then if someone asks you,  “ Hey, what are the first names of the couple sitting at table one? ”  you can 
easily print the information with a few simple  echo  statements: 

 < ?php
echo $table[1][‘husband’][‘firstname’];
echo ‘ and ‘;
echo $table[1][‘wife’][‘firstname’];
? >   

 This script would produce the output  “ Albert and Mileva. ”  

 If you want to simply store a list and not worry about the particular order, or what each value should be 
mapped to (such as a list of states or flavors of ice cream), you don ’ t need to explicitly name the keys; 
PHP can automatically assign numeric keys with integers starting with 0. This would be set up as follows: 

 < ?php
$flavors[] = ‘blue raspberry’;
$flavors[] = ‘root beer’;
$flavors[] = ‘pineapple’;
? >   

 These would then be referenced like this: 

 < ?php
echo $flavors[0]; //outputs “blue raspberry”
echo $flavors[1]; //outputs “root beer”
echo $flavors[2]; //outputs “pineapple”
? >    

  Sorting Arrays 
 A common task you may find yourself doing with arrays is sorting their values. PHP provides many 
functions that making sorting array values easy. Here are just a few common array - sorting functions, 
although you will find a more extensive list in Appendix  C .   

   sort($array) : Sorts an array in ascending value order  

   rsort($array) : Sorts an array in descending value order  

   asort($array) : Sorts an array in ascending value order while maintaining the key/value 
relationship  

   arsort($array) : Sorts an array in descending value order while maintaining the key/value 
relationship       

❑

❑

❑

❑



62

Part I: Movie Review Web Site

 Try It Out  Sorting Arrays   

 Before we go further, let ’ s do a quick test on sorting arrays, so you can see how the array acts when it 
is sorted. Type the following program in your text editor, and call it  sorting.php .   

 < ?php
$flavors[] = ‘blue raspberry’;
$flavors[] = ‘root beer’;
$flavors[] = ‘pineapple’;
                   
sort($flavors);
print_r($flavors);
? >    

  How It Works 
 Notice anything weird in the preceding code? Yes, we ’ ve introduced a new function:  print_r() . This 
simply prints out information about a variable so that people can read it. It is frequently used to check 
array values, specifically. The output would look like that in Figure  2 - 17 .   

Figure 2-17

 You can see that the  sort()  function has done what it ’ s supposed to, and sorted the values in 
ascending alphabetical order. You can also see the keys that have been automatically assigned to each 
value (and reassigned by  sort()  in this case).  

 



Chapter 2: Creating PHP Pages Using PHP6

63

  foreach Constructs 
 PHP also provides a  foreach  command that applies a set of statements for each value in an array. What 
an appropriate name, eh? 

 Your syntax for the  foreach  command looks like this: 

 < ?php
$flavors[] = ‘blue raspberry’;
$flavors[] = ‘root beer’;
$flavors[] = ‘pineapple’;
                   
echo ‘My favorite flavors are: < br/ > ’;
foreach ($flavors as $current_flavor) {
    //these lines will execute as long as there are more values in $flavors
    echo $current_flavor  ‘ < br/ >  ‘;
}
? >   

 This produces a list of each of the flavors in whatever order they appear in your array. 

 When PHP is processing your array, it keeps track of what key it ’ s on by using an internal array  pointer . 
When your  foreach  construct is called, the pointer is ready and waiting patiently at the first key/value 
in the array. At the end of the loop, the pointer has moved down through the list and remains at the end, 
or the last key/value in the array.     

        Try It Out  Adding Arrays    

 In this exercise, you ’ ll see what happens when you add arrays to the  moviesite.php  file. You ’ ll also 
sort them and use the  foreach  construct.   

  1.   Make the following highlighted changes to the  moviesite.php  file: 

 < ?php
session_start();
                   
//check to see if user has logged in with a valid password
if ($_SESSION[‘authuser’] !=1 ) {
    echo “Sorry, but you don’t have permission to view this page!”;
    exit();
}
? > 
 < html > 
  < head > 
   < title > My Movie Site
 < ?php
if (isset($_GET[‘favmovie’])) {
    echo ‘ - ‘;
    echo $_GET[‘favmovie’];
}
? > 
   < /title > 



64

Part I: Movie Review Web Site

  < /head > 
  < body > 
 < ?php include ‘header.php’; ? > 
 < ?php

$favmovies = array(‘Life of Brian’,
                   ‘Stripes’,
                   ‘Office Space’,
                   ‘The Holy Grail’,
                   ‘Matrix’, 
                   ‘Terminator 2’, 
                   ‘Star Trek IV’, 
                   ‘Close Encounters of the Third Kind’,
                   ‘Sixteen Candles’, 
                   ‘Caddyshack’);

                   
//delete these lines:
function listmovies_1() {
    echo ‘1. Life of Brian < br/ > ’;
    echo ‘2. Stripes < br/ > ’;
    echo ‘3. Office Space < br/ > ’;
    echo ‘4. The Holy Grail < br/ > ’;
    echo ‘5. Matrix < br/ > ’;
}
                   
function listmovies_2() {
    echo ‘6. Terminator 2 < br/ > ’;
    echo ‘7. Star Trek IV < br/ > ’;
    echo ‘8. Close Encounters of the Third Kind < br/ > ’;
    echo ‘9. Sixteen Candles < br/ > ’;
    echo ‘10. Caddyshack < br/ > ’;
}
//end of deleted lines
                   
if (isset($_GET[‘favmovie’])) {
    echo ‘Welcome to our site, ‘;
    echo $_SESSION[‘username’];
    echo ‘!  < br/ > ’;
    echo ‘My favorite movie is ‘;
    echo $_GET[‘favmovie’];
    echo ‘ < br/ > ’;
    $movierate = 5;
    echo ‘My movie rating for this movie is: ‘;
    echo $movierate;

} else {
    echo ‘My top 10 favorite movies are: < br/ > ’;
     
    if (isset($_GET[‘sorted’])) {
        sort($favmovies);
    }
                   
    echo ‘ < ol > ’;     
    foreach ($favmovies as $movie) {
        echo ‘ < li > ’;
        echo $movie;



Chapter 2: Creating PHP Pages Using PHP6

65

        echo ‘ < /li > ’;
    }
    echo ‘ < /ol > ’;
                   
    // delete these lines:
    echo ‘My top ‘;
    echo $_GET[‘movienum’];
    echo ‘ movies are:’;
    echo ‘ < br/ > ’;
     
    listmovies_1();
    if ($_GET[‘movienum’] == 10) {
        listmovies_2();
    }
    // end of deleted lines

}     
? > 
  < /body > 
 < /html >    

  2.   Then change  movie1.php  as shown here: 

 < ?php
session_start();
$_SESSION[‘username’] = $_POST[‘user’];
$_SESSION[‘userpass’] = $_POST[‘pass’];
$_SESSION[‘authuser’] = 0;
                   
//Check username and password information
if (($_SESSION[‘username’] == ‘Joe’) and
    ($_SESSION[‘userpass’] == ‘12345’)) {
    $_SESSION[‘authuser’] = 1;
} else {
    echo ‘Sorry, but you don\’t have permission to view this page!’;
    exit();     
}
? > 
 < html > 
  < head > 
   < title > Find my Favorite Movie! < /title > 
  < /head > 
  < body > 
 < ?php include ‘header.php’; ? > 
 < ?php
$myfavmovie = urlencode(‘Life of Brian’);
echo “ < a href=\”moviesite.php?favmovie=$myfavmovie\” > ”;
echo “Click here to see information about my favorite movie!”;
echo “ < /a > ”;
? > 
   < br/ > 
   < !-- delete these lines



66

Part I: Movie Review Web Site

   < a href=”moviesite.php?movienum=5” > Click here
   to see my top 5 movies. < /a > 
   < br/ > 
   < a href=”moviesite.php?movienum=10” > Click here
   to see my top 10 movies. < /a > 
  end of deleted lines -- > 
                   
   < a href=”moviesite.php” > Click here to see my
   10 movies. < /a > 
   < br/ > 
   < a href=”moviesite.php?sorted=true” > Click here
   to see my top 10 movies sorted alphabetically. < /a > 
                   
  < /body > 
 < /html >    

  3.   Now log in with the  login.php  file (log in as Joe with password 12345), and when you get the 
choice, click the link that lists the top 10 movies. You should see something like Figure  2 - 18 .    

Figure 2-18

  4.   Go back to  movie1.php , and this time click the link that lists the movies sorted in alphabetical 
order. This time, you should see something like Figure  2 - 19 .       



Chapter 2: Creating PHP Pages Using PHP6

67

  How It Works 
 You first put the movie list in one variable,  $favmovies , with the array function. Then you were 
able to list the movies individually, using the  foreach  construct in  moviesite.php . You also added 
a link that would allow users to show the list sorted alphabetically, by adding a variable named  
$_GET[sorted] . When this variable was set to  true , the  sort()  function executed, and you passed 
that  true  variable through the URL in the link. 

 You may have noticed a shortcoming in the program  . . .  okay, you may have noticed many 
shortcomings, but one in particular stands out. You can no longer control how many movies are 
shown in your list. You are stuck with showing the total number of movies in the array. There ’ s a 
way to fix that, which is what we ’ ll talk about next.   

  While You ’ re Here  . . .  
 You ’ ve seen that  foreach  will take an action on each element of an array until it reaches the end, but 
you can also take an action on just some of the elements in an array, with the  while  statement. A  while  
statement tells the server to execute a series of statements repeatedly as long as a given condition is true. 

 Here ’ s an example of how you would use the  while  command. This code simply counts from 1 to 5 and 
prints each number on a separate line. First a variable  $num  is set to 0. This variable is then increased by 
1 each time through the loop. The  while  checks to see that the value of  $num  is less than 5. After five 
times through the loop, the value of  $num  is 6, so the loop ends.   

Figure 2-19



68

Part I: Movie Review Web Site

 < ?php
$num = 0;
while ($num  <  5) {
    $num = $num + 1;
    echo $num;
    echo ‘ < br/ > ’;
} 
? >   

       The following code does the same thing, but it uses a  do / while  loop instead. This code works exactly 
the same way, except that the condition is checked at the end of the loop. With a  while  loop, it is 
possible for the condition to be false and the associated code never to execute. But with the check at the 
end, as with a  do / while  loop, then the commands inside the loop will always be executed at least once.   

 < ?php
$num = 0;
do {
    $num = $num + 1;
    echo $num;
    echo ‘ < br/ > ’;
} while ($num  <  5);
? >      

 Try It Out Using the while Function   

 This exercise allows users to tell you how many movies they want to see, and enables you to number 
the list as you did before, using the  while  function.   

  1.   Make the following changes to your  movie1.php  program: 

 < ?php
session_start();
$_SESSION[‘username’] = $_POST[‘user’];
$_SESSION[‘userpass’] = $_POST[‘pass’];
$_SESSION[‘authuser’] = 0;
                   
//Check username and password information
if (($_SESSION[‘username’] == ‘Joe’) and
    ($_SESSION[‘userpass’] == ‘12345’)) {
    $_SESSION[‘authuser’] = 1;
} else {
    echo ‘Sorry, but you don\’t have permission to view this page!’;
    exit();     
}
? > 
 < html > 
  < head > 
   < title > Find my Favorite Movie! < /title > 
  < /head > 
  < body > 
 < ?php include ‘header.php’; ? > 
 < ?php
$myfavmovie = urlencode(‘Life of Brian’);
echo “ < a href=\”moviesite.php?favmovie=$myfavmovie\” > ”;



Chapter 2: Creating PHP Pages Using PHP6

69

echo “Click here to see information about my favorite movie!”;
echo “ < /a > ”;
? > 
   < br/ > 

   < !-- delete these lines
   < a href=”moviesite.php?” > Click here to see my top
   10 movies. < /a > 
   < br/ > 
   < a href=”moviesite.php?sorted=true” > Click here
   to see my top 10 movies sorted alphabetically. < /a > 
   end deleted lines -- > 
                   
   < br/ > 
  Or choose how many movies you would like to see:
   < br/ > 
   < form method=”post” action=”moviesite.php” > 
    < p > Enter number of movies (up to 10): 
     < input type=”text” name=”num” maxlength=”2” size=”2”/ > 
     < br/ > 
    Check to sort them alphabetically: 
     < input type=”checkbox” name=”sorted” / > 
    < /p >      
    < input type=”submit” name=”submit” value=”Submit”/ > 
   < /form > 

  < /body > 
 < /html > 
                      

  2.   Make the following changes to  moviesite.php : 

 < ?php
session_start();
                   
//check to see if user has logged in with a valid password
if ($_SESSION[‘authuser’] !=1 ) {
    echo “Sorry, but you don’t have permission to view this page!”;
    exit();
}
? > 
 < html > 
  < head > 
   < title > My Movie Site
 < ?php
if (isset($_GET[‘favmovie’])) {
    echo ‘ - ‘;
    echo $_GET[‘favmovie’];
}
? > 
   < /title > 
  < /head > 
  < body > 
 < ?php include ‘header.php’; ? > 
 < ?php



70

Part I: Movie Review Web Site

$favmovies = array(‘Life of Brian’,
                   ‘Stripes’,
                   ‘Office Space’,
                   ‘The Holy Grail’,
                   ‘Matrix’, 
                   ‘Terminator 2’, 
                   ‘Star Trek IV’, 
                   ‘Close Encounters of the Third Kind’,
                   ‘Sixteen Candles’, 
                   ‘Caddyshack’);
                   
if (isset($_GET[‘favmovie’])) {
    echo ‘Welcome to our site, ‘;
    echo $_SESSION[‘username’];
    echo ‘!  < br/ > ’;
    echo ‘My favorite movie is ‘;
    echo $_GET[‘favmovie’];
    echo ‘ < br/ > ’;
    $movierate = 5;
    echo ‘My movie rating for this movie is: ‘;
    echo $movierate;
} else {

    echo ‘My top ‘ . $_POST[‘num’] . ‘ favorite movies’;
     
    if (isset($_POST[‘sorted’])) {
        sort($favmovies);
        echo ‘ (sorted alphabetically) ‘;
    }
    echo ‘are: < br/ > ’;
                   
    // delete these lines
    echo ‘ < ol > ’;     
    foreach ($favmovies as $movie) {
        echo ‘ < li > ’;
        echo $movie;
        echo ‘ < /li > ’;
    }
    echo ‘ < /ol > ’;
    // end of deleted lines
                   
    $numlist = 0;
    echo ‘ < ol > ’;
    while ($numlist  <  $_POST[‘num’]) {
        echo ‘ < li > ’;
        echo $favmovies[$numlist];
        echo ‘ < /li > ’;
        $numlist = $numlist + 1;
    }
    echo ‘ < /ol > ’;

}     
? > 
  < /body > 
 < /html > 
                      



Chapter 2: Creating PHP Pages Using PHP6

71

Figure 2-20

Figure 2-21

  3.   Now play around with your new  movie1.php  and  moviesite.php  files.  movie1.php  will 
look like Figure  2 - 20 . Depending on how many movies you chose to show, and if they should 
be sorted alphabetically or not,  moviesite.php  may look like Figure  2 - 21 .       



72

Part I: Movie Review Web Site

 How It Works 
 Your code should show a list of the top movies based on how many you, as the user, chose to see and 
whether or not you wanted them listed alphabetically. 

 You ’ ll notice several things in the code: 

  We added a little trick to the normal  echo  statement   —   the use of periods to concatenate the 
statement like this: 

echo ‘My top ‘ . $_POST[‘num’] . ‘ movies’;  

  This way, you can slip in and out of quotes virtually undetected.  

  You set  $numlist  to 0, and this will keep track of what number you ’ re on.  

  You are using the variable  $_POST[‘num’]  to place a limit on the number of movies to be listed; 
this is the number the user input from the form in  movie1.php .  

  The statement that increments 1 to  $numlist  is the last statement of the  while  block. If it were 
the first one, as in our earlier  while  and  do / while  examples, then the first movie title in the 
array displayed would be  $favmovies[1] . When PHP automatically numbers arrays, it starts 
with 0, so the first movie title would be skipped over. This problem is called an off - by - one error 
and is a common problem when working with arrays. Where you place the statement to 
increment your pointer variable is important!    

Now see, that wasn ’ t so hard, was it? You ’ re really cooking now!

  Alternate Syntax for  PHP  
 As a programmer, it ’ s always great when you can find a quicker and easier way to make something 
happen. We have included some useful shortcuts or alternate syntax for tasks you are already familiar 
with. 

  Alternates to the echo Command 
 You already got a taste of  print_r() , but you can also use the  print  command to display text or 
variable values in your page. The difference between  echo  and  print  is that when you use  print , a 
value of 1 or 0 will also be returned upon the success or failure of the  print  command. In other words, 
you would be able to tell if something didn ’ t print using the  print  command, whereas  echo  just does 
what it ’ s told without letting you know whether or not it worked properly. For all other intents and 
purposes, the two are the same.  

❑

❑

❑

❑



Chapter 2: Creating PHP Pages Using PHP6

73

  Alternates to Logical Operators 
 You may remember that  and  and  or  are obvious logical operators you use when comparing two 
expressions, but there are other ways to express these operators: 

    &  &   can be used in place of  and , the only difference being the order in which the operator is 
evaluated during a mathematical function.  

   ||  can be used in place of  or , the only difference being the order in which the operator is 
evaluated during a mathematical function.     

  Alternates to Double Quotes: Using heredoc 
 Besides using double quotation marks to block off a value, you can also use the  heredoc  syntax: 

$value =  <  <  < ABC
This is the text that will be included in the value variable.
ABC;  

 This is especially helpful if you have double quotes and single quotes within a block of text, such as: 

$value =  <  <  < ABC
Last time I checked, I was 6’-5” tall.
ABC;  

 This keeps you from having to escape those characters out, and keeps things much simpler. Your ABC 
syntax can consist of any characters, just as long as they match. There is one caveat, though  . . .  you need 
to make sure there are no extra spaces after the first ABC (the marker needs to be the last thing on its 
line) or before the last ABC (that marker must be the first thing on its line). PHP will give you an error if 
either marker isn ’ t in the appropriate position.  

  Alternates to Incrementing/Decrementing Values 
 You can have variable values incremented or decremented automatically, like this:

     Syntax Shortcut      What It Does to the Value   

     ++$value     Increases by one, and returns the incremented value  

     $value++     Returns the value, then increases by one  

      -  - $value     Decreases by one, and returns the decremented 
value  

     $value -  -      Returns the value, then decreases by one  

     $value = $value + 1     Increases the value by one  

     $value += 1     Increases the value by one  

❑

❑



74

Part I: Movie Review Web Site

   OOP  Dreams 
 Object - oriented Programming (OOP) focuses on building programs from a set of  “ smart ”  or  “ self - aware ”  
custom data types. The ability to design code modularly hopefully helps save you time, reduces stress 
and makes it easier to reuse your code or share it with others. Here, we ’ ll take a quick run through the 
syntax that is associated with OOP in PHP. As a beginner, you won ’ t really need to delve into the world 
of OOP (we do that in later chapters of this book), but it ’ s important for you to understand the most 
basic concepts behind OOP. 

 First, imagine a box. It can be any type of box you want   —   a small jewelry box, a large wooden crate, 
plastic, tall and thin, short and wide  . . .  you get the idea. 

 Next, imagine yourself placing something inside the box. Again, it can be whatever you choose   —   a 
rock, a million dollars, a younger sibling  . . .  

 Finally, close it up nice and tight   —   seal it with packing tape, nails, iron chains, encase it in concrete  . . .  

 Now, wouldn ’ t it be convenient if you could walk up to this box and ask it to tell you what ’ s inside it, 
instead of having to go through all the trouble of opening it up again to look? With OOP, you can! Here ’ s 
how this might appear as code: 

 < ?php
$mybox = new Box(‘Jack’);
echo $mybox- > get_what_is_inside();
? >   

 The variable  $mybox  stores a reference to a special  “ self - aware ”  box (also known as an object) built by  new . 
You might find it helpful to think of  new  as a small engineering and construction team that ’ s part of PHP and 
just loves to build new objects!  Jack  is placed inside the  Box  as it is being built. Later, when you want to ask 
the box its contents, you apply the special  get_whats_inside() function against the object ’ s reference. 

 Of course, the code won ’ t run.  new  doesn ’ t know how to construct  Box  yet, and PHP doesn ’ t know what 
the function  get_what_is_inside() is supposed to do. There must be a  Box  definition. 

  Classes 
 A class is a representation of an abstract data type. In layman ’ s terms, it ’ s the blueprint  new  will use to 
construct the object. A class provides the variable and function definitions that enable the box to be self -
 aware. With such a blueprint,  new  can build an object exactly to your specifications. Here ’ s the class 
definition for  Box : 

 < ?php
class Box
{
    private $what_is_inside;
                   
    public function __construct($contents) {
        $this- > what_is_inside = $contents;
    }
                   
    public function get_whats_inside() {



Chapter 2: Creating PHP Pages Using PHP6

75

        return $this- > what_is_inside;
    }
}
? >   

 A class ’ s definition begins with the keyword  class  followed by whatever name you assign to 
it, and its variables and methods within braces. By observing the definition above, you ’ ll notice it 
contains the variable  $what_is_inside , which is used to remember the contents, and two functions:  
__construct() and  get_what_is_inside() . 

 When the box springs into existence, PHP will look for and execute the  __construct()  function 
automatically. Known as a constructor, its purpose is to initialize the object ’ s internal variables. 

 The special variable  $this  is used to tell  Box  that  $what_is_inside  is a variable that belongs to the 
scope of the whole  Box  class, and not the functions themselves. The  $contents  variable, on the other 
hand, only exists within the scope of the constructor.  $this -  > what_is_inside  then is essentially a 
variable defined as part of the overall class and is available within any of its functions. 

 With a definition in place,  new  can create a Box object, the  __construct() function will automatically be 
called with  Jack  passed in. The constructor accepts the value and uses it to initialize  $what_is_inside , 
an internal variable that is accessible to functions that make up the class. The function  get_what_is_
inside() then retrieves the stored value from the class ’ s  $what_is_inside  variable. 

 Congratulations on your nice, new, shiny Jack - in - the - Box!  

  Properties and Methods 
 We ’ ve been using the terms variable and function when talking about  $what_is_inside  and  get_
what_is_inside() because they are words you ’ re already familiar with. While these terms are not 
necessarily incorrect, the more appropriate names in OOP parlance are  property  and  method . 

 Variables that are defined as part of the class ’ s definition and that are accessible in its functions are 
known as  properties . They maintain the object ’ s state and other attribute information. 

 Functions defined in a class are known as  methods . They act as a method for communicating with and 
manipulating the data within the object. Methods provide the object with a standard interface that 
anyone can use. 

 The visibility of the properties and methods of a class can be set as public or private. Those that are 
marked with the  private  keyword are only accessible from within the class itself. Those marked with 
the  public  keyword, on the other hand, are accessible from both inside and outside the class.  

  Why Use  OOP ? 
 Using OOP has a few benefits over simply including a file with functions in it. First, with OOP, you can 
easily keep bits of related information together and perform complex tasks with that data. Objects wrap 
up not only the functions but the data the functions manipulate as well. Second, you can process the data 
an unlimited number of times without worrying about variables being overwritten. Third, you can have 
multiple copies of the same class running at the same time, without the internal variables being 
corrupted or overwritten. 



76

Part I: Movie Review Web Site

 OOP is an advanced concept, which is why we won ’ t use it until later on in this book. For now, we ’ ve 
kept it simple to let you digest the basics.   

  Summary 
 Although we ’ ve covered many different topics in this chapter, our goal was to give you enough 
ammunition to get started on your own web site. Our hope is that you are beginning to realize the 
power of PHP and how easy it is to jump in and get started. As we talk about database connectivity in 
Chapter  3 , you will start to see how PHP can work with a database to give you a very impressive site. 

 PHP is straightforward, powerful, and flexible. There are numerous built - in functions that can save you 
hours of work ( date() for example, which takes one line to show the current date). You can find a 
helpful list of PHP functions in Appendix  C ; browse that list to find bits and pieces you can use in your 
own site development.  

  Exercises 
 To build your skills even further, here is an exercise you can use to test yourself. The answers are provided in 
Appendix  A , but keep in mind that there is always more than one way to accomplish a given task, so if 
you choose to do things a different way, and the results are displayed the way you want, more power to you. 

 Try modifying your PHP files in the following ways: 

  1.   Go back to your  date.php  file, and, instead of displaying only the number of days in the 
c urrent month, add a few lines that say:  

     The month is                    .  

     There are             days in this month.  

     There are                months left in the current year.  

  2.   On your movie web site, write a file that displays the following line at the bottom center of 
every page of your site, with a link to your e - mail address. 

  This site developed by:  ENTER YOUR NAME HERE .  

  3.   Write a program that displays a different message based on the time of day. For example, have 
the site display  “ Good Morning! ”  if it is accessed in the morning.  

  4.   Write a program that formats a block of text (to be input by the user) based on preferences 
 chosen by the user. Give your user options for color of text, font choice, and size. Display the 
output on a new page.  

  5.   In the program you created in step 4, allow your users the option of saving the information for 
the next time they visit. If they choose  “ yes, ”  save the information in a cookie. 

6.  Using functions, write a program that keeps track of how many times a visitor has loaded the 
page.              



                                                                                                        3
    Using  PHP  with My SQL           

 So now that you ’ ve done some really cool stuff with PHP in Chapter  2 , such as using includes and 
functions, it ’ s time to make your web site truly dynamic and show users some real data. You may 
or may not have had experience with using or configuring databases before, so we ’ ll take a look at 
what MySQL is and how PHP can tap into it. We will also show you what a MySQL database looks 
like in terms of the different tables and fields, and give you some quickie shortcuts to make your 
life much easier. (You can thank us later for those.) 

 By the end of this chapter, you will be able to: 

  Understand what a MySQL database is  .

  View data contained in the MySQL database  .

  Connect to the database from your web site  .

  Pull specific information out of the database, right from your web site  .

  Use third - party software to easily manage tables  .

  Use the source web site to troubleshoot problems you may encounter    .

 Although some of this information is expanded upon in later chapters, this chapter lays the 
groundwork for the more complex issues.  

  Overview of My SQL  Structure and Syntax 
 Databases are stores of information. They allow one to easily record and then access large amounts 
of information for a wide variety of purposes. Because pretty much any type of data can be stored 
in a database, they can be found in use literally everywhere. Databases store names and addresses, 
medical records, police reports, sale transactions, information about music and video collections, 
and more! In the web sites you create as you work through this book, you will be storing 
information pertinent to the movie review site (such as movie titles and years of release) and comic 
book fan information (such as a list of authentic users/comic book fans and their passwords) in a 
MySQL database. 

❑

❑

❑

❑

❑

❑



78

Part I: Movie Review Web Site

 MySQL commands can be issued through the command prompt, as you did in Chapter  1  when you were 
installing it and granting permissions to users, or through PHP. We primarily use PHP to issue 
commands in this book, and we will discuss this shortly. 

  My SQL  Structure 
 In a nonrelational database system, all information is stored in one big area, which sometimes makes it 
more difficult and cumbersome to extract only the data you want. But MySQL is a relational database 
system, which allows you to separate information into  tables , or groups of pertinent information. Each 
table consists of separate  fields , which represent each bit of information. For example, one field could 
contain a customer ’ s first name, and another field could contain his or her last name. Fields can hold 
different types of data, such as text, numbers, dates, and so on. 

 If you are familiar with spreadsheet programs such as Microsoft Excel and OpenOffice.org Calc, you 
may find it helpful to think of a table as akin to a spreadsheet. Each spreadsheet acts as a table, with each 
row comprising one record and each column a different field. As the spreadsheet workbook is a 
collection of related spreadsheets, a database is a collection of related tables. 

 You create database tables based on what type of information you want to store in them. The separate 
tables of MySQL are then linked together with some common denominator, where the values of the 
common field are the same. 

 For an example of this structure, imagine a table that includes a customer ’ s name, address, and ID 
number, and another table that includes the customer ’ s ID number and the past orders the customer has 
placed. The common field is the customer ’ s ID number, and the information stored in the two separate 
tables would be linked together via fields where the ID number is the same. This enables you to see all 
the information related to this customer at one time. 

 Let ’ s take a look at the ways in which you can tailor database tables to fit your needs. 

  Field Types 

 When you create a table initially, you need to tell the MySQL database what types of information will be 
stored in each field. The different types of fields and some examples are listed in the table that follows. 

     MySQL Field Type      Description      Example   

     char(length)     Any character - based data can be 
stored in this field, but the field 
will have a fixed length denoted by 
the value in the parentheses.  

  Customer ’ s State field 
always has two characters 
and would use  char(2) .  

     varchar(length)     Any character - based data can be in 
this field, and the data can vary in 
length from 0 up to 255 characters. 
The maximum length of the field is 
denoted in parentheses.  

  Customer ’ s Address field 
has letters and numbers and 
varies in length.  



Chapter 3:   Using  PHP  with My SQL       

79

     MySQL Field Type      Description      Example   

     int(length)     Integers that can range from  
� 2,147,483,648 to +2,147,483,647 
can be stored in this field. The 
 length  parameter limits the 
number of digits that can be 
shown, not the value. 
Mathematical functions can be 
performed on data in this field.  

  Quantity of a product on 
hand.  

     int(length)     unsigned     Positive integers (and zero) up to 
4,294,967,295 can be in this field. 
The  length  parameter limits the 
number of digits that can be 
displayed. Mathematical functions 
can be performed on data in this 
field.  

  Customer ID (if entirely 
numerical).  

     text     Any character - based data can be in 
this field, with a maximum size of 
65,536 characters.  

  Comments field that allows 
longer text to be stored 
without limiting the field to 
255 characters.  

     decimal(length,dec)     Numeric field that can store 
decimals. The  length  parameter 
limits the number of digits that can 
be displayed, and the  dec  
parameter limits the number of 
decimal places that can be stored.  

  Prices. For example, a price 
field that would store prices 
up to 999.99 would be 
defined as  decimal(5,2) .  

     enum( “ option1 ” , 
 “ option2 ” ,  ... )   

  Allows only certain values to be 
stored in this field, such as  “  true  ”  
and  “  false , ”  or a list of states. 
65,535 different options are 
allowed.  

  Gender field for your users 
will have a value of either 
 “ male ”  or  “ female. ”   

     date     Stores a date in  YYYY - MM - DD  
format.  

  Date of an order, a birthday, 
or the date a user joined as a 
registered user.  

     time     Stores time in  hh:mm:ss  format.    Time a news article was 
added to the web site.  

     datetime     Multipurpose field that stores both 
the date and time together as 
 YYYY - MM - DD hh:mm:ss .  

  Last date and time a user 
visited your web page.  



80

Part I: Movie Review Web Site

 Although the preceding field types should suffice for most of your needs, the table that follows lists 
some perhaps less - often - used types. 

     MySQL Field Type      Description   

     year(length)     Stores a year. By default, the year is four digits, though it is possible to 
specify a two - digit format by using the length parameter.  

     tinyint(length)     Numeric field that stores integers from  - 128 to 127. (Adding the 
 unsigned  parameter allows storage of 0 to 255.)  

     smallint(length)     Numeric field that stores integers from  - 32,768 to 32,767. (Adding the 
 unsigned  parameter allows storage of 0 to 65,535.)  

     mediumint(length)     Numeric field that stores integers from  - 8,388,608 to 8,388,607. (Adding 
the  unsigned  parameter allows storage of 0 to 16,777,215.)  

     bigint(length)     Numeric field that stores integers from   � 9,223,372,036,854,775,808 to 
9,223,372,036,854,775,807. (Adding the  unsigned  parameter allows 
storage of 0 to 18,446,744,073,709,551,615.)  

     tinytext     Allows storage of up to 255 characters.  

     mediumtext     Allows storage of up to 1,677,215 characters.  

     longtext     Allows storage of up to 4,294,967,295 characters.  

     blob     Equal to a text field, except that it is case - sensitive when sorting and 
comparing. Stores up to 65,535 characters.  blob  and its derivatives 
(which follow) are generally used to store binary data.  

     tinyblob     Equal to the  tinytext  field, except that it is case - sensitive when sorting 
and comparing; see  blob , above.  

     mediumblob     Equal to the  mediumtext  field, except that it is case - sensitive when 
sorting and comparing; see  blob , above.  

     longblob     Equal to the  longtext  field, except that it is case - sensitive when sorting 
and comparing; see  blob , above.  

 Believe it or not, even more data types are supported by MySQL! You can find a complete list of them in 
Appendix  D .  

  Choosing the Right Field Type 

 Although you won ’ t actually be creating a database from scratch just yet, you should know how to 
figure out what field type will best serve your needs. We ’ ve put together a list of questions about fields 
that you can ask yourself before your database tables have been created. As you answer each of these 
questions, keep in mind the potential values that could exist for the particular field you ’ re setting up. 



Chapter 3:   Using  PHP  with My SQL       

81

 First, ask yourself: Will the field contain both letters and numbers?   

  If the answer is  “ yes, ”  consider  char ,  varchar ,  text ,  tinytext ,  mediumtext ,  longtext , 
 blob ,  tinyblob ,  mediumblob , and  longblob . Then ask yourself: How many characters will 
need to be stored? Will it vary from entry to entry?  

❑    0 – 255 characters, variable length:  Use  varchar  if you want to delete any trailing spaces, 
or if you want to set a default value. Use  tinytext  if you don ’ t care about trailing 
spaces or a default value, or if your text does not need to be case - sensitive. Use  tinyblob  
if you don ’ t care about trailing spaces or a default value, but your text does need to be 
case - sensitive.  

❑    256 – 65,536 characters:  Use  text  if your text does not need to be case - sensitive in searches, 
sorts, or comparisons. Use  blob  if your text is case - sensitive.  

❑    65,537 – 1,677,215 characters:  Use  mediumtext  if your text does not need to be 
case - sensitive; use  mediumblob  if your text is case - sensitive.  

❑    1,677,216 – 4,294,967,295 characters:  Use  longtext  if your text does not need to be 
case - sensitive; use  longblob  if your text is case - sensitive.    

  If the answer is  “ Yes, it may contain letters or numbers, but it must be one of a finite number of 
values, ”  use  enum .  

  If the answer is  “ No, it will consist of dates and/or times only, ”  use  timestamp  if you need to 
store the time and date when the information was entered or updated. If you need to store 
only the date, use  date . If you need to store both the date and time, use  datetime . If you 
need only the year, use  year .  

  If the answer is  “ No, it will consist only of numbers, and mathematical functions will be 
performed on this field, ”  use one of the following, depending on the size of the number:  

❑   Integers from  � 127 to 127, use  tinyint .  

❑   Integers from  � 32,768 to 32,767, use  smallint .  

❑   Integers from  � 8,388,608 to 8,388,607, use  mediumint .  

❑   Integers from  � 2,147,483,648 to 2,147,483,647, use  int .  

❑   Integers from  � 9,223,372,036,854,775,808 to 9,223,372,036,854,775,807, use  bigint .  

❑   Integers from 0 to 255, use  tinyint  unsigned.  

❑   Integers from 0 to 65,535, use  smallint  unsigned.  

❑   Integers from 0 to 16,777,215, use  mediumint  unsigned.  

❑   Integers from 0 to 4,294,967,295, use  int  unsigned.  

❑   Integers from 0 to 18,446,744,073,709,551,615, use  bigint  unsigned.  

❑   Decimals with fixed decimal places, use  dec .    

  If the answer is  “ No, it will consist of only numbers, but mathematical functions will not be 
performed on this field, ”  use the preceding guidelines for text/number mix in the field.    

❑

❑

❑

❑

❑



82

Part I: Movie Review Web Site

 If your field requirements do not fall into any of these categories, check Appendix  D  for a complete list of 
all available field types. You can also check the documentation at the MySQL web site ( www.mysql.com ) 
if you are still unsure about what type of field you need.  

  null/not null 

 Your MySQL server also wants to know whether or not the field can be empty. You establish this with the 
 null  or  not     null  option.  null  tells MySQL that it is okay if nothing is stored in the field, and  not     null  
tells MySQL to require  something ,  anything , to be stored there. Be careful, though. The number zero is 
different from a  null  entry. A zero may be nothing in terms of quantity, but it  is  something in terms of data. 

 If a field has been defined as  not     null  and nothing is entered by the user, MySQL will enter a 0 in the field 
instead of producing an error. It is for this reason that you should not rely on MySQL to check data for 
accuracy, and instead put checks into place using PHP. We talk more about data validation in Chapter  8 .  

  Indexes 

 MySQL uses  indexes  to speed up the process of searching for a particular row of information. Here ’ s how 
indexes work: Imagine you have a room full of stacks upon stacks of receipts of everything you have 
ever bought in your life. Then you find you have to return some zippered parachute pants you bought in 
1984, but unfortunately you need the receipt. So you start sifting through the massive stacks of papers. 
Lo and behold, five days later, you find the receipt in the last pile in the room. After cursing to yourself 
that perhaps you should get a little more organized, you realize you could at least group them by year of 
purchase. And then you start getting  really  organized and group them further into categories, such as 
apparel, 8 - track tapes, and so on. So the next time you need to return something you purchased many 
years ago, you can at least jump to the correct pile and even know what category to look in. It all makes 
sense, right? 

 Now imagine that your data is stored all willy - nilly in rows within your table. Every time you want to 
search for something, you have to start at the first record and make your way down through all the rows 
until you find what you are looking for. What if you have 10,000 rows, and the one you happen to be 
looking for is at the very end? Pull up your chair and take your shoes off because it could be a while. 

 By using a special internal filing system, MySQL can jump to the approximate location of your data 
much more quickly. It does this through the use of indexes, also known as  keys . In the receipt example, 
you decided to group your receipts by year. So if your receipts were stored in a database, an index entry 
would be  “ year. ”  As you continue to further group your receipts, another index would be created for 
 “ category. ”  

 MySQL requires at least one index on every table so that it has something to go by. Normally, you would 
use a  primary key , or unique identifier that helps keep the data separate. This field must be  NOT NULL  
and/or  UNIQUE ; an example would be a customer ID number to keep each of your customers separate. 
As an example, you could easily have two different customers with the name John Smith, so you need a 
way to tell the difference. In the receipts table example, you could create a primary key and assign each 
receipt its own identifying number so you can tell each receipt apart. 

 When the  unique  parameter is turned on, MySQL makes sure that absolutely no duplicates exist for a 
particular field. This is typically used for only the primary key in your table, but it can be used with any field. 
For example, what if you ran a contest in which only the first person from every state who visited would be 
allowed to join your web site? You could use the  unique  parameter; then, anyone from a state whose slot has 
already been filled will get an error message when he or she tries to insert data into your website.  



Chapter 3:   Using  PHP  with My SQL       

83

  Auto - Increment 

 Say you have a field that you want to automatically increase by one whenever a new record is added. 
This can be a quite useful function when assigning ID numbers. You don ’ t have to worry about what the 
last ID number was; the field automatically keeps track for you, and you can be sure each new record 
will be given a new, unique value. 

 You can designate a field to be auto - incremented by simply adding the  auto_increment  command 
when setting up your table. You can also determine what the first number in the count will be, if you 
don ’ t want it to be 1. You will see this in action later in the chapter.  

  Other Parameters 

 You can make other specifications when creating your database, but those are for more advanced 
MySQL users. For a complete list of these parameters, we encourage you to visit the MySQL web site, 
 www.mysql.com .  

  Types of My SQL  Tables and Storage Engines 

 Now that you understand some of the general features of tables, you should know that there are two 
different types of tables: transaction - safe tables (TSTs) and non – transaction - safe tables (NTSTs). 
Transaction - safe tables allow lost data to be recovered, or perform a rollback of data to revert changes 
recently made. Non – transaction - safe tables are much faster and require much less memory to process 
updates, but changes are permanent with no real way to roll back changes if something goes wrong. 

 MySQL has many different storage engines available to store and retrieve data, but the five most 
common are: 

  MyISAM  

  MERGE  

  MEMORY  

  InnoDB  

  BDB    

 If you ’ re curious about other storage engines, issue the command  SHOW ENGINES  to MySQL to see which 
ones are available in your installation, and then read about them at  www.mysql.com .   

My ISAM  

 This is the default storage engine and will usually be sufficient for the average user ’ s needs. It supports 
all the field types, parameters, and functions we ’ ve talked about so far. It supports non – transaction - safe 
tables. If you ’ re a long - time MySQL user, this table replaces the older ISAM engine from long ago.     

MERGE  

 This storage engine can manipulate several identical MyISAM tables as one entity. It supports 
non – transaction - safe tables.     

❑

❑

❑

❑

❑



84

Part I: Movie Review Web Site

MEMORY  

 These are mostly used for temporary tables because of their incredible speed, but they don ’ t support a 
lot of the common features of the MyISAM table, such as  auto_increment  and  blob / text  columns. 
This type should be used in unique circumstances only. You might use it, for example, if you were 
working with user logs and you wanted to store the information in a temporary table to massage the 
data, but you didn ’ t necessarily need to keep the data long - term. The tables are stored in memory and 
are lost if power to the server is cut. This storage engine supports non – transaction - safe tables.    

Inno DB  

 This type supports transaction - safe tables. It is meant for extremely large and frequently accessed 
applications. It features a row - locking mechanism to prevent different users from attempting to make 
changes to a row or add the same row to the table. According to the MySQL   web site, one instance of this 
type of table has been shown to support 800 inserts and updates per second  —  not too shabby! You can 
also learn more about InnoDB at its own web site:  www.innodb.com .

     BDB  

 BDB, or BerkeleyDB, is another type of table that supports transaction - safe tables. It is actually its own 
entity that works closely with the MySQL server and can be downloaded from  www.oracle.com/
database/berkeley - db/index.html . Like InnoDB tables, it is meant to support very large 
applications with literally thousands of users attempting to insert and update the same data at the 
same time.    

  My SQL  Syntax and Commands 
 Although it is quite possible to access MySQL directly through a shell command prompt, we are going to 
access it through PHP for the purposes of this book. Regardless of the mode by which the MySQL server 
gets its information and requests, the syntax is the same. 

 Typically, you keep the MySQL commands in all caps, although this is not necessary. The purpose of this 
is to help keep the MySQL syntax separate from the variables and table or database names. 

 Common commands you will be using in this book include: 

   CREATE  :  Creates new databases and tables  

   ALTER  :  Modifies existing tables  

   SELECT  :  Chooses the data you want  

   DELETE  :  Erases the data from your table  

   DESCRIBE  :  Lets you know the structure and specifics of the table  

   INSERT INTO tablename VALUES  :  Puts values into the table  

   UPDATE  :  Lets you modify data already in a table  

   DROP  :  Deletes an entire table or database      

❑

❑

❑

❑

❑

❑

❑

❑



Chapter 3:   Using  PHP  with My SQL       

85

  How  PHP  Fits with My SQL  
 Since the onset of PHP6, you need to take a few extra steps to convince PHP and MySQL to play well 
with each other. Before your MySQL functions will be recognizable, make sure to enable MySQL in your 
 php.ini  file, which we covered in Chapter  1 . 

 You can use MySQL commands within PHP code almost as seamlessly as you do with HTML. 
Numerous PHP functions work specifically with MySQL to make your life easier; you can find a 
comprehensive list in Appendix  C . 

 Some of the more commonly used functions are: 

   mysql_connect([$host[, $username[, $password]]]) : Connects to the MySQL server 
and returns a resource which is used to reference the connection.  

   mysql_select_db($database[, $resource]) : Equivalent to the MySQL command  USE  and 
sets the active database.  

   mysql_query($query[, $resource]) : Used to send any MySQL command to the database 
server. In the case of  SELECT  queries, a reference to the result set will be returned.  

   mysql_fetch_array($result) : Return a row of data from the query ’ s result set as an 
associative array, numeric array or both.  

   mysql_fetch_assoc($result) : Return a row of data from the query ’ s result set as an 
associative array.  

   mysql_error([$resource]) : Shows the error message generated by the previous query.    

 You will become very familiar with these commands and many more. 

 You can send any MySQL command to the server through PHP, using the  mysql_query  command, as 
shown in the following example. You do this by sending the straight text through PHP, either through a 
variable or through the  mysql_query  command directly, like this: 

$results = mysql_query(‘SELECT * FROM TABLE’);  

 But one could argue it is better to do it in two steps, like this: 

$query = ‘SELECT * FROM TABLE’;
$results = mysql_query($query);  

 This way you can print out the value of  $query  for debugging purposes if there is a problem. Either 
way, the results of the query are put into a temporary array stored as  $results , which you ’ ll learn more 
about later.  

❑

❑

❑

❑

❑

❑



86

Part I: Movie Review Web Site

  Connecting to the My SQL  Server 
 Before you can do anything with MySQL, you must first connect to the MySQL server using your 
specific connection values. Connection variables consist of the following parameters: 

   Hostname:  In our case, this is  localhost  because everything has been installed locally. You will 
need to change this to whatever host is acting as your MySQL server, if MySQL is not on the 
same server.  

   Username and password:  We ’ re going to use a new username that we created for use with the 
examples throughout the rest of the book. Refer to the instructions in Chapter  1  on how to create 
a new user, and then create a user named  bp6am  with the password  bp6ampass .    

 You issue this connection command with the PHP function called  mysql_connect() . As with all of your 
PHP/MySQL statements, you can either put the information into variables or leave it as text in your 
MySQL query. 

 Here ’ s how you would do it with variables: 

$host = ‘localhost’;
$user = ‘bp6am’;
$pass = ‘bp6ampass’;
$db = mysql_connect($host, $user, $pass);  

 The following statement has the same effect: 

$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’);  

 For the most part, your specific needs and the way you are designing your table will dictate what piece 
of code you use. Most people use the first method for security ’ s sake and put the variables in a different 
file. Then they include them wherever they need to make a connection to the database.  

  Looking at a Ready - Made Database 
 Create the database that you will be using for your movie site. It consists of three tables: 

  A  movie  table, which stores the names of the movies and information about them  

  A  movietype  table, which stores the different categories of movies  

  A  people  table, which stores the names of the actors and directors in the movies    

 The typical syntax for a  CREATE  command is as follows: 

CREATE TABLE [IF NOT EXISTS]  tablename  (
     fieldname definition,      
    ...      
    [key definitions] 
)
 table options   

❑

❑

❑

❑

❑



Chapter 3:   Using  PHP  with My SQL       

87

 The typical syntax for an  INSERT  command is as follows: 

INSERT INTO  tablename 
    ( field names ...)
VALUES 
    (field values...)  

 You can set a few extra parameters for both commands, which you can learn more about in MySQL ’ s 
documentation at  www.mysql.com .    

           Try It Out Creating a Database    

 In this exercise, you ’ ll create the database and tables that will be used in the next several chapters of 
the book.   

  1.   Open your editor, and type the following code. This creates your database and the tables you 
need to hold the data.   

 < ?php
//connect to MySQL
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
                   
//create the main database if it doesn’t already exist
$query = ‘CREATE DATABASE IF NOT EXISTS moviesite’;
mysql_query($query, $db) or die(mysql_error($db));
                   
//make sure our recently created database is the active one
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
//create the movie table
$query = ‘CREATE TABLE movie (
        movie_id        INTEGER UNSIGNED  NOT NULL AUTO_INCREMENT, 
        movie_name      VARCHAR(255)      NOT NULL, 
        movie_type      TINYINT           NOT NULL DEFAULT 0, 
        movie_year      SMALLINT UNSIGNED NOT NULL DEFAULT 0, 
        movie_leadactor INTEGER UNSIGNED  NOT NULL DEFAULT 0, 
        movie_director  INTEGER UNSIGNED  NOT NULL DEFAULT 0, 
                   
        PRIMARY KEY (movie_id),
        KEY movie_type (movie_type, movie_year) 
    ) 
    ENGINE=MyISAM’;
mysql_query($query, $db) or die (mysql_error($db));
                   
//create the movietype table
$query = ‘CREATE TABLE movietype ( 
        movietype_id    TINYINT UNSIGNED NOT NULL AUTO_INCREMENT, 
        movietype_label VARCHAR(100)     NOT NULL, 
        PRIMARY KEY (movietype_id) 
    ) 



88

Part I: Movie Review Web Site

    ENGINE=MyISAM’;
mysql_query($query, $db) or die(mysql_error($db));
                   
//create the people table
$query = ‘CREATE TABLE people ( 
        people_id         INTEGER UNSIGNED    NOT NULL AUTO_INCREMENT, 
        people_fullname   VARCHAR(255)        NOT NULL, 
        people_isactor    TINYINT(1) UNSIGNED NOT NULL DEFAULT 0, 
        people_isdirector TINYINT(1) UNSIGNED NOT NULL DEFAULT 0, 
                   
        PRIMARY KEY (people_id)
    ) 
    ENGINE=MyISAM’;
mysql_query($query, $db) or die(mysql_error($db));
                   
echo ‘Movie database successfully created!’;
? >    

  2.   Save this file as  db_ch03 - 1.php .  

  3.   Create a new file, and name it  db_ch03 - 2.php . This is the file that will populate the database: 

 < ?php
// connect to MySQL
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
                   
//make sure you’re using the correct database
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
// insert data into the movie table
$query = ‘INSERT INTO movie
        (movie_id, movie_name, movie_type, movie_year, movie_leadactor,
        movie_director)
    VALUES
        (1, “Bruce Almighty”, 5, 2003, 1, 2),
        (2, “Office Space”, 5, 1999, 5, 6),
        (3, “Grand Canyon”, 2, 1991, 4, 3)’;
mysql_query($query, $db) or die(mysql_error($db));
                   
// insert data into the movietype table
$query = ‘INSERT INTO movietype 
        (movietype_id, movietype_label)
    VALUES 
        (1,”Sci Fi”),
        (2, “Drama”), 
        (3, “Adventure”),
        (4, “War”), 
        (5, “Comedy”),
        (6, “Horror”),
        (7, “Action”),
        (8, “Kids”)’;
mysql_query($query, $db) or die(mysql_error($db));



Chapter 3:   Using  PHP  with My SQL       

89

                   
// insert data into the people table
$query  = ‘INSERT INTO people
        (people_id, people_fullname, people_isactor, people_isdirector)
    VALUES
        (1, “Jim Carrey”, 1, 0),
        (2, “Tom Shadyac”, 0, 1),
        (3, “Lawrence Kasdan”, 0, 1),
        (4, “Kevin Kline”, 1, 0),
        (5, “Ron Livingston”, 1, 0),
        (6, “Mike Judge”, 0, 1)’;
mysql_query($query, $db) or die(mysql_error($db));
                   
echo ‘Data inserted successfully!’;
? >    

  4.   First, run  db_ch03 - 1.php  from your browser; then, run  db_ch03 - 2.php .     

 How It Works 
 We hope you didn ’ t have too many errors when running the previous files, and that you saw the two 
success statements. Although we tried to insert useful comments throughout the code, let ’ s dissect 
everything one step at a time. 

 First, you connected to the MySQL server so that you could begin sending MySQL commands and 
working with the database and tables. You also wanted to be told if there was an error, and you 
wanted your program to immediately stop running if there was one. You did this in the first few lines 
of code: 

// connect to MySQL
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);  

 Then you actually created the database itself. If for some reason the database could not be created, you 
told the server to stop running and show you what the problem was: 

//create the main database if it doesn’t already exist
$query = ‘CREATE DATABASE IF NOT EXISTS moviesite’;
mysql_query($query, $db) or die(mysql_error($db));  

 You also made sure to select your database, so the server would know which database you would be 
working with next: 

//make sure our recently created database is the active one
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));  

 Then you began making your individual tables, starting with the movie table. You defined the individual 
field names and set up their parameters with the following SQL: 

CREATE TABLE movie (
    movie_id        INTEGER UNSIGNED  NOT NULL AUTO_INCREMENT, 
    movie_name      VARCHAR(255)      NOT NULL, 
    movie_type      TINYINT           NOT NULL DEFAULT 0, 
    movie_year      SMALLINT UNSIGNED NOT NULL DEFAULT 0, 
    movie_leadactor INTEGER UNSIGNED  NOT NULL DEFAULT 0, 



90

Part I: Movie Review Web Site

    movie_director  INTEGER UNSIGNED  NOT NULL DEFAULT 0, 
                   
    PRIMARY KEY (movie_id),
    KEY movie_type (movie_type, movie_year) 
)
ENGINE=MyISAM  

 Once you had your MySQL statement ready to go, you just had to send it to the server with the 
 mysql_query()  function. Again, you told the server to stop executing the program and let you know 
what the error was, if there was one: 

mysql_query($query, $db) or die (mysql_error($db));  

 You also created the  movietype  and  people  tables in much the same way. 

 You assume that everything was successful if your program runs all the way to the end, so you output 
a success statement, just to let yourself know: 

echo ‘Movie database successfully created!’;  

 With your  moviedata.php  file, you populated the tables with information. First you had to connect to 
the MySQL server and select the database.   

//connect to MySQL
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
                   
//make sure you’re using the correct database
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));  

 Then you began by inserting data into the  movie  table. You first listed the columns you would be 
accessing, and you then listed the values for each record, as in the following SQL: 

INSERT INTO movie
   (movie_id, movie_name, movie_type, movie_year, movie_leadactor,
    movie_director)
VALUES
   (1, “Bruce Almighty”, 5, 2003, 1, 2),
   (2, “Office Space”, 5, 1999, 5, 6),
   (3, “Grand Canyon”, 2, 1991, 4, 3)  

 You did the same for the other two tables,  movietype  and  people . 

Then, because you instructed your program to die if there were any errors, you echoed a success 
statement to let yourself know that the entire program executed without errors:

echo ‘Data inserted successfully!’; 

 



Chapter 3:   Using  PHP  with My SQL       

91

  Querying the Database 
 Now that you have some data in the database, you probably want to retrieve it. You use the  SELECT  
statement to choose data that fits your criteria. 

 Typical syntax for this command is as follows: 

SELECT [ field names ] 
AS [ alias ]
FROM [ tablename ] 
WHERE [ criteria ] 
ORDER BY [ fieldname to sort on ] [ASC|DESC]
LIMIT [ offset ,  maxrows ]  

 You can set numerous other parameters, but these are the most commonly used: 

   SELECT [field names] : First decide what specific field names you want to retrieve. If you 
want to see them all, you can use  *  in place of the field names.  

   AS : You use alias field names so that you can reference them later as different names. An 
example would be: 

SELECT movie_name, movie_year AS relase_year FROM movie   

   FROM : You need to name the table or tables from which you are pulling the data.  

   WHERE : List your criteria for filtering out the data, as described in the following section.  

   ORDER BY : Use this parameter if you want the data sorted on a particular field. The results are 
returned in ascending order by default, though you can explicitly request ascending order with 
 ASC . If you want the results returned in descending order, use  DESC .  

   LIMIT : This enables you to limit the number of results returned and offset the first record 
returned to whatever number you choose. An example would be: 

LIMIT 9, 10     

 This would show records 10 through 19. This is a useful feature for pagination (showing only a certain 
number of records on a page and then allowing the user to click a Next page link to see more). 

 For a complete reference, we refer you to the official documentation at  www.mysql.com . 

   WHERE , oh  WHERE  
 The beast clause called  WHERE  deserves its own little section because it ’ s really the meat of the query. 
(No offense to the other clauses, but they are pretty much no brainers.)  WHERE  is like a cool big brother 
who can really do some interesting stuff. While  SELECT  tells MySQL which fields you want to see,  WHERE  
tells it which records you want to see. It is used as follows: 

// retrieves all information about all customers
SELECT * FROM customers;
                   
// retrieves all information about male customers
SELECT * FROM customers WHERE gender = “Male”  

❑

❑

❑

❑

❑

❑



92

Part I: Movie Review Web Site

 Let ’ s look at the  WHERE  clause in a little more detail: 

   Comparison operators  are the heart of a  WHERE  clause and include the following:  

❑    =  is used to test if two values are equal  

❑    !=  is used to test if two values are not equal  

❑     <   is used to test if one value is less than the second  

❑     < =  is used to test if one value is less than or equal to the second  

❑     >   is used to test if one value is greater than the second  

❑     > =  is used to test if one value is greater than or equal to the second  

❑    LIKE  lets you compare text and allows you to use  %  and  _  as wildcards. Wildcards allow 
you to search even if you know a piece of what ’ s in the field but don ’ t know the entire 
value, or you don ’ t want an exact match. For example: 

SELECT * FROM products WHERE description LIKE “%shirt%”   

❑   The WHERE clause in this query matches any records that have the text pattern  “ shirt ”  in 
the description column, such as  “ t - shirt, ”     “ blue shirts, ”  or  “ no shirt, no shoes, no service. ”  
Without the  %  wildcard, you would have those products that have a description of just 
 “ shirt ”  returned, and nothing else.    

   Logical operators  such as  AND ,  NOT ,  OR , and  XOR  are also accepted in the  WHERE  clause: 

SELECT * FROM products WHERE description LIKE “%shirt%” AND price  < = 24.95  

  This gives you all the products that have the word or text pattern of  “ shirt ”  in the description 
and that have a price of less than or equal to $24.95.    

 Now that you understand how a  SELECT  query is written, let ’ s look at it in action, shall we?    

Try It Out Using the  SELECT  Query   

 In this exercise, you ’ ll create a short script that demonstrates how the  SELECT  query works.   

  1.   Open your text editor, and type this code: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
// select the movie titles and their genre after 1990
$query = ‘SELECT
        movie_name, movie_type
    FROM
        movie
    WHERE

❑

❑



Chapter 3:   Using  PHP  with My SQL       

93

        movie_year  >  1990
    ORDER BY
        movie_type’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// show the results
while ($row = mysql_fetch_array($result)) {
    extract($row);
    echo $movie_name . ‘ - ‘ . $movie_type . ‘ < br/ > ’;
}
? >    

  2.   Save this file as  select1.php , and then run it from your browser.     

 How It Works 
 You should see the screen shown in Figure  3 - 1  after running  select1.php .   

Figure 3-1

 First you had to connect to the MySQL server and the specific database. Then you planned out your 
query and assigned it to the  $query  variable. 



94

Part I: Movie Review Web Site

 You wanted to choose only the  movie_name  and  movie_type  fields from the  movie  table because you 
don ’ t care about seeing the rest of the information contained in the table at this time. If you had 
wanted to retrieve everything, you simply could have written: 

SELECT
    movie_id, movie_name, movie_type, movie_year, movie_leadactor, movie_
director
FROM
    movie  

 or even: 

SELECT * FROM movie  

 The  WHERE  condition in your query limited the results to only movies filmed after 1990. You also asked 
the server to sort the results by movie type, with the  ORDER  clause. 

 Then you issued the query to the MySQL server and stored the response in a variable,  $result .   

$result = mysql_query($query, $db) or die(mysql_error($db));  

 Then, you looped through the results with a while loop: 

while ($row = mysql_fetch_array($result)) {
    extract($row);
    echo $movie_name . ‘ - ‘ . $movie_type . ‘ < br/ > ’;
}  

 You retrieved the row ’ s data as an array named  $row  for each row in the returned result set, using the 
 mysql_fetch_array()  function. You then extracted all the variables in  $row , using the  extract()  
function to find variables with the same name as the array ’ s keys;  echo ed out what you needed; and 
then went on to the next row of results from your query. When there were no more rows that matched 
your criteria, the  while  loop ended. 

 Pretty easy, eh? Let ’ s try using the  foreach  loop instead of the  while  function, and see how it works. 

  Working with  PHP  and Arrays of Data: foreach 
 The  foreach  loop is similar to the  while  loop, if you ’ re using  while  to loop through a list of results 
from your query. Its purpose is to apply a block of statements to every row in your results set. It is used 
in this way: 

foreach ($row as $value) {
    echo $value;
    echo ‘ < br > ’;
}  

 The preceding code would take all the variables in the  $row  array and list each value, with a line 
break in between them. You can see this in action in Chapters  4  and  5  and get a better idea of how it 
can be used.    



Chapter 3:   Using  PHP  with My SQL       

95

  Try It Out Using foreach    

 This exercise contrasts  foreach  with the  while  you used in the previous exercise.   

  1.   In your  select1.php  file, make the following highlighted changes: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
// select the movie titles and their genre after 1990
$query = ‘SELECT
        movie_name, movie_type
    FROM
        movie
    WHERE
        movie_year  >  1990
    ORDER BY
        movie_type’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// show the results

while ($row = mysql_fetch_assoc($result)) {
    foreach ($row as $value) {
        echo $value . ‘ ‘;
    }
    echo ‘ < br/ > ’;

}
? >       

  How It Works 
 You should see the same results as before, except that there is now no dash between the elements. 
Pretty sneaky, huh?  mysql_fetch_array  actually returns two sets of arrays (one with associative 
indices, one with numerical indices), so you see duplicate values if you use  foreach  without first 
isolating one of the arrays. You can do this by using either  mysql_fetch_array($result, MYSQL_
ASSOC)  or  mysql_fetch_assoc($result)  to perform the same thing and return only one of the 
arrays. You still need to use the  while  function to proceed through the selected rows one at a time, but 
you can see that using  foreach  applies the same sets of commands to each value in the array, 
regardless of their contents. 

 Sometimes you will need to have more control over a specific value, and therefore you can ’ t apply the 
same formatting rules to each value in the array, but the  foreach  function can also come in handy 
when using formatting functions, such as creating tables. In the following exercise, you ’ ll create 
another version of the  select1.php  program that illustrates this.   



96

Part I: Movie Review Web Site

   Try It Out Using foreach to Create a Table    

 In this exercise, you ’ ll use  foreach  to apply some formatting rules to the results of your query.   

  1.   Open your text editor, and enter the following script: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
// select the movie titles and their genre after 1990
$query = ‘SELECT
        movie_name, movie_type
    FROM
        movie
    WHERE
        movie_year  >  1990
    ORDER BY
        movie_type’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// show the results
echo ‘ < table border=”1” > ’;
while ($row = mysql_fetch_assoc($result)) {
    echo ‘ < tr > ’;
    foreach ($row as $value) {
        echo ‘ < td > ’ . $value . ‘ < /td > ’;
    }
    echo ‘ < /tr > ’;
}
echo ‘ < /table > ’;
? >    

  2.   Save this script as  select2.php , and then open it in your browser. You should see something 
like Figure  3 - 2 .       



Chapter 3:   Using  PHP  with My SQL       

97

Figure 3-2

 How It Works 
 You used the  mysql_query()  function and  while  loop to retrieve your desired records and fields. 
Then for each value you retrieved, you placed it in a separate table cell, using a  foreach  loop. 

You can see that this script would easily output a long string of array variables with a few lines of 
code, whereas if you had to echo out each separate variable with the accompanying HTML code, this 
script would be quite lengthy.

A Tale of Two Tables 
 The preceding code is all nice and neat and pretty, but it doesn ’ t do you a whole lot of good if you don ’ t have 
a secret decoder ring to tell you what those cryptic  “ movie type ”  numbers correspond to in plain English. 
That information is all stored in a separate table, the  movietype  table. So how do you get this information? 

 You can get information from more than one table in two ways: 

  Reference the individual tables in your query and link them temporarily through a common field.  

  Formally  JOIN  the individual tables in your query.    

 Let ’ s try out these methods and then talk about each of them in more detail. 

❑

❑



98

Part I: Movie Review Web Site

  Referencing Two Tables 

 You can distinguish between two tables in your database by referencing them in the  SELECT  statement, 
as follows: 

// retrieves customers’ names from customers table and order_total from 
// orders table where the cust_ID field in the customers table equals the
// cust_ID field in the orders table. 
                   
SELECT
    customers.name, orders.order_total
FROM
    customers, orders
WHERE
    customers.cust_ID = orders.cust_ID  

 If a customer ’ s ID is 123, you will see all the  order_totals  for all the orders for that specific customer, 
enabling you to determine all the money customer 123 has spent at your store. 

 Although you are linking the two tables through the  cust_ID  field, the names do not have to be the 
same. You can compare any two field names from any two tables. An example would be: 

// retrieves customers’ names from customers table and order_total from 
// orders table where the email field in the customers table equals the
// shiptoemail field in the orders table.
SELECT
    customers.name, orders.order_total
FROM
    customers, orders
WHERE
    customers.email = orders.shiptoemail
                     

 This would link your tables through the  email  and  shiptoemail  fields from different tables.    

Try It Out Referencing Individual Tables   

 This exercise will show you how to reference multiple tables in your query.   

  1.   Change your  select2.php  program as shown here (changes are highlighted): 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
// select the movie titles and their genre after 1990

$query = ‘SELECT
        movie.movie_name, movietype.movietype_label
    FROM
        movie, movietype
    WHERE



Chapter 3:   Using  PHP  with My SQL       

99

        movie.movie_type = movietype.movietype_id AND
        movie_year  >  1990
    ORDER BY
        movie_type’;

$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// show the results
echo ‘ < table border=”1” > ’;
while ($row = mysql_fetch_assoc($result)) {
    echo ‘ < tr > ’;
    foreach ($row as $value) {
        echo ‘ < td > ’ . $value . ‘ < /td > ’;
    }
    echo ‘ < /tr > ’;
}
echo ‘ < /table > ’;
? >    

  2.   Save your script and run it. Your screen should look something like Figure  3 - 3 .       

Figure 3-3



100

Part I: Movie Review Web Site

 How It Works 
Now you can see a table with the movie names and actual words for the type of movie, instead of 
your cryptic code, as was the case in Figure  3 - 2 . The common fields were linked in the  WHERE  portion 
of the statement. ID numbers from the two different tables (fieldname  movie_type  in the  movie  table 
and fieldname  movietype_id  in the  movietype  table) represented the same thing, so that ’ s where 
you linked them together.

  Joining Two Tables 

 In life as in code, regardless of the circumstances under which two things join together, it is rarely a 
simple thing. More often than not, it comes with conditions and consequences. 

 In the world of MySQL, joins are also complex things. We will discuss joins in greater detail in Chapter 
 10 ; meanwhile, we walk you through a very simple and commonly used  join  so you can get a taste of 
what joining is all about. The  JOIN  function gives you greater control over how your database tables 
relate to and connect with each other, but it also requires a greater understanding of relational databases 
(another topic covered in Chapter  10 ).      

Try It Out Joining Two Tables   

 In this exercise, you ’ ll link the two tables with a  JOIN .   

  1.   Make the following highlighted changes to  select2.php : 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
// select the movie titles and their genre after 1990

$query = ‘SELECT
        movie_name, movietype_label
    FROM
        movie LEFT JOIN movietype ON movie_type = movietype_id
    WHERE
        movie.movie_type = movietype.movietype_id AND
        movie_year  >  1990
    ORDER BY
        movie_type’;

$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// show the results
echo ‘ < table border=”1” > ’;



Chapter 3:   Using  PHP  with My SQL       

101

while ($row = mysql_fetch_assoc($result)) {
    echo ‘ < tr > ’;
    foreach ($row as $value) {
        echo ‘ < td > ’ . $value . ‘ < /td > ’;
    }
    echo ‘ < /tr > ’;
}
echo ‘ < /table > ’;
? >    

  2.   Save the script, and open it in your browser.     

  How It Works 
 You should see the same result as in the previous example. As you can see, you simply listed all the 
fields you wanted to see, regardless of the table they were in (MySQL will find them as long as the 
table name is referenced there somewhere). You did this in the first line of the  SELECT  statement: 

SELECT movie_name, movietype_label  

 Then you told MySQL what tables you wanted to access and what type of join should be used to bring 
them together, in these statements: 

FROM
    movie LEFT JOIN movietype  

 You used the  LEFT  join statement in this case. Although there are other things that go along with this, 
the  LEFT  join, in layman ’ s terms, simply means that the second table ( movietype  in the example) is 
dependent on the first table ( movie ). You are getting the main information from  movie  and looking up 
a bit of information from  movietype . 

 You then told the server which field to use to join them together, with: 

ON movie_type = movietype_id  

 Again, you don ’ t need to clarify which table is being used, but if you have overlapping field names 
across tables, you can add this if you like to avoid confusion. 

 You kept your condition about only showing the movies that were made after 1990, and sorted them 
by numerical movie type with these lines: 

WHERE
    movie.movie_type = movietype.movietype_id AND
    movie_year  >  1990
ORDER BY
    movie_type  

 And the rest of the code is the same. See, joining wasn ’ t that bad, was it?



102

Part I: Movie Review Web Site

    Helpful Tips and Suggestions 
 We all get into a little trouble now and then. Instead of sitting in the corner and sucking your thumb, or 
banging your head in frustration against your keyboard, relax! We are here to help. 

  Documentation 
 The folks at MySQL have provided wonderfully thorough documentation covering more than you ever 
wanted to know about its capabilities, quirks, and plans for the future. We have stated this time and time 
again, but the official web site really can provide you with the most up - to - date and accurate information. 

 You can search the documentation, or even add your own comments if you ’ ve discovered something 
especially helpful that might help out other developers just like you. Because this is all open source, you 
really do get a community feeling when you read through the documentation. 

 Once again, you can find the manual at  www.mysql.com .  

  Using My SQL  Query Browser 
 Now that you ’ ve been given the task of learning MySQL and PHP on your own from scratch, we ’ re 
going to let you in on a dirty little secret called MySQL Query Browser. MySQL Query Browser is 
another wonderful open source project that enables you to access your MySQL databases through a GUI 
desktop application. It ’ s easy to install and manage, and it makes administering your tables and data a 
breeze. It does have some limitations, but for the most part it will make you a lot more efficient. 

 With this software, you can easily do the following: 

  Drop and create databases  

  Create, edit, and delete tables  

  Create, edit, and delete fields  

  Enter any MySQL statements  

  View and print table structure  

  Generate PHP code  

  View data in table format    

 You can download the software by visiting  http://dev.mysql.com/downloads/ 
gui - tools/5.0.html . MySQL Query Browser is part of the MySQL Tools package. Figure  3 - 4  
shows what MySQL Query Browser looks like.     

❑

❑

❑

❑

❑

❑

❑



Chapter 3:   Using  PHP  with My SQL       

103

  Summary 
 We ’ ve covered some pretty fundamental programming concepts in this chapter, and we ’ ll delve more 
into them in future chapters. But for now you should have a pretty good handle on the basics. 

 You should have a good understanding of databases and tables, and know how to insert data and 
retrieve stored information from those tables. You should also have a good understanding of how 
MySQL works with PHP to make dynamic pages in your web site. 

 In the next few chapters, you will build on this knowledge to create more complex applications.  

  Exercises 
 We have started you on the MySQL/PHP journey, and in the next few chapters we take you places 
you ’ ve never dreamed of. To fine - tune your skills, here are a few exercises to make sure you really know 
your stuff: 

  1.   Create a PHP program that prints the lead actor and director for each movie in the database.  

  2.   Pick only comedies from the movie table, and show the movie name and the year it was 
produced. Sort the list alphabetically.  

  3.   Show each movie in the database on its own page, and give the user links in a  “ page 1, page 2, 
page 3 ”  – type navigation system. Hint: Use  LIMIT  to control which movie is on which page.       

            

Figure 3-4





                                                                4 
   Using Tables to Display Data         

 Now that you can successfully marry PHP and MySQL to produce dynamic pages, what happens 
when you have rows and rows of data that you need to display? You need to have some 
mechanism for your viewers to easily read the data, and it needs to be presented in a nice, neat, 
organized fashion. The easiest way to do this is to use tables. 

 This chapter covers the following: 

  Creating a table to hold the data from the database  .

  Creating column headings automatically  .

  Populating the table with the results of a basic MySQL query  .

  Populating the table with the results of more complex MySQL queries  .

  Making the output user - friendly     .

  Creating a Table 
 Before you can list your data, you need to set up the structure, column headings, and format of 
your HTML table. This way, your data has some place to go! The skeleton of this table gives you 
the blueprint for how your data will be laid out once it is retrieved from the database.    

❑

❑

❑

❑

❑



Part I: Movie Review Web Site

106

Try It Out Building a Table   

 In this exercise, you ’ ll define the table headings for your table and then fill it with data.   

  1.   Open your favorite text/HTML editor, and enter the following code: 

 < div style=”text-align: center;” > 
  < h2 > Movie Review Database < /h2 > 
  < table border=”1” cellpadding=”2” cellspacing=”2”
  style=”width: 70%; margin-left: auto; margin-right: auto;” > 
   < tr > 
    < th > Movie Title < /th > 
    < th > Year of Release < /th > 
    < th > Movie Director < /th > 
    < th > Movie Lead Actor < /th > 
    < th > Movie Type < /th > 
   < /tr > 
  < /table > 
 < /div >     

  2.   Save this file as  table1.php , and upload it to your Web server.  

  3.   Load your favorite browser and view the page that you have just uploaded. Your table should 
look like the one in Figure  4 - 1 .    

Figure 4-1



Chapter 4: Using Tables to Display Data

107

  4.   Open the file  table1.php  in your editor again, and add the code to connect to the database at 
the top. We used the database created in Chapter  3  for the purposes of the example here. 
Remember to substitute your own values for the server name, username, password, and 
database name in the given example, if necessary.   

 < ?php
//connect to MySQL
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
                   
// make sure you’re using the right database
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
? > 

 < div style=”text-align: center;” > 
  < h2 > Movie Review Database < /h2 > 
  < table border=”1” cellpadding=”2” cellspacing=”2”
  style=”width: 70%; margin-left: auto; margin-right: auto;” > 
   < tr > 
    < th > Movie Title < /th > 
    < th > Year of Release < /th > 
    < th > Movie Director < /th > 
    < th > Movie Lead Actor < /th > 
    < th > Movie Type < /th > 
   < /tr > 
  < /table > 
 < /div >    

  5.   Run a SQL query against the database and get the results. And while you are at it, count how 
many records were returned from the query.   

 < ?php
//connect to MySQL
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
                   
// make sure you’re using the right database
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));

                   
// retrieve information
$query = ‘SELECT
        movie_name, movie_year, movie_director, movie_leadactor,
        movie_type
    FROM
        movie
    ORDER BY
        movie_name ASC,
        movie_year DESC’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// determine number of rows in returned result
$num_movies = mysql_num_rows($result);



Part I: Movie Review Web Site

108

? > 
 < div style=”text-align: center;” > 
  < h2 > Movie Review Database < /h2 > 
  < table border=”1” cellpadding=”2” cellspacing=”2”
  style=”width: 70%; margin-left: auto; margin-right: auto;” > 
   < tr > 
    < th > Movie Title < /th > 
    < th > Year of Release < /th > 
    < th > Movie Director < /th > 
    < th > Movie Lead Actor < /th > 
    < th > Movie Type < /th > 
   < /tr > 
  < /table > 
 < /div >    

  6.   After the closing  tr  tag but before the closing  table  tag in the original HTML, enter a  while  
loop to process through the retrieved records. Then, output the number of movie records after 
the closing  table  tag.   

 < ?php
//connect to MySQL
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
                   
// make sure you’re using the right database
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
// retrieve information
$query = ‘SELECT
        movie_name, movie_year, movie_director, movie_leadactor,
        movie_type
    FROM
        movie
    ORDER BY
        movie_name ASC,
        movie_year DESC’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// determine number of rows in returned result
$num_movies = mysql_num_rows($result);
? > 
 < div style=”text-align: center;” > 
  < h2 > Movie Review Database < /h2 > 
  < table border=”1” cellpadding=”2” cellspacing=”2”
  style=”width: 70%; margin-left: auto; margin-right: auto;” > 
   < tr > 
    < th > Movie Title < /th > 
    < th > Year of Release < /th > 
    < th > Movie Director < /th > 
    < th > Movie Lead Actor < /th > 
    < th > Movie Type < /th > 
   < /tr > 



Chapter 4: Using Tables to Display Data

109

 < ?php
// loop through the results
while ($row = mysql_fetch_assoc($result)) {
    extract($row);
    echo ‘ < tr > ’;
    echo ‘ < td > ’ . $movie_name . ‘ < /td > ’;
    echo ‘ < td > ’ . $movie_year . ‘ < /td > ’;
    echo ‘ < td > ’ . $movie_director . ‘ < /td > ’;
    echo ‘ < td > ’ . $movie_leadactor . ‘ < /td > ’;
    echo ‘ < td > ’ . $movie_type . ‘ < /td > ’;
    echo ‘ < /tr > ’;
}     
? > 
  < /table > 

 < p >  < ?php echo $num_movies; ? >  Movies < /p > 

 < /div >    

  7.   Open the page in your web browser; it should look like Figure  4 - 2 .       

Figure 4-2



Part I: Movie Review Web Site

110

 How It Works 
 The preceding code does quite a lot of work for you, so let ’ s look at it in more detail. 

 First a connection to the database is established, and then you select the movies database. Next, you 
issue a query to the database to retrieve the name, release year, and lead actor of some movies. The 
 mysql_num_rows()  function takes the result reference and returns the number of total matching 
records MySQL found. 

 The  while  statement loops through the records that have been returned. It executes the block of code 
that is between the braces for each record. Don ’ t worry; PHP is smart enough to know how many 
records there are and what record number it is currently on, in this case, so there is no danger of 
having the wrong values assigned to a record. 

The first line in the  while  loop uses the  extract()  function to create variables with the same name 
as the field names and populates them with their values from the current record. The next seven lines 
then simply output the values with a little HTML mixed in for good measure.

 

  Wait a Minute 
 So far we ’ ve used  echo  to output content from within PHP mode (between the   < ?php  and  ? >   tags). 
Larger chunks of HTML code are outside the tags and are output to the browser immediately, without 
being parsed by PHP. The script drops in and out of PHP mode, bouncing back and forth between 
HTML and PHP code. Some will argue this is the optimal way of doing things, while others will argue 
it ’ s confusing and makes things more difficult to maintain. So, let ’ s take another look at heredoc syntax.    

        Try It Out Putting It All Together    

 Copy the  table1.php  file to  table2.php , and follow these steps.   

  1.   Replace the HTML code responsible for the table ’ s column headers with a heredoc statement 
saved to a  $table  variable: 

$table =  <  <  < ENDHTML
 < div style=”text-align: center;” > 
  < h2 > Movie Review Database < /h2 > 
  < table border=”1” cellpadding=”2” cellspacing=”2”
  style=”width: 70%; margin-left: auto; margin-right: auto;” > 
   < tr > 
    < th > Movie Title < /th > 
    < th > Year of Release < /th > 
    < th > Movie Director < /th > 
    < th > Movie Lead Actor < /th > 
    < th > Movie Type < /th > 
   < /tr > 
ENDHTML;   



Chapter 4: Using Tables to Display Data

111

  2.   Replace the echo statements within the  while  loop with a heredoc statement, appending it to 
the  $table  variable: 

$table .=  <  <  < ENDHTML
 < tr > 
  < td > $movie_name < /td > 
  < td > $movie_year < /td > 
  < td > $movie_director < /td > 
  < td > $movie_leadactor < /td > 
  < td > $movie_type < /td > 
 < /tr > 
ENDHTML;      

 Note the use of  .=  instead of just the = sign. This is important because it appends the heredoc block to 
the existing content already stored in  $table . If you just used =, the content would be replaced, which 
is not what you want to happen.    

  3.   Replace the HTML code for the closing of the  table  and  echo  statement that outputs the 
number of movies returned with a heredoc statement appended to  $table .   

$table .=  <  <  < ENDHTML
  < /table > 
 < p > $num_movies Movies < /p > 
 < /div > 
ENDHTML;  

 Here is what the code in  table2.php  should look like now: 

 < ?php
//connect to MySQL
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
                   
// make sure you’re using the right database
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
// retrieve information
$query = ‘SELECT
        movie_name, movie_year, movie_director, movie_leadactor,
        movie_type
    FROM
        movie
    ORDER BY
        movie_name ASC,
        movie_year DESC’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// determine number of rows in returned result
$num_movies = mysql_num_rows($result);
                   



Part I: Movie Review Web Site

112

$table =  <  <  < ENDHTML
 < div style=”text-align: center;” > 
  < h2 > Movie Review Database < /h2 > 
  < table border=”1” cellpadding=”2” cellspacing=”2”
  style=”width: 70%; margin-left: auto; margin-right: auto;” > 
   < tr > 
    < th > Movie Title < /th > 
    < th > Year of Release < /th > 
    < th > Movie Director < /th > 
    < th > Movie Lead Actor < /th > 
    < th > Movie Type < /th > 
   < /tr > 
ENDHTML;

                   
// loop through the results
while ($row = mysql_fetch_assoc($result)) {
    extract($row);

    $table .=  <  <  < ENDHTML
     < tr > 
      < td > $movie_name < /td > 
      < td > $movie_year < /td > 
      < td > $movie_director < /td > 
      < td > $movie_leadactor < /td > 
      < td > $movie_type < /td > 
     < /tr > 
ENDHTML;

}
                   
$table .=  <  <  < ENDHTML
  < /table > 
 < p > $num_movies Movies < /p > 
 < /div > 
ENDHTML;
? >    

  4.   Save  table2.php , and open it in your web browser. You ’ ll notice there ’ s no output! That ’ s 
because you haven ’ t instructed PHP to echo back the contents of  $table .  

  5.   Add an  echo  statement at the end of the file. Save and view the page again. It should now 
look the same as before, as in Figure  4 - 2 .   

echo $table;      

  How It Works 
 At first there was no output when you viewed the page in your web browser, because the information 
was collected in the  $table  variable and not sent out to the browser. The  echo  statement you added 
at the end of the code then output it. Voil à ! The table is now visible on the page! 

 As you keep adding text to  $table , you need to make sure you use  .=  instead of just = when 
assigning it. The  .=  appends content after whatever is already stored in the variable, whereas = would 
just replace the existing value. 



Chapter 4: Using Tables to Display Data

113

 As you may recall from our earlier discussion regarding using heredoc, in Chapter  2 , you can change 
 ENDHTML  to whatever you ’ d like, but the beginning and ending tags must match. For example, this 
will work fine: 

$table = <  <  < HAHAHA
    // code here
HAHAHA;  

 But, this will not work: 

$table = <  <  < HAHAHA
    // code here
BOOHOO;  

 You will receive an error such as the one shown in Figure  4 - 3 .   

Figure 4-3

 Note that there must be  no  spaces after the   <  <  < ENDHTML  and the  ENDHTML;  flags. In addition, there can 
be no leading space, indentation, or any other characters on the heredoc closing tag line (semicolons 
are permissible). You ’ ll receive an error if there is even one space. (You can potentially spend  hours  
trying to fix an error as a result of having a single space after these tags!) Always remember to delete 
all spaces after these tags. 



Part I: Movie Review Web Site

114

 Also, heredoc syntax can be used in other places, instead of just with  echo  or  print . It is used to 
assign large blocks of content to a variable, so it could also be used to assign a SQL query statement to 
a variable. For example: 

$query =  <  <  < ENDSQL
SELECT
    movie_name, movie_year, movie_director, movie_leadactor
    movie_type
FROM
    movie
ORDER BY
    movie_name ASC,
    movie_year DESC
ENDSQL;  

 The table may look pretty, but, as in Chapter  3 , it doesn ’ t do users much good if they don ’ t have their 
secret decoder ring to decipher which actors and directors were associated with your movies. You 
need to link your tables to pull in this information.     

 

Try It Out Improving Your Table    

 In this exercise, you ’ ll link the tables together so you can output meaningful data.   

  1.   Modify your  table2.php  file as shown in the highlighted text: 

 < ?php

// take in the id of a director and return his/her full name
function get_director($director_id) {
                   
    global $db;
                   
    $query = ‘SELECT 
            people_fullname 
       FROM
           people
       WHERE
           people_id = ‘ . $director_id;
    $result = mysql_query($query, $db) or die(mysql_error($db));
                   
    $row = mysql_fetch_assoc($result);
    extract($row);
                   
    return $people_fullname;
}
                   
// take in the id of a lead actor and return his/her full name
function get_leadactor($leadactor_id) {
                   
    global $db;
                   
    $query = ‘SELECT



Chapter 4: Using Tables to Display Data

115

            people_fullname
        FROM
            people 
        WHERE
            people_id = ‘ . $leadactor_id;
    $result = mysql_query($query, $db) or die(mysql_error($db));
                   
    $row = mysql_fetch_assoc($result);
    extract($row);
                   
    return $people_fullname;
}
                   
// take in the id of a movie type and return the meaningful textual
// description
function get_movietype($type_id) {
                   
    global $db;
                   
    $query = ‘SELECT 
            movietype_label
       FROM
           movietype
       WHERE
           movietype_id = ‘ . $type_id;
    $result = mysql_query($query, $db) or die(mysql_error($db));
                   
    $row = mysql_fetch_assoc($result);
    extract($row);
                   
    return $movietype_label;
}

//connect to MySQL
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
                   
// make sure you’re using the right database
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
// retrieve information
$query = ‘SELECT
        movie_name, movie_year, movie_director, movie_leadactor,
        movie_type
    FROM
        movie
    ORDER BY
        movie_name ASC,
        movie_year DESC’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// determine number of rows in returned result
$num_movies = mysql_num_rows($result);
                   
$table =  <  <  < ENDHTML



Part I: Movie Review Web Site

116

 < div style=”text-align: center;” > 
  < h2 > Movie Review Database < /h2 > 
  < table border=”1” cellpadding=”2” cellspacing=”2”
  style=”width: 70%; margin-left: auto; margin-right: auto;” > 
   < tr > 
    < th > Movie Title < /th > 
    < th > Year of Release < /th > 
    < th > Movie Director < /th > 
    < th > Movie Lead Actor < /th > 
    < th > Movie Type < /th > 
   < /tr > 
ENDHTML;
                   
// loop through the results
while ($row = mysql_fetch_assoc($result)) {
    extract($row);

    $director = get_director($movie_director);
    $leadactor = get_leadactor($movie_leadactor);
    $movietype = get_movietype($movie_type);
                   

    $table .=  <  <  < ENDHTML
     < tr > 
      < td > $movie_name < /td > 
      < td > $movie_year < /td > 

      < td > $director < /td > 
      < td > $leadactor < /td > 
      < td > $movietype < /td > 

     < /tr > 
ENDHTML;
}
                   
$table .=  <  <  < ENDHTML
  < /table > 
 < p > $num_movies Movies < /p > 
 < /div > 
ENDHTML;
                   
echo $table;
? >    



Chapter 4: Using Tables to Display Data

117

  How It Works 
 With the custom functions  get_director() ,  get_leadactor() , and  get_movietype()  added, the 
script requests that specific information be retrieved from the server for each separate row in the table. 
This enables you to pull the information you want without muddling up your original query with a 
 LEFT JOIN . 

 Congratulations! You have successfully developed a powerful script that will query a database and 
put its contents into an HTML table. Give yourself a pat on the back. But like all good explorers, 
onward we must go.     

 

Figure 4-4

  2.   Save your file, and reload it in your browser. Your screen should now look like Figure  4 - 4 .       



Part I: Movie Review Web Site

118

  Who ’ s the Master? 
 Now let ’ s build on the good work that you ’ ve done so far and add more information and functionality to 
your table. Implementing master and child relationships on your site can allow your users to click on a 
movie title in your table for more information about the movie. Of course, these would all be 
dynamically generated, so let ’ s find out how to do such a cool thing and exactly what master/child 
relationships mean.    

Try It Out Adding Links to the Table    

 The steps in this section will enable you to load extra information, depending on the movie that you 
click. This requires you to do the following: 

  1.   Open  table2.php  and edit the query that retrieves the movie information to retrieve the 
movie_id field as well as the ones it ’ s already fetching.   

// retrieve information
$query = ‘SELECT

        movie_id, movie_name, movie_year, movie_director,
        movie_leadactor, movie_type

    FROM
        movie
    ORDER BY
        movie_name ASC,
        movie_year DESC’;   

  2.   Edit the heredoc that generates the table ’ s rows so the movie ’ s title is a hyperlink.   

    $table .=  <  <  < ENDINFO
     < tr > 

      < td >  < a href=”movie_details.php?movie_id=$movie_id” > $movie_name < /a >  < /td > 

      < td > $movie_year < /td > 
      < td > $director < /td > 
      < td > $leadactor < /td > 
      < td > $movietype < /td > 
     < /tr > 
ENDINFO;   

  3.   Save the file as  table3.php , and open the page with your browser. Your screen should look 
like Figure  4 - 5 .       



Chapter 4: Using Tables to Display Data

119

  How It Works 
 You should notice a slight change between Figure  4 - 4  ( table2.php ) and Figure  4 - 5  
( table3.php ). You now have links to more detailed information about each movie for your 
visitor to click. 

 The first change made in the previous section altered the MySQL query to include the  $movie_id  
field. The second change created the HTML code that produces a hyperlink on the movie name. 
If you ’ d like, you can also add a nice little touch with the inclusion of tooltips for each of the movies in 
the list. This is done by adding a  title  attribute to the  a  element. Unfortunately, some web browsers 
don ’ t support this (apologies to those of you who have such browsers).     

 For a discussion on the use of alt and title attributes for tooltips, see  http://developer.mozilla
.org/en/docs/Defining_Cross - Browser_Tooltips .   

 < a href=”movie_details.php?movie_id=$movie_id”
 title=”Click here to find out more about $movie_name” > $movie_name < /a >     

 So now that the changes have been made, what do they actually do? Place your mouse over some 
hyperlinks, and, if you view your status bar, you ’ ll see that each link is unique and is created dynamically. 
This page is known as the  master page , and the page that we are going to link to is known as the  child page . 

 Before you can go any further, you need to add some data to your existing database that you can use 
for your movie details. If you recall from Chapter  3 , you currently have the movie name, director, lead 
actor, type, and year of release for each movie. Let ’ s also add the running time, how much the movie 
made, and how much it cost to produce.     

 

Figure 4-5



Part I: Movie Review Web Site

120

Try It Out Adding Data to the Table    

 In this exercise, you ’ ll add some additional data about each movie to the database.   

  1.   Open your text editor, and type the following code: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
//alter the movie table to include running time, cost and takings fields
$query = ‘ALTER TABLE movie ADD COLUMN (
    movie_running_time TINYINT UNSIGNED NULL,
    movie_cost         DECIMAL(4,1)     NULL,
    movie_takings      DECIMAL(4,1)     NULL)’;
mysql_query($query, $db) or die (mysql_error($db));
                   
//insert new data into the movie table for each movie
$query = ‘UPDATE movie SET
        movie_running_time = 101,
        movie_cost = 81,
        movie_takings = 242.6
    WHERE
        movie_id = 1’;
mysql_query($query, $db) or die(mysql_error($db));
                   
$query = ‘UPDATE movie SET
        movie_running_time = 89,
        movie_cost = 10,
        movie_takings = 10.8
    WHERE
        movie_id = 2’;
mysql_query($query, $db) or die(mysql_error($db));
                   
$query = ‘UPDATE movie SET
        movie_running_time = 134,
        movie_cost = NULL,
        movie_takings = 33.2
    WHERE
        movie_id = 3’;
mysql_query($query, $db) or die(mysql_error($db));
                   
echo ‘Movie database successfully updated!’;
? >    

  2.   Save this file as  db_ch04 - 1.php , and then open it in your browser. You should see the success 
messages as the information is entered into the database.     



Chapter 4: Using Tables to Display Data

121

  How It Works 
 First, the script used the  ALTER     TABLE  command to add the appropriate fields to the existing movie 
table, and then it used the  UPDATE  command to insert the new data into those fields. If you aren ’ t 
familiar with these commands, you should consider reviewing Chapter  3  again. 

 Now that you have the data in place, you need to create a new page that you ’ ll use to display the extra 
movie information ( movie_details.php ).   

 

T  ry It Out Displaying Movie Details    

 In this exercise, you ’ ll create a new page to display the data you added in the previous exercise.   

  1.   Open your text editor, and type the following program: 

 < ?php
// take in the id of a director and return his/her full name
function get_director($director_id) {
                   
    global $db;
                   
    $query = ‘SELECT 
            people_fullname 
       FROM
           people
       WHERE
           people_id = ‘ . $director_id;
    $result = mysql_query($query, $db) or die(mysql_error($db));
                   
    $row = mysql_fetch_assoc($result);
    extract($row);
                   
    return $people_fullname;
}
                   
// take in the id of a lead actor and return his/her full name
function get_leadactor($leadactor_id) {
                   
    global $db;
                   
    $query = ‘SELECT
            people_fullname
        FROM
            people 
        WHERE
            people_id = ‘ . $leadactor_id;
    $result = mysql_query($query, $db) or die(mysql_error($db));
                   
    $row = mysql_fetch_assoc($result);
    extract($row);
                   



Part I: Movie Review Web Site

122

    return $people_fullname;
}
                   
// take in the id of a movie type and return the meaningful textual
// description
function get_movietype($type_id) {
                   
    global $db;
                   
    $query = ‘SELECT 
            movietype_label
       FROM
           movietype
       WHERE
           movietype_id = ‘ . $type_id;
    $result = mysql_query($query, $db) or die(mysql_error($db));
                   
    $row = mysql_fetch_assoc($result);
    extract($row);
                   
    return $movietype_label;
}
                   
// function to calculate if a movie made a profit, loss or just broke even
function calculate_differences($takings, $cost) {
                   
    $difference = $takings - $cost;
                   
    if ($difference  <  0) {     
        $color = ‘red’;
        $difference = ‘$’ . abs($difference) . ‘ million’;
    } elseif ($difference  >  0) {
        $color =’green’;
        $difference = ‘$’ . $difference . ‘ million’;
    } else {
        $color = ‘blue’;
        $difference = ‘broke even’;
    }
                   
    return ‘ < span style=”color:’ . $color . ‘;” > ’ . $difference . ‘ < /span > ’;
}
                   
//connect to MySQL
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
// retrieve information
$query = ‘SELECT
        movie_name, movie_year, movie_director, movie_leadactor,
        movie_type, movie_running_time, movie_cost, movie_takings
    FROM
        movie
    WHERE



Chapter 4: Using Tables to Display Data

123

        movie_id = ‘ . $_GET[‘movie_id’];
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
$row = mysql_fetch_assoc($result);
$movie_name         = $row[‘movie_name’];
$movie_director     = get_director($row[‘movie_director’]);
$movie_leadactor    = get_leadactor($row[‘movie_leadactor’]);
$movie_year         = $row[‘movie_year’];
$movie_running_time = $row[‘movie_running_time’] .’ mins’;
$movie_takings      = $row[‘movie_takings’] . ‘ million’;
$movie_cost         = $row[‘movie_cost’] . ‘ million’;
$movie_health       = calculate_differences($row[‘movie_takings’],
                          $row[‘movie_cost’]);
                   
// display the information
echo  <  <  < ENDHTML
 < html > 
  < head > 
   < title > Details and Reviews for: $movie_name < /title > 
  < /head > 
  < body > 
   < div style=”text-align: center;” > 
    < h2 > $movie_name < /h2 > 
    < h3 >  < em > Details < /em >  < /h3 > 
    < table cellpadding=”2” cellspacing=”2”
    style=”width: 70%; margin-left: auto; margin-right: auto;” > 
     < tr > 
      < td >  < strong > Title < /strong >  < /strong >  < /td > 
      < td > $movie_name < /td > 
      < td >  < strong > Release Year < /strong >  < /strong >  < /td > 
      < td > $movie_year < /td > 
     < /tr >  < tr > 
      < td >  < strong > Movie Director < /strong >  < /td > 
      < td > $movie_director < /td > 
      < td >  < strong > Cost < /strong >  < /td > 
      < td > $$movie_cost < td/ > 
     < /tr >  < tr > 
      < td >  < strong > Lead Actor < /strong >  < /td > 
      < td > $movie_leadactor < /td > 
      < td >  < strong > Takings < /strong >  < /td > 
      < td > $$movie_takings < td/ > 
     < /tr >  < tr > 
      < td >  < strong > Running Time < /strong >  < /td > 
      < td > $movie_running_time < /td > 
      < td >  < strong > Health < /strong >  < /td > 
      < td > $movie_health < td/ > 
     < /tr > 
    < /table >  < /div > 
  < /body > 
 < /html >      
ENDHTML;
? >    



Part I: Movie Review Web Site

124

  2.   Save it as  movie_details.php , and upload it to the web server.  

  3.   Open  table3.php  in your browser, and click on one of the movie links. It will open  
movie_details.php , and you will see something like Figure  4 - 6 .       

Figure 4-6

  How It Works 
 Three of the four custom functions at the start of the script should be familiar to you:  
get_director() ,  get_leadactor() , and  get_movietype() . Each accepts an id key and 
translates it into the corresponding human - friendly value by performing a database lookup in the 
appropriate table. In effect, you can think of functions as tiny custom programs that exist within a 
larger script   —   they take in some information, process it, and return some result. 

 The fourth custom function,  calculate_differences() , generates an HTML string to show 
whether a movie made a profit, lost money, or broke even. It accepts the movie ’ s takings and the 
production cost, then subtracts the cost from the takings to find the difference. An  if  statement is used 
to further refine the output. If the movie lost money, then the difference will be negative, so the first 
block of code sets the color to red and trims the leading negative sign by converting the difference to 
its absolute value with  abs() . If the difference is positive, then the movie made money, and the 
amount will be set in green. The final clause sets the color blue in case the movie broke even 
financially. 

 The script connects to the database and retrieves the movie information from the movie table. The 
 WHERE  clause of the query will make sure that this information is for the requested movie, because it 
compares the  movie_id  field with the value passed in to this script through the URL. You ’ ll notice, 



Chapter 4: Using Tables to Display Data

125

though, that this time you didn ’ t use  extract()  to retrieve the field information after the query. 
Instead, you ’ re assigning them directly from the  $row  array into variables of their own. This is because 
you ’ re not using the values as they are, but rather appending  ‘ mins ’  to the running time and  ‘ million ’  
to the amounts. 

 Then the  calculate_differences()  function is called, and the returned HTML code is saved as 
 $movie_health . After that, the information is displayed back to the user in an HTML - formatted 
table, using  echo  and heredoc syntax.   

 

  A Lasting Relationship 
 What if you wanted to find all the reviews for a particular movie? As it stands, you ’ d need to create a 
new SQL query in the  movies_details.php  page and execute it when the page loaded, which would 
make a total of two SQL queries in one page. It would work, but it would not be very efficient. (We ’ re all 
efficient coders, aren ’ t we?) This also results in unnecessary code. 

 It ’ s time to answer the question: What ’ s a relationship? 

 A  relationship  is a way of joining tables so that you can access the data in all those tables. The benefit of 
MySQL is that it is a relational database and, as such, supports the creation of relationships between 
tables. When used correctly (this can take a bit of time to get your head around), relationships can be 
very, very powerful and can be used to retrieve data from many, many tables in one SQL query. 

 The best way to demonstrate this is to build upon what you have done so far, so let ’ s do it.    

  Try It Out Creating and Filling a Movie Review Table    

 Before you can access movie reviews in your movie review table, you need to create the table and then 
fill it with data.   

  1.   Open your text editor, and type the following code: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
//create the reviews table
$query = ‘CREATE TABLE reviews (
        review_movie_id INTEGER UNSIGNED NOT NULL, 
        review_date     DATE             NOT NULL, 
        reviewer_name   VARCHAR(255)     NOT NULL, 
        review_comment  VARCHAR(255)     NOT NULL, 
        review_rating   TINYINT UNSIGNED NOT NULL  DEFAULT 0, 
                   
        KEY (review_movie_id)
    )
    ENGINE=MyISAM’;



Part I: Movie Review Web Site

126

mysql_query($query, $db) or die (mysql_error($db));
                   
//insert new data into the reviews table
$query =  <  <  < ENDSQL
INSERT INTO reviews
    (review_movie_id, review_date, reviewer_name, review_comment,
        review_rating)
VALUES 
    (1, “2008-09-23”, “John Doe”, “I thought this was a great movie
        Even though my girlfriend made me see it against my will.”, 4),
    (1, “2008-09-23”, “Billy Bob”, “I liked Eraserhead better.”, 2),
    (1, “2008-09-28”, “Peppermint Patty”, “I wish I’d have seen it
        sooner!”, 5),
    (2, “2008-09-23”, “Marvin Martian”, “This is my favorite movie. I
        didn’t wear my flair to the movie but I loved it anyway.”, 5),
    (3, “2008-09-23”, “George B.”, “I liked this movie, even though I
        Thought it was an informational video from my travel agent.”, 3)
ENDSQL;
mysql_query($query, $db) or die(mysql_error($db));
                   
echo ‘Movie database successfully updated!’;
? >    

  2.   Save this file as  db_ch04 - 2.php , and open it in your browser. Your reviews table has now 
been created as well as populated.     

  How It Works 
 By now you should be familiar with creating tables using MySQL and PHP, so this should be pretty 
self - explanatory. If you ’ re having trouble, you might want to go back and review the relevant sections 
in Chapter  3 .

    Try It Out Displaying the Reviews    

 In this example, you ’ re going to link two tables (movies and reviews) and show the reviews for a 
particular movie. This requires a lot of changes to the  movie_details.php  page, so you would be 
best served by making a backup copy of the file, as you can ’ t ever be too careful. If you make any 
mistakes, then you can always revert back to your original version. To display the reviews, follow 
these steps: 

  1.   Add this code to the top of  movie_details.php : 

// function to generate ratings
function generate_ratings($rating) {
    $movie_rating = ‘’;
    for ($i = 0; $i  <  $rating; $i++) {
        $movie_rating .= ‘ < img src=”star.png” alt=”star”/ > ’;
    }
    return $movie_rating;
}   



Chapter 4: Using Tables to Display Data

127

  2.   Now split the tail end of the heredoc block that outputs the movie ’ s information so that there 
are two: 

      < td >  < strong > Health < /strong >  < /td > 
      < td > $movie_health < td/ > 
     < /tr > 
    < /table > 
ENDHTML;
                   
echo  <  <  < ENDHTML
   < /div > 
  < /body > 
 < /html >      
ENDHTML;   

  3.   Add this code between the two heredoc blocks to fill the break you just made: 

// retrieve reviews for this movie
$query = ‘SELECT
        review_movie_id, review_date, reviewer_name, review_comment,
        review_rating
    FROM
        reviews
    WHERE
        review_movie_id = ‘ . $_GET[‘movie_id’] . ‘
    ORDER BY
        review_date DESC’;
                   
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// display the reviews
echo  <  <  <  ENDHTML
    < h3 >  < em > Reviews < /em >  < /h3 > 
    < table cellpadding=”2” cellspacing=”2”
    style=”width: 90%; margin-left: auto; margin-right: auto;” > 
     < tr > 
      < th style=”width: 7em;” > Date < /th > 
      < th style=”width: 10em;” > Reviewer < /th > 
      < th > Comments < /th > 
      < th style=”width: 5em;” > Rating < /th > 
     < /tr > 
ENDHTML;
                   
while ($row = mysql_fetch_assoc($result)) {
    $date = $row[‘review_date’];
    $name = $row[‘reviewer_name’];
    $comment = $row[‘review_comment’];
    $rating = generate_ratings($row[‘review_rating’]);
                   



Part I: Movie Review Web Site

128

    echo  <  <  < ENDHTML
     < tr > 
       < td style=”vertical-align:top; text-align: center;” > $date < /td > 
       < td style=”vertical-align:top;” > $name < /td > 
       < td style=”vertical-align:top;” > $comment < /td > 
       < td style=”vertical-align:top;” > $rating < /td > 
     < /tr > 
ENDHTML;
}   

  4.   Save the file as  movie_details.php  (overwriting the existing one   —   we hope you have 
made a backup copy, as suggested).  

  5.   Upload the file to your web server, load  table3.php , and click a movie.    

 You ’ ll see something similar to Figure  4 - 7 .    

Figure 4-7

 How It Works 
 The  generate_ratings()  function is fairly straightforward. You send it the value that is in the 
ratings field for a movie, and it creates an HTML string of rating images for that movie and returns it. 
Notice that you are using  .=  to ensure that movies with a rating of more than 1 will get additional 
images added to the single rating image. 



Chapter 4: Using Tables to Display Data

129

 By splitting the heredoc block into two sections, you made room to insert the HTML code that 
displays the reviews without breaking your page layout. The first portion displays the opening HTML 
tags and the details table, while the second portion displays the closing tags for the page. 

 The MySQL query retrieves all the reviews for the movie with the appropriate  
review_movie_id . The  ORDER BY  phrase of the query instructs MySQL to sort the results first 
in chronologically descending order. After that, the fields are extracted from the result set and 
displayed as a row in the table. 

You ’ ve made quite a few changes in this section. But, as you can see, the changes have been well 
worth it. Now you know how to use MySQL to create relationships between tables. You successfully 
retrieved all the reviews from the review table, depending on the  movie_id  variable. You also looked 
at using the  $_GET  superglobal array to pass values from one page to another.

  Summary 
 You ’ ve learned how to work with HTML tables to display your data, how to pull data from more than 
one database table and have it displayed seamlessly with data from another table, and how to create 
dynamic pages that display detailed information about the rows in your database. You can also include 
images to graphically display data to your web site visitors, as with this chapter ’ s example of using 
rating stars. 

 So far, you ’ ve hard - coded all the additions to the database yourself, which isn ’ t very dynamic. In 
Chapter  6 , we ’ ll teach you how to let the user add items to the database and edit them. But first, you 
need to know how to use forms with PHP, which is the subject of our next chapter.  

  Exercises   
  1.   Add an entry in the top table of your  movie_details.php  file that shows the average rating 

given by reviewers.  

  2.   Change each column heading of the reviews table in your  movie_details.php  to a link that 
allows the user to sort by that column (i.e., the user would click on  “ Date ”  to sort all the reviews 
by date).  

  3.   Alternate the background colors of each row in the review table of your  movie_details.php  
file to make them easier to read. Hint: odd - numbered rows would have a background of one 
color, even - numbered rows would have a background of another color.       





                5    
Form Elements: Letting the 

User Work with Data          

 An interactive web site requires user input, which is generally gathered through forms. As in the 
paper - based world, the user fills in a form and submits its content for processing. In a web 
application, the processing isn ’ t performed by a sentient being; rather, it is performed by a PHP 
script. Thus, the script requires some sort of coded intelligence. 

 When you fill in a paper form, you generally use a means to deliver its content (the postal service 
is one example) to a known address (such as a mail - order bookstore). The same logic applies to 
online forms. The data from an HTML form is sent to a specific location and processed. 

 The form element is rather simple in HTML. It states where and how it will send the contents of the 
elements it contains once submitted. It is after that point that PHP comes into play. PHP uses a set of 
simple yet powerful expressions that, when combined, provide you with the means to do virtually 
anything you want. The PHP script receives the data from the form and uses it to perform an action 
such as updating the contents of a database, sending an e - mail, testing the data format, and so on. 

 In this chapter, you begin to build a simple application that allows you to add, edit, or delete 
members of a data set (in this instance, the data will be movies, actors, and directors). This chapter 
welcomes you into a world of PHP/MySQL interaction by covering the following: 

  Creating forms using buttons, text boxes, and other form elements  .

  Creating PHP scripts to process HTML forms  .

  Passing hidden information to the form - processing script via hidden form controls and a 
URL query string     .

  Your First Form 
 As a wise man once said,  “ Every journey starts with a single step. ”  To start this particular journey, 
you will focus on a very simple form. It will include only a text field and a submit button. The 
processing script will display only the value entered in the text field.   

❑

❑

❑



Part I: Movie Review Web Site

132

  Try It Out  Say My Name    

 In this exercise, you are going to get PHP to respond to a name entered in a form. This is a simple 
variation of the commonly used  “ hello world ”  program, allowing you to take your first step into 
interactivity.   

  1.   Create  form1.html  with your favorite text editor.  

  2.   Enter the following code: 

 < html > 
  < head > 
   < title > Say My Name < /title > 
  < /head > 
  < body > 
   < form action=”formprocess1.php” method=”post” > 
    < table > 
     < tr > 
      < td > Name < /td > 
      < td >  < input type=”text” name=”name” / >  < /td > 
     < /tr >  < tr > 
      < td colspan=”2” style=”text-align: center;” > 
       < input type=”submit” name=”submit” value=”Submit” / >  < /td > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >    

  3.   Create another empty file named  formprocess1.php , and enter the following code: 

 < html > 
  < head > 
   < title > Say My Name < /title > 
  < /head > 
  < body > 
 < ?php
echo ‘ < h1 > Hello ‘ . $_POST[‘name’] . ‘! < /h1 > ’;
? > 
   < pre > 
 < strong > DEBUG: < /strong > 
 < ?php
print_r($_POST);
? > 
   < /pre > 
  < /body > 
 < /html >    

  4.   Open  form1.html  in your browser.  

  5.   Type your name in the name text box (as shown in Figure  5 - 1 ), and click the Submit button.   



Chapter 5: Form Elements: Letting the User Work with Data

133

  You can see two distinct parts on the resulting page: the  “ Hello Test ”  portion and the  DEBUG  
part shown in Figure  5 - 2 .      

Figure 5-1

Figure 5-2



Part I: Movie Review Web Site

134

 Congratulations, you just coded your first form - processing script.  

  How It Works 
 As with any good recipe, it ’ s an excellent idea to start working on forms by understanding the 
ingredients you will be using. You ’ ll need some background information about HTML form elements 
and a few PHP functions to familiarize yourself with forms. 

 Let ’ s start with the HTML form itself.     

 You can find HTML references at the World Wide Web Consortium web site at  www.w3.org/MarkUp .     

   FORM  Element 
 First, we ’ ll introduce the first HTML element you ’ ll need:  form . It delimits the form ’ s area in the page 
and holds the fields you want your web site users to fill in.   

 < form action=”formprocess1.php” method=”post” > 
 < !--form controls go here-- > 
 < /form >   

 Notice that the  form  element has an ending tag and two attributes. The first attribute ( action ) is the 
recipient page address (the form - processing script). The second attribute ( method ) is the way in which 
you will send the data to the recipient. You may recall that there are two separate ways of sending a form 
to its processing script: the  POST  and the  GET  methods. 

 The  POST  method takes the data from the form fields and sends it through an HTTP header. In this 
case, the data cannot be seen in the URL. The  GET  method gets the data from the form fields, encodes it, 
and appends it to the destination URL.  

   INPUT  Element 
 The second new HTML element included here is  input . This is the basis of most forms and can be 
used in many different ways to gather many different types of information. In this case, you use two 
different types of  input : the text and submit types. 

 Here ’ s the  input text  type: 

 < input type=”text” name=”name” / >   

 The  input     text  type is a standard single - line text box. As with all form controls, it needs a name so 
that the processing script can access its content using the following syntax: 

 < ?php
echo $_POST[‘name’]; // will display the value typed in
? >   



Chapter 5: Form Elements: Letting the User Work with Data

135

 And here ’ s the  input     submit  type: 

 < input type=”submit” name=”submit” value=”Submit” / >   

 As its name cleverly hints, the  submit  element displays a button that causes the browser to submit the 
form when it is pressed. The button ’ s text is set through the  value  attribute. As mentioned for the text 
 input , this form control needs a name for a processing reference.  

  Processing the Form 
 In this little script, you may have noticed a few new functions and some new syntax, and you are 
probably curious about them. 

 The first form - processing script is an interactive variation of the famous  “ hello world, ”  but in this case it 
displays  “ hello ”  and the name you type in the text box. To make this happen, you need to print the value 
of the text field you filled in on the form. You know the  echo  command, so let ’ s move on to the other 
piece,  $_POST[‘name’] . 

 The  $_POST  global array contains all form data submitted with the  POST  method. The array index of the 
field is its name. In a moment, you ’ ll see how to check the content of your  $_POST  array using the 
 print_r()  function.   

 < ?php
echo ‘ < h1 > Hello ‘ . $_POST[‘name’] . ‘! < /h1 > ’;? >   

 In this example,  $_POST[‘name’]  displays what you entered in the name field. 

 You might wonder what  print_r($_POST)  does. It simply dumps the whole contents of the super 
global  $_POST  array to the output. This is a great way to debug your forms. The  $_POST  array, as with 
all arrays, has case - sensitive indexes. Use this tip to check for case and display the state of your objects 
when building a script. 

 When receiving the submitted form information, PHP sets the  $_POST  array with the data that the form 
sends. As with any array, you can directly access any of the indexes by name. In this instance, you can 
clearly see that the  name  index contains the value  Joe . This trick works for all forms, even the most 
complicated ones. 

 Let ’ s move on to see how you can use more HTML elements during form input to interact with the user.   

  Driving the User Input 
 The form in this example allows you to lead the user to choose values from a set of values you provide. 
Defining a value set is done through the use of specific HTML elements, such as list boxes, radio buttons, 
and check boxes. 

 Two kinds of predefined user input are in HTML forms. The first kind allows you to choose one 
item from the available options; the second allows the user to choose multiple items. Drop - down list 
boxes and radio buttons allow for one selection only. Check boxes and multiline list boxes provide for 
multiple choices.   



Part I: Movie Review Web Site

136

Try It Out  Limiting the Input Choice   

 Let ’ s start with the simple type of input. Follow these steps to create a single - selection list: 

  1.   Create a text file named  form2.html , and open it in your favorite text editor.  

  2.   Enter the following code: 

 < html > 
  < head > 
   < title > Greetings Earthling < /title > 
  < /head > 
  < body > 
   < form action=”formprocess2.php” method=”post” > 
    < table > 
     < tr > 
      < td > Name < /td > 
      < td >  < input type=”text” name=”name” / >  < /td > 
     < /tr >  < tr > 
      < td > Greetings < /td > 
      < td > 
       < select name=”greeting” > 
        < option value=”Hello” > Hello < /option > 
        < option value=”Hola” > Hola < /option > 
        < option value=”Bonjour” > Bonjour < /option > 
       < /select > 
      < /td > 
     < /tr >  < tr > 
      < td >     < /td > 
      < td > 
       < input type=”checkbox” name=”debug” checked=”checked”/ > 
      Display Debug info
      < /td > 
     < /tr >  < tr > 
      < td colspan=”2” style=”text-align: center” > 
       < input type=”submit” name=”submit” value=”Submit” / > 
      < /td > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >    

  3.   Create another empty file named  formprocess2.php , and enter the following code: 

 < html > 
  < head > 
   < title > Greetings Earthling < /title > 
  < /head > 
  < body > 
 < ?php



Chapter 5: Form Elements: Letting the User Work with Data

137

echo ‘ < h1 > ’ . $_POST[‘greeting’] . ‘ ‘ . $_POST[‘name’] . ‘! < /h1 > ’;
                   
if (isset($_POST[‘debug’])) {
    echo ‘ < pre >  < strong > DEBUG: < /strong > ’ . “\n”;
    print_r($_POST);
    echo ‘ < /pre > ’;
}
? > 
  < /body > 
 < /html >    

  4.   Save  formprocess2.php .  

  5.   Call the page from your browser. As you can see from the resulting page, as displayed in 
Figure  5 - 3 , the form got a bit more complicated.    

Figure 5-3

  6.   Enter your name, and click the Submit button. The display page that appears, shown in Figure 
 5 - 4 , is rather simple; it holds only debug information and a greeting.       



Part I: Movie Review Web Site

138

  How It Works 
 As you see, this code uses logic similar to that in  formprocess1.php . Two fields have been added 
(a drop - down list box and a check box).  

  formprocess2.php  does the same thing as  formprocess1.php , but with an added twist. It displays 
the debugging information only if the debug check box is selected, and greets you using any of the drop -
 down list choices in the subsections that follow. 

 The check box can represent only two possibilities: When checked, it passes the value  on  to the 
 $_POST  array, but otherwise it isn ’ t sent by the browser at all. This is a great way to represent Boolean 
typed data. 

 The  SELECT  element (also known as a list) allows you to display a fixed list of choices from which the 
user has to choose an element. The item selected won ’ t be sent as displayed but will be sent as its value. 
In this example, the value and its display are identical, but in a database - driven system, you would 
probably see record IDs as the values and their text labels as list choices. A good example is a product 
number and its name. 

Figure 5-4



Chapter 5: Form Elements: Letting the User Work with Data

139

 Be sure to set the value part of the  OPTION  items when using lists. If these are not set, the list looks the 
same but is totally useless because all choices will send the same null value. 

  One Form, Multiple Processing 
 Forms always react in a predefined way based on how you code your processing script to handle the 
data that the user sends to the system. You can create a single form with more than one defined action by 
using different submit buttons.    

  Try It Out  Radio Button, Multiline List Boxes    

 In the following example, you create a form that prepares a search and creates a movie/actor/director 
interface.   

  1.   Create a text file named  form3.php , and open it in your text editor. Then type the 
following code: 

 < html > 
  < head > 
   < title > Add/Search Entry < /title > 
   < style type=”text/css” > 
   < !--
td {vertical-align: top;}
  -- > 
   < /style > 
  < /head > 
  < body > 
   < form action=”formprocess3.php” method=”post” > 
    < table > 
     < tr > 
      < td > Name < /td > 
      < td >  < input type=”text” name=”name”/ >  < /td > 
     < /tr >  < tr > 
      < td > Movie Type < /td > 
      < td > 
       < select name=”movie_type” > 
        < option value=”” > Select a movie type... < /option > 
        < option value=”Action” > Action < /option > 
        < option value=”Drama” > Drama < /option > 
        < option value=”Comedy” > Comedy < /option > 
        < option value=”Sci-Fi” > Sci-Fi < /option > 
        < option value=”War” > War < /option > 
        < option value=”Other” > Other... < /option > 
       < /select > 
      < /td > 
     < /tr >  < tr > 
      < td > Item Type < /td > 
      < td > 
       < input type=”radio” name=”type” value=”movie” checked=”checked” / >  
Movie < br/ > 
       < input type=”radio” name=”type” value=”actor” / >  Actor < br/ > 



Part I: Movie Review Web Site

140

       < input type=”radio” name=”type” value=”director”/ >  Director < br/ > 
      < /td > 
     < /tr >  < tr > 
      < td >     < /td > 
      < td >  < input type=”checkbox” name=”debug” checked=”checked” / > 
      Display Debug info
      < /td > 
     < /tr >  < tr > 
      < td colspan=”2” style=”text-align: center;” > 
       < input type=”submit” name=”submit” value=”Search” / >  
       < input type=”submit” name=”submit” value=”Add” / > 
      < /td > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >    

  2.   Create another file named  formprocess3.php , and enter the following code: 

 < ?php
if ($_POST[‘type’] == ‘movie’  &  &  $_POST[‘movie_type’] == ‘’) {
    header(‘Location: form3.php’);
}
? > 
 < html > 
  < head > 
   < title >  < ?php echo $_POST[‘submit’] . ‘ ‘ . $_POST[‘type’] . ‘: ‘ .
    $_POST[‘name’]; ? >  < /title > 
  < /head > 
  < body > 
 < ?php
if (isset($_POST[‘debug’])) {
    echo ‘ < pre > ’;
    print_r($_POST);
    echo ‘ < /pre > ’;
}
                   
$name = ucfirst($_POST[‘name’]);
if ($_POST[‘type’] == ‘movie’)
{
    $foo = $_POST[‘movie_type’] . ‘ ‘ . $_POST[‘type’];
} else {
    $foo = $_POST[‘type’];
}
                   
echo ‘ < p > You are ‘ . $_POST[‘submit’] . ‘ing ‘;
echo ($_POST[‘submit’] == ‘Search’) ? ‘for ‘ : ‘’;
echo ‘a ‘ . $foo . ‘ named ‘ . $name . ‘ < /p > ’;
? > 
  < /body > 
 < /html >    



Chapter 5: Form Elements: Letting the User Work with Data

141

  3.   Start your browser and open  form3.php . The form shown in Figure  5 - 5  appears. Notice that 
the form has two submit buttons. One is labeled Search, the other Add.    

  4.   Type  Kevin Kline  in the Name field.  

  5.   Leave  Movie     Type  as is; then, move on to the  Item     Type  field, which you ’ ll set to Actor.  

  6.   Clear the Display Debug info check box if you like; then, click the Search button. The results 
appear, as shown in Figure  5 - 6 .    

Figure 5-5



Part I: Movie Review Web Site

142

  7.   Now play around a bit with the form. Look at the output and how it changes when you 
modify the data.     

  How It Works 
 You just coded a simple form with two possible actions. Depending on the button you click and the 
data you choose to enter, this code outputs different information. 

 What ’ s new in the form page itself? A group of radio buttons and a new submit button have been 
added. Let ’ s have a closer look at these.   

  Radio  INPUT  Element 
 The radio button is a very simple element. By default, if no radio button is specified as  CHECKED , no 
default choice is made. Always remember that choosing the default value is a very important part of 
building a form. Users often leave defaults in forms, and in that case, if you do not set a default value, 
you will not receive any information for that field when the form is submitted.   

 < input type=”radio” name=”type” value=”movie” checked=”checked” / >  Movie < br/ > 
 < input type=”radio” name=”type” value=”actor” / >  Actor < br/ > 
 < input type=”radio” name=”type” value=”director”/ >  Director < br/ >   

Figure 5-6



Chapter 5: Form Elements: Letting the User Work with Data

143

 For multiple radio buttons to be linked together to form a group and be processed as a single form 
element, they need to share the same name and supply different values (quite obviously). In the 
preceding code, the name is always  type . This tells the browser that the radio buttons are linked 
together and that selecting one of them will clear the others.  

  Multiple Submit Buttons 
 As with radio buttons, the submit buttons share the same name but supply different values. Clicking one 
of these buttons will cause the browser to submit the form. As you can see in the  DEBUG  block, the submit 
button sends its own information to the script. By reading this value, the script allows you to have 
multiple submit buttons for the same form, and performs different processing actions depending on 
which one was clicked.   

 < input type=”submit” name=”submit” value=”Search” / >  
 < input type=”submit” name=”submit” value=”Add” / >    

  Basic Input Testing 
 Now let ’ s move our attention to the processing script, to see what ’ s new in there. 

 The following code checks that the item type is  movie , and if it is, it checks that the user has selected a 
valid movie type from the list. If he or she has not, then the visitor is redirected to the form page. 

 The test is an  if  comparison that makes use of the   &  &   operator (the Boolean And operator). You can 
think of this in simple Monopoly game parlance: if the item type is movie  and  the movie type is not 
specified, then you go back to square one without passing go, and you do not collect $200. Otherwise, 
the script can continue processing.   

if ($_POST[‘type’] == ‘movie’  &  &  $_POST[‘movie_type’] == ‘’) {
    header(‘Location: form3.php’);
}  

 The header function allows you to send a raw HTTP header. This can be quite handy when dealing with 
implementing access restrictions and when redirecting users to other scripts. In this instance, it redirects 
the user to the  form3.php  page.     

 PHP will automatically send some HTTP headers before it sends any output to the browser. This is 
important to keep in mind, because once sent, HTTP headers cannot be sent again. If you use the 
 header()  function after output has already been sent (either by an  echo  or  print  statement, HTML, 
whitespace, etc.), then you will receive a warning resembling the following: 

Warning: Cannot modify header information - headers already sent by (output 
started at C:\Program Files\Apache Software Foundation\Apache2.2\htdocs\
formprocess3.php:2) in C:\Program Files\Apache Software Foundation\Apache2.2\
htdocs\formprocess3.php on line 4        



Part I: Movie Review Web Site

144

 Here are two examples of problem code: 

                   
 < ?php
header(‘Location: form3.php’);
? >         

 This code will fail because there is an empty line before the opening   < ?php  tag. The whitespace will be 
sent as output before the  header()  function is called.   

 < ?php
echo ‘foobar’;
header(‘Location: form3.php’);
? >         

 This code will fail because the  echo  statement will output  “ foobar ”  before the  header()  function 
is called. 

 To avoid this problem, you might want to consider using output buffering functions or setting a few 
special directives in your  php.ini  file. But output buffering is an advanced concept, and there ’ s no 
guarantee other servers will have the same  ini  values as yours when you try to run your code on them. 
Ultimately, the best solution is to be aware of this issue and make sure you keep your code clean and 
organized.    

  Ternary Operator 
 If PHP makes it past the  if  statement with header redirect, then the rest of the page can be 
generated. The script goes on to output HTML and construct the rest of the page. Everything is pretty 
straightforward and isn ’ t anything we haven ’ t looked at earlier, except the  ucase()  function and the 
ternary operator.  ucase()  is a function that returns a string with the first character capitalized. But 
the ternary comparison operation  ?:  is much more interesting because it acts as a handy shortcut for an  
if - else  construct. The ternary operator is not PHP - specific; many other languages have it as well. 

 To be honest, I remember when I first saw the  ?:  operator, and thought to myself,  “ Wow  . . .  that ’ s too 
strange. I ’ m never going to use that! I ’ ll just stick with using  if - else . ”  But as I saw it more and started 
using it, I realized how useful it is for writing short, clear code, especially when validating input data. 
The form of the operator is this: 

[expression] ? [execute if TRUE] : [execute if FALSE];  

 The expression to the left of the  ?  is evaluated. If it is found to be true, then the first action (between the 
 ?  and  : ) is performed. Otherwise, if it is found to be false, then the second action (after the  : ) is 
performed. This is handy with  echo  statements and assigning variables. The line that uses the ternary 
operator in  formprocess3.php  is: 

echo ($_POST[‘submit’] == ‘Search’) ? ‘for ‘ : ‘’;  

 If the user clicks the Search submit button, then the condition will evaluate true, and  “ for  ”  will be 
applied back to  echo . If the user clicks the Add submit button, then the condition will be false, and an 



Chapter 5: Form Elements: Letting the User Work with Data

145

empty string will be passed back to  echo . The following  if - else  statement effectively accomplishes the 
same thing: 

if ($_POST[‘submit’] == ‘Search’) {
    echo ‘for ‘;
} else {
    echo ‘’;
}  

 The ternary operator is a great way to apply a quick true/false filter of sorts. But don ’ t be tempted to use 
it as a full - fledged  if - else  statement, especially with nesting, because then your code becomes 
exponentially more difficult to read and maintain. Consider this example: 

 < ?php
$num = 42;
if  ($num  <  0) {
    $value = ‘The value is negative.’;
} else {
    if  ($num  >  0) {
    $value = ‘The value is positive.’;
    } else {
    $value = ‘The value is zero.’;
    }
}
? >   

 This is much easier to read and understand, and consequently to maintain, than if it were compressed 
into two ternary operators: 

 < ?php
$num = 42;
echo ‘The value is ‘;
echo ($num  <  0) ? ‘negative.’ : ($num  >  0) ? ‘positive.’ : ‘zero.’;
? >   

 So what ’ s the bottom line? Use syntactical shortcuts and conveniences that are available to you, if they 
make your life easier and your code more concise, but don ’ t go overboard   —   and keep readability and 
maintainability in mind as well.   

  Linking Forms Together 
 Now that you know most of the form elements, let ’ s create a skeleton for the movie application. The 
system will add new items or search for existing ones. Database interaction has been touched upon 
earlier and will be explored more in Chapter  6 , but for now you ’ ll just build the forms and output the 
results to the browser.    



Part I: Movie Review Web Site

146

  Try It Out  Bonding It All Together    

 In this exercise, you ’ ll create several new scripts that work together to simulate allowing the user to 
add information to the database.   

  1.   Create a file named  form4.php , and enter the following code: 

 < html > 
  < head > 
   < title > Multipurpose Form < /title > 
   < style type=”text/css” > 
   < !--
td {vertical-align: top;}
  -- > 
   < /style > 
  < /head > 
  < body > 
   < form action=”form4a.php” method=”post” > 
    < table > 
     < tr > 
      < td > Name < /td > 
      < td >  < input type=”text” name=”name” / >  < /td > 
     < /tr >  < tr > 
      < td > Item Type < /td > 
      < td > 
       < input type=”radio” name=”type” value=”movie” checked=”checked” / >  
Movie < br/ > 
       < input type=”radio” name=”type” value=”actor” / >  Actor < br/ > 
       < input type=”radio” name=”type” value=”director”/ >  Director < br/ > 
      < /td > 
     < /tr >  < tr > 
      < td > Movie Type < br/ >  < small > (if applicable) < /small >  < /td > 
      < td > 
       < select name=”movie_type” > 
        < option value=”” > Select a movie type... < /option > 
        < option value=”Action” > Action < /option > 
        < option value=”Drama” > Drama < /option > 
        < option value=”Comedy” > Comedy < /option > 
        < option value=”Sci-Fi” > Sci-Fi < /option > 
        < option value=”War” > War < /option > 
        < option value=”Other” > Other... < /option > 
       < /select > 
      < /td > 
     < /tr >  < tr > 
      < td >     < /td > 
      < td >  < input type=”checkbox” name=”debug” checked=”checked” / > 
      Display Debug info
      < /td > 
     < /tr >  < tr > 
      < td colspan=”2” style=”text-align: center;” > 
       < input type=”submit” name=”submit” value=”Search” / >  
       < input type=”submit” name=”submit” value=”Add” / > 
      < /td > 
     < /tr > 



Chapter 5: Form Elements: Letting the User Work with Data

147

    < /table > 
   < /form > 
  < /body > 
 < /html >    

  2.   Create a new file called  form4a.php , and enter the following code: 

 < ?php
// Make sure the user selected a movie type if they’re adding a
// movie. If not, then send them back to the first form.
if ($_POST[‘submit’] == ‘Add’) {
    if ($_POST[‘type’] == ‘movie’  &  &  $_POST[‘movie_type’] == ‘’) {
        header(‘Location: form4.php’);
    }        
}
? > 
 < html > 
  < head > 
   < title > Multipurpose Form < /title > 
   < style type=”text/css” > 
   < !--
td {vertical-align: top;}
  -- > 
   < /style > 
  < /head > 
  < body > 
 < ?php
// Show a form to collect more information if the user is adding something
if ($_POST[‘submit’] == ‘Add’) {
    echo ‘ < h1 > Add ‘ . ucfirst($_POST[‘type’]) . ‘ < /h1 > ’;
? > 
   < form action=”form4b.php” method=”post” > 
    < input type=”hidden” name=”type” value=” < ?php echo $_POST[‘type’]; ? > ”/ > 
    < table > 
     < tr > 
      < td > Name < /td > 
      < td > 
       < ?php echo $_POST[‘name’]; ? > 
       < input type=”hidden” name=”name” value=” < ?php echo $_POST[‘name’]; ? > ”/ > 
      < /td > 
     < /tr > 
 < ?php
    if ($_POST[‘type’] == ‘movie’) {
? > 
     < tr > 
      < td > Movie Type < /td > 
      < td > 
       < ?php echo $_POST[‘movie_type’]; ? > 
       < input type=”hidden” name=”movie_type”
       value=” < ?php echo $_POST[‘movie_type’]; ? > ”/ > 
      < /td > 
     < /tr >  < tr > 
      < td > Year < /td > 
      < td >  < input type=”text” name=”year” / >  < /td > 



Part I: Movie Review Web Site

148

     < /tr >  < tr > 
      < td > Movie Description < /td > 
 < ?php
    } else {
        echo ‘ < tr >  < td > Biography < /td > ’;
    }
? > 
      < td >  < textarea name=”extra” rows=”5” cols=”60” >  < /textarea >  < /td > 
     < /tr >  < tr > 
      < td colspan=”2” style=”text-align: center;” > 
 < ?php
if (isset($_POST[‘debug’])) {
    echo ‘ < input type=”hidden” name=”debug” value=”on” / > ’;
}
? > 
       < input type=”submit” name=”submit” value=”Add” / > 
      < /td > 
     < /tr > 
    < /table > 
   < /form > 
 < ?php
// The user is just searching for something
} else if ($_POST[‘submit’] == ‘Search’) {
    echo ‘ < h1 > Search for ‘ . ucfirst($_POST[‘type’]) . ‘ < /h1 > ’;
    echo ‘ < p > Searching for ‘ . $_POST[‘name’] . ‘... < /p > ’;
}
                   
if (isset($_POST[‘debug’])) {
    echo ‘ < pre > ’;
    print_r($_POST);
    echo ‘ < /pre > ’;
}
? > 
  < /body > 
 < /html >    

  3.   Create another new file named  form4b.php , in which you will add this code: 

 < html > 
  < head > 
   < title > Multipurpose Form < /title > 
   < style type=”text/css” > 
   < !--
td {vertical-align: top;}
  -- > 
   < /style > 
  < /head > 
  < body > 
 < ?php
if ($_POST[‘type’] == ‘movie’) {
    echo ‘ < h1 > New ‘ . ucfirst($_POST[‘movie_type’]) . ‘: ‘;
} else {
    echo ‘ < h1 > New ‘ . ucfirst($_POST[‘type’]) . ‘: ‘;
}



Chapter 5: Form Elements: Letting the User Work with Data

149

echo $_POST[‘name’] . ‘ < /h1 > ’;
                   
echo ‘ < table > ’;
if ($_POST[‘type’] == ‘movie’) {
    echo ‘ < tr > ’;
    echo ‘ < td > Year < /td > ’;
    echo ‘ < td > ’ . $_POST[‘year’] . ‘ < /td > ’;
    echo ‘ < /tr >  < tr > ’;
    echo ‘ < td > Movie Description < /td > ’;
} else {
    echo ‘ < tr >  < td > Biography < /td > ’;
}
echo ‘ < td > ’ . nl2br($_POST[‘extra’]) . ‘ < /td > ’;
echo ‘ < /tr > ’;
echo ‘ < /table > ’;
                   
if (isset($_POST[‘debug’])) {
    echo ‘ < pre > ’;
    print_r($_POST);
    echo ‘ < /pre > ’;
}
? > 
  < /body > 
 < /html >    

  4.   Open  form4.php  in your web browser. The new form is displayed, shown in Figure  5 - 7 , 
which prompts the visitor for more details.    

Figure 5-7



Part I: Movie Review Web Site

150

  5.   Enter the name of the movie you want to add: Grand Canyon.  

  6.   Click the Add button; this takes you to the add form shown in Figure  5 - 8 .    

Figure 5-8

  7.   Enter a date for the year the movie was made: 1991.  

  8.   Select Drama in the Movie type list.  

  9.   Type a quick movie description, making sure you enter multiple lines and press the Enter key 
between them.  

  10.   Click the Add button, and see how the information is displayed (see Figure  5 - 9 ).       



Chapter 5: Form Elements: Letting the User Work with Data

151

  How It Works 
 This set of scripts is designed around a simple idea: passing data through multiple scripts from form 
to form. The key to this has been  input  elements with their  type  attribute set to  hidden . These fields 
are not displayed by the browser to the user, but their values are submitted with the rest of the form 
fields ’  data. This is but one way to pass data between forms, though it is very common.      

  Summary 
 You ’ ve learned a lot of about forms in this chapter. Forms are composed of fields. Each field type has a 
specific purpose and allows a certain data type to be entered. Text fields can be used to enter text or 
numeric data. Lists can be used to enter any type of data and have a limited set of possible values. Lists 
are a good way to drive user input when multiple choices are available. Check boxes are good for true or 
false values.  

Figure 5-9



Part I: Movie Review Web Site

152

  Exercises 
 See how you might accomplish the following: 

  1.   Create a form and a processing page that let you choose a rating (stars, thumbs up, number from 
1 to 5, whatever), and provide comments for a movie.  

  2.   Create a form with several text input boxes that allow you to populate the options of a select 
field on a subsequent page.  

  3.   Create a calculator form that takes two numbers and calculates their sum.        



      6    
Letting the User Edit 

the Database          

 Retrieving data from a database is all well and good when you ’ ve first fed the database some data. 
But databases don ’ t generate their own content, and only a few get fed data by other systems, such 
as integrated systems. What this means is that you have to feed your system with data that comes 
from PHP. For our purposes here, and from what you ’ ve seen in previous chapters, all interaction 
with the database uses SQL. You already know the basic SQL syntax to put your own data in a 
table and retrieve it for users to see. But now, let ’ s look at the other side of the equation  —  data 
processing. 

 This chapter covers database editing, including: 

  Adding entries, which is quite simple  —  but you will find that adding entries in a 
relational database is yet another exercise  .

  Deleting entries without corrupting the database structure and referential integrity  .

  Modifying entries to replace some existing fields with new content in an existing record     .

  Preparing the Battlefield 
 We ’ ll continue to use the  moviesite  database from the previous chapters here. First you ’ ll start by 
creating the administrative page that lists the movies and people in your database and provides 
links for you to manage them. Then you will create the auxiliary pages that will let you add and 
delete movie records.  

❑

❑

❑



154

Part I: Movie Review Web Site

  Try It Out Setting Up the Environment 

 First, you need a start page. Follow these steps to create one: 

  1.   Create a file named  admin.php , and enter the following code: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
? > 
 < html > 
  < head > 
   < title > Movie database < /title > 
   < style type=”text/css” > 
   th { background-color: #999;}
   .odd_row { background-color: #EEE; }
   .even_row { background-color: #FFF; }
   < /style > 
  < /head > 
  < body > 
  < table style=”width:100%;” > 
   < tr > 
    < th colspan=”2” > Movies  < a href=”movie.php?action=add” > [ADD] < /a >  < /th > 
   < /tr > 
 < ?php
$query = ‘SELECT * FROM movie’;
$result = mysql_query($query, $db) or die (mysql_error($db));
                   
$odd = true;
while ($row = mysql_fetch_assoc($result)) {
    echo ($odd == true) ? ‘ < tr class=”odd_row” > ’ : ‘ < tr class=”even_row” > ’;
    $odd = !$odd; 
    echo ‘ < td style=”width:75%;” > ’; 
    echo $row[‘movie_name’];
    echo ‘ < /td >  < td > ’;
    echo ‘  < a href=”movie.php?action=edit & id=’ . $row[‘movie_id’] . ‘” >  
[EDIT] < /a > ’; 
    echo ‘  < a href=”delete.php?type=movie & id=’ . $row[‘movie_id’] . ‘” >  
[DELETE] < /a > ’;
    echo ‘ < /td >  < /tr > ’;
}
? > 
   < tr > 
     < th colspan=”2” > People  < a href=”people.php?action=add” >  [ADD] < /a >  < /th > 
   < /tr > 
 < ?php
$query = ‘SELECT * FROM people’;
$result = mysql_query($query, $db) or die (mysql_error($db));
                   



Chapter 6: Letting the User Edit the Database

155

$odd = true;
while ($row = mysql_fetch_assoc($result)) {
    echo ($odd == true) ? ‘ < tr class=”odd_row” > ’ : ‘ < tr class=”even_row” > ’;
    $odd = !$odd; 
    echo ‘ < td style=”width: 25%;” > ’; 
    echo $row[‘people_fullname’];
    echo ‘ < /td >  < td > ’;
    echo ‘  < a href=”people.php?action=edit & id=’ . $row[‘people_id’] .
        ‘” >  [EDIT] < /a > ’; 
    echo ‘  < a href=”delete.php?type=people & id=’ . $row[‘people_id’] .
        ‘” >  [DELETE] < /a > ’;
    echo ‘ < /td >  < /tr > ’;
}
? > 
   < /table > 
  < /body > 
 < /html >    

  2.   Now open the file in your browser. You will see the page as shown in Figure  6 - 1 .      

Figure 6-1



156

Part I: Movie Review Web Site

 All links are broken at the moment, but do not worry; that ’ s perfectly normal, because you haven ’ t yet 
created the other pages. 

  How It Works  
 You must always have a central administration interface that allows you to perform actions on the 
data and easily see the content. This script provides that admin interface. It shows you all the data and 
allows you to manage everything in sight. So how does it do it? 

 As in Chapter 4, here, you connect to the database and display its contents. The code generates an HTML 
 table  that holds the name of each movie and person, along with ADD, EDIT, and DELETE links. 

 Odd and even rows of the table appear in different colors, as a visual cue that helps line up the entry 
with the EDIT and DELETE links. Before the start of each  while  loop that is responsible for listing the 
results of the database query, the variable  $odd  is set to  true . How the  tr  tag is generated upon each 
iteration depends on the value of  $odd , and then the value of  $odd  is toggled in preparation for the 
next iteration of the loop.    

 

  Inser ting a Record in a Relational Database 
 Databases often hold more than just one table. All those tables can be totally independent, but that 
would be like using your car to store things in the trunk, but never to drive around in. Usually the tables 
are related to one another in some manner. 

 In old systems in which relational databases didn ’ t exist, every row held all the information possible. 
Imagine your system running with only one table holding all the information for your application. Your 
 movie  table, for example, would store all the data about the actors and the directors and the movie 
types. Each record would have all this information specified. Now suppose that one day you were to 
decide that a movie category should be changed from  “ action ”  to  “ adventure. ”  You would then have to 
go through all the records in the table records to change the movie type label. The possibility for 
mistakes is exponentially greater as well! 

 This is not the case in modern relational database management systems (RDBMS); you can create a 
 movietype  table storing a reference of all the possible movie types, and then link movies to the relevant 
movie type. To link different tables, you use a primary key/foreign key pair. 

 A primary key is a value or set of values that can be used to uniquely identify each record in a table. The 
primary key of the  movietype  table is the numeric identification of each type of movie stored in the 
 movietype_id  field. For example, in your database, the id 1 references comedy. The foreign key is a 
value in another table that can be used to reference back to the primary key. The reference in the  movie  
table is to the  movietype  primary key. 

 In the following exercise, you use PHP and SQL to insert a movie in your database. This movie is of a 
known movie type from the  movietype  reference table.  



Chapter 6: Letting the User Edit the Database

157

  Try It Out  Inserting a Movie with Known Movie Type and People 

 This time, let ’ s do something a bit more complicated. You ’ ll be able to add a movie to the system while 
specifying an existing movie type and existing actor and director.   

  1.   Create a new empty file with your text editor, and enter the following code. Save it as  movie.php .   

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
? > 
 < html > 
  < head > 
   < title > Add Movie < /title > 
 < /head > 
  < body > 
   < form action=”commit.php?action=add & type=movie” method=”post” > 
    < table > 
     < tr > 
      < td > Movie Name < /td > 
      < td >  < input type=”text” name=”movie_name”/ >  < /td > 
     < /tr >  < tr > 
      < td > Movie Type < /td > 
      < td >  < select name=”movie_type” > 
 < ?php
// select the movie type information
$query = ‘SELECT
        movietype_id, movietype_label
    FROM
        movietype
    ORDER BY
        movietype_label’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// populate the select options with the results
while ($row = mysql_fetch_assoc($result)) {
    foreach ($row as $value) {
        echo ‘ < option value=”’ . $row[‘movietype_id’] . ‘” > ’;
        echo $row[‘movietype_label’] . ‘ < /option > ’;
    }
}
? > 
       < /select >  < /td > 
     < /tr >  < tr > 
      < td > Movie Year < /td > 
      < td >  < select name=”movie_year” > 



158

Part I: Movie Review Web Site

 < ?php
// populate the select options with years
for ($yr = date(“Y”); $yr  > = 1970; $yr--) {
    echo ‘ < option value=”’ . $yr . ‘” > ’ . $yr . ‘ < /option > ’;
}
? > 
       < /select >  < /td > 
     < /tr >  < tr > 
      < td > Lead Actor < /td > 
      < td >  < select name=”movie_leadactor” > 
 < ?php
// select actor records
$query = ‘SELECT
        people_id, people_fullname
    FROM
        people
    WHERE
        people_isactor = 1
    ORDER BY
        people_fullname’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// populate the select options with the results
while ($row = mysql_fetch_assoc($result)) {
    foreach ($row as $value) {
        echo ‘ < option value=”’ . $row[‘people_id’] . ‘” > ’;
        echo $row[‘people_fullname’] . ‘ < /option > ’;
    }
}
? > 
       < /select >  < /td > 
     < /tr >  < tr > 
      < td > Director < /td > 
      < td >  < select name=”movie_director” > 
 < ?php
// select director records
$query = ‘SELECT
        people_id, people_fullname
    FROM
        people
    WHERE
        people_isdirector = 1
    ORDER BY
        people_fullname’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// populate the select options with the results
while ($row = mysql_fetch_assoc($result)) {
    foreach ($row as $value) {
        echo ‘ < option value=”’ . $row[‘people_id’] . ‘” > ’;



Chapter 6: Letting the User Edit the Database

159

        echo $row[‘people_fullname’] . ‘ < /option > ’;
    }
}
? > 
       < /select >  < /td > 
     < /tr >  < tr > 
      < td colspan=”2” style=”text-align: center;” > 
       < input type=”submit” name=”submit” value=”Add” / > 
      < /td > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >    

  2.   Create a new empty file named  commit.php , and enter the following code: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
? > 
 < html > 
  < head > 
   < title > Commit < /title > 
  < /head > 
  < body > 
 < ?php
switch ($_GET[‘action’]) {
case ‘add’:
    switch ($_GET[‘type’]) {
    case ‘movie’:
        $query = ‘INSERT INTO
            movie
                (movie_name, movie_year, movie_type, movie_leadactor,
                movie_director)
            VALUES
                (“’ . $_POST[‘movie_name’] . ‘”,
                 ‘ . $_POST[‘movie_year’] . ‘,
                 ‘ . $_POST[‘movie_type’] . ‘,
                 ‘ . $_POST[‘movie_leadactor’] . ‘,
                 ‘ . $_POST[‘movie_director’] . ‘)’;
        break;
    }
    break;



160

Part I: Movie Review Web Site

}
                   
if (isset($query)) {
    $result = mysql_query($query, $db) or die(mysql_error($db));
}
? > 
   < p > Done! < /p > 
  < /body > 
 < /html >    

  3.   Open your browser on the  admin.php  page, and click the ADD link in the movie table ’ s 
header. You should see on the screen the form in which you can enter movie information.  

  4.   Add a movie named  “ Test ”  with a random movie type, actor, and director, as shown in Figure  6 - 2 .    

Figure 6-2

  5.   Click the Add button, and you will see the confirmation message shown in Figure  6 - 3 .      



Chapter 6: Letting the User Edit the Database

161

  How It Works  
 HTML forms allow you to drive the way users enter the data. Once submitted, the form sends the 
server information that PHP can use to generate and run the  SQL INSERT  statement. 

 As you see in the movie insertion form in  movie.php , you have four select boxes and a text field. The 
text field content is left to your discretion, but the select boxes are quite directive and only allow you 
to chose a predetermined value. 

 To generate the list of movie types, you simply query the database, retrieve the records and display 
the types, and reference their primary key as the item value. Each known movie type will have an 
item in the select box. 

 Back in Chapter 2, you were introduced to the  while  loop and the  foreach  loop. The year list is a 
selection of years from 1970 to the current year, and is generated with a new type of loop, the  for  
loop. 

 When using these types of loops, you should know that  for  loops will offer a more restricted way of 
setting up code for repetitive execution. They begin with the keyword  for  and then a set of three 
statements: first a variable set to an initial value to be used as the loop ’ s counter, then a conditional 

Figure 6-3



162

Part I: Movie Review Web Site

statement, and finally the increment in which the counter value is adjusted after each execution of the 
loop. The code block that gets executed is bracketed and follows the  for  statement, following this 
syntax:  

for (initialize; condition; increment) {
    // code
}    

 The initial value of  $yr  is set to the current year with the help of the  date()  function. The condition is 
set so the loop will continue executing as long as the value  $yr  is greater than or equal to 1970. Each 
time the loop executes, the value of  $yr  is reduced by 1. The code that is repeatedly executed uses the 
value of  $yr  to place the years into the select ’ s items. 

  for  loops are more restricted than the other loops, in that the variable is intended only to act as a 
counter mechanism. It wouldn ’ t be good practice to change its value within the code block! This is 
compared to the  do - while  and  while  loops, where the value is intentionally changed in the code 
block to affect the loop ’ s behavior. 

 The same steps followed to generate the movie type listing are followed for the actor and director 
select fields. A query is sent to the database, the results are retrieved, and the person is displayed with 
the primary key as the item value. The only difference between the queries is the  WHERE  clause that 
filters the retrieved results to first just the actors and then just the directors. 

 Now that your form is ready, you need to have a script that uses this data to create records. This is the 
purpose of  commit.php . As you can see, the  switch  statement using the  $_GET[‘action’]  value is 
totally useless for now, but in the next exercises you will add a lot of code to the  movie.php  script so 
you can use it to edit the movies. Then  commit.php  ’ s  switch  will be more important.  

  Deleting a Record 
 Deleting records is easy (perhaps a bit too easy at times). Deleting always means losing data, so be 
especially careful when doing so. To delete a record you need to point to the record through a set of 
conditions in a  WHERE  statement. Once this statement is executed, there is no turning back. Records are 
deleted without hope of return; that ’ s why we advise caution when using the  DELETE  statement. MySQL 
deletes everything that matches the query, and forgetting one little thing in your  WHERE  clause could 
have disastrous consequences. 

 Because deleting records is irrevocable, you may find it beneficial to make sure your  WHERE  clause causes 
the correct records to be selected first. You can use MySQL ’ s command - line program, first discussed in 
Chapter 1, to issue a  SELECT  statement and then review the result set that is returned. Then, when you 
are certain the correct records are selected, you can prepare your  DELETE  statement.  



Chapter 6: Letting the User Edit the Database

163

  Try It Out  Deleting a Single Record 

 Before asking PHP to delete anything though MySQL, let ’ s first try it ourselves to familiarize 
ourselves with the  DELETE  statement.   

  1.   Open a console window and connect to the MySQL server with the command - line program, 
as in Chapter 1: 

“C:\Program Files\MySQL\MySQL Server 5.0\bin\mysql.exe” -u root -p   

  2.   Select the  movies  database by entering the following: 

USE movies;   

  3.   Test the  WHERE  clause using a  SELECT  statement: 

SELECT * FROM movie WHERE movie_id = 4;   

  4.   Verify the  WHERE  clause is correct by examining the returned results to see that it is indeed the 
record you wish to delete.  

  5.   Delete the record by using a  DELETE  statement: 

DELETE FROM movie WHERE movie_id = 4;   

  6.   See that the record was deleted by reissuing the  SELECT  statement:   

SELECT * FROM movie WHERE movie_id = 4;     

  How It Works  
 The  DELETE  SQL statement is very simple to use. The most important aspect is to make sure you have 
the proper selection of records with the  WHERE  clause in your query. 

 As you know, a database often holds related records in different tables. Deleting some records without 
considering their relations introduces you to chaos and heavy manual database tweaking. MySQL 
unfortunately doesn ’ t manage relations for you, and thus will not automatically preserve referential 
integrity. 

 To avoid that problem, you can use a more elaborate form of the  DELETE  statement, the  Cascade Delete , 
as discussed in the following section.    

 



164

Part I: Movie Review Web Site

  Try It Out  Cascade Delete 

 Now that you know how to use  DELETE , you will implement it to delete a known person from your 
application ’ s database. Because you store references to known people in the  movie  table, you will 
need to update the  movie  table content so you don ’ t reference deleted people. (The update - specific 
exercises come next in this chapter.) Deleting the person only would be like throwing away your car 
keys and expecting your parking spot to be empty. You need to make sure no reference to a deleted 
record is left in the remaining data. 

 Follow these steps to implement the Cascade Delete: 

  1.   Create a new text file named  delete.php , and enter the following code: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
if (!isset($_GET[‘do’]) || $_GET[‘do’] != 1) {
    switch ($_GET[‘type’]) {
    case ‘movie’:
        echo ‘Are you sure you want to delete this movie? < br/ > ’;
        break;
    case ‘people’:
        echo ‘Are you sure you want to delete this person? < br/ > ’;
        break;
    } 
    echo ‘ < a href=”’ . $_SERVER[‘REQUEST_URI’] . ‘ & do=1” > yes < /a >  ‘; 
    echo ‘or  < a href=”admin.php” > no < /a > ’;
} else {
    switch ($_GET[‘type’]) {
    case ‘people’:
        $query = ‘UPDATE movie SET
                movie_leadactor = 0 
            WHERE
                movie_leadactor = ‘ . $_GET[‘id’];
        $result = mysql_query($query, $db) or die(mysql_error($db));
                   
        $query = ‘DELETE FROM people 
            WHERE
                people_id = ‘ . $_GET[‘id’];
        $result = mysql_query($query, $db) or die(mysql_error($db));
? > 
 < p style=”text-align: center;” > Your person has been deleted.
 < a href=”movie_index.php” > Return to Index < /a >  < /p > 
 < ?php
        break;
    case ‘movie’:
        $query = ‘DELETE FROM movie 
            WHERE
                movie_id = ‘ . $_GET[‘id’];
        $result = mysql_query($query, $db) or die(mysql_error($db));
? > 
 < p style=”text-align: center;” > Your movie has been deleted.



Chapter 6: Letting the User Edit the Database

165

 < a href=”movie_index.php” > Return to Index < /a >  < /p > 
 < ?php
        break;
    }
}
? >    

  2.   Open  admin.php  in your browser again, and note the DELETE links next to each movie or 
person.  

  3.   Try deleting the test movie you added in the previous exercise by clicking the DELETE link 
next to its name. You will be asked for confirmation, as in Figure  6 - 4 .    

Figure 6-4

  4.   Click the  “ yes ”  link to confirm the deletion, and wait for the confirmation message, shown in 
Figure  6 - 5 .      



166

Part I: Movie Review Web Site

  How It Works  
 First, you need to understand that in a relational database you cannot delete records and just forget 
about them. Deleting data must be considered carefully. For example, if you delete a person from the 
 people  table, this prevents you from finding a potential reference to that person in the  movie  table. If 
you delete Jim Carrey from the  people  table, who will  Bruce Almighty  ’ s lead actor be? If you don ’ t do 
anything, Jim Carrey ’ s id will remain in the record, and you will have a corrupted database. You don ’ t 
want that, do you? The answer is: Certainly not! The solution to this problem is to make sure that you 
always have the round peg (a foreign key) in the round hole (a record). The script runs in two modes, 
with the help of an  if  statement. First, when it is called by following the link from  admin.php , the 
query string is simply the record type (either a movie or person) and the record ’ s id. A parameter named 
 do  does not appear. This triggers the first block of code of the  if  construct to be executed by PHP: 

switch ($_GET[‘type’]) {
case ‘movie’:
    echo ‘Are you sure you want to delete this movie? < br/ > ’;
    break;
case ‘people’:
    echo ‘Are you sure you want to delete this person? < br/ > ’;
    break;
} 
echo ‘ < a href=”’ . $_SERVER[‘REQUEST_URI’] . ‘ & do=1” > yes < /a >  ‘; 
echo ‘or  < a href=”admin.php” > no < /a > ’;  

Figure 6-5



Chapter 6: Letting the User Edit the Database

167

 A  switch  statement is used to display the correct prompt, depending on the  type  submitted, and 
then links are generated to confirm the delete process or to cancel it. The link to confirm the process 
directs you back to the current page with the same URL parameters, but also appends  do . 

 The second time the script is called, the  do  parameter is set, and so the next block of the  if  structure is 
executed, and again a  switch  statement is used to act appropriately, depending on the type of record 
to be deleted. 

 Because we want to preserve the integrity of the database, the  movie  table must be updated first, 
before deleting a record from the  person  table: 

$query = ‘UPDATE movie SET
        movie_leadactor = 0 
    WHERE
        movie_leadactor = ‘ . $_GET[‘id’];
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
$query = ‘DELETE FROM people 
    WHERE
        people_id = ‘ . $_GET[‘id’];
$result = mysql_query($query, $db) or die(mysql_error($db));  

 The  UPDATE  statement works in a very simple way. It sets the fields specified to the new value specified 
in all records, meeting the requirements of the  WHERE  statement. You might wonder what would happen 
if someone were to forget the  WHERE  part. Well, curiosity is a fine quality: This would update  all  records 
in the table, which is probably not something you want to do in real life.    

 

  Editing Data in a Record 
 Having data in the database is all well and good, but data has a mind of its own and tends to want to be 
updated. To update data, you need to identify the data to update and present the system user with a nice 
interface to do so. Using the same interface as was used to create the data is often a good practice.  

  Try It Out  Editing a Movie 

 In this exercise, you create a script that enables you to edit a movie. You will build on the existing 
 movie.php  script you created earlier.     

  1.   Open  movie.php  in your text editor and modify the code as follows: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   



168

Part I: Movie Review Web Site

if ($_GET[‘action’] == ‘edit’) {
    //retrieve the record’s information 
    $query = ‘SELECT
            movie_name, movie_type, movie_year, movie_leadactor, movie_director
        FROM
            movie
        WHERE
            movie_id = ‘ . $_GET[‘id’];
    $result = mysql_query($query, $db) or die(mysql_error($db));
    extract(mysql_fetch_assoc($result));
} else {
    //set values to blank
    $movie_name = ‘’;
    $movie_type = 0;
    $movie_year = date(‘Y’);
    $movie_leadactor = 0;
    $movie_director = 0;
}

? > 
 < html > 
  < head > 

   < title >  < ?php echo ucfirst($_GET[‘action’]); ? >  Movie < /title > 

  < /head > 
  < body > 

   < form action=”commit.php?action= < ?php echo $_GET[‘action’]; ? >  & type=movie”
   method=”post” > 

    < table > 
     < tr > 
      < td > Movie Name < /td > 

      < td >  < input type=”text” name=”movie_name”
      value=” < ?php echo $movie_name; ? > ”/ >  < /td > 

     < /tr >  < tr > 
      < td > Movie Type < /td > 
      < td >  < select name=”movie_type” > 
 < ?php
// select the movie type information
$query = ‘SELECT
        movietype_id, movietype_label
    FROM
        movietype
    ORDER BY
        movietype_label’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// populate the select options with the results
while ($row = mysql_fetch_assoc($result)) {
    foreach ($row as $value) {

        if ($row[‘movietype_id’] == $movie_type) {
            echo ‘ < option value=”’ . $row[‘movietype_id’] .
                ‘” selected=”selected” > ’;
        } else {
            echo ‘ < option value=”’ . $row[‘movietype_id’] . ‘” > ’;
        }
        echo $row[‘movietype_label’] . ‘ < /option > ’;



Chapter 6: Letting the User Edit the Database

169

    }
}
? > 
       < /select >  < /td > 
     < /tr >  < tr > 
      < td > Movie Year < /td > 
      < td >  < select name=”movie_year” > 
 < ?php
// populate the select options with years
for ($yr = date(“Y”); $yr  > = 1970; $yr--) {

    if ($yr == $movie_year) {
        echo ‘ < option value=”’ . $yr . ‘” selected=”selected” > ’ . $yr .
            ‘ < /option > ’;
    } else {
        echo ‘ < option value=”’ . $yr . ‘” > ’ . $yr . ‘ < /option > ’;
    }

}
? > 
       < /select >  < /td > 
     < /tr >  < tr > 
      < td > Lead Actor < /td > 
      < td >  < select name=”movie_leadactor” > 
 < ?php
// select actor records
$query = ‘SELECT
        people_id, people_fullname
    FROM
        people
    WHERE
        people_isactor = 1
    ORDER BY
        people_fullname’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// populate the select options with the results
while ($row = mysql_fetch_assoc($result)) {
    foreach ($row as $value) {

        if ($row[‘people_id’] == $movie_leadactor) {
            echo ‘ < option value=”’ . $row[‘people_id’] .
                ‘” selected=”selected” > ’;
        } else {
            echo ‘ < option value=”’ . $row[‘people_id’] . ‘” > ’;
        }
        echo $row[‘people_fullname’] . ‘ < /option > ’;

    }
}
? > 
       < /select >  < /td > 
     < /tr >  < tr > 
      < td > Director < /td > 
      < td >  < select name=”movie_director” > 
 < ?php
// select director records
$query = ‘SELECT



170

Part I: Movie Review Web Site

        people_id, people_fullname
    FROM
        people
    WHERE
        people_isdirector = 1
    ORDER BY
        people_fullname’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// populate the select options with the results
while ($row = mysql_fetch_assoc($result)) {
    foreach ($row as $value) {

        if ($row[‘people_id’] == $movie_director) {
            echo ‘ < option value=”’ . $row[‘people_id’] .
                ‘” selected=”selected” > ’;
        } else {
            echo ‘ < option value=”’ . $row[‘people_id’] . ‘” > ’;
        }
        echo $row[‘people_fullname’] . ‘ < /option > ’;

    }
}
? > 
       < /select >  < /td > 
     < /tr >  < tr > 
      < td colspan=”2” style=”text-align: center;” > 

 < ?php
if ($_GET[‘action’] == ‘edit’) {
    echo ‘ < input type=”hidden” value=”’ . $_GET[‘id’] . ‘” name=”movie_id” / > ’;
}
? > 
       < input type=”submit” name=”submit”
       value=” < ?php echo ucfirst($_GET[‘action’]); ? > ” / > 

      < /td > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >    

  2.   Open the  commit.php  script and edit its content to match this new code: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
? > 
 < html > 
  < head > 
   < title > Commit < /title > 
  < /head > 
  < body > 
 < ?php
switch ($_GET[‘action’]) {



Chapter 6: Letting the User Edit the Database

171

case ‘add’:
    switch ($_GET[‘type’]) {
    case ‘movie’:
        $query = ‘INSERT INTO
            movie
                (movie_name, movie_year, movie_type, movie_leadactor,
                movie_director)
            VALUES
                (“’ . $_POST[‘movie_name’] . ‘”,
                 ‘ . $_POST[‘movie_year’] . ‘,
                 ‘ . $_POST[‘movie_type’] . ‘,
                 ‘ . $_POST[‘movie_leadactor’] . ‘,
                 ‘ . $_POST[‘movie_director’] . ‘)’;
        break;
    }
    break;

case ‘edit’:
    switch ($_GET[‘type’]) {
    case ‘movie’:
        $query = ‘UPDATE movie SET
                movie_name = “’ . $_POST[‘movie_name’] . ‘”,
                movie_year = ‘ . $_POST[‘movie_year’] . ‘,
                movie_type = ‘ . $_POST[‘movie_type’] . ‘,
                movie_leadactor = ‘ . $_POST[‘movie_leadactor’] . ‘,
                movie_director = ‘ . $_POST[‘movie_director’] . ‘
            WHERE
                movie_id = ‘ . $_POST[‘movie_id’];
        break;
    }
    break;

}
                   
if (isset($query)) {
    $result = mysql_query($query, $db) or die(mysql_error($db));
}
? > 
   < p > Done! < /p > 
  < /body > 
 < /html >    

  3.   Now open your browser and go to the  admin.php  page.  

  4.   Try clicking the EDIT link next to the  Bruce Almighty  movie, change a few boxes and the movie 
name, and press the Edit button in the form, as shown in Figure  6 - 6 .    



172

Part I: Movie Review Web Site

  5.   Edit the  Bruce Almighty  entry again with the procedure in step 4, and fix it so it ’ s back to its own 
old self. 

  Now the EDIT links for movies actually do something!    

 You see that the script loads the stored values and allows you to edit the data easily. Play around a bit, 
and get a feel for the way it all works. 

  How It Works  
 The  commit.php  code is very much the same as what you saw already, with the exception of a new 
branch of code in the  switch  statement that handles updating the record in the database with the 
incoming values. But there is an interesting twist in  movie.php , so let ’ s look at it a bit more closely. 

 First, look at the  if  statement at the start of the script. You defined its branches on a query string 
parameter named  action . If the action is  edit , you query the database for a record corresponding to 
the id specified in the  id  query string parameter and set some variables. These variables are set to 
void if  action  is not  edit .   

Figure 6-6



Chapter 6: Letting the User Edit the Database

173

if ($_GET[‘action’] == ‘edit’) {
    //retrieve the record’s information 
    $query = ‘SELECT
            movie_name, movie_type, movie_year, movie_leadactor, movie_
director
        FROM
            movie
        WHERE
            movie_id = ‘ . $_GET[‘id’];
                   
    $result = mysql_query($query, $db) or die(mysql_error($db));
    extract(mysql_fetch_assoc($result));
} else {
    //set values to blank
    $movie_name = ‘’;
    $movie_type = 0;
    $movie_year = date(‘Y’);
    $movie_leadactor = 0;
    $movie_director = 0;
}  

 The variables set in the preceding code are used to set the default value of the form fields. Each field 
has a known value if you are editing a record, and has a blank value if you are creating a new record.   

      < td >  < input type=”text” name=”movie_name”
      value=” < ?php echo $movie_name; ? > ”/ >  < /td >   

 In this example, the  movie_name  field takes the  $movie_name  variable ’ s content as its default value. 
This allows you to reload the form with data from the record to edit it. 

 Editing a text field is pretty straightforward, but setting the value in a list is another story. You can ’ t 
just display the list and hope the user will reset the value to the original when he or she edits the 
record. You need to reload the whole list and make the previously set value appear as the default in 
the list, so the user can just skip it if he or she doesn ’ t want to edit it. 

 How do you do this? The script holds the solution: 

      < td > Movie Type < /td > 
      < td >  < select name=”movie_type” > 
 < ?php
// select the movie type information
$query = ‘SELECT
        movietype_id, movietype_label
    FROM
        movietype
    ORDER BY
        movietype_label’;
                   
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// populate the select options with the results
while ($row = mysql_fetch_assoc($result)) {
    foreach ($row as $value) {



174

Part I: Movie Review Web Site

        if ($row[‘movietype_id’] == $movie_type) {
            echo ‘ < option value=”’ . $row[‘movietype_id’] .
                ‘” selected=”selected” > ’;
        } else {
            echo ‘ < option value=”’ . $row[‘movietype_id’] . ‘” > ’;
        }
        echo $row[‘movietype_label’] . ‘ < /option > ’;
    }
}
? > 
       < /select >  < /td >   

 You load the list as you would have done if adding a record, but you compare the current value in the 
 foreach  iteration to the default value. If they are identical, add a simple  selected= “ selected ”   flag 
to the option value. This sets the default list value to the current value in the table.  

  Summary 
 As you ’ ve learned in this chapter, there are three basic actions in modifying the content of a database: 

  Insert  

  Delete  

  Update    

 These actions are performed by the database itself through SQL queries that PHP executes on MySQL. 
Read up on the SQL statements used in this chapter to get a good feel for how far they can take you, and 
at what level you feel confident using these commands. 

 And finally, always remember that testing your query alone in MySQL ’ s command - line client or in a 
program such as MySQL Query Browser can save you a lot of time debugging it before you incorporate 
it into your PHP script.  

  Exercise 
 It may seem as if we ’ re about to take it easy on you, with only one exercise, but don ’ t be fooled! This 
single exercise covers a lot of what we mentioned in this chapter.   

  1.   Create the edit/delete code for the  people  table. Use the movie code as an example.                  

❑

❑

❑



      7
    Manipulating and Creating 

Images with PHP          

 Now that you ’ ve been rocking and rolling with manipulating and displaying data using PHP, why 
stop there? Did you know that PHP can also manipulate and create images on the fly? It can, with 
a little help from the GD library. GD loosely stands for  “ Graphics Draw, ”  but the industry 
generally refers to it in short as the GD library. 

 This chapter covers the following: 

  Enabling your PHP setup to use the GD library  .

  Allowing your users to upload their own images  .

  Retrieving information about an image, such as size or file type  .

  Creating a new image  .

  Copying an image or a portion of an image  .

  Creating thumbnails (smaller versions of images)  .

  Creating black - and - white versions of images  .

  Adding watermarks and captions to images     .

  Working with the  GD  Library 
 GD is written in C++ and allows for the manipulation of certain image types. Because PHP can ’ t 
automatically process images with its core built - in functions, you need to make sure you have the 
GD library and extension enabled. Fortunately, a bundled version comes with all recent versions of 
PHP. While we recommend you use the bundled version included with PHP, if for some reason 
you don ’ t have the bundled version, then you can find an external version of the library at 
 http://www.libgd.org/releases/ . 

❑

❑

❑

❑

❑

❑

❑

❑



Part I: Movie Review Web Site

176

  What File Types Can I Use with  GD     &     PHP ? 
 GD itself can work with a multitude of image formats. When you use it from within PHP you can find 
out information about any GIF, JPG, PNG, SWF, SWC, PSD, TIFF, BMP, IFF, JP2, JPX, JB2, JPC, XBM, or 
WBMP image file. You can also create and manipulate images in GIF, JPG, PNG, WBMP, and XBM image 
formats. With the help of GD, you can use PHP to draw shapes such as squares, polygons, and ellipses, 
as well as overlay text.     

 Depending on your version of GD, GIF support may or may not be enabled. You can tell if GIF support 
is enabled with the use of the  gd_info  function described in the Try It Out section  “ Testing Your GD 
Installation, ”  which follows.    

  Enabling  GD  in  PHP  
 If you are using a shared web host, there ’ s a good chance they have already enabled GD on their 
installation of PHP. If you are running your own server, then you will probably need to enable it 
yourself. Enabling it yourself is not very difficult. 

 In Windows, first make sure the  php_gd.dll  file is in the ext folder within the PHP installation ’ s 
directory. For example, if you installed PHP to  C:\PHP , then the folder you need to look in is  C:\PHP\
ext . Then, find the following line in your  php.ini  file: 

;extension=php_gd2.dll  

 Remove the leading semicolon to uncomment it. Save the change, and restart Apache for it to take effect. 

 In Linux, things are a bit trickier but still not overly difficult. You need to recompile PHP with the 
  -  - with - gd  configure option to enable GD. The steps necessary to compiling PHP on Linux are outlined 
in Appendix I. Once you have GD enabled, let ’ s test it!  

  Try It Out  Testing Your  GD  Installation 

 You should first make sure everything is working properly, before you delve further into using GD: 

  1.   Open your editor, and enter the following code: 

 < ?php
echo ‘ < pre > ’;
print_r(gd_info());
echo ‘ < /pre > ’;
? >    

  2.   Save this file as  gdtest.php .  

  3.   Open the file in your web browser. You should see a page that looks like the one shown in 
Figure  7 - 1 .      



Chapter 7: Manipulating and Creating Images with PHP

177

  How It Works  
 The  gd_info()  function is quite useful because it tells you what version of GD is available to PHP 
and what capabilities it affords you. Its purpose is to put all the information about the GD version into 
an array that you can then view. This not only serves as a test to make sure that GD and PHP are 
playing nice with each other, but it lets you see what your capabilities and limitations are for using the 
GD functions in PHP. For the purposes of the examples in this chapter, you will need to have JPG, GIF, 
and PNG support. If your version of GD doesn ’ t support any of these image types, you will need to 
upgrade. You can find full upgrade instructions and source files at  www.libgd.org . 

 Now that you know that your GD library is working correctly, and which image types are supported 
in your installation, let ’ s move along.     

  Allowing Users to Upload Images 
 Suppose you wanted to add a little spice to your movie review site, and you thought it would be a good 
idea to let users upload pictures of themselves dressed as their favorite movie actors in their favorite 
roles. In the rest of this chapter, you will create this look - alike photo gallery. 

 Figure 7 - 1 



Part I: Movie Review Web Site

178

 There is some debate about whether or not actual images can be efficiently stored in a database using the 
 blob  MySQL column type. Our personal preference is not to store the actual image, but to store only 
information about the image, and if needed, a link to the image. The images themselves are then stored 
in a regular directory in the filesystem. With that being said, let ’ s create a table in your movie review 
database that will store the links to the images your users upload.  

  Try It Out  Creating the Image Table 

 First, you need to create a table that will hold information about your images. You are going to store 
basic information about each image, such as the user ’ s name and the title of the image. Then, you need 
to design an HTML form to give your users the ability to submit an image for display. The form will 
collect some basic information about the image, and then accept the users ’  upload of the file directly 
from the comfort of their own browser, without the aid of any special file - transfer software.   

  1.   Create a directory to hold the uploaded images. In this exercise, the images will be stored in a 
directory named  images .  

  2.   After the directory is in place, you can create a new table in the  moviesite  database. Open 
your text editor, and type the following: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
//create the images table
$query = ‘CREATE TABLE images (
        image_id       INTEGER      NOT NULL AUTO_INCREMENT,
        image_caption  VARCHAR(255) NOT NULL,
        image_username VARCHAR(255) NOT NULL,
        image_filename VARCHAR(255) NOT NULL DEFAULT “”,
        image_date     DATE         NOT NULL,
        PRIMARY KEY (image_id)
    )
    ENGINE=MyISAM’;
mysql_query($query, $db) or die (mysql_error($db));
                   
echo ‘Images table successfully created.’;
? >    

  3.   Save this file as  db_ch07 - 1.php . Open this file in your browser, and you should see the 
message  “ Images table successfully created. ”   

  4.   Now open your editor, and type the following code to create the HTML form: 

 < html > 
  < head > 
   < title > Upload your pic to our site! < /title > 
   < style type=”text/css” > 
   < !--
td {vertical-align: top;}



Chapter 7: Manipulating and Creating Images with PHP

179

  -- > 
   < /style > 
  < /head > 
  < body > 
   < form action=”check_image.php” method=”post” enctype=”multipart/form-data” > 
    < table > 
     < tr > 
      < td > Your Username < /td > 
      < td >  < input type=”text” name=”username” / >  < /td > 
     < /tr > 
      < td > Upload Image* < /td > 
      < td >  < input type=”file” name=”uploadfile” / >  < /td > 
     < /tr >  < tr > 
      < td colspan=”2” > 
       < small >  < em > * Acceptable image formats include: GIF, JPG/JPEG and PNG.
        < /em >  < /small > 
      < /td > 
     < /tr >  < tr > 
      < td > Image Caption < br/ > 
      < /td > 
      < td >  < input type=”text” name=”caption” / >  < /td > 
     < /tr >  < tr > 
      < td colspan=”2” style=”text-align: center” > 
       < input type=”submit” name=”submit” value=”Upload”/ > 
      < /td > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >    

  5.   Save this file as  upload_image.html .  

  6.   Create a new file in your editor by typing the following code: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
//change this path to match your images directory
$dir =’C:/Program Files/Apache Software Foundation/Apache2.2/htdocs/images’;
                   
//make sure the uploaded file transfer was successful
if ($_FILES[‘uploadfile’][‘error’] != UPLOAD_ERR_OK) {
    switch ($_FILES[‘uploadfile’][‘error’]) {
    case UPLOAD_ERR_INI_SIZE:
        die(‘The uploaded file exceeds the upload_max_filesize directive ‘ .
            ‘in php.ini.’);
        break;
    case UPLOAD_ERR_FORM_SIZE:
        die(‘The uploaded file exceeds the MAX_FILE_SIZE directive that ‘ .
            ‘was specified in the HTML form.’);
        break;



Part I: Movie Review Web Site

180

    case UPLOAD_ERR_PARTIAL:
        die(‘The uploaded file was only partially uploaded.’);
        break;
    case UPLOAD_ERR_NO_FILE:
        die(‘No file was uploaded.’);
        break;
    case UPLOAD_ERR_NO_TMP_DIR:
        die(‘The server is missing a temporary folder.’);
        break;
    case UPLOAD_ERR_CANT_WRITE:
        die(‘The server failed to write the uploaded file to disk.’);
        break;
    case UPLOAD_ERR_EXTENSION:
        die(‘File upload stopped by extension.’);
        break;
    }
}
                   
//get info about the image being uploaded
$image_caption = $_POST[‘caption’];
$image_username = $_POST[‘username’];
$image_date = date(‘Y-m-d’);
list($width, $height, $type, $attr) =
    getimagesize($_FILES[‘uploadfile’][‘tmp_name’]);
                   
// make sure the uploaded file is really a supported image
switch ($type) {
case IMAGETYPE_GIF:
    $image = imagecreatefromgif($_FILES[‘uploadfile’][‘tmp_name’]) or
        die(‘The file you uploaded was not a supported filetype.’);
    $ext = ‘.gif’;
    break;
case IMAGETYPE_JPEG:
    $image = imagecreatefromjpeg($_FILES[‘uploadfile’][‘tmp_name’]) or
        die(‘The file you uploaded was not a supported filetype.’);
    $ext = ‘.jpg’;
    break;
case IMAGETYPE_PNG:
    $image = imagecreatefrompng($_FILES[‘uploadfile’][‘tmp_name’]) or
        die(‘The file you uploaded was not a supported filetype.’);
    $ext = ‘.png’;
    break;
default:
    die(‘The file you uploaded was not a supported filetype.’);
}
                   
//insert information into image table
$query = ‘INSERT INTO images
    (image_caption, image_username, image_date)
VALUES



Chapter 7: Manipulating and Creating Images with PHP

181

    (“’ . $image_caption . ‘”, “’ . $image_username . ‘”, “’ . $image_date .
    ‘”)’;
$result = mysql_query($query, $db) or die (mysql_error($db));
                   
//retrieve the image_id that MySQL generated automatically when we inserted
//the new record
$last_id = mysql_insert_id();
                   
//because the id is unique, we can use it as the image name as well to make 
//sure we don’t overwrite another image that already exists
$imagename = $last_id . $ext;
                   
// update the image table now that the final filename is known.
$query = ‘UPDATE images
    SET image_filename = “’ . $imagename . ‘”
    WHERE image_id = ‘ . $last_id;
$result = mysql_query($query, $db) or die (mysql_error($db));
                   
//save the image to its final destination
switch ($type) {
case IMAGETYPE_GIF:
    imagegif($image, $dir . ‘/’ . $imagename);
    break;    
case IMAGETYPE_JPEG:
    imagejpeg($image, $dir . ‘/’ . $imagename, 100);
    break;    
case IMAGETYPE_PNG:
    imagepng($image, $dir . ‘/’ . $imagename);
    break;
}    
imagedestroy($image);
? > 
 < html > 
  < head > 
   < title > Here is your pic! < /title > 
  < /head > 
  < body > 
   < h1 > So how does it feel to be famous? < /h1 > 
   < p > Here is the picture you just uploaded to our servers: < /p > 
    < img src=”images/ < ?php echo $imagename; ? > ” style=”float:left;” > 
   < table > 
    < tr >  < td > Image Saved as:  < /td >  < td >  < ?php echo $imagename; ? >  < /td >  < /tr > 
    < tr >  < td > Image Type:  < /td >  < td >  < ?php echo $ext; ? >  < /td >  < /tr > 
    < tr >  < td > Height:  < /td >  < td >  < ?php echo $height; ? >  < /td >  < /tr > 
    < tr >  < td > Width:  < /td >  < td >  < ?php echo $width; ? >  < /td >  < /tr > 
    < tr >  < td > Upload Date:  < /td >  < td >  < ?php echo $image_date; ? >  < /td >  < /tr > 
   < /table > 
  < /body > 
 < /html >    

  7.   Save this file as  check_image.php .  

  8.   Now open  upload_image.html  in your browser. The page will load, and your screen should 
look like Figure  7 - 2 .    



Part I: Movie Review Web Site

182

  9.   Upload your image. Your page should now look something like Figure  7 - 3 .      

Figure 7-2

Figure 7-3



Chapter 7: Manipulating and Creating Images with PHP

183

  How It Works  
 In  upload_image.html , you have given the HTML form the ability to accept files simply by doing 
two things. The first is using the  file  type  input  element. The input element now displays a Browse 
button next to the text area, which allows a visitor to surf his or her local disk and populate the field 
with the file ’ s path. The second is specifying the form ’ s  enctype  attribute to  multipart/form - data . 
Providing this attribute is necessary for the file to transfer correctly.   

 < form action=”check_image.php” method=”post” enctype=”multipart/form-data” > 
...
   < td > Upload Image* < /td > 

   < td >  < input type=”file” name=”uploadfile” / >  < /td > 
...  

 Keep in mind that the form element ’ s method attribute should be set to  post  as well. Some browsers 
support the  put  method for transfers as well, and if you need to use this, then you ’ ll want to read the 
PHP manual at  http://www.php.net/manual/en/features.file - upload.put - method.php . 
Either way, image transfers will not work with  get . 

 There is much more going on in  check_image.php . A cursory overview shows that the script first 
connects to MySQL and selects the  moviesite  database. It makes sure a file was uploaded correctly 
and that it is one of the allowed file types. It then stores the picture ’ s information into the database. 
Finally, the script saves a copy of the uploaded image to its permanent location in the filesystem and 
outputs a summary back to the visitor. If the process breaks down at any point for any reason (the user 
doesn ’ t upload a file, or the file is an invalid file type for example), then PHP stops its processing and 
displays an error message. 

 You can use several different methodologies when dealing with images. For example, if you think you 
will have numerous files for each user, you can create a directory for each user and store each image 
within it. On the other hand, a single directory for storing the images might be a better choice if you 
are planning to allow only one image file to be uploaded. In this instance, you are keeping all the 
image files in one directory just for the sake of simplicity. Regardless of the structure you choose, you 
must apply some checks for duplicate filenames, so files that have already been uploaded aren ’ t 
overwritten. In this case, you renamed each incoming file the same name as the unique ID assigned to 
it. This ensures that each file will have its own unique name and you won ’ t have any problems if two 
users upload a file with the same name. 

 PHP stores information about recently uploaded files in the  $_FILES  array. The array has multiple 
levels, and the first key is the name you assigned to the form ’ s image field. So, because the field ’ s 
definition in  upload_image.html  was this: 

 < input type=”file” name=”uploadfile” / >   

 then information about the file will be available in  createimages.php  in  $_FILES[‘uploadfile’] . 
This way, you can access the correct file if you have been allowing multiple images to be uploaded. 
For example, let ’ s say you were working with a form that had the following: 

 < input type=”file” name=”uploadfile1” / >  < br/ > 
 < input type=”file” name=”uploadfile2” / >  < br/ > 
 < input type=”file” name=”uploadfile3” / >   

 You would then have  $_FILES[‘uploadfile1 ’ ] ,  $_FILES[‘uploadfile2 ’ ] , and 
 $_FILES[‘uploadfile3 ’ ] . 



Part I: Movie Review Web Site

184

 The next level of the  $_FILES  array is information about the uploaded file. Possible keys are: 

   name:  References the name of the file as it was on the user ’ s local machine  .

   type:  Stores the file ’ s MIME type as provided by the browser  .

   size : The size of the uploaded file in bytes  .

   tmp_name:  The name of the uploaded file on the server  .

   error : The error code associated with the file transfer      .

 The file is transferred from the visitor ’ s computer up to the server and is stored as a temporary 
file. The temporary file is deleted after the receiving script finishes executing. This is very important to 
remember because if you do not somehow move the temporary file to a more permanent location 
in the filesystem in the processing script, then the uploaded file will be lost forever. The  name  key 
holds the name of the original file on the local machine. The  tmp_name  key holds the name of the 
temporary copy of the file on the server. 

 The  type  key holds the MIME type of the uploaded file, for example  image/jpg  or  image/gif . But 
this value is set by the browser and may not be correct. So while it ’ s provided to you for convenience, 
you must also realize that PHP doesn ’ t check the value for accuracy, and you mustn ’ t depend too 
much on it. A malicious user could fake the  type  value and cause you headaches. 

 The  size  key holds the size of the uploaded file. The file size is represented in bytes, so a 15K file 
would have a value here of 15,360. 

 The error key holds the error code associated with the file upload. It holds a numeric value, but PHP 
also has predefined constants to represent the value, and using these constants makes your script 
easier to read and manage. These constants are: 

   UPLOAD_ERR_OK : The file uploaded successfully and there is no error.  

   UPLOAD_ERR_INI:  The size of the uploaded file exceeds the  upload_max_filesize  directive 
set in  php.ini .  

   UPLOAD_ERR_FORM_SIZE : The size of the uploaded file exceeded the MAX_FILE_SIZE directive 
set in the HTML form.  

   UPLOAD_ERR_PARTIAL : The file was only partially uploaded and is not complete.  

   UPLOAD_ERR_NO_FILE : The user did not upload a file.  

   UPLOAD_ERR_NO_TMP_DIR : The temporary directory on the server to which the file is initially 
uploaded is missing.  

   UPLOAD_ERR_CANT_WRITE : The temporary directory exists on the server, but PHP cannot write 
to it.  

   UPLOAD_ERR_EXTENSION : The file upload was stopped by a PHP extension.    

 There are a handful of places where you can provide restrictions on file uploading, and they are 
related to  UPLOAD_ERR_INI ,  UPLOAD_ERR_FORM_SIZE , and  UPLOAD_ERR_EXTENSION . 

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑



Chapter 7: Manipulating and Creating Images with PHP

185

 The  UPLOAD_ERR_INI  value is returned when the size of the uploaded file exceeds the  upload_max_
filesize  directive set in the  php.ini  configuration file. By default, this directive is set to 2 
megabytes: 

upload_max_filesize = 2M  

 Depending on the type and size of files your PHP application is designed to transfer, you may want 
to change this value, especially for pictures, as the resolution of digital cameras keep increasing. If 
you do change this, then you should also look at the  post_max_size  directive in php.ini. While 
 upload_max_filesize  limits the size of a file upload,  post_max_size  limits the size of an entire 
post transaction. An uploaded file is only part of the form data that gets posted by  upload_image
.html , so if  upload_max_filesize  is set larger than  upload_post_max_size , then the upload 
transfer could still fail. Between these two directives, you can impose a hard limit on the maximum 
amount of data that can be received by PHP. 

 The  UPLOAD_ERR_FORM_SIZE  value is returned when the uploaded file exceeds the size set by a 
special hidden field in the HTML form. Here is the form from  upload_image.html , with the added 
hidden field labeled  MAX_FILE_SIZE : 

 < form action=”check_image.php” method=”post” enctype=”multipart/form-data” > 
  < table > 
   < tr > 
    < td > Your Username < /td > 
    < td >  < input type=”text” name=”username” / >  < /td > 
   < /tr > 
    < td > Upload Image* < /td > 
    < td > 

     < input type=”hidden” name=”MAX_FILE_SIZE”  value=”262144”/ > 
     < input type=”file” name=”uploadfile” / > 

    < /td > 
   < /tr >  < tr > 
    < td colspan=”2” > 
     < small >  < em > * Acceptable image formats include: GIF, JPG/JPEG and PNG.
      < /em >  < /small > 
    < /td > 
   < /tr >  < tr > 
    < td > Image Caption < br/ > 
    < /td > 
    < td >  < input type=”text” name=”caption” / >  < /td > 
   < /tr >  < tr > 
    < td colspan=”2” style=”text-align: center” > 
     < input type=”submit” value=”Submit”/ > 
    < /td > 
   < /tr > 
  < /table > 
 < /form >   

  MAX_FILE_SIZE  should appear before the file input field. It does not set a hard limit, as the php.ini 
directives do, because someone could modify the field ’ s value before posting the form ’ s data, but it is 
still useful as a convenience. The idea is that the server can stop receiving the file once this limit is 
reached, and PHP can start formulating its response once it has decided the size is greater than what is 
allowed. The user doesn ’ t have to wait for the entire file to upload just to see a  “ file is too large ”  error. 
I tend to avoid using  MAX_FILE_SIZE  because there is some debate over the ultimate usefulness of 



Part I: Movie Review Web Site

186

 MAX_FILE_SIZE , based on browser support and the fact that it only imposes a soft limit. But feel free 
to experiment with it and formulate your own usage preference. 

 After the script sees that the file upload was successful, the  getimagesize()  function is used to 
retrieve some information about it (we ’ ve always thought that perhaps the function would be better 
named  getimageinfo()  because it returns more than just the image ’ s size, but we digress  . . .  ). It 
returns an array with 5 elements: 

   0 : The image ’ s width measured in pixels  .

   1 : The image ’ s height measured in pixels  .

   2 : A numeric value identifying the file ’ s image type  .

   3 : A string like  height= “ yyy ”  width= “ xxx ”   that can be used to include in an HTML  img  tag  .

   4 : A string corresponding to the MIME type of the image    .

 While integers are efficient for computers to work with, they aren ’ t always easier for human beings to 
work with or remember. So PHP offers predefined constants that match up with the numeric value 
identifying the file ’ s image type returned by index 2. They are: 

   IMAGETYPE_GIF:  Returned for GIF images (MIME type  image/gif )  .

   IMAGETYPE_JPEG:  Returned for JPEG files (MIME type  image/jpeg )  .

   IMAGETYPE_PNG:  Returned for PNG files (MIME type  image/png )  .

   IMAGETYPE_SWF:  Returned for SWF files (MIME type  application/x - shockwave - flash )  .

   IMAGETYPE_PSD : Returned for Photoshop format files (MIME type  image/psd )  .

   IMAGETYPE_BMP:  Returned for bitmap files (MIME type  image/bmp )  .

   IMAGETYPE_TIFF_II:  Returned for TIFF files using little - endian/Intel byte order encoding 
(MIME type  image/tiff )  .

   IMAGETYPE_TIFF_MM : Returned for TIFF files using big - endian/Motorola byte order encoding 
(MIME type  image/tiff )  .

   IMAGETYPE_JPC:  Returned for JPEG2000 code stream files (MIME type 
 application/octet - stream )  .

   IMAGETYPE_JP2:  Returned for JPEG2000 JP2 files (MIME type  image/jp2 )  .

   IMAGETYPE_JPX : Returned for JPEG2000 JPX files (MIME type  application/octet - stream )  .

   IMAGETYPE_JB2:  Returned for JBIG2 bitmap files (MIME type  application/octet - stream )  .

   IMAGETYPE_SWC : Returned for Flash Component Distribution files (MIME type 
 application/x - shockwave - flash )  .

   IMAGETYPE_IFF:  Returned for Amiga bitmap files (MIME type  image/iff )  .

   IMAGETYPE_WBMP:  Returned for Wireless Bitmap files (MIME type  image/vnd.wap.wbmp )  .

   IMAGETYPE_XBM : Returned for X Bitmap graphic files (MIME type  image/xbm )  .

   IMAGETYPE_ICO : Returned for icon files (MIME type  image/vnd.microsoft.icon )    .

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑



Chapter 7: Manipulating and Creating Images with PHP

187

 Note that WBMP is not the same type of file as a Windows bitmap (BMP). WBMP files are Wireless 
Bitmap files, used in Palm Pilots and other compact wireless devices. The PHP/GD combo does not 
provide for direct manipulation of BMP files. If you need to work with BMP files, you may want to 
take a look at the ImageCreateFromBMP and ImageBMP library classes at  www.jpexs.com/php.html  
or use the imagick PECL extension at  http://pecl.php.net/package/imagick . 

 After the script determines the type of image that was uploaded, it reads the file into memory. The 
 imagecreatefrom*()  function opens an image file and returns a resource handle so you can work 
with it. Remember that the file is first uploaded to a temporary location, and it is then your 
responsibility as a programmer to move it to a more permanent location before it is lost forever. 
Typically, you would use the  move_uploaded_file()  for this. The first parameter to  move_
uploaded_files()  is the temporary filename, and the second is the permanent location, like this: 

move_uploaded_file($_FILES[‘upload_file’][‘tmp_name’], 
    $dir . ‘/’ . $_FILES[‘upload_file’][‘name’]);  

 And in most cases this is fine. However, as an extra precaution, we have chosen to load the image file 
into memory using the correct function and then rewrite it out to a new file at the target location in the 
 images  directory. This acts as an extra check to make sure the uploaded image is a valid image file of 
the type it ’ s claimed to be, because the  imagecreatefrom*()  function will fail if the format is invalid. 

 At the same time, you assign the file extension based on the file type, since you will need to have that 
information available when you resave your file. If the uploaded file doesn ’ t match any of your cases, 
the default is applied. The default action is that the reader will see the  “ The file you uploaded was not 
a supported filetype. ”  message. This all helps you to filter out unacceptable file types, non - image files, 
or corrupted files that have been uploaded. 

 Assuming everything is going smoothly, you can then insert the information in the table, with the 
following lines: 

//insert info into image table
$query = ‘INSERT INTO images
    (image_caption, image_username, image_date)
VALUES
    (“’ . $image_caption . ‘”, “’ . $image_username . ‘”, “’ 
. $image_date . ‘”)’;
                   
$result = mysql_query($query, $db) or die (mysql_error($db));
                   
//retrieve the image_id that MySQL generated automatically when we inserted
//the new record
$last_id = mysql_insert_id();
                   
//because the id is unique, we can use it as the image name as well to make
//sure we don’t overwrite another image that already exists
$imagename = $last_id . $ext;
                   
// update the image table now that the final filename is known.
$query = ‘UPDATE images
    SET image_filename = “’ . $imagename . ‘” 
    WHERE image_id = ‘ . $last_id;
                   
$result = mysql_query($query, $db) or die (mysql_error($db));  



Part I: Movie Review Web Site

188

 Initially, you do not know what the name of the file will be as it is saved on disk, because the filename 
is based on the image record ’ s primary key, which is automatically assigned by MySQL. Therefore, the 
first query inserts the information that you do know  —  the image ’ s caption, the user ’ s username, and 
the current date. Once the record is created, you use the  mysql_insert_id()  function to find out 
what value MySQL assigned as the key. That knowledge then allows you to update the record and set 
the image ’ s filename correctly. 

 You then write the image file to the images directory, with the following code: 

// save the image to its final destination
switch ($type) {
case IMAGETYPE_GIF:
    imagegif($image, $dir . ‘/’ . $imagename);
    break;
case IMAGETYPE_JPEG:
    imagegif($image, $dir . ‘/’ . $imagename, 100);
    break;
case IMAGETYPE_PNG:
    imagepng($image, $dir . ‘/’ . $imagename);
    break;
}
imagedestroy($image);   

 Here, each of the functions  imagegif() ,  imagejpeg() , and  imagepng()  writes the image data 
accessible by the  $image  resource to the specified filename. The  imagejpeg()  function also accepts 
an optional third parameter, which affects the image quality of the file because of compression. 
A value of 100 means you desire 100% quality with minimal compression, whereas 0 would give the 
least visual quality, but the highest image compression would be used, for a smaller file size on disk. 

 The  imagedestroy()  function simply takes the  $image  resource and frees the memory used to load 
the original image. PHP will automatically clean up used memory and open resources when the 
execution of your script has completed, but still it ’ s considered a good practice to explicitly write this 
code in yourself. 

 Finally, in the HTML portion of the script, you simply spit the picture back out to the user, so he or she 
can see that the image was successfully uploaded.  

  Converting Image File Types 
 Is issuing the second query to the database to update the filename really necessary? Not really, but we 
set up the initial database code and PHP script to bring us to this point. PHP can use GD to convert 
image types from one format to another quite easily. If you were to allow image uploads in GIF, JPEG, or 
PNG formats but save them to the images directory as JPEG images, then you would no longer need the 
 filename  column in the database table, and you could streamline the  check_image.php  script.  



Chapter 7: Manipulating and Creating Images with PHP

189

  Try It Out  Streamlining the Process 

 Let ’ s make a few changes that not only highlight how to convert between image types but also will 
streamline our code.   

  1.   Open your text editor, and enter the following code: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
//create the images table
$query = ‘ALTER TABLE images DROP COLUMN image_filename’;
                   
mysql_query($query, $db) or die (mysql_error($db));
                   
echo ‘Images table successfully updated.’;
? >    

  2.   Save your work as  db_ch07 - 2.php . Open the file in a web browser now, and you see a 
message that the  images  table was successfully modified.  

  3.   Make the following changes to the code in  check_image.php  (as highlighted): 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
//change this path to match your images directory
$dir =’C:/Program Files/Apache Software Foundation/Apache2.2/htdocs/images’;
                   
//make sure the uploaded file transfer was successful
if ($_FILES[‘uploadfile’][‘error’] != UPLOAD_ERR_OK) {
    switch ($_FILES[‘uploadfile’][‘error’]) {
    case UPLOAD_ERR_INI_SIZE:
        die(‘The uploaded file exceeds the upload_max_filesize directive ‘ .
            ‘in php.ini.’);
        break;
    case UPLOAD_ERR_FORM_SIZE:
        die(‘The uploaded file exceeds the MAX_FILE_SIZE directive that ‘ .
            ‘was specified in the HTML form.’);
        break;
    case UPLOAD_ERR_PARTIAL:
        die(‘The uploaded file was only partially uploaded.’);
        break;
    case UPLOAD_ERR_NO_FILE:
        die(‘No file was uploaded.’);
        break;
    case UPLOAD_ERR_NO_TMP_DIR:
        die(‘The server is missing a temporary folder.’);
        break;



Part I: Movie Review Web Site

190

    case UPLOAD_ERR_CANT_WRITE:
        die(‘The server failed to write the uploaded file to disk.’);
        break;
    case UPLOAD_ERR_EXTENSION:
        die(‘File upload stopped by extension.’);
        break;
    }
}
                   
//get info about the image being uploaded
$image_caption = $_POST[‘caption’];
$image_username = $_POST[‘username’];
$image_date = date(‘Y-m-d’);
list($width, $height, $type, $attr) =
    getimagesize($_FILES[‘uploadfile’][‘tmp_name’]);
                   
// make sure the uploaded file is really a supported image
                   
// delete these lines
switch ($type) {
case IMAGETYPE_GIF:
    $image = imagecreatefromgif($_FILES[‘uploadfile’][‘tmp_name’]) or
        die(‘The file you uploaded was not a supported filetype.’);
    $ext = ‘.gif’;
    break;
case IMAGETYPE_JPEG:
    $image = imagecreatefromjpeg($_FILES[‘uploadfile’][‘tmp_name’]) or
        die(‘The file you uploaded was not a supported filetype.’);
    $ext = ‘.jpg’;
    break;
case IMAGETYPE_PNG:
    $image = imagecreatefrompng($_FILES[‘uploadfile’][‘tmp_name’]) or
        die(‘The file you uploaded was not a supported filetype.’);
    $ext = ‘.png’;
    break;
default:
    die(‘The file you uploaded was not a supported filetype.’);
}
// end deleted lines

                   
$error = ‘The file you uploaded was not a supported filetype.’;
switch ($type) {
case IMAGETYPE_GIF:
    $image = imagecreatefromgif($_FILES[‘uploadfile’][‘tmp_name’]) or
        die($error);
    break;
case IMAGETYPE_JPEG:
    $image = imagecreatefromjpeg($_FILES[‘uploadfile’][‘tmp_name’]) or
        die($error);
    break;
case IMAGETYPE_PNG:
    $image = imagecreatefrompng($_FILES[‘uploadfile’][‘tmp_name’]) or



Chapter 7: Manipulating and Creating Images with PHP

191

        die($error);
    break;
default:
    die($error);
}
                   
//insert information into image table
$query = ‘INSERT INTO images
    (image_caption, image_username, image_date)
VALUES
    (“’ . $image_caption . ‘”, “’ . $image_username . ‘”, “’ . $image_date .
    ‘”)’;
$result = mysql_query($query, $db) or die (mysql_error($db));
                   
//retrieve the image_id that MySQL generated automatically when we inserted
//the new record
$last_id = mysql_insert_id();
                   
// delete these lines
                   
//because the id is unique, we can use it as the image name as well to make 
//sure we don’t overwrite another image that already exists
$imagename = $last_id . $ext;
                   
// update the image table now that the final filename is known.
$query = ‘UPDATE images
    SET image_filename = “’ $imagename . ‘”
    WHERE image_id = ‘ . $last_id;
$result = mysql_query($query, $db) or die (mysql_error($db));
                   
//save the image to its final destination
switch ($type) {
case IMAGETYPE_GIF:
    imagegif($image, $dir . ‘/’ . $imagename);
    break;    
case IMAGETYPE_JPEG:
    imagejpeg($image, $dir . ‘/’ . $imagename, 100);
    break;    
case IMAGETYPE_PNG:
    imagepng($image, $dir . ‘/’ . $imagename);
    break;
}    
// end of deleted lines
                   
// save the image to its final destination
$imagename = $last_id . ‘.jpg’;
imagejpeg($image, $dir . ‘/’ . $imagename);

imagedestroy($image);
? > 
 < html > 
  < head > 
   < title > Here is your pic! < /title > 



Part I: Movie Review Web Site

192

  < /head > 
  < body > 
   < h1 > So how does it feel to be famous? < /h1 > 
   < p > Here is the picture you just uploaded to our servers: < /p > 
    < img src=”images/ < ?php echo $imagename; ? > ” style=”float:left;” > 

   < table > 
    < tr >  < td > Image Saved as:  < /td >  < td >  < ?php echo $imagename; ? >  < /td >  < /tr > 

 < !-- delete this line
    < tr >  < td > Image Type:  < /td >  < td >  < ?php echo $ext; ? >  < /td >  < /tr > 
-- > 

    < tr >  < td > Height:  < /td >  < td >  < ?php echo $height; ? >  < /td >  < /tr > 
    < tr >  < td > Width:  < /td >  < td >  < ?php echo $width; ? >  < /td >  < /tr > 
    < tr >  < td > Upload Date:  < /td >  < td >  < ?php echo $image_date; ? >  < /td >  < /tr > 
   < /table > 
  < /body > 
 < /html >    

  4.   If you save the file, and then load  upload_image.html  in your browser and upload your 
picture, you will notice you get basically the same results, even though the processing has 
been streamlined.    

  How It Works  
 We no longer need to distinguish the file type once the image has been loaded into memory with 
the appropriate  createimagefrom*()  function, so the  switch  block that opens the file and stores the 
extension to  $ext  has been rewritten. And later, because the  imagegif()  and  imagepng()  functions 
take the image in memory at  $image  and save it out as a GIF or PNG image respectively, that  switch  
block is deleted. The image is saved to the  images  directory as a JPEG, using the  imagejpeg()  
function, regardless of what format the uploaded image was in originally. Now you can reference all 
the images later on in your application, in the same way, no matter what valid format was uploaded.    

  Special Effects 
 Now that you ’ ve got a directory full of images, what comes next? Playing with them, of course! 
What if you wanted to allow your users to make their images black and white, blur the image, or 
apply some other effect? Let ’ s add that option to your  showimage  page, so your users can choose 
whether or not they want to see their image in grayscale. You will be using the  imagefilter()  
function, which can do many things, only one of which is to convert the image to grayscale. 
This function can also make a negative of your image, alter the brightness or contrast of your image, 
and emboss, blur, smooth, detect edges within, and colorize your image. Whew! It ’ s a pretty powerful 
function, and one you want to remember. You can find complete syntax for using this function and the 
filter types at  www.php.net/imagefilter .  



Chapter 7: Manipulating and Creating Images with PHP

193

  Try It Out  Using Filters 

 In this exercise, you ’ ll add the ability for users to apply a filter to their images, using the 
 imagefilter()  function to your site. You ’ ll give users the option to show their image as a negative 
image, in black and white, blurred, and embossed.   

  1.   Open  check_image.php , and make the following highlighted changes: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
//change this path to match your images directory
$dir =’C:/Program Files/Apache Software Foundation/Apache2.2/htdocs/images’;
                   
// handle the uploaded image
if ($_POST[‘submit’] == ‘Upload’) {
                   
    //make sure the uploaded file transfer was successful
    if ($_FILES[‘uploadfile’][‘error’] != UPLOAD_ERR_OK) {
        switch ($_FILES[‘uploadfile’][‘error’]) {
        case UPLOAD_ERR_INI_SIZE:
            die(‘The uploaded file exceeds the upload_max_filesize directive ‘ .
                ‘in php.ini.’);
            break;
        case UPLOAD_ERR_FORM_SIZE:
            die(‘The uploaded file exceeds the MAX_FILE_SIZE directive that ‘ .
                ‘was specified in the HTML form.’);
            break;
        case UPLOAD_ERR_PARTIAL:
            die(‘The uploaded file was only partially uploaded.’);
            break;
        case UPLOAD_ERR_NO_FILE:
            die(‘No file was uploaded.’);
            break;
        case UPLOAD_ERR_NO_TMP_DIR:
            die(‘The server is missing a temporary folder.’);
            break;
        case UPLOAD_ERR_CANT_WRITE:
            die(‘The server failed to write the uploaded file to disk.’);
            break;
        case UPLOAD_ERR_EXTENSION:
            die(‘File upload stopped by extension.’);
            break;
        }
    }
                   
    //get info about the image being uploaded
    $image_caption = $_POST[‘caption’];
    $image_username = $_POST[‘username’];
    $image_date = date(‘Y-m-d’);
    list($width, $height, $type, $attr) =



Part I: Movie Review Web Site

194

        getimagesize($_FILES[‘uploadfile’][‘tmp_name’]);
                   
    // make sure the uploaded file is really a supported image
    $error = ‘The file you uploaded was not a supported filetype.’;
    switch ($type) {
    case IMAGETYPE_GIF:
        $image = imagecreatefromgif($_FILES[‘uploadfile’][‘tmp_name’]) or
            die($error);
        break;
    case IMAGETYPE_JPEG:
        $image = imagecreatefromjpeg($_FILES[‘uploadfile’][‘tmp_name’]) or
            die($error);
        break;
    case IMAGETYPE_PNG:
        $image = imagecreatefrompng($_FILES[‘uploadfile’][‘tmp_name’]) or
            die($error);
        break;
    default:
        die($error);
    }
                   
    //insert information into image table
    $query = ‘INSERT INTO images
        (image_caption, image_username, image_date)
    VALUES
        (“’ . $image_caption . ‘”, “’ . $image_username . ‘”, “’ . $image_date .
        ‘”)’;
    $result = mysql_query($query, $db) or die (mysql_error($db));
                   
    //retrieve the image_id that MySQL generated automatically when we inserted
    //the new record
    $last_id = mysql_insert_id();
    
    // delete these lines
                   
    // save the image to its final destination
    $imagename = $last_id . ‘.jpg’;
    imagejpeg($image, $dir . ‘/’ . $imagename);
    imagedestroy($image);
    // end deleted lines
                   
    $image_id = $last_id;
    imagejpeg($image, $dir . ‘/’ . $image_id  . ‘.jpg’);
    imagedestroy($image);
} else {
    // retrieve image information
    $query = ‘SELECT
        image_id, image_caption, image_username, image_date
    FROM
        images
    WHERE
        image_id = ‘ . $_POST[‘id’];
    $result = mysql_query($query, $db) or die (mysql_error($db));
    extract(mysql_fetch_assoc($result));
                   
    list($width, $height, $type, $attr) = getimagesize($dir . ‘/’ . 



Chapter 7: Manipulating and Creating Images with PHP

195

$image_id .
        ‘.jpg’);
}
                   
if ($_POST[‘submit’] == ‘Save’) {
    // make sure the requested image is valid
    if (isset($_POST[‘id’])  &  &  ctype_digit($_POST[‘id’])  &  & 
        file_exists($dir . ‘/’ . $_POST[‘id’] . ‘.jpg’)) {
        $image = imagecreatefromjpeg($dir . ‘/’ . $_POST[‘id’] . ‘.jpg’);
    } else {
        die(‘invalid image specified’);
    }
                   
    // apply the filter    
    $effect = (isset($_POST[‘effect’])) ? $_POST[‘effect’] : -1;
    switch ($effect) {
    case IMG_FILTER_NEGATE:
        imagefilter($image, IMG_FILTER_NEGATE); 
        break;
    case IMG_FILTER_GRAYSCALE:
        imagefilter($image, IMG_FILTER_GRAYSCALE); 
        break;
    case IMG_FILTER_EMBOSS:
        imagefilter($image, IMG_FILTER_EMBOSS); 
        break;
    case IMG_FILTER_GAUSSIAN_BLUR:
        imagefilter($image, IMG_FILTER_GAUSSIAN_BLUR);
        break;
    }
                   
    // save the image with the filter applied
    imagejpeg($image, $dir . ‘/’ . $_POST[‘id’] . ‘.jpg’, 100);
? > 
 < html > 
  < head > 
   < title > Here is your pic! < /title > 
  < /head > 
  < body > 
   < h1 > Your image has been saved! < /h1 > 
   < img src=”images/ < ?php echo $_POST[‘id’]; ? > .jpg” / > 
  < /body > 
 < /html > 
 < ?php
} else {

? > 
 < html > 
  < head > 
   < title > Here is your pic! < /title > 
  < /head > 
  < body > 
   < h1 > So how does it feel to be famous? < /h1 > 
   < p > Here is the picture you just uploaded to our servers: < /p > 

 < !-- delete this line
    < img src=”images/ < ?php echo $imagename; ? > ” style=”float:left;” > 



Part I: Movie Review Web Site

196

-- > 
                   
 < ?php 
   if ($_POST[‘submit’] == ‘Upload’) {
       $imagename = ‘images/’ . $image_id  . ‘.jpg’;
   }
   else {
       $imagename = ‘image_effect.php?id=’ . $image_id  . ‘ & e=’ .
           $_POST[‘effect’];
   }
? > 
    < img src=” < ?php echo $imagename; ? > ” style=”float:left;” > 

   < table > 

 < !-- delete this line
    < tr >  < td > Image Saved as:  < /td >  < td >  < ?php echo $imagename; ? >  < /td >  < /tr > 
-- > 
    < tr >  < td > Image Saved as:  < /td >  < td >  < ?php echo $image_id  . ‘.jpg’; 
? >  < /td >  < /tr > 

    < tr >  < td > Height:  < /td >  < td >  < ?php echo $height; ? >  < /td >  < /tr > 
    < tr >  < td > Width:  < /td >  < td >  < ?php echo $width; ? >  < /td >  < /tr > 
    < tr >  < td > Upload Date:  < /td >  < td >  < ?php echo $image_date; ? >  < /td >  < /tr > 
   < /table > 

   < p > You may apply a special effect to your image from the list of options 
below.
Note: saving an image with any of the filters applied   < em > cannot be
undone < /em > . < /p > 
   < form action=” < ?php echo $_SERVER[‘PHP_SELF’]; ? > ” method=”post” > 
    < div > 
     < input type=”hidden” name=”id” value=” < ?php echo $image_id;? > ”/ > 
     < select name=”effect” > 
      < option value=”-1” > None < /option > 
 < ?php
    echo ‘ < option value=”’ . IMG_FILTER_GRAYSCALE . ‘”’;
    if (isset($_POST[‘effect’])  &  &  $_POST[‘effect’] == IMG_FILTER_GRAYSCALE) {
        echo ‘ selected=”selected”’;
    }
    echo ‘ > Black and White < /option > ’;
                   
    echo ‘ < option value=”’ . IMG_FILTER_GAUSSIAN_BLUR . ‘”’;
    if (isset($_POST[‘effect’])  &  &  $_POST[‘effect’] ==
        IMG_FILTER_GAUSSIAN_BLUR) {
        echo ‘ selected=”selected”’;
    }
    echo ‘ > Blur < /option > ’;
                   
    echo ‘ < option value=”’ . IMG_FILTER_EMBOSS . ‘”’;
    if (isset($_POST[‘effect’])  &  &  $_POST[‘effect’] == IMG_FILTER_EMBOSS) {
        echo ‘ selected=”selected”’;
    }
    echo ‘ > Emboss < /option > ’;
                   
    echo ‘ < option value=”’ . IMG_FILTER_NEGATE . ‘”’;
    if (isset($_POST[‘effect’])  &  &  $_POST[‘effect’] == IMG_FILTER_NEGATE) {
        echo ‘ selected=”selected”’;



Chapter 7: Manipulating and Creating Images with PHP

197

    }
    echo ‘ > Negative < /option > ’;
? > 
     < /select > 
     < input type=”submit” value=”Preview” name=”submit” / > 
     < br/ >  < br/ > 
     < input type=”submit” value=”Save” name=”submit” / > 
    < /div > 
   < /form > 

  < /body > 
 < /html > 

 < ?php
}
? >    

  2.   Next, you want to create a new file that will show the image with the appropriate filter 
applied to it. Open your browser, and type the following, saving it as  image_effect.php : 

 < ?php
//change this path to match your images directory
$dir =’C:/Program Files/Apache Software Foundation/Apache2.2/htdocs/images’;
                   
// make sure the requested image is valid
if (isset($_GET[‘id’])  &  &  ctype_digit($_GET[‘id’])  &  &  file_exists($dir . ‘/’.
    $_GET[‘id’] . ‘.jpg’)) {
    $image = imagecreatefromjpeg($dir . ‘/’ . $_GET[‘id’] . ‘.jpg’);
} else {
    die(‘invalid image specified’);
}
                   
// apply the filter
$effect = (isset($_GET[‘e’])) ? $_GET[‘e’] : -1;
switch ($effect) {
case IMG_FILTER_NEGATE:
    imagefilter($image, IMG_FILTER_NEGATE); 
    break;
case IMG_FILTER_GRAYSCALE:
    imagefilter($image, IMG_FILTER_GRAYSCALE); 
    break;
case IMG_FILTER_EMBOSS:
    imagefilter($image, IMG_FILTER_EMBOSS); 
    break;
case IMG_FILTER_GAUSSIAN_BLUR:
    imagefilter($image, IMG_FILTER_GAUSSIAN_BLUR);
    break;
}
                   
// show the image
header(‘Content-Type: image/jpeg’);
imagejpeg($image, ‘’, 100);
? >    



Part I: Movie Review Web Site

198

  3.   Now, try this out. Go to  upload_image.html  and upload another image. Your page will now 
look something like Figure  7 - 4 .    

Figure 7-4

  4.   Select a filter from the drop - down list, and press Preview. Your page will now resemble 
Figure  7 - 5 .    



Chapter 7: Manipulating and Creating Images with PHP

199

  5.   Click the Save button, and your page will resemble Figure  7 - 6 .      

Figure 7-5

Figure 7-6



Part I: Movie Review Web Site

200

  How It Works  
 The new file and the changes you made in  check_image.php  allow a user to apply a filter to his or 
her image once it ’ s been uploaded, and to preview the effect before saving it permanently. The code 
in  check_image.php  has been restructured with a handful of  if  statements that check the value of 
 $_POST[ ’ submit’]  and act accordingly, to facilitate this flow. The new  check_effect.php  script 
provides the mechanism by which the filters can be previewed without losing the original image. 

 The magic happens with  check_effect.php , which is referenced from  check_image.php  to show 
the filter ’ s preview. Its call is written as an  img  tag, and the image ’ s id and the selected filter are 
passed in the file ’ s query string.   

 < ?php 
if ($_POST[‘submit’] == ‘Upload’) {
   $imagename = ‘images/’ . $image_id  . ‘.jpg’;
} else {
   $imagename = ‘image_effect.php?id=’ . $image_id  . ‘ & e=’ .
       $_POST[‘effect’];
}
? > 
 < img src=” < ?php echo $imagename; ? > ” style=”float:left;” >   

 The image is read into memory, and the appropriate filter is applied using the  imagefilter()  
function within the following  switch  code: 

switch ($effect) {
case IMG_FILTER_NEGATE:
    imagefilter($image, IMG_FILTER_NEGATE); 
    break;
case IMG_FILTER_GRAYSCALE:
    imagefilter($image, IMG_FILTER_GRAYSCALE); 
    break;
case IMG_FILTER_EMBOSS:
    imagefilter($image, IMG_FILTER_EMBOSS); 
    break;
case IMG_FILTER_GAUSSIAN_BLUR:
    imagefilter($image, IMG_FILTER_GAUSSIAN_BLUR);
    break;
}  

 After the function applies the filter against the image in memory, the picture is then flushed out 
to the browser. It is important that the second parameter to the  imagejpeg()  function in  
check_effect.php  be blank so the image isn ’ t saved to disk, or else the original image might be 
overwritten. This will let the user test other effects before saving the one he or she likes best.   

header(‘Content-Type: image/jpeg’);
imagejpeg($image, ‘’, 100);  



Chapter 7: Manipulating and Creating Images with PHP

201

 A similar course of action is followed in  check_image.php , though at this point you do want the 
original image to be overwritten, after the changes have been approved. Here the filename is provided 
to  imagejpeg() .   

imagejpeg($image, $dir . ‘/’ . $_POST[‘id’] . ‘.jpg’, 100);  

 The user is presented with four different effects in the script, but this is only a subset of built - in effects 
 imagefilter()  knows about. In fact, there are 11 different filters available, defined by these 
predefined constants: 

   IMG_FILTER_BRIGHTNESS  changes the brightness of the image.  

   IMG_FILTER_COLORIZE  colorizes the image.  

   IMG_FILTER_CONTRAST  changes the contrast of the image.  

   IMG_FILTER_EDGEDETECT  sharpens the edges found in the image.  

   IMG_FILTER_EMBOSS  embosses the image.  

   IMG_FILTER_GAUSSIAN_BLUR  blurs the image using the Gaussian blur method.  

   IMG_FILTER_GRAYSCALE  converts the image into grayscale.  

   IMG_FILTER_MEAN_REMOVAL  uses mean removal to achieve a patchy effect.  

   IMG_FILTER_NEGATE  reverses all colors in the image.  

   IMG_FILTER_SELECTIVE_BLUR  blurs the image using the selective blur method.  

   IMG_FILTER_SMOOTH  smooths the image.      

 Some of these filters will require third and sometimes even fourth, fifth, and sixth parameters to 
be passed to  imagefilter() , specifically  IMG_FILTER_BRIGHTNESS ,  IMG_FILTER_COLORIZE , 
 IMG_FILTER_CONTRAST , and  IMG_FILTER_SMOOTH . The extra argument provides additional 
information for the filter to be applied correctly. Specifically,  IMG_FILTER_BRIGHTNESS  uses an 
argument to set the desired level of brightness,  IMG_FILTER_CONTRAST  uses it to set the desired level 
of contrast, and  IMG_FILTER_SMOOTH  uses it to set the desired level of smoothing. This value can 
range from 0 to 100.  IMG_FILTER_BRIGHTNESS  and  IMG_FILTER_COLORIZE  may even be given a 
negative value, depending on the direction of the adjustment. 

  IMG_FILTER_COLORIZE  uses the extra information to specify the color applied to the image. Each 
argument is the color ’ s component in the order of red, blue, green, and an alpha channel. The range 
for each color component is 0 to 255, or 0x00 to 0xFF if you are using hexadecimal notation, and 0 to 
100 for the alpha channel. 

 These basic filters can be combined to achieve different effects. For example, you see that  
IMG_FILTER_GRAYSCALE  and  IMG_FILTER_COLORIZE  allow you to adjust color information in an 
image, but what if you wanted to apply a sepia tone? Such an effect simulates the faded brownish 

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑



Part I: Movie Review Web Site

202

color of some early photographs, but there is no prebuilt feature available with the GD extension. You 
can first strip out the unnecessary color information and then colorize your image with a brownish/
tan color: 

 < ?php
//change this path to match your images directory
$dir =’C:/Program Files/Apache Software Foundation/Apache2.2/htdocs/images’;
                   
$image = imagecreatefromjpeg($dir . ‘/1.jpg’);
                   
// strip the color information so it is black and white
imagefilter($image, IMG_FILTER_GRAYSCALE);
                   
// apply a brownish hue
imagefilter($image, IMG_FILTER_COLORIZE, 0xFF, 0xB9, 0x80, 30);
                   
// output the image
header(‘Content-Type: image/jpeg’);
imagejpeg($image, ‘’, 100);
? >    

  Adding Captions 
 A special group of functions allows you to add captions or a copyright notice or other text to your 
images. PHP/GD is relatively advanced in allowing you to control the size and type of font that is used, 
even allowing you to load your own font on demand. You ’ re absolutely encouraged to experiment with 
all the cool font functions available to you, but we will try to keep it simple here to get you started.  

  Try It Out  Embedding Text in Images 

 You will be modifying the  check_image.php  and  check_effect.php  files to show captions along 
with the images, but these will be minor changes.   

  1.   Open the  check_image.php  file, and make the following highlighted changes: 

 < ?php
//connect to MySQL
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
//change this path to match your images directory
$dir =’C:/Program Files/Apache Software Foundation/Apache2.2/htdocs/images’;
                   
//change this path to match your fonts directory and the desired font
putenv(‘GDFONTPATH=’ . ‘C:/Windows/Fonts’);



Chapter 7: Manipulating and Creating Images with PHP

203

$font = ‘arial’;
                   
// handle the uploaded image
if ($_POST[‘submit’] == ‘Upload’) {
                   
    //make sure the uploaded file transfer was successful
    if ($_FILES[‘uploadfile’][‘error’] != UPLOAD_ERR_OK)
    {
        switch ($_FILES[‘uploadfile’][‘error’]) {
        case UPLOAD_ERR_INI_SIZE:
            die(‘The uploaded file exceeds the upload_max_filesize directive ‘ .
                ‘in php.ini.’);
            break;
        case UPLOAD_ERR_FORM_SIZE:
            die(‘The uploaded file exceeds the MAX_FILE_SIZE directive that ‘ .
                ‘was specified in the HTML form.’);
            break;
        case UPLOAD_ERR_PARTIAL:
            die(‘The uploaded file was only partially uploaded.’);
            break;
        case UPLOAD_ERR_NO_FILE:
            die(‘No file was uploaded.’);
            break;
        case UPLOAD_ERR_NO_TMP_DIR:
            die(‘The server is missing a temporary folder.’);
            break;
        case UPLOAD_ERR_CANT_WRITE:
            die(‘The server failed to write the uploaded file to disk.’);
            break;
        case UPLOAD_ERR_EXTENSION:
            die(‘File upload stopped by extension.’);
            break;
        }
    }
    
    //get info about the image being uploaded
    $image_caption = $_POST[‘caption’];
    $image_username = $_POST[‘username’];
    $image_date = @date(‘Y-m-d’);
    list($width, $height, $type, $attr) =
        getimagesize($_FILES[‘uploadfile’][‘tmp_name’]);
                   
    // make sure the uploaded file is really a supported image
    $error = ‘The file you uploaded was not a supported filetype.’;
    switch ($type) {
    case IMAGETYPE_GIF:
        $image = imagecreatefromgif($_FILES[‘uploadfile’][‘tmp_name’]) or
            die($error);
        break;
    case IMAGETYPE_JPEG:
        $image = imagecreatefromjpeg($_FILES[‘uploadfile’][‘tmp_name’]) or
            die($error);
        break;
    case IMAGETYPE_PNG:



Part I: Movie Review Web Site

204

        $image = imagecreatefrompng($_FILES[‘uploadfile’][‘tmp_name’]) or
            die($error);
        break;
    default:
        die($error);
    }
                   
    //insert information into image table
    $query = ‘INSERT INTO images
        (image_caption, image_username, image_date)
    VALUES
        (“’ . $image_caption . ‘”, “’ . $image_username . ‘”, “’ 
. $image_date .‘”)’;
    
    $result = mysql_query($query, $db) or die (mysql_error($db));
    
    //retrieve the image_id that MySQL generated automatically when we 
inserted
    //the new record
    $last_id = mysql_insert_id();
    
    // save the image to its final destination
    $image_id = $last_id;
    imagejpeg($image, $dir . ‘/’ . $image_id  . ‘.jpg’);
    imagedestroy($image);
                   
} else {
    // retrieve image information
    $query = ‘SELECT
        image_id, image_caption, image_username, image_date
    FROM
        images
    WHERE
        image_id = ‘ . $_POST[‘id’];
    $result = mysql_query($query, $db) or die (mysql_error($db));
    extract(mysql_fetch_assoc($result));
                   
    list($width, $height, $type, $attr) = getimagesize($dir . ‘/’ . $image_id .
        ‘.jpg’);
}
                   
if ($_POST[‘submit’] == ‘Save’) {
    // make sure the requested image is valid
    if (isset($_POST[‘id’])  &  &  ctype_digit($_POST[‘id’])  &  & 
        file_exists($dir . ‘/’ . $_POST[‘id’] . ‘.jpg’)) {
        $image = imagecreatefromjpeg($dir . ‘/’ . $_POST[‘id’] . ‘.jpg’);
    } else {
        die(‘invalid image specified’);
    }
                   
    // apply the filter    
    $effect = (isset($_POST[‘effect’])) ? $_POST[‘effect’] : -1;
    switch ($effect) {



Chapter 7: Manipulating and Creating Images with PHP

205

    case IMG_FILTER_NEGATE:
        imagefilter($image, IMG_FILTER_NEGATE); 
        break;
    case IMG_FILTER_GRAYSCALE:
        imagefilter($image, IMG_FILTER_GRAYSCALE); 
        break;
    case IMG_FILTER_EMBOSS:
        imagefilter($image, IMG_FILTER_EMBOSS); 
        break;
    case IMG_FILTER_GAUSSIAN_BLUR:
        imagefilter($image, IMG_FILTER_GAUSSIAN_BLUR);
        break;
    }
                   
    // add the caption if requested
    if (isset($_POST[‘emb_caption’])) {
        imagettftext($image, 12, 0, 20, 20, 0, $font, $image_caption);
    }
                   
    // save the image with the filter applied
    imagejpeg($image, $dir . ‘/’ . $_POST[‘id’] . ‘.jpg’, 100);
? > 
 < html > 
  < head > 
   < title > Here is your pic! < /title > 
  < /head > 
  < body > 
   < h1 > Your image has been saved! < /h1 > 
   < img src=”images/ < ?php echo $_POST[‘id’]; ? > .jpg” / > 
  < /body > 
 < /html > 
 < ?php
} else {
? > 
 < html > 
  < head > 
   < title > Here is your pic! < /title > 
  < /head > 
  < body > 
   < h1 > So how does it feel to be famous? < /h1 > 
   < p > Here is the picture you just uploaded to our servers: < /p > 
 < ?php 
   if ($_POST[‘submit’] == ‘Upload’) {
       $imagename = ‘images/’ . $image_id  . ‘.jpg’;
   } else {
       $imagename = ‘image_effect.php?id=’ . $image_id  . ‘ & e=’ .
           $_POST[‘effect’];
                   
       if (isset($_POST[‘emb_caption’])) {
           $imagename .= ‘ & capt=’ . urlencode($image_caption); 
       }

   }
? > 
    < img src=” < ?php echo $imagename; ? > ” style=”float:left;” > 



Part I: Movie Review Web Site

206

   < table > 
    < tr >  < td > Image Saved as:  < /td >  < td >  < ?php echo $image_id  . ‘.jpg’; ? >  < /td >  < /tr > 
    < tr >  < td > Height:  < /td >  < td >  < ?php echo $height; ? >  < /td >  < /tr > 
    < tr >  < td > Width:  < /td >  < td >  < ?php echo $width; ? >  < /td >  < /tr > 
    < tr >  < td > Upload Date:  < /td >  < td >  < ?php echo $image_date; ? >  < /td >  < /tr > 
   < /table > 

   < p > You may apply special options to your image below. Note: saving an image

with any of the options applied   < em > cannot be undone < /em > . < /p > 
   < form action=” < ?php echo $_SERVER[‘PHP_SELF’]; ? > ” method=”post” > 
    < div > 
     < input type=”hidden” name=”id” value=” < ?php echo $image_id;? > ”/ > 

    Filter:  < select name=”effect” > 

      < option value=”-1” > None < /option > 
 < ?php
    echo ‘ < option value=”’ . IMG_FILTER_GRAYSCALE . ‘”’;
    if (isset($_POST[‘effect’])  &  &  $_POST[‘effect’] == IMG_FILTER_GRAYSCALE) 
{
        echo ‘ selected=”selected”’;
    }
    echo ‘ > Black and White < /option > ’;
                   
    echo ‘ < option value=”’ . IMG_FILTER_GAUSSIAN_BLUR . ‘”’;
    if (isset($_POST[‘effect’])  &  &  $_POST[‘effect’] ==
        IMG_FILTER_GAUSSIAN_BLUR) {
        echo ‘ selected=”selected”’;
    }
    echo ‘ > Blur < /option > ’;
                   
    echo ‘ < option value=”’ . IMG_FILTER_EMBOSS . ‘”’;
    if (isset($_POST[‘effect’])  &  &  $_POST[‘effect’] == IMG_FILTER_EMBOSS) {
        echo ‘ selected=”selected”’;
    }
    echo ‘ > Emboss < /option > ’;
                   
    echo ‘ < option value=”’ . IMG_FILTER_NEGATE . ‘”’;
    if (isset($_POST[‘effect’])  &  &  $_POST[‘effect’] == IMG_FILTER_NEGATE) {
        echo ‘ selected=”selected”’;
    }
    echo ‘ > Negative < /option > ’;
? > 
     < /select > 

     < br/ >  < br/ > 
 < ?php
    echo ‘ < input type=”checkbox” name=”emb_caption”’;
    if (isset($_POST[‘emb_caption’])) {
        echo ‘ checked=”checked”’;
    }
    echo ‘ > Embed caption in image?’;
? > 
     < br/ >  < br/ > 
     < input type=”submit” value=”Preview” name=”submit” / > 

     < input type=”submit” value=”Save” name=”submit” / > 
    < /div > 



Chapter 7: Manipulating and Creating Images with PHP

207

   < /form > 
  < /body > 
 < /html > 
 < ?php
}
? > 

     2.   The Arial font is used in this exercise, but you should use a font that is installed on your 
server. If you attempt to run the following script with a font that is not installed on the server, 
you will get an error. Add the following highlighted lines to your  image_effect.php  file: 

 < ?php
//change this path to match your images directory
$dir =’C:/Program Files/Apache Software Foundation/Apache2.2/htdocs/images’;
                   
//change this path to match your fonts directory and the desired font
putenv(‘GDFONTPATH=’ . ‘C:/Windows/Fonts’);
$font = ‘arial’;
                   
// make sure the requested image is valid
if (isset($_GET[‘id’])  &  &  ctype_digit($_GET[‘id’])  &  &  file_exists($dir . ‘/’ .
    $_GET[‘id’] . ‘.jpg’)) {
    $image = imagecreatefromjpeg($dir . ‘/’ . $_GET[‘id’] . ‘.jpg’);
} else {
    die(‘invalid image specified’);
}
                   
// apply the filter
$effect = (isset($_GET[‘e’])) ? $_GET[‘e’] : -1;
switch ($effect) {
case IMG_FILTER_NEGATE:
    imagefilter($image, IMG_FILTER_NEGATE); 
    break;
case IMG_FILTER_GRAYSCALE:
    imagefilter($image, IMG_FILTER_GRAYSCALE); 
    break;
case IMG_FILTER_EMBOSS:
    imagefilter($image, IMG_FILTER_EMBOSS); 
    break;
case IMG_FILTER_GAUSSIAN_BLUR:
    imagefilter($image, IMG_FILTER_GAUSSIAN_BLUR);
    break;
}
                   
// add the caption if requested
if (isset($_GET[‘capt’])) {
    imagettftext($image, 12, 0, 20, 20, 0, $font, $_GET[‘capt’]);
}
                   
// show the image
header(‘Content-Type: image/jpeg’);
imagejpeg($image, ‘’, 100);
? >    



Part I: Movie Review Web Site

208

  3.   Now go back and try out the new option. You should see something similar to Figure  7 - 7 .      

Figure 7-7

 You can see how easy it is to automatically overlay text on to your images. Let ’ s break it down. 

  How It Works  
 First, you added a line specifying the font path the GD library will use when searching for the 
specified font, and then you provided the name of the particular font you want to use. Alternatively, 
you could have just assigned the entire path and filename of the font to the  $font  variable. Next, 
the  “ Embed caption in image? ”  option was added to your form in  check_image.php . When 
processing the workflow, the script sees if the option is checked and either passes the caption along 
to  image_effect.php  in the URL string or uses the  imagettftext()  function after the preview has 
been approved. Finally, you added the lines referencing the desired font and a call to 
 imagettftext()  to the  image_effect.php  script as well. 

 The  imagettftext()  function is only one of the many text/string functions available in PHP/GD. 
The function accepts eight values, in this order: 

  1.   The image reference on which the text is placed ( $image  in this example)  .

  2.   The font size of the text measured in points (12 in this example)  .

  3.   The rotation of the text in degrees (0 in this example because the text is not rotated)  .

  4.   The x - coordinate for the starting position of the text, with 0 being the leftmost boundary of the 
image (20 in this example)  .



Chapter 7: Manipulating and Creating Images with PHP

209

  5.   The y - coordinate for the starting position of the text ’ s baseline, with 0 being the upper 
boundary of the image (20 in this example)  .

  6.   The color of the text, using the color index (0, or black, in this example)  .

  7.   The name of the font file you want to reference ( arial.ttf  in this example)  .

  8.   The string of text to be shown (the contents of the  $image_caption  variable in this example)    .

 When the font ’ s name does not start with a leading  /  then .ttf will be appended to it, and the path 
specified by the  GDFONT  environment variable will be searched for it. The scripts here are using the 
 arial.ttf  font located in the  C:\Windows\Fonts  directory. If you wanted to use a font file that was 
stored in the local project directory, then you would need to set the value of  GDFONT  accordingly, for 
example: 

putenv(‘GDFONTPATH=’ . realpath(‘.’));  

 The text string is treated as a UTF - 8 encoded string. Although named entities such as   & copy;  or 
  & delta;  aren ’ t understood by  imagettftext() , you can use a character ’ s hexadecimal format, such as 
  & #xA9;  and   & #x394; . If a character is not supported by the font, then GD will substitute a small empty 
rectangle in its place.    

  Adding Watermarks and Merging Images 
 Because you are showing these images on the Movie Review Site, make your logo show up lightly 
behind each image that is hosted by you, as a watermark. You can do this with your own logo to protect 
any copyrighted images, just as easily as we did the overlaying text. 

 In this section, you will actually be merging two images (your source image and your logo image) to 
create the desired effect. For reference, the logo file used here as a sample is a transparent PNG file and is 
shown in Figure  7 - 8 .    

Figure 7-8



Part I: Movie Review Web Site

210

  Try It Out  Merging Two Images 

 To merge the two images, again you will change the  check_image.php  file and your  image_effect
.php  file.   

  1.   Add the following three sections to your  check_image.php  file, in the same areas as before 
with the embedded caption code: 

...
    // add the caption if requested
    if (isset($_POST[‘emb_caption’])) {
        imagettftext($image, 12, 0, 20, 20, 0, $fntdir . ‘/’ . ‘arial.ttf’,
            $image_caption);
    }
    //add the logo watermark if requested
    if (isset($_POST[‘emb_logo’])) {
        // determine x and y position to center watermark
        list($wmk_width, $wmk_height) = getimagesize(‘images/logo.png’);
        $x = ($width - $wmk_width) / 2;
        $y = ($height - $wmk_height) / 2;
    
        $wmk = imagecreatefrompng(‘images/logo.png’);
        imagecopymerge($image, $wmk, $x, $y, 0, 0, $wmk_width, $wmk_height,
20);
        imagedestroy($wmk);
    }

...
       if (isset($_POST[‘emb_caption’])) {
           $imagename .= ‘ & capt=’ . urlencode($image_caption); 
       }

       if (isset($_POST[‘emb_logo’])) {
           $imagename .= ‘ & logo=1’; 
       }

...
 < ?php
    echo ‘ < input type=”checkbox” name=”emb_caption”’;
    if (isset($_POST[‘emb_caption’])) {
        echo ‘ checked=”checked”’;
    }
    echo ‘ > Embed caption in image?’;

    echo ‘ < br/ >  < br/ >  < input type=”checkbox” name=”emb_logo”’;
    if (isset($_POST[‘emb_logo’])) {
        echo ‘ checked=”checked”’;
    }
    echo ‘ > Embed watermarked logo in image?’;

? > 
...   



Chapter 7: Manipulating and Creating Images with PHP

211

  2.   Add the following line to your  image_effect.php  file, as before: 

...
// add the caption if requested
if (isset($_GET[‘capt’])) {
    imagettftext($image, 12, 0, 20, 20, 0, $font, $_GET[‘capt’]);
}
                   
//add the logo watermark if requested
if (isset($_GET[‘logo’])) {
    // determine x and y position to center watermark
    list($width, $height) = getimagesize($dir . ‘/’ . $_GET[‘id’] . ‘.jpg’);
    list($wmk_width, $wmk_height) = getimagesize(‘images/logo.png’);
    $x = ($width - $wmk_width) / 2;
    $y = ($height - $wmk_height) / 2;
    
    $wmk = imagecreatefrompng(‘images/logo.png’);
    imagecopymerge($image, $wmk, $x, $y, 0, 0, $wmk_width, $wmk_height, 20);
    imagedestroy($wmk);
}
                   
// show the image
header(‘Content-Type: image/jpeg’);
imagejpeg($image, ‘’, 100);
? >    

  3.   Go ahead and try it out! Your screen should resemble that in Figure  7 - 9 .      

Figure 7-9



Part I: Movie Review Web Site

212

  How It Works  
 You have simply added another option for your users, and you did it using the  imagecopymerge()  
function. Note that before you could merge the two images, you had to make the second image  “ GD 
friendly ”  by creating a duplicate copy. Because your image was a PNG image, you used the 
 imagecreatefrompng()  function. 

 The nine arguments for the  imagecopymerge()  function are as follows, in this order: 

  1.   The resource of the destination image ( $image  in this example, since the  $image  file is the one 
you are making all the changes to and the one that will be shown at the end of your script)  .

  2.   The resource of the second image, or source image ( $wmk  in this example)  .

  3.   The x - coordinate on the destination image (0 represents the leftmost boundary)  .

  4.   The y - coordinate on the destination image (0 represents the uppermost boundary)  .

  5.   The x - coordinate on the second image to start copying from (0 in this example, because you 
want the whole image)  .

  6.   The y - coordinate on the second image to start copying from (0 in this example, because you 
want the whole image)  .

  7.   The width of the portion of the second image to be merged ( $wmk_width  in this example, 
representing as much of the second image as will fit on the destination image)  .

  8.   The height of the portion of the second image to be merged ( $wmk_height  in this example, 
representing as much of the second image as will fit on the destination image)  .

  9.   The percent of transparency of the two images to be merged, with 100 being equal to the 
second image completely opaque, and 0 completely transparent    .

 We hope you ’ re still with us, because there is one more thing we would like to do.    

  Creating Thumbnails 
 Of course, showing your users ’  images at full size is fine, if they want to see them up close. However, 
that format is not too conducive to showing a photo gallery or list of many photos on a page. This 
section discusses how you can automatically create a thumbnail of each of your uploaded files that will 
be used for just that purpose  —  a photo gallery of all your photos.  



Chapter 7: Manipulating and Creating Images with PHP

213

  Try It Out  Creating Thumbnails 

 You want to automatically create a thumbnail version of all the images that are uploaded by the users, 
so you will be modifying  check_image.php  and including this function.   

  1.   Create a subdirectory of your images folder to house the thumbnails. For this example, we 
created  C:\Program Files\Apache Software Foundation\Apache2.2\htdocs\
images\thumbs . Make sure your directory has write permissions.  

  2.   Modify your  check_image.php  file by adding the two new sections of code that follow: 

...
//change this path to match your images directory
$dir =’C:/Program Files/Apache Software Foundation/Apache2.2/htdocs/images’;
                   
//change this path to match your thumbnail directory
$thumbdir = $dir . ‘/thumbs’;

...
    // save the image with the filter applied
    imagejpeg($image, $dir . ‘/’ . $_POST[‘id’] . ‘.jpg’, 100);
                   
    //set the dimensions for the thumbnail
    $thumb_width = $width * 0.10;
    $thumb_height = $height * 0.10;
                   
    //create the thumbnail
    $thumb = imagecreatetruecolor($thumb_width, $thumb_height);
    imagecopyresampled($thumb, $image, 0, 0, 0, 0, $thumb_width, 
$thumb_height,
        $width, $height);
    imagejpeg($thumb, $dir . ‘/’ . $_POST[‘id’] . ‘.jpg’, 100);
    imagedestroy($thumb);

? > 
 < html > 
  < head > 
   < title > Here is your pic! < /title > 
  < /head > 
  < body > 
   < h1 > Your image has been saved! < /h1 > 
   < img src=”images/ < ?php echo $_POST[‘id’]; ? > .jpg” / > 
  < /body > 
 < /html >    



Part I: Movie Review Web Site

214

  3.   Now you ’ re going to create  gallery.php , which will act as your photo gallery to display the 
thumbnail images. Type the following in your editor: 

 < ?php
//connect to MySQL
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
//change this path to match your images directory
$dir =’images’;
                   
//change this path to match your thumbnail directory
$thumbdir = $dir . ‘/thumbs’;
? > 
 < html > 
  < head > 
   < title > Welcome to our Photo Gallery < /title > 
   < style type=”text/css” > 
   th { background-color: #999;}
   .odd_row { background-color: #EEE; }
   .even_row { background-color: #FFF; }
   < /style > 
  < /head > 
  < body > 
   < p > Click on any image to see it full sized. < /p > 
   < table style=”width:100%;” > 
    < tr > 
     < th > Image < /th > 
     < th > Caption < /th > 
     < th > Uploaded By < /th > 
     < th > Date Uploaded < /th > 
    < /tr > 
 < ?php
//get the thumbs
$result = mysql_query(‘SELECT * FROM images’) or die(mysql_error());
                   
$odd = true;
while ($rows = mysql_fetch_array($result)) {
    echo ($odd == true) ? ‘ < tr class=”odd_row” > ’ : ‘ < tr class=”even_row” > ’;
    $odd = !$odd; 
    extract($rows);
    echo ‘ < td >  < a href=”’ . $dir . ‘/’ . $image_id . ‘.jpg” > ’;
    echo ‘ < img src=”’ . $thumbdir . ‘/’ . $image_id . ‘.jpg” > ’;
    echo ‘ < /a >  < /td > ’;
    echo ‘ < td > ’ . $image_caption . ‘ < /td > ’;
    echo ‘ < td > ’ . $image_username . ‘ < /td > ’;
    echo ‘ < td > ’ . $image_date . ‘ < /td > ’;
    echo ‘ < /tr > ’;
}
? > 
   < /table > 
  < /body > 
 < /html >    



Chapter 7: Manipulating and Creating Images with PHP

215

  4.   Now upload some images, using your  upload_image.html  page. When you have a few, 
go to  gallery.php  in your browser and see what you have. Your screen should look 
something like Figure  7 - 10 .      

Figure 7-10

 Ok, so it ’ s not pretty, and it ’ s mostly utilitarian in appearance. The important thing is that it works! 
You can add the bells and whistles later; we just want to make sure you can make a thumbnail. 

  How It Works  
 The actual thumbnail itself is created in your  check_image.php  file, so let ’ s take a look at that first. 
You first give your thumbnail its own directory, and you ’ re using the same naming scheme, for 
simplicity ’ s sake. Then the following lines complete the task of making the thumbnail for you: 

//set the dimensions for the thumbnail
$thumb_width = $width * 0.10;
$thumb_height = $height * 0.10;
                   
//create the thumbnail
$thumb = imagecreatetruecolor($thumb_width, $thumb_height);
imagecopyresampled($thumb, $image, 0, 0, 0, 0, $thumb_width, $thumb_height,
    $width, $height);
imagejpeg($thumb, $dir . ‘/’ . $_POST[‘id’] . ‘.jpg’, 100);
imagedestroy($thumb);    



Part I: Movie Review Web Site

216

 The size of the thumbnails is set equal to 10% of the size of the original picture. By using percentages 
instead of hard integers, you ensure that the proportions are kept equal and no skewing of your image 
occurs. Of course, you can make this smaller or larger depending on your users ’  preferences and the 
typical dimensions of the file uploads. Or you can do some math to determine appropriate hard 
integers based on the percentages and a maximum ceiling value. We just kept it simple. 

 The process then creates a blank image in memory based on the smaller dimensions for the thumbnail 
and copies the source image onto it. The newly created thumbnail is then saved in the proper location, 
with the same name as the full - size image. Easy as pie, right?  

  Summary 
 This chapter covered a lot, and yet it only scratches the surface of image manipulation using the GD 
extension. You have seen how you can upload images, resize them, change their coloring, create an 
automatic thumbnail, create new images, and merge two images together. 

 You used a form to get the image from the user and implemented appropriate checks to make sure the 
uploaded file was indeed an image of the correct format. Not all forms are so straightforward to check, 
though. In the next chapter, you ’ ll learn how to check that users enter information in your form in the 
proper format, and how to give them appropriate feedback when they don ’ t.  

  Exercises   
  1.   Create a site called  “ A Virtual Vacation. ”  Offer different backgrounds that people can superim-

pose photos of themselves on, and let them send virtual postcards to their friends and family.  

  2.   Have a page on your site with funny photographs or cartoons, and allow your users to write the 
caption for them. Place the text in a speech bubble that is appropriately sized, based on the 
length of the caption they submit.  

  3.   Create a page for kids where they can choose different heads, bodies, and tails from animals and 
put them together to make a new creation and a new image. Or, create a virtual paper doll site 
where kids can place different outfits on a model and then save the images they create.                     



      8    
Validating User Input          

 If you plan to accept user input on your site, you have to be prepared for mistakes. Incorrect input 
could be simple human error or a deliberate attempt to circumvent the purpose (or security) of 
your web application. The most common human errors include basic typographical errors and 
format errors  —  such as showing a year as two digits when a full four - digit year was requested or 
needed. Erroneous input sent deliberately could be from a user who doesn ’ t want to provide his 
or her e - mail address, or from an attacker intentionally trying to corrupt your database with 
polluted values. No matter what the source, your script needs to be able to handle incorrect input. 
There are many ways to do so, but perhaps the most popular is to identify the bad data and return 
the user to the form with an appropriate error message. This chapter covers user input validation, 
including: 

  Validating simple string values  .

  Validating integer values  .

  Validating formatted text input     .

  Users Are Users Are Users  . . .  
 Let ’ s start by considering this example: You work in a bank. You are developing a new system to 
allow the employees to start the workflow of updating customer account information on the 
company intranet. You use your well - known MM - DD - YYYY format for the date. It all works quite 
well when testing, but when it ’ s put in production, your users say it doesn ’ t work. Why? Because 
all your banking systems use the ISO 8601 YYYY - MM - DD date format (a standard used in many 
systems because the date can be sorted alphabetically). Your users are confused between the two 
different formats and input wrong information to the system. If the data is in the wrong format, 
you can end up with a corrupted database or trigger errors in your application. 

 You can avoid this by using well - known formats and  validating  the user input. When you expect an 
integer value, for example, you can check that it is an integer before you try to use it. It ’ s a simple 
enough rule, and you ’ ll learn how to do it later in this chapter.  

❑

❑

❑



218

Part I: Movie Review Web Site

  Incorporating Validation into the Movie Site 
 To really understand the role of user input and validation, you need to see it in action. So, first you need 
to add a few fields to the  movie  table in your beloved movie database. 

 The movie application provides a lot of opportunities to check for user input. You will need to add a few 
features to the application, however, to provide more case studies. It will also help you to review what 
you learned in the previous chapters.  

  Try It Out   Adapting Your Script to the User Input 

 You must first add two new columns to the  movie  table. You ’ ve done this several times already, so it 
should be a simple process.   

  1.   Open a text editor, and enter this code: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
//alter the movie table to include release and rating
$query = ‘ALTER TABLE movie ADD COLUMN (
    movie_release INTEGER UNSIGNED DEFAULT 0,
    movie_rating  TINYINT UNSIGNED DEFAULT 5)’;
mysql_query($query, $db) or die(mysql_error($db));
                   
echo ‘Movie database successfully updated!’;
? >    

  2.   Save the file as  db_ch08.php .  

  3.   Open the page in your web browser. You should see the message  “ Movie database successfully 
updated! ”     

  How It Works  
 You ’ ve added two fields  —   movie_release  and  movie_rating   —  at the end of the  movies  table. 
The  movie_release  field allows you to store a timestamp for the movie ’ s release date. The  movie_
rating  field allows you to give the movie a rating when viewing it. If this rating goes from 0 to 10, 
then 5 would be a neutral rating.    

 

  Forgot Something? 
 Sometimes, when a user enters data in a form, he or she forgets to fill in a field. When this happens, the 
system has to react so that the insertion of the invalid or incomplete data will not corrupt the database. 
In some cases, these errors are made on purpose. An attacker may try to inject erroneous tracking 
information to corrupt your statistics, or attempt to try to find holes in your application. This is more 



Chapter 8: Validating User Input

219

common than you may think, so it is very important to design and test your system so it can react to 
such errors  —  whether benign or malicious  —  to protect your data.  

  Try It Out  Adapting Your Script to the User Input 

 In this exercise, you ’ ll be making sure that the script can react appropriately when the user fails to 
enter data in all the fields.   

  1.   Open the code file  movie.php  you wrote in Chapter 6, and modify it as shown in the highlighted 
lines: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
if ($_GET[‘action’] == ‘edit’) {
    //retrieve the record’s information 
    $query = ‘SELECT
            movie_name, movie_type, movie_year, movie_leadactor, movie_
director
        FROM
            movie
        WHERE
            movie_id = ‘ . $_GET[‘id’];
    $result = mysql_query($query, $db) or die(mysql_error($db));
    extract(mysql_fetch_assoc($result));
} else {
    //set values to blank
    $movie_name = ‘’;
    $movie_type = 0;
    $movie_year = date(‘Y’);
    $movie_leadactor = 0;
    $movie_director = 0;
}
? > 
 < html > 
  < head > 
   < title >  < ?php echo ucfirst($_GET[‘action’]); ? >  Movie < /title > 

   < style type=”text/css” > 
 < !--
#error { background-color: #600; border: 1px solid #FF0; color: #FFF;
 text-align: center; margin: 10px; padding: 10px; }
-- > 
   < /style > 

  < /head > 
  < body > 

 < ?php
if (isset($_GET[‘error’])  &  &  $_GET[‘error’] != ‘’) {
    echo ‘ < div id=”error” > ’ . $_GET[‘error’] . ‘ < /div > ’;
}
? > 



220

Part I: Movie Review Web Site

   < form action=”commit.php?action= < ?php echo $_GET[‘action’]; ? >  & type=movie”
   method=”post” > 
    < table > 
     < tr > 
      < td > Movie Name < /td > 
      < td >  < input type=”text” name=”movie_name”
      value=” < ?php echo $movie_name; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td > Movie Type < /td > 
      < td >  < select name=”movie_type” > 
 < ?php
// select the movie type information
$query = ‘SELECT
        movietype_id, movietype_label
    FROM
        movietype
    ORDER BY
        movietype_label’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// populate the select options with the results
while ($row = mysql_fetch_assoc($result)) {
    foreach ($row as $value) {
        if ($row[‘movietype_id’] == $movie_type) {
            echo ‘ < option value=”’ . $row[‘movietype_id’] .
                ‘” selected=”selected” > ’;
        } else {
            echo ‘ < option value=”’ . $row[‘movietype_id’] . ‘” > ’;
        }
        echo $row[‘movietype_label’] . ‘ < /option > ’;
    }
}
? > 
       < /select >  < /td > 
     < /tr >  < tr > 
      < td > Movie Year < /td > 
      < td >  < select name=”movie_year” > 
 < ?php
// populate the select options with years
for ($yr = date(“Y”); $yr  > = 1970; $yr--) {
    if ($yr == $movie_year) {
        echo ‘ < option value=”’ . $yr . ‘” selected=”selected” > ’ . $yr .
            ‘ < /option > ’;
    } else {
        echo ‘ < option value=”’ . $yr . ‘” > ’ . $yr . ‘ < /option > ’;
    }
}
? > 
       < /select >  < /td > 
     < /tr >  < tr > 
      < td > Lead Actor < /td > 
      < td >  < select name=”movie_leadactor” > 
 < ?php
// select actor records
$query = ‘SELECT
        people_id, people_fullname



Chapter 8: Validating User Input

221

    FROM
        people
    WHERE
        people_isactor = 1
    ORDER BY
        people_fullname’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// populate the select options with the results
while ($row = mysql_fetch_assoc($result)) {
    foreach ($row as $value) {
        if ($row[‘people_id’] == $movie_leadactor) {
            echo ‘ < option value=”’ . $row[‘people_id’] .
                ‘” selected=”selected” > ’;
        } else {
            echo ‘ < option value=”’ . $row[‘people_id’] . ‘” > ’;
        }
        echo $row[‘people_fullname’] . ‘ < /option > ’;
    }
}
? > 
       < /select >  < /td > 
     < /tr >  < tr > 
      < td > Director < /td > 
      < td >  < select name=”movie_director” > 
 < ?php
// select director records
$query = ‘SELECT
        people_id, people_fullname
    FROM
        people
    WHERE
        people_isdirector = 1
    ORDER BY
        people_fullname’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// populate the select options with the results
while ($row = mysql_fetch_assoc($result)) {
    foreach ($row as $value) {
        if ($row[‘people_id’] == $movie_director) {
            echo ‘ < option value=”’ . $row[‘people_id’] .
                ‘” selected=”selected” > ’;
        } else {
            echo ‘ < option value=”’ . $row[‘people_id’] . ‘” > ’;
        }
        echo $row[‘people_fullname’] . ‘ < /option > ’;
    }
}
? > 
       < /select >  < /td > 
     < /tr >  < tr > 
      < td colspan=”2” style=”text-align: center;” > 
 < ?php
if ($_GET[‘action’] == ‘edit’) {



222

Part I: Movie Review Web Site

    echo ‘ < input type=”hidden” value=”’ . $_GET[‘id’] . ‘” name=”movie_id” / > ’;
}
? > 
       < input type=”submit” name=”submit”
       value=” < ?php echo ucfirst($_GET[‘action’]); ? > ” / > 
      < /td > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >    

  2.   Open the  commit.php  script, and modify it as shown in the highlighted lines: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
// Delete these lines
? > 
 < html > 
  < head > 
   < title > Commit < /title > 
  < /head > 
  < body > 
 < ?php
// End deleted lines

switch ($_GET[‘action’]) {
case ‘add’:
    switch ($_GET[‘type’]) {
    case ‘movie’:

        $error = array();
        $movie_name = isset($_POST[‘movie_name’]) ?
            trim($_POST[‘movie_name’]) : ‘’;
        if (empty($movie_name)) {
            $error[] = urlencode(‘Please enter a movie name.’);
        }
        $movie_type = isset($_POST[‘movie_type’]) ?
            trim($_POST[‘movie_type’]) : ‘’;
        if (empty($movie_type)) {
            $error[] = urlencode(‘Please select a movie type.’);
        }
        $movie_year = isset($_POST[‘movie_year’]) ?
            trim($_POST[‘movie_year’]) : ‘’;
        if (empty($movie_year)) {
            $error[] = urlencode(‘Please select a movie year.’);
        }
        $movie_leadactor = isset($_POST[‘movie_leadactor’]) ?
            trim($_POST[‘movie_leadactor’]) : ‘’;
        if (empty($movie_leadactor)) {
            $error[] = urlencode(‘Please select a lead actor.’);
        }
        $movie_director = isset($_POST[‘movie_director’]) ?



Chapter 8: Validating User Input

223

            trim($_POST[‘movie_director’]) : ‘’;
        if (empty($movie_director)) {
            $error[] = urlencode(‘Please select a director.’);
        }
        if (empty($error)) {
            $query = ‘INSERT INTO
                movie
                    (movie_name, movie_year, movie_type, movie_leadactor,
                    movie_director)
                VALUES
                    (“’ . $movie_name . ‘”,
                     ‘ . $movie_year . ‘,
                     ‘ . $movie_type . ‘,
                     ‘ . $movie_leadactor . ‘,
                     ‘ . $movie_director . ‘)’;
        } else {
          header(‘Location:movie.php?action=add’ .
              ‘ & error=’ . join($error, urlencode(‘ < br/ > ’)));
        }

                   
// Delete these lines
        $query = ‘INSERT INTO
            movie
                (movie_name, movie_year, movie_type, movie_leadactor,
                movie_director)
            VALUES
                (“’ . $_POST[‘movie_name’] . ‘”,
                 ‘ . $_POST[‘movie_year’] . ‘,
                 ‘ . $_POST[‘movie_type’] . ‘,
                 ‘ . $_POST[‘movie_leadactor’] . ‘,
                 ‘ . $_POST[‘movie_director’] . ‘)’;
// End deleted lines

        break;
    }
    break;
case ‘edit’:
    switch ($_GET[‘type’]) {
    case ‘movie’:

        $error = array();
        $movie_name = isset($_POST[‘movie_name’]) ?
            trim($_POST[‘movie_name’]) : ‘’;
        if (empty($movie_name)) {
            $error[] = urlencode(‘Please enter a movie name.’);
        }
        $movie_type = isset($_POST[‘movie_type’]) ?
            trim($_POST[‘movie_type’]) : ‘’;
        if (empty($movie_type)) {
            $error[] = urlencode(‘Please select a movie type.’);
        }
        $movie_year = isset($_POST[‘movie_year’]) ?
            trim($_POST[‘movie_year’]) : ‘’;
        if (empty($movie_year)) {
            $error[] = urlencode(‘Please select a movie year.’);
        }
        $movie_leadactor = isset($_POST[‘movie_leadactor’]) ?



224

Part I: Movie Review Web Site

            trim($_POST[‘movie_leadactor’]) : ‘’;
        if (empty($movie_leadactor)) {
            $error[] = urlencode(‘Please select a lead actor.’);
        }
        $movie_director = isset($_POST[‘movie_director’]) ?
            trim($_POST[‘movie_director’]) : ‘’;
        if (empty($movie_director)) {
            $error[] = urlencode(‘Please select a director.’);
        }
        if (empty($error)) {
            $query = ‘UPDATE
                    movie
                SET 
                    movie_name = “’ . $movie_name . ‘”,
                    movie_year = ‘ . $movie_year . ‘,
                    movie_type = ‘ . $movie_type . ‘,
                    movie_leadactor = ‘ . $movie_leadactor . ‘,
                    movie_director = ‘ . $movie_director . ‘
                WHERE
                    movie_id = ‘ . $_POST[‘movie_id’];
        } else {
          header(‘Location:movie.php?action=edit & id=’ . $_POST[‘movie_id’] .
              ‘ & error=’ . join($error, urlencode(‘ < br/ > ’)));
        }

                   
// Delete these lines
        $query = ‘UPDATE
                movie
            SET 
                movie_name = “’ . $_POST[‘movie_name’] . ‘”,
                movie_year = ‘ . $_POST[‘movie_year’] . ‘,
                movie_type = ‘ . $_POST[‘movie_type’] . ‘,
                movie_leadactor = ‘ . $_POST[‘movie_leadactor’] . ‘,
                movie_director = ‘ . $_POST[‘movie_director’] . ‘
            WHERE
                movie_id = ‘ . $_POST[‘movie_id’];
// End deleted lines

        break;
    }
    break;
}
                   
if (isset($query)) {
    $result = mysql_query($query, $db) or die(mysql_error($db));
}
? > 

 < html > 
  < head > 
   < title > Commit < /title > 
  < /head > 
  < body > 

   < p > Done! < /p > 
  < /body > 
 < /html >    



Chapter 8: Validating User Input

225

  3.   Now open your browser and load  admin.php , and then click the link to add a movie. You will 
be taken to the  movie.php  script you ’ ve just updated. Try adding a movie with no name, and 
notice the error message stating the mistake made in filling in the form, as shown in Figure  8 - 1 .      

Figure 8-1

  How It Works  
 When the form passes information to the  commit.php  script, the data has to be verified. In this case, 
you use a simple verification method: The  isset()  function returns  true  if the variable has been set, 
and  false  if not. To ensure that the user did not submit the form with a blank field or a simple space 
in the movie name field, you use  trim()  on the field ’ s content to eliminate any space leading or 
trailing the string and to compare the value to a null string. (Some people like to trigger errors in web 
sites by entering erroneous input; don ’ t make their job easy.) 

 At the same time, if an error is detected, you add a message to the  $error  variable that collects all the 
error messages. The error messages are URL encoded before being added because they will be passed 
on the URL string. They should be encoded to ensure that they will be passed back to the  movie.php  
script correctly without being corrupted. (See  urlencode  and  urldecode  functions in the manual; for 
more information, check the PHP web site at  www.php.net/url .)   

$error = array();
$movie_name = (isset($_POST[‘movie_name’]) ? 
    trim($_POST[‘movie_name’]) : ‘’;
if (empty($movie_name)) {
    $error[] = urlencode(‘Please enter a movie name.’);
}  



226

Part I: Movie Review Web Site

 Once you are sure that an error has occurred, you redirect the user back to the form with an error 
message stating the problem. When redirecting the user back to the form, the system needs to display 
the error message.   

if (isset($_GET[‘error’])  &  &  $_GET[‘error’] != ‘’) {
    echo ‘ < div id=”error” > ’ . $_GET[‘error’] . ‘ < /div > ’;
}  

 This displays a rather colorful message that your user will not miss.    

 

  Checking for Format Errors 
 Checking for errors in dates or other formatted data is a requirement in most systems because users can ’ t 
always be guided in their input. You should always check the data that the user enters, if you require a 
specific format or set of values. 

 At this point, you need the feared and powerful  regular expressions . Regular expressions allow you to 
define a pattern and check to see if it can be applied to your data. They ’ re very useful to check for dates, 
Social Security numbers, and any data that has to respect a predefined set of format requirements. (It 
helps to be sure to always indicate the format in the source field.)  

  Try It Out  Checking Dates and Numbers 

 In this exercise, you ’ ll change a few pages so that you can check the format of the dates the user enters.   

  1.   Open the well - known  movie.php  file, and modify it as follows: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
if ($_GET[‘action’] == ‘edit’) {
    //retrieve the record’s information 
    $query = ‘SELECT

            movie_name, movie_type, movie_year, movie_leadactor, movie_director,
            movie_release, movie_rating

        FROM
            movie
        WHERE
            movie_id = ‘ . $_GET[‘id’];
    $result = mysql_query($query, $db) or die(mysql_error($db));
    extract(mysql_fetch_assoc($result));
} else {
    //set values to blank
    $movie_name = ‘’;



Chapter 8: Validating User Input

227

    $movie_type = 0;
    $movie_year = date(‘Y’);
    $movie_leadactor = 0;
    $movie_director = 0;

    $movie_release = time();
    $movie_rating = 5;

}
? > 
 < html > 
  < head > 
   < title >  < ?php echo ucfirst($_GET[‘action’]); ? >  Movie < /title > 
   < style type=”text/css” > 
 < !--
#error { background-color: #600; border: 1px solid #FF0; color: #FFF;
 text-align: center; margin: 10px; padding: 10px; }
-- > 
   < /style > 
  < /head > 
  < body > 
 < ?php
if (isset($_GET[‘error’])  &  &  $_GET[‘error’] != ‘’) {
    echo ‘ < div id=”error” > ’ . $_GET[‘error’] . ‘ < /div > ’;
}
? > 
   < form action=”commit.php?action= < ?php echo $_GET[‘action’]; ? >  & type=movie”
   method=”post” > 
    < table > 
     < tr > 
      < td > Movie Name < /td > 
      < td >  < input type=”text” name=”movie_name”
      value=” < ?php echo $movie_name; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td > Movie Type < /td > 
      < td >  < select name=”movie_type” > 
 < ?php
// select the movie type information
$query = ‘SELECT
        movietype_id, movietype_label
    FROM
        movietype
    ORDER BY
        movietype_label’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// populate the select options with the results
while ($row = mysql_fetch_assoc($result)) {
    foreach ($row as $value) {
        if ($row[‘movietype_id’] == $movie_type) {
            echo ‘ < option value=”’ . $row[‘movietype_id’] .
                ‘” selected=”selected” > ’;
        } else {
            echo ‘ < option value=”’ . $row[‘movietype_id’] . ‘” > ’;
        }
        echo $row[‘movietype_label’] . ‘ < /option > ’;



228

Part I: Movie Review Web Site

    }
}
? > 
       < /select >  < /td > 
     < /tr >  < tr > 
      < td > Movie Year < /td > 
      < td >  < select name=”movie_year” > 
 < ?php
// populate the select options with years
for ($yr = date(“Y”); $yr  > = 1970; $yr--) {
    if ($yr == $movie_year) {
        echo ‘ < option value=”’ . $yr . ‘” selected=”selected” > ’ . $yr .
            ‘ < /option > ’;
    } else {
        echo ‘ < option value=”’ . $yr . ‘” > ’ . $yr . ‘ < /option > ’;
    }
}
? > 
       < /select >  < /td > 
     < /tr >  < tr > 
      < td > Lead Actor < /td > 
      < td >  < select name=”movie_leadactor” > 
 < ?php
// select actor records
$query = ‘SELECT
        people_id, people_fullname
    FROM
        people
    WHERE
        people_isactor = 1
    ORDER BY
        people_fullname’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// populate the select options with the results
while ($row = mysql_fetch_assoc($result)) {
    foreach ($row as $value) {
        if ($row[‘people_id’] == $movie_leadactor) {
            echo ‘ < option value=”’ . $row[‘people_id’] .
                ‘” selected=”selected” > ’;
        } else {
            echo ‘ < option value=”’ . $row[‘people_id’] . ‘” > ’;
        }
        echo $row[‘people_fullname’] . ‘ < /option > ’;
    }
}
? > 
       < /select >  < /td > 
     < /tr >  < tr > 
      < td > Director < /td > 
      < td >  < select name=”movie_director” > 
 < ?php
// select director records
$query = ‘SELECT



Chapter 8: Validating User Input

229

        people_id, people_fullname
    FROM
        people
    WHERE
        people_isdirector = 1
    ORDER BY
        people_fullname’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// populate the select options with the results
while ($row = mysql_fetch_assoc($result)) {
    foreach ($row as $value) {
        if ($row[‘people_id’] == $movie_director) {
            echo ‘ < option value=”’ . $row[‘people_id’] .
                ‘” selected=”selected” > ’;
        } else {
            echo ‘ < option value=”’ . $row[‘people_id’] . ‘” > ’;
        }
        echo $row[‘people_fullname’] . ‘ < /option > ’;
    }
}
? > 
       < /select >  < /td > 

     < /tr >  < tr > 
      < td > Movie Release Date < br/ > 
       < small > (dd-mm-yyyy) < /small >  < /td > 
      < td >  < input type=”text” name=”movie_release”
      value=” < ?php echo date(‘d-m-Y’, $movie_release); ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td > Movie Rating < br/ > 
       < small > (from 0 to 10) < /small >  < /td > 
      < td >  < input type=”text” name=”movie_rating”
      value=” < ?php echo $movie_rating; ? > ”/ >  < /td > 

     < /tr >  < tr > 
      < td colspan=”2” style=”text-align: center;” > 
 < ?php
if ($_GET[‘action’] == ‘edit’) {
    echo ‘ < input type=”hidden” value=”’ . $_GET[‘id’] . ‘” name=”movie_id” / > ’;
}
? > 
       < input type=”submit” name=”submit”
       value=” < ?php echo ucfirst($_GET[‘action’]); ? > ” / > 
      < /td > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >    

  2.   Navigate to  movie.php  in a browser again, and note the two new fields that have been added, 
as shown in Figure  8 - 2 .    



230

Part I: Movie Review Web Site

  3.   Now open  commit.php , and modify it as follows (modifications are highlighted): 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
switch ($_GET[‘action’]) {
case ‘add’:
    switch ($_GET[‘type’]) {
    case ‘movie’:
        $error = array();
        $movie_name = isset($_POST[‘movie_name’]) ?
            trim($_POST[‘movie_name’]) : ‘’;
        if (empty($movie_name)) {
            $error[] = urlencode(‘Please enter a movie name.’);
        }
        $movie_type = isset($_POST[‘movie_type’]) ?
            trim($_POST[‘movie_type’]) : ‘’;
        if (empty($movie_type)) {
            $error[] = urlencode(‘Please select a movie type.’);
        }
        $movie_year = isset($_POST[‘movie_year’]) ?
            trim($_POST[‘movie_year’]) : ‘’;

Figure 8-2



Chapter 8: Validating User Input

231

        if (empty($movie_year)) {
            $error[] = urlencode(‘Please select a movie year.’);
        }
        $movie_leadactor = isset($_POST[‘movie_leadactor’]) ?
            trim($_POST[‘movie_leadactor’]) : ‘’;
        if (empty($movie_leadactor)) {
            $error[] = urlencode(‘Please select a lead actor.’);
        }
        $movie_director = isset($_POST[‘movie_director’]) ?
            trim($_POST[‘movie_director’]) : ‘’;
        if (empty($movie_director)) {
            $error[] = urlencode(‘Please select a director.’);
        }

        $movie_release = isset($_POST[‘movie_release’]) ? 
            trim($_POST[‘movie_release’]) : ‘’;
        if (!preg_match(‘|^\d{2}-\d{2}-\d{4}$|’, $movie_release)) {
            $error[] = urlencode(‘Please enter a date in dd-mm-yyyy format.’);
        } else {
            list($day, $month, $year) = explode(‘-’, $movie_release);
            if (!checkdate($month, $day, $year)) {
                $error[] = urlencode(‘Please enter a valid date.’);
            } else {
                $movie_release = mktime(0, 0, 0, $month, $day, $year);
            }
        }
        $movie_rating = isset($_POST[‘movie_rating’]) ? 
            trim($_POST[‘movie_rating’]) : ‘’;
        if (!is_numeric($movie_rating)) {
            $error[] = urlencode(‘Please enter a numeric rating.’);
        } else if ($movie_rating  <  0 || $movie_rating  >  10) {
            $error[] = urlencode(‘Please enter a rating between 0 and 10.’);
        }

        if (empty($error)) {
            $query = ‘INSERT INTO
                movie
                    (movie_name, movie_year, movie_type, movie_leadactor,

                    movie_director, movie_release, movie_rating)

                VALUES
                    (“’ . $movie_name . ‘”,
                     ‘ . $movie_year . ‘,
                     ‘ . $movie_type . ‘,
                     ‘ . $movie_leadactor . ‘,

                     ‘ . $movie_director . ‘,
                     ‘ . $movie_release . ‘,
                     ‘ . $movie_rating . ‘)’;



232

Part I: Movie Review Web Site

        } else {
          header(‘Location:movie.php?action=add’ .
              ‘ & error=’ . join($error, urlencode(‘ < br/ > ’)));
        }
        break;
    }
    break;
case ‘edit’:
    switch ($_GET[‘type’]) {
    case ‘movie’:
        $error = array();
        $movie_name = isset($_POST[‘movie_name’]) ?
            trim($_POST[‘movie_name’]) : ‘’;
        if (empty($movie_name)) {
            $error[] = urlencode(‘Please enter a movie name.’);
        }
        $movie_type = isset($_POST[‘movie_type’]) ?
            trim($_POST[‘movie_type’]) : ‘’;
        if (empty($movie_type)) {
            $error[] = urlencode(‘Please select a movie type.’);
        }
        $movie_year = isset($_POST[‘movie_year’]) ?
            trim($_POST[‘movie_year’]) : ‘’;
        if (empty($movie_year)) {
            $error[] = urlencode(‘Please select a movie year.’);
        }
        $movie_leadactor = isset($_POST[‘movie_leadactor’]) ?
            trim($_POST[‘movie_leadactor’]) : ‘’;
        if (empty($movie_leadactor)) {
            $error[] = urlencode(‘Please select a lead actor.’);
        }
        $movie_director = isset($_POST[‘movie_director’]) ?
            trim($_POST[‘movie_director’]) : ‘’;
        if (empty($movie_director)) {
            $error[] = urlencode(‘Please select a director.’);
        }

        $movie_release = isset($_POST[‘movie_release’]) ? 
            trim($_POST[‘movie_release’]) : ‘’;
        if (!preg_match(‘|^\d{2}-\d{2}-\d{4}$|’, $movie_release)) {
            $error[] = urlencode(‘Please enter a date in dd-mm-yyyy format.’);
        } else {
            list($day, $month, $year) = explode(‘-’, $movie_release);
            if (!checkdate($month, $day, $year)) {
                $error[] = urlencode(‘Please enter a valid date.’);
            } else {
                $movie_release = mktime(0, 0, 0, $month, $day, $year);
            }
        }
        $movie_rating = isset($_POST[‘movie_rating’]) ? 
            trim($_POST[‘movie_rating’]) : ‘’;



Chapter 8: Validating User Input

233

        if (!is_numeric($movie_rating)) {
            $error[] = urlencode(‘Please enter a numeric rating.’);
        } else if ($movie_rating  <  0 || $movie_rating  >  10) {
            $error[] = urlencode(‘Please enter a rating between 0 and 10.’);
        }

        if (empty($error)) {
            $query = ‘UPDATE
                    movie
                SET 
                    movie_name = “’ . $movie_name . ‘”,
                    movie_year = ‘ . $movie_year . ‘,
                    movie_type = ‘ . $movie_type . ‘,
                    movie_leadactor = ‘ . $movie_leadactor . ‘,

                    movie_director = ‘ . $movie_director . ‘,
                    movie_release = ‘ . $movie_release . ‘,
                    movie_rating = ‘ . $movie_rating . ‘

                WHERE
                    movie_id = ‘ . $_POST[‘movie_id’];
        } else {
          header(‘Location:movie.php?action=edit & id=’ . $_POST[‘movie_id’] .
              ‘ & error=’ . join($error, urlencode(‘ < br/ > ’)));
        }
        break;
    }
    break;
}
                   
if (isset($query)) {
    $result = mysql_query($query, $db) or die(mysql_error($db));
}
? > 
? > 
 < html > 
  < head > 
   < title > Commit < /title > 
  < /head > 
  < body > 
   < p > Done! < /p > 
  < /body > 
 < /html >    

  4.   Attempt to add a new movie, and try entering 2009 - 20 - 01 in the release date field. You will be 
brought back to the form with a nice, yet very explicit, message telling you that the date format 
is invalid, as shown in Figure  8 - 3 .    



234

Part I: Movie Review Web Site

  5.   Try entering letters in the rating field. This field could easily have been a drop - down, but it is a 
text field for the purposes of our exercise. The value will be refused, as shown in Figure  8 - 4 .      

Figure 8-3

Figure 8-4



Chapter 8: Validating User Input

235

  How It Works  
 First, let ’ s look into the type - validating functions. In the  commit.php  code, you use the  
is_numeric()  function. This function returns a Boolean TRUE if the value is indeed numeric, and 
FALSE if not. More of these validating functions are available, including: 

   is_array():  Checks if the variable holds an array  .

   is_binary():  Checks if the variable holds a native binary string  .

   is_bool():  Checks for Boolean - type values (TRUE, FALSE, 0, or 1)  .

   is_callable():  Checks if the variable ’ s value can be called as a function  .

   is_float():  Checks if the variable holds a decimal value  .

   is_int():  Checks if the variable holds an integer value  .

   is_null():  Checks if the variable ’ s value is null  .

   is_numeric():  Checks if the variable holds a number or numeric string  .

   is_object():  Checks if the variable stores an object  .

   is_resource():  Checks to see if the variable is a resource  .

   is_string():  Checks to see if the value is a string  .

   is_unicode():  Checks to see if the value is a Unicode string      .

 In this instance, the use of  is_numeric  allows you to make sure that the user has entered a numeric 
value.   

if (!is_numeric($movie_rating)) {
    $error[]= ‘Please enter a numeric rating.’;
} else 
if ($movie_rating  <  0 || $movie_rating  >  10) {
      $error[]= ‘Please enter a rating between 0 and 10.’;
                   
    }
}  

 The code first cleans up the value of leading and trailing spaces with the  trim()  function (always try 
to be prepared for typos and mishaps) and then tests to see if the value is numeric. If it ’ s not, the error 
message queue is fed; if it is, the code tests the value to see if it is between 0 and 10. If the value is not 
between 0 and 10, the code adds an error message to the error message queue. 

 The  is_*  set of functions is great for determining the nature of a variable ’ s contents, which is 
important in a dynamically typed language like PHP. For example, a variable could hold an integer 
one minute and a connection resource to a database the next. But another set of functions is the 
 ctype_*  functions, which can be used to further analyze the contents of numbers and strings. They 
are used to check whether the character or string falls within a certain class of characters. Sometimes 

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑



236

Part I: Movie Review Web Site

 ctype_*  functions are preferred over  is_*  because the ctype extension uses a native C library behind 
the scenes, which can make it faster. Keep in mind ctype only checks the contents of alphanumeric 
strings, not arrays types, objects, or resources. For those, you must use the appropriate  is_*  function. 
The  ctype_*  functions are: 

   ctype_alnum():  Checks if the value is made up of alphanumeric characters.  

   ctype_alpha():  Checks if the value is all alphabetic characters  .

   ctype_cntrl():  Checks if the value is control characters  .

   ctype_digit():  Checks if the value is numeric characters  .

   ctype_graph():  Checks if the value is made up of printable characters, except space  .

   ctype_lower() : Checks if the string is all lowercase characters  .

   ctype_print():  Checks if the string is all printable characters  .

   ctype_punct():  Checks for any printable character that is not whitespace or an alphanumeric 
character  .

   ctype_space():  Checks for whitespace characters  .

   ctype_upper() : Checks for uppercase characters  .

   ctype_xdigit():  Checks for characters representing a hexadecimal digit    .

 For more information on the  is_*  and  ctype_*  family of functions, see the documentation at  php.
net/variables  and  php.net/ctype , respectively. 

 The date validation is almost as simple to understand, if you know a little bit about regular 
expressions. Here ’ s a closer look at it: 

$movie_release = isset($_POST[‘movie_release’]) ? 
    trim($_POST[‘movie_release’]) : ‘’;
if (!preg_match(‘|^\d{2}-\d{2}-\d{4}$|’, $movie_release)) {
    $error[] = urlencode(‘Please enter a date in dd-mm-yyyy format.’);
} else {
    list($day, $month, $year) = explode(‘-’, $movie_release);
    if (!checkdate($month, $day, $year)) {
        $error[] = urlencode(‘Please enter a valid date.’);
    } else {
        $movie_release = mktime(0, 0, 0, $month, $day, $year);
    }
}  

 As you saw in this chapter ’ s first exercise, you use the  trim()  function to clear all leading and trailing 
spaces in the received string, to make sure your user entered something other than just a space. 

 The next statement contains two conditions. The first condition tests for a regular expression match, 
using  preg_match() . What is a regular expression, you may ask? A regular expression is a concise 
notation to describe patterns in strings. They can be a bit difficult to grasp at first because they are so 
cryptic, but they are very effective and powerful. Let ’ s take a closer look at the regular expression 
 |^\d{2} - \d{2} - \d{4}$| . 

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑



Chapter 8: Validating User Input

237

 The pipe characters that start and end the expression are not properly part of the expression itself, but 
mark its beginning and end. In fact, it isn ’ t required to use the pipe character, as the expression could 
be delimited with  /  or even  @ . It is a matter of preference, but try to use a marker character that 
doesn ’ t appear in the regular expression, to avoid confusion, and make sure that you use the same 
character, whatever one you do choose, to mark both the beginning and end. 

 The  \d  is shorthand notation to match any digit. Alternately, you could have used  [0 – 9]  or 
 [0123456789]  to mean the same thing. As you can see, three sets of numbers are described in the 
regular expression pattern, one each for the day, the month, and the year. 

 The  {2}  and  {4}  specify the number of times the character class should match. Because the day and 
month value should be two digits,  {2}  is applied to their  \d . Otherwise, just one digit would be 
matched. The year is expected to be four consecutive digits, so  {4}  is applied for its  \d . By using 
repeating specifiers, you make your expression cleaner and easier to follow.  \d\d - \d\d - \d\d\d\d  (or 
even  [0123456789][0123456789] - [0123456789][0123456789] - [0123456789][0123456789]
[0123456789][0123456789] ) is equally valid, but more difficult to maintain later on. 

 The  ̂   character anchors the pattern to match at the beginning of the string, and  $  anchors the pattern 
to the end of the string. Including these in the regular expression pattern makes sure it only matches a 
value like  05 - 07 - 2008 , and not  ABC05 - 07 - 2008123 . 

 So let ’ s reiterate the pattern in English: The matching must begin at the start of the input string ( ̂  ), and 
the pattern consists of one digit ( \d ) followed by a second digit ( {2} ), followed by a literal dash ( - ), 
followed again by one digit ( \d ) followed by a second digit ( {2} ), followed by a literal dash ( - ), 
followed by four digits ( \d{4} ), at which point the regular expression engine must be at the end of the 
input string ( $ ). See, that wasn ’ t too bad, was it? 

 There is, of course, a lot more to regular expressions than what we just discussed here. Here is a brief 
listing of the more common matching mechanisms you may encounter: 

   ̂   anchors the pattern match to the beginning of the line.  

   $  anchors the pattern match to the end of the line.  

   .  matches any character except a newline.  

    -   means a range of characters, when used within a character class.  

   [ ]  marks a class of characters.  

   [^ ]  negates the class of characters.  

   ?  matches the character, class, or subpattern 0 or 1 times.  

   +  matches the character, class, or subpattern 1 or more times.  

   *  matches the character, class, or subpattern 0 or any number of times.  

   { n }  matches the character, class, or subpattern  n  times.  

   { n,m }  matches the character, class, or subpattern at least  n  times, at most  m  times.  

   \d  is shorthand notation for  [0 – 9].   

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑



238

Part I: Movie Review Web Site

   \D  is shorthand notation for  [^0 - 9]  (any character that is not a digit).  

   \s  is shorthand notation that matches any whitespace character.  

   \S  is shorthand notation that matches any non - whitespace character.  

   \w  is shorthand notation that matches any word character.  

   \W  is shorthand notation that matches any nonword character.    

 For more information on the syntax used in regular expressions, see the PHP manual page at  
http://www.php.net/manual/en/regexp.reference.php . And if you really want enough in -
 depth information on regular expressions to make your head explode, consider picking up a copy of 
the excellently written book  Mastering Regular Expressions , by Jeffrey Friedl ( http://oreilly.com/
catalog/9780596528126/ ) from your local library. 

 Honestly, regular expressions are not that difficult, but they seem to be at first because they are so 
concise they are cryptic. But they really are very, very powerful tools for matching patterns. You ’ ll see 
more regular expressions in Chapter 16. 

 Once you have verified that the date passed in by the user is in the appropriate format, you can 
change it into a timestamp, using the  mktime()  function, which allows you to create a timestamp 
from chunks of dates. It is also a very useful function for manipulating dates.   

list($day, $month, $year) = explode(‘-’, $movie_release);
if (!checkdate($month, $day, $year)) {
    $error[] = urlencode(‘Please enter a valid date.’);
} else {
    $movie_release = mktime(0, 0, 0, $month, $day, $year);
}  

 The  explode()  function splits the date string on the dashes and returns an array, which is grabbed 
and placed into the  $day ,  $month , and  $year  variables with  list . With the individual components of 
the date available, it is verified as a valid date or not, with the  checkdate()  function. If the values 
make up a valid date, then  checkdate()  will return  true ; otherwise, it will return  false . It is better 
to use  checkdate()  than to try to verify the date manually, because it takes leap years into account. 
And yes, you do want to check the date, even after the regular expression, because something like 99 -
 99 - 9999 would pass the expression but be a very obviously erroneous date.  

  Summary 
 Validating user data is all about being prepared for the worst. Users make mistakes  —  that ’ s the nature 
of users. Most errors are unintentional, but some are made intentionally to break your application and 
deny the service to others. It happens every day. As a developer, you must build into the application the 
ability to deal with user input errors. 

❑

❑

❑

❑

❑



Chapter 8: Validating User Input

239

 Functions that can inspect the contents of a variable can help you meet most user input validation 
challenges. Learning how to use PHP ’ s built - in functions  —  such as the  empty() ,  checkdate() ,  is_* , 
and  ctype_*  functions  —  properly is often the key to successful validation in an interactive system. 

 Sometimes, more functionality is needed. This is when you will find yourself using regular expressions. 
As you learned in this chapter, regular expressions form a concise pattern - matching language. With 
them, you can write a pattern and compare any text against it. They can be a bit difficult to grasp at first 
because they are so cryptic, but they are very effective and powerful.  

  Exercises   
  1.   Add validation to the code that adds and edits people records.  

  2.   Write and test a regular expression pattern to validate an e - mail address.                  





      9    
Handling and Avoiding 

Errors          

 You will probably be spending a fair amount of time contemplating errors in your code, as do most 
web developers. No matter how good you are, how well you code, how long you have been 
coding, or how hard you try, you will encounter times when you have errors in your code. 

 It is of the utmost importance that you know how to handle your errors and debug your own code. 
Being able to efficiently and properly debug your code is an invaluable time saver, and in web 
development, $time == $money! 

 Luckily, PHP provides you with many ways to isolate and resolve most, if not all, of these 
unwanted errors. PHP also allows you to capture the errors and create your own custom error 
functions or pages. These features are useful when debugging your code and when notifying your 
webmaster about errors that seem to be happening to your applications as users are running them. 
Not only can you use PHP code to trap errors and customize the error messages, you can use the 
Apache web server to help do this.  

  How the Apache Web Server Deals 

with Errors 
 Apache has a directive, the  ErrorDocument , that you can configure in the  httpd.conf  file to 
create custom error pages with PHP, so visitors to your site do not see the default server - based 
error pages, which may not be as helpful or descriptive as customized error messages. 

 You have limitless possibilities when creating these custom messages. As with the PHP error -
 catching pages, you can have the  ErrorDocument  call PHP pages to do whatever you would like 
them to do  —  from simply displaying a friendly error message to the user, to e - mailing a system 
administrator to notify him or her of the failure. 



Part I: Movie Review Web Site

242

 Unlike PHP error pages, the Apache ErrorDocument pages are used more for instances of missing pages 
(that is, a Page Not Found error or Forbidden Access error pages and other requests of that sort). So, 
if someone visits your site and runs into the Page Not Found error page, the script will e - mail the 
administrator, who can in turn check to see whether this was a valid request and there is something 
wrong with the page or server, or whether someone was just looking for the wrong pages, or if this was 
a malicious user trying to sniff around where he or she wasn ’ t supposed to be. 

  Apache ’ s ErrorDocument Directive 
 Error handling is an invaluable resource and a must have for web developers, to keep their sites up and 
running with the fewest end - user problems or complaints. If you rely solely on people contacting you to 
tell you about errors on your site, it is difficult to have a smoothly running server. Allowing the server 
to do this for you will greatly increase your success at running a smooth server. This section first looks at 
Apache ’ s ErrorDocument method of error handling.  

  Try It Out Using Apache ’ s ErrorDocument Method 

 First of all, you need to make some changes to the  httpd.conf  file to allow you to create a custom 
error page. Apache is usually set up by default to go to its own internal error pages, but you don ’ t 
want that. You want Apache to go to your custom error page, no matter what error has occurred. 

 To do this, you change the default settings to your own specific settings by following these steps: 

  1.   Open up your  httpd.conf  file, and you will find some lines that look like this: 

#
# Customizable error responses come in three flavors:
# 1) plain text 2) local redirects 3) external redirects
#
# Some examples:
#ErrorDocument 500 “The server made a boo boo.”
#ErrorDocument 404 /missing.html
#ErrorDocument 404 “/cgi-bin/missing_handler.pl”
#ErrorDocument 402 http://www.example.com/subscription_info.html
#   

  2.   Change that information to the following, and then restart Apache: 

#
# Customizable error responses come in three flavors:
# 1) plain text 2) local redirects 3) external redirects
#
# Some examples:

ErrorDocument 400 /error.php?400
ErrorDocument 401 /error.php?401
ErrorDocument 403 /error.php?403
ErrorDocument 404 /error.php?404
ErrorDocument 500 /error.php?500     



Chapter 9: Handling and Avoiding Errors

243

  How It Works  
 You have just edited Apache ’ s configuration file to help you with error handling. By using the 
 ErrorDocument  directive, you are able to send users to specific error pages, depending on what error 
the server has encountered. For example, if you receive a 404 error, the typical  “ Page Cannot Be 
Found ”  page, you can redirect it to a page you have created to look like your web site, while still 
getting the message through to the user that there has been a problem. You can do that with any and 
all error messages that the server can encounter. 

 Many  ErrorDocument  codes exist, but we will focus on the error messages you see typically in 
everyday web browsing: 

   400:  Bad Request  

   401:  Authorization Required  

   403:  Forbidden  

   404:  Not Found  

   500:  Internal Server Error    

 Numerous other error codes exist, of course. You can find a complete list at  http://rfc.net/
rfc2616.html#p57 . 

 Although you are seeing just a few error codes in this exercise, you can catch others as well by simply 
adding another ErrorDocument to the  httpd.conf  file. For example, if you want to implement 
the 501 error code, you simply add  ErrorDocument 501 /error.php?501  to your code and add the 
error handling in the  error.php  page, which you ’ ll see shortly. 

 Next, you ’ ll see a simple way to show the user error messages, and then get into some more complex 
ways to notify the webmaster of errors occurring on the web site by using the  mail()  function, which 
you learned previously.    

  Try It Out Displaying Custom Error Messages 

 To show the user error messages, follow these steps: 

  1.   Open your text editor, and save a page called  error.php .  

  2.   Enter the following code: 

 < html > 
  < head > 
   < title > Beginning PHP6, Apache, MySQL Web Development Custom Error Page 
< /title > 
  < /head > 
  < body > 
 < ?php
switch ($_SERVER[‘QUERY_STRING’]) {
case 400:

❑

❑

❑

❑

❑



Part I: Movie Review Web Site

244

    echo ‘ < h1 > Bad Request < /h1 > ’;
    echo ‘ < h2 > Error Code 400 < /h2 > ’;
    echo ‘ < p > The browser has made a Bad Request. < /p > ’;
    break;
     
case 401:
    echo ‘ < h1 > Authorization Required < /h1 > ’;
    echo ‘ < h2 > Error Code 401 < /h2 > ’;
    echo ‘ < p > You have supplied the wrong information to access a secure ‘ . 
        ‘resource. < /p > ’;
    break;
  
  case 403:
    echo ‘ < h1 > Access Forbidden < /h1 > ’;
    echo ‘ < h2 > Error Code 403 < /h2 > ’;
    echo ‘ < p > You have been denied access to this resource. < /p > ’;
    break;
     
  case 404:
    echo ‘ < h1 > Page Not Found < /h1 > ’;
    echo ‘ < h2 > Error Code 404 < /h2 > ’;
    echo ‘ < p > The page you are looking for cannot be found. < /p > ’;
    break;
                   
  case 500:
    echo ‘ < h1 > Internal Server Error < /h1 > ’;
    echo ‘ < h2 > Error Code 500 < /h2 > ’;
    echo ‘ < p > The server has encountered an internal error. < /p > ’;
    break;
     
  default:
    echo ‘ < h1 > Error Page < /h1 > ’;
    echo ‘ < p > This is a custom error page... < /p > ’;
}
                   
echo ‘ < p >  < a href=”mailto:sysadmin@example.com” > Contact < /a >  the system ‘ .
    ‘administrator if you feel this to be in error. < /p > ’;
? > 
  < /body > 
 < /html >    

  3.   Open your browser and type  http://localhost/nonexistent/page.html , or any other 
page you know for certain doesn ’ t reside on your server, into the address bar. You should see 
the Page Not Found message on the screen, similar to the message shown in Figure  9 - 1 .    



Chapter 9: Handling and Avoiding Errors

245

  4.   Another way to test or simulate the error messages, so that you can ensure you coded the 
page correctly, is to supply the page with the query string information via the browser. For 
example, to simulate an Internal Server Error error message, type  http://localhost/
error.php?500  into your address bar. The page will use the query string information and 
run the code just as if there were an Internal Server Error on one of your pages. The result will 
look pretty similar to the previous example, but will contain a different message. The Internal 
Server Error page will look like the one shown in Figure  9 - 2 , displaying the Internal Server 
Error message on the screen.      

Figure 9-1



Part I: Movie Review Web Site

246

  How It Works  
 You have just created a simple error - handling PHP page. You created a PHP page that will handle 
the most common errors that servers encounter. By using the query string information along with the 
 switch()  statement, you are able to display custom error message pertinent to the error itself. This is 
useful if you don ’ t want Apache to display its somewhat cryptic - looking error message to your users.    

  Apache ’ s ErrorDocument: Advanced Custom Error Page 
 Up until this point, you ’ ve been showing the user a custom error message only. You can do countless 
other things, such as e - mailing the administrator or webmaster of the site, so he or she can look into the 
issue further should there be a problem with certain pages. This is a great way for you to keep track of 
your pages without having to check up on the server periodically. More than likely, if you haven ’ t 
received any error e - mails, there haven ’ t been problems with your server.  

Figure 9-2



Chapter 9: Handling and Avoiding Errors

247

  Try It Out Creating an Error E - Mail 

 In this exercise, you will create a script that generates an automatic e - mail that tells the administrator 
what time the error occurred, on what day, what the error was, what page generated the error, and 
what error message was displayed to the user who navigated to the page.   

  1.   Open your  error.php  file, and add to it the code highlighted here: 

 < html > 
  < head > 
   < title > Beginning PHP6, Apache, MySQL Web Development Custom Error Page < /title > 
  < /head > 
  < body > 
 < ?php
switch ($_SERVER[‘QUERY_STRING’]) {
case 400:
    echo ‘ < h1 > Bad Request < /h1 > ’;
    echo ‘ < h2 > Error Code 400 < /h2 > ’;
    echo ‘ < p > The browser has made a Bad Request. < /p > ’;
    break;
     
case 401:
    echo ‘ < h1 > Authorization Required < /h1 > ’;
    echo ‘ < h2 > Error Code 401 < /h2 > ’;
    echo ‘ < p > You have supplied the wrong information to access a secure ‘ . 
        ‘resource. < /p > ’;
    break;
  
  case 403:
    echo ‘ < h1 > Access Forbidden < /h1 > ’;
    echo ‘ < h2 > Error Code 403 < /h2 > ’;
    echo ‘ < p > You have been denied access to this resource. < /p > ’;
    break;
     
  case 404:
    echo ‘ < h1 > Page Not Found < /h1 > ’;
    echo ‘ < h2 > Error Code 404 < /h2 > ’;
    echo ‘ < p > The page you are looking for cannot be found. < /p > ’;
    break;
                   
  case 500:
    echo ‘ < h1 > Internal Server Error < /h1 > ’;
    echo ‘ < h2 > Error Code 500 < /h2 > ’;
    echo ‘ < p > The server has encountered an internal error. < /p > ’;
    break;
     
  default:
    echo ‘ < h1 > Error Page < /h1 > ’;
    echo ‘ < p > This is a custom error page... < /p > ’;
}
                   



Part I: Movie Review Web Site

248

echo ‘ < p >  < a href=”mailto:sysadmin@example.com” > Contact < /a >  the system ‘ .
    ‘administrator if you feel this to be in error. < /p > ’;
                   
$now = (isset($_SERVER[‘REQUEST_TIME’])) ? $_SERVER[‘REQUEST_TIME’] : time();
$page = (isset($_SERVER[‘REQUEST_URI’])) ? $_SERVER[‘REQUEST_URI’] : 
‘unknown’;
                   
$msg = wordwrap(‘A ‘ . $_SERVER[‘QUERY_STRING’] . ‘ error was encountered on ‘ .
    date(‘F d, Y’, $now) . ‘ at ‘ . date(‘H:i:sa T’, $now) . ‘ when a ‘ .
    ‘visitor attempted to view ‘ . $page . ‘.’);
                   
mail(‘admin@example.com’, ‘Error from Website’, $msg);
? > 

  < /body > 
 < /html >      

  How It Works  
 The output that you see in the browser will be the same as you saw before, but behind the scenes, the 
 mail()  function is used to send an e - mail to the administrator. The  mail()  function allows you to 
e - mail anyone you desire when an error occurs. You will learn about the  mail()  function in more 
detail in Chapter 11. 

 That ’ s it! You just used Apache ’ s ErrorDocument directive to help you maintain your server.     

  Error Handling and Creating Error - Handling 

Pages with  PHP  
 This section looks at how you can troubleshoot your PHP scripts using simple, logical steps. But 
first, you need to understand what PHP does when it encounters an error and what it does with 
certain errors. 

 When a PHP script gets executed and encounters an error, it displays a message in the browser 
showing you what the error was. Depending on what type of error occurred, the script may not finish 
executing. You are likely to run into these sorts of errors when writing your own scripts. Don ’ t feel 
ashamed if you receive errors; everybody makes errors when writing code, no matter what their level of 
expertise. Even though it is normal to receive errors during the development of your script, you don ’ t 
want those errors (which are usually too complicated for the layperson to understand) popping up to 
end users, when your site has gone live. For this reason, it ’ s important to know how to catch those 
unwanted errors and generate more user - friendly errors that let the user know that there will be a 
solution forthcoming. 



Chapter 9: Handling and Avoiding Errors

249

  Error Types in  PHP  
 There are 13 predefined error constants that correspond to different types of errors in PHP. They are 
listed below, along with the  E_ALL  option. Each of these can be called by either an integer value or a 
named constant, but because the integer value they represent may change between different versions of 
PHP (as the value of  E_ALL  did in PHP 5.2), we recommend only using the constant name.   

   E_ERROR : Fatal runtime errors that cannot be recovered from; the execution of the script is halted  .

   E_WARNING:  Nonfatal runtime errors  .

   E_PARSE:  Compile - time parse errors . 

   E_NOTICE : Nonfatal runtime notices that indicate that the script encountered something that 
might be an error, but could also happen in the normal course of running a script . 

   E_CORE_ERROR:  Fatal errors that occur during PHP ’ s initial startup; the execution of the script is 
halted  .

   E_CORE_WARNING : Nonfatal errors that occur during PHP ’ s initial startup  .

   E_COMPILE_ERROR : Fatal compile - time errors; the execution of the script is halted  .

   E_COMPILE_WARNING : Nonfatal compile - time errors  .

   E_USER_ERROR : User - generated error messages (like  E_ERROR , but instead generated by using 
the  trigger_error()  function); the execution of the script is halted  .

   E_USER_WARNING:  User - generated warning messages (like  E_WARNING , but instead generated by 
using the  trigger_error()  function)  .

   E_USER_NOTICE : User - generated notice messages (like  E_NOTICE , but instead generated by 
using the  trigger_error()  function)  .

   E_STRICT : Runtime notices that suggest changes to your code that would ensure the best 
interoperability and forward compatibility of your code  .

   E_RECOVERABLE_ERROR:  Catchable fatal errors that indicate that a probably dangerous error 
occurred, but did not leave the PHP ’ s execution engine in an unstable state  .

   E_ALL : All errors and warnings combined        .

 Before version 6 of PHP,  E_ALL  combined all errors and warnings except for  E_STRICT .   

 Typically, you don ’ t have to worry about all of the error types; your main concern is with runtime errors 
such as notices, warnings, and errors, along with the user - generated equivalents. The simple, more 
trivial errors, such as warnings, aren ’ t useful to users but can be helpful to you, since they notify you 
that you forgot to initialize a variable or something similar. Because initializing variables is purely for 
your benefit while you are coding to track down errors before your web site launch, it is of no use to 
display these errors to users once your site goes live. Your error - handling code helps resolve these 
cryptic errors, to offer helpful, user - friendly messages. 

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑



Part I: Movie Review Web Site

250

 The three main types of errors discussed here are: 

   Fatal errors:  Fatal runtime errors. These indicate errors that the program can ’ t recover from. 
Script execution is halted.  

   Warnings:  Runtime warnings (nonfatal errors). Script execution is not halted.  

   Notices:  Runtime notices. These indicate that the script has encountered something that could 
indicate an error, but that could also happen in the normal course of running the script.     

  Generating  PHP  Errors 
 Now let ’ s generate some errors so that you can check out what you need to do to resolve them. Consider 
this code snippet, for example: 

 < ?php
//set string with “Wrox” spelled wrong
$string_variable = ‘Worx books are awesome!’;
                   
//try to use str_replace to replace Worx with Wrox
//this will generate an E_WARNING
//because of wrong parameter count
str_replace(‘Worx’, ‘Wrox’);
? >   

 If you run this snippet, you should see the following error: 

Warning: Wrong parameter count for str_replace() in C:\Program Files\Apache 
Software Foundation\Apache2.2\htdocs\warning_test.php on line 8.  

 The error occurred because  str_replace()  requires a third parameter for the function. The third 
parameter is the variable,  $string_variable , or a string of text in which you want to search for the 
first parameter,  “ Worx, ”  and replace it with  “ Wrox. ”  Because this is a nonfatal error that does not halt 
script execution, you can still run code after the point where the error occurred. If you change the 
snippet to this: 

 < ?php
//set string with “Wrox” spelled wrong
$string_variable = ‘Worx books are awesome!’;
                   
//try to use str_replace to replace Worx with Wrox
//this will generate an E_WARNING
//because of wrong parameter count
str_replace(‘Worx’, ‘Wrox’);
                   
//this is a non-fatal error, so the original
//variable should still show up after the warning
echo $string_variable;

? >   

❑

❑

❑



Chapter 9: Handling and Avoiding Errors

251

 then the string will continue to execute after the error, and will produce the following output: 

Warning: Wrong parameter count for str_replace() in C:\Program Files\Apache 
Software Foundation\Apache2.2\htdocs\warning_test.php on line 8.
Worx books are great!  

 Next, we throw out a fatal error to show you how it produces different results when the error occurs. 
Let ’ s create a fatal error by using the following code: 

 < ?php
//beginning of page
echo ‘Beginning’;
                   
//we are going to make a call to
//a function that doesn’t exist
//this will generate an E_ERROR
//and will halt script execution
//after the call of the function
fatalerror();
                   
//end of page
echo ‘End’;
//won’t be output due to the fatal error
? >   

 This produces the following output: 

Beginning
Fatal error: Call to undefined function: fatalerror() in C:\Program Files\
Apache Software Foundation\Apache2.2\htdocs\error_test.php on line 10.  

 Notice that  “ Beginning ”  was output because it was before the function call, but  “ End ”  was not, because 
the fatal error halted the script execution. You can suppress the fatal error calls by putting an ampersand 
in front of the function call, like so:  @fatalerror() . This suppresses the error, but the script still halts its 
execution.     

 The default error reporting does not show  E_NOTICE  errors. However, you may want to show them 
during development. Enabling  E_NOTICE  errors for debugging can warn you about possible bugs or 
bad programming practices. For example, you might use something such as  $row[variable] , but 
actually it is better to write this as  $row[‘variable’]  because PHP will try to treat  variable  as a 
constant. If, however, it isn ’ t a constant, PHP assumes it to be a string for the array. You can set error 
reporting by simply putting  error_reporting(number) in your script , where  number  is the 
constant value shown earlier in the chapter.   

 If you don ’ t know at what level your error reporting is set, you can simply call the  error_reporting()  
function without any arguments, like this: 

 < ?php
echo error_reporting();
? >   



Part I: Movie Review Web Site

252

 By default, all error handling is handled by PHP ’ s built - in error handler, which tells you the error and 
displays the message associated with that error. The message displays the error type, the error message, 
the filename, and the line number where the error occurred. 

 Usually, letting PHP generate its own errors is fine, but with complicated applications you may want to 
 catch  the errors so you can do something specific with an error, such as notifying an administrator so he 
or she can look into the problem further.  

  Try It Out Creating a Custom Error Handler 

 You will now create a custom error handler to catch the errors and display a more friendly error 
message.   

  1.   Open your text editor, and enter this code: 

 < ?php
function my_error_handler($e_type, $e_message, $e_file, $e_line) {
    echo ‘ < h1 > Oops! < /h1 > ’;
    echo ‘ < p > Errors have occurred while executing this page. Contact the ‘ .
        ‘ < a href=”mailto:admin@example.com” > administrator < /a >  to report 
        it. < /p > ’;
    echo ‘ < hr/ > ’;
    echo ‘ < p >  < b > Error Type: < /b >  ‘ . $e_type . ‘ < br/ > ’;
    echo ‘ < b > Error Message: < /b >  ‘ . $e_message . ‘ < br/ > ’;
    echo ‘ < b > Filename: < /b >  ‘ . $e_file . ‘ < br/ > ’;
    echo ‘ < b > Line Number: < /b >  ‘ . $e_line . ‘ < /p > ’;
}
                   
//set the error handler to be used
set_error_handler(‘my_error_handler’);
                   
//set string with “Wrox” spelled wrong
$string_variable = ‘Worx books are awesome!’;
                   
//try to use str_replace to replace Worx with Wrox
//this will generate an E_WARNING
//because of wrong parameter count
str_replace(‘Worx’, ‘Wrox’);
? >    

  2.   Save the file as  custom_error.php , and open it in your browser. The output should look 
similar to that in Figure  9 - 3 .    



Chapter 9: Handling and Avoiding Errors

253

  3.   Because your error handler is user - defined, you can catch the errors, and you can recreate the 
error messages based on the error type. Edit the  custom_error.php  file like this: 

 < ?php
function my_error_handler($e_type, $e_message, $e_file, $e_line) {

// Delete these lines
    echo ‘ < h1 > Oops! < /h1 > ’;
    echo ‘ < p > Errors have occurred while executing this page. Contact the ‘ .
        ‘ < a href=”mailto:admin@example.com” > administrator < /a >  to report 
it. < /p > ’;
    echo ‘ < hr/ > ’;
    echo ‘ < p >  < b > Error Type: < /b >  ‘ . $e_type . ‘ < br/ > ’;
    echo ‘ < b > Error Message: < /b >  ‘ . $e_message . ‘ < br/ > ’;
    echo ‘ < b > Filename: < /b >  ‘ . $e_file . ‘ < br/ > ’;
    echo ‘ < b > Line Number: < /b >  ‘ . $e_line . ‘ < /p > ’;
// End deleted lines

                   
    switch ($e_type) {
    case E_ERROR:
        echo ‘ < h1 > Fatal Error < /h1 > ’;
        echo ‘ < p > A fatal error has occurred in ‘ . $e_file . ‘ at line ‘ .
            $e_line . ‘. < br/ > ’ . $e_message . ‘. < /p > ’;
        die();
        break;
                   
    case E_WARNING:
        echo ‘ < h1 > Warning < /h1 > ’;

Figure 9-3



Part I: Movie Review Web Site

254

        echo ‘ < p > A warning has occurred in ‘ . $e_file . ‘ at line ‘ . $e_line .
            ‘. < br/ > ’ . $e_message . ‘.’;
        break;
                   
    case E_NOTICE:
        //don’t show notice errors
        break;
    }

}
                   
//set the error handler to be used
set_error_handler(‘my_error_handler’);
                   
//set string with “Wrox” spelled wrong
$string_variable = ‘Worx books are awesome!’;
                   
//try to use str_replace to replace Worx with Wrox
//this will generate an E_WARNING
//because of wrong parameter count
str_replace(‘Worx’, ‘Wrox’);
? >    

  4.   Save the file, and load it in your browser. The results should look like Figure  9 - 4 . One of the 
earlier code snippets you created produced a fatal error, which is why the  E_ERROR  case was 
called in the  switch  statement. This sort of handler is nice to use to trap any sort of error and 
perform different actions based on the error.       

Figure 9-4



Chapter 9: Handling and Avoiding Errors

255

  How It Works  
 Creating custom error message gives you nearly full control over your pages, regardless of success or 
failure when they are executed. What you have done is create a function called  my_error_handler , 
which will catch the type of error, the error message, the file in which the error occurred, and the line 
in which the error occurred. By knowing those details, you can take whatever steps are necessary to ensure 
the success of your web site. The heart of the function ’ s logic relies on a  switch()  construct, where 
you are able to display a certain error message, send specific error message e - mails, or do whatever 
else you may want, depending on which error was served up by Apache. For example, if you were to 
encounter an  E_ERROR , the code would run the  case E_ERROR:  section of the  switch() . Depending on 
which section of the  switch()  was used, you will see a different error message.   

 When trapping errors, you can display whatever you want to display, but you may not want the user to 
see the error message you created previously. You can create an error message that simply says there was 
an error on the page. Then you can apologize for the inconvenience and allow the user to go to another 
page. Finally, you can write the error message to a log file, write it to a database, or send it to the 
webmaster or administrator via e - mail, so that person can further review the error. 

 We personally prefer the e - mail method because it requires that the person be notified of the problem 
right away, and it doesn ’ t require him or her to check the database or log files periodically. The only 
problem with this method occurs if there are a lot of requests to the page where the error is occurring; in 
that case the admin will be bombarded with e - mails. (Of course, this could light the proverbial fire under 
him or her to get the issue fixed!)  

  Try It Out Creating a Full - Featured Error Page 

 For this exercise, you ’ ll set up your full - featured error handler to do just what you want it to. You can 
then include this page in all your pages, so you can trap all the errors without using PHP ’ s built - in 
handler.   

  1.   Open your text editor, and enter the following code: 

 < ?php
//create your error handler function
function my_error_handler($e_type, $e_message, $e_file, $e_line) { 
                   
    $msg = ‘Errors have occurred while executing a page.’ . “\n\n”;
    $msg .= ‘Error Type: ‘ . $e_type . “\n”;
    $msg .= ‘Error Message: ‘ . $e_message . “\n”;
    $msg .= ‘Filename: ‘ . $e_file . “\n”;
    $msg .= ‘Line Number: ‘ . $e_number . “\n”;
    $msg = wordwrap($msg, 75);
                   
    switch($error_type) {
    case E_ERROR:
        mail(‘admin@example.com’, ‘Fatal Error from Website’, $msg);
        die();
        break;
          
    case E_WARNING:
        mail(‘admin@example.com’, ‘Warning from Website’, $msg);



Part I: Movie Review Web Site

256

        break;
    }
}
                   
//set error handling to 0 because we will handle all error reporting and
//notify admin on warnings and fatal errors.
error_reporting(0);
                   
//set the error handler to be used
set_error_handler(‘my_error_handler’);
                   
// Create the rest of your page here.
? >    

  2.   Save the file as  feature_error.php .    

  How It Works  
 Once you run this page, the code for the logic ’ s actions is almost exactly the same, as far as the 
 switch() . The only real difference is that it will be e - mailing the administrator, instead of merely 
displaying an error message to the user. It can still do that, but this example showed you the e - mail 
function instead of simply displaying a message to the users. Once you run this page and you receive 
an error, the script e - mails the admin with the error and some useful information about the user who 
visited the page that generated the error.     

  Other Methods of Error Handling 
 You ’ ve just seen some of what you can do with custom error messages, but there are other ways to deal 
with errors.  Exceptions  are a feature that enables your scripts to take specific actions based on the type of 
errors that you define. Other methods of error handling are more manual: inserting  echo  statements to 
check the value of your variables and watching to make sure your condition statements are being met 
properly. The PHP parser also provides some error messages for simple parse errors. 

  Exceptions 
 PHP5 introduced a new feature called exceptions. These are very similar to their counterparts in other 
languages, such as Java, so if you have done programming in another language, you may already be 
familiar with them. Exceptions handle unforeseen conditions in your web applications and provide you 
with an efficient way to handle errors that are encountered. PHP uses the  try / catch  method to handle 
exceptions.  



Chapter 9: Handling and Avoiding Errors

257

  Try It Out Experimenting with Exceptions 

 In this exercise, you ’ ll create a script that deliberately throws some exceptions, so you can see how 
they work.   

  1.   Create a PHP page with the following code: 

 < ?php
// $x = null;
// $x = 500;
$x = 1000;
                   
try {
    if (is_null($x)) {
        throw new Exception(‘Value cannot be null.’);
    }
    if ($x  <  1000) {
        throw new Exception(‘Value cannot be less than 1000.’);
    }
                   
    echo ‘Value passed validation.’;
}
catch (Exception $e) {
    echo ‘Validation failed. ‘ . $e- > getMessage();
}
? >    

  2.   Save this code as  exceptions.php , and then open it in your browser. You shouldn ’ t see any 
errors.  

  3.   Comment out the line that sets  $x  to 1000, and remove the comment marks from the line that 
sets it to null.  

  4.   Save the file and run it again. Now you should see that the exception pertaining to the null 
value was thrown.  

  5.   Comment out the line that sets  $x  to a null value, and remove the comment marks from the 
one that sets it to 500.  

  6.   Save the file and run it again. Now you should see that the exception pertaining to value 
being less than 1000 was thrown.    

  How It Works  
 The usefulness of the  try  block is that all conditions in the  try  must be met, or the  catch  will be 
triggered. This is useful when you need to check many instances of different variables and situations, 
and you don ’ t want to hop through that many  if / else  statements for your desired results. All you 
need is your trusty  if  statement and a thrown exception with an error message specific to the 
problem. If any  if  statement in the  try  block is true, the exception will be thrown and passed to the 
 catch  block. The  catch  block will then output the appropriate error message, depending on which 
exception was caught. 



Part I: Movie Review Web Site

258

 In the  catch  area, you can handle the error in any way you prefer. You may just want to tell the user 
about something, you may want to set some default variables, perform a combination of both, or do 
whatever you feel is needed at that point. 

 Another advantage to using exceptions is the way they propagate through nested functions and code. 
For example, if you have a function  A  that calls function  B , which in turn calls function  C , and an 
exception is thrown in function  C  without using  try{} , the exception will stop processing the script 
immediately and bubble up through the call chain until a  catch  block is found. 

 If no  try{}...    catch{}  block is found when traversing up the code, an error will be shown on the 
screen, indicating that an unhandled exception has occurred, like so: 

Fatal error: Uncaught exception ‘Exception’ with message ‘Value cannot be 
null.’ in C:\Program Files\Apache Software Foundation\Apache2.2\htdocs\
exceptions.php:8 Stack trace: #0 {main} thrown in C:\Program Files\Apache 
Software Foundation\Apache2.2\htdocs\exceptions.php on line 8  

 Exceptions can also be rethrown, as follows: 

 < ?php
try {
    throw new Exception(‘This will be rethrown.’);
}
catch (Exception $e) {
    throw $e;
}
? >   

 You can rethrow your exceptions in this way to deal with exceptions at different points in the code, or 
in one single place of your choosing. 

 All in all, exceptions act like an invisible  “ go to ”  that redirects the flow of your code to a specific 
location where you can handle the error. Using them can keep your code more organized and 
readable, because you don ’ t have to mix error - handling code into your logic.    

  Not Meeting Conditions 
 Error trapping cannot catch all problems in your code. It will catch only problems related to PHP itself. 
Any problems you are having with conditions in your code will not be caught by simple error trapping. 
You ’ ll have to do this manually, by using several different methods of troubleshooting in your code. 

 For example, say you are submitting a form and you are wondering why the condition isn ’ t true when 
you are checking for submission. Suppose you have an input such as this: 

 < input type=”submit” name=”submit” value=”Submit” >   



Chapter 9: Handling and Avoiding Errors

259

 You are checking whether or not the submit button has been pressed, to see whether or not you should 
process the form information. You are probably doing a check similar to this: 

if ($_POST[‘submit’] == ‘submit’) {
    //form has been submitted
} else {
    //form has not been submitted
}  

 See if you can figure out what is wrong with the code, causing you not to get the  if  statement. Here ’ s a 
hint: The value of the submit button is  Submit , not  submit . To troubleshoot to see if your condition is 
working or not, you can simply put a line in your  if  statement such as this: 

if ($_POST[‘submit’] == ‘submit’) {
    //form has been submitted
    echo ‘In the if statement’;
} else {
    //form has not been submitted
}  

 If you get into the  if  statement, the echoed line is output to the browser. If you don ’ t change the 
lowercase  “ submit ”  to an uppercase  “ Submit, ”  you don ’ t see that echo in the browser, so you can then 
further investigate why you aren ’ t getting into the  if  statement. Once you realize the error, you can 
change the case and test it again, and voil à , the line has been echoed. 

 You will find that you need to use this technique to establish where in your code actions are happening. 
Not only do you want to do this with  if  statements, but you will probably be using it to test  for  loops, 
 while  loops,  foreach  loops,  do while  loops, and many others, at other times when you are running 
conditions or expecting results, and you can ’ t figure out why something isn ’ t working. 

 Another common problem occurs when variables aren ’ t being output. Most of the time, the variables 
are just fine, but the programmer can ’ t figure out why they aren ’ t being output. Again, the conditions 
aren ’ t being met, and if a condition isn ’ t met and the expected variables are in the condition, they 
obviously aren ’ t going to be output. Many programmers run into this problem and have a hard time 
figuring it out. They tend to lay blame on the variables before checking to see whether or not their 
conditions have been met. 

 Sometimes the variables are the reason for the condition not being met, as shown in the previous 
paragraph. The programmer uses the wrong value to check the  if  statement, and the condition fails. The 
best thing for you to do in this situation is to troubleshoot. Throw in an  echo  here and an  echo  there to 
see where your problems are. You might even want to use  print_r($_POST)  to see what posted values 
are received. Don ’ t give up at the first sign of defeat: You should exhaust all of your own programming 
resources before you go looking for help elsewhere.  



Part I: Movie Review Web Site

260

  Parse Errors 
 A parse error is another main error type. Parse errors occur when you forget a semicolon, when curly 
braces are mismatched, when square brackets aren ’ t used properly, and so on. These parse errors usually 
don ’ t have to do with a condition statement; they are mainly syntax errors that will cause the script to 
halt execution. Parse errors are worse than fatal errors because they won ’ t even let the script run at all; 
they merely give you the error information.   

  Summary 
 You have read through a lot of useful information in this chapter. Learning from your own mistakes and 
errors will help you to be quicker at noticing small, trivial mistakes that are causing problems in your 
code. The single best action a programmer can learn is how to troubleshoot. Once you have that figured 
out, nothing can hold you back from creating seamless applications that will impress your clients  —  and 
yourself.  

  Exercises 
 Here are three short snippets of code to sift through. Try to spot the errors and figure out how to fix 
them. The answers are provided in Appendix A. Once you are finished, using what you have learned, 
create a little error - catching script to catch the errors.   

  1.      

 < ?php
$query = “SELECT * FROM table_name “ .
         “WHERE name = ‘” . $_POST[‘name’] . “’;”
$result = mysql_query($result) 
  or die(mysql_error());
? >    

  2.      

 < ?php
if ($_POST[‘first_name’] = “Jethro”) {
  echo “Your name is “ . $_POST[‘first_name’];
}
? >    

  3.      

 < ?php
$full_name = $_POST[‘mrmiss’] “. “ $_POST[‘first_name’] “ “ $_POST[‘last_
name’];
? >        



Part II

Comic Book Fan Site

Chapter 10: Building Databases

Chapter 11: Sending E-mail

Chapter 12: User Logins, Profi les, and Personalization

Chapter 13: Building a Content Management System

Chapter 14: Mailing Lists

Chapter 15: Online Stores

Chapter 16: Creating a Bulletin Board System

Chapter 17: Using Log Files to Improve Your Site

Chapter 18: Troubleshooting





      10    
Building Databases          

 You created a very nice movie review site by following along with the previous chapters, but now 
the handholding is over, my friend. It ’ s time for us to push you out of the nest and let you begin to 
fly on your own. So, in this chapter, you will have the opportunity to create your own databases 
and your own web site. 

 We show you how to put together a comic book appreciation web site, but you can take the 
concepts we teach you and branch off to create that online auction or antique car site you have 
always dreamed about doing. 

 This chapter covers the basics of creating your own database. The topics discussed here include: 

  Planning the design of your database  .

  Database normalization  .

  Creating your database  .

  Creating and modifying tables in your database  .

  Building web pages to access your data with PHP     .

  Getting Star ted 
 You have a great idea for a site, right? Excellent. But don ’ t open up your PHP editor and start 
coding just yet! Believe it or not, many people approach the creation of a web site in just this way. 
You may be tempted to do this yourself. And while it is not impossible to create a good site by just 
diving into the code headfirst, you are seriously handicapping your chances for greatness, if you 
do it that way. Before you begin, you need a plan. 

 We ’ re not going to tell you how to plan out an entire web site, complete with charts and maps and 
business models. That ’ s not what this book is about. We are going to assume that you or somebody 
in your company has already learned that by reading other great books on business models, 
attending seminars, reading great articles on the web, and perhaps even hiring a business 
consultant to help with everything but building that dream site. 

❑

❑

❑

❑

❑



Part II: Comic Book Fan Site

264

 So we will assume you have a great idea for a web site  and  a plan. What do you suppose is the first step 
in creating a successful web application using PHP, Apache, and MySQL, after all that planning? We ’ ll 
give you a clue: Look at the title of this chapter. 

 You need to build the database this site will be based on. Don ’ t worry  —   one of the great things about 
relational database design is that you don ’ t have to create  every  table your site will use. You can start 
with a few, and build upon them as time progresses. As long as you follow the basic principles of good 
database design, your database should be quite scalable and expand to any size. 

 Does this sound like a daunting task? Relax. You see, we know a secret that has been kept hidden like the 
magician ’ s code:  Efficient database design is easy.  No, really, we promise! You see, most of us computer 
geeks like to seem invaluable and very intelligent, and it sounds quite impressive to most interviewers to 
see on a resume  “ Designed a comprehensive web site utilizing an RDBMS back end. ”  But when you are 
done with this chapter, you will see how easy it really is and be able to put that on your own resume 
as well! 

  What Is a Relational Database? 
 Let ’ s first cover a few basics of database design. A relational database is a collection of data organized in 
tables that can be used to create, retrieve, delete, and update that data in many different ways. This can 
be done without having to reorganize the tables themselves, especially if the data is organized efficiently. 

 Take a look at the first table that follows. 

 You can see that it contains a very simple collection of data, consisting of superheroes ’  aliases and real 
names, each assigned a superhero ID. Nothing too amazing, of course, but notice how the table relates to 
the league table that follows it. Each superhero has a  League_ID  that corresponds to an ID in the  league  
table. Through this link, or  relationship , you can see that Average Man is a member of the Dynamic Dudes 
League, because the ID in the  league  table matches his  League_ID  in the  superhero  table. 

     Superhero_ID      League_ID      Alias      Real_Name   

    1    2    Average Man    Jeff Smith  

    2    2    The Flea    Tom Jacobs  

    3    1    Albino Dude    George White  

    4    3    Amazing Woman    Mary Jones  

     League_ID      League_Name   

    1    Extraordinary People  

    2    Dynamic Dudes  

    3    Stupendous Seven  

    4    Justice Network  



Chapter 10: Building Databases     

265

 At first glance it may seem silly to create a table with one data column and an ID. Why not just put the 
league name in the superhero table? Imagine that you had a database of 10,000 superheroes, and 250 of 
them were in the Dynamic Dudes league. Now imagine that the Superhero Consortium decided to do a 
reorganization, and  “ Dynamic Dudes ”  was changed to the  “ Incredible Team. ”  If the league name were in 
the superhero table, you would have to edit 250 records to change the value. And what if you missed 
one? You only have to change the name in one place if the leagues are in a separate,  related  table. 

 That relationship is the key to a relational database. And speaking of keys  . . .    

  Keys 
 A  key  is a unique value that identifies each row within a table. It can be the value in a particular column 
or a collection of values across several columns. A key uniquely identifies each row within the table, 
because no two rows can have the same key. Each table is allowed to have one special key, called a 
 primary key , that serves as a primary unique identifier for the table. 

 Most of the time, the primary key is a single column, but it is not uncommon to use more than one 
column to make up a primary key. The important distinction is that the primary key must be unique for 
each row. Because of that characteristic, you can use the key to identify a specific row of data. 

 The primary key must contain the following characteristics: 

  It cannot be empty.  

  It will never change in value. Therefore, a primary key cannot contain information that might 
change, such as part of a last name (for example, smith807).  

  It must be unique. No two rows can contain the same primary key.    

 The  League_ID  column in the superhero table is also a key. It matches the primary key of the league 
table, but it is in a different, or  foreign , table. For this reason, it is called a  foreign key . Although it is not a 
requirement, many programmers will give the foreign key a name that identifies the table it refers to 
( “ League ” ) and some identifier that marks it as a key ( “ _ID ” ). This, along with the fact that keys are 
usually numeric, makes it fairly clear which column is the foreign key, if one exists in the table at all.     

 Keys do not have to be purely numeric. Other common values used as primary keys include Social 
Security numbers (which contain dashes) and usernames. Any value is valid as a primary key, as long 
as it is guaranteed to be unique for each individual record in the table and will not change over time.    

  Relationships 
 In order to be related, the two tables need a column they can use to tie them together. The superhero and 
league tables are related to each other by the  League_ID  column in the superhero table and the  League_
ID  field in the league table. There is no explicit link created in the database; rather, you create the 
relationship by linking them with a SQL statement: 

SELECT * FROM superhero, league WHERE superhero.League_ID = league.League_ID  

❑

❑

❑



Part II: Comic Book Fan Site

266

 In plain English, this statement tells the MySQL server to  “ select all records from the superhero table and 
the league table, and link the two tables by the superhero  League_ID  column and the league  League_ID  
column. ”  

 There are three types of relationships: one - to - one (1:1), one - to - many (1:M), and many - to - many 
(M:N). The previous example is a one - to - many relationship. To figure out what type of relationship the 
tables have, ask yourself how many superheroes you can have in a league. The answer is more than one, 
or  “ many. ”  How many leagues can a superhero belong to? The answer is  “ one. ”  That is a one - to - many 
relationship. (Of course, in some universes, a superhero might belong to more than one league. But for 
this example, all of our superheroes will exhibit league loyalty.) 

 One - to - many is the most common database relationship. 1:1 relationships don ’ t happen often, and a 
many - to - many relationship is actually two one - to - many relationships joined together with a  “ linking 
table. ”  We will explore that further later in the chapter.     

 Although they are more rare, here ’ s an example of a one - to - one (1:1) relationship. Say you have a link 
between a company and its main office address. Only one company can have that exact address. In many 
applications, however, the main office address is included in the company table, so no relationship is 
needed.    

  Referential Integrity 
 The concept of referential integrity may be a little lofty for a beginner book like this, but we think it is 
important to touch on this briefly. If your application has referential integrity, then when a record in a 
table refers to a record in another table (as the previous example did), the latter table will contain the 
corresponding record. If the record it references is deleted, then you have lost referential integrity. 

 This is not disastrous in many cases. You might have an article written by an author whose name no 
longer exists in the author table. You still want to keep the article, so losing the referential integrity 
between authors and articles is okay. However, if you have an order in your database that can ’ t be 
related to a customer because the customer was deleted, then you might be hard - pressed to figure out 
where to send the product and whom to charge for it. 

 Ways exist to enforce referential integrity in a MySQL database, but these concepts and procedures are 
beyond the scope of this book. If you are interested in obtaining more information about referential 
integrity and foreign keys, visit  www.mysql.com/doc/en/InnoDB_foreign_key_constraints.html .  

  Normalization 
  “ Database normalization ”  is one of those big fancy terms that database administrators like to throw 
around, along with  “ Boyce - Codd Normal Form, ”     “ trivial functional dependency, ”  and  “ Heisenberg 
compensator. ”  The terms themselves aren ’ t really important to know, to be able to design a good 
database, but the concepts are. We ’ ll touch on normalization here. 

 For our purposes, we will define normalization as the process of organizing your database ’ s table 
structure so that dependencies make sense, and there is no redundant data. In a moment, you are going 
to go through this process, because the best way to learn is to do!   



Chapter 10: Building Databases     

267

  Designing Your Database 
 It ’ s time to design your application ’ s database. This will be a relatively simple application, but it will 
help you learn important concepts, such as normalization, and expose you to various SQL commands. 
Typically, this is where you would go through a  “ Try It Out ”  section and learn  “ How It Works. ”  When 
first designing a database, however, you do not need your computer. All you need is a pad of paper and 
a pencil. So, go get some paper and a pencil   . . .  we ’ ll wait. 

 OK, let ’ s draw some tables. The application you are going to design is a comic book character database. 
You will store a little bit of information about various characters, such as their alter egos, their real 
names, the powers they possess, and the locations of their secret lairs. 

  Creating the First Table 
 Before you open MySQL and start messing around with tables, you need to figure out how you are going 
to store all of the data. For simplicity, create one big table with all of the relevant data. You can draw it 
out on your piece of paper. Copy the information you see in the table that follows. 

     Name   

   Real 

Name      Power 1      Power 2      Power 3   

   Lair 

Address      City      State      Zip   

    Clean 

Freak  

  Carl 

Smith  

  Strength    X - ray 

vision  

  Flight    123 Poplar 

Avenue  

  Townsburg    OH    45293  

    Soap 

Stud  

  Efram 

Jones  

  Speed            123 Poplar 

Avenue  

  Townsburg    OH    45293  

    The 

Dustmite  

  Dustin 

Hare  

  Strength    Dirtiness    Laser 

vision  

  452 Elm 

Street #3D  

  Burgtown    OH    45201  

 Call this table  “ zero, ”  because you ’ re not even at the first step yet, and the data is just  ugly  from a 
relational database standpoint. 

 The first thing you should notice is that there are multiple power columns. What would you do if you 
had to add a character with more than three powers? You would have to create a new column, and that ’ s 
not good. Instead, you should combine all the powers into one column, and then separate each power 
into its own separate row. The other columns are duplicated in these additional rows (so, Clean Freak 
would have three rows instead of one, each row including a different power in the power column, but 
the name, address, and so on would remain identical among the three listings). This concept is called 
 atomicity . Each value (cell) is  atomic , or has only one item of data. 

 You also should create a unique primary key for each character. Yes, you could use the character ’ s name, 
but remember that a primary key should never be something that could change, and it must be unique. 
To handle this requirement, you ’ ll create a  Character ID  column. 

 Because in this pass you have multiple rows with the same character, and the multiple rows are a result 
of the existence of multiple powers, you ’ ll combine the  Character ID  column with the power column 
to create the primary key. When more than one column makes up the primary key, it is called a  composite 
primary key . We ’ ll mark the primary key columns with an asterisk (*) to highlight them for you. 



Part II: Comic Book Fan Site

268

 Your table should look like the one that follows. Call this table  “ one ”  because it ’ s your first pass at 
normalizing. (See, you are in the middle of a normalization process and didn ’ t even realize it. We told 
you it wasn ’ t difficult.) 

     Character 
Id*      Name      Real Name      Power*      Lair Address      City      State      Zip   

    1    Clean Freak    Carl Smith    Strength    123 Poplar 
Avenue  

  Townsburg    OH    45293  

    1    Clean Freak    Carl Smith    X - ray 
vision  

  123 Poplar 
Avenue  

  Townsburg    OH    45293  

    1    Clean Freak    Carl Smith    Flight    123 Poplar 
Avenue  

  Townsburg    OH    45293  

    2    Soap Stud    Efram Jones    Speed    123 Poplar 
Avenue  

  Townsburg    OH    45293  

    3    The Dustmite    Dustin Hare    Strength    452 Elm Street 
#3D  

  Burgtown    OH    45201  

    3    The Dustmite    Dustin Hare    Dirtiness    452 Elm Street 
#3D  

  Burgtown    OH    45201  

    3    The Dustmite    Dustin Hare    Laser 
vision  

  452 Elm Street 
#3D  

  Burgtown    OH    45201  

 Looking better, but there is still repeated data in there. In fact, the power column is what is causing the 
duplicate data. Separate out the power column, and use a foreign key to relate it to the original table. 
You will also further normalize the power table so that you get rid of duplicate data. This is pass number 
 “ two. ”  See the three tables that follow. 

     Character Id*      Name      Real Name      Lair Address      City      State      Zip   

    1    Clean Freak    Carl Smith    123 Poplar Avenue    Townsburg    OH    45293  

    2    Soap Stud    Efram Jones    123 Poplar Avenue    Townsburg    OH    45293  

    3    The Dustmite    Dustin Hare    452 Elm Street #3D    Burgtown    OH    45201  

     Power_Id*      Power   

    1    Strength  

    2    X - ray vision  

    3    Flight  

    4    Speed  

    5    Dirtiness  

    6    Laser vision  



Chapter 10: Building Databases     

269

     Character_Id*      Power_Id*   

    1    1  

    1    2  

    1    3  

    2    4  

    3    1  

    3    5  

    3    6  

 As you can see, you have much less repeated data than you did before. The powers have been separated 
out, and a link table has been created to link each power to each appropriate character. 

 It may seem a bit nitpicky, but you still have some duplicate data that you can take care of in the 
character table. It is quite possible for more than one character to be in the same lair, as is the case with 
Clean Freak and Soap Stud. Create a lair table, and link it to the character table with keys. Also add a 
new column to the character table for good vs. evil alignment. See the two tables that follow. 

     Character_Id*      Lair_Id      Name      Real Name      Alignment   

    1    1    Clean Freak    Carl Smith    Good  

    2    1    Soap Stud    Efram Jones    Good  

    3    2    The Dustmite    Dustin Hare    Evil  

     Lair_Id*      Lair Address      City      State      Zip   

    1    123 Poplar Avenue    Townsburg    OH    45293  

    2    452 Elm Street #3D    Burgtown    OH    45201  

 We waited to add the alignment column to illustrate a point. If you are in the middle of the normaliza-
tion process, and discover that there is some other data you need to add, it isn ’ t difficult to do so. You 
could even add a completely new table if you needed to.   

 The city and state fields are not only duplicates, but also redundant data with the zip code (which is in 
itself a representation of the city/state). City and state are also not directly related to the lairs (because 
other lairs could exist in the same city). For these reasons, you will put city and state in a separate table. 



Part II: Comic Book Fan Site

270

Because the zip code is numeric, and a direct representation of city/state, you will make the zip column 
a primary key. This is pass  “ three, ”  shown in the three tables that follow. 

     Character_Id*      Lair_Id      Name      Real Name      Alignment   

    1    1    Clean Freak    John Smith    Good  

    2    1    Soap Stud    Efram Jones    Good  

    3    2    The Dustmite    Dustin 
Hare  

  Evil  

     Lair_Id*      Zip_Id      Lair Address   

    1    45293    123 Poplar Avenue  

    2    45201    452 Elm Street #3D  

     Zip_Id*      City      State   

    45293    Townsburg    OH  

    45201    Burgtown    OH  

 You may have noticed that you have created a many - to - many (M:N) relationship between the characters 
and their powers (a character can have multiple powers, and many characters may have the same 
power). There are two tables with primary keys, and a linking table between them has two foreign keys, 
one for each of the tables. The combination of the foreign keys is a primary key for the  char_power  
table. This enables the M:N relationship. 

 Just for fun, add a small table that links the superheroes to villains, and vice versa. This is another M:N 
relationship, because any superhero can have multiple villain enemies, and any villain can have multiple 
superhero enemies. Of course, you have the character table as one of the  “ many ”  sides of the equation  —  
 can you figure out which table to use for the other  “ many ”  side? If you said the character table, you are 
correct! This is just like the character - power relationship, but this time you reference the table to itself via 
a  good_bad  linking table. The  hero_id  and  villain_id  columns  each  link to the  id  column in the 
character table. Each column in the  good_bad  table is a foreign key, and both columns make up a 
composite primary key. 

     Hero_Id*      Villain_Id*   

    1    3  

    2    3  



Chapter 10: Building Databases     

271

 And just like that, you have created your database design. Congratulations! You now have a  “ map ”  that 
will help you create your database tables on the server. Not only that, but you just normalized your 
database design as well, by modifying your database table structure so that dependencies make sense, 
and there is no redundant data. In fact, you have actually gone through the proper normalization steps 
of First, Second, and Third Normal Form.  

  What ’ s So Normal about These Forms? 
 Remember we told you to call the first table  “ zero ” ? That ’ s called zero form. 

 It is basically the raw data, and is usually a very flat structure, with lots of repeated data. You see data 
like this sometimes when a small company keeps records of its customers in a spreadsheet. 

 The first pass through the table, which you called pass  “ one, ”  was the first step of normalization, called 
First Normal Form, commonly abbreviated as 1NF. This step requires that you eliminate all repeating 
data in columns (which you did with the power column), create separate rows for each group of 
related data, and identify each record with a primary key. The first step satisfies the requirements of 1NF. 

 You can see where we ’ re going with this, can ’ t you? The Second Normal Form (2NF) requirements state 
that you must place subsets of data in multiple rows in separate tables. You did that by separating the 
power data into its own table. Second Normal Form also requires that you create a relationship with the 
original table by creating a foreign key. You did that in pass  “ two, ”  when you satisfied the requirements 
for 2NF. 

 On your third pass, you removed all the columns not directly related to the primary key (city and state), 
and used the zip code as the foreign key to the new  city_state  table. Third Normal Form (3NF) is then 
satisfied. Congratulations! You normalized a database just like the pros do. 

 There are further requirements for database normalization, but Third Normal Form (3NF) is generally 
accepted as being good enough for most business applications. The next step is Boyce - Codd Normal 
Form (BCNF), followed by Fourth Normal Form (4NF) and Fifth Normal Form (5NF). In this case, the 
other forms don ’ t apply  —   the database is as normalized as it needs to get. All tables are easily 
modifiable and updatable, without affecting data in the other tables.     

 We know there are some database gurus out there who would tell you that in order to completely satisfy 
the forms of normalization, the alignment column should be put into its own table and linked with a 
foreign key as well. While that may be true in the strictest sense of the rules, we usually think of 
normalization as a guideline. In this case, we have only two values, good and evil. Those values will 
never change, and they will be the only values available to the user. Because of this, we can actually 
create a column with the  ENUM  datatype. Because the values good and evil will be hard - coded into the 
table definition, and we don ’ t see a need ever to change the values in the future, there is no problem with 
keeping those values in the  char_main  table.    



Part II: Comic Book Fan Site

272

  Standardization 
 When you are designing a new application, it is a very good idea to come up with  standards , or design 
rules, that you adhere to in all cases. These can be extensive, such as the standards published by the W3C 
for HTML, XML, and other markup languages. They can also be very short, but very strict, such as the 
list of 10 standards brought down from a mountain by an old, bearded man long ago. For now, you ’ ll 
just standardize your table structure. For this application, we came up with the following table 
standards: 

   Table names:  Table names should be descriptive, but relatively short. Table names will be in 
lowercase. They should describe what main function they serve, and which application they 
belong to. All six tables should start with  comic_  to show that they belong to our comic book 
application. Many people prefer to list the name in a singular form.  

   Column names:  Table columns are similar to table names. All column names will be in 
lowercase. They will be kept short, but multiple words (such as lair and address) will be 
separated by an underscore ( _ ) (e.g.,  lair_addr ).  

   Primary keys:  Single primary keys will always be called  tablename_id . Except in special cases, 
primary keys will be an integer datatype that is automatically incremented. If they consist of a 
single column, they will always be the first column of the table.  

   Foreign keys:  Foreign keys will end with  _id . They will start with the table descriptor. For 
example, in the  char_lair  table, the foreign key for the  char_zipcode  table will be called 
 zip_id .     

  Finalizing the Database Design 
 One other thing we like to do during the database design process is put the datatypes into the empty 
cells of each table. You can save these tables and easily refer to them when you are writing the SQL code. 
You may want to do this yourself (or just use the tables provided). 

 If you don ’ t understand MySQL ’ s datatypes, you can learn about them in Chapter 3, and datatypes are 
discussed in more detail a little later in this chapter as well. For now, just understand that datatypes are 
the type of data stored in each table column, such as  INT  (integer),  VARCHAR  (variable - length character 
string),  CHAR  (fixed - length character string), or  ENUM  (enumerated list). When appropriate, they are 
followed by the length in parentheses; for example,  varchar(100)  is a character column that can 
contain up to 100 characters. 

 Reduce the tables to two rows, one with column names, the other row blank. If you want, you can make 
a photocopy of your tables before erasing the data. 

 In keeping with the previously listed table standards, we arrive at the following tables. Yours should 
look very similar. 

     Character_Id*      Lair_Id      Name      Real_Name      Alignment   

     int      int      varchar(40)      varchar(80)      enum(‘good’,’evil’)   

❑

❑

❑

❑



Chapter 10: Building Databases     

273

     Power_Id*      Power   

     int      varchar(40)   

     Character_Id*      Power_Id*   

     int      int   

     Lair_Id*      Zipcode_Id      Address   

     int      char(5)      varchar(40)   

     Zipcode_Id*      City      State   

     varchar(10)      varchar(40)      char(2)   

     Hero_Id*      Villain_Id*   

     int(11)      int(11)   

 We think it is about time you actually created these tables on the server. Ready? Let ’ s create the database 
first, and then get going!   

  Creating a Database in My SQL  
 You can create a database in a number of ways. All require the execution of a SQL statement in one way 
or another, so let ’ s look at that first: 

CREATE DATABASE  yourdatabase ;  

 Were you expecting something more complicated? Well, an optional parameter is missing:  IF NOT 
EXISTS . We ’ re pretty sure you know whether or not it exists, but if it makes you feel better, you can 
certainly add it: 

CREATE DATABASE IF NOT EXISTS  yourdatabase ;  

 To see a list of databases that already exist use: 

SHOW DATABASES;  

 That ’ s all there is to it. Think of the database as an empty shell. There is nothing special about it, really. 
The interesting stuff comes later, when you create tables and manipulate the data. 



Part II: Comic Book Fan Site

274

 That said, you still have to figure out how you are going to execute a SQL statement. Here are a few 
suggestions: 

  You can do this from the MySQL command prompt. It should only be done this way if you have 
access to the server on which MySQL is installed. If you are running your own server, or you 
have Telnet access to the server, this may be an option for you.  

  If you are being hosted by an ISP, you may need to request that the ISP create a database for you. 
For example, on one author ’ s site, the ISP has CPanel installed, and he simply clicks the module 
called  MySQL Databases . From the next page, he simply types in the database he wants to create 
and clicks a button, and it ’ s created for him. 

  ISPs will usually give you this option because you have a limit in your contract on how many 
databases you are allowed to create. On one of our sites, for example, the limit is 10 databases.      

  If you have PHPMyAdmin installed, you can run the SQL command from there. PHPMyAdmin 
is a PHP application that allows you to see your table structures and even browse data. It is also 
a dangerous tool, because you can easily drop tables or entire databases with the click of a 
button, so use it carefully.  

  Another option is to run your SQL statement from a PHP file. Most likely, if you are hosted by 
an ISP, it won ’ t allow the creation of databases in this manner. But almost any other SQL 
statement will work using this method. This is the way we ’ ve been running commands so far in 
the book, and will be running SQL commands through the rest of this chapter, as well.    

 Once you have determined how you are going to run that SQL command, go ahead and do it. Make sure 
you substitute your own database name for  yourdatabase . Because you are going to develop a comic 
book appreciation web site, you could call it  comicsite : 

CREATE DATABASE IF NOT EXISTS comicbook_fansite;  

 Now that you have a design mapped out and a database created in MySQL, it is time to create some 
tables.  

  Try It Out Creating the Tables 

 In this exercise, you ’ ll create the file that will hold the hostname, username, password, and database 
values. Then you will create the database tables.   

  1.   Open your favorite text editor, and enter the following code (making sure you use the proper 
values for your server): 

 < ?php
define(‘MYSQL_HOST’,’localhost’);
define(‘MYSQL_USER’,’bp6am’);
define(‘MYSQL_PASSWORD’,’bp6ampass’);
define(‘MYSQL_DB’,’comicbook_fansite’);
? >    

❑

❑

❑

❑



Chapter 10: Building Databases     

275

  2.   Save the file as  db.inc.php . This file will be included in each subsequent PHP file that needs 
to access the database, and provides the connection information. Keep it handy because you ’ ll 
be using it in subsequent chapters as well.  

  3.   Type the following code in your editor, and save it as  db_ch10.php : 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
// create the comic_character table
$query = ‘CREATE TABLE IF NOT EXISTS comic_character (
        character_id  INTEGER UNSIGNED     NOT NULL AUTO_INCREMENT, 
        alias         VARCHAR(40)          NOT NULL DEFAULT “”,
        real_name     VARCHAR(80)          NOT NULL DEFAULT “”,
        lair_id       INTEGER UNSIGNED     NOT NULL DEFAULT 0,
        alignment     ENUM(“good”, “evil”) NOT NULL DEFAULT “good”,
                   
        PRIMARY KEY (character_id)
    ) 
    ENGINE=MyISAM’;
mysql_query($query, $db) or die (mysql_error($db));
                   
// create the comic_power table
$query = ‘CREATE TABLE IF NOT EXISTS comic_power (
        power_id  INTEGER UNSIGNED NOT NULL AUTO_INCREMENT, 
        power     VARCHAR(40)      NOT NULL DEFAULT “”,
                   
        PRIMARY KEY (power_id)
    ) 
    ENGINE=MyISAM’;
mysql_query($query, $db) or die (mysql_error($db));
                   
// create the comic_character_power linking table
$query = ‘CREATE TABLE IF NOT EXISTS comic_character_power (
        character_id  INTEGER UNSIGNED NOT NULL DEFAULT 0,
        power_id      INTEGER UNSIGNED NOT NULL DEFAULT 0,
                   
        PRIMARY KEY (character_id, power_id)
    ) 
    ENGINE=MyISAM’;
mysql_query($query, $db) or die (mysql_error($db));
                   
// create the comic_lair table
$query = ‘CREATE TABLE IF NOT EXISTS comic_lair (
        lair_id     INTEGER UNSIGNED NOT NULL AUTO_INCREMENT, 
        zipcode_id  CHAR(5)          NOT NULL DEFAULT “00000”,
        address     VARCHAR(40)      NOT NULL DEFAULT “”,
                   
        PRIMARY KEY (lair_id)
    ) 



Part II: Comic Book Fan Site

276

    ENGINE=MyISAM’;
mysql_query($query, $db) or die (mysql_error($db));
                   
// create the comic_zipcode table
$query = ‘CREATE TABLE IF NOT EXISTS comic_zipcode (
        zipcode_id  CHAR(5)     NOT NULL DEFAULT “00000”,
        city        VARCHAR(40) NOT NULL DEFAULT “”,
        state       CHAR(2)     NOT NULL DEFAULT “”,
                   
        PRIMARY KEY (zipcode_id)
    ) 
    ENGINE=MyISAM’;
mysql_query($query, $db) or die (mysql_error($db));
                   
// create the comic_rivalry table
$query = ‘CREATE TABLE IF NOT EXISTS comic_rivalry (
        hero_id     INTEGER UNSIGNED  NOT NULL DEFAULT 0,
        villain_id  INTEGER UNSIGNED  NOT NULL DEFAULT 0,
                   
        PRIMARY KEY (hero_id, villain_id)
    ) 
    ENGINE=MyISAM’;
mysql_query($query, $db) or die (mysql_error($db));
                   
echo ‘Done.’;
? >    

  4.   Run  db_ch10.php  by loading it in your browser. Assuming all goes well, you should see the 
message  “ Done ”  in your browser, and the database now should contain all six tables.    

  How It Works  
 Every PHP script that needs to access your database on the MySQL server will include  db.inc.php . 
These constants will be used in your scripts to gain access to your database. By putting them here in 
one file, you can change the values any time you move servers, change the name of the database, or 
change your username or password, without having to explicitly edit every other code file. Any time 
you have information or code that will be used in more than one PHP script, you should include it in a 
separate file so you ’ ll only need to make your changes in one location in the future.   

define(‘MYSQL_HOST’,’localhost’);
define(‘MYSQL_USER’,’bp6am’);
define(‘MYSQL_PASS’,’bp6ampass’);
define(‘MYSQL_DB’,’comicbook_fansite’);  

 The  db_ch10.php  file is a one - time script: You should never have to run it again, unless you need to 
drop all of your tables and recreate them. Rather than explain all of the code in the page, we ’ ll just 
look at one of the SQL statements: 

CREATE TABLE IF NOT EXISTS comic_character (
    character_id  INTEGER UNSIGNED     NOT NULL AUTO_INCREMENT, 
    alias         VARCHAR(40)          NOT NULL DEFAULT “”,
    real_name     VARCHAR(80)          NOT NULL DEFAULT “”,
    lair_id       INTEGER UNSIGNED     NOT NULL DEFAULT 0,



Chapter 10: Building Databases     

277

    alignment     ENUM(“good”, “evil”) NOT NULL DEFAULT “good”,
                   
    PRIMARY KEY (character_id)
) 
ENGINE=MyISAM  

 The syntax for creating a table in MySQL is the following: 

CREATE [TEMPORARY] TABLE [IF NOT EXISTS]  tbl_name  
   [( create_definition ,...)] [ table_options ] [ select_statement ]  

 Obviously, you are not using the  TEMPORARY  keyword, because you want this table to be permanent 
and exist after you close your connection with the database. You are using the  IF NOT EXISTS  
keywords as a safety measure, in case this page were to be loaded twice. If you attempt to load the 
page again, MySQL will not attempt to recreate the tables and will not generate an error. 

 The table name in this case is  comic_character . The columns the script creates are  character_id , 
 alias ,  real_name ,  lair_id , and  alignment , which are the names we came up with earlier. 

 Let ’ s look at each column: 

   character_id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT : The  character_id  
column is set as an integer. An integer datatype can contain the values  � 2,147,483,648 to 
2,147,483,648, but since you won ’ t be storing negative values in the column, you make the 
definition UNSIGNED, which lets you store 0 to 4,294,967,295. 

  NOT NULL  will force a value into the column. With some exceptions, numeric columns will 
default to 0, and string columns will default to an empty string. Very rarely will you allow a 
column to carry a  NULL  value. 

  AUTO_INCREMENT  causes the column to increase the highest value in the table by 1 each time a 
record is added and store it in this column. A column designated as auto - incrementing does not 
have a default value.  

   alias VARCHAR(40) NOT NULL DEFAULT     “   “  : The  alias  column is set as a  VARCHAR  datatype. 
By default, this datatype can hold up to 255 characters, but you are allotting 40 characters, which 
should be enough for any character name. A  VARCHAR  differs from a  CHAR  datatype by the way 
space is allotted for the column. 

  A  VARCHAR  datatype occupies only the space it needs, whereas  CHAR  datatypes will always take 
up the space allotted to them when they are stored in the database. The only time you really 
need to use the  CHAR  datatype is for strings of known fixed length (such as the  zipcode_id  and 
 state  columns in the  comic_zipcode  table).  

   real_name VARCHAR(80) NOT NULL DEFAULT  “  “  : This column is similar to  alias . You are 
allotting 80 characters, which should be enough for your needs. 

  Note that you did not separate the  real_name  column into  first_name  and  last_name  col-
umns. You certainly could, if you wanted to do that, but in this small application it really isn ’ t 
necessary. On the other hand, having separate columns for first and last name is almost a re-
quirement in a company ’ s human resources application, so that you can do things such as greet 
employees by their first names in a company memo.  

❑

❑

❑

❑

❑



Part II: Comic Book Fan Site

278

   lair_id INTEGER UNSIGNED NOT NULL DEFAULT 0 : The foreign key to the  comic_lair  
table is also an integer with a default value of 0.  

   alignment ENUM( “ good ” ,  “ evil “ ) NOT NULL DEFAULT  “ good “  : The  alignment  column 
can be one of two values:  “ good ”  or  “ evil. ”  Because of this, you use an  enum  datatype, and 
default it to  “ good. ”  (Everyone has some good in them, right?)    

 You now have a database. You have tables. If you just had a way to enter some data into your tables in 
your database, you ’ d have an application where your users would be able to store information about 
their favorite superheroes and villains. You need some sort of interface that they can use to create and 
edit data, which means you need to design some web pages for them.    

  Creating the Comic Character Application 
 It ’ s back to the drawing board. Literally. Get away from your computer again, dig out that paper and 
pencil, and prepare to put together some ideas for a web application. 

 First of all, you need a page to display a list of comic book characters, along with some information 
about them. It doesn ’ t need to include every detail about them (such as the location of their secret lair), 
but it should have enough data so that users can distinguish who they are and read a little bit of 
information about them. 

 You will list the following information: 

  Character name (alias)  

  Real name  

  Alignment (good or evil)  

  Powers  

  Enemies    

 You also need a character input form. This form will serve two purposes. It will allow you to create a 
new character, in which case the form will load with blank fields and a  create  button, or it will allow 
you to edit an existing character, in which case it will load with the fields filled in and an  update  button. 
The form will also have a  reset  button to clear the new form or restore the edited form fields. A  delete  
button should also be available, when editing an existing character, to allow the character ’ s record to be 
deleted from the database. 

 The fields on your form will be as follows: 

  Real name (text input)  

  Character name/alias (text input)  

  Powers (multiple select field)  

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑



Chapter 10: Building Databases     

279

  Lair address, city, state, and zip code (text inputs)  

  Alignment (radio button: good/evil, default good)  

  Enemies (multiple select field)    

 You also need a form for adding and deleting powers. This form will be relatively simple and will 
contain the following elements: 

  A check box list of every power currently available  

  A Delete Selected button  

  A text field to enter a new power  

  An Add Power button    

 You also need a PHP script that can handle all database inserts, deletes, and so on. This should simply do 
the required job and redirect the user to another page. This page handles  all  transactions for the character 
application (with redirect), including the following: 

  Inserting a new character (character listing page)  

  Editing an existing character (character listing page)  

  Deleting a character (character listing page)  

  Adding a new power (power editor page)  

  Deleting a power (power editor page)    

 That ’ s basically all there is to the application. Four pages (well, five if you count the  db.inc.php  file you 
created earlier) shouldn ’ t be too difficult. You ’ ll write them first, and we ’ ll talk about how they work 
afterward.  

  Try It Out Transaction Script 

 Some of these files are a bit long, but don ’ t let that scare you. Most of the code consists of SQL 
statements, and they are explained clearly for you in the  “ How It Works ”  section that follows.   

  1.   Start with a transaction script. This code is the longest, but that ’ s because it contains a lot of SQL 
statements. You know the drill  . . .  after entering it, save this one as  char_transaction.php : 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
switch ($_POST[‘action’]) {
                   

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑



Part II: Comic Book Fan Site

280

case ‘Add Character’:
                   
    // escape incoming values to protect database
    $alias = mysql_real_escape_string($_POST[‘alias’], $db);
    $real_name = mysql_real_escape_string($_POST[‘real_name’], $db);
    $address = mysql_real_escape_string($_POST[‘address’], $db);
    $city = mysql_real_escape_string($_POST[‘city’], $db);
    $state = mysql_real_escape_string($_POST[‘state’], $db);
    $zipcode_id = mysql_real_escape_string($_POST[‘zipcode_id’], $db);
    $alignment = ($_POST[‘alignment’] == ‘good’) ? ‘good’ : ‘evil’;
                   
    // add character information into database tables
    $query = ‘INSERT IGNORE INTO comic_zipcode
            (zipcode_id, city, state)
        VALUES
            (“’ . $zipcode_id . ‘”, “’ . $city . ‘”, “’ . $state . ‘”)’;
    mysql_query($query, $db) or die (mysql_error($db));
                   
    $query = ‘INSERT INTO comic_lair 
            (lair_id, zipcode_id, address)
        VALUES 
            (NULL, “’ . $zipcode_id . ‘”, “’ . $address . ‘”)’;
    mysql_query($query, $db) or die (mysql_error($db));
                   
    // retrieve new lair_id generated by MySQL
    $lair_id = mysql_insert_id($db);
    $query = ‘INSERT INTO comic_character
            (character_id, alias, real_name, lair_id, alignment) 
        VALUES
            (NULL, “’ . $alias . ‘”, “’ . $real_name . ‘”, ‘ .
            $lair_id . ‘, “’ . $alignment . ‘”)’;
    mysql_query($query, $db) or die (mysql_error($db));
                   
    // retrieve new character_id generated by MySQL
    $character_id = mysql_insert_id($db);
    if (!empty($_POST[‘powers’])) {
        $values = array();
        foreach ($_POST[‘powers’] as $power_id) {
            $values[] = sprintf(‘(%d, %d)’, $character_id, $power_id);
        }
        $query = ‘INSERT IGNORE INTO comic_character_power
                (character_id, power_id)
            VALUES ‘ .
                implode(‘,’, $values);
        mysql_query($query, $db) or die (mysql_error($db));
    }
                   
    if (!empty($_POST[‘rivalries’])) {
        $values = array();
        foreach ($_POST[‘rivalries’] as $rival_id) {
            $values[] = sprintf(‘(%d, %d)’, $character_id, $rival_id);
        }
        
        // alignment will affect column order
        $columns = ($alignment = ‘good’) ? ‘(hero_id, villain_id)’ : 



Chapter 10: Building Databases     

281

            ‘(villain_id, hero_id)’;
                   
        $query = ‘INSERT IGNORE INTO comic_rivalry   
                ‘ . $columns . ‘
            VALUES
                ‘ . implode(‘,’, $values);
        mysql_query($query, $db) or die (mysql_error($db));
    }
                   
    $redirect = ‘list_characters.php’;
    break;
                   
case ‘Delete Character’:
                   
    // make sure character_id is a number just to be safe
    $character_id = (int)$_POST[‘character_id’];
                   
    // delete character information from tables
    $query = ‘DELETE FROM c, l
        USING
            comic_character c, comic_lair l
        WHERE
            c.lair_id = l.lair_id AND 
            c.character_id = ‘ . $character_id;
    mysql_query($query, $db) or die (mysql_error($db));
                   
    $query = ‘DELETE FROM comic_character_power
        WHERE
            character_id = ‘ .  $character_id;
    mysql_query($query, $db) or die (mysql_error($db));
                   
    $query = ‘DELETE FROM comic_rivalry
        WHERE
            hero_id = ‘ . $character_id . ‘ OR villain_id = ‘ . $character_id;
    mysql_query($query, $db) or die (mysql_error($db));
                   
    $redirect = ‘list_characters.php’;
    break;
                   
case ‘Edit Character’:
                   
    // escape incoming values to protect database
    $character_id = (int)$_POST[‘character_id’];
    $alias = mysql_real_escape_string($_POST[‘alias’], $db);
    $real_name = mysql_real_escape_string($_POST[‘real_name’], $db);
    $address = mysql_real_escape_string($_POST[‘address’], $db);
    $city = mysql_real_escape_string($_POST[‘city’], $db);
    $state = mysql_real_escape_string($_POST[‘state’], $db);
    $zipcode_id = mysql_real_escape_string($_POST[‘zipcode_id’], $db);
    $alignment = ($_POST[‘alignment’] == ‘good’) ? ‘good’ : ‘evil’;
                   
    // update existing character information in tables
    $query = ‘INSERT IGNORE INTO comic_zipcode
            (zipcode_id, city, state)



Part II: Comic Book Fan Site

282

        VALUES
            (“’ . $zipcode_id . ‘”, “’ . $city . ‘”, “’ . $state . ‘”)’;
    mysql_query($query, $db) or die (mysql_error($db));
                   
    $query = ‘UPDATE comic_lair l, comic_character c
            SET   
                l.zipcode_id = ‘ . $zipcode_id . ‘, 
                l.address = “’ . $address . ‘”, 
                c.real_name = “’ . $real_name . ‘”, 
                c.alias = “’ . $alias . ‘”, 
                c.alignment = “’ . $alignment . ‘” 
        WHERE
            c.character_id = ‘ . $character_id . ‘ AND 
            c.lair_id = l.lair_id’;
    mysql_query($query, $db) or die (mysql_error($db));
                   
    $query = ‘DELETE FROM comic_character_power
        WHERE
            character_id = ‘ . $character_id;
    mysql_query($query, $db) or die (mysql_error($db));
                   
    if (!empty($_POST[‘powers’])) {
        $values = array();
        foreach ($_POST[‘powers’] as $power_id) {
            $values[] = sprintf(‘(%d, %d)’, $character_id, $power_id);
        }
        $query = ‘INSERT IGNORE INTO comic_character_power
                (character_id, power_id)
            VALUES 
                ‘ . implode(‘,’, $values);
        mysql_query($query, $db) or die (mysql_error($db));
    }
                   
    $query = ‘DELETE FROM comic_rivalry
        WHERE
            hero_id = ‘ . $character_id . ‘ OR villain_id = ‘ . $character_id;
    mysql_query($query, $db) or die (mysql_error($db));
                   
    if (!empty($_POST[‘rivalries’])) {
        $values = array();
        foreach ($_POST[‘rivalries’] as $rival_id) {
            $values[] = sprintf(‘(%d, %d)’, $character_id, $rival_id);
        }
        
        // alignment will affect column order
        $columns = ($alignment = ‘good’) ? ‘(hero_id, villain_id)’ : 
            ‘(villain_id, hero_id)’;
                   
        $query = ‘INSERT IGNORE INTO comic_rivalry
                ‘ . $columns . ‘
            VALUES 
                ‘ . implode(‘,’, $values);
                   
        mysql_query($query, $db) or die (mysql_error($db));
    }
                   



Chapter 10: Building Databases     

283

    $redirect = ‘list_characters.php’;
    break;
                   
case ‘Delete Selected Powers’:
                   
    if (!empty($_POST[‘powers’])) {
        // escape incoming values to protect database-- they should be numeric
        // values, but just to be safe
        $powers = implode(‘,’, $_POST[‘powers’]);
        $powers = mysql_real_escape_string($powers, $db);
                   
        // delete powers
        $query = ‘DELETE FROM comic_power 
            WHERE 
                power_id IN (‘ . $powers . ‘)’;
        mysql_query($query, $db) or die (mysql_error($db));
                   
        $query = ‘DELETE FROM comic_character_power 
            WHERE
                power_id IN (‘ . $powers . ‘)’;
        mysql_query($query, $db) or die (mysql_error($db));
    }
                   
    $redirect = ‘edit_power.php’;
    break;
                   
case ‘Add New Power’:
                   
    // trim and check power to prevent adding blank values
    $power = trim($_POST[‘new_power’]);
    if ($power != ‘’)
    {
        // escape incoming value
        $power = mysql_real_escape_string($power, $db);
                   
        // create new power
        $query = ‘INSERT IGNORE INTO comic_power
                (power_id, power)
            VALUES 
                (NULL, “’ . $power . ‘”)’;
        mysql_query($query, $db) or die (mysql_error($db));
    }
                   
    $redirect = ‘edit_power.php’;
    break;
                   
default:
    $redirect = ‘list_characters.php’;
}
                   
header(‘Location: ‘ . $redirect);
? >      



Part II: Comic Book Fan Site

284

  How It Works  
 You may have noticed that you ’ re not loading a page in your browser to test the script, as you did in 
some of the previous exercises in the book. In fact, the script you just wrote has nothing to display  —  
 it only processes transactions and redirects the user. One tremendous advantage to using a transaction 
page in this manner is that the browser ’ s history will have no memory of the transaction page 
once the browser arrives at the final destination page. The transaction page did not send any 
information to the browser other than the redirect. If the user refreshes his or her browser, it won ’ t 
reexecute the transaction, making for a very clean application. 

 For example, say a user starts on the Character Database page that lists the characters and clicks the 
Edit Powers link. From the Edit Powers page, the user enters a power and clicks Add New Power. The 
user might do this five times to add five new powers, but, each time, the browser server submits the 
form to the transaction page, and the server redirects the user back to the power page. If the user then 
clicks the browser ’ s Back button, the user is taken back to the Character Database page, as if he or she 
just came from there! This is almost intuitive to the average user and is the way applications should 
work. 

 It looks as if there is a lot happening on this page, but it ’ s not that complicated. There are simply many 
different tasks that are performed by this page, depending on how the data got here. Let ’ s take a closer 
look and see what makes it tick. 

 Remember that each button is named  action  and that each one has a different value. In the code that 
follows, you determine which button was clicked, and perform the appropriate action. For example, if 
the Delete Character button was clicked, you want to run the SQL commands only for removing 
character data.   

switch ($_POST[‘action’]) {
case ‘Add Character’:
    // ...
    break;
                   
case ‘Delete Character’:
    // ...
    break;
                   
case ‘Edit Character’:
    // ...
    break;
                   
case ‘Delete Selected Powers’:
    // ...
    break;
                   
case ‘Add Character’:
    // ...
    break;
                   
default:
    // ...
}  

 The  switch  statement is a convenient and efficient way of providing a multiple choice of actions, all 
based on the possible values of the same variable or condition. It is easier to read than a complex 



Chapter 10: Building Databases     

285

 if ... else  statement. The only  “ gotcha ”  you need to be aware of is to use  break  at the end of each 
 case  to prevent the rest of the code in the other  case  blocks from executing. Without the  break  
keyword to tell PHP when to jump out of the  switch  statement, it will continue executing code in the 
other sections that follow, after the intended block is done. 

 The  INSERT  query that follows within the Add Character section is relatively simple. In plain English, 
it reads:  “ Insert the values  $zipcode_id ,  $city , and  $state  into the columns  zipcode_id ,  city , 
and  state  in the  comic_zipcode  table. ”  The  IGNORE  keyword is a very cool option that allows you 
to do an insert without first using a  SELECT  query to see if the data is already in the table. In this case, 
you know there might already be a record for this zip code, so  IGNORE  tells the query  “ If you see this 
zip code in the table already, then don ’ t do the  INSERT . ”    

$query = ‘INSERT IGNORE INTO comic_zipcode
        (zipcode_id, city, state)
    VALUES
        (“’ . $zipcode_id . ‘”, “’ . $city . ‘”, “’ . $state . ‘”)’;
mysql_query($query, $db) or die (mysql_error($db));  

 The  IGNORE  statement compares primary keys only. Therefore, even if another zip code is in the 
database with the same state, the  INSERT  still takes place. Thus, using  IGNORE  when inserting data 
into a table where the primary key is automatically incremented would have no effect at all, because 
the  INSERT  will  always  happen in that case. This might seem obvious to you, but just keep this in mind 
because with some more complex tables it may not be so intuitive. 

 In the  INSERT  that follows, you see the use of  NULL  as the first value. When you insert  NULL  into a 
column, MySQL does the following: If the column allows  NULL  values, then it accepts the  NULL  as is 
and inserts it; if it does not allow  NULL  (the column  lair_id  is set to  NOT NULL ), it will set the column 
to the default value. If a default value has not been determined, then the standard default for the 
datatype is inserted (i.e., an empty string for  VARCHAR / CHAR  types, 0 for  INTEGER  types, etc.). If the 
column is set to  AUTO_INCREMENT , as is the case here, then the next highest available integer value for 
that column is inserted. This is exactly what you want to happen here because  lair_id  is the primary 
key, and new values must be unique.   

$query = ‘INSERT INTO comic_lair 
        (lair_id, zipcode_id, address)
    VALUES 
        (NULL, “’ . $zipcode_id . ‘”, “’ . $address . ‘”)’;
mysql_query($query, $db) or die (mysql_error($db));  

 You also could have left out the  lair_id  field from the insert and inserted values into the  zip_id  and 
 lair_addr  columns only. MySQL treats ignored columns as if you had attempted to insert  NULL  into 
them. We like to specify every column when doing an insert, though. If you need to modify your SQL 
statement later, then having all the columns listed in the  INSERT  query can help you keep everything 
manageable. 

 Assuming the insert worked properly ( $result  returned  TRUE ), the  mysql_insert_id()  function 
will return the value of the last  AUTO_INCREMENT  from the last run query. This works only after 
running a query on a table with an  AUTO_INCREMENT  column. In this case, it returns the primary key 
value of the  lair_id  row you just inserted into the  comic_lair  table. You will need that value to 
insert into the  comic_character  table momentarily.   

$lair_id = mysql_insert_id($db);  



Part II: Comic Book Fan Site

286

 The connection variable is optional, but we think it ’ s a good habit to always include it when calling 
 mysql_insert_id() . If you omit it, then the function will use the most recently opened database 
connection. That ’ s not a problem in a simple application like this one, but in a more complex 
application, where you might have multiple database connections open at the same time, it could get 
confusing. 

 Again, notice the use of  NULL  for the primary key and the use of  mysql_insert_id()  to return the 
primary key in the following: 

$query = ‘INSERT INTO comic_character
        (character_id, alias, real_name, lair_id, alignment) 
    VALUES
        (NULL, “’ . $alias . ‘”, “’ . $real_name . ‘”, ‘ .
        $lair_id . ‘, “’ . $alignment . ‘”)’;
mysql_query($query, $db) or die (mysql_error($db));
                   
$character_id = mysql_insert_id($db);  

 Now comes the time to insert the character ’ s powers into the database. At first, you could have used 
code similar to this to accomplish the task: 

foreach ($_POST[‘powers’] as $power_id) {
    $query = ‘INSERT IGNORE INTO comic_character_power
            (character_id, power_id)
        VALUES
            ‘ . $character_id . ‘, ‘ . (int) $_power_id;
    mysql_query($query, $db) or die (mysql_error($db));
}  

 You should always be interested in minimizing the number of times you run a query on the database. 
Each query takes precious time, which can add up noticeably in a complex application. The above 
code wouldn ’ t be bad if only one or two powers were being associated with the character, but what if 
a really super - awesome character were created who had 20 powers? That would be 20 consecutively 
executed  INSERT  statements! At this point, you need to figure out how to insert all the powers with 
only one SQL command: 

if (!empty($_POST[‘powers’])) {
    $values = array();
    foreach ($_POST[‘powers’] as $power_id) {
        $values[] = sprintf(‘(%d, %d)’, $character_id, $power_id);
    }
    $query = ‘INSERT IGNORE INTO comic_character_power
            (character_id, power_id)
        VALUES ‘ .
            implode(‘,’, $values);
    mysql_query($query, $db) or die (mysql_error($db));
}  

 There are a couple of concerns here. First, if there is already a power for this user (there shouldn ’ t be, 
because it ’ s a new character, but still you should always be prepared), you don ’ t need to insert the 
row. You already know how to take care of this by using the  IGNORE  keyword. 



Chapter 10: Building Databases     

287

 Second, you must insert multiple rows of data with only one query. This is easy enough; all you have 
to do is supply a comma - separated list of value grouping that matches up to the column grouping in 
the query. For example: 

INSERT INTO table (col1, col2) VALUES (val1, val2), (val3, val4)  

 You accomplish this in the code by looping through the  $_POST[‘powers’]  array and putting the 
values for character ID and power ID into a new array. You then concatenate that array with a comma 
separator, and  voil à  ! There are your multiple rows of data to insert. 

 You then do the same thing with the  $_POST[‘rivalries’]  array that you did with  $_POST[‘powers’] . 
This time, however, you insert data into the columns based on whether the character is good or evil. It 
doesn ’ t really matter too much which column gets which ID, but for the most part you want good 
character IDs in the  hero_id  column and evil character IDs in the  villain_id  column.   

if (!empty($_POST[‘rivalries’])) {
    $values = array();
    foreach ($_POST[‘rivalries’] as $rival_id) {
        $values[] = sprintf(‘(%d, %d)’, $character_id, $rival_id);
    }
    
    $columns = ($alignment = ‘good’) ? ‘(hero_id, villain_id)’ : 
        ‘(villain_id, hero_id)’;
                   
    $query = ‘INSERT IGNORE INTO comic_rivalry   
            ‘ . $columns . ‘
        VALUES
            ‘ . implode(‘,’, $values);
    mysql_query($query, $db) or die (mysql_error($db));
}  

 You have a little bit of referential integrity that you have to handle, beyond what MySQL is already 
handling for you, when it comes to the  comic_rivalry  table. Namely, you don ’ t want to have a 
 hero / villain_id  combination to match up to a  villain / hero_id  combination. This isn ’ t the end 
of the world for the purposes of a relational database, but for your purposes it is considered a 
duplication of data  —   something you don ’ t want. You will handle this contingency when updating a 
character, but because this is a new character (with a brand new ID), you don ’ t have to worry about 
that just yet. 

 Now that you ’ re done inserting new character data, you set the page you are going to load next, and 
break out of the  switch  statement.   

$redirect = ‘list_characters.php’;
break;  

 When deleting a character, you simply remove all instances of it from the relevant tables. To remove 
the data from the  comic_lair  table, you have to  JOIN  it to the  comic_character  table by matching 
up the lair IDs first. Then you delete all matching rows where the character ID matches.   



Part II: Comic Book Fan Site

288

$query = ‘DELETE FROM c, l
    USING
        comic_character c, comic_lair l
    WHERE
        c.lair_id = l.lair_id AND 
        c.character_id = ‘ . $character_id;
mysql_query($query, $db) or die (mysql_error($db));
                   
$query = ‘DELETE FROM comic_character_power
    WHERE
        character_id = ‘ .  $character_id;
mysql_query($query, $db) or die (mysql_error($db));  

 Remembering that the  comic_rivalry  needs to maintain what we call  “ reverse ”  referential integrity 
(1, 3 matching 3, 1 for example), you remove all rows that contain the character ’ s ID in either column: 

$query = ‘DELETE FROM comic_rivalry
    WHERE
        hero_id = ‘ . $character_id . ‘ OR villain_id = ‘ . $character_id;
mysql_query($query, $db) or die (mysql_error($db));  

 Updating a character is where things get interesting. First of all, you can simply do an  INSERT 
IGNORE  on the zip code table. If the address and zip code change, you don ’ t really need to delete the 
old data because it might be used for other characters  —   it ’ s perfectly fine to leave the old data alone. 
So, you just do an  INSERT IGNORE  as you did for a new character, and leave it at that.   

$query = ‘INSERT IGNORE INTO comic_zipcode
        (zipcode_id, city, state)
    VALUES
        (“’ . $zipcode_id . ‘”, “’ . $city . ‘”, “’ . $state . ‘”)’;
mysql_query($query, $db) or die (mysql_error($db));  

 Here is the first  UPDATE  query, and incidentally it is the only one in the entire application. It is very 
similar to  INSERT  and  SELECT  queries, with the exception of the  SET  keyword. The  SET  keyword tells 
MySQL what columns to change and what values to set them to. The old values in the row are 
overwritten. This is a  JOIN  query because there is more than one table. The  WHERE  keyword specifies 
both the linking column ( lair_id ) and the condition that only rows for this character will be 
updated.   

$query = ‘UPDATE comic_lair l, comic_character c
        SET   
            l.zipcode_id = ‘ . $zipcode_id . ‘, 
            l.address = “’ . $address . ‘”, 
            c.real_name = “’ . $real_name . ‘”, 
            c.alias = “’ . $alias . ‘”, 
            c.alignment = “’ . $alignment . ‘” 
    WHERE
        c.character_id = ‘ . $character_id . ‘ AND 
        c.lair_id = l.lair_id’;
mysql_query($query, $db) or die (mysql_error($db));  

 Because the  comic_character_power  table does not have an automatically incremented column as 
the primary key, you don ’ t have to do an update on the table. An update is possible, but it is much 



Chapter 10: Building Databases     

289

easier to simply delete all the old links of character to power and insert new rows instead. In some 
cases, you may be deleting and inserting the same data (for instance, you might be adding  flight  as 
a power, but  invisibility  did not change;  invisibility  will still be deleted and reinserted). 
When updating data in an M:N relationship, you will usually simply delete the old data, and insert 
the updated/new data.   

$query = ‘DELETE FROM comic_character_power
    WHERE
        character_id = ‘ . $character_id;
mysql_query($query, $db) or die (mysql_error($db));
                   
if (!empty($_POST[‘powers’])) {
    $values = array();
    foreach ($_POST[‘powers’] as $power_id) {
        $values[] = sprintf(‘(%d, %d)’, $character_id, $power_id);
    }
    $query = ‘INSERT IGNORE INTO comic_character_power
            (character_id, power_id)
        VALUES 
            ‘ . implode(‘,’, $values);
    mysql_query($query, $db) or die (mysql_error($db));
}  

 This brings you to the enemies data, where not only do you have to maintain referential integrity, but 
you also have to worry about updating rows where the ID can be present in either of the two linking 
columns. You must maintain the reverse referential integrity.   

$query = ‘DELETE FROM comic_rivalry
    WHERE
        hero_id = ‘ . $character_id . ‘ OR villain_id = ‘ . $character_id;
mysql_query($query, $db) or die (mysql_error($db));
                   
if (!empty($_POST[‘rivalries’])) {
    $values = array();
    foreach ($_POST[‘rivalries’] as $rival_id) {
        $values[] = sprintf(‘(%d, %d)’, $character_id, $rival_id);
    }
        
    $columns = ($alignment = ‘good’) ? ‘(hero_id, villain_id)’ : 
        ‘(villain_id, hero_id)’;
                   
    $query = ‘INSERT IGNORE INTO comic_rivalry
            ‘ . $columns . ‘
        VALUES 
            ‘ . implode(‘,’, $values);
                   
    mysql_query($query, $db) or die (mysql_error($db));
}  

 But how did you deal with referential integrity? It turns out that it takes care of itself when you follow 
the same method you employed when updating the  comic_character_power  table. By simply 
running the same  DELETE  query you ran when deleting a character and then immediately running the 



Part II: Comic Book Fan Site

290

same  INSERT  query you ran when creating a new character, you ensure that only one set of rows exists 
to match up each character to his/her enemy. It ’ s simple, it ’ s elegant, and it works! 

 By this time, queries should seem quite familiar to you. The  DELETE  query is one of the simplest of the 
SQL statements. In these  DELETE  queries, you need to delete each power that was selected on the Edit 
Power page. You must do this not only in the  comic_power  table, but in the  comic_character_
power  table as well. (In this application, if a power is removed, then you remove that power from the 
characters as well.) To perform a  DELETE  on multiple rows, you use the  IN  keyword with which each 
ID in the supplied comma - separated list of power IDs is matched against the ID, and each matching 
row is deleted.   

$query = ‘DELETE FROM comic_power 
    WHERE 
        power_id IN (‘ . $powers . ‘)’;
mysql_query($query, $db) or die (mysql_error($db));
                   
$query = ‘DELETE FROM comic_character_power 
    WHERE
        power_id IN (‘ . $powers . ‘)’;
mysql_query($query, $db) or die (mysql_error($db));  

 You first check to make sure a value was passed when adding a power (no need to run a query if there 
is nothing to add), and then attempt to insert the value into the power table. Once again, you use the 
 IGNORE  keyword in what follows, to avoid duplication of powers. We have already mentioned that 
you really use  IGNORE  only on tables that have a primary key that is not autogenerated, but there is an 
exception.  IGNORE  will not allow any duplicate data in any column that is designated as  UNIQUE . In 
the  comic_chararacter_power  table, the power column is a  UNIQUE  column, so attempting to insert 
a duplicate value would result in an error. The  IGNORE  keyword prevents the insertion so you don ’ t 
get an error returned. If the power already exists, then the script simply returns to the  edit_power.
php  page and awaits further instructions.   

$power = trim($_POST[‘new_power’]);
if ($power != ‘’)
{
    $power = mysql_real_escape_string($power, $db);
                   
    $query = ‘INSERT IGNORE INTO comic_power
            (power_id, power)
        VALUES 
            (NULL, “’ . $power . ‘”)’;
    mysql_query($query, $db) or die (mysql_error($db));
}  

 You should always have a  default:  option in your case statements. You don ’ t need to do anything 
there, but it is good programming practice to include it. In this scenario, you are simply going to 
redirect the user back to the  list_characters.php  page.   

default:
    $redirect = ‘list_characters.php’;  



Chapter 10: Building Databases     

291

 Finally, you reach the last command of  char_transaction.php . To use the  header()  function, no 
data can have been sent to the client previously. If it has, you will get an error. In this case,  char_
transaction.php  has no data sent to the client, so the  header()  function will work as advertised.   

header(‘Location: ‘ . $redirect);  

 Each case sets a destination page after running its queries. This function will now send the user to that 
destination.    

  Try It Out Editing Superhero Powers 

 The next page you ’ re going to create is a script to allow you to create and modify superpowers.   

  1.   Enter the following code in your editor, and save it as  edit_power.php : 

 < html > 
  < head > 
   < title > Edit Powers < /title > 
   < style type=”text/css” > 
   td { vertical-align: top; }
   < /style > 
  < /head > 
  < body > 
   < img src=”logo.jpg” alt=”Comic Book Appreciation Site” style=”float: left;” / > 
   < h1 > Comic Book < br/ > Appreciation < /h1 > 
   < h2 > Edit Character Powers < /h2 > 
   < hr style=”clear: both;”/ > 
   < form action=”char_transaction.php” method=”post” > 
    < div > 
     < input type=”text” name=”new_power” size=”20” maxlength=”40” value=”” / > 
     < input type=”submit” name=”action” value=”Add New Power” / > 
    < /div > 
 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$query = ‘SELECT power_id, power FROM comic_power ORDER BY power ASC’;
$result = mysql_query($query, $db) or die (mysql_error($db));
                   
if (mysql_num_rows($result)  >  0) {
    echo ‘ < p >  < em > Deleting a power will remove its association with any ‘ .
         ‘characters as well-- select wisely! < /em >  < /p > ’;
                   
    $num_powers = mysql_num_rows($result);
    $threshold = 5;
    $max_columns = 2;
                   



Part II: Comic Book Fan Site

292

    $num_columns = min($max_columns, ceil($num_powers/$threshold));
    $count_per_column = ceil($num_powers/$num_columns);
                   
    $i = 0;
    echo ‘ < table >  < tr >  < td > ’;
    while ($row = mysql_fetch_assoc($result)) {
        if (($i  >  0)  &  &  ($i % $count_per_column == 0)) {
            echo ‘ < /td >  < td > ’;
        }
        echo ‘ < input type=”checkbox” name=”powers[]” “value=”’ . 
            $row[‘power_id’] . ‘” / >  ‘;
        echo $row[‘power’] . ‘ < br/ > ’;
        $i++;
    }
    echo ‘ < /td >  < /tr >  < /table > ’;
                   
    echo ‘ < br/ >  < input type=”submit” name=”action” ‘ . 
        ‘value=”Delete Selected Powers” / > ’;
} else {
    echo ‘ < p >  < strong > No Powers entered... < /strong >  < /p > ’;
}
? > 
    < /div > 
   < /form > 
   < p >  < a href=”list_characters.php” > Return to Home Page < /a >  < /p > 
  < /body > 
 < /html >    

  2.   Load  edit_power.php  in your browser. When the page appears, it initially will be empty, as 
shown in Figure  10 - 1 .    

Figure 10-1



Chapter 10: Building Databases     

293

  3.   Enter an ultracool superpower such as  invisibility  or  x - ray vision  in the text box, and click Add 
New Power. Continue adding powers until you have at least six or seven. If you need help 
with power ideas, here are a few:  super strength, invisibility, x - ray vision, super speed, soccer mom, 
flexibility, flight, underwater breathing, and psychokinesis.  Moving on, you should now see the list 
of powers with check boxes next to them and a new button labeled  “ Delete Selected Powers. ”  
The screen should now resemble Figure  10 - 2 .    

Figure 10-2

  4.   Check the boxes next to one or two of the powers, and click Delete Selected Powers. They 
should go away.    

  How It Works  
 You will see this on every page, but we will mention it this one time only: You include the  db.inc.
php  file that contains the constants used in the next couple of lines. By putting these constants in an 
included file, you can make any changes you may need in the future in one place. You use the 
 require  command instead of  include . An included file will not stop the processing of the rest of the 
page, whereas a required file would immediately stop the processing if it is not found.   

require ‘db.inc.php’;  



Part II: Comic Book Fan Site

294

 Next, a connection to the server is made, and the appropriate database is selected. Notice the use of 
the constants you defined in  db.inc.php : 

$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));  

 What follows is a somewhat simple SQL  select  statement. It grabs the  power_id  and  power  columns 
from the  comic_power  table and sorts them alphabetically by power. This way, when you iterate 
through them later and put the data on the web page, they will be in an intelligible order.   

$query = ‘SELECT power_id, power FROM comic_power ORDER BY power ASC’;
$result = mysql_query($query, $db) or die (mysql_error($db));  

 Now the script checks to make sure at least one row was returned. If so, it iterates through each row, 
building up the list of powers, using the power ’ s ID as the check box ’ s value.   

while ($row = mysql_fetch_assoc($result)) {
   echo ‘ < input type=”checkbox” name=”powers[]” “value=”’ .
       $row[‘power_id’] . ‘” / >  ‘;
   echo $row[‘power’] . ‘ < br/ > ’;
}  

 Because the list of powers could get quite large, you might want to try to distribute them across 
multiple columns. If so, you would probably like to distribute them fairly evenly. The following lines 
of code do this for you. 

 First, you get a count of the number of powers, using  mysql_num_rows() . Next, you set the threshold to 
5 lines (after which a second column will be created), and a maximum number of columns (in this case, 3).   

$num_powers = mysql_num_rows($result);
$threshold = 5;
$max_columns = 3;  

 Next, you determine how many columns to create. Assume there are 7 powers to display. First, you 
divide the count by the threshold (7 / 5), which gives you 1.4. Next, you use  ceil()  to round up to 
the nearest integer ( ceil(1.4) �  2). Then you take the smaller of the two values (3 and 2), and store 
it in the  $num_columns  variable. In this example,  $num_columns  would equal 2. 

 To figure out how many powers go into each column, you divide the count by the number of columns, 
and round up to the nearest integer. In this case,  ceil(7 / 2)  = 4. So, you ’ ll have two columns, with 
four values in each column (the last column will contain the remainder of powers, if there are fewer 
than four).   

$num_columns = min($max_columns, ceil($num_powers/$threshold));
$count_per_column = ceil($num_powers/$num_columns);  

 Now you loop through each element of the result set. The counter  $i  will start at 0 and increment each 
time through the loop. In each loop, you add an output   < input >   tag to create the check box, using the 
power ’ s ID as the value, and the power ’ s name as the label. When the counter reaches a value that is 
evenly divisible by  $count_per_column  without a remainder, you close the table row and start a new one.   



Chapter 10: Building Databases     

295

$i = 0;
echo ‘ < table >  < tr >  < td > ’;
while ($row = mysql_fetch_assoc($result)) {
    if (($i  >  0)  &  &  ($i % $count_per_column == 0)) {
        echo ‘ < /td >  < td > ’;
    }
    echo ‘ < input type=”checkbox” name=”powers[]” “value=”’ . 
        $row[‘power_id’] . ‘” / >  ‘;
    echo $row[‘power’] . ‘ < br/ > ’;
    $i++;
}
echo ‘ < /td >  < /tr >  < /table > ’;  

 In this example, increments 0, 1, 2, and 3 end up in the first column. When  $i  reaches 4 (the value of 
 $count_per_column ), the script starts a new column. Feel free to play around with it by changing 
your  $threshold  and  $max_columns  values and adding a bunch of new power values, to see how 
these values interact when the table is built. For now, let ’ s check out the rest of the code. 

 Continuing on for the rest of the  if  statement, if there is even one power, a row is created that 
contains a delete button. But if not, then the script creates a row that simply states that no powers have 
yet been entered.   

    echo ‘ < br/ >  < input type=”submit” name=”action” ‘ . 
        ‘value=”Delete Selected Powers” / > ’;
} else {
    echo ‘ < p >  < strong > No Powers entered... < /strong >  < /p > ’;
}     

  Try It Out Managing the Characters 

 The next file you ’ re going to create will display a list of the characters in your database.   

  1.   Enter the following code, and save it as  list_characters.php : 

 < html > 
  < head > 
   < title > Character Database < /title > 
   < style type=”text/css” > 
   th { background-color: #999; }
   td { vertical-align: top; }
   .odd_row { background-color: #EEE; }
   .even_row { background-color: #FFF; }
   < /style > 
  < /head > 
  < body > 
   < img src=”logo.jpg” alt=”Comic Book Appreciation Site” style=”float: left;” / > 
   < h1 > Comic Book < br/ > Appreciation < /h1 > 
   < h2 > Character Database < /h2 > 
   < hr style=”clear: both;”/ > 
 < ?php



Part II: Comic Book Fan Site

296

require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
// determine sorting order of table
$order = array(1 = >  ‘alias ASC’,
               2 = >  ‘real_name ASC’,
               3 = >  ‘alignment ASC, alias ASC’);
                   
$o = (isset($_GET[‘o’])  &  &  ctype_digit($_GET[‘o’])) ? $_GET[‘o’] : 1;
if (!in_array($o, array_keys($order))) {
    $o = 1;
}
                   
// select list of characters for table
$query = ‘SELECT
        character_id, alias, real_name, alignment
    FROM 
        comic_character
    ORDER BY ‘ . $order[$o];
$result = mysql_query($query, $db) or die (mysql_error($db));
                   
if (mysql_num_rows($result)  >  0) {
    echo ‘ < table > ’;
    echo ‘ < tr >  < th >  < a href=”’ . $_SERVER[‘PHP_SELF’] . ‘?o=1” > Alias < /a >  < /th > ’;
    echo ‘ < th >  < a href=”’ . $_SERVER[‘PHP_SELF’] . ‘?o=2” > Real Name < /a >  < /th > ’;
    echo ‘ < th >  < a href=”’ . $_SERVER[‘PHP_SELF’] . ‘?o=3” > Alignment < /a >  < /th > ’;
    echo ‘ < th > Powers < /th > ’;
    echo ‘ < th > Enemies < /th >  < /tr > ’;
                   
    $odd = true;    // alternate odd/even row styling
    while ($row = mysql_fetch_array($result)) {
        echo ($odd == true) ? ‘ < tr class=”odd_row” > ’ : ‘ < tr class=”even_row” > ’;
        $odd = !$odd; 
        echo ‘ < td >  < a href=”edit_character.php?id=’ . $row[‘character_id’] .
            ‘” > ’ . $row[‘alias’] . ‘ < /a >  < /td > ’;
        echo ‘ < td > ’ . $row[‘real_name’] . ‘ < /td > ’;
        echo ‘ < td > ’ . $row[‘alignment’] . ‘ < /td > ’;
                   
        // select list of powers for this character
        $query2 = ‘SELECT
                power
            FROM
                comic_power p
                JOIN comic_character_power cp
                    ON p.power_id = cp.power_id
            WHERE 
                cp.character_id = ‘ . $row[‘character_id’] . ‘
            ORDER BY
                power ASC’;
        $result2 = mysql_query($query2, $db) or die (mysql_error($db));
                   
        if (mysql_num_rows($result2)  >  0) {



Chapter 10: Building Databases     

297

            $powers = array();
            while ($row2 = mysql_fetch_assoc($result2)) {
                $powers[] = $row2[‘power’];
            }
            echo ‘ < td > ’ . implode(‘, ‘, $powers) . ‘ < /td > ’;
        } else {
            echo ‘ < td > none < /td > ’;
        }
        mysql_free_result($result2);
        
        // select list of rivalries for this character
        $query2 = ‘SELECT
                c2.alias
            FROM
                comic_character c1
                JOIN comic_character c2 
                JOIN comic_rivalry r 
                    ON (c1.character_id = r.hero_id AND
                        c2.character_id = r.villain_id) OR
                       (c2.character_id = r.hero_id AND
                        c1.character_id = r.villain_id)
            WHERE
                c1.character_id = ‘ . $row[‘character_id’] . ‘
            ORDER BY
                c2.alias ASC’;
        $result2 = mysql_query($query2, $db) or die (mysql_error($db));
                   
        if (mysql_num_rows($result2)  >  0) {
            $aliases = array();
            while ($row2 = mysql_fetch_assoc($result2)) {
                $aliases[] = $row2[‘alias’];
            }
            echo ‘ < td > ’ . implode(‘, ‘, $aliases) . ‘ < /td > ’;
        } else {
            echo ‘ < td > none < /td > ’;
        }
        mysql_free_result($result2);
        echo ‘ < /tr > ’;
    }
    echo ‘ < /table > ’;
                   
} else {
    echo ‘ < p >  < strong > No Characters entered... < /strong >  < /p > ’;
}
? > 
   < p >  < a href=”edit_character.php” > Add New Character < /a >  < /p > 
   < p >  < a href=”edit_power.php” > Edit Powers < /a >  < /p > 
  < /body > 
 < /html >    



Part II: Comic Book Fan Site

298

  2.   In the last file for this chapter, you ’ ll create the ability to add and modify characters. Enter the 
next block of code, and save it as  edit_character.php : 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$action = ‘Add’;
                   
$character = array(‘alias’ = >  ‘’,
                   ‘real_name’ = >  ‘’,
                   ‘alignment’ = >  ‘good’,
                   ‘address’ = >  ‘’,
                   ‘city’ = >  ‘’,
                   ‘state’ = >  ‘’,
                   ‘zipcode_id’ = >  ‘’);
$character_powers = array();
$rivalries = array();
                   
// validate incoming character id value
$character_id = (isset($_GET[‘id’])  &  &  ctype_digit($_GET[‘id’])) ? 
    $_GET[‘id’] : 0;
                   
// retrieve information about the requested character
if ($character_id != 0) {
    $query = ‘SELECT
            c.alias, c.real_name, c.alignment,
            l.address, z.city, z.state, z.zipcode_id
        FROM
            comic_character c, comic_lair l, comic_zipcode z
        WHERE
            z.zipcode_id = l.zipcode_id AND
            c.lair_id = l.lair_id AND
            c.character_id = ‘ . $character_id;
    $result = mysql_query($query, $db) or die (mysql_error($db));
    
    if (mysql_num_rows($result)  >  0) {
        $action = ‘Edit’;
        $character = mysql_fetch_assoc($result);
    }
    mysql_free_result($result);
                   
    if ($action == ‘Edit’) {
        // get list of character’s powers
        $query = ‘SELECT 
                power_id
            FROM
                comic_character_power
            WHERE character_id = ‘ . $character_id;
        $result = mysql_query($query, $db) or die (mysql_error($db));
    
        if (mysql_num_rows($result)  >  0) {



Chapter 10: Building Databases     

299

            while ($row = mysql_fetch_array($result)) {
                $character_powers[$row[‘power_id’]] = true;
            }
        }
        mysql_free_result($result);
    
        // get list of character’s rivalries
        $query = ‘SELECT
                c2.character_id
            FROM
                comic_character c1 
                JOIN comic_character c2 
                JOIN comic_rivalry r 
                    ON (c1.character_id = r.hero_id AND
                        c2.character_id = r.villain_id) OR
                       (c2.character_id = r.hero_id AND
                        c1.character_id = r.villain_id) 
            WHERE
                c1.character_id = ‘ . $character_id . ‘
            ORDER BY
                c2.alias ASC’;
        $result = mysql_query($query, $db) or die (mysql_error($db));
                   
        $rivalries = array();
        if (mysql_num_rows($result)  >  0) {
            while ($row = mysql_fetch_array($result)) {
                $rivalries[$row[‘character_id’]] = true;
            }
        }
    }
}
? > 
 < html > 
  < head > 
   < title >  < ?php echo $action; ? >  Character < /title > 
   < style type=”text/css” > 
td { vertical-align: top; }
   < /style > 
  < /head > 
  < body > 
   < img src=”logo.jpg” alt=”Comic Book Appreciation Site” style=”float: left;” / > 
   < h1 > Comic Book < br/ > Appreciation < /h1 > 
   < h2 >  < ?php echo $action; ? >  Character < /h2 > 
   < hr style=”clear: both;”/ > 
   < form action=”char_transaction.php” method=”post” > 
    < table > 
     < tr > 
      < td > Character Name: < /td > 
      < td >  < input type=”text” name=”alias” size=”40” maxlength=”40”
       value=” < ?php echo $character[‘alias’];? > ” >  < /td > 
     < /tr >  < tr > 
      < td > Real Name: < /td > 
      < td >  < input type=”text” name=”real_name” size=”40” maxlength=”80”



Part II: Comic Book Fan Site

300

       value=” < ?php echo $character[‘real_name’];? > ” >  < /td > 
     < /tr >  < tr > 
      < td > Powers: < br/ >  < small >  < em > CTRL-click to select multiple powers 
< /em >  < /small > 
      < /td > 
      < td > 
 < ?php
// retrieve and present the list of powers
$query = ‘SELECT
        power_id, power
    FROM
        comic_power
    ORDER BY
        power ASC’;
$result = mysql_query($query, $db) or die (mysql_error($db));
                   
if (mysql_num_rows($result)  >  0) {
    echo ‘ < select multiple name=”powers[]” > ’;
    while ($row = mysql_fetch_array($result)) {
        if (isset($character_powers[$row[‘power_id’]])) {
            echo ‘ < option value=”’ . $row[‘power_id’] . ‘” 
selected=”selected” > ’;
        } else {
            echo ‘ < option value=”’ . $row[‘power_id’] . ‘” > ’;
        }
        echo $row[‘power’] . ‘ < /option > ’;
    }
    echo ‘ < /select > ’;
} else {
    echo ‘ < p >  < strong > No Powers entered... < /strong >  < /p > ’;
}
mysql_free_result($result);
? > 
      < /td > 
     < /tr >  < tr > 
      < td rowspan=”2” > Lair Location: < br/ >  < small >  < em > Address < br/ > City, State, 
      Zip Code < /em >  < /small >  < /td > 
      < td >  < input type=”text” name=”address” size=”40” maxlength=”40”
       value=” < ?php echo $character[‘address’];? > ” >  < /td > 
     < /tr >  < tr > 
      < td >  < input type=”text” name=”city” size=”23” maxlength=”40”
       value=” < ?php echo $character[‘city’];? > ” > 
       < input type=”text” name=”state” size=”2” maxlength=”2”
       value=” < ?php echo $character[‘state’];? > ” > 
       < input type=”text” name=”zipcode_id” size=”5” maxlength=”5”
       value=” < ?php echo $character[‘zipcode_id’];? > ” >  < /td > 
     < /tr >  < tr > 
      < td > Alignment: < /td > 
      < td >  < input type=”radio” name=”alignment” value=”good”
        < ?php echo ($character[‘alignment’]==’good’) ? ‘checked=”checked”’ : ‘’;
       ? < / >  Good < br/ >  



Chapter 10: Building Databases     

301

       < input type=”radio” name=”alignment” value=”evil”
        < ?php echo ($character[‘alignment’]==’evil’) ? ‘checked=”checked”’ : ‘’;
       ? < / >  Evil
      < /td > 
     < /tr >  < tr > 
     < /tr >  < tr > 
      < td > Rivalries: < br/ >  < small >  < em > CTRL-click to select multiple enemies < /em > 
       < /small > 
      < /td > 
      < td > 
 < ?php
// retrieve and present the list of existing characters (excluding the 
character
// being edited)
$query = ‘SELECT
        character_id, alias
    FROM
        comic_character
    WHERE  
        character_id != ‘ . $character_id . ‘
    ORDER BY
        alias ASC’;
$result = mysql_query($query, $db) or die (mysql_error($db));
                   
if (mysql_num_rows($result)  >  0) {
    echo ‘ < select multiple name=”rivalries[]” > ’;
    while ($row = mysql_fetch_array($result)) {
        if (isset($rivalries[$row[‘character_id’]])) {
            echo ‘ < option value=”’ . $row[‘character_id’] . 
                ‘” selected=”selected” > ’;
        } else {
            echo ‘ < option value=”’ . $row[‘character_id’] . ‘” > ’;
        }
        echo $row[‘alias’] . ‘ < /option > ’;
    }
    echo ‘ < /select > ’;
} else {
    echo ‘ < p >  < strong > No Characters entered... < /strong >  < /p > ’;
}
mysql_free_result($result);
? > 
      < /td > 
     < /tr >  < tr > 
      < td colspan=”2” > 
       < input type=”submit” name=”action”
       value=” < ?php echo $action; ? >  Character” / > 
       < input type=”reset” value=”Reset” > 
 < ?php



Part II: Comic Book Fan Site

302

if ($action == “Edit”) {
    echo ‘ < input type=”submit” name=”action” value=”Delete Character” / > ’;
    echo ‘ < input type=”hidden” name=”character_id” value=”’ . 
        $character_id . ‘” / > ’;
}
? > 
      < /td > 
     < /tr > 
    < /table > 
   < /form > 
   < p >  < a href=”list_characters.php” > Return to Home Page < /a >  < /p > 
  < /body > 
 < /html >    

  3.   Open your browser and point it to the location of  list_characters.php . This is your 
Character Database home page. It should look something like Figure  10 - 3 . But because you 
don ’ t currently have any characters to look at, let ’ s move on.     

Figure 10-3



Chapter 10: Building Databases     

303

  4.   Click the Add New Character link. A new page appears, ready for your data input, which 
should look like that in Figure  10 - 4 . You will notice that the powers you entered are choices in 
the Powers field.    

Figure 10-4

  5.   Enter the appropriate data for your character, and click Add Character. You should be taken 
back to the Character Database page, where you ’ ll see the new character listed, as shown in 
Figure  10 - 5 .    



Part II: Comic Book Fan Site

304

  6.   If you click New Character again, you now see an extra field for rivalries. You can select any 
previously created characters in the database as the current character ’ s enemies.  

  7.   From the home page, click one of your characters ’  names. The Edit Character page loads 
again, and the character ’ s data will be automatically entered into the fields (see Figure  10 - 6 ). If 
you look at the URL for this page, you see  ?id=#  at the end, where  #  is the character ’ s 
number.    

Figure 10-5



Chapter 10: Building Databases     

305

  8.   Change some of the data, and click Edit Character. You are taken back to the Character Database 
page, where you should immediately see the results of your changes. In fact, if you selected an 
enemy for this character, you should see the results change in the enemy ’ s row as well.    

  How It Works  
 You created two different files in this exercise, so we ’ re going to take them apart and look at them each 
individually here.      

  list_characters.php 

 The  list_characters.php  page has an optional parameter that can be passed:  ?o=# , where  #  is 1, 2, 
or 3. This code retrieves that variable if it exists and converts it to the appropriate value if necessary to 
determine on which column the display should be sorted. If some smart - aleck types in an invalid value, 
or if no value is passed at all, then the script will default its value to 1.   

Figure 10-6



Part II: Comic Book Fan Site

306

$order = array(1 = >  ‘alias ASC’,
               2 = >  ‘real_name ASC’,
               3 = >  ‘alignment ASC, alias ASC’);
                   
$o = (isset($_GET[‘o’])  &  &  ctype_digit($_GET[‘o’])) ? $_GET[‘o’] : 1;
if (!in_array($o, array_keys($order))) {
    $o = 1;
}  

 This value determines which column the character display will be sorted on: 1 is by alias, 2 is by real 
name, and 3 is first by alignment and then by alias. You will use the value  $o  as the key to your order 
array which will be appended to the appropriate SQL statement later. 

 You are going to build a table of characters in a moment. A SELECT query retrieves the list of characters 
sorted appropriately, and then the number of records is checked. If there are character records returned, 
then the table is constructed, but otherwise you want to display a  “ No Characters ”  message.   

$query = ‘SELECT
        character_id, alias, real_name, alignment
    FROM 
        comic_character
    ORDER BY ‘ . $order[$o];
$result = mysql_query($query, $db) or die (mysql_error($db));
                   
if (mysql_num_rows($result)  >  0) {
    // ...
} else {
    echo ‘ < p >  < strong > No Characters entered... < /strong >  < /p > ’;
}  

 The column headers for the Alias, Real Name, and Alignment columns are actually links back to the 
same page, but with different sort parameters appended to the address, so the viewer can sort the table 
to his or her heart ’ s content by clicking on them.   

echo ‘ < tr >  < th >  < a href=”’ . $_SERVER[‘PHP_SELF’] . ‘?o=1” > Alias < /a >  < /th > ’;
echo ‘ < th >  < a href=”’ . $_SERVER[‘PHP_SELF’] . ‘?o=2” > Real Name < /a >  < /th > ’;
echo ‘ < th >  < a href=”’ . $_SERVER[‘PHP_SELF’] . ‘?o=3” > Alignment < /a >  < /th > ’;
echo ‘ < th > Powers < /th > ’;
echo ‘ < th > Enemies < /th >  < /tr > ’;  

 Each row is provided with an alternating odd/even class attribute, as you have done in several earlier 
chapters, so they can be colorized. Alternating the background color of the rows makes it easier for your 
users to read them. You also make the character ’ s name a link to the  edit_character.php  page so that 
by clicking on it the user can edit the character ’ s details.   

$odd = true;  
while ($row = mysql_fetch_array($result)) {
    echo ($odd == true) ? ‘ < tr class=”odd_row” > ’ : ‘ < tr class=”even_row” > ’;
    $odd = !$odd; 
    echo ‘ < td >  < a href=”edit_character.php?id=’ . $row[‘character_id’] .
        ‘” > ’ . $row[‘alias’] . ‘ < /a >  < /td > ’;
    echo ‘ < td > ’ . $row[‘real_name’] . ‘ < /td > ’;
    echo ‘ < td > ’ . $row[‘alignment’] . ‘ < /td > ’;  



Chapter 10: Building Databases     

307

 Next are two other  SELECT  statements to retrieve the appropriate data for the remaining columns: 
powers and rivalries. Because they are executed within a loop that is processing your first query ’ s 
results,  $query2 ,  $result2  and  $row2  variables are used, so you don ’ t overwrite the first 
query ’ s results that are still needed. 

 The first  SELECT  statement fetches the character ’ s powers by  JOIN ing the  comic_power  and  comic_
character_power  tables. If powers are returned, then they are listed in the table, but if no powers have 
been assigned to the character, then  “ none ”  is displayed.   

$query2 = ‘SELECT
        power
    FROM
        comic_power p
        JOIN comic_character_power cp
            ON p.power_id = cp.power_id
    WHERE 
        cp.character_id = ‘ . $row[‘character_id’] . ‘
    ORDER BY
        power ASC’;
$result2 = mysql_query($query2, $db) or die (mysql_error($db));
                   
if (mysql_num_rows($result2)  >  0) {
    $powers = array();
    while ($row2 = mysql_fetch_assoc($result2)) {
        $powers[] = $row2[‘power’];
    }
    echo ‘ < td > ’ . implode(‘, ‘, $powers) . ‘ < /td > ’;
} else {
    echo ‘ < td > none < /td > ’;
}
mysql_free_result($result2);  

 The second  SELECT  statement fetches the character ’ s rivals. This one is similar to the previous M:N 
query, with a couple of exceptions. First of all, you are linking the character table twice. You can see that 
you are creating two instances of that table, one for the hero character and one for the villain character. 
This distinction is very important. 

 The other exception is the  ON  statement. You have characters that you are attempting to link to other 
characters and enemies. Call them opponents, nemeses, or whatever. Typically, you expect good versus 
evil, and vice versa. However, you are allowing  any  character to be the enemy of  any other  character. That 
makes linking more interesting, because you are using a table a with a  hero_id  and  villain_id . If you 
have two evil characters who are enemies to each other, which one gets stored in  hero_id ? 

 The answer is that it doesn ’ t matter. What you want to do is to make sure that you not only don ’ t have 
any duplicates in the  comic_rivalry  table, but also that you don ’ t have what we call  reverse duplication.  
In other words, if you have a row with  hero_id=3  and  villain_id=7 , then  hero_id=7  and  villain_
id=3  must be considered a duplicate. There is no way to prevent that in MySQL using primary keys, so 
you must take care of that contingency in your code. You do that in a couple of places. 

 In this instance, you are combining two queries into one. The first one grabs all instances of each 
character where there character ’ s ID is in the  hero_id  field, and his enemies ’  IDs are in the  villain_id  
field. The second part of the  ON  statement reverses that and pulls all instances of each character where 



Part II: Comic Book Fan Site

308

the character ’ s ID is in the villain field, and his enemies ’  IDs are in the  hero_id  field. This does not 
prevent reverse duplication (that is handled elsewhere), but it does make sure you have grabbed every 
possible link to a character ’ s enemy. 

 Again, if enemies are returned, then they are listed in the table. Otherwise,  “ none ”  is displayed.   

$query2 = ‘SELECT
        c2.alias
    FROM
        comic_character c1
        JOIN comic_character c2 
        JOIN comic_rivalry r 
            ON (c1.character_id = r.hero_id AND
                c2.character_id = r.villain_id) OR
               (c2.character_id = r.hero_id AND
                c1.character_id = r.villain_id)
    WHERE
        c1.character_id = ‘ . $row[‘character_id’] . ‘
    ORDER BY
        c2.alias ASC’;
$result2 = mysql_query($query2, $db) or die (mysql_error($db));
                   
if (mysql_num_rows($result2)  >  0) {
    $aliases = array();
    while ($row2 = mysql_fetch_assoc($result2)) {
        $aliases[] = $row2[‘alias’];
    }
    echo ‘ < td > ’ . implode(‘, ‘, $aliases) . ‘ < /td > ’;
} else {
    echo ‘ < td > none < /td > ’;
}
mysql_free_result($result2);   

  edit_character.php 

 This file does double duty so it ’ s a little longer. But a lot of it is HTML, and much of what it does you 
have already done before, so this shouldn ’ t be too difficult. 

 The default functionality of this page is Add Character mode. If there is a value in  $_GET[‘id’]  other 
than 0, the script will pull the data and change the default values.   

$action = ‘Add’;
                   
$character = array(‘alias’ = >  ‘’,
                   ‘real_name’ = >  ‘’,
                   ‘alignment’ = >  ‘good’,
                   ‘address’ = >  ‘’,
                   ‘city’ = >  ‘’,
                   ‘state’ = >  ‘’,
                   ‘zipcode_id’ = >  ‘’);
$character_powers = array();
$rivalries = array();
                   
$character_id = (isset($_GET[‘id’])  &  &  ctype_digit($_GET[‘id’])) ? 



Chapter 10: Building Databases     

309

    $_GET[‘id’] : 0;
                   
if ($character_id != 0) {
    // ...
}  

 Next, the script gets the basic information about the character from the  comic_character ,  comic_lair , 
and  comic_zipcode  tables.   

$query = ‘SELECT
        c.alias, c.real_name, c.alignment,
        l.address, z.city, z.state, z.zipcode_id
    FROM
        comic_character c, comic_lair l, comic_zipcode z
    WHERE
        z.zipcode_id = l.zipcode_id AND
        c.lair_id = l.lair_id AND
        c.character_id = ‘ . $character_id;
$result = mysql_query($query, $db) or die (mysql_error($db));
                   
if (mysql_num_rows($result)  >  0) {
    $action = ‘Edit’;
    $character = mysql_fetch_assoc($result);
}
mysql_free_result($result);  

 You may realize that the query is also a  JOIN  if you are an astute reader, although the  JOIN  keyword is 
not used. You can identify such a  JOIN  because there are two or more tables, and the  WHERE  clause 
matches columns from each of the tables. The  JOIN  in this case is implied, and  ON  has integrated into the 
 WHERE  clause. 

 It isn ’ t until we are sure that a character with the provided ID really exists in the database that we switch 
the page ’ s action to Edit mode, which acts as a failsafe if someone were to supply an invalid character 
ID. If the value of  $action  has been changed, then the script will continue retrieving the list of 
superpowers and rivals for the character.   

if ($action == ‘Edit’) {
    $query = ‘SELECT 
            power_id
        FROM
            comic_character_power
        WHERE character_id = ‘ . $character_id;
    $result = mysql_query($query, $db) or die (mysql_error($db));
                   
    if (mysql_num_rows($result)  >  0) {
        while ($row = mysql_fetch_array($result)) {
            $character_powers[$row[‘power_id’]] = true;
        }
    }
    mysql_free_result($result);
    
    $query = ‘SELECT
            c2.character_id



Part II: Comic Book Fan Site

310

        FROM
            comic_character c1 
            JOIN comic_character c2 
            JOIN comic_rivalry r 
                ON (c1.character_id = r.hero_id AND
                    c2.character_id = r.villain_id) OR
                   (c2.character_id = r.hero_id AND
                    c1.character_id = r.villain_id) 
        WHERE
            c1.character_id = ‘ . $character_id . ‘
        ORDER BY
            c2.alias ASC’;
    $result = mysql_query($query, $db) or die (mysql_error($db));
                   
    $rivalries = array();
    if (mysql_num_rows($result)  >  0) {
        while ($row = mysql_fetch_array($result)) {
            $rivalries[$row[‘character_id’]] = true;
        }
    }
}  

 The queries only retrieve the power IDs and rival IDs and store them in the appropriate array for later 
use. They will be used in the form ’ s Powers and Rivalries fields so each assigned to the character will be 
automatically selected. 

 Note the similarity of the SQL statement that retrieves the list of rivalries to the one earlier in  list_
characters.php . 

 You next build the HTML form and insert the values into the appropriate places as defaults. This is how 
you fill in the fields with character data.   

      < td > Character Name: < /td > 
      < td >  < input type=”text” name=”alias” size=”40” maxlength=”40”
       value=” < ?php echo $character[‘alias’];? > ” >  < /td >    

 When you build the Powers select field, the script loops through each power in the database and checks 
its ID against the list gathered earlier and stored in the  $powers  array. If that power ’ s key exists in the 
 $powers  array, then the script sets the  option  element ’ s  selected  attribute so that it will appear 
preselected in the form. In this way, the script builds a field of  all  powers where the character ’ s chosen 
powers are selected in the list. Neat, huh?   

      < td > Powers: < br/ >  < small >  < em > CTRL-click to select multiple powers < /em >  < /
small > 
      < /td > 
      < td >  
 < ?php
$query = ‘SELECT
        power_id, power
    FROM
        comic_power
    ORDER BY



Chapter 10: Building Databases     

311

        power ASC’;
$result = mysql_query($query, $db) or die (mysql_error($db));
                   
if (mysql_num_rows($result)  >  0) {
    echo ‘ < select multiple name=”powers[]” > ’;
    while ($row = mysql_fetch_array($result)) {
        if (isset($character_powers[$row[‘power_id’]])) {
            echo ‘ < option value=”’ . $row[‘power_id’] . ‘” 
selected=”selected” > ’;
        } else {
            echo ‘ < option value=”’ . $row[‘power_id’] . ‘” > ’;
        }
        echo $row[‘power’] . ‘ < /option > ’;
    }
    echo ‘ < /select > ’;
} else {
    echo ‘ < p >  < strong > No Powers entered... < /strong >  < /p > ’;
}
mysql_free_result($result); 
? > 
      < /td > 
                     

 Note the  []  in the  select  ’ s  name  attribute. That is necessary for PHP to recognize the variable as an 
array when it gets posted to the  char_transaction.php  page. This is a requirement for any field that 
might post with multiple values. 

 Then the following code creates a set of radio buttons for  “ good ”  and  “ evil ”  Alignment. The character ’ s 
alignment is preselected with the  checked  attribute.   

 < td > Alignment: < /td > 
 < td >  < input type=”radio” name=”alignment” value=”good”
   < ?php echo ($character[‘alignment’]==’good’) ? ‘checked=”checked”’ : ‘’;
  ? < / >  Good < br/ >  
  < input type=”radio” name=”alignment” value=”evil”
   < ?php echo ($character[‘alignment’]==’evil’) ? ‘checked=”checked”’ : ‘’;
  ? < / >  Evil
 < /td >    

 Remember what you did with the Powers field? Ditto all of that for the Enemies field.   

      < td > Rivalries: < br/ >  < small >  < em > CTRL-click to select multiple enemies < /em > 
       < /small > 
      < /td > 
      < td > 
 < ?php
$query = ‘SELECT
        character_id, alias
    FROM
        comic_character
    WHERE  
        character_id != ‘ . $character_id . ‘
    ORDER BY



Part II: Comic Book Fan Site

312

        alias ASC’;
$result = mysql_query($query, $db) or die (mysql_error($db));
                   
if (mysql_num_rows($result)  >  0) {
    echo ‘ < select multiple name=”rivalries[]” > ’;
    while ($row = mysql_fetch_array($result)) {
        if (isset($rivalries[$row[‘character_id’]])) {
            echo ‘ < option value=”’ . $row[‘character_id’] . 
                ‘” selected=”selected” > ’;
        } else {
            echo ‘ < option value=”’ . $row[‘character_id’] . ‘” > ’;
        }
        echo $row[‘alias’] . ‘ < /option > ’;
    }
    echo ‘ < /select > ’;
} else {
    echo ‘ < p >  < strong > No Characters entered... < /strong >  < /p > ’;
}
mysql_free_result($result);
? > 
      < /td >    

 If the character entry form is in Edit mode, then the script will include a Delete Character button. The 
button won ’ t appear in Add mode, since you can ’ t delete a character you haven ’ t created yet. Also, 
the character ID is not passed through any other form fields, so you create a hidden field to hold that 
information. You need that ID if you are going to update an existing character, right? Of course, if you 
are creating a new character, then the ID will be created for you when you insert all the appropriate data.   

if ($action == “Edit”) {
    echo ‘ < input type=”submit” name=”action” value=”Delete Character” / > ’;
    echo ‘ < input type=”hidden” name=”character_id” value=”’ . 
        $character_id . ‘” / > ’;
}     

  Summary 
 Whew! This chapter covered a lot of ground. You learned about how to plan the design of your 
application, including database design. You learned how to normalize your data so that it can easily be 
linked and manipulated without having redundant duplication. You created a brand - new database for 
your web site and started building your site by creating tables the application needed to access and 
update. 

 Congratulations! You ’ ve just created your first fully functioning web application with a relational 
database back end. (That ’ s going to look  so  good on your resume.) 

 This chapter is only the beginning, however. With the knowledge you gained here, you can create almost 
any application you desire. Here are some examples of what you could do: 

   Content Management System (CMS):  Create a data entry system that will allow users and 
administrators to alter the content of the web site and your database without knowing any 
HTML.  

❑



Chapter 10: Building Databases     

313

   Maintain a database of users visiting your site:  You can enable user authentication, e - mail your 
users to give them exciting news, sign them up for newsletters, and so on.  

   Create an online e - commerce site:  Create shopping carts where users can store the merchandise 
they will purchase. (This can be daunting  —   many choose to use a third - party shopping - cart 
application.)  

   Create an online discussion forum where your users can go to discuss how wonderful your 
site looks!     

 These are just a few ideas. In fact, you are going to see how to do each of these things over the course of 
upcoming chapters. With a little imagination, you can come up with solutions to almost any problem 
you might face in building your site. 

 If any of the ideas presented in this chapter are difficult for you to grasp, that ’ s okay  —   it is a large 
amount of new material crammed into only a few pages. We expected you to learn a lot, especially if you 
are a beginning programmer. The great thing about a book is that you can keep coming back! You will 
also be revisiting many of these concepts in later chapters. For example, in Chapter 16, where you learn 
to build your own forum, you will go through database normalization again, on a new set of databases. 
You will also have many more opportunities to create SQL queries, some familiar and some new. 

 For now, you have the basic knowledge for creating even the most complex sites. You have the first 
incarnation installed on your server. Take some time to play with your new toy. 

 Now all you need to do is let all of your friends and family know about your cool new site. If only you 
knew how to send e - mails using PHP. Well, we ’ ll handle that in Chapter 11.  

  Exercises 
 See how you might accomplish the following tasks: 

  1.   Add a  “ costume description ”  field to the character record, and provide a way to modify the cos-
tume description.  

  2.   Modify the character listing to display the characters ’  locations alongside their powers.                    

❑

❑

❑





                                11    
Sending E - mail          

 So far, the chapters in this book have walked you through the creation of a comprehensive web 
site. You have designed your site so that users can add and modify data that is stored in databases. 
You have built dynamic pages for your users, ensuring that they have a rich and unique 
experience when they visit your web site. You are even displaying helpful error messages in case 
something goes wrong. But now it ’ s time to get a little more interactive with your users, with 
e - mail. We are not talking about standard e - mail  —  we ’ re talking about sending out e - mails 
using PHP. 

 Why would you want a server - side scripting language to send out e - mails? Perhaps you want to 
create a feedback form used for submitting information to an administrator ’ s e - mail address, as 
introduced in Chapter  9 . Maybe you want certain errors to be automatically e - mailed to the 
webmaster. Perhaps you would like to create an application that allows users to send their friends 
and family electronic postcards. (Nod your head in vigorous agreement to the latter, here, because 
that is exactly what you are going to do!) 

 Specifically, this chapter covers: 

  Sending a basic e - mail  

  Sending an HTML - formatted e - mail  

  Using multipart messages  

  Sending images  

  Receiving confirmation     

❑

❑

❑

❑

❑



316

Part II: Comic Book Fan Site

  Setting Up  PHP  to Use E - mail 
 You need an e - mail server to be able to send e - mail with PHP. This chapter doesn ’ t delve too deeply into 
the setup of an e - mail server for PHP, but here are the basics. 

 If you are working within a UNIX or Linux environment, then you will most likely have sendmail 
installed on your server, or it can be installed within minutes. If you are using a shared hosting service, 
then check with your provider to see if it uses sendmail or some equivalent. 

 If you are not using sendmail, or if you have Apache installed on a Windows server, then you have a 
couple of choices. You can use your existing SMTP (Simple Mail Transfer Protocol) service, or you can 
install an e - mail server such as Mailtraq on your computer. There are many online resources available to 
help you, if you have questions about setting up or using an e - mail server. 

 Once you have your e - mail server up and running, there are a couple of parameters you ’ ll need to 
modify in your  php.ini  file. Of course, if you are using a hosting service, then your provider should 
already have these parameters set up.   

   SMTP : Set this to the IP address or DNS name of your SMTP server. For example, if you have an 
e - mail server installed on the same server as your PHP server, you should be able to set SMTP to 
 localhost .  

   smtp_port:  Set this to the port PHP uses to connect to the SMTP server.  

   sendmail_from:  The From address used by default by the PHP  mail()  command.  

   sendmail_path : The path to the sendmail program. For most servers, this is 
 usr/sbin/sendmail .    

  SMTP  and  smtp_port  parameters apply to Windows only, while the  sendmail_path  parameter applies 
to UNIX/Linux only. 

 That ’ s just about all there is to setting up PHP for e - mail. You will test to make sure it works correctly in 
the next section,  “ Sending an E - mail. ”  You can find more information about setting up PHP for e - mail at 
 http://php.net/manual/en/ref.mail.php .  

  Sending an E - mail 
 The actual method of sending an e - mail is quite simple. Of course, it can be made much more complex 
by sending HTML and images. However, you will start off with something simple.   

❑

❑

❑

❑



Chapter 11: Sending E - mail

317

            Try It Out  Sending a Simple E - mail    
 This example is just about the simplest code you can write to send an e - mail. Of course, it ’ s not very 
flexible, but it does demonstrate the  mail()  function quite well.   

  1.   Start your editor, and enter the following code (make sure you put your own e - mail address 
in as the first parameter): 

 < ?php
mail(‘myaddress@example.com’, ‘Hello World’,
    ‘Hi, world. Prepare for our arrival. We are starving!’);
? >    

  2.   Save the file as  firstmail.php , and load it in your browser. You should see a blank page and 
receive an e - mail shortly at the address entered as the first parameter to  mail() .     

  How It Works 
 Pretty cool, huh? That ’ s all there is to it! The  mail()  function automatically sends an e - mail, using the 
following format: 

mail(to_address, subject, message, headers, other_parameters)  

 If you want to send a message to multiple recipients, their addresses must be separated with a comma 
in the  to  parameter. For example: 

mail(‘me@example.com, you@example.com’, ‘Hi’, ‘Whazzup?’)  

 The parameters  headers  and  other_parameters  are optional. We will cover the  headers  parameter 
soon. The  other_parameters  are beyond the scope of this book, but if you want more information 
about the  mail()  function, point your browser to  php.net/manual/en/function.mail.php . 

 You may have noticed when receiving this e - mail that there was no From address (or, maybe it was a 
bogus address). Ours says  “ www - data. ”  In the next example, you ’ ll see how to add a From: address to 
your e - mail, and you ’ ll also collect information from the user before sending the e - mail.   

 

Try It Out  Collecting Data and Sending an E - mail   
 In this exercise, you are going to create two web pages,  postcard.php  and  sendmail.php . The file 
 postcard.php  will collect the data you are going to send. The file  sendmail.php  will actually send 

the message, using the data entered.   

  1.   Start up your text editor, and enter the following code: 

 < html > 
  < head > 
   < title > Enter E-mail Data < /title > 
  < style type=”text/css” > 



318

Part II: Comic Book Fan Site

   td { vertical-align: top; }
   < /style > 
  < /head > 
  < body > 
   < form method=”post” action=”sendmail.php” > 
    < table > 
     < tr > 
      < td > To: < /td > 
      < td >  < input type=”text” name=”to_address” size=”40”/ >  < /td > 
     < /tr >  < tr > 
      < td > From: < /td > 
      < td >  < input type=”text” name=”from_address” size=”40”/ >  < /td > 
     < /tr >  < tr > 
      < td > Subject: < /td > 
      < td >  < input type=”text” name=”subject” size=”40”/ >  < /td > 
     < /tr >  < tr > 
      < td valign=”top” > Message: < /td > 
      < td > 
       < textarea cols=”60” rows=”10”
       name=”message” > Enter your message here. < /textarea > 
      < /td > 
     < /tr >  < tr > 
      < td >  < /td > 
      < td > 
       < input type=”submit” value=”Send”/ >  
       < input type=”reset” value=”Reset”/ > 
      < /td > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >    

  2.   Save the page as  postcard.php . Note that  postcard.php  doesn ’ t actually contain any PHP 
code in it. It simply collects the required data in an HTML form. You ’ re giving it a  .php  
extension because you will be adding PHP code to it later.  

  3.   Start a new text document, and enter the following code: 

 < ?php
$to_address = $_POST[‘to_address’];
$from_address = $_POST[‘from_address’];
$subject = $_POST[‘subject’];
$message = $_POST[‘message’];
                   
$headers = ‘From: ‘ . $from_address . “\r\n”;
? > 
 < html > 
  < head > 
   < title > Mail Sent! < /title > 
  < /head > 
  < body > 
 < ?php
$success = mail($to_address, $subject, $message, $headers);



Chapter 11: Sending E - mail

319

if ($success) {
    echo ‘ < h1 > Congratulations! < /h1 > ’;
    echo ‘ < p > The following message has been sent:  < br/ >  < br/ > ’;
    echo ‘ < b > To: < /b >  ‘ . $to_address . ‘ < br/ > ’;
    echo ‘ < b > From: < /b >  ‘ . $from_address . ‘ < br/ > ’;
    echo ‘ < b > Subject: < /b >  ‘ . $subject . ‘ < br/ > ’;
    echo ‘ < b > Message: < /b >  < /p > ’;
    echo nl2br($message);
} else {
    echo ‘ < p >  < strong > There was an error sending your message. < /strong >  < /p > ’;
}
? > 
  < /body > 
 < /html >    

  4.   Save this page as  sendmail.php . This second page will take the values entered into the first 
page and send them in an e - mail.  

  5.   Load up the first page,  postcard.php , in your browser and enter some data. Make sure you 
use a valid e - mail address so that you can verify the e - mail ’ s receipt. It should look something 
like Figure  11 - 1 .    

Figure 11-1



320

Part II: Comic Book Fan Site

  6.   Click the Send button. A second page appears, similar to the one shown in Figure  11 - 2 .    

Figure 11-2

  7.   Open your e - mail client, and check your e - mail. You should find the e - mail message, as shown 
in Figure  11 - 3 .       



Chapter 11: Sending E - mail

321

Figure 11-3

 How It Works 
 Once you press the Send button on the form and submit its information,  sendmail.php  is loaded. The 
first step in your PHP code assigns all the fields from  postcard.php  to variables. 

$to_address = $_POST[‘to_address’];
$from_address = $_POST[‘from_address’];
$subject = $_POST[‘subject’];
$message = $_POST[‘message’];  

 To specify from whom the e - mail is coming, you use the optional fourth parameter to the  mail()  
function,  headers . Headers are explained in more detail in the section  “ Sending HTML by Using 
Headers, ”  later in this chapter. 

$headers = ‘From: ‘ . $from_address . “\r\n”;  

The  mail()  function returns a value of  true  if it is successful and  false  if it fails. You can use this 
return value to make your application a little more robust by showing an error message if the message 
cannot be sent:

$success = mail($to_address, $subject, $message, $headers);
if ($success) {
    echo ‘ < h1 > Congratulations! < /h1 > ’;
    echo ‘ < p > The following message has been sent:  < br/ >  < br/ > ’;
    echo ‘ < b > To: < /b >  ‘ . $to_address . ‘ < br/ > ’;
    echo ‘ < b > From: < /b >  ‘ . $from_address . ‘ < br/ > ’;



322

Part II: Comic Book Fan Site

    echo ‘ < b > Subject: < /b >  ‘ . $subject . ‘ < br/ > ’;
    echo ‘ < b > Message: < /b >  < /p > ’;
    echo nl2br($message);
} else {
    echo ‘ < p >  < strong > There was an error sending your message. < /strong >  < /p > ’;
}
                   

 

 Of course, you can modify this to handle errors more elegantly by using the knowledge you acquired 
in Chapter  9  to do so. 

 You have now created your first PHP e - mail application. Congratulations! (Call your mother! She ’ ll be 
so proud. Or better yet, e - mail her!) But you ’ ll probably soon get tired of plaintext e - mails. I ’ m sure 
you ’ re chomping at the bit to create colorful, formatted e - mails. How else are you going to enable 
users to send some pretty postcards?  

  Dressing Up Your E - mails with  HTML  
 Because you are creating a postcard application, sending plaintext e - mails just won ’ t do. You want to 
dress them up a bit and make them look attractive, and you can do that with the addition of HyperText 
Markup Language, or HTML for short. In this section, we add HTML to your e - mail code to dress it up 
and make it more visually appealing.   

Try It Out  Sending  HTML  Code in an E - mail   
 First, let ’ s try a little experiment. This step isn ’ t vital, but it will help illustrate a point about headers.   

  1.   Go back to step 5 of the previous  “ Try It Out ”  section, and send another e - mail. This time, put 
some HTML in the message. An example would be: 

 < html > 
 < h1 > Hello, World! < /h1 > 
 < p > Prepare for our arrival... we will be there soon! < /p > 
 < /html >    

  2.   When you have filled out the form and clicked the Send button, check your e - mail again. It 
should look something like the e - mail shown in Figure  11 - 4 .       



Chapter 11: Sending E - mail

323

Figure 11-4

  How It Works 
 Perhaps this heading should be  “ How It  Doesn ’ t  Work. ”  That ’ s because your e - mail client does not 
know that it has received HTML. Why? Because you didn ’ t tell it! In order for any HTML - capable 
client to display HTML, the client needs to be told that the incoming e - mail is going to have some 
HTML tags on it. Only then will it know how to properly display your message.   

 

Try It Out  Sending  HTML  by Using Headers    
 You need a way for your e - mail to tell the client it contains HTML. This is accomplished by using 
headers. You already saw how to use headers to include a From: parameter. Now you are going to use 
a similar header to tell the client that the e - mail message contains HTML.   

  1.   Edit your copy of  sendmail.php  in your text editor. Make the following highlighted 
modifications to the file: 

 < ?php
$to_address = $_POST[‘to_address’];
$from_address = $_POST[‘from_address’];
$subject = $_POST[‘subject’];
$message = $_POST[‘message’];
                   
$headers = array();



324

Part II: Comic Book Fan Site

$headers[] = ‘MIME-Version: 1.0’;
$headers[] = ‘Content-type: text/html; charset=iso-8859-1’;
$headers[] = ‘Content-Transfer-Encoding: 7bit’;
$headers[] = ‘From: ‘ . $from_address;

? > 
 < html > 
  < head > 
   < title > Mail Sent! < /title > 
  < /head > 
  < body > 
 < ?php

$success = mail($to_address, $subject, $message, join(“\r\n”, $headers));

if ($success) {
    echo ‘ < h1 > Congratulations! < /h1 > ’;
    echo ‘ < p > The following message has been sent:  < br/ >  < br/ > ’;
    echo ‘ < b > To: < /b >  ‘ . $to_address . ‘ < br/ > ’;
    echo ‘ < b > From: < /b >  ‘ . $from_address . ‘ < br/ > ’;
    echo ‘ < b > Subject: < /b >  ‘ . $subject . ‘ < br/ > ’;
    echo ‘ < b > Message: < /b >  < /p > ’;
    echo nl2br($message);
} else {
    echo ‘ < p >  < strong > There was an error sending your message. < /strong >  < /p > ’;
}
? > 
  < /body > 
 < /html >    

  2.   Save the file.  

  3.   Load  postcard.php  into your browser and fill in the fields. Be sure to include some HTML in 
the message field.  

  4.   Click the Send button, and then open your e - mail client to see the new message, which will 
look something like Figure  11 - 5 .       



Chapter 11: Sending E - mail

325

Figure 11-5

 How It Works 
 You replaced the $headers variable with an array that stores multiple headers. This allows you to do 
many additional things with your e - mail, including sending HTML. This line is required in order to 
use extended MIME capabilities (such as HTML).   

MIME-Version: 1.0  

 Note the  \r\n . This is a carriage return and new line, which must be entered between each of the 
headers. UNIX sometimes allows just  \n , but to be on the safe side, you should always use  \r\n . 

 The following indicates that you will be using HTML in your message: 

Content-type: text/html; charset=iso-8859-1
Content-Transfer-Encoding: 7bit  

 The headers are concatenated using the  join()  function with a carriage return and newline character 
( \r\n ). The carriage return and newline combination must appear with each header, according to the 
specifications that describe the format of e - mails. 

 That ’ s all there is to adding HTML to your messages. All you have to do is tell the e - mail client to 
expect HTML. Now you can get fancy and create e - mail with style sheets, images, and so on. 

However, there is still a concern  —  what if you are using an e - mail program that does not accept or 
recognize HTML? You certainly want this application to be as user - friendly as possible, right? Not to 
worry  —  you ’ ll take care of this with multipart (or mixed) messages.

 



326

Part II: Comic Book Fan Site

  Multipart Messages 
 You want to be able to send your postcards to anyone. However, some people don ’ t have HTML 
capabilities in their e - mail client. Therefore, you will send your postcards using both plaintext and 
HTML.   

Try It Out  Multipart Messages   
 You will use multipart messages to send messages with both plaintext and HTML. Here ’ s how to do it: 

  1.   Edit your copy of  sendmail.php  in your text editor. Make the following highlighted changes: 

 < ?php
 < ?php
$to_address = $_POST[‘to_address’];
$from_address = $_POST[‘from_address’];
$subject = $_POST[‘subject’];
$message = $_POST[‘message’];
                   

$boundary = ‘==MP_Bound_xyccr948x==’;

                   
$headers = array();
$headers[] = ‘MIME-Version: 1.0’;

$headers[] = ‘Content-type: multipart/alternative; boundary=”’ . $boundary . ‘”’;

$headers[] = ‘From: ‘ . $from_address;
                   
$msg_body = ‘This is a Multipart Message in MIME format.’ . “\n”;
$msg_body .= ‘--’ . $boundary . “\n”;
$msg_body .= ‘Content-type: text/html; charset=”iso-8859-1”’ . “\n”;
$msg_body .= ‘Content-Transfer-Encoding: 7bit’ . “\n\n”;
$msg_body .= $message . “\n”;
$msg_body .= ‘--’ . $boundary . “\n”;
$msg_body .= ‘Content-type: text/plain; charset=”iso-8859-1”’ . “\n”;
$msg_body .= ‘Content-Transfer-Encoding: 7bit’ . “\n\n”;
$msg_body .= strip_tags($message) . “\n”;
$msg_body .= ‘--’ . $boundary . ‘--’ . “\n”;

? > 
 < html > 
  < head > 
   < title > Mail Sent! < /title > 
  < /head > 
  < body > 
 < ?php

$success = mail($to_address, $subject, $msg_body, join(“\r\n”, $headers));

if ($success) {
    echo ‘ < h1 > Congratulations! < /h1 > ’;
    echo ‘ < p > The following message has been sent:  < br/ >  < br/ > ’;
    echo ‘ < b > To: < /b >  ‘ . $to_address . ‘ < br/ > ’;
    echo ‘ < b > From: < /b >  ‘ . $from_address . ‘ < br/ > ’;
    echo ‘ < b > Subject: < /b >  ‘ . $subject . ‘ < br/ > ’;



Chapter 11: Sending E - mail

327

    echo ‘ < b > Message: < /b >  < /p > ’;
    echo nl2br($message);
} else {
    echo ‘ < p >  < strong > There was an error sending your message. < /strong >  < /p > ’;
}
? > 
  < /body > 
 < /html >       

 How It Works 
Multipart messages are not really that complicated. You must tell the e - mail client that data is coming 
in multiple parts  —  in this instance, plaintext and HTML. This is done in the header:

$headers[] = ‘Content-type: multipart/alternative; boundary=”’ . $boundary . ‘”’;

 

 This tells the e - mail client to look for additional  “ Content - type ”  information in the message, which 
includes boundary information. The boundary is what separates the multiple parts of the message. It 
begins with two dashes (  -  -  ) and goes at the beginning of the message, between the parts, and at the end. 
There is  no  significance to the content of this boundary. The key here is to make it as unique as possible, 
so that it most likely is not a value that would be repeated anywhere within the message. You can use 
symbols, numbers, and letters, in any combination. Many people choose to use  rand()  or  md5()  hash. 
The method you use is entirely up to you. 

 The following line simply tells older e - mail programs why they may not see the information they 
expected in their browser. It ’ s not necessary, but it ’ s user - friendly: 

$msg_body = ‘This is a Multipart Message in MIME format.’ . “\n”;  

 The HTML portion of your e - mail follows. Note the double dashes (  -  -  ) in front of the boundary. Also 
note the use of two new lines ( \r\n\r\n ) on the Content - Transfer - Encoding line. Do not neglect those  — 
 the code will not work correctly without them. 

$msg_body .= ‘--’ . $boundary . “\n”;
$msg_body .= ‘Content-type: text/html; charset=”iso-8859-1”’ . “\n”;
$msg_body .= ‘Content-Transfer-Encoding: 7bit’ . “\n\n”;
$msg_body .= $message . “\n”;  

 Next is the text portion of your e - mail. Note the similarity to the HTML portion. You do not need to 
include the same message body here. In fact, you would usually include an alternate message in text 
format. 

$msg_body .= ‘--’ . $boundary . “\n”;
$msg_body .= ‘Content-type: text/plain; charset=”iso-8859-1”’ . “\n”;
$msg_body .= ‘Content-Transfer-Encoding: 7bit’ . “\n\n”;
$msg_body .= strip_tags($message) . “\n”;  



328

Part II: Comic Book Fan Site

 This is the final boundary. Note the double dashes (  -  -  ) at the end. This signifies that it ’ s the end of the 
e - mail. 

$msg_body .= ‘--’ . $boundary . ‘--’ . “\n”;  

 Your boundary in this case was set by the following line: 

$boundary = ‘==MP_Bound_xyccr948x==’;    

  Storing Images 
 To create a postcard application, you need to have digital postcards available for the user to choose from. 
For the purposes of this example, you ’ ll have four postcards. If you are ambitious, you can add more, 
and we hope that you will!    

Try It Out  Storing Images   

 Let ’ s add some nice postcards to the application, shall we?   

  1.   First, store your postcard images in a folder on your server. We have ours in the folder 
 postcards/ . Place them anywhere you like, but remember where they are.  

  2.   Start up your favorite editor, and enter the following code. Save it as  db_ch11 - 1.php . Modify 
the code appropriately if you are using a different number of postcards, etc. 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
// create the postcard image table
$query = ‘CREATE TABLE IF NOT EXISTS pc_image (
        image_id      INTEGER UNSIGNED NOT NULL AUTO_INCREMENT, 
        image_url     VARCHAR(255)     NOT NULL DEFAULT “”,
        description   VARCHAR(255)     NOT NULL DEFAULT “”,
                   
        PRIMARY KEY (image_id)
    )
    ENGINE=MyISAM’;
mysql_query($query, $db) or die (mysql_error($db));
                   
// change this path depending on your server
$images_path = ‘http://localhost/postcards/’;
                   
//insert new data into the postcard image table
$query = ‘INSERT IGNORE INTO pc_image
        (image_id, image_url, description)
    VALUES 



Chapter 11: Sending E - mail

329

        (1, “’ . $images_path . ‘punyearth.jpg”, “Wish you were here”),
        (2, “’ . $images_path . ‘congrats.jpg”, “Congratulations”),
        (3, “’ . $images_path . ‘visit.jpg”, “We\’re coming to visit”),
        (4, “’ . $images_path . ‘sympathy.jpg”, “Our Sympathies”)’;
mysql_query($query, $db) or die (mysql_error($db));
                   
echo ‘Success!’;
? >       

 How It Works 
 First, the script connected to the server, using the correct username and password as listed in  
db.inc.php . You wrote this file in Chapter  10 , and it defines the constants you use to connect to the 
MySQL database. 

$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));  

 Next, you created the  pc_image  table in the database, containing three columns:  image_id  to store 
the image ’ s primary key value,  image_url  to store the location of the image file, and  description  to 
store a brief description of the image. 

$query = ‘CREATE TABLE IF NOT EXISTS pc_image (
        image_id      INTEGER UNSIGNED NOT NULL AUTO_INCREMENT, 
        image_url     VARCHAR(255)     NOT NULL DEFAULT “”,
        description   VARCHAR(255)     NOT NULL DEFAULT “”,
                   
        PRIMARY KEY (image_id)
    )
    ENGINE=MyISAM’;
mysql_query($query, $db) or die (mysql_error($db));  

 Next, you inserted references and descriptions of the images into the  pc_image  table. The beginning 
of each path begins with  $images_path , so you needed to change the value of this variable, 
depending on your particular needs. 

$images_path = ‘http://localhost/postcards/’;
                   
$query = ‘INSERT IGNORE INTO pc_image
        (image_id, image_url, description)
    VALUES 
        (1, “’ . $images_path . ‘punyearth.jpg”, “Wish you were here”),
        (2, “’ . $images_path . ‘congrats.jpg”, “Congratulations”),
        (3, “’ . $images_path . ‘visit.jpg”, “We\’re coming to visit”),
        (4, “’ . $images_path . ‘sympathy.jpg”, “Our Sympathies”)’;
mysql_query($query, $db) or die (mysql_error($db));  

Finally,  “ Success! ”  is displayed when the script reaches its end.

echo ‘Success!’;

 



330

Part II: Comic Book Fan Site

  Getting Confirmation 
 So far, you have a pretty good start to a postcard application. Any user can send a message to whomever 
he or she wants, and PHP takes care of mailing it. Unfortunately, there is still a small problem with the 
application. 

 As it stands right now, it is quite easy for the user to use any e - mail address in the From field. 

 This is a bad thing because nasty e - mails could be sent on someone else ’ s behalf, and you don ’ t want 
that. To prevent such maliciousness, you must first send a confirmation e - mail to the From address. Once 
you get the confirmation, you know the user entered a valid e - mail address, and you can go ahead and 
send the e - mail. 

 This act of achieving confirmation is the first step toward creating a workflow application. A workflow 
application requires input from various parties at different stages before it reaches its final destination. 

 To accommodate this workflow, your application must undergo a metamorphosis from what it was in 
the past. The  sendmail.php  script must be split into two separate processes such that, in between the 
two processes, you wait for confirmation. 

 To confirm an e - mail address, the postcard information needs to be temporarily stored in a table, to be 
retrieved later on, once confirmation has been established.       

Try It Out  Getting Confi rmation   
 In this exercise, you ’ ll implement the confirmation e - mail into your application.   

  1.   Open your editor, and create a new PHP file called  db_ch11 - 2.php . 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
// create the confirmation table
$query = ‘CREATE TABLE IF NOT EXISTS pc_confirmation (
        email_id    INTEGER UNSIGNED NOT NULL AUTO_INCREMENT, 
        token       CHAR(32)         NOT NULL,
        to_email    VARCHAR(100)     NOT NULL,
        to_name     VARCHAR(50)      NOT NULL,
        from_name   VARCHAR(100)     NOT NULL,
        from_email  VARCHAR(50)      NOT NULL,
        subject     VARCHAR(255)     NOT NULL,
        postcard    VARCHAR(255)     NOT NULL,



Chapter 11: Sending E - mail

331

        message     TEXT,
                   
        PRIMARY KEY (email_id)
    )
    ENGINE=MyISAM’;
mysql_query($query, $db) or die (mysql_error($db));
                   
echo ‘Success!’;
? >    

  2.   Run  db_ch10 - 2.php , and you should see the success message displayed.  

  3.   Open up  postcard.php  in your editor and replace its content with the following code: 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
? > 
 < html > 
  < head > 
   < title > Send Postcard < /title > 
   < script type=”text/javascript” > 
                   
window.onload = function() {
    // assign change_postcard_image to select field
    var s = document.getElementById(‘postcard_select’);
    s.onchange = change_postcard_image;
}
                   
function change_postcard_image() {
    var s = document.getElementById(‘postcard_select’);
    var i = document.getElementById(‘postcard’);
    var x = s.options.selectedIndex;
                   
    // update image’s src and alt attributes
    i.src = s.options[x].value;
    i.alt = s.options[x].text;
}
   < /script > 
  < /head > 
  < body > 
   < h1 > Send Postcard < /h1 > 
   < form method=”post” action=”sendconfirm.php” > 
    < table > 
     < tr > 
      < td > Sender’s Name: < /td > 
      < td >  < input type=”text” name=”from_name” size=”40” / >  < /td > 
     < /tr >  < /tr > 
      < td > Sender’s E-mail: < /td > 
      < td >  < input type=”text” name=”from_email” size=”40” / >  < /td > 



332

Part II: Comic Book Fan Site

     < /tr >  < tr > 
      < td > Recipient’s Name: < /td > 
      < td >  < input type=”text” name=”to_name” size=”40” / >  < /td > 
     < /tr >  < /tr > 
      < td > Recipient’s E-mail: < /td > 
      < td >  < input type=”text” name=”to_email” size=”40” / >  < /td > 
     < /tr >  < tr > 
      < td > Choose a Postcard: < /td >  
      < td >  < select id=”postcard_select” name=”postcard” > 
 < ?php
$query = ‘SELECT image_url, description FROM pc_image ORDER BY description’;
$result = mysql_query($query, $db) or die(mysql_error());
                   
$row = mysql_fetch_assoc($result);
extract($row);
                   
mysql_data_seek($result, 0);
while ($row = mysql_fetch_assoc($result)) {
    echo ‘ < option value=”’ . $row[‘image_url’] . ‘” > ’ . $row[‘description’] . 
        ‘ < /option > ’;
}
mysql_free_result($result);
? > 
       < /select > 
      < /td > 
     < /tr >  < tr > 
      < td colspan=”2” > 
       < img id=”postcard” src=” < ?php echo $image_url; ? > ” 
       alt=” < ?php echo $description; ? > ” / > 
      < /td > 
     < /tr >  < tr > 
      < td > Subject: < /td > 
      < td >  < input type=”text” name=”subject” size=”80” / >  < /td > 
     < /tr >  < tr > 
      < td colspan=”2” > 
       < textarea cols=”76” rows=”12” 
       name=”message” > Enter your message here < /textarea > 
      < /td > 
     < /tr >  < tr > 
      < td colspan=”2” > 
       < input type=”submit” value=”Send” / >  
       < input type=”reset” value=”Reset the form” / > 
      < /td > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >    



Chapter 11: Sending E - mail

333

  4.   Next, write  sendconfirm.php , the page that sends out the confirmation e - mail to the user. 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$to_name = $_POST[‘to_name’];
$to_email = $_POST[‘to_email’];
$from_name = $_POST[‘from_name’];
$from_email = $_POST[‘from_email’];
$postcard = $_POST[‘postcard’];
$subject = $_POST[‘subject’];
$message = $_POST[‘message’];
                   
$query = ‘SELECT description FROM pc_image WHERE image_url = “’ . $postcard . ‘”’;
$result = mysql_query($query, $db) or die(mysql_error());
                   
$description = ‘’;
if (mysql_num_rows($result))
{
    $row = mysql_fetch_assoc($result);
    $description = $row[‘description’];
}
mysql_free_result($result);
                   
$token = md5(time());
                   
$query = ‘INSERT INTO pc_confirmation 
        (email_id, token, to_name, to_email, from_name, from_email, subject, 
         postcard, message)
    VALUES
       (NULL, “’ . $token . ‘”,  “’ . $to_name . ‘”,  “’ . $to_email . ‘”,
        “’ . $from_name . ‘”,  “’ . $from_email . ‘”,   “’ . $subject . ‘”,
        “’ . $postcard . ‘”,  “’ . $message . ‘”)’;
mysql_query($query, $db) or die(mysql_error());
                   
$email_id = mysql_insert_id($db);
                   
$headers = array();
$headers[] = ‘MIME-Version: 1.0’;
$headers[] = ‘Content-type: text/html; charset=”iso-8859-1”’;
$headers[] = ‘Content-Transfer-Encoding: 7bit’;
$headers[] = ‘From: no-reply@localhost’;
                   
$confirm_subject = ‘Please confirm your postcard [‘ . $subject .’]’;
                   
$confirm_message = ‘ < html > ’;
$confirm_message .= ‘ < p > Hello, ‘ . $from_name . ‘. Please click on the link ‘ .
    ‘below to confirm that you would like to send this postcard. < /p > ’;
$confirm_message .= ‘ < p >  < a href=”http://localhost/confirm.php?id=’ .
  $email_id . ‘ & token=’ . $token .’” > Click here to confirm < /a >  < /p > ’;



334

Part II: Comic Book Fan Site

$confirm_message .= ‘ < hr / > ’;
$confirm_message .= ‘ < img src=”’ . $postcard . ‘” alt=”’ . $description . 
    ‘ “/ >  < br/ > ’;
$confirm_message .= $message . ‘ < /html > ’;
? > 
 < html > 
  < head > 
   < title > Mail Sent! < /title > 
  < /head > 
  < body > 
 < ?php
$success = mail($from_email, $confirm_subject, $confirm_message,
    join(“\r\n”, $headers));
                   
if ($success) {
    echo ‘ < h1 > Pending Confirmation! < /h1 > ’;
    echo ‘ < p > A confirmation e-mail has been sent to ‘ . $from_email . ‘. ‘ . 
         ‘Open your e-mail and click on the link to confirm that you  ‘ .
         ‘would like to send this postcard to ‘ . $to_name . ‘. < /p > ’;
} else {
    echo ‘ < p >  < strong > There was an error sending the confirmation. < /strong >  < /p > ’;
}
? > 
  < /body > 
 < /html >    

  5.   Next is  confirm.php . This file is loaded in the browser with an ID in the URL to designate 
which saved postcard is awaiting confirmation, and the script then sends the postcard to the 
intended recipient. 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$id = (isset($_GET[‘id’])) ? $_GET[‘id’] : 0;
$token = (isset($_GET[‘token’])) ? $_GET[‘token’] : ‘’;
                   
$query = ‘SELECT email_id, token, to_name, to_email, from_name, from_email,
    subject, postcard, message FROM pc_confirmation WHERE
        token = “’ . $token . ‘”’;
$result = mysql_query($query, $db) or die(mysql_error());
                   
if (mysql_num_rows($result) == 0) {
    echo ‘ < p > Oops! Nothing to confirm. < /p > ’;
        mysql_free_result($result);
    exit;
} else {
    $row = mysql_fetch_assoc($result);
        extract($row);
    mysql_free_result($result);



Chapter 11: Sending E - mail

335

}
                   
$boundary = ‘==MP_Bound_xyccr948x==’;
                   
$headers = array();
$headers[] = ‘MIME-Version: 1.0’;
$headers[] = ‘Content-type: multipart/alternative; boundary=”’ . $boundary . ‘”’;
$headers[] = ‘From: ‘ . $from_email;
                   
$postcard_message = ‘ < html > ’;
$postcard_message .= ‘ < p > Greetings, ‘ . $to_name . ‘! ‘;
$postcard_message .= $from_name . ‘ has sent you a postcard today. < /p > ’;
$postcard_message .= ‘ < p > Enjoy! < /p > ’;
$postcard_message .= ‘ < hr / > ’;
$postcard_message .= ‘ < img src=”’ . $postcard . ‘” alt=”’ . $description . 
    ‘ “/ >  < br/ > ’;
$postcard_message .= $message;
$postcard_message .= ‘ < hr/ >  < p > You can also visit ‘ . 
    ‘ < a href=”http://localhost/viewpostcard.php?id=’ . $email_id . ‘ & token=’ . 
    $token .’” > http://localhost/viewpostcard.php?id=’ . $email_id . 
    ‘ & token=’ . $token .’ < /a >  to view this postcard online. < /p >  < /html > ’;
                   
$mail_message = ‘This is a Multipart Message in MIME format’ . “\n”;
$mail_message .= ‘--’ . $boundary . “\n”;
$mail_message .= ‘Content-type: text/html; charset=”iso-8859-1”’ . “\n”;
$mail_message .= ‘Content-Transfer-Encoding: 7bit’ . “\n\n”;
$mail_message .= $postcard_message . “\n”;
$mail_message .= ‘--’ . $boundary . “\n”;
$mail_message .= ‘Content-Type: text/plain; charset=”iso-8859-1”’ . “\n”;
$mail_message .= ‘Content-Transfer-Encoding: 7bit’ . “\n\n”;
$mail_message .= strip_tags($postcard_message) . “\n”;
$mail_message .= ‘--’ . $boundary . ‘--’ . “\n”;
? > 
 < html > 
  < head > 
   < title > Postcard Sent! < /title > 
  < /head > 
  < body > 
 < ?php
$success = mail($to_email, $subject, $mail_message, join(“\r\n”, $headers));
if ($success) {
    echo ‘ < h1 > Congratulations! < /h1 > ’;
    echo ‘ < p > The following postcard has been sent to ‘ . $to_name .
            ‘:  < br/ >  < /p > ’;
    echo $postcard_message;
} else {
    echo ‘ < p >  < strong > There was an error sending your message. < /strong >  < /p > ’;
}
? > 
  < /body > 
 < /html >    



336

Part II: Comic Book Fan Site

  6.   Next, you ’ ll create a form that allows a user to view the postcard. Call this one  
viewpostcard.php . 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$id = (isset($_GET[‘id’])) ? $_GET[‘id’] : 0;
$token = (isset($_GET[‘token’])) ? $_GET[‘token’] : ‘’;
                   
$query = ‘SELECT email_id, token, to_name, to_email, from_name, from_email,
    subject, postcard, message FROM pc_confirmation WHERE
        token = “’ . $token . ‘”’;
$result = mysql_query($query, $db) or die(mysql_error());
                   
if (mysql_num_rows($result) == 0) {
    echo ‘ < p > Oops! Nothing to view. < /p > ’;
        mysql_free_result($result);
    exit;
} else {
    $row = mysql_fetch_assoc($result);
        extract($row);
    mysql_free_result($result);
}
? > 
 < html > 
  < head > 
   < title >  < ?php echo $subject; ? >  < /title > 
  < /head > 
  < body > 
 < ?php
echo ‘ < img src=”’ . $postcard . ‘” alt=”’ . $description . ‘ “/ >  < br/ > ’;
echo $message;
? > 
  < /body > 
 < /html >    

  7.   Load  postcard.php  in your browser to verify that it works. The results should look similar 
to what ’ s shown in Figure  11 - 6 .    



Chapter 11: Sending E - mail

337

Figure 11-6



338

Part II: Comic Book Fan Site

  8.   Enter the appropriate information; remember to put in valid e - mail addresses in the Sender ’ s 
E - mail and Recipient ’ s E - mail fields.  

  9.   In the Choose a Postcard field, select a postcard from the drop - down list, enter a message, and 
click the Send button. A screen similar to the one shown in Figure  11 - 7  loads.    

Figure 11-7

  10.   Check your e - mail. You should receive an e - mail that looks something like Figure  11 - 8 .    



Chapter 11: Sending E - mail

339

  11.   Click the link in the e - mail to confirm that you want to send the postcard.  

  12.   Open the e - mail account this postcard was sent to (see Figure  11 - 9 ). 

  You did send it to an e - mail address you have access to, right? If you sent this to your little 
sister, we sure hope you didn ’ t scare her!       

Figure 11-8



340

Part II: Comic Book Fan Site

Figure 11-9

  How It Works 
 Your application is getting more complex. However, it is still fairly basic in the functionality it offers. 
Here ’ s what it does: 

  The user loads  postcard.php  and fills out all the fields. He or she also selects a postcard to 
be sent. In the Sender ’ s E - mail field, the user enters his or her e - mail address.  

❑



Chapter 11: Sending E - mail

341

  After clicking Send, the user receives an e - mail showing what the postcard and message look 
like. A link is provided at the bottom of the e - mail for the user to click on, to confirm the 
postcard.  

  Once the user clicks the confirmation link, the postcard is sent to the intended recipient.    

 Taking a closer look at the start of it, you see in  postcard.php  that you used a query to retrieve the 
list of images from the database. This is pretty straightforward and is something you ’ ve done several 
times already. But this time you used  extract()  on the first returned row and then reset the result 
list ’ s internal pointer back to its beginning with  mysql_data_seek() , before generating the options 
for the  select  element. 

 < select id=”postcard_select” name=”postcard” > 
 < ?php
$query = ‘SELECT image_url, description FROM pc_image ORDER BY description’;
$result = mysql_query($query, $db) or die(mysql_error());
                   
$row = mysql_fetch_assoc($result);
extract($row);
                   
mysql_data_seek($result, 0);
while ($row = mysql_fetch_assoc($result)) {
    echo ‘ < option value=”’ . $row[‘image_url’] . ‘” > ’ . $row[‘description’] . 
        ‘ < /option > ’;
}
mysql_free_result($result);
? > 
 < /select >   

 When the page first loads the  select  list, it shows its first option as the active postcard selection. The 
 $image_url  and  $description  variables populated by  extract()  are used as the initial values for 
the postcard ’ s  image  element, so the two are initially in sync. 

 < img id=”postcard” src=” < ?php echo $image_url; ? > ” 
 alt=” < ?php echo $description; ? > ” / >   

 Only the surface of using PHP, Apache, and MySQL has been scratched, but we ’ re sure you will agree 
this book is large enough, and that if we were to start discussing the intricacies of JavaScript, then you 
might give yourself a hernia just trying to take it off the bookshelf! You ’ re right, JavaScript is beyond 
the scope of this book. But because PHP code only runs on the server, not in the client ’ s browser, it 
cannot be used to keep the displayed images in sync with each other once the page has been generated 
and sent off. Using JavaScript in this situation helps you reduce loading time and round trips to the 
server. The following lines of extra code written in JavaScript are included in the page: 

   < script type=”text/javascript” > 
                   
window.onload = function() {
    // assign change_postcard_image to select field
    var s = document.getElementById(‘postcard_select’);
    s.onchange = change_postcard_image;
}
                   
function change_postcard_image() {
    var s = document.getElementById(‘postcard_select’);

❑

❑



342

Part II: Comic Book Fan Site

    var i = document.getElementById(‘postcard’);
    var x = s.options.selectedIndex;
                   
    // update image’s src and alt attributes
    i.src = s.options[x].value;
    i.alt = s.options[x].text;
}
   < /script >   

 If you want to know more about JavaScript, we recommend starting with  ppk on JavaScript , by 
Peter - Paul Koch (New Riders, 2006). 

 Now you move on to  sendconfirm.php . Much of it is similar to  sendmail.php , so we ’ ll just touch 
on the script ’ s most important point. Before sending the confirmation e - mail, a token is generated and, 
together with the message, is stored in the  pc_confirmation  database table. 

$token = md5(time());
                   
$query = ‘INSERT INTO pc_confirmation 
        (email_id, token, to_name, to_email, from_name, from_email, subject, 
         postcard, message)
    VALUES
       (NULL, “’ . $token . ‘”,  “’ . $to_name . ‘”,  “’ . $to_email . ‘”,
        “’ . $from_name . ‘”,  “’ . $from_email . ‘”,   “’ . $subject . ‘”,
        “’ . $postcard . ‘”,  “’ . $message . ‘”)’;
mysql_query($query, $db) or die(mysql_error());  

 You used the  md5()  function to create the token. This returns a 128 - bit  “ fingerprint, ”  or  “ hash value, ”  
of the message passed to it. For example, the MD5 hash of  “ Hello World ”  is b10a8db164e0754105b7a99
be72e3fe5. The MD5 algorithm is designed as a one - way encryption of the data passed in to it, so it 
cannot be reversed to discover the original value. Using a one - way hash in this manner allows you to 
safely have the user click on a link in his or her e - mail to view the postcard. If you used a simple 
number or keyword, a malicious user could more easily guess the URL and ruin all your fun  — 
 guessing an MD5 hash would take too long to make it worthwhile for the hacker. 

 By passing in a time value, you can be fairly certain that the MD5 hash returned will be a unique 
value, which you use as a unique ID for the data. It is not 100 percent guaranteed to be unique, but 
because it is generated based on the current time in seconds and contains 32 alphanumeric characters, 
you can be reasonably sure it will be unique.  

 

 You should read RFC 1321 if you are interested in finding out more information about the 
MD5 hash. RFC 1321:  “ The MD5 Message - Digest Algorithm ”  is available online at  
www.faqs.org/rfcs/rfc1321 .   



Chapter 11: Sending E - mail

343

  sendconfirm.php  sends an e - mail that includes a link to  confirm.php  and passes the message ’ s ID 
and token in the URL string. The postcard data sits patiently until the sender receives the confirmation 
message and follows the link that will finally send the postcard to the intended recipient. 

$confirm_message .= ‘ < p >  < a href=”http://localhost/confirm.php?id=’ .
  $email_id . ‘ & token=’ . $token .’” > Click here to confirm < /a >  < /p > ’;  

 When the sender receives the confirmation message, he or she clicks the link, and  confirm.php  is 
loaded in a web browser. The script takes in the message ID and unique validation token and uses them 
to retrieve the message from the database. 

$id = (isset($_GET[‘id’])) ? $_GET[‘id’] : 0;
$token = (isset($_GET[‘token’])) ? $_GET[‘token’] : ‘’;
                   
$query = ‘SELECT email_id, token, to_name, to_email, from_name, from_email,
    subject, postcard, message FROM pc_confirmation WHERE
token = “’ . $token . ‘”’;
$result = mysql_query($query, $db) or die(mysql_error());
                     

 The query will return all postcards that match your ID and token. Of course, there should always be just 
one match because  $id  is unique, even if, by some astronomical chance,  $token  is not. 

 Checking that  mysql_num_rows()  is not 0 (showing that the query matched no records) serves as a 
little extra insurance to make sure you don ’ t try to send out a postcard if no postcard data exists. Of 
course, you ’ ll probably think of a much more elegant error message than we ’ ve provided. In fact, this 
might even be a good place for the PHP  header()  function to redirect the user to a  “ more information ”  
error page. 

if (mysql_num_rows($result) == 0) {
    echo ‘ < p > Oops! Nothing to confirm. Please contact your administrator. < /p > ’;
         mysql_free_result($result);
    exit;
} else {
    $row = mysql_fetch_assoc($result);
         extract($row);
    mysql_free_result($result);
}   

  Creating a Reusable Mail Class 
 Now that you ’ ve seen how to perform basic e - mail functions using PHP, it ’ s time to take what you ’ ve 
learned and make a nice reusable code component. PHP objects and classes were discussed briefly, 
earlier in this book, but you haven ’ t done much with them. So, this code will be written as a class. The 
benefit to writing this as a class is that it will be self - contained to make reusability easier.    



344

Part II: Comic Book Fan Site

Try It Out  Creating a Reusable Mail Class   
 You are going to be creating a very handy file,  class.SimpleMail.php . This file is going to contain a 
PHP class that will supplement PHP ’ s simple  mail()  function. The class will encapsulate sending a 
multipart e - mail, which helps keep your source code cleaner when you use it.   

  1.   Open your editor, and create a new PHP file called  class.SimpleMail.php : 

 < ?php
class SimpleMail
{
    // class properties- parts of a message
    private $toAddress;
    private $CCAddress;
    private $BCCAddress;
    private $fromAddress;
    private $subject;
    private $sendText;
    private $textBody;
    private $sendHTML;
    private $HTMLBody;
                   
    // initialize the message parts with blank or default values
    public function __construct() {
        $this- > toAddress = ‘’;
        $this- > CCAddress = ‘’;
        $this- > BCCAddress = ‘’;
        $this- > fromAddress = ‘’;
        $this- > subject = ‘’;
        $this- > sendText = true;
        $this- > textBody = ‘’;
        $this- > sendHTML = false;
        $this- > HTMLBody = ‘’;
    }
                   
    // set TO address
    public function setToAddress($value) {
        $this- > toAddress = $value;
    }
                   
    // set CC address
    public function setCCAddress($value) {
        $this- > CCAddress = $value;
    }
                   
    // set BCC address
    public function setBCCAddress($value) {
        $this- > BCCAddress = $value;
    }
                   
    // set FROM address
    public function setFromAddress($value) {



Chapter 11: Sending E - mail

345

        $this- > fromAddress = $value;
    }
                   
    // set message subject
    public function setSubject($value) {
        $this- > subject = $value;
    }
                   
    // set whether to send email as text
    public function setSendText($value) {
        $this- > sendText = $value;
    }
                   
    // set text email message body
    public function setTextBody($value) {
        $this- > sendText = true;
        $this- > textBody = $value;
    }
                   
    // set whether to send email as HTML
    public function setSendHTML($value) {
        $this- > sendHTML = $value;
    }
                   
    // set text HTML message body
    public function setHTMLBody($value) {
        $this- > sendHTML = true;
        $this- > HTMLBody = $value;
    }
                   
    // send email
    public function send($to = null, $subject = null, $message = null,
        $headers = null) {
                   
        $success = false;
        if (!is_null($to)  &  &  !is_null($subject)  &  &  !is_null($message)) {
            $success = mail($to, $subject, $message, $headers);
            return $success;
        } else {
            $headers = array();
            if (!empty($this- > fromAddress)) {
                $headers[] = ‘From: ‘ . $this- > fromAddress;
            }
                   
            if (!empty($this- > CCAddress)) {
                $headers[] = ‘CC: ‘ . $this- > CCAddress;
            }
                   
            if (!empty($this- > BCCAddress)) {
                $headers[] = ‘BCC: ‘ . $this- > BCCAddress;
            }
                   
            if ($this- > sendText  &  &  !$this- > sendHTML) {
                $message = $this- > textBody;



346

Part II: Comic Book Fan Site

            } elseif (!$this- > sendText  &  &  $this- > sendHTML) {
                $headers[] = ‘MIME-Version: 1.0’;
                $headers[] = ‘Content-type: text/html; charset=”iso-8859-1”’;
                $headers[] = ‘Content-Transfer-Encoding: 7bit’;
                $message = $this- > HTMLBody;
            } elseif ($this- > sendText  &  &  $this- > sendHTML) {
                $boundary = ‘==MP_Bound_xyccr948x==’;
                $headers[] = ‘MIME-Version: 1.0’;
                $headers[] = ‘Content-type: multipart/alternative; boundary=”’ 
                    . $boundary . ‘”’;
                   
                $message = ‘This is a Multipart Message in MIME format.’ . “\n”;
                $message .= ‘--’ . $boundary . “\n”;
                $message .= ‘Content-type: text/plain; charset=”iso-8859-1”’ . 
                    “\n”;
                $message .= ‘Content-Transfer-Encoding: 7bit’ . “\n\n”;
                $message .= $this- > textBody  . “\n”;
                $message .= ‘--’ . $boundary . “\n”;
                   
                $message .= ‘Content-type: text/html; charset=”iso-8859-1”’ 
                    . “\n”;
                $message .= ‘Content-Transfer-Encoding: 7bit’ . “\n\n”;
                $message .= $this- > HTMLBody  . “\n”;
                $message .= ‘--’ . $boundary . ‘--’;
            }
                   
            $success = mail($this- > toAddress, $this- > subject, $message,
                join(“\r\n”, $headers));
            return $success;
        }
    }
}
? >    

  2.   Next, create the file that will be used to demonstrate plaintext functionality,  mail_text.php . 
Make sure you change the e - mail address to reflect the account to which you want to send 
the e - mail. 

 < ?php
require ‘class.SimpleMail.php’;
                   
$message = new SimpleMail();
                   
$message- > setToAddress(‘youremail@example.com’);
$message- > setSubject(‘Testing text email’);
$message- > setTextBody(‘This is a test using plain text email!’);
                   
if ($message- > send()) {
    echo ‘Text email sent successfully!’;
} else {
    echo ‘Sending of text email failed!’;
}
? >    



Chapter 11: Sending E - mail

347

  3.   Now, create a file to send HTML - format e - mails. Remember to change the e - mail address, as 
you did in the previous step. Save this file as  mail_html.php . 

 < ?php
require ‘class.SimpleMail.php’;
                   
$message = new SimpleMail();
                   
$message- > setSendText(false);
$message- > setToAddress(‘youremail@example.com’);
$message- > setSubject(‘Testing HTML Email’);
$message- > setHTMLBody(‘ < html >  < p > This is a test using  < b > HTML 
    email < /b > ! < /p >  < /html > ’);
                   
if ($message- > send()) {
    echo ‘HTML email sent successfully!’;
} else {
    echo ‘Sending of HTML email failed!’;
}
? >    

  4.   Next, create a file that will demonstrate multipart e - mails and the rest of the bells and whistles 
that make up the headers. Again, be sure to change the e - mail addresses appropriately. Save 
this file as  mail_multipart.php . 

 < ?php
require ‘class.SimpleMail.php’;
                   
$message = new SimpleMail();
                   
$message- > setToAddress(‘youremail@example.com’);
$message- > setFromAddress(‘myemail@example.com’);
$message- > setCCAddress(‘friend@example.com’);
$message- > setBCCAddress(‘secret@example.com’);
$message- > setSubject(‘Testing Multipart Email’);
$message- > setTextBody(‘This is the plain text portion of the email!’);
$message- > setHTMLBody(‘ < html >  < p > This is the  < b > HTML portion < /b >  of the 
    email! < /p >  < /html > ’);
                   
if ($message- > send()) {
    echo ‘Multi-part mail sent successfully!’;
} else {
    echo ‘Sending the multi-part mail failed!’;
}
? >    



348

Part II: Comic Book Fan Site

  5.   Last, create a file to demonstrate the quick - message functionality in the  SimpleMail  class. 
Save this file as  mail_quick.php . 

 < ?php
require ‘class.SimpleMail.php’;
                   
$message = new SimpleMail();
                   
if ($message- > send(‘youremail@example.com’, ‘Testing Quick Email’, 
    ‘This is a quick test of SimpleMail- > send().’)) {
    echo ‘Quick mail sent successfully!’;
} else {
    echo ‘Sending the quick mail failed!’;
}
? >      

 Load up  mail_text.php ,  mail_html.php ,  mail_multipart.php , and  mail_quick.php  in your 
browser. Assuming everything was typed carefully, all four  “ success ”  messages should appear, and 
you will have the matching e - mail messages in your inbox as proof.  

  How It Works 
 As you might have already discovered, using a PHP class for encapsulating functionality can be a 
great way to save coding time later on. Looking at  class.SimpleMail.php , you start out by defining 
the class and its properties: 

 < ?php
class SimpleMail
{
    // class properties- parts of a message
    private $toAddress;
    private $CCAddress;
    private $BCCAddress;
    private $fromAddress;
    private $subject;
    private $sendText;
    private $textBody;
    private $sendHTML;
    private $HTMLBody;  

 Pretty straightforward so far. You ’ ll notice the basic e - mail elements  to ,  from ,  subject , and so on are 
listed as private members, which means that they are safe from accidentally being modified by code 
outside the class. 

 Next is the  __construct()  method. PHP calls this automatically when you create an instance of 
the class, and its purpose is to initialize any variables and resources the object will be using. Here the  
__construct()  method sets initial values to the class ’ s properties previously defined. Notice that 
when you are inside the class ’ s definition and you want to reference one of the properties, you have to 
use the special syntax  $this -  >  . 

public function __construct() {
    $this- > toAddress = ‘’;
    $this- > CCAddress = ‘’;
    $this- > BCCAddress = ‘’;
    $this- > fromAddress = ‘’;



Chapter 11: Sending E - mail

349

    $this- > subject = ‘’;
    $this- > sendText = true;
    $this- > textBody = ‘’;
    $this- > sendHTML = false;
    $this- > HTMLBody = ‘’;
}  

 Because the properties were defined as private, you cannot assign values to them directly from outside 
the class. You need another way to assign them values. Here you use a set of  settor  methods. Each 
method takes in a value which is assigned to its corresponding property. 

public function setToAddress($value) {
    $this- > toAddress = $value;
}  

 Making an interface to set or get the values of an object ’ s properties is considered good programming 
practice because it keeps things neatly encapsulated and helps preserve the state of the object ’ s 
sensitive variables. 

 While the class does not have  gettor  methods used to retrieve the value of the property, you could very 
easily write them in yourself. A sample method to retrieve the  $toAddress  property would be: 

public function getToAddress() {
    return $this- > toAddress;
}  

 Finally the  send()  method is defined. You ’ ve given it four optional parameters that can be used when 
calling the method: 

    public function send($to = null, $subject = null, $message = null,
        $headers = null) {  

 If at least the first three arguments are passed to  send() , then the function will behave almost 
identically to the PHP built - in  mail()  function: 

$success = false;
if (!is_null($to)  &  &  !is_null($subject)  &  &  !is_null($message)) {
    $success = mail($to, $subject, $message, $headers);
    return $success;
} else {
...  

 You might be thinking,  “ Why bother with this when I can use the normal  mail()  function instead? ”  
Truthfully, you very well could, in this example. However, the advantage here is that the PHP class 
can enhance the normal mail - sending process with custom error messages or fallback processes, and it 
will still be only one line in the calling script ’ s code. 

 If fewer than three parameters are passed to the method, the normal send functionality begins, 
starting by setting the headers: 

$headers = array();
if (!empty($this- > fromAddress)) {
    $headers[] = ‘From: ‘ . $this- > fromAddress;
}
                   
if (!empty($this- > CCAddress)) {



350

Part II: Comic Book Fan Site

    $headers[] = ‘CC: ‘ . $this- > CCAddress;
}
                   
if (!empty($this- > BCCAddress)) {
    $headers[] = ‘BCC: ‘ . $this- > BCCAddress;
}  

 The  $sendText  and  $sendHTML  properties are checked to determine what format the e - mail should 
be sent in, starting with plaintext: 

if ($this- > sendText  &  &  !$this- > sendHTML) {
    $message = $this- > textBody;  

 If the e - mail is specified as HTML - only, the headers and message body are set accordingly: 

} elseif (!$this- > sendText  &  &  $this- > sendHTML) {
    $headers[] = ‘MIME-Version: 1.0’;
    $headers[] = ‘Content-type: text/html; charset=”iso-8859-1”’;
    $headers[] = ‘Content-Transfer-Encoding: 7bit’;
    $message = $this- > HTMLBody;  

 In the case of multipart e - mails, the boundary tokens are set, and the e - mail message body is 
constructed with both the  $textBody  and  $HTMLBody  properties. 

} elseif ($this- > sendText  &  &  $this- > sendHTML) {
                   
    $boundary = ‘==MP_Bound_xyccr948x==’;
    $headers[] = ‘MIME-Version: 1.0’;
    $headers[] = ‘Content-type: multipart/alternative; boundary=”’ .
        $boundary . ‘”’;
                   
    $message = ‘This is a Multipart Message in MIME format.’ . “\n”;
    $message .= ‘--’ . $boundary . “\n”;
    $message .= ‘Content-type: text/plain; charset=”iso-8859-1”’ . “\n”;
    $message .= ‘Content-Transfer-Encoding: 7bit’ . “\n\n”;
    $message .= $this- > textBody  . “\n”;
    $message .= ‘--’ . $boundary . “\n”;
                   
    $message .= ‘Content-type: text/html; charset=”iso-8859-1”’ . “\n”;
    $message .= ‘Content-Transfer-Encoding: 7bit’ . “\n\n”;
    $message .= $this- > HTMLBody  . “\n”;
    $message .= ‘--’ . $boundary . ‘--’;
}  

 Finally, the  send()  method proceeds to send the e - mail after all the message and header construction 
is complete. 

$success = mail($this- > toAddress, $this- > subject, $message,
    join(“\r\n”, $headers));
return $success;  



Chapter 11: Sending E - mail

351

 Perhaps you have noticed that the methods are defined using the keyword  function . That ’ s 
because a method and function are practically the same thing. The difference is more in terminology; 
a method is a function that is defined as part of a class. You should also have noticed that the class ’ s 
methods are declared as  public . Unlike the properties, the methods are allowed to be accessed from 
outside the class. 

 The other scripts should be pretty straightforward. Starting in  mail_text.php , you include your 
 SimpleMail  class, and create a new object instance of it: 

require ‘class.SimpleMail.php’;
                   
$message = new SimpleMail();  

 Next, the required properties are set: 

$message- > setToAddress(‘youremail@example.com’);
$message- > setSubject(‘Testing text email’);
$message- > setTextBody(‘This is a test using plain text email!’);  

 And finally, the e - mail is sent, giving a success message: 

if ($message- > send()) {
    echo ‘Text email sent successfully!’;
} else {
    echo ‘Sending of text email failed!’;
}  

 When sending HTML - formatted e - mail, as in  mail_html.php , you begin roughly the same way, 
including the  class.SimpleMail.php  file and creating a new instance of a  SimpleMail  object. It 
differs when you start setting the properties of the mail: 

$message- > setSendText(false);
$message- > setToAddress(‘youremail@example.com’);
$message- > setSubject(‘Testing HTML Email’);
$message- > setHTMLBody(‘ < html >  < p > This is a test using  < b > HTML 
     email < /b > ! < /p >  < /html > ’);  

 There are two things to take note of here. First, you ’ re using the  setHTMLBody()  method instead of 
the  setTextBody()  message to provide your message. If you used the  setTextBody()  method 
instead of  setHTMLBody() , then your e - mail would be empty! Second, you ’ re explicitly turning off 
plaintext sending. If you didn ’ t turn off plaintext sending, then the value for  $sendText  would be 
true (the default value), and the e - mail would be sent as multipart. 

 In the multipart example script,  mail_multipart.php , you add extra header fields, such as  From ,  Cc , 
and  Bcc : 

$message- > setToAddress(‘youremail@example.com’);
$message- > setFromAddress(‘myemail@example.com’);
$message- > setCCAddress(‘friend@example.com’);
$message- > setBCCAddress(‘secret@example.com’);
$message- > setSubject(‘Testing Multipart Email’);
$message- > setTextBody(‘This is the plain text portion of the email!’);
$message- > setHTMLBody(‘ < html >  < p > This is the  < b > HTML portion < /b >  of the 
    email! < /p >  < /html > ’);  



352

Part II: Comic Book Fan Site

 No extra effort is needed to send a multipart message, other than specifying both a plaintext message 
and an HTML message. How simple is that? 

 In the final example, you use the basic emulation of PHP ’ s  mail()  function that the class provides. 
Behold the short and sweet  mail_quick.php : 

 < ?php
require ‘class.SimpleMail.php’;
                   
$message = new SimpleMail();
                   
if ($message- > send(‘youremail@example.com’, ‘Testing Quick Email’, 
    ‘This is a quick test of SimpleMail- > send().’)) {
    echo ‘Quick mail sent successfully!’;
} else {
    echo ‘Sending the quick mail failed!’;
}
? >   

 All you had to do was include the class file and call the send method, using the three required 
parameters!   

 

  Summary 
 In this chapter, you ’ ve looked at PHP ’ s  mail()  function and learned how to use it, by creating a 
postcard application. You may have seen similar applications at Hallmark ’ s or Yahoo! ’ s web sites 
( www.hallmark.com  and  www.yahoo.americangreetings.com ). Your application is not as complex 
as theirs, but with a little bit more work, it shouldn ’ t be too difficult to offer your users some really 
terrific features. 

 You ’ ve also created a simple e - mail – sending PHP class that can be reused in applications that need basic 
e - mail functionality. Now you won ’ t have to recode those messy multipart e - mail messages each time! 
Keep your eyes peeled in future chapters because it will be popping up from time to time to lend a hand. 

 The  mail()  function gives PHP the capability to communicate with the outside world, whether it be 
with users of the web site, web site or server administrators, or even another server. There are many 
opportunities to use  mail() . A simple form on the web page that a user fills out to describe a technical 
problem can be immediately e - mailed to a tech support person, for example. Or the PHP server can send 
the web site administrator an e - mail any time a web page displays a fatal error. Complicated workflow 
applications can be created, such as content management applications. 



Chapter 11: Sending E - mail

353

 You ’ ve experienced user interaction in this chapter by requiring that the user click a link in a 
confirmation e - mail before sending the postcard. In the next chapter, you ’ ll take the interaction a step 
further, as you learn how to let the user create an account on your site. With this feature, you can keep 
track of your users and present custom information based on each user ’ s preferences.  

  Exercises 
 See how you might accomplish the following tasks: 

  1.   Create code to send a message to an e - mail account and blind carbon copy (BCC) yourself or 
 another account.  

  2.   Create a simple web form that e - mails comments or suggestions to an account of your choosing.                       





      12 
   User Logins, Profiles, and 

Personalization         

 In this chapter, you ’ ll learn how to implement user logins and profiles and how to personalize 
your web pages using PHP ’ s session and cookie functions. You will create a useful login and 
personalization application that can easily be integrated into other applications you ’ ve created in 
this book thus far. 

 With Apache ’ s support for additional per - directory configuration files and PHP ’ s support for 
sessions, you can prevent hackers and the general public from stumbling onto your sensitive files. 
Session and cookie functions are probably two of the most important and useful functions you will 
encounter in the entire PHP programming language, because of the ability they give you to 
identify an individual viewing a page and restrict or grant access to certain content. You wouldn ’ t 
want just anyone nosing about in your important files, and you certainly wouldn ’ t want a 
malicious visitor changing information displayed on your web site in any way he or she desired. 

 Specifically, you learn how to do the following in this chapter: 

  Restrict access to files and directories via  htpasswd   .

  Use PHP to accomplish the same functionality as with  htpasswd , but with more control 
and flexibility  .

  Store user and admin information in a database and utilize database - driven logins  .

  Create a registration system with required and optional fields for users to sign up  .

  Use cookies to preserve login information between sessions  .

  Modify a navigation system depending on whether a user has logged in or not     .

❑

❑

❑

❑

❑

❑



356

Part II: Comic Book Fan Site

  The Easiest Way to Protect Your Files 
 Using  htpasswd  is a simple and quick solution to restricting access to files or directory structures. Some 
web sites contain sensitive information that you don ’ t want the public to access or view unrestrictedly. 
Or perhaps you have an administration section where administrators can change the content of the 
public site, such as a news or upcoming events section; you don ’ t want everybody to have unauthorized 
access that enables them to change that content as well as see it.    

Try It Out Creating htaccess and htpasswd Files   

 In this exercise, you ’ ll protect a folder so that a dialog box pops up requiring that a username and 
password be entered when a user visits any page in that directory. 

 Follow these steps: 

  1.   Create a new folder named  private  in your web directory.  

  2.   Open Apache ’ s main configuration file,  httpd.conf , and look for the following lines. By 
default, these lines are likely to be nested in the   < Directory >   section that configures your 
web root: 

# AllowOverride controls what directives may be placed in .htaccess files.
# It can be “All”, “None”, or any combination of the keywords:
# Options FileInfo AuthConfig Limit
#
AllowOverride None   

  3.   To allow per - directory  .htaccess  support that will be used to configure your access 
restrictions, change the  AllowOverride  directive to look like this: 

AllowOverride AuthConfig   

  4.   Save the configuration file, and restart Apache so it will recognize the change you made.  

  5.   Create a text file named  .htaccess  in the  private  directory that you want to restrict access 
to. Add to it the following lines: 

AuthType Basic
AuthUserFile “C:\Program Files\Apache Software Foundation\Apache2.2\userauth”
AuthName “Restricted”
 < LIMIT GET POST > 
    require valid-user
 < /LIMIT >   

  Be sure to substitute the correct path for the  AuthUserFile  file if you set up Apache in a 
 different directory, or if you are on Linux.  



Chapter 12: User Logins, Profi les, and Personalization

357

  6.   Open a command prompt, and type the following: 

htpasswd -c “C:\Program Files\Apache Software Foundation\Apache2.2\
userauth” john  

  Again, be sure to substitute the correct path, depending on your needs.  

  7.   When prompted to enter John ’ s password, enter it as  doe . You will then be required to reenter 
the password for confirmation.  

  8.   Attempt to navigate to your protected directory with your web browser, and you should see a 
screen similar to Figure  12 - 1 .    

Figure 12-1

  9.   If you enter the correct username and password, you will be allowed to view the directory 
you are requesting, along with any file or folder that resides there. However, if you fail to 
enter the appropriate username and password three consecutive times, or press Cancel, then 
you will see a screen similar to that shown in Figure  12 - 2 .       



358

Part II: Comic Book Fan Site

  How It Works 
 When you request a page, Apache checks for any  .htaccess  files in every folder, from the web site ’ s 
document root all the way down to the directory that has the file that you are requesting. Apache 
opens any  .htaccess  files it finds and interprets the configuration rules they contain. The directives 
you added to the  .htaccess  file in the private directory tell Apache to protect the directory and to 
give access only to valid users, as defined in the  userauth  file generated by  htpasswd . No 
anonymous users will be allowed access.   

AuthType Basic
AuthUserFile “C:\Program Files\Apache Software Foundation\Apache2.2\userauth”
AuthName “Restricted”
 < LIMIT GET POST > 
    require valid-user
 < /LIMIT >   

 Because no usernames or passwords are submitted with your initial request, Apache sends a message back 
to the browser requesting you to enter a username and password to access this section of the site. This is 

Figure 12-2



Chapter 12: User Logins, Profi les, and Personalization

359

what triggers the browser to display a dialog box to submit the username and password. You are allowed 
access once these are accepted. Your web browser will remember to automatically submit the username and 
password when accessing the particular folder and throughout the directory tree for the rest of the browser 
session, so you don ’ t have to keep supplying them over and over again for each page request. 

 There are, however, some problems and drawbacks to using  htpasswd : 

❑   The dialog box that pops up is often ugly.  

  ❑ Your third - party hosting company may not allow the use of .htaccess .  

❑   It ’ s easier for a hacker to use brute force attacks with this type of authentication than when you use 
program - driven logins.  

❑   It only restricts access to files; it does not modify the page ’ s content depending on the user, to create 
a truly personal web site experience.    

 Luckily for you, you can use PHP to solve these problems.  

 

  Friendlier Logins Using  PHP  ’ s Session and 

Cookie Functions 
 A  session  is information that persists on the server side between page requests when someone navigates 
around your web site. You can use session information to track a user throughout the site, and when this 
information is combined with user logins, you can set user preferences, identify privileges for different 
pages, and much more. 

  Cookies  work in a similar fashion, although they are stored on a user ’ s computer instead of the server. 
Because they are stored on a user ’ s computer, the user is able to look at the cookie file and modify the 
information (or even delete it), if he or she chooses to do so. Cookies are somewhat less secure than 
sessions stored on the server. 

 The purpose of this chapter is not just to help you restrict access to certain files. PHP ’ s session and cookie 
functions can be used to require that users of your site be authorized before they are allowed to use the 
pages to their full functionality, but the functions can also be used to customize the pages according to 
the users ’  preferences, for a truly personal browsing experience. You will see more of this later, but for 
now we ’ ll start by showing you how to work with sessions.    



360

Part II: Comic Book Fan Site

Try It Out Using  PHP  for Logins   

 In this exercise, you ’ ll use some code within PHP itself to authorize the user ’ s username and 
password: 

  1.   Open your text editor, and create a new PHP file with the following code. Save it as  secret.php .   

 < ?php
include ‘auth.inc.php’;
? > 
 < html > 
  < head > 
   < title > Secret < /title > 
  < /head > 
  < body > 
   < h1 > You’ve found my secret! < /h1 > 
  < /body > 
 < /html >    

  2.   Start another PHP file using this code, and save it as  auth.inc.php : 

 < ?php
// start or continue session
session_start();
                   
if (!isset($_SESSION[‘logged’]) || $_SESSION[‘logged’] != 1) {
    header(‘Refresh: 5; URL=login.php?redirect=’ . $_SERVER[‘PHP_SELF’]);
    echo ‘ < p > You will be redirected to the login page in 5 seconds. < /p > ’;
    echo ‘ < p > If your browser doesn\’t redirect you properly automatically, ‘ .
        ‘ < a href=”login.php?redirect=’ . $_SERVER[‘PHP_SELF’] . 
        ‘” > click here < /a > . < /p > ’;
    die();
}
? >    

  3.   Create a third PHP file with the following code: 

 < ?php
session_start();
                   
// filter incoming values
$username = (isset($_POST[‘username’])) ? trim($_POST[‘username’]) : ‘’;
$password = (isset($_POST[‘password’])) ? $_POST[‘password’] : ‘’;
$redirect = (isset($_REQUEST[‘redirect’])) ? $_REQUEST[‘redirect’] : 
‘main.php’;
                   
if (isset($_POST[‘submit’])) {
                   
    if (!isset($_SESSION[‘logged’]) || $_SESSION[‘logged’] != 1) {
                   
        if (!empty($_POST[‘username’])  &  &  $_POST[‘username’] == ‘wroxbooks’  &  &  
            !empty($_POST[‘password’])  &  &  $_POST[‘password’] == ‘aregreat’) {
                   



Chapter 12: User Logins, Profi les, and Personalization

361

            $_SESSION[‘username’] = $username;
            $_SESSION[‘logged’] = 1;
            header (‘Refresh: 5; URL=’ . $redirect);
            echo ‘ < p > You will be redirected to your original page 
              request. < /p > ’;
            echo ‘ < p > If your browser doesn\’t redirect you properly ‘ . 
                ‘automatically,  < a href=”’ . $redirect . ‘” >
                    click here < /a > . < /p > ’;
            die();
        } else {
            // set these explicitly just to make sure
            $_SESSION[‘username’] = ‘’;
            $_SESSION[‘logged’] = 0;
                   
            $error = ‘ < p >  < strong > You have supplied an invalid username 
                and/or ‘ .
                ‘password! < /strong >  Please  < a href=”register.php” > click here ‘ .
                ‘to register < /a >  if you have not done so already. < /p > ’;
        }
    }
}
? > 
 < html > 
  < head > 
   < title > Login < /title > 
  < /head > 
  < body > 
 < ?php
if (isset($error)) {
    echo $error;
}
? > 
   < form action=”login.php” method=”post” > 
    < table > 
     < tr > 
      < td > Username: < /td > 
      < td >  < input type=”text” name=”username” maxlength=”20” size=”20”
       value=” < ?php echo $username; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td > Password: < /td > 
      < td >  < input type=”password” name=”password” maxlength=”20” size=”20”
       value=” < ?php echo $password; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >     < /td > 
      < td > 
       < input type=”hidden” name=”redirect” value=” < ?php echo $redirect ? > ”/ > 
       < input type=”submit” name=”submit” value=”Login”/ > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >    



362

Part II: Comic Book Fan Site

  4.   Save the file as  login.php .  

  5.   Navigate to the  secret.php  page you created. Because you haven ’ t logged in yet, the  
auth.inc.php  file you included redirects you to the  login.php  page, as shown in 
Figure  12 - 3 .    

Figure 12-3

  6.   Try using incorrect login information so you can see how the page works. You will see a 
screen similar to the one shown in Figure  12 - 4 .    



Chapter 12: User Logins, Profi les, and Personalization

363

  7.   Now, input the correct information:  wroxbooks  for the username and  aregreat  for the 
password. You are redirected to the page you originally requested, because you supplied the 
correct information. You will see a screen similar to Figure  12 - 5 .       

Figure 12-4



364

Part II: Comic Book Fan Site

 How It Works 
 The PHP pages you just created are used to authorize a user to view a certain page of your site. When 
you navigate to  secret.php , the included  auth.inc.php  file checks to see if you have successfully 
started a session by logging in. If not, you are redirected to the login page. This is the magic line of 
code that does the checking: 

if (!isset($_SESSION[‘logged’]) || $_SESSION[‘logged’] != 1) {  

 The   $ _SESSION[ ‘ logged ’ ]  is the variable you are checking for, and the value 1 is another way of 
checking for true. 

 Right now, you have a username and password hard - coded into your page. If you want numerous 
users, you would have to edit your page accordingly and add those values for those users.   

if (!empty($_POST[‘username’])  &  &  $_POST[‘username’] == ‘wroxbooks’  &  & 
    !empty($_POST[‘password’])  &  &  $_POST[‘password’] == ‘aregreat’) {  

 This is a very useful way to protect your PHP files to limit use to logged - in users and administrators. 
However, there is one major drawback that you will resolve later when you integrate the database -
 driven system: Hard - coded usernames and passwords are only manageable when the number of users 

Figure 12-5



Chapter 12: User Logins, Profi les, and Personalization

365

with login information is small. As the number of users grows, the credentials will become more 
cumbersome and unwieldy to manage. 

In the next sections, you learn how you can use PHP in conjunction with MySQL to create user - driven 
login systems. You also learn how to allow for multiple administrators, multiple usernames and 
passwords, and privilege levels that can be managed with the MySQL database.

 

  Using Database - Driven Information 
 Before you can use database - driven logins, you obviously need to have the appropriate tables set up. So 
first you will create the tables in your MySQL database. You will also add a few sample user accounts for 
testing purposes.   

      Try It Out Creating the Database Tables      

  1.   Create a new PHP script with the following code: 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
// create the user table
$query = ‘CREATE TABLE IF NOT EXISTS site_user (
        user_id     INTEGER     NOT NULL AUTO_INCREMENT,
        username    VARCHAR(20) NOT NULL,
        password    CHAR(41)    NOT NULL,
                   
        PRIMARY KEY (user_id)
    )
    ENGINE=MyISAM’;
mysql_query($query, $db) or die (mysql_error($db));
                   
// create the user information table
$query = ‘CREATE TABLE IF NOT EXISTS site_user_info (
        user_id     INTEGER     NOT NULL,
        first_name  VARCHAR(20) NOT NULL,
        last_name   VARCHAR(20) NOT NULL,
        email       VARCHAR(50) NOT NULL,
        city        VARCHAR(20),
        state       CHAR(2),
        hobbies     VARCHAR(255),
                   
        FOREIGN KEY (user_id) REFERENCES site_user(user_id)



366

Part II: Comic Book Fan Site

    )
    ENGINE=MyISAM’;
mysql_query($query, $db) or die (mysql_error($db));
                   
// populate the user table
$query = ‘INSERT IGNORE INTO site_user
        (user_id, username, password) 
    VALUES
        (1, “john”, PASSWORD(“secret”)),
        (2, “sally”, PASSWORD(“password”))’;
mysql_query($query, $db) or die (mysql_error($db));
                   
// populate the user information table
$query = ‘INSERT IGNORE INTO site_user_info
        (user_id, first_name, last_name, email, city, state, hobbies) 
    VALUES
        (1, “John”, “Doe”, “jdoe@example.com”, NULL, NULL, NULL),
        (2, “Sally”, “Smith”, “ssmith@example.com”, NULL, NULL, NULL)’;
mysql_query($query, $db) or die (mysql_error($db));
                   
echo ‘Success!’;
? >    

  2.   Save the file as  db_ch12 - 1.php .  

  3.   Open  db_ch12 - 1.php  in your web browser. PHP will execute the code to create the tables in 
your database and then show you the success message if everything goes correctly.     

  How It Works 
 First, you created an administration table named  site user . This is where you can keep track of the 
administrators managing your system.   

$query = ‘CREATE TABLE IF NOT EXISTS site_user (
        user_id     INTEGER     NOT NULL AUTO_INCREMENT,
        username    VARCHAR(20) NOT NULL,
        password    CHAR(41)    NOT NULL,
                   
        PRIMARY KEY (user_id)
    )
    ENGINE=MyISAM’;
mysql_query($query, $db) or die (mysql_error($db));  

 Then, you created a second table named  site_user_info  to store additional information about your 
administrators, such as their names, where they are from, and their hobbies: 

$query = ‘CREATE TABLE IF NOT EXISTS site_user_info (
        user_id     INTEGER     NOT NULL,
        first_name  VARCHAR(20) NOT NULL,
        last_name   VARCHAR(20) NOT NULL,
        email       VARCHAR(50) NOT NULL,
        city        VARCHAR(20),



Chapter 12: User Logins, Profi les, and Personalization

367

        state       CHAR(2),
        hobbies     VARCHAR(255),
                   
        FOREIGN KEY (user_id) REFERENCES site_user(user_id)
    )
    ENGINE=MyISAM’;
mysql_query($query, $db) or die (mysql_error($db));  

 You then added a couple of administrators in your tables, so you can begin to create the registration 
portion of your PHP code to allow users to register and log in, and update their information or delete 
their accounts if needed.   

$query = ‘INSERT IGNORE INTO site_user
        (user_id, username, password) 
    VALUES
        (1, “john”, PASSWORD(“secret”)),
        (2, “sally”, PASSWORD(“password”))’;
mysql_query($query, $db) or die (mysql_error($db));
                   
$query = ‘INSERT IGNORE INTO site_user_info
        (user_id, first_name, last_name, email, city, state, hobbies)
    VALUES
        (1, “John”, “Doe”, “jdoe@example.com”, NULL, NULL, NULL),
        (2, “Sally”, “Smith”, “ssmith@example.com”, NULL, NULL, NULL)’;
mysql_query($query, $db) or die (mysql_error($db));  

 If you looked at the records stored in  site_user  after running  db_ch12 - 1.php , you will have 
noticed what looks like gibberish stored in the password column. You aren ’ t storing the user ’ s actual 
password. Rather, you are storing a hash representation of it, by using MySQL ’ s  PASSWORD()  function. 

 You can think of hashing as a form of one - way encryption. The algorithms that perform the hashing 
for you are quite complex, and guarantee that every time you hash the same value you will get the 
same gibberish - looking string as a result. If the input values are off, even ever so slightly, then the 
result will be wildly different. For example, when you hash the word  “ secret ”  with the  PASSWORD()  
function, you get   * 14E65567ABDB5135D0CFD9A70B3032C179A49EE7 . But if you hash  “ Secret ”  you 
get   * 0CD5E5F2DE02BE98C175EB67EB906B926F001B9B  instead! 

 So how will you verify the user when he or she logs in to your web site and provides a username and 
password? Simple. Remember, the hash will always be the same for the same value. So all you need to 
do is take a provided password and hash it with  PASSWORD() . Then, if that value matches the value 
stored in the database, you know the user entered the correct password. You will see this in action 
shortly. 

 It is a good idea to avoid storing the user ’ s actual password, if you can. This way, if your database 
were to be compromised, the attacker would be faced with quite a task trying to figure out the users ’  
passwords from the hash values. Unlike encryption, hashing is a one - direction - only process. That is, 
you cannot take a hash value and convert it back to the original value. 

 Once the user has been authenticated, you can again use sessions to track the user and provide access to 
sensitive sections of your web site. Let ’ s continue forward in building the user login system.     

 



368

Part II: Comic Book Fan Site

Try It Out Session Tracking with  PHP  and My SQL     

 In this exercise, you create a user login system that uses the database tables you created earlier. You 
will program it so that the user is required to input a username, password, first name, last name, and 
e - mail address. The other fields that will be stored in the  site_user_info  table will be optional.   

  1.   First, create an index page that looks for login information, similar to the one in the previous 
example, but don ’ t include an authorization page, so that you can show different content 
based on whether or not the user is logged in. This allows the user the chance to log in, if he 
or she wishes to. Call this page  main.php , and use the following code to create it: 

 < ?php
session_start();
? > 
 < html > 
  < head > 
   < title > Main Page < /title > 
  < /head > 
  < body > 
   < h1 > Welcome to the home page! < /h1 > 
 < ?php
if (isset($_SESSION[‘logged’])  &  &  $_SESSION[‘logged’] == 1) {
    // user is logged in
} else {
    // user is not logged in
}
? > 
  < /body > 
 < /html >    

  2.   Now, modify the  main.php  file as shown, so you can have different content show up, 
depending on whether or not a user is logged in. This first branch will be available when the 
user is logged in, and will contain links to the users ’  own personal area (which you create 
later), to allow them to update personal information or delete their account entirely. The 
second branch will simply contain some information about the benefits that registering 
provides and explain how to go about registering: 

 < ?php
session_start();
? > 
 < html > 
  < head > 
   < title > Main Page < /title > 
  < /head > 
  < body > 
   < h1 > Welcome to the home page! < /h1 > 
 < ?php
if (isset($_SESSION[‘logged’])  &  &  $_SESSION[‘logged’] == 1) {
    // user is logged in



Chapter 12: User Logins, Profi les, and Personalization

369

? > 
   < p > Thank you for logging into our system,  < b >  < ?php 
echo $_SESSION[‘username’];? > . < /b >  < /p >  
   < p > You may now  < a href=”user_personal.php” > click here < /a >  to go to your
own personal information area and update or remove your information should
you wish to do so. < /p > 
 < ?php

} else {
    // user is not logged in

? > 
   < p > You are currently not logged in to our system. Once you log in,
you will have access to your personal area along with other user
information. < /p > 
   < p > If you have already registered,  < a href=”login.php” > click
here < /a >  to log in. Or if you would like to create an account, 
 < a href=”register.php” > click here < /a >  to register. < /p > 
 < ?php

}
? > 
  < /body > 
 < /html >    

  3.   Create the registration page, making sure you include the optional fields, and that the 
username chosen by the user registering isn ’ t the same as an existing username. Call it 
 register.php . If users don ’ t fill out some required fields, or use an already registered 
username, you will notify them and keep what has already been entered in the appropriate 
fields, so they don ’ t have to reenter everything.   

 < ?php
session_start();
                   
include ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$hobbies_list = array(‘Computers’, ‘Dancing’, ‘Exercise’, ‘Flying’, 
    ‘Golfing’,
    ‘Hunting’, ‘Internet’, ‘Reading’, ‘Traveling’, ‘Other than listed’);
                   
// filter incoming values
$username = (isset($_POST[‘username’])) ? trim($_POST[‘username’]) : ‘’;
$password = (isset($_POST[‘password’])) ? $_POST[‘password’] : ‘’;
$first_name = (isset($_POST[‘first_name’])) ? trim($_POST[‘first_name’]) : ‘’;
$last_name = (isset($_POST[‘last_name’])) ? trim($_POST[‘last_name’]) : ‘’;
$email = (isset($_POST[‘email’])) ? trim($_POST[‘email’]) : ‘’;
$city = (isset($_POST[‘city’])) ? trim($_POST[‘city’]) : ‘’;
$state = (isset($_POST[‘state’])) ? trim($_POST[‘state’]) : ‘’;
$hobbies = (isset($_POST[‘hobbies’])  &  &  is_array($_POST[‘hobbies’])) ?



370

Part II: Comic Book Fan Site

    $_POST[‘hobbies’] : array();
                   
if (isset($_POST[‘submit’])  &  &  $_POST[‘submit’] == ‘Register’) {

                   
    $errors = array();
                   
    // make sure manditory fields have been entered
    if (empty($username)) {
        $errors[] = ‘Username cannot be blank.’;
    }
                   
    // check if username already is registered
    $query = ‘SELECT username FROM site_user WHERE username = “’ .
        $username . ‘”’;
    $result = mysql_query($query, $db) or die(mysql_error());
    if (mysql_num_rows($result)  >  0) {
        $errors[] = ‘Username ‘ . $username . ‘ is already registered.’;
        $username = ‘’;
    }
    mysql_free_result($result);
                   
    if (empty($password)) {
        $errors[] = ‘Password cannot be blank.’;
    }
    if (empty($first_name)) {
        $errors[] = ‘First name cannot be blank.’;
    }
    if (empty($last_name)) {
        $errors[] = ‘Last name cannot be blank.’;
    }
    if (empty($email)) {
        $errors[] = ‘Email address cannot be blank.’;
    }
                   
    if (count($errors)  >  0) {
        echo ‘ < p >  < strong style=”color:#FF000;” > Unable to process your ‘ . 
            ‘registration. < /strong >  < /p > ’;
        echo ‘ < p > Please fix the following: < /p > ’;
        echo ‘ < ul > ’;
        foreach ($errors as $error) {
            echo ‘ < li > ’ . $error . ‘ < /li > ’;
        }
        echo ‘ < /ul > ’;
    } else {
        // No errors so enter the information into the database.
                   
        $query = ‘INSERT INTO site_user 
                (user_id, username, password)
           VALUES 
               (NULL, “’ . mysql_real_escape_string($username, $db) . ‘”, ‘ . 
                ‘PASSWORD(“’ . mysql_real_escape_string($password, 
                   $db) . ‘”))’;



Chapter 12: User Logins, Profi les, and Personalization

371

        $result = mysql_query($query, $db) or die(mysql_error());
                   
        $user_id = mysql_insert_id($db);
                   
        $query = ‘INSERT INTO site_user_info 
                (user_id, first_name, last_name, email, city, state, hobbies)
           VALUES 
               (‘ . $user_id . ‘, ‘ .
                ‘”’ . mysql_real_escape_string($first_name, $db)  . ‘”, ‘ .
                ‘”’ . mysql_real_escape_string($last_name, $db)  . ‘”, ‘ .
                ‘”’ . mysql_real_escape_string($email, $db)  . ‘”, ‘ .
                ‘”’ . mysql_real_escape_string($city, $db)  . ‘”, ‘ .
                ‘”’ . mysql_real_escape_string($state, $db)  . ‘”, ‘ .
                ‘”’ . mysql_real_escape_string(join(‘, ‘, $hobbies), 
                  $db)  . ‘”)’;
        $result = mysql_query($query, $db) or die(mysql_error());
                   
        $_SESSION[‘logged’] = 1;
        $_SESSION[‘username’] = $username;
                   
        header(‘Refresh: 5; URL=main.php’);
? > 
 < html > 
  < head > 
   < title > Register < /title > 
  < /head > 
  < body > 
   < p >  < strong > Thank you  < ?php echo $username; ? >  for registering! < /strong >  < /p > 
   < p > Your registration is complete! You are being sent to the page you
requested. If your browser doesn’t redirect properly after 5 seconds,
 < a href=”main.php” > click here < /a > . < /p > 
  < /body > 
 < /html > 
 < ?php
        die();
    }
}
? > 
 < html > 
  < head > 
   < title > Register < /title > 
   < style type=”text/css” > 
   td { vertical-align: top; }
   < /style > 
  < /head > 
  < body > 
   < form action=”register.php” method=”post” > 
    < table > 
     < tr > 
      < td >  < label for=”username” > Username: < /label >  < /td > 
      < td >  < input type=”text” name=”username” id=”username” size=”20”
       maxlength=”20” value=” < ?php echo $username; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”password” > Password: < /label >  < /td > 
      < td >  < input type=”password” name=”password” id=”password” size=”20”



372

Part II: Comic Book Fan Site

       maxlength=”20” value=” < ?php echo $password; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”email” > Email: < /label >  < /td > 
      < td >  < input type=”text” name=”email” id=”email” size=”20” maxlength=”50”
       value=” < ?php echo $email; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”first_name” > First name: < /label >  < /td > 
      < td >  < input type=”text” name=”first_name” id=”first_name” size=”20”
       maxlength=”20” value=” < ?php echo $first_name; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”last_name” > Last name: < /label >  < /td > 
      < td >  < input type=”text” name=”last_name” id=”last_name” size=”20”
       maxlength=”20” value=” < ?php echo $last_name; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”city” > City: < /label >  < /td > 
      < td >  < input type=”text” name=”city” id=”city” size=”20” maxlength=”20”
       value=” < ?php echo $city; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”state” > State: < /label >  < /td > 
      < td >  < input type=”text” name=”state” id=”state” size=”2” maxlength=”2”
       value=” < ?php echo $state; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”hobbies” > Hobbies/Interests: < /label >  < /td > 
      < td >  < select name=”hobbies[]” id=”hobbies” multiple=”multiple” > 
 < ?php
foreach ($hobbies_list as $hobby)
{
    if (in_array($hobby, $hobbies)) {
        echo ‘ < option value=”’ . $hobby . ‘” selected=”selected” > ’ . $hobby .
            ‘ < /option > ’;
    } else {
        echo ‘ < option value=”’ . $hobby . ‘” > ’ . $hobby . ‘ < /option > ’;
    } 
}
? > 
       < /select >  < /td > 
     < /tr >  < tr > 
      < td >     < /td > 
      < td >  < input type=”submit” name=”submit” value=”Register”/ >  < /td > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >       

  How It Works 
 The  register.php  script is the whole core of your registration system in one file: registration form, 
error handling, and placing the data into the database. The page allows users to enter different 
information for their accounts, and restricts users from using someone else ’ s username for registration. 
Once users are registered, you can allow them to log in to the system and modify their account 
information as they see fit. 

 The  main.php  page checks whether or not a user is logged in. Again, the   $ _SESSION[ ‘ user_
logged ’ ]  variable is being checked to see if users have already been logged in and are just revisiting 
some pages. They are shown different page content, depending on whether they are logged in or not. 



Chapter 12: User Logins, Profi les, and Personalization

373

 Here ’ s a quick recap of what you ’ ve done: 

❑   You have an index page that checks whether or not a user is logged in.  

❑   Based on that check, it either shows the user directions to log in or to register, to allow access to his 
or her personal information area.  

❑   You have the registration area covered, along with the login process, and are keeping users tracked 
with their session information.  

 

      Try It Out Authorizing Users to Edit Their Accounts    

 You will create the area where users are allowed to change their information or delete their account, but 
first you will need to slightly modify the authorization page, which checks whether or not users are 
logged in and redirects them accordingly. You also need to make some slight modifications to the login 
page: 

  1.   Modify  auth.inc.php  with the highlighted changes: 

 < ?php
// start or continue session
session_start();
                   
if (!isset($_SESSION[‘logged’])) {

    header(‘Refresh: 5; URL=login.php?redirect=’ . $_SERVER[‘PHP_SELF’]);
    echo ‘ < p > You will be redirected to the login page in 5 seconds. < /p > ’;
    echo ‘ < p > If your browser doesn\’t redirect you properly automatically, ‘ .
        ‘ < a href=”login.php?redirect=’ . $_SERVER[‘PHP_SELF’] .
        ‘” > click here < /a > . < /p > ’;
    die();
}
? >    

  2.   Update the  login.php  file to check the username and password against usernames and 
passwords stored in the MySQL database. The necessary changes are highlighted: 

 < ?php
session_start();
                   
include ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
// filter incoming values
$username = (isset($_POST[‘username’])) ? trim($_POST[‘username’]) : ‘’;
$password = (isset($_POST[‘password’])) ? $_POST[‘password’] : ‘’;



374

Part II: Comic Book Fan Site

$redirect = (isset($_REQUEST[‘redirect’])) ? $_REQUEST[‘redirect’] : 
   ‘main.php’;
                   
if (isset($_POST[‘submit’])) {

    $query = ‘SELECT username FROM site_user WHERE ‘ .
         ‘username = “’ . mysql_real_escape_string($username, $db) . ‘” AND ‘ .
         ‘password = PASSWORD(“’ . mysql_real_escape_string($password, 
           $db) . ‘”)’;
    $result = mysql_query($query, $db) or die(mysql_error($db));
    if (mysql_num_rows($result)  >  0) {
        $_SESSION[‘username’] = $username;

        $_SESSION[‘logged’] = 1;
        header (‘Refresh: 5; URL=’ . $redirect);
        echo ‘ < p > You will be redirected to your original page request. < /p > ’;
        echo ‘ < p > If your browser doesn\’t redirect you properly
          automatically, ‘ .
            ‘ < a href=”’ . $redirect . ‘” > click here < /a > . < /p > ’;
        die();
    } else {

        $error = ‘ < p >  < strong > You have supplied an invalid username and/or ‘ .
            ‘password! < /strong >  Please  < a href=”register.php” > click here ‘ .
            ‘to register < /a >  if you have not done so already. < /p > ’;

    }
}
? > 
 < html > 
  < head > 
   < title > Login < /title > 
  < /head > 
  < body > 
 < ?php
if (isset($error)) {
    echo $error;
}
? > 
   < form action=”login.php” method=”post” > 
    < table > 
     < tr > 
      < td > Username: < /td > 
      < td >  < input type=”text” name=”username” maxlength=”20” size=”20”
       value=” < ?php echo $username; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td > Password: < /td > 
      < td >  < input type=”password” name=”password” maxlength=”20” size=”20”
       value=” < ?php echo $password; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >     < /td > 
      < td > 
       < input type=”hidden” name=”redirect” value=” < ?php echo $redirect ? > ”/ > 
       < input type=”submit” name=”submit” value=”Login”/ > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >    



Chapter 12: User Logins, Profi les, and Personalization

375

  3.   Create the  user_personal.php  page with the following code: 

 < ?php
include ‘auth.inc.php’;
include ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
? > 
 < html > 
  < head > 
   < title > Personal Info < /title > 
  < /head > 
  < body > 
   < h1 > Welcome to your personal information area. < /h1 > 
   < p > Here you can update your personal information, or delete your 
    account. < /p > 
   < p > Your information as you currently have it is shown below. < /p > 
   < p >  < a href=”main.php” > Click here < /a >  to return to the home page. < /p > 
 < ?php
$query = ‘SELECT
        username, first_name, last_name, city, state, email, hobbies 
    FROM
        site_user u JOIN
        site_user_info i ON u.user_id = i.user_id
    WHERE
        username = “’ . mysql_real_escape_string($_SESSION
          [‘username’], $db) . ‘”’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
$row = mysql_fetch_array($result);
extract($row);
mysql_free_result($result);
mysql_close($db);
? > 
   < ul > 
    < li > First Name:  < ?php echo $first_name; ? >  < /li > 
    < li > Last Name:  < ?php echo $last_name; ? >  < /li > 
    < li > City:  < ?php echo $city; ? >  < /li > 
    < li > State:  < ?php echo $state; ? >  < /li > 
    < li > Email:  < ?php echo $email; ? >  < /li > 
    < li > Hobbies/Interests:  < ?php echo $hobbies; ? >  < /li > 
   < /ul > 
   < p >  < a href=”update_account.php” > Update Account < /a >  | 
    < a href=”delete_account.php” > Delete Account < /a >  < /p > 
  < /body > 
 < /html >       



376

Part II: Comic Book Fan Site

  How It Works 
 How it works isn ’ t that much different from anything you ’ ve done so far in this book. You ’ ve made 
calls to the database, pulled information from it, and displayed the information. The only difference 
here is the use of the sessions, once again. The session is used to track users so they are not allowed to 
access someone else ’ s account information. 

 You make a query that joins  site_user  and  site_user_info  to retrieve the account information, 
according to the user ’ s supplied username that is stored in the session. This way, there is no confusion 
as to whose account the user should be in; that is, if the user was able to log in to the system, then the 
user was using his or her own account.   

$query = ‘SELECT
        username, first_name, last_name, city, state, email, hobbies 
    FROM
        site_user u JOIN
        site_user_info i ON u.user_id = i.user_id
    WHERE
        username = “’ . mysql_real_escape_string($_SESSION
[‘username’], $db) . ‘”’;
$result = mysql_query($query, $db) or die(mysql_error($db));  

 Of course, this section is dependent on the login process. If users fail the login process, they won ’ t be 
able to use this system to update or delete their account as they see fit. 

 Displaying, modifying, and deleting the information from MySQL is no different from what you have 
done thus far, but now you ’ ve used sessions for extra security.    

 

Try It Out Editing User Accounts    

 You may have noticed in the previous exercise that there are links to pages that you haven ’ t created 
yet. Let ’ s create them now. One page will allow logged - in users to update their accounts. The other 
will allow users to delete their accounts, upon confirming that that is their intention.   

  1.   Create the first page,  update_account.php , with the following code: 

 < ?php
include ‘auth.inc.php’;
include ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$hobbies_list = array(‘Computers’, ‘Dancing’, ‘Exercise’, ‘Flying’, ‘Golfing’,
    ‘Hunting’, ‘Internet’, ‘Reading’, ‘Traveling’, ‘Other than listed’);
                   
if (isset($_POST[‘submit’])  &  &  $_POST[‘submit’] == ‘Update’) {
    // filter incoming values



Chapter 12: User Logins, Profi les, and Personalization

377

    $username = (isset($_POST[‘username’])) ? trim($_POST[‘username’]) : ‘’;
    $user_id = (isset($_POST[‘user_id’])) ? $_POST[‘user_id’] : ‘’;
    $first_name = (isset($_POST[‘first_name’])) ? trim($_POST
      [‘first_name’]) : ‘’;
    $last_name = (isset($_POST[‘last_name’])) ? trim($_POST[‘last_name’]) : ‘’;
    $email = (isset($_POST[‘email’])) ? trim($_POST[‘email’]) : ‘’;
    $city = (isset($_POST[‘city’])) ? trim($_POST[‘city’]) : ‘’;
    $state = (isset($_POST[‘state’])) ? trim($_POST[‘state’]) : ‘’;
    $hobbies = (isset($_POST[‘hobbies’])  &  &  is_array($_POST[‘hobbies’])) ?
        $_POST[‘hobbies’] : array();
                   
    $errors = array();
    
    // make sure the username and user_id is a valid pair (we don’t 
      want people to
    // try and manipulate the form to hack someone else’s account!)
      $query = ‘SELECT username FROM site_user WHERE user_id = 
    ‘ . (int)$user_id . 
       ‘ AND username = “’ . mysql_real_escape_string($_SESSION
         [‘username’], $db) . ‘”’;
    $result = mysql_query($query, $db) or die(mysql_error());
                   
    if (mysql_num_rows($result) == 0) {
? > 
 < html > 
  < head > 
   < title > Update Account Info < /title > 
  < /head > 
  < body > 
   < p >  < strong > Don’t try to break out form! < /strong >  < /p > 
  < /body > 
 < /html > 
 < ?php
        mysql_free_result($result);
        mysql_close_db($db);
        die();
    }
    mysql_free_result($result);
                   
                   
    if (empty($first_name)) {
        $errors[] = ‘First name cannot be blank.’;
    }
    if (empty($last_name)) {
        $errors[] = ‘Last name cannot be blank.’;
    }
    if (empty($email)) {
        $errors[] = ‘Email address cannot be blank.’;
    }
                   
    if (count($errors)  >  0) {
        echo ‘ < p >  < strong style=”color:#FF000;” > Unable to update your ‘ .
            ‘account information. < /strong >  < /p > ’;
        echo ‘ < p > Please fix the following: < /p > ’;



378

Part II: Comic Book Fan Site

        echo ‘ < ul > ’;
        foreach ($errors as $error) {
            echo ‘ < li > ’ . $error . ‘ < /li > ’;
        }
        echo ‘ < /ul > ’;
    } else {
        // No errors so enter the information into the database.
                   
        $query = ‘UPDATE site_user_info SET
            first_name = “’ . mysql_real_escape_string($first_name, $db) . ‘”,
            last_name = “’ . mysql_real_escape_string($last_name, $db) . ‘”,
            email = “’ . mysql_real_escape_string($email, $db) . ‘”,
            city = “’ . mysql_real_escape_string($city, $db) . ‘”,
            state = “’ . mysql_real_escape_string($state, $db) . ‘”,
            hobbies = “’ . mysql_real_escape_string(join
              (‘, ‘, $hobbies), $db) . ‘”
          WHERE
            user_id = ‘ . $user_id;
        mysql_query($query, $db) or die(mysql_error());
        mysql_close($db);
? > 
 < html > 
  < head > 
   < title > Update Account Info < /title > 
  < /head > 
  < body > 
   < p >  < strong > Your account information has been updated. < /strong >  < /p > 
   < p >  < a href=”user_personal.php” > Click here < /a >  to return to your 
account. < /a >  < /p > 
  < /body > 
 < /html > 
 < ?php
        die();
    }
} else {
    $query = ‘SELECT
        u.user_id, first_name, last_name, email, city, state, hobbies 
          AS my_hobbies
        FROM
        site_user u JOIN site_user_info i ON u.user_id = i.user_id
        WHERE
        username = “’ . mysql_real_escape_string($_SESSION[‘username’], 
          $db) . ‘”’;
    $result = mysql_query($query, $db) or die(mysql_error());
    $row = mysql_fetch_assoc($result);
                   
    extract($row);
    $hobbies = explode(‘, ‘, $my_hobbies);
                   
    mysql_free_result($result);
    mysql_close($db);
}
? > 



Chapter 12: User Logins, Profi les, and Personalization

379

 < html > 
  < head > 
   < title > Update Account Info < /title > 
   < style type=”text/css” > 
   td { vertical-align: top; }
   < /style > 
   < script type=”text/javascript” > 
   window.onload = function() {
       document.getElementById(‘cancel’).onclick = goBack;
   }
   function goBack() {
       history.go(-1);
   }
   < /script > 
  < /head > 
  < body > 
   < h1 > Update Account Information < /h1 > 
   < form action=”update_account.php” method=”post” > 
    < table > 
     < tr > 
      < td > Username: < /td > 
      < td >  < input type=”text” value=” < ?php echo $_SESSION[‘username’]; ? > ”
        disabled=”disabled”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”email” > Email: < /label >  < /td > 
      < td >  < input type=”text” name=”email” id=”email” size=”20” maxlength=”50”
       value=” < ?php echo $email; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”first_name” > First name: < /label >  < /td > 
      < td >  < input type=”text” name=”first_name” id=”first_name” size=”20”
       maxlength=”20” value=” < ?php echo $first_name; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”last_name” > Last name: < /label >  < /td > 
      < td >  < input type=”text” name=”last_name” id=”last_name” size=”20”
       maxlength=”20” value=” < ?php echo $last_name; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”city” > City: < /label >  < /td > 
      < td >  < input type=”text” name=”city” id=”city” size=”20” maxlength=”20”
       value=” < ?php echo $city; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”state” > State: < /label >  < /td > 
      < td >  < input type=”text” name=”state” id=”state” size=”2” maxlength=”2”
       value=” < ?php echo $state; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”hobbies” > Hobbies/Interests: < /label >  < /td > 
      < td >  < select name=”hobbies[]” id=”hobbies” multiple=”multiple” > 
 < ?php
foreach ($hobbies_list as $hobby)
{
    if (in_array($hobby, $hobbies)) {
        echo ‘ < option value=”’ . $hobby . ‘” selected=”selected” > ’ . $hobby .
            ‘ < /option > ’;
    } else {



380

Part II: Comic Book Fan Site

        echo ‘ < option value=”’ . $hobby . ‘” > ’ . $hobby . ‘ < /option > ’;
    } 
}
? > 
       < /select >  < /td > 
     < /tr >  < tr > 
      < td >     < /td > 
      < td > 
       < input type=”hidden” name=”user_id” value=” < ?php echo $user_id;? > ”/ > 
       < input type=”submit” name=”submit” value=”Update”/ >  
       < input type=”button” id=”cancel” value=”Cancel”/ > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >    

  2.   Create the next page and call it  delete_account.php . It will allow users to delete their 
accounts. It contains the following code: 

 < ?php
include ‘auth.inc.php’;
include ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
if (isset($_POST[‘submit’])  &  &  $_POST[‘submit’] == ‘Yes’) {
    $query = ‘DELETE i FROM
            site_user u JOIN site_user_info i ON u.user_id = i.user_id
        WHERE u.username=”’ .
        mysql_real_escape_string($_SESSION[‘username’], $db) . ‘”’;
    mysql_query($query, $db) or die(mysql_error($db));
                   
    $query = ‘DELETE FROM site_user WHERE username=”’ .
        mysql_real_escape_string($_SESSION[‘username’], $db) . ‘”’;
    mysql_query($query, $db) or die(mysql_error($db));
                   
    $_SESSION[‘logged’] = null;
    $_SESSION[‘username’] = null;
? > 
 < html > 
  < head > 
   < title > Delete Account < /title > 
  < /head > 



Chapter 12: User Logins, Profi les, and Personalization

381

  < body > 
   < p >  < strong > Your account has been deleted. < /strong >  < /p > 
   < p >  < a href=”main.php” > Click here < /a >  to return to the homepage. < /a >  < /p > 
  < /body > 
 < /html > 
 < ?php
    mysql_close($db);
    die();
} else {
? > 
 < html > 
  < head > 
   < title > Delete Account < /title > 
   < script type=”text/javascript” > 
   window.onload = function() {
       document.getElementById(‘cancel’).onclick = goBack;
   }
   function goBack() {
       history.go(-1);
   }
   < /script > 
  < /head > 
  < body > 
   < p > Are you sure you want to delete your account? < /p > 
   < p >  < strong > There is no way to retrieve your account once you 
confirm! < /strong >  < /p > 
   < form action=”delete_account.php” method=”post” > 
    < div > 
     < input type=”submit” name=”submit” value=”Yes”/ > 
     < input type=”button” id=”cancel” value=” No “ onclick=”history.go(-1);”/ > 
    < /div > 
   < /form > 
  < /body > 
 < /html > 
 < ?php
}
? >       

 How It Works 
 Imagine new users coming to this section of the site for the first time. They navigate to the  main.php  
page and initially see a screen similar to the one shown in Figure  12 - 6 .   



382

Part II: Comic Book Fan Site

 The users obviously haven ’ t logged in yet, so they are not allowed to do anything else here. They are 
given the choice to log in if they have registered before, or they can register to activate an account. 

 Should the users decide to log in, they will be presented with the login form. Users will be required to 
supply the username and password they chose for themselves. The modifications you made to the 
login page result in two distinct differences from its previous incarnation. First, the authorization is 
coming from a MySQL database, rather than the hard - coding of the username and password 
combinations into the page itself. Second, if users don ’ t enter the information correctly, they will be 
asked for the information again, but will have the option to register from that page, as well. This is 
shown in Figure  12 - 7 .   

Figure 12-6



Chapter 12: User Logins, Profi les, and Personalization

383

 If a user chooses to register, he or she will see a page similar to the one in Figure  12 - 8 .   

Figure 12-7

Figure 12-8



384

Part II: Comic Book Fan Site

 Now users can fill in their information and register to be users of this site. Once the user fills in the 
information and hits the Register button, the code checks whether or not the required fields have been 
filled out. If one (or more) of the required fields is not filled out, the form appears again, with the 
entered information still in the form and an error message stating what the problems were, as shown 
in Figure  12 - 9 .   

Figure 12-9

 A check is also performed to see if the username entered has already been taken by someone else. 
Should that be the case, the form again retains any information that has been filled in, and an error 
message appears stating that the username is not available. The username field is blank so users know 
that they need to choose another username. This is shown in Figure  12 - 10 .   



Chapter 12: User Logins, Profi les, and Personalization

385

 Once the registration is complete, the users are automatically logged in, and they will be redirected to 
the home page. After being redirected, the users can log in using the new account credentials that 
were just registered. 

 Once they are logged in, users are able to navigate to their own personal information pages, where 
they can update their information at any time. They are also allowed to delete their account from this 
location, if they so choose. 

 The beauty of sessions and keeping track of users is that you don ’ t have to worry about passing 
information about the users with form data, or passing it through the query string or address bar. All 
the data is stored temporarily on the server where the web site resides. You also don ’ t have to worry 
about people trying to put parameters into the address bar to fake the identity of another user. The 
session data is unavailable to users on the site, so only if they had access to the server itself would they 
be able to obtain the user - supplied data. 

 Now, you will look at the pages where the user ’ s information is displayed, and where a user can 
update or delete his or her account. The display page simply displays the previously entered user 
information. The update page is also straightforward: It shows a form with the user ’ s previously 
entered data and gives the user the ability to update it, if he or she wishes, or simply cancel the update 
and return to the previous screen. The delete page merely asks if the user is sure he or she wants to 
delete the account, and gives the option of returning to the previous screen. The user ’ s information 
display page should look something like the one shown in Figure  12 - 11 .   

Figure 12-10



386

Part II: Comic Book Fan Site

 When users choose to update their accounts, they will see a screen similar to Figure  12 - 12 .   

Figure 12-11

Figure 12-12



Chapter 12: User Logins, Profi les, and Personalization

387

 Should they update their information, users will be told that the information was indeed updated, and 
they can go back to their personal home page. That screen will look like the one in Figure  12 - 13 .   

Figure 12-13

Figure 12-14

 Finally, the delete page looks similar to the one shown in Figure  12 - 14 . This appears once users choose 
the Delete Account link on the display page. From here, if users choose Yes, their account is deleted, 
their logged - in session will be destroyed, and they will be able to go back to the index page.   



388

Part II: Comic Book Fan Site

That ’ s it for the user portion of the registration system. You ’ ll create an administration section later in 
the chapter, where you can allow certain levels of admins to have different privileges from other users. 
But now, let ’ s move on to a quick cookie example, which you can incorporate into the previous 
registration system.

 

  Using Cookies in  PHP  
 Cookies are used much like sessions, as explained previously. The main difference between sessions 
and cookies is that session information is stored on the server, and cookie information is stored on the 
user ’ s computer. A benefit of cookies, though, is that you can control the amount of time the cookie is 
available, while sessions disappear when users close their browser. 

 A cookie is a small bit of information stored on a viewer ’ s computer by his or her web browser, by 
request from a web page. The information is constantly passed in HTTP headers between the browser 
and web server; the browser sends the current cookie as part of its request to the server, and the server 
sends updates to the data back to the user as part of its response. 

 The size of a cookie depends on the browser, but in general it should not exceed 1K (1,024 bytes). The 
information can really be anything  . . .  it can be a name, the number of visits to the site, web - based 
shopping - cart information, personal viewing preferences, or anything else that can be used to help 
provide customized content to the user.   

       Try It Out Cookie Tracking with  PHP     

 Here ’ s a quick example of how to use cookies in a page to see if the users have a corresponding cookie 
stored on their machines. Then, if you want, you can implement this into your login system, to allow 
persistent logins between single browser sessions. This is commonly known as a  “ remember me ”  
option. You will be supplying the cookie ’ s value through the code, but if you were to implement it, 
you could replace all the code you ’ ve done so far with cookies rather than sessions. You ’ ll use four 
small pages for this example. We will give you all of them first and then explain how they work 
afterwards.   

  1.   Create the first file,  cookies_set.php : 

 < ?php
// Cookies may expire 30 days from now (given in seconds)
$expire = time() + (60 * 60 * 24 * 30);
                   
setcookie(‘username’, ‘test_user’, $expire);
setcookie(‘remember_me’, ‘yes’, $expire);
                   
header(‘Refresh: 5; URL=cookies_test.php’);
? > 
 < html > 
  < head > 
   < title > Cookies Test (Set) < /title > 
  < /head > 



Chapter 12: User Logins, Profi les, and Personalization

389

  < body > 
   < h1 > Setting Cookies < /h1 > 
   < p > You will be redirected to the main test page in 5 seconds. < /p > 
   < p > If your browser doesn’t redirect you automatically, 
    < a href=”cookies_test.php” > click here < /a > . < /p > 
  < /body > 
 < /html >    

  2.   Create the second file,  cookies_delete.php : 

 < ?php
// Cookies expired sometime in the past
$expire = time() - 1000;
                   
setcookie(‘username’, null, $expire);
setcookie(‘remember_me’, null, $expire);
                   
header(‘Refresh: 5; URL=cookies_test.php’);
? > 
 < html > 
  < head > 
   < title > Cookies Test (Delete) < /title > 
  < /head > 
  < body > 
   < h1 > Deleting Cookies < /h1 > 
   < p > You will be redirected to the main test page in 5 seconds. < /p > 
   < p > If your browser doesn’t redirect you automatically, 
    < a href=”cookies_test.php” > click here < /a > . < /p > 
  < /body > 
 < /html >    

  3.   Create the third file,  cookies_view.php : 

 < html > 
  < head > 
   < title > Cookies Test (View) < /title > 
  < /head > 
  < body > 
   < h1 > These cookies are set < /h1 > 
 < ?php
if (!empty($_COOKIE)) {
    echo ‘ < pre > ’;
    print_r($_COOKIE);
    echo ‘ < /pre > ’;
} else {
    echo ‘ < p > No cookies are set. < /p > ’;
}
? > 
   < p >  < a href=”cookies_test.php” > Back to main test page < /a >  < /p > 
  < /body > 
 < /html >    



390

Part II: Comic Book Fan Site

  4.   Create the fourth file,  cookies_test.php : 

 < html > 
  < head > 
   < title > Cookies Test < /title > 
  < /head > 
  < body > 
   < h1 > This is the Cookies Test Page < /h1 > 
   < p >  < a href=”cookies_set.php” > Set Cookies < /a >  < /p > 
   < p >  < a href=”cookies_view.php” > View Cookies < /a >  < /p > 
   < p >  < a href=”cookies_Delete.php” > Delete Cookies < /a >  < /p > 
  < /body > 
 < /html >       

 How It Works 
 We ran through this cookie example to show you how you can keep persistent logins between single 
browser sessions. The  cookies_test.php  page is the starting navigation point, with options to set, 
view, and delete the cookies. It looks like the page shown in Figure  12 - 15 .   

Figure 12-15



Chapter 12: User Logins, Profi les, and Personalization

391

 You can then navigate to  cookies_view.php . This page checks to see if the cookie values are valid. If 
they are not, it says  “ No cookies are set, ”  and you can try to set the cookies again. If the cookies were 
set successfully, then the screen will look like the one in Figure  12 - 17 .   

 The Set Cookies link directs you to  cookies_set.php , which does just what the name says: It sets 
cookie variables named  username  and  remember_me , which are just hard - coded in this example. It 
then uses a header redirect to send you back to the main test page. Figure  12 - 16  shows  cookies_set
.php  in action.   

Figure 12-16



392

Part II: Comic Book Fan Site

 Try closing out your browser and then reopening it to visit  cookies_view.php  again. You ’ ll see that 
the cookies are still active. 

The cookies are set to expire 30 days from when they were set. If you want to delete them, you can 
visit the Delete Cookies link. It calls  cookies_delete.php , which expires the cookies by setting their 
expiration date in the past and blanking out their values.

 

 Remember that cookie information is exchanged within HTTP headers; cookies must be sent before the 
script generates any output. 

 If you look at the documentation for the  setcookie()  function, you will see that it can accept more 
arguments than what we ’ ve given it in this simple test. In addition to the information it stores, each 
cookie has a set of attributes: an expiration date, a valid domain, a valid domain path, and an optional 
security flag. These attributes help ensure that the browser sends the correct cookie when a request is 
made to a server. 

 The expiration time is used by the browser to determine when the cookie should be deleted. It is 
expressed as a UNIX timestamp plus the number of seconds before the cookie expires. 

Figure 12-17



Chapter 12: User Logins, Profi les, and Personalization

393

 The valid domain is a partial or complete domain name to which the cookie will be sent. For example, 
if the value for the valid domain attribute is  www.example.net , the client will send the cookie 
information every time the user visits the  www.example.net  subdomain. For the cookie to be accessible 
within all subdomains of example.net (such as  www.example.net ,  mail.example.net ,  news.
example.net ,  users.example.net , etc.), a leading dot should be used, as in  .example.net . 

 The path attribute is used to identify sites within various paths in the same domain. For example, 
cookies with a path attribute of  /  will be accessible to both  users.example.net/~joe  and  users
.example.net/~sally . However, a cookie with a path attribute of  /~tom  will only be made available 
to  users.example.net/~tom , not  users.example.net/~sally . This is good to keep in mind if your 
site is on a shared server with the same domain name as other sites. 

 The security flag attribute restricts a browser from sending cookie information over unsecured 
connections. The default value is 0 and allows the cookie to be sent over any type of HTTP connection. It 
may be set to 1, which will only permit the cookie to be sent over a secure HTTP (HTTPS) connection 
that utilizes SSL (Secure Socket Layer). 

 Now that you have some cookie knowledge, you can use it in the login system if you want. When 
written and set appropriately, a cookie will only be sent to the appropriate web site. However, cookie 
information is still stored on the user ’ s computer in a plaintext format and can be viewed by anyone 
with access to the local machine. Never use cookies to store sensitive information such as passwords and 
credit card information, and make sure that any major operation (such as changing a user ’ s preferences 
or submitting/accessing credit card details) requires the user to enter his or her full password.  

  Administrator Registration 
 In this last portion of the chapter, you learn how logged - in admins can change information and delete 
information based on their access privileges. In this section, administrators are required to log in before 
they can view the users signed up in the user registration database. Once they are logged in, only certain 
privileged admins will be allowed to perform certain operations. For this example: 

  Users with an admin privilege level of 0 are regular users.  

  Users with an admin privilege level of 2 are allowed to update other user accounts, but not 
delete them.  

  Users with an admin privilege level of 1 are allowed to update and delete other user accounts.  

   This would be useful if a user was, for some reason, unable to log in to the site, and the administrator 
needed to reset passwords, change usernames, and so on  —  but you don ’ t want just any administrator to 
be allowed to do everything the main administrator does.     

❑

❑

❑



394

Part II: Comic Book Fan Site

        Try It Out Administration Section    

 First, enter the code for all of the pages that are in the following steps. We will explain how they work 
afterwards.   

  1.   Create the first file,  db_ch12 - 2.php : 

 < ?php
include ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
// update the user table
$query = ‘ALTER TABLE site_user
    ADD COLUMN admin_level TINYINT UNSIGNED NOT NULL DEFAULT 0 
      AFTER password’;
mysql_query($query, $db) or die (mysql_error($db));
                   
// give one of our test accounts administrative privileges
$query = ‘UPDATE site_user SET admin_level = 1 WHERE username = “john”’;
mysql_query($query, $db) or die (mysql_error($db));
                   
echo ‘Success!’;
? >    

  2.   Load  db_ch12 - 2.php  in your browser, and you should see the success message.  

  3.   Modify  login.php  as shown: 

 < ?php
session_start();
                   
include ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
// filter incoming values
$username = (isset($_POST[‘username’])) ? trim($_POST[‘username’]) : ‘’;
$password = (isset($_POST[‘password’])) ? $_POST[‘password’] : ‘’;
$redirect = (isset($_REQUEST[‘redirect’])) ? $_REQUEST[‘redirect’] : 
    ‘main.php’;
                   
if (isset($_POST[‘submit’])) {

    $query = ‘SELECT admin_level FROM site_user WHERE ‘ .
         ‘username = “’ . mysql_real_escape_string($username, $db) 
           . ‘” AND ‘ .
         ‘password = PASSWORD(“’ . mysql_real_escape_string($password, 
           $db) . ‘”)’;



Chapter 12: User Logins, Profi les, and Personalization

395

    $result = mysql_query($query, $db) or die(mysql_error($db));
                   
    if (mysql_num_rows($result)  >  0) {

        $row = mysql_fetch_assoc($result);

        $_SESSION[‘username’] = $username;
        $_SESSION[‘logged’] = 1;

        $_SESSION[‘admin_level’] = $row[‘admin_level’];

        header (‘Refresh: 5; URL=’ . $redirect);
        echo ‘ < p > You will be redirected to your original page request. < /p > ’;
        echo ‘ < p > If your browser doesn\’t redirect you properly 
          automatically, ‘ .
            ‘ < a href=”’ . $redirect . ‘” > click here < /a > . < /p > ’;
        mysql_free_result($result);
        mysql_close($db);
        die();
    } else {
        // set these explicitly just to make sure
        $_SESSION[‘username’] = ‘’;
        $_SESSION[‘logged’] = 0;

        $_SESSION[‘admin_level’] = 0;

                   
        $error = ‘ < p >  < strong > You have supplied an invalid username and/or ‘ .
            ‘password! < /strong >  Please  < a href=”register.php” > click here ‘ .
            ‘to register < /a >  if you have not done so already. < /p > ’;
    }
    mysql_free_result($result);
}
? > 
 < html > 
  < head > 
   < title > Login < /title > 
  < /head > 
  < body > 
 < ?php
if (isset($error)) {
    echo $error;
}
? > 
   < form action=”login.php” method=”post” > 
    < table > 
     < tr > 
      < td > Username: < /td > 
      < td >  < input type=”text” name=”username” maxlength=”20” size=”20”
       value=” < ?php echo $username; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td > Password: < /td > 
      < td >  < input type=”password” name=”password” maxlength=”20” size=”20”
       value=” < ?php echo $password; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >     < /td > 
      < td > 



396

Part II: Comic Book Fan Site

       < input type=”hidden” name=”redirect” value=” < ?php echo $redirect ? > ”/ > 
       < input type=”submit” name=”submit” value=”Login”/ > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html > 
 < ?php
mysql_close($db);
? >    

  4.   Make these changes to  main.php : 

 < ?php
session_start();
? > 
 < html > 
  < head > 
   < title > Logged In < /title > 
  < /head > 
  < body > 
   < h1 > Welcome to the home page! < /h1 > 
 < ?php
if (isset($_SESSION[‘logged’])  &  &  $_SESSION[‘logged’] == 1) {
? > 
   < p > Thank you for logging into our system,  < b >  < ?php 
echo $_SESSION[‘username’];? > . < /b >  < /p >  
   < p > You may now  < a href=”user_personal.php” > click here < /a >  to go to your
own personal information area and update or remove your information should
you wish to do so. < /p > 
 < ?php

    if ($_SESSION[‘admin_level’]  >  0) {
        echo ‘ < p >  < a href=”admin_area.php” > Click here < /a >  to access your ‘ .
            ‘administrator tools. < /p > ’;
    }

} else {
? > 
   < p > You are currently not logged in to our system. Once you log in,
you will have access to your personal area along with other user
information. < /p > 
   < p > If you have already registered,  < a href=”login.php” > click
here < /a >  to log in. Or if you would like to create an account, 
 < a href=”register.php” > click here < /a >  to register. < /p > 
 < ?php
}
? >    



Chapter 12: User Logins, Profi les, and Personalization

397

  5.   Create  admin_area.php  with the following code: 

 < ?php
include ‘auth.inc.php’;
                   
if ($_SESSION[‘admin_level’]  <  1) {
    header(‘Refresh: 5; URL=user_personal.php’);
    echo ‘ < p >  < strong >  < /strong > You are not authorized for this page
      . < /strong >  < /p > ’;
    echo ‘ < p > You are now being redirected to the main page. 
      If your browser ‘ .
        ‘doesn\’t redirect you automatically,  < a href=”main.php” > click ‘ .
        ‘here < /a > . < /p > ’;
    die();
}
                   
include ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
? > 
 < html > 
  < head > 
   < title > Administration Area < /title > 
   < style type=”text/css” > 
   th { background-color: #999;}
   .odd_row { background-color: #EEE; }
   .even_row { background-color: #FFF; }
   < /style > 
  < /head > 
  < body > 
   < h1 > Welcome to the Administration area. < /h1 > 
   < p > Here you can view and manage other users. < /p > 
   < p >  < a href=”main.php” > Click here < /a >  to return to the home page. < /p > 
   < table style=”width:70%” > 
    < tr >  < th > Username < /th >  < th > First Name < /th >  < th > Last Name < /th >  < /tr > 
 < ?php
$query = ‘SELECT
        u.user_id, username, first_name, last_name
    FROM
        site_user u JOIN
        site_user_info i ON u.user_id = i.user_id
    ORDER BY
        username ASC’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
$odd = true;
while ($row = mysql_fetch_array($result)) {
    echo ($odd == true) ? ‘ < tr class=”odd_row” > ’ : ‘ < tr class=”even_row” > ’;
    $odd = !$odd; 
    echo ‘ < td >  < a href=”update_user.php?id=’ .  $row[‘user_id’]. ‘” > ’ .
        $row[‘username’] . ‘ < /a >  < /td > ’;



398

Part II: Comic Book Fan Site

    echo ‘ < td > ’ . $row[‘first_name’] . ‘ < /td > ’;
    echo ‘ < td > ’ . $row[‘last_name’] . ‘ < /td > ’;
    echo ‘ < /tr > ’;
}
mysql_free_result($result);
mysql_close($db);
? > 
   < /table > 
  < /body > 
 < /html >    

  6.   Create the file  update_user.php : 

 < ?php
include ‘auth.inc.php’;
                   
if ($_SESSION[‘admin_level’]  <  1) {
    header(‘Refresh: 5; URL=user_personal.php’);
    echo ‘ < p >  < strong >  < /strong > You are not authorized for this page
      . < /strong >  < /p > ’;
    echo ‘ < p > You are now being redirected to the main page. 
      If your browser ‘ .
        ‘doesn\’t redirect you automatically,  < a href=”main.php” > click ‘ .
        ‘here < /a > . < /p > ’;
    die();
}
                   
include ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$hobbies_list = array(‘Computers’, ‘Dancing’, ‘Exercise’, ‘Flying’, 
    ‘Golfing’,
    ‘Hunting’, ‘Internet’, ‘Reading’, ‘Traveling’, ‘Other than listed’);
                   
if (isset($_POST[‘submit’])  &  &  $_POST[‘submit’] == ‘Update’) {
    // filter incoming values
    $username = (isset($_POST[‘username’])) ? trim($_POST[‘username’]) : ‘’;
    $user_id = (isset($_POST[‘user_id’])) ? $_POST[‘user_id’] : ‘’;
    $password = (isset($_POST[‘password’])) ? $_POST[‘password’] : ‘’;
    $first_name = (isset($_POST[‘first_name’])) ? trim($_POST
      [‘first_name’]) : ‘’;
    $last_name = (isset($_POST[‘last_name’])) ? trim($_POST
      [‘last_name’]) : ‘’;
    $email = (isset($_POST[‘email’])) ? trim($_POST[‘email’]) : ‘’;
    $city = (isset($_POST[‘city’])) ? trim($_POST[‘city’]) : ‘’;
    $state = (isset($_POST[‘state’])) ? trim($_POST[‘state’]) : ‘’;
    $hobbies = (isset($_POST[‘hobbies’])  &  &  is_array($_POST[‘hobbies’])) ?
        $_POST[‘hobbies’] : array();
                   
    // delete user record



Chapter 12: User Logins, Profi les, and Personalization

399

    if (isset($_POST[‘delete’])) {
        $query = ‘DELETE FROM site_user_info WHERE user_id = ‘ . $user_id;
        mysql_query($query, $db) or die(mysql_error());
        
        $query = ‘DELETE FROM site_user WHERE user_id = ‘ . $user_id;
        mysql_query($query, $db) or die(mysql_error());
? > 
 < html > 
  < head > 
   < title > Update Account Info < /title > 
  < /head > 
  < body > 
   < p >  < strong > The account has been deleted. < /strong >  < /p > 
   < p >  < a href=”admin_area.php” > Click here < /a >  to return to the admin 
    area. < /a >  < /p > 
  < /body > 
 < /html > 
 < ?php
        die();
    }
    
    $errors = array();
    if (empty($username)) {
        $errors[] = ‘Username cannot be blank.’;
    }
    
    // check if username already is registered
    $query = ‘SELECT username FROM site_user WHERE username = “’ .
        $username . ‘” AND user_id != ‘ . $user_id;
    $result = mysql_query($query, $db) or die(mysql_error());
    if (mysql_num_rows($result)  >  0) {
        $errors[] = ‘Username ‘ . $username . ‘ is already registered.’;
        $username = ‘’;
    }
    mysql_free_result($result);
                   
    if (empty($first_name)) {
        $errors[] = ‘First name cannot be blank.’;
    }
    if (empty($last_name)) {
        $errors[] = ‘Last name cannot be blank.’;
    }
    if (empty($email)) {
        $errors[] = ‘Email address cannot be blank.’;
    }
                   
    if (count($errors)  >  0) {
        echo ‘ < p >  < strong style=”color:#FF000;” > Unable to update the ‘ .
            ‘account information. < /strong >  < /p > ’;
        echo ‘ < p > Please fix the following: < /p > ’;
        echo ‘ < ul > ’;



400

Part II: Comic Book Fan Site

        foreach ($errors as $error) {
            echo ‘ < li > ’ . $error . ‘ < /li > ’;
        }
        echo ‘ < /ul > ’;
    } else {
        // No errors so enter the information into the database.
                   
        if (!empty($password)) {
            $query = ‘UPDATE site_user SET
                    password = PASSWORD(“’ .
                        mysql_real_escape_string($password, $db) . ‘”)
                WHERE
                    user_id = ‘ . $user_id;
            mysql_query($query, $db) or die(mysql_error());
        }
                   
        $query = ‘UPDATE site_user u, site_user_info SET
            username = “’ . mysql_real_escape_string($username, $db) . ‘”,
            first_name = “’ . mysql_real_escape_string($first_name, 
              $db) . ‘”,
            last_name = “’ . mysql_real_escape_string($last_name, $db) . ‘”,
            email = “’ . mysql_real_escape_string($email, $db) . ‘”,
            city = “’ . mysql_real_escape_string($city, $db) . ‘”,
            state = “’ . mysql_real_escape_string($state, $db) . ‘”,
            hobbies = “’ . mysql_real_escape_string(join(‘, ‘, $hobbies), 
              $db) . ‘”
          WHERE
            u.user_id = ‘ . $user_id;
        mysql_query($query, $db) or die(mysql_error());
        mysql_close($db);
? > 
 < html > 
  < head > 
   < title > Update Account Info < /title > 
  < /head > 
  < body > 
   < p >  < strong > The account information has been updated. < /strong >  < /p > 
   < p >  < a href=”admin_area.php” > Click here < /a >  to return to the 
    admin area. < /a >  < /p > 
  < /body > 
 < /html > 
 < ?php
        die();
    }
} else {
                   
    $user_id = (isset($_GET[‘id’])) ? $_GET[‘id’] : 0;
    if ($user_id == 0) {
        header(‘Location: admin_area.php’);
        die();
    }
                   
    $query = ‘SELECT



Chapter 12: User Logins, Profi les, and Personalization

401

        username, first_name, last_name, email, city, state, hobbies 
          AS my_hobbies
      FROM
        site_user u JOIN site_user_info i ON u.user_id = i.user_id
      WHERE
       u.user_id = ‘ . $user_id;
    $result = mysql_query($query, $db) or die(mysql_error());
    
    if (mysql_num_rows($result) == 0)
    {
        header(‘Location: admin_area.php’);
        die();
    }
    
    $row = mysql_fetch_assoc($result);
    extract($row);
    $password = ‘’;
    $hobbies = explode(‘, ‘, $my_hobbies);
                   
    mysql_free_result($result);
    mysql_close($db);
}
? > 
 < html > 
  < head > 
   < title > Update Account Info < /title > 
   < style type=”text/css” > 
   td { vertical-align: top; }
   < /style > 
   < script type=”text/javascript” > 
   window.onload = function() {
       document.getElementById(‘cancel’).onclick = goBack;
   }
   function goBack() {
       history.go(-1);
   }
   < /script > 
  < /head > 
  < body > 
   < h1 > Update Account Information < /h1 > 
   < form action=”update_user.php” method=”post” > 
    < table > 
     < tr > 
      < td >  < label for=”username” > Username: < /label >  < /td > 
      < td >  < input type=”text” name=”username” id=”username” size=”20”
       maxlength=”20” value=” < ?php echo $username ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”password” > Password: < /label >  < /td > 
      < td >  < input type=”text” name=”password” id=”password” size=”20”
       maxlength=”20” value=” < ?php echo $password ? > ”/ > 
      < small > (Leave blank if you’re not changing the password.) < /mall >  < /td > 
     < /tr > 



402

Part II: Comic Book Fan Site

      < td >  < label for=”email” > Email: < /label >  < /td > 
      < td >  < input type=”text” name=”email” id=”email” size=”20” maxlength=”50”
       value=” < ?php echo $email; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”first_name” > First name: < /label >  < /td > 
      < td >  < input type=”text” name=”first_name” id=”first_name” size=”20”
       maxlength=”20” value=” < ?php echo $first_name; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”last_name” > Last name: < /label >  < /td > 
      < td >  < input type=”text” name=”last_name” id=”last_name” size=”20”
       maxlength=”20” value=” < ?php echo $last_name; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”city” > City: < /label >  < /td > 
      < td >  < input type=”text” name=”city” id=”city” size=”20” maxlength=”20”
       value=” < ?php echo $city; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”state” > State: < /label >  < /td > 
      < td >  < input type=”text” name=”state” id=”state” size=”2” maxlength=”2”
       value=” < ?php echo $state; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”hobbies” > Hobbies/Interests: < /label >  < /td > 
      < td >  < select name=”hobbies[]” id=”hobbies” multiple=”multiple” > 
 < ?php
foreach ($hobbies_list as $hobby)
{
    if (in_array($hobby, $hobbies)) {
        echo ‘ < option value=”’ . $hobby . ‘” selected=”selected” > ’ . $hobby .
            ‘ < /option > ’;
    } else {
        echo ‘ < option value=”’ . $hobby . ‘” > ’ . $hobby . ‘ < /option > ’;
    } 
}
? > 
       < /select >  < /td > 
 < ?php
if ($_SESSION[‘admin_level’] == 1) {
    echo ‘ < /tr >  < tr > ’;
    echo ‘ < td >     < /td > ’;
    echo ‘ < td >  < input type=”checkbox” id=”delete” name=”delete”/ > ’ .
        ‘ < label for=”delete” > Delete < /label >  < /td > ’;
}
? > 
     < /tr >  < tr > 
      < td >     < /td > 
      < td > 
       < input type=”hidden” name=”user_id” value=” < ?php echo $user_id;? > ”/ > 
       < input type=”submit” name=”submit” value=”Update”/ >  
       < input type=”button” id=”cancel” value=”Cancel”/ > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >       



Chapter 12: User Logins, Profi les, and Personalization

403

  How It Works 
 This whole section adds new functionality specifically for administrators only onto the existing code 
base. The purpose of  db_ch12 - 2.php  is to add a new column to the  site_user  table that tracks the 
privilege level of each user. It also explicitly sets privileges on your  “ john ”  user account, so you have a 
test scenario to work with.   

$query = ‘ALTER TABLE site_user
    ADD COLUMN admin_level TINYINT UNSIGNED NOT NULL DEFAULT 0 AFTER 
      Password’;
mysql_query($query, $db) or die (mysql_error($db));
                   
$query = ‘UPDATE site_user SET admin_level = 1 WHERE username = “john”’;
mysql_query($query, $db) or die (mysql_error($db));  

 You made changes to  main.php  so that when the user logs in to the application and views his or her 
home page, the user will see a link to the administrator portion of the site if he or she has the 
appropriate privilege level.   

if ($_SESSION[‘admin_level’]  >  0) {
    echo ‘ < p >  < a href=”admin_area.php” > Click here < /a >  to access your ‘ .
        ‘administrator tools. < /p > ’;
}  

 The  main.php  page showing the administrator link looks like Figure  12 - 18 .   

Figure 12-18



404

Part II: Comic Book Fan Site

 Clicking on the link to the administration section brings the user to the  admin_area.php  page, shown 
in Figure  12 - 19 . It presents a list of accounts registered in the system for the user to manage.   

Figure 12-19

 Depending on what link the administrator chooses, and whether he or she has a high enough admin 
level, the admin will be able to update or delete the user ’ s account. This screen looks like Figure  12 - 20 .     



Chapter 12: User Logins, Profi les, and Personalization

405

 

  Summary 
 By now, you have a good understanding of the power of PHP and its session and cookie functions, 
along with MySQL and database - driven information. With these two powerful programs, along with 
Apache, you have some great tools to further your web development skill set. Just think about the 
possibilities you can explore with all you learned in this chapter: 

  You can supplement Apache ’ s configuration on a per - directory basis, and even restrict access to 
files/directories via  htpasswd .  

  You can use PHP to accomplish the same file restriction tasks as  htpasswd , but with more 
control and functionality.  

  You can store user and admin information in a database and make use of database - driven 
logins.  

❑

❑

❑

Figure 12-20



406

Part II: Comic Book Fan Site

  You can create a registration system for users, with the required and optional fields.  

  You can use cookies to retain login information between sessions.  

  You can create a navigation system dependent on whether or not a user has logged in.     

  Exercises 
 Use these exercises to sharpen your PHP session -  and cookie - handling skills.   

  1.   Create a hidden area that is only displayed to users who are logged in to your system.  

  2.   Use cookies to retain some information for 30 minutes, dependent on logged - in users.  

  3.   Create a system where only certain users have certain options, dependent on their user level.       

❑

❑

❑



      13    
Building a Content 

Management System          

 For whatever reason, people seem to get bored easily. One of your jobs as the administrator of a 
web site is not only to figure out how to get as many people to visit your site as possible, but to 
keep them coming  back . 

 There are many different avenues for people to learn about your site, such as word of mouth, 
advertising, and search engines. To keep your users at your site, experts suggest making your site 
easy to navigate, making sure your pages load quickly, and giving users a personal experience. 
Getting your users to keep coming back as new ones learn about your site is how you grow your 
web site over time.  

  Fresh Content Is a Lot of Work 
 Take a moment and think about all the sites you visit on a frequent and regular basis. You know  . . . 
 the ones you have saved in your browser ’ s bookmark list. What do most of those sites have in 
common? 

 Most likely, each site is periodically updated with new information. You might visit a news site 
each day to look up the weather in your area. Perhaps you are interested in your daily horoscope. 
Maybe you belong to an online message board and want to read the latest posts. In each case, the 
content gets updated on a regular basis  —  sometimes weekly, sometimes daily, and sometimes 
even hourly. Now, imagine how much work the web site developers have to do to update their 
content every day! 

 No matter what the purpose of your web site is, it probably contains lots of content  —  site news, 
images, user comments, and more. You don ’ t want to have to maintain all that content by yourself, 
do you? Having the ability to offload some of that maintenance work on to others can sometimes 
make the difference between keeping or losing your sanity when things get hectic. 



408

Part II: Comic Book Fan Site

 In theory, all a web site developer should ever have to do is maintain the site design and code  —  for 
instance, update some HTML, change a background color, fix a minor bug in the PHP code, and so on. 
The content should be completely separate from the design of the site so it can be maintained by other 
people. Because managing content is separate from design, the people that you assign the content 
management responsibilities to (er  . . .  we mean the kind people who are gracious enough to help you) 
don ’ t have to know anything about web design! 

 Depending on the amount of content you have, entering it into your site will most likely take a lot of 
work. You need to come up with a way to organize it, categorize it, and push it to your web site. You 
may need a number of people, each assigned a certain role, working together to create the content and 
mold it into the appropriate form for presentation on the web site. Of course, you want this process to be 
efficient, so you definitely need to have the appropriate tools to do the job. 

  You Need a Content Management System 
 You ’ ve learned how to create your own databases and tables, and how to create web pages used to 
manage the information within them. You ’ ve also learned how to authenticate your users by making 
them log in to your web site. Armed with this knowledge, you could easily create an application to allow 
users to create new content (authors), edit that content (editors), and publish it. By assigning users to 
certain roles, you can manage who has access to certain functions within the site. In other words, you 
need a  system  in place to allow you to  manage  your web site  content  separately from the site design. 
You need a content management system (CMS). 

 There are many degrees of content management. On some sites, this might simply refer to a message 
board, where users sign up and then post messages to each other about their favorite color of lint. Other 
sites might have reporters in the field, writing news stories and sending them in to be published online. 
Still other sites might not only allow users to update content, but also allow administrators to change the 
layout of the site, including colors and images. 

 As you have no doubt figured out, the term  CMS  refers not only to the application used to manage 
content, but also to the people responsible for entering content and to the rules they must follow. It ’ s up 
to you to find the people, but we ’ ll help you establish the rules and develop the application. Are you 
ready? Great! Let ’ s get started.   

  Laying Down the Rules 
 The CMS application you are going to build in this chapter will allow registered users to post articles. 
Those articles will be labeled as pending until a user with the proper permissions publishes them. Once 
an article is published, the content will show up as the newest article on the home page. Unregistered 
users will be able to read these articles, but they will not be able to post new ones. Registered users will 
also be able to post comments about the articles. When a visitor views a full article, all comments will be 
displayed below it. 

 This is a fairly typical set of rules for a web application such as this. There are pages for display (index, 
admin, pending articles, article review, and so on), editing (compose, user account, control panel), and 
transaction files (for users and articles). There are also some files used as includes (such as header 
and footer). Don ’ t worry  —  some are only a few lines long. The whole application contains around 
1,000 lines of code, which is pretty short by many application standards.  



Chapter 13: Building a Content Management System

409

  Preparing the Database 
 The first thing you ’ re going to need to do is create the script that will set up your initial database 
structure. You ’ ll be using the  db.inc.php  include file from previous chapters in establishing the 
connection to your database.  

  Try It Out Creating the Database Structure   

  1.   Place the following code in a file named  db_ch13.php , and then load it in your browser. It 
will create your tables as well as insert an administrative user so that you can begin managing 
the site immediately.   

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$sql = ‘CREATE TABLE IF NOT EXISTS cms_access_levels (
        access_level TINYINT UNSIGNED NOT NULL AUTO_INCREMENT,
        access_name  VARCHAR(50)      NOT NULL DEFAULT “”,
                   
        PRIMARY KEY (access_level)
    )
    ENGINE=MyISAM’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘INSERT IGNORE INTO cms_access_levels
        (access_level, access_name)
    VALUES
        (1, “User”),
        (2, “Moderator”),
        (3, “Administrator”)’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘CREATE TABLE IF NOT EXISTS cms_users (
        user_id      INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
        email        VARCHAR(100)     NOT NULL UNIQUE,
        password     CHAR(41)         NOT NULL,
        name         VARCHAR(100)     NOT NULL,
        access_level TINYINT UNSIGNED NOT NULL DEFAULT 1,
                   
        PRIMARY KEY (user_id)
    )
    ENGINE=MyISAM’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘INSERT IGNORE INTO cms_users 
        (user_id, email, password, name, access_level)
    VALUES



410

Part II: Comic Book Fan Site

        (NULL, “admin@example.com”, PASSWORD(“secret”), “Administrator”, 3)’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘CREATE TABLE IF NOT EXISTS cms_articles (
        article_id   INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
        user_id      INTEGER UNSIGNED NOT NULL,
        is_published BOOLEAN          NOT NULL DEFAULT FALSE,
        submit_date  DATETIME         NOT NULL,
        publish_date DATETIME,
        title        VARCHAR(255)     NOT NULL,
        article_text MEDIUMTEXT,
                   
        PRIMARY KEY (article_id),
        FOREIGN KEY (user_id) REFERENCES cms_users(user_id),
        INDEX (user_id, submit_date),
        FULLTEXT INDEX (title, article_text)
    )
    ENGINE=MyISAM’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘CREATE TABLE IF NOT EXISTS cms_comments (
        comment_id   INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
        article_id   INTEGER UNSIGNED NOT NULL,
        user_id      INTEGER UNSIGNED NOT NULL,
        comment_date DATETIME         NOT NULL,
        comment_text MEDIUMTEXT,
                   
        PRIMARY KEY (comment_id),
        FOREIGN KEY (article_id) REFERENCES cms_articles(article_id),
        FOREIGN KEY (user_id) REFERENCES cms_users(user_id)
    )
    ENGINE=MyISAM’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
echo ‘Success!’;
? >      

  How It Works  
 In  db_ch13.php , you create the table needed for access levels. All of the fields, their data types, and 
other parameters are defined in this SQL statement. You use  IF NOT EXISTS  so that the  CREATE  
command does nothing if the table already exists.   

$sql = ‘CREATE TABLE IF NOT EXISTS cms_access_levels (
        access_level TINYINT UNSIGNED NOT NULL AUTO_INCREMENT,
        access_name  VARCHAR(50)      NOT NULL DEFAULT “”,
                   
        PRIMARY KEY (access_level)
   )
   ENGINE=MyISAM’;
mysql_query($sql, $db) or die(mysql_error($db));  

 The next SQL statement inserts data into your newly created  cms_access_levels  table. These access 
levels are used throughout the CMS application to determine what functionality each user will have 
access to.   



Chapter 13: Building a Content Management System

411

$sql = ‘INSERT IGNORE INTO cms_access_levels
        (access_level, access_name)
    VALUES
        (1, “User”),
        (2, “Moderator”),
        (3, “Administrator”)’;
mysql_query($sql, $db) or die(mysql_error($db));  

 When creating the  cms_users  table, you use the  UNIQUE  keyword to add a constraint to ensure that 
each user ’ s e - mail address is unique.   

$sql = ‘CREATE TABLE IF NOT EXISTS cms_users (
        user_id      INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
        email        VARCHAR(100)     NOT NULL UNIQUE,
        password     CHAR(41)         NOT NULL,
        name         VARCHAR(100)     NOT NULL,
        access_level TINYINT UNSIGNED NOT NULL DEFAULT 1,
                   
        PRIMARY KEY (user_id)
)
ENGINE=MyISAM’;
mysql_query($sql, $db) or die(mysql_error($db));  

 After you create the  cms_users  table, you insert one record so that you have an administrator account 
that is able to log in immediately. This account is given administrator privileges and allows you to 
administer the site as needed.   

$sql = ‘INSERT IGNORE INTO cms_users 
        (user_id, email, password, name, access_level)
    VALUES
        (NULL, “admin@example.com”, PASSWORD(“secret”), “Administrator”, 3)’;
mysql_query($sql, $db) or die(mysql_error($db));  

 The  cms_articles  table will store the articles posted by the registered users of your site: 

$sql = ‘CREATE TABLE IF NOT EXISTS cms_articles (
        article_id   INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
        user_id      INTEGER UNSIGNED NOT NULL,
        is_published BOOLEAN          NOT NULL DEFAULT FALSE,
        submit_date  DATETIME         NOT NULL,
        publish_date DATETIME,
        title        VARCHAR(255)     NOT NULL,
        article_text MEDIUMTEXT,
                   
        PRIMARY KEY (article_id),
        FOREIGN KEY (user_id) REFERENCES cms_users(user_id),
        INDEX (user_id, submit_date),
        FULLTEXT INDEX (title, article_text)
)
ENGINE=MyISAM’;
mysql_query($sql, $db) or die(mysql_error($db));  



412

Part II: Comic Book Fan Site

 You defined an index on the  user_id  and  submit_date  columns, using the  INDEX  keyword. Indexes 
let MySQL know that you will be searching for records using these columns specifically in your  WHERE  
clause, and it will maintain a special index for the information so it can retrieve your results more 
quickly. Because you will be looking for articles by author and by date, these are the fields used to 
create the index. 

 You will also allow users of the CMS application to search for articles based on text that might be found 
in the article ’ s title or body. To be able to perform such a search, you specified a  FULLTEXT INDEX  on the 
 title  and  article_text  columns. Again, this informs MySQL to track the data in the optimal manner 
for this application. 

 For more information on how MySQL uses indexes, visit  http://dev.mysql.com/doc/refman/5.1/
en/mysql - indexes.html .    

  Coding for Reusability 
 As you become a more seasoned programmer, you will notice oft - repeated bits of code in your 
applications. Instead of keying in the same code repeatedly (which can cause errors or be difficult to 
maintain in the future), you can place this code in separate files and then include the files in your scripts. 
In your CMS application, the same core functionality will be used on many different pages. It makes the 
most sense to write this code as functions or classes in a separate file and then include the file at the top 
of each script when the functionality is needed.  

  Try It Out Creating Reusable Scripts   

  1.   Enter the following code, and save it as  cms_output_functions.inc.php . This file contains 
functions to generate different page elements throughout the CMS.   

 < ?php
// Return a string truncated to a maximum number of characters. If the string
// has been truncated, it will have $tail appended to the end.
function trim_body($text, $max_length = 500, $tail = ‘...’) {
    $tail_len = strlen($tail);
    if (strlen($text)  >  $max_length) {
        $tmp_text = substr($text, 0, $max_length - $tail_len);
        if (substr($text, $max_length - $tail_len, 1) == ‘ ‘) {
            $text = $tmp_text;
        }
        else {
            $pos = strrpos($tmp_text, ‘ ‘);
            $text = substr($text, 0, $pos);
        }
        $text = $text . $tail;
    }
    return $text;
}
                   



Chapter 13: Building a Content Management System

413

// Display an article from the database. 
function output_story($db, $article_id, $preview_only = FALSE) {
    if (empty($article_id)) {
        return;
    }
    $sql = ‘SELECT
            name, is_published, title, article_text,
            UNIX_TIMESTAMP(submit_date) AS submit_date,
            UNIX_TIMESTAMP(publish_date) AS publish_date
        FROM
            cms_articles a JOIN cms_users u ON a.user_id = u.user_id
        WHERE
            article_id = ‘ . $article_id;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
                   
    if ($row = mysql_fetch_assoc($result)) {
        extract($row);
        echo ‘ < h2 > ’ . htmlspecialchars($title) . ‘ < /h2 > ’;
        echo ‘ < p > By: ‘ . htmlspecialchars($name) . ‘ < /p > ’;
        echo ‘ < p > ’;
        if ($row[‘is_published’]) {
            echo date(‘F j, Y’, $publish_date);
        } else {
            echo ‘Article is not yet published.’;
        }
        echo ‘ < /p > ’;
        if ($preview_only) {
        echo ‘ < p > ’ . nl2br(htmlspecialchars(trim_body($article_text))) . 
‘ < /p > ’;
        echo ‘ < p >  < a href=”cms_view_article.php?article_id=’ . $article_id . 
            ‘” > Read Full Story < /a >  < /p > ’;
        } else {
            echo ‘ < p > ’ . nl2br(htmlspecialchars($article_text)) . ‘ < /p > ’;
        }
    }
    mysql_free_result($result);
}
                   
function show_comments($db, $article_id, $show_link = TRUE) {
    if (empty($article_id)) {
        return;
    }
    $sql = ‘SELECT is_published FROM cms_articles WHERE article_id = ‘ . 
        $article_id;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
    $row = mysql_fetch_assoc($result);
    $is_published = $row[‘is_published’];
    mysql_free_result($result);
    
    $sql = ‘SELECT
            comment_text, UNIX_TIMESTAMP(comment_date) AS comment_date,
            name, email
        FROM



414

Part II: Comic Book Fan Site

           cms_comments c LEFT OUTER JOIN cms_users u ON c.user_id = u.user_id
        WHERE
            article_id = ‘ . $article_id . ‘
        ORDER BY
            comment_date DESC’;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
                   
    if ($show_link) {
        echo ‘ < h3 > ’ . mysql_num_rows($result) . ‘ Comments’;
        if (isset($_SESSION[‘user_id’]) and $is_published) {
            echo ‘ -  < a href=”cms_comment.php?article_id=’ . $article_id .
                ‘” > Add one < /a > ’;
        }
        echo ‘ < /h3 > ’;
    }
                   
    if (mysql_num_rows($result)) {
        echo ‘ < div > ’;
        while ($row = mysql_fetch_array($result)) {
            extract($row);
            echo ‘ < span > ’ . htmlspecialchars($name) . ‘ < /span > ’;
            echo ‘ < span >  (‘ . date(‘l F j, Y H:i’, $comment_date) . ‘)
 < /span > ’;
            echo ‘ < p > ’ . nl2br(htmlspecialchars($comment_text)) . ‘ < /p > ’;
        }
        echo ‘ < /div > ’;
    }
    echo ‘ < br > ’;
    mysql_free_result($result);
}
? >    

  2.   Three more files will be included in various scripts:  cms_header.inc.php, cms_footer
.inc.php , and  cms_http_functions.inc.php . will contain the top and bottom portions of 
the page, and  cms_http.php  will contain a redirect function, which is used to send the user 
to another page. You ’ ll enter those next. 

  Enter this code, and save it as  cms_header.inc.php : 

 < ?php session_start(); ? > 
 < html > 
  < head > 
   < title > CMS < /title > 
   < style type=”text/css” > 
   td { vertical-align: top; }
   < /style > 
  < /head > 
  < body > 
  < h1 > Comic Book Appreciation < /h1 > 
 < ?php
if (isset($_SESSION[‘name’])) {
    echo ‘ < p > You are currently logged in as: ‘ . $_SESSION[‘name’] . ‘  < /p > ’;
}
? > 



Chapter 13: Building a Content Management System

415

   < /div > 
   < div id=”navright” > 
    < form method=”get” action=”cms_search.php” > 
     < div > 
      < label for=”search” > Search < /label > 
 < ?php
echo ‘ < input type=”text” id=”search” name=”search” ‘;
if (isset($_GET[‘keywords’])) {
    echo ‘ value=”’ . htmlspecialchars($_GET[‘keywords’]) . ‘” ‘;
}
echo ‘/ > ’;
? > 
      < input type=”submit” value=”Search” / > 
     < /div > 
    < /form > 
   < /div > 
   < div id=’navigation’ > 
    < a href=”cms_index.php” > Articles < /a > 
 < ?php
if (isset($_SESSION[‘user_id’])) {
    echo ‘ |  < a href=”cms_compose.php” > Compose < /a > ’;
    if ($_SESSION[‘access_level’]  >  1) {
        echo ‘ |  < a href=”cms_pending.php” > Review < /a > ’;
    }
    if ($_SESSION[‘access_level’]  >  2) {
        echo ‘ |  < a href=”cms_admin.php” > Admin < /a > ’;
    }
    echo ‘ |  < a href=”cms_cpanel.php” > Control Panel < /a > ’;
    echo ‘ |  < a href=”cms_transact_user.php?action=Logout” > Logout < /a > ’;
} else {
    echo ‘ |  < a href=”cms_login.php” > Login < /a > ’;
}
? > 
   < /div > 
   < div id=”articles” >    

  3.   And now enter  cms_footer.inc.php .   

   < /div > 
  < /body > 
 < /html >    

  4.   Finally, enter  cms_http_functions.inc.php .   

 < ?php
function redirect($url) {
    if (!headers_sent()) {
        header(‘Location: ‘ . $url);
    } else {
        die(‘Could not redirect; Output was already sent to the browser.’);
    }
}
? >      



416

Part II: Comic Book Fan Site

  How It Works  
 Many of the pages will require the same processing tasks to be performed repeatedly. This code has 
been written as reusable functions and placed in the  cms_output_functions.inc.php  file. 

 If an article is very long, you will want to show only a short excerpt. The function  trim_body()  takes 
in some text and returns a shortened (trimmed) version of it for display on a page. The first parameter, 
 $text , is the text you want trimmed. The second parameter ( $max_length ) is the absolutely longest 
text string you want returned, expressed in number of characters. The default value is 500 characters, 
if a value is not specified. Finally, the third parameter ( $tail ) is the trailing characters to be placed at 
the end of trimmed text. It defaults to an ellipsis (  ...  ).   

function trim_body($text, $max_length = 500, $tail = ‘...’) {
    $tail_len = strlen($tail);
    if (strlen($text)  >  $max_length) {
        $tmp_text = substr($text, 0, $max_length - $tail_len);
        if (substr($text, $max_length - $tail_len, 1) == ‘ ‘) {
            $text = $tmp_text;
        }
        else {
            $pos = strrpos($tmp_text, ‘ ‘);
            $text = substr($text, 0, $pos);
        }
        $text = $text . $tail;
    }
    return $text;
}  

 Your  trim_body()  function makes use of PHP ’ s built - in  strlen() ,  substr() , and  strrpos()  
functions to perform some calculations on the incoming text and truncate it to the maximum number 
of characters.  strlen()  accepts a string and returns its length.  substr()  accepts a string, a starting 
offset, and optionally a length value and returns a substring starting at the offset. If no length 
parameter was passed, then  substr()  will return the characters up to the end of the string. 
 strrpos()  accepts a string and a character and searches for the character, starting from the end of 
the string, forwards up to the start of the string, then returns the position of the first occurrence it 
finds.  strrpos()  is a cousin of  strpos() , which does the same, except that it starts searching from 
the beginning of the string. 

 Because the length of the trailing characters should count towards the maximum length of the string 
returned, you first determine the length of the trailing characters with  strlen()  and store that value 
to  $tail_len . If the length of  $text  is greater than the requested maximum length, you chop the 
string down to size with  substr() . In fact, if this were all it took to trim the body text, then you could 
have just used the  substr()  function in the first place, but there is still more processing that might 
need be done. You want to make sure you don ’ t cut the string in the middle of a word! If the first 
character after where you cut the string isn ’ t a space, then you can assume you ’ ve cut a word in half, 
and you need to find the last occurrence of a space (actually, this is the first space, if you ’ re looking 
from the end of the string, which is why  strrpos()  is used). The position of the last space is then 
used to trim the string down a bit more, to remove the partial word. 

 The next function,  output_story() , takes three arguments. The first argument,  $db , is a resource 
to an open MySQL database connection. The second,  $article_id , is the ID of the article you want to 
display from the table, and the last argument,  $preview_only , indicates whether or not you want 
to trim the article using the  trim_body()  function you just created, to create a preview snippet. 
 output_story()  does not return a value; rather, it directly outputs the article to the browser.   



Chapter 13: Building a Content Management System

417

function output_story($db, $article_id, $preview_only = FALSE) {
    if (empty($article_id)) {
        return;
    }
    $sql = ‘SELECT
            name, is_published, title, article_text,
            UNIX_TIMESTAMP(submit_date) AS submit_date,
            UNIX_TIMESTAMP(publish_date) AS publish_date
        FROM
            cms_articles a JOIN cms_users u ON a.user_id = u.user_id
        WHERE
            article_id = ‘ . $article_id;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
                   
    if ($row = mysql_fetch_assoc($result)) {
        extract($row);
        echo ‘ < h2 > ’ . htmlspecialchars($title) . ‘ < /h2 > ’;
        echo ‘ < p > By: ‘ . htmlspecialchars($name) . ‘ < /p > ’;
        echo ‘ < p > ’;
        if ($row[‘is_published’]) {
            echo date(‘F j, Y’, $publish_date);
        } else {
            echo ‘Article is not yet published.’;
        }
        echo ‘ < /p > ’;
        if ($preview_only) {
        echo ‘ < p > ’ . nl2br(htmlspecialchars(trim_body($article_text))) 
. ‘ < /p > ’;
        echo ‘ < p >  < a href=”cms_view_article.php?article_id=’ . $article_id . 
            ‘” > Read Full Story < /a >  < /p > ’;
        } else {
            echo ‘ < p > ’ . nl2br(htmlspecialchars($article_text)) . ‘ < /p > ’;
        }
    }
    mysql_free_result($result);
}  

 The last function in  cms_output_functions.php  is  show_comments() . Like the  output_story()  
function before it,  show_comments()  accepts an open database connection and the article ID the 
comments are associated with. The third argument specifies whether or not to show a link to allow 
users to add their own comments.   

function show_comments($db, $article_id, $show_link = TRUE) {
    if (empty($article_id)) {
        return;
    }
    $sql = ‘SELECT is_published FROM cms_articles WHERE article_id = ‘ .
        $article_id;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
    $row = mysql_fetch_assoc($result);
    $is_published = $row[‘is_published’];
    mysql_free_result($result);
    
    $sql = ‘SELECT



418

Part II: Comic Book Fan Site

            comment_text, UNIX_TIMESTAMP(comment_date) AS comment_date,
            name, email
        FROM
           cms_comments c LEFT OUTER JOIN cms_users u ON c.user_id = u.user_id
        WHERE
            article_id = ‘ . $article_id . ‘
        ORDER BY
            comment_date DESC’;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
                   
    if ($show_link) {
        echo ‘ < h3 > ’ . mysql_num_rows($result) . ‘ Comments’;
        if (isset($_SESSION[‘user_id’]) and $is_published) {
            echo ‘ -  < a href=”cms_comment.php?article_id=’ . $article_id .
                ‘” > Add one < /a > ’;
        }
        echo ‘ < /h3 > ’;
    }
                   
    if (mysql_num_rows($result)) {
        echo ‘ < div > ’;
        while ($row = mysql_fetch_array($result)) {
            extract($row);
            echo ‘ < span > ’ . htmlspecialchars($name) . ‘ < /span > ’;
            echo ‘ < span >  (‘ . date(‘l F j, Y H:i’, $comment_date) 
. ‘) < /span > ’;
            echo ‘ < p > ’ . nl2br(htmlspecialchars($comment)) . ‘ < /p > ’;
        }
        echo ‘ < /div > ’;
    }
    echo ‘ < br > ’;
    mysql_free_result($result);
}  

 The  cms_output_functions.inc.php  file is included at the top of each script that requires one of its 
functions. If you want to add functionality to your CMS later and require the same processing code in 
several places, you should consider moving the logic into a function and placing it in  cms_output_
functions.inc.php . 

 Two additional files are included on every page that displays information back to the user ’ s web 
browser:  cms_header.inc.php  and  cms_footer.inc.php . Together they act as bookends of HTML 
code.  cms_header.inc.php  contains the top portion of an HTML document, while  cms_footer
.inc.php  contains the bottom portion. While the contents of  cms_footer.inc.php  are rather 
unexciting, there is some session - related code in  cms_header.inc.php  worth reviewing. The very 
first line of  cms_header.inc.php  calls the  session_start()  function. As you undoubtedly 
remember from the last chapter, sessions allow you to store information for use later, in future pages 
of the visitor ’ s viewing session. This makes sessions ideal for storing login data. By using  session_
start()  at the beginning of your page, you gain the ability to set and retrieve  $_SESSION  variables. 

 Here ’ s the first example of session variables. Once  session_start()  has been initialized, the 
variable  $_SESSION[‘name’]  should be available to you, as long as the user has logged in. If 
 isset($_SESSION[‘name’])  returns  TRUE , then you know the user is not logged in.   



Chapter 13: Building a Content Management System

419

if (isset($_SESSION[‘name’])) {
    echo ‘ < div id=”logowelcome” > You are currently logged in as: ‘ .
        $_SESSION[‘name’] . ‘  < /div > ’;
}  

 In this CMS application, there are three values you will save as session variables: the user ’ s name, login 
ID, and access level. You use these values to determine which menu items should be displayed. Here are 
the menu options and who should have access to them: 

   Article:  All users  

   Compose:  All logged - in users  

   Review:  All logged - in users with access level 2 or more  

   Admin:  All logged - in users with access level 3 or more  

   Control Panel:  All logged - in users  

   Logout:  All logged - in users  

   Login:  All users  not  logged in    

 You generate the menus by testing whether  $_SESSION[‘user_id’]  has been set and the value of 
 $_SESSION[‘access_level’] .   

    < div id=’navigation’ > 
     < a href=”cms_index.php” > Articles < /a > 
 < ?php
if (isset($_SESSION[‘user_id’])) {
    echo ‘ |  < a href=”cms_compose.php” > Compose < /a > ’;
    if ($_SESSION[‘access_level’]  >  1) {
        echo ‘ |  < a href=”cms_pending.php” > Review < /a > ’;
    }
    if ($_SESSION[‘access_level’]  >  2) {
        echo ‘ |  < a href=”cms_admin.php” > Admin < /a > ’;
    }
    echo ‘ |  < a href=”cms_cpanel.php” > Control Panel < /a > ’;
    echo ‘ |  < a href=”cms_transact_user.php?action=Logout” > Logout < /a > ’;
} else {
    echo ‘ |  < a href=”cms_login.php” > Login < /a > ’;
}
? > 
    < /div >   

 Finally, you place the following function in  cms_http_functions.inc.php , which is used to redirect 
a visitor to another page: 

function redirect($url) {
    if (!headers_sent()) {
        header(‘Location: ‘ . $url);
    } else {
        die(‘Could not redirect; Output was already sent to the browser.’);
    }
}  

❑

❑

❑

❑

❑

❑

❑



420

Part II: Comic Book Fan Site

 You may be wondering why we didn ’ t include it in the  cms_output_functions.inc.php  file. We 
certainly could have, but we made the choice to separate it for two reasons. First,  cms_output_
functions.inc.php  is for functions that are used when you want to output data to the visitor ’ s web 
browser, either directly or indirectly (as in the case with  trim_body() ). The  cms_http_functions
.inc.php  file is for browser - related functions; in this case, we have only one. Second, the  redirect()  
function and the output functions are used at different times. By grouping functions with similar 
functionality, we minimize the size of included files.    

  Transaction Pages 
 So now you come to the tasty, gooey center of your application: the transaction pages. Well, perhaps 
tasty is an exaggeration, but data will be handled by one of the  cms_transact_user.php  or  cms_
transact_article.php  scripts any time it is posted from a form. In the same spirit of using include 
files to contain reusable functions, keeping all your data - manipulation code in a centralized place, such 
as transaction files, can make future maintenance easier.  

  Try It Out User Transactions 

 In your first transaction file, you ’ re going to be creating the code that performs all user data 
manipulation, including login, account maintenance, and access control.   

  1.   Enter this code, and save it as  cms_transact_user.php : 

 < ?php
require_once ‘db.inc.php’;
require_once ‘cms_http_functions.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
if (isset($_REQUEST[‘action’])) {
                   
    switch ($_REQUEST[‘action’]) {
    case ‘Login’:
        $email = (isset($_POST[‘email’])) ? $_POST[‘email’] : ‘’;
        $password = (isset($_POST[‘password’])) ? $_POST[‘password’] : ‘’;
        $sql = ‘SELECT
                user_id, access_level, name
            FROM
                cms_users
            WHERE
                email = “’ . mysql_real_escape_string($email, $db) . ‘” AND
                password = PASSWORD(“’ . mysql_real_escape_string($password,
                    $db) . ‘”)’;



Chapter 13: Building a Content Management System

421

        $result = mysql_query($sql, $db) or die(mysql_error($db));
        if (mysql_num_rows($result)  >  0) {
            $row = mysql_fetch_array($result);
            extract($row);
            session_start();
            $_SESSION[‘user_id’] = $user_id;
            $_SESSION[‘access_level’] = $access_level;
            $_SESSION[‘name’] = $name;
        }
        mysql_free_result($result);
        redirect(‘cms_index.php’);
        break;
                   
    case ‘Logout’:
        session_start();
        session_unset();
        session_destroy();
        redirect(‘cms_index.php’);
        break;
                   
    case ‘Create Account’:
        $name = (isset($_POST[‘name’])) ? $_POST[‘name’] : ‘’;
        $email = (isset($_POST[‘email’])) ? $_POST[‘email’] : ‘’;
        $password_1 = (isset($_POST[‘password_1’])) ? $_POST[‘password_1’] 
: ‘’;
        $password_2 = (isset($_POST[‘password_2’])) ? $_POST[‘password_2’] 
: ‘’;
        $password = ($password_1 == $password_2) ? $password_1 : ‘’;
        if (!empty($name)  &  &  !empty($email)  &  &  !empty($password)) {
            $sql = ‘INSERT INTO cms_users
                    (email, password, name)
                VALUES
                (“’ . mysql_real_escape_string($email, $db) . ‘”,
                PASSWORD(“’ . mysql_real_escape_string($password, $db) . ‘”), 
                “’ . mysql_real_escape_string($name, $db) . ‘”)’;
            mysql_query($sql, $db) or die(mysql_error($db));
                   
            session_start();
            $_SESSION[‘user_id’] = mysql_insert_id($db);
            $_SESSION[‘access_level’] = 1;
            $_SESSION[‘name’] = $name;
        }
        redirect(‘cms_index.php’);
        break;
                   
    case ‘Modify Account’:
        $user_id = (isset($_POST[‘user_id’])) ? $_POST[‘user_id’] : ‘’;
        $email = (isset($_POST[‘email’])) ? $_POST[‘email’] : ‘’;
        $name = (isset($_POST[‘name’])) ? $_POST[‘name’] : ‘’;
        $access_level = (isset($_POST[‘access_level’])) ? 
$_POST[‘access_level’]
            : ‘’;
        if (!empty($user_id)  &  &  !empty($name)  &  &  !empty($email)  &  & 
            !empty($access_level)  &  &  !empty($user_id)) {



422

Part II: Comic Book Fan Site

            $sql = ‘UPDATE cms_users SET
                    email = “’ . mysql_real_escape_string($email, $db) . ‘”,
                    name = “’ . mysql_real_escape_string($name, $db) . ‘”,
                    access_level = “’ . mysql_real_escape_string
($access_level,
                        $db) . ‘”,
                WHERE
                    user_id = ‘ . $user_id;
            mysql_query($sql, $db) or die(mysql_error($db));
        }
        redirect(‘cms_admin.php’);
        break;
                   
    case ‘Send my reminder!’:
        $email = (isset($_POST[‘email’])) ? $_POST[‘email’] : ‘’;
        if (!empty($email)) {
            $sql = ‘SELECT email FROM cms_users WHERE email=”’ .
                mysql_real_escape_string($email, $db) . ‘”’;
            $result = mysql_query($sql, $db) or die(mysql_error($db));
            if (mysql_num_rows($result)  >  0) {
                $password = strtoupper(substr(sha1(time()), rand(0, 32), 8));
                $subject = ‘Comic site password reset’;
                $body = ‘Looks like you forgot your password, eh? 
No worries. ‘ . 
                    ‘We\’ve reset it for you!’ . “\n\n”;
                $body .= ‘Your new password is: ‘ . $password;
                mail($email, $subject, $body);
            }
            mysql_free_result($result);
        }
        redirect(‘cms_login.php’);
        break;
                   
    case ‘Change my info’:
        session_start();
        $email = (isset($_POST[‘email’])) ? $_POST[‘email’] : ‘’;
        $name = (isset($_POST[‘name’])) ? $_POST[‘name’] : ‘’;
        if (!empty($name)  &  &  !empty($email)  &  &  !empty($_SESSION[‘user_id’]))
        {
            $sql = ‘UPDATE cms_users SET
                    email = “’ . mysql_real_escape_string($email, $db) . ‘”,
                    name = “’ . mysql_real_escape_string($name, $db) . ‘”,
                WHERE
                    user_id = ‘ . $_SESSION[‘user_id’];
            mysql_query($sql, $db) or die(mysql_error($db));
        }
        redirect(‘cms_cpanel.php’);
        break;
    default:
        redirect(‘cms_index.php’);
    }
} else {
    redirect(‘cms_index.php’);
}
? >      



Chapter 13: Building a Content Management System

423

  How It Works  
 The application needs to access the database and to redirect users to various pages after completing 
transactions. You take care of the former by including  db.inc.php , and the latter by including  cms_
http_functions.inc.php . Because transaction pages don ’ t display anything on the screen, you 
don ’ t need to include the  cms_header.inc.php ,  cms_footer.inc.php , or  cms_output_
functions.inc.php  files.   

require_once ‘db.inc.php’;
require_once ‘cms_http_functions.inc.php’;  

 The  $_REQUEST[‘action’]  variable contains either the value of the button you clicked on the 
previous page, or a  GET  request in the URL (such as  ?action=delete ). If  $_REQUEST[‘action’]  is 
empty, then you don ’ t do any transactions and simply redirect the user to the  cms_index.php  page: 

if (isset($_REQUEST[‘action’])) {
    ...
} else {
    redirect(‘cms_index.php’);
}  

 You use a  switch  statement because of the flexibility it gives you. If you expand the functionality of 
your CMS, you can end up having to add many more actions to  cms_transact_user.php . With 
 switch , it is a simple matter of adding a new  case  condition. You could certainly use a long chain of 
 if / else  statements instead of  switch , but they can be cumbersome to work with and difficult to 
maintain over time.   

switch ($_REQUEST[‘action’]) {
    ...
default:
    redirect(‘cms_index.php’);
}  

 The Login case handles user logins. Your e - mail and password are what you use to log in to the CMS. 
If both are not passed, the user will not be logged in. The address and password are filtered, and then 
the database is searched for a matching record in the  cms_users  table. If a match is found, then a 
session is started, and  $_SESSION[‘user_id’] ,  $_SESSION[‘name’] , and  $_SESSION[‘access_
level’]  are stored to log the user in.   

case ‘Login’:
    $email = (isset($_POST[‘email’])) ? $_POST[‘email’] : ‘’;
    $password = (isset($_POST[‘password’])) ? $_POST[‘password’] : ‘’;
                   
    $sql = ‘SELECT
            user_id, access_level, name
        FROM
            cms_users
        WHERE
            email = “’ . mysql_real_escape_string($email, $db) . ‘” AND
            password = PASSWORD(“’ . mysql_real_escape_string($password,
                $db) . ‘”)’;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
    if (mysql_num_rows($result)  >  0) {



424

Part II: Comic Book Fan Site

        $row = mysql_fetch_array($result);
        extract($row);
        session_start();
        $_SESSION[‘user_id’] = $user_id;
        $_SESSION[‘access_level’] = $access_level;
        $_SESSION[‘name’] = $name;
    }
    mysql_free_result($result);
    redirect(‘cms_index.php’);
    break;  

 Logging someone out is quite simple, really. If no session variables exist with the user ID, access level, 
and username, then the application knows the user is not logged in. All you need to do is purge the 
session variables. First you use  session_start()  to tell PHP you are accessing session variables. 
Then, you unset the session with  session_unset() , which clears all the session variables, and 
finally you destroy the session with  session_destroy() , which destroys all of the data registered 
to a session. All login data should be removed after calling both the  session_unset()  and  
session_destroy()  functions.   

case ‘Logout’:
    session_start();
    session_unset();
    session_destroy();
    redirect(‘cms_index.php’);
    break;  

 To create an account, all of the required fields must be filled in, and the two password fields must 
match (users are often required to enter their password twice when registering an account, to help 
prevent errors, and you will be implementing this in your CMS). After the incoming values are 
filtered, if everything is good, then you create the record in the  cms_users  table, automatically log the 
user in by setting  $_SESSION[‘user_id’] ,  $_SESSION[‘name’] , and  $_SESSION[‘access_
level’] , and redirect the user to  cms_index.php .   

case ‘Create Account’:
    $name = (isset($_POST[‘name’])) ? $_POST[‘name’] : ‘’;
    $email = (isset($_POST[‘email’])) ? $_POST[‘email’] : ‘’;
    $password_1 = (isset($_POST[‘password_1’])) ? $_POST[‘password_1’] : ‘’;
    $password_2 = (isset($_POST[‘password_2’])) ? $_POST[‘password_2’] : ‘’;
    $password = ($password_1 == $password_2) ? $password_1 : ‘’;
    if (!empty($name)  &  &  !empty($email)  &  &  !empty($password)) {
        $sql = ‘INSERT INTO cms_users
                (email, password, name)
            VALUES
            (“’ . mysql_real_escape_string($email, $db) . ‘”,
            PASSWORD(“’ . mysql_real_escape_string($password, $db) . ‘”), 
            “’ . mysql_real_escape_string($name, $db) . ‘”)’;
        mysql_query($sql, $db) or die(mysql_error($db));
        session_start();
        $_SESSION[‘user_id’] = mysql_insert_id($db);
        $_SESSION[‘access_level’] = 1;
        $_SESSION[‘name’] = $name;
    }
    redirect(‘cms_index.php’);
    break;  



Chapter 13: Building a Content Management System

425

 When another user ’ s account is modified by an administrator, all of the fields must have data. As long 
as they do, then the account is updated in the database, and the administrator is redirected to the  cms_
admin.php  page: 

case ‘Modify Account’:
    $user_id = (isset($_POST[‘user_id’])) ? $_POST[‘user_id’] : ‘’;
    $email = (isset($_POST[‘email’])) ? $_POST[‘email’] : ‘’;
    $name = (isset($_POST[‘name’])) ? $_POST[‘name’] : ‘’;
    $access_level = (isset($_POST[‘access_level’])) ? $_POST[‘access_level’]
        : ‘’;
    if (!empty($user_id)  &  &  !empty($name)  &  &  !empty($email)  &  & 
        !empty($access_level)  &  &  !empty($user_id)) {
        $sql = ‘UPDATE cms_users SET
                email = “’ . mysql_real_escape_string($email, $db) . ‘”,
                name = “’ . mysql_real_escape_string($name, $db) . ‘”,
                access_level = “’ . mysql_real_escape_string($access_level,
                    $db) . ‘”,
            WHERE
                user_id = ‘ . $user_id;
        mysql_query($sql, $db) or die(mysql_error($db));
    }
    redirect(‘cms_admin.php’);
    break;  

 If the user forgets his or her password, the user can have a new one generated and sent to the e - mail 
account registered in the system. Here, we suggest sending a simple plaintext e - mail, but there is no 
reason you can ’ t take your wealth of knowledge from Chapter 11 and send HTML or multipart e - mail 
messages to your users. 

 You filter the incoming e - mail address and search for it in the database. If it can be found, then you 
know it is a registered address. Then you create a new random password, enter a subject and body for 
your e - mail message (including new password), and send the message on its merry way. You assume, 
of course, that the user will immediately open his or her e - mail to read the password, so you 
conveniently redirect the user to the login page.   

case ‘Send my reminder!’:
    $email = (isset($_POST[‘email’])) ? $_POST[‘email’] : ‘’;
    if (!empty($email)) {
        $sql = ‘SELECT email FROM cms_users WHERE email=”’ .
            mysql_real_escape_string($email, $db) . ‘”’;
        $result = mysql_query($sql, $db) or die(mysql_error($db));
        if (mysql_num_rows($result)  >  0) {
            $password = strtoupper(substr(sha1(time()), rand(0, 32), 8));
            $subject = ‘Comic site password reset’;
            $body = ‘Looks like you forgot your password, eh? No worries. ‘ . 
                ‘We\’ve reset it for you!’ . “\n\n”;
            $body .= ‘Your new password is: ‘ . $password;
            mail($email, $subject, $body);
        }
        mysql_free_result($result);
    }
    redirect(‘cms_login.php’);
    break;  



426

Part II: Comic Book Fan Site

 The following code may look  very  familiar. It is virtually identical to the previous Modify Account 
case, except that this time, the user is changing his or her own data. Because of this, the access level 
does not get updated.   

case ‘Change my info’:
    session_start();
    $email = (isset($_POST[‘email’])) ? $_POST[‘email’] : ‘’;
    $name = (isset($_POST[‘name’])) ? $_POST[‘name’] : ‘’;
    if (!empty($name)  &  &  !empty($email)  &  &  !empty($_SESSION[‘user_id’]))
    {
        $sql = ‘UPDATE cms_users SET
                email = “’ . mysql_real_escape_string($email, $db) . ‘”,
                name = “’ . mysql_real_escape_string($name, $db) . ‘”,
            WHERE
                user_id = ‘ . $_SESSION[‘user_id’];
        mysql_query($sql, $db) or die(mysql_error($db));
    }
    redirect(‘cms_cpanel.php’);
    break;     

  Try It Out Article Transactions 

 The previous transaction script wasn ’ t so bad, was it? While it might seem like a lot of code, much of it 
is fairly simple and straightforward. You check some variables, execute some SQL queries, and then 
redirect the user. That ’ s pretty much how most transactions work. Now, let ’ s move on to the 
transaction file for working with articles and comments.   

  1.   Enter  cms_transact_article.php : 

 < ?php
require_once ‘db.inc.php’;
require_once ‘cms_http_functions.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
if (isset($_REQUEST[‘action’])) {
                   
    switch ($_REQUEST[‘action’]) {
    case ‘Submit New Article’:
        $title = (isset($_POST[‘title’])) ? $_POST[‘title’] : ‘’;
        $article_text = (isset($_POST[‘article_text’])) ? $_POST[‘article
_text’]
            : ‘’;
        if (isset($_SESSION[‘user_id’])  &  &  !empty($title)  &  & 
            !empty($article_text)) {
            $sql = ‘INSERT INTO cms_articles
                    (user_id, submit_date, title, article_text)



Chapter 13: Building a Content Management System

427

                VALUES
                    (‘ . $_SESSION[‘user_id’] . ‘, 
                    “’ . date(‘Y-m-d H:i:s’) . ‘”,
                    “’ . mysql_real_escape_string($title, $db) . ‘”,
                    “’ . mysql_real_escape_string($article_text, $db) . ‘”)’;
            mysql_query($sql, $db) or die(mysql_error($db));
        }
        redirect(‘cms_index.php’);
        break;
                   
    case ‘Edit’:
        redirect(‘cms_compose.php?action=edit & article_id=’ . 
$_POST[‘article_id’]);
        break;
                   
    case ‘Save Changes’:
        $article_id = (isset($_POST[‘article_id’])) ? $_POST[‘article_id’] 
: ‘’;
        $user_id = (isset($_POST[‘user_id’])) ? $_POST[‘user_id’] : ‘’;
        $title = (isset($_POST[‘title’])) ? $_POST[‘title’] : ‘’;
        $article_text = (isset($_POST[‘article_text’])) ? 
$_POST[‘article_text’]
            : ‘’;
        if (!empty($article_id)  &  &  !empty($title)  &  &  !empty($article_text)) {
            $sql = ‘UPDATE cms_articles SET 
                    title = “’ . mysql_real_escape_string($title, $db) . ‘”,
                    article_text = “’ . mysql_real_escape_string($article
_text,
                        $db) . ‘”,
                    submit_date = “’ . date(‘Y-m-d H:i:s’) . ‘”
                WHERE
                    article_id = ‘ . $article_id;
            if (!empty($user_id)) {
                $sql .= ‘ AND user_id = ‘ . $user_id;
            }
            mysql_query($sql, $db) or die(mysql_error($db));
        }
        if (empty($user_id)) {
            redirect(‘cms_pending.php’);
        } else {
            redirect(‘cms_cpanel.php’);
        }
        break;
                   
    case ‘Publish’:
        $article_id = (isset($_POST[‘article_id’])) ? $_POST[‘article_id’] 
: ‘’;
        if (!empty($article_id)) {
            $sql = ‘UPDATE cms_articles SET 
                    is_published = TRUE,
                    publish_date = “’ . date(‘Y-m-d H:i:s’) . ‘”
                WHERE
                    article_id = ‘ . $article_id;
            mysql_query($sql, $db) or die(mysql_error($db));
        }



428

Part II: Comic Book Fan Site

        redirect(‘cms_pending.php’);
        break;
                   
    case ‘Retract’:
        $article_id = (isset($_POST[‘article_id’])) ? $_POST[‘article_id’] 
: ‘’;
        if (!empty($article_id)) {
            $sql = ‘UPDATE cms_articles SET 
                    is_published = FALSE,
                    publish_date = “0000-00-00 00:00:00”
                WHERE
                    article_id = ‘ . $article_id;
            mysql_query($sql, $db) or die(mysql_error($db));
        }
        redirect(‘cms_pending.php’);
        break;
                   
    case ‘Delete’:
        $article_id = (isset($_POST[‘article_id’])) ? $_POST[‘article_id’] 
: ‘’;
        if (!empty($article_id)) {
            $sql = ‘DELETE a, c FROM
                    cms_articles a LEFT JOIN cms_comments c ON
                    a.article_id = c.article_id
                WHERE
                    a.article_id = ‘ . $article_id . ‘ AND
                    is_published = FALSE’;
            mysql_query($sql, $db) or die(mysql_error($db));
        }
        redirect(‘cms_pending.php’);
        break;
                   
    case ‘Submit Comment’:
        $article_id = (isset($_POST[‘article_id’])) ? $_POST[‘article_id’] 
: ‘’;
        $comment_text = (isset($_POST[‘comment_text’])) ?
            $_POST[‘comment_text’] : ‘’;
        if (isset($_SESSION[‘user_id’])  &  &  !empty($article_id)  &  & 
            !empty($comment_text)) {
            $sql = ‘INSERT INTO cms_comments 
                    (article_id, user_id, comment_date, comment_text)
                VALUES
                    (‘ . $article_id . ‘,
                    ‘ . $_SESSION[‘user_id’] . ‘,
                    “’ . date(‘Y-m-d H:i:s’) . ‘”,
                    “’ . mysql_real_escape_string($comment_text, $db) 
. ‘”)’;
            mysql_query($sql, $db) or die(mysql_error($db));
        }



Chapter 13: Building a Content Management System

429

        redirect(‘cms_view_article.php?article_id=’ . $article_id);
        break;
                   
    default:
        redirect(‘cms_index.php’);
    }
} else {
    redirect(‘cms_index.php’);
}
? >      

  How It Works  
 As with  cms_transact_user.php , you check the  $_REQUEST[‘action’]  value in  cms_transact_
article.php  to see if a button was pressed or an action was specified in the URL, and if so, then you 
act on it accordingly with the appropriate branch of a  switch  statement. The user is redirected to the 
main index page if no action was passed or if the action was not recognized by  cms_transact_
article.php .   

if (isset($_REQUEST[‘action’])) {
    switch ($_REQUEST[‘action’]) {
        ...
    default:
        redirect(‘cms_index.php’);
    }
} else {
    redirect(‘cms_index.php’);
}  

 Your first case handles the adding of a new article in the database. You first ensure that the title and 
article ’ s body were both passed to the script and that the user is logged in (tested by the presence of 
the  $_SESSION[‘user_id’] ). Then, you insert the article into the database, including the user ’ s ID 
for the article ’ s author and the date for its submission date.   

case ‘Submit New Article’:
    $title = (isset($_POST[‘title’])) ? $_POST[‘title’] : ‘’;
    $article_text = (isset($_POST[‘article_text’])) ? $_POST[‘article_text’]
        : ‘’;
    if (isset($_SESSION[‘user_id’])  &  &  !empty($title)  &  & 
        !empty($article_text)) {
        $sql = ‘INSERT INTO cms_articles
                (user_id, submit_date, title, article_text)
            VALUES
                (‘ . $_SESSION[‘user_id’] . ‘, 
                “’ . date(‘Y-m-d H:i:s’) . ‘”,
                “’ . mysql_real_escape_string($title, $db) . ‘”,
                “’ . mysql_real_escape_string($article_text, $db) . ‘”)’;               
        mysql_query($sql, $db) or die(mysql_error($db));
    }
    redirect(‘cms_index.php’);
    break;  



430

Part II: Comic Book Fan Site

 Handling the Edit case is simple. The  cms_compose.php  page will be set up to retrieve an article and 
preload it into the title and body fields, if the appropriate data is supplied in the URL. You simply 
need to append  action=edit and article_id=nn  to the address.   

case ‘Edit’:
    redirect(‘cms_compose.php?action=edit & article_id=’ . $_POST[‘article_
id’]);
    break;  

 To save changes to an article, you take in and filter the article ’ s ID, author ’ s user ID, the article ’ s title, 
and the body text. If the  $user_id  has a value, then you know a user is editing her or his own 
document, and you must add a condition to match the ID to the SQL statement. You then redirect the 
user either to the control panel, if the user is editing his or her own article, or to the review page, if the 
user is a moderator editing someone else ’ s article.   

case ‘Save Changes’:
    $article_id = (isset($_POST[‘article_id’])) ? $_POST[‘article_id’] : ‘’;
    $user_id = (isset($_POST[‘user_id’])) ? $_POST[‘user_id’] : ‘’;
    $title = (isset($_POST[‘title’])) ? $_POST[‘title’] : ‘’;
    $article_text = (isset($_POST[‘article_text’])) ? $_POST[‘article_text’]
        : ‘’;
    if (!empty($article_id)  &  &  !empty($title)  &  &  !empty($article_text)) {
        $sql = ‘UPDATE cms_articles SET 
                title = “’ . mysql_real_escape_string($title, $db) . ‘”,
                article_text = “’ . mysql_real_escape_string($article_text,
                    $db) . ‘”,
                submit_date = “’ . date(‘Y-m-d H:i:s’) . ‘”
            WHERE
                article_id = ‘ . $article_id;
        if (!empty($user_id)) {
            $sql .= ‘ AND user_id = ‘ . $user_id;
        }
        mysql_query($sql, $db) or die(mysql_error($db));
    }
    if (empty($user_id)) {
        redirect(‘cms_pending.php’);
    } else {
        redirect(‘cms_cpanel.php’);
    }
    break;  

 In the Publish case, you accept in and filter the article ’ s ID, and then modify its record in the database 
to set the status and publication date.   

case ‘Publish’:
    $article_id = (isset($_POST[‘article_id’])) ? $_POST[‘article_id’] : ‘’;
    if (!empty($article_id)) {
        $sql = ‘UPDATE cms_articles SET 
                is_published = TRUE,
                publish_date = “’ . date(‘Y-m-d H:i:s’) . ‘”
            WHERE
                article_id = ‘ . $article_id;



Chapter 13: Building a Content Management System

431

        mysql_query($sql, $db) or die(mysql_error($db));
    }
    redirect(‘cms_pending.php’);
    break;  

 The Retract case is actually quite similar to the Publish case preceding it, only this time, after checking 
the article ID, you set  is_published  to false and clear out the  publish_date  field. Retracting an 
article in this case simply returns it to its prepublished state.   

case ‘Retract’:
    $article_id = (isset($_POST[‘article_id’])) ? $_POST[‘article_id’] : ‘’;
    if (!empty($article_id)) {
        $sql = ‘UPDATE cms_articles SET 
                is_published = FALSE,
                publish_date = “0000-00-00 00:00:00”
            WHERE
                article_id = ‘ . $article_id;
        mysql_query($sql, $db) or die(mysql_error($db));
    }
    redirect(‘cms_pending.php’);
    break;  

 To delete an article, you check to see that an article ID was passed and then use it to delete the 
appropriate record. You use a  JOIN  in your query so you can delete any comments that have been 
made on the article as well.   

case ‘Delete’:
    $article_id = (isset($_POST[‘article_id’])) ? $_POST[‘article_id’] : ‘’;
    if (!empty($article_id)) {
        $sql = ‘DELETE a, c FROM
                cms_articles a LEFT JOIN cms_comments c ON
                a.article_id = c.article_id
            WHERE
                a.article_id = ‘ . $article_id . ‘ AND
                is_published = FALSE’;
        mysql_query($sql, $db) or die(mysql_error($db));
    }
    redirect(‘cms_pending.php’);
    break;  

 The final case handles adding new comments. In the Submit Comment case, you insert the referenced 
article ’ s ID, the user ID of the individual writing the comment, the date the comment was written, and 
finally the comment text itself. Afterwards, you redirect the user back to the article, so he or she can 
see the newly saved comment.   

case ‘Submit Comment’:
    $article_id = (isset($_POST[‘article_id’])) ? $_POST[‘article_id’] : ‘’;
    $comment_text = (isset($_POST[‘comment_text’])) ?
        $_POST[‘comment_text’] : ‘’;
    if (isset($_SESSION[‘user_id’])  &  &  !empty($article_id)  &  & 
        !empty($comment_text)) {
        $sql = ‘INSERT INTO cms_comments 
                (article_id, user_id, comment_date, comment_text)



432

Part II: Comic Book Fan Site

            VALUES
                (‘ . $article_id . ‘,
                ‘ . $_SESSION[‘user_id’] . ‘,
                “’ . date(‘Y-m-d H:i:s’) . ‘”,
                “’ . mysql_real_escape_string($comment_text, $db) . ‘”)’;
        mysql_query($sql, $db) or die(mysql_error($db));
    }
    redirect(‘cms_view_article.php?article_id=’ . $article_id);
    break;     

  User Interface 
 Whew! We hope you aren ’ t getting bummed out that you ’ ve done all this coding and don ’ t have 
anything to show in a browser yet! You ’ ve created your reusable functions and transaction pages, but 
haven ’ t yet actually seen any real on - screen functionality. Well, now ’ s your chance. In this section, we ’ re 
going to be creating the scripts that make up the various user interface screens. Dust off your browser, 
and let ’ s get started! 

  General Functionality 
 The first group of files you ’ ll be creating here is going to provide general user access to the site. Scripts 
similar to these are found on many sites across the Internet, so you ’ ll probably be familiar with their 
functionality.  

  Try It Out Main Index/Login Screen 

 The first scripts you ’ re going to code will deal with the action of a user visiting the site, logging in, 
requesting a new password and creating a new account.   

  1.   Create  cms_login.php : 

 < ?php include ‘cms_header.inc.php’; ? > 
 < h1 > Member Login < /h1 > 
 < form method=”post” action=”cms_transact_user.php” > 
  < table > 
   < tr > 
    < td >  < label for=”email” > Email Address: < /label >  < /td > 
    < td >  < input type=”text” id=”email” name=”email” maxlength=”100”/ >  < /td > 
   < /tr >  < tr > 
    < td >  < label for=”password” > Password: < /label >  < /td > 
    < td >  < input type=”password” id=”password” name=”password” maxlength=”20”/ >  
< /td > 
   < /tr >  < tr > 
    < td >     < /td > 
    < td >  < input type=”submit” name=”action” value=”Login”/ >  < /td > 



Chapter 13: Building a Content Management System

433

   < /tr > 
  < /table > 
 < /form > 
 < p > Not a member yet?  < a href=”cms_user_account.php” > Create a new account! 
< /a >  < /p > 
 < p >  < a href=”cms_forgot_password.php” > Forgot your password? < /a >  < /p > 
 < ?php include ‘cms_footer.inc.php’; ? >    

  2.   Next, create  cms_forgot_password.php : 

 < ?php include ‘cms_header.inc.php’; ? > 
 < h1 > Email Password Reminder < /h1 > 
 < p > Forgot your password? Just enter your email address, and we’ll email 
you a new one! < /p > 
 < form method=”post” action=”cms_transact_user.php” > 
  < div > 
   < label for=”email” > Email Address: < /label > 
   < input type=”text” id=”email” name=”email” maxlength=”100”/ > 
   < input type=”submit” name=”action” value=”Send my reminder!”/ > 
  < /div > 
 < /form > 
 < ?php include ‘cms_footer.inc.php’; ? >    

  3.   Create  cms_index.php : 

 < ?php
require ‘db.inc.php’;
require ‘cms_output_functions.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
include ‘cms_header.inc.php’;
                   
$sql = ‘SELECT
        article_id
    FROM
        cms_articles
    WHERE
        is_published = TRUE 
    ORDER BY
        publish_date DESC’;
$result = mysql_query($sql, $db);
                   
if (mysql_num_rows($result) == 0) {
    echo ‘ < p >  < strong > There are currently no articles to view. < /strong >  < /p > ’;
} else {



434

Part II: Comic Book Fan Site

    while ($row = mysql_fetch_array($result)) {
        output_story($db, $row[‘article_id’], TRUE);
    }
}
mysql_free_result($result);
                   
include ‘cms_footer.inc.php’;
? >    

  4.   Now load  cms_index.php  in your browser. Your screen should look like that in Figure  13 - 1 .    

Figure 13-1

  5.   Click the Login link on the page, and  cms_login.php  will open up next in your browser 
(Figure  13 - 2 ). Enter the e - mail address and password you previously stored in the database 
with  db_ch13.php , and click the Login button.    



Chapter 13: Building a Content Management System

435

Figure 13-2

    You should now see the  cms_index.php  page again, but this time you will see the new menu options 
that are available. This is shown in Figure  13 - 3 .      

Figure 13-3



436

Part II: Comic Book Fan Site

  How It Works    
  cms_header.inc.php  is included towards the top of  cms_index.php  to output the top portion of the 
HTML page.   

include ‘cms_header.inc.php’;  

 The SQL statement retrieves all of the published articles in the  cms_articles  table and sorts them by 
 publish_date , so the most recent articles are listed first.   

$sql = ‘SELECT
        article_id
    FROM
        cms_articles
    WHERE
        is_published = TRUE 
    ORDER BY
        publish_date DESC’;
$result = mysql_query($sql, $db);  

 If no articles are published, a message is output to inform the reader of this. Otherwise, if published 
articles are retrieved, then you loop through each record and display the article by calling 
 output_story() .   

if (mysql_num_rows($result) == 0) {
    echo ‘ < p >  < strong > There are currently no articles to view. < /strong >  < /p > ’;
} else {
    while ($row = mysql_fetch_array($result)) {
        output_story($db, $row[‘article_id’], TRUE);
    }
}  

 Finally, you output the bottom of the HTML content by including  cms_footer.inc.php .   

include ‘cms_footer.inc.php’;  

 The  cms_login.php  and  cms_forgot_password.php  files contain pretty much just the HTML 
code for their respective forms. Both include the  cms_header.inc.php  and  cms_footer.inc.php  
scripts for the top and bottom portions of HTML code. The forms post their information to the  
cms_transact_user.php  script, which performs the appropriate action on the data.  



Chapter 13: Building a Content Management System

437

  Try It Out Account Creation 

 Now, the next thing you need to create is a script that will allow your CMS users to create new 
accounts for themselves. The processing logic has already been written in  cms_transact_user.php , 
so that functionality will not appear explicitly in this script. However, the same form can be used to 
enter and later modify user information, so the code that you write will focus on providing that 
functionality.   

  1.   Create this new file, and save it as  cms_user_account.php : 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$user_id = (isset($_GET[‘user_id’])  &  &  ctype_digit($_GET[‘user_id’])) ?
    $_GET[‘user_id’] : ‘’;
                   
if (empty($user_id)) {
    $name = ‘’;
    $email = ‘’;
    $access_level = ‘’;
} else {
    $sql = ‘SELECT
            name, email, access_level
        FROM
            cms_users
        WHERE
            user_id=’ . $user_id;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
    $row = mysql_fetch_array($result);
    extract($row);
    mysql_free_result($result);
}
                   
include ‘cms_header.inc.php’;
                   
if (empty($user_id)) {
    echo ‘ < h1 > Create Account < /h1 > ’;
} else {
    echo ‘ < h1 > Modify Account < /h1 > ’;
}
? > 
 < form method=”post” action=”cms_transact_user.php” > 
  < table > 
   < tr > 
    < td >  < label for=”name” > Full Name: < /label >  < /td > 
    < td >  < input type=”text” id=”name” name=”name” maxlength=”100”
     value=” < ?php echo htmlspecialchars($name); ? > ”/ >  < /td > 
   < /tr >  < tr > 
    < td >  < label for=”email” > Email Address: < /label >  < /td > 



438

Part II: Comic Book Fan Site

    < td >  < input type=”text” id=”email” name=”email” maxlength=”100”
     value=” < ?php echo htmlspecialchars($email); ? > ”/ >  < /td > 
   < /tr > 
 < ?php
                   
if (isset($_SESSION[‘access_level’])  &  &  $_SESSION[‘access_level’] == 3)
{
    echo ‘ < tr >  < td > Access Level < /td >  < td > ’;
                   
    $sql = ‘SELECT
            access_level, access_name
        FROM
            cms_access_levels
        ORDER BY
            access_level DESC’;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
                   
    while ($row = mysql_fetch_array($result)) {
        echo ‘ < input type=”radio” id=”acl_’ . $row[‘access_level’] .
            ‘” name=”access_level” value=”’ . $row[‘access_level’] . ‘”’;
                   
        if ($row[‘access_level’] == $access_level) {
            echo ‘ checked=”checked”’;
        }
        echo ‘/ >     < label for=”acl_’ . $row[‘access_level’] . ‘” > ’ .
            $row[‘access_name’] . ‘ < /label >  < br/ > ’;
    }
    mysql_free_result($result);
    echo ‘ < /td >  < /tr > ’;
}
                   
if (empty($user_id)) {
? > 
   < tr > 
    < td >  < label for=”password_1” > Password: < /label >  < /td > 
    < td >  < input type=”password” id=”password_1” name=”password_1” 
maxlength=”50”/ > 
    < /td > 
   < /tr >  < tr > 
    < td >  < label for=”password_2” > Password (again): < /label >  < /td > 
    < td >  < input type=”password” id=”password_2” name=”password_2” 
maxlength=”50”/ > 
    < /td > 
   < /tr >  < tr > 
    < td >     < /td > 
    < td > 
     < input type=”submit” name=”action” value=”Create Account”/ > 
    < /td > 
   < /tr > 
 < ?php
} else {
? > 



Chapter 13: Building a Content Management System

439

   < tr > 
    < td >     < /td > 
    < td > 
     < input type=”hidden” name=”user_id” value=” < ?php echo $user_id; ? > ”/ > 
     < input type=”submit” name=”action” value=”Modify Account”/ > 
    < /td > 
   < /tr > 
 < ?php
}
? > 
  < /table > 
 < /form > 
 < ?php
include ‘cms_footer.inc.php’;
? >    

  2.   If you ’ re still logged in to the CMS, click the Logout link.  

  3.   Next, click Login, and then click  “ Create a new account! ”  You should see a screen similar to 
Figure  13 - 4 .    

Figure 13-4



440

Part II: Comic Book Fan Site

  4.   Enter data into each field, and click Create Account. For this example, enter the following:  

  ❑ Full Name: George Test  

❑   E - mail Address: gtest@example.com  

❑   Password: phprocks  

❑   Password (again): phprocks   

  Once you create a new user, you will be automatically logged in as that user. You should notice 
that you cannot see the Review or Admin menu items that were available to you when you 
 previously logged in as Admin. Review is available to moderators or admins (levels 2 or 3) only, 
and Admin is available to admins only (level 3). Your initial account was created at level 3, but 
the account you just created defaulted to level 1 (User).    

  How It Works  
 You need to retrieve all of the data for this user, if a user ID has been passed. After filtering and 
assigning  $_GET[‘user_id’]  to  $user_id , you check to see if  $user_id  is empty. If it is, then you 
know you are displaying the form to create a new user account and initialize the variable used in the 
form ’ s construction to empty values. If  $user_id  does contain a user ’ s ID, you retrieve the 
information from the  cms_users  table.   

$user_id = (isset($_GET[‘user_id’])  &  &  ctype_digit($_GET[‘user_id’])) ?
    $_GET[‘user_id’] : ‘’;
                   
if (empty($user_id)) {
    $name = ‘’;
    $email = ‘’;
    $access_level = ‘’;
} else {
    $sql = ‘SELECT
            name, email, access_level
        FROM
            cms_users
        WHERE
            user_id=’ . $user_id;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
    $row = mysql_fetch_array($result);
    extract($row);
    mysql_free_result($result);
}  

 If the  $user_id  has a value, then it means a user has been logged in, and this page contains the user ’ s 
current data so she or he can modify the account. Otherwise, it ’ s a new user who wants to create an 
account. The title needs to reflects this.   

if (empty($user_id)) {
    echo ‘ < h1 > Create Account < /h1 > ’;
} else {
    echo ‘ < h1 > Modify Account < /h1 > ’;
}  



Chapter 13: Building a Content Management System

441

 The form posts its data to  cms_transact_user.php . The first portion of the form ’ s code is pretty 
much standard HTML code that displays the common fields with a small bit of PHP mixed in to safely 
output the contents of the variables that store the relevant field ’ s value.   

 < form method=”post” action=”cms_transact_user.php” > 
  < table > 
   < tr > 
    < td >  < label for=”name” > Full Name: < /label >  < /td > 
    < td >  < input type=”text” id=”name” name=”name” maxlength=”100”
     value=” < ?php echo htmlspecialchars($name); ? > ”/ >  < /td > 
   < /tr >  < tr > 
    < td >  < label for=”email” > Email Address: < /label >  < /td > 
    < td >  < input type=”text” id=”email” name=”email” maxlength=”100”
     value=” < ?php echo htmlspecialchars($email); ? > ”/ >  < /td > 
   < /tr >   

 If the user is logged in and editing his or her information, and if he or she has administrative 
privileges, then you generate a row in the table that allows the account ’ s privileges to be changed. The 
list of privileges is retrieved from the  cms_access_levels table , and each privilege is displayed as 
a radio button option on the form. While displaying the list, you also check to see if the particular 
privilege is held by the user, and if it is, then you set it to be checked by default.   

if (isset($_SESSION[‘access_level’])  &  &  $_SESSION[‘access_level’] == 3)
{
    echo ‘ < tr >  < td > Access Level < /td >  < td > ’;
                   
    $sql = ‘SELECT
            access_level, access_name
        FROM
            cms_access_levels
        ORDER BY
            access_level DESC’;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
                   
    while ($row = mysql_fetch_array($result)) {
        echo ‘ < input type=”radio” id=”acl_’ . $row[‘access_level’] .
            ‘” name=”access_level” value=”’ . $row[‘access_level’] . ‘”’;
                   
        if ($row[‘access_level’] == $access_level) {
            echo ‘ checked=”checked”’;
        }
        echo ‘/ >     < label for=”acl_’ . $row[‘access_level’] . ‘” > ’ .
            $row[‘access_name’] . ‘ < /label >  < br/ > ’;
    }
    mysql_free_result($result);
    echo ‘ < /td >  < /tr > ’;
}  

 What is displayed in the final portion of the form depends on whether the user is creating a new user 
account or updating his or her existing information. If the user is creating a new account, then the 
password fields are shown, and the submit button is given the value  “ Create Account. ”  If the user is 
updating his or her information, then a hidden input field is output that contains the  user_id , and 



442

Part II: Comic Book Fan Site

the submit button is given the value  “ Modify Account. ”     cms_transact_user.php  will use the 
submit button ’ s value to decide on the appropriate switch case to run when processing the form ’ s 
posting.   

if (empty($user_id)) {
? > 
   < tr > 
    < td >  < label for=”password_1” > Password: < /label >  < /td > 
    < td >  < input type=”password” id=”password_1” name=”password_1” 
maxlength=”50”/ > 
    < /td > 
   < /tr >  < tr > 
    < td >  < label for=”password_2” > Password (again): < /label >  < /td > 
    < td >  < input type=”password” id=”password_2” name=”password_2” 
maxlength=”50”/ > 
    < /td > 
   < /tr >  < tr > 
    < td >     < /td > 
    < td > 
     < input type=”submit” name=”action” value=”Create Account”/ > 
    < /td > 
   < /tr > 
 < ?php
} else {
? > 
   < tr > 
    < td >     < /td > 
    < td > 
     < input type=”hidden” name=”user_id” value=” < ?php echo $user_id; ? > ”/ > 
     < input type=”submit” name=”action” value=”Modify Account”/ > 
    < /td > 
   < /tr > 
 < ?php
}
? >   

 Finally, you include  cms_footer.inc.php , to close out the HTML neatly: 

include ‘cms_footer.inc.php’;     

  User Management 
 So you may be wondering: If an administrative user can downgrade his or her privileges, how does the 
administrator create other administrators or moderators to help manage the site? The answer is within 
the script you are going to write next.  



Chapter 13: Building a Content Management System

443

  Try It Out Administration Page 

 In this exercise, you ’ ll create the pages necessary for administrators to manage the site ’ s users.   

  1.   Create  cms_admin.php : 

 < ?php
require ‘db.inc.php’;
include ‘cms_header.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$sql = ‘SELECT
        access_level, access_name
    FROM
        cms_access_levels
    ORDER BY
        access_name ASC’;
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   
$privileges = array();
while ($row = mysql_fetch_assoc($result)) {
    $privileges[$row[‘access_level’]] = $row[‘access_name’];
}
mysql_free_result($result);
                   
echo ‘ < h2 > User Administration < /h2 > ’;
                   
$limit = count($privileges);
for($i = 1; $i  < = $limit; $i++) {
    echo ‘ < h3 > ’ . $privileges[$i] . ‘ < /h3 > ’;
    $sql = ‘SELECT
            user_id, name
        FROM
            cms_users
        WHERE
            access_level = ‘ . $i . ‘
        ORDER BY
            name ASC’;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
                   
    if (mysql_num_rows($result) == 0) {
        echo ‘ < p >  < strong > There are no ‘ . $privileges[$i] . ‘ accounts ‘ .
            ‘registered. < /strong >  < /p > ’;
    } else {
        echo ‘ < ul > ’;
        while ($row = mysql_fetch_assoc($result)) {
            if ($_SESSION[‘user_id’] == $row[‘user_id’]) {
                echo ‘ < li > ’ . htmlspecialchars($row[‘name’]) . ‘ < /li > ’;



444

Part II: Comic Book Fan Site

            } else {
                echo ‘ < li >  < a href=”cms_user_account.php?user_id=’ .
                    $row[‘user_id’] . ‘” > ’ . htmlspecialchars($row[‘name’]) . 
                    ‘ < /a >  < /li > ’;
            }
        }
        echo ‘ < /ul > ’;
    }
    mysql_free_result($result);
}
                   
require ‘cms_footer.inc.php’;
? >    

  2.   Go ahead and log out, and then log back in using your admin account. When you are logged 
in, click the Admin link. You should see a screen similar to Figure  13 - 5 .   

Figure 13-5

  You should see George Test under the User heading. You will notice your administrator name 
under Administrator, but it is not a link. You can alter your own account from your Control 
Panel page.  



Chapter 13: Building a Content Management System

445

  3.   Click the user listed under User. You should see a page similar to that in Figure  13 - 6 . Notice 
that you can change the user ’ s name and password. Also notice the Access Level option. You 
can set any user to be a User, Moderator, or Admin. User is the default for new users.      

Figure 13-6

  How It Works  
 Towards the start of the script, you query the database to retrieve the list of permissions from 
 cms_access_levels . The name of each permission is stored in  $privileges , an array that uses 
the  access_level  ’ s numeric ID as its index. You also fetch the number of records with the  
mysql_num_rows()  function and store it in  $limit  for later use.   

$sql = ‘SELECT
        access_level, access_name
    FROM
        cms_access_levels
    ORDER BY
        access_name ASC’;
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   
$privileges = array();
$limit = mysql_num_rows($result);
while ($row = mysql_fetch_assoc($result)) {
    $privileges[$row[‘access_level’]] = $row[‘access_name’];
}
mysql_free_result($result);  



446

Part II: Comic Book Fan Site

 You use the  $limit  value when you begin to iterate through the list of permissions. Note that you 
start the  for  loop with a starting value of 1, as opposed to 0. PHP arrays usually start their numeric 
indexes with 0, but you overrode this behavior by assigning the indexes with the permissions ’  IDs. 
You start with 1 because there is no ID 0. Also, you must use   < =  in your condition in this case, to make 
sure you process every permission.   

for($i = 1; $i  < = $limit; $i++) {
    . . .
}  

 Alternatively, you could have used a  foreach  loop, for example: 

foreach ($privileges as $id = >  $privilege)  

 During each iteration of the loop, you query the database for the users who have a particular 
permission.   

$sql = ‘SELECT
        user_id, name
    FROM
        cms_users
    WHERE
        access_level = ‘ . $i . ‘
    ORDER BY
        name ASC’;
$result = mysql_query($sql, $db) or die(mysql_error($db));  

 If no records are returned, then there are no users with the given permission, and you output a 
message to alert the user of that fact.   

if (mysql_num_rows($result) == 0) {
    echo ‘ < p >  < strong > There are no ‘ . $privileges[$i] . ‘ accounts ‘ .
        ‘registered. < /strong >  < /p > ’;
}  

 Otherwise, you list the users. A user cannot modify his or her own record from this list, so his or her 
name is shown as plaintext, not as a link (the user can modify his or her account from the control 
panel). All other users ’  names are displayed as links that point to the  cms_user_account.php  page.   

else {
    echo ‘ < ul > ’;
    while ($row = mysql_fetch_assoc($result)) {
        if ($_SESSION[‘user_id’] == $row[‘user_id’]) {
            echo ‘ < li > ’ . htmlspecialchars($row[‘name’]) . ‘ < /li > ’;
        } else {
            echo ‘ < li >  < a href=”cms_user_account.php?user_id=’ . 
                $row[‘user_id’] . ‘” > ’ . htmlspecialchars($row[‘name’]) . 
                ‘ < /a >  < /li > ’;
        }
    }
    echo ‘ < /ul > ’;
}  



Chapter 13: Building a Content Management System

447

 And, of course, statements that include  cms_header.inc.php  and  cms_footer.inc.php  bookend 
your script so that the output is a complete HTML page.    

  Article Publishing 
 So far, you have a large set of scripts to manage your users ’  accounts, but nothing that would put your 
application squarely into the CMS category. It ’ s time to change that. Now you will be creating the pages 
that allow you to create, review, read, and comment on articles. On to the articles!  

  Try It Out Creating an Article 

 In your first step toward having content, you ’ re going to create the page that allows you to actually 
write out the articles and save them to the database.   

  1.   Create a new file, and name it  cms_compose.php : 

 < ?php
require ‘db.inc.php’;
include ‘cms_header.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$action = (isset($_GET[‘action’])) ? $_GET[‘action’] : ‘’;
$article_id = (isset($_GET[‘article_id’])  &  &  ctype_digit($_GET[‘article_
id’])) ?
    $_GET[‘article_id’] : ‘’ ;
                   
$title = (isset($_POST[‘title’])) ? $_POST[‘title’] : ‘’ ;
$article_text = (isset($_POST[‘article_text’])) ? $_POST[‘article_text’] : ‘’ ;
$user_id = (isset($_POST[‘user_id’])) ? $_POST[‘user_id’] : ‘’ ;
                   
if ($action == ‘edit’  &  &  !empty($article_id)) {
    $sql = ‘SELECT
            title, article_text, user_id
        FROM
            cms_articles
        WHERE
            article_id = ‘ . $article_id;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
                   
    $row = mysql_fetch_array($result);



448

Part II: Comic Book Fan Site

    extract($row);
    mysql_free_result($result);
}
? > 
 < h2 > Compose Article < /h2 > 
 < form method=”post” action=”cms_transact_article.php” > 
  < table > 
   < tr > 
    < td >  < label for=”title” > Title: < /label >  < /td > 
    < td >  < input type=”text” name=”title” id=”title” maxlength=”255”
     value=” < ?php echo htmlspecialchars($title); ? > ”/ >  < /td > 
   < /tr >  < tr > 
    < td >  < label for=”article_text” > Text: < /label >  < /td > 
    < td >  < textarea name=”article_text” name=”article_text” rows=”10”
     cols=”60” >  < ?php echo htmlspecialchars($article_text); ? >  < /textarea >  < /td > 
   < /tr >  < tr > 
    < td >     < /td > 
    < td > 
 < ?php
if ($_SESSION[‘access_level’]  <  2) {
    echo ‘ < input type=”hidden” name=”user_id” value=”’ . $user_id . ‘”/ > ’;
}
                   
if (empty($article_id)) {
    echo ‘ < input type=”submit” name=”action” “value=”Submit New Article”/ > ’;
} else {
    echo ‘ < input type=”hidden” name=”article_id” value=”’ . $article_id . ‘”/ > ’;
    echo ‘ < input type=”submit” name=”action” “value=”Save Changes”/ > ’;
}
? > 
    < /td > 
   < /tr > 
  < /table > 
 < /form > 
 < ?php
require_once ‘cms_footer.inc.php’;
? >    



Chapter 13: Building a Content Management System

449

  3.   Enter a title and some text for the article. When you are done, click Submit New Article. You 
will be taken back to the index page, but there will still be no article; the article you just wrote 
is pending review.    

  How It Works  
 You just wrote  cms_compose.php , the page where you and your users can create new articles. 
First, you accept and filter any incoming values: 

$action = (isset($_GET[‘action’])) ? $_GET[‘action’] : ‘’;
$article_id = (isset($_GET[‘article_id’])  &  &  ctype_digit($_GET[‘article_
id’])) ?
    $_GET[‘article_id’] : ‘’ ;
                   
$title = (isset($_POST[‘title’])) ? $_POST[‘title’] : ‘’ ;
$article_text = (isset($_POST[‘article_text’])) ? $_POST[‘article_text’] : ‘’ ;
$user_id = (isset($_POST[‘user_id’])) ? $_POST[‘user_id’] : ‘’ ;  

Figure 13-7

  2.   Click the Compose link to load  cms_compose.php  (see Figure  13 - 7 ).     



450

Part II: Comic Book Fan Site

 If the user is editing an article,  action=edit  and the article ID will be passed along in the URL string, 
so  $action  will contain the value  ‘  edit’ , and  $article_id  will contain the ID of the article. You 
may retrieve the existing article from the  cms_articles  table.   

if ($action == ‘edit’  &  &  !empty($article_id)) {
    $sql = ‘SELECT
            title, article_text, user_id
        FROM
            cms_articles
        WHERE
            article_id = ‘ . $article_id;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
                   
    $row = mysql_fetch_array($result);
    extract($row);
    mysql_free_result($result);
}  

 Then you display the form that is used to enter or edit an article. Towards the end of the form, you 
check the value of  $_SESSION[‘access_level’]  and include a hidden field with the author ’ s user 
ID, if the access level is less than 2 (the viewer is a normal user). Also, you display the appropriate 
submit button and the  article_id  if it is being edited or if it is a new article. The author ’ s user ID is 
passed if the original author is editing his or her own document. The article ID must be carried over to 
the transaction page if an existing article is being modified.   

 < h2 > Compose Article < /h2 > 
 < form method=”post” action=”cms_transact_article.php” > 
  < table > 
   < tr > 
    < td >  < label for=”title” > Title: < /label >  < /td > 
    < td >  < input type=”text” name=”title” id=”title” maxlength=”255”
     value=” < ?php echo htmlspecialchars($title); ? > ”/ >  < /td > 
   < /tr >  < tr > 
    < td >  < label for=”article_text” > Text: < /label >  < /td > 
    < td >  < textarea name=”article_text” name=”article_text” rows=”10”
     cols=”60” >  < ?php echo htmlspecialchars($article_text); ? >  < /textarea >  < /td > 
   < /tr >  < tr > 
    < td >     < /td > 
    < td > 
 < ?php
if ($_SESSION[‘access_level’]  <  2) {
    echo ‘ < input type=”hidden” name=”user_id” value=”’ . $user_id . ‘”/ > ’;
}
                   
if (empty($article_id)) {
    echo ‘ < input type=”submit” name=”action” “value=”Submit New Article”/ > ’;
} else {
    echo ‘ < input type=”hidden” name=”article_id” value=”’ . $article_id . ‘”/ > ’;



Chapter 13: Building a Content Management System

451

    echo ‘ < input type=”submit” name=”action” “value=”Save Changes”/ > ’;
}
? > 
    < /td > 
   < /tr > 
  < /table > 
 < /form >   

 If you ’ ve looked around your web site, you might have noticed that the article you just created doesn ’ t 
show up yet. That ’ s because you ’ ve set up a review system wherein an administrator or moderator 
must approve an article before it is published for the public to view. This sort of control is found on 
many CMS - based sites on the web, and it ’ s a good way to keep an eye on quality and duplicate 
stories.    

  Try It Out Reviewing New Articles 

 In this exercise, you ’ ll create the reviewing system that lets you approve your articles.   

  1.   Create  cms_pending.php : 

 < ?php
require ‘db.inc.php’;
include ‘cms_header.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
echo ‘ < h2 > Article Availability < /h2 > ’;
                   
echo ‘ < h3 > Pending Articles < /h3 > ’;
$sql = ‘SELECT
        article_id, title, UNIX_TIMESTAMP(submit_date) AS submit_date
    FROM
        cms_articles
    WHERE
        is_published = FALSE
    ORDER BY
        title ASC’;
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   
if (mysql_num_rows($result) == 0) {
    echo ‘ < p >  < strong > No pending articles available. < /strong >  < /p > ’;



452

Part II: Comic Book Fan Site

} else {
    echo ‘ < ul > ’;
    while ($row = mysql_fetch_array($result)) {
        echo ‘ < li >  < a href=”cms_review_article.php?article_id=’ .
            $row[‘article_id’] . ‘” > ’ . htmlspecialchars($row[‘title’]) .
            ‘ < /a >  (‘ . date(‘F j, Y’, $row[‘submit_date’]) . ‘) < /li > ’;
    }
    echo ‘ < /ul > ’;
}
mysql_free_result($result);
                   
echo ‘ < h3 > Published Articles < /h3 > ’;
$sql = ‘SELECT
        article_id, title, UNIX_TIMESTAMP(publish_date) AS publish_date
    FROM
        cms_articles
    WHERE
        is_published = TRUE
    ORDER BY
        title ASC’;
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   
if (mysql_num_rows($result) == 0) {
    echo ‘ < p >  < strong > No published articles available. < /strong >  < /p > ’;
} else {
    echo ‘ < ul > ’;
    while ($row = mysql_fetch_array($result)) {
        echo ‘ < li >  < a href=”cms_review_article.php?article_id=’ .
            $row[‘article_id’] . ‘” > ’ . htmlspecialchars($row[‘title’]) .
            ‘ < /a >  (‘ . date(‘F j, Y’, $row[‘publish_date’]) . ‘) < /li > ’;
    }
    echo ‘ < /ul > ’;
}
mysql_free_result($result);
                   
include ‘cms_footer.inc.php’;
? >    

  2.   Next, create  cms_review_article.php : 

 < ?php
require ‘db.inc.php’;
require ‘cms_output_functions.inc.php’;
include ‘cms_header.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$article_id = (isset($_GET[‘article_id’])  &  &  ctype_digit($_GET[‘article_
id’])) ?



Chapter 13: Building a Content Management System

453

    $_GET[‘article_id’] : ‘’;
                   
echo ‘ < h2 > Article Review < /h2 > ’;
output_story($db, $article_id);
                   
$sql = ‘SELECT
        is_published, UNIX_TIMESTAMP(publish_date) AS publish_date, 
access_level
    FROM
        cms_articles a INNER JOIN cms_users u ON a.user_id = u.user_id
    WHERE
        article_id = ‘ . $article_id;
$result = mysql_query($sql, $db) or die(mysql_error());
                   
$row = mysql_fetch_array($result);
extract($row);
mysql_free_result($result);
                   
if (!empty($date_published) and $is_published) {
    echo ‘ < h4 > Published: ‘ . date(‘l F j, Y H:i’, $date_published) . ‘ < /h4 > ’;
}
? > 
                   
 < form method=”post” action=”cms_transact_article.php” > 
  < div > 
   < input type=”submit” name=”action” value=”Edit”/ > 
 < ?php
if ($access_level  >  1 || $_SESSION[‘access_level’]  >  1) {
    if ($is_published) {
        echo ‘ < input type=”submit” name=”action” value=”Retract”/ >  ‘;
    } else {
        echo ‘ < input type=”submit” name=”action” value=”Publish”/ >  ‘;
        echo ‘ < input type=”submit” name=”action” value=”Delete”/ >  ‘;
    }
}
? > 
   < input type=”hidden” name=”article_id” value=” < ?php echo $article_id; ? > ”/ > 
  < /div > 
 < /form > 
 < ?php
include ‘cms_footer.inc.php’;
? >    



454

Part II: Comic Book Fan Site

  3.   Click the Review link. The Review page  cms_pending.php  loads (see Figure  13 - 8 ), with a list 
of all pending and published articles. Right now, there is only one pending article, which is 
the one you just wrote.     

Figure 13-8

  4.   Click the article. You will be taken to  cms_review_article.php . It should look similar to 
Figure  13 - 9 . You have the option to edit, publish, or delete the article.    



Chapter 13: Building a Content Management System

455

Figure 13-9



456

Part II: Comic Book Fan Site

  5.   Click the Publish button. You will be taken back to  cms_pending.php , and the article will 
now be listed under Published Articles.  

  6.   Click the Articles link, and you will be taken back to the index page. This time, the article 
should appear on the page (see Figure  13 - 10 ).      

Figure 13-10

  How It Works  
 You wrote two scripts in this section,  cms_pending.php  and  cms_review_article.php . Hopefully, 
you are beginning to see just how easy it is to build up the interface and tie all the functionality 
together, with the heavy - duty work delegated to the transaction files. 

 The  cms_pending.php  script generates a page to list the articles that are pending approval and 
articles that have been published. You first generate this SQL query to fetch a list of pending articles: 

$sql = ‘SELECT
        article_id, title, UNIX_TIMESTAMP(submit_date) AS submit_date
    FROM
        cms_articles
    WHERE
        is_published = FALSE
    ORDER BY
        title ASC’;
$result = mysql_query($sql, $db) or die(mysql_error($db));  



Chapter 13: Building a Content Management System

457

 You then check  mysql_num_rows()  to determine the number of records that the query returned. If no 
records were returned, then you display a message stating there are no pending articles available. 
Otherwise, you loop through the list of articles that is returned from the database, and you display the 
title of each as a link to  cms_review_article.php .   

if (mysql_num_rows($result) == 0) {
    echo ‘ < p >  < strong > No pending articles available. < /strong >  < /p > ’;
} else {
    echo ‘ < ul > ’;
    while ($row = mysql_fetch_array($result)) {
        echo ‘ < li >  < a href=” cms_review_article.php?article_id=’ . 
            $row[‘article_id’] . ‘” > ’ . htmlspecialchars($row[‘title’]) .
            ‘ < /a >  (‘ . date(‘F j, Y’, $row[‘submit_date’]) . ‘) < /li > ’;
    }
    echo ‘ < /ul > ’;
}  

 The same process is followed to retrieve the list of published articles, though the query and the 
message that is displayed if no articles are returned have been modified accordingly.   

$sql = ‘SELECT
        article_id, title, UNIX_TIMESTAMP(publish_date) AS publish_date
    FROM
        cms_articles
    WHERE
        is_published = TRUE
    ORDER BY
        title ASC’;
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   
if (mysql_num_rows($result) == 0) {
    echo ‘ < p >  < strong > No published articles available. < /strong >  < /p > ’;
} else {
    echo ‘ < ul > ’;
    while ($row = mysql_fetch_array($result)) {
        echo ‘ < li >  < a href=” cms_review_article.php?article_id=’ . 
            $row[‘article_id’] . ‘” > ’ . htmlspecialchars($row[‘title’]) .
            ‘ < /a >  (‘ . date(‘F j, Y’, $row[‘publish_date’]) . ‘) < /li > ’;
    }
    echo ‘ < /ul > ’;
}  

 The whole purpose of the  cms_review_article.php  script is to present the article for review by the 
administrator. First, you display the title of the page, and then you use the  output_story()  function 
to display the article on the page.   

echo ‘ < h2 > Article Review < /h2 > ’;
output_story($db, $article_id);  

 It is important to note that you passed only two variables to the function  output_story() , even 
though  output_story()  takes three arguments. PHP automatically used the default value because 
you did not specify the optional third parameter, which you should recall is FALSE. (If there were no 
default value assigned when you first wrote  output_story() , then attempting to call the function 
with only the two arguments would result in a PHP warning telling you that you are missing an 



458

Part II: Comic Book Fan Site

argument. Providing default arguments when you are writing your functions makes them more 
flexible and easier to use.) 

 You also want to display additional data about the document, such as when it was published. You 
used this SQL statement to retrieve the additional information: 

$sql = ‘SELECT
        is_published, UNIX_TIMESTAMP(publish_date) AS publish_date, access_
level
    FROM
        cms_articles a INNER JOIN cms_users u ON a.user_id = u.user_id
    WHERE
        article_id = ‘ . $article_id;
$result = mysql_query($sql, $db) or die(mysql_error());  

 Yes,  output_story()  retrieves this data too, but if you modified  output_story()  so that articles 
did not display their author or publish date, you would still want the information displayed on this 
review page. This is why you repeat this tiny bit of functionality here. 

 If the document is published, then the administrator has an option to retract the article. If it is still 
pending, then the administrator can publish it. Only moderators and admins are allowed to retract, 
publish, and delete an article, and an article may only be deleted if it is pending.   

 < form method=”post” action=”cms_transact_article.php” > 
  < div > 
   < input type=”submit” name=”action” value=”Edit”/ > 
 < ?php
if ($access_level  >  1 || $_SESSION[‘access_level’]  >  1) {
    if ($is_published) {
        echo ‘ < input type=”submit” name=”action” value=”Retract”/ >  ‘;
    } else {
        echo ‘ < input type=”submit” name=”action” value=”Publish”/ >  ‘;
        echo ‘ < input type=”submit” name=”action” value=”Delete”/ >  ‘;
    }
}
? > 
   < input type=”hidden” name=”article_id” value=” < ?php echo $article_id; ? > ”/ > 
  < /div > 
 < /form > 

     

  Try It Out Article Pages 

 So you ’ ve created an article, reviewed it, and published it. Now it ’ s time to give the public a way to 
view the article and provide feedback. It ’ s time to write  cms_view_article.php  and  cms_comment
.php , both of which are relatively short scripts.   



Chapter 13: Building a Content Management System

459

  1.   Create  cms_view_article.php : 

 < ?php
require ‘db.inc.php’;
require ‘cms_output_functions.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
include ‘cms_header.inc.php’;
output_story($db, $_GET[‘article_id’]);
show_comments($db, $_GET[‘article_id’], TRUE);
include ‘cms_footer.inc.php’;
? >    

  2.   Now, create  cms_comment.php : 

 < ?php
require ‘db.inc.php’;
require ‘cms_output_functions.inc.php’;
include ‘cms_header.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$article_id = (isset($_GET[‘article_id’])  &  &  ctype_digit($_GET[‘article_
id’])) ?
    $_GET[‘article_id’] : ‘’;
                   
output_story($db, $article_id);
? > 
 < h3 > Add a comment < /h3 > 
 < form method=”post” action=”cms_transact_article.php” > 
  < div > 
   < label for=”comment_text” > Comment: < /label >  < br/ > 
   < textarea id=”comment_text” name=”comment_text” rows=”10” 
   cols=”60” >  < /textarea >  < br/ > 
   < input type=”submit” name=”action” value=”Submit Comment” / > 
   < input type=”hidden” name=”article_id” value=” < ?php echo $article_id; ? > ” / > 
  < /div > 
 < /form > 
 < ?php
show_comments($db, $article_id, FALSE);
include ‘cms_footer.inc.php’;
? >    

  3.   Go back to the index by clicking the Articles link. Click the Read Full Story link below the 
snippet of the article you want to view. The full article should appear, complete with a link to 
add comments.    



460

Part II: Comic Book Fan Site

  How It Works  
 The first page,  cms_view_article.php , is very short, yet it illustrates the nature of included files and 
functions wonderfully. 

 As you can see, there is no content displayed directly with  cms_view_article.php . It simply 
includes the necessary files and calls the  output_story()  and  show_comments()  functions from 
 cms_output_functions.inc.php  to display the article and all of its comments.   

 < ?php
require ‘db.inc.php’;
require ‘cms_output_functions.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
include ‘cms_header.inc.php’;
output_story($db, $_GET[‘article_id’]);
show_comments($db, $_GET[‘article_id’], TRUE);
include ‘cms_footer.inc.php’;
? >   

 You may notice that you don ’ t worry about the situation in which an article is not passed. As it stands, 
if you load  cms_view_article.php  without the  “  article_id ”   parameter in the URL, you will 
simply get a page that consists of the site title, search, and a menu (all included in  cms_header.inc
.php ). The rest will be blank. If that ’ s the desired result, then that ’ s fine. You may decide to redirect 
the user back to the home page if  $_GET[‘article_id’]  is empty. If you do, don ’ t forget to include 
 cms_http_functions.inc.php  and use  redirect()     before  including  cms_header.inc.php . 

 The most important feature of  cms_comment.php  is the HTML form it produces to let readers enter 
their comments on an article. It has a  textarea  element to accept the comment, a submit button, and 
a hidden input field to pass the article ’ s ID.   

 < form method=”post” action=”cms_transact_article.php” > 
  < div > 
   < label for=”comment_text” > Comment: < /label >  < br/ > 
   < textarea id=”comment_text” name=”comment_text” rows=”10” 
   cols=”60” >  < /textarea >  < br/ > 
   < input type=”submit” name=”action” value=”Submit Comment” / > 
   < input type=”hidden” name=”article_id” value=” < ?php echo $article_id; ? > ” 
/ > 
  < /div > 
 < /form >   

 And that ’ s it! That last one was a doozy, huh? Hardly! Because you planned well and wrote most of 
the CMS ’ s functional code up front, these scripts are getting easier. Stay with us  —  you only need to 
write a couple more short scripts to finish off your application.    



Chapter 13: Building a Content Management System

461

  Additional  CMS  Features 
 So far, you ’ ve created a system to create and manage users and publish articles, but there are a couple of 
additional features that can help make your CMS even better. What you ’ re going to add now is the 
ability for users to update their information and the ability to search published articles by keyword.  

  Try It Out User Control Panel 

 In this exercise, you ’ re going to create a page to allow users to maintain their own information.   

  1.   Enter the following code, and save it as  cms_cpanel.php : 

 < ?php
require ‘db.inc.php’;
require ‘cms_output_functions.inc.php’;
include ‘cms_header.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$sql = ‘SELECT
        email, name
    FROM
        cms_users
    WHERE
        user_id=’ . $_SESSION[‘user_id’];
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   
$row = mysql_fetch_array($result);
extract($row);
mysql_free_result($result);
? > 
 < h2 > User Info < /h2 > 
 < form method=”post” action=”cms_transact_user.php” > 
  < table > 
   < tr > 
    < td >  < label for=”name” > Full Name: < /label >  < /td > 
    < td >  < input type=”text” id=”name” name=”name” maxlength=”100”
     value=” < ?php echo htmlspecialchars($name); ? > ”/ >  < /td > 
   < /tr >  < tr > 
    < td >  < label for=”email” > Email Address: < /label >  < /td > 
    < td >  < input type=”text” id=”email” name=”email” maxlength=”100”
     value=” < ?php echo htmlspecialchars($email); ? > ”/ >  < /td > 
   < /tr >  < tr > 
    < td >     < /td > 
    < td >  < input type=”submit” name=”action” value=”Change my info”/ >  < /td > 
   < /tr > 
  < /table > 
 < /form > 



462

Part II: Comic Book Fan Site

 < ?php
echo ‘ < h2 > Pending Articles < /h2 > ’;
                   
$sql = ‘SELECT
        article_id, UNIX_TIMESTAMP(submit_date) AS submit_date, title
    FROM
        cms_articles
    WHERE
        is_published = FALSE AND
        user_id = ‘ . $_SESSION[‘user_id’] . ‘
    ORDER BY
        submit_date ASC’;
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   
if (mysql_num_rows($result) == 0) {
    echo ‘ < p >  < strong > There are currently no pending articles. < /strong >  < /p > ’;
} else {
    echo ‘ < ul > ’;
    while ($row = mysql_fetch_array($result)) {
        echo ‘ < li >  < a href=”cms_review_article.php?article_id=’ .
            $row[‘article_id’] . ‘” > ’ . htmlspecialchars($row[‘title’]) .
            ‘ < /a >  (submitted ‘ . date(‘F j, Y’, $row[‘submit_date’]) .
            ‘) < /li > ’;
    }
    echo ‘ < /ul > ’;
}
mysql_free_result($result);
                   
echo ‘ < h2 > Published Articles < /h2 > ’;
                   
$sql = ‘SELECT
        article_id, UNIX_TIMESTAMP(publish_date) AS publish_date, title
    FROM
        cms_articles
    WHERE
        is_published = TRUE AND
        user_id = ‘ . $_SESSION[‘user_id’] . ‘
    ORDER BY
        publish_date ASC’;
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   
if (mysql_num_rows($result) == 0) {
    echo ‘ < p >  < strong > There are currently no published articles. < /strong >  < /p > ’;
} else {
    echo ‘ < ul > ’;
    while ($row = mysql_fetch_array($result)) {
        echo ‘ < li >  < a href=”cms_review_article.php?article_id=’ .
            $row[‘article_id’] . ‘” > ’ . htmlspecialchars($row[‘title’]) .
            ‘ < /a >  (published ‘ . date(‘F j, Y’, $row[‘publish_date’]) .
            ‘) < /li > ’;
    }
    echo ‘ < /ul > ’;
}



Chapter 13: Building a Content Management System

463

mysql_free_result($result);
                   
include ‘cms_footer.inc.php’;
? > 
                      

  2.   Click the navigation link to go to the Control Panel page. You should see a screen similar to 
the one shown in Figure  13 - 11 . Here you can change your user information (username and 
e - mail), and see what articles you have written for the site.      

Figure 13-11

  How It Works  
 The Control Panel page,  cms_cpanel.php , is used to allow users to change their usernames and 
e - mail addresses. They can also see all of the articles they have written, categorized by whether they 
are pending or have been published. 

 You first go out to the database and retrieve the user ’ s e - mail address and name from the  cms_users  
table.   

$sql = ‘SELECT
        email, name
    FROM
        cms_users



464

Part II: Comic Book Fan Site

    WHERE
        user_id=’ . $_SESSION[‘user_id’];
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   
$row = mysql_fetch_array($result);
extract($row);
mysql_free_result($result);  

 The form to let the user edit his or her information uses the  post  method. When the submit button is 
clicked, it will post the name and e - mail address to  cms_transact_user.php  for processing. The rest 
of the form is standard HTML with some PHP statements mixed in to populate the fields with the 
values from the database.   

 < form method=”post” action=”cms_transact_user.php” > 
  < table > 
   < tr > 
    < td >  < label for=”name” > Full Name: < /label >  < /td > 
    < td >  < input type=”text” id=”name” name=”name” maxlength=”100”
     value=” < ?php echo htmlspecialchars($name); ? > ”/ >  < /td > 
   < /tr >  < tr > 
    < td >  < label for=”email” > Email Address: < /label >  < /td > 
    < td >  < input type=”text” id=”email” name=”email” maxlength=”100”
     value=” < ?php echo htmlspecialchars($email); ? > ”/ >  < /td > 
   < /tr >  < tr > 
    < td >     < /td > 
    < td >  < input type=”submit” name=”action” value=”Change my info”/ >  < /td > 
   < /tr > 
  < /table > 
 < /form >   

 Next, you display pending and published articles. Time to drop back into using PHP, where you query 
the database to retrieve the pending articles written by this user, ordered by the date they were 
submitted: 

$sql = ‘SELECT
        article_id, UNIX_TIMESTAMP(submit_date) AS submit_date, title
    FROM
        cms_articles
    WHERE
        is_published = FALSE AND
        user_id = ‘ . $_SESSION[‘user_id’] . ‘
    ORDER BY
        submit_date ASC’;
$result = mysql_query($sql, $db) or die(mysql_error($db));  

 You handle the contingency that there may not be any pending articles, in which case you output an 
appropriate message. Otherwise, you loop through the pending articles and display the titles as links 
to  cms_reviewarticle.php .   



Chapter 13: Building a Content Management System

465

if (mysql_num_rows($result) == 0) {
    echo ‘ < p >  < strong > There are currently no pending articles. < /strong >  < /p > ’;
} else {
    echo ‘ < ul > ’;
    while ($row = mysql_fetch_array($result)) {
        echo ‘ < li >  < a href=”cms_review_article.php?article_id=’ .
            $row[‘article_id’] . ‘” > ’ . htmlspecialchars($row[‘title’]) .
            ‘ < /a >  (submitted ‘ . date(‘F j, Y’, $row[‘submit_date’]) .
            ‘) < /li > ’;
    }
    echo ‘ < /ul > ’;
}
mysql_free_result($result);  

 This next section of code, which displays the published articles, is almost identical to the code used to 
display pending articles, though this time the selection is where  is_published  is  TRUE , and the 
results are ordered by the article ’ s publication date.   

$sql = ‘SELECT
        article_id, UNIX_TIMESTAMP(publish_date) AS publish_date, title
    FROM
        cms_articles
    WHERE
        is_published = TRUE AND
        user_id = ‘ . $_SESSION[‘user_id’] . ‘
    ORDER BY
        publish_date ASC’;
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   
if (mysql_num_rows($result) == 0) {
    echo ‘ < p >  < strong > There are currently no published articles. < /strong >  < /p > ’;
} else {
    echo ‘ < ul > ’;
    while ($row = mysql_fetch_array($result)) {
        echo ‘ < li >  < a href=”cms_review_article.php?article_id=’ .
            $row[‘article_id’] . ‘” > ’ . htmlspecialchars($row[‘title’]) .
            ‘ < /a >  (published ‘ . date(‘F j, Y’, $row[‘publish_date’]) .
            ‘) < /li > ’;
    }
    echo ‘ < /ul > ’;
}
mysql_free_result($result);     



466

Part II: Comic Book Fan Site

  Try It Out Search 

 The last feature you are going to add is a simple search feature. Using the power of the full - text 
searching capabilities of MySQL, you can easily put a keyword search field on each page and show the 
results here.     

  1.   Create  cms_search.php : 

 < ?php
require ‘db.inc.php’;
require ‘cms_output_functions.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
include ‘cms_header.inc.php’;
                   
$search = (isset($_GET[‘search’])) ? $_GET[‘search’] : ‘’;
                   
$sql = ‘SELECT
        article_id
    FROM
        cms_articles
    WHERE
        MATCH (title, article_text) AGAINST (“’ .
            mysql_real_escape_string($search, $db) . ‘” IN BOOLEAN MODE)
    ORDER BY
        MATCH (title, article_text) AGAINST (“’ .
            mysql_real_escape_string($search, $db) . ‘” IN BOOLEAN MODE) 
DESC’;
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   
if (mysql_num_rows($result) == 0) {
    echo ‘ < p >  < strong > No articles found that match the search terms. < /strong >  < /p > ’;
} else {
    while ($row = mysql_fetch_array($result)) {
        output_story($db, $row[‘article_id’], TRUE);
    }
}
mysql_free_result($result);
                   
include ‘cms_footer.inc.php’;
? >    

  2.   On any page with a search box on the top, enter a word that existed in the article you created. 
Once you submit the form,  cms_search.php  will appear, and any matches should be shown.    



Chapter 13: Building a Content Management System

467

  How It Works  
 In the following SQL statement, you ’ ll notice the  MATCH  and  AGAINST  keywords. This is the syntax 
MySQL uses to perform a full - text search in those fields. They must be full - text indexed fields in order 
to perform this search, which you specified when you created the table in  db_ch13.php .   

$sql = ‘SELECT
        article_id
    FROM
        cms_articles
    WHERE
        MATCH (title, article_text) AGAINST (“’ .
            mysql_real_escape_string($search, $db) . ‘” IN BOOLEAN MODE)
    ORDER BY
        MATCH (title, article_text) AGAINST (“’ .
            mysql_real_escape_string($search, $db) . ‘” IN BOOLEAN MODE) DESC’;
$result = mysql_query($sql, $db) or die(mysql_error($db));  

 If you don ’ t find a match, you output a message saying that no articles were found matching the 
search terms. Otherwise, you loop through the results and display a preview of each article, using 
 output_story() : 

if (mysql_num_rows($result) == 0) {
    echo ‘ < p >  < strong > No articles found that match the search terms
. < /strong >  < /p > ’;
} else {
    while ($row = mysql_fetch_array($result)) {
        output_story($db, $row[‘article_id’], TRUE);
    }
}    

  Summary 
 We hope this application has given you some insight into the separation of content and design, as well as 
the importance of organizing your applications. Because of the way the application was designed, you 
can easily modify the look and feel of the application, by either directly altering your header and footer 
files or using a CSS file to set up different styles. This won ’ t matter to your users; they will still be able to 
enter articles without ever having to worry about what the article will look like on the web when it ’ s 
published. 

 We also hope that you understand the importance of updating your site often enough to draw users back 
again and again. By adding an application like this to your site, and allowing users to add content for 
you, you create a dynamically changing site with fresh information. Just think about all the ways you 
could implement such a design: 

  Create a message board. (This is examined in more detail in Chapter 16.)  

  Add a daily comic. Perhaps you have an artist who can draw you a comic every day. You could 
create an application that allows him or her to upload comic strips and allows users to comment 
on them.  

❑

❑



468

Part II: Comic Book Fan Site

  Compile photo journals. A while back, there was a project in which photographers went all over 
the world, and in a 24 - hour period, they took their pictures and uploaded the digital images. 
People in the central office typed up descriptions and allowed people to view them online. It 
was a very ambitious project and a perfect example of a CMS application.    

 The bottom line is that if you have content that you want to be able to update on a regular basis, you 
definitely want to implement a CMS application. And now, you have the basic tools to build one on your 
own! 

 Perhaps you should send your users an e - mail to tell them of your improved functionality. You ’ ll do that 
in Chapter 14.  

  Exercises 
 Now that you have the basic workings of a CMS application, see how you might accomplish the 
following tasks: 

  1.    Find out about the author:  Authors of articles might want the readers to know a little more 
about them. Add the ability to enter extra fields in a user ’ s profile, and provide a link on the 
article ’ s full - view page to the author ’ s information.  

  2.    Notify the author:  Authors might want to be automatically notified when their stories have 
been approved. Add an e - mail notification upon approval, and give users the ability to toggle 
their notification on and off.                  

❑



                                        14    
Mailing Lists          

 Ah, yes  …  mailing lists. Two small and innocent words that never meant anyone harm. That is, 
until someone decided to put the two together, and junk mail was born. But mailing lists are used 
for more than just junk mail or spam. After all, how are you going to receive your  Quilting Monthly  
newsletter unless your name and address are on a mailing list? 

 In a world of e - mail communication, a mailing list is the perfect way for you to communicate with 
all of your users about your new web site. Maybe you want to send out a monthly newsletter or 
just send out important announcements. Whatever the reason, you will occasionally need to send 
e - mails to many people, and you will need a relatively easy way to do so when that time comes. 
Do not fret, because we plan on helping you with just that in this chapter. 

 Specifically, this chapter discusses the following: 

  Creating a mailing list  

  Administering a mailing list  

  Spam  

  Opt - in and opt - out     

  What Do You Want to Send Today? 
 Before you actually create a mailing list, you should have something that you intend to send to a 
large number of your users. Here are a few possibilities: 

   Web site notifications:  These are important tidbits of information about your web site. 
For example, you would want to let your users know you ’ ve improved the level of 
security for online transactions on your site.  

   Newsletters:  If you had a family web site, and wanted to let your whole family know 
about a new addition to your family, such as the birth of a child, you could send them a 
newsletter.  

❑

❑

❑

❑

❑

❑



470

Part II: Comic Book Fan Site

   Important announcements:  Our site will be down for 5 days. Sorry for the inconvenience. We ’ ll 
let you know when it is back up.  

   Advertising:  Perhaps you ’ ve partnered with an online comic book store to offer deals on rare 
comics to your members.    

 Once you know what you want to say, you format the information you wish to share, using plaintext or 
HTML. Then you e - mail this information to  every  member of your web site who has subscribed to 
receive messages from you. 

 In this chapter ’ s project, you are going to send out two different e - mails: web site change notifications 
and a newsletter. The former will be sent to all members of the web site. The latter will be sent only to 
those who subscribe to the newsletter. 

 In Chapter  11 , you saw how to easily send HTML e - mails and wrapped this functionality up in its own 
class. Reusing existing code is a great way to be a more efficient programmer, so you will do that in this 
chapter. You can also e - mail links to an online version of the HTML you are sending, so that those with 
text - only e - mail clients can see your message in all its glory as well.  

  Coding the Administration Application 
 The first thing you ’ re going to do is create an administration page where you can add and remove 
mailing lists. There are a few scripts that need to be written here because they will all rely on one 
another. Hey  —  you ’ re the one who wanted to write some code, so let ’ s get cracking!    

Try It Out  Preparing the Database   

 First, you ’ re going to create the file that will build the necessary tables in the database for your mailing 
list application.   

  1.   Enter the following code, save it as  db_ch14.php  on your server, and load it in your browser: 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$query = ‘CREATE TABLE IF NOT EXISTS ml_lists (
        ml_id    INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
        listname VARCHAR(100)     NOT NULL,
                   
        PRIMARY KEY (ml_id)
    )
    ENGINE=MyISAM’;
mysql_query($query, $db) or die(mysql_error($db));
                   
$query = ‘CREATE TABLE IF NOT EXISTS ml_users (

❑

❑



Chapter 14: Mailing Lists

471

        user_id    INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
        first_name VARCHAR(20)      NOT NULL,
        last_name  VARCHAR(20)      NOT NULL,
        email      VARCHAR(100)     NOT NULL,
                   
        PRIMARY KEY (user_id)
    )
    ENGINE=MyISAM’;
mysql_query($query, $db) or die(mysql_error($db));
                   
$query = ‘CREATE TABLE IF NOT EXISTS ml_subscriptions (
        ml_id   INTEGER UNSIGNED NOT NULL,
        user_id INTEGER UNSIGNED NOT NULL,
        pending BOOLEAN          NOT NULL DEFAULT TRUE,
                   
        PRIMARY KEY (ml_id, user_id)
    )
    ENGINE=MyISAM’;
mysql_query($query, $db) or die(mysql_error($db));
                   
echo ‘Success!’;
? >     

  2.   When you run  db_ch14.php  in your browser, it should display  “ Success! ”  indicating that the 
database tables were created.     

  How It Works 
 You can see that several tables are created in this script. In fact, your database should now have three 
new tables in it for the mailing list application. The first table is named  ml_lists  and will store the 
names of the different mailing lists you set up. 

     Fieldname      Type      Description of What It Stores   

     ml_id      INTEGER UNSIGNED     A unique ID assigned to a mailing list. This will  
auto - increment and is the table ’ s primary key.  

     listname      VARCHAR(100)     The name of the mailing list.  

 The next table is  ml_users  and contains the list of subscribers to your mailing lists:

     Fieldname      Type      Description of What It Stores   

     user_id      INTEGER UNSIGNED     A unique ID assigned to each subscriber. This will 
auto - increment and is the table ’ s primary key.  

     first_name      VARCHAR(20)     Subscriber ’ s first name.  

     last_name      VARCHAR(20)     Subscriber ’ s last name.  

     Email      VARCHAR(100)     Subscriber ’ s e - mail address.  



472

Part II: Comic Book Fan Site

 The final table you create is called  ml_subscriptions  and links the subscribers to the mailing lists 
they subscribe to:

     Fieldname      Type      Description of What It Stores   

     ml_id      INTEGER UNSIGNED     The ID of the list that the individual has subscribed to. 
This is a foreign key that references  ml_lists .  

     user_id      DATETIME     The ID of the subscriber. This is a foreign key that 
references  ml_users   .

     pending      BOOLEAN     Whether the subscription is pending.  

 As long as all three tables are created (or already exist), you will see  “ Done ”  echoed to the screen. 
Otherwise, you will see an error message.  

Try It Out  Mailing List Administration   

 Next, you will create the admin page where the administrator can create, delete, and rename 
mailing lists.   

  1.   Create the following code, and save it as  ml_admin.php : 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
? > 
 < html > 
  < head > 
   < title > Mailing List Administration < /title > 
   < style type=”text/css” > 
   td { vertical-align: top; }
   < /style > 
  < /head > 
  < body > 
   < h1 > Mailing List Administration < /h1 > 
   < form method=”post” action=”ml_admin_transact.php” > 
    < p >  < label for=”listname” > Add Mailing List: < /label >  < br / > 
     < input type=”text” id=”listname” name=”listname” maxlength=”100” / > 
     < input type=”submit” name=”action” value=”Add New Mailing List” / > 
    < /p > 
 < ?php
$query = ‘SELECT



Chapter 14: Mailing Lists

473

        ml_id, listname
    FROM
        ml_lists
    ORDER BY
        listname ASC’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
if (mysql_num_rows($result)  >  0) {
    echo ‘ < p >  < label for=”ml_id” > Delete Mailing List: < /label >  < br / > ’;
    echo ‘ < select name=”ml_id” id=”ml_id” > ’;
    while ($row = mysql_fetch_array($result)) {
        echo ‘ < option value=”’ . $row[‘ml_id’] . ‘” > ’ . $row[‘listname’] .
            ‘ < /option > ’;
    }
    echo ‘ < /select > ’;
    echo ‘ < input type=”submit” name=”action” value=”Delete ‘ . 
        ‘Mailing List” / > ’;
    echo ‘ < /p > ’;
}
mysql_free_result($result);
? > 
   < /form > 
   < p >  < a href=”ml_quick_msg.php” > Send a quick message to users. < /a >  < /p > 
  < /body > 
 < /html >    

  2.   The administrator needs the ability to send e - mails to the members of various mailing lists. 
Otherwise, what was the point of creating the mailing lists in the first place? Enter the 
following code, and save it as  ml_quick_msg.php : 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
? > 
 < html > 
  < head > 
   < title > Send Message < /title > 
   < style type=”text/css” > 
   td { vertical-align: top; }
   < /style > 
  < /head > 
  < body > 
   < h1 > Send Message < /h1 > 
   < form method=”post” action=”ml_admin_transact.php” > 
    < table > 
     < tr > 
      < td >  < label for=”ml_id” > Mailing List: < /label >  < /td > 
      < td >  < select name=”ml_id” id=”ml_id” > 
        < option value=”all” > All < /option > 



474

Part II: Comic Book Fan Site

 < ?php
$query = ‘SELECT ml_id, listname FROM ml_lists ORDER BY listname’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
while ($row = mysql_fetch_array($result)) {
    echo ‘ < option value=”’ . $row[‘ml_id’] . ‘” > ’ . $row[‘listname’] .
        ‘ < /option > ’;
}
mysql_free_result($result);
? > 
       < /select >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”subject” > Subject: < /label >  < /td > 
      < td >  < input type=”text” name=”subject” id=”subject”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”message” > Message: < /label >  < /td > 
      < td >  < textarea name=”message” id=”message” rows=”10”
       cols=”60” >  < /textarea >  < /td > 
     < /tr >  < tr > 
      < td >     < /td > 
      < td >  < input type=”submit” name=”action” value=”Send Message”/ >  < /td > 
     < /tr >  < tr > 
    < /table > 
   < /form > 
   < p >  < a href=”ml_admin.php” > Back to mailing list administration. < /a >  < /p > 
  < /body >  
 < /html >    

  3.   This next script should look a bit familiar. If you remember, this is exactly the same 
 SimpleMail  class you used in Chapter  11 . In case you ’ ve lost it, here is the code for 
 class.SimpleMail.php  again.   

 < ?php
class SimpleMail
{
    private $toAddress;
    private $CCAddress;
    private $BCCAddress;
    private $fromAddress;
    private $subject;
    private $sendText;
    private $textBody;
    private $sendHTML;
    private $HTMLBody;
                   
    public function __construct() {
        $this- > toAddress = ‘’;
        $this- > CCAddress = ‘’;
        $this- > BCCAddress = ‘’;
        $this- > fromAddress = ‘’;
        $this- > subject = ‘’;
        $this- > sendText = true;



Chapter 14: Mailing Lists

475

        $this- > textBody = ‘’;
        $this- > sendHTML = false;
        $this- > HTMLBody = ‘’;
    }
                   
    public function setToAddress($value) {
        $this- > toAddress = $value;
    }
                   
    public function setCCAddress($value) {
        $this- > CCAddress = $value;
    }
                   
    public function setBCCAddress($value) {
        $this- > BCCAddress = $value;
    }
                   
    public function setFromAddress($value) {
        $this- > fromAddress = $value;
    }
                   
    public function setSubject($value) {
        $this- > subject = $value;
    }
                   
    public function setSendText($value) {
        $this- > sendText = $value;
    }
                   
    public function setTextBody($value) {
        $this- > sendText = true;
        $this- > textBody = $value;
    }
                   
    public function setSendHTML($value) {
        $this- > sendHTML = $value;
    }
                   
    public function setHTMLBody($value) {
        $this- > sendHTML = true;
        $this- > HTMLBody = $value;
    }
                   
    public function send($to = null, $subject = null, $message = null,
        $headers = null) {
                   
        $success = false;
        if (!is_null($to)  &  &  !is_null($subject)  &  &  !is_null($message)) {
            $success = mail($to, $subject, $message, $headers);
            return $success;
        } else {
            $headers = array();
            if (!empty($this- > fromAddress)) {



476

Part II: Comic Book Fan Site

                $headers[] = ‘From: ‘ . $this- > fromAddress;
            }
                   
            if (!empty($this- > CCAddress)) {
                $headers[] = ‘CC: ‘ . $this- > CCAddress;
            }
                   
            if (!empty($this- > BCCAddress)) {
                $headers[] = ‘BCC: ‘ . $this- > BCCAddress;
            }
                   
            if ($this- > sendText  &  &  !$this- > sendHTML) {
                $message = $this- > textBody;
            } elseif (!$this- > sendText  &  &  $this- > sendHTML) {
                $headers[] = ‘MIME-Version: 1.0’;
                $headers[] = ‘Content-type: text/html; charset=”iso-8859-1”’;
                $headers[] = ‘Content-Transfer-Encoding: 7bit’;
                $message = $this- > HTMLBody;
            } elseif ($this- > sendText  &  &  $this- > sendHTML) {
                $boundary = ‘==MP_Bound_xyccr948x==’;
                $headers[] = ‘MIME-Version: 1.0’;
                $headers[] = ‘Content-type: multipart/alternative; 
boundary=”’ .
                    $boundary . ‘”’;
                   
                $message = ‘This is a Multipart Message in MIME format.’ 
. “\n”;
                $message .= ‘--’ . $boundary . “\n”;
                $message .= ‘Content-type: text/plain; charset=”iso-8859
-1”’ . 
                    “\n”;
                $message .= ‘Content-Transfer-Encoding: 7bit’ . “\n\n”;
                $message .= $this- > textBody  . “\n”;
                $message .= ‘--’ . $boundary . “\n”;
                   
                $message .= ‘Content-type: text/html; charset=”iso-8859-1”’ 
. “\n”;
                $message .= ‘Content-Transfer-Encoding: 7bit’ . “\n\n”;
                $message .= $this- > HTMLBody  . “\n”;
                $message .= ‘--’ . $boundary . ‘--’;
            }
                   
            $success = mail($this- > toAddress, $this- > subject, $message,
                join(“\r\n”, $headers));
            return $success;
        }
    }
}
? >    



Chapter 14: Mailing Lists

477

  4.   There is one last script to enter for the administration portion of the mailing list application. 
When an administrator clicks a button, you need to have a page that handles the transactions. 
Enter the following, and save it as  ml_admin_transact.php : 

 < ?php
require ‘db.inc.php’;
require ‘class.SimpleMail.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$action = (isset($_REQUEST[‘action’])) ? $_REQUEST[‘action’] : ‘’;
                   
switch ($action) {
case ‘Subscribe’:
    $email = (isset($_POST[‘email’])) ? $_POST[‘email’] : ‘’;
    $query = ‘SELECT
            user_id
        FROM
            ml_users
        WHERE
            email=”’ . mysql_real_escape_string($email, $db) . ‘”’;
    $result = mysql_query($query, $db) or die(mysql_error($db));
                   
    if (mysql_num_rows($result)  >  0) {
        $row = mysql_fetch_assoc($result);
        $user_id = $row[‘user_id’];
    } else {
        $first_name = (isset($_POST[‘first_name’])) ?
            $_POST[‘first_name’] : ‘’;
        $last_name = (isset($_POST[‘last_name’])) ?
            $_POST[‘last_name’] : ‘’;
                   
        $query = ‘INSERT INTO ml_users 
                (first_name, last_name, email)
            VALUES
                (“’ . mysql_real_escape_string($first_name, $db) . ‘”, ‘ .
                ‘”’ . mysql_real_escape_string($last_name, $db) . ‘”, ‘ .
                ‘”’ . mysql_real_escape_string($email, $db) . ‘”)’;
        mysql_query($query, $db);
        $user_id = mysql_insert_id($db);
    }
    mysql_free_result($result);
                   
    foreach ($_POST[‘ml_id’] as $ml_id) {
        if (ctype_digit($ml_id)) {
            $query = ‘INSERT INTO ml_subscriptions
                    (user_id, ml_id, pending)
                VALUES
                    (‘ . $user_id . ‘, ‘ . $ml_id . ‘, TRUE)’;



478

Part II: Comic Book Fan Site

            mysql_query($query, $db);
                   
            $query = ‘SELECT listname FROM ml_lists WHERE ml_id = ‘ .
                $ml_id;
            $result = mysql_query($query, $db);
                   
            $row = mysql_fetch_assoc($result);
            $listname = $row[‘listname’];
                   
            $message = ‘Hello ‘ . $first_name . “\n” .
            $message .= ‘Our records indicate that you have subscribed ‘ .
                ‘to the ‘ . $listname . ‘ mailing list.’ . “\n\n”;
            $message .= ‘If you did not subscribe, please accept our ‘ .
                ‘apologies. You will not be subscribed if you do ‘ .
                ‘not visit the confirmation URL.’ . “\n\n”;
            $message .= ‘If you subscribed, please confirm this by ‘ . 
                ‘visiting the following URL: ‘ . 
                ‘http://www.example.com/ml_user_transact.php?user_id=’ .
                $user_id . ‘ & ml_id=’ . $ml_id . ‘ & action=confirm’;
                   
            $mail = new SimpleMail();
            $mail- > setToAddress($email);
            $mail- > setFromAddress(‘list@example.com’);
            $mail- > setSubject(‘Mailing list confirmation’);
            $mail- > setTextBody($message);
            $mail- > send();
            unset($mail);
        }
    }
    header(‘Location: ml_thanks.php?user_id=’ . $user_id . ‘ & ml_id=’ .
        $ml_id . ‘ & type=c’);
    break;
                   
case ‘confirm’:
    $user_id = (isset($_GET[‘user_id’])) ? $_GET[‘user_id’] : ‘’;
    $ml_id = (isset($_GET[‘ml_id’])) ? $_GET[‘ml_id’] : ‘’;
                   
    if (!empty($user_id)  &  &  !empty($ml_id)) {
        $query = ‘UPDATE ml_subscriptions
            SET
                pending = FALSE
            WHERE
                user_id = ‘ . $user_id . ‘ AND
                ml_id = ‘ . $ml_id;
        mysql_query($query, $db);
                   
        $query = ‘SELECT
                listname
            FROM
                ml_lists
            WHERE
                ml_id = ‘ . $ml_id;



Chapter 14: Mailing Lists

479

        $result = mysql_query($query, $db);
                   
        $row = mysql_fetch_assoc($result);
        $listname = $row[‘listname’];
        mysql_free_result($result);
                   
        $query = ‘SELECT 
                first_name, email
            FROM
                ml_users
            WHERE
                user_id = ‘ . $user_id;
        $result = mysql_query($query, $db);
                   
        $row = mysql_fetch_assoc($result);
        $first_name = $row[‘first_name’];
        $email = $row[‘email’];
        mysql_free_result($result);
                   
        $message = ‘Hello ‘ . $first_name . ‘,’ . “\n”;
        $message .= ‘Thank you for subscribing to the ‘ . $listname . 
            ‘ mailing list.  Welcome!’ . “\n\n”;
        $message .= ‘If you did not subscribe, please accept our ‘ .
            ‘apologies.  You can remove’ . “\n”;
        $message .= ‘this subscription immediately by visiting the ‘ .
            ‘following URL:’ . “\n”;
        $message .= ‘http://www.example.com/ml_remove.php?user_id=’ .
            $user_id . ‘ & ml_id=’ . $ml_id;
                   
        $mail = new SimpleMail();
        $mail- > setToAddress($email);
        $mail- > setFromAddress(‘list@example.com’);
        $mail- > setSubject(‘Mailing list subscription confirmed’);
        $mail- > setTextBody($message);
        $mail- > send();
 
    header(‘Location: ml_thanks.php?user_id=’ . $user_id . ‘ & ml_id=’ .
        $ml_id);
    } else {
        header(‘Location: ml_user.php’);
    }
    break;
                   
case ‘Remove’:
    $email = (isset($_POST[‘email’])) ? $_POST[‘email’] : ‘’;
    if (!empty($email)) {
        $query = ‘SELECT
                user_id
            FROM
                ml_users
            WHERE
                email=”’ . $email . ‘”’;



480

Part II: Comic Book Fan Site

        $result = mysql_query($query, $db) or die(mysql_error($db));
                   
        if (mysql_num_rows($result)) {
            $row = mysql_fetch_assoc($result);
            $user_id = $row[‘user_id’];
        header(‘Location: ml_remove.php?user_id=’ . $user_id . 
            ‘ & ml_id=’ . $ml_id);
        break;
      }
      header(‘Location: ml_user.php’);
  }
  break;
}
? >    

  5.   The first page of the mailing list application you want to take a look at is the Mailing List 
Administration page. To view it, load  ml_admin.php  in your browser. As you can see in 
Figure  14 - 1 , you can create a new mailing list or send a quick message to users. You will also 
be able to delete mailing lists from this page after they have been created. Feel free to create a 
couple of new mailing lists. Go crazy, have fun, get wacky.    

Figure 14-1



Chapter 14: Mailing Lists

481

  6.   Click the link at the bottom of the page to send a message to your users. A new page appears 
where you can compose a new message and send it either to a single mailing list or to the 
users of all the mailing lists, as shown in Figure  14 - 2 . Since you just created these pages, you 
don ’ t have any users yet. You can compose a message, but it won ’ t go to anyone. You need to 
create the user pages, which you ’ ll do shortly.       

Figure 14-2

 How It Works 
 A common practice is to post a form back to itself, and you certainly could have done that here. In fact, 
you have done this in earlier projects in this book. When your page contains data that needs to be 
inserted into a database, however, you need to think twice about a self - posting form. If the user were 
to refresh or reload the page, all of your database functions would run again, and that could be 
disastrous. You could end up with duplicate data or delete records you didn ’ t mean to delete. 

 To minimize that probability, you post to a separate script called  ml_admin_transact.php . This page 
handles all of the necessary database transactions, and then directs you back to the page from which 
you came. No harm will come to your database if the user reloads the page at that point. 

 To accommodate having several forms post their information to a central transaction script, all of your 
submit buttons have the same name,  “ action, ”  but each has a different value. The transaction script 
can check the value of the  $_POST[ ‘ action ’ ]  variable to see which button was pressed and perform 
the appropriate actions. 



482

Part II: Comic Book Fan Site

 In  ml_admin.php , you present a form that collects information to be sent to  ml_admin_transact
.php . The first portion of the form is used to create new mailing lists, and is basic HTML because it is 
always visible. 

 < form method=”post” action=”ml_admin_transact.php” > 
  < p >  < label for=”listname” > Add Mailing List: < /label >  < br / > 
   < input type=”text” id=”listname” name=”listname” maxlength=”100” / > 
   < input type=”submit” name=”action” value=”Add New Mailing List” / > 
  < /p >   

 The second portion of the form allows you to delete a mailing list, and should only be shown if there 
are mailing lists available to delete. You first query the database for a list of mailing lists, and if 
 mysql_num_rows()  returns a value larger than 0, you display a  select  element populated with the 
lists. Each  option  displays the list ’ s name and uses the list ’ s ID as its value. 

 < ?php
$query = ‘SELECT
        ml_id, listname
    FROM
        ml_lists
    ORDER BY
        listname ASC’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
if (mysql_num_rows($result)  >  0) {
    echo ‘ < p >  < label for=”ml_id” > Delete Mailing List: < /label >  < br / > ’;
    echo ‘ < select name=”ml_id” id=”ml_id” > ’;
    while ($row = mysql_fetch_array($result)) {
        echo ‘ < option value=”’ . $row[‘ml_id’] . ‘” > ’ . $row[‘listname’] .
            ‘ < /option > ’;
    }
    echo ‘ < /select > ’;
    echo ‘ < input type=”submit” name=”action” value=”Delete ‘ . 
        ‘Mailing List” / > ’;
    echo ‘ < /p > ’;
}
mysql_free_result($result);
? > 
   < /form >    

 Most of  ml_quick_msg.php  is HTML, and the PHP code that is used is practically identical to the 
code used to build the select in  ml_admin.php . 

 < form method=”post” action=”ml_admin_transact.php” > 
  < table > 
   < tr > 
    < td >  < label for=”ml_id” > Mailing List: < /label >  < /td > 
    < td >  < select name=”ml_id” id=”ml_id” > 
      < option value=”all” > All < /option > 
 < ?php
$query = ‘SELECT ml_id, listname FROM ml_lists ORDER BY listname’;



Chapter 14: Mailing Lists

483

$result = mysql_query($query, $db) or die(mysql_error($db));
                   
while ($row = mysql_fetch_array($result)) {
    echo ‘ < option value=”’ . $row[‘ml_id’] . ‘” > ’ . $row[‘listname’] .
        ‘ < /option > ’;
}
mysql_free_result($result);
? > 
     < /select >  < /td > 
   < /tr >  < tr > 
    < td >  < label for=”subject” > Subject: < /label >  < /td > 
    < td >  < input type=”text” name=”subject” id=”subject”/ >  < /td > 
   < /tr >  < tr > 
    < td >  < label for=”message” > Message: < /label >  < /td > 
    < td >  < textarea name=”message” id=”message” rows=”10”
     cols=”60” >  < /textarea >  < /td > 
   < /tr >  < tr > 
    < td >     < /td > 
    < td >  < input type=”submit” name=”action” value=”Send Message”/ >  < /td > 
   < /tr >  < tr > 
  < /table > 
 < /form >   

 Finally, you come to the real workhorse of the mailing list administrator application,  admin_
transact.php . This page is the one to which you post your forms; it will process the information, 
update the database tables, and send out e - mails as required. It uses the  SimpleMail  class from 
Chapter  11  to send e - mail. If you are scratching your head and trying to remember exactly how the 
class works, then now would be a good time to take a break and review  class.SimpleMail.php . 

require ‘class.SimpleMail.php’;  

 Did the user click an  “ action ”  button? You filter the incoming value of  $_POST[ ‘ action ’ ]  and then 
act on the value accordingly, using a  switch  statement. Depending on which button was clicked, 
you ’ re going to perform one of three actions: create a new mailing list, delete an old mailing list, or 
send a message to the users subscribed to a list. 

$action = (isset($_POST[‘action’])) ? $_POST[‘action’] : ‘’;
                   
switch ($action) {
case ‘Add New Mailing List’:
    ...
    break;
                   
case ‘Delete Mailing List’:
    ...
    break;
                   
case ‘Send Message’:
    ...
    break;
}  



484

Part II: Comic Book Fan Site

 To add a new mailing list, you filter the incoming list name and insert a new record into the 
ml_lists table. 

case ‘Add New Mailing List’:
    $listname = isset($_POST[‘listname’]) ? $_POST[‘listname’] : ‘’;
    if (!empty($listname)) {
        $query = ‘INSERT INTO ml_lists
                (listname)
            VALUES
                (“’ . mysql_real_escape_string($listname, $db) . ‘”)’;
        mysql_query($query, $db) or die(mysql_error($db));
    }
    break;  

 Deleting a mailing list is only slightly more complex. Not only must you delete the mailing list itself, 
but you must also delete any subscriptions to the list. 

case ‘Delete Mailing List’:
    $ml_id = isset($_POST[‘ml_id’]) ? $_POST[‘ml_id’] : ‘’;
    if (ctype_digit($ml_id)) {
        $query = ‘DELETE FROM ml_lists WHERE ml_id=’ . $ml_id;
        mysql_query($query, $db) or die(mysql_error($db));
                   
        $query = ‘DELETE FROM ml_subscriptions WHERE ml_id=’ . $ml_id;
        mysql_query($query, $db) or die(mysql_error($db));
    }
    break;  

 The form in  ml_quick_msg.php  posts the mailing list as the mailing list ’ s ID, which  —  while great for 
 ml_admin_transact.php   —  isn ’ t of much use to the subscriber. When you send a message, you want 
to let the user know which mailing list you are referring to. If the mailing list ID is   ‘ all ’   instead of a 
number, you want to reflect that as well: 

case ‘Send Message’:
    $ml_id = isset($_POST[‘ml_id’]) ? $_POST[‘ml_id’] : ‘’;
    $subject = isset($_POST[‘subject’]) ? $_POST[‘subject’] : ‘’;
    $message = isset($_POST[‘message’]) ? $_POST[‘message’] : ‘’;
                   
    if ($ml_id == ‘all’) {
        $listname = ‘Master’;
    } else if (ctype_digit($ml_id)) {
        $query = ‘SELECT
                listname
            FROM
                ml_lists
            WHERE
                ml_id=’ . $ml_id;
        $result = mysql_query($query, $db) or die(mysql_error($db));
        $row = mysql_fetch_assoc($result);
        $listname = $row[‘listname’];
        mysql_free_result($result);
    } else {
        break;
    }  



Chapter 14: Mailing Lists

485

 What follows is a more complicated SQL statement than you ’ ve written thus far, but not too 
difficult. What ’ s happening here is that you are grabbing the e - mails, first names, and user IDs from the 
 ml_users  table where the mailing list ID ( ml_id ) matches their user ID in the  ml_subscriptions  table. 
You do this by using the  INNER JOIN  command in SQL. You also don ’ t want to send any e - mails to those 
that are awaiting subscription confirmation, so select only those where  pending = FALSE . 

 If the administrator did not choose   ‘ all ’   in the select list, you must limit your selection to the specific 
users that are subscribed to the mailing list the administrator selected. You do this by adding on the 
 AND  condition. 

    $query = ‘SELECT DISTINCT
            u.user_id, u.first_name, u.email
        FROM
            ml_users u INNER JOIN ml_subscriptions s ON
                u.user_id = s.user_id
        WHERE
            s.pending = FALSE’;
    if ($ml_id != ‘all’) {
        $query .= ‘ AND s.ml_id = ‘ . $ml_id;
    }
    $result = mysql_query($query, $db) or die(mysql_error($db));  

 Finally, you iterate through the returned records with a while loop. Within the loop, you append a 
footer to the message that will be sent out, explaining how the user can unsubscribe from the mailing 
list, if he or she wants to. Then you create a new instance of the  SimpleMail  class and set the relevant 
options, and then the message can be sent on its way. 

 Notice that you are looping through  each  e - mail address you have and sending an e - mail to each one, 
using the  send()  method. It is important to note that the page will not finish loading until it has sent 
every e - mail. This works fine if you have a few e - mail addresses (a few hundred or less). It has the 
added benefit of allowing you to personalize each e - mail. 

 If you need to send to more people and don ’ t want to deal with the long wait time, we recommend 
putting all of your e - mail addresses in the BCC: field of the mail. You can ’ t personalize the e - mail, but 
the page will load much faster. 

while ($row = mysql_fetch_assoc($result)) {
                   
    $footer = “\n\n” . ‘--------------’ . “\n”;
    if (ctype_digit($ml_id)) {
        $footer .= ‘You are receiving this message as a member ‘ . 
            ‘of the ‘ . $listname . “\n”;
        $footer .= ‘mailing list. If you have received this ‘ . 
            ‘email in error or would like to’ . “\n”;
        $footer .= ‘remove your name from this mailing list, ‘ .
            ‘please visit the following URL:’ . “\n”;
        $footer .= ‘http://www.example.com/ml_remove.php?user_id=’ .
            $row[‘user_id’] . “ & ml=” . $ml_id;
    } else {
        $footer .= ‘You are receiving this email because you ‘ .
            ‘subscribed to one or more’ . “\n”;
        $footer .= ‘mailing lists. Visit the following URL to ‘ .
            ‘change your subscriptions:’ . “\n”;



486

Part II: Comic Book Fan Site

        $footer .= ‘http://www.example.com/ml_user.php?user_id=’ .
            $row[‘user_id’];
    }
                   
    $mail = new SimpleMail();
                   
    $mail- > setToAddress($row[‘email’]);
    $mail- > setFromAddress(‘list@example.com’);
    $mail- > setSubject($subject);
    $mail- > setTextBody($message . $footer);
                   
    $mail- > send();
}
mysql_free_result($result);
break;  

After the page is done with its transactions, it redirects the user to the  ml_admin.php  page.

header(‘Location: ml_admin.php’);

  Sign Me Up! 
 Now it ’ s time to look at the other half of the application, the Mailing List sign - up form. This is the page 
your users will use to sign up for any of the mailing lists that you have created. This portion of the 
application consists of  ml_user.php ,  ml_user_transact.php ,  ml_thanks.php , and  ml_remove.php .    

  Try It Out  Mailing List Signup    

 The first task in coding this portion of the application is to create the scripts necessary to sign up 
subscribers. You will be coding  ml_user.php ,  ml_user_transact.php , and  ml_transact.php . You 
will code  ml_remove.php  later.   

  1.   Enter the following code in your editor, and save it as  ml_user.php : 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$user_id = (isset($_GET[‘user_id’])  &  &  ctype_digit($_GET[‘user_id’])) ?
    $_GET[‘user_id’] : ‘’;
                   
$first_name = ‘’;



Chapter 14: Mailing Lists

487

$last_name = ‘’;
$email = ‘’;
$ml_ids = array();
                   
if (!empty($user_id)) {
    $query = ‘SELECT
            first_name, last_name, email
        FROM 
            ml_users
        WHERE
            user_id = ‘ . $user_id;
    $result = mysql_query($query, $db) or die(mysql_error($db));
    if (mysql_num_rows($result)  >  0) {
        $row = mysql_fetch_assoc($result);
        extract($row);
    }
    mysql_free_result($result);
                   
    $query = ‘SELECT ml_id FROM ml_subscriptions WHERE user_id = ‘ . $user_id;
    $result = mysql_query($query, $db) or die(mysql_error($db));
    while ($row = mysql_fetch_assoc($result)) {
        $ml_ids[] = $row[‘ml_id’];
    }
    mysql_free_result($result);
}
? > 
 < html > 
  < head > 
   < title > Mailing List Signup < /title > 
  < /head > 
  < body > 
   < h1 > Sign up for Mailing List: < /h1 > 
   < form method=”post” action=”ml_user_transact.php” > 
    < table > 
     < tr > 
      < td >  < label for=”email” > Email Address: < /label >  < /td > 
      < td >  < input type=”text” name=”email” id=”email” value=” < ?php echo 
$email; ? > ”/ > 
      < /td > 
     < /tr > 
    < /table > 
    < p > If you aren’t currently a member, please provide your name: < /p > 
    < table > 
     < tr > 
      < td >  < label for=”first_name” > First Name: < /label >  < /td > 
      < td >  < input type=”text” name=”first_name” id=”first_name”
       value=” < ?php echo $first_name; ? > ”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”last_name” > Last Name: < /label >  < /td > 
      < td >  < input type=”text” name=”last_name” id=”last_name”
       value=” < ?php echo $last_name; ? > ”/ >  < /td > 
     < /tr > 
    < /table > 



488

Part II: Comic Book Fan Site

    < p > Select the mailing lists you want to receive: < /p > 
    < p > 
     < select name=”ml_id[]” multiple=”multiple” > 
 < ?php
$query = ‘SELECT
        ml_id, listname
    FROM
        ml_lists
    ORDER BY
        listname ASC’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
print_r($ml_ids);
while ($row = mysql_fetch_array($result)) {
    if (in_array($row[‘ml_id’], $ml_ids)) { 
        echo ‘ < option value=”’ . $row[‘ml_id’] . ‘” selected=”selected” > ’;
    } else {
        echo ‘ < option value=”’ . $row[‘ml_id’] . ‘” > ’;
    }
    echo $row[‘listname’] . ‘ < /option > ’;
}
mysql_free_result($result);
? > 
     < /select > 
    < /p > 
    < p >  < input type=”submit” name=”action” value=”Subscribe” / >  < /p > 
   < /form > 
  < /body > 
 < /html >    

  2.   Enter the transaction page by entering the following and saving it as  ml_user_transact
.php : 

 < ?php
require ‘db.inc.php’;
require ‘class.SimpleMail.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$action = (isset($_REQUEST[‘action’])) ? $_REQUEST[‘action’] : ‘’;
                   
switch ($action) {
case ‘Subscribe’:
    $email = (isset($_POST[‘email’])) ? $_POST[‘email’] : ‘’;
    $query = ‘SELECT
            user_id
        FROM
            ml_users



Chapter 14: Mailing Lists

489

        WHERE
            email=”’ . mysql_real_escape_string($email, $db) . ‘”’;
    $result = mysql_query($query, $db) or die(mysql_error($db));
                   
    if (mysql_num_rows($result)  >  0) {
        $row = mysql_fetch_assoc($result);
        $user_id = $row[‘user_id’];
    } else {
        $first_name = (isset($_POST[‘first_name’])) ?
            $_POST[‘first_name’] : ‘’;
        $last_name = (isset($_POST[‘last_name’])) ?
            $_POST[‘last_name’] : ‘’;
                   
        $query = ‘INSERT INTO ml_users 
                (first_name, last_name, email)
            VALUES
                (“’ . mysql_real_escape_string($first_name, $db) . ‘”, ‘ .
                ‘”’ . mysql_real_escape_string($last_name, $db) . ‘”, ‘ .
                ‘”’ . mysql_real_escape_string($email, $db) . ‘”)’;
        mysql_query($query, $db);
        $user_id = mysql_insert_id($db);
    }
    mysql_free_result($result);
                   
    foreach ($_POST[‘ml_id’] as $ml_id) {
        if (ctype_digit($ml_id)) {
            $query = ‘INSERT INTO ml_subscriptions
                    (user_id, ml_id, pending)
                VALUES
                    (‘ . $user_id . ‘, ‘ . $ml_id . ‘, TRUE)’;
            mysql_query($query, $db);
                   
            $query = ‘SELECT listname FROM ml_lists WHERE ml_id = ‘ .
                $ml_id;
            $result = mysql_query($query, $db);
                   
            $row = mysql_fetch_assoc($result);
            $listname = $row[‘listname’];
                   
            $message = ‘Hello ‘ . $first_name . “\n” .
            $message .= ‘Our records indicate that you have subscribed ‘ .
                ‘to the ‘ . $listname . ‘ mailing list.’ . “\n\n”;
            $message .= ‘If you did not subscribe, please accept our ‘ .
                ‘apologies. You will not be subscribed if you do ‘ .
                ‘not visit the confirmation URL.’ . “\n\n”;
            $message .= ‘If you subscribed, please confirm this by ‘ . 
                ‘visiting the following URL: ‘ . 
                ‘http://example.com/ml_user_transact.php?user_id=’ .
                $user_id . ‘ & ml_id=’ . $ml_id . ‘ & action=confirm’;
                   
            $mail = new SimpleMail();



490

Part II: Comic Book Fan Site

            $mail- > setToAddress($email);
            $mail- > setFromAddress(‘list@example.com’);
            $mail- > setSubject(‘Mailing list confirmation’);
            $mail- > setTextBody($message);
            $mail- > send();
            unset($mail);
        }
    }
    header(‘Location: ml_thanks.php?user_id=’ . $user_id . ‘ & ml_id=’ .
        $ml_id . ‘ & type=c’);
    break;
                   
case ‘confirm’:
    $user_id = (isset($_GET[‘user_id’])) ? $_GET[‘user_id’] : ‘’;
    $ml_id = (isset($_GET[‘ml_id’])) ? $_GET[‘ml_id’] : ‘’;
                   
    if (!empty($user_id)  &  &  !empty($ml_id)) {
        $query = ‘UPDATE ml_subscriptions
            SET
                pending = FALSE
            WHERE
                user_id = ‘ . $user_id . ‘ AND
                ml_id = ‘ . $ml_list;
        mysql_query($query, $db);
                   
        $query = ‘SELECT
                listname
            FROM
                ml_lists
            WHERE
                ml_id = ‘ . $ml_id;
        $result = mysql_query($query, $db);
                   
        $row = mysql_fetch_assoc($result);
        $listname = $row[‘listname’];
        mysql_free_result($result);
                   
        $query = ‘SELECT 
                first_name, email
            FROM
                ml_users
            WHERE
                user_id = ‘ . $user_id;
        $result = mysql_query($query, $db);
                   
        $row = mysql_fetch_assoc($result);
        $first_name = $row[‘first_name’];
        $email = $row[‘email’];
        mysql_free_result($result);
                   
        $message = ‘Hello ‘ . $first_name . ‘,’ . “\n”;



Chapter 14: Mailing Lists

491

        $message .= ‘Thank you for subscribing to the ‘ . $listname . 
            ‘ mailing list.  Welcome!’ . “\n\n”;
        $message .= ‘If you did not subscribe, please accept our ‘ .
            ‘apologies.  You can remove’ . “\n”;
        $message .= ‘this subscription immediately by visiting the ‘ .
            ‘following URL:’ . “\n”;
        $message .= ‘http://example.com/ml_remove.php?user_id=’ .
            $user_id . ‘ & ml_id=’ . $ml_id;
                   
        $mail = new SimpleMail();
        $mail- > setToAddress($email);
        $mail- > setFromAddress(‘list@example.com’);
        $mail- > setSubject(‘Mailing list subscription confirmed’);
        $mail- > setTextBody($message);
        $mail- > send();
 
    header(‘Location: ml_thanks.php?user_id=’ . $user_id . ‘ & ml_id=’ .
        $ml_id . ‘ & type=s’);
    } else {
        header(‘Location: ml_user.php’);
    }
    break;
}
? >    

  3.   You may have noticed when entering the last script that you are redirecting your users to a 
page called  ml_thanks.php . It would probably be a good idea to create that page now, by 
entering the following code and saving it as  ml_thanks.php : 

 < html > 
  < head > 
   < title > Thank You < /title > 
  < /head > 
  < body > 
 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$user_id = (isset($_GET[‘user_id’])) ? $_GET[‘user_id’] : ‘’;
$ml_id = (isset($_GET[‘ml_id’])) ? $_GET[‘ml_id’] : ‘’;
$type = (isset($_GET[‘type’])) ? $_GET[‘type’] : ‘’;
                   
if (empty($user_id)) {
    die(‘No user id available.’);
}



492

Part II: Comic Book Fan Site

$query = ‘SELECT first_name, email FROM ml_users WHERE user_id = ‘ .
    $user_id;
$result = mysql_query($query, $db) or die(mysql_error());
                   
if (mysql_num_rows($result)  >  0) {
    $row = mysql_fetch_assoc($result);
    $first_name = $row[‘first_name’];
    $email = $row[‘email’];       
} else {
    die(‘No match for user id.’);
}
mysql_free_result($result);
                   
if (empty($ml_id)) {
    die(‘No mailing list id available.’);
}
$query = ‘SELECT listname FROM ml_lists WHERE ml_id = ‘ . $ml_id;
$result = mysql_query($query, $db) or die(mysql_error());
                   
if (mysql_num_rows($result)) {
    $row = mysql_fetch_assoc($result);
    $listname = $row[‘listname’];
} else {
    die (‘No match for mailing list id’);
}
mysql_free_result($result);
                   
if ($type == ‘c’) {
    echo ‘ < h1 > Thank You ‘ . $first_name . ‘ < /h1 > ’;
    echo ‘ < p > A confirmation for subscribing to the ‘ . $listname . 
‘ mailing list ‘ . 
        ‘has been sent to ‘ . $email . ‘. < /p > ’;
} else {
    echo ‘ < h1 > Thank You ‘ . $first_name . ‘ < /h1 > ’;
    echo ‘ < p > Thank you for subscribing to the ‘ . $listname . ‘ 
mailing list. < /p > ’;
}
? > 
  < /body > 
 < /html >    



Chapter 14: Mailing Lists

493

  4.   Open your browser, and open  ml_user.php . You should see a form that looks very much like 
the one in Figure  14 - 3 .    

Figure 14-3

  5.   Enter your e - mail address and your first and last name, choose one or more mailing lists to 
subscribe to, and click Subscribe. 

  You should see a Thank You screen (shown in Figure  14 - 4 ) and receive a confirmation e - mail 
at the e - mail address you supplied.    



494

Part II: Comic Book Fan Site

  6.   Open the confirmation e - mail. There will be a link at the bottom (or a non - linked URL, if you 
are using a text e - mail client).  

  7.   Click the link, and it takes you back to the Thank You page, this time thanking you for 
confirming your subscription. You will get another e - mail informing you about your 
subscription, with a link that allows you to remove yourself from the mailing list. Don ’ t click 
that link just yet!  

  8.   Open  ml_admin.php , and then click the link at the bottom,  “ Send a quick message to users. ”   

  9.   In the Quick Message page, choose a mailing list that you just subscribed to in the previous 
steps, and enter a subject. Then type a quick message.  

  10.   Click Send Message.  

  11.   Open your e - mail client again, and read the message you should have received.     

Figure 14-4



Chapter 14: Mailing Lists

495

  How It Works 
 Excellent job! Now that you ’ ve written and tested your code, it ’ s time for us to explain how it all 
works. Typically,  ml_user.php  will display a blank form. Occasionally, you may want the fields to be 
populated with the subscriber ’ s information, and so you pass the user ID of the subscriber along in 
the URL.  ml_user.php  will use the ID to look up the information in the database and pre - populate 
the form ’ s fields. 

 You filter the incoming user ID (if it appears in the URL) and initialize the variables that are used in 
displaying the form to blank values: 

$user_id = (isset($_GET[‘user_id’])  &  &  ctype_digit($_GET[‘user_id’])) ?
    $_GET[‘user_id’] : ‘’;
                   
$first_name = ‘’;
$last_name = ‘’;
$email = ‘’;
$ml_ids = array();  

 If a user ’ s ID has been supplied, then you retrieve the information from the database and populate the 
variables you just initialized: 

if (!empty($user_id)) {
    $query = ‘SELECT
            first_name, last_name, email
        FROM 
            ml_users
        WHERE
            user_id = ‘ . $user_id;
    $result = mysql_query($query, $db) or die(mysql_error($db));
    if (mysql_num_rows($result)  >  0) {
        $row = mysql_fetch_assoc($result);
        extract($row);
    }
    mysql_free_result($result);
                   
    $query = ‘SELECT ml_id FROM ml_subscriptions WHERE user_id = ‘ . 
$user_id;
    $result = mysql_query($query, $db) or die(mysql_error($db));
    while ($row = mysql_fetch_assoc($result)) {
        $ml_ids[] = $row[‘ml_id’];
    }
    mysql_free_result($result);
}  

 Displaying the fields to collect the subscriber ’ s e - mail address, first name, and last name is pretty 
straightforward. You output the variables ’  contents for the field ’ s  value  attributes, so if a user ID has 
been provided, then the fields will appear pre - populated. Since the variables were initialized with 
blank default values, the fields will be empty if no valid user ID has been received. 

 You need to again query the database when you display the  select  field. You retrieve all the IDs and 
names of the mailing lists, and then iterate through them to generate the  select  ’ s options. During 



496

Part II: Comic Book Fan Site

each run through the loop, you check the current record ’ s  ml_id  to see if the user is subscribed to it, 
and if so, then you set the option as selected, so all of the lists the user is subscribed to will be selected 
when the form is pre - populated. 

 < select name=”ml_id[]” multiple=”multiple” > 
 < ?php
$query = ‘SELECT
        ml_id, listname
    FROM
        ml_lists
    ORDER BY
        listname ASC’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
print_r($ml_ids);
while ($row = mysql_fetch_array($result)) {
    if (in_array($row[‘ml_id’], $ml_ids)) { 
        echo ‘ < option value=”’ . $row[‘ml_id’] . ‘” selected=”selected” > ’;
    } else {
        echo ‘ < option value=”’ . $row[‘ml_id’] . ‘” > ’;
    }
    echo $row[‘listname’] . ‘ < /option > ’;
}
mysql_free_result($result);
? > 
     < /select >   

 The  ml_thanks.php  is almost not worth mentioning because its PHP code is something you should 
already be familiar with at this point. It accepts the subscriber ’ s user ID ( user_id ), the ID of the 
mailing list he or she subscribed to ( ml_id ), and the type of thank you message it should display 
( type ) from the URL. After filtering them, the page displays the appropriate thank you message to the 
subscriber. 

 The real action happens in  ml_user_transact.php , which handles creating and updating 
subscribers ’  records in the database. 

 You filter the incoming value of  $_REQUEST[ ‘ action ’ ]  and then act on the value accordingly, 
using a  switch  statement. Depending on which action is requested, you either subscribe a user to a 
mailing list or confirm a user ’ s subscription. 

$action = (isset($_REQUEST[‘action’])) ? $_REQUEST[‘action’] : ‘’;
                   
switch ($action) {
case ‘Subscribe’:
    ...
    break;
                   
case ‘confirm’:
    ...
    break;
}  

 If the user was sent to  ml_user_transact.php  because he or she clicked the Subscribe button of 
 ml_user.php  ’ s form, you subscribe him or her to the appropriate lists. A number of things have to be 



Chapter 14: Mailing Lists

497

done for this to happen. First, you must look up the e - mail address that was provided, to see if the 
user already exists in the  ml_user  table and retrieve the user ’ s ID. If the user doesn ’ t exist, then you 
create a new record for the user, including his or her first and last name. Once a record is created, then 
you use  mysql_insert_id()  to retrieve the user ’ s ID. 

case ‘Subscribe’:
    $email = (isset($_POST[‘email’])) ? $_POST[‘email’] : ‘’;
    $query = ‘SELECT
            user_id
        FROM
            ml_users
        WHERE
            email=”’ . mysql_real_escape_string($email, $db) . ‘”’;
    $result = mysql_query($query, $db) or die(mysql_error($db));
                   
    if (mysql_num_rows($result)  >  0) {
        $row = mysql_fetch_assoc($result);
        $user_id = $row[‘user_id’];
    } else {
        $first_name = (isset($_POST[‘first_name’])) ?
            $_POST[‘first_name’] : ‘’;
        $last_name = (isset($_POST[‘last_name’])) ?
            $_POST[‘last_name’] : ‘’;
                   
        $query = ‘INSERT INTO ml_users 
                (first_name, last_name, email)
            VALUES
                (“’ . mysql_real_escape_string($first_name, $db) . ‘”, ‘ .
                ‘”’ . mysql_real_escape_string($last_name, $db) . ‘”, ‘ .
                ‘”’ . mysql_real_escape_string($email, $db) . ‘”)’;
        mysql_query($query, $db);
        $user_id = mysql_insert_id($db);
    }
    mysql_free_result($result);  

 Then you loop through each mailing list the user wants to subscribe to, and create an entry in the 
 ml_subscriptions  table that links the user ’ s ID to the list ’ s ID. The record ’ s status is also set to 
pending at this point, with  pending  set to  TRUE . 

 You send the new user an e - mail informing him or her of the new subscription, using the  SimpleMail  
class from Chapter  11 . The subscription will not be active until the user visits a link you provide in the 
e - mail for the user to confirm the subscription. 

    foreach ($_POST[‘ml_id’] as $ml_id) {
        if (ctype_digit($ml_id)) {
            $query = ‘INSERT INTO ml_subscriptions
                    (user_id, ml_id, pending)
                VALUES
                    (‘ . $user_id . ‘, ‘ . $ml_id . ‘, TRUE)’;
            mysql_query($query, $db);
                   
            $query = ‘SELECT listname FROM ml_lists WHERE ml_id = ‘ .
                $ml_id;



498

Part II: Comic Book Fan Site

            $result = mysql_query($query, $db);
                   
            $row = mysql_fetch_assoc($result);
            $listname = $row[‘listname’];
                   
            $message = ‘Hello ‘ . $first_name . “\n” .
            $message .= ‘Our records indicate that you have subscribed ‘ .
                ‘to the ‘ . $listname . ‘ mailing list.’ . “\n\n”;
            $message .= ‘If you did not subscribe, please accept our ‘ .
                ‘apologies. You will not be subscribed if you do ‘ .
                ‘not visit the confirmation URL.’ . “\n\n”;
            $message .= ‘If you subscribed, please confirm this by ‘ . 
                ‘visiting the following URL: ‘ . 
                ‘http://www.example.com/ml_user_transact.php?user_id=’ .
                $user_id . ‘ & ml_id=’ . $ml_id . ‘ & action=confirm’;
                   
            $mail = new SimpleMail();
            $mail- > setToAddress($email);
            $mail- > setFromAddress(‘list@example.com’);
            $mail- > setSubject(‘Mailing list confirmation’);
            $mail- > setTextBody($message);
            $mail- > send();
            unset($mail);
        }
    }
    header(‘Location: ml_thanks.php?user_id=’ . $user_id . ‘ & ml_id=’ .
        $ml_id . ‘ & type=c’);  

 When the user visits the link you provided in the confirmation e - mail, he or she should be taken 
to  ml_user_transact.php , and the  “ confirm ”  branch of the  switch  statement is executed. 
Here is where you validate the incoming user ID and list ID and update the user ’ s records in 
the  ml_subscriptions  table, so the subscription is no longer marked pending. You then retrieve the 
user ’ s first name and e - mail address, to send another e - mail to inform him or her of the subscription ’ s 
change in status. 

case ‘confirm’:
    $user_id = (isset($_GET[‘user_id’])) ? $_GET[‘user_id’] : ‘’;
    $ml_id = (isset($_GET[‘ml_id’])) ? $_GET[‘ml_id’] : ‘’;
                   
    if (!empty($user_id)  &  &  !empty($ml_id)) {
        $query = ‘UPDATE ml_subscriptions
            SET
                pending = FALSE
            WHERE
                user_id = ‘ . $user_id . ‘ AND
                ml_id = ‘ . $ml_id;
        mysql_query($query, $db);
                   
        $query = ‘SELECT
                listname



Chapter 14: Mailing Lists

499

            FROM
                ml_lists
            WHERE
                ml_id = ‘ . $ml_id;
        $result = mysql_query($query, $db);
                   
        $row = mysql_fetch_assoc($result);
        $listname = $row[‘listname’];
        mysql_free_result($result);
                   
        $query = ‘SELECT 
                first_name, email
            FROM
                ml_users
            WHERE
                user_id = ‘ . $user_id;
        $result = mysql_query($query, $db);
                   
        $row = mysql_fetch_assoc($result);
        $first_name = $row[‘first_name’];
        $email = $row[‘email’];
        mysql_free_result($result);
                   
        $message = ‘Hello ‘ . $first_name . ‘,’ . “\n”;
        $message .= ‘Thank you for subscribing to the ‘ . $listname . 
            ‘ mailing list.  Welcome!’ . “\n\n”;
        $message .= ‘If you did not subscribe, please accept our ‘ .
            ‘apologies.  You can remove’ . “\n”;
        $message .= ‘this subscription immediately by visiting the ‘ .
            ‘following URL:’ . “\n”;
        $message .= ‘http://www.example.com/ml_remove.php?user_id=’ .
            $user_id . ‘ & ml_id=’ . $ml_id;
                   
        $mail = new SimpleMail();
        $mail- > setToAddress($email);
        $mail- > setFromAddress(‘list@example.com’);
        $mail- > setSubject(‘Mailing list subscription confirmed’);
        $mail- > setTextBody($message);
        $mail- > send();
 
    header(‘Location: ml_thanks.php?user_id=’ . $user_id . ‘ & ml_id=’ .
        $ml_id);
    } else {
        header(‘Location: ml_user.php’);
    }
    break;



500

Part II: Comic Book Fan Site

      Try It Out  Removing Your Subscription    

 Now that you ’ ve given users the ability to add themselves to your mailing lists, you need to give them 
the ability to remove themselves, if they want. The e - mails that you send have a link allowing your 
users to remove themselves from the mailing lists, if they so desire.   

  1.   Enter this code, and save it as  ml_remove.php : 

 < html > 
  < head > 
   < title > Remove Subscription < /title > 
  < /head > 
  < body > 
   < h1 > Remove Subscription < /h1 > 
 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$user_id = (isset($_GET[‘user_id’])  &  &  ctype_digit($_GET[‘user_id’])) ?
    $_GET[‘user_id’] : -1;
                   
$ml_id = (isset($_GET[‘ml_id’])  &  &  ctype_digit($_GET[‘ml_id’])) ?
    $_GET[‘ml_id’] : -1;
                   
if (empty($user_id) || empty($ml_id)) {
    die(‘Incorrect parameters passed.’);
}
$query = ‘DELETE FROM ml_subscriptions WHERE user_id = ‘ . $user_id . ‘
     AND ml_id = ‘ . $ml_id;
mysql_query($query, $db) or die(mysql_error());
                   
$query = ‘SELECT listname FROM ml_lists WHERE ml_id = ‘ . $ml_id;
$result = mysql_query($query, $db) or die(mysql_error($db));
if (mysql_num_rows($result) == 0) {
    die(‘Unknown list.’);
}
$row = mysql_fetch_array($result);
$listname = $row[‘listname’];
mysql_free_result($result);
                   
echo ‘ < p > You have been removed from the ‘ . $listname . ‘ mailing list < /p > ’;
echo ‘ < p >  < a href=”ml_user.php?user_id=’ . $user_id . ‘” > Return to Mailing ‘ .
    ‘List Signup page. < /a >  < /p > ’;
? > 
  < /body > 
 < /html >    



Chapter 14: Mailing Lists

501

  2.   Go back to the e - mail you sent yourself earlier, and find the link at the bottom of it. Click it 
to remove yourself from the mailing list. You should see the Removal page, as shown in 
Figure  14 - 5 . If you send another message to that mailing list, then that message should not be 
sent to your e - mail address.       

Figure 14-5

  How It Works 
 Users can remove themselves from a mailing list by following the link at the bottom of any e - mail they 
receive from the list. The link directs the user to the  ml_remove.php  page, which requires two 
parameters, the user ’ s ID and the mailing list ’ s ID, to be supplied in the URL. 

 You take in and filter the user ’ s ID and the list ’ s ID, and then use them in a  DELETE  query against the 
 ml_subscriptions  table, to remove the user ’ s subscription. 

$user_id = (isset($_GET[‘user_id’])  &  &  ctype_digit($_GET[‘user_id’])) ?
    $_GET[‘user_id’] : -1;
                   
$ml_id = (isset($_GET[‘ml_id’])  &  &  ctype_digit($_GET[‘ml_id’])) ?
    $_GET[‘ml_id’] : -1;
                   
if (empty($user_id) || empty($ml_id)) {
    die(‘Incorrect parameters passed.’);
}
$query = ‘DELETE FROM ml_subscriptions WHERE user_id = ‘ . $user_id . ‘
     AND ml_id = ‘ . $ml_id;
mysql_query($query, $db) or die(mysql_error());  



502

Part II: Comic Book Fan Site

 Afterwards, you retrieve the name of the mailing list from the  ml_lists  table and use it to display a 
message telling the user that the removal has taken place. 

$query = ‘SELECT listname FROM ml_lists WHERE ml_id = ‘ . $ml_id;
$result = mysql_query($query, $db) or die(mysql_error($db));
if (mysql_num_rows($result) == 0) {
    die(‘Unknown list.’);
}
$row = mysql_fetch_array($result);
$listname = $row[‘listname’];
mysql_free_result($result);
                   
echo ‘ < p > You have been removed from the ‘ . $listname . ‘ mailing list < /p > ’;
echo ‘ < p >  < a href=”ml_user.php?user_id=’ . $user_id . ‘” > Return to Mailing ‘ .

    ‘List Signup page. < /a >  < /p > ’;       

  

  Mailing List Ethics 
 You should know about a couple of ethical issues when dealing with the world of mailing lists, namely 
spam and opt - in/opt - out. This section represents our personal soap box for airing our opinions about 
them. Although these are our opinions, however, you may want to pay close attention. 

  A Word about Spam 
 With the advent of the computer, mailing lists have been brought to a whole new level. Now you can 
be (and no doubt are) told on a daily basis that Sally really wants you to visit her web site, and that a 
little blue pill will solve all of your personal problems. Yes, occasionally an e - mail sits in your inbox 
informing you of new job postings, new posts on  PHPBuilder.com , or tour dates for Jimmy Buffett. But 
we think you know what mailing lists are primarily used for: spam! 

 For those of you just crawling out of a suspended animation chamber,  spam  is a term used to describe a 
shotgun approach to advertising. You simply send your e - mail advertisement to as many people as you 
possibly can, in the hopes that a certain small percentage of them will actually respond. 

 What is our point? SPAM is a luncheon meat. You spell it in all capital letters, and you enjoy it on your 
sandwiches. Spam, on the other hand isn ’ t so tasty. It ’ s another name for unsolicited commercial e - mail. 
It is spelled in all lowercase, and we shun it. 

 The bottom line: Don ’ t use mailing lists to send spam. Your mother would be  very  disappointed.  



Chapter 14: Mailing Lists

503

  Opt - In versus Opt - Out 
 You may have heard the terms opt - in and opt - out before. What do they mean? To most of your users, 
probably not much. Users simply answer the questions on your registration, read the fine print, and click 
the Submit button. However, you aren ’ t a user anymore  —  at least, not on your own site. You are the 
administrator. You need to understand the difference between opt - in and opt - out because it may mean 
the difference between annoyance and acceptance from your users. 

 Opt - in and opt - out are fancy ways of asking,  “ What is the default choice for your users? ”  Opt - in means 
the user is not currently scheduled to receive a specific newsletter, but he or she may  opt  to subscribe. 
Obviously, opt - out is the opposite  —  your user will automatically receive notifications unless he or she 
 opts  to remove him -  or herself from that mailing list. 

 Why the difference? As the administrator, you may sometimes have to walk a fine line between 
satisfying your advertisers (the ones that might be giving you money to keep your site alive) and your 
users (the ones visiting your site, keeping your advertisers happy by driving up the number of hits). 
If an advertiser pays you enough, you might agree to automatically send advertisements from that 
company unless the user explicitly chooses not to receive them (opt - out). 

 However, you might have a newsletter you send once per week that contains, for example, details of 
comic conventions throughout the country (or even the world). Not all visitors to your site will be 
interested in that, but if any are, they can subscribe to the newsletter so they will always be notified 
(opt - in). 

 As we mentioned, you walk a fine line when choosing between the two. Because this is a new web site 
for you, the decision might not be that difficult. But as your site grows, interest increases, and companies 
want to advertise with you, you ’ ll need to make these important decisions. For now, we suggest you 
make all mailing lists opt - in, with the exception of important site announcements.   

  Summary 
 You have just created a nice, relatively simple mailing list subscription application. You have the ability 
to create new mailing lists, delete old ones, and send e - mails to multiple recipients. Users can subscribe 
to and unsubscribe from any mailing lists, and you added a step for confirmation to help stamp out 
abuse. 

 We hope you come away from this chapter with an understanding of the difference between good, 
informative mass e - mails and spam. 

 Mailing lists are good. Spam is bad. Any questions? Good. Next, we ’ ll take a look at how to sell your 
SPAM collection on your web site.  



504

Part II: Comic Book Fan Site

  Exercises   
  1.    Hide your users ’  addresses:  Modify the send message functionality to send the e - mails to your 

users, using the BCC: e - mail field, instead of the usual To: field.  

  2.    Reduce sending:  Modify the send message functionality to send e - mails to your users in groups 
of 10. That is, every e - mail that is sent should be sent to 10 users at a time (when possible), 
instead of one e - mail per user.  

  3.    Let the administrator know:  Add functionality to send an e - mail to an administrator when new 
users confirm their subscription to the mailing list.  

  4.    Clean up any leftovers:  Add functionality to the administration page to allow an admin to 
purge the database of any subscriptions that haven ’ t yet been confirmed.        



      15    
Online Stores          

 Some of us cringe when we hear the word  “ e - commerce ”  and the phrase  “ selling over the 
Internet. ”  Perhaps we ’ ve had a bad experience ourselves, or the thought of opening an online store 
is just too overwhelming. Even though this is the part of the book that all geeks out there probably 
dread reading, we ’ re here to show you that e - commerce is nothing to fear and that pretty much 
anyone can do it. 

 However, the fact that anyone can do it doesn ’ t mean it ’ s always done the right way. Done the 
wrong way, your site can look downright cheesy. Done the right way, your site can look 
professional and inviting and become an excellent resource for your visitors and potential 
customers. There are definite guidelines for selling things over the web, and we want to make sure 
you do things the right way. 

 Selling things from your web site can not only put some extra cash in your pocket, but it can 
enhance your relationship with your web site visitors as well, even if e - commerce is not your site ’ s 
primary function. In the case of your comic book fan site, offering pertinent items can make your 
site more interactive and interesting. It can bring in new visitors who may not have known about 
your site before, and keep visitors coming back to see what new items you have for sale. True 
comic book fans will appreciate the niche of items you are providing, especially if some of the 
items are unique or hard to come by. 

 This chapter discusses the following: 

  Creating a simple shopping - cart script  .

  Ideas to improve your script  .

  The basics of e - commerce     .

❑

❑

❑



506

Part II: Comic Book Fan Site

  Adding E - Commerce to the Comic Book 

Fan Site 
 The time has come to incorporate an e - commerce section into your Comic Book Appreciation fan site. 
You will need a few things to get started: 

  Something to sell  .

  Some mechanism for your customers to pick what they want to buy  .

  Some way for your customers to pay for what they want to buy  .

  Some process to get the merchandise to your customers    .

 Let ’ s break it down and talk about each of these things individually. The first two we can help you with, 
but the second two are really beyond a general discussion and outside the scope of this book. 

  Something to Sell 
 Before you can sell something, you have to have something to sell. Retailers spend millions of dollars a 
year researching what will sell, what won ’ t, what the hottest trends are, and what the latest technology 
has to offer. All that being said, your ideas for products will probably come from one or more of the 
following categories: 

   Your own knowledge:  You will most likely know what your customers want, based on your 
knowledge of the focus of your web site. For example, if you have a site for collectors of old 
tractors, then you probably know what products would appeal to your typical customer because 
 you  are the typical customer.  

   Something you yourself couldn ’ t easily find:  You also may have been looking for a specific 
product or group of products, only to find that they did not exist on one particular site until 
you created it and pulled them all together. (For example, one of this book ’ s authors created 
 www.giftsforengineers.com  to be a compilation of products that appeal to engineers.)  

   Your own inventions:  Another item you might sell from your site is a new invention or design 
you have created. Many budding artists and inventors sell their wares on the web, where they 
can reach a multitude of potential buyers.  

   Promotion of your site:  Many other web sites offer promotional items for sale that tout the URL 
of their site. This acts as a win - win for both parties; the customers can proclaim their support for 
a cool site, and the site makes a few bucks and gets its name out there for all to see.    

 So whether you ’ re reinventing the wheel, selling specific types of wheels, taking a bunch of wheels and 
putting them together, or just selling wheels with your name on them, you must create a product base. 

 You will be selling items from a few different categories at your CBA site. To spice things up a bit, we 
decided it would be great to have some fun with this: 

  T - shirts, bumper stickers, and coffee mugs with the CBA logo  .

  Superhero suits with customizable color schemes and monogrammed torso letters  .

  Two different types of grappling hooks for all our superheroes ’  needs    .

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑



Chapter 15: Online Stores     

507

 You will be expanding on these products later and adding them to your product catalog.  

  A Shopping Cart 
 Now that you know what you are going to sell, you need some way for your customers to choose the 
specific products they want to buy. This involves a shopping cart. You can hook yourself up with ready -
 made shopping - cart software, or you can use a cart straight from a programming script, such as PHP. 
Because we ’ re on this topic, we may as well talk a little bit about the pros and cons of each. 

  Shopping - Cart Software 

 Numerous shopping - cart software packages are available that can easily hook your customers up and 
make it easy for them to pick what they want. These software packages can also take care of things such 
as security, complex product option selection, maintaining customer information, and keeping track of 
previously placed orders. The price of these packages ranges from free to very expensive. 

 An example of shopping - cart software is Cart32. Available at  www.cart32.com , this is a widely used 
shopping - cart program that provides numerous configuration options. Features include web - based 
administration of your cart and pending/sent orders, the ability to use your own database or theirs to 
store product and customer information, automatic credit card processing and e - mail confirmations, 
complex product options and discount structures, online tracking through the major shipping carriers 
for your customers to track their orders, inventory management, and customization of the look of your 
cart. Many web - hosting companies have chosen Cart32 as the cart they offer their customers. 

 This type of shopping cart application is popular because it enables you to get your store up and running 
with relative ease, and because it takes care of the security issues for you.  

  Your Own Cart Software Code 

 The largest problem you face whenever you depend on someone else to supply a portion of your site is 
that you are at the mercy of their service, their servers, and their software. If a third party is hosting your 
shopping cart for you, when the provider is experiencing downtime, so may your site. If their servers 
catch a virus or are affected by malware, it can affect you and your customers, too. Plus, there may be a 
function you need that the third party does not offer, or the cost to activate it may be prohibitive for your 
fledgling web site. Whatever your reason, you may want to code your own shopping - cart application. 

 You ’ ll start with a very simple shopping - cart system that will consist of several files: 

   db_ch15 - 1.php  creates the main tables in the database for this application.  

   db_ch15 - 2.php  populates the tables with initial product information.  

   ecomm_shop.php  displays the inventory for your store by listing the available products.  

   ecomm_view_product.php  retrieves detailed information about a single product.  

   ecomm_update_cart.php  adds, deletes, or changes quantities of a product in the 
shopping cart.  

   ecomm_view_cart.php  displays the contents of the shopping cart.  

   ecomm_checkout.php  is the first step in the checkout process; this is where the customer enters 
billing and shipping information.  

❑

❑

❑

❑

❑

❑

❑



508

Part II: Comic Book Fan Site

   ecomm_checkout2.php  is the second step in the checkout process; this is where customers 
verify the accuracy of their orders.  

   ecomm_checkout3.php  is the final step of the checkout process, where the customer actually 
sends the order to you, and receives an order number and confirmation. The information is put 
into the database and deleted from the temporary table, a customer number is assigned (if it ’ s a 
new customer), and an order number is assigned, as well. E - mail confirmations are sent to the 
customer and to you.      

Try It Out Defi ning the Database and Tables   

 In this exercise, you ’ ll create a run - once script that creates the database tables for this chapter ’ s project.   

  1.   Open your text editor, and type the following code: 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
// define the products table
$query = ‘CREATE TABLE IF NOT EXISTS ecomm_products (
        product_code  CHAR(5)      NOT NULL,
        name          VARCHAR(100) NOT NULL,
        description   MEDIUMTEXT,
        price         DEC(6,2)     NOT NULL,
                   
        PRIMARY KEY(product_code)
    )  
    ENGINE=MyISAM’;
mysql_query($query, $db) or die(mysql_error($db));
                   
// define the customers table
$query = ‘CREATE TABLE IF NOT EXISTS ecomm_customers (
        customer_id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
        first_name  VARCHAR(20)      NOT NULL,
        last_name   VARCHAR(20)      NOT NULL,
        address_1   VARCHAR(50)      NOT NULL,
        address_2   VARCHAR(50),
        city        VARCHAR (20)     NOT NULL,
        state       CHAR(2)          NOT NULL,
        zip_code    CHAR(5)          NOT NULL,
        phone       CHAR(12)         NOT NULL,
        email       VARCHAR(100)     NOT NULL,
                   
        PRIMARY KEY (customer_id)
    )  
    ENGINE=MyISAM’;
mysql_query($query, $db) or die(mysql_error($db));
                   
// define the general order table

❑

❑



Chapter 15: Online Stores     

509

$query = ‘CREATE TABLE IF NOT EXISTS ecomm_orders (
        order_id            INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
        order_date          DATE             NOT NULL,
        customer_id         INTEGER UNSIGNED NOT NULL,
        cost_subtotal       DEC(7,2)         NOT NULL,
        cost_shipping       DEC (6,2),
        cost_tax            DEC(6,2),
        cost_total          DEC(7,2)         NOT NULL,
        shipping_first_name VARCHAR(20)      NOT NULL,
        shipping_last_name  VARCHAR(20)      NOT NULL,
        shipping_address_1  VARCHAR(50)      NOT NULL,
        shipping_address_2  VARCHAR(50),
        shipping_city       VARCHAR (20)     NOT NULL,
        shipping_state      CHAR(2)          NOT NULL,
        shipping_zip_code   CHAR(5)          NOT NULL,
        shipping_phone      CHAR(12)         NOT NULL,
        shipping_email      VARCHAR(100)     NOT NULL,
                   
        PRIMARY KEY(order_id),
        FOREIGN KEY (customer_id) REFERENCES ecomm_customers(customer_id)
    )  
    ENGINE=MyISAM’;
mysql_query($query, $db) or die(mysql_error($db));
                   
// define the order details table
$query = ‘CREATE TABLE IF NOT EXISTS ecomm_order_details (
        order_id     INTEGER UNSIGNED NOT NULL,
        order_qty    INTEGER UNSIGNED NOT NULL,
        product_code CHAR(5)          NOT NULL,
                   
        FOREIGN KEY (order_id) REFERENCES ecomm_orders(order_id),
        FOREIGN KEY (product_code) REFERENCES ecomm_products(product_code)
    )  
    ENGINE=MyISAM’;
mysql_query($query, $db) or die(mysql_error($db));
                   
$query = ‘CREATE TABLE IF NOT EXISTS ecomm_temp_cart (
        session      CHAR(50)         NOT NULL,
        product_code CHAR(5)          NOT NULL,
        qty          INTEGER UNSIGNED NOT NULL,
                   
        PRIMARY KEY (session, product_code),
        FOREIGN KEY (product_code) REFERENCES ecomm_products(product_code)
    )  
    ENGINE=MyISAM’;
mysql_query($query, $db) or die(mysql_error($db));
                   
echo ‘Success!’;
? >    



510

Part II: Comic Book Fan Site

  2.   Save this as  db_ch15 - 1.php .  

  3.   Run the file from your browser. You should get confirmation that the database and all the 
tables have been successfully created.     

  How It Works 
 You can see that several things are accomplished in this script. Your database now has four new 
e - commerce tables in it. The first table is named  ecomm_products  and will contain the list of products 
available on your site:

     Fieldname      Type      Description of What It Stores   

     products_code      CHAR(5)     An individual product code assigned to each 
product. This is the table ’ s primary key.  

     name      VARCHAR(100)     A brief title for the product, such as  “ Fashionable 
CBA Logo T - shirt. ”   

     description      MEDIUMTEXT     A longer description you can use on the individual 
page for that product. May contain HTML code.  

     price      DEC(6,2)     The price of the product up to 999.99.  

 The next table is named  ecomm_customers  and contains the list of customers and their information:

     Fieldname      Type      Description of What It Stores   

     customer_id      INTEGER UNSIGNED     A unique ID assigned to each customer. This will 
auto - increment and is the table ’ s primary key.  

     first_name      VARCHAR(20)     Customer ’ s first name.  

     last_name      VARCHAR(20)     Customer ’ s last name.  

     address_1      VARCHAR(50)     Customer ’ s address line 1.  

     address_2      VARCHAR(50)     Customer ’ s address line 2 (can be left empty).  

     city      VARCHAR(20)     Customer ’ s city.  

     state      CHAR(2)     Customer ’ s state.  

     zip_code      CHAR(5)     Customer ’ s zip code.  

     phone      CHAR(12)     Customer ’ s phone number (in xxx - xxx - xxxx 
format).  

     email      VARCHAR(100)     Customer ’ s e - mail address.  



Chapter 15: Online Stores     

511

 The next table you create is called  ecomm_orders  and contains the main order information:

     Fieldname      Type      Description of What It Stores   

     order_id      INTEGER UNSIGNED     The individual number assigned to each 
order. This will auto - increment and is 
the table ’ s primary key.  

     order_date      DATETIME     Date the order was placed.  

     customer_id      INT(6)     The customer ID of the customer who 
placed the order. This is a foreign key 
that references  ecomm_customers .  

     cost_subtotal      DEC(7,2)     Subtotal of the order before tax and 
shipping, up to 9,999.99.  

     subtotal_shipping      DEC(6,2)     Shipping costs for the order, up to 
999.99.  

     cost_tax      DEC(6,2)     Tax on the order, up to 999.99.  

     cost_total      DEC(7,2)     Total of the order, up to 9999.99.  

     shipping_first_name      VARCHAR(20)     First name of the shipping contact for 
this order.  

     shipping_last_name      VARCHAR(20)     Last name of the shipping contact.  

     shipping_address_1      VARCHAR(50)     Shipping contact ’ s address line 1.  

     shipping_address_2      VARCHAR(50)     Shipping contact ’ s address line 2 
(can be left empty).  

     shipping_city      VARCHAR(20)     Shipping contact ’ s city.  

     shipping_state      CHAR(2)     Shipping contact ’ s state.  

     shipping_zip_code      CHAR(5)     Shipping contact ’ s zip code.  

     shipping_phone      CHAR(12)     Shipping contact ’ s phone number 
(in xxx - xxx - xxxx format).  

     shipping_email      VARCHAR(100)     Shipping contact ’ s e - mail address.  



512

Part II: Comic Book Fan Site

 The fourth table is named  ecomm_order_details  and contains a detailed list of the products in each 
order:

     Fieldname      Type      Description of What It Stores   

     order_id      INTEGER UNSIGNED     The ID of the order this information belongs 
to. This is a foreign key that references 
 ecomm_orders .  

     order_qty      INTEGER UNSIGNED     How many of the item the customer wants.  

     product_code      CHAR(5)     The product associated with this order. This is a 
foreign key that references  ecomm_products .  

 The fifth and final table is named  ecomm_temp_cart  and is used to temporarily store the shopping 
cart ’ s product list while the customer is browsing:

     Fieldname      Type      Description of What It Stores   

     session      INTEGER UNSIGNED     The customer ’ s session identifier.  

     product_code      CHAR(5)     The product associated with this order. This is a 
foreign key that references  ecomm_products .  

     qty      INTEGER UNSIGNED     How many of the item the customer wants.  

 You now have a mechanism set up so that you can store all your products, customers, and the 
information associated with the orders they place. 

 You may be wondering why the temporary information is stored in the database. Certainly the list of 
shopping - cart items can be stored as  $_SESSION  variables or in cookies, but storing the information in 
the database lets you keep track of orders that customers never complete  —  information that would be 
lost if it were stored in the user ’ s session or in cookies. This is commonly called shopping - cart 
abandonment, and it is considered one of the major obstacles e - commerce ventures face. Data in this 
temporary cart can really help you glean information about your customers, such as: 

   Percentage of potential sales:  You can gauge what percentage of visitors or potential 
customers are abandoning their carts. If it ’ s exceedingly high, then your checkout procedure 
may be too complicated or convoluted for them to finish the process, or perhaps your 
shipping costs are not made clear up - front, and people are forced into faking their shopping 
carts to determine shipping costs.  

   Analysis of Stock:  You can track any trends in the items that are consistently being put in the 
cart before abandonment. If the same items are found to be abandoned, then perhaps there is 
something wrong with your checkout procedure for these items, the shipping costs are 
exceedingly high, or the price for the item itself is too high based on your competitors ’  rates. 
This would require greater analysis of the cost of the flagged items to ensure that you ’ re 
being competitive.  

❑

❑



Chapter 15: Online Stores     

513

   Periods of use:  You can track any trends in when your customers are leaving items in the 
cart. If you find that a large number of customers are abandoning their carts during your web 
site or server maintenance, perhaps the workload on the server is causing your site to load 
slowly, and your customers are losing patience and leaving their carts. In this instance, you 
would want to schedule such maintenance for a time when your site has the fewest shoppers 
online. As you can see, what people  don ’ t  buy can be just as informative as what they  do  buy.    

 By understanding these key concepts and where to glean this information, you can find a large 
amount of helpful tracking information. You should use this table as a reference when trying to 
enhance sales of your product or services. Many professionals use this table to help them better their 
site, their services, and their products and company overall. 

 The type of person shopping also factors into this equation. For example, younger (and generally 
more na ï ve) shoppers are likely to quickly click through your offerings and either impulsively make a 
purchase or abandon the process at the last moment, from fear of committing to a purchase they may 
know little about. Then there are older shoppers, who are generally wiser. This potential base of 
customers is more likely to try to verify the legitimacy of your site and comparison - shop, which 
contributes to a large amount of abandonment. 

 If a potential buyer is trying to find out any hidden costs along the way, he or she is likely to find two 
other competitors online and move through the entire shopping process, to find the true and final cost, 
then select the one that is the cheapest and most reputable  —  and abandon the rest.    

Try It Out Adding Your Products    

 Now that you have a set of tables set up in your database, you need to populate them with some 
information. In this exercise, you ’ ll do just that.   

  1.   Open your text editor, and type the following program: 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$query = ‘INSERT INTO ecomm_products
        (product_code, name, description, price)
    VALUES
        (“00001”,
        “CBA Logo T-shirt”,
        “This T-shirt will show off your CBA connection. Our t-shirts are ‘ .
        ‘all made of high quality and 100% preshrunk cotton.”,
         17.95),
         (“00002”,
         “CBA Bumper Sticker”, 
         “Let the world know you are a proud supporter of the CBA web site ‘ .
         ‘with this colorful bumper sticker.”,

❑



514

Part II: Comic Book Fan Site

         5.95),
         (“00003”,
         “CBA Coffee Mug”,
         “With the CBA logo looking back at you over your morning cup of ‘ .
         ‘coffee, you are sure to have a great start to your day. Our mugs ‘ .
         ‘are microwave and dishwasher safe.”,
         8.95),
         (“00004”,
         “Superhero Body Suit”,
         “We have a complete selection of colors and sizes for you to choose ‘ .
         ‘from. This body suit is sleek, stylish, and won\’t hinder either ‘ .
         ‘your crime-fighting skills or evil scheming abilities. We also ‘ .
         ‘offer your choice in monogrammed letter applique.”,
         99.95),
         (“00005”,
         “Small Grappling Hook”,
         “This specialized hook will get you out of the tightest places. ‘ .
         ‘Specially designed for portability and stealth, please be aware ‘ .
         ‘that this hook does come with a weight limit.”,
         139.95),
         (“00006”,
         “Large Grappling Hook”, 
         “For all your heavy-duty building-to-building swinging needs, this ‘ .
         ‘large version of our grappling hook will safely transport you ‘ .
         ‘throughout the city. Please be advised however that at 50 pounds ‘ .
         ‘this is hardly the hook to use if you are a lightweight.”,
         199.95)’;
mysql_query($query, $db) or die(mysql_error($db));
                   
echo ‘Success!’;
? >    

  2.   Save it as  db_ch15 - 2.php .  

  3.   Open the file in your browser. You should see confirmation that the products were 
successfully loaded into the table.     

  How It Works 
 You inserted each of your products into the  ecomm_products  table. Notice that, although you 
assigned sequential numbers as your products ’  product code, they are string values, and you are not 
using the auto - increment feature. This is because you may wish to assign product numbers based on 
category, distributor/manufacturer, or another numbering scheme in the real world. These product 
codes may include letters and numbers. 

 If you had no errors and your query didn ’ t cause the script to die, you should have seen the success 
message displayed, and your products should now be in the database.

     



Chapter 15: Online Stores     

515

Try It Out Creating the Store Home Page    

 In this exercise, you ’ ll create the home page that all users will see when they start to shop at your site. 
The home page is responsible for listing all the available products you have for sale. Unfortunately, we 
can ’ t give you the image files through this book, but you can download them from the book ’ s 
companion web site, or you can create your own.   

  1.   Open your text editor, and save the following as  ecomm_shop.php . 

 < html > 
  < head > 
   < title > Comic Book Appreciation Site Product List < /title > 
   < style type=”text/css” > 
   th { background-color: #999;}
   td { vertical-align: top; }
   .odd_row { background-color: #EEE; }
   .even_row { background-color: #FFF; }
   < /style > 
  < /head > 
  < body > 
   < h1 > Comic Book Appreciation Store < /h1 > 
   < p >  < a href=”ecomm_view_cart.php” > View Cart < /a >  < /p > 
   < p > Thanks for visiting our site! Please see our list of awesome products
below, and click on the link for more information: < /p > 
   < table style=”width:75%;” > 
 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$query = ‘SELECT
        product_code, name, price
    FROM
        ecomm_products
    ORDER BY
        product_code ASC’;
$result = mysql_query($query, $db)or die(mysql_error($db));
                   
$odd = true;
while ($row = mysql_fetch_array($result)) {
    echo ($odd == true) ? ‘ < tr class=”odd_row” > ’ : ‘ < tr class=”even_row” > ’;
    $odd = !$odd; 
    extract($row);
    echo ‘ < td style=”text-align: center; width:100px;” >  < a href=”’ .
        ‘ecomm_view_product.php?product_code=’ . $product_code .
        ‘” >  < img src=”images/’ . $product_code .’_t.jpg” alt=”’ . $name .
        ‘”/ >  < /a >  < /td > ’;
    echo ‘ < td >  < a href=”ecomm_view_product.php?product_code=’ . $product_code .
        ‘” > ’ . $name . ‘ < /a >  < /td > ’;



516

Part II: Comic Book Fan Site

    echo ‘ < td style=”text-align: right;” >  < a href=”ecomm_view_product.php?’ . 
        ‘product_code=’ . $product_code . ‘” > ’ . $price . ‘ < /a >  < /td > ’;
    echo ‘ < /tr > ’;
}
? > 
   < /table > 
  < /body > 
 < /html >    

  2.   Your screen should now look like Figure  15 - 1 .       

Figure 15-1

  How It Works 
 After querying the database to retrieve a list of products, you present the results in a table. Each row 
displays a thumbnail image, the name of the product, and its price. Each element is also a link for the 
customer to click, to view the product ’ s details. You haven ’ t written  ecomm_view_product.php  yet, 
so these links are a dead end for now, but you will code that script in the next section. 

$query = ‘SELECT
        product_code, name, price
    FROM
        ecomm_products
    ORDER BY
        product_code ASC’;



Chapter 15: Online Stores     

517

$result = mysql_query($query, $db)or die(mysql_error($db));
                   
$odd = true;
while ($row = mysql_fetch_array($result)) {
    echo ($odd == true) ? ‘ < tr class=”odd_row” > ’ : ‘ < tr class=”even_row” > ’;
    $odd = !$odd; 
    extract($row);
    echo ‘ < td style=”text-align: center; width:100px;” >  < a href=”’ .
        ‘ecomm_view_product.php?product_code=’ . $product_code .
        ‘” >  < img src=”images/’ . $product_code .’_t.jpg” alt=”’ . $name .
        ‘”/ >  < /a >  < /td > ’;
    echo ‘ < td >  < a href=”ecomm_view_product.php?product_code=’ . $product_code .
        ‘” > ’ . $name . ‘ < /a >  < /td > ’;
    echo ‘ < td style=”text-align: right;” >  < a href=”ecomm_view_product.php?’ .
        ‘product_code=’ . $product_code . ‘” > ’ . $price . ‘ < /a >  < /td > ’;
    echo ‘ < /tr > ’;
}  

 We are storing the product ’ s images in an  images  folder for this project, though you can store them 
elsewhere, if you would like. The filename for the image is the same as the item ’ s product code, and 
thumbnail versions include the suffix  _t .     

Try It Out Viewing the Products    

 A site with dead - end links is never a good thing, especially in this case, when the user is looking for 
more information about the product. You are now going to create the page that displays the details of 
each product.   

  1.   Enter this code in your text editor, then save this file as  ecomm_view_product.php . 

 < ?php
session_start();
                   
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$product_code = isset($_GET[‘product_code’]) ? $_GET[‘product_code’] : ‘’;
                   
$query = ‘SELECT
        name, description, price
    FROM
        ecomm_products
    WHERE
        product_code = “’ . mysql_real_escape_string($product_code, $db)
 . ‘”’;
$result = mysql_query($query, $db)or die(mysql_error($db));
                   
if (mysql_num_rows($result) != 1) {



518

Part II: Comic Book Fan Site

    header(‘Location: ecomm_shop.php’);
    mysql_free_result($result);
    mysql_close($db);
    exit();
}
$row = mysql_fetch_assoc($result);
extract($row);
? > 
 < html > 
  < head > 
   < title >  < ?php echo $name; ? >  < /title > 
   < style type=”text/css” > 
   th { background-color: #999;}
   td { vertical-align: top; }
   .odd_row { background-color: #EEE; }
   .even_row { background-color: #FFF; }
   < /style > 
  < /head > 
  < body > 
   < h1 > Comic Book Appreciation Store < /h1 > 
   < p >  < a href=”ecomm_view_cart.php” > View Cart < /a >  < /p > 
   < h2 >  < ?php echo $name; ? >  < /h2 > 
   < table > 
    < tr > 
     < td rowspan=”4” >  < img src=”images/ < ?php echo $product_code; ? > .jpg”
      alt=” < ?php echo $name; ? > ”/ >  < /td > 
     < td >  < ?php echo $description; ? >  < /td > 
    < /tr >  < tr > 
     < td >  < strong > Product Code: < /strong >     < ?php echo $product_code; ? >  < /td > 
    < /tr >  < tr > 
     < td >  < strong > Price: < /strong >  $ < ?php echo $price; ? >  < /td > 
    < /tr >  < tr > 
     < td > 
      < form method=”post” action=”ecomm_update_cart.php” > 
       < div > 
        < input type=”hidden” name=”product_code”
        value=” < ?php echo $product_code; ? > ”/ > 
        < label for=”qty” > Quantity:  < /label > 
 < ?php
echo ‘ < input type=”hidden” name=”redirect” value=”ecomm_view_product.php?’ . 
    ‘product_code=’ . $product_code . ‘”/ > ’;
                   
$session = session_id();
$query = ‘SELECT
        qty
    FROM
        ecomm_temp_cart
    WHERE
        session = “’ . $session . ‘” AND
        product_code = “’ . $product_code . ‘”’;
$result = mysql_query($query, $db)or die(mysql_error($db));
                   
if (mysql_num_rows($result)  >  0) {
    $row = mysql_fetch_assoc($result);



Chapter 15: Online Stores     

519

    extract($row);
} else {
    $qty = 0;
}
mysql_free_result($result);
                   
echo ‘ < input type=”text” name=”qty” id=”qty” size=”2” maxlength=”2” value=”’ .
    $qty . ‘”/ > ’;
                   
if ($qty  >  0) {
    echo ‘ < input type=”submit” name=”submit” value=”Change Qty”/ > ’;
} else {
    echo ‘ < input type=”submit” name=”submit” value=”Add to Cart”/ > ’;
}
? > 
       < /div > 
      < /form > 
     < /td > 
    < /tr > 
   < /table > 
   < hr/ > 
   < p >  < a href=”ecomm_shop.php” >  <  <  Back to main page < /a >  < /p > 
  < /body > 
 < /html >     

  2.   Open the  ecomm_shop.php  script in your browser, and then click on any of the elements in 
the row for the Superhero Body Suit. Your screen should look like that shown in Figure  15 - 2 .       

Figure 15-2



520

Part II: Comic Book Fan Site

  How It Works 
 First, you call the  session_start()  function because you will be accessing the session information 
for the customer. Then, you use the  product_id  value passed in the query string to retrieve the 
product information from the  ecomm_products  table. If an erroneous  product_id  has been provided 
and there is no matching product in the database, then you redirect the customer back to the  
ecomm_shop.php  page. 

$product_code = isset($_GET[‘product_code’]) ? $_GET[‘product_code’] : ‘’;
                   
$query = ‘SELECT
        name, description, price
    FROM
        ecomm_products
    WHERE
        product_code = “’ . mysql_real_escape_string($product_code, $db) . 
‘”’;
$result = mysql_query($query, $db)or die(mysql_error($db));
                   
if (mysql_num_rows($result) != 1) {
    header(‘Location: ecomm_shop.php’);
    mysql_free_result($result);
    mysql_close($db);
    exit();
}
$row = mysql_fetch_assoc($result);   

 You display the product ’ s information in the form of a table with pretty much the standard mix of 
PHP and HTML you ’ ve grown accustomed to using throughout this book. Things get interesting 
again when it comes time to display the quantity field, for the customer to add the product to his or 
her shopping cart. 

 First you query the  ecomm_temp_cart  table, using the customer ’ s session ID. The session ID is 
retrieved by calling PHP ’ s  session_id()  function. Your goal is to find out if the customer has 
already placed this item in the shopping cart, and if so, in what quantity. 

$session = session_id();
$query = ‘SELECT
        qty
    FROM
        ecomm_temp_cart
    WHERE
        session = “’ . $session . ‘” AND
        product_code = “’ . $product_code . ‘”’;
$result = mysql_query($query, $db)or die(mysql_error($db));
                   
if (mysql_num_rows($result)  >  0) {
    $row = mysql_fetch_assoc($result);
    extract($row);
} else {
    $qty = 0;
}
mysql_free_result($result);  



Chapter 15: Online Stores     

521

 Armed with this information, you can now display the quantity field in an appropriate manner. 

echo ‘ < input type=”text” name=”qty” id=”qty” size=”2” maxlength=”2” 
value=”’ .
    $qty . ‘”/ > ’;
                   
if ($qty  >  0) {
    echo ‘ < input type=”submit” name=”submit” value=”Change Qty”/ > ’;
} else {
    echo ‘ < input type=”submit” name=”submit” value=”Add to Cart”/ > ’;
}  

 The form  element  that the quantity field and action button are part of posts its information to  
ecomm_update_cart.php . It sends the product code, the desired quantity, the action to be performed 
on the cart, and a redirect location where the customer should be sent next.     

Try It Out Adding, Changing, and Deleting Items in the Cart    

 In this exercise, you ’ ll write the script that updates the contents of the cart. It is responsible for 
handling the addition of items, updating/removing items, and clearing out the entire contents of the 
shopping cart.   

  1.   Type in this code, and save it as  ecomm_update_cart.php : 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
session_start();
$session = session_id();
                   
$qty = (isset($_POST[‘qty’])  &  &  ctype_digit($_POST[‘qty’])) ? $_POST[‘qty’] : 0;
$product_code = (isset($_POST[‘product_code’])) ? $_POST[‘product_code’] : ‘’;
$action = (isset($_POST[‘submit’])) ? $_POST[‘submit’] : ‘’;
$redirect = (isset($_POST[‘redirect’])) ? $_POST[‘redirect’] : ‘ecomm_shop
.php’;
                   
switch ($action) {
case ‘Add to Cart’:
    if (!empty($product_code)  &  &  $qty  >  0) {
        $query = ‘INSERT INTO ecomm_temp_cart
                (session, product_code, qty)
            VALUES
                (“’ . $session . ‘”, “’ .
                mysql_real_escape_string($product_code, $db) . ‘”, ‘ . $qty . ‘)’;



522

Part II: Comic Book Fan Site

        mysql_query($query, $db) or die(mysql_error($db));
    }
    header(‘Location: ‘ . $redirect);
    exit();
    break;
                   
case ‘Change Qty’:
    if (!empty($product_code)) {
        if ($qty  >  0) {
            $query = ‘UPDATE ecomm_temp_cart
                SET
                    qty = ‘ . $qty . ‘
                WHERE
                    session = “’ . $session . ‘” AND
                    product_code = “’ .
                    mysql_real_escape_string($product_code, $db) . ‘”’;
        } else {
            $query = ‘DELETE FROM ecomm_temp_cart
                WHERE
                    session = “’ . $session . ‘” AND
                    product_code = “’ .
                    mysql_real_escape_string($product_code, $db) . ‘”’;
        }
        mysql_query($query, $db) or die(mysql_error($db));
    }
    header(‘Location: ‘ . $redirect);
    exit();
    break;
                   
case ‘Empty Cart’:
    $query = ‘DELETE FROM ecomm_temp_cart
        WHERE
            session = “’ . $session . ‘”’;
    mysql_query($query, $db) or die(mysql_error($db));
    header(‘Location: ‘ . $redirect);
    exit();
    break;
}
? >    

  2.   Go back to the product description page of the Superhero Body Suit. Enter a number in the 
quantity field, and add the product to your cart. You will be redirected to the same page, but 
this time the field will reflect the quantity of suits you ’ ve just added to your cart.  

  3.   Change the quantity to zero, and click the button that is now labeled  “ Change Qty, ”  to remove 
the suits from your shopping cart.     

  How It Works 
 All of the code to manage your shopping cart is contained in one file,  ecomm_update_cart.php . The 
correct course of action is determined by the value of  action  as posted from the previous form. First, 
you retrieve the user ’ s session ID, and then you filter the incoming values: 



Chapter 15: Online Stores     

523

session_start();
$session = session_id();
                   
$qty = (isset($_POST[‘qty’])  &  &  ctype_digit($_POST[‘qty’])) ? $_POST[‘qty’] : 0;
$product_code = (isset($_POST[‘product_code’])) ? $_POST[‘product_code’] : ‘’;
$action = (isset($_POST[‘submit’])) ? $_POST[‘submit’] : ‘’;
$redirect = (isset($_POST[‘redirect’])) ? $_POST[‘redirect’] : ‘ecomm_shop
.php’;  

 The first case of the  switch  statement handles adding products to the  ecomm_temp_cart  table 
for the user. Afterwards, it redirects the user to the page specified in  $redirect  (which should be  
ecomm_view_product.php ). 

case ‘Add to Cart’:
    if (!empty($product_code)  &  &  $qty  >  0) {
        $query = ‘INSERT INTO ecomm_temp_cart
                (session, product_code, qty)
            VALUES
                (“’ . $session . ‘”, “’ .
                mysql_real_escape_string($product_code, $db) . ‘”, ‘ . $qty 
. ‘)’;
        mysql_query($query, $db) or die(mysql_error($db));
    }
    header(‘Location: ‘ . $redirect);
    exit();
    break;  

 The next case is responsible for changing the quantity of an item in the cart. If the value of  $qty  is 
greater than 0, then you send an  UPDATE  query to MySQL. If the value of  $qty  is 0, then the product ’ s 
record in  ecomm_temp_cart  should be removed, so you issue a  DELETE  query. 

case ‘Change Qty’:
    if (!empty($product_code)) {
        if ($qty  >  0) {
            $query = ‘UPDATE ecomm_temp_cart
                SET
                    qty = ‘ . $qty . ‘
                WHERE
                    session = “’ . $session . ‘” AND
                    product_code = “’ .
                    mysql_real_escape_string($product_code, $db) . ‘”’;
        } else {
            $query = ‘DELETE FROM ecomm_temp_cart
                WHERE
                    session = “’ . $session . ‘” AND
                    product_code = “’ .
                    mysql_real_escape_string($product_code, $db) . ‘”’;
        }
        mysql_query($query, $db) or die(mysql_error($db));
    }
    header(‘Location: ‘ . $redirect);
    exit();
    break;  



524

Part II: Comic Book Fan Site

 The final case in the  switch  statement handles the event in which the customer is emptying his or her 
shopping cart entirely. You do this by sending a  DELETE  query to delete all records in the  ecomm_
temp_cart  that have the user ’ s session ID. 

case ‘Empty Cart’:
    $query = ‘DELETE FROM ecomm_temp_cart
        WHERE
            session = “’ . $session . ‘”’;
    mysql_query($query, $db) or die(mysql_error($db));
    header(‘Location: ‘ . $redirect);
    exit();
    break;

      Try It Out Viewing the Shopping Cart    

 In this exercise, you ’ ll create the page to view the contents of the shopping cart.   

  1.   Same drill as usual  . . .  enter this code, and save it as  ecomm_view_cart.php : 

 < ?php
session_start();
require ‘db.inc.php’;
? > 
 < html > 
  < head > 
   < title > Here is Your Shopping Cart! < /title > 
   < style type=”text/css” > 
   th { background-color: #999;}
   td { vertical-align: top; }
   .odd_row { background-color: #EEE; }
   .even_row { background-color: #FFF; }
   < /style > 
  < /head > 
  < body > 
   < h1 > Comic Book Appreciation Store < /h1 > 
 < ?php
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$session = session_id();
                   
$query = ‘SELECT
        t.product_code, qty,
        name, description, price



Chapter 15: Online Stores     

525

    FROM
        ecomm_temp_cart t JOIN ecomm_products p ON
            t.product_code = p.product_code
    WHERE
        session = “’ . $session . ‘”
    ORDER BY
        t.product_code ASC’;
$result = mysql_query($query, $db) or die (mysql_error($db));
                   
$rows = mysql_num_rows($result);
if ($rows == 1) {
    echo ‘ < p > You currently have 1 product in your cart. < /p > ’;
} else {
    echo ‘ < p > You currently have ‘ . $rows . ‘ products in your cart. < /p > ’;
}
                   
if ($rows  >  0) {
? > 
   < table style=”width: 75%;” > 
    < tr > 
     < th style=”width: 100px;” >     < /th >  < th > Item Name < /th >  < th > Quantity < /th > 
     < th > Price Each < /th >  < th > Extended Price < /th > 
    < /tr > 
 < ?php
    $total = 0;
    $odd = true;
    while ($row = mysql_fetch_array($result)) {
        echo ($odd == true) ? ‘ < tr class=”odd_row” > ’ : ‘ < tr class=”even_
row” > ’;
        $odd = !$odd; 
        extract($row);
? > 
     < td style=”text-align:center;” >  < a href=”ecomm_view_product.php?product_
code= < ?php
      echo $product_code; ? > ” >  < img src=”images/ < ?php echo $product_code; 
? > _t.jpg”
       alt=” < ?php echo $name; ? > ”/ >  < /a >  < /td > 
     < td >  < a href=”ecomm_view_product.php?product_code= < ?php echo 
$product_code; 
? > ” >  < ?php
      echo $name; ? >  < /a >  < /td > 
     < td > 
      < form method=”post” action=”ecomm_update_cart.php” > 
       < div > 
        < input type=”text” name=”qty” maxlength=”2” size=”2”
        value=” < ?php echo $qty; ? > ”/ > 
        < input type=”hidden” name=”product_code”
        value=” < ?php echo $product_code; ? > ”/ > 



526

Part II: Comic Book Fan Site

        < input type=”hidden” name=”redirect” value=”ecomm_view_cart.php”/ > 
        < input type=”submit” name=”submit” value=”Change Qty”/ > 
       < /div > 
      < /form > 
     < /td > 
     < td style=”text-align: right;” >  $ < ?php echo $price; ? >  < /td > 
     < td style=”text-align: right;” >  $ < ?php echo number_format
($price * $qty, 2); ? > 
     < /td > 
    < /tr > 
 < ?php
        $total = $total + $price * $qty;
    }
? > 
   < /table > 
   < p > Your total before shipping is:
    < strong > $ < ?php echo number_format($total, 2); ? >  < /strong >  < /p > 
   < form method=”post” action=”ecomm_checkout.php” > 
    < div > 
     < input type=”submit” name=”submit” value=”Proceed to Checkout”
     style=”font-weight: bold;”/ > 
    < /div > 
   < /form > 
   < form method=”post” action=”ecomm_update_cart.php” > 
    < div > 
     < input type=”hidden” name=”redirect” value=”ecomm_shop.php”/ > 
     < input type=”submit” name=”submit” value=”Empty Cart”/ > 
    < /div > 
   < /form > 
 < ?php
}
? > 
   < hr/ > 
   < p >  < a href=”ecomm_shop.php” >  <  <  Back to main page < /a >  < /p > 
  < /body > 
 < /html >    

  2.   Add a few items to your shopping cart, as before, and then click the View Cart link. What you 
see should resemble Figure  15 - 3 .       



Chapter 15: Online Stores     

527

  How It Works 
 You retrieve the contents of the customer ’ s shopping cart by querying the  ecomm_temp_cart  table with 
the session ID. Only the product code is stored in the  ecomm_temp_cart  table, so you use a  JOIN  against 
the  ecomm_products  table to retrieve the name, description, and price of the products in the cart as well. 

$session = session_id();
                   
$query = ‘SELECT
        t.product_code, qty,
        name, description, price
    FROM
        ecomm_temp_cart t JOIN ecomm_products p ON
            t.product_code = p.product_code
    WHERE
        session = “’ . $session . ‘”
    ORDER BY
        t.product_code ASC’;
$result = mysql_query($query, $db) or die (mysql_error($db));  

Figure 15-3



528

Part II: Comic Book Fan Site

 You want to display the number of items in the cart, but you should not simply write code like this to 
do it: 

$rows = mysql_num_rows($result);
echo ‘ < p > You have ‘ . $rows . ‘ products in your cart. < /p > ’;  

 Why? If the customer is only purchasing one product, then you wouldn ’ t be showing the information 
in proper English. You could remedy this by changing it to say  “ product(s), ”  but it is more 
professional to use the singular when there is one product, and the plural when there are none or more 
than one. Luckily, this isn ’ t too difficult and requires just a simple check. 

if ($rows == 1) {
    echo ‘ < p > You currently have 1 product in your cart. < /p > ’;
} else {
    echo ‘ < p > You currently have ‘ . $rows . ‘ products in your cart. < /p > ’;
}  

 If there are items in the cart, then you display them as a table in a manner very similar to the way you 
did in  ecomm_shop.php . This table, however, has a quantity column, which the customer can use to 
see how many of the product are being purchased, and to update the quantity. You also keep a tally of 
the total price of the items as you loop through the cart ’ s contents. 

 < table style=”width: 75%;” > 
  < tr > 
   < th style=”width: 100px;” >     < /th >  < th > Item Name < /th >  < th > Quantity < /th > 
   < th > Price Each < /th >  < th > Extended Price < /th > 
  < /tr > 
 < ?php
    $total = 0;
    $odd = true;
    while ($row = mysql_fetch_array($result)) {
        echo ($odd == true) ? ‘ < tr class=”odd_row” > ’ : ‘ < tr class=”even_
row” > ’;
        $odd = !$odd; 
        extract($row);
? > 
   < td style=”text-align:center;” >  < a href=”ecomm_view_product.php?product_
code= < ?php
    echo $product_code; ? > ” >  < img src=”images/ < ?php echo $product_code; ? > _t.
jpg”
     alt=” < ?php echo $name; ? > ”/ >  < /a >  < /td > 
   < td >  < a href=”ecomm_view_product.php?product_code= < ?php echo $product_code; 
? > ” >  < ?php
    echo $name; ? >  < /a >  < /td > 
   < td > 
    < form method=”post” action=”ecomm_update_cart.php” > 
     < div > 
      < input type=”text” name=”qty” maxlength=”2” size=”2”
      value=” < ?php echo $qty; ? > ”/ > 
      < input type=”hidden” name=”product_code”
      value=” < ?php echo $product_code; ? > ”/ > 
      < input type=”hidden” name=”redirect” value=”ecomm_view_cart.php”/ > 



Chapter 15: Online Stores     

529

      < input type=”submit” name=”submit” value=”Change Qty”/ > 
     < /div > 
    < /form > 
   < /td > 
   < td style=”text-align: right;” >  $ < ?php echo $price; ? >  < /td > 
   < td style=”text-align: right;” >  $ < ?php echo number_format($price * $qty, 2); 
? > 
   < /td > 
  < /tr > 
 < ?php
        $total = $total + $price * $qty;
    }
? > 
 < /table >   

 The total cost that the customer has accumulated is then displayed after the table. 

 < p > Your total before shipping is:
  < strong > $ < ?php echo number_format($total, 2); ? >  < /strong >  < /p >   

 You used the  number_format()  function to format the total cost (and earlier in the while loop to 
format the extended price). The function formats a number by inserting grouping separators. It 
accepts the number and, optionally, how many digits to preserve after the decimal place, and what 
characters to use as the decimal point and thousands separator. 

 Finally, you provided buttons for the visitor to continue forward in the checkout process or empty out 
his or her shopping cart completely. You want to offer the ability for customers to empty the cart as a 
convenience, because setting each quantity to 0 and submitting it would be tedious, if there were a 
large number of items in the cart. But you don ’ t want them to accidentally delete the cart ’ s contents 
when they really intend to continue checking out, so you made the checkout button ’ s text bold, as an 
extra visual cue. 

 < form method=”post” action=”ecomm_checkout.php” > 
  < div > 
   < input type=”submit” name=”submit” value=”Proceed to Checkout”
   style=”font-weight: bold;”/ > 
  < /div > 
 < /form > 
 < form method=”post” action=”ecomm_update_cart.php” > 
  < div > 
   < input type=”hidden” name=”redirect” value=”ecomm_shop.php”/ > 
   < input type=”submit” name=”submit” value=”Empty Cart”/ > 
  < /div > 
 < /form > 



530

Part II: Comic Book Fan Site

      Try It Out Checking Out    
 The checkout process consists of three steps. You will code three files, one for each step. We ’ re warning 
you in advance that there will be a lot of typing, so we hope you have your fingers ready. But the logic 
in the script is pretty straightforward.   

  1.   As usual, enter this code, and then save it as  ecomm_checkout.php : 

 < ?php
session_start();
? > 
 < html > 
  < body > 
   < title > Checkout Step 1 of 3 < /title > 
   < style type=”text/css” > 
   th { background-color: #999;}
   td { vertical-align: top; }
   .odd_row { background-color: #EEE; }
   .even_row { background-color: #FFF; }
   < /style > 
   < script type=”text/javascript” > 
                   
window.onload = function() {
    // assign toggle_shipping_visibility to same_info checkbox
    var c = document.getElementById(‘same_info’);
    c.onchange = toggle_shipping_visibility;
}
                   
function toggle_shipping_visibility() {
    var c = document.getElementById(‘same_info’);
    var t = document.getElementById(‘shipping_table’);
                   
    // update shipping table’s visibility
    t.style.display = (c.checked) ? ‘none’ : ‘’;
}
   < /script > 
  < /head > 
  < body > 
   < h1 > Comic Book Appreciation Store < /h1 > 
   < h2 > Order Checkout < /h2 > 
   < ol > 
    < li >  < strong > Enter Billing and Shipping Information < /strong >  < /li > 
    < li > Verify Accuracy of Order Information and Send Order < /li > 
    < li > Order Confirmation and Receipt < /li > 
   < /ol > 
   < form method=”post” action=”ecomm_checkout2.php” > 
    < table > 
     < tr > 
      < td > 
       < table > 
        < tr > 
         < th colspan=”2” > Billing Information < /th > 
        < /tr >  < tr > 



Chapter 15: Online Stores     

531

         < td >  < label for=”first_name” > First Name: < /label >  < /td > 
         < td >  < input type=”text” id=”first_name” name=”first_name” size=”20”
          maxlength=”20”/ >  < /td > 
        < /tr >  < tr > 
         < td >  < label for=”last_name” > Last Name: < /label >  < /td > 
         < td >  < input type=”text” id=”last_name” name=”last_name” size=”20”
          maxlength=”20”/ >  < /td > 
        < /tr >  < tr > 
         < td >  < label for=”address_1” > Billing Address: < /label >  < /td > 
         < td >  < input type=”text” id=”address_1” name=”address_1” size=”30”
          maxlength=”50”/ >  < /td > 
        < /tr >  < tr > 
         < td >     < /td > 
         < td >  < input type=”text” id=”address_2” name=”address_2” size=”30”
          maxlength=”50”/ >  < /td > 
        < /tr >  < tr > 
         < td >  < label for=”city” > City: < /label >  < /td > 
         < td >  < input type=”text” id=”city” name=”city” size=”20”
          maxlength=”20”/ >  < /td > 
        < /tr >  < tr > 
         < td >  < label for=”state” > State: < /label >  < /td > 
         < td >  < input type=”text” id=”state” name=”state” size=”2”
          maxlength=”2”/ >  < /td > 
        < /tr >  < tr > 
         < td >  < label for=”zip_code” > Zip Code: < /label >  < /td > 
         < td >  < input type=”text” id=”zip_code” name=”zip_code” size=”5”
          maxlength=”5”/ >  < /td > 
        < /tr >  < tr > 
         < td >  < label for=”phone” > Phone Number: < /label >  < /td > 
         < td >  < input type=”text” id=”phone” name=”phone” size=”10”
          maxlength=”10”/ >  < /td > 
        < /tr >  < tr > 
         < td >  < label for=”email” > Email Address: < /label >  < /td > 
         < td >  < input type=”text” id=”email” name=”email” size=”30”
          maxlength=”100”/ > 
         < /td > 
        < /tr >  < tr > 
         < td colspan=”2” style=”text-align: center;” > 
          < input type=”checkbox” id=”same_info” name=”same_info”
          checked=”checked”/ > 
          < label for=”same_info” > Shipping information is same as billing 
< /label > 
         < /td > 
        < /tr > 
       < /table > 
      < /td > 
      < td > 
       < table id=”shipping_table” style=”display:none;” > 
        < tr > 
         < th colspan=”2” > Shipping Information < /th > 
        < /tr >  < tr > 
         < td >  < label for=”shipping_first_name” > First Name: < /label >  < /td > 
         < td >  < input type=”text” id=”shipping_first_name”
          name=”shipping_first_name” size=”20” maxlength=”20”/ >  < /td > 



532

Part II: Comic Book Fan Site

        < /tr >  < tr > 
         < td >  < label for=”shipping_last_name” > Last Name: < /label >  < /td > 
         < td >  < input type=”text” id=”shipping_last_name”
          name=”shipping_last_name” size=”20” maxlength=”20”/ >  < /td > 
        < /tr >  < tr > 
         < td >  < label for=”shipping_address_1” > Shipping Address: < /label >  < /td > 
         < td >  < input type=”text” id=”shipping_address_1” name=”shipping_
address_1”
          size=”30” maxlength=”50”/ >  < /td > 
        < /tr >  < tr > 
         < td >     < /td > 
         < td >  < input type=”text” id=”shipping_address_2” name=”shipping_
address_2”
          size=”30” maxlength=”50”/ >  < /td > 
        < /tr >  < tr > 
         < td >  < label for=”shipping_city” > City: < /label >  < /td > 
         < td >  < input type=”text” id=”shipping_city” name=”shipping_city” 
size=”20”
          maxlength=”20”/ >  < /td > 
        < /tr >  < tr > 
         < td >  < label for=”shipping_state” > State: < /label >  < /td > 
         < td >  < input type=”text” id=”shipping_state” name=”shipping_state” 
size=”2”
          maxlength=”2”/ >  < /td > 
        < /tr >  < tr > 
         < td >  < label for=”shipping_zip_code” > Zip Code: < /label >  < /td > 
         < td >  < input type=”text” id=”shipping_zip_code” name=”shipping_zip_
code”
          size=”5” maxlength=”5”/ >  < /td > 
        < /tr >  < tr > 
         < td >  < label for=”shipping_phone” > Phone Number: < /label >  < /td > 
         < td >  < input type=”text” id=”shipping_phone” name=”shipping_phone”
          size=”10” maxlength=”10”/ >  < /td > 
        < /tr >  < tr > 
         < td >  < label for=”shipping_email” > Email Address: < /label >  < /td > 
         < td >  < input type=”text” id=”shipping_email” name=”shipping_email”
          size=”30” maxlength=”100”/ > 
         < /td > 
        < /tr > 
       < /table > 
      < /td > 
     < /tr >  < tr > 
      < td colspan=”2” > 
       < input type=”submit” value=”Proceed to Next Step”/ > 
      < /td > 
     < tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >    



Chapter 15: Online Stores     

533

  2.   Now, enter this code, and save it as  ecomm_checkout2.php : 

 < ?php
session_start();
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$session = session_id();
                   
if (isset($_POST[‘same_info’])) {
    $_POST[‘shipping_first_name’] = $_POST[‘first_name’];
    $_POST[‘shipping_last_name’] = $_POST[‘last_name’];
    $_POST[‘shipping_address_1’] = $_POST[‘address_1’];
    $_POST[‘shipping_address_2’] = $_POST[‘address_2’];
    $_POST[‘shipping_city’] = $_POST[‘city’];
    $_POST[‘shipping_state’] = $_POST[‘state’];
    $_POST[‘shipping_zip_code’] = $_POST[‘zip_code’];
    $_POST[‘shipping_phone’] = $_POST[‘phone’];
    $_POST[‘shipping_email’] = $_POST[‘email’];
}
? > 
 < html > 
  < body > 
   < title > Checkout Step 2 of 3 < /title > 
   < style type=”text/css” > 
   th { background-color: #999;}
   td { vertical-align: top; }
   .odd_row { background-color: #EEE; }
   .even_row { background-color: #FFF; }
   < /style > 
  < /head > 
  < body > 
   < h1 > Comic Book Appreciation Store < /h1 > 
   < h2 > Order Checkout < /h2 > 
   < ol > 
    < li > Enter Billing and Shipping Information < /li > 
    < li >  < strong > Verify Accuracy of Order Information and Send Order < /strong >  
< /li > 
    < li > Order Confirmation and Receipt < /li > 
   < /ol > 
    < table style=”width: 75%;” > 
     < tr > 
      < th style=”width: 100px;” >     < /th >  < th > Item Name < /th >  < th > Quantity < /th > 
      < th > Price Each < /th >  < th > Extended Price < /th > 
     < /tr > 
 < ?php
$query = ‘SELECT
        t.product_code, qty,
        name, description, price
    FROM



534

Part II: Comic Book Fan Site

        ecomm_temp_cart t JOIN ecomm_products p ON
            t.product_code = p.product_code
    WHERE
        session = “’ . $session . ‘”
    ORDER BY
        t.product_code ASC’;
$results = mysql_query($query, $db) or die (mysql_error($db));
                   
$rows = mysql_num_rows($results);
                   
$total = 0;
$odd = true;
while ($row = mysql_fetch_array($results)) {
    echo ($odd == true) ? ‘ < tr class=”odd_row” > ’ : ‘ < tr class=”even_row” > ’;
    $odd = !$odd; 
    extract($row);
? > 
      < td style=”text-align:center;” > 
       < img src=”images/ < ?php echo $product_code; ? > _t.jpg”
       alt=” < ?php echo $name; ? > ”/ > 
      < /td > 
      < td >  < ?php echo $name; ? >  < /td > 
      < td >  < ?php echo $qty; ? >  < /td > 
      < td style=”text-align: right;” > $ < ?php echo $price; ? >  < /td > 
      < td style=”text-align: right;” > $ < ?php echo number_format
($price * $qty, 2);? > 
      < /td > 
     < /tr > 
 < ?php
    $total = $total + $price * $qty;
}
? > 
    < /table > 
    < p > Your total before shipping and tax is:
     < strong > $ < ?php echo number_format($total, 2); ? >  < /strong >  < /p > 
    < table > 
     < tr > 
      < td > 
       < table > 
        < tr > 
         < th colspan=”2” > Billing Information < /th > 
        < /tr >  < tr > 
         < td > First Name: < /td > 
         < td >  < ?php echo htmlspecialchars($_POST[‘first_name’]);? >  < /td > 
        < /tr >  < tr > 
         < td > Last Name: < /td > 
         < td >  < ?php echo htmlspecialchars($_POST[‘last_name’]);? >  < /td > 
        < /tr >  < tr > 
         < td > Billing Address: < /td > 
         < td >  < ?php echo htmlspecialchars($_POST[‘address_1’]);? >  < /td > 
        < /tr >  < tr > 
         < td >     < /td > 
         < td >  < ?php echo htmlspecialchars($_POST[‘address_2’]);? >  < /td > 
        < /tr >  < tr > 



Chapter 15: Online Stores     

535

         < td > City: < /td > 
         < td >  < ?php echo htmlspecialchars($_POST[‘city’]);? >  < /td > 
        < /tr >  < tr > 
         < td > State: < /td > 
         < td >  < ?php echo htmlspecialchars($_POST[‘state’]);? >  < /td > 
        < /tr >  < tr > 
         < td > Zip Code: < /td > 
         < td >  < ?php echo htmlspecialchars($_POST[‘zip_code’]);? >  < /td > 
        < /tr >  < tr > 
         < td > Phone Number: < /td > 
         < td >  < ?php echo htmlspecialchars($_POST[‘phone’]);? >  < /td > 
        < /tr >  < tr > 
         < td > Email Address: < /td > 
         < td >  < ?php echo htmlspecialchars($_POST[‘email’]);? >  < /td > 
         < /td > 
        < /tr >  < tr > 
         < td colspan=”2” style=”text-align: center;” > 
 < ?php
if (isset($_POST[‘same_info’])) {
    echo ‘Shipping information is same as billing.’;
}
? > 
         < /td > 
        < /tr > 
       < /table > 
      < /td > 
      < td > 
 < ?php
if (!isset($_POST[‘same_info’])) {
? > 
       < table > 
        < tr > 
         < th colspan=”2” > Shipping Information < /th > 
        < /tr >  < tr > 
         < td > First Name: < /td > 
         < td >  < ?php echo htmlspecialchars($_POST[‘shipping_first_name’]);? >  < /td > 
        < /tr >  < tr > 
         < td > Last Name: < /td > 
         < td >  < ?php echo htmlspecialchars($_POST[‘shipping_last_name’]);? >  < /td > 
        < /tr >  < tr > 
         < td > Billing Address: < /td > 
         < td >  < ?php echo htmlspecialchars($_POST[‘shipping_address_1’]);? >  < /td > 
        < /tr >  < tr > 
         < td >     < /td > 
         < td >  < ?php echo htmlspecialchars($_POST[‘shipping_address_2’]);? >  < /td > 
        < /tr >  < tr > 
         < td > City: < /td > 
         < td >  < ?php echo htmlspecialchars($_POST[‘shipping_city’]);? >  < /td > 
        < /tr >  < tr > 
         < td > State: < /td > 
         < td >  < ?php echo htmlspecialchars($_POST[‘shipping_state’]);? >  < /td > 
        < /tr >  < tr > 
         < td > Zip Code: < /td > 



536

Part II: Comic Book Fan Site

         < td >  < ?php echo htmlspecialchars($_POST[‘shipping_zip_code’]);? >  < /td > 
        < /tr >  < tr > 
         < td > Phone Number: < /td > 
         < td >  < ?php echo htmlspecialchars($_POST[‘shipping_phone’]);? >  < /td > 
        < /tr >  < tr > 
         < td > Email Address: < /td > 
         < td >  < ?php echo htmlspecialchars($_POST[‘shipping_email’]);? >  < /td > 
         < /td > 
        < /tr > 
       < /table > 
 < ?php
}
? > 
      < /td > 
     < /tr > 
    < /table > 
    < form method=”post” action=”ecomm_checkout3.php” > 
     < div > 
      < input type=”submit” name=”submit” value=”Process Order”/ > 
      < input type=”hidden” name=”first_name”
      value=” < ?php echo htmlspecialchars($_POST[‘first_name’]);? > ”/ > 
      < input type=”hidden” name=”last_name”
      value=” < ?php echo htmlspecialchars($_POST[‘last_name’]);? > ”/ > 
      < input type=”hidden” name=”address_1”
      value=” < ?php echo htmlspecialchars($_POST[‘address_1’]);? > ”/ > 
      < input type=”hidden” name=”address_2”
      value=” < ?php echo htmlspecialchars($_POST[‘address_2’]);? > ”/ > 
      < input type=”hidden” name=”city”
      value=” < ?php echo htmlspecialchars($_POST[‘city’]);? > ”/ > 
      < input type=”hidden” name=”state”
      value=” < ?php echo htmlspecialchars($_POST[‘state’]);? > ”/ > 
      < input type=”hidden” name=”zip_code”
      value=” < ?php echo htmlspecialchars($_POST[‘zip_code’]);? > ”/ > 
      < input type=”hidden” name=”phone”
      value=” < ?php echo htmlspecialchars($_POST[‘phone’]);? > ”/ > 
      < input type=”hidden” name=”email”
      value=” < ?php echo htmlspecialchars($_POST[‘email’]);? > ”/ > 
      < input type=”hidden” name=”shipping_first_name”
      value=” < ?php echo htmlspecialchars($_POST[‘shipping_first_name’]);? > ”/ > 
      < input type=”hidden” name=”shipping_last_name”
      value=” < ?php echo htmlspecialchars($_POST[‘shipping_last_name’]);? > ”/ > 
      < input type=”hidden” name=”shipping_address_1”
      value=” < ?php echo htmlspecialchars($_POST[‘shipping_address_1’]);? > ”/ > 
      < input type=”hidden” name=”shipping_address_2”
      value=” < ?php echo htmlspecialchars($_POST[‘shipping_address_2’]);? > ”/ > 
      < input type=”hidden” name=”shipping_city”
      value=” < ?php echo htmlspecialchars($_POST[‘shipping_city’]);? > ”/ > 
      < input type=”hidden” name=”shipping_state”
      value=” < ?php echo htmlspecialchars($_POST[‘shipping_state’]);? > ”/ > 
      < input type=”hidden” name=”shipping_zip_code”



Chapter 15: Online Stores     

537

      value=” < ?php echo htmlspecialchars($_POST[‘shipping_zip_code’]);? > ”/ > 
      < input type=”hidden” name=”shipping_phone”
      value=” < ?php echo htmlspecialchars($_POST[‘shipping_phone’]);? > ”/ > 
      < input type=”hidden” name=”shipping_email”
      value=” < ?php echo htmlspecialchars($_POST[‘shipping_email’]);? > ”/ > 
     < /div > 
    < /form > 
  < /body > 
 < /html >    

  3.   Enter the third code file, and save it as  ecomm_checkout3.php : 

 < ?php
session_start();
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$now = date(‘Y-m-d H:i:s’);
$session = session_id();
                   
$first_name = $_POST[‘first_name’];
$last_name = $_POST[‘last_name’];
$address_1 = $_POST[‘address_1’];
$address_2 = $_POST[‘address_2’];
$city = $_POST[‘city’];
$state = $_POST[‘state’];
$zip_code = $_POST[‘zip_code’];
$phone = $_POST[‘phone’];
$email = $_POST[‘email’];
                   
$shipping_first_name = $_POST[‘shipping_first_name’];
$shipping_last_name = $_POST[‘shipping_last_name’];
$shipping_address_1 = $_POST[‘shipping_address_1’];
$shipping_address_2 = $_POST[‘shipping_address_2’];
$shipping_city = $_POST[‘shipping_city’];
$shipping_state = $_POST[‘shipping_state’];
$shipping_zip_code = $_POST[‘shipping_zip_code’];
$shipping_phone = $_POST[‘shipping_phone’];
$shipping_email = $_POST[‘shipping_email’];
                   
// assign customer id to new customer, or find existing customer id
$query = ‘SELECT
        customer_id
    FROM
        ecomm_customers



538

Part II: Comic Book Fan Site

    WHERE
        first_name = “’ . mysql_real_escape_string($first_name, $db) . ‘” AND
        last_name = “’ . mysql_real_escape_string($last_name, $db) . ‘” AND
        address_1 = “’ . mysql_real_escape_string($address_1, $db) . ‘” AND
        address_2 = “’ . mysql_real_escape_string($address_2, $db) . ‘” AND
        city = “’ . mysql_real_escape_string($city, $db) . ‘” AND
        state = “’ . mysql_real_escape_string($state, $db) . ‘” AND
        zip_code = “’ . mysql_real_escape_string($zip_code, $db) . ‘” AND
        phone = “’ . mysql_real_escape_string($phone, $db) . ‘” AND
        email = “’ . mysql_real_escape_string($email, $db) . ‘”’;
$result = mysql_query($query, $db) or (mysql_error($db));
                   
if (mysql_num_rows($result)  >  0) {
    $row = mysql_fetch_assoc($result);
    extract($row);
} else {
    $query = ‘INSERT INTO ecomm_customers
            (customer_id, first_name, last_name, address_1, address_2, city,
            state, zip_code, phone, email)
        VALUES
            (NULL,
            “’ . mysql_real_escape_string($first_name, $db) . ‘”,
            “’ . mysql_real_escape_string($last_name, $db) . ‘”,
            “’ . mysql_real_escape_string($address_1, $db) . ‘”,
            “’ . mysql_real_escape_string($address_2, $db) . ‘”,
            “’ . mysql_real_escape_string($city, $db) . ‘”,
            “’ . mysql_real_escape_string($state, $db) . ‘”,
            “’ . mysql_real_escape_string($zip_code, $db) . ‘”,
            “’ . mysql_real_escape_string($phone, $db) . ‘”,
            “’ . mysql_real_escape_string($email, $db) . ‘”)’;
    mysql_query($query, $db) or (mysql_error($db));
    $customer_id = mysql_insert_id();
}
mysql_free_result($result);
                   
// start order entry
$query = ‘INSERT into ecomm_orders
        (order_id, order_date, customer_id, cost_subtotal, cost_total,
        shipping_first_name, shipping_last_name, shipping_address_1,
        shipping_address_2, shipping_city, shipping_state, shipping_zip_code,
        shipping_phone, shipping_email)
    VALUES
            (NULL,
            “’ . $now . ‘”,
            ‘ . $customer_id . ‘,
            0.00,
            0.00,
            “’ . mysql_real_escape_string($shipping_first_name, $db) . ‘”,
            “’ . mysql_real_escape_string($shipping_last_name, $db) . ‘”,
            “’ . mysql_real_escape_string($shipping_address_1, $db) . ‘”,
            “’ . mysql_real_escape_string($shipping_address_2, $db) . ‘”,
            “’ . mysql_real_escape_string($shipping_city, $db) . ‘”,
            “’ . mysql_real_escape_string($shipping_state, $db) . ‘”,



Chapter 15: Online Stores     

539

            “’ . mysql_real_escape_string($shipping_zip_code, $db) . ‘”,
            “’ . mysql_real_escape_string($shipping_phone, $db) . ‘”,
            “’ . mysql_real_escape_string($shipping_email, $db) . ‘”)’;
    mysql_query($query, $db) or (mysql_error($db));
    $order_id = mysql_insert_id();
                   
// Move order information from ecomm_temp_cart into ecomm_order_details
$query = ‘INSERT INTO ecomm_order_details
    (order_id, order_qty, product_code)
SELECT
    ‘ . $order_id . ‘, qty, product_code
FROM
    ecomm_temp_cart
WHERE
    session = “’ . $session . ‘”’;
mysql_query($query, $db) or (mysql_error($db));
                   
$query = ‘DELETE FROM ecomm_temp_cart WHERE session = “’ . $session . ‘”’;
mysql_query($query, $db) or (mysql_error($db));
                   
// retrieve subtotal
$query = ‘SELECT
        SUM(price * order_qty) AS cost_subtotal
    FROM
        ecomm_order_details d JOIN ecomm_products p ON
            d.product_code = p.product_code
    WHERE
        order_id = ‘ . $order_id;
$result = mysql_query($query, $db) or (mysql_error($db));
$row = mysql_fetch_assoc($result);
extract($row);
                   
// calculate shipping, tax and total costs
$cost_shipping = round($cost_subtotal * 0.25, 2);
$cost_tax = round($cost_subtotal * 0.1, 2);
$cost_total = $cost_subtotal + $cost_shipping + $cost_tax;
                   
// upate costs in ecomm_orders
$query = ‘UPDATE ecomm_orders
    SET
        cost_subtotal = ‘ . $cost_subtotal . ‘,
        cost_shipping = ‘ . $cost_shipping . ‘,
        cost_tax = ‘ . $cost_tax . ‘,
        cost_total = ‘ . $cost_total . ‘
    WHERE
        order_id = ‘ . $order_id;
mysql_query($query, $db) or (mysql_error($db));
                   
ob_start();
? > 



540

Part II: Comic Book Fan Site

 < html > 
  < head > 
   < title > Order Confirmation < /title > 
   < style type=”text/css” > 
   th { background-color: #999;}
   td { vertical-align: top; }
   .odd_row { background-color: #EEE; }
   .even_row { background-color: #FFF; }
   < /style > 
  < /head > 
  < body > 
 < ?php
$html_head = ob_get_contents();
ob_clean();
? > 
   < p > Here is a recap of your order: < /p > 
   < p > Order Date:  < ?php echo $now; ? >  < /p > 
   < p > Order Number:  < ?php echo $order_id; ? >  < /p > 
   < table > 
    < tr > 
     < td > 
      < table > 
       < tr > 
        < th colspan=”2” > Billing Information < /th > 
       < /tr >  < tr > 
        < td > First Name: < /td > 
        < td >  < ?php echo htmlspecialchars($first_name);? >  < /td > 
       < /tr >  < tr > 
        < td > Last Name: < /td > 
        < td >  < ?php echo htmlspecialchars($last_name);? >  < /td > 
       < /tr >  < tr > 
        < td > Billing Address: < /td > 
        < td >  < ?php echo htmlspecialchars($address_1);? >  < /td > 
       < /tr >  < tr > 
        < td >     < /td > 
        < td >  < ?php echo htmlspecialchars($address_2);? >  < /td > 
       < /tr >  < tr > 
        < td > City: < /td > 
        < td >  < ?php echo htmlspecialchars($city);? >  < /td > 
       < /tr >  < tr > 
        < td > State: < /td > 
        < td >  < ?php echo htmlspecialchars($state);? >  < /td > 
       < /tr >  < tr > 
        < td > Zip Code: < /td > 
        < td >  < ?php echo htmlspecialchars($zip_code);? >  < /td > 
       < /tr >  < tr > 
        < td > Phone Number: < /td > 
        < td >  < ?php echo htmlspecialchars($phone);? >  < /td > 
       < /tr >  < tr > 
        < td > Email Address: < /td > 
        < td >  < ?php echo htmlspecialchars($email);? >  < /td > 
        < /td > 



Chapter 15: Online Stores     

541

       < /tr > 
      < /table > 
     < /td > 
     < td > 
      < table > 
       < tr > 
        < th colspan=”2” > Shipping Information < /th > 
       < /tr >  < tr > 
        < td > First Name: < /td > 
        < td >  < ?php echo htmlspecialchars($shipping_first_name);? >  < /td > 
       < /tr >  < tr > 
        < td > Last Name: < /td > 
        < td >  < ?php echo htmlspecialchars($shipping_last_name);? >  < /td > 
       < /tr >  < tr > 
        < td > Billing Address: < /td > 
        < td >  < ?php echo htmlspecialchars($shipping_address_1);? >  < /td > 
       < /tr >  < tr > 
        < td >     < /td > 
        < td >  < ?php echo htmlspecialchars($shipping_address_2);? >  < /td > 
       < /tr >  < tr > 
        < td > City: < /td > 
        < td >  < ?php echo htmlspecialchars($shipping_city);? >  < /td > 
       < /tr >  < tr > 
        < td > State: < /td > 
        < td >  < ?php echo htmlspecialchars($shipping_state);? >  < /td > 
       < /tr >  < tr > 
        < td > Zip Code: < /td > 
        < td >  < ?php echo htmlspecialchars($shipping_zip_code);? >  < /td > 
       < /tr >  < tr > 
        < td > Phone Number: < /td > 
        < td >  < ?php echo htmlspecialchars($shipping_phone);? >  < /td > 
       < /tr >  < tr > 
        < td > Email Address: < /td > 
        < td >  < ?php echo htmlspecialchars($shipping_email);? >  < /td > 
       < /tr > 
      < /table > 
     < /td > 
    < /tr > 
   < /table > 
   < table style=”width: 75%;” > 
    < tr > 
     < th > Item Code < /th >  < th > Item Name < /th >  < th > Quantity < /th >  < th > Price Each < /th > 
     < th > Extended Price < /th > 
    < /tr > 
 < ?php
$query = ‘SELECT
        p.product_code, order_qty, name, description, price



542

Part II: Comic Book Fan Site

    FROM
        ecomm_order_details d JOIN ecomm_products p ON
            d.product_code = p.product_code
    WHERE
        order_id = “’ . $order_id . ‘”
    ORDER BY
        p.product_code ASC’;
$result = mysql_query($query, $db) or die (mysql_error($db));
                   
$rows = mysql_num_rows($result);
                   
$total = 0;
$odd = true;
while ($row = mysql_fetch_array($result)) {
    echo ($odd == true) ? ‘ < tr class=”odd_row” > ’ : ‘ < tr class=”even_row” > ’;
    $odd = !$odd; 
    extract($row);
? > 
     < td >  < ?php echo $product_code; ? >  < /td > 
     < td >  < ?php echo $name; ? >  < /td > 
     < td >  < ?php echo $order_qty; ? >  < /td > 
     < td style=”text-align: right;” > $ < ?php echo $price; ? >  < /td > 
     < td style=”text-align: right;” > $ < ?php
     echo number_format($price * $order_qty, 2);? > 
     < /td > 
    < /tr > 
 < ?php
}
? > 
   < /table > 
   < p > Shipping: $ < ?php echo number_format($cost_subtotal, 2); ? >  < /p > 
   < p > Tax: $ < ?php echo number_format($cost_tax, 2); ? >  < /p > 
   < p >  < strong > Total Cost: $ < ?php echo number_format($cost_total, 2); ? >  
< /strong >  < /p > 
  < /body > 
 < /html > 
 < ?php
$html_body = ob_get_clean();
                   
// display the page
echo $html_head;
? > 
 < h1 > Comic Book Appreciation Store < /h1 > 
 < h2 > Order Checkout < /h2 > 
 < ol > 
  < li > Enter Billing and Shipping Information < /li > 
  < li > Verify Accuracy of Order Information and Send Order < /li > 
  < li >  < strong > Order Confirmation and Receipt < strong >  < /li > 
 < /ol > 
 < h3 > A copy of this order has been emailed to you for your records. < /h3 > 
 < ?php



Chapter 15: Online Stores     

543

echo $html_body;
                   
// send email
$headers = array();
$headers[] = ‘MIME-Version: 1.0’;
$headers[] = ‘Content-type: text/html; charset=”iso-8859-1”’;
$headers[] = ‘Content-Transfer-Encoding: 7bit’;
$headers[] = ‘From:  < store@example.com > ’;
$headers[] = ‘Bcc:  < store@example.com > ’;
                   
mail($email, “Order Confirmation”, $html_head . $html_body,
    join(“\r\n”, $headers));
? >    

  4.   Now to test it out. Enter the site and place a few items in your shopping cart. Then choose to 
check out. You should see something that looks like Figure  15 - 4 .    

Figure 15-4



544

Part II: Comic Book Fan Site

Figure 15-5

  5.   Enter your billing information, and click the button to proceed to the next step of the checkout 
process. Your screen should resemble Figure  15 - 5 .    

  6.   Finally, click the Process Order button. Your screen should resemble Figure  15 - 6 .       



Chapter 15: Online Stores     

545

  How It Works 
 As you can see, checkout is a three - step process. First, you allow the customer to enter his or her 
billing and shipping information. Then, you present the information back to the customer, along with 
the contents of the shopping cart, for review. The final step performs some database manipulation and 
sends an e - mail to both the customer and to you, as confirmation for the order. 

 Taking a closer look at  ecomm_checkout.php , you see it is your basic web form which collects the 
billing and shipping information and then posts the data to  ecomm_checkout2.php . This is the first 
step in the checkout process. While you could display the form fields for both the billing and shipping 
areas side by side, the shipping fields aren ’ t necessary unless the addresses are different. A little bit of 

Figure 15-6



546

Part II: Comic Book Fan Site

JavaScript can be tied to the check - box button; if the customer wishes to use a shipping address that is 
different from the billing address, the shipping area can be displayed. Otherwise, it remains hidden. 

window.onload = function() {
    // assign toggle_shipping_visibility to same_info checkbox
    var c = document.getElementById(‘same_info’);
    c.onchange = toggle_shipping_visibility;
}
                   
function toggle_shipping_visibility() {
    var c = document.getElementById(‘same_info’);
    var t = document.getElementById(‘shipping_table’);
                   
    // update shipping table’s visibility
    t.style.display = (c.checked) ? ‘none’ : ‘’;
}     

   ecomm_checkout2.php  accepts the incoming posted data, presents it back for review, and inserts it 
into a form full of hidden fields. To make sure all the data is passed along to the next step, you check 
to see if  $_POST[ ‘ same_info ’ ]  is set. This means the shipping information (if any) that was sent 
should be disregarded and set the same as the billing information. 

if (isset($_POST[‘same_info’])) {
    $_POST[‘shipping_first_name’] = $_POST[‘first_name’];
    $_POST[‘shipping_last_name’] = $_POST[‘last_name’];
    $_POST[‘shipping_address_1’] = $_POST[‘address_1’];
    $_POST[‘shipping_address_2’] = $_POST[‘address_2’];
    $_POST[‘shipping_city’] = $_POST[‘city’];
    $_POST[‘shipping_state’] = $_POST[‘state’];
    $_POST[‘shipping_zip_code’] = $_POST[‘zip_code’];
    $_POST[‘shipping_phone’] = $_POST[‘phone’];
    $_POST[‘shipping_email’] = $_POST[‘email’];
}  

 The information is placed in a form of hidden fields, so when the customers click the Process Order 
button, they are really posting the data to the final step. 

 < form method=”post” action=”ecomm_checkout3.php” > 
  < div > 
   < input type=”submit” name=”submit” value=”Process Order”/ > 
   < input type=”hidden” name=”first_name”
   value=” < ?php echo htmlspecialchars($_POST[‘first_name’]);? > ”/ > 
   < input type=”hidden” name=”last_name”
   value=” < ?php echo htmlspecialchars($_POST[‘last_name’]);? > ”/ > 
   < input type=”hidden” name=”address_1”
   value=” < ?php echo htmlspecialchars($_POST[‘address_1’]);? > ”/ > 
   < input type=”hidden” name=”address_2”
   value=” < ?php echo htmlspecialchars($_POST[‘address_2’]);? > ”/ > 
   < input type=”hidden” name=”city”
   value=” < ?php echo htmlspecialchars($_POST[‘city’]);? > ”/ > 
   < input type=”hidden” name=”state”



Chapter 15: Online Stores     

547

   value=” < ?php echo htmlspecialchars($_POST[‘state’]);? > ”/ > 
   < input type=”hidden” name=”zip_code”
   value=” < ?php echo htmlspecialchars($_POST[‘zip_code’]);? > ”/ > 
   < input type=”hidden” name=”phone”
   value=” < ?php echo htmlspecialchars($_POST[‘phone’]);? > ”/ > 
   < input type=”hidden” name=”email”
   value=” < ?php echo htmlspecialchars($_POST[‘email’]);? > ”/ > 
   < input type=”hidden” name=”shipping_first_name”
   value=” < ?php echo htmlspecialchars($_POST[‘shipping_first_name’]);? > ”/ > 
   < input type=”hidden” name=”shipping_last_name”
   value=” < ?php echo htmlspecialchars($_POST[‘shipping_last_name’]);? > ”/ > 
   < input type=”hidden” name=”shipping_address_1”
   value=” < ?php echo htmlspecialchars($_POST[‘shipping_address_1’]);? > ”/ > 
   < input type=”hidden” name=”shipping_address_2”
   value=” < ?php echo htmlspecialchars($_POST[‘shipping_address_2’]);? > ”/ > 
   < input type=”hidden” name=”shipping_city”
   value=” < ?php echo htmlspecialchars($_POST[‘shipping_city’]);? > ”/ > 
   < input type=”hidden” name=”shipping_state”
   value=” < ?php echo htmlspecialchars($_POST[‘shipping_state’]);? > ”/ > 
   < input type=”hidden” name=”shipping_zip_code”
   value=” < ?php echo htmlspecialchars($_POST[‘shipping_zip_code’]);? > ”/ > 
   < input type=”hidden” name=”shipping_phone”
   value=” < ?php echo htmlspecialchars($_POST[‘shipping_phone’]);? > ”/ > 
   < input type=”hidden” name=”shipping_email”
   value=” < ?php echo htmlspecialchars($_POST[‘shipping_email’]);? > ”/ > 
  < /div > 
 < /form >   

 The  ecomm_checkout3.php  script contains the most complex logic of the three checkout scripts, but you 
will find it is understandable if you patiently work your way through it. The first major task is to assign 
the incoming data and some other important information (such as the current timestamp and the user ’ s 
session ID) to the variables that will be used throughout the script. 

$now = date(‘Y-m-d H:i:s’);
$session = session_id();
                   
$first_name = $_POST[‘first_name’];
$last_name = $_POST[‘last_name’];
$address_1 = $_POST[‘address_1’];
$address_2 = $_POST[‘address_2’];
$city = $_POST[‘city’];
$state = $_POST[‘state’];
$zip_code = $_POST[‘zip_code’];
$phone = $_POST[‘phone’];
$email = $_POST[‘email’];
                   
$shipping_first_name = $_POST[‘shipping_first_name’];
$shipping_last_name = $_POST[‘shipping_last_name’];
$shipping_address_1 = $_POST[‘shipping_address_1’];
$shipping_address_2 = $_POST[‘shipping_address_2’];
$shipping_city = $_POST[‘shipping_city’];



548

Part II: Comic Book Fan Site

$shipping_state = $_POST[‘shipping_state’];
$shipping_zip_code = $_POST[‘shipping_zip_code’];
$shipping_phone = $_POST[‘shipping_phone’];
$shipping_email = $_POST[‘shipping_email’];  

 Then you need to retrieve the customer ’ s ID from the  ecomm_customers  database. In the case of an existing 
customer, the ID can be retrieved with a SELECT statement. If the customer is new, then he or she will not 
have an ID already stored in the database, so the information needs to be added and a new ID generated. 

$query = ‘SELECT
        customer_id
    FROM
        ecomm_customers
    WHERE
        first_name = “’ . mysql_real_escape_string($first_name, $db) . ‘” AND
        last_name = “’ . mysql_real_escape_string($last_name, $db) . ‘” AND
        address_1 = “’ . mysql_real_escape_string($address_1, $db) . ‘” AND
        address_2 = “’ . mysql_real_escape_string($address_2, $db) . ‘” AND
        city = “’ . mysql_real_escape_string($city, $db) . ‘” AND
        state = “’ . mysql_real_escape_string($state, $db) . ‘” AND
        zip_code = “’ . mysql_real_escape_string($zip_code, $db) . ‘” AND
        phone = “’ . mysql_real_escape_string($phone, $db) . ‘” AND
        email = “’ . mysql_real_escape_string($email, $db) . ‘”’;
$result = mysql_query($query, $db) or (mysql_error($db));
                   
echo mysql_num_rows($result);
if (mysql_num_rows($result)  >  0) {
    $row = mysql_fetch_assoc($result);
    extract($row);
} else {
    $query = ‘INSERT INTO ecomm_customers
            (customer_id, first_name, last_name, address_1, address_2, city,
            state, zip_code, phone, email)
        VALUES
            (NULL,
            “’ . mysql_real_escape_string($first_name, $db) . ‘”,
            “’ . mysql_real_escape_string($last_name, $db) . ‘”,
            “’ . mysql_real_escape_string($address_1, $db) . ‘”,
            “’ . mysql_real_escape_string($address_2, $db) . ‘”,
            “’ . mysql_real_escape_string($city, $db) . ‘”,
            “’ . mysql_real_escape_string($state, $db) . ‘”,
            “’ . mysql_real_escape_string($zip_code, $db) . ‘”,
            “’ . mysql_real_escape_string($phone, $db) . ‘”,
            “’ . mysql_real_escape_string($email, $db) . ‘”)’;
    mysql_query($query, $db) or (mysql_error($db));
    echo $query;
    $customer_id = mysql_insert_id();
}
mysql_free_result($result);  

 With the customer ’ s valid ID now known, you begin the process of actually storing the order in the 
database. First, you insert the shipping information into the  ecomm_orders  table. This creates the record and 
generates the order ’ s ID, which you need to transfer the shopping cart ’ s contents into the  ecomm_order_
details  table. You come back later to insert the cost values after you transfer the order details. 



Chapter 15: Online Stores     

549

$query = ‘INSERT into ecomm_orders
        (order_id, order_date, customer_id, cost_subtotal, cost_total,
        shipping_first_name, shipping_last_name, shipping_address_1,
        shipping_address_2, shipping_city, shipping_state, shipping_zip_code,
        shipping_phone, shipping_email)
    VALUES
            (NULL,
            “’ . $now . ‘”,
            ‘ . $customer_id . ‘,
            0.00,
            0.00,
            “’ . mysql_real_escape_string($shipping_first_name, $db) . ‘”,
            “’ . mysql_real_escape_string($shipping_last_name, $db) . ‘”,
            “’ . mysql_real_escape_string($shipping_address_1, $db) . ‘”,
            “’ . mysql_real_escape_string($shipping_address_2, $db) . ‘”,
            “’ . mysql_real_escape_string($shipping_city, $db) . ‘”,
            “’ . mysql_real_escape_string($shipping_state, $db) . ‘”,
            “’ . mysql_real_escape_string($shipping_zip_code, $db) . ‘”,
            “’ . mysql_real_escape_string($shipping_phone, $db) . ‘”,
            “’ . mysql_real_escape_string($shipping_email, $db) . ‘”)’;
    mysql_query($query, $db) or (mysql_error($db));
    $order_id = mysql_insert_id();  

 An  INSERT SELECT  statement is used to transfer the values from the temp table to the  ecomm_order_
details  table. 

$query = ‘INSERT INTO ecomm_order_details
    (order_id, order_qty, product_code)
SELECT
    ‘ . $order_id . ‘, qty, product_code
FROM
    ecomm_temp_cart
WHERE
    session = “’ . $session . ‘”’;
mysql_query($query, $db) or (mysql_error($db));  

 Instead of returning the information retrieved with the  SELECT  statement to PHP, the script passes 
the values directly into an  INSERT  statement and adds them to the table. You can add a clause after the 
SELECT portion of the statement to instruct MySQL how to handle cases where a duplicate value might 
be inserted into a column that requires all unique values (a primary key, for example), though that clause 
is not necessary for your purposes here. The syntax for an  INSERT SELECT  statement is: 

INSERT [IGNORE] INTO tbl_name
    [(col_name,...)]
SELECT ...
    [ ON DUPLICATE KEY UPDATE col_name=expr, ... ]  

 After the products have been transferred from the  ecomm_temp_cart  table to the  ecomm_order_
details  table, they are removed from  ecomm_temp_cart . 

$query = ‘DELETE FROM ecomm_temp_cart WHERE session = “’ . $session . ‘”’;
mysql_query($query, $db) or (mysql_error($db));  



550

Part II: Comic Book Fan Site

 The product information is now stored permanently in the details table and associated with the 
appropriate order. You now need to determine the cost of the purchase and then go back to update the 
record in  ecomm_orders  with that information. MySQL ’ s  SUM()  function adds the values of a column 
together and is used to determine the purchase subtotal. 

$query = ‘SELECT
        SUM(price * order_qty) AS cost_subtotal
    FROM
        ecomm_order_details d JOIN ecomm_products p ON
            d.product_code = p.product_code
    WHERE
        order_id = ‘ . $order_id;
$result = mysql_query($query, $db) or (mysql_error($db));
$row = mysql_fetch_assoc($result);
extract($row);  

 For the sake of simplicity, we just use 25% of the subtotal as the cost of shipping, and 10% as the tax rate. 
Your values would be different, depending on your delivery arrangements and the municipality in 
which you live. 

$cost_shipping = round($cost_subtotal * 0.25, 2);
$cost_tax = round($cost_subtotal * 0.1, 2);
$cost_total = $cost_subtotal + $cost_shipping + $cost_tax;  

 The order record in the  ecomm_orders  table is then updated with the order ’ s costs. 

$query = ‘UPDATE ecomm_orders
    SET
        cost_subtotal = ‘ . $cost_subtotal . ‘,
        cost_shipping = ‘ . $cost_shipping . ‘,
        cost_tax = ‘ . $cost_tax . ‘,
        cost_total = ‘ . $cost_total . ‘
    WHERE
        order_id = ‘ . $order_id;
mysql_query($query, $db) or (mysql_error($db));  

 The script finishes off by generating a confirmation to display and send to you and your customer by 
e - mail. 

$headers = array();
$headers[] = ‘MIME-Version: 1.0’;
$headers[] = ‘Content-type: text/html; charset=”iso-8859-1”’;
$headers[] = ‘Content-Transfer-Encoding: 7bit’;
$headers[] = ‘From:  < store@example.com > ’;
$headers[] = ‘Bcc:  < store@example.com > ’;
                   
mail($email, “Order Confirmation”, $html_head . $html_body,
    join(“\r\n”, $headers));     



Chapter 15: Online Stores     

551

  E - Commerce, Any Way You Slice It 
 As we mentioned before, you can integrate e - commerce into your site the right way, or you can do it the 
wrong way. To prevent yourself from looking like a complete idiot and virtually ensuring the failure of 
your venture into e - commerce, we highly recommend doing things the right way! Good word of mouth 
travels slowly, but we all know how quickly bad word of mouth spreads. Also, with so many millions of 
web sites out there competing for consumers ’  attention, you undoubtedly want to elevate yours above 
the rest. 

 Here are a few things to remember about some of the more challenging characteristics of your potential 
customers: 

   Your customers are impatient.  They don ’ t want to have to wait for your pages to load or for 
answers to their questions. They are busy people, just like you, and if they don ’ t find what they 
need right away, they will leave your site and go somewhere else.  

   Your customers are distrustful.  Who wants their personal information strewn about all over the 
web? You certainly don ’ t, and your customers don ’ t either. They don ’ t want their credit card 
number to be used by every geek in your office, and they don ’ t want to give you tons of money 
and never see the product they purchased. They don ’ t want to order from you one week and 
have you go bankrupt the next.  

   Your customers want a lot for a little.  In this age of web site competition, when people can 
compare prices on virtually any product with just a few mouse clicks, customers are striving to 
get the best deal they can. But they also appreciate the value - added services of a high - quality 
web site.  

   Your customers are generally lazy.  They don ’ t want to have to put any effort into finding the 
right product on your site or figuring out what you ’ re trying to say or what your policies are. 
They don ’ t want to work at trying to get the checkout process to work, and they don ’ t want to 
have to filter through pages and pages of text to glean information. Make things clear and easy 
to find.  

   Your customers aren ’ t very forgiving.  You basically have one chance to make a good first 
impression on your customers. Nothing can eliminate a sale (and future sales for that matter) 
faster than a bad experience. Whether it is something minor such as spelling mistakes and 
broken images on your site or something major such as selling faulty merchandise, your 
customers are likely to remember something bad a lot longer than something good. They will 
also be more likely to share a bad experience than a good one.  

   Your customers may not be as technically savvy as you are.  Yes, there are actually people out 
there who still use dial - up with 56K. There are people out there who still use 14 - inch monitors, 
and there are people out there who have never made an online purchase in their lives. 
Remember these people, and don ’ t leave them behind totally when designing your site. If you 
do, you are alienating a huge percentage of the population.    

 Don ’ t worry: Satisfying e - commerce customers is not hard, but a little effort can really go a long way. 
We ’ ve included some general guidelines to follow. After reading them, you may think,  “ Well, duh, no 
kidding, ”  but you ’ d be surprised at how many big, well - known companies don ’ t follow them. 

❑

❑

❑

❑

❑

❑



552

Part II: Comic Book Fan Site

  Information Is Everything 
 Your customers have to get as much information as possible about your product, because they can ’ t 
actually see, feel, touch, or smell what you have to offer. Your site is your window to your customers, 
and they have to depend on what you ’ re telling them to make their purchasing decision. Whatever 
blanks you leave in your product description, policies, company history, or checkout process will have to 
be filled in by the customer ’ s imagination. While that may be good in certain circumstances, you do not 
want your customers to make incorrect assumptions that leave them dissatisfied after the fact, or for 
their uncertainty to prevent the sale altogether. 

 Besides textual information, graphics are a very important part of the sale. There is a fine balance 
between adding too many graphics to your site, which causes your potential patrons to wait longer than 
they need to, and providing enough high - quality pictures so they can actually see what they ’ re getting.  

  Importance of Trust 
 Let ’ s talk for a minute about trust over the web. We all know that most of the proclaimed 14 - year - old 
females in those online chat rooms are really 40 - year - old guys sitting in their living rooms. Things are 
not always as they seem in the online world, and because of that, as an e - commerce retailer, you are at a 
disadvantage over those with a physical storefront and salespeople. And then there ’ s the old saying 
 “ caveat emptor ”  ( “ buyer beware ” ), which goes along with any purchase/sales transaction. Trust must be 
established, and it certainly is an uphill battle. If you ’ re an established business already and you have 
spent years building product or brand - name recognition, don ’ t think that switching to e - commerce will 
be so easy. Yes, if your business has an established reputation, you may have an easier time than some 
unknown entity, like  “ Joe ’ s House of Beauty, ”  but people still want to know what they ’ re getting and to 
be assured that they ’ re not going to get ripped off. 

  Privacy Policy 

 Users want to know that their personal information will not be sold and they won ’ t end up on 47 spam 
e - mail lists. They also want to make sure they won ’ t be on an annoying telemarketing phone list or 
receive junk snail mail. The only way they can be assured that this won ’ t happen is if you provide a clear 
and concise privacy policy in an easy - to - find place on your site.  

  Return Policy 

 Returns are a sometimes overlooked part of a company ’ s e - commerce venture. There have to be 
processes in place for accepting returns and shipping out replacement merchandise or issuing credits in 
exchange. Your users need to know what your return policy is, what your requirements are for accepting 
returns, and how returns will be handled once they reach your warehouse (or basement). 

 If you are a relatively or completely unknown entity, you may want to consider providing a 100 percent 
money back guarantee or something similar, to try to build trust with your potential customers. You may 
get burned once or twice on this, and it may require more work from you, but overall it can be a very 
beneficial asset to you, especially if your customers are riding the fence on a potential purchase. It also 
motivates you to provide the best product or service you can, because you obviously don ’ t want to lose 
100 percent of a sale! 



Chapter 15: Online Stores     

553

 Whatever you decide, you should think long and hard about how you want to handle returned 
merchandise and then make sure your customers understand your decisions, in order to avoid 
potentially messy misunderstandings later on.  

  Warm Bodies 

 In this age of technology, sometimes it ’ s nice just to talk to an actual living, breathing person who can 
answer your questions or help you find what you are looking for. If you can manage this in your e -
 commerce environment, it is another great feature that will undoubtedly pay for itself in those  “ on the 
fence ”  purchasing decisions. You can provide personal customer service in a few ways: 

  Give your customers a phone number (preferably a toll - free number) where they can contact 
your customer service staff (or just you, if you ’ re a one - person show).  

  Offer online customer service chat for your customers, where you can address customer 
questions or concerns without having to pay someone to wait for the phone to ring.  

  Provide a customer service e - mail address for questions and problems. Although this isn ’ t the 
optimal solution, because many people don ’ t want to wait for answers to their questions, at least 
this gives customers an outlet to vent their frustrations and then move on to something else. 
It also gives you a chance to prepare a proper reply and respond accordingly.     

  Secure Credit Card Processing 

 Nothing will make your customers feel better than knowing their credit card information is safe and 
won ’ t get stolen along the way. Make sure you are using a secure encryption method to transfer sensitive 
information, such as SSL certificates, a commonly used standard security technology for establishing an 
encrypted link between a web server and a browser. This technology will make sure your customers 
understand how safe their transaction and personal information is. It ’ s a good idea not to get too 
technical; just explain the security process in layman ’ s terms. 

 If it ’ s possible, it ’ s a good idea to have a third party such as VeriSign verify that your site is secure, and 
prominently display its seal somewhere on your site.   

  Professional Look 
 You want to make sure your e - commerce site doesn ’ t look amateurish and that it appears as professional 
as possible. A professional appearance is oftentimes equated with credibility in the minds of your 
customers, and it helps to build that elusive trusting relationship. 

 Here are some ways to improve the look of your site: 

  Spend some time viewing other e - commerce sites. What do you personally like about them? 
What don ’ t you like? By emulating the big guys, you can look big, too.  

  Invest in a few web site design books, or do some online research. Numerous articles and books 
have been written on the topic, and you may as well not reinvent the wheel.  

❑

❑

❑

❑

❑



554

Part II: Comic Book Fan Site

  If you use a template of some sort, please, please, please do yourself a favor and make sure you 
remove all generic instances. We ’ ve seen sites with a title bar that reads  “ Insert Description 
Here. ”  This is not a good look  …  trust us.  

   Spell check  your document. Spell checkers are available in nearly all text editors, so spelling 
mistakes are pretty much unacceptable and can really undermine your professional look.     

  Easy Navigation 
 You want to make sure your customers are able to move around your site and find what they need. 
Remember the rule from earlier in this section: They do not want to work too hard. Make it easy, or they 
will lose interest and go somewhere else. 

  Common Links 

 Make sure you have clear links to every area of your site, and put the common links near the top where 
they can be seen easily. Common links include a customer ’ s shopping cart, customer service, and user 
login.  

  Search Function 

 You should give your customers a way to easily find what they ’ re looking for. An accurate and quick 
search engine is essential to accomplish this. There are many ways to add this feature to your site, either 
through coding it by hand in PHP or hooking up with third - party software. Another way to improve 
your search engine is to make sure you include misspellings and not - so - common terms, to give your 
customers the best results possible.  

  Typical Design 

 It ’ s been long enough now that most people are accustomed to seeing navigation links either at the top 
or to the left side of a page. By keeping with this general scheme, you can ensure that your customers 
will know where to look to find what they need.   

  Competitive Pricing 
 If you are selling items that are available from other sources, it ’ s important to remember that your store 
can easily be compared with numerous other stores selling the same thing. If your prices are way out of 
line, your customers will get a good chuckle and then promptly click back to their Google search. Do 
your research, and make sure you are in line with similar products being sold on the web. Not all 
customers base their decision solely on price, but they definitely don ’ t want to be taken for a ride, unless 
you have a Lamborghini Diablo, and that ’ s a different story.  

  Appropriate Merchandise 
 Only a handful of stores on the web can get away with carrying a wide range of unrelated products, 
and  —  no offense  —  chances are you aren ’ t one of them. Be sure you are carrying items that are related to 
your overall site and to each other, or you will confuse your customers and detract from your look and focus.  

❑

❑



Chapter 15: Online Stores     

555

  Timely Delivery 
 In this world of  “ overnight this ”  and  “ immediately download that, ”  it is no longer acceptable to ask for 
six to eight weeks to deliver your merchandise to your customers. The only exception is if you are 
creating something custom made, or if your customers are preordering something that hasn ’ t been 
officially released yet. The typical lead time for standard products to ship to a customer is roughly two to 
three business days. If you can do better than that, your customers will be happy, and if not, you need to 
make sure your customers realize it will take longer, and give them an explanation. 

 It is also important to provide numerous shipping options to your customers and let them decide how 
quickly they need your products and how much they are willing to spend to get them faster.  

  Communication 
 Because you are isolated from your customers, communication is essential to building strong 
relationships. Your customers want to know that you received their order, when the order is ready to 
ship, and when it ships. They appreciate getting a tracking number so they can see where their package is 
every step of the way. Some companies even track each outgoing package and let their customers know 
when they think the package has been delivered, in case there are any misunderstandings. All of this can 
be communicated via e - mail. Your customers will definitely appreciate being kept in the loop and 
knowing that their order has not been lost somewhere along the order fulfillment and delivery chain.  

  Customer Feedback 
 The online world presents an interesting dilemma for e - commerce retailers, in that you must operate 
your store in a bubble. You can ’ t tell what your customers are thinking or how they react to your site. 
You only know you ’ re relatively successful if you have sales, and relatively unsuccessful if you don ’ t. 
Figuring out which of our rules you ’ re breaking can be a tricky endeavor. That ’ s when your customer 
feedback can make or break you. 

 You always want to give your customers an outlet to express their concerns or problems, and it can give 
you a warm fuzzy feeling to get some positive feedback once in a while. To encourage your customers to 
provide you with feedback, you should do two things: 

  Give them an incentive to complete a survey or provide some sort of feedback. Free shipping, a 
discount on their next order, or a special gift of some sort are a few good possibilities.  

  Make it easy for your customers to complete a survey, but make sure it provides you with 
valuable feedback. Don ’ t just ask for their comments; ask them to rate certain areas of your site. 
Also, don ’ t give customers 100 questions; keep it to a maximum of 20. After that, people lose 
interest, and the special gift isn ’ t worth it.    

 By sticking to the preceding guidelines and advice, you will increase the quality and quantity of your 
customer feedback and increase your ability to tap into one of your most valuable resources.   

❑

❑



556

Part II: Comic Book Fan Site

  Summary 
 Now that you have the know - how to add e - commerce to your site, you should feel comfortable making 
your site as competitive and professional as any other site out there. You should be able to set up a 
simple shopping cart, and, with time, you will be able to continue to add features to really enhance your 
cart and your site in general. E - commerce concepts aren ’ t difficult to comprehend, and by following the 
simple guidelines we ’ ve outlined, you will soon be well on your way. Although e - commerce retailers 
don ’ t typically enjoy overnight success, adding e - commerce to your site can really augment what you ’ re 
currently doing and may grow to something big over time.  

  Exercises 
 We know we ’ re not perfect, so before you start naming all the things we didn ’ t accomplish in our 
shopping - cart scripts, we ’ ll save you the trouble and list some of them for you. As a matter of fact, we 
did these things on purpose because we wanted to give you some homework. 

 Here are the things you can work on, and hints are in Appendix A in case you want some help: 

  1.    Allow for tax:  Many states require that you charge sales tax on the orders shipped to the state where 
you have a physical presence, and some states require sales tax on all online orders. Set your code to 
check for customers in your own state, and add the appropriate sales tax to those orders only.  

  2.    Allow for inventory control:  Your shopping - cart script can keep track of how many items you 
have in stock and display that to your customers. You can also show an  “ out of stock ”  message 
to your customers, letting them know that a particular item is temporarily out of stock, but still 
available for purchase if they like.  

  3.    Show your customers your most popular items:  Which of your items are purchased the most? If an 
item is in the top five on your bestseller list, show a  “ bestseller ”  icon in the description of that item.    

 Other things you can add to your shopping - cart script include: 

   Allow for options:  You may have noticed that you didn ’ t let your customers pick the size of 
their T - shirt, or the size and color of their Superhero Body Suit. Alter the codes to allow for these 
options.  

   Allow for payment:  Because of copyright issues, we weren ’ t able to actually hook you up with 
PayPal or one of the other payment processors available. Decide how you want to accept 
payment, and then alter the code accordingly.  

   Check for mistakes:  We have not included any mechanism to check for required fields or for 
mismatched types (such as a bogus e - mail address). Add these checks in your code.  

   Perform a cart - abandonment analysis:  Numerous studies have shown that online shoppers 
abandon their carts roughly 75 percent of the time. How does your site stack up?  

   Make add - on purchase recommendations:  Once customers place an item in their cart, you 
might make suggestions for related items or items that other customers have bought in addition 
to the current item.  

   Allow for registering, login, and order tracking:  Some customers like to check the status of 
their orders.         

❑

❑

❑

❑

❑

❑



                                                        16 
   Creating a Bulletin Board 

System          

 People are social beings and don ’ t like to be isolated. Throughout our brief history as civilized human 
beings, we have consistently tried to maintain some sort of connection to others, whether it be the 
family unit, clans, chess clubs, or AA meetings. With the advent of the computer, many geeks found 
themselves shut in a room for long periods of time, becoming the modern equivalent of the social 
outcast. (How many of us have joked about not knowing what the sun looks like?) The development 
of the electronic bulletin board made it possible for computer geeks to communicate and once again 
take part in the social aspect of humanity  —  without ever having to look at each other ’ s faces. 

 The bulletin board system, or BBS for short, is an electronic meeting area, also referred to as a 
 forum . A traditional forum is a gathering place where people can meet and discuss different topics, 
and that is a very apt definition for a BBS. However, we want to expand upon it a little further, for 
use in the computer world. By our definition (and the way we ’ ll use it in this chapter), a forum is a 
way to talk to other people with a common interest. A bulletin board is the location in which the 
forum exists, and a bulletin board may house multiple forums. You might visit a book - based BBS 
to find different forums for science fiction, nonfiction, authors, and more.  

  Your Bulletin Board 
 No doubt, you have visited many bulletin boards by now and are aware of the different features 
they have to offer. Some of them have many bells and whistles and are very slick programs. 
PHPBB and Vbulletin are two of those very nice, full - featured applications. You have probably 
seen some very simple boards out there, too. Some are nothing more than a couple of input boxes 
for a message subject and body with no authentication. 

 In this chapter, you are going to create a bulletin board system. Once you create your BBS, it will 
be up to you to create any type of forums within it that you like. Yours will not have quite the 
feature set of the likes of Vbulletin or PHPBB (unless you are ambitious and decide to expand 
the application you write), but you will have to put in a few nice expanded features. This is the last 
application of the book, after all, and we wouldn ’ t let you get away with building something small! 



558

Part II: Comic Book Fan Site

 Here is a list of some of the more prominent features of the bulletin board you will build: 

   User authentication:  You want to keep track of who is posting what. You will allow anonymous 
access to read posts, but this application will require users to log in before they can post their 
own messages and participate in a discussion.  

   Search:  This is the key feature of any good board, in our opinion. Searching allows users to see if 
their questions have already been answered, as well as enabling people to find discussions 
they ’ re interested in.  

   Regular expressions:  We include BBcodes in the application. If you have never seen them, these 
are special formatting codes that give users limited ability to format and add styles to their 
posts. For example, placing [b] and [/b] around words will make them bold (for example, 
[b]some words[/b] will become  some words ). You will be using regular expressions to 
implement this feature.  

   Pagination:  You don ’ t want to have 328 posts on a single page. Such a page is too long for users 
to easily read, and it may take a while for web browsers to render such a page. You will be 
creating a pagination function to avoid this.    

 You will add a few more bells and whistles in addition to these features, but we won ’ t spoil the surprise 
yet. We want to give you plenty of  “ ooh, ”     “ aah, ”  and  “ you ’ re a genius! ”  moments later. 

 There are many screens involved in this application. Since you have probably seen a bulletin board 
application before, it wouldn ’ t make sense for us to show you each and every screen as we describe 
the application. We ’ ll show you screenshots of just some of the more important screens.  

  Preparing the Database 
 This is a large application  —  the biggest in the book. It consists of about 1,850 lines of code. Are you 
scared yet? Don ’ t be. The hardest part is the typing, because we will explain everything along the way. 
But the first thing you will need to do is create the database tables used by the bulletin board application.  

  Try It Out Preparing the Database 

 There ’ s a lot of work to be done, so do your typing finger warmups, settle in and get comfortable, and 
let ’ s get started!   

  1.   Open your favorite editor. Enter the following code as  db_ch16.php : 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   

❑

❑

❑

❑



Chapter 16: Creating a Bulletin Board System

559

$sql = ‘CREATE TABLE IF NOT EXISTS frm_access_levels (
        access_lvl   TINYINT UNSIGNED NOT NULL AUTO_INCREMENT,
        access_name  VARCHAR(50)      NOT NULL,
                   
        PRIMARY KEY (access_lvl)
    )
    ENGINE=MyISAM’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘INSERT IGNORE INTO frm_access_levels 
        (access_lvl, access_name)
    VALUES
        (1, “User”),
        (2, “Moderator”),
        (3, “Administrator”)’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘CREATE TABLE IF NOT EXISTS frm_admin (
        id       INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
        title    VARCHAR(100)     NOT NULL DEFAULT “”,
        value    VARCHAR(255)     NOT NULL DEFAULT “”,
        constant VARCHAR(100)     NOT NULL DEFAULT “”,
                   
        PRIMARY KEY (id)
    )
    ENGINE=MyISAM’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘INSERT IGNORE INTO frm_admin
        (id, title, value, constant)
    VALUES
        (NULL, “Board Title”, “Comic Book Appreciation Forums”, “title”),
        (NULL, “Board Description”, “The place to discuss your favorite ‘ .
        ‘comic books, movies and more!”, “description”),
        (NULL, “Admin Email”, “admin@example.com”, “admin_email”),
        (NULL, “Copyright”, “ & copy; Comic Book Appreciation, Inc.  All ‘ .
        ‘rights reserved.”, “copyright”),
        (NULL, “Board Titlebar”, “CBA Forums”, “titlebar”),
        (NULL, “Pagination Limit”, “10”, “pageLimit”),
        (NULL, “Pagination Range”, “7”, “pageRange”)’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘CREATE TABLE IF NOT EXISTS frm_bbcode (
        id          INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
        template    VARCHAR(255)     NOT NULL DEFAULT “”,
        replacement VARCHAR(255)     NOT NULL DEFAULT “”,
                   
        PRIMARY KEY (id)
    )
    ENGINE=MyISAM’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
                   



560

Part II: Comic Book Fan Site

$sql = ‘CREATE TABLE IF NOT EXISTS frm_forum (
        id              INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
        forum_name      VARCHAR(100)     NOT NULL DEFAULT “”,
        forum_desc      VARCHAR(255)     NOT NULL DEFAULT “”,
        forum_moderator INTEGER UNSIGNED NOT NULL DEFAULT 0,
                   
        PRIMARY KEY (id)
    )
    ENGINE=MyISAM’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘INSERT IGNORE INTO frm_forum
        (id, forum_name, forum_desc, forum_moderator)
    VALUES
        (NULL, “New Forum”, “This is the initial forum created when ‘ .
        ‘installing the database.  Change the name and the ‘ .
        ‘description after installation.”, 1)’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘CREATE TABLE IF NOT EXISTS frm_post_count (
        user_id    INTEGER UNSIGNED NOT NULL DEFAULT 0,
        post_count INTEGER UNSIGNED NOT NULL DEFAULT 0,
                   
        PRIMARY KEY (user_id)
    )
    ENGINE=MyISAM’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘INSERT INTO frm_post_count VALUES (1, 1)’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘CREATE TABLE IF NOT EXISTS frm_posts (
        id           INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
        topic_id     INTEGER UNSIGNED NOT NULL DEFAULT 0,
        forum_id     INTEGER UNSIGNED NOT NULL DEFAULT 0,
        author_id    INTEGER UNSIGNED NOT NULL DEFAULT 0,
        update_id    INTEGER UNSIGNED NOT NULL DEFAULT 0,
        date_posted  DATETIME         NOT NULL DEFAULT “0000-00-00 00:00:00”,
        date_updated DATETIME,
        subject     VARCHAR(100)     NOT NULL DEFAULT “”,
        body        MEDIUMTEXT,
                   
        PRIMARY KEY (id),
        INDEX (forum_id, topic_id, author_id, date_posted),
        FULLTEXT INDEX (subject, body)
    )
    ENGINE=MyISAM’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘INSERT IGNORE INTO frm_posts 
        (id, topic_id, forum_id, author_id, update_id, date_posted,
        date_updated, subject, body)
    VALUES



Chapter 16: Creating a Bulletin Board System

561

        (1, 0, 1, 1, 0, “’ . date(‘Y-m-d H:i:s’) . ‘”, 0, “Welcome”,
        “Welcome to your new Bulletin Board System.  Do not forget to ‘ .
        ‘change your admin password after installation.  Have fun!”)’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
                   
$sql = ‘CREATE TABLE IF NOT EXISTS frm_users (
        id          INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
        email       VARCHAR(100)     NOT NULL UNIQUE,
        password    CHAR(41)         NOT NULL,
        name        VARCHAR(100)     NOT NULL,
        access_lvl  TINYINT UNSIGNED NOT NULL DEFAULT 1,
        signature   VARCHAR(255),
        date_joined DATETIME         NOT NULL,
        last_login  DATETIME,
                   
        PRIMARY KEY (id)
)
ENGINE=MyISAM’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘INSERT IGNORE INTO frm_users
        (id, name, email, password, access_lvl, signature,
        date_joined, last_login)
    VALUES
        (1, “Administrator”, “admin@example.com”, PASSWORD(“secret”),
        3, “”, “’ . date(‘Y-m-d H:i:s’) . ‘”, NULL)’;
mysql_query($sql, $db) or die(mysql_error($db));
? > 
                   
 < html > 
  < head > 
   < title > Forum Tables Created < /title > 
  < /head > 
  < body > 
  < h1 > Comic Book Appreciation Forums < /h1 > 
  < p > The following forum tables have been created: < /p > 
  < ul > 
   < li > frm_admin < /li > 
   < li > frm_access_levels < /li > 
   < li > frm_admin < /li > 
   < li > frm_bbcode < /li > 
   < li > frm_form < /li > 
   < li > frm_post_count < /li > 
   < li > frm_posts < /li > 
   < li > frm_users < /li > 
  < /ul > 
  < p >  < a href=”frm_login.php” > Log In < /a >  to the site now. < /p > 
  < /body > 
 < /html > 
                      

  2.   Load  db_ch16.php  in your browser. If all goes well, you should see a page that resembles 
Figure  16 - 1 .       



562

Part II: Comic Book Fan Site

Figure 16-1

  How It Works  
 The script creates the seven tables used by the bulletin board application. The first table is named 
 frm_access_levels  and is used to store access permission:

     Fieldname      Type      Description of What It Stores   

     access_lvl      TINYINT UNSIGNED     Unique ID. Column is the primary key and 
auto - increments.  

     access_name      VARCHAR(50)     Descriptive name of permission.  

 The second table is  frm_admi  n , which holds a handful of configuration parameters for the application:

     Fieldname      Type      Description of What It Stores   

     id      INTEGER UNSIGNED     Unique ID. Column is the primary key and 
auto - increments.  

     title      VARCHAR(100)     Descriptive name of the parameter.  

     value      VARCHAR(255)     The parameter ’ s setting.  

     constant      VARCHAR(100)     The parameter ’ s name when referenced by a script.  



Chapter 16: Creating a Bulletin Board System

563

 The next table you create is called  frm_bbcode  and contains the patterns and replacements to support 
BBCode markup:

     Fieldname      Type      Description of What It Stores   

     id      INTEGER UNSIGNED     Unique ID. Column is the primary key and 
auto - increments.  

     template      VARCHAR(255)     The regular expression for which to search.  

     replacement      VARCHAR(255)     The replacement text.  

 The fourth table is named  frm_forum  and contains the list of forums:

     Fieldname      Type      Description of What It Stores   

     id      INTEGER UNSIGNED     Unique ID. Column is the primary key and 
auto - increments.  

     forum_name      VARCHAR(100)     The name of the forum.  

     forum_desc      VARCHAR(255)     A description of the forum.  

     forum_moderator      INTEGER UNSIGNED     The user ID of the forum ’ s moderator. 
Foreign key that references  frm_user.id .  

 The next table is  frm_post_count  and will hold the number of messages each user has posted:

     Fieldname      Type      Description of What It Stores   

     user_id      INTEGER UNSIGNED     References  frm_user.id .  

     post_
count   

   INTEGER UNSIGNED     The number of posts the user has made.  

 The sixth table is  frm_posts  and will hold the discussion messages posted to the forums:

     Fieldname      Type      Description of What It Stores   

     id      INTEGER UNSIGNED     Unique ID. Column is the primary key and 
auto - increments.  

     topic_id      INTEGER UNSIGNED     The ID of the parent post, if any.  

     forum_id      INTEGER UNSIGNED     The forum ID to which the post belongs.  

     author_id      INTEGER UNSIGNED     User ID of user who posted the message. 
Foreign key that references  frm_user.id .  

(continued)



564

Part II: Comic Book Fan Site

     Fieldname      Type      Description of What It Stores   

     update_id      INTEGER UNSIGNED     User ID of user who last updated the post. 
Foreign key that references  frm_user.id .  

     date_posted      DATETIME     The date the post was made.  

     date_updated      DATETIME     The date the post was last updated.  

     subject      VARCHAR(100)     The subject of the message.  

     body      MEDIUMTEXT     The text of the message.  

 The final table is  frm_users  and stores the forum ’ s registered users:

     Fieldname      Type      Description of What It Stores   

     user_id      INTEGER UNSIGNED     Unique ID. Column is the primary key and 
auto - increments.  

     name      VARCHAR(50)     The user ’ s name.  

     email      VARCHAR(100)     The user ’ s e - mail address.  

     password      CHAR(41)     The user ’ s password.  

     access_lvl      TINYINT UNSIGNED     The permission level the user has.  

     Signature      VARCHAR(255)     The user ’ s signature to be appended at the end 
of his or her posts.  

     last_login      DATETIME     The date and time when the user last logged in.  

     date_joined      DATETIME     The date and time when the user joined.  

 After creating each table, you insert into it any records you may need initially. You now have the tables 
set up in the database and the necessary entries you will need to start to build your bulletin board 
application.    

 

  Reusable Code 
 The next thing you need to do is create the support files that will be included in your forum scripts. If 
you experience a sense of d é j à  vu, that ’ s because some of the code here is similar to the reusable 
functions you wrote in Chapter  13 .  



Chapter 16: Creating a Bulletin Board System

565

  Try It Out Creating Reusable Scripts 

 In this exercise, the reusable scripts you are creating don ’ t have any standalone purpose. Even though 
they don ’ t show anything on the screen, you must pay careful attention when typing them, because 
they form part of the backbone of your application.   

  1.   Create  frm_output_functions.inc.php . This file contains most of the major functions that 
the board uses.   

 < ?php
function msg_box($message, $title, $destination = ‘frm_index.php’) {
    $msg = ‘ < div > ’;
    $msg .= ‘ < h2 > ’ . $title . ‘ < /h2 > ’;
    $msg .= ‘ < p > ’ . $message . ‘ < /p > ’;
    $msg .= ‘ < p >  < a href=”’ . $destination . ‘” > Yes < /a >     < a href=
”frm_index.php” > ’ .
        ‘No < /a >  < /p > ’;
    $msg .= ‘ < /div > ’;
    return $msg;
}
                   
function get_forum($db, $id) {
    $sql = ‘SELECT
            forum_name as name, forum_desc as description,
            forum_moderator as moderator 
        FROM
            frm_forum
        WHERE id = ‘ . $id;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
    $row = mysql_fetch_assoc($result);
    mysql_free_result($result);
    return $row;
}
                   
function get_forum_id($db, $topic_id) {
    $sql = ‘SELECT forum_id FROM frm_posts WHERE id = ‘ . $topic_id;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
    $row = mysql_fetch_assoc($result);
    $retVal = $row[‘forum_id’];
    mysql_free_result($result);
    return $retVal;
}
                   
function breadcrumb($db, $id, $get_from = ‘F’) {
    $separator = ‘  & middot; ‘;
    if ($get_from == ‘P’) {
        $sql = ‘SELECT forum_id, subject FROM frm_posts WHERE id = ‘ . $id;
        $result = mysql_query($sql, $db) or die(mysql_error($db));
        $row = mysql_fetch_array($result);
        $id = $row[‘forum_id’];
        $topic = $row[‘subject’];
        mysql_free_result($result);



566

Part II: Comic Book Fan Site

    }
    $row = get_forum($db, $id);
                   
    $bcrumb = ‘ < a href=”frm_index.php” > Home < /a > ’ . $separator;
    switch ($get_from) {
    case ‘P’:
        $bcrumb .= ‘ < a href=”frm_view_forum.php?f=’ . $id . ‘” > ’ 
. $row[‘name’] .
            ‘ < /a > ’ . $separator . $topic;
        break;
                   
    case ‘F’:
        $bcrumb .= $row[‘name’];
        break;
    }
    return ‘ < h2 > ’ . $bcrumb . ‘ < /h2 > ’;
}
                   
function show_topic($db, $topic_id, $user_id, $limit = 25) {
                   
    echo breadcrumb($db, $topic_id, ‘P’);
                   
    if (isset($_GET[‘page’])) {
        $page = $_GET[‘page’];
    } else {
        $page = 1;
    }
                   
    $start = ($page - 1) * $limit;
                   
    if (isset($_SESSION[‘user_id’])) {
        echo topic_reply_bar($db, $topic_id, get_forum_id($db, $topic_id));
    }
                   
    $sql = ‘SELECT SQL_CALC_FOUND_ROWS 
            p.id, p.subject, p.body, p.date_posted, p.date_updated,
            u.name as author, u.id as author_id, u.signature as sig,
            c.post_count as postcount, p.forum_id as forum_id,
            f.forum_moderator as moderator, p.update_id, u2.name 
as updated_by 
        FROM
            frm_forum f JOIN frm_posts p ON f.id = p.forum_id 
            JOIN frm_users u ON u.id = p.author_id 
            LEFT JOIN frm_users u2 ON u2.id = p.update_id 
            LEFT JOIN frm_post_count c ON u.id = c.user_id 
        WHERE
            p.topic_id = ‘ . $topic_id . ‘ OR
            p.id = ‘ . $topic_id . ‘



Chapter 16: Creating a Bulletin Board System

567

        ORDER BY
            p.topic_id, p.date_posted 
        LIMIT ‘ . $start . ‘, ‘ . $limit;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
                   
    $page_links = paginate($db, $limit);
    if (mysql_num_rows($result) == 0) {
        $msg = “There are currently no posts.  Would you “ .
               “like to be the first person to create a thread?”;
        $title = “No Posts...”;
        $dest = “frm_compose.php?forumid=” . $forum_id;
        echo msg_box($msg, $title, $dest);
    } else {
        echo ‘ < table style=”width: 80%;” > ’;
        echo ‘ < tr > ’;
        echo ‘ < th > Author < /th > ’;
        echo ‘ < th style=”width: 85%;” > Post < /th > ’;
        echo ‘ < /tr > ’;
        $rowclass = ‘’;
        while ($row = mysql_fetch_array($result)) {
            $lastupdate = ‘’;
            $editlink = ‘’;
            $dellink = ‘’;
            $replylink = ‘ & nbsp;’;
            $pcount = ‘’;
            $pdate = ‘’;
            $sig = ‘’;
            $body = $row[‘body’];
            if (isset($_SESSION[‘user_id’])) {
                $replylink = ‘ < a href=”frm_compose.php?forumid=’ .
                    $row[‘forum_id’] . ‘ & topicid=’ . $topic_id .’ & reid=’ .
                    $row[‘id’] . ‘” > REPLY < /a >  ‘;
            } else {
                $replylink = ‘’;
            }
            if ($row[‘update_id’]  >  0) {
                $lastupdate = ‘ < p > Last updated: ‘ . $row[‘date_updated’] . 
                    ‘ by ‘ . $row[‘updated_by’] . ‘ < /p > ’;
            }
            if ($user_id == $row[‘author_id’] ||
                $user_id == $row[‘moderator’] || 
                (isset($_SESSION[‘access_lvl’])  &  &  $_SESSION
[‘access_lvl’]  >  2)) {
                $editlink = ‘ < a href=”frm_compose.php?a=edit & post=’ . 
                    $row[‘id’] . ‘” > EDIT < /a >  ‘;
                $dellink = ‘ < a href=”frm_transact_affirm.php?’ . 
                    ‘action=deletepost & id=’ . $row[‘id’] . ‘” > DELETE < /a >  ‘;
            }
            $pcount = ‘ < br/ > Posts: ‘ . ($row[‘postcount’] == ‘’ ? 0 :
                $row[‘postcount’]);
            $pdate = $row[‘date_posted’];
            $sig = (($row[‘sig’] != ‘’) ? ‘ < p class=”sig” > ’ .



568

Part II: Comic Book Fan Site

                bbcode($db, nl2br($row[‘sig’])) : ‘’) . ‘ < /p > ’;
            $rowclass = ($rowclass == ‘odd_row’) ? ‘even_row’ : ‘odd_row’;
            echo ‘ < tr class=”’ . $rowclass . ‘” > ’;
            echo ‘ < td > ’ . $row[‘author’];
            echo $pcount;
            echo ‘ < /td >  < td >  < p > ’;
            if (isset($_SESSION[‘user_id’])  &  &  
                $_SESSION[‘last_login’]  <  $row[‘date_posted’]) {
                echo NEWPOST . ‘ ‘;
            }
            if (isset($_GET[‘page’])) {
                $pagelink = ‘ & page=’ . $_GET[‘page’];
            } else {
                $pagelink = ‘’;
            }
            echo ‘ < a name=”post’ . $row[‘id’] . ‘” href=”frm_view
_topic.php?t=’ .
                $topic_id . $pagelink . ‘#post’ . $row[‘id’] . ‘” > ’ .
 POSTLINK .
                ‘ < /a > ’;
            if (isset($row[‘subject’])) {
                echo ‘  < strong > ’ . $row[‘subject’] . ‘ < /strong > ’;
            }
            echo ‘ < /p >  < p > ’ . bbcode($db, nl2br(htmlspecialchars
($body))) . ‘ < /p > ’;
            echo $sig;
            echo $lastupdate;
            echo ‘ < /td > ’;
            echo ‘ < /tr >  < tr class=”’ . $rowclass . ‘” > ’;
            echo ‘ < td > ’ . $pdate . ‘ < /td > ’;
            echo ‘ < td style=”text-align: right;” > ’;
            echo $replylink;
            echo $editlink;
            echo $dellink;
            echo ‘ < /td >  < /tr > ’;
        }
        echo ‘ < /table > ’;
        echo $pagelink;
        echo ‘ < p > ’ . NEWPOST . ‘ = New Post & nbsp; & nbsp; & nbsp; & nbsp; & nbsp;’;
        echo POSTLINK . ‘ = Post link (use to bookmark) < /p > ’;
    }
}
                   
function isParent($page) {
    return (strpos($_SERVER[‘PHP_SELF’], $page) !== false);
}
                   
function topic_reply_bar($db, $topic_id, $forum_id) {
    $html = ‘ < p > ’;



Chapter 16: Creating a Bulletin Board System

569

    if ($topic_id  >  0) {
        $html .= ‘ < a href=”frm_compose.php?forumid=’ . 
$forum_id . ‘ & topicid=’ .
            $topic_id . ‘ & reid=’ . $topic_id . ‘” > Reply to Thread < /a > ’;
    }
    if ($forum_id  >  0) {
        $html .= ‘  < a href=”frm_compose.php?forumid=’ . $forum_id . ‘” > ’ . 
            ‘New Thread < /a > ’;
    }
    $html .= ‘ < /p > ’;
    return $html;
}
                   
function user_option_list($db, $level) {
    $sql = ‘SELECT
            id, name, access_lvl
        FROM
            frm_users 
        WHERE
            access_lvl = ‘ . $level . ‘
        ORDER BY
            name’;
    $result = mysql_query($sql) or die(mysql_error($db));
                   
    while ($row = mysql_fetch_array($result)) {
        echo ‘ < option value=”’ . $row[‘id’] . ‘” > ’ . 
            htmlspecialchars($row[‘name’]) . ‘ < /option > ’;
    }
    mysql_free_result($result);
}
                   
function paginate($db, $limit = 10) {
    global $admin;
                   
    $sql = ‘SELECT FOUND_ROWS();’;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
    $row = mysql_fetch_array($result);
    $numrows = $row[0];
    $pagelinks = ‘ < p > ’;
    if ($numrows  >  $limit) {
        if(isset($_GET[‘page’])){
            $page = $_GET[‘page’];
        } else {
            $page = 1;
        }
        $currpage = $_SERVER[‘PHP_SELF’] . ‘?’ . $_SERVER[‘QUERY_STRING’];
        $currpage = str_replace(‘ & page=’ . $page, ‘’, $currpage);
                   
        if($page == 1) {
            $pagelinks .= ‘ & lt; PREV’;



570

Part II: Comic Book Fan Site

        } else {
            $pageprev = $page - 1;
            $pagelinks .= ‘ < a href=”’ . $currpage . ‘ & page=’ . $pageprev . 
                ‘” >  & lt; PREV < /a > ’;
        }
                   
        $numofpages = ceil($numrows / $limit);
        $range = $admin[‘pageRange’][‘value’];
        if ($range == ‘’ or $range == 0) {
            $range = 7;
        }
        $lrange = max(1, $page - (($range - 1) / 2));
        $rrange = min($numofpages, $page + (($range - 1) / 2));
        if (($rrange - $lrange)  <  ($range - 1)) {
            if ($lrange == 1) {
                $rrange = min($lrange + ($range - 1), $numofpages);
            } else {
                $lrange = max($rrange - ($range - 1), 0);
            }
        }
                   
        if ($lrange  >  1) {
            $pagelinks .= ‘..’;
        } else {
            $pagelinks .= ‘ & nbsp; & nbsp;’;
        }
        for($i = 1; $i  < = $numofpages; $i++) {
            if ($i == $page) {
                $pagelinks .= $i;
            } else {
                if ($lrange  < = $i and $i  < = $rrange) {
                    $pagelinks .= ‘ < a href=”’ . $currpage . ‘ & page=’ . $i . 
                        ‘” > ’ . $i . ‘ < /a > ’;
                }
            }
        }
        if ($rrange  <  $numofpages) {
            $pagelinks .= ‘..’;
        } else {
            $pagelinks .= ‘ & nbsp; & nbsp;’;
        }
                   
        if(($numrows - ($limit * $page))  >  0) {
            $pagenext = $page + 1;
            $pagelinks .= ‘ < a href=”’ . $currpage . ‘ & page=’ . $pagenext . 
                ‘” > NEXT  & gt; < /a > ’;
        } else {
            $pagelinks .= ‘NEXT  & gt;’;
        }
    } else {
        $pagelinks .= ‘ & lt; PREV & nbsp; & nbsp;NEXT  & gt; & nbsp; & nbsp;’;
    }
    $pagelinks .= ‘ < /p > ’;



Chapter 16: Creating a Bulletin Board System

571

    return $pagelinks;
}
                   
function bbcode($db, $data) {
    $sql = ‘SELECT
            template, replacement
        FROM
            frm_bbcode’;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
    if (mysql_num_rows($result)  >  0) {
        while($row = mysql_fetch_array($result)) {
            $bbcode[‘tpl’][] = ‘/’ .
                html_entity_decode($row[‘template’], ENT_QUOTES). ‘/i’;
            $bbcode[‘rep’][] = html_entity_decode($row[‘replacement’], 
                ENT_QUOTES);
        }
        $data1 = preg_replace($bbcode[‘tpl’], $bbcode[‘rep’], $data);
        $count = 1;
        while (($data1 != $data) and ($count  <  4)) {
            $count++;
            $data = $data1;
            $data1 = preg_replace($bbcode[‘tpl’], $bbcode[‘rep’], $data);
        }
    }
    return $data;
}
? >    

  2.   Create  frm_config.inc.php . This sets up any constants or variables you may need in the 
application. It loads admin settings and BBcode patterns into arrays to be used by the board.   

 < ?php
$sql = ‘SELECT * FROM frm_admin’;
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   
while ($row = mysql_fetch_array($result)) {
    $admin[$row[‘constant’]][‘title’] = $row[‘title’];
    $admin[$row[‘constant’]][‘value’] = $row[‘value’];
}
mysql_free_result($result);
                   
$sql = ‘SELECT * FROM frm_bbcode’;
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   
while ($row = mysql_fetch_array($result)) {
    $bbcode[$row[‘id’]][‘template’] = $row[‘template’];
    $bbcode[$row[‘id’]][‘replacement’] = $row[‘replacement’];
}
mysql_free_result($result);
                   
define(‘NEWPOST’, ‘ & raquo;’);
define(‘POSTLINK’, ‘ & diams;’);
? >    



572

Part II: Comic Book Fan Site

  3.   Create  frm_header.inc.php . This goes at the top of each page that gets displayed.   

 < ?php
session_start();
require ‘db.inc.php’;
require ‘frm_output_functions.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
require ‘frm_config.inc.php’;
                   
$title = $admin[‘titlebar’][‘value’];
if (isset($pageTitle) and $pageTitle != ‘’) {
    $title .= ‘ :: ‘ . $pageTitle;
}
if (isset($_SESSION[‘user_id’])) {
    $userid = $_SESSION[‘user_id’];
} else {
    $userid = null;
}
if (isset($_SESSION[‘access_lvl’])) {
    $access_lvl = $_SESSION[‘access_lvl’];
} else {
    $access_lvl = null;
}
if (isset($_SESSION[‘name’])) {
    $username = $_SESSION[‘name’];
} else {
    $username = null;
}
? > 
 < html > 
  < head > 
   < title >  < ?php echo $title; ? >  < /title > 
   < style type=”text/css” > 
   th { background-color: #999;}
   td { vertical-align: top; }
   .odd_row { background-color: #EEE; }
   .even_row { background-color: #FFF; }
   < /style > 
  < /head > 
  < body > 
   < h1 >  < ?php echo $admin[‘title’][‘value’]; ? >  < /h1 > 
   < h2 >  < ?php echo $admin[‘description’][‘value’]; ? >  < /h2 > 
 < ?php
if (isset($_SESSION[‘name’])) {
    echo ‘ < p > Welcome, ‘ . $_SESSION[‘name’] . ‘ < /p > ’;
}



Chapter 16: Creating a Bulletin Board System

573

? > 
   < form method=”get” action=”frm_search.php” > 
    < div > 
     < input type=”text” name=”keywords”
 < ?php
if (isset($_GET[‘keywords’])) {
    echo ‘value=”’ . htmlspecialchars($_GET[‘keywords’]) . ‘” ‘;
 }
? > 
/ > 
     < input type=”submit” value=”Search”/ > 
    < /div >  
   < /form > 
 < ?php
echo ‘ < p >  < a href=”frm_index.php” > Home < /a > ’;
if (!isset($_SESSION[‘user_id’])) {
    echo ‘ |  < a href=”frm_login.php” > Log In < /a > ’;
    echo ‘ |  < a href=”frm_useraccount.php” > Register < /a > ’;
} else {
    echo ‘ |  < a href=”frm_transact_user.php?action=Logout” > ’;
    echo “Log out “ . $_SESSION[‘name’] . “ < /a > ”;
    if ($_SESSION[‘access_lvl’]  >  2) {
        echo ‘ |  < a href=”frm_admin.php” > Admin < /a > ’;
    }
    echo ‘ |  < a href=”frm_useraccount.php” > Profile < /a > ’;
}
echo ‘ < /p > ’;
? >    

  4.   Enter  frm_footer.inc.php , which places a footer at the bottom of each page that gets 
displayed: 

   < p >  < ?php echo $admin[‘copyright’][‘value’]; ? >  < /p > 
  < /body > 
 < /html >      

  How It Works  
 Most of the code in these scripts should be pretty understandable, by this point. You ’ ve seen functions 
like  trim_body)_  before in similar functionality in Chapter  13  ’ s content management system (CMS) 
application. Let ’ s look, however, at some of the more powerful functionality that  frm_output_
functions.inc.php  gives you.   

 

  Pagination 
 If you are not familiar with pagination, then we suggest you do a quick search  —  for anything  —  on 
your favorite search engine. No matter what you search for, most likely you ’ ll have a large number of 
links returned in response to your query. You should see some links somewhere that will take you to 
more pages of search results, with the option of clicking next, previous, or a specific numbered page. 
That, my friend, is pagination, and we are going to teach you how to do it for your own pages. 



574

Part II: Comic Book Fan Site

 When paginating your data, there are a few things you should have. The first, of course, is a large set of 
data that you can ’ t display on one page. You also need to know how many rows of data you will display 
per page, and how many total records you have in your result set. You also need to know how many 
pages you will have access to at one time. For example, if you had 40 pages of data to display, you might 
want to show links only for pages 1 through 10, or 12 through 21, and so forth. This is called the  range . 

 Take a look at  show_topic()  in  frm_output_functions.inc.php . It ’ s quite lengthy, so we ’ ll 
highlight for you the relevant code lines that affect pagination.   

function show_topic($db, $topic_id, $user_id, $limit = 25) {
...
    if (isset($_GET[‘page’])) {
        $page = $_GET[‘page’];
    } else {
        $page = 1;
    }
                   
    $start = ($page - 1) * $limit;  

 In a calling page, you pass in a number equaling the maximum number of records per page you want to 
display. If you don ’ t pass a  page  parameter in the URL to the web page, you assume you are on page 1. 
Otherwise, you will be setting  page  to the value passed to you in the URL. By knowing the page and the 
limit (number of posts per page), you can calculate your  $start  value (which will be used by the  LIMIT  
statement in the SQL statement used to retrieve rows). For example, if you are on page 3, and your limit 
is 25 posts per page, then the third page will display rows 51 through 75. 

 Here is the SQL statement for returning posts. It may be long, but thankfully it is not overly complex. It 
is simply four tables joined by the  JOIN  statement. Please note the first line and the last line of the SQL 
statement: 

$sql = ‘SELECT SQL_CALC_FOUND_ROWS 
        p.id, p.subject, p.body, p.date_posted, p.date_updated,
        u.name as author, u.id as author_id, u.signature as sig,
        c.post_count as postcount, p.forum_id as forum_id,
        f.forum_moderator as moderator, p.update_id, u2.name as updated_by 
    FROM
        frm_forum f JOIN frm_posts p ON f.id = p.forum_id 
        JOIN frm_users u ON u.id = p.author_id 
        LEFT JOIN frm_users u2 ON u2.id = p.update_id 
        LEFT JOIN frm_post_count c ON u.id = c.user_id 
    WHERE
        p.topic_id = ‘ . $topic_id . ‘ OR
        p.id = ‘ . $topic_id . ‘
    ORDER BY
         p.topic_id, p.date_posted 
    LIMIT ‘ . $start . ‘, ‘ . $limit;
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   
$page_links = paginate($db, $limit);  

 This query will return a maximum of the number of rows in  $limit . The problem is, you need to know 
how many rows  would have been returned  if  LIMIT  had not been used. You could execute the query again 



Chapter 16: Creating a Bulletin Board System

575

without the  LIMIT  clause and retrieve the number of rows returned, but it turns out that isn ’ t necessary. 
MySQL provides the  SQL_CALC_FOUND_ROWS  command as a means for you to find out. In the first line, 
immediately following  SELECT , you use the SQL command  SQL_CALC_FOUND_ROWS . This doesn ’ t do 
anything to the query directly, but does allow you to subsequently run the SQL command: 

  $sql = “SELECT FOUND_ROWS();”;  

 The MySQL function  FOUND_ROWS()  returns the number of rows that  SQL_CALC_FOUND_ROWS  found. 
 SQL_CALC_FOUND_ROWS  makes the  SELECT  query take slightly longer to execute, but it is still more 
efficient than running the query a second time to find out how many rows would have been returned if 
you had not used a  LIMIT  clause. 

 After you have your numbers, it ’ s time to create the page links. Take a look at the  paginate()  function 
in the same file: 

function paginate($db, $limit = 10) {
    global $admin;
                   
    $sql = ‘SELECT FOUND_ROWS();’;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
    $row = mysql_fetch_array($result);
    $numrows = $row[0];
    $pagelinks = ‘ < p > ’;
    if ($numrows  >  $limit) {
        if(isset($_GET[‘page’])){
            $page = $_GET[‘page’];
        } else {
            $page = 1;
        }
...
    } else {
        $pagelinks .= ‘ & lt; PREV & nbsp; & nbsp;NEXT  & gt; & nbsp; & nbsp;’;
    }
    $pagelinks .= ‘ < /p > ’;
    return $pagelinks;
}  

 The paginate function takes a  $limit  parameter, which, if it is not passed in to the function, you set to a 
default value of 10. In order for the code to access the forum configuration variables, such as range and 
limit,  $admin  must be declared  global  because the scope of PHP ’ s execution is now in the function. 
Otherwise, you would not be able to access the configuration. 

 As you can see, because you used  SELECT FOUND_ROWS() ,  $numrows  contains the number of rows your 
query returns. As long as the number of rows is larger than your limit, you ’ ll generate the pagination 
links. Otherwise, you ’ ll just display inactive links. 

 Next, you grab the page variable, if it is set. If not, then you set  $page  to 1. Then you determine 
whether the  < PREV link should be active or not. Obviously if you are on page 1, there is no previous 



576

Part II: Comic Book Fan Site

page, and the link should not be active. Otherwise, the previous page is one less than the number of the 
current page: 

if($page == 1) {
    $pagelinks .= ‘ & lt; PREV’;
} else {
    $pageprev = $page - 1;
    $pagelinks .= ‘ < a href=”’ . $currpage . ‘ & page=’ . $pageprev . 
        ‘” >  & lt; PREV < /a > ’;
}  

 The next chunk of code does a little bit of math. The number of pages is determined by dividing the total 
number of rows returned by your previous  SELECT FOUND_ROWS()  query  by the number of posts per 
page ( $numrows  divided by  $limit ) and rounding up. 

 The range is grabbed from  $admin[‘pagerange’][‘value’]  and stored in  $range . If it ’ s not 
available, then  $range  defaults to 7. This value determines how many pages are accessible via a link at 
the bottom of the page. For example, if the range is 5, there are 13 pages, and you are currently viewing 
page 6, you will have access to pages 4, 5, 6, 7, and 8: 

 <  PREV .. [4] [5] 6 [7] [8] .. NEXT  >   

 The  “ .. ”  shows you that there are more pages in that direction (either before or after).   

$numofpages = ceil($numrows / $limit);
$range = $admin[‘pageRange’][‘value’];
if ($range == ‘’ or $range == 0) {
    $range = 7;
}  

 The next few lines determine what range of pages to show you. In the previous example, if the  $range  is 
5, but you are viewing page 2 out of 13 pages, the code should be smart enough to allow you access to 
pages 1 through 5: 

 <  PREV  [1] 2 [3] [4] [5] .. NEXT  >   

 As you can see, you are viewing page 2, you can get to pages 1 through 5 directly, and there are more 
pages past 5. The piece of logic that determines which pages are available is the following: 

$lrange = max(1, $page - (($range - 1) / 2));
$rrange = min($numofpages, $page + (($range - 1) / 2));
if (($rrange - $lrange)  <  ($range - 1)) {
    if ($lrange == 1) {
        $rrange = min($lrange + ($range - 1), $numofpages);
    } else {
        $lrange = max($rrange - ($range - 1), 0);
    }
}  

 Then, the next part of the code renders the space between  PREV  and  NEXT . If the lower range is higher 
than 1, you put .. in to show that more pages can be accessed by clicking  < PREV. Then, use the  $lrange  
and  $rrange  values to build the page number links. If the link corresponds to the current page, don ’ t 



Chapter 16: Creating a Bulletin Board System

577

make it a link. Next, if the high end of the range of pages is lower than the total number of pages 
available, you put in the .. to show that more pages can be accessed by clicking NEXT > .   

if ($lrange  >  1) {
    $pagelinks .= ‘..’;
} else {
    $pagelinks .= ‘ & nbsp; & nbsp;’;
}
for($i = 1; $i  < = $numofpages; $i++) {
    if ($i == $page) {
        $pagelinks .= $i;
    } else {
        if ($lrange  < = $i and $i  < = $rrange) {
            $pagelinks .= ‘ < a href=”’ . $currpage . ‘ & page=’ . $i . 
                ‘” > ’ . $i . ‘ < /a > ’;
        }
    }
}
if ($rrange  <  $numofpages) {
    $pagelinks .= ‘..’;
} else {
    $pagelinks .= ‘ & nbsp; & nbsp;’;
}  

 The last part of the code renders NEXT >  as an active or inactive link, depending on whether or not you 
are looking at the last post of the thread, as it doesn ’ t make sense to go beyond the last page. Doing this 
is relatively simple: 

    if(($numrows - ($limit * $page))  >  0) {
        $pagenext = $page + 1;
        $pagelinks .= ‘ < a href=”’ . $currpage . ‘ & page=’ . $pagenext . 
            ‘” > NEXT  & gt; < /a > ’;
    } else {
        $pagelinks .= ‘NEXT  & gt;’;
    }
} else {
    $pagelinks .= ‘ & lt; PREV & nbsp; & nbsp;NEXT  & gt; & nbsp; & nbsp;’;
}  

  Voil à  ! You have a terrific, customizable, dynamically built pagination function. Your code generates 
simple text links for the pages. However, you can easily take the logic presented here and modify the 
code to implement CSS styles, images, or whatever else tickles your creative fancy.  

  Breadcrumbs 
 Once upon a time, there were two little children named Hansel and Gretel. They didn ’ t want to get lost 
in the forest, so the story goes. So Hansel got the bright idea of dropping crumbs of bread along the path 
so that they could find their way back. Birds ate the bread, the kids got lost, and then they stumbled 
upon a house made out of gingerbread and candy (yum!). The little old lady who owned the house 
wasn ’ t too keen on the idea of children eating holes through her walls, and so she enslaved them. Hansel 
got fat eating German chocolates and candies while sitting in a cage, and Gretel was forced to do chores. 
Then one day they stuffed the little old lady in an oven and ran home. The end. 



578

Part II: Comic Book Fan Site

 Exactly how Hansel and Gretel found their way home remains a mystery to us, since the birds ate the 
breadcrumbs marking the trail, and that ’ s how they got lost in the first place! But aside from that, Hansel 
had the right idea. By leaving some sort of trail behind them, they should have been able to navigate out 
of any dark forest. 

 Some time ago, search engines came along, and some of them gave us the ability to find web sites based 
on categories. Because there are so many sites out there that are very specialized, some of them might be 
in a sub - sub - sub - subcategory. For example, say you wanted to view some sites in the Yahoo! directory 
about PHP. You click the Computers and Internet category. Hmmm. Next, click Software, then Internet, 
World Wide Web, Servers (ah, we ’ re getting close), Server Side Scripting, and (yes, finally!) PHP. Now 
that you have reached this page, wouldn ’ t it be nice to remember how you got here? If you look near the 
top of the screen, you should see something that looks like this: 

Directory  >  Computers and Internet  >  Software  >  Internet  > 
    World Wide Web  >  Servers  > Server Side Scripting  >  PHP  

 It is a map of categories and subcategories telling you exactly how to get to the category you are looking 
at. Someone (probably a fan of gingerbread houses, but don ’ t quote us on that) saw this  “ map ”  and 
decided to call it a breadcrumb list. The name has stuck. 

 The truth is, breadcrumbs are very helpful, and they make a lot of sense for a bulletin board forum. They 
can give you a map from the post you are reading to the thread it was in, to the forum the thread was in, 
to the category the forum was in, and to the home page. By clicking on any part of the breadcrumb trail, 
you can easily navigate to another part of the site. Perhaps one would look like this: 

Home  >  Comic Book Movies  >  Spider-Man  >  This movie rocked!  >  I agree  

 You have implemented breadcrumbs for this application, and we will explain to you how it was done. 
You could implement a breadcrumb system in many different ways (such as by folder structure). This is 
just one way, and it is relatively simple. 

 The function itself takes two arguments,  $id  and  $getfrom . The argument  $getfrom  will either be F for 
forum or P for post. There is no one standard separator for crumbs. Some people use   >  , but we like to use 
a bullet or dot. You can use whichever HTML entity you like: 

function breadcrumb($db, $id, $get_from = ‘F’) {
    $separator = ‘  & middot; ‘;  

 If you are in a post, then you want your breadcrumb to include a link to the forum, along with a 
nonlinked indication of what thread you are in. You pass in the  topic_id  to retrieve the right topic and 
get the  forum_id  from that topic and put it into the  $id  field. You also extract the name of the topic.   

if ($get_from == ‘P’) {
    $sql = ‘SELECT forum_id, subject FROM frm_posts WHERE id = ‘ . $id;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
    $row = mysql_fetch_array($result);
    $id = $row[‘forum_id’];
    $topic = $row[‘subject’];
    mysql_free_result($result);
}  



Chapter 16: Creating a Bulletin Board System

579

 Next, you call  get_forum()  with the  $id  that is now a  forum_id . It returns a row that contains the 
name and description of the forum. You don ’ t currently use the description, but you could use it as  alt  
or  title  attributes for the breadcrumb, if you wanted to.   

$row = get_forum($db, $id);  

 At this point, you begin building the breadcrumb in the variable  $bcrumb .  Home  is always first, and then 
the separator. Next is either a link to the forum (if looking at a post), or simply the forum listed without a 
link. Next comes the thread title for the post you are looking at.   

    $bcrumb = ‘ < a href=”frm_index.php” > Home < /a > ’ . $separator;
    switch ($get_from) {
    case ‘P’:
        $bcrumb .= ‘ < a href=”frm_view_forum.php?f=’ . $id . ‘” > ’
. $row[‘name’] .
            ‘ < /a > ’ . $separator . $topic;
        break;
                   
    case ‘F’:
        $bcrumb .= $row[‘name’];
        break;
    }
    return ‘ < h2 > ’ . $bcrumb . ‘ < /h2 > ’;
}  

 As we said before, this breadcrumb is not that difficult or complex, but we are sure that, armed with all 
of the PHP knowledge you now have from reading this book, you could easily come up with a very 
impressive breadcrumb function! 

 Next, take a look at your  frm_header.inc.php  file. There isn ’ t much new to see here, but it gives us a 
chance to discuss authentication with you for a moment.  

  A Last Look at User Authentication 
 The Comic Book Appreciation board uses user authentication, but it is by no means totally secure. For a 
board application, it is probably secure enough. If this were human resources data containing sensitive 
information, you might want to make it a bit more secure. This book does not attempt to help you create 
a virtual Fort Knox. If you have such a need, we strongly suggest you look for a good book on security, 
and perhaps look at a few online resources. A good start is  www.w3.org/Security/Faq/ . 

 Take a look at your security model, and see where there might be some places to improve it a bit. If you 
look at most of the PHP pages that make up the application, you see that you check for a user ’ s access 
level before displaying certain items. For example, examine  frm_header.inc.php . 

 Because  frm_header.inc.php  is included at the top of almost every web page, you do most of your 
user authentication there. By checking for the existence of the  user_id  session variable, you know the 
user is logged in. By checking if  access_lvl  is greater than 2, you know whether the user has 
administrator access. This allows you to customize the main menu according to the user ’ s login status 
and his or her access level. It also allows you to address the user by name.   



580

Part II: Comic Book Fan Site

if (isset($_SESSION[‘name’])) {
    echo ‘ < p > Welcome, ‘ . $_SESSION[‘name’] . ‘ < /p > ’;
}
...
echo ‘ < p >  < a href=”frm_index.php” > Home < /a > ’;
if (!isset($_SESSION[‘user_id’])) {
    echo ‘ |  < a href=”frm_login.php” > Log In < /a > ’;
    echo ‘ |  < a href=”frm_useraccount.php” > Register < /a > ’;
} else {
    echo ‘ |  < a href=”frm_transact_user.php?action=Logout” > ’;
    echo “Log out “ . $_SESSION[‘name’] . “ < /a > ”;
    if ($_SESSION[‘access_lvl’]  >  2) {
        echo ‘ |  < a href=”frm_admin.php” > Admin < /a > ’;
    }
    echo ‘ |  < a href=”frm_useraccount.php” > Profile < /a > ’;
}
echo ‘ < /p > ’;  

 If users are not logged in, you give them links to log in or register as a new user. If they are logged in, 
they can log out or view their profile. If they are administrators, they will have access to the admin 
functions.   

  Transaction Pages 
 The next group of files you ’ re going to create is the transaction pages. Like the reusable scripts just 
covered, they don ’ t have anything pretty to show the end user, but they drive a large portion of the 
behind - the - scenes board operations.  

  Try It Out Admin Transactions 

 The first file is responsible for all transactions related to the general administration of the board  — 
 things like creating new forums, changing the board options, text substitutions, and so on.   

  1.   Create  frm_transact_admin.php , the first of four transaction pages. Admin forms post to 
this page, which manipulates the data and then redirects the user to another page. Transaction 
pages do not send any data to the client unless there is an error.   

 < ?php
require ‘db.inc.php’;
require ‘frm_output_functions.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
if (isset($_REQUEST[‘action’])) {
    switch ($_REQUEST[‘action’]) {



Chapter 16: Creating a Bulletin Board System

581

    case ‘Add Forum’:
        if (isset($_POST[‘forumname’])  &  &  $_POST[‘forumname’] != ‘’  &  & 
            isset($_POST[‘forumdesc’])  &  &  $_POST[‘forumdesc’] != ‘’) {
            $sql = ‘INSERT IGNORE INTO frm_forum 
                    (id, forum_name, forum_desc, forum_moderator)
                VALUES
                    (NULL, “’ . htmlspecialchars($_POST[‘forumname’], 
ENT_QUOTES) .
                    ‘”, “’ . htmlspecialchars($_POST[‘forumdesc’], 
ENT_QUOTES) .
                    ‘”, ‘ . $_POST[‘forummod’][0] . ‘)’;
            mysql_query($sql, $db) or die(mysql_error($db));
        }
        header(‘Location: frm_admin.php?option=forums’);
        exit();
        break;
                   
    case ‘Edit Forum’:
        if (isset($_POST[‘forumname’])  &  &  $_POST[‘forumname’] != ‘’  &  & 
            isset($_POST[‘forumdesc’])  &  &  $_POST[‘forumdesc’] != ‘’) {
            $sql = ‘UPDATE frm_forum SET
                    forum_name = “’ . $_POST[‘forumname’] . ‘”,
                    forum_desc = “’ . $_POST[‘forumdesc’] . ‘”.
                    forum_moderator = ‘ . $_POST[‘forummod’][0] . ‘
                WHERE
                    id = ‘ . $_POST[‘forum_id’];
            mysql_query($sql, $db) or die(mysql_error($db));
        }
        header(‘Location: frm_admin.php?option=forums’);
        exit();
        break;
                   
    case ‘Modify User’:
        header(‘Location: frm_useraccount.php?user=’ . 
$_POST[‘userlist’][0]);
        exit();
        break;
                   
    case ‘Update’:
        foreach ($_POST as $key = >  $value) {
            if ($key != ‘action’) {
                $sql = ‘UPDATE frm_admin SET
                        value=”’ . $value . ‘”
                    WHERE
                        constant = “’ . $key . ‘”’;
                mysql_query($sql, $db) or die(mysql_error($db));
            }
        }
        header(‘Location: frm_admin.php’);
        exit();
        break;
                   



582

Part II: Comic Book Fan Site

    case ‘deleteForum’:
        $sql = ‘DELETE FROM frm_forum WHERE id=’ . $_GET[‘f’];
        mysql_query($sql, $db) or die(mysql_error($db));
        
        $sql = ‘DELETE FROM forum_posts WHERE forum_id=’ . $_GET[‘f’];
        mysql_query($sql, $db) or die(mysql_error($db));
                   
        header(‘Location: frm_admin.php?option=forums’);
        exit();
        break;
                   
    case ‘Add New’:
        $sql = ‘INSERT INTO frm_bbcode 
                (id, template, replacement)
            VALUES
                (NULL, “’ . htmlentities($_POST[‘bbcode-tnew’], 
ENT_QUOTES) . ‘”,
                “’ . htmlentities($_POST[‘bbcode-rnew’],ENT_QUOTES) . ‘”)’;
        mysql_query($sql, $db) or die(mysql_error($db));
        header(‘Location: frm_admin.php?option=bbcode’);
        exit();
        break;
                   
    case ‘deleteBBCode’:
        if (isset($_GET[‘b’])) {
            $bbcodeid = $_GET[‘b’];
            $sql = ‘DELETE FROM frm_bbcode WHERE id=’ . $bbcodeid;
            mysql_query($sql, $db) or die(mysql_error($db));
        }
        header(‘Location: frm_admin.php?option=bbcode’);
        exit();
        break;
                   
    case ‘Update BBCodes’:
        foreach($_POST as $key = >  $value) {
            if (substr($key, 0, 7) == ‘bbcode_’) {
                $bbid = str_replace(‘bbcode_’, ‘’, $key);
                if (substr($bbid, 0, 1) == ‘t’) {
                    $col = ‘template’;
                } else {
                    $col = ‘replacement’;
                }
                $id = substr($bbid, 1);
                $sql = ‘UPDATE frm_bbcode SET ‘ .
                        $col . ‘ = “’ . htmlentities($value, ENT_QUOTES) . ‘”
                    WHERE
                        id = ‘ . $id;
                mysql_query($sql, $db) or die(mysql_error($db));
            }
        }
        header(‘Location: frm_admin.php?option=bbcode’);



Chapter 16: Creating a Bulletin Board System

583

        exit();
        break;
                   
    default:
        header(‘Location: frm_index.php’);
    }
} else {
    header(‘Location: frm_index.php’);
}
? >      

  How It Works  
 At this point, none of the code in  frm_transact_admin.php  should be unfamiliar to you. As seen 
before in previous chapters, this script determines what action is to be performed in the database, 
executes a corresponding query, then redirects the user to the appropriate page. 

 One of the more important things to remember from this page is the actions it handles, as shown here: 

switch ($_REQUEST[‘action’]) {
case ‘Add Forum’:
    ...
                   
case ‘Edit Forum’:
    ...
                   
case ‘Modify User’:
    ...
                   
case ‘Update’:
    ...
                   
case ‘deleteForum’:
    ...
                   
case ‘Add New’:
    ...
                   
case ‘deleteBBCode’:
    ...
                   
case ‘Update BBCodes’:
    ...
                   
default:
    ...
}
                     

 You probably already understand how the  switch  statement works, so the key thing to keep in mind 
is the different cases this specific switch processes. Remembering where a certain action takes place 
can help you more quickly find and diagnose problems when they occur.    

 



584

Part II: Comic Book Fan Site

  Try It Out Post Transactions 

 The next transaction file controls all transactions related to forum posts  —  creating, editing, replying, 
and so on.   

  1.   Enter  frm_transact_post.php , the second of four transaction pages: 

 < ?php
session_start();
require ‘db.inc.php’;
require ‘frm_output_functions.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
if (isset($_REQUEST[‘action’])) {
    switch (strtoupper($_REQUEST[‘action’])) {
    case ‘SUBMIT NEW POST’:
        if (isset($_POST[‘subject’])  &  &  isset($_POST[‘body’])  &  & 
            isset($_SESSION[‘user_id’])) {
            $sql = ‘INSERT INTO frm_posts
                    (id, topic_id, forum_id, author_id, update_id, 
date_posted,
                    date_updated, subject, body)
                VALUES (
                    NULL, ‘ . $_POST[‘topic_id’] . ‘, ‘ .
                    $_POST[‘forum_id’] . ‘, ‘ . $_SESSION[‘user_id’] . ‘, 0, 
                    “’ . date(‘Y-m-d H:i:s’) . ‘”, 0, 
                    “’ . $_POST[‘subject’] . ‘”, “’ . $_POST[‘body’] . ‘”)’;
            mysql_query($sql, $db) or die(mysql_error($db));
            $postid = mysql_insert_id();
                   
            $sql = ‘INSERT IGNORE INTO frm_post_count 
                    (user_id, post_count)
                VALUES (‘ . $_SESSION[‘user_id’] . ‘,0)’;
            mysql_query($sql, $db) or die(mysql_error($db));
                   
            $sql = ‘UPDATE frm_post_count SET
                    post_count = post_count + 1 
                WHERE
                    user_id = ‘ . $_SESSION[‘user_id’];
            mysql_query($sql, $db) or die(mysql_error($db));
        }
        $topicid = ($_POST[‘topic_id’] == 0) ? $postid : $_POST[‘topic_id’];
        header(‘Location: frm_view_topic.php?t=’ . $topicid . ‘#post’ 
. $postid);
        exit();
        break;
                   



Chapter 16: Creating a Bulletin Board System

585

    case ‘NEW TOPIC’:
        header(‘Location: frm_compose.php?f=’ . $_POST[‘forum_id’]);
        exit();
        break;
                   
    case ‘EDIT’:
        header(‘Location: frm_compose.php?a=edit & post=’ . $_POST[‘topic_id’]);
        exit();
        break;
                   
    case ‘SAVE CHANGES’:
        if (isset($_POST[‘subject’])  &  &  isset($_POST[‘body’])) {
            $sql = ‘UPDATE frm_posts SET 
                    subject = “’ . $_POST[‘subject’] . ‘”,
                    update_id = ‘ . $_SESSION[‘user_id’] . ‘,
                    body = “’ . $_POST[‘body’] . ‘”,
                    date_updated = “’ . date(‘Y-m-d H:i:s’) . ‘”
                WHERE
                    id = ‘ . $_POST[‘post’];
            if (isset($_POST[‘author_id’])) {
                $sql .= ‘ AND author_id = ‘ . $_POST[‘author_id’];
            }
            mysql_query($sql, $db) or die(mysql_error($db));
        }
        $redirID = ($_POST[‘topic_id’] == 0) ? $_POST[‘post’] :
$_POST[‘topic_id’];
        header(‘Location: frm_view_topic.php?t=’ . $redirID);
        exit();
        break;
                   
    case ‘DELETE’:
        if ($_REQUEST[‘post’]) {
            $sql = ‘DELETE FROM frm_posts WHERE id = ‘ . $_REQUEST[‘post’];
            mysql_query($sql, $db) or die(mysql_error($db));
        }
        header(‘Location: ‘ . $_REQUEST[‘r’]);
        exit();
        break;
    }
} else {
    header(‘Location: frm_index.php’);
}
? >      

  How It Works  
 Like the previous example, most of this is familiar by now. It ’ s good practice to keep in mind what 
actions this transaction page performs. One bit of code worth noting is the addition of a new post.   



586

Part II: Comic Book Fan Site

case ‘SUBMIT NEW POST’:
    if (isset($_POST[‘subject’])  &  &  isset($_POST[‘body’])  &  & 
        isset($_SESSION[‘user_id’])) {
        $sql = ‘INSERT INTO frm_posts
                (id, topic_id, forum_id, author_id, update_id, date_posted,
                date_updated, subject, body)
            VALUES (
                NULL, ‘ . $_POST[‘topic_id’] . ‘, ‘ .
                $_POST[‘forum_id’] . ‘, ‘ . $_SESSION[‘user_id’] . ‘, 0, 
                “’ . date(‘Y-m-d H:i:s’) . ‘”, 0, 
                “’ . $_POST[‘subject’] . ‘”, “’ . $_POST[‘body’] . ‘”)’;
        mysql_query($sql, $db) or die(mysql_error($db));
        $postid = mysql_insert_id();
                   
        $sql = ‘INSERT IGNORE INTO frm_post_count 
                (user_id, post_count)
            VALUES (‘ . $_SESSION[‘user_id’] . ‘,0)’;
        mysql_query($sql, $db) or die(mysql_error($db));
                   
        $sql = ‘UPDATE frm_post_count SET
                post_count = post_count + 1 
            WHERE
                user_id = ‘ . $_SESSION[‘user_id’];
        mysql_query($sql, $db) or die(mysql_error($db));
    }
    $topicid = ($_POST[‘topic_id’] == 0) ? $postid : $_POST[‘topic_id’];
    header(‘Location: frm_view_topic.php?t=’ . $topicid . ‘#post’ . $postid);
    exit();
    break;  

 Note how you first insert the post into the  frm_posts  table, then proceed to update the post count for 
the user. In this case, you add the user into the  frm_post_count  table, in case he or she doesn ’ t yet 
exist there, and follow up by incrementing the user ’ s post count by one.    

 

  Try It Out User Transactions 

 Now you ’ re going to create the file responsible for all user - related transactions. Any time a user is 
created or modified in the system, the database changes are performed here.   

  1.   Create  frm_transact_user.php , the third of four transaction pages. This one handles 
functions related to the users, such as logging in.   

 < ?php
session_start();
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));



Chapter 16: Creating a Bulletin Board System

587

                   
if (isset($_REQUEST[‘action’])) {
    switch ($_REQUEST[‘action’]) {
    case ‘Login’:
        if (isset($_POST[‘email’])  &  &  isset($_POST[‘passwd’])) {
            $sql = ‘SELECT
                    id, access_lvl, name, last_login
                FROM
                    frm_users 
                WHERE
                    email = “’ . $_POST[‘email’] . ‘” AND
                    password = “’ . $_POST[‘passwd’] . ‘”’;
            $result = mysql_query($sql, $db) or die(mysql_error($db));
            if ($row = mysql_fetch_array($result)) {
                $_SESSION[‘user_id’] = $row[‘id’];
                $_SESSION[‘access_lvl’] = $row[‘access_lvl’];
                $_SESSION[‘name’] = $row[‘name’];
                $_SESSION[‘last_login’] = $row[‘last_login’];
                $sql = ‘UPDATE frm_users SET
                        last_login = “’ . date(‘Y-m-d H:i:s’) . ‘”
                    WHERE
                        id = ‘ . $row[‘id’];
                mysql_query($sql, $db) or die(mysql_error($db));
            }
        }
        header(‘Location: frm_index.php’);
        exit();
        break;
                   
    case ‘Logout’:
        session_unset();
        session_destroy();
        header(‘Location: frm_index.php’);
        exit();
        break;
                   
    case ‘Create Account’:
        if (isset($_POST[‘name’])  &  &  isset($_POST[‘email’])  &  &  
            isset($_POST[‘passwd’])  &  &  isset($_POST[‘passwd2’])  &  & 
            $_POST[‘passwd’] == $_POST[‘passwd2’]) {
            $sql = ‘INSERT INTO frm_users 
                    (email, name, password, date_joined, last_login)
                VALUES
                    (“’ . $_POST[‘email’] . ‘”, “’ . $_POST[‘name’] . ‘”, 
                    “’ . $_POST[‘passwd’] . ‘”, “’ . date(‘Y-m-d H:i:s’) . ‘”,
                    “’ . date(‘Y-m-d H:i:s’) . ‘”)’;
            mysql_query($sql, $db) or die(mysql_error($db));
                   
            $_SESSION[‘user_id’] = mysql_insert_id($db);
            $_SESSION[‘access_lvl’] = 1;
            $_SESSION[‘name’] = $_POST[‘name’];
            $_SESSION[‘login_time’] = date(‘Y-m-d H:i:s’);



588

Part II: Comic Book Fan Site

        }
        header(‘Location: frm_index.php’);
        exit();
        break;
                   
    case ‘Modify Account’:
        if (isset($_POST[‘name’])  &  &  isset($_POST[‘email’])  &  &  
            isset($_POST[‘accesslvl’])  &  &  isset($_POST[‘userid’])) {
            $sql = ‘UPDATE frm_users SET
                    email = “’ . $_POST[‘email’] . ‘”, 
                    name = “’ . $_POST[‘name’] . ‘”,
                    access_lvl = ‘ . $_POST[‘accesslvl’] . ‘,
                    signature = “’ . $_POST[‘signature’] . ‘”
                WHERE
                    id = ‘ . $_POST[‘userid’];
            mysql_query($sql, $db) or die(mysql_error($db));
        }
        header(‘Location: frm_admin.php’);
        exit();
        break;
                   
    case ‘Edit Account’:
        if (isset($_POST[‘name’])  &  &  isset($_POST[‘email’])  &  &  
            isset($_POST[‘accesslvl’])  &  &  isset($_POST[‘userid’])) {
            $chg_pw = FALSE;
            if (!empty($_POST[‘oldpasswd’])) {
                $sql = ‘SELECT
                        passwd
                    FROM
                        frm_users
                    WHERE
                        id = ‘ . $_POST[‘userid’];
                $result = mysql_query($sql, $db) or die(mysql_error($db));
                if ($row = mysql_fetch_array($result)) {
                    if ($row[‘passwd’] == $_POST[‘oldpasswd’]  &  & 
                        isset($_POST[‘passwd’])  &  &  isset($_POST[‘passwd2’])  &  & 
                        $_POST[‘passwd’] == $_POST[‘passwd2’]) {
                        $chg_pw = TRUE;
                    } else {
                        header(‘Location: frm_useraccount
.php?error=nopassedit’);
                        exit();
                        break;
                    }
                }
            }
            $sql = ‘UPDATE frm_users SET
                    email = “’ . $_POST[‘email’] . ‘”, 
                    name=”’ . $_POST[‘name’] . ‘”, 
                    access_lvl = ‘ . $_POST[‘accesslvl’] . ‘,
                    signature = “’ . $_POST[‘signature’] . ‘”’;



Chapter 16: Creating a Bulletin Board System

589

                if ($chg_pw) {
                    $sql .= ‘”, passwd = “’ . $_POST[‘passwd’] . ‘”’;
                }
            $sql .= ‘ WHERE id=’ . $_POST[‘userid’];
            mysql_query($sql, $db) or die(mysql_error($db));
        }
        header(‘Location: frm_useraccount.php?blah=’ . $_POST[‘userid’]);
        break;
                   
    case ‘Send my reminder!’:
        if (isset($_POST[‘email’])) {
            $sql = ‘SELECT
                    passwd
                FROM
                    frm_users
                WHERE
                    email=”’ . $_POST[‘email’] . ‘”’;
                   
            $result = mysql_query($sql, $db) or die(mysql_error($db));
                   
            if (mysql_num_rows($result)) {
                $row = mysql_fetch_array($result);
                   
                $headers = ‘From: admin@yoursite.com’ . “\r\n”;
                $subject = ‘Comic site password reminder’;
                $body = ‘Just a reminder, your password for the ‘ .
                    ‘Comic Book Appreciation site is: ‘ . $row
[‘passwd’] .”\n\n”;
                $body .= ‘You can use this to log in at http://’ .
                    $_SERVER[‘HTTP_HOST’] . dirname($_SERVER[‘PHP_SELF’]) . 
                    ‘/frm_login.php?e=’ . $_POST[‘email’];
                   
                mail($_POST[‘email’], $subject, $body, $headers);
            }
        }
        header(‘Location: frm_login.php’);
        break;
    }
}
? >      

  How It Works  
 Like its predecessors, this transaction page follows the familiar  “ determine action, query database, 
return ”  pattern. Most of the action processing is pretty straightforward, with the exception of the 
account edit action. Let ’ s take a look at that specific case.   

case ‘Edit Account’:
    if (isset($_POST[‘name’])  &  &  isset($_POST[‘email’])  &  &  
        isset($_POST[‘accesslvl’])  &  &  isset($_POST[‘userid’])) {  



590

Part II: Comic Book Fan Site

 This time instead of passing a simple query to the database, you must do some preliminary checks. 
The script first checks to see if users have elected to change their password: 

$chg_pw = FALSE;
if (!empty($_POST[‘oldpasswd’])) {  

 If this condition is met, then the script checks the old password in the database to see if a change has 
truly been made. If not, the user is redirected back to the account edit page, and an error is flagged.   

    $sql = ‘SELECT
            passwd
        FROM
            frm_users
        WHERE
            id = ‘ . $_POST[‘userid’];
    $result = mysql_query($sql, $db) or die(mysql_error($db));
    if ($row = mysql_fetch_array($result)) {
        if ($row[‘passwd’] == $_POST[‘oldpasswd’]  &  & 
            isset($_POST[‘passwd’])  &  &  isset($_POST[‘passwd2’])  &  & 
            $_POST[‘passwd’] == $_POST[‘passwd2’]) {
            $chg_pw = TRUE;
        } else {
            header(‘Location: frm_useraccount.php?error=nopassedit’);
            exit();
            break;
        }
    }
}  

 Then, the account is finally updated.   

    $sql = ‘UPDATE frm_users SET
            email = “’ . $_POST[‘email’] . ‘”, 
            name=”’ . $_POST[‘name’] . ‘”, 
            access_lvl = ‘ . $_POST[‘accesslvl’] . ‘,
            signature = “’ . $_POST[‘signature’] . ‘”’;
        if ($chg_pw) {
            $sql .= ‘”, passwd = “’ . $_POST[‘passwd’] . ‘”’;
        }
    $sql .= ‘ WHERE id=’ . $_POST[‘userid’];
    mysql_query($sql, $db) or die(mysql_error($db));
}
header(‘Location: frm_useraccount.php?blah=’ . $_POST[‘userid’]);
break;  

 The rest of the actions should be pretty self - explanatory. All actions update the database with 
appropriate information, with the exception of the last case, where a reminder e - mail is sent to users if 
they have forgotten their password.    

 



Chapter 16: Creating a Bulletin Board System

591

  Try It Out Removal Transactions 

 The last transaction page covers situations where forums or posts need to be deleted.   

  1.   Create  frm_transact_affirm.php . This is the only so - called transaction page that  does  send 
data to the client. If a function requires confirmation, the user is sent here and redirected 
forward.   

 < ?php
require ‘frm_header.inc.php’;
? > 
 < script type=”text/javascript” > 
function deletePost(id, redir) {
    if (id  >  0) {
        window.location = ‘frm_transact_post.php?action=delete & post=’ +
            id + ‘ & r=’ + redir;
    } else {
        history.back();
    }
}
                   
function deleteForum(id) {
    if (id  >  0) {
        window.location = ‘frm_transact_admin.php?action=deleteForum & f
=’ + id;
    } else {
        history.back();
    }
}
 < /script > 
 < ?php
switch (strtoupper($_REQUEST[‘action’])) {
case ‘DELETEPOST’:
    $sql = ‘SELECT 
            id, topic_id, forum_id, subject
        FROM
            frm_posts
        WHERE
            id = ‘ . $_REQUEST[‘id’];
    $result = mysql_query($sql, $db) or die(mysql_error($db));
    $row = mysql_fetch_array($result);
    if ($row[‘topic_id’]  >  0) {
        $msg = ‘Are you sure you wish to delete the post < br/ > ’ .
            ‘ < em > ’ . $row[‘subject’] . ‘ < /em > ?’;
        $redir = htmlspecialchars(‘frm_view_topic.php?t=’ . $row[
‘topic_id’]);
    } else {
    $msg = ‘If you delete this post, all replies will be deleted as well. ‘ . 
        ‘Are you sure you wish to delete the entire thread < br/ > ’ .
        ‘ < em > ’ . $row[‘subject’] . ‘ < /em > ?’;



592

Part II: Comic Book Fan Site

        $redir = htmlspecialchars(‘frm_view_forum.php?f=’ 
. $row[‘forum_id’]);
    }
    echo ‘ < div > ’;
    echo ‘ < h2 > DELETE POST? < /h2 > ’;
    echo ‘ < p > ’ . $msg . ‘ < /p > ’;
    echo ‘ < p >  < a href=”#” onclick=”deletePost(‘ . $row[‘id’] . ‘, \’’ . 
        $redir . ‘\’); return false;” > Yes < /a >  ‘ .
        ‘ < a href=”#” onclick=”history.back(); return false;” > No < /a >  < /p > ’;
    echo ‘ < /div > ’;
    break;
                   
case ‘DELETEFORUM’:
    $sql = ‘SELECT 
            forum_name
        FROM
            frm_forum
        WHERE
            id=’ . $_REQUEST[‘f’];
    $result = mysql_query($sql, $db) or die(mysql_error($db));
    $row = mysql_fetch_array($result);
    echo ‘ < div > ’;
    echo ‘ < h2 > DELETE Forum? < /h2 > ’;
    echo ‘ < p > If you delete this forum, all topics and replies will ‘ .
       ‘be deleted as well.  Are you sure you wish to delete ‘ .
       ‘the entire forum < br/ >  < em > ’ . $row[‘forum_name’] . ‘ < /em > ? < /p > ’;
    echo ‘ < p >  < a href=”#” onclick=”deleteForum(‘ . $_REQUEST[‘f’] .
        ‘); return false;” > Yes < /a >     < a href=”#” ‘ . 
        ‘onclick=”history.back(); return false;” > No < /a >  < /p > ’;
    echo ‘ < /div > ’;
}
require_once ‘footer.php’;
? >      

  How It Works  
 An exception to the previous group of transaction pages, this script actually generates output to which 
the user can respond. The  switch()  statement determines which text to display: 

switch (strtoupper($_REQUEST[‘action’])) {
case ‘DELETEPOST’:
    ...
                   
case ‘DELETEFORUM’:
    ...
}  

 Each of the options outputs two buttons, one to confirm the action and one to go back. If users choose 
to confirm, the button calls a bit of client - side JavaScript code to redirect them to the proper 
transaction page: 

function deletePost(id, redir) {
    if (id  >  0) {
        window.location = ‘frm_transact_post.php?action=delete & post=’ +
            id + ‘ & r=’ + redir;
    } else {



Chapter 16: Creating a Bulletin Board System

593

        history.back();
    }
}
                   
function deleteForum(id) {
    if (id  >  0) {
        window.location = ‘frm_transact_admin.php?action=deleteForum & f=’ + id;
    } else {
        history.back();
    }
}     

 

  Account Functionality 
 The next section of your bulletin board application deals with general account functionality. Here, you ’ ll 
give users the ability to create their own account, request a forgotten password, and administer other 
users. Let ’ s continue.  

  Try It Out Initial Login 

 The first thing you need to do is create the pages that allow users to create their account and log in to 
the site.   

  1.   Enter  frm_login.php , the login page.   

 < ?php include ‘frm_header.inc.php’; ? > 
 < h1 > Member Login < /h1 > 
 < form method=”post” action=”frm_transact_user.php” > 
  < table > 
   < tr > 
    < td >  < label for=”email” > Email Address: < /label >  < /td > 
    < td >  < input type=”text” id=”email” name=”email” maxlength=”100”/ >  < /td > 
   < /tr >  < tr > 
    < td >  < label for=”passwd” > Password: < /label >  < /td > 
    < td >  < input type=”password” id=”passwd” name=”passwd” maxlength=”20”/ >  < /td > 
   < /tr >  < tr > 
    < td >     < /td > 
    < td >  < input type=”submit” class=”submit” name=”action” value=”Login”/ >  < /td > 
   < /tr > 
  < /table > 
 < /form > 
 < p > Not a member yet?  < a href=”frm_useraccount.php” > Create a new account! < /a >  < /p > 
 < p >  < a href=”frm_forgotpass.php” > Forgot your password? < /a >  < /p > 
 < ?php include ‘frm_footer.inc.php’; ? >    



594

Part II: Comic Book Fan Site

  2.   Create  frm_index.php , the home page. This is the page users will first see when they view 
the board.   

 < ?php
require ‘frm_header.inc.php’;
                   
$sql = ‘SELECT
        f.id as id, f.forum_name as forum, f.forum_desc as description,
        COUNT(forum_id) as threads, u.name as moderator
    FROM
        frm_forum f LEFT JOIN frm_posts p ON f.id = p.forum_id AND 
p.topic_id = 0
        LEFT JOIN frm_users u ON f.forum_moderator = u.id
    GROUP BY
        f.id’;
$result = mysql_query($sql, $db) or die(mysql_error($db) . $sql);
                   
if (mysql_num_rows($result) == 0) {
  echo ‘ < h2 > There are currently no forums to view. < /h2 > ’;
} else {
? > 
 < table > 
  < tr > 
   < th > Forum < /th > 
   < th > Threads < /th > 
   < th > Moderator < /th > 
  < /tr > 
 < ?php
    $odd = true;
    while ($row = mysql_fetch_array($result)) {
        echo ($odd == true) ? ‘ < tr class=”odd_row” > ’ : ‘ < tr class=
”even_row” > ’;
        $odd = !$odd; 
        echo ‘ < td >  < a href=”frm_view_forum.php?f=’ . $row[‘id’] . ‘” > ’ .
            $row[‘forum’] . ‘ < /a >  < br/ > ’ . $row[‘description’] . ‘ < /td > ’;
        echo ‘ < td style=”text-align: center;” > ’ . $row[‘threads’] . ‘ < /td > ’;
        echo ‘ < td > ’ . $row[‘moderator’] . ‘ < /td > ’;
        echo ‘ < /tr > ’;
    }
    echo ‘ < /table > ’;
}
                   
require ‘frm_footer.inc.php’;
? >    



Chapter 16: Creating a Bulletin Board System

595

  3.   Create  frm_forgotpass.php . This page is displayed if the user forgets his or her password.   

 < ?php include ‘frm_header.inc.php’; ? > 
 < h2 > Email Password Reminder < /h2 > 
 < p > Forgot your password? Just enter your email address, and we’ll email 
you a new one! < /p > 
 < form method=”post” action=”frm_transact_user.php” > 
  < div > 
   < label for=”email” > Email Address: < /label > 
   < input type=”text” id=”email” name=”email” maxlength=”100”/ > 
   < input type=”submit” name=”action” value=”Send my reminder!”/ > 
  < /div > 
 < /form > 
 < ?php include ‘frm_footer.inc.php’; ? >    

  4.   Load  frm_login.php  in your browser. You are taken to the login page. Observe the link at 
the bottom of the login screen,  “ Forgot your password? ”  A user who cannot remember his or 
her password can click this link and enter the e - mail address submitted when the account was 
created. If he or she is verified to be a valid user, the password will be sent to the e - mail 
address given. You can try this out yourself if you like, assuming you are using a legitimate 
e - mail address (and not the admin@example.com default).  

  5.   Enter your password, and click the Login button. You should now see the home page of the 
CBA board application (see Figure  16 - 2 ).    

Figure 16-2



596

Part II: Comic Book Fan Site

   You are now logged in as the administrator of the CBA board application. As the administrator, 
you have complete control of your application. Three other roles apply to the board: Moderator, 
User, and Anonymous. Technically  “ Anonymous ”  isn ’ t really a role, but if you are not logged in, 
the system does not know who you are and treats you as  “ Anonymous. ”     

  How It Works  
 You may have noticed that  frm_login.php  and  frm_forgotpass.php  are similar to the 
corresponding files in Chapter  13 . Since they are pretty much just HTML, we ’ ll skip those for now, and 
talk about your home page,  frm_index.php . 

 At the start of the file, you include your standard three reusable scripts and then proceed to query the 
database. This time you use a three - table  JOIN  to retrieve a list of all the available forums, the number 
of threads per forum, and the name of the moderator for each.   

$sql = ‘SELECT
        f.id as id, f.forum_name as forum, f.forum_desc as description,
        COUNT(forum_id) as threads, u.name as moderator
    FROM
        frm_forum f LEFT JOIN frm_posts p ON f.id = p.forum_id AND p.topic_id 
= 0
        LEFT JOIN frm_users u ON f.forum_moderator = u.id
    GROUP BY
        f.id’;
$result = mysql_query($sql, $db) or die(mysql_error($db) . $sql);  

 The rest of the script is all output. You check if any forums are found, and if so, you generate a table 
with links to each forum.   

if (mysql_num_rows($result) == 0) {
  echo ‘ < h2 > There are currently no forums to view. < /h2 > ’;
} else {
? > 
 < table > 
  < tr > 
   < th > Forum < /th > 
   < th > Threads < /th > 
   < th > Moderator < /th > 
  < /tr > 
 < ?php
    $odd = true;
    while ($row = mysql_fetch_array($result)) {
        echo ($odd == true) ? ‘ < tr class=”odd_row” > ’ : ‘ < tr class=
”even_row” > ’;
        $odd = !$odd; 
        echo ‘ < td >  < a href=”frm_view_forum.php?f=’ . $row[‘id’] . ‘” > ’ .
            $row[‘forum’] . ‘ < /a >  < br/ > ’ . $row[‘description’] . ‘ < /td > ’;
        echo ‘ < td style=”text-align: center;” > ’ . $row[‘threads’] . ‘ < /td > ’;
        echo ‘ < td > ’ . $row[‘moderator’] . ‘ < /td > ’;
        echo ‘ < /tr > ’;
    }
    echo ‘ < /table > ’;
}     

 



Chapter 16: Creating a Bulletin Board System

597

  Try It Out User Management 

 The next thing you are going to do is create the pages that allow the admin to control board settings 
and create user accounts.   

  1.   Enter  frm_admin.php . This is the page used to edit different board attributes, user 
information, forums, and more.   

 < ?php
require_once ‘header.php’;
? > 
 < script type=”text/javascript” > 
function delBBCode(id) {
    window.location = ‘frm_transact_admin.php?action=deleteBBCode & b=’ + id;
}
function delForum(id) {
    window.location = ‘frm_transact_affirm.php?action=deleteForum & f=’ + id;
}
 < /script > 
 < ?php
$sql = ‘SELECT
        access_lvl, access_name
    FROM
        frm_access_levels
    ORDER BY
        access_lvl DESC’;
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   
while ($row = mysql_fetch_array($result)) {
    $a_users[$row[‘access_lvl’]] = $row[‘access_name’];
}
                   
$menuoption = ‘boardadmin’;
if (isset($_GET[‘option’])) $menuoption = $_GET[‘option’];
                   
$menuItems = array(
    ‘boardadmin’ = >  ‘Board Admin’,
    ‘edituser’ = >  ‘Users’,
    ‘forums’ = >  ‘Forums’,
    ‘bbcode’ = >  ‘BBcode’);
echo ‘ < p > |’;
foreach ($menuItems as $key = >  $value) {
    if ($menuoption != $key) {
        echo ‘ < a href=”’ . $_SERVER[‘PHP_SELF’] . ‘?option=’ . $key. ‘” > ’;
    }
    echo ‘ ‘ . $value . ‘ ‘;
    if ($menuoption != $key) {
        echo ‘ < /a > ’;
    }
    echo ‘|’;



598

Part II: Comic Book Fan Site

}
echo ‘ < /p > ’;
                   
switch ($menuoption) {
case ‘boardadmin’:
? > 
 < h2 > Board Administration < /h2 > 
 < form method=”post” action=”frm_transact_admin.php” > 
  < table > 
   < tr > 
    < th > title < /th > 
    < th > Value < /th > 
    < th > Parameter < /th > 
   < /tr > 
 < ?php
    foreach ($admin as $key = >  $value) {
        echo ‘ < tr > ’;
        echo ‘ < td > ’ . $value[‘title’] . ‘ < /td > ’;
        echo ‘ < td >  < input type=”text” name=”’ . $key . ‘” value=”’ . 
            $value[‘value’] . ‘” size=”60” / >  < /td > ’;
        echo ‘ < td > ’ . $key . ‘ < /td > ’;
        echo ‘ < /tr > ’;
    }
? > 
  < /table > 
  < p >  < input type=”submit” name=”action” id=”Update” value=”Update” / >  < /p > 
 < /form > 
 < ?php
    break;
  
case ‘edituser’:
? > 
 < h2 > User Administration < /h2 > 
     < div id=”users” > 
 < form action=”frm_transact_admin.php” method=”post” > 
  < div > 
   < label for=”userlist” > Please select a user to manage: < /label > 
   < select id=”userlist” name=”userlist[]” > 
 < ?php
    foreach ($a_users as $key = >  $value) {
        echo ‘ < optgroup label=”’ . $value . ‘” > ’ . user_option_list
($db, $key) .
            ‘ < /optgroup > ’;
    }
  ? > 
   < /select > 
   < input type=”submit” name=”action” value=”Modify User”/ > 
  < /div > 
 < /form > 
 < ?php
    break;
                   
case ‘forums’:
? > 



Chapter 16: Creating a Bulletin Board System

599

 < h2 > Forum Administration < /h2 > 
 < table > 
  < tr >  < th colspan=”3” > Forum < /th >  < /tr > 
 < ?php
    $sql = ‘SELECT
            id, forum_name, forum_desc
        FROM
             frm_forum’;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
    while ($row = mysql_fetch_array($result)) {
        echo ‘ < tr > ’;
        echo ‘ < td > ’ . $row[‘forum_name’] . ‘ < br/ > ’ . $row[‘forum_desc’] 
. ‘ < /td > ’;
        echo ‘ < td >  < a href=”frm_edit_forum.php?forum=’ .$row[‘id’] .
            ‘” > Edit < /a >  < /td > ’;
        echo ‘ < td >  < a href=”#” onclick=”delForum(‘. $row[‘id’] .
            ‘); return false;” > Delete < /a >  < /td > ’;
        echo ‘ < /tr > ’;
    }
? >  
 < /table > 
 < p >  < a href=”frm_edit_forum.php” > New Forum < /a >  < /p > 
 < ?php
    break;
                   
case ‘bbcode’:
  ? > 
 < h2 > BBcode Administration < /h2 > 
 < form method=”post” action=”frm_transact_admin.php” > 
  < table > 
   < tr > 
    < th > Template < /th > 
    < th > Replacement < /th > 
    < th > Action < /th > 
   < /tr > 
 < ?php
    if (isset($bbcode)) {
        foreach ($bbcode as $key = >  $value) {
            echo ‘ < tr > ’;
            echo ‘ < td >  < input type=”text” name=”bbcode_t’ . $key . ‘” value=”’ .
                $value[‘template’] . ‘” size=”32”/ >  < /td > ’;
            echo ‘ < td >  < input type=”text” name=”bbcode_r’ . $key . ‘” value=”’ .
                $value[‘replacement’] . ‘” size=”32”/ >  < /td > ’;
            echo ‘ < td >  < input type=”button” name=”action” id=”DelBBCode” ‘ .
                ‘value=”Delete” onclick=”delBBCode(‘ . $key .
                ‘); return false;”/ >  < /td > ’;
            echo ‘ < /tr > ’;
        }
    }
? > 
   < tr > 
    < td >  < input type=”text” name=”bbcode-tnew” size=”32”/ >  < /td > 
    < td >  < input type=”text” name=”bbcode-rnew” size=”32”/ >  < /td > 



600

Part II: Comic Book Fan Site

    < td >  < input type=”submit” name=”action” id=”AddBBCode” value=
”Add New”/ >  < /td > 
   < /tr > 
  < /table > 
  < p >  < input type=”submit” name=”action” id=”Update” value=”Update BBCodes”/ >  < /p > 
 < /form > 
   < ?php
    break;
}
                   
require_once ‘frm_footer.inc.php’;
? >    

  2.   Create  frm_useraccount.php . Users access this page to edit their own profiles.   

 < ?php
require_once ‘frm_header.inc.php’;
                   
$userid = $username = $useremail = $password = $accesslvl = ‘’;
$mode = ‘Create’;
if (isset($_SESSION[‘user_id’])) {
    $userid = $_SESSION[‘user_id’];
    $mode = ‘Edit’;
    if (isset($_GET[‘user’])) {
        if ($_SESSION[‘user_id’] == $_GET[‘user’] || $_SESSION
[‘access_lvl’]  >  2) {
            $userid = $_GET[‘user’];
            $mode = ‘Modify’;
        }
    }
    $sql = ‘SELECT 
            name, email, access_lvl, signature
        FROM
            frm_users
        WHERE
            id = ‘ . $userid;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
                   
    $row = mysql_fetch_array($result);
    $username = $row[‘name’];
    $useremail = $row[‘email’];
    $accesslvl = $row[‘access_lvl’];
    $signature = $row[‘signature’];
}
                   
echo ‘ < h2 > ’ . $mode  . ‘ Account < /h2 > ’;
? > 
 < form method=”post” action=”frm_transact_user.php” > 
  < p > Full name: < br / > 
   < input type=”text” name=”name” maxlength=”100”
   value=” < ?php echo htmlspecialchars($username); ? > ”/ >  < /p > 
  < p > Email Address: < br / > 
   < input type=”text” name=”email” maxlength=”255”



Chapter 16: Creating a Bulletin Board System

601

   value=” < ?php echo htmlspecialchars($useremail); ? > ”/ >  < /p > 
 < ?php
                   
if ($mode == ‘Modify’) {
    echo ‘ < div >  < fieldset > ’;
    echo ‘   < legend > Access Level < /legend > ’;
                   
    $sql = ‘SELECT
            access_lvl, access_name
        FROM
            frm_access_levels
        ORDER BY
            access_lvl DESC’;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
                   
    while ($row = mysql_fetch_array($result)) {
        echo ‘ < input type=”radio” id=”acl_’ . $row[‘access_lvl’] . 
            ‘” name=”accesslvl” value=”’ . $row[‘access_lvl’] . ‘” ‘;
        if ($row[‘access_lvl’] == $accesslvl) {
            echo ‘checked=”checked”’;
        }
        echo ‘/ > ’ . $row[‘access_name’] . ‘ < br/ > ’;
    }
    echo ‘ < /fieldset >  < /div > ’;
}
if ($mode != ‘Modify’) {
    echo ‘ < div id=”passwords” > ’;
}
if ($mode == ‘Edit’) {
    if (isset($_GET[‘error’])  &  &  $_GET[‘error’] == ‘nopassedit’) {
        echo ‘ < strong > Could not modify passwords. Please try again
. < /strong >  < br/ > ’;
    }
? > 
  < p > Old Password: < br/ > 
   < input type=”password” id=”oldpasswd” name=”oldpasswd” maxlength=”50” / >  < /p > 
 < ?php
}
if ($mode != ‘Modify’) {
? > 
  < p > New Password: < br/ > 
   < input type=”password” id=”passwd” name=”passwd” maxlength=”50” / >  < /p > 
  < p > Password Verification: < br/ > 
   < input type=”password” id=”passwd2” name=”passwd2” maxlength=”50”/ >  < /p > 
 < ?php 
}
if ($mode != ‘Modify’) {
    echo ‘ < /div > ’;
}
if ($mode != ‘Create’) {
? > 
  < p > Signature: < br/ > 
   < textarea name=”signature” id=”signature” cols=”60” rows=”5” >  < ?php
    echo $signature; ? >  < /textarea >  < /p > 



602

Part II: Comic Book Fan Site

 < ?php
}
? > 
  < p >  < input type=”submit” name=”action” value=” < ?php echo $mode; ? >  
Account” >  < /p > 
 < ?php
if ($mode == ‘Edit’) {
? > 
  < input type=”hidden” name=”accesslvl” value=” < ?php echo $accesslvl; ? > ” / > 
 < ?php
}
? > 
  < input type=”hidden” name=”userid” value=” < ?php echo $userid; ? > ”/ > 
 < /form > 
 < ?php
require_once ‘frm_footer.inc.php’;
? >    

  3.   You are going to create a couple of new user identities to demonstrate the difference between 
the various roles. 

  Log out, and click Register. You should see a screen similar to the one shown in Figure  16 - 3 .    

Figure 16-3



Chapter 16: Creating a Bulletin Board System

603

  4.   Enter a name. This name will be used for display purposes.  

  5.   Enter your e - mail address.  

  6.   Enter your password twice for verification.  

  7.   Click the Create Account button. 

  Your account will be created, and you will be automatically logged in with your new account.  

  8.   Repeat steps 3 through 7 to create one more account.  

  9.   Log out, and then log back in with your original admin account.  

  10.   Now that you are logged in as the site administrator, you should see a menu item called 
Admin. Click it.  

  11.   Click Users in the Administration menu. 

  This displays the User Administration screen; from here, you can select a user from the drop -
 down menu and edit user details.  

  12.   Choose one of the user profiles you created in step 7, and click Modify User. You should see a page 
similar to Figure  16 - 4 . From this page, you can modify a user ’ s name, access level, and signature.    

Figure 16-4



604

Part II: Comic Book Fan Site

  13.   Change the user ’ s access level to Moderator, and click Modify Account.    

  How It Works  
 Let ’ s begin by looking at  frm_useraccount.php . At the beginning of the file, you check the user ’ s 
credentials stored in your session variables. If the user is an admin, then the form is set up to allow the 
admin to change his or her access level.   

$mode = ‘Create’;
if (isset($_SESSION[‘user_id’])) {
    $userid = $_SESSION[‘user_id’];
    $mode = ‘Edit’;
    if (isset($_GET[‘user’])) {
        if ($_SESSION[‘user_id’] == $_GET[‘user’] || $_SESSION[
‘access_lvl’]  >  2) {
            $userid = $_GET[‘user’];
            $mode = ‘Modify’;
        }
    }
    $sql = ‘SELECT 
            name, email, access_lvl, signature
        FROM
            frm_users
        WHERE
            id = ‘ . $userid;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
                   
    $row = mysql_fetch_array($result);
    $username = $row[‘name’];
    $useremail = $row[‘email’];
    $accesslvl = $row[‘access_lvl’];
    $signature = $row[‘signature’];
}  

 Later down in the page, the determined mode toggles whether or not the Access Level controls will be 
displayed.   

if ($mode == ‘Modify’) {
    echo ‘ < div >  < fieldset > ’;
    echo ‘   < legend > Access Level < /legend > ’;
                   
    $sql = ‘SELECT
            access_lvl, access_name
        FROM
            frm_access_levels
        ORDER BY
            access_lvl DESC’;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
                   
    while ($row = mysql_fetch_array($result)) {
        echo ‘ < input type=”radio” id=”acl_’ . $row[‘access_lvl’] . 



Chapter 16: Creating a Bulletin Board System

605

            ‘” name=”accesslvl” value=”’ . $row[‘access_lvl’] . ‘” ‘;
        if ($row[‘access_lvl’] == $accesslvl) {
            echo ‘checked=”checked”’;
        }
        echo ‘/ > ’ . $row[‘access_name’] . ‘ < br/ > ’;
    }
    echo ‘ < /fieldset >  < /div > ’;
}  

 The rest of the page simply finishes out the form. Let ’ s move on to  frm_admin.php . 

 You may have noticed sections of code in  frm_admin.php  that involve forum settings, BBcode settings, 
and more. We ’ re going to ignore those for now to talk about the User Administration portion of the 
admin area, instead. We promise that we ’ ll touch back on those other functions later in this chapter.   

 

  User Administration 
 On the User Administration page, the first thing you need to do is gather up all of the access levels, 
along with their names. That is done with the following code in  frm_admin.php , which results in a 
numerical array of access levels: 

$sql = ‘SELECT
        access_lvl, access_name
    FROM
        frm_access_levels
    ORDER BY
        access_lvl DESC’;
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   
while ($row = mysql_fetch_array($result)) {
    $a_users[$row[‘access_lvl’]] = $row[‘access_name’];
}  

 Next, under the  edituser  case of your  switch() , you create an HTML select field, dynamically 
building up the options. By looping through the access level array you just created, you can also use the 
 optgroup  tag to categorize the select list by access level.   

   < select id=”userlist” name=”userlist[]” > 
 < ?php
    foreach ($a_users as $key = >  $value) {
        echo ‘ < optgroup label=”’ . $value . ‘” > ’ . user_option_list
($db, $key) .
            ‘ < /optgroup > ’;
    }
? > 
   < /select >   

 Note that you create the list of users by calling the  user_option_list()  function. This function resides 
in  frm_output_functions.inc.php  and is called once for each access level. A list of  option  tags is 
output, each containing the appropriate user information.   



606

Part II: Comic Book Fan Site

function user_option_list($db, $level) {
    $sql = ‘SELECT
            id, name, access_lvl
        FROM
            frm_users 
        WHERE
            access_lvl = ‘ . $level . ‘
        ORDER BY
            name’;
    $result = mysql_query($sql) or die(mysql_error($db));
                   
    while ($row = mysql_fetch_array($result)) {
        echo ‘ < option value=”’ . $row[‘id’] . ‘” > ’ . 
            htmlspecialchars($row[‘name’]) . ‘ < /option > ’;
    }
    mysql_free_result($result);
}  

 That ’ s really all there is to it. When the appropriate user is chosen, his or her ID is passed on to 
the  frm_transact_admin.php  transaction page, where the admin user is redirected to the  
frm_useraccount.php  page for that user.   

  Forum Functionality 
 The last section of this application covers the actual forum - specific functionality. Up until now, 
everything  —  with the exception of some functions and transaction pages  —  has been pretty generic, 
and could really be used for almost any type of member - driven Web site. Now, we ’ re getting to the fun 
stuff, the reason for this chapter.  

  Try It Out Editing Board Settings 

 The first thing you need to do is customize your bulletin board to your liking.   

  1.   Enter  frm_edit_forum.php , which is used to edit forum details: 

 < ?php
if (isset($_GET[‘forum’])) {
    $action = ‘Edit’;
} else {
    $action = ‘Add’;
}
$pageTitle = $action . ‘Forum’;
require_once ‘frm_header.inc.php’;
                   
$forum = 0;
$fname = ‘’;
$fdesc = ‘’;
$fmod = ‘’;
$userid = 0;
                   



Chapter 16: Creating a Bulletin Board System

607

if (isset($_GET[‘forum’])) {
    $forum = $_GET[‘forum’];
    $sql = ‘SELECT
            forum_name, forum_desc, u.name, u.id
        FROM
            frm_forum f LEFT JOIN frm_users u ON f.forum_moderator = u.id
        WHERE
            f.id = ‘ . $forum;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
    if ($row = mysql_fetch_array($result)) {
        $fname = $row[‘forum_name’];
        $fdesc = $row[‘forum_desc’];
        $fmod = $row[‘name’];
        $userid = $row[‘id’];
    }
}
echo ‘ < h2 > ’ . $action . ‘forum < /h2 > ’;
? > 
 < form action=”frm_transact_admin.php” method=”post” > 
  < table > 
   < tr > 
    < th colspan=”2” > General Forum Settings < /th > 
   < /tr >  < tr > 
    < td > Forum Name < /td > 
    < td >  < input type=”text” name=”forumname” value=” < ?php echo $fname; ? > ”/ >  < /td > 
   < /tr >  < tr > 
    < td > Forum Description < /td > 
    < td >  < input type=”text” name=”forumdesc” size=”75” value=” < ?php
    echo $fdesc; ? > ”/ >  < /td > 
   < /tr >  < tr > 
    < td > Forum Moderator < /td > 
    < td >  < select id=”moderator” name=”forummod[]” > 
      < option value=”0” > unmoderated < /option > 
 < ?php
$sql = ‘SELECT 
        id, name
    FROM
        frm_users
    WHERE
        access_lvl  >  1’;
$result = mysql_query($sql, $db) or die(mysql_error($db));
while ($row = mysql_fetch_array($result)) {
    echo ‘ < option value=”’ . $row[‘id’] . ‘”’;
    if ($userid == $row[‘id’]) {
        echo ‘ selected=”selected”’;
    }
    echo ‘ > ’ . $row[‘name’] . ‘ < /option > ’;
}
? > 
     < /select > 
    < /td > 
   < /tr >  < tr > 



608

Part II: Comic Book Fan Site

    < td colspan=”2” > 
     < input type=”hidden” name=”forum_id” value=” < ?php echo $forum; ? > ” / > 
     < input type=”submit” name=”action” value=” < ?php echo $action; ? >  Forum” / > 
    < /td > 
   < /tr > 
  < /table > 
 < /form > 
 < ?php require_once ‘frm_footer.inc.php’; ? >    

  2.   Click the Admin link from the navigation menu. This brings you to the administration page, 
as shown in Figure  16 - 5 . The values in the fields you now see are used in the application. For 
instance, the first field, Board Title, is  “ Comic Book Appreciation Forums. ”        

Figure 16-5

  3.   Edit the Board Title field to read  “ Comic Book Appreciation Bulletin Board, ”  and click Update. 

  The title at the top of the page should change accordingly.  



Chapter 16: Creating a Bulletin Board System

609

  4.   Complete the other fields in the administration page:  

❑   Board Description  

❑   Admin Email  

❑   Copyright  

❑   Board Titlebar    

     Most of those should be fairly self - explanatory. The last two fields control how many posts 
you see on one page and how many pages you have access to at one time.  

5  .   Change Pagination Limit to 3, and click the Update button.  

  6.   Now, click Forums in the Administration menu. You should see a list of the forums available 
for your board. If this is your initial installation, you will have only one forum  —  called New 
Forum. You can edit this forum, delete it, or create a new forum. Feel free to create as many 
forums as you want. Note that when creating or editing a forum, you can choose a moderator. 
The user ’ s account you edited earlier is now available as a choice in the Moderator field.  

  7.   Click BBcodes in the Administration menu. 

  You will see a form where you can enter a  “ template ”  and  “ replacement. ”  This allows you to 
designate words or phrases that will be replaced by different words or phrases. For instance, 
you can enter the phrase  “ very hard ”  in the template field, and  “ cats and dogs ”  in the 
replacement field. Once you click the Add New button, these will be added to the database. 
Note that the real power of this page is in the use of regular expressions. If you are not 
familiar with regular expressions, we explain how they work in the  “ How It Works ”  section.  

  8.   Enter the following template and replacement values exactly as they are shown. Remember to 
click Add New after entering each one:

     Template      Replacement   

     \[url\]([^[]+?)\[\/url\]       < a href= “ $1 ”  target= “ _blank “  > $1 < /a >    

     \[img\]([^[]+?)\[\/img\]       < img src= “ $1 “  >    

     \[i\]([^[]+?)\[\/i\]       < i > $1 < /i >    

     \[b\]([^[]+?)\[\/b\]       < b > $1 < /b >    

     \[u\]([^[]+?)\[\/u\]       < u > $1 < /u >    

     \[url=([^]]+?)\]       < a href= “ $1 ”  target= “ _blank “  >    

     \[\/url\]       < /a >    

     very hard      cats and dogs   

  That ’ s it for the administration functions. There are not too many, but we are sure you will 
think of many things to add, down the road.    



610

Part II: Comic Book Fan Site

  How It Works  
 That brings you back to the  frm_admin.php  page. You were able to get here by clicking the Admin 
link, which is available only if you are logged in as the administrator. So far, so good. What if the user 
attempts to access the  frm_admin.php  page directly? 

 Try it yourself. Load  frm_index.php  in your browser, and then make sure you are logged out. Once 
you are logged out, load  frm_admin.php  by typing it directly in the address bar of your browser. It 
should load with no problem. Now, edit one of the fields on the main admin page. Again, nothing is 
stopping you. Indeed, when you click the Update button, the data will be saved. 

 But wait  …  you are not logged in! How is this possible? Simple. You have not checked the user ’ s 
credentials once he or she got into the page. 

 Just as you are responsible for checking IDs in your bar in case underage patrons slip in, you are 
responsible for the users ’  access to your entire site. If you don ’ t want certain people to access a page, 
you not only have to bar access to any link loading the page, but kick them off the page if they are 
successful in loading it. 

 Fortunately, this is easy to do. At the top of your page, simply check their credentials (those are up to 
you  —  do they need a certain access level? do they just need to be logged in?), and then redirect them 
to another page if they don ’ t pass ( shameonyou.php  or simply back to  frm_index.php ). 

 You can do other things to make your site more secure. Most are way beyond the scope of this book. 
A look at the W3C security FAQ link we gave you earlier should help you, if you are interested in 
learning more about security. Just don ’ t ever think you are  “ secure enough ”  if you haven ’ t considered 
the risk of unauthorized access. 

 While you are still visiting  frm_admin.php , let ’ s take a closer look at it. 

 The file  frm_admin.php  is set up in four different areas: Board Administration, User Administration, 
Forum Admininistration, and BBcode Administration. A lot is going on in this page. You ’ ve already 
seen User Administration, so we ’ ll tackle the other three areas one at a time. First let ’ s look at Board 
Administration.   

 

  Board Administration 
 Looking at the code, you will see that you simply build your table of fields by looping through the array 
called  $admin  that has the board configuration values.   

foreach ($admin as $key = >  $value) {
    echo ‘ < tr > ’;
    echo ‘ < td > ’ . $value[‘title’] . ‘ < /td > ’;
    echo ‘ < td >  < input type=”text” name=”’ . $key . ‘” value=”’ .
    $value[‘value’] . ‘” size=”60” / >  < /td > ’;
    echo ‘ < td > ’ . $key . ‘ < /td > ’;
    echo ‘ < /tr > ’;
}  



Chapter 16: Creating a Bulletin Board System

611

 The array  $admin  is associative. The key is a unique identifier for the data, which is associated with a 
value and a title. For example, the title bar ’ s title is Board Titlebar, and the value is CBA Forums. It is 
represented in the  $admin  array as follows: 

    $admin[‘titlebar’][‘title’] = ‘Board Titlebar’
    $admin[‘titlebar’][‘value’] = ‘CBA Forums’  

 By looping through the  $admin  array, you can extract each piece of data and use it to build your form. 
But the question is, where is  $admin  populated? It is certainly not created anywhere in  frm_admin.php . 

 If you look at the top of  frm_admin.php , you ’ ll notice that  frm_header.inc.php  is included. The array 
is not built in  frm_header.inc.php  either, but looking at the top of  frm_header.inc.php  you will 
notice another included file,  frm_config.inc.php . A quick look into  frm_config.inc.php  uncovers 
the fact that  $admin  is loaded there. Note that  $bbcode  is also being built. You ’ ll see that used shortly.   

$sql = ‘SELECT * FROM frm_admin’;
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   
while ($row = mysql_fetch_array($result)) {
    $admin[$row[‘constant’]][‘title’] = $row[‘title’];
    $admin[$row[‘constant’]][‘value’] = $row[‘value’];
}
mysql_free_result($result);
                   
$sql = ‘SELECT * FROM frm_bbcode’;
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   
while ($row = mysql_fetch_array($result)) {
    $bbcode[$row[‘id’]][‘template’] = $row[‘template’];
    $bbcode[$row[‘id’]][‘replacement’] = $row[‘replacement’];
}
mysql_free_result($result);  

 Notice that  $admin  and  $bbcode  are built by looping through the entire admin and BBcode table. This is 
important because it illustrates how the Board Administration page contains every piece of data 
contained in the admin table. These values are available, and are used, throughout the application. For 
example,  frm_header.inc.php  uses some of the  $admin  data: 

$title =  $admin[‘titlebar’][‘value’]; 
...
   < title >  < ?php echo $title; ? >  < /title > 
...
   < h1 >  < ?php echo $admin[‘title’][‘value’]; ? >  < /h1 >  
< h2 >  < ?php echo $admin[‘description’][‘value’]; ? >  < /h2 >   

 You may also notice the lack of any way to add or delete admin values. There is a good reason for this. 
The  $admin  values are available at the code level. Because of this, you don ’ t want to be able to delete a 
value that the code is relying on. You also don ’ t need to create new values, because the code wouldn ’ t 
use the new values in any case. 



612

Part II: Comic Book Fan Site

 However, you may find the need to create a new row of data in the admin table to be used in your board 
application. For example, suppose you are using a style sheet to alter the appearance of the application. 
Perhaps you want the ability to dynamically change the style sheet used by changing a value in the 
admin page, rather than by editing the  frm_eader.php  file. 

 The good news is that once you add a new row of data to the admin table, it is automatically detected by 
the Board Administration page and displayed. The bottom line? If you feel you need a new, 
administrator - controlled value in your application, simply add the appropriate row of data to your 
admin table, and access it in your code, using the  $admin[‘key’][‘value’]  and 
 $admin[‘key’][ ’ title’]  syntax.  

  Forum Administration 
 Forum Administration is pretty straightforward. You look up all of the forums in the forum table and 
then list them with their descriptions, plus a link for editing and a link for deleting. Choosing delete 
takes the administrator to  frm_ransact - affirm.php , which prompts the user for confirmation before 
deleting the forum. This is a safety precaution, because deleting a forum results in the deletion of all 
posts within that forum as well. We leave it to you to explore  frm_transact - affirm.php  on your own, 
as it is a fairly self - explanatory page, and by now you should have no problem figuring out how it 
works.  

   BB code Administration 
 In step 8 of the previous  “ Try It Out ”  section, you entered a few strange patterns in the BBcode 
Administration page. These patterns are regular expressions, which were first discussed in Chapter  8 . 
We will clear up the mystery of those values for you, if you ’ re having trouble deciphering them, and 
show you how they work. Before we do that, however, let ’ s look at how BBcodes are implemented. Once 
you see where the replacements take place, we will look at the actual patterns. 

 If you take a look at the  show_topic()  function defined in  frm_output_functions.inc.php , you ’ ll 
see a line that looks like this: 

echo ‘ < /p >  < p > ’ . bbcode($db, nl2br(htmlspecialchars($body))) . ‘ < /p > ’;  

 The variable  $body  contains the text you want to display on the screen. However, before you do that, 
you have a couple of cleanup tasks to perform. First, you want to convert (and not render) any HTML 
that might exist in the form to the HTML equivalents, so that the HTML is displayed in the body as it 
was entered. This will prevent malicious users from inputting HTML that can break your page. The 
function  htmlspecialchars()  performs this conversion for you. 

 Once all of the necessary characters in the HTML have been converted to their HTML entity equivalents, 
you want to replace each newline of the body text with   < br/ >   tags so that all of the paragraphs in the 
post don ’ t run together. PHP has a handy tool for that, too: the  nl2br()  function. 

 Finally, you perform all of the replacements you have set up on the BBcode Administration page. That is 
accomplished using the function  bbcode() , which runs through each of the target/replacement pairs in 
the BBcode database, replacing any relevant text in the body. It does this recursively for a max of four 
iterations until no more matches are found.   



Chapter 16: Creating a Bulletin Board System

613

function bbcode($db, $data) {
    $sql = ‘SELECT
            template, replacement
        FROM
            frm_bbcode’;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
    if (mysql_num_rows($result)  >  0) {
        while($row = mysql_fetch_array($result)) {
            $bbcode[‘tpl’][] = ‘/’ .
                html_entity_decode($row[‘template’], ENT_QUOTES). ‘/i’;
            $bbcode[‘rep’][] = html_entity_decode($row[‘replacement’], 
                ENT_QUOTES);
        }
        $data1 = preg_replace($bbcode[‘tpl’], $bbcode[‘rep’], $data);
        $count = 1;
        while (($data1 != $data) and ($count  <  4)) {
            $count++;
            $data = $data1;
            $data1 = preg_replace($bbcode[‘tpl’], $bbcode[‘rep’], $data);
        }
    }
    return $data;
}  

 Because regular expressions (or regex) use many odd characters in the pattern, before storing the data in 
your table you use  htmlentities()  to convert the data into something MySQL can safely store. For 
that reason, when retrieving the data, you must perform  html_entity_decode() . Also note the use of 
the  i  modifier after the right - hand modifier. This specifies that you do not care about upper -  or lowercase 
matching. If you want to respect case when matching a pattern, simply remove this modifier. 

 As you can see from the code,  $row[ ’ template’  ]  contains the regex pattern. The array variable 
 $row[ ’ replacement’  ]  contains the replacement pattern. Now, let ’ s look at some of the pattern/
replacement pairs you entered earlier:

     Pattern      Replacement      Explanation   

     very hard      cats and dogs     This is a very simple replacement, using a literal 
pattern match. It replaces the words  “ very hard ”  with 
the words  “ cats and dogs ”  in any post or signature. 
You will see evidence of this in one of your posts.  

     \[\/url\]       < /a >      Replaces any instance of  [/url]  in the body with   
< /a >  . Note that the opening and closing square 
brackets and the forward slash have special meaning in 
a regexp, so they must be delimited to show that you 
want to match them literally.  

     \[b\]([^[]+?)

\[\/b\]   

    < b > $1 < /b >      Now we ’ re getting into some interesting stuff. This 
pattern matches  [b]some text here[/b]  and 
replaces it with   < b > some text here < /b >  .  



614

Part II: Comic Book Fan Site

 The last pattern deserves a bit of explanation, because it introduces a couple of new concepts. The 
parentheses are there so you can use what we call  back references . Note the  $1  in the replacement pattern. 
This tells the function:  “ Take whatever you found in the first set of parentheses and put it here. ”  If you 
had a more complex pattern with a second set of parentheses, you would refer to the data matched 
within those parentheses using  $2 . A third set of parenthesis would map to $3, and so forth. 

 Within those parentheses, you are matching any character at all  except  a left square bracket. The + tells 
the expression to match from 1 to any number of those characters. If you wanted the expression to match 
0 or more, you would instead use  * . 

 The  ?  can be very confusing, especially if you ’ re not familiar with regular expressions. Because it is 
immediately preceded by a quantifier ( + ), it does not mean 0 characters or 1 character as it usually does. 
In this case, it is telling the regex not to be greedy. What do we mean by  “ greedy ” ? Let ’ s look at the 
following text example: 

Hello, [b]George[/b], how are [b]you[/b] doing today?  

 If you ran the regex pattern  \[b\]([^[]+)\[\/b\]  against that text (note the lack of  ? ), the regex 
would be greedy and match the maximum - sized pattern it could find, by default. The result is that the 
preceding text would be altered like so: 

Hello,  < b > George[/b], how are [b]you < /b >  doing today?  

 This isn ’ t good in this particular case, because you are only trying to style  “ George ”  and  “ you ”  in 
boldface. You use the ? in your pattern after the + to tell the regex pattern to be  ungreedy , so that it finds 
the smallest matches. By adding in the ?, you get the result you really intended.   

Hello,  < b > George < /b > , how are  < b > you < /b >  doing today?  

 We know regular expressions can be a bit confusing. Take the time to learn them, though. If you 
understand them well, they can be your biggest ally. You will be surprised at the sort of patterns you can 
match with regex.  

  Try It Out Using the Board 

 The final thing you ’ re going to do is use the board as a normal user would. You ’ re going to create a 
new post, view it, and reply to it.   

  1.   Create  frm_view_forum.php , which displays all of the threads (topics) for a forum: 

 < ?php
if (!isset($_GET[‘f’])) {
    header(‘Location: frm_index.php’);
}
                   
require_once ‘frm_header.inc.php’;
                   
$forumid = $_GET[‘f’];
$forum = get_forum($db, $forumid);
                   



Chapter 16: Creating a Bulletin Board System

615

echo breadcrumb($db, $forumid, ‘F’);
if (isset($_GET[‘page’])) {
    $page = $_GET[‘page’];
} else {
    $page = 1;
}
$limit = $admin[‘pageLimit’][‘value’];
if ($limit == ‘’) {
    $limit = 25;
}
$start = ($page - 1) * $admin[‘pageLimit’][‘value’];
                   
$sql = ‘CREATE TEMPORARY TABLE tmp (
        topic_id INTEGER UNSIGNED NOT NULL DEFAULT 0,
        postdate DATETIME NOT NULL
    )’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘LOCK TABLES frm_users READ, frm_posts READ’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘INSERT INTO tmp SELECT
        topic_id, MAX(date_posted)
    FROM
        frm_posts 
    WHERE
        forum_id = ‘ . $forumid . ‘ AND topic_id  >  0 
    GROUP BY
        topic_id’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘UNLOCK TABLES’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
$sql = ‘SELECT SQL_CALC_FOUND_ROWS
        t.id as topic_id, t.subject as t_subject, u.name as t_author,
        COUNT(p.id) as numreplies, t.date_posted as t_posted,
        tmp.postdate as re_posted 
    FROM
        frm_users u JOIN frm_posts t ON t.author_id = u.id 
        LEFT JOIN tmp ON t.id = tmp.topic_id
        LEFT JOIN frm_posts p ON p.topic_id = t.id 
    WHERE
        t.forum_id = ‘ . $forumid . ‘ AND t.topic_id = 0
    GROUP BY
        t.id
    ORDER BY
        re_posted DESC
    LIMIT ‘ . $start . ‘, ‘ . $limit;
$result = mysql_query($sql, $db) or die(mysql_error($db));
                   



616

Part II: Comic Book Fan Site

$numrows = mysql_num_rows($result);
if ($numrows == 0) {
    $msg = ‘There are currently no posts.  Would you like to be the first ‘ .
        ‘person to create a thread?’;
    $title = ‘Welcome to ‘ . $forum[‘name’];
    $dest = ‘frm_compose.php?forumid=’ . $forumid;
    echo msg_box($msg, $title, $dest);
} else {
    if (isset($_SESSION[‘user_id’])) {
        echo topic_reply_bar($db, 0, $_GET[‘f’]);
}
? > 
 < table style=”width: 80%;” > 
  < tr > 
   < th style=”width: 50%;” > Thread < /th > 
   < th > Author < /th > 
   < th > Replies < /th > 
   < th > Last Post < /th > 
  < /tr > 
 < ?php
    $rowclass = ‘’;
    while ($row = mysql_fetch_array($result)) {
        $rowclass = ($rowclass == ‘odd_row’) ? ‘even_row’ : ‘odd_row’;
        if ($row[‘re_posted’] == ‘’) {
            $lastpost = $row[‘t_posted’];
        } else {
            $lastpost = $row[‘re_posted’];
        }
        if (isset($_SESSION[‘user_id’])  &  &  $_SESSION[‘last_login’]  
<  $lastpost) {
            $newpost = true;
        } else {
            $newpost = false;
        }
        echo ‘ < tr class=”’ . $rowclass . ‘” > ’;
        echo ‘ < td > ’ . (($newpost) ? NEWPOST . ‘ & nbsp;’ : ‘’) . 
            ‘ < a href=”frm_view_topic.php?t=’ . $row[‘topic_id’] . ‘” > ’ .
            $row[‘t_subject’] . ‘ < /a >  < /td > ’;
        echo ‘ < td > ’ . $row[‘t_author’] . ‘ < /td > ’;
        echo ‘ < td > ’ . $row[‘numreplies’] . ‘ < /td > ’;
        echo ‘ < td > ’ . $lastpost . ‘ < /td > ’;
        echo ‘ < /tr > ’;
    }
    echo ‘ < /table > ’;
    echo paginate($db, $limit);
    echo ‘ < p > ’ . NEWPOST . ‘ = New Post(s) < /p > ’;
}
$sql = ‘DROP TABLE tmp’;
mysql_query($sql, $db) or die(mysql_error($db));
                   
require_once ‘frm_footer.inc.php’;
? >    



Chapter 16: Creating a Bulletin Board System

617

  2.   Create  frm_view_topic.php , which displays all of the posts in a thread: 

 < ?php
if (!isset($_GET[‘t’])) {
    header(‘Location: frm_index.php’);
}
                   
require_once ‘frm_header.inc.php’;
                   
$topicid = $_GET[‘t’];
$limit = $admin[‘pageLimit’][‘value’];
                   
$user_id = (isset($_SESSION[‘user_id’])) ? $_SESSION[‘user_id’] : 0;
show_topic($db, $topicid, $user_id);
                   
require_once ‘frm_footer.inc.php’;
? >    

  3.   Enter  frm_compose.php , the form used to enter the subject and body of a post: 

 < ?php
require_once ‘frm_header.inc.php’;
                   
$subject = ‘’;
if (isset($_GET[‘topicid’])) {
    $topicid = $_GET[‘topicid’];
} else {
    $topicid = ‘’;
}
if (isset($_GET[‘forumid’])) {
    $forumid = $_GET[‘forumid’];
} else {
    $forumid = ‘’;
}
if (isset($_GET[‘reid’])) {
    $reid = $_GET[‘reid’];
}
$body = ‘’;
$post = ‘’;
$authorid = isset($_SESSION[‘user_id’]) ? $_SESSION[‘user_id’] : null;
$edit_mode = FALSE;
                   
if (isset($_GET[‘a’])  &  &  $_GET[‘a’] == ‘edit’  &  &  isset($_GET[‘post’])  &  &  
    $_GET[‘post’]) {
    $edit_mode = TRUE;
}
                   
if (!isset($_SESSION[‘user_id’])) {
    echo ‘ < p >  < strong > You must be logged in to post.  Please ‘ .
        ‘ < a href=”frm_login.php” > Log in < /a >  before posting a message
. < /strong > ’ .
        ‘ < /p > ’;



618

Part II: Comic Book Fan Site

} else if ($edit_mode  &  &  $_SESSION[‘user_id’] != $authorid) {
    echo ‘ < p >  < strong > You are not authorized to edit this post. Please 
contact ‘ .
        ‘your administrator. < /strong >  < /p > ’;
} else {
    if ($edit_mode) {
        $sql = ‘SELECT
                topic_id, forum_id, author_id, subject, body
            FROM
                frm_posts p JOIN frm_forum f ON p.forum_id = f.id
            WHERE p.id = ‘ . $_GET[‘post’];
        $result = mysql_query($sql, $db) or die(mysql_error($db));
                   
        $row = mysql_fetch_array($result);
                   
        $post = $_GET[‘post’];
        $topicid = $row[‘topic_id’];
        $forumid = $row[‘forum_id’];
        $authorid = $row[‘author_id’];
        $subject = $row[‘subject’];
        $body = $row[‘body’];
    } else {
                   
        if ($topicid == ‘’) {
            $topicid = 0;
            $topicname = ‘New Topic’;
        } else {
            if ($reid != ‘’) {
            $sql = ‘SELECT
                    subject
                FROM
                    frm_posts
                WHERE
                    id = ‘ . $reid;
            $result = mysql_query($sql, $db) or die(mysql_error($db));
            if (mysql_num_rows($result)  >  0) {
                $row = mysql_fetch_array($result);
                $re = preg_replace(‘/(re: )/i’, ‘’, $row[‘subject’]);
            }
        }
        $sql = ‘SELECT
                subject
            FROM
                frm_posts
            WHERE
                id = ‘ . $topicid . ‘ AND topic_id = 0 AND 
                forum_id = ‘ . $forumid;
        $result = mysql_query($sql, $db) or die(mysql_error($db));
        if (mysql_num_rows($result)  >  0) {
            $row = mysql_fetch_array($result);
            $topicname = ‘Reply to  < em > ’ . $row[‘subject’] . ‘ < /em > ’;
            $subject = ($re == ‘’) ? ‘’ : ‘Re: ‘ . $re;
        } else {
            $topicname = ‘Reply’;



Chapter 16: Creating a Bulletin Board System

619

            $topicid = 0;
        }
    }
}
                   
if ($forumid == ‘’ || $forumid == 0) {
    $forumid = 1;
}
$sql = ‘SELECT
        forum_name
    FROM
        frm_forum 
    WHERE id = ‘ . $forumid;
$result = mysql_query($sql, $db) or die(mysql_error($db));
$row = mysql_fetch_array($result);
$forumname = $row[‘forum_name’];
? > 
                   
 < h2 >  < ?php echo ($edit_mode) ? ‘Edit Post’ : $forumname . ‘: ‘ 
. $topicname; ? >  < /h2 > 
 < form method=”post” action=”frm_transact_post.php” > 
  < p > Subject: < br/ > 
   < input type=”text” name=”subject” maxlength=”255”
   value=” < ?php echo $subject; ? > ”/ >  < /p > 
  < p > Body: < br/ > 
   < textarea name=”body” rows=”10” cols=”60” >  < ?php echo $body; ? >  
< /textarea >  < /p > 
 < p >  < input type=”submit” name=”action” value=” < ?php 
 echo ($edit_mode) ? ‘Save Changes’ : ‘Submit New Post’; ? > ” / > 
  < input type=”hidden” name=”post” value=” < ?php echo $post; ? > ” > 
  < input type=”hidden” name=”topic_id” value=” < ?php echo $topicid; ? > ” > 
  < input type=”hidden” name=”forum_id” value=” < ?php echo $forumid; ? > ” > 
  < input type=”hidden” name=”author_id” value=” < ?php echo $authorid; ? > ” >  < /p > 
 < /form > 
 < ?php
}
require_once ‘footer.php’;
? >    

  4.   Create  frm_search.php , which displays the user ’ s search results: 

 < ?php
require_once ‘frm_header.inc.php’;
                   
echo ‘ < h2 > Search Results < /h2 > ’;
                   
if (isset($_GET[‘keywords’])) {
    $sql = ‘SELECT
            id, topic_id, subject, MATCH (subject, body) AGAINST (“’ .
            $_GET[‘keywords’] . ‘”) AS score
        FROM
            frm_posts
        WHERE



620

Part II: Comic Book Fan Site

            MATCH (subject, body) AGAINST (“’ . $_GET[‘keywords’] . ‘”)
        ORDER BY
            score DESC’;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
                   
    if (mysql_num_rows($result) == 0) {
    echo ‘ < p > No articles found that match the search term(s)  < strong > ’ .
        $_GET[‘keywords’] . ‘ < /strong >  < /p > ’;
    } else {
        echo ‘ < ol > ’;
        while ($row = mysql_fetch_array($result)) {
            $topicid = ($row[‘topic_id’] == 0) ? $row[‘id’] : $row[‘topic_id’];
            echo ‘ < li >  < a href=”frm_view_topic.php?t=’ . $topicid . ‘#post’ .
                $row[‘id’] . ‘” > ’ . $row[‘subject’] . ‘ < /a >  < br/ > ’ .
                ‘relevance: ‘ . $row[‘score’] . ‘ < /li > ’;
        }
        echo ‘ < /ol > ’;
    }
}
                   
require_once ‘frm_footer.inc.php’;
? >    

  5.   Click the Home item on the main menu. You should now see a screen similar to Figure  16 - 6 . If 
you did not make any changes to the forums, there will be just one forum, called  “ New 
Forum. ”  If you did make changes, you should see your forums listed here.    

Figure 16-6



Chapter 16: Creating a Bulletin Board System

621

  6.   Click a forum on the page.  

  7.   If you are prompted to create a new thread, click  “ yes. ”  Otherwise, click New Thread.  

  8.   Enter any subject you like, and any text in the body. Somewhere in the body field, include the 
phrase  “ It was raining very hard today. ”   

  9.   When you are done, click the Submit New Post button. You should now see your post on the 
screen, as shown in Figure  16 - 7 . Note that although you typed  “ very hard ”  in your post, it 
now reads  “ cats and dogs. ”  That is the BBcode tool at work. We ’ ll look at that in more detail 
in the  “ How It Works ”  section that follows.    

Figure 16-7

  10.   Click Reply to Thread, and repeat steps 8 and 9 to create at least three more posts. After 
creating the last post, note that the Next/Prev buttons become available at the bottom of the 
thread. Because you changed your Pagination Limit to 3 in the steps, you can see only three 
posts on this page. You can see that you can click the number 2, or click  “ Next, ”  and it will 
take you to the next (up to 3) posts.  



622

Part II: Comic Book Fan Site

  11.   Let ’ s look at one more function, Search. Up at the top of the screen, you should see a text box 
with a button labeled Search. Enter the word  “ raining, ”  and click the Search button.  

  12.   If you followed step 8 in the previous series of steps, you should see at least one document 
returned in the search results, as shown in Figure  16 - 8 .      

Figure 16-8

 That ’ s just about it for the bulletin board application. It ’ s not overly complex, but it does have a few 
useful features, as we promised it would. When you are done with this chapter (and the book), you 
should be armed with enough knowledge to add your own ideas to this and the other applications. 

  How It Works  
 By now, most of the code in this section should be easy for you to understand. The steps involved in 
creating a post, editing a post, replying to a post, and displaying a forum or post have been covered 
in similar applications in the previous chapters  —  the basics of that process being: collect information 
from the user, store it in a database, and display the information based on user request. Since we ’ ve 
covered this kind of behavior before, let ’ s talk about something a little more powerful, searching.    

 



Chapter 16: Creating a Bulletin Board System

623

  Searching 
 A bulletin board would not be worth much in the long run unless you had the ability to search for old 
posts. Visit any bulletin board you might be familiar with, and most likely you will find a search 
function there. 

 There are many types of searches. The simplest requires that you enter text into an input field, and when 
you click the Search button, the script looks for any of the text you entered. That is the search we created 
for this application. Searches can get very complicated, too. You might want to search posts by the date 
they were entered, or by author. You might want to find a range of dates. You might even want to be able 
to designate how the result page is sorted. These capabilities are not currently available in the CBA 
forums, but feel free to beef up your search if you feel ambitious enough. 

 The actual search mechanism is fairly simple, and we quickly introduced it in Chapter  13 . You have a 
single text field with a Search button that submits your form. The  frm_search.php  page captures the 
search term, and builds a relatively simple SQL statement that is designed to return matching rows. You 
then simply iterate through those rows and display the data on the screen. It ’ s not that much different 
from displaying a forum or thread on the page. The only real difference is the SQL statement.   

$sql = ‘SELECT
        id, topic_id, subject, MATCH (subject, body) AGAINST (“’ .
        $_GET[‘keywords’] . ‘”) AS score
    FROM
        frm_posts
    WHERE
        MATCH (subject, body) AGAINST (“’ . $_GET[‘keywords’] . ‘”)
    ORDER BY
        score DESC’;
$result = mysql_query($sql, $db) or die(mysql_error($db));  

 The bulk of the work of the search happens in the database. It stands to reason, then, that the more 
efficient and well - built your database is, the faster your data will be retrieved. To maximize the 
efficiency, you create an index for the fields to be searched. In this case, you index the subject and body 
columns of your  frm_posts  table. You can see how this works in the appropriate  CREATE TABLE  query 
in  db_ch16.php : 

$sql = ‘CREATE TABLE IF NOT EXISTS frm_posts (
        id           INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
        topic_id     INTEGER UNSIGNED NOT NULL DEFAULT 0,
        forum_id     INTEGER UNSIGNED NOT NULL DEFAULT 0,
        author_id    INTEGER UNSIGNED NOT NULL DEFAULT 0,
        update_id    INTEGER UNSIGNED NOT NULL DEFAULT 0,
        date_posted  DATETIME         NOT NULL DEFAULT “0000-00-00 00:00:00”,
        date_updated DATETIME,
        subject     VARCHAR(100)     NOT NULL DEFAULT “”,
        body        MEDIUMTEXT,
                   
        PRIMARY KEY (id),
        INDEX (forum_id, topic_id, author_id, date_posted),
        FULLTEXT INDEX (subject, body)
    )
    ENGINE=MyISAM’;
mysql_query($sql, $db) or die(mysql_error($db));  



624

Part II: Comic Book Fan Site

 Note that after creating each of the columns, you set the primary key, an index, and a full - text index. 
Primary keys were discussed in Chapter  10 . These help you create and track unique records. An index 
makes searching for rows much faster, and as you can see, you have created an index on  forum_id , 
 topic_id ,  author_id , and  date_posted . A full - text index is set for the  subject  and  body  columns, 
which allows you to quickly find records using  MATCH . 

 Let ’ s take a look at the SQL statement that does the actual search. Assume you are looking for the word 
 “ Board. ”    

SELECT
    id, topic_id, subject, MATCH (subject, body) AGAINST (“Board”) AS score
FROM
    frm_posts
WHERE
    MATCH (subject, body) AGAINST (“Board”)
ORDER BY
    score DESC  

 To understand how this returns records, you must understand the  MATCH  command.  MATCH  returns a 
score value that rates how relevant the match was for each and every row in the table. According to the 
MySQL manual, it is based on the  “ number of words in the row, the number of unique words in that 
row, the total number of words in the collection, and the number of documents (rows) that contain a 
particular word. ”  

 Note that the same  MATCH  command is used twice. Fortunately, the MySQL optimizer caches the results 
of the  MATCH  command the first time it is run and will not run it twice. Because the  MATCH  command 
returns a zero (0) for rows that do not match at all, putting  MATCH  in the  WHERE  clause prevents those 
rows from returning. If you do not put in the  WHERE  clause, all rows in the table will be returned, and 
they will not be sorted. 

 Using  MATCH  in the  WHERE  clause causes the rows to be returned sorted by relevance. This is not intuitive 
to all users, however, so we like to put in  ORDER BY score DESC  just for good measure, although it is 
not required.   

  After thoughts 
 Congratulations! You have just completed the creation of a fully functioning bulletin board system. It is 
more powerful than some of the simpler ones you ’ ll find, but it is certainly not the most complex. You 
could still do many things to this application that could really make it sing, if you were so inclined. 

 What else could you add to this application? Perhaps you have a few ideas already, based on what you 
have seen on other forums. If you need some ideas, here is a short list to get you started: 

   Avatars:  Allow your users to upload (or choose from your site) a small image that can be placed 
under their username.  

   Smilies:  Most forums will replace smilies with a graphical representation of some sort. Create 
some smilies yourself, or find good ones on the Internet that are not copyrighted, store them in 
an images folder on your web site, and use regular expressions to replace smilies with the 
appropriate images.  

❑

❑



Chapter 16: Creating a Bulletin Board System

625

   User profiles:  Allow users to add more information to their profiles, such as hobbies, location, 
age, gender, and so on. Also allow them to add their AIM, Yahoo! IM, and MSN IDs. Make their 
username into a link that allows other users to contact them via e - mail or Instant Messenger. 
Make sure you include a check box to allow users to hide their e - mail address if they want to.  

   Quoting:  What is a forum without the ability to quote relevant text? Allow users to quote all or 
part of a post. We leave it up to you to figure out how to implement this.  

   Polls:  A very popular option, polls allow users to post a short questionnaire for their peers to 
answer. Install a poll option when posting a new topic, and display a graph of the results at the 
top of the thread.     

  Summary 
 Now you have created a community where your visitors can hang their hats and stay a while. Combine 
this with all of the other applications you have built, and you should no doubt have a very cool, 
integrated web site up and running in no time! Congratulations on making it this far. This chapter was 
long, with a lot of code. Most of it was not overly difficult; indeed, most of the code was stuff you did in 
other chapters. But we hope that by the time you have finished this chapter, you will feel comfortable 
creating a web site from the ground up, using PHP and MySQL installed on an Apache server.  

  Exercises 
 If you would like to test out how much you have learned from this chapter, take the time to do these 
small exercises. Not only will they help you learn, they will allow you to add some extra features to your 
bulletin board application.   

  1.   Add code to  frm_admin.php  to prevent unauthorized users from loading the page. Redirect 
them back to  frm_index.php .  

  2.   Create a regular expression that recognizes an e - mail address in a post and turns it into a link.  

  3.   Add a bit of code to the pagination function to allow the user to go to the first page or last page. 
For example, if there are 14 pages, and the user is on page 8, and the range is 7, it should look 
something like this: 

      < PREV [1] .. [5] [6] [7] 8 [9] [10] [11] .. [14] NEXT  >          

❑

❑

❑





                                    17
Using Log Files to Improve 

Your Site          

 The cool thing about being a web developer is that sometimes you get to act like Big Brother and 
keep close watch on what your visitors are doing. Although it may seem voyeuristic to some, 
analyzing what goes on at your site can give you valuable information that will enable you to 
make your site better. To perform this analysis, you have to first gather the data necessary for the 
analysis, and to do that you need a log. 

 A  log  is a simply a text file saved on your server. It is updated by a logging application on the 
server every time something happens, such as when a particular file is requested by someone or 
when an error occurs. When the event happens, a line of text is appended to the end of the file, 
essentially  “ logging in ”  the activity. Here are three basic types of logs: 

  Access Logs track every hit on your web server.  

  Error Logs track every error or warning.  

  Custom Logs track whatever information you tell them to.    

 Some examples of the types of information you can glean from logs include: 

  What IP addresses your visitors are using so you can get a geographical location for your 
most common visitors; this may help with geographical demographic research.  

  What browsers your visitors are using, either just for your own curiosity or so you can 
make sure you don ’ t implement any special browser - specific rendering features on your 
site that only a small portion of your viewership would be able to take advantage of  .

  What times and days your visitors are visiting, so you can schedule maintenance during 
slow times or special promotional events during busier times  .

  What pages are the most popular on your site, so you can gauge the success or failure of 
certain pages and prune your web site of any dead weight  .

❑

❑

❑

❑

❑

❑

❑



628

Part II: Comic Book Fan Site

  Whether the volume of your traffic is increasing, so you can determine if your site is either 
becoming more well known or stagnating itself into oblivion  .

  If you ’ re using user authentication on your site, what users are logging in when, and what their 
activity is, so you can see who your MVPs are and perhaps offer them special web site features 
(or maybe a beer at the local bar)    .

 As you may have guessed, this chapter is all about logs. It will cover the following: 

  What logs look like and what information they contain  .

  Where you can find them on your system  .

  What resources exist that you can use to help analyze the data  .

  How you can use the information to improve your site     .

  Locating Your Logs 
 Log files are in different locations depending on what program created them and what their function is. 
Most are available in a folder outside the scope of your web site so that users don ’ t have access to them. 

  Apache 
 Apache keeps access logs and error logs. If Apache has been installed on your server following the 
instructions in Chapter  1  (or Appendix I), the default location is  C:\Program Files\Apache 
Software Foundation\Apache2.2\logs  (or  /usr/local/apache/logs  on Linux). 

 A typical access log entry looks like this: 

127.01.0.1 - - [29/Sep/2008:12:08:35 -0400] “GET /index.php?xyz=123 HTTP/1.1” 
200 4069 “http://www.example.com/cms/index.php” “Mozilla/5.0 (Windows; U; 
Windows NT 5.1; en-US; rv:1.8.1.14) Gecko/20080404 Firefox/2.0.0.14”  

 All of this information is on one line of the log and is built by Apache according to the  LogFormat  
directive in the  mod_log_config  module. The typical configuration looks like this: 

LogFormat “%h %l %u %t \”%r\” % > s %b” common  

 The config string that built the line you saw from the log file used the  combined format  and looks like this: 

LogFormat “%h %l %u %t \”%r\” % > s %b \”%{Referer}i\” \”%{User-agent}i\”” 
     combined  

 Although the  LogFormat  directive is beyond the scope of this book, we will list each parameter here so 
that you can understand what each piece of the log is and how it ’ s broken down: 

   %h (127.0.0.1):  The address of the client currently accessing your server. This can be an IP 
address or a hostname.  

   %l ( - ):  The RFC 1413 identity of the client. This is usually a hyphen (  -  ) to indicate that Apache 
was not able to obtain the information.  

❑

❑

❑

❑

❑

❑

❑

❑



Chapter 17: Using Log Files to Improve Your Site

629

   %u ( - ):  The username of the client. This is set if the page is using HTTP User Authentication. 
Otherwise, you see a hyphen (  -  ).  

   %t ([ 29/Sep/2008:12:08:35  - 0400 ]):  The date and time the client accessed your server.  

  The format for this is as follows: [day/month/year:hour:minute:second zone]  

  day = 2 digits  

  month = 3 letters  

  year = 4 digits  

  hour = 2 digits  

  minute = 2 digits  

  second = 2 digits  

  zone = ( ‘ + ’  |  ‘  -  ’ ) 4 digits    

   \@@dp%r\@@dp (@@ GET /index.php?xyz=123 HTTP/1.1 @@dp):  The request line from the 
client. This is wrapped in quotes, which have to be escaped. This is actually multiple 
information, which could be built using other parameters:  

   %m  (request method), in this case,  GET   

   %U  (URL), in this case, /index.php  

   %q  (query string), in this case, ?xyz=123  

   %H  (protocol), in this case, HTTP/1.1  

   \@@dp%m %U%p %H\ @@dp is the functional equivalent of  \@@dp%r\ @@dp    

   % > s (200):  The status code sent back to the client. In this case, because it starts with a  “ 2, ”  we 
know it was a successful request.  

   %b (4069):  The size of the object returned to the client in bytes (not including headers). If no 
content is returned, the value is hyphen (  -  ), or  “ 0 ”  if  %B  is used.  

   \@@dp%{Referer}i\@@dp (@@dphttp://www.yexample.com/cms/index.php@@dp):  The 
address of the page the client came from. This is useful for compiling information about where 
your users heard about your web site.  

   \@@dp%{User - agent}i\@@dp (@@ Mozilla/5.0 (Windows; U; Windows NT 5.1; en - US; 
rv:1.8.1.14) Gecko/20080404 Firefox/2.0.0.14 @@dp):  User - Agent HTTP request header 
information. This is the information the client ’ s browser sends about itself. This is very useful 
for determining how many people are using certain browsers.    

 If the preceding information looks like Greek to you, don ’ t worry. There are ways of getting the 
information without understanding any programming, and methods of reading the information to build 
statistics, charts, graphs, and other things that are much easier to read. We ’ ll share those methods with 
you shortly. 

 The information in the error log is pretty self - explanatory. It is free - form and descriptive, but typically 
most error logs capture the date and time, the error severity, the client IP address, the error message, and 
the object the client was requesting. 

❑

❑

❏

❏

❏

❏

❏

❏

❏

❏

❑

❏

❏

❏

❏

❏

❑

❑

❑

❑



630

Part II: Comic Book Fan Site

 Here is what the typical error log entry looks like: 

[Mon Sep 29 11:18:35 2008] [error] [client 69.129.21.24] File does not exist: 
/svr/apache/example.com/www/public_files/index.htm  

 Because the error message is also contained in the Apache access log, it makes more sense to pull 
the data out of the access log. For example, the preceding error will show up in the access log with 
access code 404.  

   PHP  
 PHP also keeps a log of errors for you, but as we discussed in Chapter  1 , the default setting for this 
feature is set to  “ off ”  in your  php.ini  file. You have to turn it on to enable error logging, which we 
highly recommend doing. Also, don ’ t forget to tell your  php.ini  file where you want the error log to be 
saved. 

 The typical error log entry looks like this: 

[Mon Sep 29 15:08:12 2008] PHP Parse error:  parse error, unexpected  ’ } ’  in
C:\Program Files\Apache Software Foundation\Apache2.2\htdocs\example.php on 
line 14  

 As in the other logs we have looked at, the logs themselves are relatively straightforward, and their 
purpose is to keep track of all of the errors that occurred when your PHP pages were being accessed. 

 In the preceding example, you can see that there was a parse error in the file  example.php  on line 14, 
which merits attention. Anyone attempting to see the contents of this file will see only the parse error 
until it is fixed. 

 A regular check of the PHP error log should be on your  “ to - do ”  list, just to make sure there aren ’ t any 
errors in your code.  

  My SQL  
 As if that ’ s not enough, MySQL also logs queries and errors that pertain to database transactions. By 
default, the error log is stored as  hostname.err  in the data directory (this is true under both Windows 
and UNIX). You can specify where the error log is saved by issuing the following command from the 
command prompt when starting the MySQL server: 

mysqld --log-error[=filename].  

 Here is a typical entry in the error log: 

080929  0:28:02  InnoDB: Started
MySql: ready for connections.
Version:  ‘ 5.0.51b ’   socket:  ‘  ‘   port: 3306  



Chapter 17: Using Log Files to Improve Your Site

631

 This lets you know that the MySQL server started successfully, what version is currently running, and 
what socket and port it is configured for. It also gives you the date and time that the server began 
running (in the first line). You should know that on Windows, you cannot access this log while the server 
is running; you need to stop the server to open this file. 

 MySQL also allows you to view every query that is sent to the server. To specify where the general query 
log is located, you would type the following command when starting the MySQL server: 

mysqld --log[=file]  

 Again, by default, this file will be stored in the data directory with the name  hostname.log  file, unless 
you specify otherwise. An entry in the general query log looks like this: 

 /usr/local/mysql/libexec/mysqld, Version: 5.0.51b-log, started with:
Tcp port: 3306  Unix socket: /tmp/mysql.sock
Time                 Id Command    Argument
080929 21:33:34      1 Connect     buzzly_comic@localhost on 
               1 Init DB     buzzly_comicsite
               1 Query       SELECT * FROM forum_admin
               1 Query       SELECT * FROM forum_bbcode
               1 Quit       
080929 21:33:50      2 Connect     buzzly_comic@localhost on 
                     2 Init DB     buzzly_comicsite
                     2 Query       SELECT id,access_lvl,name,last_login FROM 
forum_users 
WHERE email=’admin@yoursite.com’ AND passwd=’admin’
                     2 Query       UPDATE forum_users SET last_login = 
‘2008-09-29 
21:33:50’ 
WHERE id = 1
               2 Quit       
               3 Connect     buzzly_comic@localhost on 
               3 Init DB     buzzly_comicsite
               3 Query       SELECT * FROM forum_admin
               3 Query       SELECT * FROM forum_bbcode      

 If you are interested in seeing only the queries that changed data, you should view the binary log file 
instead of the general query file.   

 This file is also saved by default in your  “ data ”  directory, with the filename of  hostname - bin      unless you 
specify otherwise. You activate this log by typing the following at the command prompt: 

mysqld --log-bin[=file_name]  



632

Part II: Comic Book Fan Site

 An entry in the binary log looks like this: 

# at 4
#080929 21:29:46 server id 1  log pos 4       Start: binlog v 3, server v 
5.0.51b-
log created 080929 21:29:46 at startup
# at 79
#080929 21:33:50 server id 1  log_pos 79 Query       thread_id=2  exec_time=0
error_code=0
use buzzly_comicsite;
SET TIMESTAMP=1068431630;
UPDATE forum_users SET last_login = ‘2008-09-29 21:33:50’ WHERE id = 1;
# at 196
#080929 21:34:52 server id 1  log_pos 196       Query       thread_id=8  
exec_time=0
error_code=0
SET TIMESTAMP=1068431692;
UPDATE forum_users SET email=’admin@yoursite.com’, name=’Admin’, access_lvl=3, 
signature=’Testing, testing, 123.’  WHERE id=1;  

 Unlike the other logs in this chapter that you can access with WordPad or Notepad, you must access the 
binary log using the  mysqlbinlog  utility. At the command prompt, you would type  mysqlbinlog  to see 
the parameters for this software. Your screen will look something like the one shown in Figure  17 - 1 .   

Figure 17-1



Chapter 17: Using Log Files to Improve Your Site

633

 As you can see, there are many parameters you can set to glean the specific information you are 
looking for.   

  Analyzing Your Log Data 
 Numerous software programs are available that live to help you make sense of this gobbledygook. 
Although you could write your own log analysis application, there ’ s no real reason to when there are so 
many alternatives available. We ’ ll describe some of them in this section. Note that most of these 
programs are used for analyzing web server activity and not MySQL or PHP logs. 

  Webalizer 
 You can find Webalizer at  www.webalizer.com , and it is a proud part of the wonderful open source 
community we talked about in Chapter  1 . It provides reports in an easy - to - read HTML format with 
pretty charts and such that can be read by just about anyone, including the higher - ups. Its main purpose 
is to produce reports on server activity, most specifically Apache. If you set your Apache config files to 
do DNS server lookups, then your reports with Webalizer will show those instead of simple IP 
addresses. This program is also known for its incredible speed, as it can process 10,000 records in a 
matter of one second. 

 You can see a sample screenshot in Figure  17 - 2 , also available at the Webalizer web site.    

Figure 17-2



634

Part II: Comic Book Fan Site

  Analog 
 Another open source contender for helping you make sense of your log files is Analog, which you 
can find at  www.analog.cx . Although it ’ s a little rough around the edges, it ’ s still a powerful tool 
that can be customized to show what you want to see. By using the add - on, Report Magic (available at 
 www.reportmagic.org ), you can generate all kinds of fancy 3 - D charts and graphs and really impress 
your superiors. 

 You can see a sample screenshot in Figure  17 - 3 , also available at the Analog web site.    

Figure 17-3

   AW Stats 
 Another of our open source buddies, AWStats can be found at  http://awstats.sourceforge.net . 
Unlike some of the other open source stats programs, AWStats can track the number of unique visitors, 
entry and exit pages, search engines and keywords used to find the site, and browser details of each 
visitor, such as version and screen size. 



Chapter 17: Using Log Files to Improve Your Site

635

   HTTP  Analyze 
 One more stats program for you to investigate is HTTP Analyze, which you can find at 
 www.http - analyze.org . Another open source favorite, this program works on any log file that 
is in the NCSA Common Logfile Format or W3C Extended File Format, and thus works great with 
Apache. It should be noted that HTTP Analyze is supported by both UNIX and Windows systems. It also 
provides several different options for viewing data, all in HTML and easy - to - read formats. 

 You can see a sample screenshot in Figure  17 - 5 , also available at the HTTP Analyze web site.    

Figure 17-4

 AWStats also allows the web administrator to set up customized reports for tracking something of 
specific interest for his or her specific needs, which is a welcome addition to this software package. 

 You can see a sample screenshot in Figure  17 - 4 , also available at the AWStats web site.    



636

Part II: Comic Book Fan Site

  Google Analytics 
 You can take advantage of Google ’ s never - ending thirst for data by signing up for Google Analytics at 
 www.google.com/analytics  and have access to some pretty impressive reporting utilities for your 
web site. Unlike the previous offerings mentioned in this chapter, Google Analytics doesn ’ t parse 
your server ’ s log files. Instead, when you sign up for an account you are given custom tracking code you 
must insert into the pages you want to monitor. But after that, Google does the rest! It incorporates their 
Adsense program exceptionally well (why wouldn ’ t they?), and you can see how successful your 
campaigns are. Figure  17 - 6  shows a sample screenshot.     

Figure 17-5



Chapter 17: Using Log Files to Improve Your Site

637

  Putting the Analysis to Work 
 So now you have all these beautiful reports, and you go to your boss and proudly display your charts 
and graphs and expect a big pat on the back. But what happens when she says to you,  “ So what does it 
all mean? ”  

 Let ’ s talk a minute about what the reports mean to you, so you have a nice, neat, witty response 
prepared. 

 Earlier in the chapter, we touched on how using the stats can help you improve your site. Your logs are, 
in many cases, your only source of feedback from your visitors. You can ’ t know what you ’ re doing right 
or wrong without any feedback, so as your only tangible evidence, these stats are really quite valuable. 
There are several different areas you probably want to pay attention to, depending on the specific needs 
of your site. 

  Site Health 
 Your error logs and Apache server logs (specifically the 404 errors) can be crucial in ensuring that your 
site is completely functional and has no broken links. This can be especially true if you have a large site 
with a lot of intertwined links and pages; it would be virtually impossible for you to manually test each 
link on each page of your site. Broken links can be frustrating for the user, and if it is a link to a crucial 
portion of your site, can have adverse affects on your site performance.  

Figure 17-6



638

Part II: Comic Book Fan Site

  User Preferences and Information 
 You can ’ t please all of the people all of the time, but you can certainly try. You care about what your 
users like, so you obviously want to tailor your site to the most common visitor and try to minimize the 
number of visitors who won ’ t have the optimal viewing experience. You want to know what percentage 
of visitors are using which browsers so that you can be sure to test your site against the browsers that 
are most popular with your audience. You also care about how many unique and not - so - unique 
visitors are coming to your site so that you can tell if your site is gaining a new following, while 
maintaining its current one. You also want to know what screen size they are using, so you can again 
tailor the look of your site to be the best it can be for the most visitors.  

  Number of Hits and Page Views 
 Remember, a  “ hit ”  is any request made to the server, whereas a  “ page view ”  is a request for a page (such 
as an HTML or PHP page). Hits can consist of images, sound files, or anything that requires activity from 
the server. This number doesn ’ t really give you an accurate count of how many people are viewing a 
page, so you typically go by page views. 

 You want to see which pages get the most page views, and which are the most popular so that if you 
need to make something known about your site, you can make sure that it appears on those pages. For 
example, say that you have a new product to promote  —  if no one ever visits the  “ new products ”  page, it 
won ’ t do you much good to only post it there. If the home page of your site is the most popular, you 
want to also post that information on that page, so you make sure that everybody who visits your site 
knows about your new product. 

 You also want to be able to look at the pages that are doing well and compare them with the pages that 
aren ’ t doing so well. Is the content of both pages clear and concise? What is it about the popular pages 
that makes them so great? Can you make your losers closer to the winners in page design, content, or 
positioning?  

  Trends over Time 
 It ’ s rewarding to see your site become more popular as time goes on, but it creates a big pit in your 
stomach if things are going downhill. Tracking popularity over time can help you discern if interest in 
your site is waning, or if the site is perhaps more popular around certain seasons of the year. If your site 
sells golf equipment and you notice a dip in page views during the winter months, obviously you don ’ t 
have much to worry about, because your business is a seasonal business and this dip is understandable. 
Perhaps you notice that during the winter months your average visitor is coming from Florida (makes 
sense, eh?). Perhaps you can work with Marketing to develop an advertising strategy tailored to the 
loyal Floridians during those months.  

  Referring Sites 
 If you can discern where people are finding your site, you will have a very valuable resource at your 
disposal. Are the search engines actually working in your favor? What keywords are people using 
to reach your site? Do you fare better with certain search engines than others? Are you getting referred 
from other, non - directory sites? 



Chapter 17: Using Log Files to Improve Your Site

639

 Perhaps you have a site that sells bowling equipment, and you notice through your stats that the 
Professional Bowlers Association has your site listed on its own site as a resource for its visitors, and has 
referred the majority of your visitors. Perhaps then you decide you want to offer a special discount to 
PBA members as a  “ thank you. ”  Increasing your web site traffic can be as simple as getting yourself 
listed on as many other sites as possible. Not only will it help people see you, but it will also help 
increase your listing in search engines such as Google that take into account criteria such as how many 
other places your web site is listed.   

  Summary 
 You should now feel comfortable looking at log files to benefit your site and your skills as a professional 
web developer. You can choose to massage the data based on a program you have written yourself, or 
you may choose to utilize numerous other resources out there to provide you with fancy reports that 
let you know what is going on with your site. By paying attention to trends and popular pages in your 
site, you can get a better feel for who your visitors really are. This, in turn, enables you to continually 
improve your site. 

 At the very least, you will be able to speak intelligently to your boss when she asks  “ So what ’ s going on 
with our web site? ”    





      18    
Troubleshooting          

 Nothing is more frustrating than thinking you have all your t ’ s crossed and your i ’ s dotted only to 
have your program produce completely perplexing and unwanted results and blow up on you 
with a string of errors that you do not understand. 

 You may find comfort in knowing that many developers experience the same types of obstacles. 
With this chapter, we hope to shed light on some problems you may encounter and suggest a few 
troubleshooting strategies.  

  Installation Troubleshooting 
 Suppose you are trying to access either PHP, MySQL, or Apache, and you are running into 
problems. Perhaps for some reason they are not playing well with one another, and you are getting 
strange errors. Things aren ’ t working the way they should be, based on the installation 
instructions. 

 Many times, commonly seen errors or obstacles will be discussed on the web sites for each of the 
AMP components. The web sites also provide detailed instructions for the particular system you 
are using, and we encourage you to read through them carefully to double - check yourself. Make 
sure you follow the instructions exactly. 

 If while configuring PHP you receive an error that tells you that the server can ’ t find a specific 
library, we recommend you check the following: 

  Verify that the correct paths have been specified in your configure commands.  

  Make sure you ’ ve actually installed the library and any of its dependencies on your 
machine.  

  Make sure you ’ ve restarted the Apache web server after making any changes in your  php
.ini  or  httpd.conf  files (changes in  .htaccess  files normally do not require a restart).     

❑

❑

❑



642

Part II: Comic Book Fan Site

  Parse Errors 
 We ’ re sure you ’ ve seen this many times: 

Parse error: parse error, expecting ’’,’’ or ’’;’’ in /foo/public_html/forum/
index.php on line 25  

 Oh no, it ’ s the dreaded parse error! These are quite common even for experienced programmers. One or 
two parse errors will undoubtedly slip through, even with the best color - coded PHP text editors to help 
check your syntax. While these can be very frustrating, they are usually the simplest errors to fix because 
they are commonly caused by mistakes in your syntax instead of your logic. Check for any missing 
semicolons, missing commas, or misplaced quotation marks. 

  Cleanup on Line 26  . . .  Oops, I Mean 94 
 When PHP displays a parse error, it includes a line number, which provides your first clue for solving 
the mystery. However, sometimes the line number can be misleading. In fact, at times the mistake will 
have occurred in a place several lines preceding the one identified by the server as the culprit. 

 Take a missing semicolon, for example; without the semicolon to signify to the server that the statement 
has come to an end, the server will continue to string subsequent lines together. It may not realize there 
is a problem until several lines later, and it will then issue a parse error on the wrong line. Likewise, 
similar behavior can result when a missing quotation mark or parenthesis is the culprit. Let ’ s look at the 
following lines of code as an example (we have added line numbers to prove our point): 

1  < ?php
2 $greeting1=”aloha”;
3 $greeting2=”bon jour”;
4 $greeting3=”hola”
5 $greeting4=”good morning”;
6 ? >   

 When you run this test, the error you get is as follows: 

Parse error: parse error, unexpected T_VARIABLE in C:\Program Files\Apache 
Software Foundation\Apache2.2\htdocs\error.php on line 5  

 For our purposes here, we named the above script  error.php , and you can see that line 5 is referenced 
when line 4 was actually the line with the error in it. Because we neglected to use a semicolon at the end 
of line 4, line 5 was seen as a continuation of line 4, and PHP became quite confused.  

  Elementary, My Dear Watson! 
 Sometimes the simplest answer is the right answer. Make sure you check to see that you ’ ve done all of 
the following: 

  Each statement ends with a semicolon.  

  All opening quotes, parentheses, and braces are matched with closing ones.  

  All single and double quotation marks are nested and/or escaped properly.    

❑

❑

❑



Chapter 18: Troubleshooting

643

 You will greatly decrease the risk of introducing parse errors if you get into the habit of checking your 
syntax regularly as you write your code. You may want to use an editor that is familiar with PHP and 
can color - code your programs as you write them. Syntax highlighting makes it much easier to recognize 
when you have misspelled a function name or forgotten to close your quotes. We ’ ve provided a matrix 
comparing various text editors, some of which support syntax highlighting, in Appendix F.   

  Empty Variables 
 You ’ ve just built a large page that collects 50 fields of information from your users. There are no parse 
errors. You fill in the form online and click on the submit button. The next page loads just as it should. 
The only problem is that none of the variables seem to have been passed on to the new form! 

 This actually happens quite often. The first possible cause is that you are expecting your values to be 
posted, but you forgot to use  method= “ post ”   on your form. By default, forms use the  get  method. 

 How do you solve this? Check the address of your second page. Are there variables in the query string? 
If so, then you ’ ve inadvertently used the  GET  method, and you need to go back and change your method 
to  POST . Mystery solved. 

  Consistent and Valid Variable Names 
 First, you should make sure that your variable names are appropriate and valid according to the naming 
rules, as outlined in Chapter 2. Make sure you aren ’ t beginning any variable name with a number, or 
trying to use a predefined variable for your variable name, such as  $php_errormsg . You can find 
a complete list in the PHP manual, at  www.php.net/manual/en/reserved.variables.php . 

 Also, check the case you are using when referencing variables, because variable names are case - sensitive. 
The same holds true for database and table names. Make sure you are referencing them correctly and 
consistently, and be sure to change all the instances of the variable name if you make a change to 
a variable name after the fact. 

 It is easier to maintain consistent variable names if you pick a naming convention and stick with it 
throughout your scripts. This ties into the discussion in Chapter 2 regarding good coding practices.  

  Open a New Browser 
 Sometimes if you are working with sessions and you are in the testing phase of your scripts, there may 
be an extraneous session setting hanging out there that could be preventing you from obtaining the 
desired results and altering your variable values. 

 You can clear all session variables (provided you haven ’ t changed your config files, as we discussed in 
Chapter 2) by simply closing the web browser and opening a new one.   



644

Part II: Comic Book Fan Site

   “ Headers Already Sent ”  Error 
 You may encounter an error message that looks like this: 

Warning: Cannot modify header information - headers already sent by (output 
started at C:\Program Files\Apache Software Foundation\Apache2.2\htdocs\
headererror.php:1) in C:\Program Files\Apache Software Foundation\Apache2.2\
htdocs\headererror.php on line 2  

 This is a common error when working with sessions and cookies. It can occur if you try to set them after 
you have sent HTML code to the server. The server has to deal with sessions and cookies before 
any HTML output is sent to the browser, which means that these lines must be the first in the code 
before any HTML code or  echo  statement. If you have even a trailing leading space before your first 
  < ?php  line of code, you will see this error. 

 If you need to set cookie or session variables within the body of your code, you need to rethink your 
logic to accommodate this limitation. As we discussed in Chapter 2, those variables need to be addressed 
at the beginning of your code for them to be parsed correctly by the PHP server. 

 Ways exist to get around this error, using the output buffer to suppress these errors. The output buffer is 
used to store all HTML output in a buffer until you are ready to send it to the browser. The function  
ob_start()  is used to begin the output - buffering process, and  ob_end_flush()  will send all of the 
stored HTML output to the browser, empty the buffer, and end the output - storing process. This will let 
you cheat the system and store session and cookie variables in the body of the code, as well as allow you 
to use the  header()  function in the body of the code. For example, this snippet of code uses the output 
buffer to suppress our error. In the following example, the  header.php  file contains the connection 
variables to connect to the MySQL database, as well as some HTML code that is common to all the pages 
in our site.   

 < ?php
ob_start()
include ‘header.php’;
//perform a mysql query to determine which page the user is supposed to see;
                   
if ($userage  <  18) {
    header(‘Location: child.php’);
} else { 
    header(‘Location: adult.php’);
}
ob_end_flush();
? >   

 Without the use of the  ob_start()  and  ob_end_flush()  functions, we would have gotten the 
 “ headers already sent ”  error when we tried to redirect our user. This is because of the HTML code that is 
in the  header.php  file. You can see that the logic is flawed somewhat because we should keep our 
connection variables in a separate file, away from the HTML code, but it ’ s not such a fatal design flaw 
that our web site shouldn ’ t function. We can thus cheat the system. 



Chapter 18: Troubleshooting

645

 Although this is not recommended for beginners because it is more important for you to learn to code 
well and according to the rules, this can be a useful set of functions for a more experienced programmer. 
If you would like to learn more about the output buffer functions, you can find a complete list of them in 
Appendix C, or visit  www.php.net . 

 Sometimes, the problem may not even be in the same script that ’ s generating this type of error. If you 
have extra whitespace after the closing  ? >   in an included file, that might cause a problem as well. Some 
people prefer to omit the  ? >   at the end of include files. Many times, extra space is inserted by hitting the 
Tab key or spacebar unnecessarily.  

  General Debugging Tips 
 Even the most difficult of errors can be worked out with a bit of focus and patience. After all, it ’ s just 
code and is nothing to be afraid of. Following are a few tips for general debugging purposes that can 
help you out of many sticky spots. 

  Use echo 
 Occasionally you might want to read the server ’ s mind and see what it thinks is going on. One way to 
do this is to display the contents of variables periodically in your code. This will let you verify that the 
server is parsing everything correctly. 

 You can use  echo  in a step - by - step process as you follow the path of your variable, to see how the server 
is treating the value throughout the code. This process would help, for example, if you wanted to 
perform a complex mathematical equation on a variable ’ s value, and all you could tell from your output 
was that you were getting the wrong answer. You need to find out at what point the breakdown occurs, 
so you insert  echo  statements throughout each step of the equation to verify the accuracy of your 
calculation as it runs through the equation. You will then see the value of the variable as it changes. 

 The  echo  command can also be useful in  if  statements,  foreach  statements, functions, and so on, to 
ensure that these loops are being called or processed correctly. 

 Here ’ s a simple example to illustrate how  echo  can help you. Let ’ s assume you have the following script: 

 < ?php
$curr_var = 0;
                   
while ($curr_var  <  20) {
     $abc = 2 * $curr_var;
     $curr_var ++;
}
echo $abc;
? >   



646

Part II: Comic Book Fan Site

 By running this code in your browser, you get the number 38. What if you were expecting to get 
the number 40, or you wanted to check to see if your  $abc  variable was right? You could echo out the 
variable as it was processed, to see how the program was working, thus: 

 < ?php
$curr_var = 0;
                   
while ($curr_var  <  20) {
     $abc = 2 * $curr_var;
     $curr_var ++;
                   

     // debug line
     echo $curr_var . ‘ < br/ > ’;

}
echo $abc;
? >   

 You now see the numbers 1 through 20, plus your original answer of 38. It is easier for you to see that, 
although the  $curr_var  goes to 20, it processes the answer only 19 times, and so you get the answer of 
38. Therefore, you should change the  while  statement as follows: 

while ($curr_var  < = 20) {  

 Now your  while  statement will process when  $curr_var  =  20 , and you get a result of 40 at the end. 
Use the comments as a reminder to yourself to delete the debugging lines when you have solved the 
problem, to avoid unwanted output to your browser when your page goes live. 

 Remember that arrays and object references, although they are variables, behave a little differently when 
you try to display them. If you echo an array, for example, all you will see on the screen is  Array() . To 
view the contents of an array, use the  print_r()  function instead of  echo .  print_r()  will print out 
every member of an array, even with multidimensional arrays. In the case of object references,  print_r()  
will display all members of the object. A similar function you may want to use is  var_dump() .  

  Divide and Conquer 
 Another good way to tackle a huge problem is to break it down into baby steps and test each one to 
make sure you are getting the correct result every step of the way. One small mistake in the beginning of 
a complex block of statements can have a snowball effect and completely alter your results at the end. By 
checking each step one by one, you can iron out those small bugs and can eventually get the intended 
results. Sometimes it may be helpful to comment out a section of code to see how the script runs without 
it, or to isolate a particularly troublesome section.  

  Test, Test, Test! 
 Many coders test their program out on their own system, and as long as it works for them with their 
settings, they assume they are home free. You should test your code using every different environment 
available to you in an effort to be thorough: different browsers, different preferences, different computer 
systems, and so on. If you have the opportunity and know - how, you should even try to hack through 
your own system to look for security holes that might be exploited by someone a little less kind than you.  



Chapter 18: Troubleshooting

647

  Debug with Xdebug 
 PHP has a large selection of introspective functions to help you with debugging, such as  var_dump()  
and  print_r() . But there is also Xdebug, a powerful extension for PHP that adds additional 
debugging and profiling functions. Xdebug lets you view stack traces (the path PHP took through 
various functions to get to a certain point) and code coverage information, and even provides the ability 
to debug your scripts interactively with any debugging client that understands the DBGp protocol. 

 As we stated previously, Xdebug is an extension and is not available as part of PHP by default. You must 
install and configure it properly before Xdebug ’ s functions are available to you. You can find out more at 
the Xdebug web site,  www.xdebug.org .   

  Where to Go for Help 
 Fortunately, the PHP, Apache, and MySQL user communities are quite vibrant. Numerous sources are 
available online to help guide you through the murky waters when the going gets tough. We have 
mentioned some of these numerous times throughout this book, but here they are again, one more time. 

  www.wrox.com 
 This book is specifically designed to provide help online in a companion web site, so if you encounter 
trouble we strongly encourage you to check out the book ’ s sister site at  www.wrox.com .  

   PHPB uilder.com 
 Many PHP help web sites are out there, but our personal favorite tends to be PHPBuilder.com. At this 
site, you can find numerous articles, archives, snippets of useful code, and, most importantly, a well -
 developed and very helpful online community of fellow coders from all over the world, with all levels of 
competency, to assist you as quickly as they can. We have yet to find such a tight - knit and friendly 
community elsewhere, and we encourage you to post your questions in their forums. 

 If you are lucky, you might find one of the authors of this book lurking around at PHPBuilder.com. We 
are all regular contributors, and some of us are moderators.  

  Source Web Sites 
 You will see this time and time again, but as with the other advice, we can ’ t stress it enough. If you have 
a question about virtually anything, chances are the answer can be found at a source web site. Each of 
these web sites provides a very comprehensive manual that encompasses basically all known 
information about the software at hand. 



648

Part II: Comic Book Fan Site

 To refresh your memory, here they are: 

   PHP:     www.php.net  (Useful hint: If you are looking for help with a function, such as  echo , you 
can simply type  www.php.net/echo  in your browser, and it takes you directly to the echo page. 
How nifty is that?) 

  PHP also provides the manual in a Microsoft Windows Help format (CHM), which is very use-
ful for Windows users. You can download the manual from the php.net web site and install it on 
your local machine.  

   Apache:     httpd.apache.org   

   MySQL:     www.mysql.com      

  Search and Rescue 
 If you ’ re experiencing problems with a script, chances are you aren ’ t the first to experience the same 
obstacles. Use your favorite search engine to scour the Internet for articles, discussion forum posts, 
tutorials, or anything that discusses the problems you ’ re having. This can be a very quick and easy way 
to keep from reinventing the wheel.  

   IRC  Channels 
 You may require immediate assistance with your dilemma or question, and the IRC resource may be 
your solution. Many PHP IRC channels are out there;  #php  and  #phphelp  on the quakenet network are 
good ones.   

  Summary 
 Errors will happen. The important thing to do when you encounter them is to not get discouraged, and 
to patiently and methodically traverse your code to find the culprit. We hope the tips we have provided 
in this chapter will help you trudge through the slush and muck of debugging and working out the 
errors in your programs, when you have having difficulty.          

❑

❑

❑



A
                                    Answers to Exercises          

 This appendix supplies answers to the exercises you were given at the end of most of the chapters 
you read. Keep in mind that, as is always the case in programming, there is more than one way to 
solve a problem, and these are just recommendations. If you were able to accomplish the given 
task some other way, then congratulate yourself (and why not even treat yourself to a movie?). 
You ’ re well on your way to becoming a truly diverse programmer!  

  Chapter 2   
  1.   Go back to your  date.php  file, and, instead of displaying only the number of days in the 

current month, add a few lines that say: 

  The month is   . 

  There are    days in this month. 

  There are    months left in the current year.  

  A.   Your  date.php  file should look like something like this: 

 < html > 
  < head > 
   < title > How many days in this month? < /title > 
  < /head > 
  < body > 
 < ?php
date_default_timezone_set(‘America/New_York’);
                   
$month_name = date(‘F’);
echo ‘ < p > The month is ‘ . $month_name . ‘. < /p > ’;
                   
echo ‘ < p > There are ‘;
$month = date(‘n’);
if ($month ==  1) { echo ‘31’; }
if ($month ==  2) { echo ‘28 (unless it\’s a leap year)’; }
if ($month ==  3) { echo ‘31’; }



Appendix A: Answers to Exercises     

650

if ($month ==  4) { echo ‘30’; }
if ($month ==  5) { echo ‘31’; }
if ($month ==  6) { echo ‘30’; }
if ($month ==  7) { echo ‘31’; }
if ($month ==  8) { echo ‘31’; }
if ($month ==  9) { echo ‘30’; }
if ($month == 10) { echo ‘31’; }
if ($month == 11) { echo ‘30’; }
if ($month == 12) { echo ‘31’; }
echo ‘ days in this month. < /p > ’;
                   
$months_left = 12 - $month;
echo ‘ < p > There are ‘ . $months_left . ‘ months left in the year. < /p > ’;
? > 
  < /body > 
 < /html >      

  2.   On your movie web site, write a file that displays the following line at the bottom center of 
every page of your site, with a link to your e - mail address. 

  This site developed by:  ENTER YOUR NAME HERE .  

  A.   The files of your movie site should all include these lines near the bottom of the script: 

 < ?php
include ‘footer.php’;
? >   

 Then you need to create the file  footer.php , which consists of these lines: 

 < div style=”text-align: center” > 
 This site developed by:  < a href=”mailto:jdoe@example.com” > John Doe < /a > 
 < /div >      

  3.   Write a program that displays a different message, based on the time of day. For example, have 
the site display  “ Good Morning! ”  if it is accessed in the morning.  

  A.   Your program should include lines that resemble something like this: 

 < html > 
  < head > 
   < title > Greeting < /title > 
  < /head > 
  < body > 
 < ?php
date_default_timezone_set(‘America/New_York’);
                   
if (date(‘G’)  > = 5  &  &  date(‘G’)  < = 11) {
    echo ‘ < h1 > Good Morning! < /h1 > ’;
}
else if (date(‘G’)  > = 12  &  &  date(‘G’)  < = 18) {
    echo ‘ < h1 > Good Afternoon! < /h1 > ’;
}



Appendix A: Answers to Exercises     

651

else if (date(‘G’)  > = 19  &  &  date(‘G’)  < = 4) {
    echo ‘ < h1 > Good Evening! < /h1 > ’;
}
? > 
  < /body > 
 < /html >      

  4.   Write a program that formats a block of text (to be input by the user) based on preferences 
chosen by the user. Give your user options for color of text, font choice, and size. Display the 
output on a new page.  

  A.   First you would display a form to your users, possibly on the login page, such as this: 

 < table > 
  < tr > 
   < td >  < label for=”font” > Select Font: < /label >  < /td > 
   < td >  < select id=”font” name=”font” > 
     < option value=”Verdana” > Verdana < /option > 
     < option value=”Arial” > Arial < /option > 
     < option value=”Times New Roman” > Times New Roman < /option > 
    < /select > 
   < /td > 
  < /tr >  < tr > 
   < td >  < label for=”size” > Select Size: < /label >  < /td > 
   < td >  < select id=”size” name=”size” > 
     < option value=”10px” > 10px < /option > 
     < option value=”12px” > 12px < /option > 
     < option value=”16px” > 16px < /option > 
     < option value=”20px” > 20px < /option > 
    < /select > 
   < /td > 
  < /tr >  < tr > 
   < td >  < label for=”color” > Select Color: < /label >  < /td > 
   < td >  < select id=”size” name=”size” > 
     < option value=”black” > black < /option > 
     < option value=”green” > green < /option > 
     < option value=”purple” > purple < /option > 
     < option value=”red” > red < /option > 
    < /select > 
   < /td > 
  < /tr > 
 < /form >   

 Store the received values in your session variables. You would add something like this to whatever the 
first script is that processes the form: 

$_SESSION[‘font’]=$_POST[‘font’];
$_SESSION[‘size’]=$_POST[‘size’];
$_SESSION[‘color’]=$_POST[‘color’];  



Appendix A: Answers to Exercises     

652

  Then, every time you had text that needed to be styled, you could output your session variables ’  
value, like this: 

 < p  < ?php
echo ‘ style=”font-family: ‘ . $_SESSION[‘font’] . ‘; ‘;
echo ‘font-size: ‘ . $_SESSION[‘size’] . ‘; ‘;
echo ‘color: ‘ . $_SESSION[‘color’] ‘;” ‘;
? >     > Text to display < /p >   

  As you can see, this would be quite tedious to type everywhere you had a lot of text that should 
be styled, so perhaps you would prefer putting this information in an include file, or using a 
separate CSS file.    

  5.   In the program you created in step 4, allow your users the option of saving the information for 
the next time they visit. If they choose  “ yes, ”  save the information in a cookie.  

  A.   You would add a line like this to the end of your font preference form: 

 < input type=”checkbox” id=”save_prefs” name=”save_prefs”/ > 
 < label for=”save_prefs” > Save these preferences for the next time you log
 in. < /label >   

  Then at the very beginnin g  of the script that processes the incoming form data, you would add a 
statement that looks something like this: 

if (isset($_POST[‘save_prefs’])) {
    setcookie(‘font’, $_POST[‘font’], time() + 60);
    setcookie(‘size’, $_POST[‘size’], time() + 60);
    setcookie(‘color’, $_POST[‘color’], time () + 60);
}  

 Instead of accessing those variables through the session later when you need them, you would access 
them through the cookie like this: 

echo $_COOKIE[‘font’];     

  6.   Using functions, write a program that keeps track of how many times a visitor has loaded the 
page.  

  A.   Your program would resemble this code: 

 < ?php
function display_times($num) {
    echo ‘ < h1 > You have viewed this page ‘ . $num . ‘ time(s). < /h1 > ’;
}
                   
// get the cookie value and add 1 to it for this visit
$num_times = 1;
if (isset($_COOKIE[‘num_times’])) {
    $num_times = $_COOKIE[‘num_times’] + 1;
}
                   
// set the value back to the cookie for the next time
setcookie(‘num_times’, $num_times, time() + 60);



Appendix A: Answers to Exercises     

653

? > 
 < html > 
  < head > 
   < title > Viewed Times < /title > 
  < /head > 
  < body > 
 < ?php display_times($num_times); ? > 
  < /body > 
 < /html >         

  Chapter 3   
  1.   Create a PHP program that prints the lead actor and director for each movie in the database.  

  A.   Your program should look something like this: 

 < ?php
function get_people_fullname($db, $people_id) {
    $query = ‘SELECT
            people_fullname
        FROM
            people
        WHERE
            people_id = ‘ . $people_id;
    $result = mysql_query($query, $db) or die(mysql_error($db));
    $row = mysql_fetch_assoc($result);
    return $row[‘people_fullname’];
}
                   
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
? > 
 < html > 
  < head > 
   < title > Movie Info < /title > 
  < /head > 
  < body > 
   < table border=”1” > 
    < tr > 
     < th > Movie Name < /th > 
     < th > Lead Actor < /th > 
     < th > Director < /th > 
    < /tr > 
 < ?php
//get the movies
$query = ‘SELECT
        movie_name, movie_leadactor, movie_director
    FROM
        movie’;



Appendix A: Answers to Exercises     

654

$result = mysql_query($query, $db) or die(mysql_error($db));
                   
while ($row = mysql_fetch_assoc($result)) {
    //call our functions to get specific info     
    $actor_name = get_people_fullname($db, $row[‘movie_leadactor’]);
    $director_name = get_people_fullname($db, $row[‘movie_director’]);
                   
    //show table row
    echo ‘ < tr > ’;
    echo ‘ < td > ’ . $row[‘movie_name’] . ‘ < /td > ’;
    echo ‘ < td > ’ . $actor_name . ‘ < /td > ’;
    echo ‘ < td > ’ . $director_name . ‘ < /td > ’;
    echo ‘ < /tr > ’;
}
? > 
   < /table > 
  < /body > 
 < /html >      

  2.   Pick only comedies from the movie table, and show the movie name and the year it was 
produced. Sort the list alphabetically.  

  A.   Your code should look something like this: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
? > 
 < html > 
  < head > 
   < title > Comedy Movies < /title > 
  < /head > 
  < body > 
   < table border=”1” > 
    < tr > 
     < th > Movie Name < /th > 
     < th > Year < /th > 
    < /tr > 
 < ?php
// get the movie_type for comedies
$query = ‘SELECT
        movietype_id
    FROM
        movietype
    WHERE
        movietype_label = “Comedy”’;
$result = mysql_query($query, $db) or die(mysql_error($db));
$row = mysql_fetch_assoc($result);
                   
//get the movies
$query = ‘SELECT
        movie_name, movie_year



Appendix A: Answers to Exercises     

655

    FROM
        movie
    WHERE
        movie_type = ‘ . $row[‘movietype_id’] . ‘
    ORDER BY
        movie_name’;
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
while ($row = mysql_fetch_assoc($result)) {
                   
    //show table row
    echo ‘ < tr > ’;
    echo ‘ < td > ’ . $row[‘movie_name’] . ‘ < /td > ’;
    echo ‘ < td > ’ . $row[‘movie_year’] . ‘ < /td > ’;
    echo ‘ < /tr > ’;
}
? > 
   < /table > 
  < /body > 
 < /html >      

  3.   Show each movie in the database on its own page, and give the user links in a  “ page 1, page 2, 
page 3 ”     – type navigation system. Hint: Use  LIMIT  to control which movie is on which page.  

  A.   Although you could do this many ways, a simple way is to manipulate the  LIMIT  clause in your 
 SELECT  statement and pass an offset value through the URL: 

 < ?php
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
                   
//get our starting point for the query from the URL
if (isset($_GET[‘offset’])) {
    $offset = $_GET[‘offset’];
} else {
    $offset = 0;
}
                   
//get the movie
$query = ‘SELECT
        movie_name, movie_year
    FROM
        movie
    ORDER BY
        movie_name
    LIMIT ‘ . $offset . ‘, 1’;
$result = mysql_query($query, $db) or die(mysql_error($db));
$row = mysql_fetch_assoc($result);
? > 
 < html > 
  < head > 
   < title >  < ?php echo $row[‘movie_name’]; ? >  < /title > 



Appendix A: Answers to Exercises     

656

  < /head > 
  < body > 
   < table border=”1” > 
    < tr > 
     < th > Movie Name < /th > 
     < th > Year < /th > 
    < /tr >  < tr > 
     < td >  < ?php echo $row[‘movie_name’]; ? >  < /td > 
     < td >  < ?php echo $row[‘movie_year’]; ? >  < /td > 
    < /tr > 
   < /table > 
   < p > 
    < a href=”page.php?offset=0” > Page 1 < /a > , 
    < a href=”page.php?offset=1” > Page 2 < /a > ,
    < a href=”page.php?offset=2” > Page 3 < /a > 
   < /p > 
  < /body > 
 < /html >         

  Chapter 4   
  1.   Add an entry in the top table of your  movie_details.php  file that shows the average rating 

given by reviewers.  

  A.   First you need to add the display in your  movie_details.php  file, as follows: 

// display the information
echo  <  <  < ENDHTML
 < html > 
  < head > 
   < title > Details and Reviews for: $movie_name < /title > 
  < /head > 
  < body > 
   < div style=”text-align: center;” > 
    < h2 > $movie_name < /h2 > 
    < h3 >  < em > Details < /em >  < /h3 > 
    < table cellpadding=”2” cellspacing=”2”
    style=”width: 70%; margin-left: auto; margin-right: auto;” > 
     < tr > 
      < td >  < strong > Title < /strong >  < /strong >  < /td > 
      < td > $movie_name < /td > 
      < td >  < strong > Release Year < /strong >  < /strong >  < /td > 
      < td > $movie_year < /td > 
     < /tr >  < tr > 
      < td >  < strong > Movie Director < /strong >  < /td > 
      < td > $movie_director < /td > 
      < td >  < strong > Cost < /strong >  < /td > 
      < td > $$movie_cost < td/ > 
     < /tr >  < tr > 
      < td >  < strong > Lead Actor < /strong >  < /td > 
      < td > $movie_leadactor < /td > 
      < td >  < strong > Takings < /strong >  < /td > 



Appendix A: Answers to Exercises     

657

      < td > $$movie_takings < td/ > 
     < /tr >  < tr > 
      < td >  < strong > Running Time < /strong >  < /td > 
      < td > $movie_running_time < /td > 
      < td >  < strong > Health < /strong >  < /td > 
      < td > $movie_health < td/ > 

     < /tr >  < tr > 
      < td >     < /td > 
      < td >     < /td > 
      < td >  < strong > Average Review < /strong >  < /td > 
      < td > $average_review < td/ > 
     < /tr > 
    < /table > 
ENDHTML;  

 Then you can create a function to determine the number of total reviews and calculate the average. These 
lines would go near the top of your  movie_details.php  file where the rest of the functions are defined.   

function get_avg_review($db, $movie_id) {
    $query =’SELECT
            review_rating
        FROM
            reviews
        WHERE
            review_movie_id = ‘ . $movie_id;
    $result = mysql_query($query, $db);
    $total_reviews = mysql_num_rows($result);
                   
    $current = 0;
    while ($row = mysql_fetch_assoc($result)) {
        $current = $current + $row[‘review_rating’];
    }
                   
    return $current / $total_reviews;
}  

 Then call the function when you get the main information for the movie by adding the following lines to 
 movie_details.php : 

$movie_health       = calculate_differences($row[‘movie_takings’],
                          $row[‘movie_cost’]);

$average_review     = get_avg_review($db, $_GET[‘movie_id’]);
$average_review     = round($average_review, 2);      

  2.   Change each column heading of the reviews table in your  movie_details.php  to a link that 
allows the user to sort by that column (i.e., the user would click on  “ Date ”  to sort all the reviews 
by date).  

  A.   You need to change your  movie_details.php  file as follows: 

if (isset($_GET[‘sort’])) {
    $sort = $_GET[‘sort’];
} else {
    $sort = ‘review_date’;



Appendix A: Answers to Exercises     

658

}
                   

// retrieve reviews for this movie
$query = ‘SELECT
        review_movie_id, review_date, reviewer_name, review_comment,
        review_rating
    FROM
        reviews
    WHERE
        review_movie_id = ‘ . $_GET[‘movie_id’] . ‘
    ORDER BY

        ‘ . $sort . ‘ ASC’;

                   
$result = mysql_query($query, $db) or die(mysql_error($db));
                   
// display the reviews

$mid = $_GET[‘movie_id’];

echo  <  <  <  ENDHTML
    < h3 >  < em > Reviews < /em >  < /h3 > 
    < table cellpadding=”2” cellspacing=”2”
    style=”width: 90%; margin-left: auto; margin-right: auto;” > 
     < tr > 

      < th style=”width: 7em;” > 
       < a href=”movie_details.php?movie_id=$mid & sort=review_date” > Date < /a >  
< /th > 
      < th style=”width: 10em;” > 
       < a href=”movie_details.php?movie_id=$mid & sort=reviewer_name” > Reviewer
 < /a >  < /th > 
      < th > 
       < a href=”movie_details.php?movie_id=$mid & sort=review_comment” > Comments
 < /a >  < /th > 
      < th style=”width: 5em;” > 
       < a href=”movie_details.php?movie_id=$mid & sort=review_rating” > Rating < /a > 

 < /th > 

     < /tr > 
ENDHTML;     

  3.   Alternate the background colors of each row in the review table of your  movie_details.php  
file to make them easier to read. Hint: Odd - numbered rows would have a background of one 
color, even - numbered rows would have a background of another color.  

  A.   Your  movie_details.php  file will need these lines added in or changed: 

$odd = true;

while ($row = mysql_fetch_assoc($result))
{
    $date = $row[‘review_date’];
    $name = $row[‘reviewer_name’];
    $comment = $row[‘review_comment’];
    $rating = generate_ratings($row[‘review_rating’]);
                   
    if ($odd) {
        echo ‘ < tr style=”background-color: #EEEEEE;” > ’;



Appendix A: Answers to Exercises     

659

    } else {
        echo ‘ < tr style=”background-color: #FFFFFF;” > ’;
    }
    echo  <  <  < ENDHTML
       < td style=”vertical-align:top; text-align: center;” > $date < /td > 

       < td style=”vertical-align:top;” > $name < /td > 
       < td style=”vertical-align:top;” > $comment < /td > 
       < td style=”vertical-align:top;” > $rating < /td > 
     < /tr > 
ENDHTML;

    $odd = !$odd;

}        

  Chapter 5   
  1.   Create a form and processing page that let you choose a rating (stars, thumbs up, number from 

1 to 5, whatever) and provide comments for a movie.  

  A.   All that ’ s needed for this exercise is a simple HTML form, something similar to the following: 

 < form method=”post” action=”showratings.php” > 
  < table > 
   < tr > 
    < td > Movie title:  < /td > 
    < td >  < input type=”text” name=”movie” >  < /td > 
   < /tr >  < tr > 
    < td > Rating:  < /td > 
    < td > 
 < ?php
for ($i = 1; $i  < = 5; $i++) {
    echo ‘ < input type=”radio” name=”rating” value=”’ . $i . ‘” >  ‘ . $i . 
‘ < br/ > ’;
}
? > 
    < /td > 
   < /tr >  < tr > 
    < td > Comments:  < /td > 
    < td >  < textarea name=”comments” cols=”40” rows=”10” >  < /textarea >  < /td > 
   < /tr > 
  < /table > 
 < /form >      

  2.   Create a form with several text input boxes that allow you to populate the options of a select 
field on a subsequent page.  

  A.   This exercise takes the form of two pages. The first provides the form to enter the options, and 
the latter shows the result. First, the form on the input page: 

 < form method=”post” action=”showratings.php” > 
  < table > 
   < tr > 
    < td > Select options:  < /td > 



Appendix A: Answers to Exercises     

660

    < td > 
 < ?php
for ($i = 0; $i  <  5; $i++) {
    echo ‘ < input type=”text” name=”sval[‘ . $i . ‘]” / >  < br/ > ’;
}
? > 
    < /td > 
   < /tr > 
  < /table > 
 < /form >   

 And then, on the second page: 

 < select > 
 < ?php
for ($i = 0; $i  <  5; $i++) {
    echo ‘ < option value=”’ . $_POST[‘sval’][$i] . ‘” > ’ . $_POST[‘sval’][$i] .
        ‘ < /option > ’;
}
? > 
 < /select >      

  3.   Create a calculator form that takes two numbers and calculates their sum.  

  A.   This exercise is easily handled using a few form fields and some basic arithmetic: 

 < ?php
$num1 = (isset($_POST[‘num1’])) ? $_POST[‘num1’] : null;
$num2 = (isset($_POST[‘num2’])) ? $_POST[‘num2’] : null;
$operator = (isset($_POST[‘operator’])) ? $_POST[‘operator’] : ‘+’;
? > 
 < form method=”post” action=”#” > 
  < div > 
   < input type=”text” name=”num1” size=”3” value=” < ?php echo $num1; ? > ” / > 
   < select name=”operator” > 
    < option value=”+” 
     < ?php if ($operator == ‘+’) { echo ‘selected=”selected”’; } ? >  > + < /option > 
    < option value=”-” 
     < ?php if ($operator == ‘-’) { echo ‘selected=”selected”’; } ? >  > - < /option > 
    < option value=”*” 
     < ?php if ($operator == ‘*’) { echo ‘selected=”selected”’; } ? >  >  & times; 
< /option > 
    < option value=”/” 
     < ?php if ($operator == ‘/’) { echo ‘selected=”selected”’; } ? >  >  & divide;
 < /option > 
   < /select > 
   < input type=”text” name=”num2” size=”3” value=” < ?php echo $num2; ? > ” / > 
   < input type=”submit” value=”=” / > 
   < strong > 
 < ?php
if (!is_null($num1)  &  &  !is_null($num2)) {
    if ($operator == ‘+’) {
        echo $num1 + $num2;
    } else if ($operator == ‘-’) {



Appendix A: Answers to Exercises     

661

        echo $num1 - $num2;
    } else if ($operator == ‘*’) {
        echo $num1 * $num2;
    } else if ($operator == ‘/’) {
        echo $num1 / $num2;
    } else {
        echo ‘UNKNOWN’;
    }
}
? > 
   < /strong > 
  < /div > 
 < /form >         

  Chapter 6   
  1.   Create the edit/delete code for the  people  table. Use the movie code as an example.  

  A.   One possible solution is as follows. Change  commit.php  as highlighted: 

 < ?php
//connect to MySQL
$db = mysql_connect(‘localhost’, ‘bp6am’, ‘bp6ampass’) or 
    die (‘Unable to connect. Check your connection parameters.’);
                   
//make sure our recently created database is the active one
mysql_select_db(‘moviesite’, $db) or die(mysql_error($db));
? > 
 < html > 
  < head > 
   < title > Commit < /title > 
  < /head > 
  < body > 
 < ?php
switch ($_GET[‘action’]) {
case ‘add’:
    switch ($_GET[‘type’]) {
    case ‘movie’:
        $query = ‘INSERT INTO movie
                (movie_name, movie_year, movie_type, movie_leadactor,
                movie_director)
            VALUES
                (“’ . $_POST[‘movie_name’] . ‘”,
                 ‘ . $_POST[‘movie_year’] . ‘,
                 ‘ . $_POST[‘movie_type’] . ‘,
                 ‘ . $_POST[‘movie_leadactor’] . ‘,
                 ‘ . $_POST[‘movie_director’] . ‘)’;
        break;

    case ‘people’:
        $query = ‘INSERT INTO people
                (people_fullname, people_isactor, people_isdirector)
            VALUES
                (“’ . $_POST[‘people_name’] . ‘”, 



Appendix A: Answers to Exercises     

662

                ‘ . $_POST[‘people_isactor’] . ‘, 
                ‘ .  $_POST[‘people_isdirector’] . ‘)’;
          break;

    }
    break;
case ‘edit’:
    switch ($_GET[‘type’]) {
    case ‘movie’:
        $query = ‘UPDATE movie SET
                movie_name = “’ . $_POST[‘movie_name’] . ‘”,
                movie_year = ‘ . $_POST[‘movie_year’] . ‘,
                movie_type = ‘ . $_POST[‘movie_type’] . ‘,
                movie_leadactor = ‘ . $_POST[‘movie_leadactor’] . ‘,
                movie_director = ‘ . $_POST[‘movie_director’] . ‘
            WHERE
                movie_id = ‘ . $_POST[‘movie_id’];
        break;

    case ‘people’:
        $query = ‘UPDATE people SET
                people_fullname = “’ . $_POST[‘people_fullname’] . ‘”,
                people_isactor = “’ . $_POST[‘people_isactor’] . ‘”,
                people_isdirector = “’ . $_POST[‘people_isdirector’] . ‘”
            WHERE
                people_id = ‘ . $_GET[‘id’];
          break;

    }
    break;
}
                   
if (isset($query)) {
    $result = mysql_query($query, $db) or die(mysql_error($db));
}
? > 
   < p > Done! < /p > 
  < /body > 
 < /html >         

  Chapter 7   
  1.   Create a site called  “ A Virtual Vacation. ”  Offer different backgrounds that people can 

superimpose photos of themselves on, and let them send virtual postcards to their friends and 
family.  

  A.   Your code would need to include a background/upload page and a result page. We cover 
sending e - mail postcards in Chapter  11 , so you can simply use the scripts from that chapter and 
insert your newly created postcard. 

  This code comes with some caveats; of course, you don ’ t have access to the sample image files 
we ’ ve used, and you will have to alter your code a bit based on the sizes of your images. Also, 
we haven ’ t stored our images in any database, and we ’ ve only allowed for JPG images to be 



Appendix A: Answers to Exercises     

663

uploaded. Keeping those things in mind, your background/upload page should look something 
like this (we named our file  vacation.html ): 

 < html > 
  < head > 
   < title > Go on a Virtual Vacation! < /title > 
  < /head > 
  < body > 
   < form method=”post” action=”upload_image.php” enctype=”multipart/
form-data” > 
    < table > 
     < tr > 
      < td >  < label for=”image_caption” > Image Name or Caption < /label >  < br/ > 
       < em > Example: Wish you were here! < /em >  < /td > 
      < td >  < input id=”image_caption” name=”image_caption” type=”text”
       size=”55”/ >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”image_username” > Your Name: < /label >  < /td > 
      < td >  < input id=”image_username” name=”image_username” type=”text”
       size=”15” >  < /td > 
     < /tr >  < tr > 
      < td >  < label for=”image_filename” > Upload Image: < /label >  < /td > 
      < td >  < input id=”image_filename” name=”image_filename” type=”file” / >  < /td > 
     < /tr > 
    < /table > 
    < p >  < em > Acceptable image formats include: JPG/JPEG < /em >  < /p > 
    < p > Select your destination: < /p > 
    < table > 
     < /tr >  < tr > 
      < td >  < input type=”radio” id=”destination_1” name=”destination”
       value=”beach” / >  < /td > 
      < td >  < label for=”destination_1” >  < img src=”images/beach.jpg” >  < /label >  < /td > 
     < /tr >  < tr > 
      < td >  < input type=”radio” id=”destination_2” name=”destination”
       value=”golfcourse” / >  < /td > 
      < td >  < label for=”destination_2” >  < img src=”images/golfcourse.jpg” >  
< /label >  < /td > 
     < /tr >  < tr > 
      < td >  < input type=”radio” id=”destination_3” name=”destination”
       value=”mountains” / >  < /td > 
      < td >  < label for=”destination_3” >  < img src=”images/mountains.jpg” >  < /label >
  < /td > 
     < /tr > 
    < /table > 
    < p style=”text-align: center” > 
     < input type=”submit” name=”Submit” value=”Submit” / > 
     < input type=”reset” value=”Clear Form” / >  < /p > 
   < /form > 
  < /body > 
 < /html >   

  Then we have a page that processes the photos and merges them together, called  
upload_image.php .   



Appendix A: Answers to Exercises     

664

 < ?php
// filter incoming variables
$image_caption = (isset($_POST[‘image_caption’])) ? $_POST[‘image_caption’] : 
‘’;
$image_username = (isset($_POST[‘image_username’])) ? $_POST[‘image_
username’] :
    ‘Anonymous’;
$destination = $_POST[‘destination’];
$image_tempname = $_FILES[‘image_filename’][‘name’];
$today = date(‘Y-m-d’);
                   
//change this path to match your images directory
$dir =’C:/Program Files/Apache Software Foundation/Apache2.2/htdocs/images’;
                   
$image_name = $dir . $image_tempname;
                   
if (move_uploaded_file($_FILES[‘image_filename’][‘tmp_name’], $image_name))
{
    //get info about the image being uploaded
    list($width, $height, $type, $attr) = getimagesize($image_name);
                   
    if ($type != IMAGETYPE_JPEG) {
        echo ‘ < p >  < strong > Sorry, but the file you uploaded was not a JPG ‘ . 
            ‘file. < br/ > Please hit your back button and try again. < /strong >  < /p > ’;
    } else {
       //image is acceptable; ok to proceed
        $dest_image_name = $dir . $destination . ‘.jpg’;
                   
        $image = imagecreatefromjpeg($image_name);
        list($width2, $height2, $type2, $attr2) = getimagesize($dest_image_
name);
                   
        $image2 = imagecreatefromjpeg($dest_image_name);
        imagecopymerge($image2, $image, 0,0,0, 0, $width, $height, 100);
    }
                   
    header(‘Content-type:image/jpeg’);
    imagejpeg($image2);
}
? >      

  2.   Have a page on your site with funny photographs or cartoons, and allow your users to write the 
captions for them. Place the text in a speech bubble that is appropriately sized, based on the 
length of the caption they submit.  

  A.   First, you need to have the page that gathers the input from the user: 

 < html > 
  < head > 
   < title > Write your own caption! < /title > 
  < /head > 
  < body > 
   < h1 > Write Your Own Caption! < /h1 > 
   < img src=”images/cartoon.jpg” alt=”captionless cartoon”/ > 



Appendix A: Answers to Exercises     

665

   < form method=”post” action=”caption.php” > 
    < table > 
     < tr > 
      < td >  < label for=”image_caption” > Write a caption for the cartoon: 
< /label >  < br/ > 
       < em > Example: You talkin’ to me? < /em >  < /td > 
      < td >  < input id=”image_caption” name=”image_caption” type=”text” 
       size=”25” maxlength=”25” / >  < /td > 
     < /tr >  < tr > 
      < td >     < /td > 
      < td >  < input type=”submit” value=”Send my Caption”/ >  < /td > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >   

 Then you need to put the text in the bubble. We are using a simple ellipse shape that will stretch to fit 
how long the text is. You can use the following code: 

 < ?php
$image_filename = ‘images/cartoon.jpg’;
$image_caption = (isset($_POST[‘image_caption’])) ? $_POST[‘image_caption’] : 
‘ ‘;
$length = strlen($image_caption);
                   
$image = imagecreatefromjpeg($image_filename);
                   
//draw a white ellipse based on string length
$white = imagecolorallocate($image, 0xFF, 0xFF, 0xFF);
                   
// the center point for the bubble on our cartoon is at coordinates 134, 14
// alter these values for your specific image if necessary
$e_x = 134;
$e_y = 14;
                   
// assume each character is 10px plus 10px on either side of the string for 
// extra cushion.
$e_width=($length * 10) + 20;
$ellipse = imagefilledellipse($image, $e_x, $e_y, $e_width, 25, $white);
                   
//get starting point for text
$x = $e_x - (($length * 10) / 2) - 10;
$y = $e_y + 5;
                   
//place the text in the bubble
imagettftext($image, 12, 0, $x, $y, 0, ‘arial.ttf’, $image_caption);
                   
header(‘Content-type: image/jpeg’);
imagejpeg($image);
? >   



Appendix A: Answers to Exercises     

666

  You could also have used  imagettfbbox()  to perform a similar task. We didn ’ t cover this in 
Chapter  7 , so you might want to refer to the manual at  www.php.net/imagettfbbox  for more 
information on this function.    

  3.   Create a page for kids where they can choose different heads, bodies, and tails from animals and 
put them together to make a new creation and a new image. Or, create a virtual paper doll site 
where kids can place different outfits on a model and then save the images they create.  

  A.   Although there are many ways to do this, we will have four separate pages: one for picking the 
head, one for picking the midsection, one for picking the behind/tail, and one for putting them 
all together and outputting our final result. We could easily create these images by taking stock 
photos of animals, resizing them so they are the same size, and then cutting them into three 
sections, using an image - processing program such as Photoshop or GIMP (or heck, we can even 
do this using PHP, right?). When we have our sections all ready to go, our first page,  animal1.
html , will look something like this: 

 < html > 
  < head > 
   < title > Create your very own animal! < /title > 
  < /head > 
  < body > 
   < p > First, you must pick a head for your new animal. < /p > 
   < form method=”post” action=”animal2.php” > 
    < table > 
     < tr > 
      < td >  < input id=”head_1” name=”head” type=”radio” value=”cowhead” / >  < /td > 
      < td >  < label for=”head_1” >  < img src=”images/cowhead.jpg” / >  < /label >  < /td > 
     < /tr >  < tr > 
      < td >  < input id=”head_2” name=”head” type=”radio” value=”elephanthead” / >  < /td > 
      < td >  < label for=”head_2” >  < img src=”images/elephanthead.jpg” / >  < /label >  < /td > 
     < /tr >  < tr > 
      < td >  < input id=”head_3” name=”head” type=”radio” value=”giraffhead” / >  < /td > 
      < td >  < label for=”head_3” >  < img src=”images/giraffhead.jpg” / >  < /label >  < /td > 
     < /tr >  < tr > 
      < td >  < input id=”head_4” name=”head” type=”radio” value=”pighead” / >  < /td > 
      < td >  < label for=”head_4” >  < img src=”images/pighead.jpg” / >  < /label >  < /td > 
     < /tr >  < tr > 
      < td >     < /td > 
      < td >  < input type=”submit” name=”Submit” value=”Pick a Body - > ” / >  < /td > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >   

 Our next file,  animal2.php , looks like this: 

 < html > 
  < head > 
   < title > Create your very own animal! < /title > 
  < /head > 
  < body > 
   < p > Second, you must pick a body for your new animal. < /p > 
   < form method=”post” action=”animal3.php” > 



Appendix A: Answers to Exercises     

667

    < table > 
     < tr > 
      < td >  < input id=”body_1” name=”body” type=”radio” value=”cowbody” / >  < /td > 
      < td >  < label for=”body_1” >  < img src=”images/cowbody.jpg” / >  < /label >  < /td > 
     < /tr >  < tr > 
      < td >  < input id=”body_2” name=”body” type=”radio” value=”elephantbody” / >  < /td > 
      < td >  < label for=”body_2” >  < img src=”images/elephantbody.jpg” / >  < /label >  < /td > 
     < /tr >  < tr > 
      < td >  < input id=”body_3” name=”body” type=”radio” value=”giraffbody” / >  < /td > 
      < td >  < label for=”body_3” >  < img src=”images/giraffbody.jpg” / >  < /label >  < /td > 
     < /tr >  < tr > 
      < td >  < input id=”body_3” name=”body” type=”radio” value=”pigbody” / >  < /td > 
      < td >  < label for=”body_3” >  < img src=”images/pigbody.jpg” / >  < /label >  < /td > 
     < /tr >  < tr > 
      < td >     < /td > 
      < td >  < input type=”hidden” name=”head” value=” < ?php echo $_POST[‘head’]; 
? > ” / > 
       < input type=”submit” name=”Submit” value=”Pick a Tail - > ” / >  < /td > 
     < /tr > 
    < /table > 
   < /form > 
  < /body > 
 < /html >   

 And our next file,  animal3.php , looks like this: 

 < html > 
  < head > 
   < title > Create your very own animal! < /title > 
  < /head > 
  < body > 
   < p > Finally, you must pick a tail for your new animal. < /p > 
   < form method=”post” action=”animal4.php” > 
    < table > 
     < tr > 
      < td >  < input id=”tail_1” name=”tail” type=”radio” value=”cowtail” / >  < /td > 
      < td >  < label for=”tail_1” >  < img src=”images/cowtail.jpg” / >  < /label >  < /td > 
     < /tr >  < tr > 
      < td >  < input id=”tail_2” name=”tail” type=”radio” value=”elephanttail” / >  < /td > 
      < td >  < label for=”tail_2” >  < img src=”images/elephanttail.jpg” / >  < /label >  < /td > 
     < /tr >  < tr > 
      < td >  < input id=”tail_3” name=”tail” type=”radio” value=”girafftail” / >  < /td > 
      < td >  < label for=”tail_3” >  < img src=”images/girafftail.jpg” / >  < /label >  < /td > 
     < /tr >  < tr > 
      < td >  < input id=”tail_3” name=”tail” type=”radio” value=”pigtail” / >  < /td > 
      < td >  < label for=”tail_3” >  < img src=”images/pigtail.jpg” / >  < /label >  < /td > 
     < /tr >  < tr > 
      < td >     < /td > 
      < td >  < input type=”hidden” name=”head” value=” < ?php echo $_POST[‘head’]; 
? > ” / > 
       < input type=”hidden” name=”tail” value=” < ?php echo $_POST[‘tail’]; 
? > ” / > 
       < input type=”submit” name=”Submit” value=”Make the Animal!” / >  < /td > 
     < /tr > 



Appendix A: Answers to Exercises     

668

    < /table > 
   < /form > 
  < /body > 
 < /html >   

 And finally, the file that combines the three images, our  animal4.php  file: 

 < ?php
$head = $_POST[‘head’];
$body = $_POST[‘body’];
$tail = $_POST[‘tail’];
                   
$image_dir=’images/’;
                   
$head_image = imagecreatefromjpeg($image_dir . $head . ‘.jpg’);
$body_image = imagecreatefromjpeg($image_dir . $body . ‘.jpg’);
$tail_image = imagecreatefromjpeg($image_dir . $tail . ‘.jpg’);
                   
// Our images are 100px x 200px and were chopped horizontally.
$new_animal = imagecreatetruecolor(300, 200);
                   
//merge the head
imagecopymerge($new_animal, $head_image, 0, 0, 0, 0, 100, 200, 100);
                   
//now merge in the body
imagecopymerge($new_animal, $body_image, 100,0, 0, 0, 100, 200, 100);
                   
//and finally the tail
imagecopymerge($new_animal, $tail_image, 200, 0, 0, 0, 100, 200, 100);
                   
                   
header(‘Content-type: image/jpeg’);
imagejpeg($new_animal);
? >         

  Chapter 8   
  1.   Add validation to the code that adds and edits people records.  

  A.   In  commit.php , add or change the lines highlighted below: 

switch ($_GET[‘action’]) {
case ‘add’:
    switch ($_GET[‘type’]) {
    case ‘movie’:
        $error = array();
...
        break;

    case ‘people’:
        $error = array();
        $people_name = trim($_POST[‘people_name’]);
        if (empty($people_name)) {



Appendix A: Answers to Exercises     

669

            $error[] = urlencode(‘Please enter a name!’);
        }
        if (empty($_POST[‘people_isactor’])  &  & 
            empty($_POST[‘people_isdirector’])) {
            $error[] = urlencode(‘Please specify if the person is an actor ‘ . 
                ‘or a director!’);
        }
        if (empty($error)) {
            $query = ‘INSERT INTO people
                    (people_fullname, people_isactor, people_isdirector)
                VALUES
                    (“’ . $people_name . ‘”, 
                    ‘ . $_POST[‘people_isactor’] . ‘, 
                    ‘ .  $_POST[‘people_isdirector’] . ‘)’;

        }
        break;

    }
    break;
case ‘edit’:
    switch ($_GET[‘type’]) {
    case ‘movie’:
        $error = array();
...
        break;

    case ‘people’:
        $error = array();
        $people_name = trim($_POST[‘people_name’]);
        if (empty($people_name)) {
            $error[] = urlencode(‘Please enter a name!’);
        }
        if (empty($_POST[‘people_isactor’])  &  & 
            empty($_POST[‘people_isdirector’])) {
            $error[] = urlencode(‘Please specify if the person is an actor ‘ . 
                ‘or a director!’);
        }
        if (empty($error)) {
            $query = ‘UPDATE people SET
                    people_fullname = “’ . $people_name . ‘”,
                    people_isactor = “’ . $_POST[‘people_isactor’] . ‘”,
                    people_isdirector = “’ . $_POST[‘people_isdirector’] . ‘”
                WHERE
                    people_id = ‘ . $_GET[‘id’];
        }
        break;

    }
    break;     

  2.   Write and test a regular expression pattern to validate an e - mail address.  

  A.   This is not the only answer, but it gets the job done: 

/[\w\-]+(\.[\w\-]+)*@[\w\-]+(\.[\w\-]+)+/        



Appendix A: Answers to Exercises     

670

  Chapter 9 
 In Chapter  9 , you were shown three short snippets of code and asked to spot the errors and figure out 
how to fix them. Then you were asked to create a little error - catching script to catch the errors.   

  1. 

    < ?php
$query = “SELECT * FROM table_name “ .
         “WHERE name = ‘” . $_POST[‘name’] . “’;”
$result = mysql_query($result) 
  or die(mysql_error());
? >    

  A.   Parse error from lack of semicolon at the end of the statement; the semicolon there is for the SQL 
statement. The correct code is: 

 < ?php
$query = “SELECT * FROM table_name “ .

         “WHERE name = ‘” . $_POST[‘name’] . “’”;

$result = mysql_query($result) 
  or die(mysql_error());
? >      

  2.    

 < ?
if ($_POST[‘first_name’] = “Jethro”) {
echo “Your name is “ . $_POST[‘first_name’];
}
? >    

  A.   You always need to check equality with double equals ( == ), not single equals ( = ). A single equals 
sign is for setting a variable equal to a value. The correct code is: 

 < ?php

if ($_POST[‘first_name’] == “Jethro”) {

  echo “Your name is “ . $_POST[‘first_name’];
}
? >      

  3.

    < ?
$full_name = $_POST[‘mrmiss’] “. “ $_POST[‘first_name’] “ “ $_POST[‘last_name’];
? >    



Appendix A: Answers to Exercises     

671

  A.   This is missing concatenation operators between the variables and the strings. Here is the correct 
code: 

 < ?php

$full_name = $_POST[‘mrmiss’] . “. “ . $_POST[‘first_name’] . “ “ . 
    $_POST[‘last_name’];

? >         

  Chapter 10   
  1.   Add a  “ costume description ”  field to the character record, and provide a way to modify the 

costume description.  

  A.   The three main tasks you need to accomplish in this exercise are to modify the database to hold 
the costume descriptions, modify the character edit page to provide a character description field, 
and modify the transaction page to process the extra field. 

 Start by adding a field to the  comic_character  table in your database with a SQL statement similar to 
the following: 

ALTER TABLE comic_character
    ADD COLUMN costume VARCHAR(255);  

 Then, modify  edit_character.php , adding or modifying the lines highlighted below: 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or 
    die (‘Unable to connect. Check your connection parameters.’);
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$action = ‘Add’;
                   
$character = array(‘alias’ = >  ‘’,
                   ‘real_name’ = >  ‘’,
                   ‘alignment’ = >  ‘good’,

                   ‘costume’ = >  ‘’,

                   ‘address’ = >  ‘’,
                   ‘city’ = >  ‘’,
                   ‘state’ = >  ‘’,
                   ‘zipcode_id’ = >  ‘’);
$character_powers = array();
$rivalries = array();
                   
// validate incoming character id value
$character_id = (isset($_GET[‘id’])  &  &  ctype_digit($_GET[‘id’])) ? 
    $_GET[‘id’] : 0;
                   
// retrieve information about the requested character



Appendix A: Answers to Exercises     

672

if ($character_id != 0) {
    $query = ‘SELECT

            c.alias, c.real_name, c.alignment, c.costume,

            l.address, z.city, z.state, z.zipcode_id
        FROM
            comic_character c, comic_lair l, comic_zipcode z
        WHERE
            z.zipcode_id = l.zipcode_id AND
            c.lair_id = l.lair_id AND
            c.character_id = ‘ . $character_id;
    $result = mysql_query($query, $db) or die (mysql_error($db));
...
     < /tr >  < tr > 
      < td > Alignment: < /td > 
      < td >  < input type=”radio” name=”alignment” value=”good”
        < ?php echo ($character[‘alignment’]==’good’) ? ‘checked=”checked”’ : 
‘’;
       ? > / >  Good < br/ >  
       < input type=”radio” name=”alignment” value=”evil”
        < ?php echo ($character[‘alignment’]==’evil’) ? ‘checked=”checked”’ : ‘’;
       ? > / >  Evil
      < /td > 

     < /tr >  < tr > 
      < td > Costume Description: < /td > 
      < td >  < input type=”text” name=”costume” size=”40” maxlength=”255”
       value=” < ?php echo $character[‘costume’];? > ” >  < /td > 

     < /tr >  < tr > 
      < td > Rivalries: < br/ >  < small >  < em > CTRL-click to select multiple enemies < /em > 
       < /small > 
      < /td >   

 Finally, in  char_transact.php , we change the following: 

case ‘Add Character’:
                   
    // escape incoming values to protect database
    $alias = mysql_real_escape_string($_POST[‘alias’], $db);
    $real_name = mysql_real_escape_string($_POST[‘real_name’], $db);
    $address = mysql_real_escape_string($_POST[‘address’], $db);
    $city = mysql_real_escape_string($_POST[‘city’], $db);
    $state = mysql_real_escape_string($_POST[‘state’], $db);
    $zipcode_id = mysql_real_escape_string($_POST[‘zipcode_id’], $db);
    $alignment = ($_POST[‘alignment’] == ‘good’) ? ‘good’ : ‘evil’;
    $costume = mysql_real_escape_string($_POST[‘costume’], $db);

...
    $query = ‘INSERT INTO comic_character
            (character_id, alias, real_name, lair_id, alignment, costume) 
        VALUES
            (NULL, “’ . $alias . ‘”, “’ . $real_name . ‘”, ‘ .

            $lair_id . ‘, “’ . $alignment . ‘”, “’ . $costume . ‘”)’;

    mysql_query($query, $db) or die (mysql_error($db));
...



Appendix A: Answers to Exercises     

673

case ‘Edit Character’:
                   
    // escape incoming values to protect database
    $character_id = (int)$_POST[‘character_id’];
    $alias = mysql_real_escape_string($_POST[‘alias’], $db);
    $real_name = mysql_real_escape_string($_POST[‘real_name’], $db);
    $address = mysql_real_escape_string($_POST[‘address’], $db);
    $city = mysql_real_escape_string($_POST[‘city’], $db);
    $state = mysql_real_escape_string($_POST[‘state’], $db);
    $zipcode_id = mysql_real_escape_string($_POST[‘zipcode_id’], $db);
    $alignment = ($_POST[‘alignment’] == ‘good’) ? ‘good’ : ‘evil’;

    $costume = mysql_real_escape_string($_POST[‘costume’], $db);

...
    $query = ‘UPDATE comic_lair l, comic_character c
            SET   
                l.zipcode_id = ‘ . $zipcode_id . ‘, 
                l.address = “’ . $address . ‘”, 
                c.real_name = “’ . $real_name . ‘”, 
                c.alias = “’ . $alias . ‘”, 

                c.alignment = “’ . $alignment . ‘”,
                c.costume = “’ . $costume . ‘” 

        WHERE
            c.character_id = ‘ . $character_id . ‘ AND 
            c.lair_id = l.lair_id’;
    mysql_query($query, $db) or die (mysql_error($db));     

  2.   Modify the character listing to display the characters ’  locations alongside their powers.  

  A.   This time, you only need to modify the  charlist.php  file. You ’ re going to change the initial 
queries to return additional fields, and add those fields to the table display as highlighted 
below: 

// select list of charaters for table

$query = ‘SELECT
        c.character_id, c.alias, c.real_name, c.alignment, z.city, z.state
    FROM 
        comic_character c JOIN comic_lair l ON c.lair_id = l.lair_id 
        JOIN comic_zipcode z ON l.zipcode_id = z.zipcode_id 
    ORDER BY c.’ . $order[$o];

$result = mysql_query($query, $db) or die (mysql_error($db));
...
        // select list of powers for this character
        $query2 = ‘SELECT
                power
            FROM
                comic_power p
                JOIN comic_character_power cp
                    ON p.power_id = cp.power_id
            WHERE 
                cp.character_id = ‘ . $row[‘character_id’] . ‘
            ORDER BY
                power ASC’;



Appendix A: Answers to Exercises     

674

        $result2 = mysql_query($query2, $db) or die (mysql_error($db));
                   
        if (mysql_num_rows($result2)  >  0) {
            $powers = array();
            while ($row2 = mysql_fetch_assoc($result2)) {
                $powers[] = $row2[‘power’];
            }
            echo ‘ < td > ’ . implode(‘, ‘, $powers) . ‘ < /td > ’;
        } else {
            echo ‘ < td > none < /td > ’;
        }
        mysql_free_result($result2);
        
        echo ‘ < td > ’ . $row[‘city’] . ‘, ‘ . $row[‘state’] . ‘ < /td > ’;        

  Chapter 11   
  1.   Create code to send a message to an e - mail account, and blind carbon copy (BCC) yourself or 

another account.  

  A.   This one is surprisingly short. You can send a BCC message by adding a mail header. All you 
need is something similar to the following: 

$to = ‘youremail@example.com’;
$subject = ‘Testing email’;
$message = ‘This is testing Bcc fields.’;
                   
$bcc = ‘secret@example.com’;
$headers = ‘BCC: ‘ . $bcc . “\r\n”;
                   
mail($to, $subject, $message, $headers);     

  2.   Create a simple web form that e - mails comments or suggestions to an account of your choosing.  

  A.   For this exercise, you can create two files: one that provides a form for user entry of the required 
fields and another to send the actual e - mail. The web form should include something similar to 
the following: 

 < form action=”sendcomments.php” method=”post” > 
  < div > 
   < p > Please provide your comments or suggestions to help make our site 
better! < /p > 
   < textarea name=”comments” cols=”40” rows=”10” >  < /textarea > 
  < /div > 
 < /form >   

 And the processing page should be similar to this code: 

$to = ‘youremail@example.com’;
$subject = ‘Comments from Web Site’;
$message = ‘The following comments were entered: ‘ . $_POST[‘comments’];
mail($to, $subject, $message);        



Appendix A: Answers to Exercises     

675

  Chapter 12   
  1.   Create a hidden area that is only displayed to users who are logged in with your system.  

  A.   You might be expecting to see a simplified PHP login/session example here, but we ’ re going to 
go a different route. Instead, we ’ re going to revisit the simple, yet effective, solution of using 
 .htaccess  directives. 

 Create a directory of your choosing, and create a  .htaccess  file within it: 

AuthType Basic
AuthUserFile “C:\Program Files\Apache Software Foundation\Apache2.2\hiddenauth”
AuthName “Restricted”
 < LIMIT GET POST > 
    require valid-user
 < /LIMIT >   

 Then, create a user entry with the  htpasswd  command.   

htpasswd -c “C:\Program Files\Apache Software Foundation\Apache2.2\
hiddenauth” john     

  2.   Use cookies to retain some information for 30 minutes, dependent on logged - in users.  

  A.   Here ’ s one example of how this might be done: 

session_start();
                   
if ($_SESSION[‘user_logged’]) {
    setcookie(‘testcookie’, ‘cows say moo’, time() + 60 * 30);
}     

  3.   Create a system where only certain users have certain options, dependent on their user level.  

  A.   This exercise is actually a common component of many web sites that use access levels to control 
what a user sees. For example, here ’ s a sample navigation menu that presents the  “ Create 
News ”  link to users with access level 1 or higher, and the  “ Site Administration ”  link to users 
with access level 2 or higher: 

 < ul > 
  < li >  < a href=”index.php” > Home < /a >  < /li > 
  < li >  < a href=”news.php” > News < /a >  < /li > 
  < li >  < a href=”contact.php” > Contact Us < /a >  < /li > 
 < ?php
if ($_SESSION[‘access_level’]  >  0) {
    echo ‘ < li >  < a href=”createnews.php” > Create News < /a >  < /li > ’;
}
if ($_SESSION[‘access_level’]  >  1) {
    echo ‘ < li >  < a href=”admin.php” > Site Administration < /a >  < /li > ’;
}
? > 
 < /ul >         



Appendix A: Answers to Exercises     

676

  Chapter 13   
  1.    Find out about the author:  Authors of articles might want the readers to know a little more 

about them. Add the ability to enter extra fields in a user ’ s profile, and provide a link on the 
article ’ s full - view page to the author ’ s information.  

  A.   We ’ ve covered adding a new field to a form and the corresponding database table before, so that 
should be familiar by now. Once the user form and database tables are modified to allow the 
extra information, you need to create a link in the  output_story()  function, which is 
contained in  cms_output_functions.inc.php : 

function output_story($db, $article_id, $preview_only = FALSE) {
    if (empty($article_id)) {
        return;
    }
    $sql = ‘SELECT

            a.user_id, name, is_published, title, article_text,

            UNIX_TIMESTAMP(submit_date) AS submit_date,
            UNIX_TIMESTAMP(publish_date) AS publish_date
        FROM
            cms_articles a JOIN cms_users u ON a.user_id = u.user_id
        WHERE
            article_id = ‘ . $article_id;
    $result = mysql_query($sql, $db) or die(mysql_error($db));
                   
    if ($row = mysql_fetch_assoc($result)) {
        extract($row);
        echo ‘ < h2 > ’ . htmlspecialchars($title) . ‘ < /h2 > ’;

        echo ‘ < p > By:  < a href=”author_info.php?id=’ . $user_id . ‘” > ’ .
            htmlspecialchars($name) . ‘ < /a >  < /p > ’;

        echo ‘ < p > ’;  

  The link we added would pull up a page listing the author ’ s profile. Constructing such a profile 
page is a matter of a  SELECT  query and outputting the results to the browser.    

  2.    Notify the author:  Authors might want to be automatically notified when their stories have 
been approved. Add an e - mail notification upon approval, and give users the ability to toggle 
their notification on and off.  

  A.   For this exercise, you ’ ll need to make some modifications to the  cms_transact_article.php  
page similar to the following highlighted lines: 

case ‘Publish’:
    $article_id = (isset($_POST[‘article_id’])) ? $_POST[‘article_id’] : ‘’;
    if (!empty($article_id)) {

        $sql = ‘SELECT
                email 
            FROM
                cms_users u JOIN cms_articles a ON u.user_id = a.user_id
            WHERE
                a.article_id = “ . $article_id;
        $result = mysql_query($sql, $db);



Appendix A: Answers to Exercises     

677

        $row = mysql_query($sql, $db) or die(mysql_error($db));
                   
        mail($row[‘email’], ‘Article approved’,
            ‘Your article has been approved!’);
                   
        $sql = ‘UPDATE cms_articles SET 
                is_published = TRUE,
                publish_date = “’ . date(‘Y-m-d H:i:s’) . ‘”
            WHERE
                article_id = ‘ . $article_id;
        mysql_query($sql, $db) or die(mysql_error($db));
    }
    redirect(‘pending.php’);
    break;        

  Chapter 14   
  1.    Hide your users ’  addresses:  Modify the send message functionality to send the e - mails to your 

users, using the BCC: e - mail field, instead of the usual To: field.  

  A.   Modify the following highlighted lines inside the  “ Send Message ”  case in  ml_admin_
transact.php : 

$mail = new SimpleMail();
                   
$mail- > setToAddress(list@example.com’);

$mail- > setFromAddress(‘list@example.com’);

$mail- > sendBCCAddress($row[‘email’]);

$mail- > setSubject($subject);
$mail- > setTextBody($message . $footer);
                   
$mail- > send();     

  2.    Reduce sending:  Modify the send message functionality to send e - mails to your users in groups 
of 10. That is, every e - mail that is sent should be sent to 10 users at a time (when possible), 
instead of 1 e - mail per user.  

  A.   One possible solution requires editing the  “ Send Message ”  case in  ml_admin_transact.php , 
as highlighted: 

$maillimit = 10;
$mailcount = 0;
$to = ‘’;

while ($row = mysql_fetch_assoc($result)) {

    $mailcount = $mailcount + 1;
    
    $footer = “\n\n” . ‘--------------’ . “\n”;
    if (ctype_digit($ml_id)) {
        $footer .= ‘You are receiving this message as a member ‘ . 
            ‘of the ‘ . $listname . “\n”;
        $footer .= ‘mailing list. If you have received this ‘ . 
            ‘email in error or would like to’ . “\n”;



Appendix A: Answers to Exercises     

678

        $footer .= ‘remove your name from this mailing list, ‘ .
            ‘please visit the following URL:’ . “\n”;
        $footer .= ‘http://www.example.com/ml_remove.php?user_id=’ .
            $row[‘user_id’] . “ & ml=” . $ml_id;
    } else {
        $footer .= ‘You are receiving this email because you ‘ .
            ‘subscribed to one or more’ . “\n”;
        $footer .= ‘mailing lists. Visit the following URL to ‘ .
            ‘change your subscriptions:’ . “\n”;
        $footer .= ‘http://www.example.com/ml_user.php?user_id=’ .
            $row[‘user_id’];
    }
                   
    if ($mailcount == $maillimit) {
        mail($to, $subject, $message . $footer) 
        $mailcount = 0;
        $to = ‘’;
    } else {
        $to .= $row[‘email’] . ‘, ‘;
    }

}     

  3.    Let the administrator know:  Add functionality to send an e - mail to an administrator when new 
users confirm their subscription to the mailing list.  

  A.   Add code to  ml_user_transact.php , similar to the following: 

$mail = new SimpleMail();
$mail- > setToAddress($email);
$mail- > setFromAddress(‘list@example.com’);
$mail- > setSubject(‘Mailing list subscription confirmed’);
$mail- > setTextBody($message);
$mail- > send();
                   
$mail = new SimpleMail();
$mail- > setToAddress(‘admin@example.com’);
$mail- > setFromAddress(‘list@example.com’);
$mail- > setSubject(‘Mailing list subscription confirmed’);
$mail- > setTextBody($first_name . ‘just subscribed to ‘ . $listname . ‘.’);
$mail- > send();
                   

header(‘Location: ml_thanks.php?user_id=’ . $user_id . ‘ & ml_id=’ .
    $ml_id);     

  4.    Clean up any leftovers:  Add functionality to the administration page to allow an admin to 
purge the database of any subscriptions that haven ’ t yet been confirmed.  

  A.   The first step in this exercise is to add a link on the admin page to a new page you ’ ll create, for 
example: 

 < a href=”ml_purge.php” > Purge unconfirmed users < /a >   



Appendix A: Answers to Exercises     

679

  Then, create the processing page ( ml_purge.php ): 

 < ?php
require ‘db.inc.php’;
                   
$db = mysql_connect(MYSQL_HOST, MYSQL_USER, MYSQL_PASSWORD) or
    die (‘Unable to connect. Check your connection parameters.’);
                   
mysql_select_db(MYSQL_DB, $db) or die(mysql_error($db));
                   
$sql = ‘DELETE FROM ml_subscriptions WHERE pending = 1`;
mysql_query($sql, $db) or die(mysql_error($db));
                   
echo ‘Records successfully purged.’;
? >         

  Chapter 15   
  1.    Allow for tax:  Many states require that you charge sales tax on the orders shipped to the state 

where you have a physical presence, and some states require sales tax on all online orders. Set 
your code to check for customers in your own state and add the appropriate sales tax to those 
orders only.  

  A.   Because you allowed for a sales tax field already in the main order table, this requires an  if  
statement in the next - to - last step of the order, where everything is processed. You will also 
change your  “ total ”  to  “ subtotal. ”  Locate the following lines of code in  ecomm_checkout2.php , 
and make your changes as highlighted below.   

$subtotal = 0;

$odd = true;
while ($row = mysql_fetch_array($results)) {
    echo ($odd == true) ? ‘ < tr class=”odd_row” > ’ : ‘ < tr class=”even_row” > ’;
    $odd = !$odd; 
    extract($row);
? > 
      < td style=”text-align:center;” > 
       < img src=”images/ < ?php echo $product_code; ? > _t.jpg”
       alt=” < ?php echo $name; ? > ”/ > 
      < /td > 
      < td >  < ?php echo $name; ? >  < /td > 
      < td >  < ?php echo $qty; ? >  < /td > 
      < td style=”text-align: right;” > $ < ?php echo $price; ? >  < /td > 
      < td style=”text-align: right;” > $ < ?php echo number_format($price * 
$qty, 2);? > 

      < /td > 
     < /tr > 
 < ?php

    $subtotal = $subtotal + $price * $qty;

}
? > 



Appendix A: Answers to Exercises     

680

    < /table > 

    < p > Your subtotal before shipping and tax is:
     < strong > $ < ?php echo number_format($subtotal, 2); ? >  < /strong >  < /p > 
    < p > Your total is:
     < strong > $ < ?php 
$tax_state = ‘CA’;
                   
if ($_POST[‘state’])) == $tax_state) {
    $tax_rate = 0.07;
} else {
    $tax_rate = 0.00;
}
                   
$tax = $subtotal * $tax_rate;
$total = $subtotal + $tax;
                   
echo number_format($total, 2); ? >  < /strong >  < /p > 
    < table > 
     < tr > 
      < td > 
       < table > 
        < tr > 
         < th colspan=”2” > Billing Information < /th > 
...
      < input type=”hidden” name=”shipping_email”
      value=” < ?php echo htmlspecialchars($_POST[‘shipping_email’]);? > ”/ > 

      < input type=”hidden” name=”tax_rate” value=” < ?php echo $tax_rate;? > ”/ > 

     < /div > 
    < /form > 
  < /body > 
 < /html >   

  Then, you also need to change your  ecomm_checkout3.php  as highlighted below: 

$now = date(‘Y-m-d H:i:s’);
$session = session_id();
                   
$first_name = $_POST[‘first_name’];
$last_name = $_POST[‘last_name’];
$address_1 = $_POST[‘address_1’];
$address_2 = $_POST[‘address_2’];
$city = $_POST[‘city’];
$state = $_POST[‘state’];
$zip_code = $_POST[‘zip_code’];
$phone = $_POST[‘phone’];
$email = $_POST[‘email’];
                   
$shipping_first_name = $_POST[‘shipping_first_name’];
$shipping_last_name = $_POST[‘shipping_last_name’];
$shipping_address_1 = $_POST[‘shipping_address_1’];
$shipping_address_2 = $_POST[‘shipping_address_2’];
$shipping_city = $_POST[‘shipping_city’];
$shipping_state = $_POST[‘shipping_state’];
$shipping_zip_code = $_POST[‘shipping_zip_code’];



Appendix A: Answers to Exercises     

681

$shipping_phone = $_POST[‘shipping_phone’];
$shipping_email = $_POST[‘shipping_email’];

$tax_rate = $_POST[‘tax_rate’];

...
// calculate shipping, tax and total costs
$cost_shipping = round($cost_subtotal * 0.25, 2);

$cost_tax = round($tax_rate * $cost_subtotal, 2);

$cost_total = $cost_subtotal + $cost_shipping + $cost_tax;     

  2.    Allow for inventory control:  Your shopping - cart script can keep track of how many items you 
have in stock and display that to your customers. You can also show an  “ out of stock ”  message 
to your customers, letting them know that a particular item is temporarily out of stock but still 
available for purchase if they like.  

  A.   First, you need to alter your products table structure to include a field for  “ on - hand ”  quantity. 
Then you can keep track of how many you have in stock by altering this field as necessary.   

ALTER TABLE ecomm_products
    ADD COLUMN qty_onhand INTEGER UNSIGNED NOT NULL DEFAULT 0;
                     

  To show the in - stock quantity on the products detail page, you could make the following 
changes to the  ecomm_view_product.php  file: 

$query = ‘SELECT

        name, description, price, qty_onhand

    FROM
        ecomm_products
    WHERE
        product_code = “’ . mysql_real_escape_string($product_code, $db) . 
‘”’;
$result = mysql_query($query, $db)or die(mysql_error($db));
...
 < h2 >  < ?php echo $name; ? >  < /h2 > 
 < table > 
  < tr > 
    < td rowspan=”5” >  < img src=”images/ < ?php echo $product_code; ? > .jpg”

    alt=” < ?php echo $name; ? > ”/ >  < /td > 
   < td >  < ?php echo $description; ? >  < /td > 
  < /tr >  < tr > 
   < td >  < strong > Product Code: < /strong >     < ?php echo $product_code; ? >  < /td > 

   < /tr >  < tr > 
    < td >  < strong > Qty in Stock: < /strong > 
 < ?php 
if ($qty_onhand  <  1) {
    echo ‘ < strong style=”color: red;” > This product is currently out of 
stock.’ .
        ‘ < /strong > ’;



Appendix A: Answers to Exercises     

682

} else {
    echo $qty_onhand;
}
? > 
   < /td > 

  < /tr >  < tr > 
   < td >  < strong > Price: < /strong >  $ < ?php echo $price; ? >  < /td > 
  < /tr >  < tr >   

 Then, to keep an accurate count of how many items you have in stock, you want to change the quantity -
 on - hand field when any items are sold. You need to make the following change to the final step in your 
checkout process. Edit your  ecomm_checkout3.php  as follows: 

while ($row = mysql_fetch_array($result)) {
    echo ($odd == true) ? ‘ < tr class=”odd_row” > ’ : ‘ < tr class=”even_row” > ’;
    $odd = !$odd; 
    extract($row);
? > 
     < td >  < ?php echo $product_code; ? >  < /td > 
     < td >  < ?php echo $name; ? >  < /td > 
     < td >  < ?php echo $order_qty; ? >  < /td > 
     < td style=”text-align: right;” > $ < ?php echo $price; ? >  < /td > 
     < td style=”text-align: right;” > $ < ?php
     echo number_format($price * $order_qty, 2);? > 
     < /td > 
    < /tr > 
 < ?php

    $query = ‘UPDATE ecomm_products SET
            qty_onhand = qty_onhand - ‘ . $order_qty . ‘
        WHERE
            product_code = ‘ . $product_code;
    mysql_query($query, $db) or die(mysql_error($db));

}
? >      

  3.    Show your customers your most popular items:  Which of your items are purchased the most? 
If an item is in the top five on your bestseller list, show a  “ bestseller ”  icon in the description of 
that item.  

  A.   There are several ways to do this, but probably the simplest way is to add another field to your 
products table that will keep a master count of the total quantity sold: 

ALTER TABLE ecomm_products
    ADD COLUMN total_qty_sold INTEGER UNSIGNED NOT NULL DEFAULT 0;  

 You want to check for a bestselling item when you show your product details, so you alter  ecomm_view_
product.php  as follows: 

function is_bestseller($db, $product_code) {
    $query = SELECT 
            product_code
        FROM
            ecomm_products



Appendix A: Answers to Exercises     

683

        ORDER BY
            total_qty_sold DESC
        LIMIT 5`;
    $result = mysql_query($query, $db) or die(mysql_error($db));
    $retVal = false;
    while ($row = mysql_fetch_assoc($result)) {
        if ($product_code == $row[‘product_code’]) {
            $retVal = true;
        }
    }
    mysql_free_result($result);
    return $retVal;
}

...

 < h2 > 
 < ?php
echo $name;
if (is_bestseller($db, $product_code)) {
    echo ‘ < img src=”images/bestseller.jpg” alt=”Best Seller!”/ > ’;
}
? > 
 < /h2 > 

 < table > 
  < tr > 
    < td rowspan=”4” >  < img src=”images/ < ?php echo $product_code; ? > .jpg”
    alt=” < ?php echo $name; ? > ”/ >  < /td > 
   < td >  < ?php echo $description; ? >  < /td > 
  < /tr >  < tr >   

 Then, just as you did with the inventory count, you would alter your  ecomm_checkout3.php  file to 
update the total number sold with the customer ’ s current order information, as follows: 

$total = 0;
$odd = true;
while ($row = mysql_fetch_array($result)) {
    echo ($odd == true) ? ‘ < tr class=”odd_row” > ’ : ‘ < tr class=”even_row” > ’;
    $odd = !$odd; 
    extract($row);
? > 
     < td >  < ?php echo $product_code; ? >  < /td > 
     < td >  < ?php echo $name; ? >  < /td > 
     < td >  < ?php echo $order_qty; ? >  < /td > 
     < td style=”text-align: right;” > $ < ?php echo $price; ? >  < /td > 
     < td style=”text-align: right;” > $ < ?php
     echo number_format($price * $order_qty, 2);? > 
     < /td > 
    < /tr > 
 < ?php



Appendix A: Answers to Exercises     

684

$query = ‘UPDATE ecomm_products SET
        total_qty_sold = total_qty_sold + ‘ . $order_qty . ‘
    WHERE
        product_code = ‘ . $product_code;
    mysql_query($query, $db) or die(mysql_error($db));
}
? >         

  Chapter 16   
  1.   Add code to  frm_admin.php  to prevent unauthorized users from loading the page. Redirect 

them back to  frm_index.php .  

  A.   This block of code should go at the top of  frm_admin.php : 

 < ?php
session_start();
if ($_SESSION[‘access_lvl’]  <  3) {
header (‘Location: frm_index.php’);
}
? >      

  2.   Create a regular expression that recognizes an e - mail address in a post and turns it into a link.  

  A.   This is not the only answer, but it gets the job done: 

/[\w\-]+(\.[\w\-]+)*@[\w\-]+(\.[\w\-]+)+/     

  3.   Add a bit of code to the pagination function to allow the user to go to the first page or last page. 
For example, if there are 14 pages, and the user is on page 8, and the range is 7, it should look 
something like this: 

      < PREV [1] .. [5] [6] [7] 8 [9] [10] [11] .. [14] NEXT  >    

  A.   Replace the appropriate lines of code with the following code snippets: 

if ($lrange  >  1) {
    $pagelinks .= ‘ < a href=”’ . $currpage . ‘ & page=1” > [1] < /a >  .. ‘;
} else {
    $pagelinks .= ‘ & nbsp; & nbsp;’;
}
                   
if ($rrange  <  $numofpages) {
    $pagelinks .= ‘ ..  < a href=”’ . $currpage . ‘ & page=’ . $numofpages . 
    ‘” > [‘ . $numofpages . ‘] < /a > ’;
} else {
    $pagelinks .= ‘ & nbsp; & nbsp;’;
}                  



      B     
PHP  Quick Reference          

 This appendix lists some quick PHP reference notes for your use. Consider the information in this 
appendix to be your  “ cheat sheet ”  to the topics covered throughout this book. For complete 
information on PHP ’ s syntax, see  www.php.net/manual/en/langref.php .  

  Marking  PHP  Code 
 Sections of PHP code start with   < ?php  and end with  ? >  . An example of this syntax is: 

 < ?php
// enter lines of code, make sure they end with a semicolon;
? >   

 You can also use   < script language= “ PHP “  >     < /script >   to delimit your code, but the above 
syntax is more convenient.  

  Displaying to Browser 
 The  echo  and  print  constructs are used to display text in a browser: 

echo ‘Enter text here’;     // echo text
echo $variable;             // echo values
echo ‘ < br/ > ’;               // echo HTML text   



Appendix B: PHP Quick Reference     

686

  Comments 
 It ’ s always a good idea to comment your code. PHP gives you two ways to do so: 

// This is a single line comment that runs to the end of the line.
/* This is a multiple line comment and
   can
   span
   multiple
   lines. */   

  Variables 
 Variables are named references to locations in memory. Variable names start with  $ . Legal variable 
names consist of numbers, letters, and the underscore character but cannot start with a number.   

$MyVariable  // valid
$1stVariable  // invalid (cannot start with a number)
$variable_1  // valid  

 To assign a value to a variable, use the following syntax: 

$variable_1 = 123;
$variable_2 = ‘value’;   

  Passing Variables 
 You can pass variables among pages in your Web site in three ways: through a URL, through sessions, 
and through a form. 

  Through a  URL  
 To pass a variable through a URL, use the following format: 

http://www.example.com?variable1=value & variable2=value   

  Through Sessions 
 To pass a variable through a session, use the following PHP code: 

session_start();                 // starts session handling
$_SESSION[‘var_name1’] = value;  // sets values for the entire session
$_SESSION[‘var_name2’] = value;  

  session_start()  must be used in every script that sets or accesses session variables. It must be called 
before any output is sent to the browser.  



Appendix B: PHP Quick Reference     

687

  Through a Form 
 A form element ’ s  action  attribute must reference the PHP script that will parse the variables: 

 < form action= “ process.php ”  >   

 The variables can be referenced from the  $_POST and $_GET  arrays, depending on the form element ’ s 
method: 

$value = $_POST[‘varname’];     // this is how you will access the 
                                // values from a form with method=”post”
$value = $_GET[‘varname’];      // this is how you will access the
                                // values from a form with method=”get”    

  Strings 
 A string is a set of characters delimited by quotation marks. Either single quotation marks or double 
quotation marks can be used, but PHP treats these differently. Variables that appear within 
double - quoted strings will be interpolated. Variables within single - quoted strings will not be.   

$var = 42;
echo  “ The answer to life, the universe and everything is: $var. ” ; 
// The answer to life, the universe and everything is 42.
echo ‘The answer to life, the universe and everything is: $var.’; 
// The answer to life, the universe and everything is $var.  

  \  is used to escape characters within strings: 

echo ‘ < a href= “ link.php ”  > Don\’t Click on Me! < /a > ’;  

 Two strings can be joined together with the . operator: 

$piece_1 = ‘Hello’;
$piece_2 = ‘World’;
echo $piece_1 . ‘ ‘ . $piece_2;  // Hello World   

  if Statements 
  if  statements are used to mark sections of code that should be executed only if a given condition is true: 

if (condition) 
    // execute this one statement if true;
if (true condition) {
    // execute statement 1;
    // execute statement 2;
    // execute statement 3;
}   



Appendix B: PHP Quick Reference     

688

  else Statements 
  if / else  statements branch code depending on whether a condition is true or false: 

if (condition) 
    //execute this statement if true;
else 
    //execute this statement false;
if (condition) {
    // execute statement 1;
    // execute statement 2;
    // execute statement 3;
} else {
    // execute statement 4;
    // execute statement 5;
    // execute statement 6;
}  

 The ternary operator ( ?: ) is a shorthand notation for simple  if / else  statements: 

$var = (true) ? ‘value 1’ : ‘value 2’;  

 is the same as: 

if (true) {
    $var = ‘value 1’;
} else {
    $var = ‘value 2’;
}   

  Nested if Statements 
 You can nest  if  statements: 

if (condition A) {
    if (condition B) {
        // execute this statement if A and B are true;
    }
    else if (condition C) {
        // execute this statement if A and C are true;
    } else { 
        // execute this statement if A is true and B and C are false;
    }
}   



Appendix B: PHP Quick Reference     

689

  Including a File 
 To include PHP code from another file, use one of the following statements: 

include ‘header.php’;       // include file header.php (PHP will continue 
                            // processing even if file is not found
include_once ‘header.php’;  // ensure file header.php is only included once  
                               even if
                            // attempt to include same file again later in
                            // processing
require ‘header.php’;       // include file header.php (PHP will terminate                                                                                           
                               with
                            // error if file is not found
require_once ‘header.php’;  // ensure file header.php is only included once  
                               even if
                            // attempt to include same file again later   

  Arrays 
 An array is a collection of data represented by the same variable name but accessible by indexes. Indexes 
can be either numeric or strings.   

$name = array(‘first_name’ = >  ‘Joe’, ‘last_name’ = >  ‘Shmoe’);
echo $name[‘first_name’];  

 If no keys are required, you can set the values for an array like this and let PHP automatically assign 
numeric keys starting at 0: 

$flavors = array(‘blue raspberry’, ‘root beer’, ‘pineapple’);
echo $flavor[0];  

 New elements can be added to an array after it is defined: 

$states = array();
$states[‘AL’] = ‘Alabama’;
$states[‘AK’] = ‘Alaska’;
$states[‘AZ’] = ‘Arizona’;
...   

  Loops 
 PHP has numerous looping structures to repeat the execution of a block of code:  while ,  do / while ,  for , 
and  foreach . 



Appendix B: PHP Quick Reference     

690

  while 
 You can execute a section of code repeatedly while a given condition is true, with a  while  statement: 

$n = 0;
while ($n  <  10) {
    // these lines will execute while the value of $n is 
    // less than 10
    echo $n . ‘ < br / > ’;
    $n = $n + 1;
}
echo $n;   

  do/while 
 You can execute a section of code repeatedly while a given condition is true, with a  do / while  statement. 
Unlike a  while  statement, the loop is guaranteed to run at least once because the condition is not tested 
until the end of the block: 

$n = 0;
do {
    // these lines will execute while the value of $n is 
    // less than 10
    echo $n . ‘ < br / > ’;
    $n = $n + 1;
} while ($n  <  10);   

  for 
 You can execute a block of code a specified number of times with the  for  statement: 

for ($n = 0; $n  <  10; $n = $n + 1) {
    // this will execute while the value of $n is 
    // less than 10
    echo $n . ‘ < br/ > ’;
}   

  foreach 
 You can apply the same block of code to each value in a given array with the  foreach  statement: 

foreach ($arrayvalue as $currentvalue) {
    // this will execute as long as there is a value in $arrayvalue
    echo $currentvalue . ‘ < br/ > ’;
}  

 In addition to each value in the array, you can also identify the index or key: 

foreach ($arrayvalue as $currentkey = >  $currentvalue) {
    // this will execute as long as there is a value in $arrayvalue
    echo $currentkey . ‘:’ . currentvalue . ‘ < br/ > ’;
}    



Appendix B: PHP Quick Reference     

691

  Functions 
 You can create and call functions using the following syntax: 

function funcname()      // defines the function
{
    // line of php code;
    // line of php code;
}
funcname();     // calls the function to execute  

 Values can be passed in and returned from functions: 

function add($value1, $value2)      // add two numbers together
{
    $value3 = $value1 + $value2;
    return $value3;
}
$val = funcname(1, 1);     // $val = 2   

  Classes 
 You can define new objects and use its methods using the following syntax: 

class ClassName()      // class definition
{
    public  $var1;       // property with public access
    private $var2;       // property with private access
                   
    // constructor method
    public function __construct() {
        // code to initialize object goes here
    }
                   
    // public method
    public function setFoo($value) {
        // properties and methods are accessed inside the class
        // using $this- > 
        $this- > var2 = $value;
    }
                   
    // private method
    private function bar() {
        // more code goes here
    }
                   
    // destructor method
    public function __destruct() {
        // clean up code goes here
    }
}
                   



Appendix B: PHP Quick Reference     

692

$c = new ClassName();     // create a new instance of the object
                   
$c- > var1 = 42;            // properties and methods are accessed using - > 
$c- > setFoo(‘Hello World’);   

  Namespaces 
 Namespaces are one of the more recent additions to PHP ’ s syntax (added in version 5.3) and help 
prevent name clashing. Namespaces can contain class, constant, and function definitions. Namespaces 
are declared with the  namespace  keyword at the beginning of a file: 

namespace MyProject\Foo\Bar;
function fizz() {
    // ...
}  

 When using functions and classes that are defined within a namespace, they can be referenced by their 
full name: 

$var = MyProject::Foo::Bar::fizz();  

 Namespaces can be imported with the  use  keyword: 

use MyProject\Foo\Bar;
$var = fizz();  

 Namespaces can be aliased with  use / as : 

use MyProject\Foo\Bar as my;
$var = my\fizz();   

  Using MySQL 
 This is the basic sequence for connecting to a MySQL database, executing a  SELECT  query and 
displaying the results: 

// connect to MySQL
$db = mysql_connect(‘localhost’, ‘username’, ‘password’) or 
    die (‘Unable to connect. Check your connection parameters.’);
                   
// select the correct database
mysql_select_db(‘database’, $db) or die(mysql_error($db));
                   
// query the database
$query = ‘SELECT column1, column2 FROM table ORDER BY column1 ASC’;
$result = mysql_query($query, $db) or die (mysql_error($db));
                   



Appendix B: PHP Quick Reference     

693

// check if any rows were returned
if (mysql_num_rows($result)  >  0) {
                   
    // cycle through the returned records
    while ($row = mysql_fetch_assoc($result)) {
        echo ‘column1: ‘ . $row[‘column1’] . ‘ < br/ > ’;
        echo ‘column2: ‘ . $row[‘column2’] . ‘ < br/ > ’;
    }
}
                   
// free the result resource 
mysql_free_result($result);
                   
// disconnect from MySQL

mysql_close($db);                





      C     
PHP 6 Functions          

 For your convenience, we have listed many (but not all) of PHP ’ s functions in this appendix to 
serve as a quick reference. PHP has numerous other functions available to you, and you can find a 
complete listing in the manual at its web site,  www.php.net/manual/en/funcref.php . Each 
table presented here lists the function ’ s signature in a format similar to that used in the official 
PHP documentation and a brief description of what the function does. Functions that are 
deprecated and should no longer be used are not listed here. 

 Please note that some functions are designed to work only on Linux, and some only on Windows. 
If you encounter otherwise unexplained errors in your code, we recommend checking the 
function ’ s documentation to ensure that it is available and fully compatible with your platform.  

  Apache/ PHP  Functions 

     PHP Function      Description   

     bool apache_child_terminate(void)     Stop the Apache server from running 
after the PHP script has been executed.  

     array apache_get_modules(void)     Return an array of loaded Apache 
modules.  

     string apache_get_version(void)     Return the version of Apache that is 
currently running.  

     string apache_getenv(string 
$variable[, bool $walk_to_top])   

  Return an Apache subprocess 
environment variable as specified by 
 $variable .  

     object apache_lookup_uri(string 
$filename)   

  Return information about the URI in 
 $filename  as an object.  



Appendix C: PHP6 Functions     

696

     PHP Function      Description   

     string apache_note(string $notename[, 
string $ value])   

  Return or set values in the Apache notes 
tables.  

     array apache_request_headers(void)     Return all HTTP headers as an 
associative array.  

     array apache_response_headers(void)     Return all HTTP response headers as an 
associative array.  

     bool apache_setenv(string $variable, 
$value[, bool $walk_to_top])   

  Set an Apache subprocess environment 
variable.  

     int ascii2ebcdic(string $string)     Convert an ASCII - coded string to 
EBCDIC (only available on EBCDIC -
 based operating systems).  

     int ebcdic2ascii(string $string)     Convert an EBCDIC - coded string to 
ASCII (only available on EBCDIC - based 
operating systems).  

     array getallheaders()     Return all HTTP request headers as an 
associative array.  

     bool virtual(string $filename)     Perform an Apache subrequest, useful 
for including the output of CGI scripts 
or  .shtml  files.  

  Array Functions 

     Function      Description   

     array array([mixed $ ... ])     Create an array of values.  

     array array_change_key_case(array 
$array[, int $case])   

  Convert the keys in an array to either all 
uppercase or all lowercase. The default is 
lowercase.  

     array array_chunk(array $array, 
int $size[, bool $keep_keys])   

  Split an array into specifically sized chunks.  

     array array_combine(array $keys, 
array $values)   

  Combine two arrays with equal number of keys 
and values, using the values from one array as 
keys and the other ’ s as values.  

     array array_count_values(array 
$array)   

  Return an associative array of values as keys 
and their count as values.  



Appendix C: PHP6 Functions     

697

     Function      Description   

     array array_diff(array $array1, 
array $array2[, array $...])   

  Return the values from the first array that do 
not appear in subsequent arrays. Opposite of 
 array_intersect() .  

     array array_diff_assoc(array 
$array1, array $array2[, array 

$...])   

  Return the values from the first array that do 
not appear in subsequent arrays, taking key 
values into account.  

     array array_diff_key(array $array1, 
array $array2[, array $...])   

  Return the keys from the first array that do not 
appear in subsequent arrays.  

     array array_diff_uassoc(array 
$array1, array $array2[, array 

$...], string $function_name)   

  Return the keys from the first array that do not 
appear in subsequent arrays. Use supplied 
callback function to compare keys, instead of 
PHP ’ s internal algorithm.  

     array array_diff_ukey(array $array1, 
array $array2[, array $...], string 

$function_name)   

  Return the keys from the first array that do not 
appear in subsequent arrays. Use supplied 
callback function to compare keys, instead of 
PHP ’ s internal algorithm.  

     array array_fill(int $start, int 
$count, mixed $value)   

  Return an array filled with  $value .  

     array array_fill_keys(array $keys, 
mixed $value)   

  Return an array filled with  $ value, using values 
of the  $keys  array as keys.  

     array array_filter(array $array[, 
string $function_name])   

  Return an array of values filtered by 
 $function_name . If the callback function 
returns true, then the current value from 
 $array  is returned into the result array. Array 
keys are preserved.  

     array array_flip(array $array)     Flip an array ’ s values and keys and return the 
result as an array.  

     array array_intersect(array 
$array1, array $array2[, array 

$...])   

  Return the values from the first array that 
appear in subsequent arrays. Opposite of 
 array_diff() .  

     array array_intersect_assoc(array 
$array1, array $array2[, array 

$...])   

  Return the values from the first array that 
appear in subsequent arrays. Unlike  array_
intersect() , this function takes key values 
into account.  

     array array_intersect_key(array 
$array1, array $array2[, array 

$...])   

  Return the keys from the first array that appear 
in subsequent arrays.  



Appendix C: PHP6 Functions     

698

     Function      Description   

     array array_intersect_uassoc(array 
$array1, array $array2[, array 

$...], string $function_name)   

  Return the keys from the first array that appear 
in subsequent arrays. Use supplied callback 
function to compare keys, instead of PHP ’ s 
internal algorithm.  

     array array_intersect_ukey(array 
$array1, array $array2[, array 

$...], string $function_name)   

  Return the keys from the first array that appear 
in subsequent arrays. Use supplied callback 
function to compare keys, instead of PHP ’ s 
internal algorithm.  

     bool array_key_exists(mixed $key, 
array $array)   

  Verify whether a key exists in an array.  

     array array_keys(array $array
[, mixed $search [, bool $strict]])   

  Return keys of array  $array  as an array. If 
 $search  is provided, then only those keys 
containing those values will be returned.  

     array array_map(string $function_
name, array $array1[, array $...])   

  Return an array containing elements from the 
supplied arrays that fit the applied criterion.  

     array array_merge(array $array1[, 
$array2[, array $...]])   

  Merge arrays together and return the results as 
an array. If two arrays have the same 
associative keys, then the later array will 
overwrite an earlier key. If two arrays have the 
same numeric keys, then the array will be 
appended instead of overwritten.  

     array array_merge_recursive(array 
$array1[, arrary $...])   

  Similar to  array_merge() , but the values of 
the arrays are appended.  

     bool array_multisort(array $array
[, mixed $parameter[, mixed $...]])   

  Sort either a complex multidimensional array 
or several arrays at one time. Numeric keys will 
be reindexed, but associative keys will be 
maintained.  

     array array_pad(array $array, int 
$pad_size, mixed $pad_value)   

  Return a copy of an array padded to size  $pad_
size  with  $pad_value .  

     mixed array_pop(array  & $array)     Shorten an array by popping and returning its 
last value. Opposite of  array_push(.) .  

     number array_product(array $array)     Return the product of an array ’ s values.  

     int array_push(array  & $array, mixed 
$variable[, mixed $...])   

  Extend an array by pushing variables on to its 
end, and return the new size of the array. 
Opposite of  array_pop() .  

     mixed array_rand(array $array[, int 
$number])   

  Return a random key from an array (an array of 
random keys is returned if more than one value 
is requested).  



Appendix C: PHP6 Functions     

699

     Function      Description   

     mixed array_reduce(array $array, 
string $function_name)   

  Reduce an array to a single function, using a 
supplied callback function.  

     array array_reverse(array $array[, 
bool $preserve_keys])   

  Return an array with its elements in reverse 
order.  

     mixed array_search(mixed $search, 
array $array[, bool $strict])   

  Search an array for the given value, and return 
the key if it is found.  

     mixed array_shift(array  & $array)     Similar to  array_pop() , except that this 
shortens an array by returning its first value. 
Opposite of  array_unshift() .  

     array array_slice(array $array, int 
$offset[, int $length[, bool 

$preserve_keys]])   

  Return a subset of the original array.  

     array array_splice(array  & $array, 
int $offset[, int $length[, mixed 

$new_values]])   

  Remove a section of an array and replace it 
with new values.  

     number array_sum(array $array)     Calculate the sum of the values in an array.  

     array array_udiff(array $array1, 
array $array2[, array $...], string 

$function_name)   

  Return the values from the first array that do 
not appear in subsequent arrays, using the 
provided callback function to perform the 
comparison.  

     array array_udiff_assoc(arrays 
$array1, array $array2[, array 

$...], string $function_name)   

  Return values from the first array that do not 
appear in subsequent arrays, using the 
provided callback function to perform the 
comparison. Unlike  array_udiff() , the 
array ’ s keys are used in the comparison.  

     array array_udiff_assoc(arrays 
$array1, array $array2[, array 

$...], string $value_compare, string 

$key_compare)   

  Return the values from the first array that do 
not appear in subsequent arrays, using the 
provided callback functions to perform the 
comparison ( $data_compare  is used to 
compare values, and  $key_compare  is used 
to compare keys).  

     array array_uintersect(array 
$array1, array $array2[, array 

$...], string $function_name)   

  Return the intersection of arrays through a 
user - defined callback function.  

     array array_uintersect_assoc(array 
$array1, array $array2[, array 

$...], string $function_name)   

  Return the intersection of arrays with 
additional index checks, using the provided 
callback function to perform the comparison.  



Appendix C: PHP6 Functions     

700

     Function      Description   

     array array_uintersect_uassoc(array 
$array1, array $array2[, array 

$...], string $value_compare, string 

$key_compare)   

  Return the intersection of arrays with 
additional index checks, using the provided 
callback functions to perform the comparison 
( $data_compare  is used to compare values, 
and  $key_compare  is used to compare keys).  

     array array_unique(array $array)     Return a copy of an array excluding any 
duplicate values.  

     mixed array_unshift(array  & $array, 
mixed $variable[, mixed $...])   

  Similar to  array_push ()  except that this 
adds values to the beginning of an array. 
Opposite of  array_unshift() .  

     array array_values(array $array)     Return a numerically indexed array of the 
values from an array.  

     bool array_walk(array $array, string 
$function_name[, mixed $parameter])   

  Apply a named function to every value in an 
array.  

     bool array_walk_recursive(array 
$array, string $function_name[, 

mixed $parameter])   

  Apply a named function recursively to every 
value in an array.  

     bool arsort(array  & $array[, int 
$sort_flags])   

  Sort an array in descending order, while 
maintaining the key/value relationship.  

     bool asort(array  & $array[, int 
$sort_flags])   

  Sort an array in ascending order, while 
maintaining the key/value relationship.  

     array compact(mixed $variable[, 
mixed $...])   

  Merge variables into an associative array. 
Opposite of  extract() .  

     int count(mixed $array[, int $mode])     Return the number of values in an array or the 
number of properties in an object.  

     mixed current(array  & $array)     Return the current value in an array.  

     array each(array  & $array)     Return the current key and value pair of an 
array, and advance the array ’ s internal pointer.  

     mixed end(array  & $array)     Advance an array ’ s internal pointer to the end 
of an array, and return the array ’ s last value.  

     int extract(array $array[, int 
$extract_type[, string $prefix]])   

  Import values from an associative array into the 
symbol table. The  $extract_type  option 
provides directions if there is a conflict.  

     bool in_array(mixed $search, array 
$haystack[, bool $strict])   

  Return whether a specified value exists in an 
array.  

     mixed key(array  & $array)     Return the key for the current value in an array.  



Appendix C: PHP6 Functions     

701

     Function      Description   

     bool krsort(array  & $array[, int 
$sort_flags])   

  Sort an array in reverse order by keys, 
maintaining the key/value relationship.  

     bool ksort(array  & $array[, int 
$sort_flags])   

  Sort an array by keys, maintaining the key/
value relationship.  

     void list(mixed $variable[, mixed 
$...])   

  Assign a list of variables in an operation as if 
they were an array.  

     bool natcasesort(array  & $array)     Sort an array using case - insensitive  “ natural 
ordering. ”   

     bool natsort(array  & $array)     Sort an array using case - sensitive  “ natural 
ordering. ”   

     mixed next(array  & $array)     Similar to  current()  but advances an array ’ s 
internal pointer.  

     mixed pos(array  & $array)     Alias for  current() .  

     mixed prev(array  & $array)     Return the previous value in an array. Opposite 
of  next() .  

     array range(mixed $low, mixed 
$high[, int $step])   

  Create an array of integers or characters 
between the named parameters.  

     mixed reset(array  & $array)     Set an array ’ s internal pointer to the first 
element, and return its value.  

     bool rsort(array  & $array[, int 
$sort_flags])   

  Sort an array in descending order. Opposite of 
 sort() .  

     bool shuffle(array  & $array)     Shuffle the elements of an array in random 
order.  

     int sizeof(mixed $array[, int $mode])     Alias for  count() .  

     bool sort(array  & $array[, int $sort_
flags])   

  Sort an array in ascending order.  

     bool uasort(array  & $array, .string 
$function_name)   

  Sort an array, maintaining the key/value 
relationship. Use supplied callback function to 
compare values, instead of PHP ’ s internal 
algorithm.  

     bool uksort(array  & $array, .string 
$function_name)   

  Sort the keys of an array. Use supplied callback 
function to compare keys, instead of PHP ’ s 
internal algorithm.  

     bool usort(array  & $array, string 
$function_name)   

  Sort an array. Use supplied callback function to 
compare values, instead of PHP ’ s internal 
algorithm.  



Appendix C: PHP6 Functions     

702

  Date and Time Functions     
 Function signatures marked with a * are available when running on Windows by default, but must be 
explicitly enabled when running on Linux by compiling PHP with   -  - enable - calenda  r .   

     Function      Description   

     int cal_days_in_month(int 
$calendar, int $month, int $year) *  

  Return the number of days in the given month.  

     array cal_from_jd($int julian_day, 
int $calendar) *  

  Convert a Julian day count to the date of a 
specified calendar.  

     array cal_info([int $calendar]) *    Return an array containing information about the 
named calendar.  

     int cal_to_jd(int $calendar, int 
$month, int $day, int $year) *  

  Convert a specified calendar date to a Julian day 
count.  

     bool checkdate(int $month, int 
$day, int $year)   

  Validate a given date.  

     string date(string $format[, int 
$timestamp])   

  Return a formatted date based on the provided 
format string (see the following table for available 
formatting specifiers). The default is the current 
UNIX timestamp, if  $timestamp  is not provided.  

     void date_add(DateTime $object[, 
DateInterval $object])   

  Add the given  DateInterval  object to the given 
 DateTime  object.  

     DateTime date_create(string 
$time[, DateTimeZone $timezone])   

  Create a new  DateTime  object. The object -
 oriented equivalent of this function is  new 
DateTime(string $time[, DateTimeZone 

$timezone]) .  

     void date_date_set(DateTime 
$object, int $year, int $month, 

int $day)   

  Set the date of a  DateTime  object. The object -
 oriented equivalent of this function is 
 DateTime::setDate(int $year, int 
$month, int $day) .  

     string date_default_timezone_
get(void)   

  Return the current default time zone string.  

     bool date_default_timezone_
set(string $timezone)   

  Set the current default time zone.  

     string date_format(DateTime 
$object, string $format)   

  Return a formatted string value of a  DateTime  
object based on the provided format string (see 
the following table for available formatting 
specifiers). The object - oriented equivalent of this 
function is  DateTime::format(string 
$format) .  



Appendix C: PHP6 Functions     

703

     Function      Description   

     void date_isodate_set(DateTime 
$object, int $year, int $week[, 

int $day])   

  Set the ISO date of a  DateTime  object. The object -
 oriented equivalent of this function is 
 DateTime::setISODate(int $year, int 
$week[, int $day]) .  

     void date_modify(DateTime $object, 
string $offset)   

  Modify the value of a  DateTime  object. The 
object - oriented equivalent of this function is 
 DateTime::modify(string $offset) .  

     int date_offset_get(DateTime 
$object)   

  Return the offset for daylight savings for a 
 DateTime  object. The object - oriented equivalent 
of this function is  DateTime::
getOffset(void) .  

     array date_parse(string $date)     Return an associative array representation of a 
parsed date.  

     void date_sub(DateTime $object[, 
DateInterval $object])   

  Subtract the given  DateInterval  object from the 
given  DateTime  object.  

     array date_sun_info(int 
$timestamp, float $latitude, float 

$longitude)   

  Return an associative array with sunrise, sunset, 
and twilight start/end details.  

     string date_sunrise(int 
$timestamp[, int $format [, float 

$latitude[, float $longitude[, 

float $zenith[, float $gmt_

offset]]]]])   

  Return the sunrise time for a given date and 
location.  

     string date_sunset(int 
$timestamp[, int $format [, float 

$latitude[, float $longitude[, 

float $zenith[, float $gmt_

offset]]]]])   

  Return the sunset time for a given date and 
location.  

     void date_time_set(DateTime 
$object, int $hour, int $minutes[, 

int $seconds])   

  Set the time value of a  DateTime  object. The 
object - oriented equivalent of this function is 
 DateTime::setTime(int $hour, int 
$minutes[, int $seconds]) .  

     DateTimeZone date_timezone_
get(DateTime $object)   

  Return the  DateTime  object ’ s time zone as a 
 DateTimeZone  object. The object - oriented 
equivalent of this function is  DateTime::
getTimezone(void) .  

     void date_timezone_set(DateTime 
$object, DateTimeZone $timezone)   

  Set the time zone of a  DateTime  object. The 
object - oriented equivalent of this function is 
 DateTime::setTimezone(DateTimeZone 
$timezone) .  



Appendix C: PHP6 Functions     

704

     Function      Description   

     int easter_date([int $year]) *    Return the UNIX timestamp of midnight on 
Easter for the given year. The default is the 
current year, if  $year  is not provided.  

     int easter_days([int $year]) *    Return the number of days between March 21 
and Easter in the given year. The default is the 
current year, if $year is not provided.  

     int frenchtojd(int $month, int 
$day, int $year) *  

  Convert a French Republican calendar date to a 
Julian day count.  

     array getdate([int $timestamp])     Return an associative array representation of a 
timestamp. The default is the current local time, if 
a timestamp is not provided.  

     mixed gettimeofday([bool $return_
float])   

  Return an associative array or float representation 
of the current time.  

     string gmdate(string $format[, int 
$timestamp])   

  Similar to  date()  but returns the formatted date 
in Greenwich Mean Time.  

     int gmtmktime([int $hour[, int 
$minutes[, int $seconds[, int 

$month[, int $day[, int $year[, 

int $is_dst]]]]]]])   

  Similar to  mktime()  but returns the UNIX 
timestamp in Greenwich Mean Time.  

     string gmtstrftime(string $format 
[, int $timestamp])   

  Similar to  gmtstrftime()  but returns the 
formatted date in Greenwich Mean Time.  

     int gregoriantojd(int $month, int 
$day, int $year) *  

  Convert a Gregorian calendar date to a Julian day 
count.  

     int idate(string $format[, int 
$timestamp])   

  Return a date/time as an integer. The default is 
the current UNIX timestamp, if  $timestamp  is 
not provided.  

     mixed jddayofweek(int $julian_
day[, int $mode]) *  

  Return the day of week of a Julian day count in 
the format based on the specified mode.  

     string jdmonthname(int $julian_
day, int $mode) *  

  Return the month of a Julian day count in the 
format based on the specified mode.  

     string jdtofrench(int $julian_day) *    Convert a Julian day count to a French 
Republican calendar date.  

     string jdtogregorian(int $julian_
day) *  

  Convert a Julian day count to a Gregorian 
calendar date.  

     string jdtojewish(int $julian_
day[, bool $hebrew[, int $fl]]) *  

  Convert a Julian day count to a Jewish calendar 
date.  



Appendix C: PHP6 Functions     

705

     Function      Description   

     string jdtojulian(int $julian_day) *    Convert a Julian day count to a Julian calendar 
date.  

     int jdtounix(int $julian_day) *    Convert a Julian day count to a UNIX timestamp.  

     int jewishtojd(int $month, int 
$day, int $year) *  

  Convert a Jewish calendar date to a Julian day 
count.  

     int juliantojd(int $month, int 
$day, int $year) *  

  Convert a Julian calendar date to a Julian day 
count.  

     array localtime([int $timestamp[, 
bool $is_associative])   

  Return the local time as an array.  

     mixed microtime([bool $return_
float])   

  Return the current UNIX timestamp with 
microseconds.  

     int mktime([int $hour[, int 
$minutes[, int $seconds[, int 

$month[, int $day[, int $year[, 

int $is_dst]]]]]]])   

  Return the UNIX timestamp for a date. The 
default is the current UNIX timestamp, if the 
parameters are not provided.  

     string strftime(string $format [, 
int $timestamp])   

  Return a formatted date based on the current 
locale settings. The default is the current UNIX 
timestamp, if  $timestamp  is not provided.  

     int strtotime(string $time[, int 
$timestamp])   

  Convert a US English time/date format into a 
UNIX timestamp. The default is the current UNIX 
timestamp, if  $timestamp  is not provided.  

     int time(void)     Return the current UNIX timestamp.  

     array timezone_abbreviations_
list(void)   

  Return an array with information about all 
known time zones. The object - oriented equivalent 
of this function is  DateTimeZone::
listAbbreviations(void) .  

     array timezone_identifiers_
list(void)   

  Return an array of all known time zone 
identifiers. The object - oriented equivalent of this 
function is  DateTimeZone::
listIdentifiers(void) .  

     string timezone_name_from_
abbr(string $abbreviation[, int 

$gmt_offset[, int $is_dst]])   

  Return the time zone name of an abbreviation.  

     string timezone_name_
get(DateTimeZone $object)   

  Return the time zone name of a  DateTimeZone  
object. The object - oriented equivalent of this 
function is  DateTimeZone::getName(void) .  



Appendix C: PHP6 Functions     

706

     Function      Description   

     int timezone_offset_
get(DateTimeZone $object, DateTime 

$object)   

  Return the offset from Greenwich Mean Time of a 
 DateTimeZone  object. The object - oriented 
equivalent of this function is  DateTimeZone::
getOffset(DateTime $object) .  

     DateTimeZone timezone_open(string 
$timezone)   

  Return a new  DateTimeZone  object. The object -
 oriented equivalent of this function is  new 
DateTimeZone(string $timezone) .  

     array timezone_transitions_
get(DateTimeZone $object)   

  Return an array of all transitions for a 
 DateTimeZone  object. The object - oriented 
equivalent of this function is  DateTimeZone::
getTransitions(void) .  

     int unixtojd([int $timestamp]) *    Convert a UNIX timestamp to a Julian day count. 
The default is the current UNIX timestamp, if 
 $timestamp  is not provided.  

  Date and Time Formatting Codes     
 The following codes can be used in conjunction with  date() ,  date_format() , and  gmdate() . See 
 www.php.net/strftime  for formatting specifiers used with  strftime()  and  gmstrftime() . 
For formatting specifiers recognized by  idate() , see  www.php.net/idate .   

     Format Character      Description      What Is Returned   

     Month   

     F     Unabbreviated month name    January through December  

     M     Abbreviated month name    Jan through Dec  

     m     Month in numeric format as 2 
digits with leading zeros  

  01 through 12  

     n     Month in numeric format without 
leading zeros  

  1 through 12  

     t     The number of days in the month    28 through 31  

     Day   

     D     Abbreviated day of the week    Mon through Sun  

     d     Day of the month as 2 digits with 
leading zeros  

  01 to 31  



Appendix C: PHP6 Functions     

707

     Format Character      Description      What Is Returned   

     j     Day of the month without leading 
zeros  

  1 to 31  

     l  (lowercase L)    Unabbreviated day of the week    Sunday through Saturday  

     N     Day of the week in numeric 
format (ISO - 8601)  

  1 through 7 (1 is Sunday)  

     S     English ordinal suffix for the day 
of the month  

  st, nd, rd, or th  

     w     Day of the week in numeric 
format  

  0 through 6 (0 is Sunday)  

     z     Day of the year in numeric format    0 through 366  

     Year   

     L     Whether the year is a leap year    1 if it is a leap year, 0 if it is not  

     o     ISO - 8601 year number (this 
generally returns the same value 
as  Y , except when  W  belongs to the 
previous or next year and that 
year is used instead)  

  example: 2009, 2010, etc.  

     Y     Year in numeric format as 4 digits    example: 2009, 2010, etc.  

     y     Year in numeric format as 2 digits    example: 09, 10, etc.  

     Week   

     W     Week number of year (weeks start 
on Monday, ISO - 8601)  

  1 through 52  

     Time   

     A     Uppercase ante meridian and 
post meridian.  

  AM or PM  

     a     Lowercase ante meridian and 
post meridian  

  am or pm  

     B     Swatch Internet time    000 through 999  

     G     Hour in 24 - hour format without 
leading zeros  

  0 through 23  

     g     Hour in 12 - hour format without 
leading zeros  

  1 through 12  



Appendix C: PHP6 Functions     

708

     Format Character      Description      What Is Returned   

     H     Hour in 24 - hour format as 2 digits 
with leading zeros  

  00 through 23  

     h     Hour in 12 - hour format as 2 digits 
with leading zeros  

  01 through 12  

     i     Minutes as 2 digits with leading 
zeros  

  00 to 59  

     s     Seconds as 2 digits with leading 
zeros  

  00 through 59  

     u     Milliseconds    example: 012345  

     Time Zone   

     e     Time zone identifier    example: America/New_York  

     I  (capital i)    Indicates if date is in daylight 
saving time  

  1 if DST, 0 if it is not  

     O     Difference from Greenwich Mean 
Time in hours  

  example:  � 0500  

     P     Difference from Greenwich Mean 
Time formatted with colon  

  example:  � 05:00  

     T     Abbreviated time zone identifier    example: EST  

     Z     Time zone offset as seconds (west 
of UTC is negative, east of UTC is 
positive)  

   � 43200 through 43200  

     Full Date and Time   

     c     ISO8601 formatted date    example: 2009 - 02 - 04T00:50:06 - 05:00  

     r     RFC 822 formatted date    example: Wed, 04 Feb 2009 00:50:06  -
 0500  

     U     Seconds since the UNIX Epoch 
(January 1 1970 00:00:00 GMT)  

  example: 1233726606  



Appendix C: PHP6 Functions     

709

  Directory and File Functions     
 Function signatures marked with a * are not available when running on Windows.   

     Function      Description   

     string basename(string $path[, 
string $suffix])   

  Return the filename portion of a path, 
optionally trimming the filename ’ s suffix if it 
matches  $suffix .  

     bool chdir(string $directory)     Change PHP ’ s current working directory.  

     bool chgrp(string $filename, mixed 
$group)   

  Change a file ’ s group association.  

     bool chroot(string $directory)  *    Chroot PHP to a directory.  

     bool chmod(string $filename, int 
$mode)   

  Change a file ’ s permissions.  

     bool chown(string $filename, mixed 
$user)   

  Change a file ’ s owner.  

     void clearstatcache(void)     Clear the file status cache.  

     void closedir([resource $directory])     Close the directory stream.  

     bool copy(string $source, string 
$destination[, resource $context])   

  Copy a file.  

     Directory dir(string $)     Return a directory iterator object.  

     string dirname(string $path)     Return the directory name component listed in 
the named path.  

     float disk_free_space(string 
$directory)   

  Return the amount of free space left in bytes on 
the filesystem or disk partition.  

     float disk_total_space(string 
$directory)   

  Return the amount of total space in bytes on the 
filesystem or disk partition.  

     float diskfreespace(string 
$directory)   

  Alias for  disk_free_space() .  

     string getcwd(void)     Return the current working directory.  

     bool fclose(resource $handle)     Close an open file.  

     bool feof([resource $handle])     Verify whether the end of the file has been 
reached.  



Appendix C: PHP6 Functions     

710

     Function      Description   

     bool fflush(resource $handle)     Force a write of all buffered output to an open 
file.  

     string fgetc(resource $handle)     Return a character from an open file.  

     array fgetcsv(resource $handle[, int 
$length[, string $delimiter[, string 

$quote[, string $escape]]]])   

  Parse a line of an open CSV file, and return it as 
an array.  

     string fgets(resource $handle[, int 
$length])   

  Return a line of up to ( $length     -  1) from an 
open file.  

     string fgetss(resource $handle[, int 
$length[, string $allowed_tags]])   

  Similar to fgets() but also strips any HTML and 
PHP tags from the data.  

     array file(string $filename[, int 
$flags[, resource $context]])   

  Return the entire contents of a file as an array, 
with each line as an element of the array.  

     bool file_exists(string $filename)     Verify whether a file exists.  

     string file_get_contents(string 
$filename[, int $flags[, resource 

$context[, $offset[, int 

$maxlen]]]])   

  Read the entire contents of a file into a string.  

     string file_put_contents(string 
$filename, mixed $data[, int 

$flags[, resource $context]])   

  Write the contents of a string to a file.  

     int fileatime(string $filename)     Return the UNIX timestamp of when a file was 
last accessed.  

     int filectime(string $filename)     Return the UNIX timestamp of when a file was 
last changed.  

     int filegroup(string $filename)     Return the owner group of a file (use  posix_
getgrgid()  to resolve it to the group name).  

     int fileinode(string $filename)     Return a file ’ s inode number.  

     int filemtime(string $filename)     Return the UNIX timestamp of when a file was 
modified.  

     int fileowner(string $filename)     Return the user id of the owner of a file (use 
 posix_getpwuid()  to resolve it to the 
username).  

     int fileperms(string $filename)     Return the permissions associated with a file.  



Appendix C: PHP6 Functions     

711

     Function      Description   

     int filesize(string $filename)     Return the size of a file.  

     string filetype(string $filename)     Return the file type of the named file.  

     bool flock(resource $handle, int 
$operation[, int  & $block])   

  Lock or unlock a file.  $operation  may be 
 LOCK_SH  to set a shared lock for reading,  LOCK_
EX  to set an exclusive lock for writing, and 
 LOCK_UN  to release a lock.  

     bool fnmatch(string $pattern, string 
$string[, int $flags])  *   

  Return whether a string matches the shell 
wildcard pattern.  

     resource fopen(string $filename, 
string $mode[, bool $use_include_

path[, resource $context]])   

  Open a resource handle to a file.  

     int fpassthru(resource $handle)     Output all remaining data from the open file.  

     int fputcsv(resource $handle, array 
$fields[, string $delimiter[, string 

$quote]])   

  Write an array as a CSV formatted line to a file.  

     int fputs(resource $handle, string 
$string[, int $length])   

  Alias for  fwrite() .  

     string fread(resource $handle, int 
$length)   

  Return a string of the indicated length from an 
open file.  

     mixed fscanf(resource $handle, 
string $format[, mixed  & $  ... ])   

  Parse input read from a file, based on the 
provided formatting specifiers.  

     int fseek(resource $handle, int 
$offset[, int $start])   

  Move the file pointer in an open file.  

     array fstat(resource $handle)     Return information about an open file.  

     int ftell(resource $handle)     Return the current position of the open file 
pointer.  

     bool ftruncate(resource $handle, int 
$length)   

  Truncate an open file to the given length.  

     int fwrite(resource $handle, string 
$string[, int $length])   

  Write the contents of  $string  to a file.  

     array glob(string $string[, int 
$flags])   

  Return an array containing file and directory 
names that match the given pattern.  

     bool is_dir(string $filename)     Verify whether a file is a directory.  



Appendix C: PHP6 Functions     

712

     Function      Description   

     bool is_executable(string $filename)     Verify whether a file is an executable.  

     bool is_file(string $filename)     Verify whether a file is a regular file.  

     bool is_link(string $filename)     Verify whether a file is a symbolic link.  

     bool is_readable(string $filename)     Verify whether a file is readable.  

     bool is_writable(string $filename)     Alias for  is_writeable() .  

     bool is_writeable(string $filename)     Verify whether a file is writeable.  

     bool is_uploaded_file(string 
$filename)   

  Verify whether a file was uploaded using HTTP 
POST.  

     bool is_writeable(string $filename)     Verify whether a file is writeable.  

     bool link(string $target, string 
$link)  *   

  Create a new hard link.  

     int linkinfo(string $path)  *     Return the  st_dev  field of the UNIX C  stat  
structure returned by the  lstat  system call.  

     array lstat(string $filename)     Return information about a file or symbolic 
link.  

     bool mkdir(string $pathname[, int 
$mode[, bool $recursive[, resource 

$context]]])   

  Create a directory.  

     bool move_uploaded_file(string 
$filename, string $destination)   

  Move an uploaded file to a new location.  

     resource opendir(string $path[, 
resource $context])   

  Open a directory stream resource.  

     array parse_ini_file(string 
$filename[, bool $process_sections])   

  Return an array built from information in the 
provided INI configuration file.  

     mixed pathinfo(string $path[, int 
$options])   

  Return information about a path.  

     string readdir([resource 
$directory])   

  Return the name of the next file from the 
directory.  

     int readfile(filename[, usepath])     Read the named file.  

     string readlink(string $path)  *     Return the target of a symbolic link.  



Appendix C: PHP6 Functions     

713

     Function      Description   

     string realpath(string $path)     Return an absolute pathname.  

     bool rename(string $old_name, string 
$new_name[, resource $context])   

  Rename a file.  

     bool rewind(resource $handle)     Move the pointer to the beginning of a file 
stream.  

     void rewinddir([resource 
$directory])   

  Reset the directory stream to the beginning of 
the directory.  

     bool rmdir(string $directory[, 
resource $context])   

  Delete a directory.  

     array scandir(string $directory[, 
int $sort_order[, resource 

$context]])   

  Return an array containing the names of files 
and directories in  $directory .  

     int set_file_buffer(resource 
$stream, int $buffer)   

  Alias of  stream_set_write_buffer() .  

     array stat(string $filename)     Return information about a file.  

     bool symlink(string $target, string 
$link)  *   

  Create a symbolic link.  

     string tempnam(string $directory, 
string $prefix)   

  Create a temporary file in the named directory.  

     resource tmpfile(void)     Create a temporary file.  

     bool touch(string $filename[, int 
$time[, int $atime]])   

  Set the access and modification time of a file.  

     int umask(int $mask)     Modify the current umask.  

     bool unlink(string $filename[, 
resource $context])   

  Delete a file.  



Appendix C: PHP6 Functions     

714

  Error - Handling and Logging Functions 

     Function      Description   

     bool closelog(void)     Close the connection to the system logger opened 
by  openlog() .  

     array debug_backtrace([bool 
$provide_object])   

  Generate a backtrace and return the information 
as an array.  

     void debug_print_backtrace(void)     Generate and display a backtrace.  

     void define_syslog_variables(void)     Initialize all constants used by syslog functions.  

     array error_get_last(void)     Return an array containing information about the 
last error that occurred.  

     bool error_log(string $message[, 
int $message_type[, string 

$destination[, string $extra_

headers]]])   

  Write an error message to the web server ’ s log, 
send an e - mail, or post to a file, depending on 
 $message_type  and  $destination .  

     int error_reporting([int $level])     Set the  error_reporting  directive at run time 
for the duration of the script ’ s execution, and 
return the directive ’ s previous value.  

     bool openlog(string $msg_prefix, 
int $option, int $facility)   

  Open a connection to the system logger. See also 
 syslog() .  

     bool restore_error_handler(void)     Restore the default error - handling behavior.  

     bool restore_exception_
handler(void)   

  Restore the default exception - handling behavior.  

     bool syslog(int $priority, string 
$message)   

  Write a log message to the system logger (syslog 
in Linux and Event Log in Windows).  

     mixed set_error_handler(string 
$function_name[, int $error_

types])   

  Override the default error - handling behavior with 
a user - defined callback function.  

     mixed set_exception_handler(string 
$function_name)   

  Override the default exception - handling behavior 
with a user - defined callback function.  

     bool trigger_error(string $error_
message[, int $error_type])   

  Generate a user - level error, warning, or notice 
message.  

     bool user_error(string $error_
message[, int $error_type])   

  Alias for  trigger_error() .  



Appendix C: PHP6 Functions     

715

  Function -  and Object - Handling Functions 

     Function      Description   

     mixed call_user_func(string 
$function_name[, mixed $parameter, 

[mixed $...]])   

  Call the named user - defined function.  

     mixed call_user_func_array(string 
$function_name[, array 

$parameters])   

  Call the named user - defined function, passing the 
indexed array to it as the function ’ s parameters.  

     bool class_exists(string $class_
name[, bool $autoload])   

  Verify whether a class has been defined.  

     string create_function(string 
$parameters, string $code)   

  Create an unnamed function.  

     mixed func_get_arg(int $offset)     Return an item from a function ’ s argument list.  

     array func_get_args(void)     Return an array containing the values from a 
function ’ s argument list.  

     int func_num_args(void)     Return the number of arguments in a function ’ s 
argument list.  

     bool function_exists(string 
$function_name)   

  Verify whether a function is defined.  

     string get_class(object $object)     Return the class name of an object.  

     array get_class_methods(mixed 
$class)   

  Return an array containing the method names of 
an object or class name.  

     array get_class_vars(string 
$class_name)   

  Return an array of the names of a class ’ s default 
properties.  

     array get_declared_classes(void)     Return an array containing the names of all the 
defined classes.  

     array get_declared_
interfaces(void)   

  Return an array containing the names of all the 
defined interfaces.  

     array get_defined_functions(void)     Return a multidimensional array containing the 
names of all the defined functions.  

     array get_object_vars(object 
$object)   

  Return an array containing the names of an object ’ s 
public properties.  

     string get_parent_class(mixed 
$class)   

  Return the name of a class or object ’ s parent class.  



Appendix C: PHP6 Functions     

716

     Function      Description   

     bool interface_exists(string 
$interface_name[, bool $autoload)   

  Verify whether an interface has been defined.  

     bool is_subclass_of(mixed $class, 
string $class_name)   

  Verify whether an object or class has  $class_name  
as one of its parents.  

     bool method_exists(object 
$object, string $method_name)   

  Verify whether a method is defined.  

     bool property_exists(mixed 
$class, string $property_name)   

  Verify whether a property is defined.  

     void register_shutdown_
function(string $function_name[, 

mixed $parameter[, mixed $...]])   

  Register a function to be executed when the script 
has finished processing.  

     bool register_tick_function(string 
$function_name[, mixed 

$parameter[, mixed $...]])   

  Register a function for execution upon every tick.  

     void unregister_tick_
function(string $function_name)   

  Unregister a function previously registered  with 
register_tick_function() .  

  Image Functions 

     Function      Description   

     int exif_imagetype(string $filename)     Return the type of an image file.  

     array exif_read_data(string $filename)     Return the EXIF headers from a JPEG or 
TIFF image.  

     string exif_thumbnail(string 
$filename[, int  & $width[, int 

 & $height[, int  & $type]]])   

  Read the embedded thumbnail image within 
a JPEG or TIFF image file.  

     array gd_info(void)     Return information about the currently 
installed GD library.  

     array getimagesize(string $filename, 
[array  & $image_info])   

  Return the size of an image file.  

     string image_type_to_extension(int 
$image_type[, bool $include_dot])   

  Return the file extension for an image type.  

     string image_type_to_mime_type(int 
$image_type)   

  Return the MIME type for an image type.  



Appendix C: PHP6 Functions     

717

     Function      Description   

     bool image2wbmp(resource $image[, 
string $filename[, int $threshold]])   

  Output a WBMP image directly to a 
browser, or save to disk if a filename is 
provided.  

     bool imagealphablending(resource 
$image, bool $mode)   

  Set the blending mode for an image.  

     bool imageantialias(resource $image, 
bool $value)   

  Set whether antialiasing should be on and 
off for an image.  

     bool imagearc(resource $image, int $cx, 
int $cy, int $width, int $height, int 

$start, int $end, int $color)   

  Draw a partial ellipse based on the given 
attributes to an image.  

     bool imagechar(resource $image, int 
$font, int $x, int $y, character $c, 

int $color)   

  Write a character at the given position 
horizontally to an image.  

     bool imagecharup(resource $image, int 
$font, int $x, int $y, character $c, 

int $color)   

  Write a character at the given position 
vertically to an image.  

     int imagecolorallocate(resource $image, 
int $red, int $green, int $blue)   

  Allocate a color to be used in an image, and 
return the color ’ s identifier.  

     int imagecolorallocatealpha(resource 
$image, int $red, int $green, int 

$blue, int $alpha)   

  Similar to  imagecolorallocate()  with the 
addition of transparency.  

     int imagecolorat(resource $image, int 
$x, int $y)   

  Return the index of the color of the pixel at 
the named coordinates in an image.  

     int imagecolorclosest(resource $image, 
int $red, int $green, int $blue)   

  Return the index of the closest color in the 
palette of an image.  

     int imagecolorclosestalpha(resource 
$image, int $red, int $green, int 

$blue, int $alpha)   

  Similar to  imagecolorclosest()  with the 
addition of transparency.  

     int imagecolorclosesthwb(resource 
$image, int $red, int $green, int 

$blue)   

  Similar to  imagecolorclosest()  with the 
addition of considering hue, whiteness, and 
blackness.  

     bool imagecolordeallocate(resource 
$image, int $red, int $green, int 

$blue)   

  Free a color allocated with 
 imagecolorallocate()  or 
 imagecolorallocatealpha() .  

     int imagecolorexact(resource $image, 
int $red, int $green, int $blue)   

  Return the exact color in the palette of an 
image.  



Appendix C: PHP6 Functions     

718

     Function      Description   

     int imagecolorexactalpha(resource 
$image, int $red, int $green, int 

$blue, int $alpha)   

  Similar to  imagecolorexact()  with the 
addition of transparency.  

     bool imagecolormatch(resource $image1, 
resource $image2)   

  Force the colors of a palette image to more 
closely match a true color.  

     int imagecolorresolve(resource $image1, 
int $red, int $green, int $blue)   

  Return either the index of the exact color or 
the closest color available in the palette of an 
image.  

     int imagecolorresolvealpha(resource 
$image1, int $red, int $green, int 

$blue, int $alpha)   

  Similar to  imagecolorresolve()  with the 
addition of transparency.  

     void imagecolorset(resource $image, 
int $index, int $red, int $green, int 

$blue)   

  Set the color at a given palette index of an 
image.  

     array imagecolorsforindex(resource 
$image, int $index)   

  Return an array with the red, blue, and 
green values of a color at the specified index 
of an image.  

     int imagecolorstotal(resource $image)     Return the number of available colors in an 
image ’ s palette.  

     int imagecolortransparent(resource 
$image [, int $color])   

  Set a color as transparent in an image.  

     bool imageconvolution(resource $image, 
array $matrix, float $div, float 

$offset)   

  Apply a 3 � 3 convolution matrix to an image.  

     bool imagecopy(resource $destination_
image, resource $source_image, int 

$dest_x, int $dest_y, int $src_x, int 

$src_y, int $src_width, int $src_

height)   

  Copy part of an image onto another image.  

     bool imagecopymerge(resource 
$destination_file, resource $source_

image, int $dest_x, int $dest_y, int 

$src_x, int $src_y, int $src_width, 

int src_height, int $alpha)   

  Similar to  imagecopy()  with the addition 
of transparency.  

     bool imagecopymergegray(resource 
$destination_file, resource $source_

image, int $dest_x, int $dest_y, int 

$src_x, int $src_y, int $src_width, 

int src_height, int $alpha)   

  Similar to  imagecopymerge()  except that it 
copies image in grayscale.  



Appendix C: PHP6 Functions     

719

     Function      Description   

     bool imagecopyresampled(resource 
$destination_file, resource $source_

name, int $dest_x, int $dest_y, int 

$src_x, int $src_y, int $dest_width, 

int $dest_height, int $src_width, int 

$src_height)   

  Similar to  imagecopyresized()  with the 
addition of resampling.  

     bool imagecopyresized(resource 
$destination_file, resource $source_

name, int $dest_x, int $dest_y, int 

$src_x, int $src_y, int $dest_width, 

int $dest_height, int $src_width, int 

$src_height)   

  Copy and resize an image onto another 
image.  

     resource imagecreate(int $width, int 
$height)   

  Create a new palette - based image of the 
given size.  

     resource imagecreatefromgd2(string 
$filename)   

  Create a new image from a GD2 file.  

     resource imagecreatefromgd2part(string 
$filename, int $x, int $y, int $width, 

int $height)   

  Create a new image from a part of a GD2 
file.  

     resource imagecreatefromgd(string 
$filename)   

  Create a new image from a GD file.  

     resource imagecreatefromgif(string 
$filename)   

  Create a new image from a GIF file.  

     resource imagecreatefromjpeg(string 
$filename)   

  Create a new image from a JPEG or JPG file.  

     resource imagecreatefrompng(string 
$filename)   

  Create a new image from a PNG file.  

     resource imagecreatefromstring(string 
$stream_data)   

  Create a new image from an image stream.  

     resource imagecreatefromwbmp(string 
$filename)   

  Create a new image from a WBMP file.  

     resource imagecreatefromxbm(string 
$filename)   

  Create a new image from an XBM file.  

     resource imagecreatefromxpm(string 
$filename)   

  Create a new image from an XPM file.  

     resource imagecreatetruecolor(int 
$width, int $height)   

  Create a new true - color – based image of the 
given size.  



Appendix C: PHP6 Functions     

720

     Function      Description   

     bool imagedestroy(resource $image)     Free an image resource from memory.  

     bool imageellipse(resource $image, int 
$cx, int $cy, int $width, int $height, 

int $color)   

  Draw an ellipse based on the given 
attributes to an image.  

     bool imagefill(resource $image, int 
$x, int $y, int $color)   

  Flood - fill an entire image with one color.  

     bool imagefilledarc(resource $image, 
int $cx, int $cy, int $width, int 

$height, int $start, int $end, int 

$color, int $style)   

  Draw a filled partial ellipse based on the 
given attributes to an image.  

     bool imagefilledellipse(resource 
$image, int $cx, int $cy, int $width, 

int $height, int $color)   

  Draw a filled ellipse based on the given 
attributes to an image.  

     bool imagefilledpolygon(resource 
$image, array $points, int $num_points, 

int $color)   

  Draw a filled polygon based on the given 
attributes to an image.  

     bool imagefilledrectangle(resource 
$image, int $x1, int $y1, int $x2, int 

$y2, int $color)   

  Draw a filled rectangle based on the given 
attributes to an image.  

     bool imagefilltoborder(resource $image, 
int $x, int $y, int $border_color, int 

$color)   

  Flood - fill an image with a color, and then 
outline it with a border color.  

     bool imagefilter(resource $image, int 
$filter_type[, int $filter_arg[, int 

$...]])   

  Apply a filter to an image.  

     int imagefontheight(int $font)     Return the height of a character in pixels for 
a given font.  

     int imagefontwidth(int $font)     Return the width of a character in pixels for 
a given font.  

     array imageftbbox(float $size, float 
$angle, string $font, string $text[, 

array $extra])   

  Return an array with elements representing 
points of the text ’ s bounding box.  

     array imagefttext(resource $image, 
float $size, float $angle, int $x, int 

$y, int $color, string $font, string 

$text[, array $extra])   

  Write a string of text at the given position to 
an image.  



Appendix C: PHP6 Functions     

721

     Function      Description   

     bool imagegammacorrect(resource $image, 
float $input_gamma, float $output_

gamma)   

  Correct the gamma levels of a GD image.  

     bool imagegd2(resource $image[, string 
$filename[, int $chunk_size[, $type]]])   

  Output a GD2 image directly to a browser, 
or save to disk if a filename is provided.  

     bool imagegd(resource $image[, string 
$filename])   

  Output a GD image directly to a browser, or 
save to disk if a filename is provided.  

     bool imagegif(resource $image [, string 
$filename])   

  Output a GIF image directly to a browser, or 
save to disk if a filename is provided.  

     resource imagegrabscreen(void)     Return a screenshot of the whole screen. 
This function is only available on Windows, 
and the Apache service must be allowed to 
interact with the desktop.  

     resource imagegrabwindow(int $window, 
int $client_area)   

  Return a screenshot of a window. This 
function is only available on Windows, and 
the Apache service must be allowed to 
interact with the desktop.  

     int imageinterlace(resource $image[, 
int $value])   

  Set whether interlacing should be on or off 
for an image.  

     bool imageistruecolor(resource $image)     Return whether an image is true - color.  

     bool imagejpeg(resource $image[, string 
$filename[, itn $quality]])   

  Output a JPEG image directly to a browser, 
or save to disk if a filename is provided.  

     bool imagelayereffect(resource $image, 
int $effect)   

  Set the alpha blending flag to use the 
bundled layering effects.  

     bool imageline(resource $image, int 
$x1, int $y1, int $x2, int $y2, int 

$color)   

  Draw a solid line based on the given 
attributes to an image.  

     int imageloadfont(string $filename)     Load a font.  

     void imagepallettecopy(resource 
$destination_image, resource $source_

image)   

  Copy a color palette.  

     bool imagepng(resource $image[, string 
$filename[, int $quality[, int 

$filters]])   

  Output a PNG image directly to a browser, 
or save to disk if a filename is provided.  

     bool imagepolygon(resource $image, 
array $points, int $num_points, int 

$color)   

  Draw a polygon based on the given 
attributes to an image.  



Appendix C: PHP6 Functions     

722

     Function      Description   

     array imagepsbbox(string $text, 
resource $font, int $size[, int $space, 

int $width, float $angle])   

  Return an array with elements representing 
points of the text ’ s bounding box, using a 
PostScript font.  

     bool imagepsencodefont(resource $font_
index, string $encoding_file)   

  Change the character - encoding vector for a 
PostScript font.  

     bool imagepsextendfont(resource $font_
index, float $value)   

  Extend or condense a PostScript font.  

     bool imagepsfreefont(resource $font_
index)   

  Free a PostScript font resource from 
memory.  

     resource imagepsloadfont(string 
$filename)   

  Load a PostScript font.  

     bool imagepsslantfont(resource $font_
index, float $slant)   

  Slant a PostScript font.  

     array imagepstext(resource $image, 
string $text, resource $font_index, 

int $size, int $foreground_color, int 

$background_color, int $x, int $y[, 

int $space[, tint $width[, float 

$angle[, int $antialias_steps]]]])   

  Write a string of text at the given position to 
an image using a PostScript font.  

     bool imagerectangle(resource $image, 
int $x1, int $y1, int $x2, int $y2, 

int $color)   

  Draw a rectangle based on the given 
attributes to an image.  

     resource imagerotate(resource $image, 
float $angle, int $color[, int $ignore_

transparent])   

  Rotate an image.  

     bool imagesavealpha(resource $image, 
bool $value)   

  Set the flag to save with the image ’ s alpha 
information.  

     bool imagesetbrush(resource $image, 
resource $brush)   

  Set the brush used for line drawing 
functions.  

     bool imagesetpixel(resource $image, 
int $x, int $y, int $color)   

  Set the color of a pixel in an image.  

     bool imagesetstyle(resource $image, 
array $style)   

  Set the line style for line - drawing functions.  

     bool imagesetthickness(resource $image, 
int $thickness)   

  Set the line thickness for line - drawing 
functions.  

     bool imagesettile(resource $image, 
resource $tile_image)   

  Set the tile image for use with fill functions.  



Appendix C: PHP6 Functions     

723

     Function      Description   

     bool imagestring(resource $image, int 
$font, int $x, int $y, string $string, 

int $color)   

  Write a string of text horizontally at the 
given position.  

     bool imagestringup(resource $image, 
int $font, int $x, int $y, string 

$string, int $color)   

  Write a string of text vertically at the given 
position.  

     int imagesx(resource $image)     Return the width of an image.  

     int imagesy(resource $image)     Return the height of an image.  

     bool imagetruecolortopallette(resource 
$image, bool $dither, int $max_colors)   

  Convert a true - color image to a color palette.  

     array imagettfbbox(float $size, float 
$angle, string $fontname, string $text)   

  Draw a text box using the named TrueType 
font and based on the named parameters.  

     array imagettftext(resource $image, 
float $size, float $angle, int $x, int 

$y, int $color, string $fontname, 

string $text)   

  Write a string of text at the given position to 
an image, using a True - Type font.  

     int imagetypes(void)     Return the supported image types as a bit -
 field.  

     bool imagewbmp(resource $image[, string 
$filename[, int $foreground]])   

  Output a WBMP image directly to a 
browser, or save to disk if a filename is 
provided.  

     bool imagexbm(resource $image[, string 
$filename[, int $foreground]])   

  Output an XBM image directly to a browser, 
or save to disk if a filename is provided.  

     mixed iptcembed(string $data, string 
$filename[, int $spool])   

  Embed binary IPTC data into a JPEG file.  

     array iptcparse(string $block)     Return an array of a parsed IPTC block 
indexed by tag markers.  

     bool jpeg2wbmp(string $jpeg_filename, 
string $wbmp_filename, int $height, 

int $width, int $threshold)   

  Convert a JPEG image to a WBMP image.  

     bool png2wbmp(string $png_filename, 
string $wbmp_filename, int $height, 

int $width, int $threshold)   

  Convert a PNG image to a WBMP image.  

     array read_exif_data(string $filename)     Alias for  exif_read_data() .  



Appendix C: PHP6 Functions     

724

  Network, Mail, and  HTTP  Functions 

     Function      Description   

     bool checkdnsrr(string $host[, string 
$type])   

  Check DNS records for a given IP 
address or hostname.  

     bool dns_check_record(string $host
[, string $type])   

  Alias for  checkdnsrr() .  

     bool dns_get_mx(string $hostname, array 
 & $mxhosts[, array  & $weight])   

  Alias for  getmxrr() .  

     array dns_get_record(string $hostname
[, int $type, array  & $authns, array  & $addtl])   

  Return an array of DNS resource record 
information for a given hostname.  

     resource fsockopen(string $hostname[, int 
$port[, int  & $errno[, string  & $errstr

[, float $timeout]]]])   

  Open a socket connection.  

     string gethostbyaddr(string $ip_address)     Return the hostname associated with 
an IP address.  

     string gethostbyname(string $hostname)     Return the IP address associated with a 
hostname.  

     array gethostbynamel(string $hostname)     Return an array of IP addresses 
associated with a hostname.  

     bool getmxrr(string $hostname, array 
 & $mxhosts[, array  & $weight])   

  Retrieve DNS MX records for a given 
hostname.  

     void header(string $string[, bool 
$replace[, int $ response_code]])   

  Output a raw HTTP header.  header()  
must be called before any other output 
has been sent from the script.  

     array headers_list(void)     Return an array containing the headers 
that will be sent.  

     bool headers_sent(string  & $file[, int 
 & $line])   

  Verify whether HTTP headers have 
already been sent.  

     string inet_ntop(string $in_addr)     Return a human - readable IP address 
from a IPv4 or IPv6 packed address.  

     string inet_pton(string $address)     Return a packed IP address from a 
human - readable address.  

     int ip2long(string $ip_address)     Return an integer from a string 
representation of an IPv4 IP address.  

     string long2ip(int $proper_address)     Return a string representation of an 
IPv4 address from an integer.  



Appendix C: PHP6 Functions     

725

     Function      Description   

     bool mail(string $to, string $subject, 
string $message[, string $headers[, string 

$ parameters]])   

  Send an e - mail message.  

     resource pfsockopen(string $hostname[, int 
$port[, int  & $errno[, string  & $errstr[, 

float $timeout]]]])   

  Open a persistent socket connection.  

     bool setcookie(string $name[, string 
$value[, int $expire[, string $path[, 

string $domain[, bool $secure[, bool 

$http_only]]]]]])   

  Send a cookie to be sent to the user 
along with the rest of the HTTP headers 
based on the provided parameters. The 
cookie ’ s value will be urlencoded.  

     bool setrawcookie(string $name[, string 
$value[, int $expire[, string $path[, 

string $domain[, bool $secure[, bool 

$http_only]]]]]])   

  Similar to  setcookie() , but the 
cookie ’ s value will not be urlencoded.  

  Mathematical Functions 

     Function      Description   

     number abs(number $number)     Return the absolute value of a number.  

     float acos(float $value)     Return the arc cosine in radians of a value.  

     float acosh(float $value)     Return the inverse hyperbolic cosine of a value.  

     float asin(float $value)     Return the arc sine in radians of a value.  

     float asinh(float $value)     Return the inverse hyperbolic sine of a value.  

     float atan(float $value)     Return the arc tangent in radians of a value.  

     float atan2(float $y, float $x)     Return the arc tangent of x and y in radians.  

     float atanh(float $value)     Return the inverse hyperbolic tangent of a 
value.  

     string base_convert(string $number, 
int $start_base, $end_base)   

  Convert a number between two arbitrary bases.  

     number bindec(string $value)     Convert a binary number represented as a 
string to a decimal. Opposite of  bindec() .  

     float ceil(float $value)     Return the next highest integer by rounding 
the value upwards.  



Appendix C: PHP6 Functions     

726

     Function      Description   

     float cos(float $value)     Return the cosine in radians of a value.  

     float cosh(float $value)     Return the hyperbolic cosine of a value.  

     string decbin(int $number)     Convert a decimal number to a binary string 
representation. Opposite of  bindec() .  

     string dechex(int $number)     Convert a decimal number to its hexadecimal 
representation. Opposite of  hexdec() .  

     string decoct(int $number)     Convert a decimal number to its octal 
representation. Opposite of  octdec() .  

     float deg2rad(float $number)     Convert a number from degrees to radians. 
Opposite of  rad2deg() .  

     float exp(float $value)     Return the value of e raised to the power of 
 $value .  

     float expm1(float $value)     Return the value of  exp($value)  -  1 . The 
return value is computed by PHP in a way that 
is accurate even when  $value  is near zero.  

     float floor(float $value)     Return the next lowest integer by rounding the 
value downwards.  

     float fmod(float $x, float $y)     Return the floating - point remainder of the 
division of two numbers.  

     int getrandmax(void)     Return the maximum random value possible 
 rand()  could return.  

     number hexdec(string $number)     Convert a hexadecimal value to a decimal. 
Opposite of  dechex() .  

     float hypot(float $x, float $y)     Return the length of the hypotenuse of a right -
 angle triangle.  

     bool is_finite(float $number)     Return whether a value is a finite number.  

     bool is_infinite(float $number)     Return whether a value is an infinite number.  

     bool is_nan(float $value)     Return whether a value is truly a number.  

     float lcg_value(void)     Return a pseudorandom number between 0 
and 1. Combined linear congruential generator.  

     float log(float $value[, float 
$base])   

  Return the natural logarithm of a value.  



Appendix C: PHP6 Functions     

727

     Function      Description   

     float log10(float $value)     Return the base 10 logarithm of a value.  

     float log1p(float $value)     Return the value of  log(1 + $value) . The 
return value is computed by PHP in a way that 
is accurate even when  $value  is near zero.  

     mixed max(mixed $value1[, mixed 
$value2[, mixed $...]])   

  Return the highest value from the supplied 
values.  

     mixed min(mixed $value1[, mixed 
$value2[, mixed $...]])   

  Return the lowest value from the supplied 
values.  

     int mt_getrandmax(void)     Return the maximum random value possible 
 mt_rand()  could return.  

     int mt_rand([int $min, int $max])     Return a random number. PHP uses a 
Mersenne Twister to generate the random 
value.  

     number octdec(string $number)     Convert an octal number to its decimal 
representation. Opposite of  decoct() .  

     float pi(void)     Return the approximate value of pi.  

     number pow(number $value, number 
$exponent)   

  Return a number raised to the power of the 
given exponent.  

     float rad2deg(float $number)     Convert a number from radians to degrees. 
Opposite of  deg2rad() .  

     int rand([int $min, int $max])     Return a random number.  

     float round(float $number[, int 
$precision])   

  Return a value rounded to the requested 
precision.  

     float sin(float $value)     Return the sine in radians of a value.  

     float sinh(float $value)     Return the hyperbolic sine of a value.  

     float sqrt(float $value)     Return the square root of a value.  

     float tan(float $value)     Return the tangent in radians of a value.  

     float tanh(float $value)     Return the hyperbolic tangent of a value.  



Appendix C: PHP6 Functions     

728

  My SQL  Functions 

     Function      Description   

     int mysql_affected_rows([resource 
$db])   

  Return the number of records affected by the 
previous query.  

     string mysql_client_
encoding([resource $db])   

  Return the character set used by the current 
database connection.  

     bool mysql_close([resource $db])     Close the active database connection.  

     resource mysql_connect([string 
$host[, string $username[, string 

$password[, bool $new_link[, int 

$flags]]]]])   

  Open a connection to the database server based 
on the named parameters. See also  mysql_
pconnect() .  

     bool mysql_create_db(string $name[, 
resource $db])   

  Create a new database schema.  

     bool mysql_data_seek(resource $db, 
int $row_number)   

  Move the internal pointer to a specific row in the 
result set.  

     string mysql_db_name(resource 
$result, int $row[, mixed $field])   

  Return the database name from the result set 
returned by  mysql_list_dbs() .  

     resource mysql_db_query(string 
$database, string $query[, resource 

$db])   

  Return the result set after executing a query on 
the named database.  

     int mysql_errno([resource $db])     Return the error number generated by the 
previous query.  

     string mysql_error([resource $db])     Return the error message generated by the 
previous query.  

     array mysql_fetch_array(resource 
$result[, int $type])   

  Return a row of data from a result set as an 
associative array, numeric array, or both.  

     array mysql_fetch_assoc(resource 
$result)   

  Return an associative array of data from 
a result set.  

     object mysql_fetch_field(resource 
$result[, int $field])   

  Return column information from a result set as 
an object.  

     array mysql_fetch_lengths(resource 
$result)   

  Return an array with the lengths of each field in 
a result set.  

     object mysql_fetch_object(resource 
$result[, string $class[, array 

$parameters]])   

  Return a row of data from a result set as an 
object.  



Appendix C: PHP6 Functions     

729

     Function      Description   

     array mysql_fetch_row(resource 
$result)   

  Return a row of data from a result set as a 
numeric array.  

     string mysql_field_flags(resource 
$result, int $field)   

  Return the flag associated with a field in a result 
set.  

     int mysql_field_len(resource 
$result, int $field)   

  Return the length of a field in a result set.  

     string mysql_field_name(resource 
$result, int $field)   

  Return the name of a field in a result set.  

     bool mysql_field_seek(resource 
$result, int $field)   

  Move the internal pointer to a specific field 
offset.  

     string mysql_field_table(resource 
$result, int $field)   

  Return the name of the table in which a field is 
defined.  

     string mysql_field_type(resource 
$result, int $field)   

  Return the type of a field in a result set.  

     bool mysql_free_result(resource 
$result)   

  Free memory used by a result set from a 
previous query.  

     string mysql_get_client_info(void)     Return the MySQL client information.  

     string mysql_get_host_
info([resource $db])   

  Return information about the server host.  

     int mysql_get_proto_info[resource 
$db])   

  Return the MySQL protocol.  

     string mysql_get_server_
info([resource $db])   

  Return information about the server.  

     string mysql_info([resource $db])     Get information about the previous query.  

     int mysql_insert_id([resource $db])     Return the value of the most recently inserted 
 auto_increment  field.  

     resource mysql_list_dbs([resource 
$db])   

  Return a list of the databases available on the 
MySQL server.  

     resource mysql_list_
processes([resource $db])   

  List the MySQL processes.  

     int mysql_num_fields(resource 
$result)   

  Return the number of fields in a row of the 
result set.  



Appendix C: PHP6 Functions     

730

     Function      Description   

     int mysql_num_rows(resource 
$result)   

  Return the number of rows in the result set.  

     resource mysql_pconnect([string 
$host[, string $username[, string 

$password[, bool $new_link[, int 

$flags]]]]])   

  Open a persistent connection to the database 
server based on the named parameters. See also 
 mysql_connect() .  

     bool mysql_ping([resource $db])     Ping the server to verify the connection is 
working properly.  

     resource mysql_query(string 
$query[, resource $db])   

  Return a result set after executing a query.  

     string mysql_real_escape_
string(string $string[, resource 

$db])   

  Return an escaped string to be used in a query.  

     string mysql_result(resource 
$result, int $row[, mixed $field])   

  Obtain the data located in the named field/row 
of the results.  

     bool mysql_select_db(string 
$database[, resource $db])   

  Select the active database.  

     bool mysql_set_charset(string 
$charset[, resource $db])   

  Set the default character set for the current 
database connection.  

     string mysql_stat([resource $db])     Return the MySQL server ’ s status.  

     int mysql_thread_id([resource $db])     Return current connection thread ID.  

     resource mysql_unbuffered_
query(string $query[, resource 

$db])   

  Return a result resource after executing a query. 
The result set is unbuffered.  



Appendix C: PHP6 Functions     

731

  Output Buffer Functions 

     Function      Description   

     void flush(void)     Flush the contents of the output buffer.  

     void ob_clean(void)     Discard the contents of the output buffer.  

     bool ob_end_flush(void)     Output the buffer ’ s contents and disable 
output buffering.  

     bool ob_end_clean(void)     Flush the output buffer ’ s contents and 
destroy output buffering.  

     void ob_flush(void)     Flush the contents of the output buffer. 
Does not destroy the buffer.  

     string ob_get_clean(void)     Return the contents of the output buffer 
and destroy the buffer.  

     string ob_get_contents(void)     Return the contents of the output buffer.  

     int ob_get_length(void)     Return the length of the content in the 
output buffer.  

     int ob_get_level(void)     Return the nesting level of the current 
output buffer.  

     array ob_get_status([bool $full_status])     Return the status of either the current 
output buffer or all active output buffers.  

     string ob_gzhandler(string $buffer, int 
$mode)   

  Callback function for  ob_start()  to 
compress the output buffer.  

     void ob_implicit_flush([int $flag])     Set implicit flushing of the buffer on and 
off.  

     array ob_list_handlers(void)     Return an array listing all output handlers 
being used.  

     bool ob_start(string $function_name[, 
int $chunk_size[, bool $erase]])   

  Enable output buffering.  

     bool output_add_rewrite_var(string 
$variable, string $value)   

  Add values to a URL.  output_add_
rewrite_var()  will implicitly start 
output buffering, if it is not already active.  

     bool output_reset_rewrite_vars(void)     Reset a URL and remove any values added 
to it by  output_add_rewrite_var() .  



Appendix C: PHP6 Functions     

732

   PHP  Data Object ( PDO ) Database Interface 

     Function      Description   

     PDO PDO::__construct(string $dsn[, 
string $username[, string $password 

[, array $driver_options]]])   

  Create an instance of a  PDO  object representing 
a connection to a database.  

     bool PDO::beginTransaction(void)     Initiate a database transaction.  

     bool PDO::commit(void)     Commit a database transaction.  

     string PDO::errorCode(void)     Return the error code generated by the 
previous query.  

     array PDO::errorInfo(void)     Return an array of error information generated 
by the previous query.  

     int PDO::exec(string $query)     Return the number of affected rows after 
executing a database query.  

     mixed PDO::getAttribute(int 
$attribute)   

  Return the value of a database connection 
attribute.  

     array PDO::getAvailableDrivers(void)     Return an array of all currently available PDO 
drivers.  

     string PDO::lastInsertId([string 
$name])   

  Return the value of the most recently inserted 
 auto_increment  field or sequence ID.  

     PDOStatement PDO::
prepare(string$query[, array $driver_

options])   

  Return a  PDOStatement  object representing a 
database query prepared for execution.  

     PDOStatement PDO::query(string 
$query)   

  Return a  PDOStatement  object after executing 
a database query.  

     string PDO::quote(string $string[, 
int $parameter_type])   

  Return a string quoted for use in a database 
query.  

     bool PDO::rollBack(void)     Roll back a database transaction.  

     bool PDO::setAttribute(int 
$attribute, mixed $value)   

  Set the value of a PDO attribute.  

     bool PDOStatement::bindColumn(mixed 
$column, mixed  & $parameters[, int 

$type[, int $max_length[, mixed 

$driver_options]]])   

  Bind a database column to a PHP variable.  

     bool PDOStatement::bindParam(mixed 
$parameter, mixed  & $variable[, int 

$data_type[, int $length[, mixed 

$driver_options]]])   

  Bind a parameter to a PHP variable.  



Appendix C: PHP6 Functions     

733

     Function      Description   

     bool PDOStatement::bindValue(mixed 
$parameter, mixed $value[, int $data_

type])   

  Bind a value to a PHP variable.  

     bool PDOStatement::closeCursor(void)     Close the result set ’ s cursor to enable a query 
to be executed again.  

     bool PDOStatement::columnCount(void)     Return the number of columns in a result set.  

     string PDOStatement::errorCode(void)     Return the error code generated by the 
previous action on the result set.  

     array PDOStatement::errorInfo(void)     Return an array of error information generated 
by the previous action on the result set.  

     bool PDOStatement::execute([array 
$parameters])   

  Execute a prepared statement.  

     mixed PDOStatement::fetch([int $mode 
[, int $cursor_orientation[, int 

$offset]]])   

  Return the next row from a result set.  

     array PDOStatement::fetchAll([int 
$mode [, int $index[, array 

$arguments]]])   

  Return an array of all rows from a result set.  

     string PDOStatement::fetchColumn([int 
$index])   

  Return a single column from the next row of a 
result set.  

     mixed PDOStatement::
fetchObject([string $class_name[, 

array $arguments]])   

  Return the next row from a result set as an 
object.  

     mixed PDOStatement::getAttribute(int 
$attribute)   

  Return the value of a statement attribute.  

     array PDOStatement::getColumnMeta(int 
$column)   

  Return an array of metadata information for a 
column in a result set.  

     bool PDOStatement::nextRowset(void)     Move the cursor to the next row in the result 
set.  

     int PDOStatement::rowCount(void)     Return the number of rows in a result set.  

     bool PDOStatement::setAttribute(int 
$attribute , mixed $value)   

  Set a statement attribute.  

     bool PDOStatement::setFetchMode(int 
$mode)   

  Set the statement ’ s fetch mode.  



Appendix C: PHP6 Functions     

734

   PDO  Fetch Mode Constants 

     Constant      Description   

     PDO::FETCH_ASSOC     Return the results as an associative array.  

     PDO::FETCH_BOTH     Return the results as an array indexed by both column name and 
numeric values. This is the default behavior, if no other mode is 
specified.  

     PDO::FETCH_BOUND     Assign the result ’ s values back to the PHP variables to which they 
were bound.  

     PDO::FETCH_CLASS     Return a new instance of a class with the results mapped to the 
object ’ s properties.  

     PDO::FETCH_CLASSTYPE     Can be combined with  PDO::FETCH_CLASS , and the name of the 
class will be determined by the value of the first column in the 
result set.  

     PDO::FETCH_INTO     Update an existing object with values from the result set.  

     PDO::FETCH_LAZY     Combination of  PDO::FETCH_BOTH  and  PDO::FETCH_OBJ .  

     PDO::FETCH_NUM     Return the results as a numerically indexed array.  

     PDO::FETCH_OBJ     Return an anonymous object with the results mapped to the 
object ’ s properties.  

   PHP  Configuration Information 

     Function      Description   

     bool assert(mixed $assertion)     Return whether an assertion is false. If 
 $assertion  is given a string, then it will be 
evaluated as PHP code.  

     mixed assert_options(int $option,[ 
mixed $value])   

  Set or return an assert flag.  

     bool extension_loaded(string 
$extension_name)   

  Return whether an extension library is loaded.  

     string get_cfg_var(string $option)     Return the value of a configuration option.  

     string get_current_user(void)     Return the owner of the PHP script.  



Appendix C: PHP6 Functions     

735

     Function      Description   

     array get_defined_constants([mixed 
$categorize])   

  Return an array with the available defined 
constants and their values.  

     array get_extension_funcs(string 
$module)   

  Return an array of the function names made 
available by a module.  

     string get_include_path(void)     Return the current include path as specified by 
the  include_path  configuration option.  

     array get_included_files(void)     Return an array of filenames of included or 
required files.  

     bool get_loaded_extensions([bool 
$zend_extension])   

  Return an array of the compiled and loaded 
modules available.  

     array get_required_files(void)     Alias for  get_included_files() .  

     string getenv(string $variable)     Return the value of an environment variable.  

     int getlastmod(void)     Return when the current page was last 
modified.  

     int getmygid(void)     Return the group ID of the current script.  

     int getmyinode(void)     Return the inode of the current script.  

     int getmypid(void)     Return the process ID of the current PHP 
process.  

     int getmyuid(void)     Return the user ID of the owner of the current 
PHP script.  

     array getopt(string $options[, array 
$longopts])   

  Return an array of options and their arguments 
from the command - line argument list.  

     array getrusage([int $who])     Return the current resource usage.  

     string ini_alter(string $option, 
string $value)   

  Alias for  ini_set() .  

     array ini_get_all([string 
$extension[, bool $details]])   

  Return all  php.ini  configuration options.  

     string ini_get(string $option)     Return the current value of a  php.ini  option.  

     string ini_restore(string $option)     Restore the original value of a  php.ini  option.  

     string ini_set(string $option, string 
$value)   

  Set a  php.ini  option.  



Appendix C: PHP6 Functions     

736

     Function      Description   

     int memory_get_peak_usage([bool 
$real_usage])   

  Return the peak amount of memory allocated 
by PHP in bytes.  

     int memory_get_usage(([bool $real_
usage])   

  Return the amount of memory allocated by 
PHP in bytes.  

     string php_ini_loaded_file(void)     Return a path to the active  php.ini  file.  

     string php_ini_scanned_files(void)     Return a list of ini files parsed from an 
additional directory.  

     string php_logo_guid(void)     Return an ID which can be used to display the 
PHP logo.  

     string php_sapi_name(void)     Return the type of interface between the web 
server and PHP.  

     string php_uname([string $mode])     Return information about the operating system 
on which PHP is running.  

     bool phpcredits([int $section])     Output the credits list for PHP.  

     bool phpinfo([int $section])     Output information about the current 
environment and PHP configuration.  

     string phpversion([string 
$extension])   

  Return the version string of PHP.  

     bool putenv(string $setting)     Set the value of an environment variable.  

     void restore_include_path(void)     Restore the  include_path  configuration 
option.  

     string set_include_path(string $path)     Set the  include_path  configuration option.  

     void set_time_limit(int $seconds)     Set the maximum amount of time a PHP script 
can run.  

     string sys_get_temp_dir(void)     Return the directory path used to store 
temporary files.  

     mixed version_compare(string 
$version1, string $version2[, string 

$operator])   

  Compare two PHP version numbers.  

     string zend_logo_guid(void)     Return an ID which can be used to display the 
Zend logo.  

     string zend_version(void)     Return the version of the Zend engine.  



Appendix C: PHP6 Functions     

737

  Process and Program Execution Functions 

     Function      Description   

     string escapeshellarg(string $arg)     Return an escaped string to be used as an 
argument in a shell command.  

     string escapeshelllcmd(string 
$command)   

  Return an escaped shell command.  

     string exec(string $command[, array 
 & $output[, int $return_value]])   

  Execute a command and return the last line of its 
result.  

     void passthru(string $command[, int 
 & $return_value])   

  Execute a command, and output the raw output 
directly to the browser.  

     int pclose(resource $handle)     Close a process file pointer.  

     resource popen(string $command, 
string $mode)   

  Open a process file pointer.  

     int proc_close(resource $process)     Close a process opened by  proc_open() .  

     array proc_get_status(resource 
$process)   

  Return information about a process opened by 
 proc_open() .  

     bool proc_nice(int $priority)     Change the priority of the current process.  

     resource proc_open(string $command, 
array $descriptor_spec, array 

 & $pipes[, string $directory[, array 

$env[, array $options]]])   

  Execute a command, and open file pointers for 
input/output.  

     bool proc_terminate(resource 
$process[, int $signal])   

  Terminate a process opened by  proc_open() .  

     string shell_exec(string $command)     Execute a command through the shell, and 
return the complete output as a string.  

     string system(string $command[, int 
 & $return_value])   

  Execute an external command, and display the 
output.  



Appendix C: PHP6 Functions     

738

  Session Functions 

     Function      Description   

     int session_cache_expire([int 
$expire])   

  Return or set the cache expiration time in 
minutes.  

     string session_cache_limiter([string 
$cache_limiter])   

  Return or set the cache limiter.  

     void session_commit(void)     Alias for  session_write_close() .  

     bool session_decode(string $data)     Decode session data.  

     bool session_destroy(void)     Destroy session data.  

     string session_encode(void)     Return encoded session data as a string.  

     array session_get_cookie_
params(void)   

  Return an array with the session cookie ’ s 
configuration information.  

     string session_id([string $id])     Return or set the session ID.  

     bool session_is_registered(string 
$variable)   

  Return whether a variable has been registered in 
the current session.  

     string session_module_name([string 
$module])   

  Return or set the session module.  

     string session_name([string $name])     Return or set the session name.  

     bool session_regenerate_id([bool 
$delete_old])   

  Generate a new session ID for the current 
session, maintaining session variables and their 
contents.  

     bool session_register(mixed $name[, 
mixed $...])   

  Register variables with the current session.  

     string session_save_path([string 
$path])   

  Return or set the path where session data is 
saved.  

     void session_set_cookie_params(int 
$lifetime[, string $path[, string 

$domain[, bool $secure[, bool $http_

only]]]])   

  Set the session cookie ’ s configuration 
information.  

     bool session_set_save_handler(string 
$open_function, string $close_

function, string $read_function, 

string $write_function, string 

$destroy_function, string $gc_

function)   

  Set user - level callback functions to handle 
session storage, and override PHP ’ s default 
session storage mechanism.  



Appendix C: PHP6 Functions     

739

     Function      Description   

     bool session_start(void)     Start a new session.  

     bool session_unregister(string 
$name)   

  Unregister session variables.  

     void session_unset(void)     Delete all session variables.  

     void session_write_close(void)     Save all session variables, and end the current 
session.  

  Simple XML  Functions 

     Function      Description   

     SimpleXMLElement simplexml_import_dom( 
DOMNode $node[, string $class_name])   

  Retrieve a  SimpleXMLElement  object 
from a DOM node.  

     SimpleXMLElement simplexml_load_
file(string $filename[, string $class_

name[, int $options[, string $namespace[, 

bool $is_prefix]]]])   

  Load an XML file into a 
 SimpleXMLElement  object.  

     SimpleXMLElement simplexml_load_string( 
string $data[, string $class_name[, int 

$options  [, string $namespace [,bool $is_

prefix]]]])   

  Load an XML string into a 
 SimpleXMLElement  object.  

     SimpleXMLElement SimpleXMLElement::__
construct(string $data  [, int $options[, 

bool $is_url[, string $namespace[, bool 

$is_prefix]]]])   

  Create a new instance of a 
 SimpleXMLElement  object.  

     void SimpleXMLElement::addAttribute(string 
$name, string $value[, string $namespace])   

  Add an attribute to an XML node.  

     SimpleXMLElement SimpleXMLElement::
addChild(string $name, string $value[, 

string $namespace])   

  Add a child element to an XML node.  

     mixed SimpleXMLElement::asXML([string 
$filename])   

  Return an XML string representation of 
a  SimpleXML  element.  

     SimpleXMLElement SimpleXMLElement::
attributes([string $namespace[, bool $is_

prefix]])   

  Return the attributes of an element.  



Appendix C: PHP6 Functions     

740

     Function      Description   

     SimpleXMLElement SimpleXMLElement::
children([string $namespace[, bool $is_

prefix]])   

  Return the children of an element.  

     array SimpleXMLElement::
getDocNamespaces([bool $is_recursive])   

  Return an array of namespaces 
declared in the XML document  

     string SimpleXMLElement::getName(void)     Return the name of an element.  

     array SimpleXMLElement::getNamespaces([bool 
$is_recursive])   

  Return an array of namespaces.  

     bool SimpleXMLElement::registerXPathNamesp
ace(string $prefix, string $namespace)   

  Create a prefix/namespace context for 
an XPath query.  

     array SimpleXMLElement::xpath(string 
$path)   

  Return an array of  SimpleXMLElement  
objects that match an XPath query.  

  String Functions     
 Function signatures marked with a * are not available when running on Windows.   

     Function      Description   

     string addcslashes(string $string, 
string $character_list)   

  Return a string with slashes added before 
named characters in a string.  

     string addslashes(string $string)     Return a string with slashes added to quote 
characters in a string.  

     string bin2hex(string $string)     Convert a string from binary to ASCII 
hexadecimal format.  

     string chop(string $string[, string 
$character_list])   

  Alias for  rtrim() .  

     string chr(int ascii)     Return the character equivalent of a given 
ASCII code.  

     string chunk_split(string $string[, 
int $length[, string $end]])   

  Return a string with  $end  inserted every 
 $length  characters.  

     string convert_cyr_string(string 
$string, string $from_set, $to_set)   

  Convert a string from one Cyrillic character set 
to another.  

     string convert_uudecode(string 
$string)   

  Return a decoded string previously encoded by 
 convert_uuencode() .  



Appendix C: PHP6 Functions     

741

     Function      Description   

     string convert_uuencode(string 
$string)   

  Return a string encoded using the uuencode 
algorithm.  

     mixed count_chars(string $string[, 
int mode])   

  Count the number of occurrences of each 
character in a string.  

     int crc32(string $string)     Return the cyclic redundancy checksum of a 
string.  

     string crypt(string $string[, string 
$salt])   

  Return a one - way encrypted string using a 
DES - based algorithm.  

     void echo(string $string1[, string 
$...])   

  Output a string.  

     array explode(string $separator, 
string $string[, int $limit])   

  Separate a string by a string. Opposite of 
 implode() .  

     int fprintf(resource $handle, string 
$format[, mixed $args[, mixed 

$...]])   

  Output a formatted string.  

     array get_html_translation_
table([int $table[, int $quote_

styles]])   

  Return a translation table used by 
 htmlspecialchars()  and  htmlentities() .  

     string hebrev(string $string[, int 
$max_ per_line])   

  Return a string of visual text converted from 
logical Hebrew text.  

     string hebrevc(string $string [, int 
$max_ per_line]])   

  Return a string of visual text with newlines 
converted from Hebrew text.  

     string html_entity_decode(string 
$string[, int $quote style[, string 

$charset]])   

  Return a string with HTML entities converted 
into their applicable characters. Opposite of 
 htmlentities() .  

     string htmlentities(string $[, int 
$quote_style[, string $charset[, 

bool $double_encode]]])   

  Return a string with characters converted into 
HTML entities.  

     string htmlspecialchars (string $[, 
int $quote_style[, string $charset[, 

bool $double_encode]]])   

  Return a string with special characters 
converted into HTML entities.  

     string htmlspecialchars_
decode(string $string[, int $quote_

style])   

  Return a string with all HTML entities 
converted to characters.  

     string implode(string $delimiter, 
array $pieces)   

  Return a string of array elements joined by the 
specified delimiter. Opposite of  explode() .  



Appendix C: PHP6 Functions     

742

     Function      Description   

     string join(string $delimiter, array 
$pieces)   

  Alias for  implode() .  

     string lcfirst(string $string)     Return a string with the first character 
lowercased.  

     int levenshtein(string $string1, 
string string2[, int $insert_cost, 

int $replace_cost, int $delete_cost)   

  Return the Levenshtein distance between the 
two strings.  

     array localeconv(void)     Return an array of local monetary and numeric 
formatting information.  

     string ltrim(string $string[, string 
$character_list])   

  Return a string with leading spaces removed.  

     string md5_file(string $filename[, 
bool $raw_output])   

  Return the MD5 hash of a file.  

     string md5(string $string[, bool 
$raw_output])   

  Return the MD5 hash of a string.  

     string metaphone(string $string[, 
int $phones])   

  Return the metaphone key of a string.  

     string money_format(string $format, 
float $number)  *  

  Return a string representing a number 
formatted as currency.  

     string nl_langinfo(int $item)     Return specific information about the local 
language and numeric/monetary formatting.  

     string nl2br(string $string[, bool 
$is_xhtml])   

  Return a string with all line breaks replaced 
with   < br / >  .  

     string number_format(float $number[, 
int $decimal_places[, string 

$decimal_point, string thousands_

sep]])   

  Return a string representing a formatted 
number.  

     int ord(string $character)     Return the ASCII code of a character. Opposite 
of  chr() .  

     string pack(string $format[, mixed 
$arg1[, mixed $...])   

  Return a binary string of packed data.  

     void parse_str(string $string[, 
array  & $array])   

  Parse a string into variables.  

     array preg_grep(string $pattern, 
array $input[, int $flags])   

  Return an array with elements that match a 
regular expression pattern.  



Appendix C: PHP6 Functions     

743

     Function      Description   

     int preg_error(void)     Return the error code from the last regular 
expression.  

     int preg_match(string $pattern, 
string $string, [array  & $matches[, 

int $flags[, int $offset]]])   

  Perform a regular expression match.  

     int preg_match_all(string $pattern, 
string $string, array  & $matches, int 

$flags[, int $offset]]])   

  Perform a global regular expression match.  

     string preg_quote(string $string[, 
string $delimiter])   

  Return a string with escaped regular expression 
metacharacters.  

     mixed preg_replace(mixed $pattern, 
mixed $replacement, mixed $subject[, 

int $limit[, int  & $count]])   

  Perform a regular expression search and 
replace.  

     mixed preg_replace_callback(mixed 
$pattern, string $function_name, 

mixed $subject, [, int $limit[, int 

 & $count]])   

  Perform a regular expression search and 
replace, using a callback function to perform the 
replacement.  

     array preg_split(string $pattern, 
string $subject[, int $limit[, int 

$flags]])   

  Split a string by a regular expression.  

     int print(string $string)     Output a string. Always returns 1.  

     int printf(string $format[, mixed 
$arg1[, mixed $...]])   

  Output a formatted string.  

     string quoted_printable_
decode(string $string)   

  Return an 8 - bit string converted from a quoted -
 printable string.  

     string quoted_printable_
encode(string $string)   

  Return a quoted - printable string converted 
from an 8 - bit string.  

     string quotemeta(string $string)     Return a string with metacharacters escaped.  

     string rtrim(string $string[, string 
$character_list])   

  Return a string with trailing spaces removed.  

     string setlocale(int $category, 
string $locale[, string $...])

    or

    string setlocale(int $category, 
array $locale)   

  Set the locale information for a category of 
functions.  



Appendix C: PHP6 Functions     

744

     Function      Description   

     string sha1_file(string $filename[, 
bool $raw_output])   

  Return the sha1 hash of a file.  

     string sha1(string $string[, bool 
$raw_output])   

  Return the sha1 hash of a string.  

     int similar_text(string $string1, 
string $string2[, float  & $percent])   

  Return the similarity between two strings.  

     string soundex(string $string)     Return the soundex key of a string.  

     string sprintf(string $format[, 
mixed $args[, mixed $...]])   

  Return a formatted string.  

     string sscanf(string $string, string 
$format[, mixed  & $var1[, mixed 

 & $...]])   

  Parse input from a formatted string.  

     array str_getcsv(string $input[, 
string $delimiter[, string $quote[, 

string $escape]])   

  Parse a string as a CSV record, and return it as 
an array.  

     string str_ireplace(mixed $search, 
mixed $replace, mixed $subject[, int 

 & $count])   

  Case - insensitive version of  str_replace().   

     string str_pad(string $string, int 
$pad_length[, string $pad_string[, 

int $pad_type]]   

  Return a string padded to the desired length, 
using another string.  

     string str_repeat(string $string, 
int $multiplier)   

  Return a string built by repeating another string 
the desired number of times.  

     mixed str_replace(mixed $search, 
mixed $replace, mixed $subject[, int 

$count])   

  Return a string with one expression replaced by 
another and, optionally, the number of changes 
made.  

     string str_rot13(string $string)     Return a ROT13 encoded string.  

     string str_shuffle(string $string)     Return a randomly shuffled string.  

     array str_split(string $string[, int 
$split_length])   

  Return an array from a string with each element 
part of the string.  

     mixed str_word_count(string 
$string[, int $format[, string 

$character_list]])   

  Return information about words in a string.  

     int strcasecmp(string $string1, 
string $string2)   

  Perform a case - insensitive comparison between 
two strings.  



Appendix C: PHP6 Functions     

745

     Function      Description   

     string strchr(string $haystack[, 
mixed $search[, bool $before_

search])   

  Alias for  strstr() .  

     int strcmp(string $string1, string 
$string2)   

  Similar to  strcasecmp() , except that 
comparison is case - sensitive.  

     int strcoll(string $string1, string 
$tring2)   

  Compare two strings based on the locale.  

     int strcspn(string $string1, string 
$string2[, int $start[, int 

$length])   

  Return the number of characters at the 
beginning of  $string1  that do not match 
 $string2 . Opposite of  strspn() .  

     string strip_tags(string $string[, 
string $allowed_tags])   

  Return a string with HTML and PHP tags 
removed.  

     string stripcslashes(string $string)     Return a string with slashes removed.  

     int stripos(string $haystack[, 
string $search[, int $offset]])   

  Similar to  strpos()  except is case - insensitive.  

     string stripslashes(string $string)     Return a string with escaped slashes removed.  

     string stristr(string $haystack, 
mixed $search[, bool $before_

search])   

  Similar to  strstr()  except is case - insensitive.  

     int strlen(string $string)     Return the length of a string.  

     int strnatcasecmp(string $string1, 
string $string2)   

  Similar to  strnatcmp()  except is case -
 insensitive.  

     int strnatcmp(string $string1, 
string $string2)   

  Compare two strings using a  “ natural order ”  
algorithm.  

     int strncasecmp(string $string1, 
string $string2, int $length)   

  Similar to  strncmp()  except is case - insensitive.  

     int strncmp(string $string1, string 
$string2, int $length)   

  Compare the first number of characters of two 
strings.  

     string strpbrk(string $string, 
string $character_list)   

  Return a portion of a string starting from the 
characters found in  $character_list .  

     int strpos(string $hastack, string 
$search[, int $offset])   

  Return the position of the first occurrence of a 
string within another string.  

     string strrchr(string $haystack, 
mixed $search)   

  Return the position of the last occurrence of a 
string within another string.  

     string strrev(string $string)     Return a reversed string.  



Appendix C: PHP6 Functions     

746

     Function      Description   

     int strripos(string $haystack, 
string $search[, int $offset])   

  Similar to  strpos()  except is case - insensitive.  

     int strrpos(string $haystack, string 
$search[, int $offset])   

  Return the position of the last occurrence of a 
string within another string.  

     int strspn(string $string1, string 
$string2[, int $start[, int 

$length]])   

  Return the number of characters at the 
beginning of a string that match another 
string2. The opposite of  strcspn() .  

     string strstr(string $haystack, 
string $search [, bool $before_

search])   

  Find the first occurrence of a string within 
another string.  

     string strtok(string $string, string 
$delimiter)   

  Split a string into tokens.  

     string strtolower(string $string)     Return a lowercased string.  

     string strtoupper(string $string)     Return an uppercased string.  

     string strtr(string $string, string 
$from, string $to)    

or 

   string strtr(string $string, array 
$replace_pairs)   

  Return a string with translated characters.  

     int substr(string $string1, int 
$start [, int $length])   

  Return a portion of a string.  

     int substr_compare(string $string1, 
string $string2, int $offset[, int 

$length[, bool $case_insensitive]])   

  Compare two strings from a given offset, with 
the option of case - insensitivity.  

     int substr_count(string $haystack, 
string $string[, int $offset[, int 

$length]])   

  Return the number of occurrences of a string 
appearing within another string.  

     mixed substr_replace(mixed $string, 
string $replacement, int $start[, 

int $length])   

  Replace text within a string.  

     string trim(string $string[, string 
$character_list])   

  Return a string with extra space removed from 
its beginning and end.  

     string ucfirst(string $string)     Return a string with the first character 
uppercased.  



Appendix C: PHP6 Functions     

747

     Function      Description   

     string ucwords(string $string)     Return a string with the first character of each 
word uppercased.  

     array unpack(string $format, string 
$data)   

  Return an array of unpacked binary data. 
Opposite of  pack() .  

     int vfprintf(resource $handle, 
string $format, array $arguments)   

  Write a formatted string to a stream.  

     int vprintf(string $format, array 
$arguments)   

  Output a formatted string.  

     string vsprintf(string $format, 
array $arguments)   

  Return a formatted string.  

     string wordwrap(string $string[, int 
$width[, string $break[, bool 

$cut]]])   

  Return a string wrapped at the specified 
column.  

  String - Formatting Codes     
 The following codes can be used in conjunction with  *printf()  and  *scanf()  functions.   

     Format Character      Description   

     %     A literal percent sign character.  

     b     Format a value as a binary number.  

     c     Format a value as a character.  

     d     Format a value as a signed integer.  

     e     Format a value as a number in scientific notation.  

     F     Format a value as a non – locale aware floating - point number.  

     f     Format a value as a locale - aware floating - point number.  

     o     Format a value as an octal number.  

     s     Format a value as a string.  

     u     Format a value as an unsigned integer.  

     X     Format a value as an uppercase hexidecimal number.  

     x     Format a value as a lowercase hexadecimal number.  



Appendix C: PHP6 Functions     

748

   URL  Functions 

     Function      Description   

     string base64_decode(string $data)     Return a decoded MIME base64 encoded 
string. Opposite of  base64_encode() .  

     string base64_encode(string $data)     Return a MIME base64 encoded string.  

     array get_headers(string $url[, int 
$format])   

  Return an array of all headers sent by the 
server in response to an HTTP request.  

     array get_meta_tags(string $filename[, 
bool $use_include_path)   

  Return an array of all meta - tag information 
extracted from a file.  

     string http_build_query(array $data[, 
string $prefix[, string $separator]])   

  Return a URL - encoded query string.  

     mixed parse_url(string $url[, int 
$component])   

  Return the components of a parsed URL.  

     string rawurldecode(string $url)     Return a decoded URL - encoded string. 
Opposite of  rawurlencode() .  

     string rawurlencode(string $url)     Return a URL - encoded string according to 
RFC - 1738.  

     string urldecode(string $url)     Return a decoded URL - encoded string. 
Opposite of  rawurlencode() .  

     string urlencode(string $url)     Return a URL - encoded string.  



Appendix C: PHP6 Functions     

749

  Variable Functions 

     Function      Description   

     float doubleval(mixed $var)     Alias for  floatval() .  

     bool empty(mixed $var)     Verifies whether a variable is empty or has a 
value that evaluates to zero (empty string, null, 
false, etc.).  

     float floatval(mixed $var)     Return the value of a variable as a float.  

     array get_defined_vars(void)     Return a list of all the defined variables in a 
script as an array.  

     string get_resource_type(resource 
$handle)   

  Return the resource type of a handle.  

     string gettype(mixed $var)     Return the type of the variable ’ s value.  

     int intval(mixed $var[, int $base])     Return the value of a variable as an integer.  

     bool is_array(mixed $var)     Verify whether the value of a variable is an array.  

     bool is_binary(mixed $var)     Verify whether the value of a variable is a native 
binary string.  

     bool is_bool(mixed $var)     Verify whether the value of a variable is Boolean.  

     bool is_buffer(mixed $var)     Verify whether the value of a variable is a native 
Unicode or binary string.  

     bool is_callable(mixed $var[, bool 
$syntax_only[, string  & $callable_

name]])   

  Verify whether the value of a variable is callable 
as a function.  

     bool is_double(mixed $var)     Alias for  is_float() .  

     bool is_float(mixed $var)     Verify whether the value of a variable is a float.  

     bool is_int(mixed $var)     Verify whether the value of a variable is an 
integer.  

     bool is_integer(mixed $var)     Alias for  is_int() .  

     bool is_long(mixed $var)     Alias for  is_int() .  

     bool is_null(mixed $var)     Verify whether the value of a variable is null.  

     bool is_numeric(mixed $var)     Verify whether the value of a variable is a 
number or a numeric string.  

     bool is_object(mixed $var)     Verify whether the value of a variable is an 
object.  



Appendix C: PHP6 Functions     

750

     Function      Description   

     bool is_real(mixed $var)     Alias for  is_float() .  

     bool is_resource(mixed $var)     Verify whether the value of a variable is a 
resource.  

     bool is_scalar(mixed $var)     Verify whether the value of a variable is a scalar 
(integer, float, string, or Boolean).  

     bool is_string(mixed $var)     Verify whether the value of a variable is a string.  

     bool is_unicode(mixed $var)     Verify whether the value of a variable is a 
Unicode string.  

     bool isset(mixed $var[, mixed 
$var[, $...]])   

  Verify whether a variable has been assigned a 
value.  

     mixed print_r(mixed $expression[, 
bool $return])   

  Output human - readable information about a 
variable.  

     string serialize(mixed $value)     Return a representation of a variable suitable for 
storage without losing its type and structure.  

     bool settype(mixed  & $var, string 
$type)   

  Set the type of a variable.  

     string strval(mixed $var)     Return the string value of a variable.  

     mixed unserialize(string $str)     Return a PHP value from a serialized version.  

     void unset(mixed $var[, mixed 
$var[, mixed $var]])   

  Delete a variable.  

     void var_dump(mixed $expression[, 
mixed $expression[, $...]])   

  Output information about an expression.  

     mixed var_export(mixed 
$expression[, bool $return])   

  Output or return a parsable string representation 
of a variable.  



Appendix C: PHP6 Functions     

751

  Miscellaneous Functions     
 Function signatures marked with a * are not available when running on Windows.   

     Function      Description   

     void __halt_compiler(void)     Halt the execution of the PHP compiler.  

     int connection_aborted(void)     Return whether the client connection has been 
aborted.  

     int connection_status(void)     Return the connection status.  

     mixed constant(string $name)     Return the value of a constant.  

     bool define(string $name, mixed 
$value[, bool $case_insensitive])   

  Define a constant.  

     bool defined(string $name)     Return whether a constant exists.  

     void die([mixed $status])     Alias for  exit() .  

     mixed eval(string $string)     Evaluate a string as PHP code.  

     void exit([mixed $status])     Terminate execution of the script.  

     mixed get_browser([string $user_
agent[, bool $return_array])   

  Return an object with information about a browser. 
Information will be returned as an array if 
 $return_array  is true. Relies on  browscap.ini .  

     mixed highlight_file(string 
$filename[, bool $return])   

  Output the syntax - highlighted source PHP file. The 
source will be returned as a string instead if 
 $return  is true.  

     mixed highlight_string(string 
$string[, bool $return])   

  Output a syntax - highlighted string of PHP code. 
The string will be returned instead if  $return  is 
true.  

     int ignore_user_abort([bool 
$value])   

  Set whether a script should continue executing 
after the user aborts the connection.  

     string php_strip_
whitespace(string $filename)   

  Return the source code of a file with comments and 
whitespace removed.  

     mixed show_source(string 
$filename)   

  Alias for  highlight_file() .  

     int sleep(int $seconds)     Pause execution of the script for a specified number 
of seconds.  



Appendix C: PHP6 Functions     

752

     Function      Description   

     array sys_getloadavg(void)  *    Return an array with the system ’ s load averages 
over the last 1, 5, and 15 minutes.  

     mixed time_nanosleep(int 
$seconds, int $nanoseconds)  *  

  Pause execution of the script for a specified number 
of seconds and nanoseconds.  

     bool time_sleep_until(float 
$timestamp)  *  

  Pause execution of the script until a specified time.  

     string uniqid($prefix[, bool 
$entropy])   

  Return a unique ID based on the current time and 
named prefix.  

     void usleep(int $microseconds)     Pause execution of the script for a specified number 
of microseconds.  



D      
MySQL Data Types          

 This appendix contains a listing of data types that are available in MySQL. Visit  http://
dev.mysql.com/doc/refman/5.1/en/data - type - overview.html  for a complete discussion 
on each data type.  

  Numeric Data Types 

     MySQL Field Type      Description   

     BIGINT[(m)] [UNSIGNED]     Numeric field that stores integers from  � 9,223,372,
036,854,775,808 to 9,223,372,036,854,775,807.  m  
represents the maximum display width. Adding the 
 UNSIGNED  parameter allows storage of 0 to 
18,446,744,073,709,551,615.  

     BIT[(m)]     Bit - type field.  m  represents the optional number of 
bits per value.  

     BOOL, BOOLEAN     Synonym for  TINYINT(1) . A value of 0 represents 
false, and nonzero values represent true.  

     DEC     Synonym for  DECIMAL .  

     DECIMAL[(m[,d])] [UNSIGNED]     A fixed - point numeric field that can store decimals. 
 m  represents the total number of displayed digits.  d  
represents how many digits follow the decimal 
point.  UNSIGNED  allows only positive numbers to be 
stored.  



Appendix D: MySQL Data Types     

754

     MySQL Field Type      Description   

     DOUBLE[(m,d)] [UNSIGNED]     A double - precision floating - point number that stores 
values from  � 1.7976931348623157E+308 to 
 � 2.2250738585072014E � 308, 0, and 
2.2250738585072014E � 308 to 1.7976931348623157E+308.  
m  represents the total number of displayed digits.  d  
represents how many digits follow the decimal point. 
 UNSIGNED  allows only positive numbers to be stored.  

     DOUBLE PRECISION[(m,d)] 
[UNSIGNED]   

  Synonym for  DOUBLE .  

     FIXED     Synonym for  DECIMAL .  

     FLOAT[(m,d)] [UNSIGNED]     A single - precision floating - point number that stores values 
from  � 3.402823466E+38 to  � 1.175494351E � 38, 0, and 
1.175494351E � 38 to 3.402823466E+38.  m  represents the 
total number of displayed digits.  d  represents how many 
digits follow the decimal point.  UNSIGNED  allows only 
positive numbers to be stored.  

     INT[(m)] [UNSIGNED]     Numeric field that stores integers from  � 2,147,483,648 to 
2,147,483,647.  m  represents the maximum display width. 
Adding the  UNSIGNED  parameter allows storage of 0 to 
4,294,967,295.  

     INTEGER[(m)] [UNSIGNED]     Synonym for  INT .  

     MEDIUMINT[(m)] [UNSIGNED]     Numeric field that stores integers from  � 8,388,608 to 
8,388,607.  m  represents the maximum display width. 
Adding the  UNSIGNED  parameter allows storage of 0 to 
16,777,215.  

     NUMERIC     Synonym for  DECIMAL .  

     SMALLINT[(m)] [UNSIGNED]     Numeric field that stores integers from  � 32,768 to 32,767.  m  
represents the maximum display width. Adding the 
 UNSIGNED  parameter allows storage of 0 to 65,535.  

     REAL[(m,d)] [UNSIGNED]     Synonym for  DOUBLE . (Note: If  REAL_AS_FLOAT  mode is 
enabled, then  REAL  is a synonym for  FLOAT .)  

     TINYINT[(m)] [UNSIGNED]     Numeric field that stores integers from  � 128 to 127.  m  
represents the maximum display width. Adding the 
 UNSIGNED  parameter allows storage of 0 to 255.  



Appendix D: MySQL Data Types     

755

  Date and Time Data Types 

     MySQL Field Type      Description   

     DATE     Stores a date as  YYYY - MM - DD  from 1000 - 01 - 01 to 9999 - 12 - 31.  

     DATETIME     Stores both a date and time as  YYYY - MM - DD HH:MM:SS  from 1000 - 01 - 01 
00:00:00 to 9999 - 12 - 31 23:59:59.  

     TIMESTAMP     Stores a UNIX Epoch timestamp as  YYYY - MM - DD HH:MM:SS  from 
1970 - 01 - 01 00:00:01 to 2038 - 01 - 09 03:14:07.  

     TIME     Stores a time as  HH:MM:SS  from  � 838:59:59 to 838:59:59.  

     YEAR[(2|4)]     Stores a year as either  YY  or  YYYY , depending on whether two -  or four -
 digit format is specified (default is four - digit). The range is from 1901 to 
2155 in four - digit format, and from 70 to 69, representing years from 
1970 to 2069, in two - digit format.  

  String Data Types 

     MySQL Field Type      Description   

     BINARY[(m)]     Stores fixed - length binary byte strings.  m  represents 
the length in bits.  

     BLOB[(m)]     Stores binary byte strings.  m  represents the length 
in bytes from 0 to 65,535.  

     [NATIONAL] CHAR[(m)]     Synonym for  CHARACTER .  

     CHAR BYTE[(m)]     Synonym for  BINARY .  

     [NATIONAL] CHARACTER[(m)]     Stores a fixed - length character string that is right -
 padded with spaces.  m  represents the length in 
characters from 0 to 255.  

     [NATIONAL] CHARACTER VARYING[(m)]     Stores a variable - length character string.  m  
represents the length in characters from 0 to 65,535.  

     ENUM( ‘ value1 ’ ,  ‘ value2 ’ ,  ... )     Stores a string value. Allows only specified values 
to be stored in the field (up to a maximum of 65,535 
different values).  

     LONGBLOB     Stores binary byte strings.  m  represents the length 
in bytes from 0 to 4,294,967,295 (4GB).  



Appendix D: MySQL Data Types     

756

     MySQL Field Type      Description   

     LONGTEXT     Stores a variable - length character string.  m  
represents the length in characters from 0 to 
4,294,967,295 (4GB).  

     MEDIUMBLOB     Stores binary byte strings.  m  represents the length 
in bytes from 0 to 16,777,215.  

     MEDIUMTEXT     Stores a variable - length character string.  m  
represents the length in characters from 0 to 
16,777,215.  

     NCHAR[(m)]     Synonym for  NATIONAL CHARACTER .  

     NVCHAR[(m)]     Synonym for  NATIONAL CHARACTER VARYING .  

     SET( ‘ value1 ’ ,  ‘ value2 ’ ,  ... )     Stores a set of string values from the specified list 
values (up to a maximum of 64 members).  

     TEXT[(m)]     Stores a variable - length character string.  m  
represents the length in characters from 0 to 65,535.  

     TINYBLOB     Stores binary byte strings.  m  represents the length 
in bytes from 0 to 255.  

     TINYTEXT     Stores a variable - length character string.  m  
represents the length in characters from 0 to 255.  

     VARBINARY[(m)]     Stores variable - length binary byte strings.  m  
represents the length in bits.  

     [NATIONAL] VARCHAR[(m)]     Synonym for  CHARACTER VARYING .  

  Spatial Data Formats 
 Spatial data is beyond the scope of this book. See  http://dev.mysql.com/doc/refman/5.1/en/
supported - spatial - data - formats.html  for more information on the standard spatial formats used 
by MySQL.             



      E    
My SQL  Quick Reference          

 This appendix lists some quick reference notes for your use. These topics are covered in more 
depth in Chapter 3 and on the MySQL web site at  www.mysql.com .  

  Database Manipulation Commands 
 Use the following commands to create and make changes to your database and tables. 

     Command      What It Does   

     CREATE DATABASE [IF NOT EXISTS] 
db_name   

  Creates a database  

     CREATE TABLE [IF NOT EXISTS] tbl_
name (col1 col_type, col2 col_

type,  ... )   

  Creates a table  

     ALTER TABLE tbl_name ADD col col_
type [AFTER col],  ...    

  Adds a new column to a table in the database  

     ALTER TABLE tbl_name MODIFY col 
new_col_type,  ...    

  Changes columns ’  type definitions  

     ALTER TABLE tbl_name CHANGE old_
col new_col new_col_type,  ...    

  Changes columns ’  names and type definitions  

     ALTER TABLE tbl_name DROP col,  ...      Removes columns from a table in the 
database  

     RENAME TABLE old_tbl_name TO new_
tbl_name   

  Renames a table in the database  



758

Appendix E: My SQL  Quick Reference     

  Retrieving Data from the Database 
 You can access the data stored in your tables with the following statement: 

SELECT col1[, col2, . . .] FROM tbl_name [WHERE condition] [ORDER BY col 

[ASC|DESC]] [LIMIT offset, num_rows]  

 You can use  *  to retrieve all columns in a table: 

SELECT * FROM tbl_name  

  Condition Clauses 
 Use the following conditions in conjunction with the  SELECT  statement: 

     col = value
     col  >  value
     col  <  value
     col  > = value
     col  < = value
     col != value
     col  <  >  value
     col BETWEEN value1 AND value2
     col NOT BETWEEN value1 AND value2
     col LIKE value
     col NOT LIKE value
     col IS NULL
     col IS NOT NULL
     col IN (value1, value2, value3, . . .)

     col NOT IN (value1, value2, value3, . . .)  

     Command      What It Does   

     INSERT [IGNORE] INTO tbl_name [(col1, 
col2, … )] VALUES (value1, value2,  ... )   

  Inserts a row into a table  

     UPDATE [IGNORE] tbl_name SET 
col1=value1, col2=value2,  ...  WHERE 

condition [ORDER BY  ... ] [LIMIT count]   

  Modifies information already stored in the 
table  

     DELETE [IGNORE] FROM tbl_name WHERE 
condition [ORDER BY  ... ] [LIMIT 

count]   

  Deletes information from the table  

     TRUNCATE TABLE tbl_name     Deletes all information from the table  

     DROP TABLE [IF EXISTS] tbl_name     Deletes a table from the database  

     DROP DATABASE [IF EXISTS] db_name     Deletes a database  



759

Appendix E: My SQL  Quick Reference     

 MySQL supports wildcard matching. Use to match a single character. Use  %  to match zero or more 
characters.  

  Selecting from Multiple Tables 
 You can retrieve information from two or more tables at once by using  JOIN s. MySQL supports the 
following syntax variations: 

SELECT
    table1.col1, table1.col2, table2.col1, table2.col2
FROM
    table1, table2
WHERE 

    table1.col1 = table2.col1  

 or   

SELECT
    table1.col1, table1.col2, table2.col1, table2.col2
FROM
    table1 JOIN table2 ON table1.col1 = table2.col1   

  Sorting the Results 
 You can sort the results of the  SELECT  query by using the  ORDER BY  clause (and the optional ascending 
or descending qualifier): 

SELECT * FROM table WHERE col1 = value1 ORDER BY col2 [ASC|DESC]   

  Limiting the Results 
 If you would like to limit the results returned from your query, you can do so with a  LIMIT  clause: 

SELECT * FROM table WHERE col1 = value1 LIMIT [offset,] row_count               





      F    
Comparison of Text Editors          

 Many software programs are available that you can use to enter all your code. They each have 
different features, some that you might view as better than others, depending on your needs and 
personal preferences. We ’ ve put together the following chart to help you compare apples with 
apples. It lists some of the more popular editors alphabetically and compares them against some 
common text editor features. 

 Many of these editors provide similar features, so your decision really depends on your budget, 
your needs, and how comfortable you are with each user interface. 

 You can read more about features not listed here, because many of these editors provide other 
unique benefits. We encourage you to visit the following web sites to download these programs 
and/or to get more information about them: 

  Dreamweaver CS3:  www.adobe.com/products/dreamweaver/   

  EditPlus:  www.editplus.com   

  Geany:  www.geany.org   

  HTML - Kit:  www.chami.com/html - kit/   

  jEdit:  www.jedit.org   

  Notepad:  www.microsoft.com   

  PhpED:  www.nusphere.com   

  PHPEdit:  www.waterproof.fr   

  TextPad:  www.textpad.com   

  UltraEdit - 32:  www.ultraedit.com   

  WordPad:  www.microsoft.com   

  Zend Studio:  www.zend.com              

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑



Appendix F: Comparison of Text Editors

762

     Editor   

   Highlighted 

Syntax   

   Spell 

Checker   

   Built - in 

FTP 

Access   

   Line 

Numbers   

   Word 

Wrap   

   PHP Code 

Auto -

 Completion   

   WYSIWYG 

Web 

Design 

Editor   

    Dreamweaver 
CS3  

  ✓   ✓   ✓   ✓   ✓   ✓   ✓

    EditPlus    ✓   ✓   ✓   ✓   ✓         

    Geany    ✓           ✓   ✓   ✓     

    HTML - Kit 
Tools  

  ✓   ✓   ✓   ✓   ✓   ✓   ✓

    jEdit    ✓       ✓   ✓   ✓   ✓     

    Notepad                    ✓         

    PhpED    ✓   ✓   ✓   ✓   ✓   ✓     

    PHPEdit    ✓       ✓   ✓   ✓   ✓     

    TextPad        ✓       ✓   ✓         

    UltraEdit - 32    ✓   ✓   ✓   ✓   ✓   ✓     

    WordPad                    ✓         

    Zend Studio    ✓       ✓   ✓   ✓   ✓     



Appendix F: Comparison of Text Editors

763

   Database 

Connectivity   

   Content 

Preview   

   Multiple 

Undo/Redo   

   Search and 

Replace   

   Code 

Folding   

   PHP 

Debugging   

   CVS/

Subversion 

Integration      Price   

  ✓   ✓   ✓   ✓   ✓       ✓   $399  

      ✓   ✓   ✓   ✓           $30  

          ✓   ✓   ✓           Free  

      ✓   ✓   ✓   ✓           $65  

              ✓   ✓           Free  

              ✓               Free  

  ✓   ✓   ✓   ✓   ✓   ✓   ✓   $299  

  ✓           ✓       ✓   ✓   $90  

          ✓   ✓               $33  

  ✓   ✓   ✓   ✓   ✓           $49.95  

              ✓               Free  

  ✓   ✓   ✓   ✓   ✓   ✓   ✓   $349  





      G
    Choosing a Third - Party Host          

 Many people like to run their own servers out of their homes or offices, and that is a feasible 
solution for hosting, if you have the time and network resources. But sometimes hosting your own 
web site can lead to more problems than it ’ s worth. You need to think about backup power, keeping 
security holes patched, performing regular maintenance and upgrades, and many other issues. And 
keep in mind that not only do you need to have a web server running, but you also need to have 
something to manage your domain records as well, a Domain Name System (DNS) server. 

 With third - party hosting solutions, you can have trained IT professionals who make sure your web 
server stays up and running 24 hours a day, at an affordable price. It ’ s their job to make sure your 
site is secure and always available for viewing.  

  Hosting Options 
 If you decide to have a third party host your site, you have many options to choose from when 
making your hosting choice. Here are a few criteria to look at when you select a host: 

   Supported languages:  PHP, JAVA, CGI, ASP  

   Supported databases:  MySQL, PostgreSQL, MS SQL  

   Server control:  super user (su) or root access  

   Server access:  Such as FTP and SSH  

   Configuration ability:  Web server settings/configurations, cron jobs,  .htaccess  support  

   Administration GUIs:  E - mail, database, user setup  

   Bandwidth usage:  Web site, e - mail, streaming media, database connections  

   Price:  Based on features, contract time, and other criteria    

❑

❑

❑

❑

❑

❑

❑

❑



766

Appendix G:   Choosing a Third - Party Host      

 Keep in mind that you aren ’ t likely to have every combination and possibility with every host, so it ’ s 
important that you research your prospective hosts to make a well - thought - out decision before jumping 
into a long - term contract. To that end, let ’ s get into a little more detail about each of these topics. 

  Supported Languages 
 Obviously, we ’ re assuming you want to use PHP (you did buy this book, after all), but there are other 
languages you may need to use. There may be a time when another language, such as Perl, Python, or 
even Java, is better suited for your needs than PHP. For example, perhaps you have to accomplish 
something a client already has set up at a different host or server, using a different programming 
language. It is nice to at least have the option of using the existing code, rather than spending the time 
and money to redevelop the application in PHP.  

  Supported Databases 
 Again, because this book is geared toward MySQL, we assume you will probably be looking for a host 
that supports MySQL. However, you can use many other databases with PHP. Here are just some of the 
databases that PHP can work with: 

  MySQL  

  PostgreSQL  

  MS SQL Server  

  MS Access  

  Firebird  

  Sybase    

 PHP even comes with the embedded database SQLite enabled. Depending on your situation, you may 
want to choose a host that has more than one of these databases set up by default. Some larger 
companies, for example, are using MS SQL as their database, usually because they are using ASP.NET 
for programming. Should you need to convert any site to PHP, you will be glad to know that PHP can 
connect and work nicely with MS SQL as well.  

  Server Control and Access 
 Many hosts won ’ t give a web developer full access or control over their hosted domain. We tend to shy 
away from those hosts, because you are more likely to run into problems with them when you want to 
do some custom configuration to the server. 

 Look into the type of access your host provides. Obviously, your host will give you FTP access so you 
can upload your files to the web server. Some hosts, however, will give you FTP access but nothing else. 
The problem is that you are likely to run into a situation in which you want to configure your server. For 
this, you will need SSH (Secure Shell) access to use the command line. 

 In fact, the ability to configure is often necessary when performing tasks that usually aren ’ t offered by 
hosts by default. For example, consider  .htaccess  files. With  .htaccess  files, you can deny and allow 

❑

❑

❑

❑

❑

❑



767

Appendix G:   Choosing a Third - Party Host      

access to certain files and directories, based on the users you allow using  htpasswd . (See Chapter 12 for 
more information on  .htaccess  and  htpasswd .) 

 Along with  .htaccess , most hosts allow you to use  cron  jobs, but are not likely to set them up for you. 
Therefore, you need to remote into the server and edit the  crontab  file to enable you to run scheduled 
tasks. There are countless configuration settings that you might want to change, if your host allows you 
to configure them. Keep all this in mind when choosing your hosting solution.  

  Administration  GUI s 
 Certain hosts offer a dministration graphical user interfaces, (GUIs) or user control panels, as a feature of 
their packages. A lot of people don ’ t really care for GUIs, but when you don ’ t have a choice  —  either 
because you don ’ t have sufficient access to the server or you don ’ t fully understand how to get things 
done at a command prompt  —  a point - and - click solution can be a wonderful tool. 

 The interface can be as simple as one that allows you to view information about the server, or it can be as 
complex as one that allows you to install applications and programming languages with the click of a 
button. Also, keep in mind that many control panels have utilities that allow clients to administer their 
own e - mail users. With such a feature, the client can simply log on to the control panel and set up and 
delete users as the need arises, rather than having to call you or the hosting company to set up an e - mail 
account.  

  Bandwidth and Site Usage 
 Bandwidth and site usage both can factor into the overall price of hosting. Hosting companies usually 
give out only so much bandwidth usage per site per month. There is usually a hefty charge if you go 
over that amount. Consider the following issues when looking into bandwidth: 

  Web site traffic  

  E - mail usage and storage  

  Database connections  

  Streaming media    

 If you have heavy activity in any or all of these areas, you might get billed for bandwidth overutilization 
before you know it. You need to consider how many people will visit your site on average. In addition, 
some hosts count e - mail usage in the end - of - the - month calculation used to tally your bill. Some hosts 
will even go so far as to monitor your FTP access and count that toward the total bandwidth used. 

 Database connections don ’ t really relate to bandwidth usage, but hosts often limit the number of 
database connections you can make, as another way to control the number of people allowed to visit the 
site at one time. 

 Finally, streaming media is very heavy on bandwidth; should you plan to use it as a form of conveying 
information to the end users of your site, then your hosting bill could rise dramatically.  

❑

❑

❑

❑



768

Appendix G:   Choosing a Third - Party Host      

  Pricing 
 You need to consider all the areas discussed so far when figuring out how much your host is worth to 
you. Look at the price per feature rather than the total price. You won ’ t often get all the features you 
want for your site, but as long as you get most of them and you choose the host that has the lowest price 
per feature, then you will probably make a wise hosting choice. 

 Ask yourself how much a particular feature is worth to you, when using price to make your choice. 
Remember that some hosting companies require that you sign up for a full year and won ’ t offer a refund 
if you decide the service isn ’ t worth the money you are paying. You want to find a host that will allow 
you to choose either monthly, quarterly, or yearly hosting options. That way you don ’ t have to wait a full 
year to leave if you ’ re dissatisfied. Just keep in mind that when you choose a shorter option, such as 
monthly or quarterly, the host will often charge a little more than if you pay up front, or they may charge 
service setup fees that might be waived if you paid up front.   

  Making the Choice 
 When making your hosting decision, it ’ s very important to consider the criteria outlined in this 
appendix. You really don ’ t want to get stuck in a situation in which you are unhappy with the service 
you are receiving, or, worse yet, in which your paying client is disappointed with services you 
recommended. 

 The following is a list of 12 hosting options that we feel offer the best bang for your buck. You may want 
to consider them when making your decision: 

   www.olm.net   

   www.lunarpages.com   

   www.jumpline.com   

   www.startlogic.com   

   www.ipowerweb.com   

   www.midphase.com   

   www.infinology.com   

   www.powweb.com   

   www.invision.net   

   www.ait.com   

   www.1and1.com   

   www.websitesource.com                

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑



      H
    An Introduction to  
PHP  Data Objects          

 PHP is a terrific programming language. It is relatively easy to learn, especially if you are already 
familiar with other programming languages. You can build some excellent interactive web pages 
that access databases, authenticate users, and provide dynamic, up - to - date content for your 
visitors in no time at all. 

 So, let ’ s say you just finished creating your company ’ s web site. It ’ s perfect  —  users are being 
served up - to - the - minute content, and you have set up a complex content management system 
(CMS) that enables designated employees in the company to create new content. It ’ s efficient, it ’ s 
pretty, and you feel pretty darned good about it. 

 As you sit here thumbing through these final pages of the book and wondering what final nuggets 
of useful information we can share with you, we present you with a scenario: You have just 
finished a tough assignment assigned to you by your IT manager. She congratulates you on a job 
well done and engages you in general chit - chat  —  you know, the usual. As she gets up to leave, 
she stops in the doorway and casually mentions something that is about to completely overload 
your work schedule. . .  

  “ Oh, by the way, the accounting department is switching to an Ingres database to support their 
accounting software. It ’ s pretty slick. And since we ’ ll be using Ingres in accounting, we ’ ve decided 
all of our databases should be standardized on Ingres throughout the rest of the company, for 
conformance. That ’ s not going to be a problem, is it? ”  

 Every developer has had something like this happen at one point or another, so you are not alone. 
One of the wonderful things about PHP is that it supports a very wide variety of different 
databases: 

  dBase  

  DB++  

  FrontBase  

❑

❑

❑



770

Appendix H:     An Introduction to  PHP  Data Objects       

  filePro  

  Firebird/InterBase  

  Informix  

  IBM DB2 (IBM DB2, Cloudscape, and Apache Derby)  

  Ingres Database (Ingres II)  

  MaxDB  

  mSQL  

  Microsoft SQL Server  

  MySQL  

  Oracle OCI8  

  Ovrimos SQL  

  Paradox File Access  

  PostgreSQL  

  SQLite  

  Sybase    

 That ’ s quite an impressive list, isn ’ t it? And there ’ s a pretty good chance that if a new database were to 
come around, then someone would write functions that would enable PHP to work with it. Database 
integration has always been one of PHP ’ s strong points. 

 However, the first point of contention here is that each database extension offers a different set of 
functions.  mysql_query()  is used to execute a database query against MySQL, but it cannot execute a 
query against Ingres II. When you change your back - end database solution, you must also update your 
code to use the appropriate functions. 

 The second point of contention is that most, but not all, of the extensions for the databases listed earlier 
follow the same general naming conventions for their functions. You would use the  ingres_query()  
function to execute a query against Ingres II, but Oracle, for example, doesn ’ t even have a  _query()  function. 
You have to use  ora_parse()  on the SQL statement and then run  ora_exec() . 

 You must also consider that there may be some specific functions you are using in MySQL that have no 
equivalent function in your new database. Perhaps you are even using very specific SQL statements in 
MySQL that are not supported in other databases, or are executed in a different way. Flexibility and 
complexity often come along as a pair. 

 Wouldn ’ t it be cool if there were a way to write your code more abstractly, so that when you run a function 
such as  get_query_results() , it would be smart enough to know what type of database you are 
connecting to and perform all of the necessary steps to retrieve the data? That ’ s what the PHP Data Objects 
(PDO) extension attempts to do  —  provide a seamless experience when using PHP to communicate across 
different databases. PDO provides a data - abstraction layer so that you can use the same set of functions to 
work with a database, regardless of what database back end your company is using. 

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑



771

Appendix H:     An Introduction to  PHP  Data Objects       

 That ’ s great! So why didn ’ t we share this with you sooner? The sad fact is that some hosting providers 
may not make PDO available to their customers. And while we strongly urge you to use the latest 
version of PHP for increased stability, security, and speed, many hosting companies still use older 
versions of PHP to support legacy applications. You will be trapped into using what is offered to you, 
unless you are hosting your own server. 

 It was only after much deliberation and discussion that we chose to continue showing you the  mysql_*  
functions in this edition. PDO is the latest and the greatest, but  mysql_*  is the lowest common 
denominator, and we wanted to make this book relevant for the largest audience possible. We encourage 
you to learn both ways, to increase your knowledge of PHP, so that you can apply either solution 
depending on your needs. We also chose to present PDO to you towards the end of the book, after 
you ’ ve had some experience with objected - oriented programming, because PDO uses OOP syntax. So, 
let ’ s take a good look at PDO requirements and get started using it.  

   PHP  Data Objects ( PDO ) Requirements 
 First of all, you must be using at least PHP 5 to take advantage of PDO, because the extension depends 
on certain key features that aren ’ t available in earlier versions of PHP. Any version of PHP before version 
5 will not work. PDO is available as a separate extension for PHP 5.0, and has shipped in the default 
build of PHP starting with version 5.1. Of course, you ’ ll be all set on this front if you ’ re using version 6 
(which we assume you are, since you ’ re reading  Beginning PHP6, Apache, MySQL Web Development ). 

 Linux users shouldn ’ t have to do anything out of the ordinary for PDO to be available, and Windows 
users just need to uncomment the  extension=php_pdo.dll  line in their  php.ini , for PDO to be 
available. PDO also needs a database - specific driver for each type of database you plan on working with. 
This driver file allows the PDO extension to translate the PHP function calls to something more specific 
for the target database. For example, the  PDO_MYSQL  driver is used for a MySQL database, the  PDO_
INFORMIX  driver is used for an Informix database, the  PDO_OCI  driver is used for an Oracle database, 
and so on. There is no specific  PDO_INGRES  driver, but you can access the Ingres II database via the  PDO_
ODBC  driver. New drivers are being developed for different databases even as you read this, so for the 
most up - to - date list of drivers, you should visit  http://www.php.net/pdo - drivers . 

 Your  php.ini  file should list the appropriate driver as an extension, regardless of your operating system 
platform. Complete instructions are available for installing drivers in the PHP online documentation.  

  Using  PDO  
 With the core of PHP providing the internal mechanisms on which PDO relies, with PDO available as a 
PHP extension, and with the necessary driver file installed as an extension to translate common function 
calls to database - specific calls, you should be set and ready to start issuing those queries. 

 When you supplied a username, password, and hostname to connect to MySQL, you used the  mysql_
connect()  function. You then supplied the name of the database you wanted to work with, using 
 mysql_select_db() . All this information is gathered together when you are working with PDO instead 
of calling two functions. The database type, hostname, and database table set are formatted as a string 



772

Appendix H:     An Introduction to  PHP  Data Objects       

called a Data Source Name (DSN). There are a few different ways to format a DSN, but here is probably 
the easiest way to accomplish it: 

mysql:host=localhost;dbname=mywebapp  

 This DSN is used to establish a connection to a MySQL server running on the localhost, and you are 
connecting to a database named test. You pass the DSN, username, and password to the PDO constructor 
when you create a new instance of the object, like this: 

$db = new PDO(‘mysql:host=localhost;dbname=mywebapp’, ‘dbuser’, ‘dbpassword’);  

 You then prepare a statement to be sent to the database, using the  prepare()  method, which returns a 
 PDOStatement  object.   

$query = ‘SELECT * FROM users’;
$stmt = $db- > prepare($query);  

 The prepared query is sent to the database with the  execute()  method.   

$stmt- > execute();  

 So you ’ ve seen how relatively easy it is to use PDO to issue a query to a database, but the fun doesn ’ t 
stop there. PDO also lets you prepare your SQL statements with placeholders and later bind data to 
them when you are ready to issue the query. This lets you think of your query more as a template that is 
prepared once by PDO and can be repeatedly run with different data, which is generally a more efficient 
approach than if you executed several statements sequentially that differed only in their data. 

 Another benefit (and perhaps more important feature) of working with prepared statements is that PDO 
will handle quoting and escaping of the parameters ’  data. This makes it much easier to protect your 
database against malicious input sneaking in. 

 When you prepare a statement, you can provide parameters as placeholders in your SQL. These 
parameters can either be represented with a  ?  or be explicitly named. Let ’ s take a look at using  ?  as a 
placeholder in a query.   

$query = ‘INSERT INTO users
        (username, first_name, last_name, email)
    VALUES
        (?, ?, ?, ?)’;
$stmt = $db- > prepare($query);
$stmt- > execute(array($username, $first_name, $last_name, $email));  

 The values that will replace the  ?  placeholders in the query are passed as an array to the  execute()  
method. The values appear in the array in the same order in which they will replace the placeholders. 



773

Appendix H:     An Introduction to  PHP  Data Objects       

 Named parameters can be used in a similar way, except that the names are used as keys in the array, so 
the order of the data elements is not as important. The parameter identifiers are prefixed with  :  in the 
query.   

$query = ‘INSERT INTO users
        (username, first_name, last_name, email)
    VALUES
        (:username, :first_name, :last_name, :email)’;
$stmt = $db- > prepare($query);
$stmt- > execute(array(‘:username’   = >  $username,
                     ‘:first_name’ = >  $first_name,
                     ‘:last_name’  = >  $last_name,
                     ‘:email’      = >  $email));  

 Compare these with how you would need to execute the same query using  mysql_*  functions, and you 
will see that PDO is more efficient, convenient, and flexible than the other database access extensions. It 
also makes your code more readable, which is a good thing, because it is then easier to debug and 
maintain.   

$query = ‘INSERT INTO users
        (username, first_name, last_name, email)
    VALUES
        (“’ . mysql_real_escape_string($username, $db) . ‘”,
        (“’ . mysql_real_escape_string($first_name, $db) . ‘”,
        (“’ . mysql_real_escape_string($last_name, $db) . ‘”,
        (“’ . mysql_real_escape_string($email, $db) . ‘”)’;
$result = mysql_query($query, $db);  

 A  PDOStatement  is an interesting object, in that at first it represents a prepared statement. After you 
execute that statement, the object then represents the associated result set. You can call the statement ’ s 
 fetch()  method to retrieve your results. Alternatively, you can use the  fetchAll()  method to retrieve 
all the records at one time as an array. 

 The  PDOStatement  object ’ s  fetch()  and  fetchAll()  methods are more versatile than you may 
initially think. The methods accept arguments that affect how you access the results that are returned 
from the database. Both accept the following constants as an argument: 

   PDO::FETCH_ASSOC  returns the results as an associative array.  

   PDO::FETCH_BOTH  returns the results as an array indexed by both column name and numeric 
values. This is the default behavior, if no other mode is specified.  

   PDO::FETCH_BOUND  assigns the result ’ s values back to the PHP variables to which they were 
bound.  

   PDO::FETCH_CLASS  returns a new instance of a class with the results mapped to the object ’ s 
properties.  

   PDO::FETCH_CLASSTYPE  can be combined with  PDO::FETCH_CLASS , and the name of the class 
will be determined by the value of the first column in the result set.  

   PDO::FETCH_INTO  updates an existing object with values from the result set.  

❑

❑

❑

❑

❑

❑



774

Appendix H:     An Introduction to  PHP  Data Objects       

   PDO::FETCH_LAZY  is a combination of  PDO::FETCH_BOTH  and  PDO::FETCH_OBJ .  

   PDO::FETCH_NUM  returns the results as a numerically indexed array.  

   PDO::FETCH_OBJ  returns an anonymous object with the results mapped to the object ’ s 
properties.      

while ($row = $stmt- > fetch(PDO::FETCH_ASSOC)) {
    print_r($row);
}  

 Another useful method of the  PDOStatement  object is  rowCount() . It is comparable to  mysql_num_
rows() , and returns the number of rows affected by an  INSERT ,  UPDATE , or  DELETE  query or returned 
by a  SELECT  query.   

$query = ‘SELECT * FROM users’;
$stmt = $db- > prepare($query);
$stmt- > execute();
echo ‘There are ‘ . $stmt- > rowCount() . ‘ users.’;  

 You have seen several instances throughout this book where you want to retrieve the primary key of a 
record after you insert it into the database. For example, when you are creating a new user ’ s record and 
want to associate various permissions with him or her but store the permissions in a separate table, you 
will often link them together by the user ’ s ID. After you insert the user ’ s information into a users table, 
you need to retrieve the new user ID so you can continue adding information in other tables. You 
employ the  PDO  object ’ s  lastInsertId()  method for this, which is comparable to the  mysql_insert_
id()  function.   

$query = ‘INSERT INTO users
        (username, first_name, last_name, email)
    VALUES
        (:username, :first_name, :last_name, :email)’;
$stmt = $db- > prepare($query);
$stmt- > execute(array(‘:username’   = >  $username,
                     ‘:first_name’ = >  $first_name,
                     ‘:last_name’  = >  $last_name,
                     ‘:email’      = >  $email));
$user_id = $db- > lastInsertId();
$query = ‘INSERT INTO addresses
        (user_id, address_1, address_2, city, state, zip_code)
    VALUES
        (:user_id, :address_1, :address_2, :city, :state, :zip_code)’;
$stmt = $db- > prepare($query);
$stmt- > execute(array(‘:user_id’   = >  $user_id,
                     ‘:address_1’ = >  $address_1,
                     ‘:address_2’ = >  $address_2,
                     ‘:city’      = >  $city,
                     ‘:state’     = >  $state,
                     ‘:zip_code’  = >  $zip_code));  

❑

❑

❑



775

Appendix H:     An Introduction to  PHP  Data Objects       

 There is no method equivalent to  mysql_close()  to disconnect from the database with PDO. Instead, 
you simply set your reference to the  PDO  object to null. PHP will close the connection on your behalf 
when the reference is no longer needed.   

$db = null;  

 You can find more information on PHP ’ s PDO extension and its  PDO  and  PDOStatement  objects in the 
official documentation online at  www.php.net/pdo .  

  Summary 
 Now that you know how to use PDO, you can go ahead and start writing your PHP applications using 
the PDO interface. So long as you keep your database queries themselves restricted to a subset of SQL 
commands that are supported by MySQL or any other database solution you choose  —  whether it be 
Sybase, Microsoft SQL Server, Oracle, Ingres II, or whatever other solution your company may throw 
your way  —  all you need to do is make sure you have the appropriate driver file listed as an extension, 
and you can avoid having to rewrite all of your PHP code. You won ’ t even break a sweat when the IT 
manager informs you of the company ’ s decision to switch everyone from Ingres II to PostgreSQL after 
the marketing department installs their new tracking system. 

 Each database understands its own unique dialect of SQL, and finding that subset of common keywords 
can be limiting. If your company has chosen to go with MySQL over PostgreSQL, or Ingres II over 
MySQL, it was probably for a reason. You will probably be writing queries that maximize your particular 
database ’ s strengths and won ’ t necessarily be directly compatible with other databases. Each of your 
queries will need to be reviewed when you change to another database. At least you won ’ t have to 
rewrite your PHP code when you use PDO, though, and that ’ s half the battle. Learning PDO will only 
make you a stronger developer and give you more options to choose from. Just remember its limitations, 
how you can use it with specific versions of PHP only, and how it ’ s configured to work properly.            





      I    
Installation and 

Configuration on Linux          

 In Chapter 1, you learned how to install and configure Apache, MySQL, and PHP on a Windows -
 based system, but the trio can run on other platforms as well! In fact, it is very popular to run AMP 
on Linux (many people add an L to AMP when running the applications on Linux, for the moniker 
LAMP). We felt it was just as important to provide you with installation instructions under Linux 
as well, but putting them in Chapter 1 would have been overwhelming, so we decided to present 
them separately in this appendix.  

  Installing Apache, My SQL , and 

 PHP  on Linux 
 After following these instructions, you will have successfully installed Apache, MySQL, and PHP 
on your Linux - based system. We cover compiling and installing the AMP components from 
source, even though other methods are available (such as apt - get and yum), because this method 
offers the most flexibility and works on nearly all UNIX - like systems. You should review each 
component ’ s web site if you want more detailed installation instructions or information on other 
supported platforms.   

   Apache:     http://httpd.apache.org/docs/2.2/install.html   

   MySQL:     http://dev.mysql.com/doc/refman/5.1/en/installing - source.html   

   PHP:     http://www.php.net/manual/en/install.unix.php     

❑

❑

❑



778

Appendix I:     Installation and Confi guration on Linux       

  Install My SQL  
 MySQL is the database that holds all the data to be accessed by your web site. Follow these steps to 
install it: 

  1.   If there isn ’ t a user on the system dedicated to running the mysql daemon (typically  mysql ), 
you ’ ll need to create one. To do this, enter the following commands in a console: 

groupadd mysql
useradd -r -g mysql mysql   

  2.   Go to the MySQL web site at  www.mysql.com , and click the Developer Zone tab. Then, click the 
Downloads link on the navigation bar just under the tabs.  

  3.   Scroll down and click on the link for the latest General Availability version of MySQL.  

  4.   Scroll down to the Source downloads section of the downloadable files, and click Pick a Mirror 
next to the Compressed GNU TAR (tar.gz) package.  

  5.   Select the download from a nearby mirror, and the download will begin.  

  6.   Open a console window, and change to the directory where you downloaded the tarball.  

  7.   Extract the tarball, and change to the directory it creates: 

tar -vxzf mysql-5.0.51b.tar.gz
cd mysql-5.0.51b   

  8.   Next, configure the source: 

./configure --prefix=/usr/local/mysql  

  Using the   -  - prefix  switch tells the installer where to put the MySQL libraries and binaries 
after they ’ re built. We recommend placing them in  /usr/local/mysql , but you may choose to 
specify a different value, depending on your needs or your system ’ s configuration. For a 
complete list of configuration options, run  ./configure      -  - help .  

  9.   Compile the source: 

make   

  10.   Install the libraries and binaries. We use  sudo  to escalate our account ’ s privileges, because 
superuser (root) privileges are needed for this step.   

sudo make install   

  11.   Run the  mysql_install_db  script with elevated privileges to install the initial database: 

sudo scripts/mysql_install_db   

  12.   Set the permissions on the installed files: 

sudo chown -R root /usr/local/mysql
sudo chown -R mysql /usr/local/mysql/var
sudo chgrp -R mysql /usr/local/mysql   



779

Appendix I: Installation and Confi guration on Linux     

  13.   It is advised to run MySQL with a configuration file in place. Five sample configuration files are 
included:  my - small.cnf ,  my - medium.cnf ,  my - large.cnf ,  my - huge.cnf , and  my - innodb -
 heavy - 4G.cnf . Copy a suitable configuration file to  /etc/my.cnf .   

sudo cp support-files/my-medium.cnf /etc/my.cnf  

  MySQL looks in  /etc/my.cnf  for global configuration options. Any changes you wish to make 
to customize MySQL ’ s configuration should be made in this file. You can also place a  my.cnf  
file in the server ’ s data directory ( /usr/local/mysql/var  in our setup) to supply server -
 specific configuration options, if you plan on having multiple instances running.  

  14.   Add MySQL ’ s  bin  directory to your  PATH  environment variable. This will allow you to run 
MySQL ’ s utilities from the command line without having to explicitly type the full path each 
time. To temporarily set it, you can type: 

PATH=$PATH:/usr/local/mysql/bin  

  You will need to edit the appropriate configuration file for your profile to make the setting 
permanent. Exactly how you do this is dependent upon which shell you use. Bash traditionally 
uses  .bashrc , and C Shell/tcsh uses  .cshrc .  

  15.   Start the MySQL daemon: 

sudo mysqld_safe --user=mysql  &   

  You ’ ll probably want to add the previous command to whatever facilities are available to 
automatically start the daemon at boot. This varies by OS, so you ’ ll need to find out what works 
on your system. Here is one easy way to add this that works with most systems (but may not be 
the best way): 

sudo echo ‘/usr/local/mysql/bin/mysqld_safe --user=mysql  & ’  >  >  /etc/rc.local      

  Install Apache 
 Apache is responsible for serving your web pages generated by PHP. Follow these basic steps to install it: 

  1.   If there isn ’ t a user on the system dedicated to running the apache daemon (typically  nobody , 
 apache , or  www - data ), you ’ ll need to create one. To do this, enter the following commands in a 
console: 

groupadd www-data
useradd -r -g www-data   

  2.   Go to  www.apache.org , and click the HTTP Server link in the Apache Projects list. The Apache 
Software Foundation offers many different software packages, though this is the only one we are 
concerned with.  

  3.   Click the Download link under the most recent version of Apache.  

  4.   Click the Unix Source link for the tar.gz file. 



780

Appendix I:     Installation and Confi guration on Linux       

  If you experience problems downloading this file, you can try downloading from a different 
mirror site. Select an available mirror from the drop - down box near the top of the download 
page.  

  5.   Open a console window, and change to the directory where you downloaded the tarball.  

  6.   Extract the tarball, and change to the directory it creates: 

tar -vxzf httpd-2.2.9.tar.gz
cd httpd-2.2.9   

  7.   Next, configure the source: 

./configure --prefix=/usr/local/apache --enable-so
                     

  Using the   -  - prefix  switch tells the installer where to put the Apache server after it ’ s built. We 
recommend placing it in  /usr/local/apache , but you may choose to specify a different value, 
depending on your needs or your system ’ s configuration. The   -  - enable - so  option configures 
Apache so it will support loadable modules (required later for PHP). For a complete list of 
configuration options, run  ./configure      -  - help .  

  8.   Compile the source: 

make   

  9.   Install the server. We use  sudo  to escalate our account ’ s privileges, because superuser (root) 
privileges are needed for this step.   

sudo make install   

  10.   Add Apache ’ s  bin  directory to your  PATH  environment variable. This will allow you to run 
Apache and its utilities from the command line without having to explicitly type the full path 
each time. To temporarily set it, you can type: 

PATH=$PATH:/usr/local/apache/bin  

  You will need to edit the appropriate configuration file for your profile to make the setting 
permanent. Exactly how you do this is dependent upon which shell you use. Bash traditionally 
uses  .bashrc , and C Shell/tcsh uses  .cshrc .  

  11.   Start the Apache daemon: 

sudo apachectl start   

  12.   You ’ ll probably want to add the previous command to whatever facilities are available to 
automatically start the daemon at boot. This varies by OS, so you ’ ll need to find out what works 
on your system. Here is one easy way to add this that works with most systems (but may not be 
the best way): 

sudo echo ‘/usr/local/apache/bin/apachectl start’  >  >  /etc/rc.local      



781

Appendix I: Installation and Confi guration on Linux     

  Install  PHP  
 PHP is responsible for generating dynamic web pages with data from MySQL. Follow these steps to 
install PHP on your system: 

  1.   Go to the PHP web site at  www.php.net .  

  2.   Click on the Download link to go to the site ’ s downloads page.  

  3.   Scroll down to the Complete Source Code section, and click on the appropriate link to download 
the latest tar.gz package.  

  4.   Click any of the mirror sites to begin the download. If you have difficulties downloading from 
one mirror, try a different mirror that may be closer to you.  

  5.   Open a console window, and change to the directory where you downloaded the tarball.  

  6.   Extract the tarball, and change to the directory it creates: 

tar -vxzf php-6.0.0.tar.gz
cd php-6.0.0   

  7.   Configure the source: 

./configure --with-apxs2=/usr/local/apache/bin/apxs --with-mysql=/usr/local/
mysql \
    --prefix=/usr/local/php  

  Using the   -  - prefix  switch tells the installer where to put the PHP server after it ’ s built. We 
recommend placing it in  /usr/local/php , but you may choose to specify a different value, 
depending on your needs or your system ’ s configuration. The   -  - with - apxs2  option specifies 
the path to Apache ’ s  apxs  tool.   -  - with - mysql  provides the path to your MySQL installation. If 
you did not install Apache to  /usr/local/apache  or MySQL to  /usr/local/mysql , then you 
will need to change those values accordingly. There are numerous configuration options for 
PHP, and we would almost need a chapter just to describe them all! For a complete list of 
configuration options, run  ./configure      -  - help .  

  8.   Compile the source: 

make   

  9.   Install PHP. We use  sudo  to escalate our account ’ s privileges, because superuser (root) privileges 
are needed for this step.   

sudo make install   

  10.   It is advised to run PHP with a  php.ini  file. By default, the PHP installation provides two 
copies of the file with common configuration values:  php.ini - dist  and  php.
ini - recommended . 

  The  php.ini - dist  file is meant to be used for development purposes, while  php.ini -
 recommended  has additional security measures and should be used when your site goes live. 
Depending on your reason for using PHP, choose the  php.ini  file that best suits your needs. 



782

Appendix I:     Installation and Confi guration on Linux       

For the purposes of this book, we are going to be using  php.ini - dist . Feel free to switch to the 
 php.ini - recommended  file as your default once you are more familiar with how PHP behaves.   

sudo cp php.ini-dist /usr/local/php/lib/php.ini   

  11.   Add PHP ’ s  bin  directory to your  PATH  environment variable. This will allow you to reference 
PHP and its utilities from the command line, if you ever want to, without having to explicitly 
type the full path each time. To temporarily set it, you can type: 

PATH=$PATH:/usr/local/php/bin  

  You will need to edit the appropriate configuration file for your profile to make the setting 
permanent. Exactly how you do this is dependent upon which shell you use. Bash traditionally 
uses  .bashrc , and C Shell/tcsh uses  .cshrc .    

  Configuring Apache to Use PHP 

 Now that both Apache and PHP are installed, there are a few more customizable options that need to be 
adjusted. To configure Apache to recognize a PHP file as one that needs to be parsed with the PHP 
engine, you need to first locate the following lines in your  httpd.conf  file: 

# AddType allows you to add to or override the MIME configuration
# file specified in TypesConfig for specific file types.
#
#AddType application/x-gzip .tgz
#
# AddEncoding allows you to have certain browsers uncompress
# information on the fly. Note: Not all browsers support this.
#
#AddEncoding x-compress .Z
#AddEncoding x-gzip .gz .tgz
#
# If the AddEncoding directives above are commented-out, then you
# probably should define those extensions to indicate media types:
#
AddType application/x-compress .Z
AddType application/x-gzip .gz .tgz   

 Then add the following lines: 

AddType application/x-httpd-php .php 
AddType application/x-httpd-php-source .phps  

 Next, you need to add the PHP module into your  httpd.conf  program so that Apache can properly 
coordinate with PHP to serve the dynamically generated pages PHP will produce. In your configuration 
file, locate the following lines: 

# Dynamic Shared Object (DSO) Support
#
# To be able to use the functionality of a module which was built as a DSO you
# have to place corresponding `LoadModule’ lines at this location so the



783

Appendix I: Installation and Confi guration on Linux     

# directives contained in it are actually available _before_ they are used.
# Statically compiled modules (those listed by `httpd -l’) do not need
# to be loaded here.
#
# Example:
# LoadModule foo_module modules/mod_foo.so
#
LoadModule actions_module modules/mod_actions.so
LoadModule alias_module modules/mod_alias.so
LoadModule asis_module modules/mod_asis.so
LoadModule auth_basic_module modules/mod_auth_basic.so
#LoadModule auth_digest_module modules/mod_auth_digest.so
...
#LoadModule usertrack_module modules/mod_usertrack.so
#LoadModule version_module modules/mod_version.so
#LoadModule vhost_alias_module modules/mod_vhost_alias.so  

 Add the following line: 

LoadModule php6_module “libphp6.so”  

 Oh, and remember to restart Apache after you ’ ve saved your modifications to  httpd.conf , or else 
Apache will not be aware of your changes! You can do this by calling  apachectl restart .    

  Summary 
 You ’ ve installed and configured the Apache, MySQL, and PHP trio on your Linux system. Now you can 
proceed to Chapter 2 to get your hands dirty creating your movie review web site, as we begin 
discussing PHP code.            





Index

In
d
e
x

Symbols
.=, 111, 112
< ?php   ? >  (opening and closing tags), 20, 

685
\ (backslash), 26, 28, 687
/*, 686
//, 686
& (ampersand), 34
&& (Boolean And operator), 73, 143
“ (double quotes), 73
== (equal to), 50
=== (equal to, AND data types match), 50

› (greater than), 50, 92

›= (greater than or equal to), 50, 92

‹ (less than), 50, 92
!= (not equal to), 50, 92

‹› (not equal to), 50
!== (not equal to, OR the data types not 

same), 50
. (operator), 687
$ (regex), 237
* (regex), 237
+ (regex), 237
– (regex), 237
. (regex), 237
? (regex), 237
^ (regex), 237
{ n }, 237
{ n,m }, 237
\d, 237
\D, 238
\s, 238
\S, 238
\w, 238
\W, 238
‘ (single quotation marks), 26
?: (ternary operator), 144–145, 688. See also 

if/else statements
% (wildcard), 92
_ (wildcard), 92
‹ = (less than or equal to), 50, 92

| | (logical operator alternate), 73
[ ] (regex), 237
[^ ] (regex), 237
- - $value, 73

A
abandonment, shopping-cart, 512–513
abs(), 124
access logs, 627
account functionality (BBS), 593–606

frm_admin.php, 597–600, 610
frm_forgotpass.php, 595, 596
frm_index.php, 59, 594
frm_login.php, 593, 596
frm_useraccount.php, 600–602, 604
initial login, 593–596
User Administration page, 605–606
user management, 597–605

acronym, recursive, 10
ADD link, 156, 160
Add submit button, 141
admin_area.php, 397–398, 404
administration GUIs, 767
administration interface, 156
administration page

CMS, 443–447
mailing list, 472–486
movie review database, 153–156

administration transaction pages (BBS), 
580–583

admin.php, 154–155
advertising mailing lists, 470
ait.com, 768
E_ALL, 249
alt attributes, 119
ALTER, 84
ALTER TABLE, 121
AMP. See Apache, MySQL, and PHP
ampersand (&), 34
Analog, 634
AND (logical operator), 73

Index



786

And, Boolean (&&), 73, 143
announcement mailing lists, 470
Apache

configuration, PHP and, 11–12
on Linux, 782–783

error handling, 241–248
ErrorDocument directive, 242–243
functions (list), 695–696
installation, 6–10

help/information, 18
on Linux, 779–780
online information, 6
testing, 9–10

logs, 628–630
role of, 6–7
starting/stopping, 8
web site, 18, 648

Apache, MySQL, and PHP (AMP), 3
component interaction, 5–6

Apache Service Monitor, 8
array functions, 696–701
array pointer, 63
arrays, 59–67, 689. See also specific arrays

adding, 63–67
defined, 59, 689
foreach constructs and, 63
multidimensional, 60
sorting, 61–62
syntax, 60–61

arsort($array), 61
article transaction pages, 426–432
articles (CMS)

creating, 447–451
feedback for, 458–460
publishing, 455–458
reviewing, 451–458
viewing, 458–460

AS, 91
asort($array), 61
atomicity, 265
auth.inc.php, 360, 364, 373
401: Authorization Required, 243
auto-increment command, 83
avatars, 624
AWStats, 634–635

B
back references, 614
backslash (\), 26, 28, 687

400: Bad Request, 243
BBcode Administration page, 612–614
BBcodes, 558, 609
BBS. See bulletin board system
BCC (blind carbon copy), 353, 485, 504, 674
BCNF (Boyce-Codd Normal Form), 269
BDB (BerkeleyDB), 84
BerkeleyDB (BDB), 84
BIGINT, 80, 753
BINARY, 755
BIT, 753
blind carbon copy (BCC), 353, 485, 504, 674
BLOB, 80, 178, 755
BMP, 176, 186, 187

IMAGETYPE_BMP, 186
board. See bulletin board system
Board Administration page, 610–612
BOOL, 753
BOOLEAN, 753
Boolean And operator (&&), 73, 143
Boyce-Codd Normal Form (BCNF), 269
breadcrumbs, 577–579
brightness, image, 201
bulletin board system (BBS), 557–625

account functionality, 593–606
frm_admin.php, 597–600
frm_forgotpass.php, 595, 596
frm_index.php, 59, 594
frm_login.php, 593, 596
frm_useraccount.php, 600–602, 604
initial login, 593–596
User Administration page, 605–606
user management, 597–605

additions
avatars, 624
polls, 625
quoting text, 625
smilies, 624
user profiles, 625

BBcodes, 558, 609
breadcrumbs, 577–579
database, preparation, 558–564
features, 558
as forum, 557
frm_admin.php, 597–600, 610

BBcode Administration, 612–614
Board Administration, 610–612
Forum Administration, 612
User Administration, 605–606

functionality, 606–624

And, Boolean (&&)



787

In
d
e
x

pagination, 558, 573–577
regex in, 558, 612–614
reusable scripts, 564–573
searching in, 558, 623–624
settings, editing of, 606–610
tables, 562–564

frm_access_levels, 562
frm_admin, 562
frm_bbcode, 563
frm_forum, 563
frm_post_count, 563
frm_posts, 563–564
frm_users, 564

transaction pages, 580–593
administration, 580–583
frm_transact_admin.php, 580–583
frm_transact_affirm.php, 591–593
frm_transact_post.php, 584–586
frm_transact_user.php, 586–590
post, 584–586
removal/deletion, 591–593
user–related, 586–590

user authentication, 558, 579–580
using (exercise), 614–622

C
calculate_differences(), 124, 125
captions, in images, 202–209
cart. See shopping cart
Cart32, 507
Cascade DELETE, 164–167
catch. See try/catch method
ceil(), 33
CHAR, 78, 275, 755
CHAR BYTE, 755
CHARACTER, 755
characters application, 276–310

edit_characters.php, 296–300, 306–310
list_characters.php, 293–295, 303–306
management of characters page, 293–310
pages in, 276–277
superhero powers page, 289–293
transaction page, 277–289

char_transaction.php, 277–281
check boxes, 45, 135, 151
check out process, 530–550

ecomm_checkout2.php, 508, 533–537, 546–547
ecomm_checkout3.php, 508, 537–543, 

547–550

ecomm_checkout.php, 507, 530–532, 545–546
steps in, 530, 545
testing, 543–545

checkdate(), 238, 239
check_effect.php, 200
check_image.php, 180, 183, 200, 201

captions and, 202–207
filters and, 193–197

child page, 119
classes, 74–75, 691–692

encapsulation and, 344, 348, 349
SimpleMail, 343–352, 474–476, 497

class.SimpleMail.php, 344–346, 348, 474–476, 
483–484

closed source model, 4
closing/opening tags (< ?php   ? >), 20, 685
CMS. See content management system
cms_access_levels table, 410–411, 441, 445
cms_admin.php, 443–444
cms_articles table, 411
cms_comment.php, 459, 460
cms_compose.php, 430, 447–450
cms_cpanel.php, 461–463
cms_footer.inc.php, 415, 418
cms_forgot_password.php, 433, 436
cms_header.inc.php, 414–415, 418, 436
cms_http_functions.inc.php, 415, 419–420, 423
cms_index.php, 423, 424, 433–434, 436
cms_login.php, 432–433, 436
cms_output_functions.inc.php, 412–414, 

418, 420
cms_pending.php, 451–452, 456
cms_review_article.php, 452–453, 456, 457
cms_search.php, 466, 467
cms_transact_article.php, 426–429
cms_transact_user.php, 420–423, 441, 442
cms_user_account.php, 437–439
cms_users table, 411
cms_view_article.php, 459, 460
code/coding practices, 21–23. See also 

reusable code
comments in, 22
consistency in, 22
efficiency. See efficient code
line numbers in, 22

colorizing images, 201
comic book fan web site, 3

bulletin board system, 557–625
account functionality, 593–606
additions, 624–625

comic book fan web site



788

comic book fan web site (continued)

BBcodes, 558, 609
breadcrumbs, 577–579
database preparation, 558–564
features, 558
as forum, 557
functionality, 606–624
pagination, 558, 573–577
regex in, 558, 612–614
reusable scripts, 564–573
searching in, 558, 623–624
settings, editing of, 606–610
tables, 562–564
transaction pages, 580–593
user authentication, 558, 579–580
using (exercise), 614–622

characters application, 276–310
edit_characters.php, 296–300, 306–310
list_characters.php, 293–295, 303–306
management of characters page, 293–310
pages in, 276–277
superhero powers page, 289–293
transaction page, 277–289

CMS, 310, 407–468
articles, 447–460
database structure, 409–412
reusable scripts, 412–420
search feature, 466–467
transaction pages, 420–432
user control panel, 461–465
user interface, 432–467

database, 77, 261–276
creating, in MySQL, 271–276
designing, 265–271
normalization, 264–269
standards, 270

e-commerce, 311, 505–556
e-mail, 247–248, 315–353

sending, 316–328
SimpleMail class, 343–352, 474–476, 497

mailing list, 469–504
administration page, 472–486
advertising, 470
announcements, 470
database, 470–472
ethics, 502–503
ml_admin.php, 427–473, 480, 482
ml_admin_transact.php, 477–480, 481, 

483–484
ml_quick_msg.php, 473–474, 482–483

ml_remove.php, 500–502
ml_thanks.php, 491–492, 496
ml_user.php, 486–488, 495
ml_user_transact.php, 488–491, 

496–497
newsletters, 469
opt–in, 503
opt–out, 503
removing subscriptions, 500–502
signup form, 486–499
spam, 469, 502
tables, 471–472
types of, 469–470
web site notifications, 469

postcard application
confirmation and, 330–343
images and, 328–329
JavaScript and, 341–342

registration system. See registration system
tables

creation of, 272–276
normalization and, 265–269

user logins. See logins
comic_character_power, 286, 287
comic_rivalrly, 285, 286
commands (MySQL), 84
comments, 686

coding practice, 22
debugging and, 23
future changes and, 23
PHP, 21

commit.php, 159–162
checking dates/numbers, 230–233
editing, 170–174
erroneous user input, 222–225
switch, 162, 167

common links, 554
comparison operators, 92

!=, 50, 92
=, 92
‹, 50, 92
›, 50, 92
›=, 50, 92
‹ =, 50, 92
LIKE, 92
WHERE and, 92

E_COMPILE_ERROR, 249
E_COMPILE_WARNING, 249
composite primary key, 265
condition clauses, 758–759

comic book fan web site (continued)



789

In
d
e
x

confirmation, 330–343
workflow application and, 330

confirm.php, 334–336
connecting to MySQL server, 86
consistency, code, 22
constants, 29–31
content management system (CMS), 310, 

407–468
articles

creating, 447–451
feedback for, 458–460
publishing, 455–458
reviewing, 451–458
viewing, 458–460

database structure, 409–412
files

cms_access_levels table, 410–411, 441, 445
cms_admin.php, 443–444
cms_articles table, 411
cms_comment.php, 459, 460
cms_compose.php, 430, 447–450
cms_cpanel.php, 461–463
cms_footer.inc.php, 415, 418
cms_forgot_password.php, 433, 436
cms_header.inc.php, 414–415, 418, 436
cms_http_functions.inc.php, 415, 

419–420, 423
cms_index.php, 423, 424, 433–434, 436
cms_login.php, 432–433, 436
cms_output_functions.inc.php, 412–414, 

418, 420
cms_pending.php, 451–452, 456
cms_review_article.php, 452–453, 456, 457
cms_search.php, 466, 467
cms_transact_article.php, 426–429
cms_transact_user.php, 420–423, 441, 442
cms_user_account.php, 437–439
cms_users table, 411
cms_view_article.php, 459, 460

reusable scripts, 412–420
search feature, 466–467
transaction pages, 420–432
user control panel, 461–465
user interface, 432–467

contrast, of image, 201
converting image types, 188–192
cookies, 41–44, 355, 405

defined, 41, 359
passing variables with, 41–44
security risks, 41

sessions v., 359, 388
setting, 42–44
tracking, with PHP, 388–393

cookies_delete.php, 389
cookies_set.php, 388–389
cookies_test.php, 390
cookies_view.php, 389
copyrighted images, 202, 209
E_CORE_ERROR, 249
E_CORE_WARNING, 249
CREATE, 84
CREATE DATABASE yourdatabase, 271
CREATE TABLE, 275
createimagefrom* (), 192
cron jobs, 767
ctype_* functions, 235, 236, 239
ctype_alnum(), 236
ctype_alpha(), 236
ctype_cntrl(), 236
ctype_digit(), 236
ctype_graph(), 236
ctype_lower(), 236
ctype_print(), 236
ctype_punct(), 236
ctype_space(), 236
ctype_upper(), 236
ctype_xdigit(), 236
custom error messages, 

243–246
custom logs, 627
custom_error.php, 252–255
customers (e-commerce)

characteristics, 551
communication with, 555
feedback, 555
personal customer service, 553
privacy policy, 552
return policy, 552–553
secure credit card 

processing, 553
trust, 552–553

D
data types. See field types
databases. See also MySQL; relational 

databases; tables
bulletin board. See bulletin board system
comic book. See comic book fan web site
DB++, 769

databases



790

databases (continued)

dBase, 769
editing, 153–174
filePro, 770
Firebird, 766, 770
FrontBase, 769
IBM DB2, 770
Informix, 770
Ingres Database, 770
mailing list, 470–472
MaxDB, 770
Microsoft Access, 766
Microsoft SQL Server, 766, 770
movie review. See movie review web site
mSQL, 770
MySQL

data retrieval from, 758–759
manipulation commands, 757–758
parameters, 82–83

normalization, 264–269
Oracle OC18, 770
Ovrimos SQL, 770
Paradox File Access, 770
PDO and, 769–771, 775
PHP supported, 766, 769–770
PostgreSQL, 766, 770
SQLite, 766, 770
Sybase, 766, 770

DATE, 79, 755
date(), 162
date.php, 50–51
dates/numbers, user input errors in, 226–238
DATETIME, 79, 755
date/time

field types, 755
formatting codes, 706–708
functions, 702–706

DB++, 769
dBase, 769
db_ch03–1.php, 87–88
db_ch03–2.php, 88–89
db_ch04–1.php, 120–121
db_ch04–2.php, 125–126
db_ch07–1.php, 178–179
db_ch07–2.php, 189
db_ch08.php, 218
db_ch10.php, 273–274
db_ch11–1.php, 328–329
db_ch11–2.php, 330–331
db_ch12–1.php, 366, 367

db_ch12–2.php, 394, 403
db_ch13.php, 409–410
db_ch14.php, 470–471
db_ch15–1.php, 507
db_ch15–2.php, 507, 510, 514
db_ch16.php, 558–562
db.inc.php, 273, 409
debugging

comments and, 23
echo and, 645–646
tips, 645–647
Xdebug and, 647

DEC, 753
DECIMAL, 79, 753
decrementing values, 73

- - $value, 73
$value - -, 73

define() function, 30
DELETE, 84, 162–167, 288

Cascade, 164–167
DELETE links, 156, 165
delete.php, 164–166
deletion

Cascade DELETE, 164–167
of items in cart, 521–524
of records, 162–167
of transaction pages, 591–593

DESCRIBE, 84
design rules (standards), 270
designing database (Comic Book), 269–271
directory/file functions, 709–713
discussion forum. See bulletin board system
documentation, MySQL, 102
DOUBLE, 754
DOUBLE PRECISION, 754
double quotation marks (“), 73
do/while, 68, 690
Dreamweaver CS3, 762, 763
DROP, 84
drop–down list boxes, 45, 135

E
echo, 23–26, 27, 28, 29, 685

debugging and, 645–646
print v., 72, 685

ecomm_checkout2.php, 508, 533–537, 546–547
ecomm_checkout3.php, 508, 537–543, 547–550
ecomm_checkout.php, 507, 530–532, 545–546
ecomm_customers table, 510

databases (continued)



791

In
d
e
x

e-commerce, 311, 505–556
common links, 554
competitive pricing, 554
customers

characteristics, 551
communication with, 555
feedback, 555
personal customer service, 553
privacy policy, 552
return policy, 552–553
secure credit card processing, 553
trust, 552–553

guidelines, 551–555
home page, 515–517
information, textual/graphical, 552
navigation, 554
products

appropriate, 554
ideas for, 506–507
timely delivery, 555
viewing information on, 517–521

professional look, 553–554
search feature, 554
shopping cart

abandonment, 512–513
Cart32, 507
check out process, 530–550
coding, 507
database, 508–510
db_ch15 - 1.php, 507
db_ch15 - 2.php, 507
ecomm_checkout2.php, 508, 533–537, 

546–547
ecomm_checkout3.php, 508, 537–543, 

547–550
ecomm_checkout.php, 507, 530–532, 

545–546
ecomm_shop.php, 507, 516–517, 519
ecomm_update_cart.php, 507
ecomm_view_cart.php, 507
ecomm_view_product.php, 507
products, 521–524, 524–529
tables, 508–514
temporary, 512–513
third–party software, 507

ecomm_order_details table, 512
ecomm_orders table, 511
ecomm_products table, 510
ecomm_shop.php, 507, 516–517, 519
ecomm_temp_cart table, 512, 527

edges, of image, 201
EDIT link, 156, 171, 172
edit_characters.php, 296–300, 306–310
editing

commit.php, 170–174
databases, 153–174
movie, 167–174

EditPlus, 762, 763
edit_power.php, 289–293
E_ERROR, 249
efficient code, 22

functions and, 55
include statement, 52–54

else statements, 51–52, 688. See also if/else 
statements

e-mail (PHP), 315–353
error, creation of, 247–248
mail(), 317, 321

errors and, 248
mail functions, 724–725
mailing lists. See mailing lists
PHP setup for, 316
postcard application

confirmation implementation, 330–343
images and, 328–329

sending, 316–322
data collection and, 317–322
headers and, 323–325
HTML and, 322–325
multipart messages, 326–328
simple, 317

SimpleMail class, 343–352, 474–476, 497
empty(), 239
empty variables, 643
encapsulation, 344, 348, 349
enctype attribute, 183
ENDHTML, 113
enemies data, referential integrity and, 287–288
ENUM, 79, 755
equal to (==), 50
equal to, AND data types match (===), 50
error constants

E_ALL, 249
E_COMPILE_ERROR, 249
E_COMPILE_WARNING, 249
E_CORE_ERROR, 249
E_CORE_WARNING, 249
E_ERROR, 249
E_NOTICE, 249
E_PARSE, 249

error constants



792

error constants (continued)

E_RECOVERABLE_ERROR, 249
E_STRICT, 249
E_USER_ERROR, 249
E_USER_NOTICE, 249
E_USER_WARNING, 249
E_WARNING, 249

error e-mail, creation of, 247–248
error handling, 241–260. See also 

troubleshooting
Apache, 241–248
custom, creating, 252–255
exceptions, 256–258
full-featured, creating, 255–256
functions, 714
PHP, 248–256
troubleshooting and, 260
try/catch method, 256–258

error key, 184
error logs, 627
error types (PHP), 249
ErrorDocument directive, 242–243
error.php, 243–244
errors

fatal, 250, 251
generating, 250–252
‘headers already sent,’ 40, 44, 143, 

644–645
heredoc closing tag line, 113
messages

custom, 243–246
500: Internal Server Error, 243, 246
400: Bad Request, 243
401: Authorization Required, 243
403: Forbidden, 243
404: Not Found, 243, 245
online list, 243
simulating, 243–246

not meeting conditions, 258–259
parse, 260, 642–643
syntax, 260
trapping, 256–258
user input, 217, 238

dates/numbers, 226–238
forgetting information, 218–219
formatting, 226–238

escaping, 26, 687
ethics, mailing list, 502–503
exceptions, 256–258
exercises. See also Try It Out

chapter 2, 76
answers, 649–653

chapter 3, 103
answers, 653–656

chapter 4, 129
answers, 656–659

chapter 5, 152
answers, 659–661

chapter 6, 174
answers, 661–662

chapter 7, 216
answers, 665–668

chapter 8, 239
answers, 668–669

chapter 9, 260
answers, 670–671

chapter 10, 311
answers, 671–674

chapter 11, 353
answers, 674

chapter 12, 406
answers, 675

chapter 13, 468
answers, 676–677

chapter 14, 504
answers, 677–679

chapter 15, 556
answers, 679–684

chapter 16, 625
answers, 684

explode(), 238
extract(), 94, 110

F
fatal errors, 250, 251
feature_error.php, 255–256
feedback for articles (CMS), 458–460
feedback, logs as, 637
fetch(), 773–774
fetch mode constants, PDO, 734, 

773–774
fetchAll(), 773–774
field types (MySQL), 78–82, 270–271. See also 

specific field types

choosing, 80–82
date/time, 755
numeric, 753–754
reference list, 753–756
string, 755–756

error constants (continued)



793

In
d
e
x

fields, 78, 151
in forms, 151
not null, 82
null, 82

Fifth Normal Form (5NF), 269
file/directory functions, 709–713
filePro, 770
$_FILES array, 183, 184
filters, 193–202

IMG_FILTER_BRIGHTNESS, 201
IMG_FILTER_COLORIZE, 201
IMG_FILTER_CONTRAST, 201
IMG_FILTER_EDGEDETECT, 201
IMG_FILTER_EMBOSS, 201
IMG_FILTER_GAUSSIAN_BLUR, 201
IMG_FILTER_GRAYSCALE, 201
IMG_FILTER_MEAN_REMOVAL, 201
IMG_FILTER_NEGATE, 201
IMG_FILTER_SELECTIVE_BLUR, 201
IMG_FILTER_SMOOTH, 201

Firebird, 766, 770
First Normal Form (1NF), 266, 269
1NF (First Normal Form), 266, 269
firstprog.php

echo in, 23–26
PHP/HTML in, 27–28

500: Internal Server Error, 243, 246
5NF (Fifth Normal Form), 269
FIXED, 754
FLOAT, 754
floor(), 33
for statement, 161–162, 690
403: Forbidden, 243
foreach, 63, 94–97, 690

table creation and, 96–97
foreign keys, 156, 166, 263, 264
form element, 134
form1.html, 132
form2.html, 136
form3.php, 139–140
form4a.php, 147–148
form4b.php, 148–149
form4.php, 146–147
formatting codes

date/time, 706–708
string, 747

formatting errors, 226–238
formprocess1.php, 132–134
formprocess2.php, 136–138
formprocess3.php, 140–142

forms, 44–49, 131–152
fields, 151
for getting information, 45–49
linking, 145–151
multiple processing, 139–142
parts of, 44–45
passing variables through, 44–49, 687
user input, 135–145

forum, 557. See also bulletin board system
Forum Administration page, 612
FOUND_ROWS(), 575
400: Bad Request, 243
401: Authorization Required, 243
403: Forbidden, 243
404: Not Found, 243, 245
4NF (Fourth Normal Form), 269
Fourth Normal Form (4NF), 269
Friedl, Jeffrey, 238
frm_access_levels, 562
frm_admin table, 562
frm_admin.php, 597–600, 610

BBcode Administration, 612–614
Board Administration, 610–612
Forum Administration, 612
User Administration, 605–606

frm_bbcode, 563
frm_compose.php, 617–619
frm_config.inc.php, 571
frm_edit_forum.php, 606–610
frm_footer.inc.php, 573
frm_forgotpass.php, 595, 596
frm_forum, 563
frm_header.inc.php, 572–573, 579–580
frm_index.php, 59, 594
frm_login.php, 593, 596
frm_output_functions.inc.php, 565–571

functionality, 573
pagination and, 573–577
show_topic(), 574

frm_post_count, 563
frm_posts, 563–564
frm_search.php, 619–620, 623
frm_transact_admin.php, 580–583
frm_transact_affirm.php, 591–593
frm_transact_post.php, 584–586
frm_transact_user.php, 586–590
frm_useraccount.php, 600–602, 604
frm_users, 564
frm_view_forum.php, 614–616
frm_view_topic.php, 617

frm_view_topic.php



794

FROM, 91
FrontBase, 769
full–featured error handler, 255–256
functions. See also specific functions

array-sorting, 61
ctype_*, 235, 236, 239
customized, 55–59, 691
defined, 55
efficient code and, 55
is_*, 235, 236, 239
methods v., 351
reference list, 695–752

Apache/PHP, 695–696
array, 696–701
date/time, 702–706
directory/file, 709–713
error–handling, 714
HTTP, 724–725
image, 716–723
logging, 714
mail, 724–725
mathematical, 33, 725–727
miscellaneous, 751–752
MySQL, 728–730
network, 724–725
object handling, 715–716
online, 695
output buffer, 731
PDO database interface, 732–734
PHP configuration information, 734–736
process, 737
program execution, 737
session functions, 738–739
SimpleXML, 739–740
string, 740–747
URL, 748
variable, 749–750

type-validating, 235

G
gallery.php, 214–215
Gaussian blur, 201
GD library, 175–177

enabling, in PHP, 176
image types and, 176
online information, 177
testing, 176–177

gd_info(), 176, 177
Geany, 762, 763

generate_ratings(), 128
generating errors, 250–252
GET method, 44, 134
$_GET superglobal array, 123, 127, 129
get_director(), 117, 124
getimageinfo(), 186
getimagesize(), 186
get_leadactor(), 117, 124
get_movietype(), 117, 124
gettor methods, 349
GIF, 176, 186

IMAGETYPE_GIF, 186
support, enabling, 176

global, 55
Google Analytics, 636–637
graphical user interfaces. See GUIs
Graphics Draw. See GD Library
grayscale, image in, 201
greater than (›), 50, 92
greater than or equal to (›=), 50, 92
GUIs (graphical user interfaces), 

administration, 767

H
handling errors. See error handling
hashing, 367
header(), 143–144

problem code and, 144
warning message and, 143

header.php, 53–54
‘headers already sent’ error, 40, 44, 143, 

644–645
headers, e-mail and, 323–325
Hello World, 26, 132, 135, 342
heredoc, 73, 110–114

closing tag line, error and, 113
syntax, 110–114

hits/page views, 638
hosting, 765

third-party, 765–768
administration GUIs, 767
bandwidth usage, 767
configuration ability, 767
online companies (list), 768
pricing, 768
server access, 766–767
server control, 766–767
site usage, 767
supported databases, 766

FROM



795

In
d
e
x

supported languages, 766
htaccess files, 766–767

creating, 356–359
HTML

e-mail and, 322–325
forms. See forms
PHP and, 20, 27–29
references, 134
tables. See tables

HTML–Kit Tools, 762, 763
htpasswd, 356–359, 767

creating, 356–359
drawbacks, 359

HTTP Analyze, 635–636
HTTP functions, 724–725
HTTP headers, 143, 144
httpd.conf file, 241, 242, 243

I
IBM DB2, 770
if statements, 49–51

nested, 688
operators, 49–50
semicolons and, 50

if/else statements, 51–52, 688
IFF, 176, 186

IMAGETYPE_IFF, 186
IGNORE, 283, 284
images, 175–216

brightness, 201
captions in, 202–209
colorizing, 201
contrast, 201
copyrighted, 202, 209
edges, 201
e-mailing, 328–329
embedding text in, 202–209
filters for, 193–202
Gaussian blur, 201
grayscale, 201
logo (Movie Review site), 209
mean removal, 201
negate color, 201
selective blur, 201
smoothing, 201
thumbnails, 212–216
uploading, 177–188

image functions, 716–723
image table, 178–188

image types
BMP, 176, 186, 187
converting, 188–192
GD library and, 176
GIF, 176, 186
IFF, 176, 186
JB2, 176, 186
JP2, 176
JPC, 176, 186
JPG, 176, 186
JPX, 176, 186
PNG, 176, 186
predefined constants, 186
PSD, 176, 186
SWC, 176, 186
SWG, 176, 186
TIFF, 176, 186
WBMP, 176, 186, 187
XBM, 176, 186

ImageBMP library classes, 187
imagecopymerge(), 212
imagecreatefrom* (), 187
ImageCreateFromBMP, 187
imagecreatefrompng(), 212
imagedestroy(), 188
image_effect.php, 197–200
imagefilter(), 192, 193, 200, 201

filters, 201
imagegif(), 188, 192
imagejpeg(), 188, 192, 200
imagepng(), 188, 192
images directory, 178
imagettftext(), 208–209
IMAGETYPE_BMP, 186
IMAGETYPE_GIF, 186
IMAGETYPE_ICO, 186
IMAGETYPE_IFF, 186
IMAGETYPE_JB2, 186
IMAGETYPE_JP2, 186
IMAGETYPE_JPC, 186
IMAGETYPE_JPEG, 186
IMAGETYPE_JPX, 186
IMAGETYPE_PNG, 186
IMAGETYPE_PSD, 186
IMAGETYPE_SWC, 186
IMAGETYPE_SWF, 186
IMAGETYPE_TIFF_II, 186
IMAGETYPE_TIFF_MM, 186
IMAGETYPE_WBMP, 186
IMAGETYPE_XBM, 186

IMAGETYPE_XBM



796

IMG_FILTER_BRIGHTNESS, 201
IMG_FILTER_COLORIZE, 201
IMG_FILTER_CONTRAST, 201
IMG_FILTER_EDGEDETECT, 201
IMG_FILTER_EMBOSS, 201
IMG_FILTER_GAUSSIAN_BLUR, 201
IMG_FILTER_GRAYSCALE, 201
IMG_FILTER_MEAN_REMOVAL, 201
IMG_FILTER_NEGATE, 201
IMG_FILTER_SELECTIVE_BLUR, 201
IMG_FILTER_SMOOTH, 201
include statement, 52–54, 689

welcome message and, 53–54
incrementing values, 73

$value++, 73
++$value, 73
$value += 1, 73
$value = $value + 1, 73

indexes, 82
infiniology.com, 768
Informix, 770
Ingres Database, 770
initial login (BBS), 593–596
INNER JOIN, 485
InnoDB, 84
input element, 44, 134–135. See also user input

check boxes, 45, 135, 151
drop–down list boxes, 45, 135
password, 45
radio buttons, 45, 135, 139–143
submit, 134, 135
text, 44, 134, 151

input testing, 143–144
INSERT, 87, 161
INSERT INTO tablename VALUES, 84, 87
inserting movie with known movie type and 

people, 157–162
inserting records, 156–162
installation

Apache, 6–10
help/information, 18
on Linux, 779–780
online information, 6
testing, 9–10

Linux
Apache on, 779–780
MySQL on, 778–779
PHP on, 781–783

MySQL, 13–17
help/information, 18
on Linux, 778–779

mysql.exe –– help, 18
online information, 6
testing, 15

PHP
on Linux, 781–783
manual, 10–13
online information, 6
testing, 13

troubleshooting, 641
INT, 79, 275, 754
INTEGER, 754
500: Internal Server Error, 

243, 246
invision.net, 768
ipowerweb.com, 768
IRC channels, PHP, 648
is_* functions, 235, 236, 239
is_array(), 235
is_binary(), 235
is_bool(), 235
is_callable(), 235
is_float(), 235
is_int(), 235
is_null(), 235
is_numeric(), 235
is_object(), 235
is_resource(), 235
isset(), 225
is_string(), 235
is_unicode(), 235

J
JavaScript, 341–342

postcard application and, 341–342
ppk on JavaScript (Koch), 342

JB2, 176, 186
IMAGETYPE_JB2, 186

jEdit, 762, 763
JOINs, 100–101, 759

INNER, 485
LEFT, 101, 117

JP2, 176
IMAGETYPE_JP2, 186

JPC, 176, 186
IMAGETYPE_JPC, 186

JPG, 176, 186
JPX, 176, 186

IMAGETYPE_JPX, 186
jumpline.com, 768
junk mail, 469, 502. See also mailing lists

IMG_FILTER_BRIGHTNESS



797

In
d
e
x

K
keys, 82, 263. See also indexes

defined, 263
error, 184
foreign, 156, 166, 263, 264
name, 184
primary, 82, 156, 161, 162, 263, 624

composite, 265
defined, 263

size, 184
tmp_ name, 184
type, 184
values for, 263

keywords
namespace, 692
private, 75
public, 75

Koch, Peter-Paul, 342

L
LAMP. See Linux, Apache, MySQL, and PHP
land1.com, 768
lastInsertId(), 774
leapyear.php, 51–52
LEFT JOIN, 101, 117
less than (‹), 50, 92
LIKE (comparison operator), 92
LIMIT, 91, 759
limiting input choice, 136–139
line numbers, 22
linking

forms, 145–151
tables, 114–117, 156

links, common, 554
Linux

Apache configuration on, PHP and, 
782–783

Apache installation on, 779–780
MySQL installation on, 778–779
as open source, 4
PHP installation on, 781–783

Linux, Apache, MySQL, and PHP (LAMP), 4
list_characters.php, 293–295, 303–306
lists, 151. See also mailing lists

drop-down, 45, 135
editing, 173–174
multiline, 135, 139–142
single-selection, 136–138

LogFormat directive, 628–630

logging functions, 714
logical operators

AND, 73, 92
OR, 73, 92
| | and, 73
&& and, 73, 143
alternates to, 73
NOT, 92
WHERE and, 92
XOR, 92

login.php, 361–362, 373
logins

database-driven
session tracking in, 

368–373
tables for, 365–367

htpasswd and, 356–359
PHP for, 360–365
sessions and, 359–365
user accounts, editing, 

373–376
logo image, 209
logs, 627–639

access, 627
analyzing, 633–637

Analog, 634
AWStats, 634–635
Google Analytics, 636–637
HTTP Analyze, 635–636
Webalizer, 633

custom, 627
defined, 627
error, 627
as feedback, 637
information obtained from, 

627–628
location of, 628–633

Apache, 628–630
MySQL, 630–633
PHP, 630

reports
hits/page views, 638
site health, 637
site referrals, 638–639
trends over time, 638
user preferences/information, 638

LONGBLOB, 80, 755
LONGTEXT, 80, 756
loops, 689–690. See also do/while; for 

statement; foreach; while
lunarpages.com, 768

lunarpages.com



798

M
mail(), 317, 321, 352. See also e-mail

errors and, 248
SimpleMail class v., 349
uses for, 352

mail functions, 724–725
mail_html.php, 347
mailing lists, 469–504

administration page, 472–486
advertising, 470
announcements, 470
database, 470–472
ethics, 502–503
ml_admin.php, 427–473, 480, 482
ml_admin_transact.php, 477–480, 481, 

483–484
ml_quick_msg.php, 473–474, 482–483
ml_remove.php, 500–502
ml_thanks.php, 491–492, 496
ml_user.php, 486–488, 495
ml_user_transact.php, 488–491, 496–497
newsletters, 469
opt–in, 503
opt–out, 503
removing subscriptions, 500–502
signup form, 486–499
spam, 469, 502
tables

ml_lists, 471
ml_subscriptions, 472, 485, 497, 498, 501
ml_users, 471

types of, 469–470
web site notifications, 469

mail_multipart.php, 347
mail_quick.php, 348, 352
mail_text.php, 346
main.php, 368, 372
many-to-many relationships, 264
master page, 119
master/child relationships, 118–119
Mastering Regular Expressions (Friedl), 238
MATCH, 624
matching mechanisms. See pattern matching 

mechanisms
mathematical functions, 33, 725–727
max(), 33
MaxDB, 770
MAX_FILE_SIZE, 185, 186
MD5 hash, 342

MD5 Message-Digest Algorithm 
(RFC 1321), 342

mean removal, 201
MEDIUMBLOB, 80, 756
MEDIUMINT, 80, 754
MEDIUMTEXT, 80, 756
MEMORY, 84
MERGE, 83
merging images, 209–212
methods, 75. See also functions

functions v., 351
gettor, 349

Microsoft Access, 766
Microsoft SQL Server, 766, 770
midphase.com, 768
min(), 33
miscellaneous functions, 751–752
mktime(), 238
ml_admin.php, 427–473, 480, 482
ml_admin_transact.php, 477–480, 481, 483–484
ml_lists table, 471
ml_quick_msg.php, 473–474, 482–483
ml_remove.php, 500–502
ml_subscriptions table, 472, 485, 497, 498, 501
ml_thanks.php, 491–492, 496
ml_user.php, 486–488, 495
ml_users table, 471
ml_user_transact.php, 488–491, 496–497
movie review web site, 3

database, 77, 86–87
administrative page, 153–156
creating, 87–90
editing, user and, 153–174
image table, 178–188
querying, 91–101
referencing multiple tables, 98–100

forms, 44–49, 131–152
fields, 151
for getting information, 45–49
linking, 145–151
multiple processing, 139–142
parts of, 44–45
passing variables through, 44–49, 687
user input, 135–145

logo image, 209
rating stars, 128, 129
table (for database), 105–129

adding data, 120–121
creation, 105–110
displaying movie details, 121–125

mail()



799

In
d
e
x

heredoc and, 110–114
linking, 114–117
master/child relationships, 118–119
movie review, 125–129

validating user input, 217–239
welcome message for, 53–54

movie1.php, 35–36
functions in, 55–59
passing visitor’s username, 38–40
setting cookie, 42–44
urlencode(), 37
using forms to get information, 45–49
while in, 68–72

movie_details.php, 121–125
displaying reviews, 126–129

movie.php, 157–159
checking dates/numbers, 226–230
editing, 167–174
erroneous user input, 219–222

movie_rating, 218
movie_release, 218
movies table, 86

creation, 89–90
movie_rating, 218
movie_release, 218

moviesite.php
arrays in, 63–67
constants in, 30–31
URL variables in, 34–36
variables in, 31–33
while in, 68–72

movietype table, 86
creation, 90

mSQL, 770
multidimensional arrays, 60
multiline list boxes, 135, 139–142
multipart messages, 326–328
multiple submit buttons, 143
my_error_handler, 255
MyISAM, 83
MySQL

commands, 84
configuring, 14–15
databases. See also tables

comic book, 271–276
data retrieval from, 758–759
manipulation commands, 757–758
parameters, 82–83

documentation, 102
field types, 78–82, 270–271

reference list, 753–756
functions, 728–730
installation, 13–17

help/information, 18
on Linux, 778–779
mysql.exe ––help, 18
online information, 6
testing, 15

logs, 630–633
PHP configuration and, 11
Query Browser, 102–103
reference notes, 692–693, 

757–759
role of, 6, 13–14
server, connecting to, 86
session tracking, 368–373
spatial data formats, 756
starting/stopping, 15
storage engines, 83–84
Tools package, 102
user privileges, 16–17
web site, 18, 648

MySQL Databases module, 272
mysql_* functions, PDO v., 771, 773
MySQL Server Instance Configuration Wizard, 

14–15
mysqlbinlog utility, 632
mysql_close, 775
mysql_connect, 85, 86
mysql_error, 85
mysql_fetch_array, 85, 94, 95
mysql_fetch_assoc, 85
mysql_insert_id, 188, 284, 497, 774
mysql_num_rows, 110, 457, 774
mysql_query, 85, 97
mysql_select_db, 85

N
name key, 184
names, for variables, 643, 686
namespace keyword, 692
namespaces, 692
NCHAR, 756
negate color, in images, 201
nested if statements, 688
net command, 8, 15
network functions, 724–725
newsletter mailing lists, 469
non-transaction-safe tables (NTSTs), 83

non-transaction-safe tables (NTSTs)



800

normalization, 264–269
1NF, 266, 269
2NF, 266–267, 269
3NF, 268, 269
4NF, 269
5NF, 269
BCNF, 269
comic book database and, 265–269
guideline v. rules, 269
zero form, 265, 269

NOT (logical operator), 92
not equal to

(!=), 50, 92
(‹›), 50

not equal to, OR the data types not 
same (!==), 50

404: Not Found, 243, 245
NOT NULL, 82
Notepad, 762, 763
notices, 250

E_NOTICE, 249
NTSTs (non–transaction–safe tables), 83
NULL, 82

zero v., 82
number_format(), 33, 529
numbers/dates, user input errors in, 226–238
NUMERIC, 754
numeric field types, 753–754
NVCHAR, 756

O
ob_end_flush(), 644
object–handling functions, 715–716
object–oriented programming (OOP), 74–76

advantages of, 75–76
classes, 74–75, 691–692

encapsulation and, 344, 348, 349
SimpleMail, 343–352, 474–476, 497

methods, 75
properties, 75

ob_start(), 644
olm.net, 768
1NF (First Normal Form), 266, 269
one-to-many relationships, 264
one-to-one relationships, 264
online stores. See e-commerce
OOP. See object-oriented programming
open source, 4–5

advantages, 5

Linux as, 4
sourceforge.net, 4

Open Source Definition test, 4
Open Source Initiative (OSI), 4
opening/closing tags (< ?php   ? >), 

20, 687
operators, 49–50. See also comparison 

operators; logical operators; ternary 
operator

opt-in, 503
opt-out, 503
OR (logical operator), 73, 92
Oracle OC18, 770
ORDER BY, 91, 129, 759
OSI (Open Source Initiative), 4
output buffer functions, 144, 644, 645, 731

reference list, 731
output_story(), 416, 457
Ovrimos SQL, 770

P
page views/hits, 638
paginate(), 575
pagination, 558, 573–577
Paradox File Access, 770
parameters, database (MySQL), 82–83
parse errors, 260, 642–643
E_PARSE, 249
passing variables

with cookies, 41–44
through forms, 44–49, 687
through sessions, 38–40, 686
through URLs, 33–37, 686

passing visitor’s username, 38–40
PASSWORD(), 367
password (input field), 45
pattern matching mechanisms, 237–238. See 

also regular expressions
$, 237
*, 237
+, 237
–, 237
., 237
?, 237
^, 237
[ ], 237
[^ ], 237

PDO. See PHP Data Objects
PDOStatement, 773–774

normalization



801

In
d
e
x

people table, 86
creation, 90

PHP (PHP: Hypertext Preprocessor)
Apache configuration and, 11–12

on Linux, 782–783
closing/opening tags, 20, 687
comments, 21
configuration information functions, 734–736
configuration, MySQL and, 11
cookie tracking with, 388–393
databases and, 766, 769–770. See also MySQL
displaying to browser, 685
e-mail. See e-mail
error handling, 248–256
error types, 249
functions. See functions
GD enabled in, 176
HTML and, 20, 27–29
installation

on Linux, 781–783
manual, 10–13
online information, 6
testing, 13

IRC channels, 648
for logins, 360–365
logs, 630
looping structures, 689–690
marking code, 20, 685
OOP and, 74–76
recursive acronym, 10
reference notes, 685–693
role of, 6, 10
semicolon and, 20, 642
session tracking, 368–373
syntax rules, 20–21

online information, 685
web site, 18, 648

PHP Data Objects (PDO), 769–775
databases and, 769–771, 775
fetch mode constants, 734, 773–774
functions, 732–734
mysql_* functions v., 771, 773
online information, 775
requirements, 771

PHPBB, 557
PHPBuilder.com, 647
PhpED, 762, 763
PHPEdit, 762, 763
php.ini file, 10
PHPMyAdmin, 272

pipe characters, regular expressions and, 237
PNG, 176, 186

IMAGETYPE_PNG, 186
pointer, array, 63
polls (BBS), 625
$_POST global array, 135
POST method, 44, 134, 183
post transaction pages, 584–586
postcard application

confirmation and, 330–343
images and, 328–329
JavaScript and, 341–342

postcard.php, 317–318, 331–332, 336–340
PostgreSQL, 766, 770
powweb.com, 768
ppk on JavaScript (Koch), 342
predefined constants, 186
preg_match(), 236
primary keys, 82, 156, 161, 162, 263, 624

composite, 265
defined, 263

print construct, echo v., 72, 685
print_r(), 646, 647
private keyword, 75
privileges, MySQL user accounts, 16–17
process functions, 737
program execution functions, 737
properties, 75
proprietary software, 4
PSD, 176, 186

IMAGETYPE_PSD, 186
public keyword, 75
publishing articles (CMS), 455–458
put method, 183

Q
Query Browser, MySQL, 102–103
query string, 33
Quick Message page, 494
quotation marks

“ (double), 73
‘ (single), 26

quoting text, BBS and, 625

R
radio buttons, 45, 135, 139–143

multiple, 143
rand(), 33

rand()



802

rating stars, 128, 129
RDBMS (relational database management 

systems), 156
REAL, 754
E_RECOVERABLE_ERROR, 249
recursive acronym, 10
redirect(), 420
reference materials

lists
field types, 753–756
functions, 695–752

notes
MySQL, 692–693, 757–759
PHP, 685–693

referential integrity, 264
comic_character_power and, 286, 287
comic_rivalry and, 285, 286
enemies data and, 287–288
online information, 264

regex. See regular expressions
register.php, 369–372
registration system

administrator section, 393–405
logins

database-driven, 365–367, 368–373
htpasswd and, 356–359
PHP for, 360–365
sessions and, 359–365
user accounts, editing, 373–376

user section, 356–388
regular expressions (regex), 226, 236–238, 612–614

back references, 614
BBS and, 558, 612–614
defined, 236
Mastering Regular Expressions (Friedl), 238
matching mechanisms, 237–238
pipe characters and, 237
syntax, 238

relational database management systems 
(RDBMS), 156

relational databases, 78, 125. See also 

databases
defined, 262–263
deleting records, 162–167
inserting records, 156–162
updating records, 167–174

relationships, 125, 262, 263–264
many-to-many, 264
one-to-many, 264
one-to-one, 264

removal
of mailing list subscriptions, 500–502
of transaction pages, 591–593

Report Magic, 634
reports

hits/page views, 638
site health, 637
site referrals, 638–639
trends over time, 638
user preferences/information, 638

reusable code
BBS, 564–573
CMS, 412
frm_config.inc.php, 571
frm_footer.inc.php, 573
frm_header.inc.php, 572–573, 579–580
frm_output_functions.inc.php, 565–571

functionality, 573
pagination and, 573–577
show_topic(), 574

SimpleMail class, 343–352, 474–476, 497
reviewing articles (CMS), 451–458
RFC 1321: MD5 Message-Digest Algorithm, 342
rowCount(), 774
rsort($array), 61
runtime

notices, 250
warnings, 250

S
Say My Name, 132–134
search feature

BBS, 558, 623–624
CMS, 466–467

Search submit button, 141
Second Normal Form (2NF), 266–267, 269
secret.php, 360, 364
Secure Shell (SSH), 766
Secure Socket Layer (SSL), 393
security

cookies and, 41
file protection. See htpasswd
online credit card processing and, 553
online information, 579
w3.org/Security/Faq/, 579, 610

SELECT, 84, 91
condition clauses, 758–759
query, 92–94

rating stars



803

In
d
e
x

select1.php, 92–94
foreach in, 95

select2.php, 95–97
joining two tables, 100–101
referencing multiple tables, 98–100

selective blur, 201
semicolons

if statements and, 50
PHP statements and, 20, 642

send(), 349, 350, 485
sendconfirm.php, 333–334
sending e-mail. See e-mail
sendmail_from, 316
sendmail_path, 316
sendmail.php, 318–319, 321
session functions, 355, 405, 738–739
session tracking, 368–373
session_destroy(), 424
sessions, 38–40

cookies v., 359, 388
defined, 38, 359
logins and, 360–365
passing variables through, 38–40, 686

session_start(), 38, 520, 686
session_unset(), 424
SET, 756
setcookie() function, 41, 392
setHTMLBody(), 351
setTextBody(), 351
7-Zip, 10
shopping cart

abandonment, 512–513
Cart32, 507
check out process, 530–550

steps in, 530, 545
testing, 543–545

coding, 507
database, 508–510
files

db_ch15 – 1.php, 507
db_ch15 – 2.php, 507
ecomm_checkout2.php, 508, 533–537, 

546–547
ecomm_checkout3.php, 508, 537–543, 547–550
ecomm_checkout.php, 507, 530–532, 

545–546
ecomm_shop.php, 507, 516–517, 519
ecomm_update_cart.php, 507
ecomm_view_cart.php, 507
ecomm_view_product.php, 507

products
adding/changing/deleting, 521–524
viewing, 524–529

tables, 508–513
adding product information, 513–514
ecomm_customers, 510
ecomm_order_details, 512
ecomm_orders, 511
ecomm_products, 510
ecomm_temp_cart, 512, 527

temporary, 512–513
third-party software, 507

SHOW DATABASES, 271
show_comments(), 417–418
show_topic(), 574
signup form (mailing list), 486–499
SimpleMail class, 343–352, 474–476, 497
SimpleXML functions, 739–740
simulating error messages, 243–246
single quotation marks (‘), 26
single-selection list, 136–138
site health, 637
site referrals, 638–639
site_user table, 366
site_user_info table, 366
size key, 184
SMALLINT, 80, 754
smilies, 624
smoothing images, 201
SMTP, 316
smtp_port, 316
sort($array), 61
sorting arrays, 61–62
sorting.php, 62
sourceforge.net, 4
spam, 469, 502. See also mailing lists
spatial data formats, 756
spreadsheets, 78. See also tables
SQL (Structured Query Language) server, 13
SQLite, 766, 770
SSH (Secure Shell), 766
SSL (Secure Socket Layer), 393
standards (design rules), 270
startlogic.com, 768
storage engines (MySQL), 83–84

BDB, 84
InnoDB, 84
MEMORY, 84
MERGE, 83
MyISAM, 83

storage engines (MySQL)



804

store, online. See e-commerce
E_STRICT, 249
string field types, 755–756
string functions, 740–747
string-formatting codes, 747
strings, 687
strlen(), 416
strrpos(), 416
Structured Query Language (SQL) server, 13
submit, 134, 135
submit buttons, 139, 141

Add, 141
multiple, 143
Search, 141

subscriptions, removal of, 500–502
substr(), 416
SUM(), 550
superhero powers page, 289–293
SWC, 176, 186

IMAGETYPE_SWC, 186
SWF

IMAGETYPE_SWF, 186
SWG, 176, 186
switch() statement, 162, 167, 246
Sybase, 766, 770
syntax errors, 260

T
table1.php, 106–110
table2.php, 110–118
table3.php, 118–119
tables, 78, 105–129. See also specific tables

BBS, 562–564
comic book. See comic book fan web site
creating, 105–110, 275
for database-driven logins, 365–367
foreach and, 96–97
joining, 100–101. See also JOINs
linking, 114–117, 156
mailing list

ml_lists, 471
ml_subscriptions, 472, 485, 497, 498, 501
ml_users, 471

movie review. See movie review web site
non-transaction–safe, 83
shopping cart. See shopping cart
as spreadsheets, 78
transaction-safe, 83
types, 83

tags, closing/opening, 20, 687
temporary shopping cart, 512–513
ternary operator (?:), 144–145, 688. See also 

if/else statements
testing

check out process, 543–545
GD library, 176–177
troubleshooting and, 646

TEXT, 79, 756
text (input), 44, 134, 151
text editors, 761–763

Dreamweaver CS3, 762, 763
EditPlus, 762, 763
features, comparison of, 762–763
Geany, 762, 763
HTML-Kit Tools, 762, 763
jEdit, 762, 763
Notepad, 762, 763
online information, 762, 763
PhpED, 762, 763
PHPEdit, 762, 763
TextPad, 762, 763
UltraEdit-32, 762, 763
WordPad, 762, 763
Zend Studio, 762, 763

TextPad, 762, 763
Third Normal Form (3NF), 268, 269
third-party hosting, 765–768

administration GUIs, 767
bandwidth usage, 767
configuration ability, 767
online companies (list), 768
pricing, 768
server access, 766–767
server control, 766–767
site usage, 767
supported databases, 766
supported languages, 766

3NF (Third Normal Form), 268, 269
thumbnails, 212–216
TIFF, 176, 186

IMAGETYPE_TIFF_II, 186
IMAGETYPE_TIFF_MM, 186

TIME, 79, 755
time/date. See date/time
TIMESTAMP, 755
TINYBLOB, 80, 756
TINYINT, 80, 754
TINYTEXT, 80, 756
title attributes, 119

store, online



805

In
d
e
x

tmp_name key, 184
Tools package, MySQL, 102
tooltips, 119

alt attributes, 119
title attributes, 119

transaction pages, 580–593
BBS

administration, 580–583
post, 584–586
removal/deletion, 591–593
user-related, 586–590

CMS, 420–432
article, 426–432
user-related, 420–426

comic book characters application, 277–289
frm_transact_admin.php, 580–583
frm_transact_affirm.php, 591–593
frm_transact_post.php, 584–586
frm_transact_user.php, 586–590

transaction-safe tables (TSTs), 83
trapping errors, 256–258
trends over time, 638
trim(), 225, 235, 236
trim_body(), 416, 573
troubleshooting, 641–648

empty variables, 643
error handling and, 260
installation, 641
parse errors, 260, 642–643
testing and, 646

trust (e-commerce), 552–553
personal customer service, 553
privacy policy, 552
return policy, 552–553
secure credit card processing, 553

Try It Out. See also exercises

administrator registration, 393–405
arrays

adding, 63–67
sorting, 62

articles
creating, 447–451
feedback for, 458–460
publishing, 455–458
reviewing, 451–458
viewing, 458–460

BBS
account functionality, 593–605
database preparation, 558–564
editing settings, 606–610

transaction pages, 580–593
using, 614–622

CMS
database structure, 409–412
reusable scripts, 412–420
search feature, 466–467
transaction pages, 420–432
user control panel, 461–465

Comic Book site
management of characters page, 293–310
superhero powers page, 289–293
table creation, 272–276
transaction pages, 277–289

constants, 30–31
cookies

setting, 42–44
tracking, with PHP, 388–393

database (Movie Review site), 87–90
dates/numbers, user input errors in, 226–238
deleting records, 162–167

cascade, 164–167
echo function, 23–26
e-commerce home page, 515–517
editing movie, 167–174
e-mail

confirmation, 330–343
data collection and, 317–322
simple, 317

embedding text in images, 202–209
error handling

custom error handler, 252–255
custom error messages, 243–246
error e-mail, creation of, 247–248
full-featured error handler, 255–256

ErrorDocument directive, 242–243
exceptions, 256–258
filters, 193–202
foreach, 95

table creation and, 96–97
forms

for getting information, 45–49
linking, 145–151

functions, 55–59
GD, testing, 176–177
htpasswd and htaccess, 356–359
if and else, 51–52
if statement, 50–51
image table, 178–188
image types, converting, 188–192
images, merging, 209–212

Try It Out



806

Try It Out (continued)

include, welcome message and, 53–54
inserting movie with known movie type and 

people, 157–162
joining two tables, 100–101
mailing list

administration page, 472–486
database preparation, 470–472
removal of subscriptions, 500–502
signup form, 486–499

multiline list boxes, 139–142
passing variables through URLs, 34–36
passing visitor’s username, 38–40
PHP for logins, 360–365
PHP within HTML, 27–28
radio button, 139–142
referencing multiple tables, 98–100
reusable scripts, BBS, 564–573
Say My Name, 132–134
SELECT, 92–94
session tracking, 368–373
shopping cart

adding/changing/deleting items in, 521–524
creating tables, 508–513
product information for tables, 513–514
viewing contents, 524–529

SimpleMail class, 343–352, 474–476, 497
tables

adding data, 120–121
creation, 105–110
for database-driven logins, 365–367
displaying movie details, 121–125
foreach and, 96–97
heredoc and, 110–114
linking, 114–117
master/child relationships, 118–119
movie review, 125–129

thumbnails, 212–216
transaction pages, 580–593

administration, 580–583
article, 426–432
post, 584–586
removal/deletion, 591–593
user-related, 420–426, 586–590

user accounts, editing, 373–376
user input

adapting script to, 218, 219–226
limiting choices, 136–139

variables, 31–33
while function, 67–72

try/catch method, 256–258
TSTs (transaction-safe tables), 83
2NF (Second Normal Form), 266–267, 269
type key, 184
type-validating functions, 235

U
ucase(), 144
UltraEdit-32, 762, 763
UNIQUE, 82
UPDATE, 84, 121, 167, 286
update_user.php, 398–400
updating records, 167–174
UPLOAD_ERR_CANT_WRITE, 184
UPLOAD_ERR_EXTENSION, 184
UPLOAD_ERR_FORM_SIZE, 184, 185
UPLOAD_ERR_INI, 184, 185
UPLOAD_ERR_NO_FILE, 184
UPLOAD_ERR_NO_TMP_DIR, 184
UPLOAD_ERR_OK, 184
UPLOAD_ERR_PARTIAL, 184
upload_image.html, 179–180, 183
uploading images, 178–188
URL functions, 748
urlencode(), 36–37, 225
URLs, passing variables through, 

33–37, 686
user accounts, editing, 373–376
User Administration page (BBS), 605–606
user authentication (BBS), 558, 579–580
user input

adapting script to, 218, 219–226
choices, limiting, 136–139
errors, 217, 238

dates/numbers, 226–238
forgetting information, 218–219
formatting, 226–238

forms and, 135–145
validating, 217–239

user interface (CMS), 432–467
account creation, 437–442
administration page, 443–447
main index/login screen, 432–436
user management, 442–447

user logins. See logins
user management (BBS), 597–605
user preferences/information, reports and, 638
user privileges, MySQL, 16–17
user profiles, BBS and, 625

Try It Out (continued)



807

In
d
e
x

user transaction pages
BBS, 586–590
CMS, 420–426

E_USER_ERROR, 249
E_USER_NOTICE, 249
E_USER_WARNING, 249
user_option_list(), 605–606

V
validating functions, 235
validating user input, 217–239
validation, 217
$value++, 73
++$value, 73
$value – –, 73
$value += 1, 73
$value = $value + 1, 73
VARBINARY, 756
VARCHAR, 78, 275, 756
var_dump(), 646, 647
variable functions, 749–750
variables, 31–33, 686

empty, 643
names, 643, 686
passing

with cookies, 41–44
through forms, 44–49, 687
through sessions, 38–40, 686
through URLs, 33–37, 686

Vbulletin, 557
viewing articles (CMS), 458–460
Virtual Vacation site, 216, 662

W
w3.org/Security/Faq/, 579, 610
warnings, 250

E_WARNING, 249
header() and, 143

watermarks, 209
WBMP, 176, 186, 187

IMAGETYPE_WBMP, 186
web site notification mailing lists, 469
web sites. See comic book fan web site; movie 

review web site; specific web sites

Webalizer, 633
websitesource.com, 768
welcome message, for movie review site, 

53–54
WHERE, 91–92

comparison operators, 92
logical operators, 92

while, 67–72, 690
wildcards, 92

%, 92
_, 92

Windows Service Manager, 8, 15
WordPad, 762, 763
workflow application, 330
wrox.com, 647

X
XBM, 176, 186

IMAGETYPE_XBM, 186
Xdebug, 647
XOR, 92

Y
YEAR, 80, 755

Z
Zend Studio, 762, 763
zero form (normalization), 265, 269
zero, NULL v., 82
7-Zip, 10

7-Zip



Now you can access more than 200 complete Wrox books

online, wherever you happen to be! Every diagram, description, 

screen capture, and code sample is available with your 

subscription to the Wrox Reference Library. For answers when 

and where you need them, go to wrox.books24x7.com and

subscribe today!


	cover.pdf
	page_c1.pdf
	page_r01.pdf
	page_r02.pdf
	page_r03.pdf
	page_r04.pdf
	page_r05.pdf
	page_r06.pdf
	page_r07.pdf
	page_r08.pdf
	page_r09.pdf
	page_r10.pdf
	page_r11.pdf
	page_r12.pdf
	page_r13.pdf
	page_r14.pdf
	page_r15.pdf
	page_r16.pdf
	page_r17.pdf
	page_r18.pdf
	page_r19.pdf
	page_r20.pdf
	page_r21.pdf
	page_r22.pdf
	page_r23.pdf
	page_r24.pdf
	page_r25.pdf
	page_r26.pdf
	page_r27.pdf
	page_r28.pdf
	page_z0001.pdf
	page_z0002.pdf
	page_z0003.pdf
	page_z0004.pdf
	page_z0005.pdf
	page_z0006.pdf
	page_z0007.pdf
	page_z0008.pdf
	page_z0009.pdf
	page_z0010.pdf
	page_z0011.pdf
	page_z0012.pdf
	page_z0013.pdf
	page_z0014.pdf
	page_z0015.pdf
	page_z0016.pdf
	page_z0017.pdf
	page_z0018.pdf
	page_z0019.pdf
	page_z0020.pdf
	page_z0021.pdf
	page_z0022.pdf
	page_z0023.pdf
	page_z0024.pdf
	page_z0025.pdf
	page_z0026.pdf
	page_z0027.pdf
	page_z0028.pdf
	page_z0029.pdf
	page_z0030.pdf
	page_z0031.pdf
	page_z0032.pdf
	page_z0033.pdf
	page_z0034.pdf
	page_z0035.pdf
	page_z0036.pdf
	page_z0037.pdf
	page_z0038.pdf
	page_z0039.pdf
	page_z0040.pdf
	page_z0041.pdf
	page_z0042.pdf
	page_z0043.pdf
	page_z0044.pdf
	page_z0045.pdf
	page_z0046.pdf
	page_z0047.pdf
	page_z0048.pdf
	page_z0049.pdf
	page_z0050.pdf
	page_z0051.pdf
	page_z0052.pdf
	page_z0053.pdf
	page_z0054.pdf
	page_z0055.pdf
	page_z0056.pdf
	page_z0057.pdf
	page_z0058.pdf
	page_z0059.pdf
	page_z0060.pdf
	page_z0061.pdf
	page_z0062.pdf
	page_z0063.pdf
	page_z0064.pdf
	page_z0065.pdf
	page_z0066.pdf
	page_z0067.pdf
	page_z0068.pdf
	page_z0069.pdf
	page_z0070.pdf
	page_z0071.pdf
	page_z0072.pdf
	page_z0073.pdf
	page_z0074.pdf
	page_z0075.pdf
	page_z0076.pdf
	page_z0077.pdf
	page_z0078.pdf
	page_z0079.pdf
	page_z0080.pdf
	page_z0081.pdf
	page_z0082.pdf
	page_z0083.pdf
	page_z0084.pdf
	page_z0085.pdf
	page_z0086.pdf
	page_z0087.pdf
	page_z0088.pdf
	page_z0089.pdf
	page_z0090.pdf
	page_z0091.pdf
	page_z0092.pdf
	page_z0093.pdf
	page_z0094.pdf
	page_z0095.pdf
	page_z0096.pdf
	page_z0097.pdf
	page_z0098.pdf
	page_z0099.pdf
	page_z0100.pdf
	page_z0101.pdf
	page_z0102.pdf
	page_z0103.pdf
	page_z0104.pdf
	page_z0105.pdf
	page_z0106.pdf
	page_z0107.pdf
	page_z0108.pdf
	page_z0109.pdf
	page_z0110.pdf
	page_z0111.pdf
	page_z0112.pdf
	page_z0113.pdf
	page_z0114.pdf
	page_z0115.pdf
	page_z0116.pdf
	page_z0117.pdf
	page_z0118.pdf
	page_z0119.pdf
	page_z0120.pdf
	page_z0121.pdf
	page_z0122.pdf
	page_z0123.pdf
	page_z0124.pdf
	page_z0125.pdf
	page_z0126.pdf
	page_z0127.pdf
	page_z0128.pdf
	page_z0129.pdf
	page_z0130.pdf
	page_z0131.pdf
	page_z0132.pdf
	page_z0133.pdf
	page_z0134.pdf
	page_z0135.pdf
	page_z0136.pdf
	page_z0137.pdf
	page_z0138.pdf
	page_z0139.pdf
	page_z0140.pdf
	page_z0141.pdf
	page_z0142.pdf
	page_z0143.pdf
	page_z0144.pdf
	page_z0145.pdf
	page_z0146.pdf
	page_z0147.pdf
	page_z0148.pdf
	page_z0149.pdf
	page_z0150.pdf
	page_z0151.pdf
	page_z0152.pdf
	page_z0153.pdf
	page_z0154.pdf
	page_z0155.pdf
	page_z0156.pdf
	page_z0157.pdf
	page_z0158.pdf
	page_z0159.pdf
	page_z0160.pdf
	page_z0161.pdf
	page_z0162.pdf
	page_z0163.pdf
	page_z0164.pdf
	page_z0165.pdf
	page_z0166.pdf
	page_z0167.pdf
	page_z0168.pdf
	page_z0169.pdf
	page_z0170.pdf
	page_z0171.pdf
	page_z0172.pdf
	page_z0173.pdf
	page_z0174.pdf
	page_z0175.pdf
	page_z0176.pdf
	page_z0177.pdf
	page_z0178.pdf
	page_z0179.pdf
	page_z0180.pdf
	page_z0181.pdf
	page_z0182.pdf
	page_z0183.pdf
	page_z0184.pdf
	page_z0185.pdf
	page_z0186.pdf
	page_z0187.pdf
	page_z0188.pdf
	page_z0189.pdf
	page_z0190.pdf
	page_z0191.pdf
	page_z0192.pdf
	page_z0193.pdf
	page_z0194.pdf
	page_z0195.pdf
	page_z0196.pdf
	page_z0197.pdf
	page_z0198.pdf
	page_z0199.pdf
	page_z0200.pdf
	page_z0201.pdf
	page_z0202.pdf
	page_z0203.pdf
	page_z0204.pdf
	page_z0205.pdf
	page_z0206.pdf
	page_z0207.pdf
	page_z0208.pdf
	page_z0209.pdf
	page_z0210.pdf
	page_z0211.pdf
	page_z0212.pdf
	page_z0213.pdf
	page_z0214.pdf
	page_z0215.pdf
	page_z0216.pdf
	page_z0217.pdf
	page_z0218.pdf
	page_z0219.pdf
	page_z0220.pdf
	page_z0221.pdf
	page_z0222.pdf
	page_z0223.pdf
	page_z0224.pdf
	page_z0225.pdf
	page_z0226.pdf
	page_z0227.pdf
	page_z0228.pdf
	page_z0229.pdf
	page_z0230.pdf
	page_z0231.pdf
	page_z0232.pdf
	page_z0233.pdf
	page_z0234.pdf
	page_z0235.pdf
	page_z0236.pdf
	page_z0237.pdf
	page_z0238.pdf
	page_z0239.pdf
	page_z0240.pdf
	page_z0241.pdf
	page_z0242.pdf
	page_z0243.pdf
	page_z0244.pdf
	page_z0245.pdf
	page_z0246.pdf
	page_z0247.pdf
	page_z0248.pdf
	page_z0249.pdf
	page_z0250.pdf
	page_z0251.pdf
	page_z0252.pdf
	page_z0253.pdf
	page_z0254.pdf
	page_z0255.pdf
	page_z0256.pdf
	page_z0257.pdf
	page_z0258.pdf
	page_z0259.pdf
	page_z0260.pdf
	page_z0261.pdf
	page_z0262.pdf
	page_z0263.pdf
	page_z0264.pdf
	page_z0265.pdf
	page_z0266.pdf
	page_z0267.pdf
	page_z0268.pdf
	page_z0269.pdf
	page_z0270.pdf
	page_z0271.pdf
	page_z0272.pdf
	page_z0273.pdf
	page_z0274.pdf
	page_z0275.pdf
	page_z0276.pdf
	page_z0277.pdf
	page_z0278.pdf
	page_z0279.pdf
	page_z0280.pdf
	page_z0281.pdf
	page_z0282.pdf
	page_z0283.pdf
	page_z0284.pdf
	page_z0285.pdf
	page_z0286.pdf
	page_z0287.pdf
	page_z0288.pdf
	page_z0289.pdf
	page_z0290.pdf
	page_z0291.pdf
	page_z0292.pdf
	page_z0293.pdf
	page_z0294.pdf
	page_z0295.pdf
	page_z0296.pdf
	page_z0297.pdf
	page_z0298.pdf
	page_z0299.pdf
	page_z0300.pdf
	page_z0301.pdf
	page_z0302.pdf
	page_z0303.pdf
	page_z0304.pdf
	page_z0305.pdf
	page_z0306.pdf
	page_z0307.pdf
	page_z0308.pdf
	page_z0309.pdf
	page_z0310.pdf
	page_z0311.pdf
	page_z0312.pdf
	page_z0313.pdf
	page_z0314.pdf
	page_z0315.pdf
	page_z0316.pdf
	page_z0317.pdf
	page_z0318.pdf
	page_z0319.pdf
	page_z0320.pdf
	page_z0321.pdf
	page_z0322.pdf
	page_z0323.pdf
	page_z0324.pdf
	page_z0325.pdf
	page_z0326.pdf
	page_z0327.pdf
	page_z0328.pdf
	page_z0329.pdf
	page_z0330.pdf
	page_z0331.pdf
	page_z0332.pdf
	page_z0333.pdf
	page_z0334.pdf
	page_z0335.pdf
	page_z0336.pdf
	page_z0337.pdf
	page_z0338.pdf
	page_z0339.pdf
	page_z0340.pdf
	page_z0341.pdf
	page_z0342.pdf
	page_z0343.pdf
	page_z0344.pdf
	page_z0345.pdf
	page_z0346.pdf
	page_z0347.pdf
	page_z0348.pdf
	page_z0349.pdf
	page_z0350.pdf
	page_z0351.pdf
	page_z0352.pdf
	page_z0353.pdf
	page_z0354.pdf
	page_z0355.pdf
	page_z0356.pdf
	page_z0357.pdf
	page_z0358.pdf
	page_z0359.pdf
	page_z0360.pdf
	page_z0361.pdf
	page_z0362.pdf
	page_z0363.pdf
	page_z0364.pdf
	page_z0365.pdf
	page_z0366.pdf
	page_z0367.pdf
	page_z0368.pdf
	page_z0369.pdf
	page_z0370.pdf
	page_z0371.pdf
	page_z0372.pdf
	page_z0373.pdf
	page_z0374.pdf
	page_z0375.pdf
	page_z0376.pdf
	page_z0377.pdf
	page_z0378.pdf
	page_z0379.pdf
	page_z0380.pdf
	page_z0381.pdf
	page_z0382.pdf
	page_z0383.pdf
	page_z0384.pdf
	page_z0385.pdf
	page_z0386.pdf
	page_z0387.pdf
	page_z0388.pdf
	page_z0389.pdf
	page_z0390.pdf
	page_z0391.pdf
	page_z0392.pdf
	page_z0393.pdf
	page_z0394.pdf
	page_z0395.pdf
	page_z0396.pdf
	page_z0397.pdf
	page_z0398.pdf
	page_z0399.pdf
	page_z0400.pdf
	page_z0401.pdf
	page_z0402.pdf
	page_z0403.pdf
	page_z0404.pdf
	page_z0405.pdf
	page_z0406.pdf
	page_z0407.pdf
	page_z0408.pdf
	page_z0409.pdf
	page_z0410.pdf
	page_z0411.pdf
	page_z0412.pdf
	page_z0413.pdf
	page_z0414.pdf
	page_z0415.pdf
	page_z0416.pdf
	page_z0417.pdf
	page_z0418.pdf
	page_z0419.pdf
	page_z0420.pdf
	page_z0421.pdf
	page_z0422.pdf
	page_z0423.pdf
	page_z0424.pdf
	page_z0425.pdf
	page_z0426.pdf
	page_z0427.pdf
	page_z0428.pdf
	page_z0429.pdf
	page_z0430.pdf
	page_z0431.pdf
	page_z0432.pdf
	page_z0433.pdf
	page_z0434.pdf
	page_z0435.pdf
	page_z0436.pdf
	page_z0437.pdf
	page_z0438.pdf
	page_z0439.pdf
	page_z0440.pdf
	page_z0441.pdf
	page_z0442.pdf
	page_z0443.pdf
	page_z0444.pdf
	page_z0445.pdf
	page_z0446.pdf
	page_z0447.pdf
	page_z0448.pdf
	page_z0449.pdf
	page_z0450.pdf
	page_z0451.pdf
	page_z0452.pdf
	page_z0453.pdf
	page_z0454.pdf
	page_z0455.pdf
	page_z0456.pdf
	page_z0457.pdf
	page_z0458.pdf
	page_z0459.pdf
	page_z0460.pdf
	page_z0461.pdf
	page_z0462.pdf
	page_z0463.pdf
	page_z0464.pdf
	page_z0465.pdf
	page_z0466.pdf
	page_z0467.pdf
	page_z0468.pdf
	page_z0469.pdf
	page_z0470.pdf
	page_z0471.pdf
	page_z0472.pdf
	page_z0473.pdf
	page_z0474.pdf
	page_z0475.pdf
	page_z0476.pdf
	page_z0477.pdf
	page_z0478.pdf
	page_z0479.pdf
	page_z0480.pdf
	page_z0481.pdf
	page_z0482.pdf
	page_z0483.pdf
	page_z0484.pdf
	page_z0485.pdf
	page_z0486.pdf
	page_z0487.pdf
	page_z0488.pdf
	page_z0489.pdf
	page_z0490.pdf
	page_z0491.pdf
	page_z0492.pdf
	page_z0493.pdf
	page_z0494.pdf
	page_z0495.pdf
	page_z0496.pdf
	page_z0497.pdf
	page_z0498.pdf
	page_z0499.pdf
	page_z0500.pdf
	page_z0501.pdf
	page_z0502.pdf
	page_z0503.pdf
	page_z0504.pdf
	page_z0505.pdf
	page_z0506.pdf
	page_z0507.pdf
	page_z0508.pdf
	page_z0509.pdf
	page_z0510.pdf
	page_z0511.pdf
	page_z0512.pdf
	page_z0513.pdf
	page_z0514.pdf
	page_z0515.pdf
	page_z0516.pdf
	page_z0517.pdf
	page_z0518.pdf
	page_z0519.pdf
	page_z0520.pdf
	page_z0521.pdf
	page_z0522.pdf
	page_z0523.pdf
	page_z0524.pdf
	page_z0525.pdf
	page_z0526.pdf
	page_z0527.pdf
	page_z0528.pdf
	page_z0529.pdf
	page_z0530.pdf
	page_z0531.pdf
	page_z0532.pdf
	page_z0533.pdf
	page_z0534.pdf
	page_z0535.pdf
	page_z0536.pdf
	page_z0537.pdf
	page_z0538.pdf
	page_z0539.pdf
	page_z0540.pdf
	page_z0541.pdf
	page_z0542.pdf
	page_z0543.pdf
	page_z0544.pdf
	page_z0545.pdf
	page_z0546.pdf
	page_z0547.pdf
	page_z0548.pdf
	page_z0549.pdf
	page_z0550.pdf
	page_z0551.pdf
	page_z0552.pdf
	page_z0553.pdf
	page_z0554.pdf
	page_z0555.pdf
	page_z0556.pdf
	page_z0557.pdf
	page_z0558.pdf
	page_z0559.pdf
	page_z0560.pdf
	page_z0561.pdf
	page_z0562.pdf
	page_z0563.pdf
	page_z0564.pdf
	page_z0565.pdf
	page_z0566.pdf
	page_z0567.pdf
	page_z0568.pdf
	page_z0569.pdf
	page_z0570.pdf
	page_z0571.pdf
	page_z0572.pdf
	page_z0573.pdf
	page_z0574.pdf
	page_z0575.pdf
	page_z0576.pdf
	page_z0577.pdf
	page_z0578.pdf
	page_z0579.pdf
	page_z0580.pdf
	page_z0581.pdf
	page_z0582.pdf
	page_z0583.pdf
	page_z0584.pdf
	page_z0585.pdf
	page_z0586.pdf
	page_z0587.pdf
	page_z0588.pdf
	page_z0589.pdf
	page_z0590.pdf
	page_z0591.pdf
	page_z0592.pdf
	page_z0593.pdf
	page_z0594.pdf
	page_z0595.pdf
	page_z0596.pdf
	page_z0597.pdf
	page_z0598.pdf
	page_z0599.pdf
	page_z0600.pdf
	page_z0601.pdf
	page_z0602.pdf
	page_z0603.pdf
	page_z0604.pdf
	page_z0605.pdf
	page_z0606.pdf
	page_z0607.pdf
	page_z0608.pdf
	page_z0609.pdf
	page_z0610.pdf
	page_z0611.pdf
	page_z0612.pdf
	page_z0613.pdf
	page_z0614.pdf
	page_z0615.pdf
	page_z0616.pdf
	page_z0617.pdf
	page_z0618.pdf
	page_z0619.pdf
	page_z0620.pdf
	page_z0621.pdf
	page_z0622.pdf
	page_z0623.pdf
	page_z0624.pdf
	page_z0625.pdf
	page_z0626.pdf
	page_z0627.pdf
	page_z0628.pdf
	page_z0629.pdf
	page_z0630.pdf
	page_z0631.pdf
	page_z0632.pdf
	page_z0633.pdf
	page_z0634.pdf
	page_z0635.pdf
	page_z0636.pdf
	page_z0637.pdf
	page_z0638.pdf
	page_z0639.pdf
	page_z0640.pdf
	page_z0641.pdf
	page_z0642.pdf
	page_z0643.pdf
	page_z0644.pdf
	page_z0645.pdf
	page_z0646.pdf
	page_z0647.pdf
	page_z0648.pdf
	page_z0649.pdf
	page_z0650.pdf
	page_z0651.pdf
	page_z0652.pdf
	page_z0653.pdf
	page_z0654.pdf
	page_z0655.pdf
	page_z0656.pdf
	page_z0657.pdf
	page_z0658.pdf
	page_z0659.pdf
	page_z0660.pdf
	page_z0661.pdf
	page_z0662.pdf
	page_z0663.pdf
	page_z0664.pdf
	page_z0665.pdf
	page_z0666.pdf
	page_z0667.pdf
	page_z0668.pdf
	page_z0669.pdf
	page_z0670.pdf
	page_z0671.pdf
	page_z0672.pdf
	page_z0673.pdf
	page_z0674.pdf
	page_z0675.pdf
	page_z0676.pdf
	page_z0677.pdf
	page_z0678.pdf
	page_z0679.pdf
	page_z0680.pdf
	page_z0681.pdf
	page_z0682.pdf
	page_z0683.pdf
	page_z0684.pdf
	page_z0685.pdf
	page_z0686.pdf
	page_z0687.pdf
	page_z0688.pdf
	page_z0689.pdf
	page_z0690.pdf
	page_z0691.pdf
	page_z0692.pdf
	page_z0693.pdf
	page_z0694.pdf
	page_z0695.pdf
	page_z0696.pdf
	page_z0697.pdf
	page_z0698.pdf
	page_z0699.pdf
	page_z0700.pdf
	page_z0701.pdf
	page_z0702.pdf
	page_z0703.pdf
	page_z0704.pdf
	page_z0705.pdf
	page_z0706.pdf
	page_z0707.pdf
	page_z0708.pdf
	page_z0709.pdf
	page_z0710.pdf
	page_z0711.pdf
	page_z0712.pdf
	page_z0713.pdf
	page_z0714.pdf
	page_z0715.pdf
	page_z0716.pdf
	page_z0717.pdf
	page_z0718.pdf
	page_z0719.pdf
	page_z0720.pdf
	page_z0721.pdf
	page_z0722.pdf
	page_z0723.pdf
	page_z0724.pdf
	page_z0725.pdf
	page_z0726.pdf
	page_z0727.pdf
	page_z0728.pdf
	page_z0729.pdf
	page_z0730.pdf
	page_z0731.pdf
	page_z0732.pdf
	page_z0733.pdf
	page_z0734.pdf
	page_z0735.pdf
	page_z0736.pdf
	page_z0737.pdf
	page_z0738.pdf
	page_z0739.pdf
	page_z0740.pdf
	page_z0741.pdf
	page_z0742.pdf
	page_z0743.pdf
	page_z0744.pdf
	page_z0745.pdf
	page_z0746.pdf
	page_z0747.pdf
	page_z0748.pdf
	page_z0749.pdf
	page_z0750.pdf
	page_z0751.pdf
	page_z0752.pdf
	page_z0753.pdf
	page_z0754.pdf
	page_z0755.pdf
	page_z0756.pdf
	page_z0757.pdf
	page_z0758.pdf
	page_z0759.pdf
	page_z0760.pdf
	page_z0761.pdf
	page_z0762.pdf
	page_z0763.pdf
	page_z0764.pdf
	page_z0765.pdf
	page_z0766.pdf
	page_z0767.pdf
	page_z0768.pdf
	page_z0769.pdf
	page_z0770.pdf
	page_z0771.pdf
	page_z0772.pdf
	page_z0773.pdf
	page_z0774.pdf
	page_z0775.pdf
	page_z0776.pdf
	page_z0777.pdf
	page_z0778.pdf
	page_z0779.pdf
	page_z0780.pdf
	page_z0781.pdf
	page_z0782.pdf
	page_z0783.pdf
	page_z0784.pdf
	page_z0785.pdf
	page_z0786.pdf
	page_z0787.pdf
	page_z0788.pdf
	page_z0789.pdf
	page_z0790.pdf
	page_z0791.pdf
	page_z0792.pdf
	page_z0793.pdf
	page_z0794.pdf
	page_z0795.pdf
	page_z0796.pdf
	page_z0797.pdf
	page_z0798.pdf
	page_z0799.pdf
	page_z0800.pdf
	page_z0801.pdf
	page_z0802.pdf
	page_z0803.pdf
	page_z0804.pdf
	page_z0805.pdf
	page_z0806.pdf
	page_z0807.pdf
	page_z0808.pdf

